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Introduction

The main goal of this thesis is to discuss the foundations of dynamical systems, whose
state space is a space of maps defined on a noncompact domain and whose dynamics
are compatible with the symmetries of this domain.

The most important example of such a dynamical system is the motion of a fluid in an
unbounded domain M ⊂ (R3, < ·, · >) with nontrivial isometry group Isom(M). For
example, the dynamics of an inviscous incompressible fluid in an unbounded domain
M are governed by the Euler equations

∂u

∂t
(t) +∇u(t)u(t) = − grad p(t)

div u(t) = 0 , u(t) ‖ ∂M

for the vector field u(t) and the pressure function p(t) of the fluid. These equations
are compatible with the symmetry of M , because for every element g ∈ Isom(M) of
the isometry group and every solution (u(t), p(t)) also (Tg ◦ u(t) ◦ g−1, p(t) ◦ g−1) is a
solution. Thus the dynamics of an inviscous incompressible fluid fit into the general
setting of our discussion: The state space is a space of maps on a noncompact domain -
here the space of divergence free vector fields on M parallel to the boundary - and the
dynamics are compatible with the symmetry. Also the dynamics of all other kinds of
fluids like incompressible fluids with constant viscosity governed by the Navier-Stokes
equations or ideal compressible isentropic fluids fit into this setting.

A mathematical rigorous treatment of such dynamical systems with symmetry obvi-
ously requires to specify, which spaces of maps are used. For example, continuously
differentiable maps endowed with the topology of uniform convergence in all derivatives
up to a certain order may be used, or Sobolev maps endowed with the Sobolev topol-
ogy. Now the first task is to assure that the partial differential equations modeling the
dynamical system really have a solution within the chosen space of maps. This thesis
discusses mainly those systems, which are generated by ordinary differential equations
on an infinite-dimensional space of maps and hence solvable.

For example, the Euler equations are such a system. Indeed, the motion of a fluid can
not only be modeled by its velocity vector field u(t), but also by its particle map
η(t). If at time 0 a particle is at the point m ∈ M , then within the time t the
particle moves to the point η(t)(m). Obviously the vector field u and the particle
map η are related: If u is given, then η is the solution operator of the time-dependent
ordinary differential equation ṁ(t) = u(t)(m) on M , and conversely η determines u
by u(t) := η̇(t) ◦ η(t)−1. Note further that the property div u(t) = 0 of solutions u of
the Euler equations translates into the property that the map η(t) on M preserves the
volume form (hence the fluid is really incompressible). [Ebin,Marsden] established for
compact domains M the local existence of Sobolev solution u(t) ∈ H s(TM) by proving
that the Euler equations - viewed in terms of the volume form preserving particle
map η - are geodesic equations and thus ordinary differential equations on the infinite
dimensional space Diffs

Vol(M) of volume form preserving Sobolev diffeomorphisms on
M w.r.t. the H0-metric

∫

M
< X, Y > dm. On noncompact domains M it is much
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more difficult to prove an analogous result. Using the assumption of bounded geometry
and a spectral condition [Eichhorn,Schmid] have shown that the Euler equations are
geodesic equations on Diffs

Vol(M) also in the noncompact case.

However, regarding pattern formation on noncompact manifolds, solutions within the
class of Sobolev vector fields are not really interesting, as such solutions vanish at infinity
and thus do not allow patterns typical for noncompact domains, like e.g. upwinding
spiral flows in a cylinder. But even if solutions within another space of mappings could
be established, which are not vanishing at infinity, there still remains a problem: For
noncompact M the symmetry does generally not act continuously on Banach manifolds
of mappings. For example, consider the space Cb(R

2,R2) of uniformly continuous maps
on the Euclidean R

2 endowed with the topology of uniform convergence, where the
isometries g of R2 act by composition (g, η) 7→ g ◦ η. Then a rotation by an arbitrary
small angle does generally not sent η to a map which is arbitrarily near to η. In fact,
the distance between η = Id and its rotation by an arbitrary small angle φ 6= 0 is always

sup
x,y
‖

(

cosφ sin(φ)
− sin(φ) cos(φ)

)(

x
y

)

−

(

x
y

)

‖ =∞

Thus for all φ 6= 0 the map η = Id is sent to a map in a different connected component of
the space of Cunif(R

2,R2). Hence the action of the symmetry group is not continuous
and even not strongly continuous, i.e. also g 7→ gη is not continuous. The same is
true on the space Diffs(M) and its tangential bundle T Diffs(M), although the induced
action Tg ◦ u ◦ g−1 on the tangential space TId Diffs(M) = Hs(TM) is continuous.

The noncontinuity of the symmetry on configuration spaces like Diffs(M) is caused
by the fact that the symmetry acts by composition, but in the case of a noncompact
domain composition and evaluation are not continuous for nearly all choices of Banach
manifolds of maps. Indeed, for a locally compact topological space M the natural
topology on a space of continuous maps on M is the topology of uniform convergence
on compact subsets, as this topology is the coarsest topology such that composition
and evaluation are continuous. But endowed with this topology the space C(M,Rn) is
merely a complete locally convex topological vector space instead of a Banach space.

Thus there are two ways to proceed, when discussing the foundations of dynamical sys-
tems under symmetry on noncompact domains: Either Banach manifolds of maps can
be used, where the analysis is well developed, but a discontinuous action of the symme-
try (which causes problems in the discussion of pattern formation) and the absence of
some patterns (like spirals in Sobolev spaces) has to be accepted. Or instead, manifolds
of maps modeled over complete locally convex topological vector spaces can be used,
where the symmetry group acts continuously, but the analysis is not so well developed
and there is a lack of theorems, which guarantee the solvability of application relevant
equations.

The first point of view is adopted e.g. by [Wulff] and [Sandstede, Scheel, Wulff]. The
main aim of this thesis is to lay the foundations for the second approach to dynamical
systems on noncompact domains under symmetry. Thus a main task is to develop the
analysis on manifolds of mappings, which are modeled over locally convex topological
vector spaces. This is not an easy task: Contrary to the category of normable spaces
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the category of locally convex topological vector spaces is not tensorial closed, and thus
there is no natural space of continuous linear maps between locally convex topological
vector space. A negative consequence is that it is not clear how to define continuously
differentiable maps. However, by using a tensorial closed category of vector spaces en-
dowed with a slightly more general topological structure than a locally convex topology,
this problem can be solved and a sufficient differential calculus can be developed.

But analysis requires more than just a differential calculus: Differential equations must
be solved, an inverse function theorem is needed, and other theorems of classical analysis
must be transfered to the new setting. This is also not an easy task, as there even
are differential equations with continuous linear right hand side, which are locally not
solvable, so that a precise discussion is needed. Here our choice of the tensorial closed
category is helpful, because it guarantees that our continuously differential maps f :
X → Y are locally Lipschitz continuous. A generalization of the contraction mapping
principle then allows to characterize by growing conditions those initial values, where
a differential equations with locally Lipschitz continuous right hand side can locally be
solved. Finally manifolds modeled on complete locally convex topological vector spaces
are considered. Here it is important that manifolds are locally not merely identified
with open subsets, but with more general subsets like dense intersections of balls. This
is necessary, as for example the exponential mapping on a noncompact manifold is
usually only bijective on a neighbourhood of the zero section, but the vectorfields with
values in this neighbourhood form generally not an open set.

After having laid the foundations, in the second part of this thesis fluid dynamical sys-
tems and pattern formation on noncompact manifolds are discussed. From the proof
of [Ebin,Marsden] and [Eichhorn,Schmid], which show that the Euler equations are
geodesic (and hence Hamiltonian) equations on the group of volume form preserving
diffeomorphisms, it is concluded that the Euler- or Navier-Stokes equations can not
be solved for manifolds of mappings modeled over locally convex spaces like the local
Sobolev space Hs

loc(M), because the equations are nonlocal essentially due to incom-
pressibility and/or viscosity. But it can be argued that other fluid dynamical equations
like those modeling inviscous compressible fluids can be solved using local spaces, as
they have a finite velocity of propagation. Finally the methods of pattern formation
under symmetry in the Banach case and in the locally convex case are compared.
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Part I

Analysis on Natural Spaces of Maps
Natural spaces of maps deserve a central role in the discussion of pattern formation
under symmetry, because usually the symmetry acts by composition on spaces of maps,
but the natural spaces of maps are exactly those induced by composition. The most
general setting, where it is possible to endow sets of maps with a natural structure, is
the setting of a tensorial or cartesian closed category. After the definition and
discussion of such categories, general topological and uniform structures on a
set are introduced and the cartesian closedness of the categories associated to such
structures is discussed. This discussion is extended to vector spaces endowed with a
compatible topological structure and thus to linear analysis. There the main result
is that the category of locally convex topological vector spaces, which is not tensorial
closed, can be enlarged to a very similar tensorial closed category. Finally the natural
spaces of continuous linear maps in this tensorial closed category allow to develop
a satisfying nonlinear analysis on locally convex topological vector spaces and on
manifolds modeled over these spaces.

1 Categorial Preliminaries

A category is an abstraction of the behaviour shown by maps under composition. As
categories are so intimately related to the composition of maps, it is not surprising that
the notion of a natural space of maps is a categorial notion. To define natural spaces of
maps, another categorial notion is needed, namely that of a tensor product. Thus after
having introduced categories, functors and natural transformations, tensor categories
and natural spaces of maps in tensor categories are discussed.

1.1 Categories

A class C endowed with a partial multiplication ◦ : D(◦) ⊂ C × C → C which is asso-
ciative and has units is called a category. More precisely, call elements of C morphisms,
denote morphisms by letters f, g, . . . , use the notation fg instead of f ◦ g and say “fg
exists“ instead of (f, g) ∈ D(◦). Then a partial multiplication is said to be associa-
tive if the existence of the product (fg)h (resp. f(gh), resp. fg and gh) implies the
existence of the product f(gh) (resp. (fg)h, resp. (fg)h and f(gh)) and the validity
of (fg)h = f(gh). Further a morphism e is called a unit if the existence of fe im-
plies fe = f and the existence of ef implies ef = f . Units are usually denoted by
IdX , IdY , . . . and the capital letters X, Y, . . . used to distinguish units are called the
objects associated to the units. With this notation a partial multiplication is said to
have units if to every f there are units IdX and IdY such that f IdX and IdY f exist.
For every morphism f such units IdX , IdY are automatically unique, and in analogy
to the case of maps between sets write f : X → Y and call X the domain and Y the
codomain of f . For f : X → Y and g : Y ′ → Z the existence of gf is equivalent to
Y = Y ′.
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Denote by C(X, Y ) the class of morphisms with domain X and codomain Y . A cat-
egory C is called locally small if C(X, Y ) is a set for every pair of units X, Y , and
usually categories are assumed to be locally small. A morphism f : X → Y is called a
monomorphism if fg = fh implies g = h, an epimorphism if gf = hf implies g = h,
and an isomorphism if there is a g : Y → X such that gf = IdX and fg = IdY . In
the last case the morphism g is automatically unique, is called the inverse of f and is
denoted by f−1. Two objects X and Y are called isomorphic if there is an isomorphism
f : X → Y , and in this case X ∼= Y is written. Isomorphy is an equivalence relation on
the class Ob(C) of objects in C.

Let (C, ◦) be a category, then the opposite (or dual) category Cop is defined as the class
C endowed with the partial multiplication f ◦op g := g ◦ f . This construction allows to
define the dual notion to each categorial notion. For example, a monomorphism in Cop

is an epimorphism in C, and that’s why the notion of an epimorphism is called dual to
the notion of a monomorphism.

Define to categories C,D the product category C × D as the product class endowed
with the partial multiplication (f, g)(f ′, g′) = (ff ′, gg′). Particulary (f, g)(f ′, g′) exists
iff ff ′ and gg′ exist. An object 0 of a category C is called initial if to every object X
there is exactly one morphism from 0 to X. Dually an object 1 is called terminal if to
every object X there is exactly one morphism from X to 1.

At last some examples of categories shall be given. Loosely spoken, if sets endowed
with a certain kind of structure are considered, then the class of structure preserving
maps form a category, whose partial multiplication is given by composition and whose
objects can be identified with the structured sets. For example, the maps between sets
(with no structure) form the categories Set, the continuous maps between topological
spaces form a category Top, the group homomorphisms form a category Grp, the linear
maps between vector spaces over a field K form a category VecK and so on. Also the
maps between categories which respect partial multiplication and preserve units form
a category Cat, whose morphisms are called functors. Other examples of categories are

• Groups G, where the morphisms are given by the elements of G and the multi-
plication is not partially but totally, so that there is only one unit - the neutral
element of the group.

• Partially ordered sets P , where pairs (x, y) ∈ P × P with x ≤ y are considered
to be morphisms and the partial multiplication is defined by (x, y)(y ′, z) := (x, z)
whenever y = y′ is valid.
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1.2 Functors

As already mentioned above, a functor F : C → D between categories C,D is a map
such that the existence of fg in C implies the existence of F (f)F (g) in D as well as the
validity of F (fg) = F (f)F (g), and units e of C must be mapped to units F (e) of D.
A functor F from C to D is called covariant, while functors from Cop to D are called
contravariant.

Example: For every locally small category C the map C(·, ·) : Cop×C→ Set defined by
(X, Y ) 7→ C(X, Y ) and (f : W → X, g : Y → Z) 7→ (C(X, Y ) 3 h 7→ g◦h◦f ∈ C(W,Z))
is a functor into the category of all sets. It is called the morphism functor on C.

1.2.1 Natural Transformations

Let F,G : C → D be functors. A map α : C → D is called a natural transformation
from F to G and is denoted by α : F → G, if the existence of fg implies the existence
of α(f)F (g) and G(f)α(g) as well as the equalities α(fg) = α(f)F (g) = G(f)α(g).
Natural transformations are uniquely determined by their values on objects. Indeed,
every map α : Ob(C) → D with the property that f : C → C ′ implies the existence of
α(C ′)F (f), G(f)α(C) and the equality α(C ′)F (f) = G(f)α(C) can be extended to a
unique natural transformation by α(f) := α(C ′)F (f) = G(f)α(C).

Let α : F → G and β : G → H be natural transformations, then define a new
natural transformation β · α : F → H by (β · α)(f) := β(C ′)α(f) = β(f)α(C) for a
morphism f : C → C ′ in C. Instead of β · α shortly write βα. The class of all natural
transformations between functors from C to D endowed with the partial multiplication
· is again a category. It shall be called the category of functors from C to D and is
denoted by DC. The units of this category are exactly the natural transformations of
the form G : G→ G, g 7→ G(g) with a functor G. Thus the units can be identified with
functors, and hence the name category of functors from C to D is justified.

