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1. Introduction

1.1. Tumors of the central nervous system

Conforming to the most recent guidelines of the World Health Organization (WHO),
brain tumors can be classified into more than 100 different entities with varying
characteristics, prognoses and outcomes [1,2]. Most entities can be divided into further
subgroups and -types, according to their, often molecular, but also clinical
characteristics — such as medulloblastoma with its subgroups wingless (WNT), sonic
hedgehog (SHH), group 3 and group 4 [3,4]; or atypical teratoid/rhabdoid tumors
(ATRT) with the subgroups tyrosinase (TYR), SHH, MYC and SMARCA4 [5,6].
Entities, incidences, symptoms, treatment and outcome vary between pediatric and
adult patients. Generally, primary brain tumors are rare diseases, however they
represent the most commonly occurring solid tumor type in pediatric patients,
whereas other solid cancers like prostate cancer in male and breast cancer in female
patients predominate in adults [7].

Considering this great variety of primary central nervous system (CNS) tumors, it is
important to diagnose a tumor as accurately as possible. Especially in the still
developing pediatric brain, treatment decisions need to be based on an accurate
diagnosis. While radiotherapy is beneficial for some tumors [8], long-term risks for
several issues such as cognitive impairments [9,10], hearing loss [9,11], hormone
deficiencies [12] and cerebrovascular disease [13] are well known, showing that this

treatment should only be utilized when absolutely necessary.

1.1.1. Diagnostics of CNS tumors
Historically, tumor diagnoses were made based on the histology of tumor biopsies and
clinical features. While still important today, molecular characteristics are now
ingrained into the diagnostic process, and for some tumor entities are even required
to make the exact diagnosis [1,2]. For example, ependymoma are grouped based on
their location within the CNS — with occurrences in the spinal cord, posterior fossa (PF)

or supratentorial locations; on their histopathological features such as myxopapillary
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features for the subgroup of myxopapillary ependymoma, as well as based on their
molecular features, for example fusions such as RELA or YAP1 for the subgroups of
ependymoma, RELA-fusion, or ependymoma, YAP1-fusion, respectively [1,2,14].

In recent years, the use of methylation profiling has become a widely respected method
to classify brain tumors and their exact entities. Thousands of CpG sites of isolated
DNA are analyzed in respect for their methylation status on arrays. The resulting data
can be compared to a vast reference cohort using a random forest algorithm, which in
turn classifies the sample with a probability score to the best fitting tumor entity
[15,16]. This classifier, often referred to as the ‘Heidelberg classifier’, developed by
Capper et al. [15,16] has been integrated into clinical routines in many
neuropathologies and supports the diagnostic process immensely. This method allows
for very robust and exact classification of brain tumors, and has already been adapted
for other tumor entities, namely sarcoma [17,18]. Although it has great advantages,
this method still has drawbacks. One of them is the long hands-on protocol, as the
turn-around time from DNA isolation from samples to final methylation results is
roughly five days. Another drawback this method shares with many others currently
employed in the routine neuropathological diagnostic process is the availability of
tumor tissue. Especially in cases with difficult to reach anatomical sites, such as the
brainstem, or in the pediatric setting where neurosurgery would preferably not be
performed, tumor tissue is not always available for the use in established methods. In
cases where the surgeon cannot safely remove a piece of sufficient size of the tumor
for biopsy, these methods are also often not applicable as they usually require
hundreds of nanogram of DNA, leaving the patients with the risks of the surgery but
no secured diagnosis. In addition to these drawbacks, knowing the tumor entity
beforehand can influence the surgery and course of treatment. For example, the
identification of the glioblastoma subgroup before surgery is able to influence the
extent of resection necessary as patients with glioblastoma subclasses RTKI and RTKII
benefit from extended resections, while patients with the mesenchymal subclass do

not [19]. Similarly, if the diagnosis of an ependymoma compared to a medulloblastoma
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is secured before the surgery takes places, neurosurgeons might preferably maximize
the resection as residual tumor is one of the key risk factors in ependymoma [20],
whereas it only plays a minor role in medulloblastoma [21]. For pre-surgery diagnosis,
new diagnostic methods are needed that do not rely on the availability of tumor tissue.

For this, the field of liquid biopsies opens great possibilities.

1.2. Liquid biopsies
The concept of liquid biopsies as the analysis of bodily fluid, namely plasma and bone
marrow, for circulating tumor cells (CTCs) and disseminated tumor cells was coined
in 2010 by Pantel and Alix-Panabieres [22]. The range of analytes considered in the
tield of liquid biopsies expanded to cell-free DNA (cfDNA) or circulating tumor DNA
(ctDNA) [23], as well as circulating RNAs [23,24] and extracellular vesicles (EVs) [25]
(Figure 1.1).

DNA

proteins
RNA
WAVAV AN
¢\ EVs
CTCs|

Created in BioRender.com m

Figure 1.1 Analytes such as DNA, RNA, EVs, proteins and CTCs are found in liquid biopsies of the cerebrospinal
fluid. CSF — cerebrospinal fluid, CTCs - circulating tumor cells, EVs - extracellular vesicles. Created in
BioRender.com.

In the fast-growing field, many entities found uses for liquid biopsies, for initial
diagnostics, biomarker evaluation or minimal residual disease (MRD) detection, as

they contain valuable information and are collected minimally invasively compared to
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surgical biopsies. Most cancers exhibit detectable levels of a liquid biopsy biomarker,
such as ctDNA [26] that can be used for clinical decision making. Liquid biopsy studies
in cancer types with relatively large cohorts, such as castration-resistant prostate
carcinoma, allowed for the development of specific prognostic markers, like the CTC
count in plasma [27]. In other cancer types, like breast cancer, specific cancer-
associated mutations can be found in the plasma at early stages already, improving
the initial diagnosis [28]. Liquid biopsies have become popular areas of research in
many entities and are integrated in a great variety of clinical trials across many entities

[29,30].

1.2.1. Cerebrospinal fluid

For neurooncological research and eventual diagnostics of brain tumors, finding
appropriate liquids for the use as liquid biopsies proves somewhat more difficult.
Cerebrospinal fluid (CSF) is in direct contact to the brain, which makes it an attractive
fluid to use, however it is usually collected via lumbar puncture, and more rarely via
shunt or extraventricular drainage, which is more invasive than a blood draw.
However, these draws are routine procedures in the clinic and justifiable in regards to
the possible benefits.

CSF is mainly produced by the choroid plexus, a structure in the ventricles. In adults,
a total of about 150 mL of CSF is present in subarachnoid spaces in the cranium and
spine, with a production of up to 600 mL per day. The CSF contains electrolytes such
as Na*, CI, Mg*, K+ and Ca*, proteins, glucose and lactic acid, amongst other
components [31,32]. Healthy CSF contains less than five cells per mL [31]. Circulation
of the CSF follows the flow depicted by the arrows in Figure 1.2. It flows from the
lateral ventricle through the interventricular foramen to the third and fourth ventricle,
where it enters the subarachnoid space through the median aperture. Within the
subarachnoid space, it follows either a rostral path until absorbed, or a caudal path

into the spine, from where it circulates back towards the cranium [31,33].
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Figure 1.2 CSF circulation within the brain and skull. CSF flows from the choroid plexus through the lateral
ventricles towards the third and fourth ventricles. It enters the subarachnoid space through the median aperture,
where it either flows rostrally until it is absorbed, or caudally into the spine and back towards the cranium. CSF -
cerebrospinal fluid. Figure from Betts et al. [33], access for free at https://openstax.org/books/anatomy-and-
physiology/pages/1-introduction.

It has also been shown that CSF is the preferable fluid of choice for CNS tumors as
detection rates of tumor-derived markers are higher than in other fluids [34-36],
although biomarker detection is still possible in plasma [26,37]. One routine scenario
of basic liquid biopsy analysis that is already adapted into clinical practices is the
microscopic analysis of CSF for the presence of tumor cells after surgery for
medulloblastoma patients to determine disease status. Molecular analyses of CSF and

its analytes, however, are still experimental and not yet implemented into the routine.

1.2.2. Cell-free DNA

cfDNA is particularly interesting as analyte as it remains relatively stable for long
periods of time and is easily isolated with commercially available kits [38,39]. After

isolation, it can simply be stored at -20 °C and does not require special handling,
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making it an attractive analyte for routine applications in the clinical diagnostic setting.
In addition to delivering information on the sequence of the DNA itself, cfDNA also
carries epigenetic modifications, opening up further possibilities of analysis and thus
diagnostic paths [40]. The exact origins of cfDNA are still debated, with apoptosis
being widely proposed as the main contributor to cfDNA fragmentation and release,
however also necrosis and active secretion are possible origins for cfDNA [41]. The
main characteristic distinguishing cfDNA from genomic DNA (gDNA), apart from it
being cell-free, is its size: cfDNA is highly fragmented, with size ranges of 140-180 bp.
In healthy cells, 143 bp is the length of DNA wrapped around the histone octamer, and
166 bp including the histone H1, which gives the cfDNA its characteristic length when
cut by a nuclease (Figure 1.3) [42]. The fragmentation profile of tumor-derived cfDNA
is possibly being influenced by chromatin modifications due to the inherent biological
mechanisms of cancer [43-45], and often shows mean fragment lengths below 166 bp

[46,47].

~_Major _ Minor
groove (‘groove

166 bp chromatosome

‘ Nuclease

Figure 1.3 DNA is wrapped around the histone complex, forming nucleosomes. DNA wrapped around the histone
complex and additionally the H1 forms the chromatosome. Nucleases target the DNA during for example
apoptosis, and cut the DNA at the specific lengths of 143 bp for the nucleosome and at 166 bp for the
chromatosome. bp - basepairs, H1 - histone 1. Adapted from Lo et al. [42].

cfDNA from the CSF does not differ in those characteristics and has the additional
advantage of low background compared to plasma, as only few cells shed into the CSF
— resulting in low DNA amounts in healthy people [39]. Another advantage of using

cfDNA for molecular analysis over tissue biopsies is the possibility to interrogate the
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tumor heterogeneity that might be lost in the tissue biopsy due to sampling bias.
Tumor-derived biomarkers in the CSF recapitulate those in the tumor [34,35,48], yet
sometimes they offer additional information regarding aberrations than the tumor
biopsy itself [34,49]. Longitudinal studies for the detection of MRD using cfDNA from

CSF are also successful [50].

1.2.3. Current approaches
CSF analysis, especially the analysis of CSF-derived cfDNA, is already performed
using a variety of methods. The most prominent methods are polymerase chain
reaction (PCR)-based methods, such as droplet digital PCR (ddPCR), and sequencing
approaches. ddPCR is a highly sensitive method that randomly divides DNA
fragments into thousands of singular water-in-oil droplets that all serve as an
individual reaction tube [51]. Detection is fluorescence-based, and assays investigating
single nucleotide variants (SNVs) and copy number variations (CNVs) are already
commercially available. SNV detection has been demonstrated especially successful
for diffuse midline glioma (DMG) that harbor a histone 3 (H3) K27M mutation [52,53].
Sequencing approaches involve next-generation sequencing (NGS), either targeted
deep-sequencing approaches or low-coverage (shallow) whole genome sequencing
(WGS). Low-coverage approaches are mostly used for CNV detection [50,54], whereas
deep-sequencing approaches are more focused on SNV detection [55,56]. Both the
target-informed and the broad, target-uninformed approaches have shown their

utility in brain tumor diagnostics in these various studies.

The recent emergence of third generation sequencing approaches such as Nanopore
sequencing has made sequencing approaches more widely accessible as it is less
complicated in terms of handling and less expensive than previous classical
sequencing approaches. Instead of depending on sequencing by hybridization or by
synthesis, Nanopore sequencing works via the detection of changes in ionic current

produced by nucleic acid strands passing through nanopores, derived from bacteria,
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embedded in a membrane [57,58]. These signals are translated to the sequence in real-
time, with the additional advantage of being able to detect epigenetic modifications,
such as 5-methylcytosine and 5-hydroxymethylcytosine, on the strands [59,60]. With
recent improvements to kit chemistries, flow cells and software, the method has
outgrown its original purpose of long reads only, and is now also applicable for short
read sequencing, such as that of cfDNA. Pioneer work for oncological research using
Nanopore sequencing has been performed, showing that it is indeed possible to detect
CNVs and perform methylation analysis from cfDNA [61,62]. For neurooncological
purposes, Nanopore sequencing has been employed for methylation-based
classification of brain tumors using tissue biopsies, showing robust classification
results demonstrating that performing these kinds of analyses with the novel

Nanopore method are feasible [63].

1.3. Aim of the work

The aim of this study was to develop a novel, minimally invasive diagnostic approach
using liquid biopsies for brain tumors, especially in the pediatric setting.

Brain tumor diagnostics rely more heavily on molecular analysis in addition to
histopathological analyses for exact tumor identification [1,2], however this still
requires invasive neurosurgical biopsies. Pediatric patients and their developing
brains experience additional risks with these surgeries. Liquid biopsies have gained
popularity for tumor diagnostics and have been shown to also deliver promising
results in the neurooncological setting [50,52-56]. However, the methods developed
and experimentally used were often focused on singular entities, which is not ideal for
routine clinical settings. The aim was to develop a method that would work for the
majority of brain tumors, resulting in the most information possible for an integrated
diagnosis.

First, ddPCR was employed as an informed approach to verify c¢fDNA as analyte of
choice and to develop a method that would allow confirmation of ctDNA presence

with known tumors.
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As methylation arrays are already routinely performed in the local neuropathology as
well as in many other centers, the routine protocol was investigated for improvement
with the use of cfDNA isolated from CSF.

Next, sequencing approaches were investigated. As an uninformed approach, they
could potentially work with samples of unknown tumors and thus perform as tools
for delivering an initial diagnosis. In this part, traditional next-generation deep-
sequencing approaches were investigated as well as novel third-generation
sequencing approaches that allow a combinatorial analysis of sequence and

methylation.
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2. Materials & Methods

2.1. Reagents & chemicals, kits and consumables

Table 2.1 Reagents and chemicals used in this study.

