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Abstract

In this thesis, experimental work is presented which enabled few atom counting in a
tweezer-based 40K setup, the creation of 3D Bose-Einstein condensates of 39K, the achieve-
ment of quantum degeneracy in bosonic 2D samples, and of local probing of polaronic
physics therein. Starting from an apparatus capable of laser cooling fermionic 40K, a novel
dual-color magneto-optical trap capable of detecting individual atoms was implemented.
This allowed reliable atom number determination with fidelities of 98% for up to five
atoms and & 85% for up to 17 atoms.

Upgrading the setup enabled us to achieve Bose-Einstein-condensation of 39K, and by
utilizing suitable optical potentials, to create two-dimensional samples in the regime of
BKT superfluidity. In both the 2D and 3D gases polaronic physics was then studied by
employing radio-frequency pulses to flip a fraction of the atoms into a strongly interacting
impurity state. The polaron spectrum was measured in both cases across a Feshbach
resonance, allowing us to tune the strength as well as the sign of the bath-impurity
interaction. To model the spectral line shapes with good accuracy it was necessary to
include excited polaronic states, in contrast to previous work.

Taking advantage of our machine’s high optical resolution, spatially and temporally
resolved impurity dynamics in the BKT-gas was experimentally investigated for the first
time. The spatial impurity distribution observed in frequency-resolved measurements
exhibits significant differences between attractive and repulsive interactions, supporting
the relevance of excited polaron states. For repulsive interactions we observe an outward
motion of the impurities and ultimately the expulsion of the impurities from the bath.
We can accurately describe this motion when including the predicted friction term for
velocities above the speed of sound.





Zusammenfassung

In dieser Arbeit wird experimentelle Forschung präsentiert, die die präzise Atomzahlbe-
stimmung in einem auf optischen Pinzetten basierenden 40K-Aufbau, die Erzeugung von
3D-Bose-Einstein-Kondensaten von 39K, das Erreichen von Quantenentartung in bosoni-
schen 2D-Systemen und die räumlich aufgelöste Untersuchung der Polaronphysik darin
ermöglichte.

Ausgehend von einem experimentellen Aufbau mit lasergekühltem, fermionischem 40K
wurde eine neuartige zweifarbige magneto-optische Falle implementiert, die einzelne Ato-
me nachweisen kann. Dies ermöglichte die präzise Bestimmung der Atomzahl mit einer
Zuverlässigkeit von 98% für bis zu fünf Atome und & 85% für bis zu 17 Atome.

Durch die Erweiterung des Aufbaus konnten wir die Bose-Einstein-Kondensation von
39K erreichen und, durch die Verwendung geeigneter optischer Potentiale, zweidimensio-
nale Systeme im Bereich der BKT-Superfluidität erzeugen. Mithilfe von Radiofrequenz-
pulsen konnte dann sowohl in 2D- als auch in 3D-Systemen ein Teil der Atome in einen
anderen, stark wechselwirkenden Spinzustand transferiert werden, sodass die Untersu-
chung von Polaronphysik möglich wurde. Das Polaronenspektrum wurde in beiden Fällen
über eine Feshbach-Resonanz gemessen, was es ermöglichte, sowohl die Stärke als auch das
Vorzeichen der Wechselwirkung zwischen Bad und Verunreinigung zu kontrollieren. Um
die spektralen Linienformen gut zu modellieren, war es insbesondere notwendig, angeregte
polaronische Zustände zu berücksichtigen.

Durch die hohe optische Auflösung unserer Apparatur konnte die Polarondynamik
im BKT-Gas erstmals räumlich und zeitlich aufgelöst experimentell untersucht werden.
Die in frequenzaufgelösten Messungen beobachtete räumliche Struktur zeigt signifikante
Unterschiede zwischen attraktiven und repulsiven Wechselwirkungen, was die Relevanz
angeregter polaronischer Zustände unterstützt. Für abstoßende Wechselwirkungen wurde
eine nach außen gerichtete Bewegung der Verunreinigungen und schließlich die Ausstoßung
der Verunreinigungen aus dem Bad beobachtet. Diese Bewegung konnte akkurat model-
liert werden, wenn der theoretisch hergeleitete Reibungsterm für Geschwindigkeiten über
der lokalen kritischen Geschwindigkeit einbezogen wird.
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Chapter 1

Introduction

1.1 Introduction: Polarons

Based on Landau’s work on a single electron interacting with a lattice [1], Landau and
Pekar in 1948 published their seminal paper [2], introducing the concept of a quasi-
particle coined "polaron", which describes the combined properties of a bare electron
and the reaction of the surrounding medium. This paradigmatic conceptual approach
of introducing a quasi-particle with properties different from the bare particle has since
found widespread adoption in condensed matter physics and beyond.

In their original work, Landau and Pekar considered the effect of a single electron on
the surrounding lattice; H. Fröhlich later provided a fully quantum-mechanically descrip-
tion [3]. In this model, the electric charge of the single electron induces a local polarization
in the medium, corresponding to a displacement from the unperturbed positions. In a
simple picture, this displacement can be seen as a superposition of lattice vibrations with
appropriate phase and momentum. It is this combination of optical phonons with the bare
electron that forms the new quasi-particle named “polaron”. This emergent particle has
properties different from the bare electron: due to the local polarization, the charge of the
electron is screened. Furthermore, the electron becomes inseparable from the medium’s
polarization, causing a “dragging” effect with any movement and leading to an effective
mass meff > mbare, resulting in reduced mobility. For example, in the limit of weak
coupling and to linear order in the coupling constant α, the effective mass can be derived
to be meff = mbare · (1 + α/6) [4], where α for typical materials ranges between 10−2 and
∼3 [5], resulting in effective masses deviating from the bare mass by a few percent to up
to approximately 50%.

As it describes the effective low-energy physics, the same concept of an impurity
“dressed” by distortions of the surrounding media, as sketched in Fig. 1.1, has since been
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1.1. Introduction: Polarons

repulsive interactions no interaction attractive interactions

Figure 1.1: Polaron sketch. The bath (black) exhibits a typical interparticle distance. Adding an im-
purity particle (blue) to the setting does not affect the bath density if there is no interaction between
bath and impurity (middle), but reduces the local density for repulsive bath-impurity interactions
(left, red) and increases the local density for attractive interactions (right, green). In the shown
schematic, the impurity interacts directly with the bath density and does not induce a polarization
as in the original polaron-model.

employed in various other problems in condensed matter physics. The Kondo effect [6]
is an example where the polaron concept was extended to an impurity with a fermionic
bath. In this scenario, a localized and immobile magnetic impurity scatters conduction
band electrons, contributing to the electric resistance. For sufficiently low temperatures,
the coupling between the magnetic impurity and the fermionic bath becomes dominant
and leads to a logarithmic divergence of the resistance, leading to a minimal resistance at
T > 0, as observed in certain alloys.

Similarly, the approach has also been used in the context of colossal-magnetoresistance
manganites [7–10], high-temperature superconductors [5, 11–14], and of the wide field of
semiconductors [15]. Beyond condensed matter physics, the concept has, for example,
been employed in the description of nuclear and quark matter [16–18]. Probably best
known and triggered by the non-relativistic work by P. W. Anderson in 1963 [19], the
concept has been extended to the Higgs-mechanism, where the mass of elementary field
excitations like the electron originate in a dressing of the bare electron by the bosonic
Higgs field, which acquires a non-zero vacuum expectation value [20–23].

A complementary conceptual approach reverses the roles played by impurity and bath:
instead of focusing on the new properties of the dressed impurity, it is seen as a micro-
scopic probe for the surrounding medium, where the dressing reveals some of the bath’s
properties, such as, for example, the density of states. Since the impurity is typically of
the same or very similar size as the particles of the bath, it hence allows to explore the
response on length scales often not accessible in other ways.

From this view point, the most crucial defining property is the statistics of the bath,

3



Chapter 1. Introduction

distinguishing between fermionic baths, e.g. in the Kondo-effect or in semiconductors, and
bosonic baths, as in Landau and Pekar’s original work where the impurity is coupled to
phonons. The bath’s statistics directly affects the available density of states, particularly
at the low energies usually most relevant for the formation of quasi-particles. Similarly,
the existence of an energy gap or the dimensionality of the system can play a crucial role.
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Figure 1.2: Polaron spectrum measured in a 3D BEC
by injection spectroscopy. The y-axis is the observed
energy shift and the x-axis is the interaction strength
ranging from weakly attractive on the left to strongly
attractive and strongly repulsive near the center to
weakly repulsive on the right. See Sec. 4 for more
details.

In recent years, quantum gas experi-
ments have emerged as an ideal platform to
investigate numerous paradigmatic model
systems of condensed matter physics and
beyond, including the problem of an impu-
rity interacting with a bath.

Quantum gas experiments offer some
significant advantages over alternative im-
plementations: in addition to the “spatial”
parameters like the geometry of the trap-
ping potential or the particle density, the
most important feature available in these
experiments is the possibility to control the
interparticle interaction strength, both for
the interaction within the bath as well as
between bath and impurity. This is usu-
ally accomplished through Feshbach reso-
nances [24], offering not only the possibil-
ity to tune tune the interaction strength
but also to switch between attractive and repulsive interactions. This is directly illus-
trated by the spectrum shown in Fig. 1.2, where we used such a Feshbach resonance to
control the interaction (corresponding to the x-axis). The negative energy shifts occur for
attractive interactions, the positive energy shifts for repulsive interactions, and strongest
interactions are located in the center of the plot.

Moreover, cold samples of both fermionic and bosonic species have been achieved,
thus allowing to probe different particle statistics. For low enough temperatures and
suitable interactions, fermions form a degenerate Fermi-gas, where all states up to the
Fermi energy are occupied and higher states are empty. Bosons, on the other hand, can
form a Bose-Einstein condensate and hence show a distinctively different behavior. For
higher temperatures, one can of course also probe the transition from these degenerate
systems to a thermal gas.

4



1.1. Introduction: Polarons

In the frame of this thesis we implemented a setup that produces such ultracold quan-
tum gases. In particular, our machine allows us to work with either fermionic 40K in
small systems or with bosonic 39K in larger bulk systems. In both cases, fermionic and
bosonic, we can control the interaction strength and at the same time have a high de-
gree of spatial and temporal resolution. When using bosonic 39K in bulk systems, we
achieved Bose-Einstein-Condensation in three dimensions and, by utilizing a repulsive
optical potentials in one direction and hence creating two-dimensional systems, also cre-
ated ultracold clouds well in the Berezinskii-Kosterlitz-Thouless (BKT) regime. In both
of these degenerate systems we were able to measure the polaron spectra for attractive
and repulsive interactions of tuneable strength. In two-dimensions, measuring the po-
laron spectrum in such a setting has not been reported before1. We analyze the observed
line shapes for these spectra and develop phenomenological models that reproduce the
observations very well. Especially for attractive interactions, these models suggest that
excited polaronic states play a significant role in our system. Moreover, the high op-
tical resolution allowed us to investigate spatially resolved creation of impurities in a
two-dimensional BKT gas for the first time. The observed spatial structures support the
relevance of excited states. Utilizing the temporal control, we were furthermore also able
to observe spatially and temporally resolved impurity dynamics in this degenerate cloud.
In a setting with an accelerating force on the impurities, we were able to observe motion
consistent with friction for velocities above the local speed of sound.

In the remaining part of this chapter, we describe some essential aspects of our machine
and of the available atomic isotopes 39K and 40K. Chapter 2 presents the development and
implementation of a two-color MOT as a novel tool for atom number counting in quantum
gas experiments like ours and furthermore discusses the further progress towards realizing
paradigmatic few-fermion systems in tweezers with a special focus on implementing An-
derson’s orthogonality catastrophe. Turning to bosonic polaron physics for the rest of the
thesis, chapter 3 starts with an overview over previous quantum gas experiments focusing
on polaron physics, introduces the relevant background of physics in two-dimensional sys-
tem, and finally describes the experimental preparation scheme and some more specific
experimental aspects potentially interesting for readers working with similar setups.

Chapters 4 and 5 form the central parts of this thesis: Chapter 4 contains the mea-
sured spectra, line shape modeling and discussion, as well as the results extracted from
these spectra. This is done for both three-dimensional systems in Sec. 4.1 and for two-

1During the writing phase of this thesis, a poster about a similar spectral measurement in a 2D BKT
gas was presented at the BEC2023 conference by the Hadzibabic group, but no publication or pre-print
has been published so far.
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Chapter 1. Introduction

dimensional systems in Sec. 4.2. Chapter 5 proceeds from integrated measures used for
the spectra to spatially and temporally resolved measurements of impurity dynamics in a
BKT gas. Finally, a conclusion and outlook is given in chapter 6.

6



1.2. Machine Overview

1.2 Machine Overview

The experiments described in the following sections have been performed on a quantum
gas machine originally designed and to a large part assembled by Phillip Wieburg [25].
Here we give a brief overview over the machine and its most relevant aspects.

1.2.1 Mechanical and Optical Setup

The main technical feature of the machine are the two high-NA microscope objectives
located inside the vacuum with a working distance of 2.5 mm from the atoms. With
their numerical aperture of 0.75, each of them covers 16% of the solid angle and allows
for a Rayleigh resolution limit of ∼620 nm at a wavelength of 767 nm. A more detailed
overview of the microscopes’ design, assembly, and mounting can be found in [25], section
4.4, and a cut through the machine’s CAD model is shown in Fig. 1.3.

Atomic Species and Isotopes The oven inside the vacuum chamber is filled with
100 mg of potassium, with which we conduct the experiments. As an alkali element,
potassium has a single electron it its outermost 4s-shell, and shows a relatively simple,
hydrogen-like level structure. The relevant atomic transitions and needed laser systems
will be discussed further below.

Since the natural abundance of the fermionic 40K is only ∼0.01%, the sample used
in this experiment has been enriched to 3% of 40K, and most of the rest consists of the
bosonic 39K. The small natural component of bosonic 41K (∼7 %) is not used in this
experiment as it provides no significant advantage compared to the more abundant 39K.
The machine has been designed to be able to switch between the two isotopes 39K and
40K and therefore allows experiments both with fermionic and with bosonic particles. The
atomic vapor from the heated oven is captured by a 2D MOT nearby [26], from which a
push beam transfers the atoms through a differential pumping stage to the main vacuum
chamber.

Main Vacuum Chamber This main chamber is a steel chamber with ∼380 mm diam-
eter and six large CF63 vacuum windows in the horizontal plane. CF100 vacuum windows
on the top and the bottom of the chamber allow for optical access along the vertical di-
rection. Several small CF16 windows with a small angle to the horizontal plane are also
present and are mostly used for imaging of various stages of the experimental cycle.

To allow for better optical access, the cooling and trapping is done at two distinct
positions: the “MOT position” is aligned with the axis defined by the differential pumping

7



Chapter 1. Introduction

Figure 1.3: Cut through the CAD model of the main vacuum chamber. The microscopes in green
are visible near the center of the chamber and define the science position. The red dot to its right is
aligned with the 2D MOT axis and indicates the 3D MOT position; the distance between the MOT
position and the science position is 40 mm. The cut is orientated along the transport axis, showing
the quantization axis coils on the very left and right of the machine. The experiment coils, only
visible by their cross section in brown, are centered around the science position, while the MOT coils
are centered around the MOT position and have a larger distance to the atom plane. Adapted from
[25].

section and, as the name suggests, is the position where the atoms are captured in a 3D
MOT and subsequently cooled further by a gray molasses scheme. The “science position” is
located 40 mm away from the MOT position and is centered between the two microscopes;
the axis defined by these two positions will sometimes be referred to as “transport axis”.
The distance of 40 mm corresponds to ∼28 mm under an angle of 45°, allowing 1” optics
to be aligned parallel to each other for both the MOT and the science position. Vertically,
the MOT position can be accessed directly through the vacuum window, while the science
position can only be accessed via the microscopes.

Microscopes, Imaging, and State Transfers The upper microscope is predomi-
nantly used for creating optical potentials with high spatial resolution, while the lower
microscope is mainly used for optical access to image the atoms; the imaging can either
be done by fluorescence imaging or absorption imaging. In the latter case, both the
trapping light and the imaging light is guided through the upper microscopes such that
the trapping light is focused in the atom’s plane, while the imaging light is collimated.

8



1.2. Machine Overview

After passing the lower microscope, these two components are separated by a dichroic
mirror. The trapping light is then either dumped or reflected back, resulting in either a
running wave trap or a lattice, respectively. The imaging light is, after a suitable optical
setup, collected by a camera, yielding the fluorescence or absorption images as the main
observable of the experiment.

The main tool to address and manipulate the atomic state is electromagnetic radiation,
specifically radio-frequency radiation for transitions between the hyperfine levels within
the electronic ground state, and optical and near infra-red light for almost all other
applications. The relevant laser systems are discussed in Sec. 3.3.1 and Sec. 2.1.2 for
39K and 40K, respectively. As the vacuum chamber acts as a Faraday cage, the atoms are
shielded by radio-frequency signals from outside the chamber and an in-vacuo antenna
has to be used. The setup is described in a bit more detail in Sec. 3.3.1.

Magnetic System Apart from optical and radio-frequency radiation, magnetic fields
are needed for manipulating the atomic behavior, e.g. for cooling in a MOT or for
interaction tuning using a Feshbach resonance. These magnetic fields are created by
several pairs of coils along different axis: one pair with N = 23 windings is orientated along
the transport axis and is mostly used to provide a quantization axis for optical pumping
and to compensate the strong North-South component of Earth’s magnetic field. Another
pair of coils is centered around the MOT and one pair around the science position, with N
= 88 and N = 64 windings, respectively. For each of the MOT and experiment coil pairs,
the current direction in one of the coils can be reversed, allowing us to switch between
(quasi-)Helmholtz- and Anti-Helmholtz configuration; the experiment coil pair fulfills the
Helmholtz condition (radius of the coils equals their distance), while for the MOT coil pair,
this condition is not fulfilled (distance is larger than their radius), as the requirements for
the homogeneity are less strict. Thus, one can switch between a homogeneous field and a
gradient field at the atom position. All of these pairs consist of hollow-core, water cooled
wire with an effective cross section of 10.88 mm2 2; the active cooling and the current power
supplies allow for currents of ∼170 A in the MOT and experiment coil pairs, corresponding
to fields of up to ∼480 Gauss and ∼900 Gauss in Helmholtz configuration, respectively,
and gradients of up to ∼85 G/cm and ∼110 G/cm for Anti-Helmholtz configuration.
These fields allow reaching all relevant Feshbach resonances for both 39K and 40K. In
addition to these large coils, several pairs of smaller coils orientated along different axes
allow to add offset fields or gradients, e.g. for compensating earth’s magnetic field or to
shift the exact position of the magnetic zero. As these smaller coils use a 1 mm2 wire

2Oswald Elektromotoren GmbH
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Chapter 1. Introduction

and are not water-cooled, the current and therefore their magnetic field is much smaller,
usually allowing for Imax ≈ 2-3 A. The field generated by these offset coils strongly depends
on their winding number, but is usually on the order of one to a few Gauss when used in
quasi-Helmholtz-configuration.

1.2.2 Atom Species Comparison: 39K and 40K

As this thesis describes experiments conducted with both 39K and 40K, the main similiar-
ities and differences between them are briefly summarized here and are discussed in more
detail when necessary.

Statistics and Final System Of the naturally occurring isotopes 39K, 40K, and 41K,
the first and the last are bosonic while 40K is fermionic. As the abundance of 39K is
much higher than the abundance of 41K (∼93% vs ∼7%), we only use 39K as a bosonic
sample. With the fermionic 40K, the systems of interest are small Fermi-Hubbard model
systems and small fermionic tweezer systems, while 39K is intended to be used in larger
bulk systems or in a bosonic quantum gas microscope.

The reason for these different final stages is the last step of the cooling process: 39K
atoms cooled to very low temperatures and high phase space densities start populating
the same state, thus, at least in 3D bulk systems, forming a Bose-Einstein condensate.
40K atoms, on the other hand, are subject to Pauli blocking and thus their ground state
in a bulk system is a Fermi gas, where all states up to the Fermi energy are occupied. The
reduced available phase space near this state prevents scattering, making obtaining a cold
Fermi gas at low enough temperatures is very challenging. This is especially true for 40K
when compared to the only other stable fermionic isoptope of an alkaline element, 6Li, as
the latter has a lower three-body decay rate and therefore less losses when evaporating
[27]. We thus focused on smaller systems where the fermionic atoms are cooled to their
motional ground state either by Raman-Sideband-Cooling (beyond the scope of this thesis,
but discussed in [28]) or by enhancing the phase space density within a small subsystem
by using the "dimple trick".

Preparation and Probing This difference only becomes relevant once the phase space
density of the sample is on the order of unity, making the early stages of the cooling
are very similar: after loading a MOT, the atoms are further cooled with a D1 gray
molasses scheme, and finally optical pumping transfers the atoms to the correct state for
the magnetic transport to the science positions between the microscope objectives. At
the science position, the atoms are loaded into an optical dipole trap and usually cooled

10



1.2. Machine Overview

evaporatively3. Once sufficiently cooled, the actual experiment is performed and the final
state is imaged, either by absorption imaging or fluorescence imaging.

Level Structure The general level structure for 39K and 40K is similar and is discussed
in more detail in Sec. 3.3.1 and Sec. 2.1.2, respectively. The first main difference is that
39K has a lower number of magnetic substates in the electronic ground state compared to
40K: 39K has the two states F = 1 and F = 2 with three and five mF -states, respectively,
while 40K has F = 9/2 and F = 7/2 with ten and eight mF -states, respectively. The
second large difference is that 40K shows an inverted ground state structure, such that F
= 9/2 is energetically below F = 7/2. While the optical transitions needed for cooling,
pumping, and imaging are shifted by a few hundred MHz between the two isotopes, the
machine has been designed to easily switch between those.

Interaction Tuning Both isotopes exhibit useful Feshbach resonances for at least some
states. For 39K, all spin combinations of the lower hyperfine state F = 1 have easily
reachable Feshbach resonances, allowing for a relatively flexible tuning of the interaction
between atoms in the same and in different mF -states. One group of Feshbach resonances
is located between ∼20 Gauss and ∼170 Gauss, and a second group between ∼400 Gauss
and ∼600 Gauss [29–31]. Intrastate interactions are suppressed for 40K due to Pauli
blocking, and thus only the interstate interaction is relevant. The Feshbach resonances
here are more limited, and the most relevant is the Feshbach resonance found between
|F = 9/2,mF = −9/2〉 and |F = 7/2,mF = −7/2〉, which is located at 201 Gauss and
has a width of 8 Gauss [32].

3Only in the attempt for small Fermi-Hubbard systems, the evaporation was replaced by Raman-
Sideband-Cooling.
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Chapter 2

Two-Color MOT

This chapter describes our two-color MOT scheme for few atom counting and is heavily
based on the published version [33]. After a brief motivation, the implementation of this
two-color MOT scheme is discussed in detail, followed by a section about the experimental
realization of the Anderson Orthogonality Catastrophe in a tweezer setup and the expected
signal thereof.

2.1 40K Tweezers as a Platform for Mesoscopic Fermi

Systems

2.1.1 Mesoscopic Fermi Systems

Experimental setups like ours, with a high numerical aperture and therefore high optical
resolution, are excellent settings for probing mesoscopic systems, i.e. the interface between
single-particle or two-particle systems on the one hand, and many-particle systems on the
other. This is not only due to the possibility to create and control flexible potential
landscapes by employing suitable optical intensity patterns, but also due to the high
degree of control over the initial conditions of the physical setup. In addition to parameters
accessible in most cold-atom experiments like scattering length or average density, the high
optical resolution also opens up the possibility to control the initial density locally or to
set, within certain limits, the exact atom number of the initial state. This ability allows us
to investigate the intermediate regime between single-particle behavior of either isolated or
non-interacting particles, and many-particle effects accessible in large interacting systems
as the other extreme.

An essential tool in this intermediate regime is the possibility to determine the exact
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2.1. 40K Tweezers as a Platform for Mesoscopic Fermi Systems

atom number1. In our experiment, we use a tweezer system where several atoms are
confined within one tightly focused laser beam and can, for example, be used to investigate
the onset of the so-called “Orthogonality Catastrophe” introduced by Philip W. Anderson
in 1967 [34]. In this paper, Anderson considered a simple toy model of N non-interacting
fermions confined in a spherical potential well, where determining the basis functions of
this potential as well as the many-body wave function is straightforward. The introduction
of a central scattering potential serves as a slight perturbation and leads to a phase shift
for all wave functions near the center of the potential well. While each single particle wave
function still has almost unity overlap with the unshifted case, Anderson showed that the
overlap of the many-particle ground state wave functions approaches zero for N → ∞,
even for weak potentials. In essence, the small reduction of single particle overlap from 1
to 1−ε leads to a total reduction to (1−ε)N in a many-body wave function of N fermions,
and becomes zero in the limit of N →∞. Thus, this small potential renders the ground
states of these two very similar systems almost orthogonal.

This effect can be seen as an extreme case of the previously discussed problem of a
bath with an impurity immersed into it, where the case of a cold fermionic bath with an
immobile impurity is analyzed. The focus is then not on the properties of the impurity,
but on the effects it has on the bath, and, in particular on its effects on the bath’s ground
state wave function as well as the overlap between the unperturbed bath and the bath
with a single impurity.

Unlike in quantum gas microscopes, where the atoms spread out over a larger potential
and the average occupation per site is on the order of one or below [35–38], tweezer systems
do not allow for a direct in-situ fluorescence imaging, as photo-association losses would
lead to a parity projection [39–41] and thus to rapid loss of fluorescence signal in the
trap. To avoid these losses, we instead release the atoms from the tight optical potential
and transfer them into a tight magneto-optical trap. In order to separate the weak
fluorescence signal from the large background, we developed a two-color scheme, where
the light responsible for trapping and cooling is different from the light used to identify
the presence of an atom, allowing us to use spectral filters to increase the signal-to-noise
ratio.

As this chapter deals with the fermionic 40K, we start with a summary of its relevant
properties, the typical system preparation scheme, and a discussion of the optical and
magnetic setup needed. Readers familiar with 40Kmay easily skip this section and proceed
to the implementation and performance of the two-color MOT, presented in the following

1Preparing a fixed atom number is not quite as relevant, as the subset of relevant runs can always be
selected in the postprocessing.
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section. Finally, we discuss the technical aspects of probing Anderson’s Orthogonality
Catastrophe in a tweezer system in Sec. 2.3.

2.1.2 Introduction to 40K

This section is intended to give a brief overview over the most relevant properties of 40K.
Some of those have already been mentioned in Sec. 1.2.2, but aspects only relevant for
the fermionic isotope are described here.

Level Structure, Cooling, and Laser System The relevant level scheme and laser
system for 40K is visualized in Fig. 2.1 and has been described in more detail in [25]
(Sec. 4.5). With a nuclear spin of I = 4, the 4s1/2 state has a total coupled angular
momentum of either F = 9/2 or F = 7/2, where F = 9/2 has a lower energy due to the
inverted hyperfine splitting in 40K. Hence, the actual ground state F = 9/2 has a cycling
transition, which is unusal for Alkali atoms and is also not the case for 39K, as will be
discussed later. Almost all transitions employed in manipulating the 40K atoms are either
on the D1 line, connecting the 4s1/2 state to the 4p1/2 state with a transition wavelength
of 770.1 nm, or on the D2 line, connecting the 4s1/2 ground state to the 4p3/2 state with
a wavelength of 767.7 nm. Initial cooling in the 2D- and 3D-MOT is done by the "Cooler
Laser" operating on the D2 line, connecting |4s1/2, F = 9/2〉 and |4p3/2, F = 11/2〉. This
laser is generated by a Toptica DLC DL Pro and amplified with a custom built tapered
amplifier (TA)2. Since atoms can decay to the F=7/2 state, a repumping laser is needed.
The frequency difference to the cooler transition is about 1.3 GHz and therefore too
large to bridge with an AOM. The repumping is instead done by exciting atoms from
|4s1/2, F = 7/2〉 to |4p3/2, F = 9/2〉 with an independent laser (Toptica DLC DL Pro,
later replaced by a DFB laser diode3), that is also amplified by a custom built TA4.

Imaging is usually done with the very same laser also used for the MOT cooler. In the
runs presented with 40K, the imaging was performed at low field, such that the presented
level scheme is still valid. For higher fields, above ∼20 Gauss, the 4p3/2 state enters the
Paschen-Back regime and the energy shifts due to the magnetic tuning start to become
larger than the hyperfine splitting. This corresponds to a decoupling of the (total) elec-
tronic angular momentum J from the nuclear spin I, thus rendering the quantum number
F meaningless.

The second stage of cooling by a Λ-enhanced molasses [42–46] is performed on the

2TA-0765-2000 for MOPA Setups; previously m2k-Laser, now Coherent.
3EYP-DFB-0767-00050-1500-TOC03-0005 by Eagleyard.
4TA-0765-2000 for MOPA Setups; previously m2k-Laser, now Coherent.
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Figure 2.1: Relevant part of the level structure of 40K with the electronic ground state (42S1/2)
and two electronically excited states (42P1/2 and 42P3/2). The numbers in the individual connecting
lines indicate the frequency shift of the respective transition at zero magnetic field with respect
to the crossover with the numerical value given in MHz; the transitions used in the experiment are
indicated by colored, labeled lines. The hyperfine states in both the electronic ground state as well as
the 42P1/2 state are split by detunings too far to comfortably bridge by tuning the lasers’ offsetlocks.
For states within the 42P3/2-manifold this is possible though and no additional AOMs are needed.

D1 line. Λ-enhanced gray molasses has to be performed on a coherent combination of a
F → F−1 transition and a F−1→ F−1 transition. Thus, we employ the |4s1/2, F = 9/2〉
to |4p1/2, F = 7/2〉 transition, and use an EOM to additionally modulate a sideband at
a tuneable frequency around f = 1285 MHz onto the beam5. The modulated sideband is

5D1 Laser: Toptica DLC DL Pro; TA Chip: EYP-TPA-0780-02000-4006-CMT04-0000 by Eagleyard ;
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resonant on the |4s1/2, F = 7/2〉 to |4p1/2, F = 7/2〉 transition, creating the mentioned Λ-
scheme. Tuning the exact modulation frequency of the EOM allows to select the point of
highest final phase space density. The transition between MOT and molasses is hindered
by the long decay times of the induced eddy currents when switching off the magnetic
fields; we find that we effectively first form a “blue MOT” [47], similar to what has been
reported in [48], and then smoothly transition into a proper molasses [28].

The same lasers are also applied at the science position between the microscope ob-
jectives, where a brief molasses phase is used to transfer the atoms from the magnetic
trap into the optical trap. Collisional loading is in this case very inefficient as p-wave
scattering is thermally suppressed and s-wave scattering is forbidden due to Pauli block-
ing. The difference in regards to the normal molasses scheme is the presence of the strong
magnetic field gradient, which leads to rapid heating when applying the D1 for longer
times. As the eddy current decay time of the large vacuum chamber is rather long [28],
it is not possible to turn off the magnetic gradient fast enough to apply the molasses and
still keep the cloud at a reasonable high phase space density, and this scheme has to be
applied instead.

Optical Pumping and Magnetic Transport After the initial cooling steps of MOT
and molasses, a magnetic trap transports the atoms by about 40 mm to the science
position between the microscope objectives. Molasses cooling accumulates atoms in a
dark state that is a linear combination of different mF -states and therefore the atoms
are distributed over the whole F = 9/2 and F = 7/2 manifolds. Turning off the EOM
modulation briefly before the molasses beam transfers the atoms into the F = 9/2 state,
however the atoms still need to be transferred into the correct mF -state for magnetic
trapping. Due to the inverted hyperfine structure of 40K, the magnetically strongest
trapped state is the |F = 9/2,mF = +9/2〉 state, which shows the full tuning of ∆E =

h · 1.4 MHz/G at low fields.
This transfer is done by optical pumping, which is also performed on the D1 line.

The "mF -pumper" acts on the |4s1/2, F = 9/2〉 to |4s1/2, F = 9/2〉 transition and is σ+-
polarized, such that atoms are pumped towards the mF = +9/2 state, which is dark to
the pumping beam as there is no mF = +11/2 state in the relevant manifold. Depending
on their initial mF -quantum number, atoms might need several pumping cycles before
accumulating in the desired state. A table of all relevant decay ratios can be found in
appendix A. Atoms in the |4p1/2, F = 9/2〉 state decay to the |4s1/2, F = 9/2〉 in only
∼40% of the cases. Therefore a second σ+-polarized beam on the |4s1/2, F = 7/2〉 to

EOM: Qubig EO-K40-3L, tuning range 1.15 - 1.30 GHz

16



2.1. 40K Tweezers as a Platform for Mesoscopic Fermi Systems

|4p1/2, F = 9/2〉, usually referred to as "F-Pumper", is needed to repump the atoms back
to the correct F-state. Later in the experimental cycle, the Feshbach resonance at 201
Gauss between |9/2,−9/2〉 and |9/2,−7/2〉 [32] is used to tune the interaction strength
and the optical pumping has to be inverted. This is done by switching the quantization
axis direction by reverting the current direction, thus switching the σ+-polarized pumping
beams into σ−-polarized beams.

Microwave Transfers Transfers within the ground state manifolds are possible at
microwave frequencies around 1285 MHz for transitions between F = 9/2 and F = 7/2, and
between adjacent mF -states at theoretically arbitrarily low frequencies. Near the most
relevant Feshbach resonance at 201 Gauss, the transition frequency between |9/2,−9/2〉
and |9/2,−7/2〉 is about 44 MHz. Both of these transitions can be driven by using the
same in-vacuo antenna when switching the matching circuit. While a second in-vacuo
antenna had been implemented specifically for the 44 MHz regime in the early stages of
the experimental setup, it turned out that this device did not produce any significant RF
signal detectable by a pick-up coil or the atoms (see [28] for a more detailed discussion of
this topic).

Optical Potentials Most optical potentials used for 40K are formed by red detuned
light at λ = 850 nm, where well performing laser diodes and TA chips can be purchased
commercially. These potentials are generated by an unlocked Toptica DLC DL pro as a
laser source and using self-built TAs to increase the laser power6. Compared to typical
sources at 1064 nm, the 850 nm sources are less powerful, usually only providing a few
Watt of laser power, compared to several tens of Watt for 1064 nm. The advantage of
850 nm potentials is the reduced antitrapping in the excited state due to the 3d3/2 state
and the 5s1/2 state, with resonance wavelengths of 1169 nm and 1244 nm, respectively,
from the 4p1/2 state [49, 50]. While an atom in the ground state experiences a trapping
potential, an excited atom will experience an antitrapping potential. When using 1064
nm light for the optical potentials, the amplitude of the anti-trapping is roughly four
times larger than the trapping of the ground state, which leads to significant heating even
during the short lifetimes in the excited states. As 850 nm is further detuned from the
relevant transitions at 1169 nm and 1244 nm, the remaining antitrapping is significantly
smaller and its amplitude is comparable to the trapping of the ground state.