A natural transformation α : F → G in this category is an isomorphism iff every
α(C) : F (C) → G(C), C ∈ Ob(C), is an isomorphism in D. Functors F and G are
called naturally isomorphic if there is such an isomorphism α : F → G. Equivalence
classes of functors w.r.t. the equivalence relation given by natural isomorphy are said to
be functors determined merely up to natural isomorphy. The image F (C) of an object
C is not well-defined for an up to natural isomorphy determined functor F , but its the
equivalence class [F (C)] w.r.t. isomorphy in D is well-defined.

1.2.2 Adjoint Functors

A functor F : C→ D is said to be left adjoint to the functor G : D→ C, and conversely
G is said to be right adjoint to F , if there is a natural transformation η : IdC → G ◦ F ,
called the unit of the adjunction, and a natural transformation ε : F ◦G→ IdD, called
the counit of the adjunction, such that (G◦ε)(η◦G) = G and (ε◦F )(F ◦η) = F are valid.
Further, if the natural transformations η und ε are isomorphisms, then F : C↔ D : G
is called an equivalence between the categories C and D, which are called equivalent in
this case.
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To better understand adjunction and equivalence, note that for locally small categories a
functor F is left adjoint to G iff there is a natural isomorphism D(F (·), ·) ∼= C(·, G(·)).
Thus for adjoint functors F,G morphisms from F (C) to D correspond uniquely to
morphisms from C to G(D) in a way that respects composition. Hence a left adjoint
F to G is something like a weak left inverse to G.

1.3 Limits

Let I be a category and let F : I → C be a functor. Call I an index category, denote
objects in I by i, j, . . . and morphisms from i to j by φij. A pair consisting of an object
L ∈ Ob(C) and morphisms fi : L→ F (i) is called the limit of F , if F (φij)◦fi = fj holds
and if to every other pair (L′, f ′

i) with F (φij)◦f
′
i = f ′

j there is a unique map h : L′ → L
so that f ′

i = fi ◦ h factors. More formally limits can be defined as terminal objects
in some diagram category, and this equivalent definition shows that a limit (L, fi) is
unique up to diagram isomorphy. Further the notion of a limit can be dualized, and
the result is called a colimit.

Product and Coproduct Let I = · · consist of two objects and no nontrivial
morphisms. Then a functor F : I → C merely chooses two objects A,B of C. The
limit of F is called the product and is denoted by A × B, while the morphisms are
called projections and are denoted by π1 : A × B → A, π2 : A × B → B. The dual
of the notion of a product is a coproduct, it is denoted by A + B and the morphisms
ι1 : A→ A+B, ι2 : B → A+B are called inclusions.

Pullback and Pushout Let I = · → · ← · consist of three objects and two nontrivial
morphisms. A functor F : I → C merely renders this form by choosing morphisms f, g

of the form A
f
−→ C

g
←− B. The limit of F is denoted by Af × gB and is called

the pullback, while the morphisms again are called projection and are denoted1 by
π1 : Af × gB → A and π2 : Af × gB → B. The dual of a pullback is a pushout.

Direct Limits Let I be a partially ordered set which is directed upwards, i.e. to
every i, j there is a k with i, j ≤ k. Consider I as a category, then a functor F : I → C
chooses an upward directed family Ci → Cj, i ≤ j, of objects in C. The colimit of F
is called the direct limit of the Ci (ATTENTION: The direct limit is in fact a colimit,
only historically it is called a limit) and is denoted by limiCi, while the morphisms
Ci → limiCi are called inclusions. The dual of direct limits are the projective limits.

Preserving Limits A functor F : C → D is said to preserve the limits defined for
the index category I, if for every limit (L, fi) in C of a functor F ′ : I → C the pair
(F (L), F (fi)) is the limit of the functor F ◦F ′ in D. It can be proved that left adjoints
preserve arbitrary colimits, while right adjoints preserve arbitrary limits.

1Note that the third morphism Af × gB → C does not need a special symbol because it is f ◦π1 =
g ◦ π2.
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1.4 Forgetful Functors

A functor V : C→ D is called faithful or a forgetful functor, if for every X, Y ∈ Ob(C)
the map VX,Y : C(X, Y )→ D(V (X), V (Y )) is injective. If V is a forgetful functor and
a left adjoint F : D → C exists, then F (D) is called the free object generated by D
w.r.t. the forgetful functor.

For example, consider the forgetful functor V : AbGrp→ Set which sends a homomor-
phisms h of abelian groups to the map h, i.e. V does nothing. Then there is a left adjoint
F to V , which sends a set X to the abelian group G = {

∑m
i=1 nixi|ni ∈ Z, xi ∈ X}

and a map f : X → Y to the homomorphism
∑m

i=1 nixi 7→
∑m

i=1 nif(xi) of groups. Or
consider the forgetful functor V : Top→ Set, whose left adjoint endows a set with the
discrete topology while it leaves maps unchanged.

Initial and Final Objects Let V : C → D be a forgetful functor. Suppose that a
morphism g : V (X ′) → V (X) of D lies in the image of VX′,X if and only if for every i
the morphism gi ◦ g lies in the image of VX′,Xi

. Then the object X ∈ Ob(C) is called
an initial object to the family gi : V (X) → V (Xi). Note that every gi itself lies in
the image of VX,Xi

because of gi ◦ V (IdX) = gi ◦ IdV (X) = gi, so that there are unique
morphisms fi : X → Xi in C with V (fi) = gi.

Dually an object X is called a final object to the family gi : V (Xi) → V (X) of mor-
phisms, if it is equivalent that g : V (X) → V (X ′) lies in the image of VX,X′ and that
every g ◦ gi lies in the image of VXi,X′.

Say that a category has initial resp. final objects w.r.t. the forgetful functor V , if to
every family gi : Y → V (Xi) resp. gi : V (Xi) → Y of morphisms there is an initial
resp. final object X to the family gi that satisfies V (X) = Y . Such an object X is
automatically unique up to isomorphy.

If a category has initial objects w.r.t. the forgetful functor V : C → D and if certain
limits exist in D, then these limits also exist in C. Indeed, if F : I → D is a functor and
(Y, gi) is the limit of V ◦F in D, then the initial object X determined up to isomorphy
by V (X) = Y and the family gi = V (fi) is the limit of F in C. An analogous result
also holds for colimits.

1.5 Tensor Products

Let C be a category. A functor · ⊗ · : C × C → C (which maybe is defined only up to
natural isomorphy) is called a tensor product on C if the functors ·⊗(·⊗·) and (·⊗·)⊗·
are naturally isomorphic. In other words, ⊗ is called a tensor product if it is associative
in the sense that A⊗ (B ⊗C) ∼= (A⊗B)⊗C holds naturally in A,B,C. An object E
with E⊗A ∼= A ∼= A⊗E naturally in A is called a unit of the tensor product. Units of
tensor products are unique up to isomorphy because of E ∼= E ⊗E ′ ∼= E ′ for two units
E,E ′, and a morphism E → C is called a tensor point of C. Further a tensor product
is called symmetric if there is a natural isomorphy A⊗ B ∼= B ⊗ A.
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A pair consisting of a category C and a symmetric tensor product ⊗ having a unit is
called a tensor category. A tensor category is called tensorial closed if there is a right
adjoint functor ·· : Cop×C→ C (which maybe is defined only up to natural isomorphy)
to the tensor product ⊗. Then the functor ·· is called the morphism functor2 and the
image BA of objects (A,B) is called the object of morphisms from A to B. This notion
is justified because of the natural bijections

C(A,CB) ∼= C(A⊗B,C)

so that especially the tensor points of BA correspond to the morphisms from A to B.

Let C be a tensorial closed category, then the universal property of the counit evY,X :
Y X ⊗ X → Y (which is here called evaluation) assures the existence of a natural
transformation compZ,Y,X : Y X ⊗ ZY → ZX (called inner composition) satisfying

εZ,X ◦ (compZ,Y,X ⊗ IdX) = εZ,Y ◦ (IdZY ⊗εY,X) .

Note that comp mimics the (outer) partial multiplication of the category within the
category, as comp ◦(f ′, g′) = (f ◦g)′ holds, where h′ : E → Y X denotes the tensor point
corresponding to the morphism h : X → Y . Indeed, if the counit evY,X is written as if
it were the evaluation (f, x) 7→ f(x) of maps in Y X , then the equation defining comp
can be written as comp(g, f)(x) = f(g(x)). Moreover it can be proven that comp is
associative.

1.5.1 The Product as a Tensor Product

Let a category C have finite products, then × is a symmetric tensor product with
the terminal object 1 being the unit, and thus (C,×) is a tensor category. Such tensor
categories are called cartesian, and if the morphism functor exists, the category is called
cartesian closed instead of tensorial closed. Further the tensor points of an object C,
i.e. the morphisms from 1 to C, are called merely points instead of tensor points.

Example: The category Set is cartesian closed. The morphism functor is nothing
else than Set(·, ·), as Set(A × B,C) ∼= Set(A,Set(B,C)) naturally via the natural
isomorphism f(a, b) 7→ (a 7→ (b 7→ f(b, a))). Because the terminal object 1 in Set is
the set consisting of one element, the points of a set correspond to the elements of the
set.

2Note that also the functor C(·, ·) from Cop × C to Set is called the morphism functor, but usually
this ambiguity does not cause problems, as BA is mostly the set C(A, B) endowed with a structure so
that it becomes an object of C.
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Example: The category Top of topological spaces and continuous maps endowed with
the product × is not cartesian closed. To obtain a cartesian closed category of spaces
there are two possibiliteies: On the one hand the notion of a topological structure can
be weakened, and on the other hand only special topological spaces can be allowed.

Indeed, if the notion of a space is weakened by using a convergence relation between fil-
ters and points instead of open sets, then the so defined category of convergence spaces
(and also the stronger category of limit spaces) is cartesian closed. The space Y X of
morphisms from X to Y is nothing else than the set C(X, Y ) of continuous functions
from X to Y , endowed with the convergences F → f of filters F on C(X, Y ) to func-
tions f ∈ C(X, Y ) iff for every convergence G → x on X the image filter ev(F × G)
under the evaluation map ev converges to f(x). Further for separated locally compact
topological spaces X and arbitrary topological spaces Y the convergence space Y X is
even a topological space, namely C(X, Y ) endowed with the compact-open topology.

On the other hand it is possible to consider certain subclasses of topological spaces to
obtain a cartesian closed category. For example, the compactly generated spaces X are
such a class. They are defined to be those separated topological spaces for which a set
A ⊂ X is closed iff A ∩ K is closed for every compact set K ⊂ X. In this category a
product X × Y is not the usual product of topological spaces but its

”
Kelley-fication“ ,

and a space Y X of morphisms is the
”
Kelley-fication“ of the set C(X, Y ) endowed with

the compact-open topology.

Example: In the category Cat of all categories the functor ·· : Catop×Cat→ Cat given
by (C,D) 7→ DC, (F : C′ → C, G : D → D′) 7→ (DC 3 α 7→ G ◦ α ◦ F ∈ D′C

′

) is right
adjoint to × : Cat× Cat→ Cat.

In fact, if F : C × D → E is a functor, then F (ff ′, gg′) = F (f, g)F (f ′, g′) holds and
especially for f : C → C ′ also F (f, gg′) = F (f, g)F (C, g′) = F (C ′, g)F (f, g′) is valid.
Thus αf : g 7→ F (f, g) is a natural transformation between the functors g 7→ F (C, g)

and g 7→ F (C ′, g) from D to E. Hence F̂ : f 7→ αf is a functor from C to ED because
of

F̂ (ff ′)(g) = F (ff ′, g) = F (f,D′)F (f ′, g) = F (f,D′)αf ′(g) =

αf (D
′)αf ′(g) = (αf · αf ′)(g) = (F̂ (f) · F̂ (f ′))(g)

for every g : D → D′, i.e. F̂ (ff ′) = F̂ (f) · F̂ (f ′) is valid.

Conversely to a functor H : C → ED the map defined by H̃ : (f, g) 7→ H(f)(g) is

a functor from C × D into E. Because of
˜̂
F = F and ˆ̃H = H there is a bijection

Cat(C × D,E) ∼= Cat(C,ED). This bijection is natural and thus proves that ·· is right
adjoint to ×. In retrospect this justifies to use the symbol DC for the category of functors
from C to D. Indeed, it is the object of morphisms from C to D in the tensor category
(Cat,×).
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1.5.2 The Pointwise Tensor Product

If C is a concrete category, i.e. there is a forgetful functor V into Set, then the pointwise
evaluation evy : C(Y, Z)→ V (Z), h 7→ V (h)(y), is defined for every y ∈ V (Y ). If there
are initial objects ZY to the family evy

3, then up to natural isomorphy they define a
bifunctor ·· from Cop×C to C acting on morphisms by (hf)(g) := h◦g ◦f . Now, if there
is a left adjoint ⊗ to this bifunctor ··, then it is a tensor product 4 and shall be called
the pointwise tensor product. Further, if the pointwise tensor product has a unit and
is symmetric, then trivially (C,⊗) is tensorial closed.

Example: In the category Set of maps between sets the pointwise tensor product exists
and is identical with the usual product. In fact, trivially a map g : A→ Set(B,C) is a
map, if each evb ◦g is a map for b ∈ B. Thus ·· := Set(·, ·) is the bifunctor induced by
the pointwise evaluations, and clearly this bifunctor is right adjoint to the usual product
× of sets.

Example: In the category Top of topological spaces and continuous maps the pointwise
evaluations induce on C(Y, Z) the pointwise convergence of maps. The tensor product
exists, it assigns to topological spaces the set X × Y endowed with the final topology
generated by the maps ιy : x 7→ (x, y) and ιx : y 7→ (x, y).

Indeed, for three topological spaces X, Y, Z a map f̃ : X → Set(Y, Z) has its image
in the subset C(Y, Z) ⊂ Set(Y, Z) and is continuous w.r.t. pointwise convergence, if
all the maps x 7→ f̃(x)(y) and y 7→ f̃(x)(y) are continuous. Thus the map θX,Y,Z :
f(x, y) 7→ (x 7→ (y 7→ f(x, y))) is a bijection between C(X ⊗ Y, Z) and C(X,C(Y, Z)),
where C(Y, Z) is endowed with the pointwise convergence. There remains to prove the
naturality of θ: For continuous maps f : X → X ′, g : Y → Y ′ and h : Z → Z ′ as well
as a : X ′ ⊗ Y ′ → Z the equality

θ(h ◦ α ◦ f ⊗ g) = x 7→ (y 7→ h(α(f(x), g(y)))) =

x 7→ (h ◦ θ(α)(f(x)) ◦ g) = C(g, h) ◦ θ(α) ◦ f

holds and thus θ defines a natural transformation.

Finally let us discuss the pointwise tensor product in the category of modules over
commutative rings. Note that the tensorproduct of vector spaces (modules over fields)
and of abelian groups (modules over Z) is a subexample thereof.

3In other words, the set C(Y, Z) can be made to a unique object ZY of C by requiring the universal
property, that a map g : V (X) → C(Y, Z) is induced by a morphism f , i.e. g = V (f), iff evy ◦g :
V (X)→ V (Z) is induced by a morphism for every y ∈ V (Y ).