Reagent / chemical Specification Manufacturer
Blunt/TA Ligase Master Mix New England BioLabs Inc., USA
ddPCR supermix for probes no dUTP Bio-Rad Laboratories, USA

DMEM/F-12 + GlutaMAX

Gibco, Thermo Fisher Scientific,

USA

DPBS (Dulbecco’s phosphate-

buffered saline)

without calcium chloride

and magnesium chloride

Gibco, Thermo Fisher Scientific,

USA

Droplet generator oil

Bio-Rad Laboratories, USA

Droplet reader oil

Bio-Rad Laboratories, USA

EGF (epidermal growth factor)

human, recombinant

PeproTech Inc., Thermo Fisher
Scientific, USA

Ethanol

analysis grade, 96-100%,
EMSURE

Supelco, Merck KGaA, Germany

FCS (fetal calf serum)

Gibco, Thermo Fisher Scientific,

USA

FGF (fibroblast growth factor)

human, recombinant

PeproTech Inc., Thermo Fisher
Scientific, USA

Formamide Sigma-Aldrich, Merck KGaA,
Germany

Glutamine Life Technologies, Thermo Fisher
Scientific, USA

Laminin Sigma-Aldrich, Merck KGaA,

Germany

Native barcoding expansion

EXP-NBD104, 1-12, PCR-

Oxford Nanopore Technologies,

free UK
NEBNext FFPE DNA Repair New England BioLabs Inc., USA
Mix
NEBNext  Quick Ligation | T4 Ligase New England BioLabs Inc., USA
Module
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Reagent / chemical Specification Manufacturer

NEBNext Ultra II  End New England BioLabs Inc., USA

Repair/dA-Tailing Module

NeuroCult NS-A Basal STEMCELL Technologies
Canada Inc.

Penicillin/Streptomycin 5000 U /mL Gibco, Thermo Fisher Scientific,
USA

Restriction enzyme FastDigest HindIIl Thermo Fisher Scientific, USA

Seraseq ctDNA  Complete SeraCare, LGC Clinical

Mutation Mix Diagnostics, Inc., UK

Trypsin/EDTA 0.25% Gibco, Thermo Fisher Scientific,
USA

Table 2.2 Kits used in this study.
Kit Manufacturer

BioAnalyzer High Sensitivity DNA kit

Agilent Technologies, USA

DNA Clean & Concentrator-5

Zymo Research Corp., USA

EZ DNA Methylation kit

Zymo Research Corp., USA

EXP-WSHO004 / EXP-
Flow cell wash kit
WSHO004-XL

Oxford Nanopore Technologies, UK

Infinium HD FFPE DNA Restore kit

Illumina, USA

SQK-LSK109 / SQK-
Ligation sequencing

LSK110 / SQK-
kit

LSK114

Oxford Nanopore Technologies, UK

MagMAX Cell-Free DNA Isolation kit

Thermo Fisher Scientific, USA

NEBNext Enzymatic Methyl-seq kit

New England BioLabs Inc., USA

NucleoMag kit for clean up and size selection

of NGS library prep reactions

Macherey-Nagel GmbH + Co. KG, Germany

NucleoSnap cfDNA kit for cell-free DNA

from plasma

Macherey-Nagel GmbH + Co. KG, Germany

NucleoSpin Tissue, Mini kit for DNA from

cells and tissue

Macherey-Nagel GmbH + Co. KG, Germany
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Kit

Manufacturer

QIAamp Circulating Nucleic Acid kit

Qiagen GmbH, Germany

Qubit High Sensitivity DNA assay

Invitrogen, Thermo Fisher Scientific, USA

TruSight Oncology 500 ctDNA kit [Nlumina, USA
Table 2.3 Consumables used in this study.

Consumable Specification Manufacturer

96-well plates Bio-Rad Laboratories, USA

Cartridges DG8 Bio-Rad Laboratories, USA
Greiner Bio-One GmbH,

Centrifuge tubes 15 mL /50 mL
Austria

Centrifuge tubes LoBind, 15 mL Eppendorf SE, Germany

10 pL /100 pL / 200 pl. / 1000

Sarstedt AG & Co. KG,

Filter pipette tips
uL Germany

Oxford Nanopore Technologies,
Flow cells R9.4.1/R10.4.1

UK
Gaskets DGS8 Bio-Rad Laboratories, USA
Methylation array EPIC [Nlumina, USA
Microcentrifuge tubes 1.5mL/2mL Eppendorf SE, Germany
Microcentrifuge tubes LoBind, 1.5 mL Eppendorf SE, Germany

PCR tubes

0.2mL

Sarstedt AG & Co. KG,

Germany

Pierceable heat foil

Bio-Rad Laboratories, USA

Sarstedt AG & Co. KG,

Pipette tips 10 uL /100 uL /1000 uL

Germany

Invitrogen, Thermo Fisher
Qubit assay tubes

Scientific, USA

Sarstedt AG & Co. KG,
Serological pipets 2mL/5mL /10 mL

Germany

Tissue culture flasks

T75, adherent & suspension

Sarstedt AG & Co. KG,

Germany
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2.2. ddPCR assays

Table 2.4 ddPCR assays used, all by Bio-Rad Laboratories, USA.

Target Type Length Unique Assay ID
AP3B1 CNYV detection 60 bp dHsaCP2500315
Myc CNYV detection 121 bp dHsaCP2507112
MycN CNYV detection 64 bp dHsaCP2506554
BRAF V600E SNV detection 91 bp dHsaMDV2010027
H3-3A K27M SNV detection 129 bp dHsaMDV2510510
2.3. Equipment
Table 2.5 Equipment used for this study.
Equipment Model Manufacturer
BioAnalyzer 2100 Agilent Technologies, USA
Heraeus Multifuge 3 S-R / Megafuge
Centrifuges Thermo Fisher Scientific, USA
ST Plus
Andreas Hettich GmbH & Co.
Centrifuge for CSF Rotofix 32 A
KG, Germany
Heraeus GmbH & Co. KG,
COz incubator HERACcell 240
Germany
Droplet generator QX200 Bio-Rad Laboratories, USA
Droplet reader QX200 Bio-Rad Laboratories, USA
BD Biosciences, Becton,
IMag Cell Separation Magnet Dickinson and Company,
Magnet for tubes
USA
Dynal MPC-E Thermo Fisher Scientific, USA
Microarray scanner iScan [Nlumina Inc., USA

Microcentrifuge

Heraeus Pico 17 / Heraeus Fresco 17

Thermo Fisher Scientific, USA

MinION Mk1b / MinION Mklc / Oxford Nanopore
Nanopore sequencer

GridION Technologies, UK
NGS Sequencer NovaSeq [Nlumina Inc., USA
PCR Plate Sealer PX1 Bio-Rad Laboratories
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Equipment Model Manufacturer
Hirschmann Laborgerite,
Pipetor Pipetus
Germany
Pipette 10 pL /200 uL /1000 pL Gilson Inc., USA
Pipette 100 uL Eppendorf SE, Germany
Invitrogen, Thermo Fisher
Qubit 3.0
Scientific, USA
Stuart, Thermo Fisher
Rotator mixer Rotator SB3
Scientific, USA
Labnet International, Corning
C1301 B
Tabletop centrifuge Inc., USA
Rotilabo Carl Roth GmbH + Co. KG
Analytik Jena GmbH + Co.
Thermocycler Biometra TAdvanced
KG, Germany
Thermocycler for Analytik Jena GmbH + Co.
Biometra TOne
96-well plates KG, Germany

Vacuum manifold

Vac-Man

Promega GmbH, Germany

Vacuum pump

Laboport

KNF DAC GmbH, Germany

vortex mixer

Stuart, Thermo Fisher

Scientific, USA

Vortex
IKA-Werke GmbH + Co. KG,
MS2
Germany
P-D Industriegesellschaft
Water bath WB 10

mbH, Germany
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2.4. Software

Table 2.6 Software used for this study.

Software Version Source

2100 Expert B.02.11.51I811 Agilent Technologies, USA

Guppy 6.15/6.3.8 Oxford Nanopore
Technologies, UK

Inkscape 1.2 open source,
https://inkscape.org

MinKNOW 21.11.6 - 23.07.12 Oxford Nanopore
Technologies, UK

PyCharm 2021.3.3 JetBrains  s.r.o., Czech
Republic

Python 3.9.7 open source,
https://www.python.org

QuantaSoft 1.74 Bio-Rad Laboratories, Inc.,
USA

R 422 open source, https://www.r-
project.org

RStudio 2022.02.3 492 “Prairie Trillium” | Posit Software, USA

2.5. Cerebrospinal fluid sample collection

CSF was collected via lumbar puncture, ventricular puncture or external ventricular
drainage when clinically indicated from patients with brain tumors or suspected brain
tumors for routine diagnostics. The use of the CSF biopsies for this research upon
anonymization was in line with the local ethical standards, as well as guidelines and
regulations at the Universitatsklinikum Hamburg-Eppendorf.

Samples were collected in standard CSF tubes or in Eppendorf LoBind tubes.
Typically, 1-10 mL were collected. Samples were processed in the Department of
Neuropathology for cytology analysis by centrifuging for 10 min at 750 x g. The

sediment was used for cytospin preparation in the routine diagnostic, the supernatant
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was either used immediately for cfDNA isolation or stored in LoBind tubes at -20 °C

until it was used in further experiments.

2.6. Cell culture

In Table 2.7, cell lines are described with their origins, culture specifications and
characteristics. Adherent cells were cultured with their respective medium in T75
flasks for adherent cells in an incubator at 37 °C with 5% CO: and 86% humidity. For
continuous culture, cells were grown until they were confluent. Cells were washed
with 5 mL of DPBS. To detach the cells from the flask, 2 mL of Trypsin-EDTA was
added, and flask was incubated in the incubator for 3 — 5 min. If cells had not detached,
tflask was tapped on the bench to manually detach the cells. To the detached cells, 5
mL of medium was added. Cells were pelleted by centrifugation for 5 min at 350 x g
and then diluted and seeded as desired in a fresh flask.

Flasks for PBT-04 were coated with laminin for 1 h in the incubator and washed twice
with DBPS before cells were seeded into them.

D341 cells were cultured similarly to adherent cells described above, but in T75 flasks
for suspension cells. For splitting, they were transferred with their medium to a 15 mL
tube and centrifuged for 5 min at 350 x g. Pelleted cells were washed with 5 mL DPBS.
Cells were diluted accordingly with medium, and then seeded in a fresh flask.

For the isolation of reference or control cfDNA, aspirated medium was collected in
15 mL tubes and centrifuged for 10 min at 750 x g. Supernatant was transferred and
stored in LoBind tubes at -20 °C until isolation of cfDNA. Pelleted cells were

transferred to 1.5 mL tubes and stored at -20 °C until gDNA was isolated.
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Table 2.7 Cell lines used as references and their characteristics.

Culture
Cell line Origin Media Characteristics
specification
human embryonic DMEM + 10% FCS + | used as wild-
HEK293T adherent
kidney 1% P/S type control
diffuse  intrinsic DMEM + 10% FCS + | H3-3A K27M
SF8628 adherent
pontine glioma 1% P/S mutation
DMEM + 10% FCS + | BRAF V600E
Malme-3M | melanoma adherent
1% P/S mutation
EMEM + 20% FCS + | Myc
D341 medulloblastoma | suspension
1% P/S amplification
NeuroCult + 1% P/S +
MycN
PBT-04 high-grade glioma | adherent 20 ng/mL EGF +
amplification
20 ng/mL FGF
DMEM +
p53 mutation,
LN-229 glioblastoma adherent 10% FCS + 1% P/S +
CNV aberrations
1% glutamine

2.7. DNA isolation & characterization

2.7.1. ¢fDNA

Liquid biopsy samples were thawed at room temperature, if necessary, and
centrifuged at 11,000 x g for 10 min. Then, cfDNA was isolated with the ThermoFisher
MagMAX Cell-free DNA Isolation Kit, the Qiagen QIAamp Circulating Nucleid Acid
Kit or with the Macherey-Nagel NucleoSnap cfDNA kit from plasma according to the
respective manufacturer’s instructions. In short, samples were lysed, cell-free DNA
was bound to either beads or silica membrane, then samples were washed, and finally
cell-free DNA was eluted.

For most samples, the Macherey-Nagel NucleoSnap cfDNA kit was used. Here, the
sample was incubated with 15 pL Proteinase K per mL sample for 5 min. Then, an
equal volume of lysis buffer was added. The mixture was vortexed and incubated for

5 min in a water bath at 56 °C. A to the initial sample equal volume of 96-100% ethanol
24



was added, the mixture was thoroughly vortexed. The purification column was
assembled with a connector on the vacuum manifold. 500 uL column conditioner was
added to the column, then vacuum was applied. After 1-5 min, sample mixture was
added to the column and vacuum was applied. When sample had fully passed through
the column, silica membrane was washed with 1000 puL wash buffer VW1 first, and
second with 500 uL wash buffer. Then, upper part of the column was snapped off and
discarded, lower part was centrifuged for 3 min at 11,000 x g in a collection tube to dry
the silica membrane. The column was then transferred to a fresh collection tube and
50 pL of elution buffer was added. After a 3 min incubation time, cfDNA was eluted
by centrifugation of the column for 1 min at 11,000 x g.

Total DNA was quantified using the Qubit High Sensitivity DNA assay with the Qubit

3.0 according to the manufacturer’s instructions (see 2.7.3).

2.7.2. gDNA
gDNA was isolated from cultured cells using the Macherey-Nagel NucleoSpin Tissue
kit. In brief, cells were lysed, DNA was bound to the silica membrane, which was then
washed and lastly, gDNA was eluted. Total DNA was quantified using the Qubit High

Sensitivity DNA assay with the Qubit 3.0 according to the manufacturer’s instructions

(see 2.7.3).

2.7.3. Qubit
The Qubit 3.0 was used to determine total DNA concentration within a sample. The
Qubit High Sensitivity DNA assay was used according to the manufacturer’s
instructions. Standards were read once daily. 1 uL of sample was quantified twice and

the mean was calculated.

2.7.4. BioAnalyzer

Distribution of fragment sizes from isolated DNA was analyzed using the Agilent

BioAnalyzer with the High Sensitivity DNA kit according to the manufacturer’s
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instructions. For determination of cfDNA proportion, the region of calculation within
the 2100 Expert software was set to 75-400 bp. For molarity calculation, region was not

specified and all fragments were considered.

2.8. ddPCR

2.8.1. Single nucleotide variation detection
Assays used are listed in Table 2.4. Mastermix for ddPCR was prepared according to
Table 2.8. Restriction enzymes were used as recommended and compatible for assays,
which was HindIll in all assays used. For wildtype controls, cfDNA or gDNA from
HEK293T cells was used. For the mutation control in the H3-3A K27M assay, DNA
from SF8628 cells was used, for the BRAF V60OE assay DNA isolated from Malme-3M
cells was used. Generally, 10 ng of input were preferred for controls as well as for the
sample of interest, but depending on sample concentration, higher or lower input
amounts were also used, with a minimum of 1 ng input per well. All samples and

controls were measured in duplicates.

Table 2.8 Mastermix for ddPCR for SNV detection.