6TA chips: TA-0850-3000-CM for MOPA Setups; previously m2k-Laser, now Coherent.
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Interaction Tuning: Feshbach Resonances Interactions between atoms with same
spin state are thermally suppressed at the relevant low temperatures as s-wave scattering is
Pauli-blocked and p-wave scattering requires enough angular momentum and is therefore
frozen out. The remaining relevant interactions are thus only between different spin states.
For 40K, a suitable Feshbach resonance is found between |9/2,−9/2〉 and |9/2,−7/2〉,
located at Bres ' 201 Gauss with a magnetic width of ∆ ' 8 Gauss [32]. Another
relevant Feshbach resonance occurs between the |9/2,−9/2〉 and the |9/2,−5/2〉 state at
Bres = 224 Gauss with a width of ∆ ' 10 Gauss [51]. Plenty of other resonances have
been reported [52], but most of those are not protected against spin changing collisions
or only protected at higher field due to the second-order Zeeman effect.
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2.2 Two-Color MOT

Collecting fluorescence light while laser cooling and trapping the atoms in a magneto-
optical trap (MOT) has proven to be a reliable and well established method to measure
atom numbers with single particle resolution [53–65] and is especially suited for experi-
ments studying few atoms confined in optical tweezers, where in situ imaging would lead
to photo-association losses. As the number of photons emitted by a single atom is quite
limited, these experiments require considerable effort to maximize the signal-to-noise ra-
tio of the fluorescence signal. Common techniques for achieving this include the use of
large magnetic field gradients to compress the MOT and thereby spatially concentrate the
fluorescence signal, using optics with high numerical aperture to maximize the number of
collected photons, as well as employing highly sensitive and low noise cameras. At the
same time, detrimental stray light collection is suppressed as far as possible by employing
laser cooling beams with small diameters, avoiding the presence of unwanted scattering
surfaces close to atoms, and spatial filtering of the fluorescence signal.

Using these techniques, single atom atom resolution for atom numbers in excess of
300 has been achieved [61, 63]. However, the stringent limits on the amount of stray
light present in the system render this method unsuitable for many experimental setups
that were not specifically designed for this purpose. Suppressing stray light detection is
particularly challenging in experimental setups that feature in-vacuum components such
as electrodes, high-resolution optics or atom chips, as spatial filtering of stray light that
originates close to the atoms is inefficient.

In the following sections, a technique that addresses this issue by using two different
transitions is described. In brief, we cool and trap fermionic 40K atoms using light on the
D2 transition but collect fluorescence on the D1 transition. The D2 MOT light propagates
along all three spatial directions and hence generates a large amount of stray light which
can be filtered out before the camera with dichroic mirrors. Meanwhile, D1 fluorescence
photons are generated by a D1 pumping beam whose size and beam path have been chosen
specifically to avoid scattering surfaces and thereby minimize the amount of stray light
that is generated. This scheme allows us to perform single atom counting of up to 17
atoms with an average classification fidelity of 95 % in an experimental setup featuring a
high-resolution microscope objective placed inside the vacuum chamber very close to the
atoms.

In the following, first the experimental setup is described in Sec. 2.2.1, followed by
a discussion of the image post-processing and atom number determination in Sec. 2.2.2.
The classification fidelity and the limiting factors are discussed in Sec. 2.2.3, and finally
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Sec. 2.2.4 will present a simple model in order to better understand the sensitivities of
the setup.

2.2.1 Technical Setup

The central element of our setup to study ultracold few-body systems is a pair of micro-
scope objectives with high numerical aperture7 placed inside the vacuum chamber, see
Fig. 2.2(a). These objectives are ideally suited to generate arbitrary potentials and image
single atoms with high spatial resolution. However, at the same time, they represent a
significant challenge for performing atom counting with a MOT.

The first constraint placed by the objectives is that they cover such a large fraction of
the solid angle that the vertical MOT beams have to pass through the objectives. This
precludes using the objectives to detect the fluorescence created by the MOT light, as
the fluorescence signal will be completely drowned out by the MOT beams. At the same
time the geometry of the vacuum chamber, which has to accommodate the in-vacuum
components, severely limits the optical access for fluorescence light collection along other
directions. Combined with the large background of MOT light scattered by the objectives
this makes it exceedingly difficult to measure the fluorescence on the MOT transition with
a signal to noise ratio sufficient for single atom resolution.

Fortunately, both of these issues can be addressed by using our two-color approach.
By adding a retroreflected D1 pumping beam that propagates orthogonal to the objective
axis, we create fluorescence light on the D1 transition while causing very little D1 stray
light to enter the objective. As the wavelengths of the D1 and D2 transition differ by
∼ 3nm, this allows us to collect the D1 fluorescence photons with one of the in-vacuo
objectives while filtering out the D2 MOT light with two dichroic longpass filters8 with
very steep edges transmitting in total more than 90 % of the D1 light at 770.1 nm but
less than 10−8 of the D2 light at 766.7 nm [66, 67].

In the following, the D2 MOT and the D1 excitation scheme are described in more
detail. The D2 MOT is formed by three beam pairs addressing the cycling transition
between the F = 9/2 and F’ = 11/2 hyperfine states. The horizontal D2 MOT beams
have 1/e2 beam waists of 1.5mm and are retroreflected, while the vertical beams are
independent of each other and have waists of only 340 µm and 480 µm, as the short
focal length of the microscope strongly constrains the maximal achievable beam size. The

7Special Optics Type 54-31-20, N.A. = 0.75, working distance = 2.5 mm, effective focal length f = 20
mm, achromatic for 770 nm, 870 nm and 590 nm.

8Alluxa LC-HBP770.7/3, nominal center wavelength 770.7 nm, FWHM: 3 nm, transmission >95 %
at 770.1 nm, blocking >OD4 at 766.7 nm.
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Figure 2.2: a) Sketch of the experimental setup. The detection MOT is formed by three pairs of
D2 trapping beams (dark red), while a pair of D1 beams (light blue) generates D1 fluorescence for
detection. The D1 fluorescence light is collected by an in-vacuum microscope objective (NA = 0.75,
f=20mm), separated from the D2 trapping beams using dielectric filters, and finally imaged on an
sCMOS camera. b) Simplified level scheme showing the atomic transitions utilized in the detection
MOT: The D2 line is used for cooling and trapping the atoms, while the D1 repumper addresses
atoms that decay into the F = 7/2 state. The D1 mF-pumper excites atoms from the ground state
to the 2P1/2 manifold and thereby enhances the D1 fluorescence. c) Typical fluorescence images
containing 0, 1, and 5 atoms.

magnetic quadrupole field for the MOT is provided by a set of magnetic field coils in
an anti-Helmholtz configuration. To decrease the influence of background light on the
atom counting we use a strong quadrupole field with a gradient of dB/dz = 132 G/cm
in the vertical axis to make the MOT as small as possible and thereby concentrate the
fluorescence signal in the smallest possible area. For our setup we find an optimum at
a combined saturation parameter for the D2 light of 12 and 31 for the horizontal and
vertical beams, respectively, and a detuning ∆ωD2 of −1.2 Γ, where Γ/2π = 6MHz is
the natural linewidth of the excited state. The detuning of the D2 MOT beams is a
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compromise between minimizing the MOT size, which is minimal for small detunings,
and a stable scattering rate that is not too sensitive to detuning changes, which is the
case at larger detunings. We note that our D2 MOT differs from a standard MOT in one
aspect: There are no D2 beams that repump atoms that have decayed into the F = 7/2
hyperfine ground state and thereby became dark to the cycling transition. Instead, this
repumping is performed by one of the D1 excitation beams.

The D1 beams propagate in the horizontal plane along an axis having a 45◦ angle to
the D2 beams and have waists of 1.2mm. The first beam addresses the F = 7/2 ↔ F’ =
9/2 transition. This repumper brings atoms that have decayed into the F = 7/2 hyperfine
state back to the F = 9/2 ground state. It operates with a saturation parameter of 14
and a detuning ∆ωD1 of +0.6 Γ.

However, using only this repumper does not produce enough D1 fluorescence for imag-
ing as the F = 7/2 hyperfine state is populated only slowly while cooling on the D2 cycling
transition. This is due to the fact that decay from the excited state F’ = 11/2 of the
D2 MOT cycling transition to the F = 7/2 state is forbidden and one has to rely on
off-resonant excitations to the F’ = 9/2 state in the D2 manifold, which is 8.5 Γ detuned
from the D2 laser frequency. Hence, we use a second D1 beam to drive the F = 9/2↔ F’
= 9/2 transition. This so-called mF-pumper addresses the prevalent F = 9/2 ground state
atoms and excites them to the F’ = 9/2 manifold. From there, the atoms decay into the
F = 9/2 in about 30% and the F = 7/2 manifold in about 70% of the cases. If the atom
is pumped into the F = 7/2 manifold, the subsequent repumping results in an average of
three more photons being emitted on the D1 line before the atom is pumped back to the
F = 9/2 manifold. By varying the strength of this mF-pumper we can therefore control
the amount of D1 fluorescence emitted by the atoms. For our imaging the mF-pumper
transition is driven resonantly with a saturation parameter of 7. The resulting significant
amount of light pressure on the atoms is cancelled by retroreflecting the beam.

The D1 fluorescence light emitted by the atoms is collected by one of the microscope
objectives and imaged onto an sCMOS camera, examples of typical fluorescence images
obtained with the setup are shown in Fig. 2.2(c). The total collection efficiency of the
imaging system is estimated to be 12.7±1.6%, with the dominant effect being the relative
solid angle covered by the microscope (17 %). Together with the quantum efficiency of
38 % 9, this leads to 4.8±0.6% of the photons actually being detected. On average, the
camera detects 2.3·104 photoelectrons per atom for an exposure time of 1 s, corresponding
to a scattering rate of 470 kHz on the D1 transition. The imaging time of 1 s is needed
to obtain a large enough signal-to-noise ratio to distinguish 17 atoms. For smaller atom

9Andor Zyla 5.5.
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numbers, shorter imaging times would be sufficient. Adding a retroreflected D1 beam pair
along the second horizontal axis did not result in a significant improvement in the signal-
to-noise ratio. While the fluorescence increased by about 20%, adding the additional
beams also increased the amount of background light, resulting in a similar signal-to-
noise ratio.

The number of background photons due to scattered light is ∼175/pixel, which for
typical regions of interest of 120 x 120 pixels corresponding to 150 µm x 150 µm amounts
to about 2.5 ·106 photons. This background level is dominated by stray light from the D1
beams, the background originating from the D2 beam directly incident onto the objective
accounts for less than 10% of the background light. To achieve this low background it
is essential to not only perform the obvious filtering of D2 light with filters in front of
the camera, but also to suppress the broad pedestal of incoherent light emitted by the
semiconductor lasers and amplifiers generating the D2 beams. This is achieved by placing
two ultra-narrow 780 nm bandpass filters10 angle-tuned to 766.7 nm in the beam path
between the tapered amplifier and the fibers.

2.2.2 Image Post-Processing and Atom Number Extraction

To characterize our imaging scheme and establish a protocol for determining the atom
number from the fluorescence signal we generate a large number of sample images of
MOTs containing a small number of atoms. We achieve this by releasing atoms from
a far detuned optical trap and then recapturing them with the MOT. This leads to a
random number of atoms in the imaging MOT, where the mean value can be controlled
via the atom number in the optical trap and the time delay between releasing the atoms
and switching on the MOT. While the two-color scheme described in Sec. 2.2.1 yields
fluorescence signals of single atoms that are significantly above the background noise (see
Fig. 2.2(c)), some steps of image post-processing are required to extract reliable particle
numbers from this data. The following detailed description can be summarized into three
main points: In the first step, the background of scattered light is subtracted from the
fluorescence images and the raw fluorescence signal is determined by summing up the
camera counts within a defined region around the current center of the MOT. Slow drifts
in the fluorescence per atom and the zero atom offset are then determined and corrected
by time-resolved fitting of these two parameters, thus providing a normalized fluorescence
signal. A histogram of the normalized fluorescence signals, see Fig. 2.3(b), shows clearly
discernable peaks corresponding to different atom numbers. To assign atom numbers to

10Laseroptics Garbsen L-08729 IF780nm/6, FWHM ≈ 0.3 nm, transmission ≈ 90%
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Figure 2.3: a) Timeline of the fluorescence level over ∼10.000 experiment runs, where each dot
shows the result of a single experiment run. The red dots to the left of the vertical dotted line show
the raw fluorescence levels without correcting for time-dependent changes in offset and scattering
rate, the black dots are corrected for these effects. b) Histogram of the corrected fluorescence levels.
The red line shows a fit to the data, consisting of a sum of 20 Gaussians with independent centers
xN , widths σN , and amplitudes. We can reliably determine the atom number for systems with up
to about 17 atoms. Above this number, both the limited statistics of the data set and the width of
the distributions prevent a reliable classification.

individual images, we first quantify the positions and widths of the peaks by fitting a sum
of Gaussians to the histogram. We then define classification intervals around each peak
based on their widths and assign atom numbers to all fluorescence measurements that fall
within these intervals.

We now go through each step of the analysis in more detail, starting with the sub-
traction of the background signal. To achieve this we make use of a principal component
analysis, as this approach reduces noise compared to subtracting a reference image taken
shortly after each atom image. To this end, a set of reference images without atoms yet
otherwise the same experimental conditions is taken and the main components are deter-
mined using singular value decomposition. For the data shown in Fig. 2.3, 100 reference
images were taken at random times during the ∼10.000 runs and used for the singular
value decomposition. The components with the ten highest singular values were then
projected out of the actual data images [68] by subtracting these basis vectors, weighted
with the scalar product between them and the atom image. Using more reference images
or projecting out more components does not result in a significant improvement in the
signal-to-noise ratio, as the components are not necessarily orthogonal to the fluorescence
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signal.

Next, the current MOT position on each of these background-free images is determined
by fitting a gaussian to an averaged image obtained from the current and the ten preceding
and following images. This allows us to compensate for slow drifts of the MOT position
over time and use a tight region of interest of only 150 µm x 150 µm for summing up
camera counts. The resulting camera counts recorded by the experiment are shown as
a function of time in Fig. 2.3(a) (red dots). While discrete steps in the fluorescence for
different atom numbers can be clearly made out by eye, there are slow drifts in the signal
levels over time and simple thresholds are not sufficient to reliably distinguish between
different atom numbers with high fidelity. To provide the time-resolved values of the zero
atom offset and of the fluorescence per atom, we determine the current average count
levels for 0, 1, 2, and 3 atoms from the 20 realizations closest in time containing these
atom numbers, respectively, and fit a linear relation to these levels. The camera counts
are then corrected for these drifts, resulting in the black data points shown in Fig. 2.3(a).

Fig. 2.3(b) shows a histogram of these corrected fluorescence levels, which we then fit
with a sum of gaussians with centers xN and standard deviations σN . We classify events
within xN ± 2σN to have N atoms present; events outside these limits are discarded. For
the data shown in Fig. 2.3, about 6% of the events are rejected. Tighter classification
intervals lead to higher identification fidelity, but to a larger fraction of events being
rejected. We find that the mean fluorescence level xN grows linearly with the atom
number N , as shown in Fig. 2.4(a), indicating no sign of density-dependent effects.

2.2.3 Resolution Limit and Classification Fidelity

After establishing our post-processing procedure we now analyze the data to determine
the fidelity of our atom number determination and find the limiting factors of the detec-
tion scheme. For our evaluation we assume that the peaks in the histogram are clearly
distinguishable and we can assign reliable atom numbers as long as the separation of the
peaks is larger than 4σ. Hence the maximal atom number we can resolve is limited by
the observed growth of the peak width σN with the atom number N , see Fig. 2.4(b).

The peak width is determined by three noise sources, which can be assumed to be inde-
pendent and therefore are added up quadratically [63]: These are a constant background
noise stemming from the shot noise of the background light (including D1 and D2 light)
and the read-out noise of the camera, the shot noise of the fluorescence photons collected
by the camera, which scales with the square root of the atom number, and shot-to-shot
fluctuations in the average fluorescence rate per atom, which scale linearly with the atom
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Figure 2.4: Mean value xN (a) and width σN (b) of the fluorescence signal as a function of atom
number, as determined from the fit to the histogram shown in Fig. 2.3(b). The mean fluorescence
increases linearly with atom number (red solid line), indicating that density dependent effects are
negligible. The error bars represent the ±2σN confidence intervals. The widths σN of the peaks
in the histogram are normalized to the average fluorescence per atom and shown in panel (b). We
assume the peak widths to be a quadratic sum of a constant background noise, photon shot noise
scaling with

√
N and a linear noise contribution due to short-term variations in the intensity and

detuning of the imaging light. Fitting the data with this model (red curve) shows that the noise is
dominated by the linear term. The dotted line shows the point where the ±2σN classification regions
of two neighboring peaks start to overlap, which roughly indicates the point where we can no longer
reliably assign an atom number to an event.

number.

When analyzing the data we find that for atom numbers < 20 the shot noise of
the fluorescence photons contributes σ2

ph . 0.012 to the variance and the atom-number
independent background noise is about σ2

bg ≈ 0.072. These noise sources therefore only
play a small role in in limiting our atom number determination.

Instead, the dominant effect is a linear growth of the peak width σN with the atom
numberN , see Fig. 2.4(b), which strongly suggests that our atom number determination is
limited by fluctuations in the atom fluorescence. While long-term drifts are removed by the
rescaling method described in Sec. 2.2.2, shot-to-shot fluctuations or drifts on timescales
shorter than a few tens of shots are not significantly suppressed with this method. We
note that one-color schemes [53, 56, 57, 60, 61, 63, 64] are less sensitive to frequency or
power fluctuations due to the high saturation of the single cooling transition. In contrast,
in our two color scheme the F = 9/2 ground state is addressed by two transitions, i.e. the
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Figure 2.5: Simulated classification fidelities for systems with different atom numbers using the
noise characteristics determined from in Fig. 2.3(b) and an independent measurement of the MOT
lifetime (see inset; assuming an exponential decay of the atom number). The classification fidelity
is limited by the ratio of imaging time to life time: loss events during the imaging time reduce the
number of collected fluorescence photons and thus can cause the fluorescence signal to fall into the
classification bin of a lower atom number.

D2 cooler and the D1 mF-pumper, which thus compete with each other. Hence, relative
power fluctuations directly translate into fluctuations of the fluorescence per atom and
lead to a faster growth of σN than in one-color schemes. A simple toy model investigating
the dependencies on external parameters such as power fluctuations is described below in
Sec. 2.2.4.

For the data set shown in Fig. 2.4 the threshold value σN = 0.25 where the ±2σ

intervals of neighboring histogram peaks start to overlap is reached for N ≈ 17. Beyond
this threshold, we define the boundary between N and N+1 atoms as (xN +2σN +xN+1−
2σN+1)/2, and our ability to separate the fluorescence signals belonging to different atom
numbers substantially decreases. We therefore consider σN < 0.25 to roughly indicate the
threshold for fluorescence measurements with single atom number resolution. We note
that this condition is significantly more conservative than the requirement σN < 1 used
by other authors [61, 63, 64]. Extrapolating our observed peak width growth indicates
that we reach σN = 1 for N ≈ 80.

In addition to the noise sources discussed above, which broaden the fluorescence peaks
and therefore limit our ability to reliably distinguish between different atom numbers for
larger values of N , there is another effect that can limit the fidelity of our atom number
determination: loss of atoms from the MOT during the imaging period. As the lifetime of
atoms in our imaging MOT is on the order of 80 s, much longer than the imaging time of 1 s,
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loss events are very rare when measuring small atom numbers, but become more relevant
for measuring larger systems. Also, depending on the number of atoms in the system and
at which time during the measurement it occurs, not every loss event necessarily leads to
an incorrect determination of the atom number. To obtain a quantitative estimate of the
influence of the various noise sources on our classification fidelity we therefore perform
a phenomenological Monte-Carlo simulation of our system using the following model for
the counts ci observed in run i:

ci = αi + βi ·
N∑
n=1

γi,n ·min
(

1,
τi,n
tIm

)
, (2.1)

where αi, βi, and γi,n are gaussian distributed random numbers with mean 0, 1, and 1,
respectively. The standard deviations σα, σβ, and σγ of these three random numbers are
a priori free parameters that model the noise sources of the fluorescence signal described
above, where σα corresponds to the atom-number independent noise, σβ to the global
and hence correlated fluctuations in fluorescence per atom, and σγ to the fluorescence
shot noise from each uncorrelated atom. The values of these parameters are fitted to best
reproduce the observed peak widths in the fluorescence count histogram11. The possibility
of atom loss is taken into account by comparing the imaging time tIm to a time τi,n after
which atom n is lost from the MOT in run i that is drawn from an exponential distribution
using the experimental lifetime of (83 ± 12) s, and taking the shorter of the two times
to calculate the fluorescence of each atom. The counts from the simulation are processed
and classified based on the experimentally determined intervals as described in Sec. 2.2.2.
The classification fidelity is estimated by comparing the initial atom number with the
classification result for each simulated run. The lifetime has been measured by loading 0,
1, or 2 atoms into the MOT and comparing the fluorescence level of two measurements
with some variable time delay between them, see inset of Fig. 2.5. In the ∼4000 runs
used for this, not a single event of loading an atom from the background gas has been
observed, thus limiting the background loading rate to be below 3 · 10−4s−1 at 68 % CL,
thus not affecting the classification fidelity.

Fig. 2.5 shows the resulting classification fidelities, which are close to 100 % for low
atom numbers, decrease to∼95 % for 10 atoms and to∼87 % for the highest atom numbers
we can reliably distinguish. When working with at most 10 (17) atoms, the average fidelity
is ∼98 % (∼95 %). The vast majority of the incorrectly classified events stem from atom
loss, especially having one more atom initially than classified: when working with at most
10 (17) atoms, this is the case for > 99 % (> 95 %) of the incorrectly identified atom

11σα = σbg = 0.07± 0.01, σβ = 0.034± 0.012, σγ = σph = 0.012± 0.005
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numbers.

One interesting insight that can be gained from the simulation is that while the clas-
sification fidelity strongly depends on the MOT lifetime, this is not directly visible in
the peak widths: a limited lifetime leads to a broad background in simulated histograms
emulating the one shown in Fig. 2.3(b). The peaks are still quite narrow and clearly
identifiable, but loss of atoms during imaging can move the fluorescence count into the
classification region of a lower atom number. This can in principle be improved by in-
creasing the lifetime of our MOT as the fraction of incorrectly identified events scales
linearly with the inverse lifetime, but in our case the MOT lifetime is already close to the
vacuum limited lifetime of the system. It seems more realistic to reduce the width of the
fluorescence peaks by improving the power and frequency stability. This would increase
the classification fidelity as smaller peak widths decrease the probability of misclassify-
ing events involving atom loss. Alternatively, such an improved stability would allow to
reduce the imaging time while keeping the classification fidelity the same.

2.2.4 Fluorescence Stability Modeling

As shown in the prior section, the classification fidelity is mostly limited by the fluores-
cence stability. It is therefore instructive to consider a simple toy model of the two-color
MOT. We do this by approximating the problem as a three level system consisting of a
single ground state and two excited levels corresponding to the 2P1/2 and the 2P3/2 levels,
and model the dynamics with optical Bloch equations, where the ground state is coupled
to both excited states.

In a one-color MOT working at a high saturation parameter s and small detuning, the
scattering rate scales as 1−1/s and power noise only weakly influences the scattering rate.
In our two-color MOT, each transition is individually saturated and the atom will scatter
photons close to the maximum rate of Γ/2 ' 18 MHz. However, the two transitions
can compete with each other. For the special case of zero detuning for both transitions,
solving the Bloch equations of the three level system analytically is straightforward. The
scattering ratio obtained is

ρ11

ρ22

=
Ω2

1

Ω2
2

· Γ2 + Ω2
1

Γ2 + Ω2
2

∝ s1

s2

Γ2 + ks1

Γ2 + ks2

Ω2
2�Γ−−−→ s1(Γ + ks1)

ks2
2

, (2.2)

where k is some constant. ρ11 and ρ22 are the population fractions in the 2P1/2 and the
2P3/2 states, respectively; the ratio ρ11/ρ22 is therefore the ratio of scatterings on the D1
line and the D2 line. Since the square of Rabi frequencies Ωi is proportional to the power
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Figure 2.6: Numerical results for the relative scattering rate on the D1 transition, based on the
optical Bloch equations described in the main text. The D2 light parameters are set to a saturation
parameter of s2 = 40 and a detuning of ∆ω2 = −1.2 Γ. a) Relative fluorescence on the D1 transition
for a range of detunings and powers. b) Line cuts for a few fixed saturation parameters s1. c) Line
cuts for a few fixed detunings ∆ω1. The dotted horizontal line in b) and c) indicate the approximate
scattering ratio we observe in our MOT. The high intensity and nonzero detuning of the D2 light
leads to an asymmetric splitting of the D1 fluorescence. The line cuts in b) and c) indicate that it is
more stable to work around a detuning of ∼ −1 Γ, where the variation of the fluorescence rate with
the saturation parameter is rather small.

and thus to the saturation parameters si, the above expression is linear in each saturation
parameter for low intensities, and quadratic at high intensities. This already indicates
that the two-color scheme is inherently more sensitive to power fluctuations compared to
the one-color scheme.

Typically, s2 is large as trapping within a small region needs a large restoring force
via the D2 beams and hence a large saturation parameter s2. For fixed and large s2, the
above expression suggests that it is more stable to use a low saturation parameter s1, but
there is a lower limit set by the background noise level and the available imaging time.

In the more general case of non-zero detuning, the dynamics has to be analyzed nu-
merically. The time evolution of the density matrix is given by

∂tρ =
1

i~
[H, ρ] + L, (2.3)

where ρ is the density matrix, H is the Hamiltonian, and L is the Lindblad operator, which
implements the decay of excited population and coherence. The Hamiltonian depends on
the individual Rabi frequencies Ω1 and Ω2 coupling the ground state to the excited levels
via the D1 and the D2 line, respectively, as well as on the individual detunings ∆ω1 and
∆ω2. Since the model is a rough approximation, we neglect the difference in decay rates
for the two excited levels and furthermore assume that the coherence dephasing rate γ⊥
is dominated by the atomic decay, i.e. γ⊥ = Γ/2.
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Numerical results derived from the optical Bloch equations for parameters comparable
to the ones used in the experiment are shown in Fig. 2.6. The strong intensity of the
D2 light used for trapping the atoms within a small region leads to a splitting of the
D1 line, and the nonzero detuning of the D2 light furthermore creates an asymmetry
within this splitting. Subplots (b) and (c) in Fig. 2.6 suggest that working with a small
effective detuning (i.e. roughly centered between the now two D1 lines) leads to a smaller
dependence of the scattering ratio on the saturation parameter s1, and thus to a more
stable fluorescence level. Based on these simulations, the observed fluctuations in the
atomic fluorescence within each imaging run could be explained by frequency noise on the
order of 60 kHz (∼ 0.01 Γ), by power fluctuations of ∼ 1.4% in the D1 power, or by D2
power fluctuations of ∼ 0.1%. For the D2 system, the absolute requirement on the power
stability is similar as for the D1 system, leading to a correspondingly tighter requirement
on the relative stability.
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Chapter 2. Two-Color MOT

2.3 Anderson’s Orthogonality Catastrophe in a Two-

Color Tweezer Setup

Anderson’s Orthogonality Catastrophe as the limit of the polaronic problem with a cold
fermionic bath and an infinitely heavy impurity has already been briefly introduced above,
and will be discussed in a bit more depth here. For simplicity, one considers N non-
interacting fermions in a three-dimensional potential well of infinite depth. The single
particle solutions to the this system, φn, are spherical waves multiplied with spherical
harmonics, where the index n summarizes the relevant quantum numbers. Adding a small,
immobile and weak potential at the center of the potential will introduce a phase shift
near the center of each wave function, such that a new solutions ψn are almost identical to
φn, but with some phase shift near the origin. The single particle wave function overlap
Ann′ ≡ 〈φn|ψn′〉 will then, for small potential depths, be close to unity for n = n′ and
close to zero for n 6= n′.

The many-body wave function can then be constructed by using the Slater determinant
and the overlap Z of two many-body ground state wave functions (one without, and one
with the small scattering potential) can be written as

Z = det|Ann′|, with En, En′ < EF , (2.4)

where EF is the Fermi energy. The quantity Z is usually referred to as quasi-particle
residue, and Anderson derived the expression of

Z ≤ N−
∑

[(2l+1)/3π2] sin2 δl , (2.5)

where δl indicates the central phase shift for angular momentum l and the sum extends
over all angular momenta. The quasi-particle residue thus exhibits a power-law decrease
with increasing atom number and approaches zero for large systems even when the scat-
tering potential is very weak, showing that the ground states of the two systems are almost
orthogonal. This behavior is referred to as the “Orthogonality Catastrophe”.

This “catastrophe” for example appears in pump probe schemes with solid-state sys-
tems: upon exciting an electron from the valence band to the conduction band, the spatial
distribution of the remaining electrons is initially unaffected. However, in the new sys-
tem (i.e. with the valence hole and conduction electron) this spatial distribution does
not correspond to the ground state, but has large contributions of excitations near the
Fermi surface. The subsequent reordering and screening of the valence hole, as well as the
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asymmetric line shape observed in a following probe pulse can be understood as a con-
sequence of Anderson’s Orthogonality Catastrophe [69]. The situation is very similar in
X-ray absorption spectra, where the Orthogonality Catastrophe leads to a typical power
law behavior [70].

The Anderson Orthogonality Catastrophe has been investigated theoretically [71, 72]
and experimentally [73, 74] in the context of cold quantum gases; in our context, the latter
work, performed in the group of Selim Jochim is most relevant. In their experiment, a
one-dimensional tweezer was filled with atoms of two different spin states: one state served
as scattering center, while the other modeled the filling of the Fermi sea. By accurately
measuring the Rabi frequency of a radio-frequency transfer to a third spin state, they were
able to extract the quasi-particle residue and the scaling with increasing atom number.
However, the required accuracy was challenging. Since the interaction strength in one-
dimensional systems decreases with the number of atoms present in the trap, the phase
shift for each individual level was not constant but also changed when altering the atom
number, hence strongly reducing the effect of the Orthogonality Catastrophe.

2.3.1 Implementation in a Two-Color Tweezer Setup

In our case, we propose an alternate approach to investigate the orthogonality catastrophe
by creating the scattering potential not by a different atomic spin state, but by a small
optical potential. Here, two relevant atomic states are involved: the atoms are initially
prepared in the |F = 9/2,mF = −9/2〉 ≡ | ↓〉 (“spin down”) state and can be transferred
to the |F = 9/2,mF = −7/2〉 ≡ | ↑〉 (“spin up”) state by using a radio-frequency pulse
with appropriate frequency and power. After preparation, a tightly focused laser beam
creates an additional optical potential. Wavelength and polarization are chosen such that
the down state is not affected, while the up state experiences an additional potential. The
eigenfunctions of the up-state atoms are slightly different from the wave functions of the
down-atoms due to this additional potential, akin to the scenario described in Anderson’s
seminal paper. Coupling the two states via radio-frequency will lead to the typical Rabi
oscillations, but with a reduced Rabi rate due to the mismatch in the spatial overlap.
This reduced Rabi frequency serves as a measure for the orthogonality of the states. By
varying the strength of the optical potential, the strength of the wave function mismatch
can be changed. Additionally, by varying the atom number one can probe the scaling
with the atom number, which constitutes the "catastrophe" in Anderson’s model.
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Spin-dependent Potentials

To create a difference in the potentials experienced by the spin down and spin up atoms,
we need to use carefully chosen laser parameters. We decided to employ a scheme very
similar to the one demonstrated in [75], where a tightly focused laser beam allowed spin
flips of individually selected atoms in a quantum gas microscope. The essential trick is
that the small potential leads to a differential light shift of the two relevant spin states.
By tuning the radio-frequency to this shifted value, only the atoms experiencing the small
potential are on resonance and can be flipped.

One possibility would be to use σ−-polarized light tuned between the D1 and the D2
line. In this case, the down atoms in the |F = 9/2,mF = −9/2〉 state cannot couple
to the 2P1/2-manifold, as there is no final state allowed by dipole selection rules. There
are only F=9/2 and F=7/2 hyperfine states and therefore there are also no mF = −11/2

states that the light can couple the initial state to. The 2P3/2-manifold on the other hand,
has the hyperfine states F=5/2, F=7/2, F=9/2, and F=11/2, and therefore a possible
final state to couple to. This is plotted in Fig. 2.7(a), by the black line: the polarizability
for the mF = −9/2 state does not show any divergence at 770.11 nm, i.e. at the D1 line,
as the atoms are dark for this transition. The spin up atoms (mF = −7/2) on the other
hand, show a diverging polarizability when the light field’s frequency is tuned close to the
atomic resonance (illustrated by the red line, divergences at 766.70 nm and 770.11 nm).
Since the potential depth depends linearly on the polarizability, it is for now sufficient to
only consider the latter. With this choice of parameters, a net-zero potential can only
be created for the spin up atoms, not the spin down atoms, but this just conceptually
reverses the role of the two.

The major problem with using σ−-polarized light is the exact wavelength of zero energy
shift: For light fields tuned between the D1 and the D2 line, the light is red detuned with
respect to the D2 line, while it is blue detuned with respect to the D1 line, and there will
be both attractive and repulsive contributions to the total trapping potential. These two
contributions are exactly balanced for the spin up atoms when using σ−-polarized light
at a wavelength of (769.86 ± 0.01) nm, about 0.25 nm from the D1 line, corresponding to
a detuning of ∼127 GHz. This very small detuning leads to large scattering rates, even
for the small powers needed in this context. For realistic parameters as discussed below,
using this wavelength would lead to scattering rates on the order of 50 Hz, which would
be very challenging to work with.

