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Abstract

Machine learning has evolved from a niche topic to a subject that strongly influences all of our

lives in recent years. In addition to paradigm-shifting developments in machine learning with

large language models like ChatGPT, there are also advancements in the field of quantum

physics using similar technologies. This work provides insights into the applications of machine

learning within the realm of many-body quantum physics.

Utilizing ultracold quantum gases, which exhibit interesting properties due to their macro-

scopic quantum states, groundbreaking investigations into quantum mechanical effects have

been conducted in recent decades. Exploring various topological phases is just one of many

subfields. The Haldane model, describing topological insulators that could play a crucial role

in developing modern materials with technologically interesting properties, is one of the cur-

rently studied models with the experimental platform of cold quantum gases. As traditional

methods reach their limits in detecting individual phases, the use of machine learning to sup-

port the recognition of such phase transitions will be a vital part of the investigations of such

phases in the future. In this thesis, the applications of machine learning methods applied to

such problems will be discussed.

It is demonstrated that with the help of unsupervised machine learning, it is possible to distin-

guish the individual topological phases of the Haldane phase diagram based on experimental

data. Methods for dimensionality reduction, such as deep autoencoders, are employed to

gain insights into the underlying structure of the experimental data. Additionally, the data is

cleaned using generative neural networks to make it suitable for further analysis.

Neural quantum states enable the representation of a significantly larger spectrum of the

state space of quantum many-body systems even on classical computers. Through specific

measurement techniques, it is possible to experimentally measure and fully store these states.

Tomography for neural quantum states is currently accessible only for a limited number of

systems and is expanded in the last part of this thesis by a proposed new protocol based on

quench dynamics.
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Zusammenfassung

Maschinelles Lernen hat sich in den letzten Jahren von einem Nischenthema zu einem Thema

entwickelt, welches das Leben von uns allen stark beeinflusst. Neben den paradigmenwech-

selnden Entwicklungen auf dem Gebiet des maschinellen Lernens bei großen Sprachmodellen

wie ChatGPT, gibt es auch im Bereich der Quantenphysik Fortschirtte beim Einsatz eben-

solcher Technologien. Diese Arbeit gibt einen Einblick in die Anwendungsmöglichkeiten von

maschinellem Lernen innerhalb des Kosmos der Vielteilchenquantenphysik.

Unter Zuhilfenahme von ultrkalten Quantengasen, die durch ihren makroskopischen Quanten-

zustand interessante Eigenschaften bieten, konnten in den letzten Jahrzehnten einige weg-

weisende Untersuchungen zu quantenmechanischen Effekten durchgeführt werden. Die Un-

tersuchung verschiedener topologischer Phasen stellt dabei nur eines von vielen Teilgebieten

da. Das Haldane Modell welches topologische Isolatoren beschreibt, welche eine entscheidene

Rolle bei der Entwicklung moderner Materialien mit technologisch interessanten Eigenschaften

beitragen könnten, ist dabei eines der aktuell untersuchten Modell mit dieser experimentellen

Plattform. Klassische Methoden kommen bei der Detektion der einzelnen Phasenübergänge

jedoch an ihre Grenzen und der Einsatz von maschinellem Lernen zur Unterstützung der

Erkennung eben solcher Phasenübergänge ist der wesentliche Teil der Untersuchungen in

dieser Arbeit.

In dieser Dissertation wird gezeigt, dass es mit Hilfe von nicht angeleitetem maschinellem

Lernen möglich ist, die einzelnen topologischen Phasen des Haldane Phasendiagramms auf

der Basis von experimentallen Daten zu unterscheiden. Dabei werden Methoden zur Dimen-

sionsreduzierung, wie tiefe Autoencoder genutzt, um Aufschluss über die zugrundeliegende

Struktur der experimentellen Daten zu erhalten. Die Daten werden zudem durch generative

neuronale Netzwerke so bereinigt, dass sie für die weitere Analyse in Frage kommen.

Durch neuronale Quantenzustände ist es möglich ein deutlich größere Spektrum des Zustand-

sraumes von Quantenvielteilchensysteme auch in klassischen Computern darzustellen. Durch

spezielle Messverfahren ist es möglich diese Zustände durch Experimente zu vermessen und

vollständig zu speichern. Die Tomographie für neuronale Quantenzustände ist derzeit nur

für eine beschränkte Zahl an Systemen zugänglich und wird in dieser Arbeit um eine auf

Quenchdynamik basierende Methode erweitert.
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• N. Käming, A. Dawid, K. Kottmann, M. Lewenstein, K. Sengstock, A. Dauphin,

and C. Weitenberg. “Unsupervised machine learning of topological phase transitions

from experimental data”. In: Machine Learning: Science and Technology 2.3 (2021),

p. 035037. doi: 10.1088/2632-2153/abffe7

The publication from 2019 about supervised phase detection was published before the work

on this thesis started. Nevertheless, it inspired and influenced most parts of this thesis.

The full implementation details of the second publication are available here:
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CHAPTER1
Introduction

Machine learning (ML), a dynamic and rapidly evolving field, has witnessed unprecedented

growth in recent years, transforming the landscape of technology and reshaping the way we

approach complex problems. As we delve into the latest developments in ML, it becomes

evident that the discipline is not merely a tool but a driving force behind innovations that

touch every aspect of our lives. With the introduction of ChatGPT [1] or in general large

language models, it becomes clear that ML will revolutionize the way we live, work, think and

make new scientific discoveries.

The advent of deep learning, fueled by advances in neural network architectures, the availability

of massive datasets and computational power, has propelled the field to new heights. Models

such as transformers, with their ability to capture intricate patterns and dependencies in

data, have become instrumental in natural language processing, computer vision, and beyond.

ML models no longer only assist humans, they also outperform them in certain fields, like

playing complex games [2] by teaching themselves [3, 4]. They also speed up scientific

and technological discovery by developing new mathematical algorithms [5], developing new

software [6] or solving problems like protein folding much more efficient [7, 8] leading to a

boost in structural biology and drug design [9].

The success of ML has recently also achieved remarkable results and led to promising ap-

plications in quantum physics [10–13]. Most promising examples are the representation of

quantum many-body states [14], efficient state tomography [15–17], the optimization of ex-

perimental protocols and setups [18–21] and the detection of phase boundaries and different

phases of matter from numerical [22–35] and experimental data. Experimental data, nor-

mally suffering from imperfections such as noise, limited measurement apparatus restricting

the accessible observables, or finite temperature, let machine learning reveal its true potential.

Examples include scanning tunneling microscopy [36, 37], neutron scattering data from spin

ice systems [38], vortex detection in Bose-Einstein condensate (BEC) [39] and momentum-

space and real-space images of cold quantum gases [40–45]. Other perspectives of machine

learning applications are to identify novel phases in exotic regimes [23, 42] or the effective

modeling of theoretical concepts [46]. Recently it also became useful to reconstruct images
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from quantum gas microscopes [47]. Some of the concepts have already been analogously

transformed into the quantum computing regime, making use of the computing paradigms in

quantum computing [48–51]. One prominent example is quantum anomaly detection [52].

In the realm of quantum physics, the study of many-body systems stands as a captivating

frontier that challenges our understanding of matter and its fundamental interactions. The

exponentially growing Hilbert space however limits the theoretical study of such systems

and motivates the development of a playground of controllable simulations mimicking their

rich phenomenon [53, 54]. Over time multiple platforms, namely cold quantum gases [55,

56], trapped ions [57], and photonic systems [58] have been developed addressing different

problems.

The advent of experimental techniques enabling the creation and manipulation of degenerate

bosonic [59, 60] and fermionic [61] ultracold quantum gases has opened a new avenue for

investigating the rich tapestry of quantum many-body physics [55, 62]. This interdisciplinary

field lies at the intersection of atomic, molecular, and optical physics, offering a unique plat-

form to explore emergent phenomena arising from the collective behavior of a large number

of interacting quantum particles. Realized through techniques such as laser cooling and evap-

orative cooling, cold quantum gases provide an exquisite playground for probing the intricate

quantum dynamics of many-body systems. Typically composed of ultracold atoms, this exper-

imental platform offers an unprecedented level of control. Modulating the laser intensities or

using Feshbach resonances [63] the tunneling and interaction strength can be tuned in a wide

range allowing simulation of a variety of different Hamiltonians. The resulting highly versatile

experimental setups enable researchers to investigate a diverse array of quantum phases and

transitions, paving the way for a deeper understanding of fundamental quantum phenomena.

Since the beginning of the field, a whole zoo of different lattice geometries was engineered

like cubic lattices allowing the first observations of the phase transition between a bosonic

superfluid [64] and fermionic metallic [65, 66] phase to a Mott insulating phase, and hexagonal

lattices allowing the direct simulation of magnetism in its classical and quantum form [67,

68] and the realization of artificial graphene [69, 70]. Of current interest are nonseparable

and bipartite lattices such as triangular lattices [67, 71], honeycomb lattices [69, 71–73],

checkerboard lattices [74], Lieb lattices [75], Kagome lattices [76] or quasicrystal structures

[77]. This variety of accessible lattices and the fact that optical lattices are defect-free allows

the realization of a variety of different Hamiltonians with high controllability and accessibility.

The development of single-site resolution imaging using quantum gas microscopes [78, 79]

which gives access to more quantum mechanical observables to study the underlying systems

and leads to numerous new observations [80] allow access to new observables like on-site

occupation. Recently this approach has been further developed by using quantum gas mag-
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nification by matter wave optics [81] allowing access to below single site resolution without

experimental challenging quantum gas microscopy.

One of the central themes in the field of many-body physics is the study of quantum phase

transitions, where a many-body system undergoes a drastic change in its ground state as a

control parameter, such as interaction strength, is varied. Understanding these transitions

and characterizing the associated critical phenomena is crucial for unraveling the underlying

quantum dynamics and is central for the broader field of condensed matter physics. One of the

most interesting sub-fields is the analysis and understanding of topological phases of matter

and its importance was underlined by the Nobel Prize in 2016. The topological properties

of materials are not only technologically relevant [82] but also explain phenomena in modern

physics like the Hall effects [83, 84] and topological insulators [85, 86]. Hamiltonians featuring

topological bands have been realized in quantum gas experiments with optical lattices and

topological properties have been successfully extracted [40, 72, 87–90]. However, most of the

techniques suffer from technical difficulties making them unfeasible for some regimes or very

data intensive. This requires an alternative ansatz to detect and identify different phases of

matter.

In this thesis, I will combine the two areas of machine learning and cold quantum gases. I will

demonstrate a variety of machine-learning methods to reconstruct the complete Haldane phase

diagram [91] and its topological phases identified by the Chern number from experimental

data [40, 43]. All technical advantages in the field of cold quantum gases are challenging the

theoretical predictions of different exotic phases of matter. For experimentalists, it is appealing

to search for new phases of matter guided by experimental data and provide helpful insights

into the regimes that modern theoretical predictions do not cover. This can be accelerated

by ML enhanced data analysis which I will prove useful in this work.

1.1 | Thesis Outline

In this thesis, I will develop different machine-learning methods to identify and analyze ex-

perimental cold quantum gas and numerical data. I will explain all the ingredients needed to

use supervised and unsupervised techniques to solve the challenging task of quantum phase

detection. For the first time, the complete Haldane phase diagram is reconstructed from ex-

perimental data without prior knowledge of the underlying phases. Furthermore, I will develop

a novel neural network-based tomography ansatz for many-body quantum systems.

Chapter 2: Machine Learning This chapter is an introduction to the building blocks of

machine learning. I will introduce the building blocks and learning algorithms for deep learning

models as they might be new for readers from the quantum gas community. Furthermore, I

will introduce concepts to study the loss landscape of Neural networks (NNs).
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Chapter 3: Detection of Phase Transitions Here I will develop the algorithms to detect

quantum phase transitions from different types of data. I will introduce supervised and unsu-

pervised techniques like principle component analysis (PCA), anomaly detection and similarity

analysis and discuss the requirements and applications of the different methods.

Chapter 4: Haldane model The main part of the thesis covers the supervised and unsu-

pervised reconstruction of the Haldane model from experimental data. I will introduce the

Haldane model, how it is realized experimentally, and how the different machine learning al-

gorithms compare to each other and traditional methods to measure the Chern number. The

contents of this chapter are published in [40] and [43]

Chapter 5: State Tomography In the last chapter, I will introduce a novel ansatz for

quantum state tomography from random quench dynamics with Neural quantum state (NQS).

I will introduce the theoretical foundation needed to realize this novel ansatz and discuss

possible applications.

1.2 | Other Projects

During the time working on this thesis, an important other toolchain was developed which

is technical and hence not part of this thesis, however, consumed a lot of my time. To

successfully work with experimental data it is of course important to first collect it. The former

framework is not suitable for ML applications. To allow faster access and data availability a

new measurement framework for the laboratories is being developed, named common analysis

framework for cold atoms (CAFCA). CAFCA features expandability and a common data layout

which is accessible efficiently not only from classical analysis scripts but for most machine

learning applications as well. It features support for S3 storage solutions, much faster and

more scalable than all other solutions used so far and is future-proof as it is the industry

standard for storing large datasets. Furthermore, an arbitrary amount of sensor data can be

added due to its expandability. To fulfill the standards in scientific publishing we also take

explicit care of how the data is represented. Therefore we use the HDF5 file standard and

merge all measurement data in one file to keep it self-explanatory. The framework will be

published in the future allowing cross-institutional standards for cold quantum experiments.
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CHAPTER2
Machine Learning

In this chapter, I will give a broad overview of the field of artificial intelligence (AI) and the

methods used in this thesis. This introduction is however not complete and can not cover all

the details of how to create good ML models. Those who want to improve their background

knowledge can get more information in good textbooks about the topic like [92]. More tailored

introductions for physicists exist like [93]. To get an overview of what current research topics

in the context of ML applied to physics I refer to the lecture notes [12] or these reviews [10,

94].

In the first section 2.1, I will try to zoom in from the broad field of artificial intelligence (AI) to

deep learning (DL) and explain the differences, advantages, and disadvantages of the different

areas of AI. Afterward, the focus is ML. In section 2.2 I will introduce the two different tasks

ML tries to solve while in section 2.3 I will discuss the different types of learning. The next

steps described in 2.4 include learning algorithms and discussing their ability to generalize 2.5.

A special kind of learning algorithm is introduced in section 2.6 called deep neural network

(DNN) including a special subgroup called autoencoder (AE). The study of the loss landscape

of deep neural networks (DNNs) reveals some interesting and helpful insights, thus I will

discuss some aspects of loss landscape analysis in section 2.7.

2.1 | Learning Machines

With the advent of computers in the second half of the 20th century, the dream of making

computers think like humans came up. The scientific discoveries in the field of neurobiology

however make it seem quite complicated to replicate our brain. Nevertheless, along the path

to the ultimate AI some algorithms have been developed to solve a small part of problems

even better than humans. With the release of large language models [1] and large datasets, it

is nowadays also possible to mimic the complex structure of language and have conversations

with AI systems. Even today it is quite obvious that humans and machines have different
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Figure 2.1: Venn diagram of the relation between deep learning (DL), machine learning (ML) and artificial

intelligence (AI) referring to [92]. DL includes all DNN and convolutional neural network (CNN) architectures.

ML also includes simple linear algebra models like PCA and support vector machnine (SVM) or k-means

clustering whilst AI includes all kinds of different algorithms to create learning machines. Diagram adapted

from [12].

areas of expertise where they excel. This observation has been known since the 1980s and is

known as the Morvac paradox [95].

It is comparatively easy to make computers exhibit adult-level performance on

intelligence tests or playing checkers, and difficult or impossible to give them the

skills of a one-year-old regarding perception and mobility.

The tasks computers outperform most humans nowadays are tasks that can be described by

formal rules like chess or finding the shortest route on a map. This type of AI can already

be achieved by programming decision trees with knowledge-based approaches. The way the

computer outperforms humans, in that case, lies in the computational power, e.g. testing

thousands of chess moves and their probability to improve the game in seconds, and not in

the logical reasoning since the decisions are set by a programmer 1. It is debatable to call

such systems artificial intelligence. Nevertheless, these kinds of algorithms can make decisions

based on some inputs. Therefore I will follow the definitions given by [92] where these types

of algorithms are considered to be knowledge-based AI.

The restricted capabilities of knowledge-based, hard-coded intelligence suggest that another

idea to create artificial intelligence is required. Machine learning (ML) describes the capability

of machines to acquire their knowledge by using a fixed dataset from an experiment. One of

the most straightforward and first applicable ML algorithms is logistic regression or a naive

Bayes algorithm, e.g. in an E-mail spam filter. Both algorithms however suffer from the

1It should be mentioned that knowledge-based algorithms are outperformed by self-trained reinforcement

algorithms [4] in many cases.
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representation of the data in the dataset. To give useful information the algorithms need

to be fed with several information, so-called features of the data. In the case of an E-Mail

spam filter, it requires information about certain words or metadata to succeed. However, this

representation of the data is implemented by a programmer and is hence vulnerable to biases.

Furthermore sometimes it is not obvious which features are useful to identify a spam E-Mail

or to identify a cat or dog from an image because the underlying correlations are unknown.

The power of representation learning, consequently a subset of ML, tries to solve that by

giving the algorithm the capabilities to find the underlying correlations (features) to make

meaningful decisions. In the case of the E-Mail filter this might be the complete content of

the E-Mail and the metadata. In the following, I will refer to both kinds of ML algorithms,

those with given representations and those considered as representation learning, as machine

learning (ML). Successful representation learning algorithms are PCA [96, 97], SVM [98, 99],

and k-means clustering.

A subset of ML, or to be precise representation learning, is deep learning (DL). DL solves

the problem of representing the features by combining features to new simpler features and

recycles them as input for deeper models. This type of ML is accessible due to the advent of

capable computational resources to process large datasets like image collections. The basis

model for DL is the feedforward multilayer perceptron (MLP). A simple model, modeled by

a function, that maps an input to a new set of features or a new representation of the data.

The function itself consists of many smaller functions, all chained together. This deep chain

of functions is the namesake of the field of DL. Today many different DL algorithms exist like

DNNs or CNNs as a special version to work with images.

An overview of how AI, ML, and DL relate to each other is given in figure 2.1. In a nutshell

AI can be seen as a collective term of different algorithms. It becomes evident that the

only viable way to create an AI that can compete in real-world scenarios are ML methods.

Most promising are DL algorithms allowing an abstraction of features from real-world data on

several levels.

2.2 | Tasks

ML excels in different learning tasks and they can loosely be sorted into different categories.

Here two categories are introduced, though, they are not complete and new categories emerge

with the advances in the field.

Regression

Regression tasks are defined by their immediate relation between the input and output. How-

ever, the relation might be highly non-linear, and machine learning is required to model the
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dependence. Regression problems try to map inputs x (features) to continuous outputs y

(targets). The objective is to find the ML model that expresses the function y = f(x). No-

tice that the function itself is unknown. A recent useful example outside physics is predicting

temperature or rainfall based on atmospheric observations [100]. Regression problems could

also be beneficial in unsupervised learning schemes like anomaly detection described in chapter

3.3.2 which is applied to topological data from cold quantum gases in chapter 4.7.4. A subset

of regression tasks is dimensionality reduction. It requires the dimension of the output to

be smaller than the input dim(x) > dim(y). This becomes useful to reduce the size of data,

like image compression, or get some insights into the data using clustering methods or just

inspecting the lower dimensional representation of the data which is done for time of flight

(ToF) images in chapter 4.7.1. A typical ML algorithm to solve this type of task is k-mean

clustering. Based on the data each data is assigned to a certain class which leads to the

second big group of tasks.