Reagent Per 1x reaction [uL]
2x ddPCR supermix for probes (no dUTP) 10
primer/probe mix — if WT and mutant as a 1

single combined assay

primer/probe mix — if WT and mutant as two 1 (per assay)

separate assays

restriction enzyme 0.5
H20 add to 15
total 15

Mastermix was mixed well by pipetting and briefly centrifuged. 15 uL of mastermix
were added to PCR tube strips, 10 pL sample or control were added and mixed
thoroughly by pipetting. 25 puL of combined sample-mastermix was added to each of

the sample well of the cartridge. Then, 70 uL of droplet generator oil was added to the
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oil wells of the cartridge. If any sample well remained empty, the matching oil well
was nonetheless filled with droplet generator oil. Gasket was put in place over the
cartridge and droplets generated using the droplet generator. Gasket was removed
carefully and droplets then transferred to a 96-well plate. Plate was sealed with
pierceable foil using the plate sealer, turned 180 degrees, and sealed again. PCR was

run according to the scheme in Table 2.9 with the heated lid on.

Table 2.9 PCR settings for ddPCR for SNV detection.

Step Temperature Time Ramp rate Cycles
[°Cl]
enzyme activation 95 10 min 2 °C/sec 1
denaturation 94 30 sec 40
annealing/extension 55 1 min
enzyme deactivation 98 10 min 1
hold 4 o0 1 °C/sec 1

After cycling, plate was kept at 4 °C until reading, for 24 h at most. Plate layout was
replicated in the software, with H20 wells set as no template controls.

For analysis in QuantaSoft, all measurements of the same color, either FAM or HEX,
across all wells were analyzed together. Threshold was set in a way that all empty
droplets were below the threshold. A well was considered to have a positive signal
when at least three droplets were positive, a sample was considered positive when
both replicates were positive. When the H20 no template control exhibited any positive

signal, ddPCR run was considered a technical failure.

2.8.2. Copy number variation detection
For copy number variation assays, protocol as described in 2.8.1 was followed with
minor changes. Specific assays are listed in Table 2.4. As wildtype control, HEK293T
derived DNA was used, for Myc amplification control DNA from D341 cells was used.
For MycN amplification control, PBT-04 cells were used. For both assays, the reference

gene was AP3B1. PCR cycling was carried out as described in Table 2.10. Analysis was
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carried out with QuantaSoft by setting the threshold for the fluorescent signal for both
FAM and HEX individually above that of empty droplets and running the copy

number calculation.

Table 2.10 PCR settings for ddPCR for CNV analysis.

Step Temperature Time Ramp rate Cycles
[°Cl]
enzyme activation 95 10 min 2 °C/sec 1
denaturation 94 30 sec 40
annealing/extension 60 1 min
enzyme deactivation 98 10 min 1
hold 4 o0 1 °C/sec 1

2.9. Methylation arrays

2.9.1. llumina Infinium MethylationEPIC — bisulfite conversion
Standard methylation arrays were performed in the Institute of Neuropathology in the
routine diagnostic laboratory. Isolated DNA was processed as described in the
manufacturer’s instructions. In brief, 100-500 ng of DNA was converted using the
Zymo EZ DNA Methylation kit. DNA was processed with the Zymo DNA Clean &
Concentrator-5 and Illumina Infinium HD FFPE DNA Restore kit, all according to
manufacturer’s instructions. DNA was fragmented and precipitated, then
resuspended and finally hybridized to the EPIC methylation array. Chips were
washed and stained, and lastly imaged using the iScan device to evaluate the
methylation status of the CpG sites. Generated data were analysed using the

Heidelberg classifier (https://www.molecularneuropathology.org/mnp/) [15].

2.9.2. llumina Infinium Methylation EPIC — enzymatic conversion
To reduce input needed for methylation arrays and to perform conversion of the DNA

more gently, enzymatic conversion was used.
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Using the NEBNext Enzymatic Methyl-seq kit, the cfDNA was enzymatically
converted introduced into the normal EPIC array workflow from hybridization to the
array. Manufacturer’s instructions were followed from oxidation of 5-methylcytosines
and 5-hydroxymethylcytosines onwards.

TET2 buffer was prepared freshly by adding 100 pL of TET2 reaction buffer to TET2
reaction buffer supplement. 28 uL isolated cfDNA was transferred to a tube on ice.
Then, 10 uL of the prepared TET2 buffer, 1 uL of oxidation supplement, 1 uL of DTT,
1 pL of oxidation enhancer and 4 pL of TET2 were added. Mix was vortexed briefly.
1 puL of Fe(II) solution was diluted in 1,249 pL of water. 5 puL of this was added to the
DNA-enzyme mix and thoroughly vortexed, before being incubated for 1 h at 37 °C in
a thermal cycler with the heated lid on. After incubation, tube was transferred to ice
and 1 uL of stop reagent was added. This was then again incubated for 30 min at 37 °C.
90 pL of resuspended sample purification beads were added to the sample, thoroughly
mixed by pipetting and incubated for 5 min at room temperature. Beads were pelleted
on a magnetic stand and supernatant was removed and discarded. Bead pellet was
washed twice with 200 uL freshly prepared 80% ethanol. After the final wash, beads
were air dried for 2 min before DNA was eluted with 17 pL elution buffer. Beads were
incubated with the elution buffer for 1 min at room temperature and then placed in
the magnetic stand to pellet the beads. Supernatant containing the elution was
collected in a fresh PCR tube. DNA was then denatured by adding 4 uL of formamide
to it. The tube was placed into a pre-heated thermal cycler at 85 °C for 10 min, with the
heated lid on. After the incubation, sample was immediately placed on ice. The
denatured DNA was supplemented with 68 puL of water, 10 pL of APOBEC reaction
buffer, 1 uL of BSA and 1 puL of APOBEC and mixed by pipetting. The mixture was
incubated at 37 °C for 3 h in a thermal cycler with the heated lid on. After the
incubation time, 100 puL of resuspended sample purification beads were added to the
DNA-enzyme mix and pipetted up and down several times. The bead mix was
incubated for 10 min at room temperature. Beads were then pelleted on a magnetic

stand and supernatant was discarded. Pellet was washed twice with 200 uL freshly
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prepared 80% ethanol. To thoroughly remove all residual ethanol, beads were air dried
for 90 sec before adding 21 pL of elution buffer. Beads were resuspended with the
elution buffer and incubated for 1 min at room temperature. Beads were then pelleted
on the magnet again and supernatant was removed and collected in a fresh tube.
Samples were frozen at -20 °C overnight and introduced into the EPIC array workflow

at the hybridization step the next day.

2.10. Sequencing

2.10.1. TruSight Oncology 500 ctDNA

cfDNA with a sufficient DNA amount, a relatively clean BioAnalyzer profile (showing
expected cfDNA peaks) and known mutations were chosen. Additionally, some
samples with lower input, less distinct cfDNA peaks in the fragmentation profile and
unknown, but expected, mutations were chosen to test the utility of the panel for the
variety of routine samples.

cfDNA was sequenced with the TruSight Oncology (TSO) 500 ctDNA panel by
[Nlumina, which covers 523 genes. Sample handling and sequencing was performed by
[llumina according to the kit’s instructions. In brief, cfDNA samples first underwent
end repair and A-tailing. Then, adapters were ligated to the repaired prepared cfDNA
and reaction was cleaned up. After that, an index PCR was performed. Then, for
enrichment, samples were hybridized overnight and targets were captured. After a
second hybridization and capturing of targets, the enriched library was amplified and
cleaned. As a reference control, the SeraCare ctDNA Complete Mutation Mix was used
and handled accordingly. Libraries were quantified and normalized before being
sequenced on an Illumina NovaSeq sequencer as a paired-end 2 x 151 run. Data was
analyzed with Illumina’s own DRAGEN TSO 500 ctDNA workflow, giving out run

details, CNVs, fusions and small variants.
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2.10.2. Nanopore sequencing — standard sequencing
cfDNA was sequenced using either the SQK-LSK110 kit along with R9.1 flow cells or
the SQK-LSK114 along with R10.4 flow cells, all by Oxford Nanopore Technologies.
The manufacturer’s protocol for genomic DNA by ligation was followed, with minor
changes in the bead ratios according to Martignano et al. [61]. Input ranges can be

found in Supplementary Table 1.

Library preparation using SOK-LSK110 kit

Samples sequenced with the SQK-LSK110 kit were adjusted to 47 uL with water to the
desired input. 1 uL of DNA CS, 3.5 uL NEBNext FFPE DNA Repair buffer and 2 pL of
the respective enzyme mix, 3.5 yuL Ultra II End-Prep Reaction buffer and 3 pL of the
respective enzyme mix was added to the sample and mixed thoroughly by pipetting.
Mixture was incubated at 20 °C for 5 min and at 65 °C for 5 min in a thermal cycler. It
was then transferred to a 1.5 mL LoBind tube. 108 uL resuspended NucleoMag kit
beads were added, and bead-mix was incubated at room temperature for 5 min. Beads
were then pelleted on a magnet, supernatant was discarded and pellet was washed
twice with 200 uL freshly prepared 70% ethanol. After the second wash, pellet was
allowed to air dry for ~ 30 sec before being resuspended in 61 uL of water. Beads were
incubated for 2 min at room temperature, then pelleted again on a magnet and
supernatant was collected in a fresh tube. 1 uL of the eluate was quantified using the

Qubit 3.0 (2.7.3).

60 puL of sample was then combined with 25 uL of ligation buffer, 10 uL. of NEBNext
Quick T4 Ligase and 5 pL of Adapter Mix F and incubated for 10 min at room
temperature. 72 uL of resuspended beads were added after the incubation time, and
then the mixture was held for 5 min on a rotator mixer. Beads were then pelleted and
washed twice by resuspending with 250 puL Short Fragment Buffer. After the final
wash, the beads were pelleted again on a magnet, any liquid residue was discarded

and beads were dried for ~30 sec. Pellet was then resuspended in 15 pL elution buffer
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and incubated for 10 min at room temperature. The beads were collected on a magnet,
and supernatant was transferred to a new LoBind tube. 1 uL was again quantified

using the Qubit.

To prepare the flow cell (exemplarily depicted in Figure 2.1) for loading, 30 uL Flush
Tether was mixed into one tube of Flush Buffer, creating the priming mix. Flow cells
of type R9.1 was put into position under the clip in either the MinlON Mk1B or Mk1C
device. Priming port was opened, and any air bubbles were removed before
introducing 800 uL of the priming mix. Priming mix was let to sit for 5 min. In the
meantime, 37.5 uL Sequencing Buffer Il and 25.5 uL well-mixed Loading Beads II were
added to the prepared DNA library. After the incubation time of the flow cell, 200 uL
remaining priming mix were introduced through the priming port while the sample
port was open. Immediately after, prepared DNA library was loaded onto the flow cell
in a dropwise manner through the sample port. All ports were closed and sequencing

was started within the MinKNNOW software.

SpotON sample

Waste Wast SpotON activator  port cover
port 2 aste

port 1 ™

Priming port cover

#SpotON 5
i

Waste channel Sensor array

Figure 2.1 Depiction of a flow cell from Oxford Nanopore Technologies, with sensor array and ports for sample
and waste. Adapted from Flow Cell Wash Kit EXP-WSH004 protocol by Oxford Nanopore Technologies.

Library Preparation using SOK-LSK114 kit

DNA sequenced with the SQK-LSK114 was prepared for sequencing in the same way
as described above for SQK-LSK110. DNA CS was not used, instead an additional 1 pL
water or sample was added. Reagents used in this kit carry the same names as those
in the older kit LSK-SQK110, except for the Adapter Mix F, which is called Ligation

Adapter in the new kit, and Loading Beads II, which are called Library Beads in the
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SQK-LSK114 kit. For the magnetic beads, the provided AMPure XP beads were used
instead of the NucleoMag kit beads. Washes of the beads after DNA repair was carried
out using freshly prepared 80% ethanol. Amounts of reagents used remained the same
between the two kits. Prepared libraries were then loaded onto flow cells of type R10.4.

Sequencing Settings

After the selection of the kits and flow cells used within the MinKNOW software, runs
were started. Run time for unused flow cells was 24 h, for previously used and washed
flow cells, run time was set to 48 h. Whenever possible, runs of samples that achieved
2 M reads were stopped regardless of time that had passed. The minimum read length
was set to 20 bp for all samples run after feature was made available. For samples
sequenced on MinlON devices, the fast basecalling model was employed; for those
sequenced on the GridION device, the high accuracy basecalling model was

employed.

2.10.3. Nanopore sequencing — barcoding

For multiplex sequencing on Nanopore devices, the SQK-LSK109 kit was used in
combination with the EXP-NBD104 barcoding kit on R9.1 flow cells, all by Oxford

Nanopore Technologies. 100 ng of cfDNA was used as input for all experiments.

For each sample individually

Isolated cfDNA volume was adjusted to 48 uL with water in a PCR tube. 3.5 uL
NEBNext FFPE DNA Repair buffer, 3.5 uL Ultra II End-prep reaction buffer, 3 uL
Ultra II End-prep enzyme mix and 2 uL NEBNext FFPE DNA Repair mix was added
to the cfDNA. Reagents and cfDNA were mixed well by pipetting. The mix was
incubated at 20 °C for 5 min and at 65 °C for 5 min in a thermal cycler. The sample was
transferred to a 1.5 mL LoBind tube. 108 uL of NucleoMag kit beads were added to the
sample and the mix was incubated on a rotator mixer for 5 min at room temperature.
Sample was pelleted on a magnet until supernatant was clear. Supernatant was

discarded, pellet was washed twice with 200 pL freshly prepared 70% ethanol. After
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the second wash, bead pellet was allowed to dry for ~ 30 sec and any residual ethanol
was removed. Pellet was then resuspended in 25 uL water and incubated for 2 min at
room temperature. Beads were re-pelleted on magnet until supernatant was clear. 25
uL supernatant was transferred to a novel LoBind tube. Elution was quantified using

the Qubit 3.0.

22.5 uL of the eluted sample was combined with 2.5 uL of individual native barcode
for each processed sample and 25 pL Blunt/TA Ligase Master Mix. This was mixed
well by pipetting and then incubated for 10 min at room temperature. 50 uL of
NucleoMag kit beads were added and mixture was incubated on a rotator mixer for
5 min. Sample was pelleted on a magnet until the supernatant was clear, which was
then discarded. Pellet was washed twice with 200 uL freshly prepared 70% ethanol.
Bead pellet was allowed to dry for ~30 sec and any residual ethanol was removed.
Pellet was then resuspended in 26 pL water and incubated for 2 min at room
temperature. Tube was again introduced to the magnet and beads were pelleted. 26 uL
of clear and colorless supernatant was collected in a fresh LoBind tube. Elution was

quantified using the Qubit 3.0.

For each sample to be run in a multiplex sequencing assay, a BioAnalyzer run was
performed, as described in 2.7.4. Here, molarity of the total sample content calculated
by the software was considered. Samples were diluted and pooled equimolarly and

adjusted to 65 pL with water.