For π-polarized light, the potentials experienced by the spin states are exactly the
same and are not helpful in this context. However, σ+-polarized light, just as for σ−-
polarization, has a spin-dependent effect. While neither of the two states is completely
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Figure 2.7: Polarizabilities of the relevant spin states for different light field polarizations near the
D1 (770.11 nm) and D2 (766.70 nm) lines. a-c: The solid black line indicates the polarizability
of the spin down atoms, the dashed red line the polarizability of the spin up atoms. a) For σ−-
polarized light, the spin down atoms cannot couple to any state in the 2P1/2 manifold, and hence
their polarizability does not show a resonance at the D1 line. The spin up atoms have a zero-shift
wavelength at ∼769.86 nm, i.e. the trapping and anti-trapping contributions from the D1 and D2
line, respectively, cancel exactly. b) For π-polarized light, both spin states experience the same
potential. c) For σ+-polarized light, the two relevant states experience almost the same potential,
but their zero-shift wavelengths are shifted by a small amount with respect to each other. d) Ratio
of the polarizabilities α(↑)/α(↓) for the different polarizations. The zero crossings correspond to
α(↓) = 0.

dark with respect to one of the relevant transitions, their coupling is still different and
they both experience a differential light shift. They also both possess wavelengths of zero
energy shift: (767.84 ± 0.01) nm for the spin down atoms and (768.08 ± 0.01) nm for the
spin up atoms. Thus, they are roughly centered between the D1 and the D2 line, leading
to a lower scattering rate compared to the case of σ−-polarization.

The third option would be to use a further detuned beam. When the detuning is on
the order of the D1/D2 separation, the two states still experience a different trapping
potential. As indicated in Fig. 2.7(d), the differential light shift quickly reduces with
larger detuning though, leading to higher power needed to achieve the necessary difference
in wave functions. A more detailed calculation can, for example, be found in [76].
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Difference in Wave Functions

In order to estimate the effect of the second potential, it is instructive to take a look at
the eigenfunctions of the total potential. For simplicity, this is here done only for the axial
and radial dimension separately. The following, realistic parameters for our experimental
setup are considered throughout this section: the "main tweezer" is created by π-polarized
light at 850 nm, has an e−2 waist of 1.5 µm and a power of 1.0 mW. The Rayleigh length
is then 8.3 µm. For the "phase shift tweezer", 1.5 µW of σ+-polarized light at 767.84 nm
focused to a waist of 0.7 µm, giving a Rayleigh length of 2.0 µm, is assumed. At this
wavelength, the spin down atoms do not experience any additional potential. As outlined
below, these parameters are on the upper end of the parameters needed to produce an
observable signal. The intensity of the phase shift tweezer leads to a scattering rate on
the order of 20 Hz.

Assuming a Gaussian profile along the radial direction with e−2-waists of wM and
wP and maximal depths UM and UP for the main tweezer and the phase shift potential,
respectively, and expanding the radial potential to quadratic order, one has

|U(r)| = 2
r2UM
w2
M

·
[

1 +
UP
UM
·
(
wM
wP

)2
]
≡ 1

2
mω2

r(1 + α)r2, (2.6)

i.e. the radial trapping frequency ωr is corrected by a factor of
√

1 + α, where α =

(UP/UM) · (wM/wP )2. For the typical parameters used in our case, α ∼ 0.1− 0.2.

For a diffraction limited Gaussian beam, the axial profile is given by U(z) = U0/[1 +

(z/zR)2], where zR = π · w2
0/λ is the Rayleigh length. Expanding the profiles of both the

main tweezer and the phase shift potential to quadratic order in z and adding them, one
obtains

U(z) =
z2UMλ

2
M

π2w4
M

·
[

1 +

(
UP
UM

)(
λP
λM

)2(
wM
wP

)4
]
≡ 1

2
mω2

a(1 + β)z2. (2.7)

Similarly to the radial profile, the trapping frequency is corrected by a factor
√

1 + β,
where β = (UP/UM)(λP/λM)2(wM/wP )4. The above expression assumes zλ/(πw2

0) � 1

for each tweezer individually. For the phase shift tweezer, a 10% error is reached at ∼ 2

µm distance from the focal position, and for the main tweezer at ∼ 8 µm. The correction
term 1+β describes the effective change in the trapping frequency near the center; for our
typical parameters, one has β ∼ 0.4− 0.8. Since β/α = (λP/λM)2 · (wM/wP )2 ' 3.8, the
axial component of the wave function is expected show a stronger effect in the reduction
on the overlap than the radial one. As the dominant contribution is from the waist ratio
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Figure 2.8: Potential and lowest wave function along the radial (a) and axial (b) direction for the
two relevant spin states. The gray lines indicate the potential, while the black, red, and green lines
show the lowest three vibrational levels. The solid lines correspond to the unperturbed potential,
i.e. for the spin down atoms, and the dashed lines correspond to the perturbed potential, i.e. for the
spin up atoms. As expected from the estimates in the main text, the difference in wave functions is
more pronounced for the axial component than for the radial one.

wM/wP , it is crucial to use tweezers with different focus sizes to create a detectable signal.

Figure 2.8(a) and (b) show the three lowest levels along the radial and axial direction,
in a one-dimensional approximation for the parameters stated above, respectively. The
gray, black, red, and green lines indicate the potential, the ground state wave function, the
first excited wave function, and the second excited wave function, respectively. For each
color, the solid line shows the case of spin down atoms, and the dashed line corresponds
to spin up atoms.

For higher levels, the wave function overlap between the unperturbed and perturbed
states slowly decreases with increasing vibrational quantum number, as shown in Fig. 2.9.
As expected, the decrease in overlap is much faster along the axial direction.

Observable: Quasi-Particle Residue

As described in the beginning of the section, the many-particle wave function overlap
between the original and the perturbed ground state can be calculated as

Z = det|〈ψn′ |φn〉|; with En, En′ < EF . (2.8)

For the system Anderson considered, Z ∝ N−f(δ) is obtained, where f(δ) is a function of
the phase shift δ introduced by the scattering potential. Figure 2.10 shows the many-body
wave function overlap for the parameters stated above for different particle numbers and
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Figure 2.9: Reduction of single particle wave function overlap between the spin down and spin up
state atoms. The plot shows the overlaps |〈φn|ψn〉|, where φn is the wave function for the potential
as experienced by spin up atoms, and ψn is the wave function for the potential as experienced by the
spin down atoms. The radial contribution (black) reduces much slower than the axial contribution
(red).
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Figure 2.10: Many-body wave function overlap for different powers of the phase shift potential
and different atom numbers. The overlap decreases with larger power in the phase shift potential,
corresponding to a larger phase shift due to the scattering potential in Anderson’s model. The
dependency on the atom number is modulated by the aspect ratio of the axial and radial trapping
frequencies: in this case, the trapping frequency aspect ratio is ∼1:7, and the overlap for eight,
nine, or ten atoms is very similar: in this regime, higher radial levels are getting occupied. For the
radial levels, the difference between unperturbed and perturbed levels is rather small, and the overall
overlap barely changes.
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different powers of the phase shift tweezer. The overlap can be probed rather directly by
employing a radio-frequency pulse for the transfer between the two relevant spin states:
the overlap matrix element and therefore the Rabi-rate for transfers between an initial
state |i〉 and a final state |f〉 is determined by

ΩRabi ∝ 〈f |ĤRF |i〉 = 〈finternal|ĤRF |iinternal〉〈fspatial|ispatial〉 ∝ Z, (2.9)

where the momentum kick by the radio-frequency photons has been neglected, such that
ĤRF does not affect the spatial wave functions. In most cases, the spatial overlap of the
initial and final state is close to one, but the spin dependent potentials considered here
form an exception. Measuring the Rabi frequency of a resonant transfer between the spin
up and spin down states allows the extraction of the spatial overlap of the many-body
wave functions. By varying the power of the phase shift potential and the atom number,
this scheme allows to observe the build-up of Anderson’s Orthogonality Catastrophe.

However, it should be noted that in this case the system is not a rotationally symmetric
three-dimensional system as Anderson used. With the parameters used here, the aspect
ratio of axial and radial trapping frequency is ∼ 1 : 7, and the simple power law of eq.
2.5 is expected to be modified.

Low Entropy System Preparation

Before even applying the phase shift potential and the radio-frequency coupling, it is
essential to prepare a system with the lowest few energy levels occupied. The exact number
of atoms in the potential can be accounted for in the data processing after counting the
atom number of that run and hence is not too critical to control. To do this, we need
to start with a cold Fermi gas in an optical dipole trap; the tweezer can then be filled
with high fidelity by employing the dimple trick. The dimple trick consists of adding a
small but deep potential to a large reservoir. The mean occupation number of a state i
in the reservoir with temperature T and chemical potential µ is given by the Fermi-Dirac
distribution

ni =

[
exp

(
Ei − µ
kBT

)
+ 1

]−1

, (2.10)

where Ei is the energy of the state and the trap minimum has been defined as E = 0.
When adding a small trap, e.g. a tweezer, with depth |VT | � kBT , localized states with
|E| � kBT are created. For typical parameters like |VT | ≈ 10kBT and µ . 0.5kBT , the
occupation probability of the deep lying tweezer states quickly exceeds 99%. One implicit
assumption in this consideration is that the temperature and the chemical potential are not
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(a) (b) (c)

Figure 2.11: Magnetic spilling of the optical tweezer. a) The tweezer is filled with two spin states,
where the higher lying states have a lower occupation probability. b) Applying a magnetic gradient
(green arrow), the total potential is tilted and previously bound states become unbound. Depending
on the magnetic gradient, the spin state’s magnetic moment, and the optical power, it is possible
to remove one spin state completely while still trapping another spin state. c) After spilling, the
tweezer contains a deterministic number of atoms.

affected by the small potential, i.e. that the number of bound states therein is relatively
small compared to the number of atoms in the trap. This condition, together with an
adiabatic turn on of the trap to avoid heating, is not critical as it is easily fulfilled for the
realistic experimental parameters. The more crucial assumption is that the Fermi-Dirac
distribution still accurately describes the occupation probability in the tweezer, i.e. that
atoms are able to thermalize into this new potential - Pauli blocking causes the scattering
to freeze out for low enough temperatures, so the thermalization time might become too
long. In this case, it might be necessary to introduce a second spin species, such that
scattering and thermalization can occur between the different spin states.

After loading the tweezer, the reservoir potential is turned off and only the tweezer
remains. To prepare a deterministic atom number, the unnecessary atoms can be removed
with magnetic spilling as it has been demonstrated in [60] and is depicted in Fig. 2.11.
Here, a magnetic gradient is added to the (ramped down) optical potential of the tweezer
tilts the potential, such that the higher lying states are not bound anymore or quickly
tunnel through the remaining barrier. As the potential introduced by the magnetic gra-
dient B′ is given by V (x) = µjB

′x and hence depends on the magnetic moment µj, the
remaining potential height is different for different spin states. One can therefore use this
scheme to completely remove one spin component while preparing a selected number of
atoms for the other spin state.
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Spin Dependent Detection

The main observable of this experimental approach is the Rabi frequency of the transfer
between the atoms in the spin down state and the atoms in the spin up state. In order to
measure this frequency, one needs a spin dependent detection scheme. As our counting
scheme employs lasers addressing both hyperfine states, we have to remove one spin
component before detection.

To achieve this objective, a resonant blowout pulse can be used. In this scheme, the
atoms quickly scatter many photons from one direction. When this happens in free space
or faster than the trapping period of the confining potential, the momenta of the absorbed
photons add up linearly, patom ' N~k, yielding a kinetic energy of Ekin ' N2~2k2/(2m).
In the opposite regime, i.e. beams from different directions or with the scattering rate
lower than the trapping frequency, the atoms perform a random walk in momentum space,
where the typical momentum after scattering N photons scales as

√
N~k and the kinetic

energy becomes Ekin ' N~2k2/(2m). In both cases the momentum kick imparted by
emitted photon has been neglected, which will always lead to an additional random walk
in momentum space. After absorbing enough photons, the addressed atoms have a large
momentum and quickly escape the region of interest, while atoms dark to the blowout
beam are still present.

In our experiment, the atoms are first released from the tweezer and, once the den-
sity is low enough to avoid photo-association losses and hyperfine changing collisions,
a microwave-frequency pulse is applied to transfer the spin up atoms from the |F =

9/2,mF = −7/2〉 to the |F = 7/2,mF = −7/2〉 state. After hiding this spin state in
the F = 7/2 hyperfine state, the |F = 9/2,mF = −9/2〉 → |F ′ = 11/2,mF = −11/2〉
cycling transition can be driven by a σ−-polarized laser beam of corresponding frequency.
Due to the dipole selection rules, the atoms can only decay back to their initial state,
where they absorb again. After scattering at saturation intensity for ∼2 µs and absorbing
∼40 photons from the blowout beam, the atom’s momentum corresponds to a speed of
∼500 µm/ms, compared to ∼20 µm/ms for atoms only released from the tweezer. After
a brief subsequent time of flight, the atoms addressed by the blowout pulse will have left
the trapping region for our imaging scheme and consequently do not contribute to the
extracted atom number.

2.3.2 Conclusion and Current State of the Project

To summarize this section, a two-color MOT scheme for counting small numbers of atoms
as well as an experimental roadmap to investigate Anderson’s Orthogonality Catastrophe

41



Chapter 2. Two-Color MOT

in a tweezer system has been presented. With the two-color MOT scheme, we are able to
reliably perform atom number measurements with single particle resolution for systems
of up to about 17 atoms with classification fidelities of ∼ 98% when working with up to
five atoms, and fidelities of > 85% when working with up to 17 atoms. The number of
atoms we can distinguish is determined by the stability of the fluorescence rate on the
probing transition and hence by the technical performance of the frequency locks and
power stabilizations used, which can be improved if a need to count larger atom numbers
arises. The two-color scheme significantly reduces the influence of light scattered from
the MOT beams and thereby enables such single-atom resolved measurements in systems
that have not been purpose-built for this application and, for example, contain in-vacuum
components.

In summary, we established a pathway to study the fermionic immobile impurity limit
in a small system with variable atom number and scattering phase shift. As an essential
tool for doing this, we developed and characterized a two-color MOT scheme for atom
number counting; the production of cold Fermi gases as well as the implementation of
magnetic spilling has been started [77], but has not been discussed in more detail here.
The next steps are the setup and characterization of the spin dependent potentials, before
the Orthogonality Catastrophe can be studied in our experiment.

In the following chapters we focus on a complementary, but very different approach
to study polarons. Instead of a small fermionic system, a two-dimensional bosonic bulk
system is prepared and investigated.
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Polarons in a Degenerate
Two-Dimensional Bose-Gas

Figure 3.1: Impurity distribution mea-
sured for repulsive interactions in our
setup for small detuning (left) and large
detuning (right), with the radius of the
condensate indicated by the red circle.
Impurities are predominantly created at
positions where the mean field shift ∝
gn(r) equals the applied RF detuning. For
low detuning, this condition is fulfilled
near the edge of the condensate at low
density, and for high detuning near the
center at the highest density.

For the remainder of this thesis, we focus on the
other species available in our experiment: the
bosonic 39K and bulk systems thereof. Chapter 3
presents the necessary background, while chapter
4 and 5 discuss the measured polaron spectra and
spatially resolved impurity dynamics, respectively.

In order to be able to investigate polaronic
physics, and especially polaronic physics in bosonic
two-dimensional systems, we adapted the machine
setup for this goal. This included switching iso-
topes, adapting the laser system to the changed
transitions, implementing several new steps in the
system preparation, related technical improvements
on the machine, and finally accomplishing the evap-
oration of 39K to high enough phase space densi-
ties to observe Bose-Einstein condensation. Once
we reached the degenerate regime, we proceeded to implement RF transfers to an impurity
state and built suitable optical setups to transform the degenerate gas into an effectively
two-dimensional geometry and to image both the bath and the impurities therein. A
typical image of the spatial impurity distribution for two different RF detunings at some
repulsive interaction strength are shown in Fig. 3.1 and will be discussed further below.

However, before focusing on our measured polaron spectra in chapter 4 and the ob-
served impurity dynamics in chapter 5, we use this chapter to present some theoretical
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and experimental background. We first briefly summarize previous work in the field of
polaronic physics in quantum gas experiments for fermionic and bosonic systems, both in
three and in two dimensions, and with a focus on the used experimental techniques. We
then introduce the most relevant theoretical and experimental aspects of two-dimensional
systems in Sec. 3.2 and finally discuss details of the experimental setup and of the system
preparation in Sec. 3.3. Readers familiar with two-dimensional quantum systems can
easily skip these sections and proceed to the next chapter discussing the obtained polaron
spectra.

3.1 Previous Work on Polarons in Quantum Gas Ex-

periments

Polarons, or more generally speaking impurities immersed in a bath, have in recent years
been studied in ultracold quantum gases for both fermionic and bosonic environments.

3D Fermionic Baths Parallel to extensive theoretical work [78–82], the three-dimen-
sional Fermi polaron has been studied in several experimental works: In [83], a cold
fermionic cloud of 6Li at T ∼ 0.14TF has been prepared, where the majority of atoms
were in hyperfine state |1〉, while a small fraction was in state |3〉. A Feshbach resonance
allowed to control the strength of the attractive interaction between these two spin com-
ponents. By transferring atoms via an RF pulse from either |1〉 or |3〉 to a separate, only
weakly interacting state |2〉, the authors measured the polaron energy and could observe
the transition from polaronic to molecular binding. In the same year as the Zwierlein
group, Nascimbène et al. [84] investigated the behavior of a 6Li cloud after compression,
where the degree of spin polarization in the sample was adjustable. For high imbalance,
they observed a decoupling of the excited oscillation frequencies in the two components,
consistent with an increased effective mass for the minority component due to the pola-
ronic interactions with their environment. Both attractive and repulsive interactions have
been examined in [85] for a cloud of 6Li atoms with 40K atoms as impurities. Initially
superimposing the degenerate Lithium cloud with the dilute cloud of 40K atoms is done
at negligible interactions. The polaron energy could then directly be measured by ob-
serving the detuning needed for the radio-frequency to flip the 40K atoms into a different,
strongly interacting hyperfine state, while the line width allowed to extract the state’s
lifetime. The decay in amplitude for Rabi-oscillation between the weakly and the strongly
interacting states furthermore gave access to the quasi-particle residue.
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2D Fermionic Baths Two-dimensional fermionic systems were studied theoretically
around the same time [86–89]. Momentum-resolved photoemission spectroscopy was used
to study this problem experimentally [90]: using two hyperfine spin states of 40K and a
Feshbach resonance between the two, the polaronic state is first prepared adiabatically for
either attractive or repulsive interactions. After transferring the impurity atom to a third,
non-interacting hyperfine state and a subsequent free expansion, the spatial distribution of
this third state gives direct access to the momentum distribution of the original impurity
state. The Fermi polaron’s spectral function, its effective mass, as well as its lifetime (for
repulsive interactions) can be extracted from this.

3D Bosonic Baths Early experimental work on impurities in a bosonic system focused
on implementations without the ability to tune the interaction strength. In [91], the au-
thors prepared Cesium atoms as impurities in a cold Rubidium cloud and determined the
three-body loss rate in this setting, while the Oberthaler group [92] measured the deco-
herence of (fermionic) 6Li impurities immersed in a sodium BEC, and [93] investigated a
system with a magnon formed in a ferromagnetic spinor BEC and measured its dispersion
relation, the energy gap, and effective mass.

In 2016, three-dimensional systems with bosonic baths and useful interstate Feshbach
resonances started to be used to investigate the Bose polaron. This allowed to measure
the polaron’s energy, line width, and lifetime for both attractive and repulsive interactions
[94, 95]. Subsequently, the observed line shapes have also been analyzed in more detail
[96]. A few years later, Yan et al. [97] were able to even measure the spatially resolved
response and investigated the temperature dependence of the polaron energy. Some more
details of their work is presented in the context of our measured 3D polaron spectra in
Sec. 4.1.

In a series of papers, the Aarhus group then focused on the formation dynamics of
polarons [98–100]. By using a Ramsey-type scheme of creating a bath-impurity super-
position with subsequent free evolution and final transfer back to the initial state, they
were able to track the quasi-particle formation. This allows the probing of the transi-
tion between two-body dynamics relevant for short times (and thus high energies) as well
as weak interactions, and the many-body dynamics relevant for strong interactions and
long times by identifying their unique signatures in the time-dependence of the coherence
amplitude decay.

In parallel, a significant amount of theoretical work on different aspects of the 3D Bose
polaron has been performed [101–118].
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2D Bosonic Baths In contrast to the extensive work performed for three-dimensional
bosonic systems, the two-dimensional case has not been experimentally realized so far.
The first theoretical study on polarons in a two-dimensional study focused on its en-
ergy, its effective mass, and the signature in Bragg scattering by utilizing a variational
approach to determine the ground state of the polaron for different temperatures [119].
Renormalization group studies followed a few years later, with partially different predic-
tions, especially regarding the transition into the self-trapping regime [120]. While [121]
later also focused on the weak coupling regime, the authors of [122] and [123] used quan-
tum Monte Carlo techniques to study the strong coupling regime, calculating the polaron
energy, the effective mass, and the quasi-particle residue. A comparison of these results
with a simpler mean-field study was subsequently published in [124], and the case of a
dipolar gas was studied in [125].

Physically, the two-dimensional bosonic system is interesting for two main reasons:
the role of quantum fluctuations combined with quasi-long range order, and the similarity
to layered solid state materials.

Quantum fluctuations become more relevant in lower dimensions, while two-dimensional
bosonic systems still exhibit quasi-long range order, i.e. order over a length scale well
above the system size. The two-dimensional bosonic ground state is therefore quite similar
to the three-dimensional Bose-Einstein condensate and, for example, also shows superfluid
behavior.

Superconducting cuprates are layered materials, leading to the idea that they can be
modeled as a stack of two-dimensional systems that are weakly coupled to each other.
In a bosonic degenerate cloud, the linear Bogoliubov dispersion relation matches the
linear phonon dispersion relation, making the two-dimensional degenerate Bose gases a
promising candidate to simulate existing solid state systems.
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3.2 Introduction to Two-Dimensional Quantum Gases

Before proceeding to our experimental implementation of a degenerate bosonic cloud in
Sec. 3.3, we discuss some relevant theoretical and practical aspects of two-dimensional
quantum systems.

Dimensionality is Important

Changing the dimensionality of a system affects one of its most fundamental qualities,
and it is therefore not surprising that it can drastically affect the observed behavior of the
system of interest. Examples for this can be found in different fields of physics: in General
Relativity, for example, only a spacetime with at least three spatial dimensions allows for
gravitational waves, while in the case of two spatial dimensions, the gravitational field is
completely determined by the density distribution, and hence no (in vacuum propagating)
gravitational waves can exist [126]. Two spatial dimensions also can lead to new, more
flexible statistics for particles to follow. These so called “anyons” possess neither an integer
nor a half-integer spin. For the exchange of two particles, the total wave function hence
does not pick up a phase of 2π or π, for bosons and fermions respectively, but instead
some other value, depending on the exact system considered [127, 128]. Less abstract is
the problem of a single particle within an attractive potential. While a one-dimensional or
two-dimensional system exhibits a bound state for arbitrarily weak potential strengths,
three-dimensional systems do not have a bound state if the attractive potential is too
shallow [129, 130].

A typical quantity strongly influenced by the dimensionality of the system and relevant
for condensed matter systems is the density of states D(E). In a three-dimensional system
without potential, the number of states available for a maximummomentum pmax is simply
N3d(pmax) ∝ p3

max/~3. Expressing this over the available energy E = p2
max/(2m), one has

N3d(E) ∝ E3/2, and the density of states becomes D3d(E) ≡ ∂EN3d(E) ∝ E1/2. The same
reasoning in two dimensions gives N2d(pmax) ∝ p2

max/~2 with D2d(E) = constant, while
in one dimension one has N1d(pmax) ∝ |pmax|/~ with D1d(E) ∝ E−1/2. This different
behavior in the density of states lead to Bose-Einstein condensation in three dimensions,
while both two and one dimension do no exhibit this feature [131].

More generally, in two or less dimensions, the Mermin-Wagner theorem prohibits true
long-range order in systems with continuous Hamiltonian symmetry and sufficiently short-
ranged interactions at T > 0 [132–135], as they appear in quantum gas experiments.

This general behavior can be considered a consequence of the increased importance of
fluctuations in lower dimensions or, conversely, the stronger suppression of fluctuations
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in higher dimensions. An intuitive picture for this is a chain or lattice of spins Si with
interaction energies E ∝ −Jij

∑
i,j Si · Sj, where Jij = 0 if spins i and j are not next to

each other and |J | is the coupling strength. In this model spin orientation misalignment
between nearest neighbors are energetically costly. Assuming a one-dimensional system
and two of those spins to have fixed orientation, there is only one possible path between
these two spins, such that it is straightforward to introduce a slowly varying spin orien-
tation matching these boundary conditions. However, the higher the dimension is, the
more paths between the two fixed spins are possible, all of which prefer to have an only
slowly varying spin orientation. Higher dimensions are therefore more prone to showing
frustration, increasing the energy required for this specific spin orientation pattern. This
suppression of available states at low temperature leads to a reduced relevance of fluctua-
tions in higher dimensions. Stated alternatively, fluctuations in lower dimensions are less
costly and hence have a larger effect even for low temperatures.

The Mermin-Wagner theorem can be circumvented by breaking the first condition and
introducing a confining potential that breaks the translational symmetry of the Hamilto-
nian, therefore changing the density of states of the system. In this case, true condensation
is also be possible in two dimensions at T > 0 [136].

Berezinskii-Kosterlitz-Thouless Transition

However, even without relying on the confining potential, these systems can still exhibit
“quasi-long-range” order, where the decay length of correlations is very large. This is
the case in two-dimensional systems with repulsive interactions cooled below the critical
temperature of the Berezinskii-Kosterlitz-Thouless (BKT) transition, which marks the
freeze-out of free vortices [137, 138]. Above the critical temperature, vortices are unbound
and destroy long-range phase coherence. At TBKT , it becomes favorable to form vortex-
antivortex pairs which, on distances much larger than their separation, do not have a net
effect on the phase correlation. The remaining decay of phase coherence is due to the
remaining phononic excitations, which only lead to a much slower decay of correlations.
The correlation function g1(r) in an uniform gas with repulsive interactions, for example,
shows a decay of g1(r) ∝ r1/ρ at low enough temperatures, where ρ = nsλ

2
th is the

phase space density, ns is the superfluid density and λth = h/
√

2πmkBT is the thermal
wavelength. As the BKT transition happens around ρ ' 4 [136], the exponent 1/ρ is small
and the decay of correlations is very slow, and often leading to no noticeable reduction
over the extent of the atomic sample. Experimental demonstrations of this behavior have
been reported, for example, in [139] and more recently in a spatially resolved manner in
[140]. Under such conditions, the quasi-long-range order is effectively the same as a true
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long-range order. This general description remains true even for harmonic confinement,
where actual condensation is also possible due to the change in the density of states.
For realistic parameters, TBKT is well above the condensation temperature TBEC , such
that the BKT-phase is the more relevant one. The BKT-transition is smooth and does
not exhibit a clear transition in the density profile or the momentum distribution, as in
the case for Bose-Einstein condensation, where clear bimodal distributions indicate the
crossing of the critical temperature. The transition can in fact be considered a phase
transition of “infinite-order”, as neither the free energy nor any of its derivatives show
discontinuities. Instead, the discontinuity appears in the topology of the wave function’s
phase, making this transition the prime example of topological phase transitions, even
leading to its discoverers being awarded the Nobel Prize in Physics in 2016 [141].

One experimentally very important consequence of the BKT transition is the emer-
gence of a critical velocity, signaling superfluid behavior. In a superfluid, excitation
modes have a non-zero minimal speed – in contrast to, for example, free particles, where
E = p2/(2m) and the speed becomes arbitrarily small for low enough momentum. In
a superfluid the excitation spectrum is linear in the momentum ~k for small momenta,
and gradually transforms into a quadratic spectrum for larger values of ~k. The linear
behavior for small k corresponds to a momentum-independent velocity c of the mode,
which takes the form

c =
√
gn/m, (3.1)

where g is a coupling constant introduced below, n is the density, and m is the particle
mass. No phonons can be created for disturbances moving through the cloud with a
velocity smaller than this speed, therefore making c to be the critical velocity. The linear
behavior of the dispersion relation for low momenta is similar to the behavior of sound
waves in classical mechanics and (obviously closely related) of phonons in solid state
physics, resulting in the adaption of the term “phonon” for low-momentum excitations in
quantum gases and to the term “speed of sound” for c.

Practical 2D: Experimental Aspects

Effectively 2D Obviously, our world has three spatial dimensions, leading to the ques-
tion whether any real world systems can be considered two-dimensional. The abstraction
as a two-dimensional system usually becomes relevant when a system is “kinetically 2D”,
i.e. when movement along one spatial dimension is restricted in such a way, that motion
along this axis is not possible at the available energies. An intuitive example of this
are large scale eddies in Earth’s atmosphere, that occur during hurricanes. With several
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hundred to a thousand kilometers, the diameter is much larger than their vertical extent,
which is set by the height of the troposphere and is ∼15 km, resulting in an aspect ratio
on the order of ∼30-100. This two-dimensional confinement leads to an inverse cascade,
where energy is transported from smaller eddies to larger ones, exactly the opposite of
what happens in three dimensions [142].

In quantum mechanical systems as ours, “kinetically 2D” refers to situations where
a tight confinement along one axis, say z, is applied. The wave function can then be
decomposed into a product Ψ(x, y, z) = Φ(x, y) · χ(z), where χ(z) is the ground state
wave function along z. Assuming a harmonic potential along the z-direction with trapping
frequency ωz = 2πνz, this condition implies that the harmonic oscillator length along z
must be much smaller than both the healing length and the thermal wavelength, and
that the level spacing ~ωz must be much smaller than the temperature and the chemical
potential [136]. In very cold fermionic systems, the latter condition also implies that
the Fermi energy must be much smaller than the vertical level spacing ~ωz. In such a
setting, the system does not have enough energy to create excitations along z, and the
vertical profile is only determined by the confining potential. The only remaining degrees
of freedom are therefore within the x-y-plane.

Probing 2D Systems: Density Profile In order to analyze and interpret the observed
spatial structures, the density profile of the undisturbed bath needs to be known. For
two-dimensional Bose gases, the ground state at low temperature is described by the
Berezinskii-Kosterlitz-Thouless (BKT) theory [137, 138].

Unlike the BEC-condensation, the BKT-transition does not show an abrupt change in
the density- or momentum profile. Instead, the population in the ground state gradually
increases while the occupation of excited states decreases. For very low temperatures, the
density profile in an interacting system approaches the Thomas-Fermi profile derived by
the assumption of negligible kinetic energy [143, 144]. In this limit, the time-independent
Gross-Pitaevskii equation [145, 146] becomes a simple algebraic equation:

EΨ =

[
− ~2

2m
∇2 + Vext(r) + g|Ψ|2

]
Ψ→ EΨ =

[
V (r) + g|Ψ|2

]
Ψ. (3.2)

Assuming harmonic confinement and with the density n(r) ≡ |Ψ(r)|2, one obtains

n(r) = n0

[
1− (|r|/RTF )2] (3.3)

for |r| < RTF and zero otherwise. The central density then is n0 = µ/g, where the
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total energy E has been equated with the chemical potential µ, and the Thomas-Fermi
radius is RTF =

√
2µ/(mω2). As we are here concerned with two-dimensional geometries,

the above expression is only valid within the horizontal plane, while the vertical density
profile is determined by the trapping potential’s ground state wave function, i.e. usually a
gaussian for the typical harmonic confinement. For a radially symmetric two-dimensional
system, eliminating the chemical potential and instead introducing explicit dependencies
on the particle number N and the coupling parameter g leads

RTF =

[
4Ng

πm(2πνrad)2

]1/4

. (3.4)

Thus, the Thomas-Fermi radius only shows a weak dependence on particle number,
coupling parameter, and trapping frequency – similarly to the 3D case where RTF ∝
(gN/ν2)1/5. Since this profile density is simply a parabola and describes the observed
density very well, we will sometimes employ this density profile when doing analytic cal-
culations below. Note that the Thomas-Fermi approximation of negligible kinetic energy
fails near the edge of the cloud where the density is low and the interaction term is small.

The experiments described below are usually performed at temperatures around 50

nK with phase space densities ρ � 10, and are therefore well above the critical phase
space density ρc = 4. The temperature is also well below the temperature needed for
sizable excitations along the tightly confined axis, ~ωz/kB ' 300 nK for ωz = 2π ·6.5 kHz,
justifying the treatment as a two-dimensional system.

Probing 2D Systems: Imaging 2D systems are relatively convenient to image, since
the spatial distribution can, provided that the resolution is sufficient, be imaged directly,
if the imaging axis coincides with the axis of strong confinement, only one layer of the
system is prepared (i.e. not a stack of 2D systems), and saturation is of no concern. The
integration along the line of sight then only changes the signal’s amplitude, but otherwise
does not distort the actual density distribution. In contrast, the signal is integrated along
different densities in 3D systems, making the signal extraction more involved [147, 148].

Similarly, the momentum distribution is, as in many quantum gas experiments, also
comparably easy to obtain. Assuming ballistic expansion, a long enough free expansion
converts initial momentum to positions after the time-of-flight r0 → r0 + p · tTOF/m,
and makes the momentum distribution readily available, provided that the initial position
becomes negligible, i.e. p·tTOF/m� r0. For strongly interacting systems, the assumption
of ballistic expansion can be problematic, and collisions during the expansion lead to a
redistribution of momentum, hence preventing the extraction of the initial momentum
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distribution. The strong confinement along one axis in 2D systems serves as an advantage
in such cases: it leads to a large momentum uncertainty ∆pz ' ~/∆z, and therefore to a
fast expansion along the strongly confined axis. The density then drops drastically over
a timescale of ∼ 1/νz, reducing the chance of collisions and helping to map the original
momentum distribution to a spatial distribution.

Scattering in Quasi-2D The confinement along the vertical direction also affects the
scattering properties, and therefore the interactions between particles.

Since we consider cold particles, all but the s-wave channel are frozen out due to their
higher required higher angular momentum and hence higher required energy. In three-
dimensional systems, a plane wave scattered by a small potential at r = 0 leads to an
asymptotic wave function for |r| → ∞, which is usually parametrized as

ψk(r) ∼ eik·r + f(θ, φ, k)
eik·r

|r| , (3.5)

where the first part is the incident wave, the second part is the scattered wave, and
f(θ, φ, k) is the scattering amplitude. Per definition, for s-wave scattering f(θ, φ, k) does
not have an angular dependence and it can be expressed as [149]

f(k) =
1/k

− 1
ka

+ r0k
2
− i . (3.6)

The square of the scattering amplitude |f(θ, φ)|2 is the differential cross-section, and hence
the total cross-section can be obtained by angular integration σtotal =

∫
dΩ|f(θ, φ, k)|2. In

the limit of small relative momentum k, i.e. ka→ 0, the scattering amplitude approaches
a finite value and the total scattering cross-section becomes σtotal = 4πa2. For identical
particles in two different initial states, the symmetrization of the wave function leads to
an additional factor of 2, i.e. σtotal = 8πa2 [150]. The coupling constant g3D, appearing,
for example, in the Gross-Pitaevskii equation, is then g3D = 4π~2a/m.