4Indeed, associativity holds because of C(A ⊗ (B ⊗ C), D) ∼= C(A, C(B ⊗ C, D)) ∼=
C(A, C(B, C(C, D))) ∼= C(A ⊗ B, C(C, D)) ∼= C((A ⊗ B) ⊗ C, D), where no notational difference is
made between sets of maps and the initial objects to such sets.
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Example: The pointwise evaluation on ModR(M,N) =: Hom(M,N) induce the point-
wise addition (φ+ψ)(m) := φ(m)+ψ(m) and pointwise scalar multiplication (rφ)(m) :=
rφ(m) of homomorphisms. In this way Hom(M,N) is turned into a module NM which
is initial w.r.t. the pointwise evaluations, and a bifunctor is defined (M,N) 7→ NM . To
construct the pointwise tensor product ⊗, note that a map f : L ×M → N induces a
homomorphism l 7→ (m 7→ f(l, m)) from L to NM iff f(l + l′, m) = f(l, m) + f(l′, m),
f(l, m + m′) = f(l, m) + f(l, m′) and f(rl,m) = rf(l, m) = f(l, rm) are valid, i.e. iff
f is bilinear. Thus, to have a natural isomorphy Hom(L ⊗M,N) ∼= Hom(L,NM ), a
module L⊗M is needed which has the property that the bilinear maps from L×M into
some N uniquely correspond to the linear maps from L⊗M to N in a natural way.

To construct such a module L⊗M , use the free R-module F =
⊕

(l,m)∈L×M R generated
by the set L × M and impose on it the relations that a bilinear map has to fulfill.
This can be done by factoring out a submodule: Write elements of F as formal linear
combinations

∑

i ri(li, mi), form the submodule G of F generated by the elements

(l + l′, m)− (l, m)− (l′, m) , (l, m +m′)− (l, m)− (l, m′) ,

(rl,m)− r(l, m) , (l, rm)− r(l, m) (1)

set L⊗M := F/G and denote elements (l, m) +G of L⊗M by l ⊗m.

Then the module L⊗M really has the requested universal property: As F is the module
freely generated by L ×M , every map f : L ×M → N into a R-module N uniquely
extends to a homomorphism f̃ : F → N , and especially this holds for bilinear maps
f : L×M → N . The extension f̃ of such a bilinear map f ∈ Hom(L,NM) particularly
satisfies G ⊂ Ker(f̃) because of

f(l + l′, m) = f(l, m) + f(l′, m) , f(l, m+m′) = f(l, m) + f(l, m′) ,

f(rl,m) = rf(l, m) = f(l, rm) (2)

and thus also f̂ : F/G → N , w + G 7→ f̂(w), is well-defined. Now the assignment
θ : Hom(L,NM) 3 f 7→ f̂ ∈ Hom(L ⊗ M,N) is the natural bijection searched for.
Indeed, if f̂ = f̂ ′ for f, f ′ ∈ Hom(L,NM), then f̂ and f̂ ′ have the same values on
the generating set {l ⊗ m ∈ L ⊗M | (l, m) ∈ L ×M} of the module L ⊗M . But f
and f ′ contain G in their kernel, because they are homomorphisms from L to NM or
equivalently bilinear. Hence f and f ′ (viewed as bilinear maps from L×M to N) have
the same values on L ×M , i.e. they define the same map. This proves the injectivity
of the map θ. To show its surjectivity, observe that a homomorphism f̂ : L⊗M → N
induces by f(l, m) := f̂(l⊗m) a map on L×M , which satisfies (2) because the elements
of (1) lie in G, and thus f is a bilinear map or equivalently a homomorphism from L to
NM . Hence θ is bijective. Finally define the map τ : L×M → L⊗N by (l, m) 7→ l⊗m
and note that θ−1(h) = h◦τ holds. Thus the bijection θ is really natural, as it is defined
by the universal property that to every bilinear map f : L ×M → N there is a unique
linear map f̂ : L⊗M → N with f = f̂ ◦ τ .
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2 Topological Structures

In analysis a precise notion of convergence is needed. But what kind of objects on a set
X are those which can converge? The topological answer to this question is that filters
on X are the objects which can converge. Thereby a proper filter F on X is a set of
subsets of X such that

• U ∈ F and U ⊂ V imply V ∈ F ,

• U, V ∈ F imply U ∩ V ∈ F ,

• X ∈ F and ∅ 6∈ F

hold. While the third condition only eliminates the improper filters ∅ and P(X), the
first and second condition assure that the sets in a filter are directed downwards. This
downward directedness of a filter models the intuitive notion of a converging (or con-
tracting) family of sets and justifies why filters are regarded as the right objects which
can converge.

Let us gather some facts about filters. Filters can be defined by filter bases, i.e. sets
FB of subsets of X with the property that to every U, V ∈ FB there is a W ∈ FB
with W ⊂ U ∩ V . Indeed, for a filter base FB on X the set of all U ⊂ X for which
there is a V ∈ FB with V ⊂ U forms a filter F , called the filter generated by the
filter base. A special case of a filter base are the endpieces {{xn|n ≥ N}|N ∈ N} of
a sequence xn. Thus every sequence induces a filter, and only this filter is important
for the convergence of the sequence. For example, the sequences xn and xn+k, k ∈ N

fixed, are generally different, but induce the same filters and have the same convergence
properties.

Further the set of all filters is partially ordered by inclusion. A filter F is called coarser
than G (and G is called finer than F) if F ⊂ G holds. Clearly the improper filters ∅
resp. P(X) are the finest resp. coarsest filters. But in topology only proper filters
are considered, and while {X} is the coarsest proper filter, the finest proper filters are
called ultrafilters. Trivially for every x ∈ X the filter Fx := {U ⊂ X|x ∈ U} is an
ultrafilter, but the lemma of Zorn guarantees that to every filter F an ultrafilter G
containing F can be found. Hence generally there also exist nontrivial ultrafilters. For
two proper filters F ,G, the infimum always exists and is the filter F ∩ G, while the
supremum exists iff F ∩G 6= ∅ holds for every F ∈ F , G ∈ G, and in this case it equals
{F ∩G|F ∈ F , G ∈ G}.

Filters can also be transported by maps. Every map f : X → Y between sets X, Y
induces a map of the corresponding filter sets by restricting the map (f−1)−1 between
the double power sets P(P(X)) and P(P(Y )) to the set of all filters on X. The
image of a filter F on X under this map is shortly denoted by f(F) and given by
{V ⊂ Y |f−1(V ) ∈ F} (or equivalently generated by the filter base {f(U)|U ∈ F}). It
has the properties that proper filters are mapped to proper filters, that f(Fx) = Ff(x)

holds, that F ⊂ G implies f(F) ⊂ f(G) and that f(F ∩G) = f(F)∩ f(G) is valid even
for arbitrary intersections. Also the preimage of a proper filter G on Y under (f−1)−1
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shortly denoted by f−1(G) is defined, but it is proper again if and only if f−1(V ) 6= ∅
holds for all V ∈ G, and in this case it is generated by the filter base {f−1(V )|V ∈ G}.

Till now proper filters and their properties have been discussed. However, analysis
needs a precise notion for the convergence of a proper filter to a point. A relation →
between proper filters on X and elements of X specifies such a notion and is called
a convergence relation. For a fixed convergence relation → on X, a filter F is called
convergent to x ∈ X, if the relation F → x holds. A convergence relation → is called
finer than →′ (and →′ coarser than →) if F → x implies F →′ x. Clearly this notion
defines a partial order on the set of all convergence relations, which is merely the usual
order of relations given by ⊂, and thus arbitrary suprema and infima exist.

With this concept of convergence, a map f : X → Y between sets X, Y endowed
with convergence relations →X ,→Y is called continuous at x ∈ X, if F →X x implies
f(F) →Y f(x), and continuous, if it is continuous at every x ∈ X. Trivially the
composition f ◦ g of continuous maps f, g is again continuous.

However, to get a convenient notion of convergence and continuity,→ is required to have
certain properties. If such properties are formulated by axioms, a convergence relation
on a set X satisfying these axioms is called a topological structure on X. Different
axioms define different sorts of topological structures, and the properties, which such
different topological structures have, are discussed in the following paragraphs.

2.1 Convergence Spaces

The weakest useful topological structure on a set X is given by a convergence relation
satisfying

• F → x and F ⊂ G imply G → x,

• Fx → x for all x ∈ X.

A set X endowed with such a convergence relation is called a convergence space.

The forgetful functor from the category of convergence spaces to the category of spaces
endowed with a convergence relation has a left adjoint. Indeed, the left adjoint assigns
to set X endowed with a convergence relation→ the finest coarser convergence relation
→′ which turns X into a convergence space. Note that→′ is defined by the convergences
F →′ x of the original convergence relation, by the convergences Fx →

′ x and by the
convergences of all finer filters according to the first property above. Because maps
preserve trivial ultrafilters and the order, this convergence relation→′ has the property
that a map f : X → Y from (X,→) into a convergence space Y is continuous iff it is
continuous as a map from (X,→′) into Y , and thus left adjointness has been proved.
Hence every set endowed with a convergence relation can be made to a convergence
space in a natural way.

The category of continuous maps between convergence spaces has initial and final ob-
jects w.r.t. the forgetful functor into the category of sets. Indeed, the initial convergence
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relation to a family fi : X → Xi of maps from a set X into convergence spaces Xi is the
finest convergence relation on X such that all fi are continuous. It is given by F → x
iff fi(F) → fi(x) holds for every i, and thus a map f : X ′ → X from a convergence
space X ′ to X is continuous, iff all maps fi ◦ f are continuous. By analogy the final
convergence relation to a family fi : Xi → X of maps from convergence spaces Xi into
a set X is the coarsest convergence relation on X such that the maps fi are continuous.
It is generated by the convergences fi(Fi) → fi(xi) where Fi → xi are arbitrary con-
verging filters in Xi. Thus a map f : X → X ′ in a convergence space X ′ is continuous
iff f ◦ fi is continuous for every i. The existence of initial and final objects implies the
existence of limits and colimits within the category of convergence spaces, see 1.4.

Moreover, the category of convergence spaces is cartesian closed. To see this, let us
first consider the product. Up to isomorphy it is given by the set

∏

iXi endowed with
the initial convergence relation w.r.t. the projections πi :

∏

iXi → Xi. With the
product

∏

iFi of filters Fi on Xi defined to be the coarsest filter F on
∏

iXi with
πi(F) = Fi for every i, the convergence relation on

∏

iXi is just the one generated by
(
∏

iFi) → (xi) to arbitrary converging filters Fi → xi. Now let Y, Z be convergence
spaces and define the convergence space ZY as the set C(Y, Z) of continuous maps from
Y to Z endowed with the convergence relation given by F → f iff the image of F × G
under the evaluation ev : C(Y, Z)× Y → Z converges to f(y) for every filter G → y on
Y , i.e. ev(F × G) → f(y). This convergence relation really endows C(Y, Z) with the
structure of a convergence space:

• If F ⊂ F ′ and F → f , then for every G → y the convergence ev(F × G) → f(y)
holds, and because of ev(F × G) ⊂ ev(F ′ × G) also ev(F ′ × G) → f(y) and thus
F ′ → f is valid.

• The equation ev(Ff × G) = f(G) is valid for every G → y, and thus continuity
f(G)→ f(y) of f implies ev(Ff × G)→ f(y), i.e. Ff → f .

A map f : X × Y → Z is continuous iff f̂ : x 7→ (y 7→ f(x, y)) : X → ZY is continuous.
Indeed, the equation f = ev ◦(f̂ × IdY ) holds, and thus on the one hand the continuity
of f̂ implies the continuity of f , because ev and IdY are continuous. On the other hand
for a continuous f also every map fx := f(x, ·) is continuous, and thus f̂ really maps X
into C(Y, Z). Further f̂ itself is continuous, because by the definition of the convergence
relation on C(Y, Z) a map g from a space X into ZY is continuous iff ev ◦(g × IdY ) is
continuous. Hence g := f̂ and the equation f = ev ◦(f̂ × IdY ) yield that the continuity
of f implies the continuity of f̂ .

2.2 Limit Spaces

A convergence space X is called a limit space, if it additionally has the property that
F → x and G → x imply F ∩ G → x. Especially a filter F in a limit space converges
to x iff the coarser filter F ∩ Fx consisting of the sets U ∈ F with x ∈ U converges to
x. Thus, for testing continuity in x, it is sufficient to consider only filters whose sets
contain x. Again there is a left adjoint to the forgetful functor from the category of
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limit spaces to the category of convergence spaces, given by the convergences F →′ x
whenever there are filters Fi, i = 1, . . . , n, with Fi → x and F =

⋂n
i=1Fi. Thus to

every convergence space (X,→) there is naturally a associated limit space (X,→′).

The category of limit spaces is cartesian closed, because for a limit space Z the conver-
gence space ZY is automatically a limit space. Indeed, let F → f and F ′ → f , then for
every G → y the convergences ev(F×G)→ f(y) and ev(F ′×G)→ f(y) hold. As Z is a
limit space, also ev(F×G)∩ ev(F ′×G)→ f(y) is valid. Hence ev(F ∩F ′)×G)→ f(y)
holds because of ev(F × G) ∩ ev(F ′ × G) = ev(F × G) ∩ (F ′ × G)) (preimages preserve
intersections) and (F × G) ∩ (F ′ × G) = (F ∩ F ′)× G.

2.3 Pretopological Spaces

If a limit space X has the additional property that the convergence of an arbitrary
family of filters Fi → x implies

⋂

iFi → x, then X is called a pretopological space. In a
pretopological space a filter F converges to x if it is finer then the neighbourhood filter
U(x) defined by U(x) :=

⋂

F→xF . Sets U ∈ U(x) are called neighbourhoods of x and
especially neighbourhoods of x always contain x. A pretopological space can be defined
much easier than a limit space, as only to every point x a filter U(x) of sets containing
x must be specified. And also continuity of a map f : X → Y between pretopological
spaces X, Y can be tested much easier, as only f(UX(x)) has to be finer than UY (f(x))
for every x. Equivalently f is continuous iff to every neighbourhood V of f(x) in Y
the preimage f−1(V ) is a neighbourhood of x in X, or iff to every neighbourhood V of
f(x) in Y there is a neighbourhood U of x in X with f(U) ⊂ V .

Again to every limit space (X,→) there is a naturally associated pretopological space
(X,U(x)), given by the neighbourhood filters U(x) :=

⋂

F→xF . But contrary to the
category of convergence or limit spaces, the category of pretopological spaces is not
cartesian closed, see e.g. [Sioen]. Observe also that the argument used to prove the
cartesian closedness of the category of limit spaces cannot be generalized to pretopo-
logical spaces, as (F × G) ∩ (F ′ × G) = (F ∩ F ′)× G is not valid for arbitrary instead
of finite intersections. Indeed, G∩G′ is an element of the filter G, but not an arbitrary
intersection

⋂

iGi.