For pooled library

5 uL Adapter Mix II, 20 pL 5x NEBNext Quick Ligation Reaction buffer and 10 uL
Quick T4 Ligase was added to the 65 pL of pooled samples. Components were mixed
by pipetting and incubated for 10 min at room temperature. 50 uL of NucleoMag beads
were added and mixture was incubated on a rotator mixer for 5 min at room

temperature. Beads were pelleted on a magnet and supernatant was discarded. Pellet
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was resuspended and washed twice with 250 uL Short Fragment Buffer. After the
second wash, beads were pelleted again and dried for ~ 30 sec. Bead pellet was then
resuspended in 15 uL Elution Buffer and incubated for 10 min at room temperature.
Beads were pelleted on magnet and supernatant was collected in a fresh LoBind tube.
1 pL of eluate was quantified using the Qubit.

Flow cell and library were prepared for sequencing as described in 2.10.2. The same
sequencing settings were applied, with SQK-LSK109 and barcode kit EXP-NBD104
specified in the software. Reads were automatically sorted and stored in different

folders with their respective barcodes.

2.10.4. Nanopore sequencing — flow cell wash

Nanopore flow cells are reusable. In between sequencing runs, flow cell washes are
performed using the Flow Cell Wash kit (EXP-WSH004 or EXP-WSHO004XL). The
protocol was applied in the same way for R9.1 and R10.4 flow cells.

Flow cell wash mix was prepared by adding 2 uL of Wash Mix to 398 uL. Wash Diluent
per flow cell to be washed. Mixture was mixed thoroughly, but carefully by pipetting.
All waste liquid from the flow cell was removed through the waste port 1. 400 uL
prepared flow cell wash mix was introduced into the flow cell through the priming
port after removing any air bubbles. Flow cell was incubated with the mix for 60 min
at room temperature. All waste liquid was removed through the waste port 1 after the
incubation time was up. Flow cell was then either reloaded with a sequencing library
immediately, starting with the priming of the flow cell, or stored with 500 uL Storage

Buffer, introduced through the priming port, at 4 °C until further use.

2.11. Bioinformatics

2.11.1. Read length of Nanopore data
Read length of Nanopore sequencing reads was determined by NanoPlot [64] using

Python 3.9.7.
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2.11.2. CNV analysis of Nanopore data
Samples sequenced on the MinlON Mkl1b generated fastq files using Guppy 6.1.5,
samples sequenced on the MinlON Mklc generated them using Guppy 6.3.8.
Remaining samples that were sequenced on the GridION generated fastq files with
Guppy 6.5.7. Fastq files that passed Guppy internal quality filters were aligned to the
human reference genome hg38 with -ax map-ont settings in Minimap2.17 [65,66].
Resulting sam files were transformed into bam files and sorted using samtools 1.15.1
[67]. Bam files were then used for CNV analysis with Control-FREEC 11.6 [68]. For
CNV analysis, configuration depended on the number of reads. If the number of reads
was > 500 k, then window size was set to 150 k bp; if the number of reads was <500 k,
window size was set to 500 k bp. Calculated ratios from Control-FREEC were plotted
in R. Briefly, packages dplyr, magrittr, tidyverse, karyoploteR and scales. A list of
regions with ambiguous and difficult to align regions was removed from the data prior
to plotting. Each dot in the plot is a window and the median ratio of the segment
defines its color. Threshold were set empirically at > 1.1 for a gain and at <0.9 for a

loss.

2.11.3. Calculation of tumor fraction from Nanopore data
From in 2.11.2 generated bam files, tumor fractions were calculated using ichorCNA
[69]. Window size was set to 1 Mb as recommended by ichorCNA and analysis was
configured for the reference genome hg38. The tumor fraction with the highest log

likelihood was used for further analysis and comparison.

2.11.4. NanoDx analysis of Nanopore data
NanoDx pipeline [63] was used for methylation analysis of Nanopore data. Data
generated on R9.1 flow cells was analyzed in collaboration with Christian Rohrandt
and Prof. Franz-Josef Miiller at the Integrative Center for Psychiatry in Kiel. For this,
raw data was basecalled using Guppy 4.4.2 and then analyzed with nanopolish 0.13.2

[70] to perform methylation calling. Then, the NanoDx pipeline v0.5.0 [63] was
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employed. Raw data generated on R10.4 flow cells, as well as all data generated on the
GridION device, were analyzed with the NanoDx v0.6.0. Here, Guppy version 6.4.6
was employed and performed the basecalling directly. Samples were classified by
methylation according to the Heidelberg reference set [15]. Minimum threshold for
analysis performance was 1,000 CpG sites analyzed. A score of >0.07 was set as

threshold for reliable classification.

2.11.5. UMAP visualization

For visualization purposes, uniform manifold approximation and projection (UMAP)
was employed by mapping binary methylation values calculated by NanoDx [63] into
the brain tumor reference set’s [15] preprocessed beta values from methylation arrays.
3,837 reference tissue samples were included, beta value cut-off was 0.4. UMAPs were
calculated with settings of n_neighbors =10 and min_dist=0.1 using R packages umap,

ENmix, fs, minfi and plotly.

2.12. Statistics
All statistical tests were performed in R using the packages base and stats. Normal
distribution was assumed for cohort sizes of > 30. Tests used were t-test, Wilcoxon test,
Fisher’s exact test and Kruskal-Wallis test, depending on the question. Exact tests and

the respective p-values are described in the figures or the text accordingly.
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3. Results
3.1.ddPCR

3.1.1. SNV detection

ddPCR is a sensitive PCR-based method to detect SNVs and CNVs with many
commercially available assays. For this work, hallmark hotspot mutations were
analyzed to confirm suspected diagnoses, for example H3-3A K27M as an indicator for
DMGs [71,72], or to find potentially targetable mutations, such as BRAF V600E in low
grade gliomas [73]. Firstly, ddPCR was established with cfDNA from the medium of
cell lines to evaluate whether the assays would work on cfDNA as the analyzed
fragments are short and might not harbor the whole region necessary for the annealing
of the ddPCR specific probes and/or primers. The limit of detection for the SNV assays
had to be evaluated, which is exemplarily shown in Figure 3.1 for the BRAF V600E
assay. BRAF V600E mutant cfDNA from Malme-3M cell line was spiked into wildtype
cfDNA from HEK293T cell line, with a total input of 1 ng cfDNA. Mutant cfDNA was
detectable with 0.01 ng input in 1 ng total DNA (1% of total DNA). This was true for
all tested SNV assays.

ddPCR could then be employed for patient samples where mutational status held
clinical relevance, either to confirm a diagnosis or to help make an initial diagnosis. An
exemplary sample of a patient with a craniopharyngioma, analyzed with the BRAF
V600E assay, is shown in Figure 3.2. The ddPCR worked without technical issues, with
no template detection in the blank H20 wells, wildtype only detection for the wildtype
control and mutation only for the mutation control. The patient cfDNA sample
contained both BRAF V600E mutations and wildtype sequences. This hints towards a
heterozygous mutation, or the presence of background DNA from sources other than
the tumor carrying the mutation. The mutation found in the cfDNA was also
confirmed in the tumor tissue in the routine diagnostic workflow. With a total of 27
analyzed samples with all SNV assays used in this study, only one sample was a
technical failure (4%) and none showed false-positive results. For 4/27 samples (14.8%),

a mutation was expected, but not detected. All others showed the expected results of
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wildtype or mutation, as known from the tumor tissue from the routine diagnostic

workflow.
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Figure 3.1 ddPCR results for dilution series of BRAF V600E mutation assay with cfDNA from Malme-3M cell
line (mut) spiked into HEK293T ¢fDNA (WT). Mutant probe detected droplets on top in blue; WT detected
droplets below in green. Mutant DNA can still be detected with 0.01 ng input spiked into 1 ng total DNA. cfDNA
- cell-free DNA, ddPCR - droplet digital PCR, mut - mutant, WT - wildtype.
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Figure 3.2 ddPCR results for ¢fDNA derived from patient CSF sample, positive for BRAF V600E mutation.
Mutant probe detected droplets on top in blue; WT detected droplets below in green. Sample and controls were
measured in triplicates, with 10 ng input each. Patient sample exhibits mutant and WT signals. cfDNA - cell-free
DNA, CSF - cerebrospinal fluid, ddPCR - droplet digital PCR, mut - mutant, WT - wildtype.

3.1.2. CNV detection
CNV detection is often relevant for the prognosis of the disease, such as Myc or MycN
amplification in medulloblastoma, which is accompanied with a poor prognosis [74—
76]. First, cfDNA from Myc amplified and MycN amplified cell lines (D341 and PBT-
04, respectively) were tested with the CNV assays to investigate whether the assays
were useable for cfDNA. HEK293T cfDNA was used as wildtype DNA for both assays.

For the Myc amplification assay, analysis of wildtype DNA resulted in a calculated
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copy number of 2.36 and 2.42, which amounts roughly to the expected two copies
present in any cell (Figure 3.3 A). cfDNA from D341 cells showed a clear amplification,
with calculated copy numbers of 16.1 and 18 at 10 ng input; and 15.7 and 18 at 1 ng
input. DNA from MycN-amplified PBT-04 cells did not result in a cross-signal and
copy number was calculated at 1.03 and 2.03.

The same was tested for the MycN assay (Figure 3.3 B). Wildtype DNA analysis
resulted in calculated copy numbers of 1.52 and 1.45. cfDNA from PBT-04 with MycN
amplification showed a definitive amplification, with calculated copy numbers of 124
and 149 at 10 ng input, and of 170 and 200 at 1 ng input. DNA from D341 cells with
Myc amplification only had 1.62 and 1.72 calculated copies, showing the high
specificity of this assay.

Two exemplary patient samples have then been analyzed with the Myc amplification
assay to determine the use in clinical samples (Figure 3.3 C). Both patients were
diagnosed with a medulloblastoma. The ddPCR worked well technically, no template
was detected in the H20 control. Wildtype control c¢fDNA from HEK293T showed a
copy number of 1.9 and 2.5, mutation control cfDNA from D341 had an amplification
calculated at 18.5 and 18.1. Patient sample 1 showed a slight amplification, with
calculated copy numbers of 6.6 and 6.4. The matching tumor tissue showed only
occasional Myc amplification in a few cells by fluorescence in-situ hybridization (FISH)
(Supplementary Figure 1), matching the relatively low but amplified copy number in
the liquid biopsy.

Patient 2 showed a clear amplification with copy numbers of 156 and 148. This
amplification was known from the primary tumor, yet not detectable in the relapse,

after which this specific CSF sample was collected.
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Figure 3.3 Calculated copy numbers by ddPCR using CNV assays. (A) CNV calculated for cfDNA from cell
lines using the Myc CNV assay, with HEK293T as wildtype, D341 as Myc-amplified and PBT-04 as MycN-
amplified. D341 show clear Myc amplifications, while HEK293T and PBT-04 do not. (B) CNV calculated for
¢fDNA from cell lines using the MycN CNV assay, with HEK293T as wildtype, PBT-04 as MycN-amplified
and D341 as Myc-amplified. PBT-04 show clear MycN amplifications, while HEK293T and D341 do not. (C)
CNV calculated for patient cfDNA samples from CSF, both from medulloblastoma, with HEK293T as wildtype
and D341 as Myc-amplified. Both patient samples exhibit a Myc amplification. cfDNA - cell-free DNA, CNV
- copy number variation. ddPCR - droplet digital PCR, mut - mutant, WT - wildtype.
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3.2. Methylation arrays
As methylation analysis using the Illumina EPIC arrays is already established in the
routine diagnostics for tissue samples, implementing an adapted workflow for cfDNA
would be preferred over establishing a completely novel method. To reduce harshness
of the reagents used in the workflow, the DNA was converted using an enzymatic
conversion kit (2.9.2) instead of the conventional bisulfite conversion method (2.9.1).
This also allows the use of a smaller amount of DNA as less of it gets heavily degraded.
For initial establishment of the enzymatic conversion workflow, DNA from a tissue
sample of an IDH-mutant glioma that had also been analyzed in the routine bisulfite
workflow, was processed with the enzymatic workflow with three differing input
amounts: 250 ng, 50 ng and 10 ng. Data generated were evaluated with the Heidelberg
classifier [15]. All three amounts of DNA were sufficient to be classified as the correct
entity, IDH mutant glioma. Samples with 250 ng and 50 ng input achieved a score of
1.0, that with 10 ng input achieved a score of 0.9, all of which would be above the
threshold of 0.9 for neuropathological diagnosis. Looking at the CNV plots generated
from the methylation data, a slight decline in quality with decreasing amount of input
can be observed (Figure 3.4) as the plots get noisier, but are still well interpretable and

show the previously observed losses in Chr. 1 and 19.
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Figure 3.4 CNV plots inferred from methylation data of gDNA from an IDH mutant glioma, processed by
enzymatic conversion with (A) 250 ng, (B) 50 ng, and (C) 10 ng input. A slight decline in plot quality is observable
with lower input. CNV - copy number variation, DNA - genomic DNA.
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As the results were comparable even at low input amounts, the protocol was tested on
cfDNA. First, three cfDNA samples from CSF that had matching tissue analyses
available were tested and results were compared. Sample M1 was a medulloblastoma
group 4 sample, with a 0.99 match for medulloblastoma group 4 in v11 of the
Heidelberg classifier and aberrations in the CNV plot such as Chr. 1q and 17 gains, as
well as losses on Chr. 8, 10, 16 and 22. The analysis of the cfDNA by the methylation
array resulted in a noisy CNV plot that allude to the same aberrations in Chr. 8, 10 and
17, however none can be identified clearly. The analysis using the Heidelberg classifier
resulted in a score of 0.3 for medulloblastoma group 3/4, and 0.23 for the subclass
medulloblastoma group 4 in v11. Using the updated classifier v12, the score improved
to 0.97 for medulloblastoma non-WNT, non-SHH and 0.85 for the subclass
medulloblastoma group 4. Samples M2 and M3 belonged to the same patient with an
ATRT-SHH. The tissue DNA could clearly be classified as an ATRT with a score of 1.0
and the respective CNV plot showed a characteristic loss of Chr. 22. The two cfDNA
samples did not yield convincing results. Both CNV plots were noisy and the loss of
Chr. 22 was not visible. Sample M2 showed a score of 0.45 for plexus tumor in the
classifier v11, and a score of 0.32 for ATRT-SHH in the classifier v12, which, albeit true,
is below the threshold of 0.9 that is usually used in the routine diagnostic. Sample M3
was not classifiable in the classifier vl1l and showed a score of 0.37 for

medulloblastoma in classifier v12.

As these initial results were not conclusive about the applicability of this method, it
remained to be investigated whether the developed protocol worked for a majority of
cfDNA samples or not. Thus, 17 other samples (M4-M20) were investigated, with
detailed results listed in Table 3.1. Out of all 20 cfDNA samples, only 6 (30%) matched
highest with their respective tumor entity in the v12 of the Heidelberg classifier. The
older, but more widely used, v11 only matched 4/20 (20%) correctly. When only the
samples that were correctly classified above the threshold of 0.9 were considered, only

3/20 (15%) were classified correctly, all by v12 of the classifier. CNV analysis from the
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methylation data revealed noisy plots as observed for samples M1-M3. Only the CNV
plots of samples M5, M13, M14, M17, M19 and M20 allowed an interpretation
regarding possible aberrations in the genome. Samples M5 and M17 are exemplarily
depicted in Figure 3.5 for samples that had interpretable CNV plots, and samples M2

and M15 for samples that resulted in CNV plots that were too noisy to interpret.