In a truly two-dimensional system, the wave function after scattering with relative
momentum ~k becomes [151]

ψk(r) ∼ eik·r −
√

i

8π
f(k)

eik·r√
k · r

, (3.7)

where the scattering amplitude f(k) for two identical bosons is

f(k) ≈ 4π

− ln(k2a2
2D) + iπ

. (3.8)
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a2D denotes the 2D scattering length, and k = |k|. Note that the scattering amplitude does
not converge to a finite, nonzero value for k → 0, in contrast to 3D where f3d(k → 0) = −a.

The more realistic case of a system strongly confined in one direction has been dis-
cussed in [152, 153] under the assumption that the vertical extent of the cloud lz is still
much larger than the 3D scattering length a3D. As a boundary condition, the scattered
wave function along z has to asymptotically match the profile determined by the confining
potential, which gives

f(k) ≈ 4π√
2πlz/a3D − ln(Bk2l2z) + iπ

, (3.9)

for the (quasi-) 2D scattering amplitude, where B ≈ 3.47 is a numerical constant. Note
that the term “quasi-2D” is sometimes used to distinguish between “true” 2D as in Eq.
3.8 and “tightly confined 3D, thus effectively 2D” as in Eq. 3.9, while the same expression
sometimes refers to the regime of kBT . ~ωz, where remaining vertical excitations are
relevant. Here, we only use the term “quasi-2D” in the former sense. Comparing Eqs. 3.8
and 3.9, one obtains

a2D = lz
√
B exp

(
−
√
π

2

lz
a3D

)
. (3.10)

The coupling parameter in 2D g2D becomes

g2D = − 4π~2

m ln(k2a2
2D/4π)

'
√

8π~2a3D

mlz
≡ ~2

m
g̃, (3.11)

where the approximation assumes a3D � lz [123]. It is furthermore convenient to intro-
duce the dimensionless coupling parameter g̃:

g̃ ≡ m

~2
g '
√

8π
a3D

lz
, (3.12)

which is depicted in Fig. 3.2. The coupling constant g directly appears in the interaction
energy, scaling as Eint ∝ gN2/V , where N is the number of particles and V is the
available volume. For a flat potential, kinetic energy and interaction energy are equal
around g̃ = 2π. Without Feshbach resonances, most quantum gas experiments can only
operate in regimes of g̃ ∼ 10−2 − 10−1, while liquid helium has g̃ ∼ 1 [136, 154].

Note that the 2D scattering length, as defined in Eq. 3.9, is always positive, while a3D

can also be negative, indicating attractive interactions. The difference is that a2D does
not have the same significance as a3D – comparing Eqs. 3.6 and 3.9 indicates that the
interaction parameter 1/ka3D in 3D is replaced by ln(ka2D) in 2D.
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Figure 3.2: Relation between the interaction param-
eter ln(kna) and g̃2D. The solid line uses the defin-
ing expression of Eq. 3.11 and the dotted line shows
the approximate expression, where parameters typi-
cal for our experimental setup have been used.

The latter can be both positive or neg-
ative, indicating attractive or repulsive in-
teractions, respectively. Using the above
conventions and definitions, the interac-
tion signs are switched such that attrac-
tive interactions are indicated by negative
1/ka3D and by positive ln(ka2D). Repul-
sive interactions correspondingly have pos-
itive 1/ka3D and by negative ln(ka2D). In
both cases, the regimes around 1/ka3D ≈ 0

and ln(ka2D) ≈ 0 indicate the strongest in-
teractions.

Since the interaction parameter explic-
itly involves the momentum k, one needs to
choose a reference momentum for stating
any explicit value. For fermionic systems,
this naturally is the Fermi-wavevector kF
as scattering for much smaller momenta is
Pauli blocked and much higher momenta are not populated. For bosonic systems, one usu-
ally simply follows this definition and uses the wavevector of a fermionic system with flat
potential of the same density, i.e. k3D

n = (6π2n)1/3 and k2D
n =

√
4πn. This momentum also

defines a natural energy scale given by En = ~2k2
n/2m, resulting in E3D

n = ~2(6π2n)2/3/2m

and E2D
n = 2π~2n/m.

Integrated signals obtained in the experiments described below additionally involve the
integration over different densities due to the harmonic confinement. In these cases, we
will always refer to the peak density and therefore the highest kn within the sample. Due
to the square root and the logarithmic dependence, the exact value of the peak density
only has a weak influence on the interaction parameter.
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3.3 Experimental Setup and Preparation

Before proceeding to more specific discussions, Sec. 3.3.1 describes the relevant basic
properties of 39K in the context of cold quantum gases, where we put a special focus
on differences to 40K as the other isotope available in our machine, and on properties
especially relevant with our experimental boundary conditions. Readers familiar with
39K can easily skip this section. Sec. 3.3.2 then summarizes the experimental procedure
implemented during this work to obtain an ultracold bosonic gas in either three or two
dimensions, resulting in a Bose-Einstein-condensate or a BKT-gas, respectively.

Finally, Sec. 3.3.3 and Sec. 3.3.4 dicuss the technical details of implementing high
field imaging and the magnetic field calibration, respectively.

3.3.1 Introduction to 39K
39K Levelscheme and Relevant Transitions There are two main differences between
the level scheme of 39K, shown in Fig. 3.3, and the level scheme of 40K, shown in Fig.
2.1 in Sec. 2.1.2. The first one is the different nuclear spin of I = 3/2 for 39K and I = 4
for 40K, and correspondingly the different number of mF -substates within the electronic
ground state. The second difference is the normal and the inverted ground state structure
for 39K and 40K, respectively.

The hyperfine splitting depends on the nuclear spin I, ∆EHFS ∼ A·I+B ·I2 [157], and
therefore the hyperfine splitting of 39K is significantly smaller than for 40K. The ground
state splitting of ∼461.7 MHz still makes it more convenient to use two independent
lasers for the cooler and repumper transition addressing the F=2 and F=1 ground state,
respectively. In contrast, for the excited state manifolds of 4p1/2 and 4p3/2 the energy
differences at zero field are only E/h = 55.5 MHz and E/h = 33.8 MHz, respectively,
and thus can easily be tuned by an offsetlock. Therefore, it is possible to, for example,
use the same laser to address either the |4s1/2, F = 2〉 ↔ |4p1/2, F = 1〉 or the |4s1/2, F =

2〉 ↔ |4p1/2, F = 2〉 transition; the switching time is limited by the performance of the
offsetlock which, in our machine, usually takes a few ten milliseconds. While the frequency
difference of 55.5 MHz ' 9.25 Γ between F=1 and F=2 on the D1-line is large enough
to clearly separate the lines, the separations on the D2-line are 3.3 MHz, 9.4 MHz, and
21.4 MHz, corresponding to ' 0.5 Γ between F=0 and F=1, to ' 1.5 Γ between F=1
and F=2, and to ' 3.5 Γ between F=2 and F=3. The MOT transition to F=3 is thus
reasonably well separated from the other states, but offresonant excitations will always
be much more relevant for 39K than they are for 40K, and the F=0 and F=1 states can
barely be resolved.
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Figure 3.3: Relevant part of the level structure of 39K, showing the electronic ground state (42S1/2)
and two electronically excited states (42P1/2 and 42P3/2). The numbers in the individual connecting
lines indicate the frequency shift of the respective transition at zero magnetic field with respect to
the crossover with the numerical value in MHz; the transitions used in the experiment are indicated
by colored, labeled lines. Compared to 40K, the energy differences between different hyperfine levels
within each manifold are much smaller, hence allowing to address different final F ′-states by just
tuning the laser’s offsetlock appropriately, as is indicated by the dotted lines. The D2 repumper is
an exception, as it serves as a reference laser and hence only has a small tuning range. Frequency
values taken from [155] and [156].

MOT and Molasses Cooling The MOT transitions are very similar to what has been
described in Sec. 2.1.2, only that the cooler laser now addresses the |4s1/2, F = 2〉 →
|4p3/2, F = 3〉 transition, and the repumper the |4s1/2, F = 1〉 → |4p3/2, F = 2〉 transition.
To realize this in the experiment, one AOM in the spectroscopy arm of the D2 setup has
to be switched off, the respective mirror has to be realigned to compensate for the new
deflection angle, and new locking flanks in the offset locks of the repumper and the cooler
have to be selected, such that switching between a 40K-MOT and a 39K-MOT can be done
in less than a minute by an experienced user1.

The Λ-enhanced gray molasses is conceptually unchanged: the principal beam now
addresses the |4s1/2, F = 2〉 → |4p1/2, F = 1〉 transition (i.e. still a F → F −1 transition),

1Within 42 seconds, limited by the walking time around the optical table.
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and the EOM-modulated repumper the |4s1/2, F = 1〉 → |4p1/2, F = 1〉 transition. As the
EOM frequency of ∼462 MHz is significantly different from the ∼1285 MHz for 40K, a
second EOM with an accordingly tuned resonance in the beam path of the laser is used,
such that the applied modulation can be controlled by switching the RF power onto the
respective EOM.

Unlike in 40K, 39K does not allow for the convenient blue MOT scheme during the
transition time while the magnetic field is decaying. Instead, we employ a hybrid-MOT
scheme similar to what has been used in [158]; the background and implementation of
this scheme will be discussed in more detail in [28].

Imaging is usually done either at low field (B . 5 G) or high field (B ≈ 500 G),
corresponding to the Zeeman regime and the Paschen-Back regime, respectively. At low
field, the MOT cooler transition |F = 2,mF = 2〉 → |F = 3,mF = 3〉 on the D2 line is
most convenient as it is a cycling transition. At high fields, choosing an imaging transition
is less obvious as one is deep in the Paschen-Back regime and the |F,mF 〉-basis ceases to be
meaningful. The selection of a reasonably working imaging transition and the connected
challenges are discussed in Sec. 3.3.3.

Magnetic Substructure The magnetically strongest trapped ground state for 39K is
the |F = 2,mF = +2〉-state in which we transfer the atoms into before the magnetic
transport. Unlike in 40K, we partially pump on the D1 line and partially on the D2
line - the “F-pump” role is fulfilled by a laser on the D1 transition from |4s1/2, F = 1〉 to
|4p1/2, F = 2〉, and the “mF -pump” role by a laser on the D2 transition from |4s1/2, F = 2〉
to |4p3/2, F = 2〉. The pumping is split between D1 and D2 due to technical reasons: with
55 MHz level splitting in the 4p1/2 manifold, the equivalent to the 40K mF -pumper would
need a 25 MHz AOM, which was not available; in our case, employing the pre-existing
D2 beam was more convenient. A table of all relevant decay ratios for both 39K and 40K
can be found in appendix A. Once pumped to the correct spin state, the atoms can be
loaded into a magnetic trap and, for example, be transported.

Additionally to the incoherent (i.e. entropy removing) optical pumping, radio-frequency
transitions can be used to transition between states within the electronic ground state.
For transitions between F = 1 and F = 2 at low field, these transitions are around 460
MHz and can in our machine be driven with an in-vacuo single loop antenna. At high
fields, the energy difference between the lowest few mF states only weakly depends on
the magnetic field and is between 80 and 120 MHz; the same antenna with a different
matching circuit is used to drive these transitions (discussed in [28]). The details of the
spin preparation are discussed in Sec. 3.3.2.
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Optical Potentials In general, the discussion about optical potentials from Sec. 2.1.2
also applies to 39K as the relevant lasers are far detuned and thus not sensitive to the level
structure. However, the creation of two-dimensional degenerate Bose gases involves no
transfers to the excited states during the preparation and hence the anti-trapping of the
excited states are less relevant. We therefore also employ potentials formed by λ = 1064

nm light, provided by a MOPA 25NE Mephisto (from Innolight, now Coherent), and an
ALS 1064/532 dual output fiber laser from Azurlight Systems. The latter also provides
blue-detuned light at λ = 532 nm used for repulsive potentials.

Interaction Tuning: Feshbach Resonances Since 39K is a bosonic species, s-wave
scattering between same state atoms is possible and relevant. Additionally, interstate
scattering, just as for the fermionic 40K, is also possible. For the lower lying hyperfine
state with F = 1, one thus has six different scattering channels that can all exhibit
Feshbach resonances. For the fields achievable in typical quantum gas machines, there
are two relevant regions of Feshbach resonances for 39K [29–31]: the “intermediate field”
region between ∼20 Gauss and ∼170 Gauss, and the “high field” region between ∼400
Gauss and ∼600 Gauss.

When selecting suitable resonances, several boundary conditions are relevant: First,
the higher field region is more convenient to use as imaging is easier there: as discussed in
more detail in Sec. 3.3.3, the imaging transitions become more closed at higher field and
hence the need for a repumping beam decreases. Brief imaging of dense atomic samples
can thus be done with only one laser, reducing the overhead needed for locking and
frequency shifting as well as for finding the correct detunings. Furthermore, the required
frequencies at these higher fields are easier to achieve with the existing laser transitions
needed for the D2 MOT and commercially available AOMs.

Another boundary conditions limits the useful interstate Feshbach resonances: due to
the second order Zeeman shift, the scattering |F = 1,mF = +1〉 + |F = 1,mF = −1〉 →
2 · |F = 1,mF = 0〉 is energetically allowed at any temperature and field and, at the
relevant fields, releases energy on the order of h · 20 MHz, which is well above the typical
trap depth used. Spin mixtures of mF = ±1 thus rapidly populate the mF = 0 state,
leaving |1,−1〉+ |1, 0〉 and |1, 0〉+ |1,−1〉 as usable interstate combinations.

A further limit on the interstate resonances stems from the typical initial conditions
of the experiments at hand. Usually, the sample is cooled by evaporative cooling down to
the formation of a Bose-Einstein condensate, which is only reasonably stable for repulsive
interactions2. It is therefore convenient to have an intrastate Feshbach resonance for

2To be more precise, it is also stable for weak attractive interactions, as long as the (effectively
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enhancing the scattering rate during the cooling, and an interstate resonance on the
repulsive side of the intrastate resonance to provide both a stable “bath” system and a
tuneable interaction at the same time. Furthermore, all involved Feshbach resonances
should have large enough widths to reduce the effect of magnetic field noise.

Useful combinations fulfilling these requirements are the intrastate Feshbach resonance
of the |1,−1〉 state at 561 Gauss in combination with the |1,−1〉+|1, 0〉 Feshbach resonance
at 526 Gauss, as well as the |1, 0〉 resonance at 472 Gauss together with the |1, 0〉+ |1,+1〉
interstate resonance at 445 Gauss. If no interstate resonance is required, the |1,+1〉
intrastate resonance at 402 Gauss is most convenient, as it only requires one spin transfer
from the magnetically trapped |2,+2〉 state.

3.3.2 System Preparation

Initial Preparation and Transport Every experiment cycle starts with the cooling
and trapping of atoms in a MOT, followed by a magnetic transport to the science position
between the microscopes, and the transfer of the transported atoms from the magnetic
trap to an optical dipole trap. The transfer from the magnetic trap to the optical trap is
done by collisional loading, where atoms scatter into a deep potential. The efficiency of
this scheme depends strongly on the density at the overlapping region, and it is therefore
beneficial to start with a high density in the magnetic trap.

Simply loading the magnetic trap from a MOT is in this case not sufficient, and addi-
tional steps are needed in order to increase the density. As the first step, Λ-enhanced gray
molasses [42–46] cools the atoms to ∼ 10-20 µK, leading to a denser cloud in the magnetic
trap. In our setup, this step is limited by the eddy currents within the large vacuum cham-
ber and the aluminum breadboards nearby – eddy currents within these structures have
decay times of a few milliseconds, and hence limit the switching times of the magnetic
field configurations. As the molasses follows immediately after the MOT and the final
temperature reached in the molasses strongly depends on the remaining magnetic field
[47, 158], the few milliseconds of eddy current decay time lead to a significant expansion
of the cloud. The molasses only provides a cooling force, but has not restoring force, and
hence cannot compensate for the lost density. We reduce this effect by using a “hybrid
MOT” scheme to first cool the atoms and increase the density with the magnetic field
still present, similar as it has been described in [158]: after increasing the gradient by
∼50%, the D2 cooler is turned off and replaced by the D1 molasses beams, while the D2
repumper is still present. This scheme leads to lower temperatures while still maintaining

repulsive) kinetic energy term dominates over the attractive interaction term.
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a restoring force [28, 158], and is followed by a rapid switch off of the D2 repumper and
the gradient field; due to the lower temperature, the following expansion until molasses is
fully operational is reduced, and we reach a phase space density of ∼ 3 · 10−5, compared
to a phase space density of ∼ 4 · 10−9 at the end of the MOT.

The next additional step is optical pumping to the spin state experiencing the strongest
gradient. Since the energy shift ∆E ∝ mF · gF · B′ depends on the magnetic gradient
B′ = ∇ ~B, the Landé-factor gF , and the magnetic quantum number mF , a large mF is
beneficial to obtain a large potential gradient and therefore a high density. The atoms
are therefore pumped to the |F = 2,mF = +2〉-state as gF > 0 for F=2. Collisions in
this polarized gas are spin-protected, and therefore no hyperfine-changing collisions are
possible, resulting in a reduced loss rate.

Once pumped to the correct spin state, the magnetic trap is rapidly switched on. The
initial switch-on is done only to a finite field in order to match the density distribution
of the free cloud; afterwards the trap stiffness is increased adiabatically by ramping the
magnetic field gradient from ∼22 G/cm to ∼85 G/cm. The transport of ∼40 mm at
constant gradient is performed by reducing the current through the MOT coils while
increasing the current in the coils centered around the science position; additional offset
coils allow the exact positioning in all spatial dimensions.

The transfer from the magnetic trap to the deep optical dipole trap is enhanced by
collisional loading, similar to what has been described in [159]. As a deep trap is favorable,
we use a P = 17 W beam at λ = 1064 nm, focused down to waists of 14.5 and 17 µm,
corresponding to a Rayleigh length of 620 µm and 850 µm, respectively, and a maximum
potential depth of ∼ 6 mK.

Degeneracy Since we work with the |1,−1〉-intrastate and the |1,−1〉+ |1, 0〉-interstate
Feshbach resonances, the atoms have to be transferred from the |2,+2〉 state to the |1,−1〉
state. This is done by three RF π-pulses: from |2,+2〉 to |1,+1〉, and then via the “Λ-
transfer” over |2, 0〉: |1,+1〉 → |2, 0〉 → |1,−1〉, as is shown in Fig. 3.4(a) and (b).

The reason for this Λ-transfer is that we observed poor performance when using a
more standard Landau-Zener transfer from |1,+1〉 to |1, 0〉 and further to |1,−1〉. While
the first sweep to |1, 0〉 works well, the second one only transfers a small fraction to
the desired |1,−1〉 state. We attribute this to thermally allowed scattering events from
|1, 0〉 + |1, 0〉 → |1,−1〉 + |1,+1〉 and |1,−1〉 + |1,+1〉 → 2 · |1, 0〉 scatterings with a
small remaining |1,+1〉 population, introducing rapid decoherence and hence preventing
an efficient Landau-Zener transfer.

To avoid this, we use two π-pulses: after the initial pulse transferring the atoms from
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Figure 3.4: Illustration of the “Λ-scheme” used for the spin preparation. a) The first RF pulse
transfers the atoms from the magnetically trapped |2, 2〉 state to the |1, 1〉 state. The inset shows
the |2, 2〉-population for different transfer pulse times. b) The magnetic field is then increased such
that the same radio-frequency is now resonant for the |1, 1〉 → |2,0〉 transition. Directly after this
pulse, the atoms are transferred to |1,−1〉, i.e. the desired final state, thus closing the second leg
of the Λ-scheme. The advantage of this approach is that the spin changing collisions for mF = 0
are avoided by reducing the time staying in such a state. The inset shows the |2, 0〉-population
for different |2, 0〉 ↔ |1,−1〉 transfer pulse times. As both |2, 2〉 and |1, 1〉 are spin-protected, their
lifetime is long and allows us to ramp the magnetic field appropriately. c) Spectrum obtained for
the second transfer current I2 (y-axis) over several hours (x-axis). The obtained signal is color coded
and the adjustment needs to be precise to ∼0.1 mA. As a 16-bit analog channel is used to control
the current through the coils, the 10 V output range is quantized in 10 V / 216 ' 0.15 mV steps,
clearly visible in the spectrum. This problem was solved by adding a voltage divider between analog
output and power supply, therefore effectively halving the quantization steps, as can be seen in d).
Since the exact resonance position drifts over the course of several hours, we have a script running
that measures a reduced version of the spectrum every few hours, extracts the center position of the
resonance, and readjusts the current settings. The shown y-range of 1.6 mA corresponds to ∼8 mG
field shift, and therefore to ∼6 kHz detuning shift of the relevant transitions.

|2,+2〉 to |1,+1〉 (ΩRabi ' 2π · 5.3 kHz), we use one pulse to transfer the atoms to |2, 0〉
and immediately after to the |1,−1〉, each with ΩRabi ' 2π · 2.2 kHz. While this leads
to some atom losses due to hyperfine-changing collisions, it still performs better than a
pulsed transfer over the |1, 0〉, which we attribute to the higher Rabi-frequency due to the
larger difference in mJ .

The spin transfer only works well when both the magnetic field and radio-frequency
match each other. As it was slightly more convenient in our machine, we chose to adjust
the current instead of the radio-frequency. Fig. 3.4(c) shows a timeline of measurements
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over ∼12 hours with the signal observed after the second π-pulse. One can clearly observe
plateaus due to the quantization of the 16 bit digital-to-analog output3 with a resolution
of 10 V/216 ' 153 µV. As the power supply4 only accepts control voltages of 0-5 V, the
analog output was reduced by a voltage divider, effectively doubling the current resolution.
This resulted in the data shown in Fig. 3.4(d), where the resolution is fine enough to track
the position. The required current stability of ∼10−4 is close to typical performances of
commercially readily available power supplies. Choosing a suitable model (i.e. reasonable
low maximum current, and hence a smaller absolute variation) together with synchronizing
the experimental cycle with the electricity grid’s 50 Hz cycle was sufficient to obtain the
required short-term stability. To compensate for the slow drift visible in Fig. 3.4(c), (d)
and between the two, we take a spectrum for both fields B1 and B2 of the transfers every
couple hours, and the center position is extracted. These extracted centers are then used
in the actual subsequent experiment runs until they are updated again.

The main origin of these drifts has not been investigated in too much detail, but we
suspect the drift of the Earth’s magnetic field to be the main contribution: the typical
drift in the absolute value of the magnetic field within a day and at a fixed position is on
the order of few · 10−8 T = few · 10−1 mG [160], so somewhat less than the typical drifts of
∼0.5-1 mG we sometimes observed within a day. A similar or slightly larger contribution
originates in the variation of the magnetic field angle, which is on the order of 0.1° within
a day and at fixed position [161, 162]. Due to the vector addition of offset field and Earth’s
magnetic field, the total field will therefore also vary even if the magnitude was constant.
For a typical vertical quantization field Bcoil ≈ 5 G and with the inclination angle θ of
68° 38’ in Hamburg, Germany (measured to the horizontal plane) [163], the total field
roughly is

BT '
√
B2
coil +B2

earth + 2BcoilBearth sin(θ) ' Bcoil

[
1 + sin(θ)

Bearth

Bcoil

]
, (3.13)

where Bearth ' 0.5 G. The variation introduced by a varying angle is then ∆BT '
Bearth cos(68)∆θ ' 0.3 mG. While a definitive proof should show the correlation with
externally measured changes in total field strength and inclination angle, we conclude
that the typical variations in Earth magnetic field are large enough to account for a
significant fraction of the observed variation.

Once transferred to the required spin state, the magnetic field is rapidly ramped up
to fields near the Feshbach resonance at 561 G, where the evaporation is performed.

3National Instruments: PXIe 6738, 32 channels, 16 bit resolution, ±10 V output range.
4Statron 3240.2, Uout = 0-16 V, Iout = 0-6.4 A
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The evaporation happens in two different optical traps - while the initial evaporation is
performed in the deep YAG trap, we continuously ramp up a pair of perpendicular λ = 850

nm beams, both located within the imaging plane of the microscopes, and with waists of
30 µm and 32 µm, respectively. The cold atoms accumulate in the intersecting region of
the YAG and the two 850 beams; once the YAG evaporation has progressed far enough,
it is switched off and the evaporation is continued in the 850 trap only. The intersection
of these two beams causes a tighter confinement and therefore a higher scattering rate,
leading to more efficient evaporation compared to the single YAG trap with the axial
confinement determined by its Rayleigh length of ∼600-800 µm. Finally, we obtain a
BEC with ∼5000 atoms in a harmonic potential with trapping frequencies of 220, 230,
and 320 Hz and a temperature of T . 0.2Tc.

3D to 2D The degenerate cloud is a three-dimensional system and still has to be
transformed into an effectively two-dimensional system. This can be achieved by freezing
out one spatial degree of freedom, i.e. by adding a tight confinement along one axis, such
that the system does not have enough energy to be in any state but the ground state
for this axis. Specifically, the temperature and the chemical potential have to be much
smaller than the trapping frequency of the tight axis; for fermionic systems, the Fermi
energy would also become relevant.

We create this effectively two-dimensional system by using a repulsive optical lattice
along the vertical direction, effectively restricting any motion to the x-y plane. This
repulsive lattice is formed by two laser beams with λ = 532 nm and P ' 290 mW per
beam, interfering at an angle of 2 · 5°. With horizontal waists of 267 µm and 268 µm,
and vertical waists of 21.0 µm and 21.5 µm, the resulting optical potential has a lattice
constant of 3.05 µm and a trapping frequency of ω = 2π · 6.5 kHz

The transfer between the three-dimensional and the two-dimensional setup is achieved
by using a “squeeze beam”. This is a red detuned, highly elliptical laser beam which
squeezes the condensate into a pancake-like form and allows to load it into a single layer
of the vertical lattice. By using a piezo-controlled mirror in its setup, it furthermore allows
to adjust the vertical position of the condensate, such that the transfer to the green lattice
causes as little heating as possible. With a horizontal waist of 372 µm and a vertical waist
of 11.8 µm, its aspect ratio is ∼1:30, and therefore provides a strong vertical, but only
minimal radial confinement. For the transfer, the squeeze power is ramped up to its full
power of 480 mW within 100 ms, while the 850 power is reduced to ∼2% of its maximal
value, resulting in a trapping frequency ratio of νz/νr ' 7 − 10. The 100 ms are much
longer than the timescale set by the radial trapping frequency with 1/νr ≈ 7− 10 ms. As
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the vertical confinement is dominated by the squeeze beam at this stage, the condensate’s
vertical position is also determined by the squeeze position, allowing to position the cloud
at the correct position with respect to the green lattice.

After reshaping the atomic cloud into this elliptical shape, the squeeze power is ramped
down again within 100 ms, and the green lattice power is increased at the same pace. After
these two transfers, the vertical confinement is provided by the green lattice, the harmonic
radial confinement is provided by the 850 beams, and the squeeze is turned off again.

Imaging Imaging is usually performed along the vertical axis through the microscopes,
as this provides the largest numerical aperture and allows us to extract spatially resolved
information. The relevant fields and imaging beam properties are discussed in Sec. 3.3.3;
here we briefly describe the optical system. The in-vacuo microscope has a high NA of
0.75, which allows for a high spatial resolution of δx ' 620 nm at λ = 767 nm. In order to
take advantage of this resolution by matching it to the camera’s pixel size, we employ two
telescopes with individual magnifications of M = 50 and M = 0.3, providing a combined
magnification of M = 15. The first of these telescopes consists of the microscope with f =
20 mm and a 2” lens with f = 1000 mm, where the large focal length was chosen to allow
for a larger working distance and better optical access [25]. The second telescope consists
of two achromatic lenses with f = 500 mm and f = 150 mm, respectively; the latter is
mounted on a z-stage5, which allows fine adjustment of the image plane onto the camera
chip. The camera used is an Andor Zyla 5.5 with a sCMOS chip and a pixel size of 6.5
µm [164]. With the magnification of M = 15, the effective pixel size in the imaging plane
is therefore 433 nm. The choice of imaging transition is discussed further below.

Radio-Frequency Transfers As already mentioned above, radio-frequency transfers
are essential for the system preparation. The transfers involved in the Λ-transfer are at
frequencies f ' 459 MHz and f ' 465 MHz, i.e. near the hyperfine splitting of the F=1
and F=2 ground states. For this transfer, high Rabi rates are essential to reduce the
observed atom losses when populating the |F = 2,mF = 0〉-state. The second transfer
range is around 119.5±0.1 MHz and is used to flip atoms from the bath state to the
impurity state. For this transfer, the optimal Rabi rate is less clear - a fast transfer
can allow for the investigation of early dynamics, like the polaron formation dynamics
similar to what has been achieved in 3D systems in [98] or initial acceleration within the
effective potential. On the other hand, short pulse times reduce the spectral resolution
due to Fourier broadening; furthermore, the contribution of excited polaron states might

5Thorlabs, SM1Z - z-Axis Translation Mount
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Figure 3.5: Radio-frequency spin transfer to create impurities. a) Relevant part of the level scheme,
showing the F = 1 states and the F = 2, mF = -2 state, i.e. states containing large contributions
of mJ = -1/2. b) Transition frequencies of the |1,+1〉 ↔ |1, 0〉 transition (dotted blue line), the
|1, 0〉 ↔ |1,−1〉 transition (solid red line), and the |1,−1〉 ↔ |2,−2〉 transition (dashed green line).
The red line corresponds to the bath-impurity transition. The inset shows the variation of the
transition frequencies with the magnetic field, indicating that the required magnetic field stability
is on the order of .0.1 Gauss for the bath-impurity transition, and ∼0.01 Gauss for the other two
transitions, corresponding to relative stabilities of ∆B/B ' 10−4 and ' 10−5, respectively. c)
Experimental data showing the |1,−1〉 ↔ |1, 0〉 Rabi transfer in a cold cloud sightly above the
condensation threshold, resulting in a Rabi frequency of ΩR/(2π) = (0.935±0.007) kHz. The visible
damping is most likely caused by scattering due to the scattering length of a ' 125a0 at the given
field.

be more relevant as the transfer becomes less adiabatic.

From a technical side, the achievable Rabi rates in our setup are limited by the large
steel vacuum chamber. The frequencies of ∼120 MHz and ∼460 MHz correspond to
wavelengths of ∼2.5 m and ∼0.6 m, respectively, and are much larger than the vacuum
windows with ∼0.15 m diameter. The chamber hence acts as a Faraday cage, significantly
reducing the obtainable effect at the location of the cold atoms. Therefore, a single-loop
coil inside the vacuum chamber, about 4 cm from the atoms, is being used as an RF
antenna. The coil is orientated such that the created magnetic field is perpendicular to
the quantization axis; since the spin flip interaction term is ∝ ~µ× ~B [165], this leads to the
maximal effect when starting in the mF = -1 state. The technical challenge in this context
is mostly the resonance matching: as the connection line and the feed-through lead to
additional effective coils, one can have resonances in different parts of the setup. Therefore,
we cannot only rely on reflection minima as a measure to determine and optimize the
matching circuit. The alternative way of measuring the emitted power with a pick-up
coil and determining the resonance positions from this is also barely possible due to the
shielding by the vacuum chamber (i.e. the Faraday cage formed by it). One therefore
has to rely on the somewhat tedious approach of verifying the resonances with the atoms
themselves.
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While using the same antenna and amplifier, two high-power switches6 were used to
switch between different matching circuits; one for the transfers at ∼460 MHz, and one
centered at 119 MHz.

Details about the procedure to obtain the final Rabi frequencies are documented in [28];
eventually, we achieved ΩR ' 2π · 5.3 kHz for the |2, 2〉 → |1, 1〉-transfer, and Ω ' 2π · 2.2
kHz for the |1, 1〉 → |2, 0〉- and |2, 0〉 → |1,−1〉-transfers, while the |1,−1〉 → |1, 0〉-
transfer at high field showed ΩR ' 2π · 1 kHz, as is shown in Fig. 3.5. This enables a
frequency resolution of ∼1 kHz, and allows for pulse times on the order of . 1 ms, which
is sufficient for our purposes.

3.3.3 High Field Imaging

All of the information we extract from the prepared system is obtained from absorption
imaging. Therefore, selecting a suitable imaging transition is essential, and in order to
do so, one first needs to decide on convenient Feshbach resonances and hence a magnetic
field region to work in.

Feshbach Resonance Selection As mentioned in 3.3.1, 39K atoms exhibit plenty of
different intrastate and interstate Feshbach resonances, but not all of those are equally
convenient to use for our purposes. The general dependence of the scattering length a on
the magnetic field B near an isolated Feshbach resonance can be stated as

a(B) = aBG

(
1− ∆

B −Bres

)
, (3.14)

where aBG is the background scattering length, i.e. the scattering length reached far from
resonance, ∆ is the width of the resonance, and Bres is the position of the resonance [24].
It is straightforward to show that the scattering length has a zero crossing at Bzero =

Bres + ∆, i.e. a(Bzero) = 0 and the scattering length changes its sign when crossing
this field, thus switching between repulsive and attractive interactions. For our scheme,
one intrastate Feshbach resonance is needed for the evaporation to degeneracy, and one
interstate Feshbach resonance is needed to control the interaction between the bath and
the impurity atoms.

For the evaporation, one needs to be on the repulsive side of the respective Feshbach
resonance, and has to be able to control the scattering length to reasonable precision.
It is convenient to use a rather broad Feshbach resonance, as any noise on the magnetic

6Teledyne Relays: Coaxial Switches SP6T 28V SMA, CCR 38S16O
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field only leads to a small variation in the scattering length and therefore allows a more
stable evaporation process. In addition, broad Feshbach resonances lead to lower three-
body losses compared to narrow resonances [27]. Typical convenient Feshbach resonance
widths ∆ are on the order of a few ten Gauss.

The same stability argument applies to the interstate Feshbach resonance, which
should also be reasonably wide. Furthermore, the resonance’s location must be located on
the repulsive side of the intrastate resonance, and should allow for enough tuning range
while keeping the intrastate scattering length within a reasonable range. Specifically, the
zero crossing of the intrastate resonance has to be avoided, as the degenerate cloud be-
comes unstable for large enough attractive interactions. Additionally, approaching the
intrastate resonance must be avoided as an increasing scattering rate will inevitably lead
to more three-body losses.