Classification

One of the most prototypical tasks is classification. In this task, an ML algorithm is trained

to assign discrete labels to input data. In contrast to regression tasks, the desired output of

such an algorithm is a vector y where each element is binary yi ∈ {0, 1}. The task is to

find again a model for the unknown function y = f(x) where x is some type of input, e.g.

images or time sequences. Each element in the vector y corresponds to a single pre-attached

class and commonly only one class is allowed as an output. This encoding is called one hot

encoding. Prominent examples of multi-class tasks are the Iris data set [101] from 1936 which

is until today the textbook example for classification tasks. Classification can also be used for

the detection of phase transitions in physics as it will be introduced in chapter 3.2 and later

applied to data from cold quantum gases 4.6.

2.3 | Types of Learning

ML can be sorted into three categories regarding their learning procedure. Supervised, unsu-

pervised, and reinforcement learning. The distinction lies in the way the training data z ∈ D
is presented to the ML algorithm. Based on the type of learning and the task to solve and

the underlying data we can choose a suitable ML algorithm.

2.3.1 Supervised Learning

In supervised learning schemes the training data z ∈ D are tuples zi = (xi,yi) where xi are

the input values from an input space. Each element of xi is referred to as a feature. This can

be a pixel from an image or the number of atoms on a site of a lattice. yi is the expected
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output for the corresponding input xi. With this data, the ML algorithm is trained in a way

that it learns to generalize. After training it can be applied to new unseen data. This type

of learning is called supervised learning because a supervisor or teacher, i.e. the connection

between input and output, is used as to teach the algorithm to reproduce a certain behavior.

Notice that the training data samples zi have to be created by hand like it is done for the

MNIST dataset [102], or given by some prior algorithm. There exist different approaches

to supervised learning, ranging from classic ML algorithms like SVMs to DL approaches like

DNNs as described in chapter 2.6. In physics, supervised learning can help to pinpoint phase

transition as described in chapter 3.2 and to map out parameter regimes that are unfeasible

with classical methods as I will show in chapter 4.6.

2.3.2 Unsupervised Learning

Supervised learning has its confinements as it is restricted to the use of labeled data which

is not always available for the desired task. Another approach is unsupervised learning where

the data zi exclusively consist of the features xi. The goal of unsupervised learning is to

uncover hidden patterns, relationships, or structures within the data without explicit guidance

or predefined categories. In unsupervised learning, the algorithm explores the data and tries to

find meaningful patterns or groupings on its own. There are two main types of unsupervised

learning. The first type is dimensionality reduction which involves reducing the number of

features or variables in the data while preserving its important characteristics. Dimensionality

reduction techniques help simplify the data and may reveal underlying patterns as shown in

chapter 4.7.1 to identify different topological phases of matter. Methods range from PCA as

explained in section 3.1.1 to autoencoders which are explained in chapter 2.6.2. The second

one is clustering which is often used after the approach of dimensionality reduction. It involves

grouping similar data points based on certain features or characteristics. The algorithm tries

to identify inherent structures or clusters within the data. This technique can be used to

reconstruct a phase diagram without knowledge of the underlying phases as shown in section

4.7.

2.3.3 Reinforcement Learning

Reinforcement learning is the third type of ML approach. In contrast to supervised and

unsupervised learning, it requires no dataset at all. A ML agent can instead interact with an

environment that is augmented with rewards if the last interaction was helpful or harmful in

achieving a certain task. The history of interactions and rewards or penalties takes the place

of the dataset. The ML agent has to learn a strategy to solve a certain task without prior

knowledge of a strategy whatsoever. The scheme of reinforcement learning is not used in this

thesis but has several applications. However, it can be acknowledged that it also has some
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applications in science, for example in quantum error correction [103], quantum control [104,

105], and quantum circuit optimization [106].

2.4 | Training

At this point, the possible tasks and learning types have been introduced. This chapter will

now describe the actual learning procedure. As mentioned earlier, ML models can be described

as a function y = f(y) that is unknown. To maintain a better overview, only models that

are parameterized by a parameter set θ are examined here. Nevertheless, it should be noted

that there are also parameter-free approaches, such as PCA which is described in detail in

chapter 3.1.1. The general goal is to find the optimal parameters θ̃ to model the function

f(x). Notice that the model could be parameterized in many different ways. In Chapter 2.6,

DNNs are introduced, which provide an excellent parametrizable approach to solving many

different tasks.

The training itself starts with a general random initialization of the parameters, with some

constraints regarding the probability distribution for the initialization which are beyond the

scope of this thesis. For the interested reader, I refer to [92] for a detailed explanation.

The actual learning progress is now to vary the parameters θ until they converge to the

optimal parameters θ̃ by minimizing a so-called loss function L(D,θ) which measures the

success of the learning and can be calculated for the complete or subset of the dataset

D = {zi = (xi,yi)} and the parameters θ itself. Optimal in this context is not a definite

choice. More about that in chapter 2.7 dedicated to the loss landscape. Several loss functions

have been proven successful in ML applications. The most prominent ones are the mean square

error (MSE) and the categorical cross entropy (CCE) which are used in chapter 4 to identify

different phases of matter. The MSE loss function, which is commonly used for regression

problems, is defined by

LMSE(D,θ) =
1

Ndata

Ndata∑
i=1

(yi − fθ(xi))
2 (2.1)

where Ndata is the number of samples inside the dataset. The CCE loss function can be

calculated using one-hot encoding for Ncat categories using

LCCE(D,θ) = −
1

Ndata

Ndata∑
i=1

Ncat∑
c=1

yi,c log (fθ(xi)) (2.2)

where yi,c is the corresponding target value for the category c. The CCE can be derived from

the Kullback-Leibler divergence, which will be discussed in the context of state tomography

in chapter 5.

The optimization of the parameters θ can be divided into gradient-based, gradient-free, and

analytic approaches. Here only gradient-based methods will be discussed in further detail. A
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Algorithm 1 Mini-Batch Stochastic Gradient Descent

Input: Training data: D = {zi = (xi,yi)}Ndata
i=1

Input: Learning rate: λ, Batch size: Nbatch, Number of epochs: Nepochs

Output: Optimized model parameters: θ̃

Initialize model parameters θ

for nepoch = 1 to Nepoch do

Randomly shuffle the training data

for m = 1 to Ndata by Nbatch do

Select mini-batch: B = {(xi,yi)}m+Nbatch−1
m

Compute mini-batch gradient: ∇θL(B,θ) = 1
Nbatch

∑
zi∈B∇θL(zi,θ)

Update parameters: θ ← θ − λ∇θL(B,θ)
end for

end for

gradient-based algorithm that is capable of training especially DNNs is the stochastic gradient

descent (SGD) [107, 108] algorithm or more precisely the mini-batch SGD which is described

formally in algorithm 1. The principles of the algorithm can be explained by discussing each

part of the name. Gradient descent means, that the gradient of the loss function ∇θL is

calculated concerning the model parameters, and a path along the steepest descent of the

loss landscape is selected. This is numerically achieved by using computational graphs and

automatic differentiation [109] and is beyond the scope of this thesis and already solved in

most libraries as discussed in section 2.8. The interested reader can learn more about the

details in chapter 6.5 of [92]. The step size along the steepest descent is set by the learning

rate λ. Another ingredient of the name is the mini-batch. In principle, it is possible to

calculate the gradient for all samples of the dataset D at the same time. However, this is

numerically inefficient and leads to bad generalization, as it is discussed in the next chapter

2.5. It is better to limit the updates of the parameters θ to a subset of the original dataset,

called mini-batch B ⊂ D and update the parameters several times. Stochastic starts to play

a role by shuffling the data after each epoch, i.e. after all mini-batches have been used to

update the parameters. Sometimes SGD is expanded by the concept of momentum, which is

similar to momentum in physics. The ”movement” of the parameters, i.e. the change after

calculating the gradient for the mini-batch, is influenced by the previous move, normally by

just adding it to the current update, i.e. using a linear combination of the current and last

update [110]. Next to SGD there exist other learning algorithms that excel in the context

of DNNs like Adam [111]. There are also some non-gradient-based methods like simulated

annealing and genetic algorithms [112] but are more designed to excel in specific regimes.

Almost all ML models and training algorithms are not only defined by the intrinsic parameters

of the model θ. They always are highly influenced by numerous other factors, like the learning
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Figure 2.2: Different learning rates. (a) The learning rate is too small and convergence is very slow. Potential

to get stuck in a local minimum. (b) The learning rate is too big and the algorithm jumps around in

the loss landscape. Convergence is very unlikely. (c) The learning rate is set to a medium value and the

training algorithm convergence in a reasonable amount of time. (d) Learning rate schedule. The learning

rate is scheduled over the training iterations. This allows fast convergence and efficient fine-tuning of the

parameters. All illustrations may lead to the assumption that the loss landscape is convex, which is not true

in real-world examples.

rate λ, the mini-batch size Nbatch, and how many deep layers or neurons to use in the context

of DNNs. These parameters are so-called hyper parameters. Their choice is very delicate

and there is no definite guide on how they can be determined. However, there are helpful

libraries to solve such problems like the Optuna [113] library. In the end, the selection of such

parameters relies on the experience of the programmer.

At least some intuition is possible for some hyperparameters, such as the learning rate λ whose

choice is very delicate. It influences multiple aspects of the learning progress as well as the

outcome. A small learning rate ensures stable training but slows down the convergence and

thus is not very optimal. Furthermore, there exists a risk of getting stuck in a local minimum

as visualized in figure 2.2a. This might not always be a disadvantage as it is discussed in

chapter 2.7 but for now, it is considered not beneficial. In contrast, a high learning rate

accelerates the convergence as the updates of the parameters are larger. However, if the

learning rate is too high, it can lead to overshooting and cause divergence as illustrated in

figure 2.2b. An optimal learning rate (figure 2.2c) lies somewhere in between. The most

advanced technique is a learning rate schedule combining in general larger learning rates at

the beginning and smaller ones at the end. The schedule is not required to be smooth. The

learning rate schedule could also be a feedback parameter updated after each training epoch.

Choosing a learning rate depends on the ML model and data and is in most cases a matter

of experience. A good guidance can be found in this article [114].

2.5 | Generalization

So far it looks like ML is just a fancy word for function fitting. However, that is not true. The

groundbreaking difference is the power of generalization, i.e. applying the learned algorithmic
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a Underfitting b Overfitting c Good Fitting

Figure 2.3: Visualization of underfitting just using a linear approximation (a), overfitting by memorizing each

data point (b) and in comparison appropriate fitting using a combination of a cosine function with a linear

function (c).

structures to data not used during the training progress successfully. To check the general-

ization of the ML model it is required to separate the original dataset D into two different

subsets and another dataset from another source. It is noted here that this is not always

possible, but the best-case scenario should be discussed here. The training set Dtrain ⊂ D
and the validation set Dval ⊂ D are disjoint subsets of the original dataset Dtrain ∩Dval = ∅
and the test set Dtest which in the best case stems from another source.

The difference between the loss function value of the training and the test set g =

L(Dtrain,θ) − L(Dtest,θ) is the so-called generalization error. Aside from obvious rea-

sons for bad generalization, e.g. bad data sources, the large capacity of most DL models

can lead to so-called overfitting. In such scenarios, the model just memorizes the complete

training data, and as a result, badly generalizes. A visual idea of overfitting is given in figure

2.3b. To avoid overfitting the learning curve can be monitored. After each epoch the loss

function value is calculated for the complete training and validation set. If the loss function

of the training set is much smaller than the one of the validation set, the model is overfitting

and training can be aborted. Notice that the validation set is used as a reference here. To

decide if the model is over or underfitting some assumptions like independent and identically

distributed data are required, i.e. that the samples have been drawn from the same probability

distribution. The other edge case is underfitting, normally easily discovered if the loss function

value is not decreased significantly. A visual concept of over- and underfitting is given in

figure 2.3.

Over- or underfitting can be solved by employing regularization techniques. The most straight-

forward regularization is to vary the capacity of the model, i.e. adding or removing neurons

in case of DNNs. However, reducing the capacity too much reduces the generalization capa-

bilities of the model. It turned out to be more beneficial to use alternative techniques like

L1 and L2 regularization which adds penalty terms to the loss functions that scale with their

absolute value or their square value. Another option for DNNs are so-called dropout layers
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which randomly deactivate neurons during training [115]. In this thesis, both techniques are

employed.

2.6 | Neural Networks

At the forefront of achievements in AI, neural networks (NNs) continue to play a pivotal role

in pushing the boundaries of what AI can achieve. They represent a fundamental paradigm

in the field of artificial intelligence and machine learning, drawing inspiration from the bio-

logical neural networks found in the human brain. These computational models have gained

immense popularity and significance in recent years due to their remarkable ability to solve

complex tasks, ranging from image and speech recognition to natural language processing and

autonomous decision-making.

At the heart of neural networks are so-called artificial neurons, which gather several inputs

and weigh them to derive an output. Their concept dates back to the idea of perceptrons

[116] and was implemented in the Mark I perceptron machine in 1957 [117]. Even quantum

perceptrons are proposed in the early 90s [118]. Hence the concept itself is quite old. The

original perceptron has binary outputs

y =

1
∑

iwixi + bi

0 otherwise
(2.3)

where wi are the weights associated with each input xi and bi is a bias term. The neurons have

been connected to bigger networks (inside analog computers) to mimic the decision processes

in the human brain. The concept itself was forgotten for a long time until new advances in

computational hardware. In modern NNs the neurons are combined in layers and their output

is no longer binary and governed by activation functions shaping the nonlinear characteristics

of NNs. The so-called fully connected layer function is

y = g

(∑
i

Wi,. · x+ b

)
(2.4)

where y is a n-dimensional vector of outputs, W is the n × m weight matrix and x is a

m-dimensional vector of inputs. g is the so-called activation function. The most famous

activation function is the sigmoid function

σ(x) =
1

1 + e−x
(2.5)

which is similar to the hyperbolic tangent. Inspired by advances in neuroscience another

activation function creating rectified linear units has been introduced [119]

ReLU(x) = max(0, x) (2.6)
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Figure 2.4: Structure of a feed-forward convolutional neural network (CNN). The input, here an image, is fed

through several deep layers. Convolutions detect edges and structures and dense layers correlations of the

features. All layers are connected layer by layer (feed-forward). Before the data is fed into the next layer a

nonlinear activation function like ReLU or hyperbolic tangent is applied. The last layer returns a probability

of the different classes or another value of interest.

and shortly after outperforms the sigmoid activation function [120]. Several other activation

functions are available. However, the advantages are marginal compared to rectified linear

unit (ReLU) and limited to special applications.

Employing several of such fully connected layers it is possible to build deep neural networks

(DNNs). Such networks consist of an input layer and an output layer handling the inputs and

outputting results and multiple so-called hidden layers in between. The input is forwarded to

the first hidden layer and its outputs are forwarded to the next hidden layer until the output

layer is reached. This forward passing of information raises the name of feed-forward NNs. In

contrast recurrent neural networks (RNNs) [109] trained with long short-term memory (LSTM)

[121] allows the output of neurons to be the input of the same neurons again. RNNs are not

part of this thesis but they excel in many interesting applications like grammar learning [122],

speech recognition [123], music composition [124] and are proven candidates to outperform

prior ideas for NQSs [125, 126].

2.6.1 Convolutional Neural Networks

Working with image data presents special challenges for NNs. Although it is possible to

process image data through fully connected layers, it is computationally expensive. An image

of size 16 × 16 already requires 256 input neurons and an image of 265 × 265 with three

color channels 196.608 neurons. A much better approach are convolutional neural networks

(CNNs) [127] as visualized in figure 2.4. The trick of CNNs is to first detect features of the

input I by multiple kernels K of the same dimensionality but usually smaller size. This can

be done by applying a discrete convolution operation

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.7)
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where ∗ is the convolution operator and S is the output of the layer. Adding several con-

volutional stages allows the detection of edges and relations inside the image. Normally the

found features are then correlated with multiple fully connected layers to form a CNN. The

kernels K are part of the optimization parameters θ of the NN and are optimized during the

training. So far the input for the fully connected layers seems not to be reduced. This can be

achieved by pooling operations like max-pooling [128] where a rectangular neighborhood of

the input from the previous layer is combined to one new value with just the maximum value

of the block. All ingredients together allow the creation of extremely powerful and efficient

image recognition models as it is proven later for phase recognition in chapter 4.6.

2.6.2 Autoencoders

A special kind of DNNs are autoencoders (AEs) [129, 130] which can represent data in some

kind of encoding with an informational bottleneck. Depending on the size of the bottleneck,

autoencoders (AEs) can be sorted into three categories. Overcomplete AEs, i.e. the bottleneck

is larger than the data, complete AEs, i.e. the bottleneck has the same size as the data, and

undercomplete AEs, i.e. the bottleneck is smaller than the original data. Here we will focus

on the latter. An AE consists of two NNs. An encoder is responsible for encoding the data

into some kind of lower-dimensional representation and a decoder network is designed to

reconstruct the original data from the lower-dimensional representation. A visualization of an

AE is given in figure 2.5. AEs are trained by training the encoder and decoder simultaneously

in an unsupervised fashion. The dataset D = xi contains just inputs that act as desired

output at the same time, hence the learning scheme is unsupervised. The encoder fθ(x)

encodes the data into the lower dimensional representation x̃ which afterward is decoded by

the decoder gϕ(x̃). Hence the complete AE is described by

x′
i = gϕ (fθ(xi)) (2.8)

where ϕ are the parameters of the decoder and θ are the parameters of the encoder. After

successful training of the AE, the latent space representation or bottleneck representation can

be calculated by applying the encoder to the data. AEs can be employed in several ways like

anomaly detection schemes [23] and dimensionality reduction schemes as introduced in section

3.3, where further unsupervised learning methods are used to identify different clusters, and

for data augmentation in section 4.8. Furthermore, AEs can be useful to reduce noise [131].

Variational Autoencoders

Variational autoencoder (VAE) are a class of AE that are very different in their mathematical

formulation [132–134]. Their original application is unsupervised learning approaches [135,

136]. However, they have been proven successful in semi-supervised [137, 138] and supervised
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Encoder DecoderBottleneck
Figure 2.5: Structure of an undercomplete autoencoder (AE). An AE consists of an encoder (blue) and a

decoder (red) connected with a bottleneck (green) forming a latent space.

[139] learning schemes. Variational autoencoders (VAEs) can be interpreted as normal AEs

with a special regularization term to avoid overfitting.