Figure 3.5 CNV plots inferred from methylation data of cfDNA from (A) an ETMR (sample M5), (B) a DMG (sample M17), (C)
an ATRT (sample M2), and (D) another ATRT (sample M15). CNV plots in (A) and (B) are interpretable and show gains and
losses, whereas those in (C) and (D) do not as the plot is too noisy. ATRT - atypical teratoid/rhabdoid tumor, cfDNA - cell-free
DNA, CNV - copy number variation, ETMR - embryonal tumor with multi-layered rosettes, DMG - diffuse midline glioma.
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Table 3.1 Brain tumor classifier results of cfDNA from patient CSF samples, analyzed by methylation array with
enzymatic conversion.

1
salllg) ¢ diagnosis v11b4 score v12.5 score match
M4 cranio- : plexus tumor | 0.51 control 0.46 no
pharyngioma blood
M>5 ETMR ETMR 0.61 ETMR 0.93 yes
atypical
not
PA 1 . -
Mé plexus tumor | 0.53 dlassifiable no
11
M7 MB, SHH plexus tumor | 0.45 | 8™ %1067 no
tumor
not
M8 PA plexus tumor | 0.54 dlassifiable - no
not
M9 lymphoma plexus tumor | 0.41 dlassifiable - no
M10 PA plexus tumor | 0.44 | MBGr3 0.48 no
not
M11 MB, SHH plexus tumor | 0.42 dlassifiable - no
control tissue,
M12 MB, WNT inflammatory | )| not - no
tumor micro- classifiable
environment
control tissue,
M13 cranio- - mﬂamma’fory 0.8 not y i no
pharyngioma | tumor micro- classifiable
environment
MB not not
M14 ! - -
group 3/4 classifiable classifiable e
other yes, too
. ATRT
M15 ATRT ATRT 0.49 | embryonal 084 ( low for
subclass 0.52) . .
CNS tumors diagnosis
other
94 ETMR
Mieé ETMR ETMR 0.41 | embryonal 09 (ETM yes
subclass 0.94)
CNS tumors
not control
M1z DMG classifiable i tissue 042 1o
056 yes, too
ependymoma, ependymal | (ependymoma, ’
1 1 . 1 f
Mis PE-A plexus tumor | 0.36 tumors PF-A subclass (;)i;v nos(i)sr
0.21) &
M19 MB, SHH plexus tumor | 0.51 | <! 0.99 no
tissue
control tissue,
M20 ependymoma, | inflammatory 0.99 control 0.95 o
PF-A tumor micro- | tissue '
environment
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3.3.TruSight Oncology 500 ctDNA
As another approach to identify and classify CNS tumors from a CSF sample,
sequencing of cfDNA was investigated. A total of 16 samples with varying quality and
input were analyzed with the TruSight Oncology 500 ctDNA sequencing panel for
SNVs, fusions and CNVs (Table 3.2). A range of different samples was used to mimic
the situation in the diagnostic routine where samples of different entities, qualities and
characteristics arrive on a daily basis. Samples with known point mutations and gene
fusions were chosen, as well as samples where specific mutations were unknown, but
nonetheless expected. The manufacturer recommends an input of 30 ng or higher, but
as this is not always feasible for cfDNA from CSF, it was tested whether samples with
lower input were still suitable for analysis. For this, three samples of good quality and
sufficient amount of DNA were analyzed twice with different inputs (TSO4 and TSO5
as well as TSO15 and TSO16, both with 30 and 10 ng input, respectively; and TSO7 and
TSO8 with 10 and 31 ng input, respectively). Median coverage recommendation for
reliable mutation calling was > 1,300 x. Only 6/16 (37.5%) samples achieved the
recommended coverage, however four additional samples (TSO2, TSO7, TSO11 and
TSO15) had a coverage over 1,000 x, which could still be considered a successful
sequencing, meaning 62.5% of sequenced samples were a technical success. Samples
TSO3 and TSO9 both showed 0% cfDNA of total DNA, and median exon coverage was
<10 x for both samples. Input for those samples was also low, however low input itself
was not a measure for success or failure of the sequencing. For instance, both sample
pairs TSO4 and TSO5, and TSO7 and TSO8 showed that a lower input of the same
samples can still achieve a higher coverage. For sample pair TSO15 and TSO16, this
was the inverse and tripling the input resulted in a coverage almost 9 x as high. For all
samples, analysis issued lists of SNVs, possible fusions and CNVs. The number of
SNVs per sample ranged from 398 in sample TSO3 (a technical failure) to 1,578 in
TSO14. Samples that do not have any mutations or aberrations reported in Table 3.2

did not show any that were considered relevant or matching to the known entity.
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Table 3.2 TSO500 ctDNA sequencing result summary for cfDNA from patient CSF samples.

Bio-
Analyzer
Pati fDNA F
atient . Input cfDN Median Expected our‘1d
Sample | sample Entity [ne] content coverase | mutations mutations
info 81 [%of 8 (VAF)
total
DNA]
CTNNBI1
TSO1 MB, WNT 214 87% 2016 x
same CTNNB1 S37A (0.48)
patient S37A CTNNB1
TSO2 MB, WNT 13.6 59% 1223 x
S37A (0.48)
TSO3 ATRT 6.5 0% 4 x SMARCBI1 -
TSO4 same ATRT 30 1913 x -
89% SMARCBI1
TSO5 | sample ATRT 10 2183 x -
TERT C228T,
TSO6 MB, SHH 10.7 42% 72 x -
KMT2C
TSO7 same PA 10 1187 x KIAA-BRAF -
81%
TSO8 | sample PA 31 640 x fusion -
meningeosis
TSO9 carcino- 7.3 0% 7x unknown -
matosa
germ cell
TSO10 30 89% 2180 x unknown -
tumor
pineo- ATRX
TSO11 30 92% 1244 x unknown
blastoma H865Q (0.99)
ERG-
TMPRSS2
prostate
TSO12 30 99% 1791 x unknown | fusion (0.18),
carcinoma
BRCA]I,
BRCA2, p53
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Bio-
Analyzer
Pati fDNA F
atient . Input cfDN Median Expected our‘1d
Sample | sample Entity [ne] content coverase | mutations mutations
info 81 [%of 8 (VAF)
total
DNA]
CTNNB1
CTNNB1
S33F (0.08),
S33F,
TSO13 MB, WNT 20 75% 3333 x SMARCA4
SMARCA4
H884R
H884R
(0.093)
CTNNB1
TSO14 MB, WNT 20 56% 490 x -
S33C
CTNNB1
S33F (0.46),
p53 G245V
TSO15 MB, WNT 30 1185 x
(0.93), Myc
CTNNB1 amplification
S33F, p53 (113.5x)
same G113V, Myc CTNNBI1
84%
sample amplification | S33F (0.47),
in primary p53 G245V
tumor (0.90) and
TSO16 MB, WNT 10 132 x
P72R (0.97),
Myc
amplification
(121.3x)

In samples TSO1 and TSO2, the CTNNB1 S37A mutation known from the tissue was
found in the cfDNA samples as well, both times with a VAF of 0.48. Even though input
and cfDNA content was lower in TSO2 than in TSO1, both samples delivered the same
result. Samples TSO3 through TSO5 all came from patients with ATRTs, where a
SMARCB1 or SMARCA4 mutation is expected [5,6,77,78]. These mutations were found

in neither of the samples, but with a retrospective analysis of the matching tissue of
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TSO4 and TSOS5, a broad deletion spanning the region of GNAZ to SMARCBI on
Chr. 22 was found. This cannot be detected with this method due to the short-read
sequencing’s nature and the analysis performed. Sample TSO13 performed well and
replicated the known single nucleotide variation from the tumor with VAFs of 8% and
9% for CTNNB1 and SMARCA4, respectively. Samples TSO15 and TSO16 showed
comparable results, even though coverage for sample TSO16 was significantly lower.
Both samples revealed the known CTNNB1 S33F mutation with 0.46 and 0.47 VAF. For
the p53 mutation, instead of the known G113V mutation, the G245V mutation was
found with VAFs of 0.9 and 0.93. In sample TSO16, the additional p53 P72R mutation
was found with a VAF of 0.97. None of these were present in the tumor tissue. The
patient of this CSF sample had experienced a relapse, which was biopsied. In the initial
tumor, a Myc amplification was found, but not in the relapse. The CSF sample was
taken after relapse, and yet cfDNA analysis here in samples TSO15 and TSO16 showed
a Myc amplification of 113.5 x and 121.3 x, respectively. This was also found in ddPCR
analysis of the same sample (3.1.2, Figure 3.3 C — patient 2). For sample TSO12, specific
mutations were unknown, however an EGR-TMPRSS?2 fusion was observed, which is
a very prominent fusion in prostate carcinoma [79]. Additionally, p53 mutations were
found, which are frequent in prostate carcinoma [80,81], as well as BRCA1/2 mutations
that, although rare in prostate carcinoma, are in line with aggressive variants of the
entity [82,83]. Other samples that exhibited a fusion in the tumor tissue (TSO7 and
TSO8), although successfully sequenced, did not show those in this analysis. For other
samples (TSO9, TSO10 and TSO11) with unknown mutations, no mutation that would
match the diagnosis or be informative of the diagnosis was found, except for an ATRX
mutation in sample TSO11 with a high VAF. This, however, could not be confirmed in

a retrospective analysis of the tumor tissue.
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3.4. Nanopore sequencing

3.4.1. Nanopore sequencing — native sequencing

To simultaneously analyze the sequence and the methylation of cfDNA, Nanopore
sequencing was explored. In total, 197 c¢fDNA samples isolated from CSF were
analyzed in this study (Figure 3.7). Analysis of a smaller subcohort of 129 ¢fDNA
samples has been published in Afflerbach et al. [84].

31 different entities are represented in the full cohort, with medulloblastoma
dominating the numbers with 65/197 samples (33% of total samples). Ependymoma
(n=20, 10.2% of samples), ATRT (n=14, 7.1% of samples), lymphoma (n=12, 6.1% of
samples), pilocytic astrocytoma (n=12, 6.1% of samples) and glioblastoma (n=11, 5.6%
of samples) follow as the five next largest groups of entities. Other tumors, including
rare entities, are also included, albeit in lower numbers — such as ETMR with three
samples (1.5% of total samples) or plexus papilloma with two samples (1% of total
samples). cfDNA from samples with brain metastases or CNS involvement have also
been included, such as breast carcinoma (n=5, 2.5% of samples), lung carcinoma (n=2,
1% of samples), prostate carcinoma (n=2, 1% of samples) or leukemia (n=1, 0.5% of
samples), amongst others. These remain the minority, but were included as these
samples play an important role in the neuropathological diagnostic routine, where
questions arise whether a tumor might have metastasized to the CNS or if it could be
an additional CNS primary tumor. For some patients, several samples were available,
leading to 197 samples from 158 individual patients. Patients with multiple samples
are marked with capital letters in Figure 3.7. Mean age of the patients was 22.2 years,
yet most patients were children or adolescents with 65% under 18 years of age. All
samples were collected when clinically indicated and only those with sufficient
supernatant material after routine microscopic evaluation in the neuropathology were
analyzed in this study. This results in a mixed cohort of samples that were collected
prior to surgery (n=50, 25.4%), early post-surgery (less than 14 days after surgery, n=28,
14.2%), post-surgery (n=72, 36.6%) and also samples where exact sampling and
surgery time were unclear (n=47, 23.9%), for example when the sample was sent from

52



A

Fluorescence [FU]

a different clinic. In only 10/197 cases (5.1% of samples), tumor cells were detectable
through standard microscopy in the routine evaluation of the CSF. The isolated DNA
amount had a wide range, from 1.5 ng to 3,835 ng per mL CSF, with a mean of 74.3 ng
DNA per mL CSF. Of note, 89% of samples contained less than 150 ng DNA per mL
CSE. For Nanopore sequencing, input covered 3 ng to 618 ng, with a mean of 19.2 ng.
For 17 samples, input value was not available due to either diverging Qubit
measurements that did not allow a clear quantification of the sample, or the
concentration being too low for quantification via Qubit. Nanopore sequencing of
samples was shallow, with a mean coverage of 0.62 x and an average of 1.99 Gb data
generated per sample. The mean read length was 461.2 bp, which is in line with the
expected short fragmentation profile of cfDNA. cfDNA proportion was measured in
samples with sufficient material with the BioAnalyzer, and the mean proportion across
all measured samples was 36.7% of cfDNA from total DNA. Exemplary fragment size
profiles of the cfDNA as seen in BioAnalyzer analysis and the respective read length
distribution of Nanopore data is depicted in Figure 3.6. Overall, sequenced samples
achieved 57.8% passed reads, with 53,416 CpG sites overlapping between sample and
reference detected on average in those reads.

Details for each sample are listed in Supplementary Table 1.
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Figure 3.6 cfDNA shows short fragments in the BioAnalyzer read-out (A) and in the read length distribution of the
Nanopore sequencing data (B). Both show sample 16. Adapted from Afflerbach et al. [84].
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Firstly, all 197 sequenced samples were analyzed together as the full cohort. In Figure
3.8 A, the results of ctDNA detection are depicted per sample. ctDNA was detected in
86/197 samples (43.7%), in 91/197 samples (46.2%) analysis was performed but no
ctDNA was detected, and 20/197 samples (10.2%) were technical failures that did not
yield enough data for either CNV or methylation analysis. For methylation analysis
with the random forest classifier NanoDx [63], 45/197 samples (22.8%) did not have
sufficient CpG sites for analysis, yet the majority of those samples could still be
analyzed via CNV analysis.

When technical failures were not considered in the analysis, ctDNA detection was
successful in 86/177 samples (48.6%) (Figure 3.8 B). All samples could be analyzed by
CNV analysis, with ctDNA detection by CNV in 43.5% of samples (n=77). NanoDx
analysis could be performed in 85.9% of cases, with successful entity classification in
41/177 samples (23.2%). CNVs detected in the cfDNA recapitulated those found in the
tumor, if known, with only minor differences. In a few cases, additional aberrations
private to either tissue or CSF were found, with the overall profile still overlapping
and matching (as seen in Afflerbach et al. [84], Supplemental Figure 1).