2.4 Topological Spaces

A pretopological space X is called topological if every neighbourhood U of x contains
a neighbourhood U ′ of x such that U is a neighbourhood of every point y ∈ U ′. In
a topological space a set U ⊂ X is called open if it is a neighbourhood of all its
points x ∈ U , and complements of open sets are called closed. Instead of specifying a
neighbourhood filter for each point, a topological space can also be defined by specifying
a system of open sets U ⊂ X having the properties, that ∅ and X are open, that for
open U, U ′ also U ∩U ′ is open and that for open Ui also

⋃

i Ui is open. Such a system T
of open sets is called a topology on X. Like filters, topologies can also be generated by
bases, i.e. collections of sets U such that to every U, U ′ there is U ′′ with U ′′ ⊂ U ∩U ′. If
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a topology is given, the set X can be made uniquely to a topological space whose open
sets are those contained in the given topology For a topology T the neighbourhood
filters on X are given by U(x) := {U ′|∃U ∈ T : x ∈ U ⊂ U ′}, so that a set U is a
neighbourhood of x iff it has an open subset containing x. Further a map f : X → Y
between topological spaces is continuous iff the preimages of open sets are open.

To every pretopological space X there again is a naturally associated topology, where
those sets U are open which contain a neighbourhood of every x ∈ U . And like the
category of pretopological spaces also the category of topological spaces is not cartesian
closed, e.g. the exponent RRN

does not exist as a topological space, see [Preuss] and
the references therein. Instead it can be proved that the limit space Y X is a topologi-
cal space for every topological space Y iff X is core-compact, see [Escardo,Heckmann,
Theorem 5.3]. In other words, exactly the core-compact topological spaces are exponen-
tiable. Hereby X is called core-compact, iff every neighbourhood V of a point x ∈ X
contains a neighbourhood U of x so that every open covering of V contains a finite
covering of U .

2.5 Properties of Spaces with Topological Structure

Hierarchy of topological structures The left adjoints to the forgetful functors
between categories to different topological structures allow to use notions, which are
defined for a stronger topological structure only, also in a space equipped with a weaker
topological structure. For example, a set in a convergence space X is called open if it is
open in the topological space naturally associated to X. Furthermore many topological
notions can be formulated intrinsically in the category of convergence spaces. For
example, a set U ⊂ X in a convergence space is open w.r.t. the naturally associated
topology iff F → x implies U ∈ F for every x ∈ U . And an inner point x of a set A is
nothing else than a point such that F → x implies A ∈ F .

Limit Points Let X be a convergence space. A point x is called a limit point of a
filter F if there is a finer filter which converges to x. Further x is called a limit point
of a set A ⊂ X if it is a limit point of the filter {U ⊂ X|A ⊂ U} generated by A, or
equivalently if there is a filter on A whose image under the inclusion A→ X converges
to x. The set of all limit points of A is called the closure of A and is denoted by A.
Instead of formulating axioms for →, also axioms for A 7→ A could be formulated to
define different types of topological structures.

Definition of Limits Let X, Y be convergence spaces and let f : X → Y be a map.
Instead of saying that for every filter F → x on X the filter f(F) converges to y, usually
limh→x f(h) = y is written. Thus limh→x f(h) = f(x) is equivalent to the continuity of
f at x. However, when f : D ⊂ X → Y is a map defined on a subspace D of X and
x ∈ X is a limit point of D but not contained in D, this symbolism is not sufficient
to discuss the convergence of f(h) for h → x. To extend lim in such a way, write
limD3h→x f(h) = y if x is a limit point of D and if the filter f(F) converges to y for
every filter F on D with ι(F)→ x, where ι : D → X denotes the inclusion and such a
filter F on D exists as x is a limit point of D.
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Compactness A convergence space is called compact, if every filter has a finer con-
vergent filter, or equivalently if every filter has a limit point. Every separated compact
topological space is T4, see e.g. [Schubert, I.8.2, Satz 1].

A (pre-)topological space is called locally compact, if for every point the compact neigh-
bourhoods form a base of the neighbourhood filter. A separated topological space is
core-compact iff it is locally compact, see [Escardo,Heckmann, after Theorem 5.3]. The
equivalence of core-compactness and exponentiability implies that for a separated topo-
logical space X and every topological space Y the limit space Y X is a topological space
iff X is locally compact. In this case the topology on Y X is called the compact-open
topology and is generated by the sets {f ∈ Y X |f(K) ⊂ U} with K ⊂ X compact and
U ⊂ Y open.

A separated topological space X is called compactly generated if A ⊂ X being closed is
equivalent A ∩K being closed for every compact K ⊂ X. Especially a separated X is
compactly generated, if for every M ⊂ X and every limit point x ofM there is a compact
set K such that x is a limit point of M ∩ K. Thus separated locally compact spaces
and first countable separated spaces are compactly generated. Contrary to the category
Top of all topological spaces, the category CGTop of compactly generated separated
topological spaces is cartesian closed. However, the product and the exponential are
not the same as e.g. in the category of limit spaces and thus CGTop is not a cartesian
closed subcategory of Lim, see [Steenrod]. More precisely denote by k(·) the Kelley-
fication5, then the product in CGTop is the Kelley-fication X ×cg Y := k(X × Y )
of the usual product, and the space of maps Y cgZ is the Kelley-fication of the the
set C(Y, Z) endowed with the compact open topology. Then the natural isomorphy
C(X×cgY, Z) ∼= C(X, Y cgZ) ∼= C(X, k(Cco(Y, Z))) can be proven, and thus the category
is cartesian closed.

Homeomorphisms While the multiplication ◦ in the group Homeo(X) ⊂ XX of
continuous and continuous invertible maps f : X → X is automatically continuous for
a convergence or limit space X, the inversion i : Homeo(X) → Homeo(X) does not
need to be continuous, see e.g. [Bourbaki, X.3,Exercise 17b]. But often a continuous
inversion is needed, as then Homeo(X) is a convergence or limit group. This can be
forced by endowing Homeo(X) with a finer convergence structure than the one induced
by the inclusion ι : Homeo(X) → XX . Clearly the coarsest convergence structure
which makes Homeo(X) to a convergence group is the initial w.r.t. the two maps
i, ι : Homeo(X)→ XX .

The question arises under which conditions on a space X the inversion i : Homeo(X)→
XX is automatically continuous. For example, on a separated locally compact space X
the inversion i is automatically continuous if X is locally connected. In this case the
compact-open topology on Homeo(X) and the initial topology w.r.t. i, Id : Homeo(X)→
XX are the same, see [Bourbaki, X.3, Exercise 17a].

5The Kelley-fication k(·) is nothing else than the right adjoint to the forgetful functor from CGTop

to Top. It thus has the universal property that for a compact generated space X a map into Y is
continuous iff it is continuous into k(Y ). The Kelley-fication endows a separated topological space X
with the compactly generated topology where an A ⊂ X is closed iff A ∩ C is closed for all compact
C ⊂ X in the original topology of X .
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3 Uniform Structures

Topological structures on a set X allow to speak about convergence, but not about
uniform convergence and related notions like Cauchy filters or completeness. That’s
why uniform structures are introduced in analysis. A uniform structure on a set X is
a chosen set of proper filters on X ×X, and the elements U of this chosen set of filters
are called uniformities on X. Like convergence relations also uniform structures are
ordered by ⊂, have arbitrary infima and suprema, and a uniformity is called finer than
another uniformity if it is a subset.

Every uniform structure induces a topological structure on X by setting F → x when-
ever F × Fx is a uniformity. Note that F × Fx is the image of F under the injection
ιx : X → X ×X, x′ 7→ (x′, x).

Further call a map f : X → Y between sets X, Y endowed with uniform structures uni-
formly continuous if for every uniformity U on X the filter (f × f)(U) is a uniformity
on Y . Uniformly continuous maps are obviously continuous w.r.t. the induced conver-
gence relation, as (f × f)(F × Fx) = f(F) × Ff(x) is valid. Thus there is a forgetful
functor from the category of sets endowed with a uniform structure to the categroy of
sets endowed with a topological structure. Corresponding to the hierarchy of topolog-
ical structures there is also a hierarchy of uniform structures which is discussed in the
following paragraphs.

3.1 Pre- and Semiuniform Convergence Spaces

A set X endowed with a uniform structure is called a preuniform convergence space if

• a filter V on X ×X, which is finer than a uniformity U , is itself a uniformity,

• for every x ∈ X the filter F(x,x) is a uniformity.

Obviously the induced topological structure on a preuniform convergence space X is
that of a convergence space.

The category of preuniform convergence spaces has initial and final objects w.r.t. the
forgetful functor into the category of sets, and thus also arbitrary limits and colimits,
see 1.4 . It is further cartesian closed: The natural space ZY of maps is given by the set
Cunif(Y, Z) of uniformly continuous maps endowed with the uniform structure where a
filter U is a uniformity if for every uniformity V on Y the image (ev× ev)(U ×V) under
the evaluation ev : (f, y) 7→ f(y) is a uniformity on Z. The proof is an analogy to the
proof that the category of convergence spaces is cartesian closed.

Note that the induced topology depends on the choice of the injection ιx, because x′ 7→
(x′, x) as well as x′ 7→ (x, x′) could have been used to define the convergence relation. To
eliminate this possibility of choice it seems useful not to consider preuniform convergence
spaces, but semiuniform convergence spaces. These spaces are defined by additionally
requiring the property that for a uniformity U also the inverse U−1 := {U−1|U ∈ F}
is a uniformity, where U−1 is defined by U−1 := {(y, x)|(x, y) ∈ U}. Such spaces still
induce generally only convergence spaces, and again their category is cartesian closed.
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3.2 Pre-, Semi- and Uniform Limit spaces

Let X be a preuniform resp. semiuniform convergence space, then X is called a preuni-
form resp. semiuniform limit space, if for uniformities U ,V also the intersection U ∩ V
is a uniformity. The topological structure induced by a pre- or semiuniform limit space
is that of a limit space because of

(F ∩ G)× Fx = (F × Fx) ∩ (G × Fx) .

Again the category of pre- or semiuniform limit spaces is cartesian closed.

Furthermore a semiuniform limit space is called a uniform limit space if for uniformities
U ,V the composition U ◦ V generated by the sets U ◦ V (where U ∈ U , V ∈ V and
U ◦ V := {(x, z)|∃y ∈ X : (x, y) ∈ U and (y, z) ∈ V }) is also a uniformity, unless this
composition U ◦ V is not the improper filter P(X × X) 6. The topological structure
induced by a uniform limit space is still generally only that of a limit space, and again
the category formed by those spaces is cartesian closed.

3.3 Pre- and Semiuniform Spaces

If a preuniform resp. semiuniform limit space X has the property that arbitrary in-
tersections of uniformities are uniformities, then X is simply called a preuniform resp.
semiuniform space. Let U be the intersection over all uniformities on X, then a filter
on X ×X is a uniformity on X if it is finer than U . The elements U ∈ U are called en-
tourages and they automatically contain the diagonal ∆ := {(x, x)|x ∈ X}. Thus a set
X can be easily made to a preuniform space by choosing a filter, whose elements contain
the diagonal ∆, or can be made to a semiuniform space by additionally requiring that
with an entourage U also the inverse U−1 is an entourage.

The topological structure induced by a pre- or semiuniform space is that of a pretopolog-
ical space, the neighbourhood filter of a point x ∈ X is given by U(x) := {{x′|(x′, x) ∈
U}|U ∈ U} because U(x) is the preimage ι−1

x (U). Like in the topological regime also
the categories of pre- or semiuniform spaces are not cartesian closed.

3.4 Uniform Spaces

A uniform space is a semiuniform space having the property that the composition U ◦V
of uniformities U ,V is itself a uniformity unless it is not the improper filter P(X ×X).
To turn a set X into a uniform space by specifying a filter of entourages, an entourage
U has to contain ∆, with U also U−1 has to be an entourage and to every entourage U
there has to be an entourage V with V ◦ V ⊂ U .

A uniform space X induces a topology on X. Indeed, denote to an entourage U and
to a point x the set {x′|(x′, x) ∈ U} by U(x), then every neighbourhood of x has the
form U(x) for an entourage U . Now choose to U an entourage V with V ◦V ⊂ U , then

6Note that U ◦ V is the improper filter iff there are U ∈ U und V ∈ V with U ◦ V = ∅.
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y ∈ V (x) implies V (y) ⊂ (V ◦ V )(x) ⊂ U(x). Thus in every neighbourhood U(x) there
is a neighbourhood V (x) such that U(x) is a neighbourhood of all the points y ∈ V (x),
and this is exactly the property required for a topological space. Finally note, that the
category of uniform spaces is not cartesian closed.

3.5 Properties of Spaces with Uniform Structure

First let’s mention that on a set X different uniform structures can induce the same
topological structure. Thus spaces endowed with a uniform structure are not automat-
ically isomorphic if they are topologically isomorphic. Further there are topological
structures which cannot be induced by any uniform structure. Therefore call a space
endowed with a topological structure uniformisable if its topological structure is induced
by a uniform structure.

Uniformisability A topological space is uniformisable iff it is completely regular 7

Thus uniform spaces have much to do with real numbers, in fact, it can be shown that
the uniform structure of every uniform space X can be generated by pseudometrics, see
[Schubert, II.2.7, Satz 2]. Hereby a pseudometric is a map d : X × X → [0,∞) with
d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z), and it generates a filter Ud

of entourages on X by choosing the sets {(x, y)|d(x, y) ≤ ε}, ε > 0, as entourages. Then
the uniform structure of every uniform space is the supremum of such uniformities Udi

to certain pseudometrics di.

Cauchy Filters A filter F on a preuniform convergence space X is called a Cauchy
filter if F×F is a uniformity. The image of a Cauchy filter under a uniformly continuous
map (but not generally under a continuous map) is itself a Cauch filter. Let U be an
entourage in a preuniform space, then a set A ⊂ X is called small of order U , if x, x′ ∈ A
implies (x, x′) ∈ U . A filter F on X is a Cauchy filter if it contains arbitrary small sets,
i.e. to every entourage V ∈ U there is a set A ∈ F which is small of order V .

Completeness A preuniform convergence space is called complete if every Cauchy
filter converges. To every separated uniform space X there is up to isomorphy a unique
completion, i.e. a complete separated uniform limit space X and a uniformly continuous
map ι : X → X with the universal property that to every other uniformly continuous
map f : X → Y into a complete separated uniform space there is a unique map
f̂ : X̂ → Y with f = f̂ ◦ ι. In other words, the forgetful functor from the category of
complete separated uniform spaces into the category of separated uniform spaces has a
left adjoint. For arbitrary limit spaces there seem to exist different types of completions,
see [Reed].