The encoder network defines an approximate posterior probability distribution qϕ(x̃|x) which
takes the inputs and outputs the parameters to define a conditional probability distribution for

the latent representation x̃. For better clarity, the distribution here is Gaussian and represented

by the mean and the log-variance for numerical stability. The job of the decoder network is to

represent the outputs by defining another conditional probability distribution pθ(x|x̃) which

models how likely it is to get x given x̃. Notice that here the input and output of the

VAE are the same. Later we will see that this is not necessary in all cases and it might be

helpful to train with different inputs and outputs. To actually train such models, the so-called

reparametrization trick [132, 140] has to be employed. To sample from the distribution qϕ(x̃|x)
random numbers ϵi are injected into the bottleneck of the AE. The structure is visualized in

figure 2.6. Due to the specialties of VAEs the loss function needs to respect the character of

the probability distribution. The trick is maximizing the evidence lower bound (ELBO). The

overall idea is to optimize the decoder parameters θ to get low reconstruction error between

the input and output, i.e. measured by MSE, and at the same time optimize the encoder

parameters ϕ to make qϕ(x̃|x) as close as possible to pθ(x̃|x). To model this properly without

unnecessary assumptions expectation E needs to be introduced. The expectation of a function

f(x) concerning a probability distribution p(x) is the average value that f(x) takes when x is

drawn from the probability distribution p(x) which is calculated for continuous variables using

the integral

Ex∼p(x) [f(x)] =

∫
dxp(x)f(x) (2.9)

and a sum for discrete values

Ex∼p(x) [f(x)] =
∑
x

p(x)f(x). (2.10)

Notice that expectations are linear as the integral and sum are linear. With expectation at

hand, the distance between two probability distributions, e.g. the two distributions used for
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Figure 2.6: Structure of a variational autoencoder (VAE). The input is encoded by a recognizer model (light

blue), deriving probability distributions with a mean value µi and variance σi (violet). The sampling of the

distribution is done by sampling neurons zi (green). Sampling is only possible by the reparameterization trick

injecting the random number ϵi. An additional optional question neuron (blue) can be used to morph the

data by a desired parameter. As a last step, a generator model decodes the data (red).

the VAE, is given by the Kullback-Leibler divergence

DKL(qϕ(·|x) ∥ pθ(·|x)) = Ex̃∼qϕ(·|x)

[
log

qϕ(x̃|x)
pθ(x̃|x)

]
(2.11)

= Ex̃∼qϕ(·|x)

[
log

qϕ(x̃|x)pθ(x)
pθ(x, x̃)

]
(2.12)

= log pθ(x) + Ex̃∼qϕ(·|x)

[
log

qϕ(x̃|x)
pθ(x, x̃)

]
(2.13)

where from the first to the second line the definition of conditional probability is used and

from the second to third line logarithmic laws. Using this definition the ELBO loss can be

defined

LELBO(x; θ, ϕ) = Ex̃∼qϕ(·|x)

[
log

qϕ(x̃|x)
pθ(x, x̃)

]
= DKL(qϕ(·|x) ∥ pθ(·|x))− log pθ(x). (2.14)

Notice that the ELBO is the negative ELBO loss. However, we stick to the narrative of

minimizing the loss function and define it correspondingly here. In practice, the probabilities

are estimated with a single-sample Monte Carlo approach, which is proven sufficient. In figure

2.6 an additional question neuron is added to the VAE. So far only VAEs with the same input

and output are considered. However VAEs are very powerful morphing properties of the data

because their latent representation is smooth. Adding additional question neurons allows for

morphing data properties. In this case, the VAE is trained with a dataset of inputs, desired

outputs, and their morph value, i.e. the color, or noise filter strength. It is also helpful to

morph dominant features in experimental data as shown in chapter 4.8.
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Figure 2.7: Low dimensional visualization of the loss landscape of ResNet-56. The loss landscape is non-

convex and many local minima exist. Adapted from [145]

2.7 | Loss Landscape

To learn more about the black box of NN described so far it is helpful to investigate the highly

non convec loss landscape further. The optimization of a NN challenges several difficulties.

As shown in figure 2.7 a variety of different minima exist. Of course, the primary goal

of the optimization is to find the minimum with the best generalization, however not all

minima generalize at the same level. Generally, it is understood that flat and wide minima

generalize better than sharp minima [141–143]. However, a developed concept of flatness

in such highly dimensional landscapes does not exist [144]. Nevertheless, it makes sense to

explore the surroundings of the local minimum and derive insights regarding the generalization

capabilities of the trained NN. A helpful measure is the curvature of the loss landscape as

introduced in the following section.

2.7.1 Curvature of the Loss

To investigate the environment around a found minimum of the loss function after training a

NN, the Hessian of the loss can be calculated. It allows an analysis of the curvature of the

loss landscape. The Hessian Hθ̃ of the loss function L after training is given by

Hθ̃,ij =
∂2

∂θi∂θj
L |θ=θ̃ (2.15)

where θ̃ are the model parameter at the end of training. The largest positive eigenvalues

and their corresponding eigenvectors of Hθ̃ correspond to the direction of the steepest ascent

around the found minimum and vice versa.

As mentioned earlier, the parameters found in DL by training with SGD or other optimization

algorithms do not necessarily correspond to the global minimum. Interestingly in most cases,
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the training converges at local minima or saddle points [146–148]. Studying the loss landscape

with the Hessian unveils more properties by looking at the spectrum. For large deep networks,

the majority of eigenvalues is almost zero, indicating flat directions in the loss landscape. Even

worse, some eigenvalues are negative, indicating negative curvature. This could be worrying

since no global minimum nor a very steep minimum is found. However, studies involving

spin-glass theory [149] show, that for larger networks most minima are equivalent and show

similar performance regarding generalization, i.e. a low loss value for the test set. In practice,

it is not beneficial to find the global minimum as it may lead to overfitting.

The investigation of curvature also allows for further insights into the influence of training data

on the outcome. In the direction of high curvature, which corresponds to the eigenvectors

associated with the largest eigenvalues, the training data has the greatest impact on the model

parameters. This is immediately evident since a significant change in the loss function occurs

along these directions. Furthermore, there are empirical studies that support this hypothesis.

An analysis of the spectrum of the Hessian reveals that in classification problems, the number

of directions with an increase equals the minimum of the number of classes reduced by one

[147, 150, 151]. Additionally, gradients of the single sample loss function of training examples

correspond to the direction of the highest curvature in nonlinear regression problems [152].

2.7.2 Similarity Measure and Influence Function

As discussed there is a strong correlation between the curvature of the loss landscape, the

ability to generalize, and the training data. To understand the interplay better, the influence

of the training data itself on the loss landscape can be studied. To do so leave one out (LOO)

training is employed. One training point xr of the dataset D is removed and the neural

network is trained again. If the loss of the test set after training stays the same the removed

point zr was not helpful, i.e. not influential. If the training loss is higher, it was influential

and helpful for the generalization of the model.

Unfortunately, retraining a large DNN model is very costly. Hence an approximation of the

change of the loss landscape is helpful. This is achieved by employing the influence function

I [153, 154]. The influence function measures the loss change for a given test point xt if the

point xr is removed from the training set.

I(xr,xt) =
1

Ndata

∇θL(xt, θ̃)
TH−1

θ̃
∇θL(xr, θ̃) ≡

1

Ndata

∇LT
t H

−1

θ̃
∇Lr (2.16)

Notice that here Ndata is the number of points in the original dataset D. The loss function

is now the loss for a single example from the dataset Lt = L(xt, θ̃). Notice that the influ-

ence function is an inner product between ∇Lt and H
−1
θ ∇Lr [155] where H−1

θ ∇Lr is the

approximation of the parameter change from the removed data sample taking into account
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the curvature of the loss landscape. This can be understood as a single Newton step towards

the new minimum of the loss by training without xr.

Consequently, the influence function can be used to calculate the similarity between two

samples from the dataset. If the removed sample from the training data and the test sample

are very similar, i.e., similar to the underlying model, the influence function is high. This is

caused by the alignment of ∇Lt and ∇Lr with a correction by the local curvature in the loss

landscape. With these considerations, the similarity between two points from the dataset can

be defined [152]

S(xi,xj) =
(
∇LT

t H
−1

θ̃
∇Lr

)2
∝ I(xi,xj)

2 (2.17)

which is advantageous for unsupervised ML approaches as described in section 3.3.

In a nutshell, the influence function is a tool to avoid retraining large DNNs by approximating

the influence on the loss landscape using the local curvature. Furthermore, it helps to un-

derstand the relations between different data points from the perspective of the ML model,

which can be used to identify faulty data or the right choice of training data.

2.8 | Practical Considerations

ML techniques and especially DNNs can be very large consisting of millions of parameters

and thus are computationally costly. It is necessary to employ highly optimized algorithms to

efficiently evaluate the value of the loss function and the gradient. Luckily there exist many

libraries that have already implemented all the algorithms needed. In this thesis, Tensorflow

[156], PyTorch [157] and Jax [158] are the main drivers behind the ML models. Depending

on the size of the models it might be beneficial to use specialized processing units like GPUs

to speed up linear algebra operations. However, they have to be used wisely since their

natural main memory access bottleneck may lead to lower performance compared to CPUs.

It is recommended to use performance metrics to analyze the performance to avoid costly

operations. With the frameworks at hand, the implementation of neural networks is relatively

easy, the design and tuning on the other hand needs a lot of experience and patience.

As ML and especially unsupervised ML with DNNs are data-driven approaches to problems,

they highly relate to the data quality and quantity, i.e. if the data is bad it is not expected that

ML will learn how to identify or separate it. Having that in mind it is good advice to always

consider improving the data quality before trying to fix problems by applying ML algorithms.

Sometimes this is not possible, as posed in section 4.7.2 but if it is, it should be considered

first.
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CHAPTER3
Detection of Phase Transitions

The exploration of phase transitions has been a cornerstone in the understanding of the

physical properties of matter, dating back to the early days of classical physics. As scientific

inquiry progressed, the advent of quantum mechanics revolutionized our understanding of

the microscopic world, leading to the emergence of quantum phase transitions (QPTs) as

a distinct and captivating field of study. Detecting quantum phase transitions poses unique

challenges compared to their classical counterparts due to the quantum nature of the systems

involved. Normally modern QPT detection schemes employ so-called order parameters which

are zero for one phase and finite for other phases [159]. Additionally, several experimental

techniques have been developed to detect and characterize quantum phase transitions i.e. for

the Haldane phase diagram realized with cold atoms [72, 87, 89, 90].

Both supervised and unsupervised machine learning techniques as introduced in 2.3 are in-

strumental to identify or pinpoint QPTs. Both have been applied to several different quantum

systems and have been proven successful in fulfilling that task for numerical as well as ex-

perimental data [29, 31, 32, 34, 35, 40, 43, 160–171]. Notice that for most of the methods

described here, there is no evidence that the return always corresponds to a QPTs. Never-

theless, a noticeable change in the underlying quantum mechanical state can be expected.

in this chapter, I will introduce how to reduce the dimensionality of data using ML techniques

3.1 to prepare it for clustering methods introduced in chapter 3.3.1. I will furthermore intro-

duce the concepts of anomaly detection to differentiate different phases of matter in section

3.3.2.

3.1 | Dimensionality Reduction Methods

To detect different phases of matter from high dimensional data like ToF images from a cold

quantum gas experiment, most methods require a dimensionality reduction applied to the

data before analysis because the image data itself is too complex to identify. Dimensionality

reduction is a lively field in ML and mathematics that tries to reduce highly dimensional data
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like images, time series, and encoded text into a lower dimensional space ideally reducing the

dimensions to represent the data to its intrinsic dimension Id. The concept of the intrinsic

dimensions arises from the correlations in natural data. Assuming a data set of pictures of

circles with different radii. The data itself is highly dimensional, given the number of image

pixels. Nevertheless, the underlying data itself lies in a one-dimensional manifold, the radius.

The intrinsic dimension of a dataset can be estimated or in some cases analytically calculated

and roughly corresponds to the minimum number of variables needed to describe a data set

[172, 173]. The applications of finding intrinsic dimensions and using the extracted datasets

range from protein sequence evolution [174], analysis of astrological spectrometric data [175],

to analysis the functional variation from different plants [176] and the critical behavior in

physical systems [177].

This thesis focuses on PCA as a linear dimensionality reduction method and the bottleneck

analysis using AEs as a non-linear dimensionality reduction method. The techniques used here

do not rely on finding the number of intrinsic dimensions but rather use the dimensionality-

reduced data to find clusters or patterns that distinguish the different phases of matter. The

lower dimensional representation of the data can be directly separated by direct detection

or by the automated k-means clustering algorithm where different clusters can be associated

with different phases of matter.

3.1.1 Principle Component Analysis

The most straightforward dimensionality reduction technique is the well-known principle com-

ponent analysis (PCA) [96, 97]. This technique has been proven successful in one of the first

publications to identify different phases of matter in an unsupervised manner [22]. More gen-

erally speaking PCA is in its bare form a linear dimensionality reduction technique commonly

used in machine learning and data analysis. Its goal is to transform the original correlated

features of a dataset into a new set of uncorrelated features called principal components,

ordered by the amount of variance they capture. This reduces the dimensionality of the data

while retaining as much of the original information as possible. Since PCA does not involve

NNs it can be considered to be one of the most interpretable machine learning techniques. It

is worth mentioning that even if the origins of PCA date back more than one hundred years

it is an ongoing research topic and some of the ideas have influenced the choice of the PCA

algorithms used in this thesis. Ongoing research includes non-linear PCAs as well as handling

large data sets and detecting the number of relevant features [178–181].

PCA is sensitive to the scale of the features, hence it is common to standardize the data by

subtracting the mean and dividing by the standard deviation for each feature. A feature could

be a single correlation measurement or a site occupation in the context of physics. Assuming

that the features of each sample are reshaped into a Xij matrix which we will call a feature
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matrix with i features and j samples. The standardization of data can be written as

Zij =
Xij − µi

σi
(3.1)

where Zij are the standardized features, µi is the mean value and σi is the variance of the

ith feature. It should be noted that depending on the underlying data this step might not be

necessary. However, for image data, it is highly recommended. To find features that correlate

most the covariance matrix C is calculated

Cik = cov(Zi, Zk) =
1

n− 1

n∑
j=1

(Zij − Z̄i)(Zkj − Z̄k) (3.2)

where Z̄i is the mean of the standardized values for feature i and n is the number of samples.

To find the shared directions of maximum variance the covariance matrix C is decomposed

into its diagonal eigenvalue matrix Λ and its matrix of eigenvectors V

C = V ΛV T (3.3)

using a suitable singular value decomposition (SVD) algorithm. Notice that C is not required

to be a square matrix. The most straightforward way to select the most relevant eigenvectors

is by sorting them by the magnitude of the eigenvalues. If a dimensionality reduction to

k features is desired the largest k eigenvalues and their corresponding eigenvectors form

the direction matrix W . As a final step, each input data can be transformed into a lower

dimensional representation

Xnew = Z ·W (3.4)

where Xnew holds the representations of each sample in terms of the selected k principal

components. The so-called principal components are the directions in the original feature

space along which the data varies the most.

3.1.2 Bottleneck Analysis

Another common method to reduce the dimensionality of the data is the bottleneck analysis.

An undercomplete AE, i.e. the bottleneck has fewer dimensions than the input, is trained on

the complete dataset as introduced in section 2.6.2. The choice of the AE is not important

however AEs with shortcut connections [182] have been proven successful for small datasets.

After training the complete AE the encoder part is used to calculate the lower dimensional

representation of the data inside the bottleneck. Recall that an AE can be modeled by two

NNs represented by highly non-linear functions. The encoder function fθ(x) and the decoder

function gϕ(y).

Bottleneck analysis assumes that the most dominant features of the data are central to the

phase information. Since AEs compress the data and filter the most important information.

Hence the information about the underlying phase is represented in the bottleneck of the AE.
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Figure 3.1: Supervised phase detection scheme. (a) Sampled data from the experiment or numerical calcu-

lations to train the NN to distinguish the two phases A and B i.e. spin configurations. The NN consists of

multiple layers of neurons and or other building blocks like convolutions. (b) The two neurons can be mapped

to a probability of being in phase A or phase B. At the point where the probabilities change from 1 to 0 or

vice versa it is likely to have a phase transition. The shaded areas are the different training regions.

3.2 | Supervised Phase Boundary Detection

Supervised learning, 2.3.1, can be used to pinpoint phase transitions if the study of order

parameters near the phase transition is not available. It already has proven successful for

different kinds of physical systems [28–30, 34] and it is proven successful in section 4.6. We

should recall from 2.1 that when using representation learning techniques we generally do

not need to select helpful features from the dataset. Two datasets are required to run the

phase classification. The training dataset Dtrain, which can also be used as a source for the

validation data, consists of measurements within regions we are confidently able to assign to

the different phases. We label them according to different classes, i.e. that Dtrain includes

samples containing the measured observable x and the information about the corresponding

class c. These tuples (x, c) ∈ Dtrain are now used to train a classifier. Depending on the

type of the data we can choose a suitable machine learning model. This could be support

vector machines, random forests, deep neural networks, or other specialized models. The

model selection itself is most of the time only driven by the type of data and not by the phase

transition itself. Best performance is achieved by choosing DNNs because they generalize

well. The second dataset includes measurements from the region we want to study. Normally

that is the region around the expected phase transition. To check the performance and

generalization of the model it is helpful to separate some of the training data as a validation

set to crosscheck that the model is not overfitting. The analysis dataset Danalysis is afterward

fed into the classifier which returns associated labels to the given observations.
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In figure 3.1 the process of supervised learning is sketched. The classifier, here a DNN is

trained with spin samples of two different phases of matter. Afterward, it is applied to the

data between the two training regions and reveals a phase transition. Notice that the output

of the two neurons for phase A and phase B are associated with probabilities in 3.1b because

a softmax function is applied at the output layer. This allows us to estimate the width of the

phase transition.

It is crucial to check if the choice of the training regions influences the position of the phase

transition. Therefore it is helpful to choose different training regions symmetrically and asym-

metric around the expected phase transition and validate the stability of the predicted transi-

tion. To extract the position of the phase transition several methods can be applied. Either a

threshold value is set for the activation of the output neurons to decide if the system is in one

of the phases or two hyperbolic tangents can be fit and their crossing point is the expected

transition point.

3.3 | Unsupervised Phase Boundary Detection

Very often the underlying phases of matter are unknown so supervised learning is not feasible.

In such cases, unsupervised ML can help to identify different phases of matter or at least guide

to the interesting regions of the phase diagram. Unsupervised phase diagram discovery is a key

ingredient for autonomous scientific discovery where AI augments, guides, and controls the

experimental platform and autonomously discovers new phases of matter [183] in an efficient

fashion. In that spirit, efficient means with as little data as needed.

Classically the study of phase transition is performed by studying a given model extensively

and deriving observables that can be orchestrated to order parameters and are feasible for

experiments. The idea of unsupervised ML approaches is to use accessible data and use

general measuring protocols to avoid complex measurement protocols, that might not be

feasible for all required regions of the phase diagram. As already discussed in section 2.3.2,

the idea is to find patterns and representations of data without engineering special features.

The unsupervised ML approaches can be loosely sorted into two categories. Cluster-based

ML approaches [22, 33, 169, 170, 184–188] and learning success-based methods [23, 24, 32,

34, 189, 190].

3.3.1 Cluster Based Approaches

At the heart of cluster-based approaches is the idea of separating the data into different

clusters where each cluster represents one phase of the physical system. As cluster algorithms

like k-means are not capable of successfully finding clusters from noisy experimental data or
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very high dimensional numerical data it is required to use dimensionality reduction techniques

introduced in 3.1 such as AEs, diffusion maps, t-distributed stochastic neighbour embedding

(t-SNE) or PCA as a first step. The lower dimensional data can afterward be fed into a

clustering algorithm.

K-means Clustering

K-means clustering [191] is a widely-used method in data analysis for partitioning a dataset

into a set of k groups, or clusters, based on the features of the data. The primary goal is to

divide the data points into clusters in which each point belongs to the cluster with the nearest

mean value, thereby minimizing the intra-cluster variance.