Two combinations were considered in more detail: at intermediate fields of ∼100
Gauss, one has a suitable intrastate resonance for |1,−1〉 atoms located at Bres ' 162

G with ∆ ' −61 G, and an interstate resonance for the |1,−1〉 + |1, 0〉 combination at
Bres ' 114 G with ∆ ' −19 G. Additionally, there is another intrastate |1,−1〉 Feshbach
resonance located at Bres ' 33.6 G with ∆ ' 79.5 G. This resonance has, unlike most
other resonance for 39K, a positive ∆, and hence attractive interactions at fields below,
and repulsive interactions at fields above the resonance. The combination of these two
intrastate resonances leads to the absence of the usual zero crossing, and to repulsive
interactions for the whole range between the two resonances at B ' 33.6 G and B ' 162

G. Alternatively, there is a suitable combination at high fields of ∼500 Gauss: a |1,−1〉
intrastate resonance with Bres ' 561 G and ∆ ' −55 G and a |1,−1〉 + |1, 0〉 interstate
resonance with Bres ' 526 G and ∆ ' 28 G.

While both of these combinations fulfill the requirements stated above, and the avoid-
ance of the zero crossing at the lower field combination is convenient, it is more advanta-
geous to choose the high field combination as it is further within the Paschen-Back regime.
This has two main effects: the first being a lower sensitivity of the |1,−1〉 ↔ |1, 0〉 radio-
frequency transition to magnetic field noise, as the energies of both states in this regime
tune very similarly with the magnetic field. The second advantage is that the imaging is
more convenient at higher fields compared to the fields around 100 G, where the transition
between the Zeeman- and the Paschen-Back regime occurs. In this intermediate regime,
one does not have a closed transition for imaging, and therefore one would need a second
laser to repump atoms from dark states. However, unlike at low fields (. 10 G), where
the existing MOT cooler and repumper laser are readily available to be tuned to the
transition, the absolute frequencies at this intermediate regime are detuned far enough to
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require a more dedicated setup.

Imaging Transition Selection In the high fields of ∼500 G the possible transitions
between the electronic ground state and the excited states have split up and have signif-
icantly different transition frequencies, i.e. their differences are usually well outside the
available offsetlock tuning ranges. Just scanning over all possible transitions and selecting
the best performing one is therefore not possible. Instead, a suitable imaging transitions
and the respective frequency shifts have to be determined beforehand and will here be
discussed in more detail.

At low fields, the nuclear spin I and the total angular momentum of the electrons J
couple to form the total angular momentum F = |I±J |. The magnetic quantum number
mF can then take all values of mF = −F... + F in integer steps. At higher fields, this
Zeeman regime breaks down and the Paschen-Back regime is entered, which is illustrated
in Fig. 3.6 top left: instead of the electronic angular momentum and the nuclear spin
pairing up to a total angular momentum, which then interacts with the external field, the
two components align independently with the external magnetic field as the interaction
terms I · B and J · B dominate over the I · J-term. In this regime, F and mF cease to
be good quantum numbers, and instead mI and mJ become relevant. While we usually
ignore this and refer to the states by the F andmF quantum number they are continuously
connected to, it has relevant consequences for the possible imaging transitions as changes
in mI become suppressed at high fields.

Following the framework in [157], we numerically determine the compositions of the
relevant states in the |mI ,mJ〉 basis for the fields of interest and from this determine the
allowed transitions and the needed frequency shifts with respect to the zero-field values.
For B ≈ 520 G, one obtains

|F = 1,mF = −1〉 '
√

0.975| − 1/2,−1/2〉+ eiθ1
√

0.025| − 3/2,+1/2〉, (3.15)

which is also illustrated for variable field in Fig. 3.6 bottom left, and

|F = 1,mF = 0〉 '
√

0.977|+ 1/2,−1/2〉+ eiθ2
√

0.023| − 1/2,+1/2〉 (3.16)

where θ1,2 are phases which are not relevant here and the right hand side states are
expressed in the |mI ,mJ〉 basis. Dipole selection rules at high fields state that transitions
are only allowed for ∆mI = 0 and ∆mJ = 0,±1. In the existing setup, one additionally
has the constraint that the imaging axis through the microscope is parallel to the magnetic
field direction. Thus, it is not possible to have any (sizable) π-polarization component
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in the imaging beam; the imaging beam will always be σ+-polarized, σ−-polarized, or a
linear combination of these two. The only relevant transitions are then with ∆mI = 0

and ∆mJ = ±1.
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Figure 3.6: Illustrations of different aspects of the high field imaging. Top left: level structure
of the 4s1/2 ground state and the 4p3/2 excited state for different magnetic fields. For 4s1/2, the
transition from the Zeeman regime to the Paschen-Back regime occurs at ∼100 G, while for 4p3/2 the
transition already happens at ∼5 G. The two vertical dashed lines indicate the relevant interstate
Feshbach resonances discussed in the main text. The left one is located in the transition region
between Zeeman-regime and Paschen-Back regime for the ground state, while the right one is deep
in the high-field regime. For both resonances, the excited state is deep in the Paschen-Back regime.
The two blue vertical arrows indicate the imaging transitions for the bath state and the impurity
state, as discussed in the main text. Bottom left: State composition of the bath state. At low
fields, the state has significant contributions from both the |mI = −1/2,mJ = −1/2〉 state and the
|mI = −3/2,mJ = +1/2〉 state with weights of ∼

√
0.3 and ∼

√
0.7, respectively. At high fields, the

state continuously approaches a pure |mI = −1/2,mJ = −1/2〉. At the higher relevant Feshbach
resonance, the remaining contribution from |mI = −3/2,mJ = +1/2〉 is ∼ 2 − 3%. Top right:
Decay channels for different final states for the bath imaging. Allowed final states with significant
overlap are the | − 1/2,−3/2〉 state and the | − 1/2,+1/2〉 state. The latter decays to two different
states in the ground state, each with similar probability. The | − 1/2,−3/2〉, on the other hand,
only has ∼1% chance to decay to a different state than the atoms started from, and the imaging
transition is almost closed. Bottom right: Calibration data. As the curves of the states’ energies
are almost linear, the detuning needed for the imaging is almost perfectly linear in the current. This
allows to calibrate the detuning needed for an applied current, and thus an automatic tuning to the
correct imaging detuning.
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As the dominant component of the |F = 1,mF = −1〉 state is the |mI = −1/2,mJ =

−1/2〉, the two most relevant final states in the 4p3/2-manifold are the third-lowest state,
consisting mostly of |mI = −1/2,mJ = −3/2〉, and the tenth-lowest state, predominantly
consisting of |mI = −1/2,mJ = +1/2〉. Both final states have additional admixtures with
weights of ≈

√
10−4; the latter one, for example, from |mI = +1/2,mJ = −1/2〉.

From the two possible final states, the suitable one can be selected by considering
the final states these can decay to: the first state has mJ = −3/2, while the second
state has mJ = +1/2. As the decay can have ∆mJ = 0,±1, the final state may have
mJ = −5/2,−3/2,−1/2 in the first case, and mJ = −1/2,+1/2,+3/2 in the second case.
As the electronic ground state has J = 1/2, there are no states available with mJ = −5/2

or mJ = ±3/2, and thus the third lowest state can only decay to a state containing
|mI = −1/2,mJ = −1/2〉, while the tenth-lowest state can decay to states containing
either |mI = −1/2,mJ = −1/2〉 or |mI = −1/2,mJ = +1/2〉. The latter case has two
relevant decay channels, and is therefore not well-suited for imaging, while the former
has an almost-closed imaging transition. It is then preferable to apply σ−-polarized light
and transfer the atoms from |F = 1,mF = −1〉 ≈ |mI = −1/2,mJ = −1/2〉 to the state
mostly consisting of |mI = −1/2,mJ = −3/2〉.

A similar discussion applies for the |F = 1,mF = 0〉-state, which will be used as the
impurity state. A suitable final state for imaging is the second lowest state in the 4p3/2-
manifold, mostly consisting of |mI = +1/2,mJ = −3/2〉. The imaging of both states thus
requires the same imaging light polarization.

Loss Channels When applying the above scheme, three different loss channels are
present. The first one originates in off-resonant excitations to other states: due to the
large energy differences between different states this is usually energetically suppressed
and, at the fields discussed here, usually leads to a loss probability of < 0.1%. The second
loss channel is decay from the minor component of the final state: as the final state
has admixtures with other mI-values, the final state after the subsequent decay does not
necessarily have the same mI as the initial state. A rough estimate for the strength of
this effect is the square of admixture weight in the excited state, and is usually around
10−4. Finally, the third and strongest loss channel is the decay back to the initial mI ,mJ -
combination, but within a different |F,mF 〉-state as is indicated by the thin decay line in
Fig. 3.6, top left: for simplicity, let us assume the atoms start in the |F = 1,mF = −1〉-
state with the mI ,mJ combination stated above, get excited, and then decay back to the
|mI = −1/2,mJ = −1/2〉-state. The |F = 1,mF = −1〉-state has a small admixture
of |mI = −3/2,mJ = +1/2〉; similarly, other states can have a small admixture of the
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|mI = −1/2,mJ = −1/2〉-state the atoms decay to. In this case, the state connected
to |F = 2,mF = −2〉 has about

√
0.025 weight of this component, and while an exact

calculation requires a more careful treatment, the weights already indicate that this non-
closed part of the transition is on the order of a few percent. Using this imaging transition
should hence create sufficient signal even without an additional repumping beam. For
the extraction of atom numbers, however, the loss probability and therefore increasing
transparency during the imaging process has to be taken into account.

Frequency Detunings The next parameter to determine is the frequency detuning
needed for the imaging transitions. In the Paschen-Back regime, the energy of an individ-
ual state mostly depends on mJ , and one roughly has ∆E ∝ mJ ·B. As the final state of
the imaging has a larger |mJ |, the tuning of the upper state is stronger than the tuning
of the ground state: while the energy of the lower state increases with increasing mag-
netic field, the final state’s energy decreases even faster. The energy difference between
the two relevant states therefore reduces with increasing field. For the bath imaging, i.e.
imaging of the state connected to the |F = 1,mF = −1〉 state, and a field of B ' 520 G,
this energy difference corresponds to a frequency detuning of ∆f = ∆E/h ≈ −960 MHz
with respect to the zero field transition from the |4s1/2, F = 1〉 to the 4p3/2-manifold,
i.e. the “repumper” transition. Similarly, the impurity imaging, i.e. imaging of the state
connected to |F = 1,mF = 0〉, requires a detuning of ≈ −850 MHz, and thus one has
≈ 110 MHz ' 18.3 Γ relative difference for the two imaging transitions.

Although the relevant states are connected to states usually addressed by the “re-
pumper” laser, the large negative detuning required makes it more convenient to use the
“cooler” laser for the imaging, as it is red detuned by ∆EHFS ' −461.7 MHz from the
repump transition, which reduces the needed additional detuning by about 50%. Taking
into account the fact that the “cooler” laser is not running directly at resonance, but is
redshifted to the resonance by an AOM, the bath imaging requires an additional detun-
ing of ∼-410 MHz, and the impurity imaging ∼-300 MHz. As each of those frequency
shifts can easily be covered by a single path AOM, we set up two independent imaging
paths with one AOM and mechanical shutter each, and then combine both beams by a
non-polarizing beam splitter cube before coupling them into an optical fiber guiding it to
the experimental setup. For both paths we use an AOM with the a resonance frequency
of 350 MHz and a bandwidth of 50 MHz7; while both 300 and 410 MHz are already more
than the bandwidth from the center frequency, the power requirements for the imaging
are very low, and the low efficiency is of no concern. Compared to a single AOM setup,

7Gooch&Housego, 3350-125
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this two-path setup allows a more flexible application of the individual imagings, for ex-
ample for imaging of both components with minimal time delay. Furthermore, the large
difference between the two AOM frequencies avoids having to drive the offsetlock to large
detunings, which can sometimes lead to instabilities.

Intermediate Fields For completeness, we also briefly discuss the case of the interme-
diate field region around 100 G and outline the main challenges. For simplicity, we only
discuss the bath imaging; similar conclusions apply for the impurity imaging. At 114 G,
the initial state is

|F = 1,mF = −1〉 '
√

0.61| − 1/2,−1/2〉+ eiθ1
√

0.39| − 3/2,+1/2〉. (3.17)

At this field, the states in the 4p3/2-manifold are typically pure except some ∼
√

0.5%

admixture, leading to about two orders of magnitude more losses than at the high field
discussed above. Compared to the high field composition, the initial state has a much
higher admixture of some 20-30 %, compared to ∼2 % for B ≈ 500 G. When applying
σ+-light and tuning the laser frequency to the correct value, one can transfer atoms to
a the final state mostly consisting of | − 3/2,+3/2〉. Due to the selection rules and the
available values of mJ in the ground state, this state can only decay to the | − 3/2,+1/2〉
state. Significant contributions of this are present in the initial state connected to the
|F = 1,mF = −1〉, and in the state connected to the |F = 2,mF = −2〉:

|F = 2,mF = −2〉 '
√

0.39| − 1/2,−1/2〉+ eiθ1
√

0.61| − 3/2,+1/2〉. (3.18)

Note that this state has the same components as the one above, just with the weights
switched. About half of the decays will end in this state, preventing a single beam
imaging as it is possible at high fields. Instead, one would need a second imaging beam,
detuned by ∼50 MHz. For imaging both the bath and the impurity state in a flexible
manner, a total of four beam would then be necessary. While possible, the intermediate
field regime therefore adds more complexity and makes imaging close to the high field
Feshbach resonances simpler to implement.

3.3.4 Field Calibration

In order to extract the unshifted transition frequencies, we have to calibrate the magnetic
field near the relevant |1,−1〉+|1, 0〉 interstate Feshbach resonance at 526 Gauss, which
we do by spectroscopic measurements. To reduce interaction effects, we here work with a
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Figure 3.7: a) Loss signal over a range of coil currents. b) Close-up of the central region. The
Feshbach resonance between the |1,−1〉 bath state and the |1, 0〉 impurity state is clearly visible
around 99.0 A by the broadening of the loss signal. The asymmetry in the loss signal is due to the
mean field shift becoming relevant at large scattering lengths, and thus introducing shifts in opposite
directions for repulsive and attractive interactions.

thermal gas slightly above the condensation threshold.

With a radio-frequency pulse, we transfer atoms from the |1,−1〉 state to the |1, 0〉
state, let the cloud settle for 10 ms, switch off the trap and then measure the remaining
population in the |1,−1〉 state after 1.8 ms of time-of-flight. The radio-frequency pulse is
switched on at full power for 3 ms, leading to a Fourier broadening of ∼300 Hz. Since we
expect the Feshbach resonance to be located at 526.21 Gauss, i.e. ∼99.0 A, we measure
the transition frequency at different currents between 97.0 A and 103.0 A, corresponding
to ∼515 Gauss and ∼547 Gauss, respectively. These limits avoid the zero crossing of
the bath-state scattering length (located at 506.2 Gauss ' 95.5 A) and the Feshbach
resonance of the bath state, located at 561.4 Gauss ' 105.6 A.

Fig. 3.7 shows the atom loss signal of these reference runs. The Feshbach resonance
is clearly visible by the broadening of the loss signal. We attribute the broadening to a
combination of two effects, one leading to symmetric broadening and one leading to an
asymmetric broadening. The symmetric contribution is collisional broadening, where the
increased collision rate due to the larger scattering length leads to faster decoherence of
the transfer pulse, and the asymmetric contribution is due to the remaining mean field
shift in the trap. As we observe the total signal from the trap, we integrate over different
densities and different magnitudes of the mean field shift. While the magnitude varies,
the sign of the mean field shift is, for a fixed field, always the same, and leads to an
asymmetric broadening. With the present level scheme as sketched in Fig. 3.8(a), this
asymmetric broadening shifts the transition to lower frequencies for repulsive interactions
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(currents below the interstate Feshbach resonance at ' 99.0 A), and shifts the transition
frequencies to higher values for attractive interactions at currents above ' 99.0 A. From
the spectrum at each current, we extract the position of maximum transfer by fitting a
Gaussian line shape to the extracted remaining population.

To extract the relationship between current and actual field at the position of the
atoms, we fit the measured transition frequencies with the theoretical expectation, where
the tuning of the field with the current is the only free parameter. The ground state
manifold of 39K has its transition between the Zeeman regime and the Paschen-Back
regime at magnetic fields of ∼50-100 G, such that F andmF are not a good basis anymore
when operating at ∼500 G. For convenience, we nevertheless still label our states with
the F and mF quantum numbers of the state that continuously connects to the state of
interest.

The theoretical model follows Eq. 32 in [166] with the values for experimentally
determined parameters like Ahfs taken from [157]. The hyperfine Hamiltonian can be
expressed as

Hhfs = AhfsI · J +Bhfs

3(I · J)2 + 3
2
I · J− I2 · J2

2I(2I − 1)J(2J − 1)
+
µB
~

(gJmJ + gImI)B, (3.19)

where I and J denote the nuclear spin and the electronic angular momentum (including
in general both spin and orbital angular momentum), respectively, and mI and mJ are
their respective magnetic quantum numbers. For 39K, one has |I| = 3/2. Ahfs and Bhfs

are parameters that have to be determined experimentally, gJ and gI are the electronic
and nuclear g-factors, and B is the magnitude of the external magnetic field. The first
term describes the interaction between the magnetic field created by the electron and the
nuclear spin’s magnetic moment, the second term incorporates the electric quadrupole
interaction between nucleus and electron, and the third term is the interaction of the
electronic and nuclear spin with the external magnetic field. As we are here only con-
cerned with the ground state manifold, we have |J| = 1/2, and the quadrupole interaction
term vanishes. We implement this calculation employing the matrix element expressions
provided originally in [167]. Note that Eq. 3.19 has the correct expression (2J-1) in the
denominator of the quadropule term, where the factor of 2 was missing in [166]. Further-
more, the diagonal matrix element stated in Eq. 50 in [166] incorrectly states a factor of
3/2 in front of the m2

I term, where the correct factor is 3.

The resulting Hamiltonian is then numerically diagonalized, and the transition fre-
quency between the relevant states at a given field can be extracted. In order to reduce
the effect of the remaining mean field shift, we exclude the measurements closest to the
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Figure 3.8: a) Sketch of the relevant part of the level structure. The initial state |1,−1〉 has a higher
energy than the final impurity state |1, 0〉. For repulsive interactions, the energy of the impurity state
is raised and the transition frequency decreases. For attractive interactions, the transition frequency
correspondingly decreases. b) Extracted center positions (black data points) and resulting fit with
the model described in Eq. 3.19. The insets show three spectra for different interstate scattering
lengths: moderately repulsive (ainter ' 185 a0) at 98.3 A, strongly attractive (ainter ' −1400 a0)
at 99.2 A, and moderately attractive (ainter ' −120 a0) at 101 A. At the same time, the intrastate
scattering length changes between ' 12a0 at 98.3 A and ' 36 a0 at 101 A. Only the dark data points
have been used for the fit, and the gray ones have been excluded to avoid biases in the extracted
field tuning due to the mean field interaction shifts near the resonance. These shifts are very clearly
visible in the (zoomed in) residuum plot c) near the Feshbach resonance position, where the x-axis
has been rescaled from currents to fields. As most of the residual originates from the cloud’s mean
field shift, it can be used to determine the Feshbach resonance position. The two lines show fitted
mean field shifts. The dotted green line uses the literature value from [31] for the Feshbach resonance
parameters and only has the amplitude as a free parameter. The dashed red line additionally adds
the Feshbach position as a free parameter. The difference is about (0.19 ± 0.06) G and therefore
significantly more than the uncertainty of 0.05 G stated by [31].
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Feshbach resonance, and then fit the measured transition frequencies by the model in
Eq. 3.19. The only free parameter here is the proportionality constant between set
current and actual field, i.e. B = γCoil · I, resulting in a field tuning of the coils of
γCoil = (5.3143 ± 0.0001) G/A. Allowing the current-field relationship to include a con-
stant offset field, i.e. B = γCoil · I + B0, changes the value of γCoil, as we only probed
rather high currents around 100 A. The predicted field at each current does not change
significantly though, as a small positive offset field is compensated by a slightly smaller
value of γCoil, such that the effect cancels out over the region of interest. Fig. 3.8(b) and
(c) show the used center frequencies (black markers), the resulting fit (red line) as well as
the residual.

The excluded data points near the Feshbach resonance in Fig. 3.8(b) and (c) show a
clear shift near the resonance and thus allows us to verify the Feshbach resonance position.
As we are interested in the position of the Feshbach resonance, we treat both the overall
amplitude (hence including the density) and the position as free parameters. For the
resonance width and background scattering length we assume the literature values given
in [31]. Fig. 3.8(c) shows the extracted shift both for the literature value of the Feshbach
resonance position, and the result of the variable position, where the optimal position has
been found to be shifted to slightly lower fields. The difference is about (0.19± 0.06) G,
and thus significantly more than the uncertainty of 0.05 G stated by [31]. Introducing a
more sophisticated model for the individual spectra, where we include both the collisional
broadening and the asymmetric mean field shift, does not resolve this tension. As the
reason for the discrepancy is not known and the difference is rather small, we will use the
literature values from [31] for converting fields to scattering lengths.
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Chapter 4

Excitation Spectra in 3D and 2D

4.1 3D Polaron Spectra

Before proceeding to a two-dimensional system, we spectroscopically investigate a three-
dimensional system. This has previously done and we reproduce spectra in agreement
with [94] and in general agreement with [95]. Before presenting our spectra, we briefly
summarize the relevant previous work.

In 2016, the authors of [94] prepared a 87Rb BEC with weakly interacting 40K im-
purities. An RF pulse was then used to flip the 40K atoms into a hyperfine state which
exhibits a Feshbach resonance with the surrounding BEC. The strength and sign of the
40K-87Rb interaction could therefore be controlled, allowing to extract the energy, spectral
width, and lifetime for both attractive and repulsive interactions. Around the same time,
a BEC formed by 39K atoms was used in Aarhus to measure the spectrum and line width
across a Feshbach resonance between two different mF -states [95], also leading to a later,
more in-depth analysis of their observed line shapes [96].

A slightly different approach was chosen a few years later by Yan et al. [97]. Sim-
ilar to [94], they immersed a dilute cloud of 40K into a BEC, in their case formed by
23Na. In contrast to injection spectroscopy done in the earlier works, they used ejection
spectroscopy by first adiabatically creating a strongly interacting polaron and then trans-
ferring the impurities into a weakly interacting state. Furthermore, their high optical
resolution allowed them to resolve the density profile of the BEC, and hence also enabled
them to image the spatially dependent response for different detunings. By varying the
bath’s temperature, they investigated its influence on polaron’s energy and lifetime. Most
notably, they found that for strong enough attractive interactions, the polaron’s energy
decreases with temperature again, i.e. that the strongest bound polaron occurs at finite
temperatures of T ≈ 0.4Tc, while the lifetime continuously grows below Tc.
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As ejection and injection spectroscopy are sensitive to different aspects - for example,
states with short lifetime cannot be investigated in ejection spectroscopy due to the adia-
batic preparation - and we perform injection spectroscopy, the work performed in Boulder
[94] and Aarhus [95] are most directly comparable to what is presented in the section be-
low. As mentioned above, our results are in good agreement with [94] and, apart from
some differences discussed below, in general agreement with [95].

We here first summarize the experimental parameters and procedure, then discuss the
measured spectra, followed by a more detailed analysis of the observed line shapes, which
we can describe very well when employing custom models that include excited polaron
states. Finally, we conclude with the extracted peak energies and a comparison with the
previous work.

4.1.1 Experimental Procedure

The experimental sequence for obtaining the polaron spectrum in our 39K BEC is very
simple: As described in Sec. 3.3.2, we prepare a condensed cloud of ∼5000 atoms in the
|1,−1〉 hyperfine state at a temperature of T . 0.2Tc. From here on, we will usually refer
to the |1,−1〉 state as the bath state, and to the |1, 0〉 state to the impurity state. The
interaction parameter 1/kna implicitly depends on the density as k3D

n = (6π2n)1/3; we will
always refer to the peak density and therefore to the peak interaction parameter1.

The condensate is trapped in an optical dipole trap formed by two 850 nm beams with
trapping frequencies of 220 Hz radially and 310 Hz vertically. Over the range of interest,
the interaction within the bath is weakly repulsive: the scattering length ranges from ∼10
a0 at 98 A to ∼24 a0 at 100 A. With these parameters, the peak density of the cloud is
between 2 · 1014 cm−3 and 3 · 1014 cm−3, and the corresponding mean field shift in the
center of the bath is between 500 and 700 Hz. After ramping the field to a suitable value,
we apply a radio-frequency pulse at or near the transition frequency between the |1,−1〉
bath state and the |1, 0〉 impurity state. Unless mentioned otherwise, the RF pulse is
driven at full power for 2 ms, corresponding to a ∼4π-pulse in a non-interacting system.
Due to the large interaction between bath and impurity atoms, the Rabi oscillation here
rapidly decoheres and no oscillation can be observed. After the pulse, the system is left
to thermalize for 10 ms, and subsequently released from the optical trap. After 2 ms of
time of flight, the cloud is imaged with absorption imaging as described in Sec. 3.3.2.
The imaging is done at the field of the RF transfer, and the imaging laser therefore has
to be ramped to the correct detuning at the same time. The resulting density profiles

1Note that [95] used the average density with, assuming a Thomas-Fermi profile, nav = 0.4·n0, leading
to a ∼25% smaller kn and hence a ∼36% larger value of the interaction parameter.
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Figure 4.1: Polaron spectrum of the 3D system. a) Condensate fraction loss. b) Condensate
atom number loss. Both measures show similar spectra, but differ in the exact line shapes discussed
later: for attractive interactions (negative values of 1/kna), the signal is continuously increasing
with the maximum observed signal at zero detuning, i.e. at the unshifted frequency value. Repulsive
interactions, on the other hand, show a clearly distinct branch, where the maximum loss occurs
at increasingly positive detuning for increasing interacting strength and a vanishing signal at the
unshifted frequency. The position of the Feshbach resonance is marked by the vertical red dashed
line, and the molecular branch is indicated by the red dotted line starting in the center of the plot.

are fitted with a bimodal distribution, from which the BEC atom number, the gaussian
background, and the condensate fraction are extracted. The main observables discussed
here will be the BEC atom number and the condensate fraction.

4.1.2 3D Polaron Spectrum

The obtained loss spectra are shown in Fig. 4.1, where (a) shows the loss in condensate
fraction, while (b) shows the loss of condensate atom number. The y-axis is the detuning
shift of the final state, i.e. the difference between the unperturbed transition frequency
at the respective field and the probed transition frequency, and has been rescaled by the
natural energy scale En = ~2k2

n/(2m) with kn = (6π2n)1/3 as introduced above. The sign
of this difference has been flipped as the initial state is energetically higher lying than
the final state that the atom is flipped into. In the plot the presented shift is negative
for attractive interactions and positive for repulsive interactions. Over the relevant range,
En/h ranges between ∼60 kHz at 1/kna = −4 over ∼75 kHz at 1/kna = 0 to ∼80 kHz at
1/kna = 4.

Both the condensate fraction loss and the condensate atom number loss show very
asymmetric spectra: on the attractive side, the signal is strongest close to zero detuning
and becomes weaker towards more negative detuning. For positive detuning, there is only
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very little loss visible, especially for interaction parameters of 1/kna < −2. For repulsive
interactions, on the other hand, we observe an upwards bending branch with decreasing
weights towards both lower and higher detuning. The branch both broadens and becomes
weaker when approaching the Feshbach resonance from the repulsive side. Near the
Feshbach resonance, the branch is vanishing as expected: for very strong interactions, the
quasi-particle residue should decrease, leading to a lower transfer rate and hence a weaker
signal. We attribute the in general stronger signal on the attractive side to dynamics
happening after the creation of the impurities: while repulsive interactions should lead to
an expulsion of impurities, and hence a limited time of interaction, attractive interaction
should cause impurities to accumulate at the center of the condensate. Following this
interpretation, it is to be expected that attractive interactions lead to a stronger reduction
of the condensate fraction. The dotted line in Fig. 4.1 indicates the molecular bound
state energy, which is responsible for the Feshbach resonance. As its energetically below
the repulsive branch, the repulsive polaron can relax into the molecular state, and in
consequence to loss from the system.

Fig. 4.2 shows the influence of varying RF power and pulse length, where (a) shows
the spectra at full RF power, (b) shows the spectra at 30% of the maximal amplitude, i.e.
10% of the full power, and (c)-(e) show the line shapes for selected interaction parameters
and different settings. We observe a small dependence on the power of the radio-frequency
pulse for attractive interactions, where the onset of signal shifts to more negative detuning
for higher RF power. However, increasing the pulse time at full RF power even further
leads to no further shift, suggesting a saturation of the effect. In case of the attractive
interaction, we are mostly interested in the onset of the signal as we interpret this as
the signal originating from the densest region. For these regions, the long pulses are not
problematic as the signal stays small and the back reaction on the system can therefore
be assumed to not be relevant.

4.1.3 Line Shape Modeling

Fig. 4.4 shows a selected few individual line shapes for the condensate atom loss. In order
to extract meaningful parameters, we try to derive a model explaining the observed line
shapes, starting with the repulsive side.

Repulsive Interactions For repulsive interactions, the authors of [96] suggest a loss
model, where the impurity atoms are expelled from the central trapping region due to
the repulsive interaction with the condensate. During expulsion, the impurity atoms can
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Figure 4.2: High Power / Low Power Comparison Plots. a) and b): High and low power spectrum for
the condensate fraction, respectively. The dotted vertical lines indicate the positions of the line cuts
shown on the right. c) Line shapes for attractive interactions for high power, low power, and longer
pulses at high power. d) Same as c), but on resonance. e) Same as c), but for repulsive interactions.
Compared to lower RF powers, the high power data for attractive interactions shows a consistent
shift to more negative detunings, while the line shape is preserved. For repulsive interactions, no
significant shift is observed. In the case of longer pulses, we used 3 ms radio-frequency pulses instead
of 2 ms. No difference in the spectra are observed in this case, suggesting a saturation of the signal.

undergo three-body collisions with two condensate atoms, leading to a larger loss signal
from dense regions.

Starting with no collisions, and assuming an energy shift that is proportional to the lo-
cal density (as one has on the mean field level), the signal strength S(f) in a 3-dimensional
system is obtained by integrating over the resonant region in the condensate:

S(f)df ∝
∫ r2

r1

r2n(r)dr ∝
∫ nres+∆n

nres

√
1− n · ndn, (4.1)

where it has been used that the Thomas-Fermi profile as depicted in Fig. 4.3(a) with
n(r) = n0(1−r2/R2) leads to r2(n) = R[1−n/n0] and ∂r/∂n ∝ 1/

√
1− n/n0. Thus, one

obtains S(f) ∝ n ·
√

1− n. To reproduce the measured signal, this line shape additionally
has to convoluted with the frequency broadening due to the finite pulse width. This leads
to a small broadening and smoothing out, but keeps the main features intact: there is no
signal for detunings below zero, as the shift is repulsive for any density, and the signal
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has a sharp drop towards the maximum frequency as the relevant volume quickly reduces.
Including the enhanced losses from three-body collisions also does not significantly alter
these features. The dominant effect is only additional loss at high densities, leading to
an enhanced signal at high detunings. This is due to a combination of the higher scatter-
ing probability resulting directly from the higher density, and the slower acceleration of
impurity regions in the flatter density distribution, and therefore larger propagation time.

Fig. 4.4(a) shows one typical repulsive spectrum taken at an interaction parameter
of 1/kna = 2.6, together with expectations of this model, where different values for the
three-body recombination rate have been used in order to illustrate its effect. It is obvious
that this model performs poorly on our data: it does not at all reproduce the exponential
decay of signal for larger detuning.

We instead consider two other heuristic models: the first one considers the condensate
fraction loss signal and is a purely phenomenological model. It mostly serves to extract
parameters from the line shape. In this case, we describe the line shape by a linear increase
starting at zero detuning up to some maximum detuning, and an exponential decay of the
signal strength for even higher detuning. Apart from amplitude and offset of the signal,
the only free parameters are the detuning of maximum signal and the frequency decay
scale entering the exponential decay.

The second model follows a physical motivation: in this case, flipping atoms into the
impurity state is not only possible at one fixed detuning for each density, but also at
higher detunings. We interpret this as flipping into an excited polaron state, while the
lowest possible detuning (at a fixed density) corresponds to the creation of the polaronic
ground state. We expect the overlap, and hence the transition probability, to decrease for
higher excited states and model the decreasing overlap heuristically with an exponential
decay. The total signal is then obtained by integrating over all densities:

S(f)df ∝
∫ n0

0

n ·
√

1− n · θ(δlocal) · exp(−δlocal/fdecay)dn, (4.2)

where δlocal ≡ f − fmax · n/n0 is the local detuning with respect to the maximum shift at
the respective density and n0 is the peak density in the center of the condensate. With
this expression, we implicitly assume that the local energy shift and the maximum energy
shift are given by the mean field shifts g ·n(r) and g ·n0, respectively This expected signal
is then convoluted with the frequency response due to the finite pulse length.

This model is similar to a simplified version of the attractive-regime model by [96].
They consider three contributions relevant at different detunings: at resonance, the re-
sponse is a delta-peak broadened by the finite pulse width. To higher frequencies, this
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Figure 4.3: Sketch of the line shape model used for repulsive interactions as described in Eq.
4.2. a) Profile of the energy shift when assuming that the local energy shift is proportional to the
density, i.e. δ(r) ∝ n(r). When only considering resonant transfers, applying an RF pulse with
detuning δRF can flip atoms into the impurity state only at the positions marked with the black
circles. However, in our model we also include the possibility to create “excited polarons” at a
position r even when δRF > δ(r) as indicated by the red circle. For any positive local detuning
δlocal ≡ δRF − δ(r) we assume excited states to exist, although the probability of transfer decreases
exponentially, as illustrated by the red lines on the right side of the potential hill. b) Signal strength
obtained at a fixed position or, equivalently, density when assuming a δ-peak response with pulse-
width broadening. c) Signal strength obtained at the same position when assuming the excitation
model described in Eq. 4.2. The black dashed line shows the expression inside the integral and the
solid line the same after a frequency convolution modeling the finite pulse width. For the shown
position/density, detunings below δ(r) do not produce a signal. For frequencies above δ(r) the signal
strength decreases exponentially, where the decay scale is a free parameter.

is followed by an exponential decay of signal, which eventually transitions into a power
law with exponent -5/2 in order to capture the expected contact profile. The relative
integrated weight of the exponential and the power-law part then contains information
about the quasi-particle residue. In our case, fitting this model reproduces the simpler
model described above, where the relative weight of the resonant peak becomes negligible
and the transition to the power-law behavior is located at high detunings, where the noise
becomes dominant, and we are therefore not sensitive to the exact transition frequency.