Exemplary analyses are depicted in Figure 3.9 [84]. In Figure 3.9 A, glioblastoma
sample 127 shows matching CNV profiles between tissue biopsy and CSF biopsy with
Chr. 7, 12, and 17 gains. Methylation analysis with NanoDx reached a score of 0.072
and is thus classified as glioblastoma. UMAP visualization of the methylation data also
shows clustering to the glioblastoma reference, specifically the RTKI subgroup.
Medulloblastoma sample 16 (Figure 3.9 B) shows matching CNV profiles between
tissue and CSF, with additional aberrations only visible in tissue as well as only in the
CSEF. Both biopsies show losses on Chr. 8, 10, 16 and 22, as well as gains on Chr. 1 and
17. A gain on Chr. 2 was found private to the CSF, and a loss on Chr. 3 private to the
tissue. Methylation analysis of the Nanopore data of the cfDNA resulted in a score of
0.39 for medulloblastoma, group 4 and clustering to the respective reference in the
UMAP visualization. CNV analysis of ETMR sample 167 showed matching profiles

between the tissue and the analyzed CSF, with a specific focal amplification of the
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CI9MC cluster on Chr. 19 (Figure 3.9 C, inset). This shows that also small and focal
aberrations that are relevant for diagnosis can be inferred from Nanopore data when
sufficient data is available. The sample also achieved a classification score of 0.148 by
the NanoDx algorithm and was clearly classified as an ETMR, highlighted also by the
clustering to the reference in UMAP visualization of the data.

7/177 cases (3.95%) were wrongly classified with the NanoDx algorithm, meaning they
received a score above the set 0.07 threshold for an incorrect entity. In 4 out of these 7
cases, the highest score was for meningioma, hinting a bias towards this group when
classification is unclear or difficult with the algorithm. Classification scores of
incorrectly classified samples ranged from 0.07 to 0.09, with a singular outlier with a
score of 0.11.

High detection rates of ctDNA were found in the groups of medulloblastoma (32/57,
56.1%), ATRT (7/14, 50%) and lymphoma (7/12, 58.3%). Glioblastoma and diffuse
midline glioma were detected at lower rates, with 44.4% (4/9 samples) and 42.9% (3/7
samples), respectively. Of note, ctDNA of ependymoma was detected in only 4/17
samples (23.5%) and that of pilocytic astrocytoma was detected in none of the samples
analyzed in this cohort (0/11, 0%) with either analysis method. A statistically
significant difference of ctDNA detection rates between samples from benign and
malignant entities could be observed (Figure 3.10 B, Fisher’s exact test, p =0.0011). 52%
of malignant samples contained detectable ctDNA, whereas only 25% of samples of
patients with benign tumors. Additional differences between the groups of samples
with detectable and undetectable ctDNA were their read lengths and cfDNA
proportion (Figure 3.11). The mean read length of samples that were positive in ctDNA
analysis was statistically significantly shorter than that of those samples not containing
detectable ctDNA (Figure 3.11 A). This was also supported by the cfDNA proportion,
so the proportion of total DNA that falls within the size range of 75-400 bp determined
by BioAnalyzer analysis, in samples with detectable ctDNA being significantly higher
than those without (Figure 3.11 B). To investigate whether the detection method

played a role, the proportion of cfDNA was split into the respective methods (CNV,
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methylation or both) in Figure 3.11 C. A statistically significant difference regarding
the proportion of cfDNA was only observed between samples that were detected by
both CNV and methylation analysis and those that contained no detectable ctDNA.
Lastly, groups of tumor entities with n>10 were observed for differences in
proportion of cfDNA (Figure 3.11 D; only samples with available BioAnalyzer data
were included). No statistically significant difference could be observed between the
groups (Kruskal-Wallis, p=0.32), indicating that the tumor entity itself is not
responsible for the proportion of the cfDNA contained in the sample. Calculated
probabilities of tumor fraction by ichorCNA proved to be significantly different
between samples with positive ctDNA results, as well as statistically significant
between detection methods (Supplementary Figure 2). However, as the ichorCNA
algorithm’s estimation of tumor fraction is based on the prediction of CNVs, statistical
differences between samples with detectable ctDNA by at least CNV analysis and
those with methylation only detection and no detection were unsurprising. Yet, it is an
additional marker in favor of CNV analysis, and demonstrates that samples with

ctDNA detected by both CNV and methylation had the highest tumor fraction.

It remains to note that samples within the cohort belonging to carcinoma entities, such
as breast, prostate, stomach or paranasal sinus cancer, as well as the leukemia case
were analyzed in the same workflow as all other samples, however due to the current
limitations of the reference cohort to brain tumors in the NanoDx algorithm, they
could not be correctly classified in the methylation analysis. In the same regard, some
samples such as the craniopharyngioma cases 158-160 did not exhibit any CNVs in the

tumor tissue, so no CNVs were expected in the CSF either.
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Figure 3.8 Results of ctDNA detection by Nanopore sequencing analysis of cfDNA for (A) all sequenced samples
and (B) only technically successful samples. (A) ctDNA was detected in 46.2% of all cases, in 39.1% of all cases
by CNV analysis and in 20.8% of all cases by methylation analysis with NanoDx. (B) For all technically successful
samples, ctDNA detection was positive in 48.6% of samples. CNV analysis detected ctDNA in 43.5% of samples
and methylation analysis with NanoDx detected ctDNA in 23.2% of samples. cfDNA - cell-free DNA, CNV -
copy number variation, ctDNA - circulating tumor DNA.
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Figure 3.9 CNV and methylation analyses for (A) glioblastoma sample 127, (B) medulloblastoma sample 16, and
(C) ETMR samples 168. CNV plots derived from cfDNA match those of the tissue biopsy, with additional private
gains marked by an asterisk in (B). (C) Focal amplifications of CI9MC on Chr. 19 can be seen in an inlet. All
samples shown match with the correct class in the methylation analysis, which is visualized by a UMAP, showing
the samples clustering to their respective tumor entities in the inlets. cf[DNA - cell-free DNA, CNV - copy number
variation, Chr - chromosome, ETMR - embryonal tumor with multi-layered rosettes, UMAP - uniform manifold

approximation and projection. Adapted from Afflerbach et al. [84] to represent accurate sample IDs and patient
letters.
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B Detection of ctDNA according to malignancy
Fisher's exact test, p = 0.0011, n=168
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Figure 3.10 (A) Weighted Venn-diagram with ctDNA detection rates according to the method by which ctDNA
was detected, CNV analysis or methylation analysis. (B) Detection rates of ctDNA according to the malignancy
of the tumor. A statistically significant difference could be observed between the detection rates of malignant and

benign tumors (Fisher’s exact test, p=0.0011, n=168). CNV - copy number variation, ctDNA - circulating tumor
DNA.

A Mean read length distribution in samples B Proportion of cfDNA in samples
T-test, p = 0.0022, =178 T-test, p = 0.00063, =124
* %
. 100 * %k Xk
. .
1500 .
. .
75 .o .
T - of
g 3
5
§ 1000 . =
] . S 50
13 . 3
§ 8
2 .« . % ””””””””””””””””””””””””””””””””
3
25
M
* .
0 .
yes no
= — yes no
(n=86)  ctDNA detected (n=92) (N=59)  GtDNAdetected (n=64)
Proportion of cfDNA in samples Proportion of cfDNA per tumor entity
Kruskal-Wallis, p=0.0024, n=124 Kruskal-Wallis, p = 0.32
100 xx
. 100
. ‘ :
) . _ .
E‘ & R 75 . p °
=z s .
= g ol
s = 3
S 50 - g s0 Sk
g . I3 o :
< . P B P et e o
% 25 Q o5 gt EI
© i .
N l. .
0 0 oo
both CNV methylation none g g E§ S g g_
Sw ey 2 2l g 1N
ctDNA detected 8w S < [ 3 L
Sl Tc ~ E < s&
S°c g~ 3 Zu 2
3 fin o< ©
= 5
S
T

Tumor entity

Figure 3.11 (Figure legend on the following page)
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Figure 3.11 Statistical differences between samples with detectable and undetectable ctDNA. (A) Mean read
length was statistically significantly shorter in samples with detectable ctDNA (t-test, p=0.0022). In accordance
with this, cfDNA proportion was statistically significantly higher in samples where ctDNA was detected (B).
The detection of ctDNA according to the proportion of cfDNA was not statistically different between the different
methods, only between detection by both methods and no detection (p=0.0033) (C). No statistical significant
difference could be observed between cfDNA proportion of the six largest groups of entities (Kruskal-Wallis,
p=0.32). ¢fDNA - cell-free DNA, ctDNA - circulating tumor DNA.

Next, samples were divided into two groups: samples collected pre-surgery plus early
post-surgery, and samples collected post-surgery (Figure 3.12). In the group of
samples collected pre-surgery and early post-surgery (<14 days after surgery),
detection of ctDNA was expected to be higher as tumor was present or residues after
surgery were expected to only be partially degraded. 70 technically successful samples
tell into the subcohort of pre-surgery and early post-surgery, with 62.9% collected pre-
surgery (n=44) and 37.1% collected less than 14 days after surgery (n=26) (Figure
3.12 A). In total, 35/70 samples (50%) contained detectable tumor-derived DNA. 32/70
(45.7%) of samples were detected by CNV, 20/70 (28.6%) were detected by NanoDx
analysis. Two cases with detected ctDNA by methylation remained undetected by
CNV analysis. 10/70 samples (14.3%) were technically successful but only yielded data
for CNV analysis, and methylation analysis could not be performed. Conventional
microscopy was only positive for tumor cells in 4/70 cases (5.7%).

For the subcohort of post-surgically collected samples, ctDNA detection was positive
for 27/60 samples (45%) (Figure 3.12 B). These samples include long-term post-surgery
samples where disease status was unknown, which is in line with the lower number
of detected ctDNA cases compared to pre- and early post-surgery samples. CNV
analysis detected ctDNA in 22/60 post-surgery samples (36.7%), methylation was able
to correctly classify the tumor in 13/60 cases (21.7%). Five of the methylation-detectable
cases were undetected by CNV analysis.

Splitting the whole cohort according to their time of sample collection shows the
validity of the method for all kinds of samples. Pre-surgery and early post-surgery as

well as post-surgery samples were successful with similar success rates, indicating that
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Low-coverage sequencing of cfDNA from CSF has been successfully used as
monitoring tool, mainly for medulloblastoma, as shown by Liu et al. [50]. In this study,
this could be anecdotally reproduced for two cases, a medulloblastoma patient (patient
A) and an ependymoma patient (patient L) (Figure 3.15, published and adapted from
Afflerbach et al. [84], with patient letters and sample numbers reflecting those used in
the full cohort of Figure 3.8). Patient A was initially diagnosed with a medulloblastoma
with a CTNNB1 p.S37A mutation that was subtyped as WNT by tissue analysis, but
also scored highly for group 3, depending on the Heidelberg classifier version used.
The tissue biopsy showed several CNVs visible, namely gains in Chr. 3, 6, 14, 17 and
19. The patient experienced a metastasis roughly half a year after diagnosis, and a CSF
biopsy was taken 1.2 years after initial diagnosis, which showed the same CNVs as the
initial tissue biopsy as well as an additional loss on Chr. 10. Methylation classified the
cfDNA sample as medulloblastoma, group 3 with a score of 0.16. A CSF sample taken
during a phase of partial response to treatment showed a noisier CNV plot, with
aberrations not visible as clearly as before. Methylation analysis classified the sample
as control with a score of 0.038. After second resection of the tumor, a changed CNV
profile was found in the tissue sample. A gain in Chr. 2, as well as the loss on Chr. 10
that was already visible in the CSF biopsy before, were now visible. The last analyzed
CSF sample of this patient was taken three months after the second surgery and
showed very clearly a replication of the CNV profile of the tumor tissue. Additionally,

methylation classified the sample as medulloblastoma, group 3 with a score of 0.16.

For patient L, shown in Figure 3.13 B, CSF analysis showed high risk factors before
they became apparent in the tumor. Initial tumor biopsy showed a Chr. 1q gain and a
Chr. 8 gain. Only three weeks later, a CSF biopsy was taken that showed a diverging
CNV profile, with the Chr. 1q gain, but an additional Chr. 6q loss, which is known for
being a high-risk factor [85]. Methylation analysis was inconclusive for this sample, yet
the highest score was 0.05 for ependymoma, posterior fossa group A. When the patient

experienced a local relapse half a year after initial surgery, the tissue biopsy revealed
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the CNV profile already detected in the CSF. During a phase of remission, another CSF

sample was taken, which showed a flat CNV profile and methylation analysis only

revealing control tissue, matching this status of disease.
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Figure 3.13 Longitudinal results of Nanopore sequencing analysis of cfDNA samples. (A) Course of disease of
medulloblastoma patient A with MR-images (far left), clinical events (left), tissue and CSF biopsy derived CNV
plots (middle), matching methylation analysis visualized in a UMAP (right) and classifier scores (far right). The
CSF sample 2 taken 438 days after surgery showed an additional Chr. 10 loss, not seen in the tissue biopsy. Re-
resection of the tumor after 897 days revealed the Chr. 10 loss with an additional Chr. 2 gain, which was also seen
in CSF sample 20 taken on day 990. (B) Course of disease of ependymoma PF-A patient L with MR-images (far
left), clinical events (left), tissue and CSF biopsy derived CNV plots (middle), matching methylation analysis
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visualized in a UMAP (right) and classifier scores (far right). Chr. 1q gain was seen in the initial surgery, CSE
sample 69 taken 20 days after surgery revealed an additional Chr. 6q loss, which was confirmed in the tissue of a
relapse after 188 days. Aberrations marked with asterisks are private to either the CSF biopsy or the tissue biopsy.
¢fDNA - cell-free DNA, Chr. - Chromosome, CNV - copy number variation, CSF - cerebrospinal fluid, MR -
magnetic resonance, PF - posterior fossa, UMAP - uniform manifold approximation and projection. Adapted from
Afflerbach et al. [84] to represent accurate sample 1Ds and patient letters.

3.4.2. Nanopore sequencing — barcoded sequencing
To make the method more convenient for routine diagnostics as well as more
economically viable, Nanopore sequencing was tested with barcoded samples. In an
initial test of the protocol, DNA from cell lines were tested in a multiplex assay. cfDNA
from SF8628 and LN-229 cell lines were barcoded and pooled, with an input of 100 ng
each. Reads were demultiplexed automatically by the MinKNOW sequencing
software. Individual CNV plots for the barcodes were constructed and no mixing

between the data sets could be observed, both plots are distinct from each other (Figure
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Figure 3.14 CNV plots of barcoded multiplexed cfDNA samples from cell lines from Nanopore data. (A) CNV
plot from barcoded SF8628 cfDNA. (B) CNV plot from barcoded LN-229 ¢fDNA. Both cell lines were barcoded
with an input of 100 ng. cfDNA - cell-free DNA, CNV - copy number variation.
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As these results were promising, the same protocol was employed with cfDNA from
patient samples that had also been previously sequenced individually. In Figure 3.15,
barcoded cfDNA samples from patients and their respective natively sequenced
samples are depicted (native sequencing for sample 1 in Figure 3.15 A, for sample 2 in
Figure 3.15 B; barcoded demultiplexed for sample 1 in Figure 3.15 C, for sample 2 in
Figure 3.15 D). Sample 1 is an ATRT sample (sample 91 in 3.4.1), sample 2 is a
medulloblastoma sample (sample 16 in 3.4.1).