The algorithm first randomly initializes k centroids, i.e. centers of the clusters, somewhere

in the feature space of the data with the coordinates µi for the i-th centroid. Afterward,

each sample from the data represented by the coordinates xi for the i-th sample is assigned

to the nearest centroids. This is normally done by using the Euclidean metric, however,

multiple other metrics have been proven successful. Afterward, each centroid is updated in

each dimension with the mean value of all points within the cluster and the algorithm assigns

all samples to the new centroids. A schematic overview can be found in algorithm 2. The

objective of K-means is to minimize the sum of squared distances between each data point

and its corresponding centroid. This is known as the inertia or within-cluster sum of squares

(WCSS) and is given by

LWCSS =
k∑

j=1

∑
xi∈Cj

||xi − µj||2. (3.5)

Algorithm 2 K-Means Clustering

Input: Datapoints: D = {xi}Ndata
i=1

Input: Number of clusters: k, Stop criterion: ϵ

Output: Assigned Clusters: C = Ci
k
i=1

Randomly initialize centroids µi

while LWCSS > ϵ do

Assign each xi to the nearest centroid Ci

LWCSS ←
∑k

j=1

∑
xi∈Cj

||xi − µj||2

for each centroid Ci in C do

µi ← 1
||Ci||

∑
xj∈Ci

xj

end for

end while

Determining the right number of clusters k is a crucial part of k-means clustering. Several

methods, like the Elbow Method [192] are used for this. Notice that the method of choice
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is currently questioned [193] and more advanced methods for determining the number of

clusters are proposed. Nevertheless, the elbow method is used here due to the actual parallel

development and discussion of the new methods, which is beyond the scope of this thesis.

The elbow method involves plotting the LWCSS against different values of k and looking for an

elbow point where the rate of decrease sharply changes. This method is applied in section 4.10

to determine the correct number of clusters. It should be mentioned that k-means clustering

does not work well for non-convex clusters or data with varying densities and it is sensitive to

the initial choice of the centroids.

3.3.2 Learning Success Based Approaches

The other class of unsupervised ML approaches is success-based, i.e. how well or bad the

model can learn given features or in general minimize a certain loss function. One of the first

is the learning by confusion scheme [32] where a binary classifier, i.e. a DNN with two outputs

is trained with data from different imposed phase transition points, trying to discriminate the

two phases. When the learning is successful, i.e. a convergence of the loss can be observed,

one can consider a phase transition. This method is appealing due to its straightforward idea,

however, could not be proven successful for experimental data, and further methods have to

be employed.

Anomaly Detection

Using machine learning for anomaly detection is very common in many industry areas ranging

from credit card fraud detection to cybersecurity and machine failure prediction and many

more [194–196]. The common goal is to identify anomalous behavior in unstructured data

which does not reveal its nature by straight forward rule-based programming. The progress

is similar in all application cases. Non-anomalous data is used to train a machine learning

algorithm. In the course of this thesis, this will be an AE reproducing the same output as

it gets as an input. Applying the AE after training to new unseen data during the training

process the loss function, i.e. the ability of the AE to encode and decode the given unseen

sample, holds information about the similarity of the new data compared to the data in the

training set. Whenever the loss function is much larger than the average loss function of

the validation set the data is anomalous as the data does not belong to the same subset of

data the AE has seen during training. This method can directly be transferred to the idea of

phase detection. Training such AE to auto-encode samples from an experiment or a numerical

calculation within a limited parameter range of one phase, it is possible to detect different

phases of matter. This has been proven successfully [197–199] and also leads to the detection

of completely unknown phases before this kind of technology [23] existed. A pictorial scheme

is shown in figure 3.2. The AE is trained in the region of phase A. Notice that it is not
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Figure 3.2: Anomaly detection scheme. A two-dimensional parameter space of a physical system is divided

into two different phases. The AE is trained inside the purple region which is a subset of phase A. To detect

the phase boundary the loss is calculated for all samples within parameter space. At the phase boundary, an

anomaly is detected by an increase in the loss.

required that the training region covers the complete region. Afterward, reconstruction loss,

i.e. the difference between the input and output data of the AE, is calculated for the data

of the complete phase diagram. If the AE can reconstruct the data, i.e. the loss function for

the single sample is at the same level as in the training region, the sample corresponds to the

same class. For phase B the loss increases as the AE is not able to reconstruct samples from

this area. The phase boundary can be then extracted by either setting a threshold value for

the loss function or fitting a hyperbolic tangent as we will see in chapter 4.7.4. Similar to the

training region variations for supervised phase detection in section 3.2 it is required to vary

the training regions of the AE and crosscheck the stability of the extracted phase boundary.

Similarity Analysis

An alternative method of choice is the similarity analysis guided by the idea of influence

function introduced in chapter 2.7.2. It has been proven successful in identifying different

phases of matter and will be used to separate topological nontrivial classes in chapter 4.7.5.

Recall that influence functions allow us to define a similarity measure between samples from

a dataset in terms of a trained NN. Hence we use the feature space of the neural network to

measure the distance between samples from the data. Notice that the similarity is not a metric

in a mathematical sense. As the calculation of the influence function requires the supervised

training of a classifier NN it is not completely unsupervised and can be considered a semi-

supervised technique. Nevertheless, it can be used to verify classifications by cluster-based

approaches from chapter 3.3.1 and anomaly detection.
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First, a supervised classifier is trained similarly to the approach in 3.2 using the phase bound-

aries extracted by the previous methods. To now calculate the similarity of the underlying

dataset a random test point is selected from one of the phases, e.g. detected by anomaly

detection, and the similarity is calculated. It is expected that samples within the same class

are similar to each other, i.e. their similarity value is approximately equal. If the phases

discovered by anomaly detection or clustering methods are incomplete a change in similarity

is expected.
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CHAPTER4
Haldane model

In this section of the thesis I will present the results of a collaborative project that has been

published [43] together with Anna Dawid, Korbinian Kottmann, Maceij Lewenstein, Klaus

Sengstock, Alexandre Dauphin and Christof Weitenberg. The experimental data used to

produce the presented results were taken by Benno Rem, Luca Asteria and Matthias Tarnowski

under the supervision of Christof Weitenberg and Klaus Sengstock at the Bose-fermi-mixture

(BFM) experiment. The full implementation details are available in the publication notebooks

[200].

Topology and quantum physics have been irretrievably linked in the early 1980s when Thouless

et al. explained [84] in 1982 the integer quantum Hall effect [83]. The quantum Hall effect

was measured in 1980 and allows high precision measurement of the fine structure constant. A

short time later Michael Berry published his idea of a gauge-independent phase - which today

is called Berry phase - in addition to the dynamical phase factor acquired by adiabatically

transporting a quantum system on a closed loop in parameter space [201]. The link between

topology and quantum systems was awarded the Nobel prize in 2016. Topology then gained an

important role in many quantum physics experiments with cold atoms and has been extensively

studied by many groups around the world [202].

In chapter 4.1 I will introduce the basic concepts of topology and its application to quantum

physics. The concept is then applied to Bloch bands in chapter 4.2 and further extended

to the actual physical implementation in Boron-Nitride lattices in chapter 4.3 before finally

introducing the experimental protocol in chapter 4.4.

Topological properties like the Chern number have also been studied with other measurement

protocols and I will mention a few in chapter 4.5. Afterward, I will demonstrate that supervised

learning in chapter 4.6 and unsupervised learning in chapter 4.7 is capable of reconstructing

the complete Haldane phase diagram from experimental data employing ML techniques like

AEs for bottleneck analysis, anomaly detection, and influence functions.
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4.1 | Topological Phases

One of the most famous examples to describe topology is the comparison between a dough-

nut and a coffee mug which belong to the same topological class and a sphere which does

belong to another class. This seems non-intuitive at first glance but can be directly linked

to properties of quantum physics. To understand the mathematical categorization of these

objects one has to define the genus, sorting objects into different topological classes based on

their topological properties. A straightforward concept of a topological property is the Euler-

Poincaré characteristic which can be used to identify any geometrical object with a closed

surface. The Euler-Poincaré characteristic is defined as

χ(A) =

∫
A

GdA (4.1)

where A is a closed surface of a geometrical object and G is the Gaussian curvature of the

surface. As long as the surface A is closed and smooth the value of χ ∈ N is strictly integer-

valued. The value is straightforward, however, it is much more convenient to define the genus

of an object

g =
1

2
(χ− 2) (4.2)

which integer value is the number of holes of three-dimensional objects in the Euclidean

world. This can be illustrated by the idea that forming holes enforces positive and negative

values of the Gaussian curvature canceling each other, while a sphere, i.e. the surface of an

object without any holes, adds up to a positive value of the Euler-Poincaré characteristic of

2. Notice that two objects are considered to be topological equivalent if the Euler-Poincaré

characteristic is the same. Due to the properties of the integral and the Gaussian curvature

smooth transformation of the object surface A does not change the value of the integral in

equation 4.1. Hence the reason why a doughnut and a coffee mug are considered topologically

equivalent results from the fact that both surfaces have the same number of holes and can

be transformed smoothly into each other.

As we have seen curvature plays an important role to the topological identification of different

geometrical objects. Another way to interpret the importance of curvature is the so-called

Levi-Civita transport. First a vector R can be defined which is at each point orthogonal to the

normal vector of the surface R ·n̂ = 0 and does not rotate around the normal vector dR ·n̂ =

0. Notice that the normal vector itself is directly linked to the gradient n̂ = ∇F (x, y, z) if
the surface is given implicitly by points (x, y, z) with F satisfying F (x, y, z) = 0. Moving the

vector R around on a closed loop on the surface of a sphere results in a phase, i.e. an angle

α between the original orientation of R and the final orientation of R, whenever curvature

is present (see figure 4.1) in contrast to no surface curvature. Notice that when moving
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Figure 4.1: Visualization of the Levi-Civita transport on a surface (left) and on a flat cut without curvature

(right). In the case of the sphere surface, a phase α is acquired moving R along the path. This graphic

originates from [203].

the same vector on the unfolded flattened triangular-shaped part of the sphere, no phase is

present, i.e. the vector points in the same direction.

The concept of the acquired phase can be projected onto the idea of quantum states. The

existence of such phases was formalized by Michael Berry [201] and the existence of the

Berry phase can be derived directly from the Schrödinger equation and the adiabatic theorem.

Considering the time-independent Schrödinger equation

Ĥ(λ(t)) |n(λ(t))⟩ = En(λ(t)) |n(λ(t))⟩ (4.3)

where Ĥ is the Hamiltonian, governing the quantum system by the time-dependent parameter

λ(t) and |n(λ)⟩ is the corresponding state associated with the energy spectrum En(λ). The

adiabatic theorem assumes that the quantum system state starts in an eigenstate of the

Hamiltonian |ψ(0)⟩ = |n(λ(0))⟩ and stays in an eigenstate if the parameters change slow

enough in time. Nonetheless, the system can acquire a phase ϕn. The phase can be split into

two parts ϕn = δn + βn where δn is the dynamic phase and βn is the so-called geometrical

phase or Berry phase. The Berry phase is the quantum physics pendant to the phase acquired

during the Levi-Civita transport. Using this analogy one can derive the berry phase

βn = i

∮
C

A(λ)dλ (4.4)

which is real-valued and gauge invariant and thus experimentally observable. Its definition is

based on the so-called Berry connection

A(λ) = ⟨n(λ)|∇n(λ)⟩ (4.5)

which is loosely analog to the vector R in the picture of Levi-Civita transport. Notice that the

Hilbert space is complex-valued, hence a direct analog Euclidean interpretation is not possible.
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Using Stokes theorem another quantity of interest can be derived

βn = i

∮
C

Adλ = Im

(∫∫
S(C)

(∇λ ×A(λ)) · dS
)

= −
∫∫

S(C)

Ω(λ) · dS (4.6)

the Berry curvature

Ω(λ) = Im(∇λ ×A(λ)). (4.7)

Stokes theorem also shows that the Berry phase and curvature are gauge-independent while

the Berry connection is not. The proof can be done using a unitary transformation like

|n⟩ → eiθ |n⟩. Since the structure of the formulas is very similar to the Vector field in

Maxwell calculus the Berry curvature can be interpreted as a magnetic field in parameter

space.

4.2 | Topology and Bloch Bands

As the system studied here is a lattice system, it is required to port the concept of topology

to Bloch bands. Here I will follow the derivations in [201] and [204]. The Berry curvature

introduced in equation 4.7 for Bloch bands is given by

Ω(q) = Im (∇× ⟨qn|∇qn⟩) (4.8)

where equation 4.5 is plugged into equation 4.7 and |qn⟩ denotes the eigenstate of the band

index n with quasi momentum q. Notice that the original parameter defined in equation

4.3 now is the quasimomentum. Therefore the derivatives are also taken in quasimomentum

space which may lead to problems in practice. Using the Schrödinger equation it is possible

to derive a much more useful representation of ⟨qn|∇qn⟩ with the dual vector
〈
qn′∣∣

〈
qn′
∣∣∣∇qn

〉
=

〈
qn′
∣∣∣∇Ĥ∣∣∣qn

〉
En

q − En′
q

(4.9)

which helps to interpret the Berry curvature. Using this relation the Berry curvature can be

expressed differently

Ω(q) = Im (∇× ⟨qn|∇qn⟩) (4.10)

= Im (⟨∇qn| × |∇qn⟩) (4.11)

= Im

(∑
n ̸=n′

〈
∇qn

∣∣∣qn′
〉
×
〈
qn′
∣∣∣∇qn

〉)
(4.12)

= Im

∑
n̸=n′

〈
qn
∣∣∣∇Ĥ∣∣∣qn′

〉
×
〈
qn′
∣∣∣∇Ĥ∣∣∣qn

〉
(En

q − En′
q )2

 (4.13)

(4.14)
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where we used the orthogonality of the eigenbasis. The first observation that pops out of the

equation is, that a least two bands are required for a minimal model to employ the concept

of Berry curvature for Bloch bands. Furthermore, it allows the interpretation that Berry

curvature exists due to virtual transitions into higher bands due to the varying Hamiltonian a

hypothetical particle experiences [205]. Additionally, the inverse squared scaling of the Berry

curvature by the energy gap shows that it converges for touching bands.

With the definition of Berry curvature for Bloch bands, it is now possible to define the

topological property similar to the genus in the Euclidean world for a single Bloch band, the

Chern number

C =
1

2π

∫∫
1.BZ

dS ·Ω(q) (4.15)

which is the acquired Berry phase along a path enclosing the first Brillouin zone (BZ). The

Chern number is topological invariant, i.e. smooth variations of the lattice Hamiltonian

cannot change the Chern number of the band. However, when bands touch, i.e. the energy

gap between the bands is zero, the Chern number of the bands can change. Nevertheless, the

sum of the Chern number of the bands is still conserved [206].

Berry curvature and the Chern number can describe several macroscopic effects. According to

the bulk-boundary correspondence, the Chern number counts the number of edge states [85].

Interpreting the Berry curvature in Bloch bands as a magnetic field, similar to the case of the

general parameter interpretation given in chapter 4.1 interesting effects can be observed. In

the presence of Berry curvature deflection can be measured for an accelerated wave packet in

momentum space [87, 88, 205, 207] similar to the Hall drift.

Since the discussed effects arise from topological non-trivial regimes, it is important to under-

stand circumstances that lead to a finite Berry curvature and nonzero Chern numbers. The

time reversal operator T transforms Bloch states according to

T |qn⟩ = |−qn⟩∗ (4.16)

since q → −q and t → −t. Consequently, the Berry curvature defined in equation 4.8

transforms like

T Ω(q) = −Ω(−q). (4.17)

Hence a system featuring time reversal symmetry features an odd Berry curvature. As the

integral over the first BZ vanishes for odd functions, the Chern number of such systems is

zero.

In contrast, the inversion symmetry operator transforms Bloch states according to

I |qn⟩ = |−qn⟩ (4.18)
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Figure 4.2: Sketech of the Boron Nitride lattice in real space. The two different sites A and B are connected

by the basis vectors δi and the corresponding tunnel elements tAB,i. The lattice vectors a1 and a2 connect

the A sites with the corresponding next neighbor tunneling elements tAA,i and the B sites with the tunneling

amplitudes tBB,i.

and consequently the Berry curvature like

IΩ(q) = Ω(−q) (4.19)

which leads to the observation that systems featuring time and inversion symmetry impose

Ω(q) = Ω(−q) = −Ω(−q) (4.20)

hence the Berry curvature has to be zero or singular. In conclusion, either time or inversion

symmetry has to be broken to feature finite Berry curvature which is a key ingredient to get

non-trivial Chern numbers.

4.3 | Topology in Boron-Nitride lattices

For now, all concepts have been introduced to work with the Berry curvature in Bloch bands

but no specific Hamiltonian is considered. In this section, I will introduce the two-band

tight-binding model for hexagonal lattices following the PhD thesis of Nick Fläschner [204]

and [208, 209]. This model can feature topological trivial and non-trivial phases by applying

Floquet engineering, i.e. breaking the time-reversal symmetry by accelerating the lattice. The

real space lattice is a triangular lattice with a two-atomic basis also known as a Boron Nitride

lattice. A sketch of the lattice can be found in figure 4.2. The corresponding tight-binding

Hamiltonian can be written as

H(k) =

(
∆AB

2
+
∑

j 2tAA,j cos(k · aj)
∑

j 2tAB,je
−ik·δj∑

j 2tAB,je
−ik·δj −∆AB

2
+
∑

j 2tBB,j cos(k · aj)

)
(4.21)
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where∆AB is the energy offset between A and B sites, tAA are the next neighbouring tunneling

amplitudes between A sites and tBB are the tunneling amplitudes for B sites and tAB the

neighbouring tunneling amplitudes between A and B sites. The lattice is spanned by the

lattice vectors a1,2,3 and the basis vectors connecting the two sites of the two atomic basis

δ1,2,3. Notice that here the Hamiltonian is written in the basis of the two Bloch states

â†k |0⟩ = |k, A⟩ and b̂
†
k |0⟩ = |k, B⟩ where â

†
k and b̂†k are creation operators of the Bloch state

which are localized in momentum space and restricted to the sub-lattice spanned by the A

or B sites. To illustrate interesting properties of the model, it is convenient to reformulate it

with the pseudo-spin basis

H(k) =
3∑

j=1

hj(k)σj + h0(k)Id2×2 (4.22)

where σj are the corresponding Pauli matrices from the Pauli vector σ and the 2-dimensional

identity matrix Id2×2. Comparing the coefficients with the coefficients in the Bloch state basis

in equation 4.21 allows us to derive the four coefficients

h0 = h0(k) =
3∑

j=1

(tAA + tBB) cos(k · aj) (4.23)

h1 = h1(k) =
3∑

j=1

tAB cos(k · δj) (4.24)

h2 = h2(k) =
3∑

j=1

tAB sin(k · δj) (4.25)

h3 = h3(k) =
∆

2
+

3∑
j=1

(tAA − tBB) cos(k · aj). (4.26)

These coefficients are handy as they allow us to define the mixing angle θ = θ(k) and phase

ϕ = ϕ(k) belonging to the state vector inside the Bloch sphere. They can be derived once

again by rewriting the Hamiltonian as

H(k) = h0Id2×2 +R

(
cos(θ) sin(θ)e−iϕ

sin(θ)eiϕ − cos(θ)

)
(4.27)

with R = R(k) =
√
h21 + h22 + h23. By comparing the entries in the Hamiltonian with the

entries in equation 4.22 the angles θ and ϕ are defined by the three equations

sin(θ) =
|h1 + ih2|

R
(4.28)

cos(θ) =
h3
R

(4.29)

ϕ = arg(h1 + ih2) (4.30)
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where arg denotes the argument of a complex number. The angle describes the eigenvectors

of the lower (-) and upper (+) band as linear combinations of the Bloch states |k, A⟩ and
|k, B⟩ which are at the north and south pole of the Bloch sphere

|k,−⟩ = sin

(
θ

2

)
e−iϕ |k, A⟩+ cos

(
θ

2

)
|k, B⟩ (4.31)

|k,+⟩ = sin

(
θ

2

)
eiϕ |k, B⟩+ cos

(
θ

2

)
|k, A⟩ . (4.32)

Using the definitions for the Berry connection the Berry curvature for this particular represen-

tation is

Ω(k) = −1

2
sin(θ) (∂xθ∂yϕ− ∂yθ∂xϕ) (4.33)

where ∂i is the derivative in the corresponding direction in momentum space. A key insight

is, that the Berry curvature for this particular model is given by just the two angles. This is

important since this directly allows us to link the value of the Chern number to the properties

of the pseudo-spin-operator S = ĥ · σ with

ĥ =

sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

 . (4.34)

The Chern number now counts how often the eigenvector wraps around the Bloch sphere

[210].