7A space with topological structure is called completely regular, if to every x ∈ X and every closed
set A ⊂ X not containing x there is a continuous function f : X → [0, 1] (or to R) with x ∈ f−1({0})
and A ⊂ f−1({1}).
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4 Linear Analysis

Let X be a real or complex vector space. A convergence relation → on X is called
compatible if addition and scalar multiplication are continuous. A vector space X
together with a compatible convergence relation → is called a convergence, limit, pre-
topological or topological vector space provided that → turns X into a convergence,
limit, pretopological or topological space. Further a compatible convergence relation
on a vector space X induces a uniform structure by assigning to every filter F → 0
the uniformity F̂ generated by {{(x, y)|x − y ∈ U}|U ∈ F}. This induced uniform
structure is of the same type as the convergence relation, and in turn it induces the
original topological structure on X. Thus, on a vector space endowed with a compat-
ible convergence relation, it makes sense to speak about uniformly continuous maps,
Cauchy filters and completeness. Additionally to the mentioned compatible topological
structures on a vector space, there are others of which a locally convex topology is
certainly the most well-known. These compatible topological structures are discussed
in the first paragraph.

Now linear analysis is the mathematical field which studies vector spaces with a com-
patible topological structure and continuous linear maps between them. In other words,
linear analysis examines categories of continuous linear maps between vector spaces en-
dowed with a compatible topological structure. Clearly such a study strongly depends
on the categories under consideration, because basic constructions like tensor products
and natural spaces of maps are defined by universal properties and hence depend on
the used category. Therefore in the second resp. third paragraph tensor products resp.
natural spaces of maps and their properties shall be discussed. Finally the fourth para-
graph presents main results of linear analysis like an inversion theorem, and discusses
the solvability of linear differential equations.

4.1 Vector Spaces endowed with a Compatible Topological

Structure

Before other compatible topological structures on vector spaces are discussed, let us
give a summary of the usual compatible topological structures on vector spaces. A
compatible convergence relation on a vector space is uniquely determined by the set of
filters that converge to 0, because translations are continuous. Conversely, it is possible
to define a compatible convergence relation on a vector space by specifying a set F of
filters which are assumed to converge to 0. However, this set of filters must satisfy
certain axioms to guarantee the continuity of addition and scalar multiplication.

So for example, to define a convergence relation turning a vector space X into a con-
vergence vector space, only a set F of filters on X satisfying

(CVS-1) F + F ⊂ F,

(CVS-2) UR(0)F ⊂ F,

(CVS-3) λF ⊂ F for all λ ∈ R,
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(CVS-4) UR(0)x ∈ F for all x ∈ X,

and being directed (i.e. if F ∈ F and F ⊂ G, then G ∈ F) must be specified. Indeed,
there exists exactly one convergence relation → turning X into a convergence vector
space such that F → 0 is equivalent to F ∈ F.

In the same way limit vector spaces can be defined by specifying such a set F of filters
that in addition is closed under intersections (i.e. F ,G ∈ F imply F ∩ G ∈ F), and
pretopological vector spaces can be defined by specifying a filter U generating F via
F = {F|U ⊂ F} and satisfying

(TVS-A-1) for every U ∈ U there is a V ∈ U such that V + V ⊂ U ,

(TVS-A-2) for every U ∈ U there is a λ > 0 and a V ∈ U such that [−λ, λ]V ⊂ U ,

(TVS-A-3) for every U ∈ U and every λ there is a V ∈ U such that λV ⊂ U ,

(TVS-A-4) for every U ∈ U and every x there is a λ > 0 such that [−λ, λ]x ⊂ U .

Note that every pretopological vector space is automatically a topological vector space,
as the first condition assures to every neighbourhood U of 0 a neighbourhood V of 0 with
V +V ⊂ U , and thus U is a neighbourhood of every x ∈ V because x+V ⊂ V +V ⊂ U
holds. Hence there is no difference between pretopological vector spaces and topological
vector spaces.

The axioms for the neigbourhoods of 0 in a (pre)topological vector space X can also be
written in a more common form by calling a set U absorbing, if for every x ∈ X there is
a λ with λx ∈ U , and balanced, if [−1, 1]U = U holds. Then every compatible topology
can be defined by specifying a filter base UB consisting of balanced and absorbing sets
such that

(TVS-B-1) to every U ∈ UB there is a V ∈ UB with V + V ⊂ U ,

(TVS-B-2) to every U ∈ UB and every λ 6= 0 there is a V ∈ UB with V ⊂ λU .

For the reader’s convenience the equivalence of the axioms is proved here 8.

Now let us study other types of compatible topological structures on vector spaces.
The most well-known is that of a locally convex topology, but let us start with weaker
compatible topological structures, as these play a major role in the discussion of natural
spaces of maps.

8Proof: On the one hand, let U be the filter generated by UB. As 0 is contained in all sets of the
filter base UB, the axioms (TVS-B) for UB are equivalent to the axioms (TVS-A-1) and (TVS-A-3) for
U , while (TVS-A-2) and (TVS-A-4) are satisfied because every set in UB is balanced and absorbing.
Conversely, a filter U fulfilling (TVS-A) has a base UB consisting of balanced and absorbing sets.
Indeed, (TVS-A-4) guarantees that every U ∈ U is absorbing and (TVS-A-3) with λ = 0 guarantees
0 ∈ U . Moreover (TVS-A-2) yields to every U ∈ U a λ > 0 and a V ∈ U with

⋃

0<|r|≤λ rV ⊂ U . Now

rV lies for every r 6= 0 itself in U , because (TVS-A-3) applied to V, 1
r

yields a V ′ ∈ U with 1
r
V ′ ⊂ V ,

i.e. V ′ ⊂ rV and hence rV ∈ U . As further 0 ∈ V , the set
⋃

0<|r|≤λ rV is balanced, is an element of
U and is contained in U . Thus the balanced sets form a filter base.
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Equable and Pseudotopological Limit Vector Spaces Equable and pseudotopo-
logical limit vector spaces are limit vector spaces where the conditions (CVS-123) are
satisfied not only by the set F of filters convergent to 0, but also by filters F themselves
that generate F. To be more precise, call a filter F equable if the condition F = UR(0)F
related to (CVS-2) is satisfied, and pseudotopological if F is equable and additionally
the conditions F = F+F (related to (CVS-1)) as well as F = λF for all λ 6= 0 (related
to (CVS-3)) are satisfied. Now a limit vector space X is called equable, if to every filter
G → 0 there is an equable filter F → 0 with F ⊂ G, and X is called pseudotopological
if there is a pseudotopological filter F → 0 with F ⊂ G.

To every limit vector space X there is a coarsest finer equable resp. pseudotopological
compatible limit space structure on X. It is generated by all equable filters F resp.
pseudotopological filters which converge to 0 in the original limit space structure, it is
denoted by Xequ resp. Xpstop and it is called the equablification resp. pseudotopolo-
gisation of X. Note that these constructions define the right adjoints to the forgetful
functor from the category of equable resp. pseudotopological limit spaces to the cate-
gory of all limit spaces. Thus a continuous linear map f : X → Y from an equable resp.
pseudotopological limit vector space X into a limit vector space Y stays continuous if
instead of Y the equablification Y equ resp. pseudotopologisation Y pstop is used.

The pseudotopological limit vector spaces are exactly the direct limits of topological
vector spaces within the category of limit vector spaces. Indeed, a pseudotopological
filter F generates a topology on the subspace XF := {x ∈ X|∀U ∈ F∃λ ∈ R : λx ∈ U}
of those points which are absorbed by each U ∈ F . Really, the axioms TVS-A123
automatically hold because F is pseudotopological, and the fourth condition F ⊂ U(0)x
is valid exactly for the points x ∈ XF . Thus X = limF XF holds as a limit space, where
each XF is endowed with the topology generated by F and F runs through the directed
set of all pseudotopological filters F → 0 onX. Hence the category of pseudotopological
limit vector spaces is identical with the category of direct limits of topological vector
spaces, where the direct limits are formed within the category of limit vector spaces.

Local Convexity A subset C of a vector space X is called convex if xi ∈ C, λi ≥ 0
and

∑n
i=1 λi = 1 imply

∑n
i=1 λixi ∈ C. In other words, a subset C of X is called convex

if every convex combination of points in C lies again in C, and this condition needs
to be tested only for pairs of points 9. Now a filter is called locally convex if it has
a base consisting of convex sets, and a limit vector space is called locally convex if to
every convergent filter G there is a locally convex convergent filter F ⊂ G. Especially a
topological vector space X is locally convex if the neighbourhood filter of zero is locally
convex, i.e. in every neighbourhood of zero there is a convex neighbourhood.

Again to every limit vector space there is a coarsest finer compatible locally convex limit
space structure generated by the locally convex filters which converge to 0 in the original

9More precisely, if every convex combination of n points xi ∈ C, n ≥ 2, lies in C, then also every
convex combination of n + 1 points does. Indeed, let xn+1 be another point in C and let λi ≥ 0 and
∑n+1

i=1 λi = 1 be arbitrary. Assume without restriction λn+1 6= 1. Then
∑n

i=1
λi

1−λn+1
= 1 holds, so that

x :=
∑n

i=1
λi

1−λn+1
xi ∈ C is valid by assumption. But also

∑n+1
i=1 λixi = (1− λn+1)x + λn+1xn+1 ∈ C

is valid by assumption and thus the induction step has been proved.
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limit space structure on X. It is denoted by Xcon and is called the convexification of
X. As usual, a continuous linear map from a locally convex limit vector space X into a
limit vector space Y stays continuous when viewed as map from X into Y con, because
the image of a convex set under a linear map f is a convex set and thus the image f(F)
of a locally convex filter F is again locally convex, as it is generated by the sets f(C),
C ∈ F convex.

Note that local convexity can be combined with the notion of an equable or pseudotopo-
logical limit space. Especially the locally convex pseudotopological limit vector spaces
are exactly the direct limits of locally convex topological spaces within the category
of limit vector spaces. Finally let us summarize facts about locally convex topological
vector spaces X. As a compatible topology on a vector space can be defined by a filter
base consisting of balanced and absorbing sets U which satisfy (TVS-B), in order to
define a locally convex topology merely the convexity of every U must be addition-
ally postulated. A balanced and convex set is called absolutely convex, thus a locally
convex topology can be defined by absolutely convex and absorbing subsets U which
satisfy (TVS-B). However, every locally convex topology can be defined in an easier
way by using pseudonorms instead of filter bases. Indeed, every locally convex topol-
ogy is generated by pseudonorms10, i.e. it is the initial topology w.r.t. a family of
pseudonorms, as on the one hand a topology generated by pseudonorms is locally con-
vex, and on the other hand to every open absolutely convex neighbourhood U of zero
the Minkowski functional pU(x) := inf{λ > 0|x ∈ λU} can be defined. This functional
satisfies 0 ≤ pU(x) <∞ because U is absorbing, pU is a pseudonorm because U is abso-
lutely convex, and pU is continuous because openness of U implies rU = {x|p(x) < r},
i.e. x − y ∈ rU implies |pU(x) − pU(y)| ≤ pU(x − y) < r and thus the continuity of
pU . The equality U = {x|p(x) < 1} also guarantees that the initial topology w.r.t. all
pU , U open convex balanced neighbourhood of 0, is exactly the original locally convex
topology. Hence every locally convex topology is generated by pseudonorms.

The description of a locally convex topology via pseudonorms also allows to define the
left adjoint to the forgetful functor from the category of locally convex to the category
of all topological or limit vector spaces. It endows a topological or limit vector space
X with the initial topology w.r.t. those pseudonorms, which are continuous for the
original topological structure of X. Further the continuity of linear maps between
locally convex topological vector spaces can be formulated using pseudonorms: The
set of continuous pseudonorms on a locally convex topological vector space X can be
ordered by p ≤ q whenever there is a constant C ∈ R+ with p(x) ≤ Cq(x) for all x ∈ X,
or equivalently whenever to every ε > 0 there is a δ > 0 such that q(x) ≤ δ implies
p(x) ≤ ε. Two continuous pseudonorms p, q are equivalent w.r.t. this order if there are
c, C ∈ R+ with cp(x) ≤ q(x) ≤ Cp(x), i.e. p, q are equivalent as pseudometrics. Let
ΓX be a set of continuous pseudonorms p on X which generates the topology of X and
is directed, i.e. to every continuous pseudonorm q on X there is a p ∈ ΓX with q ≤ p.
Note that every generating set ΓX of pseudonorms can be made into a directed set by
adding the continuous pseudonorm max(p1, . . . , pn) for p1, . . . , pn ∈ ΓX . Now a linear

10A map p : X → R
+
0 is called a pseudonorm if p(x + y) ≤ p(x) + p(y) and p(λx) = |λ|p(x) are valid

for all x, y ∈ X and λ ∈ R.
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map A : X → Y is continuous iff to every pseudonorm q ∈ ΓY there is a pseudonorm
p ∈ ΓX and a constant C ∈ R

+
0 such that q(Ax) ≤ Cp(x). Or in other words, there has

to be a map σ : ΓY → ΓX such that the smallest numbers qσ(q)(A) ∈ [0,∞] defined by
q(Ax) ≤ qσ(q)(A)σ(q)(x) satisfy qσ(q)(A) <∞ for all q ∈ ΓY .

4.2 Tensor Products

Let C be the category of all continuous linear maps between vector spaces endowed
with a certain compatible topological structure. It would be nice, if the analysis of
C automatically included the analysis of all continuous multilinear maps between the
spaces in C. This would be the case, if there existed a tensor product ⊗ on C with
the universal property that continuous bilinear maps from X × Y to Z correspond to
continuous linear maps from X ⊗ Y to Z.

Fortunately, always a functor ⊗ with this universal property exists and is called the
topological tensor product 11. On objects it is the algebraic tensor product X ⊗ Y en-
dowed with the finest compatible topological structure coarser than the final topological
structure induced by the canonical bilinear map τ : X×Y → X⊗Y . Indeed, then X⊗Y
is an object of C with the property that the continuous bilinear maps B : X × Y → Z
correspond via B = A ◦ τ to the continuous linear maps A : X ⊗ Y → Z 12.

However, the so constructed functor ⊗ does not need to have the properties of a tensor
product for all categories C (although it is always called the topological tensor product
because of its universal property that continuous bilinear maps correspond to contin-
uous linear maps on the tensor product). Namely, ⊗ is not automatically associative,
especially for the category of all topological vector spaces. This is shown in the next
few paragraphs, which describe the topological tensor product in different categories.

Let’s start with the category of limit vector spaces. There the topological structure on
the tensor product is given by the convergences

11In literature, ⊗ is often called the projective topological tensor product to distinguish it from
topological tensor products, where the continuous linear maps from X⊗Y to Z correspond to bilinear
maps that are not continuous with respect to the product structure on X × Y , but with respect
to some other structure. For example, on the set X × Y the final topological structure induced by
ιx : y 7→ (x, y) and ιy : x 7→ (x, y) could also be used. Then bilinear maps are continuous iff they are
separately continuous in each component, and the related topological tensor product is called injective.
However, in this thesis only the projective tensor product is used and thus the adjective “projective“is
supressed.