Fig. 4.4(b) and (c) show a typical repulsive line shape with these two models fitted
to the data. In contrast to the repulsive-regime model used by [96], these two models
capture the features of the observed line shapes in the loss of condensate fraction very
well and allow us to extract the peak frequency fmax and the decay scale fdecay. For the
loss of condensate atom number, these two models do not capture the flattening of the
curve near the peak very well.

Attractive Interactions For attractive interactions, the line shapes are very different:
we observe the strongest response close to zero detuning, and decreasing signal towards
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Figure 4.4: Line shape models for repulsive and attractive interactions in the top and bottom row,
respectively. a) - c) Repulsive interactions at 1/ka = +2.6. Independent of the exact value of the
three-body recombination rate, the loss model described in [96] describes the data very poorly, while
both the phenomenological and the physically motivated model work very well for the condensate
fraction loss (center) and reasonably well for the BEC atom number loss (right). In the latter case,
the models fail to properly describe the saturation of the signal near the peak. d) - f) Attractive
interactions at 1/ka = −2.6. d) The model used by [96] reproduces the signal for negative detunings,
but predicts a much stronger response for positive detunings. The phenomenological model as well as
the excited states model discussed in the main text succeed much better at describing the observed
signal for both the loss in condensate fraction e) and the loss of BEC atom number f). Including
the relaxation term slightly improves the agreement with the observed condensate fraction loss.

further negative detuning until the signal stops rather rapidly. Towards positive detuning,
we observe a rapid suppression of response. The above mentioned attractive line shape
model by [96] is used in Fig. 4.4(d) to describe the observed spectrum for an attractive
interaction at 1/kna = −2.6. The signal at negative detunings can be reproduced quite
well, but in contradiction to what we observe, the model predicts a too large response at
positive detunings.

The striking feature observed for the attractive branch is the very rapid decrease
of signal for larger negative detunings. We interpret the point of vanishing signal as
stemming from the region with highest density, and thus being the most interesting pa-
rameter. In order to simply extract this parameter, we therefore again resort to a purely
phenomenological model: for the condensate fraction, we model this with no loss below
some lower cutoff frequency, and then a linearly increasing signal up to zero detuning.
For the condensate atom number, we use a quadratic profile instead of the linear increase.
For positive detunings, the data in both cases is well described by a power law. Apart
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4.1. 3D Polaron Spectra

from amplitude and offset, the free parameters are then the maximum amplitude and the
power law index.
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Figure 4.5: Sketch of the line shape model used for attractive interactions as described in Eq.
4.3. a) Energy shift profile when assuming δ(r) ∝ n(r). As in the repulsive case in Fig. 4.3
resonant transfers with δRF can only flip atoms at the positions marked with the black circles. For
the attractive line shapes we again also allow for excited states to be created when δRF > δ(r) as
indicated by the red circle and the red lines. Within our model, the transfer weights are constant for
states bound within the attractive condensate and quickly decrease for unbound states. b) Signal
strength obtained at a fixed position or, equivalently, density when assuming a δ-peak response
with pulse-width broadening. c) Signal strength obtained at the same position when assuming the
excitation model described in Eq. 4.3. The black dashed line shows the expression inside the integral
and the solid line the same after a frequency convolution modeling the finite pulse width. For the
shown position/density, detunings below δRF do not produce a signal. Between f = δRF and f = 0,
the created signal is constant. For f > 0 the signal amplitude decreases with a power-law behavior.
The green lines correspond to the same settings but with the parameter for delayed energy deposition
c set to 0.25 instead of 0, i.e. allowing for the relaxation of excited polarons.

A second, more physically motivated model, is sketched in Fig. 4.5 and compared to
actual data in Fig. 4.4(e) and (f). It assumes the possibly to create excited states at
any energy δlocal above the local maximum shift δ(r), similar to the repulsive case, but
distinguished between “bound polarons” and “free polarons”. Considering a fixed density,
“bound polarons” can in this model be created for detunings δRF between the maximum
shift δ(r) and the unshifted transition frequency, i.e. for δ(r) ≤ δRF ≤ 0. These states
are still trapped within the effective potential formed by the bath state. “Free polarons”
are relevant for for δRF > 0 and correspond to states that are no longer trapped within
the effective potential. Including the volume effect, the integrated signal thus becomes

S(f)df ∝
∫ n0

0

n ·
√

1− n · [gbound(n, f) + gfree(n, f)] dn, (4.3)

where gbound(n, f) models the contribution originating from “bound polarons” and gfree(n, f)

models the contribution from “free polarons”.
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Chapter 4. Excitation Spectra in 3D and 2D

For gbound, we assume a homogeneous profile

gbound(n, f) = θ(δlocal)θ(−f), (4.4)

where θ is the Heaviside step function and δlocal ≡ f − fmax · n/n0 is the local detuning
with respect to the maximum shift at the respective density and n0 is the peak density
in the center of the condensate. This corresponds to the repulsive line shape model in
Eq. 4.2 in the limit of fdecay → ∞. When using a finite decay scale instead, this free
parameter becomes very large, effectively just reproducing the homogeneous profile. We
therefore removed this parameter from the model.

For gfree we assume a power law decay which we parametrize as

gfree = θ(f) ·
[
f + σ

σ

]α
, (4.5)

where σ is the frequency broadening due to the finite pulse width and the power law index
α is a free parameter, that should be negative to produce a decreasing signal strength. Our
physical motivation for the different functional forms of the two regimes is the assumption
that for f > 0 the created state is not bound by the attractive condensate and the wave
function extends over the size of the optical trap. Compared to a state trapped within the
condensate, we therefore expect the spatial overlap to be reduced by a factor of at least
(σTrap/RTF )3 & 102, and attribute the rapid loss of transfer probability to the reduced
wave function overlap with the final state.

The physically motivated model describes the data very well, indicating that we indeed
have a large population in excited states. Note that the functional form of gfree differs
from the one used for the repulsive case, where we assumed an exponential reduction
of transition probability for excited states. Changing this, i.e. assuming exponential
suppression for the attractive case or power-law decay for repulsive interaction, describes
the observed data significantly worse. We speculate that the reason for this is due to
the different dynamics in both cases: while the created impurity state is unbound in
both cases, the interaction between impurity and condensate leads to an increased spatial
overlap for attractive interaction, and an expulsion for the repulsive interaction. The
transition probabilities for these two cases are therefore expected to be different, which
might lead to the two different functional forms needed to model the data well.

We also considered an additional contribution from excited bound states relaxing and
therefore leading to additional heating. This is included by an additional contribution in
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c) 1/ka = 2.6

Figure 4.6: a) - c) Signal ratio between BEC atom number loss and condensate fraction at 1/ka =
−2.6, 1/ka = 0.3, and 1/ka = 2.6, respectively. Except for the region closest to the Feshbach
resonance, the ratio between the BEC atom number loss and the condensate fraction loss is a simple
linear function. Extracting the cutoff frequencies from this measure results in approximately the
same maximum frequencies for attractive interactions, but consistently somewhat higher values for
repulsive interactions. Near the resonance, the ratio is more complicated and does not allow to
extract the cutoff frequency in this manner.

gbound by
gbound(n, f) = θ(−f) · θ(δlocal) ·

[
1 + c · δ3/4

local

]
, (4.6)

where c is a free parameter and the exponent 3/4 arises due to the atom number depen-
dence of the condensate with Nc ∝ 1− (T/Tc)

3 and the internal energy scaling of E ∝ T 4.
The effect of this contribution is illustrated by the red curves in Fig. 4.5(c). Including the
relaxation term only slightly improves the fit for the loss in condensate fraction, but seems
to be of rather limited importance. As one would expect, this relaxation model simply
reproduces the model without relaxation (i.e. c ≈ 0) when fitting the loss in condensate
atom number.

We also considered density fluctuations as the mechanism for the broadening the sig-
nal away from a single peak at fixed density, but found that this does not reproduce the
data well. Density fluctuations lead to a distribution of higher and lower densities around
the mean density at the respective trap position and hence to smaller and larger detuning
shifts. Apart from unreasonably high temperatures needed to explain the observed broad-
ening, the main problem is that the distribution of the density fluctuations is continuous,
which leads to a smoothing out of the response onset for the attractive interactions. This
is in stark contrast to the rapid onset of signal that we observe in the spectra and is shown
for example in Fig. 4.4(d). Density fluctuations therefore do not seem to be the reason
for the strong presence of signal at relatively high detuning.

87



Chapter 4. Excitation Spectra in 3D and 2D

4.1.4 Peak Shift Extraction by Signal Ratio

One, if not the main parameter to extract from the polaron spectrum is the energy of the
polaron. On a mean field level one expects to be proportional to the local density, E ∝ g·n.
For attractive interactions, the largest observed shift can therefore be interpreted as the
lowest possible state at the highest density, i.e. in the center of the trap. For repulsive
interactions, the extraction is more convoluted: possible excited states produce signal
at higher detuning while lower density regions produce signal at lower detunings. Two
methods to extract the peak shifts, i.e. the shifts corresponding to the highest density,
have been described above in the discussion of the line shapes.

However, the line shapes shown in Fig. 4.4(e) and (f) motivate an additional approach
to extract the peak frequency: while the signal in the condensate fraction loss is almost
linear at negative detunings, the BEC atom number loss signal is roughly quadratic. When
taking the (suitably rescaled) signal from these two measures and dividing it by each other,
one obtains a signal as shown in Fig. 4.6 for three different interaction strengths. The ratio
increasing for some detunings indicates a stronger relative signal in the loss of condensate
atom number compared to the relative loss of condensate fraction, i.e. we observe a strong
loss in condensate atom number while the condensate fraction is reduced less. A possible
explanation could be three-body losses, where three atoms leave the condensate but do
not contribute to the thermal background as they are completely lost from the trap. For
attractive interactions, the ratio is very well described by a linear function between some
cutoff value and zero detuning. Outside of this range, i.e. below the cutoff detuning and
above zero detuning, the ratio is some constant value. The extracted cutoff detuning
agrees with the value obtained from the fitting models described above. While the same
with reversed signs applies for repulsive interactions, the extracted cutoff frequency are
consistently higher than the ones obtained from the fitting models described above, and
are hence located within the exponentially decaying tail of the signal.

4.1.5 Peak Energy Shifts

Fig. 4.7(a) shows the extracted parameters of fmax = Emax/h. The maximum shift
frequency extracted is consistent with the mean field expectations only for the weaker
repulsive interactions, while the observed shift is larger than expected for strong repulsive
interaction, and significantly stronger for all tested attractive interactions. The reason
for this difference is not understood yet. However, Guenther et al. theoretically predicted
increasing energy shifts for increasing temperature, i.e. a stronger bound state which
might be connected to our observation [111]. Fig. 4.7(b) shows the extracted exponent
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Figure 4.7: a) Extracted maximum shifts. The observed maximum frequency shifts agree with
the mean field expectations only for rather weak repulsive interactions, but are much larger for all
tested attractive interactions. b) Power law exponents for the attractive side. For weak interactions,
it is around -1 and increases when approaching the unitary regime. The expected value from the
contact is -3/2 and is indicated by the dotted line. c) Decay scale for the repulsive side. It is roughly
inversely proportional to the interaction parameter.

of the power law decay for positive detuning at attractive interaction. For interaction
parameters below -5, it stays constantly at an exponent of -1, while it increases for stronger
interaction strengths to ∼ −0.5. This is hence not following the expectation from the
contact, which predicts a power law index between -3/2 and -5/2 [168]. However, the
contact scaling is expected to be valid only for very high detunings of several 100 kHz in
our case, and our experimental data is far outside the range of applicability.

The exponential frequency decay scale obtained from the repulsive interactions is
shown in subplot (c). It is roughly inversely proportional to the interaction parameter.
Attributing the exponential decay to an effectively shorter pulse time due to collisions of
the created impurities with the background condensate would predict this frequency scale
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to increase quadratically with interstate scattering length ainter. While we obtain the
same scaling as observed for weaker repulsive interactions of 1/kna & 3, the amplitude is
lower than expected from the scattering rate. For stronger repulsive interactions the ob-
served frequency decay scale does not follow the scaling expected from the scattering rate,
indicating that the increase in decay scale is not a consequence of effectively broadened
pulses.

In summary, the magnitude of the observed shift is consistent with the mean field
expectation only for weakly repulsive interactions, but is much larger for attractive inter-
actions. The observed line shapes can be reproduced when including excited states both
for attractive and repulsive interactions. The excited state contribution is especially rele-
vant for attractive interactions, where a large amount of homogeneous excitations across
the condensate are necessary in order to reproduce the observed spectra.

Compared to the previous work done by [94] and [95], the spectra observed in our sys-
tem agree very well with the spectra documented in [94] for both attractive and repulsive
interactions. In contrast, [95] observed slightly different peak energies: in their work, the
energy shift magnitude was very similar for both attractive and repulsive interactions,
while we and [94] observe a larger shift for attractive interactions at same |1/kna|. Our
observed line shapes for attractive interactions furthermore show a much more pronounced
linear behavior than what has been reported in [95] (although the linear behavior, while
not discussed, can be recognized in their data, e.g. in Fig. 2(c)-(e)). The reason for this
discrepancy is not known, although we suspect that their relatively short RF pulse times
might lead to a rather low frequency resolution and weak signal at large detunings for
attractive interactions, thus shifting the signal to lower detuning values.

In the next section we will proceed to similar measurements, but in a two-dimensional
Bose gas with tuneable interaction strength, where we again record the spectroscopic
signal and discuss the observed line shapes.
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4.2. 2D Polaron Spectra

4.2 2D Polaron Spectra

4.2.1 System Preparation

Obtaining the 2D polaron spectrum used essentially the same procedure as the 3D case.
After preparing the two-dimensional sample from the BEC by transferring the cloud into
a optical lattice with very strong confinement along the vertical direction, we have about
3000 atoms at T . 0.1TBKT . Again, the |1,−1〉 state will be refered to as the bath state
and the |1, 0〉 state as the impurity state. While the BKT cloud is not a condensate, we
will occasionally still informally refer to it as a condensate as its characteristics are often
very similar to a BEC.
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Figure 4.8: Relation between the interaction param-
eter ln(kna) and the dimensionless coupling parame-
ters g̃BI and g̃BB for bath-impurity interactions and
bath-bath interactions, respectively, over the rele-
vant range near the bath-impurity Feshbach reso-
nance. While g̃BI shows large variations, g̃BB is al-
most constant and very small.

The cold cloud is vertically confined by
a repulsive optical lattice with a trapping
frequency of νz = 2π · 6.5 kHz and radi-
ally by an attractive optical potential with
trapping frequency νradial = 110 Hz. To-
gether with the relatively weak repulsive
bath-bath interaction, this gives peak area
densities of 70-100 µm−2 for the probed
range of magnetic fields. The peak mean
field shift due to the bath-bath interaction
is ∼500 Hz.

For the interaction parameter ln(kna)

we always, as previously in the 3D case,
will employ the peak density to define the
typical momentum kn by the relation kn =√

4πn introduced in Sec. 3.2. The stated
detunings are often rescaled by the natural
energy scale En = ~2k2

n/(2m). Over the
relevant range, En/h ranges between ∼210
kHz at ln(kna) = −21 over ∼190 kHz at
ln(kna) = 0 to ∼160 kHz at ln(kna) = 20.

Unless stated otherwise, the RF pulses flipping atoms into the impurity state lasted
for 3 ms, followed by 10 ms of thermalization and 1.8 ms of time-of-flight before imaging
the system. Imaging is again done as described in Sec. 3.3.2.
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4.2.2 2D Polaron Spectrum
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Figure 4.9: a, b) Low RF power and high RF power spectra, respectively. Note the different scaling
for the y-axis for the two spectra. c, d, e) Linecuts through the spectra at repulsive interaction,
near resonance, and at attractive interaction, respectively. All data shows the loss of atoms in the
condensate. Low power and high power RF pulses lead to very different maximum detunings, where
loss can still be observed. This is in stark contrast to the three-dimensional case, where the signal
saturated at some maximum detuning. The attractive interaction in general shows larger shifts,
but otherwise shows a response rather similar to the repulsive interaction. In three dimensions, the
repulsive interaction exhibited to a well-separated branch, which is not present in this system.

The recorded spectra for a two-dimensional system are shown in Fig. 4.9. Note that
due to the definition of the interaction parameter as ln(kna), the repulsive side is located
on the left and the attractive side is located on the right of the spectrum. Fig. 4.9(a)
shows the spectra when using 30% amplitude in the radio-frequency, i.e. ∼ 10% power,
and Fig. 4.9(b) shows the spectrum when using full power. Several striking features can
be observed, especially in contrast to the spectra obtained in three dimensions: unlike in
the three-dimensional results, there is no well separated repulsive branch visible. Instead,
both the attractive and repulsive side show signals continuously between zero detuning
and some maximum detuning where the signal vanishes. Furthermore, the attractive
and the repulsive interaction show roughly the same signal strength, while the attractive
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interaction leads to a much stronger signal for the three-dimensional system.
The main difference we observe is the position of the maximum detuning though:

unlike in the three-dimensional case, where the radio-frequency pulse power and dura-
tion had little effect on the exact line shape once one entered a saturated regime, we
observe a massive dependence in the two-dimensional case. For an interaction parameter
of ln(kna) = −10.3 as shown in Fig. 4.9(c), for example, we observe a signal over about
twice as large of a frequency range for high power compared to the low power data. The
behavior is similar for attractive interactions as shown in Fig. 4.9(e). Similar to the three-
dimensional case, we again observe little to no signal near the resonance for low power.
We suspect that this is due to a Quantum-Zeno-like effect, where the large scattering rate
effectively prohibits the radio-frequency to actually drive transitions into the impurity
state and leads to a reduced amount of losses.

4.2.3 Line Shape Modeling

Analogously to the line shapes observed in the three-dimensional system, we here discuss
different models in order to understand the observed line shapes and extract the relevant
parameters. Fig. 4.11(a) and (d) show the agreement with the repulsive and attractive
interaction model from [96], where the volume weighting has been adapted to the two-
dimensional density profile, replacing the volume and density factor of n

√
1− ndn to ndn.

Just as in the 3D-case, the model clearly disagrees with the observed data for the repulsive
interaction, and also does not fit well for attractive interactions. Again, we suspect that
the effect of unbound excited states is not properly accounted for, leading to the large
disagreement especially for positive detunings.

Instead, we resort to custom models. The first one is again a purely phenomenological
model, consisting of a peak amplitude at zero detuning. For attractive interactions, the
signal decreases linearly towards negative detuning and follows a power law with variable
power law index for positive detunings. For repulsive interactions, we use the same model
with switched signs, i.e. a linear decrease of signal for positive detuning and quickly
decaying signal for negative detuning.

For the second model, we distinguish between repulsive and attractive interactions.

Repulsive Interactions For the former, we adapt the model from Eq. 4.2 to a two-
dimensional system, sketched in Fig. 4.10(b):

S(f)df ∝
∫ n0

0

n · θ(δlocal) · exp(−δlocal/fdecay)dn, (4.7)
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Figure 4.10: Line shape contributions. a) Volume-density contribution for 2D (black) and 3D (red)
as described in the main text. In both cases, the largest signal is expected at the largest detuning,
while we observe the largest signal at zero detuning. b) Repulsive line shape model with exponentially
suppressed excited state contribution, i.e. the same as shown and described in more detail in Fig.
4.3(c). c) Attractive line shape model with homogeneous excitation weight for δRF ≤ f ≤ 0 and
power-law decay of the signal for f > 0. The red line includes delayed energy deposited as motivated
by possible excited state relaxation. This is the same as shown and described in more detail in Fig.
4.5(c).

where again δlocal ≡ f − fmax · n/n0 is the local detuning with respect to the maximum
shift at the respective density and n0 is the peak density in the center of the cloud. The
only difference to Eq. 4.2 is the volume weighting of n instead of n ·

√
1− n. This tends

to shift the signal more to larger absolute detunings, i.e. puts more relative weight to the
strongest shift, which can also be recognized in Fig. 4.10(a).

Attractive Interactions For attractive interactions, we similarly again assume ho-
mogeneous excitations across the condensate and employ the same model as defined for
three-dimensional systems in 4.3 and also sketched in Fig. 4.10(c), only that it has been
adapted to the different density profile in two dimensions:

S(f)df ∝
∫ n0

0

n · [gbound(n, f) + gfree(n, f)] dn, (4.8)

where the difference to 4.3 is the factor of n instead of n ·
√

1− n. The “bound states”
contribution is again being modeled as

gbound(n, f) = θ(δlocal)θ(−f) (4.9)

and the “free states” contribution as

gfree(n, f) = θ(f) ·
[
f + σ

σ

]α
, (4.10)
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where δlocal has been defined above, σ is the frequency broadening due to the finite pulse
width, and the power law index α is again a free parameter and should fulfill α < 0. Fig.
4.11(e) and (f) show the agreement of this model with both the condensate fraction and
the condensate atom number for attractive interactions.

Including a relaxation term as described in the 3D-case in Eq. 4.6 turned out to not
significantly improve the agreement between the data and the model and is hence omitted
here.
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Figure 4.11: Line shape models for repulsive and attractive interactions (top and middle row,
respectively), similar to the three-dimensional case shown in Fig. 4.4. For repulsive interactions a)-c)
at ln(kna) = -10.3, the collisional model from [96] again performs poorly, while the phenomenological
model and the excited states model described in the main text fit the data reasonably well. The
interpretation of the physically motivated model for repulsive interactions is unclear though, as the fit
converges to a setting with vanishing peak shift and reproduces the signal only via the excited states.
The attractive model of [96], shown in d), again fails to convince, while the phenomenological model
and the homogeneous excitations model work for both the condensate fraction e) and the condensate
atom number f), here shown for ln(kna) = 22.1.

Model Performance The performance of these models is shown in Fig. 4.11 (b), (c) for
a repulsive interaction parameter of ln(kna) = −10 and in Fig. 4.11 (e), (f) for attractive
interactions at ln(kna) = 22. The phenomenological and the motivated models succeed
in describing the data well. In contrast to the three-dimensional case, the condensate
fraction and the condensate atom number show very similar line shapes and therefore
also provide similar results in the fits. For the attractive interaction, the onset of the
loss does not show the large difference between condensate fraction and condensate atom
number as observed in the three-dimensional case and, while the volume weighting of
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Chapter 4. Excitation Spectra in 3D and 2D

∝ n instead of n ·
√

1− n should lead to more weight at the maximum shift, we observe
a smoother onset of signal in the two-dimensional system. In the repulsive regime, the
motivated model Eq. 4.7 is completely dominated by the exponential decay for positive
energies, and does therefore not predict a nonzero peak detuning. The interpretation of
this observation is not clear. For all interactions, the main obstacle for the interpretation
of the two-dimensional data is the lack of saturation in the signal, and the hence very
different results for low and high RF power.

Peak Shift Extraction by Signal Ratio The ratio of condensate fraction and conden-
sate atom number showed a perfectly linear relationship in the three-dimensional system.
The onset of this linear relation allowed for an alternative way to extract an estimate of
the peak energy. In two dimensions this ratio is shown in Fig. 4.12 and is only linear for
weak interactions. It is better described by a power law with an index of ∼ −1 for stronger
interactions, i.e. ∼ 1 + 1/f . For the sake of concreteness, we still fit a linear relation to
the power law and extract the detuning where the signal vanishes in the constant offset.
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Figure 4.12: Signal ratio (green) between condensate fraction (black) and condensate atoms (red)
signal. a) Repulsive interactions at ln(kna) = −10.3. b) Resonant interactions at ln(kna) = 2.1. c)
Attractive interactions at ln(kna) = 22.1. For weak interactions, the relation is close to being linear,
while it tends to a power-law like behavior with exponent of ∼ −1 for stronger interactions.

4.2.4 Peak Energy Shifts

The resulting peak shifts extracted with the different models are shown in Fig. 4.13.
Subplot (a) presents the average of the different methods for both low and high RF

power (in blue and red, respectively) and shows the expression derived by the authors
of [123]2 Our data agrees well with the predictions for low RF power and for weaker

2Note that Eq. 5 in [123] has a typo, where the correct factor of 2 has been replaced by 4. The correct
version is obvious when following the derivation in appendix A and furthermore agrees with the plots of
the paper.
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Figure 4.13: a) Extracted maximum energy shift for different interaction parameters ln(kna). Re-
pulsive interactions are located on the left half with ln(kna) < 0, attractive interactions on the right
with ln(kna) > 0. For both the low RF power (blue) and the high RF power (red), we here show the
averaged results and indicate the uncertainty by the shaded area (see also (b) and (c)). The plot ad-
ditionally presents the prediction derived in [123] with the dashed black line, which agrees very well
with the low RF power data and weaker interactions, but clearly deviate near the resonance and for
high RF power. The almost horizontal dotted gray lines correspond to the energy shift of excitations
in the vertical confinement (here shown -2νz, -νz, νz, and 2νz). For virtually all interactions probed,
the observed shift is on the level of the vertical level splitting or even well above it. This indicates
that the polaronic state is three-dimensional, while the bath is still two-dimensional.
b) and c): Comparison of the results for the individual peak shift extraction methods for low and
high power, respectively. The black data (triangles) is obtained by the phenomenological model
described in the beginning of Sec. 4.2.3, the red data (crosses) is obtained from the excited state
models defined in Eqs. 4.7 and 4.8, and the green data is obtained from the signal ratio as described
in the main text. For both low and high RF power, the three methods result in similar values and
we therefore use the average in subplot (a), here indicated by the dashed line, with the uncertainty
depicted by the shaded area. For strong interactions, the fits become unreliable, especially for the
phenomenological and the physically motivated model and we only show the values extracted by the
signal ratio approach. Note that we excluded the results of the physically motivated model on the
repulsive side, since the interpretation of the frequency scales is unclear as is described in the main
text.
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interactions, while it is in clear disagreement for strong interactions (| ln(kna)| & 5) and
for all of the high power data.

Fig. 4.13 (b) and (c) present the peak energy shifts extracted with the different
methods described above for low and high RF power, respectively. Since the obtained
results are consistent for both power settings, we use the average to compare our data
with the predictions in (a). Note that the motivated model data has been excluded on
the repulsive side due to the unclear interpretation.

While the interpretation is currently not clear and deserves further investigation, we
speculate that this might be connected to observations made in theoretical studies by
Guenther et al. [111] for three-dimensional Bose polarons: when only considering the
impurity-phonon interactions, they only find a single polaron state for T < Tc; if they
furthermore include terms corresponding to scattering of atoms into and out of the con-
densate, two polaronic branches appear, which coincide in energy for zero temperature as
all phonons are frozen out for T = 0. For increasing temperature, the two branches split
up: the upper one increases in energy, corresponding to a weaker bound polaron, and
vanishes at Tc. The lower one actually decreases in energy with increasing temperature
due to the enhanced interaction with thermally excited phonons, reaches its lowest energy
at Tc and still exists above Tc. While the authors in [111] consider a three-dimensional
condensate, they state that the relevant dynamics is due to the bath’s gapless excitation
spectrum also present in 2D. The observed shift to lower energies when using higher RF
powers might therefore reflect the heating and subsequent stronger coupling of the po-
laron: when applying an RF pulse with high detuning, only a few impurities are flipped
off-resonantly and subsequently heat the system. Once the system has a higher tempera-
ture, the polaron’s new energy is closer to the RF detuning being applied, and a runaway
process is started until the RF pulse ends or its detuning becomes too large again. For
higher RF power, more impurities are created, speeding up the whole process and shifting
the signal to higher detunings.

Additionally or alternatively, the quasi-particle residue might be relevant: as it ap-
proaches zero for strong interactions [123], the creation of a ground state polaron should
become harder for increasing interaction strength. Instead, excited polaronic states might
be created, showing a lower energy shift for attractive interactions. Higher RF powers
could compensate for the lower quasi-particle residue and still create the ground state
polaron (or a state closer to it) and therefore shift the observed signal to higher detun-
ings. For repulsive interactions, the same reasoning suggests a lower extracted detuning
for higher RF power though, in contrast to what we have observed. The interpretation of
the power dependence is not clear yet, and the question deserves further investigation in
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4.2. 2D Polaron Spectra

order to test the hypotheses stated above.
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Figure 4.14: Extracted power law exponent for the
signal decay for negative detunings for repulsive in-
teractions and for positive detunings for attractive
interactions. Only the extracted power law index for
high RF power is presented, as the low RF power did
not show visible decays and did hence not allow to
extract a power law exponent. For attractive interac-
tions (ln(kna) > 0), the power law tends from ∼ −1
at weak interactions to ∼ −0.5 closer to the reso-
nance, similar to what was observed in the 3D case.
Repulsive interactions do not show a saturation for
weaker interactions.

For reference, we also indicate the size
of a vertical excitation in Fig. 4.13(a)
with the almost horizontal, dotted gray
lines. The slight slope is due to the density-
dependence of the normalization factor En.
As the bath-bath scattering length changes
with the magnetic field, the bath den-
sity also changes. For all interactions,
the observed shift is comparable or even
well above the vertical level splitting. For
a non-interacting system, one would ex-
pect the additional vertical level to not
be relevant: while a transfer of atoms to
a higher vibrational level might be en-
ergetically allowed, the RF photon does
not carry enough momentum to make the
spatial matrix overlap element non-zero.
For the weak interaction within the bath,
this reasoning still holds as the vertical
Thomas-Fermi radius is smaller than the
harmonic oscillator length. However, for
the large bath-impurity interactions, the fi-
nal state of the combined system will in-
troduce small-scale correlations and therefore admixtures from higher vibrational states.
Within this limit, the polaronic state can then probably be considered three-dimensional,
while the surrounding bath environment still is two-dimensional with the respective exci-
tation spectrum. Creating a purely two-dimensional polaronic state would in our system
require vertical level splittings on the order of ∼60 kHz, which is out of reach for our
experimental setup.

Fig. 4.14 shows the power law exponents for the signal decay for negative detunings
at repulsive interactions and for positive detunings at attractive interactions. Only data
obtained with high RF power is included here, as low RF power shows a very rapid drop
off in the signal for the respective detunings and therefore does not allow to extract a
power law exponent. The exponent usually ranges between ∼ −1 at weaker interactions
and −0.5 near the resonance, where the repulsive side shows a stronger dependence, but
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also weaker signal, leading to larger uncertainties. It shows the same behavior as in the
three-dimensional system, suggesting that the reason for this behavior lies within the
short-range physics not strongly affected by the vertical confinement.

Summary
To summarize this chapter, we measured the polaron spectrum in a three-dimensional
BEC as well as in a degenerate two-dimensional Bose gas.

In the three-dimensional case, we observe energy shifts in agreement with previously
published results. Furthermore, we can reproduce the observed line shapes very well when
introducing models that include significant contributions from excited states.

For two-dimensional degenerate Bose gases, where no such spectrum has been pub-
lished so far, we extract peak shifts in agreement with theoretical predictions for low
RF power and weak interactions. However, in contrast to the 3D case, we observe a
strong dependence of the peak energy shift on the used RF power. Furthermore, the
two-dimensional system does not show the well-separated repulsive branch present in the
three-dimensional system. Instead, the spectrum shows similar behavior for attractive and
repulsive interaction. By adapting our three-dimensional line shape models to two dimen-
sions, we achieve good agreement with our observations, again supporting the relevance
of transfers to excited states in our system.

The role of these excited states and the dependence on the RF power deserves further
investigation. We suspect that these two observations are linked, and measuring the
population in higher excited vertical states after the injection pulse might shed new light
on the nature of these excited states, their creation, and on how they affect the bath
system.
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Chapter 5

Spatially Resolved Impurity and Bath
Dynamics

Figure 5.1: Sketch of the impurity creation for repul-
sive bath-impurity interactions. Impurity creation
in the BKT cloud (gray) with density profile n(r)
trapped by an optical potential (thin gray line) is
only expected to happen when the local mean field
shift gBIn(r) (blue dashed line) equals the RF de-
tuning δ. For a high detuning δ1, this condition is
fulfilled near the center of the BKT cloud, and for a
low detuning δ2 it is fulfilled near the edge. Insets
illustrate the measured impurity densities. Upon cre-
ation, the repulsive interaction leads to an expulsion
of the impurities.

The spectra presented in chapter 4 employ
parameters characterizing the system as a
whole, most notably the atom number loss
and the reduction in condensate fraction.
While this already provides valuable infor-
mation, our setup allows us to go beyond
the measurement of global observables and
permits the spatially resolved observation
of impurities within a 2D Bose gas for the
first time. We can therefore observe the
positions the impurities are created at and
follow their subsequent dynamics.

The creation of impurities is expected
to be possible when the applied RF detun-
ing equals the local bath-impurity mean
field shift. Since the atoms are trapped
by a harmonic trap, the density varies and
the resonance condition can only fulfilled
at certain positions. By scanning the fre-
quency, one should therefore be able to se-
lectively create impurities at different po-
sitions, as shown in Fig. 5.1. However, our
observations reported here support the ev-
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Chapter 5. Spatially Resolved Impurity and Bath Dynamics

idence for excited states discussed in the previous chapter 4. These excited states lead to
impurities being created at positions not expected when only considering the mean field
shift.

The impurity behavior after creation should differ significantly between repulsive in-
teractions and attractive interactions: for the former, the impurities should be expelled
from the bath upon creation, while attractive interactions should lead to a motion to-
wards the center. As reported in Secs. 5.3 and 5.4 we were able to observe this expected
expulsion from the bath and can model the motion within the condensate when including
the two-dimensional friction term for speeds above the local speed of sound, which coun-
teracts the expected acceleration. A potential disagreement with simulations performed
by V. Singh and predicting much slower motion is currently being discussed and might
be connected to a lower effective mass than expected or to self-trapping not observed in
our experiments.

For attractive interactions, our measurements did not match expectations. Instead
of the ring-like structures at low detunings as in the repulsive case, we observed nearly
uniform excitation patterns. We interpret this as excited states being created at positions
where the detuning is higher than the local mean field shift. These excited states are
located closer to the center of the cloud, therefore "filling up" the hole of the expected
ring-shaped impurity distribution. Furthermore, we observe a rapid loss of impurities,
prohibiting us from reliably observing the expected inwards motion. We attribute these
losses to three-body recombinations that become more severe for attractive interactions
and therefore locally enhanced densities.

In summary, we achieved the spatially resolved observation of impurity creation and
of the subsequent dynamics in a two-dimensional Bose gas with tuneable interactions for
the first time.

The spatially resolved impurity creation is introduced in Sec. 5.1, followed by a dis-
cussion of the correlated bath-impurity dynamics in Sec. 5.2. Secs. 5.3 and 5.4 then focus
on repulsive interactions and the expulsion of impurities from the bath. In Sec. 5.3, we
test the possibility to extract the effective mass, and in Sec. 5.4 we focus on the initial
dynamics within the condensate. Sec. 5.5 finally briefly discusses the dynamics observed
for attractive interactions, which is dominated by rapid loss.