Using these findings it is clear that it is possible to measure the Berry curvature and also the

Chern number by using quench dynamics as introduced by [210]. As we describe in section 4.4

we use ToF images after different thold times in the shaken lattice. The resulting momentum

space density following [210] at time t after the quench can be written as

n(k, t) ∝ 1− sin(θ) cos

(
t∆AB

ℏ
+ ϕ

)
(4.35)

where we can extract the mixing angle and the phase to extract the Berry curvature and thus

the Chern number as well. This is crucial since we can not expect ML to extract information

from data where the required information is not included.

4.4 | Experimental Protocol

The experimental data used for the supervised and unsupervised machine-learning analysis of

the topological phases stems from experiments with ultracold atoms in optical lattices [55,

62] realized in the BFM experiment [72]. Ultracold atoms trapped in optical potentials are a

versatile and proven tool to study condensed matter phenomena and in particular topological
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Figure 4.3: Overview of the experimental protocol. (a) Atoms are trapped and cooled with three interfering

laser-beams. The angle between the laser beams is 120◦. Lattice shaking is used to create an effective

model. The engineered model consists of a hexagonal lattice with A and B sites distinguished by their energy

offset ∆AB and the hopping amplitude between neighboring sites. (b) Schematic timeline of the experimental

protocol and the relevant parameters. The grey area under the curve is the micromotion phase that can be

varied by the hold time thold.

phases of matter [202, 211]. In the BFM experiment the topological Haldane model [91] is

realized by trapping 40K with a mass of m = 40u atoms in an optical honeycomb lattice

[72, 87] which is theoretically motivated in section 4.1 and an extension to the triangular

lattices previously developed for quantum gas experiments [67, 71]. To realize the potential

three interfering laser beams with a respective angle of 120◦ form an optical potential which

is tuned by the polarization of the beams. The experiments start at a large offset of the two

sublattices of ∆AB = 2π · 6.1kHz. See figure 4.3a. The relative phases of the beams can

be dynamically modified by acoustooptical elements which enables the possibility of lattice

shaking. The lattice is accelerated on elliptical trajectories to break time-reversal symmetry,

characterized by the shaking phase ϕ between the modulation in the x and y direction and

the shaking frequency fsh. The resulting Floquet engineered Haldane model for near-resonant

shaking with a sublattice offset of fsh ≈ ∆AB

2π
features non-trivial topological properties that

are identified by Chen numbers C = ±1. The resulting phase diagram 4.5b is closely related

to the original phase diagram of the Haldane model [40, 89, 90].

In further detail, the potassium atoms 40K are prepared in the lowest band of the optical

lattice formed by three laser beams with a wavelength of λ = 1064 nm like in previous work

on the BFM experiment [40, 72]. The defining energy scale of the system is given by the

recoil energy

Erec =
h2

2mλ2
(4.36)

where h is the Planck constant. The atom cloud is weakly confined in the transverse direction.

After trapping and cooling the atoms the lattice depth is ramped up to 7.4Erec. Afterwards,

we start the Floquet driving. Figure 4.3b shows the timing of the different parameters to

adiabatically prepare the lowest Floquet band. The Floquet drive ramps up in two different
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Figure 4.4: Population of the lowest Floquet band for different shaking frequencies fsh and different shaking

phases φ. As an orientation, the theoretical prediction is plotted by the solid line. Notice that this is only one

half of the complete phase diagram. Due to the symmetry of the system, the band population will be similar

on the other half of the complete Haldane phase diagram.

steps. First the shaking amplitude is ramped up to 1 kHz within 5ms at the far off-resonant

shaking frequency of f ini
sh = 4.5 kHz. Afterwards, the shaking frequency is ramped up to its

final value ffin
sh within tramp = 2ms while the shaking amplitude is fixed. The protocol is well

established via previous experimental and theoretical works [72, 90, 212] and keeps the band

gaps as large as possible to avoid a population of higher bands. Nevertheless, Floquet heating

leads to lower band populations of the lowest bands as shown in figure 4.4. Here we ramp

the system back to the bare bands and perform band mapping of the two lowest bands to

measure the relative population of the two bands. For shaking phases of around φ = ±90◦

the band population of the lowest band is maximized around 75% while it drops to around

50% for shaking phases near φ = 0◦,±180◦.

For the detection of the momentum space density distribution of the system, all potentials are

switched off, leading to a free expansion of the system also known as time of flight (ToF). Due

to the momentum of the system, the original momentum space distribution is mapped to a real

space density that can be captured by absorption imaging. We expect topological information

in the density distribution as the procedure can be related to Bloch state tomography [72,

90, 210] based on quench dynamics after projection onto the static lattice with large offsets

∆AB. Although tomography requires the full quench dynamics to disentangle the parameters

[210], the procedure is promising to contain information on the topological phases [40].

In the experiments, the hold time thold is varied and the atoms are held in the Floquet system

for different times at the final shaking frequency ffin
sh in steps smaller than the Floquet period.

This allows the analysis of samples at different instances of Floquet micromotion phases ϕ.
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Figure 4.5: Measurement examples. (a) optical densities obtained by absorption imaging. The images are

centered around zero momentum and their size corresponds to one reciprocal lattice vector length. The

images are ordered to the corresponding parameters according to the phase diagram in (b). The expected

topological phase diagram for the lowest band features two lobes of non-trivial topological phases associated

with Chern number C = −1 for negative shaking phases and C = 1 for positive shaking phases. The

theoretical predictions stem from a numerical Floquet calculation of a tight binding model.

Originally motivated by the Bloch state tomography as mentioned above, this variance in the

micromotion phase is not beneficial for unsupervised learning procedures as we will see in

section 4.7.2. The micromotion phase is given by the area under the shaking frequency curve,

i.e. tracing the micromotion back to the start of the Floquet driving with a kick in a fixed

direction, as given in figure 4.3b or by the formula

ϕ =

(
tramp

2
+ thold

)
ffin
sh + trampf

ini
sh (4.37)

which allows to link the micromotion phase ϕ to the shaking frequency fsh. While the

micromotion, which is an intrinsic attribute of Floquet systems, often interferes with the

studies of effective Floquet Hamiltonians [213, 214] it can also reveal new physics [215, 216].

As the first BZ theoretically contains all the information about the topological phase we

restrict the images to a square region of 56 × 56 pixels centered around zero momentum of

k = 0. The reciprocal lattice vector length is also 56 pixels. Sample ToF images are plotted in

figure 4.5a. Furthermore, each image is scaled to values between 0 and 1 for the pixel values.

In total 10, 436 images are part of the dataset evenly distributed in the parameter region of

the phase diagram. Each parameter pair of shaking frequency and phase in the phase diagram

contains between 3 and 7 images.

4.4.1 Numerical Predictions

We employ a Floquet calculation for a two-band tight-binding model of the hexagonal lattice

based on the given shaking parameters and the calibrated parameters of the static lattice with

a numerical framework introduced in the PhD thesis of Nick Fläschner [204]. The numerical

phase diagram is plotted in figure 4.5b. Except for a slight shift of the topological phase

boundary for higher frequencies towards higher frequencies, the predictions agree well with
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previous works [40, 72, 89, 90]. The shift may be governed by uncertainties in the calibration

of the static lattice or by influences of higher bands which are neglected in the tight-binding

approximation. An uncertainty of ±200Hz of the numerically predicted phase transitions is

expected due to the uncertainty of the polarisation of the lattice beams by 0.2◦ [40].

We suspect that the approximations of our numerical approach, in particular the neglect of

higher bands, might lead to a systematic shift of the topological phase transitions. Such an

effect was observed in [217]. We have therefore started to develop numerical calculation that

takes higher bands into account. The master project of Corinna Menz [218] implemented a

multi-band tight-binding model taken from [217] that can be fitted to the exact band structure

and subsequently be used for the Floquet calculations. It turned out that fitting such multi-

band tight-binding models is not very stable and the project did not reach a clear conclusion.

The Bachelor project of Anna Lena Hauschild [219] implemented the complementary approach

of avoiding tight-binding models and directly solving the Floquet matrix [220]. So far this

method could not be tested in the parameter regime presented here.

4.5 | Measuring topological properties

To measure the Chern number from an experimental cold quantum gas system it is possible

to employ measurement schemes that do not leverage machine learning methods [72, 87–

90]. Each machine learning method has to compete with these methods in terms of data

intensity, i.e. how much data is needed to get reliable results, and data accessibility. The

method most comparable to the actual system that is analyzed in this thesis is the circular

dichroism method by Luca Asteria et al. [89]. This method is based on spectroscopic signals

of the Floquet bands revealing its underlying topological nature. The experimental protocol is

fundamentally different from the measurement protocol used for the machine learning phase

classification. The protocol here is similar to the measurement protocol used to measure the

Berry curvature [72]. The reconstruction of the Berry curvature is however not accessible for

regions of non-zero Chern numbers due to the high sensitivity to a residual population of the

upper Floquet bands.

Figure 4.4 shows the population of the lowest Floquet band in the system. Aside from circular

shaking, i.e. a shaking phase of φ = ±90◦ the band population is very low, i.e. below 70%.

The population is measured by ramping the system back to bare bands after the ramp into

the Floquet regime and performing adiabatic band mapping. Here only the first two BZs are

counted. For linear shaking at φ = 0◦,±180◦ the band population drastically drops which

leads to poor performance in the measurement protocols for the Chern number. This problem

can be resolved with ML methods as studied in the upcoming sections 4.6 and 4.7.
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Figure 4.6: Supervised reconstruction of the Haldane phase diagram with a CNN. Each square in the grid

corresponds to the average prediction of 3-7 images. The gray bars correspond to the training regions and

are chosen far away from the theoretically predicted phase transitions (solid lines). The color bar is the Chern

number average over predictions of the CNN. This figure is adapted from [40].

4.6 | Supervised Phase Detection

Prior to the unsupervised approaches employed in this thesis, we mapped out the complete

Haldane phase diagram in a supervised manner [40]. As described in section 3.2 a CNN is

employed and trained in a supervised scheme to detect the three phases with the different

Chern numbers, i.e. C = 0 and C = ±1, of the phase diagram. In figure 4.6 the mapped-

out phase diagram is shown. As for each point in the Haldane phase diagram, 3-7 images

are available the plot illustrates the average predicted Chern number. The labeling of the

data was conducted by the theoretical predictions and a separate data set was taken at the

gray training regions far away from the expected transition regions. The additional training

data consists of 15, 963 images covering only 3% of the complete area of the phase diagram.

For this analysis, the images are not cropped to first BZ and have a size of 151× 151 pixels.

However, crosschecks with the smaller images show that only data from the first BZ is required

to identify the different phases of matter as assumed in section 4.4.

The reconstructed phase diagram is in good agreement with the numerical predictions, even

though the lower band population drops to about 50%. However, a small shift to higher

frequencies in the upper frequency bound can be observed. Furthermore, some features

like the apple shape structure of the two topological non-trivial regions are lacking. The

reconstructed phase diagram proves that sufficient information about the topological phase

exists in the underlying data and motivates the investigation of the dataset further with more

advanced methods.
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4.7 | Unsupervised Phase Detection

The supervised reconstruction of the Haldane phase diagram from experimental data is im-

pressive considering the low population of the lowest band. However, it has one disadvantage.

To train the CNN to classify the different phases of matter the approximate phase transitions

have to be known from theory. In this section, we show that it is possible to reconstruct the

phase diagram without prior knowledge of the phases.

4.7.1 Bottleneck Analysis

One of the most straightforward methods to analyze unknown data with unsupervised machine

learning methods is the analysis of the neuron activations of an AE as introduced in section

2.6.2 at the bottleneck which is an effective tool for data dimension reduction [221]. In this

case, the encoder and decoder consist of multiple convolutional layers and a bottleneck of

two neurons as illustrated in figure 4.7a. Here we choose two bottleneck neurons because

they are easily interpretable and it is the lower bound of bottleneck neurons. Choosing less

bottleneck neurons leads to divergence of the training loss of the AE. A side effect is that

two-dimensional data can be interpreted much more easily than more-dimensional data. The

detailed structure of the AE can be found in appendix table C.1.

Extracting the activations of the two bottleneck neurons leads to a dense cloud of data points

in two-dimensional space as shown in 4.7b where no clear signal can be extracted to identify

the different Chern numbers nor any other clear clustering. Restricting the data to fixed

shaking phases φ, i.e. vertical cuts through the Haldane phase diagram, guides to a much

clearer result. The points cluster on elliptical-shaped patterns around the origin of the latent

space as shown in figure 4.7c and d. To compare these structures each sub-dataset from a

vertical cut is fitted with an ellipse using direct least-squares fitting [222]. Using a coordinate

transformation into the associated elliptical coordinates, each data point can be associated

with a radius r and an azimuthal angle θ measured from the major axis of the fitted ellipse.

Plotting the different dependencies it becomes clear that the main signal originates from the

micromotion phase ϕ as introduced in formula 4.37. It shows a clear linear dependence for

a shaking phase of φ = 90◦ as plotted in figure 4.7e. This correspondence can also be

seen in the center of mass movement of the images. For details see appendix A. Analyzing

the radial component of the data as plotted in figure 4.7f reveals some dependency on the

topological phase indicated by plateaus along the shaking frequency axis. These plateaus are

unfortunately not well separable, especially for other shaking phases aside from φ = ±90◦.
Hence it is likely that the AE identifies the center of mass as the main characteristic of the

images and concentrates on the identification of the micromotion phase. The removal of the

micromotion phase will be part of the next chapter. Nevertheless, it should be noted that this
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Figure 4.7: Bottleneck analysis. (a) Sketch of the autoencoder used to extract the two-dimensional latent

space representation of the ToF images. (b) All two-dimensional representations of the experimental ToF

images where each point corresponds to one image. The color coding stems from the numerical calculations

to illustrate no clear clustering according to the Chern number. (c) and (d) the latent space representation

and the corresponding fitted ellipses of two vertical cuts through the Haldane phase diagram for fixed shaking

phases (c) φ = −90◦ and (d) φ = −45◦. (e) and (f) the resulting elliptical coordinates (e) θ and (f) r for

a fixed shaking phase φ = −90◦. (e) The azimuthal angle of the data has a clear linear dependence on the

micromotion phase ϕ. (f) The radius includes information about the different topological phases by showing

three plateaus. The dashed vertical lines indicate the numerical predictions for phase transitions.
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method could work if the measurements were repeated with a protocol taking into account the

micromotion phase. This could be done by modulating the hold time thold in the experimental

procedure accordingly.

4.7.2 Micromotion Removal

The experimental realization of the Haldane model using Floquet engineering gives rise to

a property that does not influence the underlying topological phases. Micromotion poses

a hard challenge to employ ML algorithms originally designed to identify changes in the

system. As shown in section 4.7.1 the machine learning algorithm focus is the micromotion

phase however the information about the topological phases is highly suppressed. This can

be changed drastically by using data with a fixed micromotion phase, i.e. the displacement

of the center-of-mass (CoM) is in the same direction, as I will show in section 4.7.3. The

most straightforward way to get rid of the micromotion phase is by employing a measurement

protocol taking into account the micromotion phase and changing the hold time thold to result

in a fixed value of the micromotion phase ϕ. Unfortunately, the BFM experiment undergoes

some major redesign and the data could not be taken with this aspect in mind. As no analytic

transformation of the ToF images between different micromotion phases exists, a machine

learning approach is employed to post-process the data. The challenge of post-processing

the data is similar to tasks like fringe removal in absorption imaging [223] in ultracold atoms

experiments or the removal of jitter in pump-probe experiments [224]. VAEs are a versatile

tool for data transformation and generation [132, 134]. As introduced in section 2.6.2 VAEs

are a special kind of AEs that blend the concepts of AEs and probabilistic modeling and

are very well suited to accomplish generative tasks. Here a VAE with an additional question

neuron is used, i.e. an additional neuron is added to the bottleneck that can be set to the

desired parameter. See inlet in figure 4.8d. This type of AE has already been proven successful

in extracting physically relevant parameters [225].

The goal of the transforming ML ansatz is to transform any ToF image with a micromotion

phase ϕinput to a new, artificial ToF image with a new micromotion phase ϕoutput. The

difference ∆ϕ = ϕoutput − ϕinput is the transformation parameter that is used as input for

the question neuron of the VAE. The employed VAE is by far the largest machine learning

model employed in the course of this thesis. The encoder consists of several convolutional

stages and a staggered dense layer setup. The bottleneck is spanned by 26 fully connected

neurons mimicking 13 uncorrelated Gaussian distributions, each defined by its mean and its log

variance to enforce numerical stability. The decoder consists of several dense layers followed

by several transposed convolutional stages. The details can be found in the appendix in

table C.2. In total, the VAE has over three million trainable parameters. The structure and

hyperparameters of the model are optimized and fine-tuned by the optimization library Optuna

48



180 135 90 45 0 45 90 135 180
Shaking Phase (°)

180

135

90

45

0

45

90

135

180

C
oM
(°
)

180 135 90 45 0 45 90 135 180
Shaking Phase (°)

180

135

90

45

0

45

90

135

180

C
oM
(°
)

ϕ=0.3 ϕ=1.23 ϕ=5.65

ϕ=1.88 ϕ=2.61 ϕ=3.34

f s
h
=
5.
8
kH
z

f s
h=
7.
4
kH
z

1

0
ϕ=1.23 ϕ=5.65ϕ=0.3

ϕ=1.88 ϕ=2.61 ϕ=2.34

0.7

0.3

a b

c d

Input Output

Bottleneck

Question
Neuron ?

Figure 4.8: Using an additional question neuron to post-process the experimental ToF images to a fixed

micromotion phase. (a) randomly selected sample images of 5.8kHz and 7.4kHz and a shaking frequency of

φ = 90◦ for different micromotion phases ϕ. Here the different CoM positions of the density distribution can

be extracted by the eye. (b) The corresponding rephased images from sub-figure (a) after the micromotion

transformation. Here a micromotion phase of ϕ0 = 0.0 is set with the VAE. The CoM is only weakly dependent

on the original micromotion phase ϕ. (c) the original azimuthal angle of the CoM θCoM of all ToF images

before transformation with the VAE are widely distributed for all shaking frequencies fsh. (d) the distribution

after transforming the data to a fixed micromotion phase is distributed along one path of θCoM. The inlet

sketches the structure of the VAE with the additional question neuron.
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[226]. Over 60.000 different network architectures have been trained. To identify the optimal

network architecture and best choice of hyperparameters a good measure of performance is

the structural similarity index [227]. The training data set is generated by the ToF images.

For each point in the phase diagram, several measurements with varying hold times and fixed

shaking phase and frequency are available. Examples are shown in figure 4.8a. They can

be paired and complemented with their micromotion phase difference ∆ϕ = ϕoutput − ϕinput

resulting in a dataset of 63.050 examples. Notice that in this case the input and output of the

VAE is not always the same ToF image. However, both images contain the same topological

information. For validation purposes, 10% of the training set is hidden during training.