12More precisely, if on the one hand A is continuous on X⊗Y , then A is also continuous w.r.t the finer
final structure induced by τ and thus B := A ◦ τ is continuous. On the other hand, if B is continuous,
then also the linear map A given by the universal property B = A ◦ τ of the algebraic tensor product
is continuous w.r.t. the final topological structure induced by τ . However, A is moreover continuous
for the finest compatible structure coarser than the final structure induced by τ due to the linearity
of A and the compatible topological structure on Z. In fact, the initial topological structure induced
by A is coarser than the final one induced by τ (because A is continuous w.r.t. this final one) and
automatically compatible (because A ◦ +X⊗Y = +Z ◦ (A × A) as well as A ◦ ·X⊗Y = ·Z ◦ (IdR×A)
hold and thus +X⊗Y as well as ·X⊗Y are continuous). Hence A is also continuous w.r.t. the finest
compatible topological structure coarser than the final one induced by τ .
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n
∑

i=1

τ(Fi × Gi)→
n
∑

i=1

xi ⊗ yi

for Fi → xi, Gi → yi. Note that these convergences on X ⊗ Y really define the finest
compatible limit space structure coarser than the final limit space structure induced
by τ . In fact, the final limit space structure induced by τ is given by the convergences
τ(F×G)→ x⊗y and is thus not compatible, as it does not regard those elements, which
can not be represented by a singleton x⊗ y. Obviously, for the category of limit vector
spaces ⊗ is associative and thus really a tensor product. The same is true for equable,
pseudotopological and locally convex limit vector spaces, but not for topological vector
spaces.

There the topology on the tensor product X ⊗ Y is given by the neighbourhoods
∑

k∈N
τ(Uk × Vk) of zero, where Uk, Vk are sequences of zero-neigbourhoods in X, Y .

Indeed, if B is a continuous bilinear from X × Y to Z, then the linear map A on
X ⊗ Y defined by B = A ◦ τ is also continuous: Choose to a zero-neighbourhood
W ⊂ Z a sequence Wk of zero-neighbourhoods such that

∑

k∈N
Wk ⊂ W , let Uk, Vk be

zero-neighbourhoods in X, Y with B(Uk × Vk) ⊂ Wk and let U :=
∑

k∈N
τ(Uk × Vk).

Then

A(U) =
∑

k∈N

A(τ(Uk × Vk)) =
∑

k∈N

B(Uk × Vk) =
∑

k∈N

Wk ⊂ W

is valid, and thus A is continuous. Hence X ⊗ Y endowed with the above defined
topology is really the topological tensor product in the category of topological vector
spaces. But it is generally not associative, e.g. [Glöckner, Theorem 1] proved that for
X = Y = RN the natural isomorphism (X⊗X)⊗X → X⊗ (X⊗X) is not continuous.

Contrary to the category of topological vector spaces, where the topological tensor
product is generally not a tensor product due to the lack of associativity, in the cate-
gory of locally convex topological vector spaces or normable vector spaces the functor
⊗ is associative. Because this fact is well-known, a proof is omitted and only the
description of the locally convex topology on X ⊗ Y is recalled: It is generated by
the pseudonorms (p ⊗ q)(u) := inf{

∑

i p(xi)q(yi)|u =
∑

i xi ⊗ yi}, where p, q denote
continuous pseudonorms on X, Y .

4.3 Natural Spaces of Maps

In linear analysis the same problems can be encountered as in general topology, namely
the categories of topological and locally convex topological vector spaces are not tenso-
rial closed. Thus let us start again in the category of limit vector spaces to discuss the
existence of natural spaces of continuous linear maps.

Let X, Y be two limit vector spaces, then there is a coarsest limit space structure on
the set L(X, Y ) of continuous linear maps from X to Y making the bilinear evaluation
ev : L(X, Y ) × X → Y continuous. The convergence F → A is valid w.r.t. this limit
space structure iff ev(F × G) → Ax holds for every filter G → x on X. In this way
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L(X, Y ) becomes a limit vector space13, and the functor (X, Y ) 7→ L(X, Y ) is the right
adjoint to the topological tensor product with the evaluation (considered as a linear
map from L(X, Y ) ⊗ X to Y ) as counit. Thus the category of limit vector spaces is
tensorial closed. For topological vector spaces X, Y the convergence F → A in the limit
vector space L(X, Y ) holds, if and only if to every x ∈ X and every neighbourhood V
of Ax ∈ Y there is a neighbourhood U of x and a set W ∈ F such that A′(U) ⊂ V for
all A′ ∈ W .

Also the categories of equable, pseudotopological and locally convex limit vector spaces
or combinations thereof are tensorial closed. The natural space of maps is the equabli-
fication L(X, Y )equ, pseudotopologisation L(X, Y )pstop or convexification L(X, Y )con of
the natural space of maps L(X, Y ) within the category of limit vector spaces. Indeed, let
A : X → L(Y, Z) be a continuous linear map from an equable resp. pseudotopological
resp. locally convex limit vector space X into the natural limit vector space L(X, Y ),
then the universal properties of equablification, pseudotopologisation and convexifi-
cation guarantee that A : X → L(X, Y )equ|pstop|con is continuous. Thus the natural
isomorphy L(X ⊗ Y, Z) ∼= L(X,L(Y, Z)) ∼= L(X,L(Y, Z)equ|pstop|con) holds and proves
tensorial closedness.

But in general, even for locally convex topological vector spaces X, Y none of the so
defined limit vector spaces L(X, Y ) or L(X, Y )equ|pstop|con is a topological vector space.
In fact, these spaces cannot be topological vector spaces, because on the set L(X, Y )
generally there exists no vector space topology making the evaluation continuous. Thus
while in general topology there is always a topology making the evaluation continuous
(e.g. the discrete topology), but generally there is no such coarsest topology, in linear
analysis it is even worse: Generally there is no compatible topology on L(X, Y ) making
the evaluation continuous. Especially the category of locally convex topological vector
spaces is not tensorial closed, in contrast to the category of normable spaces, where the
usual norm topology on L(X, Y ) has this desired property.

To outline a proof of these statements, recall that a linear map A : X → Y between
locally convex topological vector spaces X, Y is continuous exactly if to every continuous
pseudonorm q on Y there exists a continuous pseudonorm p on X and a constant
C ∈ R

+
0 with q(Ax) ≤ Cp(x) for all x ∈ X. For practical purposes denote for a linear

map A : X → Y and pseudonorms p on X, q on Y by qp(A) ∈ [0,∞] the minimum of all
constants C with q(Ax) ≤ Cp(x) for all x ∈ X. Then a linear map A is continuous if and
only if to every continuous pseudonorm q on Y there exists a continuous pseudonorm
p on X with qp(A) < ∞, or with the notation σ(q) := p equivalently, if a map σ from
a directed and generating set of all continuous pseudonorms on Y to a directed and
generating set of all continuous pseudonorms on X exists with qσ(q)(A) < ∞ for all q
on Y .

Observe that qp for continuous pseudonorms p on X and q on Y has itself all properties
of a pseudonorm on the space L(X, Y ) of continuous linear maps from X to Y except
that it can assign the value ∞. This defect mainly causes the fact that the category

13Remark that scalar multiplication and addition of maps are defined pointwisely and so their con-
tinuity is implied by the continuity of ev.
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of locally convex topological vector spaces is not tensorial closed. Indeed, consider the
locally convex pseudotopological limit vector space L(X, Y )con,pstop associated to X, Y .
As X, Y are locally convex topological vector spaces, there is an easy way to describe
L(X, Y )con,pstop as a direct limit of locally convex topological spaces: Define to a map σ
from a directed and generating set of continuous pseudonorms on Y to a directed and
generating set of continuous pseudonorms on X the set Lσ(X, Y ) of those continuous
linear maps A ∈ L(X, Y ) with qσ(q)(A) < ∞ for all continuous pseudonorms q on Y
and endow Lσ(X, Y ) with the locally convex topology generated by the pseudonorms
qσ(q) (which obviously do not assign the value ∞ on Lσ(X, Y )). Let the set of all such
maps σ be ordered by σ ≤ σ′ if and only if σ(q) ≤ σ′(q) for all q on Y . Then the
direct limit limσ Lσ(X, Y ) can be formed in the category of limit vector spaces. As a
set limσ Lσ(X, Y ) equals L(X, Y ) 14, and a filter F converges to A if and only if there is
a σ such that the trace15 Fσ of F on Lσ(X, Y ) exists and converges to A in Lσ(X, Y ).

To prove that L(X, Y )con,pstop and limσ Lσ(X, Y ) are the same limit vector spaces, note
that due to the inequality q(Ax) ≤ qσ(q)(A)σ(q)(x) the evaluation map is also con-
tinuous when viewed as a map ev : (limσ Lσ(X, Y )) × X → Y . Hence the limit
space structure (limσ Lσ(X, Y )) is finer than Lcon,pstop(X, Y ). Further a linear map
A : Z → L(X, Y )con,pstop from a topological vector space Z is continuous iff it is continu-
ous as a map into limσ Lσ(X, Y ) 16. Thus also a linear map A : limiZi → L(X, Y )con,pstop

from a direct limit of locally convex topological spaces Zi (within the category of limit
vector spaces) and therefore from an arbitrary locally convex pseudotopological limit
vector space is continuous iff it is continuous as a map into limσ Lσ(X, Y ). Especially
the map IdL(X,Y ) : limσ Lσ(X, Y ) → L(X, Y )con,pstop is an isomorphism of limit vector
spaces, and hence L(X, Y )con,pstop = limσ Lσ(X, Y ) holds.

Now the statement can be proved that for a locally convex but nonnormable topological
vector space X and a separated locally convex vector space Y there is in general no
vector space topology on L(X, Y ) making the evaluation continuous. In fact, if there
would be such a topology T , then the linear map Id : (L(X, Y ), T ) → limσ Lσ(X, Y )
would be continuous because Lcon,pstop(X, Y ) = limσ Lσ(X, Y ) would be coarser than
(L(X, Y ), T ). But Id : L(X, Y ) → limσ Lσ(X, Y ) only could be continuous if there
were be a σ and a neighbourhood W ⊂ L(X, Y ) of 0 such that Id(W ) ⊂ Lσ(X, Y ).
Because W would be absorbing as a neighbourhood of 0 in a topological vector space
this would imply Id(L(X, Y )) ⊂ Lσ(X, Y ), i.e. L(X, Y ) = Lσ(X, Y ). However, for
nonnormable X and separated Y 6= {0} there is no σ with L(X, Y ) = Lσ(X, Y ) 17.

14Recall that a linear map A is continuous if and only if to every continuous pseudonorm q on Y
there exists a continuous pseudonorm σ(q) on X such that qσ(q)(A) <∞.

15A filter F on X is said to have a trace on the subset A ⊂ X , if U ∩ A 6 ∅ holds for all U ∈ F , and
the induced proper filter FA := {U ∩A|U ∈ F} is called the trace of F on A.

16One direction is trivial because limσ Lσ(X, Y ) is finer than L(X, Y )con,pstop. To show the other
direction, let A be continuous w.r.t. L(X, Y )con,pstop, then the bilinear map Â : Z × X → Y is
continuous, too. Hence to every q on Y there is a σ(q) on X , a neighbourhood W ⊂ Z of zero and
a constant Cq < ∞ such that z ∈ W implies q(Â(z, x)) ≤ Cqσ(q)(x), i.e. qσ(q)(Â(z, ·)) < ∞ for all

z ∈ W . Because W is absorbing and A linear this implies qσ(q)(Â(z, ·)) < ∞ for all z ∈ Z, hence
A(Z) ⊂ Lσ(X, Y ) and clearly A (restricted to have values in Lσ(X, Y )) is continuous. Therefore it is
continuous as a map into limσ Lσ(X, Y ).

17If there would be a σ with L(X, Y ) = Lσ(X, Y ), then qσ(q)(A) <∞ would hold for all A ∈ L(X, Y )
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Thus the assumption of having a compatible topology on L(X, Y ), which makes the
evaluation continuous, has been contradicted.

Note further that for a normable vector space X the limit space L(X, Y )con,pstop =
limσ Lσ(X, Y ) is in fact a locally convex topological vector space 18, and if also Y is
normable, then the direct limit is identical with the usual normable space L(X, Y ).
Thus to generalize linear analysis on normed spaces in a way that includes all locally
convex topological vector spaces, the best category to work in is the category of locally
convex pseudotopological limit vector spaces, or equivalently the category of direct
limits of locally convex topological vector spaces (within the category of all limit vector
spaces).

Bornological Locally Convex Topological Vector Spaces Although the category
of all locally convex topological vector spaces is not tensorial closed, a subcategory may
be tensorial closed even if it contains nonnormable spaces. This is no contradiction
to the previous results, because in a subcategory the choice of a space is restricted
and therefore the product as well as the exponential can differ from the usual one.
The bornological locally convex topological vector spaces19 form such a subcategory,
like e.g. the category of compactly generated separated topological spaces is cartesian
closed although the category of all topological spaces is not. The role of the compact-
open topology is played here by the bounded-open topology Lbo(X, Y ) 20, while the
bornologification b(·) 21 is used instead of the Kelley-fication. With these tools it can
be proved that the category of bornological locally convex topological vector spaces is
a tensorial closed category with tensor product given by X ⊗bor Y = b(X ⊗Y ), and the
natural space of maps is Lbor(X, Y ) = b(Lbo(X, Y )). The category of bornological locally

and all continuous pseudonorms q on Y . Thus for q 6= 0 every x′ ∈ X ′ would be bounded on the 0-
neighbourhood Uq := {x ∈ X |σ(q)(x) ≤ 1}, because for an y with q(y) 6= 0 the continuous linear map
A : x 7→ x′(x)y would satisfy |x′(x)|q(y) = q(Ax) ≤ Cσ(q)(x) with a C < ∞. Hence x′ would satisfy
|x′(x)| ≤ C

q(y) <∞ for all x ∈ Uq, so that there would exist a bounded neighbourhood of 0 in X , which

is only possible for normable X .
18Choose as generating sets of continuous pseudonorms on X the set {‖ · ‖X}, then there is only

one σ (it maps every continuous pseudonorm on Y to ‖ · ‖X). Therefore L(X, Y ) equals the locally
convex topological vector space Lσ(X, Y ) and hence can be topologized by the pseudonorms q‖·‖X , q
continuous pseudonorm on Y , which do not assign the value ∞.

19A locally convex topological vector space is called bornological, if every absolutely convex subset
that absorbs each bounded set is already a 0-neighbourhood. Recall that the topology of a locally
convex topological vector space is generated by the open absolutely convex sets and that a subset B
is called bounded if it is absorbed by each 0-neighbourhood, i.e. for every 0-neighbourhood U there
exists a r such that B ⊂ [0, r]U .