5.1 Potential Mapping

Before going into more detail for specific experimental settings, we briefly discuss some
generic effects in tomographic measurements as illustrated in Fig. 5.2, where spatially and
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frequency-resolved information becomes available. The top row (a) shows the impurity
densities obtained after a short RF pulse of 300 µs and for repulsive interstate interactions,
where the applied detuning with respect to the unshifted resonance frequency increases to
the right. Near zero detuning, only atoms near the edge of the condensate can be flipped
as the density-dependent energy shift is small, while for increasing detuning, atoms closer
to the center of the bath become resonant as the repulsive interaction shift compensates
for the detuning. With increasing detuning the region of maximum response therefore
moves closer to the center until finally even the maximal shift is not sufficient anymore
and no more atoms can be flipped. Similarly, Fig. 5.2(b) shows the densities for attractive
interactions, now with the detuning decreasing from zero to the right. With increasing
distance from the unshifted transition frequency, the impurities are more concentrated
in the center. However, unlike in the repulsive case, no rings can be observed for any
detuning.

The same data is shown as radially averaged data in Fig. 5.2(b), where the vertical
axis corresponds to the detuning, and the spatial axis has been transformed into a bath-
density axis by assuming a Thomas-Fermi profile. The observed density is color-coded.
The remaining plots (c)-(h) show similar data for different interaction strengths, where
the middle row corresponds to repulsive interactions and the bottom row to attractive
interactions, and the interaction strength increases from the left to the right. The shown
repulsive interaction parameters correspond to g̃BI ' 0.25, ' 0.28, and ' 0.55, and the
attractive ones correspond to g̃BI ' −0.21, ' −0.25, and ' −0.39. Consistent with
the spectra discussed in Sec. 4.2, stronger interactions lead to signal created at higher
detunings.

Two potentially connected effects are clearly visible. The first effect is the clear dif-
ference in the spatial structure for repulsive and attractive interactions when applying
radio-frequency of near zero detuning. For repulsive interactions, exemplarily shown for
δ = 1 kHz in the inset in Fig. 5.2(d), the impurities are created in a ring-structure at the
edge of the condensate, where the density and thus the interaction shift is small. Attrac-
tive interactions, in contrast, show an almost flat impurity density even when being close
to the unshifted resonance frequency. A typical image is shown in the inset of Fig. 5.2(g)
for δ = -1 kHz, and the clear contrast to the repulsive case is evident. The same effect
is present for all interactions as long as the maximum interaction shift is larger than the
Fourier broadening of the RF-pulse, as is also visible in the radially averaged densities.
The second effect is visible in Fig. 5.2(c) and (e), where a reappearance of signal strength
can be observed for high detunings and central areas of the bath. We attribute this ef-
fect to vertically excited impurity states; additionally to the interaction shift, energy is
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Figure 5.2: Frequency- and spatially resolved impurity imaging for different interaction strengths.
a) and b) Impurity density distribution for different detunings at a repulsive interaction parame-
ter of ln(kna) = -24.2 (g̃BI ' 0.25) and at an attractive interaction parameter of ln(kna) = 26.3
(g̃BI ' −0.25), respectively. For repulsive interactions, higher detuning leads to impurity creation
closer to the center of the cloud. Similarly, attractive interactions show the same behavior for more
negative detuning. However, the ring structure near zero detuning can only be observed for repul-
sive interactions and not for attractive interactions. c) - h) Radially averaged frequency-resolved
impurity densities for different repulsive (c)-e)) and attractive (f)-h)) interactions, where the inter-
action strength increases from left to right. The relative density displayed on the x-axis is calculated
by assuming a Thomas-Fermi profile. For the repulsive interactions, a detuning near zero leads to
impurities created at low density. With increasing detuning, the peak response moves closer to the
center of the cloud. c) and e) also clearly show a revival of signal for high enough detunings, which
we interpret as excited states. The dashed gray lines in c) and e) have a distance of 5.2 kHz, cor-
responding to the frequency difference one would expect for vertically excited states. The insets in
d) and g) show typical impurity densities obtained near zero detuning, where repulsive interactions
exhibit a ring-like structure, while attractive interactions lead to an almost flat profile. While the
ring can immediately be understood as the edge of the condensate, where the density and thus the
local interaction shift is small, the interpretation of the flat profile in g) is less clear and is discussed
in the main text.

104



5.1. Potential Mapping

transferred into a vertical excitation.
With a trapping frequency of νz ' 6.5 kHz, and a density overlap of 80% (calculated

assuming a harmonic confinement) between the vertical ground state and the first excited
state, we expect an energy shift of ∼5.2 kHz. This difference is marked by the two
horizontal dashed lines in Fig. 5.2(c) and (e), showing that this expectation agrees very
well with the data obtained for ln(kna) = −10.3, but a slightly smaller difference is
observed for ln(kna) = −24.2. The reason for this difference is not clear, but could be
connected to the implicit assumption that the interaction shift scales linearly with the
density overlap.

The question arises if vertically excited states can explain the flat density profile for
the attractive interactions. For attractive effective potentials and δ = 0 kHz, a vertically
excited state would be located further within the condensate, roughly where the mean
field shift equals 80% of ~ωz, i.e. δres ' 5.2 kHz. Together with the frequency broadening
due to the final pulse time, the imaging resolution, and potentially some dynamics be-
tween creation and observation of the impurities, this might lead to the observed almost
flat profile. However, this idea is somewhat contradicted by the positive detuning data:
for positive detunings of, e.g., δ ≈ νz/2 one would expect that vertically excited but
radially not confined states can be created. The local detuning would be smallest near
the edge of the condensate, and thus the impurity imaging should show a ring-like struc-
ture again. Instead, we observe the strongest population near the center when applying
positive detuning (Fig. 5.2(h)).

One possible explanation might be that the probability for a δnz 6= 0 transition in-
creases with higher density. An increasing probabilty for δnz 6= 0 transitions with density
would, for example, be expected when the interacting final state shows a significant dis-
tortion of its vertical profile. The distorted vertical profile corresponds to contributions
from different levels of the vertically confining potential. A “vertically excited polaron”
living, for example, mostly on nz = 1 could therefore also have significant contributions
from the nz = 0 level and the overlap to the bath nz = 0 would be rather large. For the
higher densities near the center, the distortion should be come larger, leading to more
overlap and hence more signal. Alternatively, the flat profile might have a completely dif-
ferent origin and not be connected to the vertically, but rather to radially excited states,
where the local density distribution around the impurity atom is not in its ground state.
In this case, it would be surprising that we do not observe similar effects in the repulsive
case. At the time of writing, we are not able to confidently distinguish between these or
other scenarios, and the question deserves further investigation.
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Chapter 5. Spatially Resolved Impurity and Bath Dynamics

5.2 Time-Resolved Dynamics and Bath-Impurity Cor-

relation

In the tomographic measurement shown in Fig. 5.2, the short RF pulse time was immedi-
ately followed by imaging the impurity density in order to extract the initial distribution
as well as possible. Our setup also allows us to vary the time delay between creation and
observation and gives access to temporally resolved dynamics. This is exemplarily shown
in Figs. 5.4 and 5.5, where the dynamical evolution over a few milliseconds is shown for
repulsive and attractive interactions and near zero detuning, respectively. Both figures
show the real-space density of both bath and impurity in a false-color image in the top
row (see Fig. 5.3 for a color scale) and the bath depletion (i.e. change in bath density
compared to reference runs without RF pulse) in the middle row.
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Figure 5.3: Colormap for the false-color
images showing both the bath density
(blue) and the impurity density (red).
Top: False-color image of a cloud with re-
pulsive interactions. Bottom: Color map
showing what densities the colors corre-
spond to.

The false-color images were obtained by imaging
the impurity and the bath density in independent
measurements with different imagings enabled, but
with otherwise the same settings. With higher time
resolution, the bottom row shows the radially inte-
grated density depletion of the bath (left) and the
impurity density (right) in the bottom row.

Attractive and repulsive interactions lead to
drastically different dynamics. Repulsive interac-
tions lead to an expulsion of the impurity fraction
from the condensate, which is clearly visible in the
two-color images in the top row of Fig. 5.4. The
initial strong overlap reduces within ∼2 ms to al-
most zero, and then increases again after the im-
purities have reached their turning point in the op-
tical trap and return to the center. At the same
time, a density-depletion wave propagates through
the bath, reaching the center after ∼2 ms, and
then propagating outwards again. Furthermore, a
weak bath component increase can be consistently
observed just outside the bath radius (best visible
around 8 µm in the bottom left of Fig. 5.4, or weakly
as a brighter ring in the middle row of the same fig-
ure). We attribute this to a cold, but thermal component created by removing a fraction
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of the initial condensate via the RF-pulse and its subsequent dynamics.
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Figure 5.4: Correlated bath and impurity densities for repulsive interactions at ln(kna) = −10.3
(g̃BI ' 0.55). Top row: false-color image of superimposed bath (blue) and impurity (red) densities
for different evolution times after an RF-pulse with near zero detuning. Overlapping densities are
shown as white. Even without the qualitative analysis, this image already shows some aspects of
the general behavior, like the expulsion of impurities in the first ∼2 ms and their return around
4 ms. Middle row: bath depletion, i.e. density difference with respect to reference runs with
disabled RF pulse. Reduced densities are shown by a darker shade, increased density by a brighter
shade of gray, ranging from -30% to +30% of the peak density. The impurity creation induced an
oscillatory motion, similar to a breathing mode. Bottom row: radially integrated bath density
depletion (left, reduced density in blue, increased density in red) and impurity density (right), where
the x-axis indicates the radial position and the y-axis is the evolution time (running from top to
bottom). The vertical dashed lines indicate the Thomas-Fermi radius in equilibrium and the solid
lines indicate the maxima of depletion and impurity density in the left and right plot, respectively.
The data is normalized to the peak integrated line density of ∼ 103 µm−1, reached at RTF /

√
3. At

low detunings, the created impurity fraction is expelled from the condensate and starts oscillating in
the effective potential formed by the repulsive condensate and the optical potential: the maximum
extent is reached around 2.5 - 3 ms, and they return closer to the trap center at ∼5 ms; at the same
time, the bath exhibits an oscillation with about twice the frequency of the impurity component.

In the case of an attractive interaction, on the other hand, we observe a rapid loss of
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Figure 5.5: Correlated bath and impurity densities for attractive interactions at ln(kna) = 15.3
(g̃BI ' -0.49). Top row: false-color image of superimposed bath (blue) and impurity (red) densities
for different evolution times after an RF-pulse with near zero detuning. Overlapping densities are
shown as white. The impurity component shows a rapid loss, especially in the outer regions. We
attribute this to an inward motion due to the attractive bath-impurity interaction and subsequent
losses in the dense center of the trap. Middle row: bath depletion, i.e. density difference with
respect to reference runs with disabled RF pulse. Reduced densities are shown by a darker shade,
increased density by a brighter shade of gray, ranging from -50% to +50% of the peak density.
Compared to the repulsive interaction, very little dynamics is visible: after an initial loss, the
depletion profile is rather constant. Bottom row: radially integrated bath density depletion (left,
reduced density in blue, increased density in red) and impurity density (right), where the x-axis
indicates the radial position and the y-axis is the evolution time (running from top to bottom). The
vertical dashed lines indicate the Thomas-Fermi radius in equilibrium and the solid lines indicate
the maxima of depletion and impurity density in the left and right plot, respectively. The data is
normalized to the peak integrated line density of ∼ 103 µm−1, reached at RTF /

√
3. As already

visible in the top row, the attractive interactions lead to an inward motion of the impurities at initial
times. However, the rapid losses with a time scale of .1 ms prohibit the observation of the expected
oscillatory behavior within the bath. We attribute the rapid losses to three-body recombinations in
the dense cloud.

impurity signal with a millisecond timescale; at the same time, the central bath density
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reduces and the density of a thermal bath component increases, indicating three body
losses and subsequent heating. This is consistent with the strong signal observed for
attractive interactions in the spectra discussed before.
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5.3 Repulsive In-Trap Oscillations

As shown in the two previous sections, the upgraded setup allows us to extract more
information than just the integrated parameters observed in time-of-flight before and
discussed in chapter 4. In this section we report on the attempt to utilize the high
spatial resolution to extract another fundamental parameter of the impurity system: the
effective mass, which is expected to differ from the bare mass and to increase with the
interaction strength. For repulsive interactions, this increased mass should lead to a
signature in the impurity momentum distribution after the expulsion from the condensate.
More specifically, we compare the energy provided by the RF pulse with the kinetic and
potential energy of the impurities after expulsion - the effective mass should lead to a
difference between these energies.
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Figure 5.6: Effective mass and its possible signatures. a) The effective mass as calculated on mean
field level in [123] for two different currents and thus two different peak interaction strengths. As the
interaction parameter ln(kna) depends on the density, the effective mass varies within the condensate.
The solid parts of the lines correspond to the densities and hence interaction parameters achievable in
our experiment while the dotted parts can not be reached. b) Trajectory of a classical particle in the
combined potential of repulsive bath and attractive optical trap when neglecting the effective mass
(dashed lines) and when including the effective mass (solid lines) for two different peak interaction
strengths (black/red), i.e. interaction strength at the highest density of the cloud. c) Extracted
energy by extracting the peak potential energy of the classical trajectories, where the difference to
the energy provided by the RF-pulse (dashed line) contains information about the effective mass.

Effective Mass As the bath density around an interacting impurity changes, a propa-
gating impurity will also lead to a density redistribution within the bath, thus influencing
the dispersion relation of the propagating polaron state. To lowest order, the effective
mass can be expressed as

meff = m0

[
1− ln(4π)− ln(knaBB)

2[ln(4π)− ln(knaBI)]2

]−1

, (5.1)
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and becomes larger inside the condensate where the density, and therefore kn ∝
√
n,

increases [123]. For parameters typical for our experimental setup, the relative effective
mass meff/m0 calculated by Eq. 5.1 is shown in Fig. 5.6(a) and might reach values
up to ∼2.5 times the bare mass m0. The two different currents correspond to different
interstate scattering lengths and to different peak interaction parameters; since the bath-
bath scattering length also varies slightly, the two curves do not collapse exactly.

Within a classical model, the force acting on an impurity atom within the repulsive
bath is determined by the experimentally determined maximum energy shift and the
size of the cloud. Assuming that the energy shift is proportional to density, one has
F (r) = [Umax/R

2
TF ] · r, i.e. no dependence on the effective mass. The acceleration

a = F/meff then depends on the location within the condensate as the force increases
towards the edge of the condensate while the mass decreases. Compared to the case of
meff = m0, the acceleration starts at a lower value near the center of the trap, but reaches
the same value near the edge, and the impurity therefore exhibits a lower final speed. For
a classical particle, this is visualized in Fig. 5.6(b), where the dashed lines correspond to
meff = m0, and the solid lines include the effective mass as predicted by the expression
above. The lower final speed upon leaving the condensate corresponds to a lower kinetic
energy than classically expected and it is this kinetic energy that we will here focus on.
Note that the effective mass also slows down the dynamics within the condensate, thus
increasing the effective oscillation period.

Impurity Energy Extraction The approach to extract the impurity’s energy is es-
sentially a T/4- or momentum measurement [169–172]: in a classical model, the impurity
atoms climb the potential hill formed by the attractive optical potential until reaching
their turning point, where all their kinetic energy is converted into potential energy and
they subsequently roll down into the optical trap again. Quantum mechanically, the evo-
lution within a harmonic potential corresponds to a rotation in phase space, where an
evolution for a quarter of the trapping period equals a rotation by 90°, and thus maps the
initial momentum distribution into a spatial distribution and vice versa. In our case, there
are two main differences to the usual T/4-measurement. Since the goal is to extract the
total energy, the needed rotation in phase space is not necessarily 90°: as the relevant “ini-
tial” point is the exit of the impurity from the condensate, the impurity’s energy consists
of both kinetic and potential energy already, and we therefore probe different evolution
times and not only t = 1/(4ν). The second difference is that the effective potential is only
harmonic outside the repulsive bath. Thus, only evolution times up to at most t ≈ 1/(2ν)

are expected to follow the simple rotation in phase space.
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To extract the impurity energy, we compare two different approaches with the first
one being the density-weighted potential energy and the second one only focusing on the
energy of peak of the impurity distribution. In both cases, the data processing is analogous
to the processing discussed in Sec. 5.4. In short, the average impurity distribution is
extracted by averaging several runs and from this, the radially integrated density nint(r) =∫
n(r, φ)dφ is extracted. A typical run taken at a bath-impurity interaction of ln(kna) =

−10 and δ = 4 kHz is shown in the inset of Fig. 5.7(a), where the x-axis is time, the y-axis
is the radial position and the density is color coded. The spatial distribution already shows
the oscillation very clearly. The total energy is extracted for the two interstate interaction
strengths ln(kna) = -21 and ln(kna) = -10, and several radio-frequency detunings for each
interaction strength. The results are shown in Fig. 5.7, where subplot (a) and (b) use the
peak position energy and the density weighted energy, respectively.

In the latter case and for each evolution time within the trap, the time-resolved po-
tential energy can be extracted as

Epot(t) =
1
2
m0ω

2
∫
nint(r)r

2dr∫
nint(r)dr

. (5.2)

In a purely harmonic case, one has Epot(t) = Emax
pot (t) · sin2(ωt), which in our case should

be modified due to the repulsive condensate in the center of the trap. Nevertheless, the
maximum potential energy reached will correspond to the total energy of the impurity
when leaving the condensate. Fig. 5.6(c) shows the expected values to be extracted for
realistic experimental parameters and a classical particle’s trajectory.

Note that the presence of the repulsive bath should introduce some effects not ac-
counted for in the simple oscillatory fit. As the impurity returns to the condensate, it will
enter it and again acquire an effective mass. This changing effective mass leads to an ef-
fective dampening of its motion and to a loss of energy. Additionally, the dynamics within
the condensate is slower due to the larger effective mass, mathematically equivalent to a
spatially dependent rescaling of the temporal variable. In a very coarse approach, the sig-
nificance of these effects for the comparably short timescales probed here is estimated by
fitting a damped oscillation. While describing the data slightly better, this provides very
similar results for the extracted energies. The damping timescales are usually around 5
ms, both when working with the total potential energy and when working with the density
peak position.

The energy obtained from the simple oscillatory fit (shown in Fig. 5.7(b)) is very close
to the energy provided by the RF pulse, which is indicated by the gray line. A statistically
significant deviation only appears for rather large detunings, where impurities are created
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Figure 5.7: Extracted energies from the mapping of the kinetic to potential energy. a) Energy
extracted from the position of the density peak with an inset showing the radially integrated density
for ln(kna) = −10 and δ = 4 kHz. The gray line indicates the energy corresponding to an initial
speed equal to the peak speed of sound. b) Density-weighted integrated potential energy as described
in the main text. In both plots, the black data corresponds to ln(kna) = −21 and the red data to
ln(kna) = −10. The x-error bars indicate the frequency width due to the Fourier broadening of the
RF pulse and the y-error bars originate from the fit result uncertainty. Only the highest detunings
show a significant deviation from the supplied energy by the RF pulse.

near the center of the trap, making the extraction of the difference energy ∆E ≡ hδ−Emax
pot

very challenging. Note that even for zero detuning, i.e. when addressing unshifted atoms,
a nonzero energy is extracted. We attribute this to the finite pulse width, resulting in a
Fourier broadening of the pulse of ∼2 kHz.

The second measure, i.e. the potential energy of the density distribution peak, provides
the data shown in Fig. 5.7(a). Within a classical model, atoms positioned at the density
peak will stay at the density peak, and the potential energy at the maximum position
should correspond to the total energy, which is in stark contrast to the data obtained
from the energy extracted by Eq. 5.2. The energy extracted from the density peak shows
very little variation and only a rather small difference for the tested interaction strengths.
As a reference, the gray bar indicates the energy of a particle leaving the condensate
at RTF ' 5 µm and with a speed between 2.5 µm/ms and 3.2 µm/ms. The extracted
values for ln(kna) = −10 are close to this classical expectation, while the data from
ln(kna) = −21 is compatible with initial speeds of ∼1.5 µm/ms. This value is close to the
speed of sound in our sample, which will be discussed in more depth in Sec. 5.4.

Results The saturation observed in the integrated potential energy suggests to probe
even higher detunings. However, this proved to be challenging: when approaching the
peak detuning, the total number of atoms rapidly decreases as the resonant volume
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shrinks. The increased density at the center does not compensate for the reduced volume
and hence the signal to noise ratio decreases significantly. Furthermore, the higher peak
potential energy corresponds to larger radii and hence a larger area the signal is spread out
in, further decreasing the signal-to-noise. The combination of these two effects severely
limit the applicability of this approach for detunings close to the maximum shift observed
in the spectra in Sec. 4.2.

In conclusion, the approach to measure the transferred energy does not seem convinc-
ing for extracting parameters like the effective mass. The main reason for this is the
low signal-to-noise ratio introduced by the dilute density near the classical turning point,
which is amplified by the r2-factor when extracting the integrated energy, leading to large
uncertainties in the final results. While Fig. 5.7(b) shows an onset of the behavior ex-
pected from Fig. 5.6(c), this is mostly relying on the last two data points. As already
discussed before, probing even higher detuning is very challenging due to the even lower
total amount of impurities created and the larger maximal radius they are expected to
reach. Probing longer evolution times also does not seem promising: due to the Fourier
broadening, the initial positions and energy will have a certain width; and hence, the
“delay” introduced by the propagation in the condensate is different for different initial
conditions, leading to a dephasing with time.

Instead of following this indirect approach of extracting the total energy further, we
decided to instead focus on short evolution times, and directly probe the propagation
within the condensate.
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5.4. Repulsive Expulsion Dynamics

5.4 Repulsive Expulsion Dynamics

The following section will focus on the spatially resolved dynamics for short evolution
times, where all or a large fraction of the impurity component is still within the Thomas-
Fermi radius of the bath. The main observation is that the expected accelerated motion
due to the repulsive harmonic potential is not observed; instead an almost constant ve-
locity near the peak speed of sound is extracted. Classical and quantum-mechanical sim-
ulations indicate that the observed speeds can be explained when taking into account the
two-dimensional friction term derived in [173], while the corresponding three-dimensional
expression does not fit the expectations.

We first discuss the experimental procedure used, followed by a detailed discussion
of the data processing and parameter extraction. These results are then discussed and
compared with results obtained from our simulations. The chapter thereafter is briefly
discuss the possibility to extend this scheme to attractive interactions.

Figure 5.8: Sketch of the experimental setting. Confined by an optical potential the atoms of the
bath state form a condensate (shaded gray area). The density distribution is determined by the
bath-bath interaction parameter gBB . The potential experienced by a single impurity, in contrast,
is determined by the bath-impurity interaction parameter gBI , which in this experiment is usually
much larger than gBB . As the interaction shift on mean field level is ∆E = gBI · n, the impurity
experiences a strongly repulsive potential hill. When a radio-frequency pulse with a detuning δ1
close to the maximum shift gBInpeak/h is applied, only impurities near the center of the cloud can
be created. A detuning δ2 closer to the unshifted transition frequency will create impurities closer to
the edge of the cloud, where the interaction shift is smaller due to the lower density. After creation,
the impurities are expelled from the condensate and will eventually settle between the repulsive bath
and the walls provided by the optical potential.
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5.4.1 Experimental Procedure

A rough sketch of the experimental procedure described in the following section is depicted
in Fig. 5.8. The two-dimensional degenerate cloud, created as described in more detail in
Sec. 3.3.2 and confined by an optical trap, forms the bath with interaction parameter gBB
between bath atoms; this interaction parameter together with the trapping parameters
determines the density profile of the bath cloud. While the effective potential experienced
by the bath atoms is, within the Thomas-Fermi approximation, flat, an impurity atom
with interaction parameter gBI � gBB will experience a strongly repulsive potential
formed by the bath cloud. By applying a radio-frequency pulse of suitable frequency,
a fraction of the bath atoms can be flipped to another spin state (“impurity state”);
and as the interaction shift depends on the density, impurities can be created selectively
at different positions by varying the detuning. For near zero detuning, for example,
only atoms near the edge of the condensate can be flipped, and the resulting density
distribution becomes a ring. For higher detuning near the maximum shift, only atoms
near the center of the bath can be transferred to the impurity state.

The shown experiments were performed with N ' 3000 atoms confined by a radial
trapping frequency of νr ' 110 Hz and a vertical trapping frequency of νz ' 6500 Hz,
leading to peak densities of n2D

0 ' 75 − 100 µm−2. Within the probed region of the
bath-impurity Feshbach resonance, the bath-bath interaction parameter ln(knaBB) varies
between ∼ -400 and ∼ -200, corresponding to coupling parameters of g̃ ' 0.02; the chemi-
cal potential µ/kB in the same region ranges between ∼ 20−30 nK. The impurity-impurity
interaction ranges between ln(kna) ' -20 and ln(kna) '+20, thus entering the regime of
g̃inter & 1.

The experimental procedure starts with the preparation described in Sec. 3.3.2. Af-
ter the degenerate cloud has been transferred into the two-dimensional geometry and a
short subsequent evaporation to remove any possible heating from the transfer, the field
is ramped to the value of interest. After an additional short waiting time to allow eddy
currents to decay, a radio-frequency pulse of either 300 µs or 500 µs duration is applied,
corresponding to Fourier widths of 3.3 kHz or 2 kHz, respectively. Scattering might of
course lead to faster decoherence and further broadening. Both this frequency broaden-
ing as well as the finite pulse time lead to an effective spatial broadening in the initial
distribution of impurities. A variable evolution time of usually 50 - 550 µs follows the RF
pulse, and finally the impurity atoms are imaged on the transition discussed in Sec. 3.3.4.
No time-of-flight is used as we are interested in the in-situ distribution.
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5.4.2 Data Processing

Typical density images obtained for the explained procedure are shown in Fig. 5.9. These
pictures show the impurity density for variable detunings (rows) and different evolution
times after the end of the radio-frequency pulse (columns). The dashed circle indicates
the rough size of the condensate obtained from other measurements. For low detunings,
impurities are created near the edge of the condensate where the local density and hence
the interaction shifts are small. With increasing detuning, the resonance region moves
further towards the center until the signal vanishes when the detuning becomes too large.
The density profile at 6 kHz detuning shows the dynamics especially clearly: the im-
purities are created within the condensate at about half the Thomas-Fermi radius, and
the center shows no impurities as the interaction shift is too large. Within the next few
hundred microseconds, the impurities are expelled outwards by the repulsive potential
they experience due to the inhomogeneous density, and the initially small "hole" contin-
uously becomes larger. The same data is also presented in the bottom row of Fig 5.9,
where the radially integrated density nint(r) is shown. For each of the subplots, the x-axis
corresponds to the evolution time and the y-axis corresponds to the radial distance from
the center, while the population is color coded. In both the raw images and the radially
integrated density profiles, the expulsion is clearly visible.

In the following section, the main observable in the time- and spatially resolved mea-
surements will be the peak position of the impurity density distribution, and it will be
used to define an effective speed. The choice to focus on the peak position is motivated
by the classical model for the system: when neglecting any back reaction and assuming
that the local potential is proportional to the density of the bath, a classical impurity
particle initially created at radius r0 and without initial momentum will experience a har-
monic anti-trapping potential. The trajectory of the impurity formally corresponds to a
harmonic motion with an imaginary trapping frequency ω, i.e. r(t) = r0 · cosh(ω · t). This
solution is of course only valid as long as the impurity is within the condensate. When
generalizing this to a distribution of classical, non-interacting particles initially at rest, it
is straightforward to verify that the peak of the radially integrated density will also follow
the same time evolution as a single particle.1 Motivated by this classical model, we will
focus on the peak position of the radially integrated density as our main observable.

One possible way to extract the peak position would be to fit the images directly with
a ring-like gaussian distribution of functional form n(r, φ) = n0 · exp [−2 · (r − r0)2/w2],
where n(r, φ) is the density in radial coordinates, n0 is the amplitude, r0 is the center

1Note that this is not the case for the peak of the radially averaged density, as the density is spread
out over a larger volume when propagating outwards.

117



Chapter 5. Spatially Resolved Impurity and Bath Dynamics

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Evolution Time [ms]

10

8

6

4

2

De
tu

ni
ng

 [k
Hz

]

0.0 0.2 0.4 0.6
Time [ms]

0

5

10

15

Po
sit

io
n 

[µ
m

]

 = 2 kHz

0.0 0.2 0.4 0.6
Time [ms]

 = 4 kHz

0.0 0.2 0.4 0.6
Time [ms]

 = 6 kHz

0.0 0.2 0.4 0.6
Time [ms]

 = 8 kHz

0.0 0.2 0.4 0.6
Time [ms]

 = 10 kHz

0 0.1 n0 0.2 n0

0.00

0.05

0.10

0.15

0.20

Figure 5.9: Raw impurity density images (top) and radially integrated impurity density profiles
(bottom) for repulsive bath-impurity interactions leading to the expulsion of impurities. For this
data, the two-dimensional coupling parameters are g̃BB ' 0.02 and g̃BI ' 0.48 as peak values, i.e.
at the center of the trap. Top part: Raw density images for different detunings (rows) and evolution
times (columns), where the impurity density is color coded. The size of the bath cloud (not visible)
is indicated by the red circle. With progressively higher detunings, the impurities are created closer
to the center, where the density and therefore the interaction shift is higher. Once created, the
impurities start propagating on the repulsive potential and are being expelled from the cloud. This
is best visible for a detuning of 6 kHz, where the initially small density depletion in the center is
becoming larger as the impurities move further outwards. Similarly, the central hole is only forming
after ∼350 µs for a detuning of 8 kHz. After leaving the cloud, the impurity atoms are trapped
between the repulsive bath and the attractive optical potential. Bottom row: Radial integral of
the above data, the outwards propagation is also clearly visible. Within each subplot, the horizontal
axis is the evolution time and the vertical axis is the radial position, while the integrated density
is color coded, normalized to the peak line integral of the bath density. The radial integral always
shows low density at the center due to the vanishing volume.

radius and w is the waist of the ring. While this expression works well for small detunings
(e.g. δ = 4 kHz in Fig. 5.9), it fails to extract the radius once the ring becomes small
enough to not show a clear depletion in the center anymore. In this case, the extracted
parameters r0 and w become strongly correlated and each individually is not extracted
reliably anymore.

Instead, we choose to work with the radially averaged density, as this allows a more
reliable extraction of the peak position. In the following paragraph, the extraction pro-
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cedure and some relevant details will be discussed in more detail. First, the center of
the density profile is extracted by a Gaussian fit. The individual pixel values are then
sorted by their distance to the center position. The mean of those values then provides
the averaged density nav(r) for each radius2, and we then estimate the radial integral with
the analytical expression nint(r) = 2π · r · nav(r).

Fig. 5.10 shows the extracted radial densities nint(r) for the data also presented in
Fig. 5.9. To extract the peak position of the impurity density, we fit an analytic profile
to the density distribution and use

nint(r) = A · rα · exp(−rα/λ) + nB, (5.3)

where A, α, λ and nB are free parameters to be fitted. Including the exponent α within the
exponential function has the advantage that the peak position coincides with the value of
λ, as can easily be shown analytically3. The individual subplots of Fig. 5.10(a) show the
extracted radial densities for different detunings (rows) and evolution times (columns),
where the time is always referencing to the start of the RF pulse, which lasted 300 µs in
the data shown. The dashed black line in each plot is the fit with the described analytical
model, and the vertical dotted line indicates the extracted peak position from this fit.

The extracted peak positions for the different detunings of this data set are shown in
black in Fig. 5.10(b). In addition, the peak positions obtained with the same procedure
of another experimental run is shown, where the RF power lasted for 500 µs instead of
300 µs. Two main features are visible: the collapse of the 300 µs and the 500 µs data onto
a single line when referencing the time variable with respect to the onset of the RF pulse,
and the surprisingly linear behavior for each of the time traces.

Curve Collapse Choosing the RF pulse time is a trade-off between the desired energy
resolution and the probed evolution times: lower RF pulse times allow us to probe shorter
evolution times, but reduce the energy resolution and probe larger regions of the cloud.

2It is also possible to obtain the radially integrated signal by summing the values within each position
bin, but this turned out to be more prone to systematic errors: due to the discretization of the image, it
is not guaranteed that each radial position has the correct number of contributing pixels, and therefore
it is also not guaranteed that nint(r) grows linearly with r. This deviation drops out in the average, but
will introduce systematic errors when just integrating the values. A possible way to mitigate this effect
is to suitably rescale the summed value by the ratio of expected to actually extracted contributions. To
avoid this issue, we chose to first obtain the averaged density nav(r) from the data before proceeding in
the same way as described in the main text.

3Not including it in the exponential in contrast leads to the peak position to depend on both α and λ.
Estimating its uncertainty is not straightforward though, as the errors σα and σλ are strongly correlated
and Gaussian error propagation is not applicable. Using the above definition disentangles this and directly
provides an error estimate for the peak position.
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Figure 5.10: Quantitative analysis of repulsive impurity dynamics. a) Shown in color are the radially
integrated density profiles of the impurity distribution, corresponding to line cuts in the 2D plots
of Fig. 5.9, for different detunings (rows) and evolution times (columns). The black dashed line
corresponds to the fitting function described in the main text, and the vertical line indicates the
maximum position derived from this fit. b) Extracted positions of the peak impurity density. For
reference, the inset shows the integrated radial density also shown in Fig. 5.9. The peak positions
are shown for 300 µs RF pulses (black) and for 500 µs RF pulses (red). Not only show both data
sets a perfectly linear behavior, referencing both trajectories to the onset of the RF pulse also lets
both curves collapse. This indicates that the onset of motion happens already during the RF pulse.
c) Both the experimental data and the analytical function do not show any significant reduction in
the integrated signal, indicating that three-body losses are negligible.

The perfect collapse onto a single line suggests that the dynamics of the impurities already
starts well within the pulse duration. Longer pulse durations mask the initial dynamics
and even the relatively short pulses used here do not allow us to unambiguously identify
some initial acceleration phase, as will be discussed below. Note that assuming a coherent
spin transfer with a Rabi frequency of 1 kHz, one would expect the highest rate of transfer
is at 250 µs, suggesting that the propagation dynamics starts to dominate around that
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5.4. Repulsive Expulsion Dynamics

time.

Linear Trajectories Classically, we would expect a cosh(ωt)-like acceleration, leading
to an upwards bending of the peak position curve for longer times. Assuming, for example,
a peak repulsive potential of 10 kHz and a Thomas-Fermi radius of 5 µm, we obtain a
trapping parameter ω of ω ' 2π ·460 Hz, and the acceleration should become visible after
∼ 1/ω ' 350 µs.