After training the trained VAE can be used to set all ToF images to a desired micromotion

phase. Without any preference ϕ = 0.0 is chosen. The original image serves as input for

the encoder and its negative micromotion phase ∆ϕ = −ϕinput as input for the question

neuron. The output of the decoder is a ToF image with the desired micromotion phase of

ϕoutput = 0. The transformed images are shown in figure 4.8b. Besides the transformation of

the micromotion, the images lose some noise which is expected since it does not contribute to

any physical properties of the underlying system, and undergo a squeezing of the pixel values

for the images to a range of 0.3 − 0.7 which can be attributed to the non-linear activation

functions of the decoder.

The micromotion can be directly linked to the CoM of the images. Thus the success of mi-

cromotion removal can be seen by calculating the CoM of the images and comparing the two

distributions before and after micromotion removal. In figure 4.8c the distribution before the

removal is plotted. Highlighting only one micromotion phase reveals the underlying distribu-

tion. The azimuthal coordinate of the CoM θCoM is sinusoidal concerning the shaking phase

φ and a fixed micromotion phase. Removing the micromotion phase reveals this structure but

now for all ToF images from the dataset. To identify the phase transitions the data can now

be set to a fixed micromotion phase focusing the attention of the machine learning algorithms

to the phase information and reducing attention to the micromotion phase. To provide evi-

dence that the micromotion removal is successful and no topological properties are lost in the

process, we influence functions as introduced in 2.7.2. We expect that before the micromotion

removal a supervised classification NN is mostly influenced by samples from the training data

with the same micromotion phase. Consequently removing the micromotion phase leads to

a distributed influence to identify the different samples correctly. First, a CNN is trained in

a supervised manner to identify the different phases similar to section 4.6. However here we

concentrate on a single vertical line of the Haldane phase diagram for a shaking phase of

ϕ = 90◦. Here the Chern number changes from C = 0 to C = −1 to C = 0 with increasing

shaking frequency fsh. Therefore the labeled training set only contains samples from C = 0

and C = −1. The trained classifier can be used to calculate the influence function of the

complete dataset for a single test point as shown in figure 4.9 (blue data). The test point is
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Figure 4.9: Distribution of influential points before and after the micromotion removal with the VAE for a

shaking frequency of fsh = 5.5 (a) and fsh = 6.3 (b) and a fixed shaking phase of φ = 90◦. The solid line is

the corresponding test point xt to calculate the influence function I(xr,xt).

marked with a black vertical line. The bars indicate the influence of the data from different

micromotion phases and the same shaking frequency. The data shows that before the micro-

motion removal (blue), the influence distribution is maximized around the test point, hence

the identification of the test point is highly influenced by data with the same micromotion

phase. As we know micromotion does not pose any information of the underlying topological

phase, the influence shows that even the supervised network is highly distracted by it, even

though it can distinguish the different phases successfully.

The same analysis is employed for the data with a fixed micromotion phase. The data is plotted

with the red bars in figure 4.9. In contrast to the influence before the micromotion fix, the

influence to identify the test point given by the vertical line correctly is evenly distributed

through all original micromotion phases. Note that the pre-processed images have only one

micromotion phase, however, their original micromotion phase is plotted as a reference here.

Furthermore, it should be noted that the accuracy of the trained CNNs with the original and

the fixed micromotion phase showed similar accuracy. As we see the supervised methods

are also highly influenced by the different micromotion phases. However, due to the labeled

training data and evenly distributed occurrence of different micromotion phases through the

complete training set, the ML algorithm learns to ignore the micromotion phase as a relevant

property for the different phases, which matches our expectations.

4.7.3 Bottleneck Analysis Revised

In this section, the bottleneck analysis of 4.7.1 is repeated with the ToF images with a fixed

micromotion phase, i.e. the post-processed data from the VAE. The same AE is employed as in

section 4.7.1. The dimensionality of the data is reduced by the trained auto-encoder to apply

clustering. 10% of the complete post-processed data set is hidden during training of the AE as
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Figure 4.10: Bottleneck analysis of the rephased data from the Haldane model. (a) the new two-dimensional

representation of all ToF images after rephasing to a fixed micromotion phase. The Chern number is assigned

according to the theoretical predictions. (b) The bottleneck representation of data along a single shaking

phase φ = 90◦ cut. The clusters found by k-means clustering are noted by the red ellipses. The arrows on the

color bar indicate the theoretical predictions. (c) The Haldane phase diagram after separating the bottleneck

representation into three clusters by Kmeans clustering. (d) The inertia of the k-means clustering analysis

as a function of the selected number of clusters for different shaking phases φ. (e) Histogram of how many

phase cuts best fitted with the number of clusters according to the kneeling analysis.

a validation measure. The activation of the two bottleneck neurons is plotted in figure 4.10a

for all data. The color encodes the Chern number according to the theoretical predictions. The

complete dataset does not show any clusters, however, the data with topological non-trivial

Chern numbers seem to cluster. As in section 4.7.1 the data is now restricted to single cuts

for a fixed shaking phase. Figure 4.10b shows data belonging to a shaking phase of φ = 90◦.

Notice that this restriction does not allow us to extract clustering along the shaking phase

axis of the phase diagram. We see three clusters that we can associate with the topological

trivial and non-trivial regime of the phase diagram. We employ k-means clustering defined

in algorithm 2 to associate each data point with a cluster. We use the implementation of

k-means in the Scikit learn library [228] and set the number of clusters to 3 and the maximum

number of iterations to 500. All other settings are left to the default values. Plotting each

vertical line, i.e. for fixed shaking phases, in the Haldane phase diagram fashion, we can

reconstruct the three different regions of the phase diagram as shown in figure 4.10c within

good alignment of the theoretical predictions. For shaking phases around 120◦ and low shaking

frequencies, there are some mismatched cluster assignments. We relate these to experimental

noise as it is consistent with the analysis of anomaly detection in chapter 4.7.4 and does not

appear around −120◦ which would be expected due to the symmetry of the model.

52



180 90 0 90 180
Shaking Phase (°)

5.5

6.0

6.5

7.0

7.5

Sh
ak

in
g 

Fr
eq

ue
nc

y 
(k

Hz
) a Training 1

180 90 0 90 180
Shaking Phase (°)

Training 2

180 90 0 90 180
Shaking Phase (°)

Training 3

5.0 5.5 6.0 6.5 7.0 7.5
Shaking Frequency (kHz)

10
20
30

Lo
ss

 (%
) -90°

b theoretical transition tanh fit predicted transition training region data

5.0 5.5 6.0 6.5 7.0 7.5
Shaking Frequency (kHz)

-90°

5.0 5.5 6.0 6.5 7.0 7.5
Shaking Frequency (kHz)

-90°

5

10

15

20

25

30

35
  Loss (%)

Figure 4.11: Anomaly detection scheme. The three different trainings (columns) correspond to different

training regions, i.e. the AE is trained with data inside the blue box. In panel (a) the loss function of the

complete Haldane phase diagram is color encoded. The solid lobes in the middle correspond to the theoretical

predictions. The other lines are the extracted transitions. Panel (b) shows the cuts along a shaking phase of

ϕ = −90◦ with three plateaus corresponding to the topological trivial and non-trivial regions.

The selection of clusters is crucial to k-means analysis and can be guided by the kneeling

analysis that is based on finding the knee of the k-means inertia for different numbers of

clusters. In figure 4.10d we show different inertia curves for three different shaking phase cuts

along the phase diagram. They all have a clear knee at around 3 clusters which validates our

first assumption of choosing three different clusters. Plotting a histogram of all shaking phase

cuts even strengthens this assumption (see figure 4.10e).

In a nutshell, we can differentiate the topological trivial from the non-trivial regimes with

the bottleneck analysis. We note that extraction of the different non-trivial Chern numbers

C = ±1 is not possible as no clusters appear analyzing cuts for fixed shaking frequencies.

4.7.4 Anomaly Detection

As introduced in section 3.3.2 the learning success-based method of anomaly detection allows

the detection of phase boundaries by training an AE in different regions of the phase diagram

and comparing the reconstruction loss, i.e. in most cases the MSE loss LMSE, inside the

training region with the loss from other regions of the parameter space. If the loss value is

significantly higher the data belongs to another phase. Here we use a AE with 50 bottleneck

neurons. The full details of the AE structure can be found in the appendix C.4.

Here we start by training the AE for shaking frequencies fsh from 5 kHz to 5.5 kHz and a

shaking phase φ ∈ [−180◦, 180◦] as indicated with the cyan boy in figure 4.11a in the column

of training 1. The loss outside the regions reveals two plateaus between which we obtain two
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Figure 4.12: Reconstructed phase boundaries of the Haldane model with the anomaly detection scheme as

in figure 4.11. All three results align with each other and lead to the assumption of three different phases.

The phase boundaries are aligned with the theoretical predictions (solid lines), however, the higher frequency

boundary is shifted to higher shaking frequencies fsh.

boundaries by fitting hyperbolic tangent to the loss for each vertical cut through the phase

diagram, i.e. for fixed shaking phases φ. The extracted phase boundaries are indicated by the

black lines inside the two-dimensional phase diagram of the upper row for training 1 in figure

4.11. The single cut for a shaking phase of φ = 90◦ in the lower row displays the details of

the loss landscape and confirms the shift to higher shaking frequencies of the upper phase

boundary.

The process is now guided unsupervised by selecting one of the plateaus as the new root to

train to confirm the found phase transitions. The second training (center column of figure

4.11) is performed with data for shaking frequencies from 7.25 kHz to 7.65 kHz and again

covering the complete shaking phase space from φ = −180◦ for φ = 180◦. The reverse

picture of training 1 is revealed. Now plateaus arrive at similar regions as in training 1 with

decreasing shaking frequency. The second plateau for frequencies below 6.1 kHz is not very

present, and thus can not be extracted by the hyperbolic tangent model. However, the first

training is confirmed.

Last but not least we perform training inside the intermediate region for shaking frequencies

between 6.4 kHz and 6.6 kHz covering the complete shaking phase again. Two plateaus are

revealed in the lower and upper-frequency region and two phase transitions can be extracted

with the hyperbolic tangent method.

Notice that all three trainings are independent of each other, i.e. all parameters of the AE

are reset after each training. All extracted phase boundaries align well with each other as

shown in figure 4.12. Aside from some noise at shaking phases around 100◦ which aligns
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Figure 4.13: Influence of the training regions to the boundaries.

with the irregular clustering in chapter 4.7.3 the errors of the extracted boundaries are also

very small. The good alignment also shows the validity of the method. The robustness of

the phase boundaries can be improved by performing tests with different training regions

varying the shaking frequency intervals. Figure 4.13 shows the robustness of the detected

phase boundaries. The boxes show the training regions varied by independently training the

AE. Although the training regions getting closer to the phase expected phase transition the

plateaus do not change their position. The training in higher frequency in figure 4.12c shows

some smaller instabilities concerning the overall loss, however, the expected phase transitions

do not shift along the shaking frequency axis.

In a nutshell, anomaly detection can distinguish the topological trivial, i.e. C = 0, from

topological non-trivial, i.e. C = ±1, regions. Unfortunately, it is not possible to distinguish

between C = 1 and C = −1 with anomaly detection as the method does not produce

consistent results. Details can be found in appendix B.2.

4.7.5 Data Similarity with Influence Functions

As the clustering approach in chapter 4.7.3 and the anomaly detection scheme described in

chapter 4.7.4 are not able to distinguish the two different nontrivial regimes with the Chern

number C = ±1 we employ the semi-supervised approach of influence functions as introduced

in chapter 3.3.2. We employ a CNN (see table C.5) to classify the three different phases that

the anomaly detection extracted in chapter 4.7.4, i.e. three different labels can be assigned

to the data by the classifier. We then calculate the influence function I for a test point in

each of the three regions as introduced in chapter 2.7.2. Notice that we choose the influence

function and not the similarity here. As they are directly linked to each other, there is no

disadvantage in using the influence function over the similarity measure.

In figure 4.14 the three different regions are analyzed. First, we choose a test point in the

low-frequency regime (figure 4.14a). We see that inside the low and high-frequency regime
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Figure 4.14: Similarity analysis of the data within the three phases detected by anomaly detection in chapter

4.7.4. In the upper row, the influence function is calculated for the complete Haldane phase diagram and

color-coded. The test point is marked by a black cross. The test points belong to the low-frequency (a),

intermediate frequency (b), and high-frequency regime (c) derived by the anomaly detection scheme. The

lower row corresponds to horizontal lines through the phase diagram, i.e. for a fixed shaking phase fsh, marked

by the dashed line in the upper row. While (a) and (c) do not show any artifacts in the influence functions

value, (b) has a dip at a shaking phase of ϕ = 0◦ and at the border of the phase diagram at ϕ = ±180◦

indicating a phase boundary.

plateaus of similar influence exist, whereas in the intermediate frequency regime between 6.0

to 7.0 kHz a distinction between positive and negative shaking phases appears. Looking at a

single cut for a fixed shaking frequency of 5.5 kHz the influence also does not vary. Hence we

conclude that only one phase is present in the lower frequency regime as the data is similar

according to the CNN, i.e. the influence function is constant in the region.

The training in the intermediate shaking frequency region is plotted in figure 4.14b. Here we

observe a clear distinction between the two regions that we expect for C± 1. Notice that the

two regions are similar, however, they are separated by a dip with low similarity as posed in

the single cut analysis for fsh = 6.6 kHz. Due to the periodicity of the model, the dips also

occur at around φ = ±180 which strengthens the observation. The actual similarity values

are higher for the region around the test point, i.e. the region for C = 1, in comparison to the

C = −1 region. The average values of the plateaus differ by one order of magnitude which

allows the conclusion that two different phases are present. Notice that this observation was

not feasible with the other methods.

In panel c of figure 4.14 a test point in the high-frequency regime above 7 kHz is chosen. We

observe a nearly uniform distribution of the influence function and hence similarity which is

counterintuitive. Notice that the influence function in that case is almost zero everywhere.

We can address this behavior to the fact that the test point is predicted with extremely high
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Figure 4.15: Comparison of the different methods to detect the topological phases of the Haldane model for

a fixed shaking phase φ = −90◦. The circular dichroism data is plotted as the topological response [89], the

supervised learning [40] and bottleneck analysis with KMeans clustering [43] are given as probabilities and the

anomaly detection data is given as loss percentage [43].

certainty of the CNN. This leads to low values of the influence function as it is proportional

to the uncertainty of the prediction.

4.8 | Method Comparison

The previous sections presented a colorful mix of different ML methods that successfully re-

construct the Haldane phase diagram which is unfeasible with traditional methods. Figure

4.15 compares most methods along a single cut at a shaking phase of φ = −90◦. A com-

parison of the complete Haldane diagram is still unfeasible because traditional methods do

not provide the data for the parameter set studied here since they normally rely on the high

population of the lowest Floquet band. Almost all methods tend to predict a slightly higher

shaking frequency for the phase transitions at around 6.8 kHz. However, the machine learning

predictions are in good agreement with the measurement of the circular dichroism. Therefore

we think that there is no systematic shift in the phase ML models but instead a shift be-

tween the numerical predictions and the experimental situation. The shift to higher shaking

frequencies may be a result of experiment calibration or numerical assumptions in the theory.

Both explanations are under investigation but beyond the scope of this thesis.

The bottleneck analysis method lacks information about the error bars and is therefore not

very well comparable. It also suffers from different steps that might fail if the algorithm is

generalized. There is no guarantee that the data clusters at the bottleneck of the AE. The most

successful unsupervised method is the anomaly detection scheme. It is rather general and does
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not rely on clustering approaches like the bottleneck analysis approach. In comparison to the

circular dichroism measurements, the anomaly detection scheme can find the two anomalies

in the data differentiating the topological trivial and nontrivial regions with relatively small

errors. Since the similarity comparison with influence functions relies on other unsupervised

methods in the case of the experimentally realized Haldane model, it is not comparable in this

particular context.

4.9 | Summary

In this section, we showed that the Haldane phase diagram can be reconstructed in an un-

supervised fashion from experimental cold quantum gas data for the first time. We applied

different ML methods to achieve the separation of topological phases by phase boundaries.

To analyze the data with unsupervised machine learning techniques it has to be distraction-

free. In our case, the micromotion was dominant in the data and it had to be removed by a

VAE with an additional question neuron. We confirmed that the micromotion is successfully

removed by using influence functions.

Assuming that there is no knowledge of the underlying phase diagram, the boundaries ex-

tracted by unsupervised machine learning methods separate four different regions. A low

shaking frequency regime below roughly 5 kHz and a high shaking frequency regime above

roughly 7 kHz which we successfully detected with clustering in the dimensionality reduced

bottleneck data of an AE and with anomaly detection. The intermediate frequency regime

between 5 and 7 kHz is separated into two distinct regions which we were able to distinguish

by similarity analysis using an influence function approach. Notice that this extraction could

have been possible without any prior knowledge of the underlying physics. Since the associated

phases of the different regions are known, the regions can be associated with their topological

indices. For the low and high-frequency regime, the Chern number is trivial C = 0 and for

the distinct two regions in between the non-trivial Chern numbers C = ±1 can be assigned.

Hence the complete phase diagram can be extracted in an unsupervised manner by combining

the different methods.

We showed that unsupervised ML can identify phase boundaries even from noisy experimental

data despite the low band population of the lowest band which is unfeasible with traditional

methods. In the future, strongly correlated systems can be analyzed driven by experiments

to identify new exotic phases of matter with hidden order [42] or explore numerical unfeasible

regions in the parameter space.
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CHAPTER5
State Tomography

In this chapter, we will propose a new algorithm to perform quantum state tomography

from random quench dynamics. The work in this chapter has not been published yet. The

idea stems from a collaborative team including Alexandre Dauphin, Paolo Stornati under the

supervision of Christof Weitenberg, Klaus Sengstock and Maceij Lewenstein. Due to the lack

of time, it was not possible to prove the algorithm in its general form. Nevertheless, I will

discuss the idea and the possible advantages of the new proposed method and the obstacles

we encountered during the implementation.

In the first section 5.1 of this chapter I will introduce the concept of neural quantum state

(NQS) that evolved as a subset of variational methods [14]. I will describe the needed

mathematical framework to work with such states including sampling and time evolution.

In section 5.2 I will describe how phase tomography is done with NQS [15]. I will expand

this method further in section 5.3 where I introduce a new ansatz for state tomography and

discuss the challenges that appear when employing it.

5.1 | Neural Network Quantum States

At the heart of quantum mechanics is the Schrödinger equation exposing the wave function

living in a Hilbert space governed by a Hamiltonian as a description of quantum mechanical

states. The elegant description with just one equation however encounters some problems

when it has to be solved for many interacting particles and it quickly became clear that

approximation methods are needed to tackle these problems [229]. The problem of exploding

Hilbert space can be referred to as the quantum many-body problem. NQS as a subset of

variational states can solve this issue [14] and are, together with their mathematical framework,

introduced in this chapter. As the quantum many-body problem poses exponential growth of

the Hilbert space, it is noted that physically relevant quantum states only live in small corners

of the Hilbert space.
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5.1.1 Variational States

Variational states utilize the fact that only small parts of the Hilbert space are of physical

interest. They represent the wave function by a parameterized function with a polynomial

number of parameters θ in system size. Hence the state can be stored on classical computers

with limited memory. Variational states in general can be expanded to the computational

basis by

|ψθ⟩ =
∑
s

ψθ(s) |s⟩ (5.1)

where |ψθ⟩ is the variational state and ψθ(s) = ⟨s|ψθ⟩ is the amplitude of the corresponding

basis state |s⟩. Similar to the training of ML models as introduced in section 2.4 the task is

to find the optimal parameters θ that describe the quantum state best.