20The bounded-open topology on L(X, Y ) is generated by the sets {A ∈ L(X, Y )|A(B) ⊂ U} with
B ⊂ X bounded and 0 ∈ U ⊂ Y open. It is the same as the topology of uniform convergence on
bounded sets. Hence for normed spaces it is the usual norm topology on the space of maps.

21The bornologification b(·) is the right adjoint to the forgetful functor from the category of bornolog-
ical to the category of all locally convex topological spaces. It refines the topology of a locally convex
topological space X to the finest locally convex topology with the same bounded sets as X or equiv-
alently to the topology generated by all bounded pseudonorms (i.e. those pseudonorms which map
bounded sets w.r.t. the original topology on X to bounded sets in R

+
0 ). Bornologification has the

universal property that a map A : X → Y from a bornological locally convex topological vector space
X into a locally convex topological vector space Y is continuous iff it is continous into b(Y ).
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convex vector spaces is used in the convenient calculus developed by [Fröhlicher,Kriegl]
and [Kriegl,Michor], also see appendix A.

Completeness On a limit vector space every continuous linear map A is automati-
cally uniformly continuous w.r.t. the induced uniform structure. Indeed, if F is a filter
converging to 0 and F̂ denotes its induced uniformity, then

ˆ(A(F)) ⊂ ((A× A)(F̂)

is valid. Especially the continuous linear map ev : L(X, Y ) ⊗ X → Y is uniformly
continuous, although the associated bilinear map is not. It is an important fact that
the completeness of Y implies the completeness of the natural space of maps L(X, Y )
22 and its equablification, pseudotopologisation or convexification 23.

4.4 Theorems of Linear Analysis

As we are mainly interested in locally convex topological vector spaces, we usually work
in the tensorial closed category of locally convex pseudotopological limit vector spaces or
equivalently in the category of direct limits of locally convex topological spaces (within
the category of limit vector spaces), and usually we assume such spaces to be separated
and complete.

Note that a linear map A : limXi → limYj between direct limits of locally convex
topological vector spaces is continuous, if for every i there is a j such that the restriction
A|

Yj

Xi
to Xi into Yj is continuous. Hence in most cases it is sufficient to prove a theorem

for maps between locally convex topological vector spaces, as it induces a theorem
between the direct limits of such spaces.

22Proof: The evaluation map ev : L(X, Y )⊗X → Y is uniformly continuous and hence maps Cauchy
filters to Cauchy filters. Let F be a Cauchy filter on L(X, Y ) and let G be a filter converging to x on X ,
then ev(F ⊗G) is a Cauchy filter on Y and converges by completeness. Its limit y ∈ Y is independent
of G (Let G′ → x be another filter, then ev(F × (G ∩G ′)) converges and is coarser than both ev(F ×G)
and ev(F × G′), so that both filters must converge to the same y.) and thus allows to define a map
A : X → Y , which is linear (Let G → x and G ′ → x′, then the filter ev(F × (G + G ′)) converges on the
one hand to A(x+x′) and because of bilinearity on the other hand to Ax+Ax′, so that additivity has
been shown; analogously for homogenity) and continuous (limx′∈G Ax′ = limx′∈G limA′∈F A′x′ = Ax
holds for F → A, G → x) Now in L(X, Y ) per definition this implies the convergence of F to A and
thus completeness.

23Completeness of L(X, Y )equ|pstop|con is implied by the fact that the equablification, pseudotopol-
ogisation or convexification of a complete limit vector space is again complete. Indeed, let X be
complete and let F be a Cauchy filter on Xequ|pstop|con, i.e. F × F is a uniformity on Xequ|pstop|con.
Then there is an equable resp. pseudotopological resp. locally convex filter G converging to 0 in X
with Ĝ ⊂ F × F . Therefore F × F is also a uniformity on X , and completeness of X implies the
convergence of F to some x. Without restriction assume x ∈ U for every U ∈ F , then the rela-
tion G + x = Ĝ(x) ⊂ (F × F)(x) = F implies that F is also finer than G + x for the equable resp.
pseudotopological resp. locally convex filter G → 0, and thus F converges also to x in X equ|pstop|con.
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Invertibility Let T : X → Y be a continuous linear map between complete and
separated locally convex vector spaces X, Y with a continuous inverse T −1 ∈ Lτ (Y,X).
Assume that A ∈ L(X, Y ) satisfies pτ(p)(T−1)τ(p)p(T − A) < 1 for all continuous
pseudonorms p on X, then A is also continuously invertible. Indeed, because of

A = T ◦ (IdX −T
−1 ◦ (T − A))

it is sufficient to prove that the linear operator IdX −T
−1 ◦ (T − A) on X has a

continuous inverse. Set B := T−1 ◦ (T − A), then the assumption implies pp(B) ≤
pτ(p)(T−1)τ(p)p(T − A) < 1 for all continuous pseudonorms p on X. As pp(

∑

nB
n) ≤

∑

n p
p(B)n is valid and the right hand side is a Cauchy series for every p due to

pp(B) < 1, also the series
∑

nB
n is a Cauchy series and converges in LId(X) by com-

pleteness. Because of

(IdX −B)

(

k
∑

n=0

Bn

)

= IdX −B
k+1 → IdX

for k → ∞ the limit
∑∞

n=0B
n is the inverse (IdX −B)−1, so that A is continuously

invertible with inverse A−1 = (
∑∞

n=0B
n) ◦ T−1. Thus every operator in the set {A ∈

L(X, Y )|∀p : τ(p)p(T − A) < pτ(p)(T−1)−1} is continuously invertible.

Let us clarify the structure of this set: To every continuously invertible operator T there
is an invertible σ mapping continuous pseudonorms on Y to continuous pseudonorms on
X such that T ∈ Lσ(X, Y ) and T−1 ∈ Lσ−1(Y,X). For example, σ(q)(·) := q(T ·) defines
such a map with σ−1(p)(·) := p(T−1·) as its inverse, and qσ(q)(T ) = 1 = pσ−1(p)(T−1)
holds for all continuous pseudonorms p on X, q on Y . Thus let τ := σ−1 and rq :=
σ(q)q(T−1)−1, then rq > 0 and all elements of the set Brq

(T ) = {A ∈ Lσ(X, Y )|∀q :
qσ(q)(T − A) < rq} are invertible.

Note that Brq
(T ) is in general not a neighbourhood of T , as it is the intersection of

infinitely many and not finitely many open q-balls Brq
(T ) := {A ∈ Lσ(X, Y )|qσ(q)(T −

A) < rq} around T in Lσ(X). This situation is typical of the analysis on locally convex
vector spaces X developed here: Usually the presented theorems do not guarantee the
existence of a neighbourhood or equivalently a finite intersection of balls, but only the
existence of an intersection of infinitely many balls around a point to a radius family,
which is calculated by the theorem. In the worst case, the calculated radius family
enforces the intersection of balls only to contain the point around which it is defined,
and then the theorem is trivial and not applicable. But in better cases the calculated
radius family assures that the intersection of balls is large enough, e.g. that Brq

(T )−T
spans a dense subset, so that the theorem can be applied to the problem considered.
Thus it is essential that the radius family is computed by the theorem, because this is
the only way to decide whether the theorem can be applied to a concrete problem or
not. An intersection of balls is from now on shortly called an i-ball.

This point of view on analysis is different from the point of view presented in other
books about analysis on locally convex topological vector spaces, where theorems use
stronger assumptions to prove stronger results, e.g. the existence of neighbourhoods
instead of i-balls. However, it is often not easy to verify the strong assumptions of such
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theorems in a concrete case. The advantage of the approach presented here is that it is
easy to decide whether a theorem is applicable to a concrete problem, the disadvantage
is that the theorems are not formulated in a way that guarantees their applicability to
a certain class of maps a priori. For example, the inverse mapping theorem proved later
in this thesis guarantees the existence of an inverse to a continuously differentiable map
f : X → Y on an i-ball around a point x ∈ X, whenever f has a continuously invertible
derivative at x, and computes the radius family of the i-ball, while the famous Nash-
Moser inversion theorem proved e.g. in [Kriegl,Michor, 51.17] can be applied to the
class of all tame smooth mappings f between tame Fréchet spaces with a tame smooth
linear inverse (x̃, h) → Df(x̃)−1h on a neighbourhood around x 24 and guarantees the
existence of an inverse to f on a neighbourhood of x.

Intersections of Balls Let X be a separated locally convex topological vector space.
A closed i-ball Brq

(0) around 0 to a radius family 0 < rq ≤ ∞ is the intersection of closed
q-balls Bq

rq
(0) := {x| q(x) ≤ rq} with radiuses rq, where q runs through a generating set

of the continuous pseudonorms on X. Note that every closed i-ball Brq
(0) is a closed

absolutely convex subset of X. It is possible that a closed i-ball Brq
(0) is merely the

set {0}, e.g. if q runs through a directed generating set of continuous pseudonorms and
limq rq = 0 is valid. But it is also possible that Brq

(0) is a neighbourhood of zero or
even the whole space X, e.g. if rq =∞ for all large q or even all q. The largest closed
i-balls are surely the neighbourhoods of zero, but there are also smaller i-balls, which
deserve to be called large.

For example, those closed i-balls could be called large, which absorb the whole space
X. However, for Fréchet or Banach spaces, such closed i-balls are automatically neigh-
bourhoods of zero. Indeed, call a locally convex space X barrelled25, if every closed
absolutely convex subset which absorbs X contains automatically a neighbourhood of
zero. Thus if X is barreled and Brq

(0) is so large that it absorbs the whole space X,
then it automatically contains a neighbourhood of zero. A topological space is called
a Baire space if every countable intersection of dense open sets is automatically dense.
The theorem of Baire says that completely metrizable spaces are Baire spaces, and
[Saxon] has proved that a topological vector space is a Baire space iff every absorbing
closed balanced subset is a neighbourhood of zero. Especially every linear Baire space
is barrelled, and hence for Fréchet or Banach spaces X a closed i-ball Brq

(0), which is
not a neighbourhood of zero, does not absorb the whole set X.

24A Fréchet space X is called graded if it is provided with a fixed increasing family pn of generating
continuous pseudonorms. A linear map A : X → Y between such Fréchet spaces (X, pn), (Y, qn) is
called tame of degree d and base b if for every n ≥ b there is a Cn < ∞ with qn(Ax) ≤ Cnpn+d(x).
Note that our map σ replaces the grading and that the conditions formulated in terms of σ could
be formulated in terms of the tameness constants Cn. A Fréchet space (X, pn) is called tame if it is
a tame direct summand of the space S of (very) fast falling sequences in a Banach space, i.e. the
injection ι : X → S and the projection π : S → X are tame. A continuous nonlinear map f : X → Y
between graded Fréchet spaces is called tame of degree d and base b if locally for every n ≥ b there
is a Cn < ∞ with qn(f(x)) ≤ Cn(1 + pn+d(x)). A smooth mapping is called tame smooth if every
derivative (x, h) 7→ Dkf(x)h is tame.

25Bourbaki and Dieudonne showed that the class of barrelled spaces is the largest class of locally
convex vector spaces for which the uniform boundedness theorem holds, thus barrelled spaces are
interesting per se.
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Thus beginning with neighbourhoods of zero, the next smaller class of closed i-balls in
barelled spaces, like e.g. Fréchet spaces, consists of those closed i-balls, which do not
absorb the whole space X but only a dense subspace. In this case Brq

(0) is obviously
not a neighbourhood of zero. However, within the class of closed i-balls which absorb
a dense subspace, also larger and smaller i-balls can be distinguished. For example, a
closed i-ball can be a thick set or not: A subset of a topological space is called meagre,
if it is a countable union of nowhere dense sets, where a set is called nowhere dense,
if its closure has an empty interior. The Baire property is equivalent to the statement
that a meagre set has no inner points. An infinitesimal analogue of a meagre set in a
locally convex space is that of a non-norming set. A subset of a locally convex space
is called norming, if its closed absolutely convex hull contains a neighbourhood of zero,
and else it is called non-norming. A subset is called thin, if it is a countable union of
non-norming sets, and else it is called thick. Now a metrizable locally convex space X
is barrelled iff it is Baire-like, i.e. iff every increasing sequence An of closed absolutely
convex subsets with

⋃

nAn = X has an element containing a neighbourhood of zero.
Thus a subset of a Fréchet or Banach space is thick, iff it spans a dense and barrelled
subspace.

Hence those closed i-balls, which span a dense and barrelled subspace, are thick sets,
and can be distinguished from those smaller closed i-balls, which are not thick sets.
But maybe the thick closed i-balls are also automatically neighbourhoods of zero? To
exclude this case, let us ask, whether a Fréchet space has always a nontrivial dense
and barrelled subspace. This problem is solved positively for all nonnormable Fréchet
spaces, but for Banach spaces the answer is open, as it is equivalent to the so called
separable quotient problem: Is there always a subspace Y of a Banach space X such
that X/Y is infinite-dimensional and separable? See [Nygaard] for a discussion.

However, often we consider even smaller closed i-balls, which do not span a dense and
barrelled but only a dense subspace. Such closed i-balls are called dense closed i-balls.
For example, consider the Fréchet space C(R) endowed with the topology of uniform
convergence on compact sets and the closed i-ball B1(0) := {x|∀t ∈ R : |x(t)| ≤ 1},
then B1(0) is obviously no neighbourhood of zero. But as it contains all functions with
compact support whose values are smaller than 1, the span of B1(0) is a dense subspace.
The main property of dense closed i-balls in complete locally convex spaces X is that
they are large enough to recover the whole spaceX by scaling and completion, and that’s
why it is often good enough to consider dense closed i-balls instead of neigbourhoods
of zero.

Finally note that limq rq = 0 implies Brq
(0) = {0} for every directed generating family

of pseudonorms q. Thus directed families are not appropriate to define large closed i-
balls. Instead, to define large closed i-balls, generating families of pseudonorms q having
the property that only finitely many pseudonorms of the family intersect26 should be
used. For example, on C(R) use the generating family pk(x) := supt∈[k,k+1] |x(t)| of
continuous pseudonorms, then the closed i-ball Brk

(0) spans a dense subset of C(R) for
every radius family rk, as Brk

(0) contains the functions of compact support.

26Two pseudonorms p, q are said to be disjoint, if p−1(0) + q−1(0) = X holds, or equivalently, if
r ≤ p and r ≤ q implies r = 0, and they are said to intersect, if they are not disjoint.
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Linear Differential Equations Let A : X → X be a continuous linear map on a
complete separated locally convex topological vector space X. Contrary to the case of
Banach spaces the differential equation ẋ = Ax does not need to be solvable for all initial
values x(0) and all times. Indeed, the solution should be exp(tA)x(0) =

∑∞
n=0

tn

n!
Anx(0),

but this series does not need to converge: If A ∈ Lσ(X), then convergence can merely
be proved for those initial values x(0) and times t, for which the series

∞
∑

n=0

tn

n!