The CNV plots of the barcoded samples match those of the respective samples. Sample
1 shows losses in Chr. 9, 12, 20 and 22, which are clearly visible in the native CNV plot
(Figure 3.15 A), as well as in the barcoded CNV plot (Figure 3.15 C), albeit less clearly.
Sample 2 displays a very distinct CNV plot with gains in Chr. 1, 2 and 17, as well as
losses in Chr. 8, 10, 16 and 22. These are clearly visible in both the native CNV plot
(Figure 3.15 C) and the barcoded CNV plot (Figure 3.15 D). The input difference
between the native and barcoded samples is rather stark in these examples. Sample 1
was sequenced with an input of 618 ng in the native setting and 100 ng in the barcoded
setting, so an 6.18-fold reduction in input. For sample 2, the input was 10x higher in
the barcoded sample than in the natively sequenced sample, with 100 ng as well. The
sequencing output, however, was reduced drastically. Sample 1 in the barcoded
experiment yielded less than 150 k reads, needing the larger window size setting for
analysis, compared to 32 M in the natively sequenced sample. Sample 2 was well
analyzable, but quality and quantity of data was nonetheless reduced at roughly 756 k
reads compared to 9.5 M reads for the natively sequenced sample.

Both samples have been analyzed with the NanoDx workflow to compare methylation
results with that of the native sequencing. Sample 1 did not achieve classification by
methylation using NanoDx when sequenced natively (Figure 3.8, sample 91), even
though 100,000 CpG sites were analyzed; the barcoded sample also did not achieve
classification. 7,301 CpG sites were found, which was above the minimum
requirement, but highest ranked entity was plexus tumor, subclass pediatric B with a

score of only 0.04, which was below the set threshold and thus not counted as
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classified. The medulloblastoma sample 2 had 50,000 CpG sites and a score of 0.28 for
medulloblastoma, group 4 when sequenced natively (Figure 3.8, sample 16). When
barcoded, only 18,036 CpG sites were read, which means that in the native sample 2.7 x
the amount of CpG sites were read. Yet, the result is comparable as the barcoded
sample achieved a classification score of 0.27 for medulloblastoma, group 4. Due to

the data quality reduction, multiplexing was not further pursued in this work.
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Figure 3.15 Barcoding cfDNA samples allows CNV analysis, yet a quality reduction can be observed in direct
comparison to natively sequenced samples. (A) Sample 1 sequenced natively at 618 ng input. (B) Sample 2
sequenced natively at 10 ng input. (C) Sample 1 barcoded and demultiplexed, at 100 ng input. (D) Sample 2
barcoded and demultiplexed, at 100 ng input. cfDNA - cell-free DNA, CNV - copy number variation.
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4. Discussion

As the current standard of brain tumor diagnostics relies on the availability of tumor
tissue for analysis, a significant proportion of patients face risks of unclear diagnoses
due to the inaccessibility of the tumor or the risks of surgery and anesthesia
themselves. Especially in the context of pediatric and young adult patients, the need
for novel non- or minimally invasive diagnostic methods is urgent. The aim is to secure
a diagnosis to treat the patient accordingly, without the need to unnecessarily disturb
the developing brain by a surgical intervention. In this work, several molecular
analysis methods were explored for their use with CSF as an alternative to the surgical

biopsies to perform initial diagnostics, but also for monitoring purposes.

4.1.ddPCR

ddPCR is a very sensitive approach to detect SN'Vs as each individual droplet serves
as a singular reaction tube, and with thousands of droplets per well, increasing the
sensitivity manifold compared to standard single tube PCR reactions [51]. Using
ddPCR for liquid biopsies has been pioneered, and has recently become more
interesting in the field of liquid biopsies in neurooncology, showing that this method
has valid applications [52,53,86]. When tumors exhibit hotspot mutations that are
relevant for diagnosis, ddPCR can sensitively and specifically confirm the presence of
ctDNA by their detection in CSF samples. Additionally, the ease of designing probes
and primers manually provides the opportunity to personalize assays for monitoring
of patients when specific mutations occur, and for example sequencing panels do not
include the mutations of interest [87].

In this work, cfDNA from CSF was analyzed to investigate the feasibility of the method
on routine diagnostic samples. SNV detection is possible (Figure 3.2), even at low input
(Figure 3.1). 4/27 samples did not show a positive signal for mutation when it was
expected from the tumor tissue. This is, however, most likely due to low to no ctDNA
content in the CSF at sampling time. CNV detection in cfDNA samples is also possible

and informative (Figure 3.3 A), again even at low input (Figure 3.3 B).
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It can be discussed whether the detection of both wildtype and mutation sequences in
the sample are informative of the hetero-/homozygosity of the mutation. As there is
little to no cfDNA present in the CSF of healthy humans, it can be assumed that most,
if not all, cfDNA contained in a CSF sample from a patient with a brain tumor comes
from that. This, in turn, means that if both wildtype and mutation is detected in
roughly equal amounts in the cfDNA, the mutation occurs probably heterozygously.
When only mutation sequence is detected, it can be assumed that the mutation is
occurring homozygously, or that one allele is lost. However, when the wildtype
detected sequences surpass those of the mutation, it is possible that there is another
source of wildtype sequence, such as shedding of other cells into the CSF, or that the
mutation occurs with low frequency in a heterogenous tumor. In some samples
analyzed here, a mutation was expected, such as a H3-3A K27M mutation in a DMG,
or a known BRAF V600E mutation in a pleomorphic xanthoastrocytoma, but only
wildtype was detected. It could thus be that the tumors here exhibited the mutation
with low frequency, shed cfDNA infrequently or that DNA from other sources diluted
the mutated cfDNA to a point below the limit of detection. The lack of false-positives
in the analyzed cohort is a great advantage, especially for methods with clinical
applications, where positive detections of mutations can have therapeutical effects.

CNYV detection using cfDNA from CSF works well, which allows further subtyping,
risk stratifying or supporting a diagnosis, such as Myc amplifications in
medulloblastoma [76] or EGFR amplifications in glioblastoma [88]. With the
emergence of the new Bio-Rad QX600 system, the development of panels with six
different channels for mutation detection is relatively easy and straightforward. This
allows on the one hand the development of multiplexed panels for single samples for
initial diagnosis, possibly investigating several SNVs and CNVs simultaneously, as
well as the possibility to multiplex personalized assays, with primers and probes

designed specifically for the patient as a monitoring tool.
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4.2. Methylation arrays

As an open, uninformed approach to initially diagnose CNS tumors with their exact
entity using cfDNA isolated from CSF, methylation arrays were tested. These are
already widely used in the routine diagnostics with tissue biopsies, with an established
and well recognized analysis pipeline [15,16]. Adapting an already established
pipeline would be favorable over establishing a novel method, especially in a clinical
routine setting, as implementing novel methods is challenging for the daily process,
but also for eventual certification. cfDNA, however, does not necessarily behave the
same as gDNA and the established protocol had to be adapted, especially considering
the smaller input amount. Enzymatic conversion, initially developed for sequencing
approaches, is less harsh compared to bisulfite conversion, meaning a smaller loss and
lesser degradation of DNA during the experimental workflow is expected [89].

Initial testing of the here designed protocol with gDNA showed favorable results with
inputs as low as 10 ng (Figure 3.4), so that 20 c¢fDNA samples were tested. Here,
however, results were not up to diagnostic standard, with only 20% correctly classified
cases using the classifier v11, and 30% using classifier v12 (Table 3.1). The CNV plots
of most samples were not interpretable as they were very noisy (Figure 3.5). In routine
tissue analysis, CNV plots are often an indicator for specific focal amplifications, like
EGFR amplifications in glioblastoma [88], or losses, such as CDKN2A/B in gliomas
[90,91], to reinforce classification by the random forest classifier based on the
methylation. A possible reason for the low performance of this method could be the
arbitrary selection of CpG sites that are analyzed in cfDNA. The DNA degrades within
the CSF and the whole genome may not be uniformly present at all times, making the
number and the kinds of CpGs sites analyzed random. It is possible that certain CpG
sites necessary for classification were not present, resulting in low or very low scores.
Perhaps the enzymatic conversion of the cfDNA results in slightly modified DNA
structure (apart from the intended change to read methylation status), or slight cross-
reactions between kits and reagents, so that CNV plot analysis resulted in those noisy

plots that could not be interpreted.
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The composition of CSF also differs at different times of puncture, resulting in possible
impurities that could not be removed by cfDNA isolation and purification. Possible
impurities or contaminants could also have an influence on the analysis with sensitive,
yet broad approach methods like methylation arrays. The development of a reference
based solely on CSF samples might improve classification results, yet this remains a
difficult task as it is unclear if the method and protocol itself is successful, and
additional novel bioinformatic tools may be needed. As both parts of the analysis, the
classifier results and the CNV plots, did not yield results of sufficient quality to
perform diagnostics with and improvement of the method proved to be difficult and
lengthy, this method was not considered for further development, especially with

alternatives, like varying sequencing approaches, being available.
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4.3. TruSight Oncology 500 ctDNA
Sequencing panels have become a popular way to identify specific mutations in
tumors to either confirm a diagnosis or identify therapeutical targets. As an open
approach when the tumor entity is unclear and diagnosis is not yet made, a large
sequencing panel covering a great variety of genes is of interest. For this reason, the
TruSight Oncology 500 ctDNA was tested, as it spans over 500 genes and additionally
gives the opportunity to identify gene fusions and CNVs for several genes. A total of
16 samples was tested, with different entities, mutations and cfDNA qualities
included. The input ranged from 6.5 ng to 31 ng, with cfDNA proportions of total DNA
of 0% to 99%. This reflects the reality of samples in the clinical routine. 62.5% of
samples were a technical success, however only 6/16 (37.5%) delivered results
matching the tumor tissue (Table 3.2). With hundreds of SNVs found for each sample,
analysis remained difficult. Without prior knowledge of a suspected entity, filtering
the found mutations is nearly impossible as all, none or just a small set could be
relevant for the specific tumor. Broad deletions, such as seen in the ATRT samples
TSO4 and TSO5 also cannot be detected by this panel. The deletion only came to
attention after a retrospective analysis of the tissue for the specific genetic region,
however this would not be the clinical goal of a minimally invasive diagnostic method.
The cohort tested here is rather small and has a limited range of entities, yet the results
are not convincing of this method. It remains unclear whether the input amount is
influential, as the same samples have been tested with varying input amounts and the
results went in both directions. Samples with low cfDNA percentages failed, with 60%
cfDNA of total DNA being a suggested quality threshold as samples above this
performed well technically, with only sample TSO16 being the exception. The results
acquired here suggest that the panel works for top quality samples, yet the workflow
does not seem very robust, and it defeats the purpose of an initial diagnosis tool when
the tumor entity is still unknown. It is possible to confirm diagnoses with specific point
mutations or fusions, but in this cohort, these often remained undetected and many

others were found, which raises the question of artefacts and ambiguous results.
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Although the diagnosis confirmation would be possible with the TruSight Oncology
500 ctDNA panel, it is unnecessarily large for this purpose and smaller, more
neurooncologically targeted gene panels should be sufficient. Pages et al. implemented
a panel consisting of 46 genes that were extensively reported to contain hotspot
mutations or fusions in pediatric brain tumors, and while they were not able to achieve
satisfactory sensitivity, it nonetheless shows that a distinctly smaller sequencing panel
will cover the most relevant genes [36]. Smaller sequencing panels focused on a specific
entity have been shown to reproduce the same mutations in ¢fDNA as known from
the tumor tissue, demonstrating that this technique is applicable for cfDNA with
satisfactory results [54,92]. A large sequencing panel similar in size to the Tru Sight
Oncology 500 ctDNA has been developed, initially for genomic DNA, and used
successfully with cfDNA to confirm initial diagnosis when tissue analysis remained
inconclusive, as well as to monitor tumor during treatment and its evolution [93-96].
Bale et al. demonstrate the utility of the large panel for a variety of tumors, also outside
of the CNS [95], however as most tumor entities are not solely characterized by a
mutation or fusion, further analyses would still be necessary, and a smaller panel
might still be sufficient to confirm a suspected diagnosis. Additionally, large panels
are expensive and not always feasible in the routine diagnostic as they tend to require
larger sequencers, which, again, would be in favor of smaller panels. Another
downside, just as for methylation arrays, is the use of flow cells that require a specific
number of samples as to not waste consumables. As this method did not deliver
satisfactory results and was not easily feasible outside of specific centers, it was not

pursued for the development of a diagnostic method.

Even though this sequencing panel did not fulfil the expectations in terms of a novel
diagnostic method, it nonetheless delivered interesting results. In samples TSO15 and
TSO16, a strong Myc amplification was detected (Table 3.2). The patient experienced a

relapse of a WNT-medulloblastoma, however the Myc amplification was only detected
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in the primary tumor tissue. The possible reasons for this are diverse, with clonal
heterogeneity, general tumor heterogeneity or the extrachromosomal accumulation of
Myc being some of them. The finding of the Myc amplification raises the question in
what way cfDNA studies could be expanded and how it can be informative of the

tumor, and perhaps even elucidate some questions on tumor evolution.
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4.4. Nanopore sequencing

A cohort of 197 cfDNA samples was analyzed with Nanopore sequencing as previous
studies suggest that sequence and methylation data gained through Nanopore data is
useful for tumor DNA detection and brain tumor classification [62,63]. A smaller
subcohort of 129 analyzed cfDNA has been published in Afflerbach et al. [84]. The
results presented there could be further supported and enhanced by analyzing the full
197 samples. The full cohort was diverse with over 30 entities, as well as several sample
collection times. cfDNA used in sequencing was of varying quality, represented by the
range of read lengths in addition to the range of cfDNA proportion of whole DNA
content (Figure 3.7). This, however, represents the daily occurrences in the routine
diagnostic, as samples arrive with unknown time between puncture and first
processing in the laboratory, of varying quality depending on the puncture itself and
with diverse questions, such as MRD detection, initial diagnosis, or exclusion of tumor
involvement.

ctDNA was detected in 86/197 samples (43.7%), which was an improvement from the
smaller cohort shown in Afflerbach et al. [84], where 39% of samples were positive for
ctDNA after analysis. Not counting the technical failures, these statistics improve
further to ctDNA detection in almost half of the analyzed samples (86/177, 48.6%). This
underlines the use of the developed method for ctDNA detection and the potential
complementation of other currently used methods in routine diagnostics.