Such a linear behavior in the peak position could potentially also be produced not
by propagation of the impurities, but spatially dependent loss processes. Three-body
losses, for example, scale with the cube of the density, and would lead to higher loss
rates in the center of the cloud and therefore shift the peak position to larger radii. This
suspicion is discouraged by the integrated signal shown in Fig. 5.10(c), where the black
data corresponds to the integrated signal derived from the analytical fit and the red data
corresponds to the integral over the raw experimental values. As there is no significant
reduction in the total signal within the observed time, we conclude that the atom losses
are negligible and are not responsible for the shift in the peak position.

5.4.3 Results and Discussion

In order to explain this linear behavior, we introduce and discuss three different models,
with their performance depicted in Fig. 5.11. The first and simplest one just approx-
imates the impurity as a classical particle moving within the effective potential formed
by mean field shift of the optical potential. As expected, this leads to an accelerated
motion. The second one is a quantum-mechanical simulation within the same potential,
which also leads to an accelerated behavior – depending on the width of the initial wave
function, the acceleration is even faster than for the classical model. The last one is
also a classical simulation, but includes a friction term for velocities above the critical
velocity, which we assume to equal the speed of sound. With the theoretically predicted
two-dimensional friction term, we can reproduce the observed linear trajectories, while
the three-dimensional expression does not agree with our data.

Extracted Trajectories Fig. 5.11 shows the extracted peak positions depending on
the evolution time for some different detunings taken at an interstate scattering length of
360 a0 (black dots). The other lines in these plots refer to different simulations. The gray
dotted line is the simplest classical expectation, where the parabolic repulsive potential
leads to a cosh-like trajectory while the impurity is within the condensate: r(t) = r0 ·
cosh(ωt), where ω parametrizes the repulsive potential. The blue and purple solid lines
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Figure 5.11: Comparing impurity dynamics with theoretical models at aBI = 360 a0, corresponding
to g̃BI = 0.48, for detunings between 4 kHz and 10 kHz. The black dots refer to the experimentally
extracted peak positions of the impurity distribution, and the lines correspond to different models:
the thin dotted gray line is the non-interacting classical solution of a particle rolling down a harmonic
potential hill, while the corresponding quantum mechanical predictions are shown with solid lines.
The line indicates the center position of the wave function and the different colors correspond to dif-
ferent waists of the initial wave function (smallest for purple, largest for light blue). The significance
of the waist is discussed in the main text. In both the classical and the quantum-mechanical case, the
impurity propagates on the effective potential formed by the repulsive bath and the attractive optical
potential, and no further effects have been included. Both the classical and the quantum-mechanical
model fail to describe the measured data reasonably well. Better agreement with the data is found
with a classical model including a friction term as derived in [173]. The dashed red line indicates the
propagation when including the friction term derived for two-dimensional systems, while the dotted
red line corresponds to the friction term derived for three-dimensional systems. The horizontal line
indicates the edge of the condensate.

are quantum-mechanical one-dimensional simulations of a wave function propagating on
top of the effective potential formed by the repulsive condensate and the attractive optical
potential. The different colors correspond to the peak positions of wave functions starting
with the same position, but different initial widths, corresponding to 1 · x0 (purple),
3 · x0 (dark blue), and 5 · x0 (light blue), where x0 is the harmonic oscillator length. For
small widths, the quantum-mechanical trajectory approaches the classical solution, as we
would expect. Finally, the red dashed line corresponds to a classical simulation including
the friction term derived in[173] for two-dimensional systems, and the red dotted line
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5.4. Repulsive Expulsion Dynamics

corresponds to the same setting with the friction term as derived for a three-dimensional
system. In case of the non-interacting calculations (classical and quantum-mechanical),
the initial position was defined by the observed peak position for short evolution times;
for the classical propagation including the friction term, the initial position was fitted
while all other parameters (e.g. radius of the condensate or interaction strength) were
fixed.

It is evident that the non-interacting simulations show significant disagreement with
the observed data. The non-interacting models predict a substantial acceleration within
the observed evolution times, while the data shows no or only very little sign of such
an acceleration. Including friction terms to describe the dynamics leads to much better
agreement with the observations: as the friction force becomes nonzero above the critical
velocity vc, which is here taken to be the local speed of sound c, motion above this speed
will be damped and an equilibrium speed somewhat above the speed of sound is expected.

Simulations In order to better understand the different simulations, we will briefly
discuss them in the following paragraphs. As already described above, the solution for a
repulsive potential proportional to the local density of the bath is described as U(r) = U0−
1/2mω2r2, which is equivalent to a harmonic oscillator with imaginary trapping frequency.
The solution for a particle initially at rest at r0 is therefore r(t) = r0 · cosh(ω · t). The
typical timescale of 2π/ω is for our system typically around 1 ms. Outside the condensate,
the attractive optical potential leads to harmonic motion with a typical timescale of
1/νtrap ' 10 ms.

For a more realistic comparison, we perform one-dimensional quantum mechanical
simulations. In this simulation, we describe the potential as the sum of the optical poten-
tial and the repulsive potential formed by the bath, where we assume that the repulsive
interaction is proportional to the density. We start with a gaussian wave packet at a vari-
able position and then time-propagate it. The typical behavior is shown in Fig. 5.12(a):
for short times, the wave function shows an accelerated motion as it rolls down from
the potential, which is rapidly stopped when reaching the minimum formed between the
repulsive bath and the walls of the attractive optical potential. From there on, the wave
function still propagates further outwards in the attractive optical potential.

The effects of the free parameters are illustrated in the subplots (b)-(f) in Fig. 5.12.
Subplots (d)-(f) show the density as a colormap, while for subplot (b) and (c) we only
show the extracted peak position of the time-propagated wave function. The effect of
the initial positions is shown in subplot (b) and the effect of the interaction strength
(and hence the curvature of the potential hill) is shown in subplot (c). As expected,
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Figure 5.12: Illustration of generic effects for the simulated propagation of impurities in a repulsive
condensate. a) Quantum-mechanical simulation showing the density of the impurity wave packet for
different times. Short times show an accelerated motion caused by the repulsive potential until the
edge of the potential is reached and the potential is described purely by the attractive optical trap.
The spreading of the wave packet in general leads to experiencing different curvatures and therefore
to faster dynamics than classically expected. b), c) Extracted time-dependent peak positions for
different initial positions and for different potential parameters ωrep, respectively. The classical
expectation is indicated by the dashed lines. Stronger repulsion either due to stronger interactions
or due to large density gradients near the edge of the condensate lead to stronger deviations from the
classical prediction. d) - f): Density plots for different widths of the initial wave function, together
with the classical expectation as a red line. Larger wave function spreads lead to two different
effects: faster dynamics as the impurities are also sensitive to the higher density slope near the edge
of the bath, and stronger interference around the potential minimum formed between the repulsive
condensate in the center of the trap and the attractive optical potential. g) Friction force as derived
in [173] for 2D (black) and 3D (red). h) Classically derived equilibrium speed where the friction
force equals the repulsive force of the condensate (solid lines) and local speed of sound (dashed lines).
i) Ratio of the equilibrium speed to the local speed of sound. The 2D friction term grows linearly
above the local speed of sound, while the growth is quadratic in (v− c) in three dimensions. Motion
above the speed of sound is therefore damped more strongly in two dimensions, where the resulting
equilibrium speed shows little variation for values similar to our experimental parameters.

stronger curvature due to larger radii or due to stronger interaction strengths lead to
a more rapid acceleration. The dynamics is often more rapid than expected from the
classical trajectory, which is shown by the dashed lines. For narrow wave packets (Fig.
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5.4. Repulsive Expulsion Dynamics

5.12(d)), the propagation is close to the classical expectation indicated by the red line.
The wider the wave packet is, the more different curvatures of the potential are sampled,
which leads to a broadening of the wave function and faster dynamics compared to the
classical case, as the average curvature experienced by the impurity will be higher than
classically expected. Near the edge of the condensate, a potential minimum is formed
between the repulsive condensate and the attractive optical potential. In this region,
outward moving parts of the wave function can interfere with those already reflected by
the attractive potential, forming an interference patter. This leads to the sudden jumps
when only extracting the peak density position, as shown in subplots (b) and (c). The
dynamics in the quantum mechanical description therefore also depends on the width of
the wave packet, as a broader state will experience a wider range of accelerations, which
in general leads to a faster evolution than expected classically.

Friction Fig. 5.12(g)-(i) illustrate the effect of friction. For a two-dimensional conden-
sate the authors of [173] derive the expression

F2D(v) = g2
BIm

2n2D
v2 − c2

~3v
, (5.4)

where v is the speed of the impurity, gBI is the coupling parameter between impurity and
bath, m is the mass, n2D is the area-density of the system, and c is the speed of sound.
The above expression is valid only above c; below c, no phonons can be created and the
friction force is zero. For a three-dimensional system, in contrast, the friction force is

F3D(v) = 4πa2
BImn3Dv

2
(
1− c2/v2

)2
, (5.5)

where aBI is the bath-impurity scattering length and n3D is the density of the system.
Fig. 5.12(g) illustrates these two friction forces and their dependence on the speed of the
impurity. For a 3D-system, the friction force increases quadratically above the speed of
sound, while the expression for 2D-systems shows a linear increase of the friction above the
speed of sound. The motion of impurities moving above the speed of sound is, in general,
stronger damped in a two-dimensional system compared to a three-dimensional system.
Considering a harmonic repulsive potential characterized by the trapping parameter ω, it
is straightforward to derive a classical equilibrium speed, at which the local acceleration
due to the repulsive condensate is balanced by the friction force:

v2D
eq (r) =

1

2

(
α +

√
α2 + 4c2

peak[1− (r/RTF )2]
)
, (5.6)
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where α(r) = ~3ω2r/g2
BImnpeak[1− (r/RTF )2]. The corresponding expression in 3D is

v3D
eq (r) =

[
β

2
+

1

2

√
β2 − 4c4

peak[1− (r/RTF )2]2
]0.5

, (5.7)

with β(r) = 2c2
peak[1 − (r/RTF )2] + (ω2r)/(4πnpeak[1 − (r/RTF )2]a2

BI). The equilibrium
speed depends on the radial position as the acceleration increases towards the edge of the
condensate, while the friction reduces as the density reduces and scattering events become
less likely. The resulting equilibrium speeds are shown in Fig. 5.12(h) as solid lines for
typical parameters of our system. The slow onset of friction in the three-dimensional
system quickly leads to equilibrium speeds well above the local speed of sound shown as a
dashed line, while the two-dimensional system allows for less excess and shows a very flat
profile up until r ' 0.7 ·RTF , above which the small density reduces the friction while the
slope of the repulsive potential keeps growing, leading to a rapid increase in the equilibrium
speed. Note that the expressions Eq. 5.6 and Eq. 5.7 assume a quadratic density profile
with a sharp edge and neglect the optical trapping potential. Mathematically, the different
behavior for small r/RTF in 2D and 3D originates in the fact that the lowest non-vanishing
order in 3D scales as

√
r/RTF0, while the lowest order in 2D is ∝ r/RTF and, for our

experimental parameters, has a prefactor. Furthermore the quadratic order in 2D has the
opposite sign, leading to the very flat profile.

Extracted Speeds The extracted average speeds for all data sets of different interac-
tions are shown in Fig. 5.13. For each detuning, the data of the 300 µs and 500 µs pulse
lengths have been combined to extract one average speed of the total data set, and the
applied detuning has been normalized to the maximum shift of the respective interaction
strength. All interactions show similar behavior in the extracted average speed: starting
at low detuning, the average speed starts increasing as the impurities are created further
inside the repulsive cloud, and therefore experience longer times of repulsive acceleration
before leaving the cloud and propagating in the attractive optical potential. This trend in-
creases up to some about 30%-50% of the peak detuning (corresponding to r ≈ 0.75RTF ),
where the maximum speed is observed. Above this detuning, the speed slowly decreases
and approaches the local speed of sound at the center of the trap. This decrease is ex-
pected from the classical treatment discussed above, where the equilibrium speed reduces
both due to the decrease in acceleration as the condensate’s profile becomes flatter and
the increase in friction as the density increases. In terms of the local speed of sound as
shown in 5.13(b), the speed of sound constantly increases when creating the impurities
further towards the cloud’s edge. As clocal ∝

√
n, the local speed of sound approaches
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Figure 5.13: Extracted average speeds for different interaction parameters of ln(kna) = -21 (g̃BI '
0.28, black), ln(kna) = -10 (g̃BI ' 0.56, red), and ln(kna) = -4 (g̃BI ' 1.2, green). a) Extracted
average speeds depending on the normalized detuning. b) Extracted average speeds normalized to
the local speed of sound at the position of creation, assuming δ ∝ n. In both plots, the detunings
have been normalized by the peak observed detuning in order to make the different interactions
comparable. The dashed gray line represents the speed of sound at the highest density, i.e. in
the center of the cloud. All interaction strengths show similar behavior: impurities created near the
center of the cloud propagate with a speed close to the peak speed of sound. As impurities are created
farther from the center, their average speed increases due to greater local acceleration, while friction
decreases due to reduced density. Moving even closer to the edge of the bath cloud, the average
speed decreases again, as the impurity’s wave function begins extending beyond the repulsive bath,
resulting in a decrease in average acceleration. The ratio vav/clocal constantly increases as the local
speed of sound decreases ∝

√
n(r) and approaches zero at the cloud’s edge.

zero at δ/δmax = 0. This decrease is slower than the decrease of the extracted average
speed and hence the ratio increases steadily.
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5.5 Attractive Dynamics

After investigating the repulsive dynamics, we now discuss the prospects of applying a
similar scheme to attractive interactions.
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Figure 5.14: Impurity dynamics for attractive interstate interaction. a) - c) Radially averaged
impurity densities for different RF detunings for ln(kna) = 20 (g̃BI ' −0.33. d) Extracted decay
timescales from the loss of integrated impurity weight. e) - f) Spatial impurity and bath distribution,
respectively, after release from the optical trap. Where present, the thin red lines indicate the
extracted gaussian waist of the distribution at the respective time, showing the increase at later time
when the thermal population becomes more relevant. Creating impurities at negative detunings leads
to rapid losses, where the integrated weight follows an exponential decay with a timescale of ∼1 ms.
A similar decay timescale can be observed in TOF data (e, f) taken at weakly attractive interactions
of ln(kna) ' 57 (g̃BI ' −0.11), although the density of the surrounding bath drops rapidly within
∼ 1/νz ' 150 µs due to the rapid expansion along the line-of-sight.

The direct equivalent to the repulsive probing scheme consists of ramping to a suitable
interstate interaction strength, flipping atoms at negative detunings with respect to the
unshifted resonance, and observing the subsequent dynamics in the effective potential
formed by the bath. Dynamical properties of interest could be the effect of friction or a
signature of an effective mass significantly different from the bare mass. Radially averaged
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density profiles of such runs are shown in Fig. 5.14(a)-(c) for an interaction parameter of
ln(kna) = 20 and detunings between -4 kHz and 0 kHz. As discussed before, attractive
interactions do not show the ring-shaped spatial structure observed for low detunings at
repulsive interactions, but always produce almost homogeneous impurity distributions,
where the outer radius of the distribution decreases with more negative detuning. While
the size of the central density peak indeed decreases when applying a negative RF detuning
to create impurities, the dominant effect is an exponential loss of signal within ∼1 ms.
At the same time, a weaker second component becomes visible with much larger radii,
indicating a temperature of ∼ 0.1 · Utrap. On the other hand, creating impurities at zero
or positive detuning leads to a cloud of impurity atoms which barely changes its size, but
shows a similar loss time. For rather large positive detuning (δ = 4 kHz), the extracted
lifetime of the small impurity population shows a longer decay time.

We attribute these effects mostly to losses due to collisions with bath atoms. For
negative or zero detuning, the created impurities are confined within the effective potential
formed by the condensate and intrinsically have a large scattering probability, leading to
the short lifetimes. The hotter component formed for negative detunings originate then
from elastic collisions, where one excited impurity is scattered into a lower-lying state
within the potential, while a second impurity atom gains energy and is able to leave the
confining potential formed by the bath. The signal at positive detunings is interpreted
as higher excited states that are not bound within the condensate, and therefore have a
significantly smaller overlap, leading to an increase in lifetime for higher detunings. While
it is possible to assign a speed to the decrease of the central, high density impurity part
– e.g. ∼ 1.1 µm/ms for δ = −2 kHz – the rapid, probably spatially inhomogeneous losses
prevent a clear interpretation of extraction of a propagation speed of the impurities rolling
into the potential. Thus, we did not follow this approach further.

Data obtained from a similar alternative approach is displayed in Fig. 5.14(e, f). Here,
we focus on impurity dynamics after releasing the atoms from the optical trap. Due to
the high z-confinement, the cloud rapidly expands in the vertical direction, leading to
a fast reduction of the density on the timescale of 1/νtrap � 1ms, and should therefore
reduce the impurity losses. Furthermore, the sudden release should map the initial high
effective mass to a high momentum state when the interaction is suddenly reduced: the
strong localization due to the dressing of the impurity atom with bath atoms, i.e. the
origin of the increased effective mass, corresponds to higher momentum contributions for
the impurity state. Assuming that the reduction of surrounding density happens rapidly
enough, the higher momentum remains and is visible in the time-of-flight measurement.

Fig. 5.14(e) shows that the behavior is not as naively expected: while the bath,
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shown in Fig. 5.14(f), behaves as expected and slowly grows radially (the rapid vertical
expansion is not visible due to the integration along the line-of-sight), the impurity signal
shows a shrinking instead of an increasing size, as expected for a cloud released from the
confining potential. The behavior is very similar to the confined case discussed above and
indicates that the fast vertical expansion is not sufficient to freeze out the interactions.
Scattering and losses still dominate the dynamics, preventing us to extract the dynamical
properties mentioned above.
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Chapter 6

Conclusion and Outlook

In this thesis, I presented experimental work which enabled the few atom counting in
a tweezer-based setup of fermionic 40K, and experiments exploring polaronic physics in
degenerate bosonic three-dimensional and two-dimensional systems.

For small systems of the fermionic 40K, we implemented and characterized a novel
two-color MOT for precise atom number counting, reaching fidelities of 98% for up to five
atoms and exceeding 85% for up to 17 atoms. This atom counting scheme is an essential
tool in the preparation and probing of low-entropy tweezer systems. Furthermore, we
established a clear road map for the next steps towards the observation of Anderson’s
orthogonality catastrophe in the limit of low atom numbers within such a tweezer system.

For the bosonic isotope 39K we upgraded the setup to reach degeneracy in bulk systems.
Among other things, these upgrades included adaptions and additions in the laser systems,
new optical potentials, adaptions to the system preparation, and finally the evaporation
to degeneracy, resulting in a Bose-Einstein condensate of 39K. Furthermore, by utilizing
suitable optical potentials – most notably a repulsive lattice confining the atomic motion
in one spatial direction – we created two-dimensional samples in the regime of BKT su-
perfluidity. For both the three-dimensional and the two-dimensional case, the interactions
between all magnetic substates of the relevant hyperfine state can be tuned by Feshbach
resonances. This applies to intrastate interactions within one spin state as well as to in-
terstate interactions between two different spin states, for example after preparing a spin
mixture via a suitable radio-frequency transfer.

In the three-dimensional Bose-Einstein condensates, we used injection spectroscopy to
measure the polaron spectrum: by employing radio-frequency pulses to flip atoms into a
different spin state, we created a system consisting of impurities immersed in a bosonic
bath. A Feshbach resonance between the impurity state and the bath state allowed
us control not only the interaction strength, but also to switch between repulsive and

131



Chapter 6. Conclusion and Outlook

attractive interactions. The polaron energy shift is then encoded in the RF detuning
needed to flip atoms into the interacting impurity state. The spectrum obtained in this
manner shows a repulsive branch that is well separated from the unshifted resonance and
exhibits decreasing weight close to the Feshbach resonance. For attractive interactions, we
do not observe a distinct branch but instead observe the strongest signal near the unshifted
detuning and a decreasing amplitude towards further negative detuning, i.e. stronger
bound states. We modeled the observed line shapes for both attractive and repulsive
interactions with good accuracy with phenomenological models, where the inclusion of
excited states was essential. Especially for attractive interactions, our models suggest a
significant influence of excited states still bound within the effective potential formed by
the bath. The observed energy shifts are in agreement with previous work, but our line
shapes are not modeled well with expressions from previous work.

In a similar way we measured the polaron spectrum in a two-dimensional Bose gas for
the first time and extracted the peak energy shifts. In the two-dimensional case, repulsive
interactions do not exhibit a well separated branch but instead show a behavior similar to
attractive interactions, where the strongest signal is observed near the unshifted frequency
and is reduced for larger detuning. With models similar to the ones used in the three-
dimensional case, we again achieve good agreement with the measured line shapes, again
finding support for the relevance of excited states.

Furthermore, we explored the spatially and temporally resolved impurity dynamics in
a two-dimensional Bose gas. We observed correlated bath-impurity dynamics for both
repulsive and attractive interactions, but in the latter case, the rapid loss of particle only
allowed us to follow the dynamics for about 1 ms. In the repulsive regime, in contrast,
we observe and track the expulsion of impurities from the condensate and can model
the motion to good accuracy when including the two-dimensional friction term relevant
for speeds above the local speed of sound. This friction term counteracts the expected
acceleration near the edge of the condensate and the combination of the two leads to a
motion with almost constant velocity.

Outlook While we measured the energy shifts in the polaron spectrum, our attempt to
extract the effective mass has not been successful yet. The quasi-particle residue - another
fundamental quantity describing the polaron - is also not accessible yet in our setup, but
both might be in reach with a comparably simple further upgrade in the machine. A digital
mirror device (DMD) would allow us to generate very flexible potential geometries within
the horizontal plane and could be used to replace the current harmonic radial confinement
by a ring of steep walls. The potential inside of these walls could for example be flat or
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feature a linear potential gradient. The latter would lead to the Thomas-Fermi profile
of the bath also showing a linear increase in one spatial dimension. Position selective
spin flips and the subsequent dynamics would not suffer from the large errors discussed
in Sec. 5.3 as the motion would be effectively one-dimensional, leading to a much better
signal-to-noise ratio and hence making the extraction of the effective mass realistic.

In case of the flat potential and therefore uniform density, the extraction of the quasi-
particle residue seems feasible. In the harmonic trap, we always average over a range of
interaction parameters ln(kna), either globally as in the case of the spectra or locally as in
chapter 5, where the range was defined by the Fourier width of the RF pulse. This average
is crucial when trying to extract the quasi-particle residue since this is usually done by
measuring a reduction in the Rabi frequency of the spin transfer into the impurity state.
The average over densities and hence interaction parameters then leads to an average over
Rabi oscillations with different frequencies, leading to rapid decoherence. For a constant
density within the system, only one interaction parameter contributes, thereby eliminating
the dominant contribution to decoherence.

Furthermore, faster RF pulses are more useful in systems of uniform density. As
briefly discussed above, faster RF pulses lead to a larger Fourier width and therefore to
a larger range of densities being addressed. For the observation of impurity dynamics
in a harmonic trap, this reduces the selectivity on the initial position, which is a clear
disadvantage when tracking the impurity motion. However, in a homogeneous system the
larger Fourier width is of no concern. Faster Rabi oscillations can therefore be used to
observe more spin oscillations and enhance any effect of the reduced quasi-particle residue.

But even without taking advantage of the spatial resolution, the homogeneous system
promises valuable information: the exact energies of the excited states should be measur-
able in a homogeneous system, therefore shedding light on their character. In addition,
the observation of the vertical momentum distribution of the excited states would be
interesting, i.e. the momentum along the tight trapping direction. This is in principle
accessible in time-of-flight measurements when imaging along the horizontal plane.

Employing techniques discussed in the context of 40K, one could also add tweezers
to provide a small, localized light shift within the homogeneous cloud, preferably on
a transition only the impurity state is sensitive to in order to reduce the disturbance
of the bath. The shifted transition frequency would then allow us to create impurities
selectively only at the position of the tweezers. When using a single tweezer, this could
open up the pathway to study the predicted self-trapping regime of impurities, where
the usually expected delocalization is suppressed [174]. For two tweezers, probing the
polaron-polaron interaction in a collider-like setting is a promising endeavor.
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Appendix A

Decay Ratio Table

Excited state decay ratios are relevant for different stages of the experiment, for example
optical pumping. For convenience, the calculated branching ratios are collected here, both
for 39K and 40K. All calculations follow the procedure outlined in [166] and only take
into account dipol transitions at zero field.

Tables A.1 and A.4 state the decay ratios without mF resolution, i.e. the probabilities
for all possible mF values in the final state are summed. The remaining tables always
indicate the mF -resolved decay ratios.

39K Decay Ratios

39K D1 Line and D2 Line: Not Spin Resolved
4p3/2 (D2 Line) 4p1/2 (D1 Line)

PPPPPPPPPfinal
initial |F = 3〉 |F = 2〉 |F = 1〉 |F = 0〉 |F = 2〉 |F = 1〉

|4s1/2,F = 2〉 1.0 1/2 1/6 1/2 5/6
|4s1/2,F = 1〉 1/2 5/6 1.0 1/2 1/6

Table A.1: Not spin resolved decay ratios for 39K, i.e. probabilities are summed over all possible mF

values in the final state. The columns corresponds to different initial states in the excited state, and
the rows to different final states after decay. Empty boxes indicate forbidden transitions, such that
the transition probability is highly suppressed.
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39K D1 Line
PPPPPPPPPfinal

initial |2,2〉 |2,1〉 |2,0〉 |2,−1〉 |2,−2〉 |1,1〉 |1,0〉 |1,−1〉

|2,2〉 0.333 0.167 0.5
|2,1〉 0.167 0.083 0.25 0.25 0.25
|2,0〉 0.25 0.25 0.083 0.333 0.083
|2,−1〉 0.25 0.083 0.167 0.25 0.25
|2,−2〉 0.167 0.333 0.5
|1,1〉 0.5 0.25 0.083 0.083 0.083
|1,0〉 0.25 0.333 0.25 0.083 0.083
|1,−1〉 0.083 0.25 0.5 0.083 0.083

Table A.2: 39K decay ratios for decays from the 4p1/2-state to the electronic ground state 4s1/2,
i.e. on the D1 line. The columns corresponds to different initial states in the excited state, and the
rows to different final states after decay. Labels always indicate the F and mF quantum numbers:
|F,mF 〉. Empty boxes indicate forbidden transitions, such that the transition probability is highly
suppressed.

39K D2 Line: Excited States with F = 3
PPPPPPPPPfinal

initial |3, 3〉 |3, 2〉 |3, 1〉 |3, 0〉 |3,−1〉 |3,−2〉 |3,−3〉

|2, 2〉 1.0 0.333 0.067
|2, 1〉 0.667 0.533 0.2
|2, 0〉 0.4 0.6 0.4
|2,−1〉 0.2 0.533 0.667
|2,−2〉 0.067 0.333 1.0

39K D2 Line: Excited States with F = 2, F = 1, or F = 0
PPPPPPPPPfinal

initial |2, 2〉 |2, 1〉 |2, 0〉 |2,−1〉 |2,−2〉 |1, 1〉 |1, 0〉 |1,−1〉 |0, 0〉

|2,2〉 0.333 0.167 0.1
|2,1〉 0.167 0.083 0.25 0.05 0.05
|2,0〉 0.25 0.25 0.017 0.067 0.017
|2,−1〉 0.25 0.083 0.167 0.05 0.05
|2,−2〉 0.167 0.333 0.1
|1,1〉 0.5 0.25 0.083 0.417 0.417 0.333
|1,0〉 0.25 0.333 0.25 0.417 0.417 0.333
|1,−1〉 0.083 0.25 0.5 0.417 0.417 0.333

Table A.3: 39K decay ratios for decays from the 4p3/2-state to the electronic ground state 4s1/2,
i.e. on the D2 line. The columns corresponds to different initial states in the excited state, and the
rows to different final states after decay. Labels always indicate the F and mF quantum numbers:
|F,mF 〉. Empty boxes indicate forbidden transitions, such that the transition probability is highly
suppressed.
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Appendix A. Decay Ratio Table

40K Decay Ratios

40K D1 Line and D2 Line: Not Spin Resolved
4p3/2 (D2 Line) 4p1/2 (D1 Line)

PPPPPPPPPfinal
initial |F = 11/2〉 |F = 9/2〉 |F = 7/2〉 |F = 5/2〉 |F = 9/2〉 |F = 7/2〉

|4s1/2,F = 9/2〉 1.0 16/27 7/27 11/27 20/27
|4s1/2,F = 7/2〉 11/27 20/27 1.0 16/27 7/27

Table A.4: Not spin resolved decay ratios for 40K, i.e. probabilities are summed over all possible
mF values in the final state. The columns corresponds to different initial states in the excited state,
and the rows to different final states after decay. Empty boxes indicate forbidden transitions, such
that the transition probability is highly suppressed.
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D2 Line: Excited States with F = 11/2
PPPPPPPPPfinal

initial |11/2,11/2〉 |11/2,9/2〉 |11/2,7/2〉 |11/2,5/2〉 |11/2,3/2〉 |11/2,1/2〉

|9/2,9/2〉 1.0 0.182 0.018
|9/2,7/2〉 0.818 0.327 0.055
|9/2,5/2〉 0.655 0.436 0.109
|9/2,3/2〉 0.509 0.509 0.182
|9/2,1/2〉 0.382 0.545
|9/2,−1/2〉 0.273

D2 Line: Excited States with F = 9/2
PPPPPPPPPfinal

initial |9/2,9/2〉 |9/2,7/2〉 |9/2,5/2〉 |9/2,3/2〉 |9/2,1/2〉

|9/2,9/2〉 0.485 0.108
|9/2,7/2〉 0.108 0.293 0.192
|9/2,5/2〉 0.192 0.15 0.251
|9/2,3/2〉 0.251 0.054 0.287
|9/2,1/2〉 0.287 0.006
|9/2,−1/2〉 0.299
|7/2,7/2〉 0.407 0.091 0.011
|7/2,5/2〉 0.317 0.158 0.034
|7/2,3/2〉 0.238 0.204 0.068
|7/2,1/2〉 0.17 0.226
|7/2,−1/2〉 0.113

Table A.5: 40K decay ratios for decays from the 4p3/2-state to the electronic ground state 4s1/2,
i.e. on the D2 line. The columns corresponds to different initial states in the excited state, and the
rows to different final states after decay. Labels always indicate the F and mF quantum numbers:
|F,mF 〉. Empty boxes indicate forbidden transitions, such that the transition probability is highly
suppressed. This table only shows the initial states for F = 11/2 and F = 9/2; F = 7/2 and F = 5/2
are shown in the next table. Only the decay ratios for excited states with positive mF are shown;
decay ratios for the negative mF values are the same as for the respective positive mF values, only
with the signs of the mF quantum number of the final states flipped.
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Appendix A. Decay Ratio Table

D2 Line: Excited States with F = 7/2
PPPPPPPPPfinal

initial |7/2,7/2〉 |7/2,5/2〉 |7/2,3/2〉 |7/2,1/2〉

|9/2,9/2〉 0.207
|9/2,7/2〉 0.046 0.161
|9/2,5/2〉 0.006 0.081 0.121
|9/2,3/2〉 0.017 0.104 0.086
|9/2,1/2〉 0.035 0.115
|9/2,−1/2〉 0.058
|7/2,7/2〉 0.576 0.165
|7/2,5/2〉 0.165 0.294 0.282
|7/2,3/2〉 0.282 0.106 0.353
|7/2,1/2〉 0.353 0.012
|7/2,−1/2〉 0.376

D2 Line: Excited States with F = 5/2
PPPPPPPPPfinal

initial |5/2,5/2〉 |5/2,3/2〉 |5/2,1/2〉

|7/2,7/2〉 0.75
|7/2,5/2〉 0.214 0.536
|7/2,3/2〉 0.036 0.357 0.357
|7/2,1/2〉 0.107 0.429
|7/2,−1/2〉 0.214

Table A.6: 40K decay ratios for decays from the 4p3/2-state to the electronic ground state 4s1/2,
i.e. on the D2 line. The columns corresponds to different initial states in the excited state, and the
rows to different final states after decay. Labels always indicate the F and mF quantum numbers:
|F,mF 〉. Empty boxes indicate forbidden transitions, such that the transition probability is highly
suppressed. This table only shows the initial states for F = 7/2 and F = 5/2; F = 11/2 and F = 9/2
are shown in the previous table. Only the decay ratios for excited states with positive mF are shown;
decay ratios for the negative mF values are the same as for the respective positive mF values, only
with the signs of the mF quantum number of the final states flipped.
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D1 Line: Excited States with F = 9/2
PPPPPPPPPfinal

initial |9/2,9/2〉 |9/2,7/2〉 |9/2,5/2〉 |9/2,3/2〉 |9/2,1/2〉

|9/2,9/2〉 0.333 0.074
|9/2,7/2〉 0.074 0.202 0.132
|9/2,5/2〉 0.132 0.103 0.173
|9/2,3/2〉 0.173 0.037 0.198
|9/2,1/2〉 0.198 0.004
|9/2,−1/2〉 0.206
|7/2,7/2〉 0.593 0.132 0.016
|7/2,5/2〉 0.461 0.23 0.049
|7/2,3/2〉 0.346 0.296 0.099
|7/2,1/2〉 0.247 0.329
|7/2,−1/2〉 0.165

D1 Line: Excited States with F = 7/2
PPPPPPPPPfinal

initial |7/2,7/2〉 |7/2,5/2〉 |7/2,3/2〉 |7/2,1/2〉

|9/2,9/2〉 0.593
|9/2,7/2〉 0.132 0.461
|9/2,5/2〉 0.016 0.23 0.346
|9/2,3/2〉 0.049 0.296 0.247
|9/2,1/2〉 0.099 0.329
|9/2,−1/2〉 0.165
|7/2,7/2〉 0.202 0.058
|7/2,5/2〉 0.058 0.103 0.099
|7/2,3/2〉 0.099 0.037 0.123
|7/2,1/2〉 0.123 0.004
|7/2,−1/2〉 0.132

Table A.7: 40K decay ratios for decays from the 4p1/2-state to the electronic ground state 4s1/2,
i.e. on the D1 line. The columns corresponds to different initial states in the excited state, and the
rows to different final states after decay. Labels always indicate the F and mF quantum numbers:
|F,mF 〉. Empty boxes indicate forbidden transitions, such that the transition probability is highly
suppressed. Only the decay ratios for excited states with positive mF are shown; decay ratios for
the negative mF values are the same as for the respective positive mF values, only with the signs of
the mF quantum number of the final states flipped.
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