Variational states that are practicable, i.e. polynomial in time to calculate expectation values,

can be sorted into two families. Those with the ability to calculate expectation values exactly,

e.g. the mean field ansatz or matrix product states [230–232], and those where the expec-

tation values are only calculated approximately, e.g. the Jastrow ansatz [233] based on the

assumption that two-body interactions are the most physically relevant ones and NQS [14]

based on the observation that NNs can represent entanglement and higher-order correlations

and autonomously finding the corresponding features. The latter are the ones of interest in

this thesis. Sampling however poses a source of error which can be reduced to additional

computational cost, i.e. sampling more.

Here only computationally tractable states are discussed [234]. According to the definitions

in the article, two conditions are met for computationally tractable states. Firstly it has to be

possible to generate samples from the Born distribution

p(s) =
|⟨s|ψθ⟩|2

⟨ψθ|ψθ⟩
=
|⟨s|ψθ⟩|2∑
s |⟨s|ψθ⟩|2

(5.2)

where we inserted
∑

s |s⟩ ⟨s| = 1 in the denominator and secondly the complex amplitudes

for single basis elements ψθ(s) = ⟨s|ψθ⟩ can be computed efficiently, i.e. in polynomial time.

Fulfilling both conditions it is possible to estimate expectation values of k-local operators,

i.e. an operator acting on at least k local quantum numbers. The statistical error can be

efficiently controlled by increasing the number of samples.

Defining the local estimator

Oloc(s) =
∑
s′

〈
s
∣∣∣Ô∣∣∣s′〉 ⟨s′|ψθ⟩

⟨s|ψθ⟩
(5.3)
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of the k local operator Ô it can be seen that the estimation of the expectation value is given

by

⟨Ô⟩ =

〈
ψθ

∣∣∣Ô∣∣∣ψθ

〉
⟨ψθ|ψθ⟩

=
∑
s

p(s)Oloc(s) ≡ ⟨Oloc⟩p. (5.4)

Notice that this is only tractable if the number of non-zero matrix elements of the operator Ô,

i.e.
〈
s′
∣∣∣Ô∣∣∣s〉 ̸= 0, is at most polynomial. For k-local operators, this is fulfilled. An efficient

and controllable way to calculate the expectation value is the estimation

⟨Ô⟩ ≈ 1

n

n∑
i=1

Oloc(s
i) (5.5)

where si is a series of n sampled states from the born distribution p(s). Notice that the

statistical error of this estimate is ϵ =
√

σ2

n
where σ2 is the variance of Oloc. It is possible

to show that σ2 is strictly finite for k local operators, hence the error scales with ϵ ∝ 1√
n
and

the error can be diminished with a larger sample set.

It should be noted here that drawing samples from the Born distribution is not in all cases a

computational cheap operation. It is useful to employ Markov chain Monte Carlo (MCMC)

methods, e.g. the Metropolis-Hasting algorithm [235], to draw a sequence of samples from

p(s). The details of this algorithm are beyond the scope of this thesis, however well explained

in [12].

5.1.2 Neural Quantum States

A special class of variational ansätze are the neural quantum states (NQSs) which have been

introduced with restricted boltzmann machines (RBMs) by Carleo and Troyer in 2017 [14].

Instead of using assumptions about the inner structure of the state, the inner structure is

governed by NNs as introduced in chapter 2.6. Different NN architectures including RBMs

[14] and autoregressive neural networks (ARNNs) [125, 236, 237], have been proven successful

in representing a plethora of different quantum systems. The idea is to represent the wave

function by a NN, e.g. with a feed-forward NN where ψθ(s) corresponds to the output and s

is the input to the network. Notice that NN can by design not preserve the structure of the

Hilbert space as they are not linear. Hence it is not possible to add two quantum states and

receive a valid superposition of both.

As discussed NQS employ a versatile ansatz to represent many different quantum systems.

This raises the question of how they compete with other methods of choice like tensor network

states (TNSs). As they relate very closely and solve similar problems, the relation between

TNSs and NQSs are extensively studied [238–240]. It is possible to prove that for each TNS

there exists a NQS of polynomial size approximating it with arbitrarily high precision [240].

Therefore TNSs are a subset of NQSs.
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Restricted Boltzmann Machines

As an introduction to all possible NQS ansätze is beyond the scope of this thesis, hence I

will only introduce RBMs. A broader overview of the different methods can be found here

[12]. RBMs are a special kind of NN introduced as harmonium [241] and later successfully

trained by contrastive divergence [242] before the advent of DNNs started. In fact RBMs are

so-called energy-driven models because their structure allows one to assign a model energy

which is beneficial interpretability in contrast to modern DNNs. They can be considered as

a special class of Hopfield network - a type of spin glass - which is discussed in detail here

[243].

RBMs featuring two fully connected layers. A visible layer and a hidden layer modeled by the

in general complex-valued bias terms bv for the visible layer and bh for the hidden layer and

their weight matrix W connecting the nv neurons of the visible and nh neurons of the hidden

layer. The wave function of the variational ansatz for RBMs is given by

ψθ(s) =
∑
h∈H

eb
†
vs+bhh+h†Wv (5.6)

where s is the sampled state s, now represented as a vector of quantum numbers, e.g. the

spin on each site, and h is one hidden state of the RBM from the set of all possible hidden

states H. At first glance that might pose issues because the sum of all hidden states may

be computationally costly. Fortunately RBMs are designed to tackle that problem efficiently

allowing only binary hidden units, i.e. hi ∈ {−1, 1}. It is straightforward to show that

ψθ(s) = eb
†
vs

nh∏
i=1

2 cosh(bh,i +Wi,·s) (5.7)

where Wi,· denotes the i-th row in the weight matrix. This analytical form with complex

weights and biases allows the full representation of a quantum state featuring interesting

properties regarding the capacity and quantum entanglement [238, 244].

5.1.3 Ground State Search

It appears natural to use NQS to find a ground state, i.e. minimizing the energy, since

minimizing a loss function is at the heart of most ML models. As already introduced in

section 5.1.1 it is possible to calculate the expectation value of a k local operator and thus

many Hamiltonians

L(θ) = E(θ) =
〈
ψθ

∣∣∣Ĥ∣∣∣ψθ

〉
(5.8)

where E(θ) is the energy of the NQS for a given parameter set θ. This follows the variational

principle of quantum mechanics which states that given a Hamiltonian Ĥ, the energy of the
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variational wave function ψθ is greater or equal to the energy of the real ground state E0

E(θ) =

〈
ψθ

∣∣∣Ĥ∣∣∣ψθ

〉
⟨ψθ|ψθ⟩

≥ E0 (5.9)

and minimizing the proposed loss function is consequently a good choice. Notice that calculat-

ing the energy of a variational ansatz is also helpful in comparing them with other variational

methods. If the reached energy is lower than achieved with other employed methods, it can

be considered to be better in representing the ground state.

The local estimator introduced in equation 5.3 of the Hamiltonian is

Eloc(s) =
∑
s′

〈
s
∣∣∣Ĥ∣∣∣s′〉 ⟨s′|ψθ⟩

⟨s|ψθ⟩
(5.10)

the variational energy can be approximated by using equation 5.5. Defining the diagonal

operator

Om(s) =
∂

∂θm
log(⟨s|ψθ⟩) =

〈
s
∣∣∣Ôm

∣∣∣s〉 (5.11)

for the m-th parameter of the ansatz θm it is possible to express the gradient of the approxi-

mated energy by

∂E(θ)

∂θm
= 2ℜ (⟨Eloc(s)O

∗
m(s)⟩ − ⟨Eloc(s)⟩⟨O∗

m(s)⟩) (5.12)

where real-valued parameters, i.e. θ ∈ R and ℜ denotes the real part. Notice that it is possible

to also derive a similar expression for complex-valued parameters, i.e. θ ∈ C, however, one
has to be careful with non-holomorphic ansätze like ARNNs.

The optimization and thus the search for the ground state follows the same structure as SGD

introduced in algorithm 1 and is straight forward.

5.1.4 Real Time Evolution

As NQS are variational states they can perform variational real-time evolution using time-

dependent variational Monte Carlo (t-VMC) [14, 245, 246], which is based on the Dirac-

Frenkel variational principle. In particular, the time-dependent Schrödinger equation needs to

be solved for a NQS |ψθ(t)⟩

i
d

dt
|ψθ(t)⟩ = Ĥ |ψθ(t)⟩ (5.13)

governed by a Hamiltonian Ĥ and ℏ = 1. To achieve this the Schrödinger equation is expanded

in the first order of the time step τ and multiplied by the basis state ⟨s| we receive

ψθ(t+ τ)(s) = 1− ℏτ
〈
s
∣∣∣Ĥ∣∣∣ψθ(t)

〉
+O(τ 2) (5.14)

= 1− iEloc(s) +O(τ 2) (5.15)
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where

Eloc =
∑
s′

〈
s
∣∣∣Ĥ∣∣∣s〉 ⟨s′|ψ⟩⟨s|ψ⟩

(5.16)

is the local estimator of the energy. Notice that numerically that is appealing since only

nonvanishing matrix elements of the Hamiltonian need to be calculated. As in most ML

approaches and thus true for NQS it is helpful to define a loss function to minimize. Here the

loss function of the new parameters after the times step τ are θ′, so the loss function reads

L(θ′) = dist (ψθ′ , ψθ(t+ τ)) . (5.17)

Notice that the loss function can be minimized analytically by selecting a timestep τ that is

sufficiently small. In that case the new variational parameters θ′ can be written in first-order

θ′ = θ + τ θ̇ +O(τ 2). (5.18)

With this observation the new state ψθ′ can be expanded at first order in τ

ψθ+τ θ̇(s) =
(
1− τ θ̇

)
ψθ(s) +O(τ 2) (5.19)

where we multiplied with ⟨s|. The choice of the distance measure varies the underlying

variational principle [247]. Taking into account that most NQS are not normalized the choice

here is

dist(ψ, ϕ) = 1− ⟨ψ|ϕ⟩ ⟨ϕ|ψ⟩
⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩

(5.20)

for two wavefunctions ψ and ϕ, which is similar to the Fubini-Study metric normally used

for NQS. Combining equation 5.14 and 5.19 with the distance measure and only keeping the

leading terms in τ we obtain an equation to calculate θ̇

Sθ̇ = −if (5.21)

with the quantum geometric tensor S and the gradient of the local energy with respect to

the parameters θ. The elements of the quantum geometric tensor are given by

Ss,s′ = ⟨O∗
sOs′⟩ − ⟨O∗

s⟩⟨Os′⟩ (5.22)

and the gradient

fs = ⟨ElocO
∗
s⟩ − ⟨Eloc⟩⟨O∗

s⟩ (5.23)

which is also known as the vector of forces in this context. The system of linear equations

raised by equation 5.21 can be solved by inverting S to get an explicit form of the parameter

time derivative

θ̇ = −iS−1f (5.24)
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which now can be used to formulate an iterative approach for the time evolution of the NQS

parameters choosing a time step size of ∆t

θ′(θ) = θ − i∆tS−1f (5.25)

where θ′ are the parameters after the time step. In practice inverting S can be achieved by

using a direct solver like QR factorization. However, in some cases that poses problems as S is

often singular. Multiple different techniques have been developed to overcome that problem,

but hence S and f are sampled stochastically stable long-time evolutions are challenging for

NQS [248].

Instead of the variational principle as introduced in the section 5.1.3 to find the ground state,

it is clear that imaginary time evolution using Wicks theorem and replacing τ → iτ which

leads to the evolution of theta defined by

θ̇ = −S−1f . (5.26)

Employing this method normally involves regularizing S → S + λId with a constant term λ

on the diagonal. This algorithm is also known as stochastic reconfiguration [249].

5.2 | Quantum State Tomography

NQS can be employed to perform quantum state tomography [15]. The formal task is to

reconstruct a wave function ψ from a limited amount of projective measurements |ψ(s)|2 in

a basis spanned by |s⟩ = |s1, s2, · · · , sN⟩ with si is some quantum number and N is the

system size. In terms of ML as introduced in chapter 2.4 the optimization is guided by simply

minimizing

min
θ

dist(ψ, ψθ) (5.27)

where ψθ is a variational state, e.g. a NQS, with some parametrization θ. For now, the

choice of the ansatz or NN representing the variational state is left open, however in the

proposed tomography ansatz it has to be constrained (see section 5.3). The distance between

the two states can be measured by different functions. The Kullback-Leiber divergence, i.e. a

measure for the distance between two probability distributions, is employed here and is proven

successful in the field of state tomography with NQSs [15]. Recall from equation 2.13 that

the Kullback-Leibler divergence for two probability distributions p and q reads as

DKL(p ∥ q) = Ex∼p(x)

[
log

p(x)

q(x)

]
(5.28)

=
∑
x∈X

p(x) log
p(x)

q(x)
(5.29)
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as we work with discrete probability distributions here. The Born rule can be used to get

probability distributions from the two states that should be optimized here, i.e. pθ(s) =

|ψθ(s)|2 and q(s) = |ψ(s)|2 where s is now a measurement, a try to define tomography could

be

DKL(ψθ ∥ ψ) = DKL(θ) =
∑
s∈S

|ψθ(s)|2 log
|ψθ(s)|2

|ψ(s)|2
. (5.30)

However quantum states are in most cases not simple probability distributions due to their

complex-valued nature. Whenever we use the Born rule to get the probability distribution from

a quantum state the probability distribution can not be transformed back into the quantum

state. This can be shown as representing a quantum state in its amplitude phase structure

we encountered earlier ψ(s) =
√
p(s)eiϕ(s). By transforming the state into a probability

distribution the information of the phase ϕ(s) is lost.

A solution to overcome the problem of lost phase information is to measure in different basis

B ∈ B which is proven to be efficient [250]. So instead of minimizing the Kullback-Leibler

divergence, it is generalized to different basis sets

DKL(θ) =
∑
B∈B

∑
s∈SB

|ψB
θ (s)|2 log

|ψB
θ (s)|2

|ψB(s)|2
(5.31)

where SB is a set of measurements of the state in the basis B and ψB(s) =
〈
s
∣∣∣ÛB

∣∣∣ψ〉 is

the quantum state in the basis B. ÛB is a unitary operator. The modified Kullback-Leibler

divergence can now serve as a loss function and in terms of ML approaches it can be minimized

with SGD and the gradients can be easily calculated using automatic differentiation in most

cases.

5.2.1 Applications and Limitations

Efficient quantum state tomography is of high interest for experiments as it allows us to

measure arbitrary observables from the reconstructed state. This was proven successful for an

array of rubidium atoms [16] using an RBM ansatz for the NQS and recently on a 20 qubit

trapped ion system [251] comparing different architectures. It should be mentioned here that

noise poses a big problem for state tomography with NQS in its bare form. At the cost of

additional parameters of the NN representing the NQS it is possible to add a noise layer to

circumvent these issues [16].

In general state tomography from experimental data is challenging. Several proposals try

to circumvent issues raised with experimental data [252–256]. In the end however it should

be possible to perform state tomography with a polynomial number of different bases and

snapshots for a special class. For now, this class is unknown and is subject to current research.
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One large limitation of the state tomography protocol using different bases as the training

set to learn the phase information of the wave function is the unitary basis transformation

ÛB introduced in equation 5.31. To calculate ψB
θ (s) efficiently it is strictly required that

Û acts non-trivially on a limited number of quantum numbers, i.e. single qubits or spins.

Otherwise, the computational costs scale exponentially with system size. See the appendix

of [15] for details. This restriction limits the method to experimental systems where local

unitary operations are feasible, e.g. Rydberg atom tweezer arrays like in [16].

5.3 | State Tomography from Random Quench Dy-

namics

As already seen in section 5.2 NQSs pose a versatile framework to perform quantum state

tomography and have already been proven successful. However, they are often limited to

experimental systems where only local unitary operations are feasible, due to the limited

ability to transform the variational state ψθ computationally. Here we propose a new ansatz

to solve that problem.

We start with the ground state |ψ0⟩ of some quantum system defined by Ĥ. Then we quench

the system with a quench Hamiltonian Ĥq for a given time tq. The evolution of the quantum

state is governed by the time-dependent Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = Ĥq |ψ(t)⟩ (5.32)

where |ψ(t)⟩ is the time-dependent state. Afterwards, we measure the state by sampling

|ψ(s, tq)|2. Instead of using different bases to avoid loss of phase information in the tomog-

raphy scheme, we propose to use the quench Hamiltonian to sample sufficiently inside the

Hilbert space. We do not specify the quench Hamiltonian Ĥq in further detail here, instead,

we assume a random set of different quench Hamiltonians Ĥq ∈ Hq. The Kullback-Leibler

divergence can now be adopted to that case and reads

DKL(θ(tq)) =
∑

Hq∈Hq

∑
s∈SHq

|ψθ(tq)(s)|2 log
|ψθ(tq)(s)|2

|ψ(s, tq)|2
(5.33)

with θ(t) now being the time-dependent parameters of the NQS and ψ(s, tq) = ⟨s|ψ(tq)⟩.
Notice that the time dependence of the NQS is included in the parameters θ(t) which can be

derived from the time evolution introduced in 5.1.4. This poses a big problem in deriving the

gradients from the loss function and use SGD to optimize the parameters of the variational

NQS ansatz due to numerical limitations as discussed later in section 5.3.1. However, this

ansatz allows to leverage of experimental platforms that are not able to apply local unitary

operations to the system. We also hope that our approach allows state tomography of bosonic

systems which are so far not feasible for state tomography with NQS.
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Similar to the tomography approaches using time evolutions [210] we can extend our approach

to different quench times to capture more parts of the Hilbert space. We extend our idea

by adding several quench times tq ∈ Tq and we propose the overall loss function for our

tomography ansatz

L(θ) =
∑
tq∈Tq

DKL(θ(tq)) =
∑
tq∈Tq

∑
Hq∈Hq

∑
s∈SHq

|ψθ(tq)(s)|2 log
|ψθ(tq)(s)|2

|ψ(s, tq)|2
(5.34)

to optimize the NQS. Notice that this approach in contrast to equation 5.31 does not require

local Û which is an advantage as we only rely on the quench Hamiltonian and the stable time

evolution of the NQS parameters.

5.3.1 Results and Technical Difficulties

At the time of writing this thesis, it is not possible to perform quantum state tomography

of non positive wave functions, i.e. wave functions containing phase information, with our

ansatz proposed in equation 5.34. The root of the problems stems from the differentiation

of the NQS parameters. As we are interested in the NQS parameters before the quench θ

each value and hence each gradient of the parameters has to be computed concerning the

time evolution. To solve this we implemented two different methods which both could not be

proven successful so far.

Our test setup uses RBMs to build the NQS as they are naturally good candidates for per-

forming time evolution with t-VMC as they have complex valued parameters, i.e. θ ∈ C. This
is needed since for real-time evolution the parameters are updated with complex values due

to the imaginary unit in equation 5.21. As a test model, we use the one-dimensional XXZ

model

Ĥ =
∑
<i,j>

Jxσ
x
i σ

x
j + Jyσ

y
i σ

y
j + Jzσ

z
i σ

z
j −

h

2

∑
i

σz
i (5.35)

with three sites which we solve using exact diagonalization (ED). Ji are the coupling terms

between neighboring sites and h is an external field. The Hilbert space has 8 basis states in

that case. We start with a positive wave function, i.e. no phase information has to be obtained

by the state tomography algorithm, by setting Jx = 1.0 and h = 1.0. The other coupling

terms are set to 0. We checked that the RBM can learn the original state by performing state

tomography using equation 5.30. Notice that for real-valued wave function, no local unitaries

are required to perform a full tomography [15]. For the quenches, we vary Ji ∈ [0, 1] and

h ∈ [0, 1] randomly.