The split into groups according to the time of sample collection (Figure 3.12) highlights
the use of Nanopore sequencing for different clinical settings. The success rate with
samples collected pre- and early post-surgery shows that the method can indeed
complement the initial diagnosing process by providing insight into sequence
aberrations as well as sometimes providing and exact classification. ctDNA detection
rate in samples that were collected post-surgery is still relatively high, which
emphasizes the use of the method for MRD and relapse detection. The use of cfDNA

from CSF as MRD detection has been shown extensively by Liu et al. [50] using low-
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coverage NGS, and anecdotally been reproduced with the use of Nanopore sequencing

in this study (Figure 3.13) [84].

One great advantage of using Nanopore sequencing compared to other sequencing
approaches is the possibility to simultaneously investigate methylation and sequence
of cfDNA. As shown in Figure 3.10 A, CNV analysis allowed the detection of most
samples with ctDNA, yet there are 10/87 samples (10.5%) with ctDNA detectable only
by methylation analysis. While CNV analysis outperforms the methylation analysis, it
is not able to make an accurate classification on its own, which in turn favors Nanopore
sequencing over other sequencing only or methylation only approaches. Some samples
without CNVs in the tissue biopsy were also analyzed, again highlighting the need for
the additional methylation analysis. These samples remain harder to detect than those
with CNVs, as the CNV analysis is more robust and generally performs better.
Methylation analysis of Nanopore data has been used for the diagnosis of CNS tumors
in several studies, showing the suitability of Nanopore methylation analysis for CNS
tumors in general [63,97,98]. With the use of gDNA from a biopsy, Djirackor et al. were
able to obtain results within the timeframe of the surgery, which allows the influencing
of the surgical strategy [97]. Other machine learning besides random forest classifiers
have been evaluated and tools for robust tumor diagnostics developed. Vermeulen et
al. employed a neural network to diagnose a tumor based on its methylation profile in
less than an hour after sequencing [99]. The sequencing of cfDNA on a Nanopore
device behaves differently than that of gDNA due to its fragmentation, often also
resulting in slower sequencing to reach the same coverage. Liquid biopsy diagnostics
with the use of cfDNA might thus not necessarily profit from the extremely fast results
that the novel tools can provide, however with the development of better and more
diverse machine learning applications, the diagnostics from cfDNA will also improve

and provide more reliable results.
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One of the downsides of the method is its low coverage that can only be slightly
improved by extending run times, however this proves uneconomic as flow cells are
then un-reusable, as well as a relatively high error rate, especially compared to NGS
approaches. This means that Nanopore sequencing does not allow the evaluation of
SNVs and would require complementation of other methods, such as ddPCR.

Within the current workflow of the NanoDx analysis, the reference used is that
published by Capper et al. [15], comprising brain tumor entities and some control
tissue. This limits the current use of the developed method to samples where CNS
tumor involvement is highly probable. Some cases from CNS-foreign tumors were
included in the cohort, often with CNV aberrations, however these could then not be
classified by the methylation analysis algorithm, somewhat skewing the results. To
determine whether a lesion is a primary CNS tumor rather than a metastasis of an
already known tumor, this might still be useful — but for cancers of unknown primary
and additional assurance of primary vs metastasis, the improvement and constant
extension of the reference is of importance. With 7/177 (4%) falsely classified cases, the
rate is not very high, yet it is important to investigate these falsely classified samples
closely. Adjusting the threshold for significant scores will improve the false
classification rate, but it might also lower the number of overall classifications. For
research purposes, a slightly lower threshold with a slightly higher number of false
classifications is acceptable; for diagnostic purposes and subsequent clinical decision-
making, classifications need to be as accurate as possible and thus a higher threshold
would be preferable. The exact threshold for diagnostic purposes needs to be further
validated, especially with extended and improved reference cohorts.

Another point to investigate before fully adapting the method into diagnostic routine
is the evaluation of the limit of detection. The protocols by the manufacturer for
Nanopore sequencing suggest an initial input of 1 pg, yet the method developed here
provided sequencing results from samples with inputs of 3 ng or lower, probably due

to the relative higher molarity of cfDNA. A definitive limit of detection is difficult to
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establish as the results of this study suggest that if ctDNA is present, it can be detected,

however the presence will only be known after analysis.

Of note, no case of pilocytic astrocytoma was detectable with the developed method
(Figure 3.8), yet other benign tumors were detectable, even if only at lower numbers
(Figure 3.8, Figure 3.10 B). It is unclear why this entity underperforms compared to all
other entities. Remarkably, pilocytic astrocytoma cases investigated with the TSO500
panel remained also undetected with no mutation or fusion flagged in the results
(Table 3.2). How the pilocytic astrocytoma differ in their biology from other tumors
that might explain this phenomenon of the lack of detectability remains to be
elucidated. One hint might be the frequent development of cysts [100] which might
hinder the shedding of cf DNA into the CSF, hence evading detection via liquid biopsy.
This issue might not be exclusive to pilocytic astrocytoma, but rather be an issue of
low-grade tumors in general. This study is limited in sample size for what are
considered benign tumors, but they generally contain significantly less ctDNA than
malignant tumor samples (Figure 3.10 B). It is thus possible that other entities of low-
grade tumors equally underperform when comparing them to malignant entities.
Reasons for this general phenomenon still require explanations and further
investigation, but it is conceivable that benign tumors generally have a lower cell

turnover and the tendency to remain localized, thus also shedding less DNA into the

CSF.

In a few samples, CNVs were found in the CSF biopsy that were not found in the
matching tissue biopsy (Figure 3.9), or in the case of the longitudinally observed
patient, only much later (Figure 3.13). This has also been observed by Liu et al. their
longitudinal study for MRD detection in medulloblastoma [50]. This shows another
advantage of using liquid biopsies at least in a complementary fashion, as the clonal
heterogeneity of the tumor might be better depicted in the liquid than in the tissue

biopsy alone. With tissue biopsies, there might be an initial surgical bias when taking
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the biopsy, as well as an analytical bias when choosing the region of the tumor for
molecular analyses in the diagnostic laboratory. When using the liquid biopsy, this
sampling bias is not an issue as DNA fragments are mixed throughout, and depending
on the volume of the sample, all fragments are eluted and analyzed. The use of liquid
biopsies like this can also be informative of tumor evolution and particular risk factors,

as seen in Figure 3.13 for patient L with ependymoma, posterior fossa group A.

Nanopore sequencing also provides the opportunity to multiplex samples and thus
reduce the cost per sample. In pilot experiments shown in this study, a drastic quality
reduction was seen compared to native sequencing of the cfDNA samples. Barcodes
were well distinguishable and there was no cross-over between samples, suggesting
that the barcoding protocol itself works well. CNVs could still be inferred from the
reduced amount of data, which might be enough for monitoring, as it is already known
what the aberrations are and what one needs to look for. Methylation analysis was also
possible, however data reduction was noticeable here as well. Both samples tested with
barcodes showed similar results to their natively sequenced counterparts, with one
sample being accurately classified and the other one not classified. The amount of CpG
sites was much lower than in the native sequencing results. As both CNV and
methylation analysis is possible, yet with significantly lower data amounts,
multiplexing might rather be an opportunity for reducing cost in a longitudinal
monitoring setting instead of initial diagnostics. Initial diagnostics also tend to have a
more pressing time frame than monitoring samples, meaning they would need to be
run right away. Monitoring samples could be allowed to build a pool and then be run
collectively. When a sample gets flagged as positive in a multiplexed sequencing run,
it could then in turn be either sequenced again on its own, or a clinical follow-up could

be one of the next steps to ensure a highly sensitive result.
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4.5. Conclusion & Outlook

This study shows that there are several methods useful for diagnosis of brain tumors
using liquid biopsies, especially CSF for CNS tumors. Nanopore sequencing
constitutes the major part in this work as it allows the simultaneous analysis of DNA
sequence and methylation, providing advantages over other sequencing approaches
explored here, like the TSO500 or methylation arrays alone. The results are promising
and show a significant sensitivity improvement over conventional CSF analyses that
are usually just comprised of microscopic evaluation of the cells contained in the
sample. Some entities are included with small sample sizes or singular cases, but the
encouraging results of this first study pave the way to include this method in clinical
trials and thus improve case numbers. Yet, the major downside of Nanopore
sequencing is the low coverage that does not allow the investigation of specific SN'Vs.
A recommendation for the implementation of liquid biopsy analysis in the routine
diagnostic workflow could be to first apply Nanopore sequencing with low, but
sufficient input. Retaining some cfDNA for further analysis in the form of ddPCR then
allows specific mutation testing, as this method is very sensitive and only requires very
little input. The combination of Nanopore sequencing for ctDNA detection, CNV
analysis and methylation classification, with follow-up ddPCR testing to investigate
SNVs gives a thorough insight into the tumor landscape without the need for a biopsy.
A great part of molecular markers needed for specific diagnoses are covered by those
two methods. With the advent of novel ddPCR machines that allow six-color
multiplexing, the development of mutational panels relevant for a variety of tumor
entities is possible, requiring even lower inputs of DNA than when all assays are
conducted individually.

To improve ctDNA detection and classification of the exact tumor entity, development
of a more advanced reference cohort is needed. Additionally, the use of other machine
learning tools, such as neural networks, instead of random forest classifiers could
improve the classification and shorten the analysis time. The reference is based on

published data of methylation arrays covering 450,000 CpG sites [15], however the use

80



of 850,000 CpG site strong methylation arrays has become standard in the routine
diagnostics. Building a reference using the newer methylation arrays would almost
double the available sites for classification. Expanding the reference with more entities
and different subtypes would also allow more exact diagnosis. The eventual goal
would be to build one classification tool with not only CNS tumors, but also
carcinomas and other entities, to diagnose any tumor.

Generally, the use of liquid biopsies as analyte gives a thorough insight into the
tumor’s characteristics and has the advantage of supplying more information on
tumor heterogeneity that could potentially get lost in tissue biopsies due to surgical or
analytical bias. Potential uses of other liquids such as plasma with the same analyses’
workflows remain to be investigated, although this could prove to be difficult for
diagnostics of brain tumors. With regards to other tumor entities though, it might be

preferable and even more minimally invasive than CSF collection.
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6. Abstract

Diagnosing a central nervous system (CNS) tumor relies heavily on histopathological
and molecular analysis of tumor tissue. This is not always feasible as tumor tissue
cannot always be obtained safely, with especially difficult situations in pediatric
patients. There is a great need for minimally invasive CNS tumor diagnostics that can
molecularly diagnose the tumor, and its development was the aim of this work.

For this, cerebrospinal fluid (CSF) was investigated, specifically cell-free DNA
(cfDNA) as an analyte isolated from it.

As a first attempt, droplet digital PCR (ddPCR) was established. It proves to be an
informative approach, for specific single nucleotide variants as well as copy number
variations of defined genes. It is very sensitive and in none of the 29 analyzed patient
samples, a false positive was observed.

Methylation arrays and next-generation sequencing approaches would in theory allow
an uninformed approach to make an initial diagnosis. Yet, both methods were not ideal
for the analysis of cfDNA and did not deliver satisfactory results that would allow an
implementation of this method into routine diagnostics.

Nanopore sequencing permits the analysis of sequence as well as methylation
simultaneously. The protocol was adapted for the use with short, fragmented DNA.
Copy number variation plots calculated from the sequence were used to capture gains
and losses, and the methylation was used to classify the tumor exactly using a random
forest classifier. 197 samples were analyzed and in 48.6% of all technically successful
samples, tumor-derived cfDNA could be found. This approach grants the possibility
to diagnose a tumor without prior knowledge of the tissue, and the use in long-term
monitoring settings.

A novel, minimally-invasive diagnostic method for CNS tumors has thus been

developed that has potential to be adapted into clinical routine.
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7. Zusammenfassung

Um einen Tumor des zentralen Nervensystems (ZNS) zu diagnostizieren, wird fiir
histopathologische und molekulare Analysen eine Gewebsbiopsie benétigt. Diese ist
nicht immer verfiigbar, da nicht immer eine sichere Entnahme gewahrleistet werden
kann, mit besonderen Schwierigkeiten bei padiatrischen Patient:innen. Es besteht ein
grofier Bedarf an minimal-invasiven Methoden, die eine genaue molekulare Analyse
des Tumors, und somit eine exakte Diagnose, erlauben. Dafiir wurde in dieser Arbeit
Liquor, insbesondere zell-freie DNA als Analyt, untersucht.

In einem ersten Ansatz wurde die droplet digital PCR (ddPCR) etabliert. Sie stellte sich
als informative Methode fiir Punktmutationen und Kopienzahlverdanderungen von
Genen heraus. Die Methode ist sehr sensitiv und in keiner der 29 analysierten
Patient:innenproben wurde ein falsch-positives Signal beobachtet.
Methylierungsarrays und Next-Generation-Sequenzierungsansatze sind theoretisch in
der Lage, bei einer initialen Diagnose zu helfen, ohne dass vorher etwas iiber den
Tumor bekannt ist. Die Ergebnisse der hier getesteten Methoden waren allerdings
nicht tiberzeugend.

Nanopore-Sequenzierung erlaubt die zeitgleiche Aufnahme von DNA-Sequenz und
Methylierung. In dieser Arbeit wurde das Protokoll fiir kurze, stark fragmentierte
DNA angepasst. Kopienzahlprofile, die mithilfe der Sequenz berechnet wurden,
wurde ausgewertet, um Verluste und Zugewinne nachzuweisen; die Methylierung
wurde mit Hilfe eines Random Forest Klassifikationsverfahrens analysiert. 197
Liquorproben wurden analysiert und in 48.6% aller technisch einwandfreien Proben
konnte zell-freie DNA, die vom Tumor stammte, nachgewiesen werden. Die Methode
erlaubt es, eine initiale Diagnose ohne vorherige Informationen oder
Verdachtsdiagnosen zu erstellen.

Es wurde eine neue, minimal-invasive diagnostische Methode fiir ZNS-Tumoren
etabliert, die das Potential hat, in die klinische Routinediagnostik implementiert zu

werden.
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8. Appendix

8.1. Supplementary figures

Supplementary Figure 1 FISH of tumor tissue of patient 1 with a medulloblastoma, showing focal amplifications
of Myc (green) in occasional cells. Control centromere of chromosome 8 in red. FISH - fluorescence in situ

hybridization.
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none 1.3x10-12| 0.00019 | 0.38644

Supplementary Figure 2 Calculated tumor fractions are statistically significantly different between samples with
detected ctDNA and without and between detection methods. (A) A statistically significant higher tumor fraction
was observed in samples with detectable ctDNA (t-test, p = 2.4x10-7, n=173). (B) Statistical differences were
observed for tumor fractions between ctDNA detection methods (Kruskal-Wallis, p = 1.9x10-13, n=173), with
exact p-values of differences between detection methods as calculated by Wilcoxon-test in (C).
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8.2.Supplementary tables
Supplementary Table 1 with clinical, sequencing and analysis details of all cfDNA

samples analyzed by Nanopore sequencing on the following pages.
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