The first approach includes going forward and backward in time. We start with randomly

initialized parameters for the state at t = 0. Then we select a quench Hamiltonian Ĥq and
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Figure 5.1: Fidelity of the ED wave function ψED and the exact NQS wave function ψθ. Here two random

quench Hamiltonians are used. The quench time is fixed and set to tq = 0.4 reached with 30 time steps. A

final fidelity of F = 0.945 is achieved.

use real-time evolution to evolve the parameters to time tq as introduced in chapter 5.1.4

with a sufficiently small time step τ . We now draw samples from the experiment at a tq and

minimize the loss function DKL(θ(tq)) at the given time step of the quench. After minimizing

the loss function we propagate the parameters back in time to t = 0 and repeat with another

quench Hamiltonian and other quench time. This however poses multiple difficulties. First of

all the time evolution is challenging and unstable for long-time evolutions [248]. In a pictorial

picture, the information of the first optimization depletes from the NQS as more single times

steps are made. Secondly, the SGD lives from the shuffling of data it gets presented in each

mini-batch. Here we restrict each epoch of the gradient descent step to one time and quench

Hamiltonian.

The second approach we tried so far includes differentiation through the complete time evo-

lution of the parameters. Instead of training each time step individually we now calculate

the backpropagation, i.e. building a complete computational graph, through all calculations

involving the time evolution which allows us to still shuffle the data after each epoch for

SGD. This method is more promising but poses computational difficulties as for each time

step we need to calculate the quantum geometric tensor S and the gradient f , i.e. the vector

of forces, which involves sampling. The size of the computational graph explodes quickly

reaching several gigabytes which makes this approach unfeasible. As a proof of concept, we

also implemented an analytical approach. For small Hilbert spaces, i.e. small system sizes, it

is possible to calculate all the Monte Carlo averages exactly without sampling.

Employing this ansatz we were able to perform state tomography for the amplitude of the

wave function as shown in figure 5.1. Here the analytic RBM ansatz contained nv = 3 visible

neurons, i.e. one for each site of the chain, and nh = 9 hidden units. The weights and biases

are initialized by a normal distribution. Two random quench Hamiltonians are sampled. We
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train at only one-time point tq = 0.4 using 30 time steps. The learning rate is set to λ = 0.01.

The fidelity curve increases for each epoch until we reach a final fidelity of F = |⟨ψθ|ψED⟩|2.
Unfortunately, it is so far not possible to learn the complex part of a wave function as we

always observe divergence of the parameters in that case. We note that this ansatz is not

scalable due to the analytical form. So other methods have to be developed to overcome that

problem.

5.4 | Outlook

In this section, we introduced a new ansatz for quantum state tomography with NQS using

random quench dynamics. We proved our method successful for wave functions without phase

information and analytical RBMs. In the future, several properties have to be investigated

further. As time evolution poses critical limitations to our method it is required to use

different approaches to evolve in time which are tailored for NQSs [246]. Furthermore, we

need to understand why wave functions containing phase information lead to a divergence

of the parameters. This might be solved by using advanced regularization schemes for the

quantum geometric tensor as introduced in [245, 248]. In addition different NQS architectures

like ARNNs may overcome some of the encountered problems as they do not rely on Monte

Carlo methods for sampling. In general, our ansatz poses new possibilities to perform quantum

state tomography with NQS, including state reconstructions from bosonic systems which is

unfeasible so far.
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CHAPTER6
Conclusion and Outlook

This thesis proves several ML methods successful in identifying different phases of matter

from experimental data. The full unsupervised reconstruction of the Haldane phase diagram

in chapter 4 proves, that it is possible to determine and distinguish different phases of matter

without knowledge of the underlying phases from cold quantum gas experiments. The Haldane

phase diagram poses three different topological regions. For high and low shaking frequencies

topologic trivial phases, i.e. a zero-valued Chern number, and topological nontrivial phases

in an intermediate shaking frequency regime, identified with nonzero Chern number. It was

demonstrated that bottleneck analysis and anomaly detection can distinguish topological trivial

from topological nontrivial regimes, hence the intermediate regime from the rest. The different

signs of the Chern number correlated with the sign of the shaking phase, i.e. for positive

shaking phases the Chern number is also positive and vice versa, could be extracted by

employing influence functions.

To successfully apply unsupervised ML techniques it is required to reduce distraction inside

the data set, e.g. the micromotion phase. The micromotion phase can be fixed to a single

micromotion phase employing a generative model, namely VAE with an additional question

neuron. It was possible to train a VAE which can transform each ToF image to a desired

micromotion phase. This method of data post-processing of experimental data is on its own

an exciting tool that might be applied to other fields of interest like fringe removal or noise

reduction. Further applications also include the reconstruction of quantum gas microscope

images [47].

The successful implementation of the unsupervised ML methods for noisy data poses new

possibilities in analyzing experimental data even beyond cold quantum gases. In this context,

the investigation of how noise influences phase classification is also of higher interest and

should be researched in the future. In the future, the methods may be applied to complete

unknown phase diagrams guiding theoretical predictions or to understand exotic quantum

many-body systems or hidden orders [42, 46]. Unsupervised phase discovery is one crucial

ingredient to self-driven experiments autonomously discovering new phases of matter and new

functional materials [257].
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NQS are a versatile tool and some works have proven their capability to represent volume-law

entanglement, which means they will outperform TNS in two and three-dimensional systems

[160, 240, 258]. Already today NQS outperform state-of-the-art techniques like projected

entangled pair states (PEPS) [259]. This is a huge step forward since it allows quantum state

tomography for such higher dimensional systems. In chapter 5 a novel ansatz for quantum

state tomography for NQS is introduced and proven successful for wave functions without

phase information. As of today, state tomography with NQS for experimental data [16, 251]

already works and further advantages in the field will allow the proposed method to excel in

different environments. The promising experimental idea of the quantum gas magnifier [81]

may allow us to access the necessary information from quench dynamics to perform state

reconstruction with our approach.

In conclusion ML will change the way scientific discovery is achieved. Even today scientists

can get valuable new ideas and concepts from ML approaches which can lead to new scientific

discoveries [260, 261]. Identifying trends in the scientific community helps to map out possible

focus topics for policymakers [262]. At the heart of science is intuition and understanding

of the observed effects which can be challenging and be assisted by AI [263, 264]. The

ingredients posed by this thesis are desireable to design new AI driven laboratories [183].

With the introduction of large language models [1] a new era of AI assisted technology

started, enabling the implementation of autonomous research assistants that assist the daily

work of scientists in the lab [265, 266]. The progress of DL models propelled by large data

sets and computational progress with all its benefits and possible risks will not only shape the

scientific landscape. As concrete scientific applications of today DL models will arise, it will

be interesting how for example large language models find their way into quantum physics.
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APPENDIXA
Micromotion and Center of Mass

In figure A.1 we show the dependence of the azimuthal coordinate of the CoM on the mi-

cromotion phase. For circular shaking, i.e. a shaking phase of ±90◦, the CoM moves in a

circular fashion yielding a linear dependence between the azimuthal coordinate of the CoM

and the micromotion phase. For linear shaking, i.e. a shaking phase of 0◦ and 180◦, the CoM

moves along a diagonal line yielding a constant azimuthal coordinate of the CoM at ±45◦,
with a phase jump of 180◦ due to small disturbances in the experiment forcing an exchange of

the long and short axis in the fitting scheme of the ellipse. Other shaking phases interpolate

between these two behaviors. In conclusion, the movement of the CoM of the momentum

distribution follows the shaking trajectories as expected.
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Figure A.1: Dependence of the azimuthal coordinate θCoM of the CoM and the micromotion phase ϕ. The

dependence can be explained by the elliptical shaking. For the shaking phases φ = 0,±180 the shaking is

linear, thus the cloud can only be displaced in k-space along the direction of the shaking. For a shaking phase

of φ = ±90 the shaking is circular and thus the dependence is linear. The sign of φ decides on the direction

of shaking which is encoded in the phase jump and the direction of the slope.
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APPENDIXB
Haldane Model

B.1 | PCA

The easiest approach to analyze experimental and theoretical data is the PCA which is de-

scribed in detail in chapter 3.1.1. In contrast to the clear signals achieved by feeding the

algorithm with theoretical data like spin configurations [22] it is hard to link the components

to the different phase transitions for the experimental data of the Haldane model. In figure
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Figure B.1: PCA analysis of the time of flight images with a fixed micromotion phase. From left to right PCA

components 1,2,6 and 8 which are selected arbitrarily. Upper row: The PCA components for a shaking phase

of φ = 90◦. The error bars are the standard deviation of the mean value. The dashed lines are the theoretically

expected transitions. Lower row: Averaged PCA components plotted in the Haldane phase diagram fashion.

B.1 different PCA components of the micromotion fixed data are plotted. Looking at single

shaking frequency cuts reveals some features related to the phase transitions. However, the

data also provides features not related to phase transitions and do not provide a clear recipe

for how to extract them.
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Figure B.2: (a)-(c)Training within small boxes of the phase diagram with only negative shaking phases. (1)

we test on the normal images. (2) we flip the images performing a phase transformation (kx, ky)→ (−kx, ky)
which flips the sign of the shaking phase. (3) here we use a dataset consisting of both, flipped and not flipped

ToF images.

B.2 | Anomaly Detection in Shaking Phase Direction

Figure B.2 shows the training with smaller boxes for anomaly detection to separate the two

topological nontrivial phases from each other. For smaller boxes only trained on one side of

the phase diagram, the anomaly detection scheme also distinguished in the topological trivial

phases two different phases of matter which is not expected. The emerging patterns seem

proportional to the band population and hence are sufficient to differentiate the two nontrivial

phases. We also note that the box size in this case influences the found signal from the anomaly

detection. we also use flipping the images to investigate this behavior further. Flipping the

images corresponds to a transformation in the momentum space (kx, ky) → (−kx, ky) and

flips the sign of the shaking phase, and hence the sign Chern number as well. We can see that

the flipping also changes the expected reconstruction loss. In section 3 of figure B.2 we train

with a mixed set of flipped and not flipped images. Notice that there is still a differentiation

in the topological trivial regions.
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APPENDIXC
Neural Network Architectures and Training

Table C.1: Architecture for the AE to perform the bottleneck cluster analysis of the Haldane model. Realized

in Tensorflow [156]. Learning rate 0.001. Optimized with Adam for 100 epochs and a mini-batch size of 100.

Layer (type) Output Shape Number of Params

conv2d (Conv2D) (None, 56, 56, 64) 320

maxpooling2d (MaxPooling2D) (None, 28, 28, 64) 0

conv2d1 (Conv2D) (None, 28, 28, 32) 8224

maxpooling2d1 (MaxPooling 2D) (None, 14, 14, 32) 0

flatten (Flatten) (None, 6272) 0

bottleneck dense (Dense) (None, 2) 1254

dense1 (Dense) (None, 196) 588

reshape (Reshape) (None, 14, 14, 1) 0

conv2d2 (Conv2D) (None, 14, 14, 32) 320

upsampling2d (UpSampling2D) (None, 28, 28, 32) 0

conv2d3 (Conv2D) (None, 28, 28, 32) 9248

upsampling2d1 (UpSampling2D) (None, 56, 56, 32) 0

conv2d4 (Conv2D) (None, 56, 56, 1) 129
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Table C.2: Architecture of the VAE encoder for the micromotion removal. Realized in Tensorflow [156].

Hyperparameters obtained by [226]. Full details can be found in the notebooks [200]

Layer (type) Output Shape Number of Params

enconv0 (Conv2D) (None, 56, 56, 90) 1530

batchnormalization (BatchNormalization) (None, 56, 56, 90) 360

leakyrelu (LeakyReLU) (None, 56, 56, 90) 0

enpool0 (MaxPooling2D) (None, 14, 14, 90) 0

enconv1 (Conv2D) (None, 14, 14, 50) 162050

batchnormalization1 (BatchNormalization) (None, 14, 14, 50) 200

leakyrelu1 (LeakyReLU) (None, 14, 14, 50) 0

enpool1 (MaxPooling2D) (None, 4, 4, 50) 0

enconv2 (Conv2D) (None, 4, 4, 160) 288160

batchnormalization2 (BatchNormalization) (None, 4, 4, 160) 640

leakyrelu2 (LeakyReLU) (None, 4, 4, 160) 0

enpool2 (MaxPooling2D) (None, 1, 1, 160) 0

flatten (Flatten) (None, 160) 0

enfc0 (Dense) (None, 260) 41860

batchnormalization3 (BatchNormalization) (None, 260) 1040

leakyrelu3 (LeakyReLU) (None, 260) 0

enfc1 (Dense) (None, 180) 46980

batchnormalization4 (BatchNormalization) (None, 180) 720

leakyrelu4 (LeakyReLU) (None, 180) 0

enfc2 (Dense) (None, 320) 57920

batchnormalization5 (BatchNormalization) (None, 320) 1280

leakyrelu5 (LeakyReLU) (None, 320) 0

enfc3 (Dense) (None, 480) 154080

batchnormalization6 (BatchNormalization) (None, 480) 1920

leakyrelu6 (LeakyReLU) (None, 480) 0

fcenlatenetspace (Dense) (None, 26) 12506
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Table C.3: Architecture of the VAE decoder for the micromotion removal. Realized in Tensorflow [156].

Hyperparameters obtained by [226]. Full details can be found in the notebooks [200]

Layer (type) Output Shape Number of Params

defc0 (Dense) (None, 250) 3750

batchnormalization7 (BatchNormalization) (None, 250) 1000

dropout (Dropout) (None, 250) 0

leakyrelu7 (LeakyReLU) (None, 250) 0

defc1 (Dense) (None, 250) 62750

batchnormalization8 (BatchNormalization) (None, 250) 1000

dropout1 (Dropout) (None, 250) 0

leakyrelu8 (LeakyReLU) (None, 250) 0

defc2 (Dense) (None, 230) 57730

batchnormalization9 (BatchNormalization) (None, 230) 920

dropout2 (Dropout) (None, 230) 0

leakyrelu9 (LeakyReLU) (None, 230) 0

defcshaping (Dense) (None, 40) 9240

batchnormalization10 (BatchNormalization) (None, 40) 160

leakyrelu10 (LeakyReLU) (None, 40) 0

reshape (Reshape) (None, 2, 2, 10) 0

detconv0 (Conv2DTranspose) (None, 4, 4, 140) 22540

batchnormalization11 (BatchNormalization) (None, 4, 4, 140) 560

dropout3 (Dropout) (None, 4, 4, 140) 0

leakyrelu11 (LeakyReLU) (None, 4, 4, 140) 0

detconv1 (Conv2DTranspose) (None, 8, 8, 180) 907380

batchnormalization12 (BatchNormalization) (None, 8, 8, 180) 720

dropout4 (Dropout) (None, 8, 8, 180) 0

leakyrelu12 (LeakyReLU) (None, 8, 8, 180) 0

detconv2 (Conv2DTranspose) (None, 56, 56, 200) 1296200

batchnormalization13 (Bat (None, 56, 56, 200) 800

dropout5 (Dropout) (None, 56, 56, 200) 0

leakyrelu13 (LeakyReLU) (None, 56, 56, 200) 0

dropout (Conv2DTranspose) (None, 56, 56, 1) 7201
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Table C.4: Architecture of the AE for the anomaly detection scheme of the Haldane model. The horizontal

line is the bottleneck. The model is implemented in Tensorflow [156]. The Adam optimizer trains the model

in 10 epochs and a batch size of 128.

Layer (type) Output Shape Number of Params

input1 (InputLayer) (None, 56, 56, 1) 0

conv2d (Conv2D) (None, 56, 56, 16) 160

maxpooling2d (MaxPooling2D) (None, 28, 28, 16) 0

conv2d1 (Conv2D) (None, 28, 28, 16) 2320

maxpooling2d1 (MaxPooling2D) (None, 14, 14, 16) 0

conv2d2 (Conv2D) (None, 14, 14, 16) 2320

flatten (Flatten) (None, 3136) 0

dense (Dense) (None, 50) 156850

dropout (Dropout) (None, 50) 0

dense1 (Dense) (None, 3136) 159936

dropout1 (Dropout) (None, 3136) 0

reshape (Reshape) (None, 14, 14, 16) 0

upsampling2d (UpSampling2D) (None, 28, 28, 16) 0

conv2d3 (Conv2D) (None, 28, 28, 16) 2320

upsampling2d1 (UpSampling2D) (None, 56, 56, 16) 0

conv2d4 (Conv2D) (None, 56, 56, 1) 145

Table C.5: Architecture of the CNN to classify the different snapshots for the influence function approach.

The network is implemented in PyTorch [157].

Name Output Shape

input1 (InputLayer) (None, 56, 56, 1)

conv1 (Conv2D) (None, 52, 52, 1)

maxpool1 (MaxPooling2D) (None, 25, 25, 1)

conv2 (Conv2D) (None, 21, 21, 1)

avgpool2 (AveragePooling2D) (None, 5, 5, 1)

dense (Dense) (None, 200)

dense (Dense) (None, 2)

output (Softmax) (None, 2)
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[43] N. Käming, A. Dawid, K. Kottmann, M. Lewenstein, K. Sengstock, A. Dauphin,

and C. Weitenberg. “Unsupervised machine learning of topological phase transitions

from experimental data”. In: Machine Learning: Science and Technology 2.3 (2021),

p. 035037. doi: 10.1088/2632-2153/abffe7 (cit. on pp. 1, 3, 4, 23, 33, 57).

[44] E. Zhao, T. H. Mak, C. He, Z. Ren, K. K. Pak, Y.-J. Liu, and G.-B. Jo. “Observing

a topological phase transition with deep neural networks from experimental images

of ultracold atoms”. In: Optics Express 30.21 (2022), p. 37786. doi: 10.1364/oe.

473770 (cit. on p. 1).

[45] D. Eberz, M. Link, A. Kell, M. Breyer, K. Gao, and M. Köhl. “Detecting the phase tran-

sition in a strongly interacting Fermi gas by unsupervised machine learning”. In: Phys-

ical Review A 108.6 (2023), p. 063303. issn: 2469-9926. doi: 10.1103/physreva.

108.063303 (cit. on p. 1).

[46] C. Miles, A. Bohrdt, R. Wu, C. Chiu, M. Xu, G. Ji, M. Greiner, K. Q. Weinberger, E.

Demler, and E.-A. Kim. “Correlator convolutional neural networks as an interpretable

architecture for image-like quantum matter data”. In: Nature Communications 12.1

(2021), p. 3905. doi: 10.1038/s41467-021-23952-w (cit. on pp. 1, 71).

85

https://doi.org/10.1088/2632-2153/ad03ad
https://doi.org/10.1038/s41567-019-0554-0
https://doi.org/10.1038/s41567-019-0565-x
https://doi.org/10.1038/s41567-019-0565-x
https://doi.org/10.1103/physreva.102.033326
https://doi.org/10.1088/2632-2153/abffe7
https://doi.org/10.1364/oe.473770
https://doi.org/10.1364/oe.473770
https://doi.org/10.1103/physreva.108.063303
https://doi.org/10.1103/physreva.108.063303
https://doi.org/10.1038/s41467-021-23952-w
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[72] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S. Lühmann, K. Sengstock,

and C. Weitenberg. “Experimental reconstruction of the Berry curvature in a Floquet

Bloch band”. In: Science 352.6289 (2016), pp. 1091–1094. issn: 0036-8075. doi:

10.1126/science.aad4568 (cit. on pp. 2, 3, 23, 40–42, 44).

[73] L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, and U. Schneider. “An

Aharonov-Bohm interferometer for determining Bloch band topology”. In: Science

347.6219 (2015), pp. 288–292. issn: 0036-8075. doi: 10.1126/science.1259052

(cit. on p. 2).
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