(

n−1
∏

m=0

σm(p)σm+1(p)(A)

)

σn(p)(x(0))

converges. Thus - depending on the growth of σn(p)(x(0)) - a linear differential equation
on a locally convex space could have no solution, a finite-time solution, or like in the
Banach case an all-time solution.

Example: Define a continuous linear map A : X → X on the space X of fast falling
both sided sequences xk, k ∈ Z, endowed with the pseudonorms pn(x) := supk(1 +
|k|)n|xk| by (Ax)k := a(k)xk with a polynomial a(k) = adk

d + · · ·+a0 of degree d. From

pn(Axk) = sup
k

(1 + |k|)n|a(k)xk| ≤ (sup
k

|a(k)|

(1 + |k|)d
)(sup

k
(1 + |k|)n+d|xk|) = pσ(pn)

n (A)pn+d(xk)

and lim|k|→∞
|a(k)|
1+|k|d

= |ad| it can be deduced that A lies in Lσ(X) for σ(pn) := pn+d and

satisfies p
σ(pn)
n (A) = supk

|a(k)|
(1+|k|)d <∞.

The possible solution of the differential equation ẋ = Ax to the initial value x(0) is
xk(t) =

∑∞
n=0

tn

n!
a(k)nxk(0) = exp(ta(k))xk(0), but this sequence xk(t) does not need

to be fast falling for all t. For example, let a(k) = k2 and xk(0) = exp(−εk2), then
xk(t) = exp(k2(t−ε)) is a fast falling sequence only for t < ε. A similar example, where
no solution to an initial value exists for all times t > 0, can be found in [Kriegl,Michor,
32.12]. Note that these examples are not academic but relevant, as multiplication with
polynomials in a space of sequences is intimately connected to differentiation in a space
of functions. In fact, by Fourier transformation the space X of fast falling sequences
is isomorphic to the space C∞(S1,R) endowed with the uniform convergence in arbi-
trary high derivatives, and under this identification the above defined operator A with
a(k) = k2 becomes the negative Laplacian −∆, i.e. solving ut = −∆u in C∞(S1,R) is
equivalent to solving ẋ = Ax in the space X of fast falling sequences. Thus it is not
astonishing that in general there are no solutions, as the differential equation ut = −∆u
is not well-posed forward in time. However, note also that we are mainly interested in
the case where the different pseudonorms arise through convergence on compact subsets
of a noncompact space, where such problems are rarer.

Uniform Boundedness Principle Let X be a complete and separated locallly
convex topological vector space, and let H ⊂ L(X, Y ) be a set of continuous linear
maps from X into a locally convex topological vector space Y . Let q be a continuous
pseudonorm on Y and assume supT∈H q(Tx) < ∞ for each x ∈ X, then there is gen-
erally no continuous pseudonorm p on X with supT∈H q

p(T ) < ∞, i.e. in general the
uniform boundedness principle is not valid.
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But if the topology of X is generated by a countable set of pseudonorms pn and
thus X is completely metrizable, then X is called a Fréchet space and the uniform
boundedness principle holds. Indeed, fix a continuous pseudonorm q on Y . Each set
MC := {x ∈ X|∀T ∈ H : q(Tx) ≤ C} is closed, because MC =

⋂

T∈H{x|q(Tx) ≤ C}
is an intersection of closed sets. Further due to the assumption

⋃

C∈N
MC = X is

valid. By Baire’s category theorem there is a continuous pseudonorm p on X, a pos-
itive ε > 0 and a point x0 ∈ X such that {x|p(x − x0) ≤ ε} ⊂ MC,q. In other
words, p(x − x0) ≤ ε implies q(Tx) ≤ C for all T ∈ H. Thus p(x) ≤ ε implies

q(Tx) ≤ q(T (x+ x0)) + q(Tx0) ≤ C +Cx0 for all T ∈ H, i.e. q(Tx) ≤
C+Cx0

ε
p(x) holds

for all T ∈ H and all x ∈ X. Hence to each q the existence of a p with supT∈H q
p(T ) <∞

has been proved.

Especially the pointwise limit of continuous linear maps between Fréchet spaces is a
continuous linear map. Indeed, if F is a filter on L(X, Y ) with Fx → Tx for every
x ∈ X, then trivially T is linear. Further for every continuous pseudonorm q on Y
and every x ∈ X there is a U ∈ F such that supT ′∈U q(T

′x) < ∞. Thus there is a
continuous pseudonorm p on X with supT ′∈U q

p(T ′) < ∞ by the uniform boundedness
principle, so that qp(T ) <∞ is valid and hence T is continuous.

For Fréchet spaces not only the uniform boundedness principle is valid, but also the
open mapping theorem and the closed graph theorem can be proved like in the Banach
case, because the Baire property is valid. As a consequence, an algebraic decomposition
X = A⊕B of a Fréchet spaceX into closed subspaces A,B is automatically a topological
decomposition, i.e. there exist continuous linear projections onto A and B 27. But as
in the Banach case not every closed subspace A has a closed complement B.

In the more general case of a complete and separated locally convex topological vector
space, not every algebraic decomposition is automatically a topological decomposition.
However, finite-dimensional subspaces A always admit closed complements and contin-
uous projections: Due to its completeness a finite-dimensional subspace A is automat-
ically closed in X. Choose continuous linear functionals x′ := (x′1, . . . , x

′
n) such that

x′|A : A→ Rn is an isomorphism, then the closed subspace defined by B := ∩n
i=1 Ker(x′i)

is a complement to A and there is a continuous projection onto A. Indeed, by using
the inclusion ι : A → X define the map Px := ι((x′|A)−1(x′(x))) on X. Then P is a
continuous linear map satisfying P (X) = A, Px = x for x ∈ A and x − Px ∈ B for
all x ∈ X (because of x′(x − Px) = x′(x) − x′(x) = 0). Thus P is a continuous linear
projection onto A.

27For Banach or Fréchet space the open mapping theorem is valid, so that algebraic decompositions
into closed subspaces are automatically topological: If X = A ⊕ B is algebraically valid, then due
to the closedness of A, B the space A ⊕ B endowed with the pseudonorms p(a, b) := p(a) + p(b), p
pseudonorm on X , is a Banach or Fréchet space. Further the map A ⊕ B 3 (a, b) 7→ a + b ∈ X is
linear, bijective and continuous due to the triangle inequality p(a + b) ≤ p(a) + p(b) = p(a, b), so that
it has a continuous inverse by the open mapping theorem. Thus A ⊕ B and X are also topologically
isomorphic by (a, b) 7→ a+b. As a consequence, to every continuous pseudonorm p there is a continuous
pseudonorm q with p(a) + p(b) ≤ Cq(a + b), hence also the projections a + b 7→ a and a + b 7→ b are
continuous.
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Pseudo-Banach and pseudo-Hilbert Spaces A pseudo-Banach space is a com-
plete and separated locally convex topological vector space X = limiXi, which is a
projective limit of Banach spaces (Xi, ‖ · ‖i) such that the restrictions |j : Xi → Xj

(j < i) are contractions, i.e. ‖xi|j‖j ≤ ‖xi‖i is satisfied for all j ≤ i and xi ∈ Xi.
If all Xi are Hilbert spaces, then X is called a pseudo-Hilbert space. For example,
the space L2

loc(M) of locally square integrable functions on a manifold M is the pro-
jective limit limΩ⊂M L2(Ω) of the Hilbert spaces L2(Ω), where Ω runs through the
precompact domains in M . Because of

∫

Ω
|x|2 ≤

∫

Ω′ |x|
2 for Ω ⊂ Ω′ the restrictions

|Ω
′

Ω : L2(Ω′)→ L2(Ω) are contractions, so that L2
loc(Ω) is a pseudo-Hilbert space.

Denote by |i : X → Xi the restriction of X onto Xi, then the topology on X is gener-
ated by the pseudonorms pi(x) := ‖x|i‖i. In the case of a pseudo-Hilbert space these
pseudonorms satisfy the parallelogram equality pi(x+y)2+pi(x−y)

2 = 2pi(x)
2+2pi(y)

2,
or equivalently are induced by pseudo-scalar products pi(·, ·) via pi(x) =

√

pi(x, x).
However, not only topological properties of X are fixed by its representation as a pro-
jective limit of Hilbert spaces, but also the geometry of X is determined due to the fact
that the restrictions were required to be contractions.

Indeed, the geometry of a Banach or Hilbert space is not determined by its topological
structure only, but depends on the choice of the norm or scalar product, as in general
the orthogonal projections28 are different for equivalent but different norms or scalar
products. Now the requirement that for a pseudo-Hilbert space the restrictions are
contractions allows to define the norm function p(x) := limi pi(x) on X with values in
[0,∞], because the net29 i 7→ pi(x) on R is monotone increasing due to the contraction
property pj(x) ≤ pi(x) for j ≤ i, and thus limi pi(x) converges either to some number
in R

+
0 or to infinity.

The norm function p on X with values in [0,∞] is the starting point for the discussion
of geometry on a pseudo-Hilbert space: Let K be a subset of X. An element Px ∈ K is
called a best approximation of x by elements of K if p(x− Px) = infy∈K p(x− y) <∞
is valid. Obviously infy∈K p(x − y) is smaller than infinity only, if there is an element
y ∈ K with p(x − y) < ∞. If there is no such y ∈ K, then every element of K
approximates x as bad as every other element of K. Let us say in this case that x
cannot be approximated by elements of K.
Theorem 4.1 Let X be a pseudo-Hilbert space, let x ∈ X and let K be a closed and
convex subset of X. Then either x cannot be approximated by elements of K or there
is a unique best approximation Px of x by elements of K.
Proof: Let d := infy∈K p(x−y) <∞ and let yn ∈ K be a sequence with p(x−yn)→ d
for n→∞, then

p(yn − ym)2 = 2p(x− ym)2 + 2p(x− yn)
2 − 4p(x−

yn + ym

2
)2 → 0 (3)

28Call a projection P on a Banach space orthogonal if ‖P‖ = 1. For Hilbert spaces ‖P‖ = 1 is
equivalent to P ∗ = P and thus to orthogonality in the usual sense.

29A map f from a directed set A into a set X is called a net on X , and every subset of the form
{f(a)|a ≥ a0} ⊂ X is called an endpiece of the net f . The end pieces of a net generate a filter on X ,
and a net on a space X endowed with a convergence relation is called convergent if the filter generated
by its endpieces converges.
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is valid for n,m → ∞ by the parallelogram equality, the convergences p(x − ym)2,
p(x− yn)

2 → d2 and the inequality p(x− yn+ym

2
)2 ≥ d2. This inequality holds because

the convexity of K implies yn+ym

2
∈ K and hence p(x− yn+ym

2
)2 ≥ d2. Thus by the above

formula the sequence yn is a Cauchy sequence, because pi(yn− ym) ≤ p(yn− ym)→ 0 is
valid for n,m→∞ and every i. Hence the sequence yn has a limit Px by completeness
of X, and Px lies in K because of yn ∈ K and the closedness of K. Moreover Px
satisfies p(x − Px) = d, as pi(x − Px) = limn pi(x − yn) ≤ limn p(x − yn) = d is valid
for all i, and thus on the one hand limp p(x − Px) ≤ d holds, while on the other hand
p(x − Px) ≥ d is valid because of Px ∈ K. Finally the best approximation is unique,
because if there were another best approximation Px′, then

p(x−
1

2
(Px+ Px′))2 < p(x−

1

2
(Px+ Px′))2 + p(

1

2
(Px− Px′))2 =

1

2
p(x− Px)2 +

1

2
p(x− Px′)2 = d2

would be valid by the parallelogram equality and the fact that there is an index i
with 0 6= pi(Px − Px′) ≤ p(Px − Px′)2. Thus 1

2
(Px + Px′) ∈ K would be a better

approximation of x by elements of K, in contradiction to d := infy∈K p(y − x). 2

Thus whenever K is closed, convex and contains an element y ∈ K with limp p(y−x) <
∞, there is a unique best approximation Px of x by elements of K, and if K does not
contain such an element y, then obviously every element of K is a bad approximation
of x.

On Hilbert spaces best approximations can be used to characterize orthogonal projec-
tions. For pseudo-Hilbert spaces X an analogous result can be proved: Let K be a
closed and convex subset of X and assume that for x ∈ X there is a y ∈ K such that
p(x − y) < ∞. Denote by Px the best approximation of x by elements of K, then
p(x− Px, y − Px) ≤ 0 holds for all y ∈ K with p(y − Px) <∞, because

p(x− Px)2 ≤ p(x− ((1− t)Px+ ty))2 = p(x− Px+ t(Px− y))2 =

p(x− Px)2 + 2tp(x− Px, Px− y) + t2p(y − Px)2

implies p(x− Px, y− Px) ≤ t
2
p(y− Px)2 for all t ∈ [0, 1]. Conversely, if x′ ∈ K is such

that p(x−x′) <∞ and p(x−x′, y−x′) ≤ 0 are valid for all y ∈ K with p(y−x′) <∞,
then

p(x− y)2 = p((x− x′)− (y − x′))2 =

p(x− x′)2 − 2p(x− x′, y − x′) + p(y − x′)2 ≥ p(x− x′)2

holds for all y ∈ K with p(y−x′) <∞, i.e. x′ is the best approximation. Thus the best
approximation can be characterized as the unique element Px of K with p(x−Px) <∞
and p(x− Px, y − Px) ≤ 0 for all y ∈ K with p(y − Px) <∞.

Moreover, if K is a closed subspace, the last condition can be replaced by p(x−Px, y) =
0 for all y ∈ K with p(y) <∞, choose simply ±y+Px instead of y. To a subspace K ⊂
X define its orthogonal complement K⊥ by z ∈ K⊥ whenever p(z) <∞ and p(z, y) = 0
is valid for all y ∈ K with p(y) <∞. Then K⊥ is a subspace (however in general it is
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not closed in X) and the operator P , which to x assigns its best approximation Px by
elements of K, is characterized by x − Px ∈ K⊥. Note that K ∩K⊥ = {0} holds, as
y ∈ K ∩K⊥ implies p(y) <∞ and p(y, y) = 0, i.e. y = 0. Thus K+K⊥ is a direct sum
and the largest subspace of X whose elements have a best approximation by elements
of K.

The operator P from K +K⊥ to K is a projection because of P (Px) = Px and linear
because of x+x′−(Px+Px′) = (x−Px)+(x′−Px′) ∈ K⊥, i.e. P (x+x′) = Px+Px′, and
λx− λPx ∈ K⊥, i.e. P (λx) = λPx. However, P is continuous only w.r.t. the topology
on K+K⊥, where points x, x′ with p(x−x′) =∞ lie in different components and each
component is the complete metric space endowed with the metric d(x, x′) := p(x − x′)
30. Note that each component contains a copy of K⊥, that the component containing
0 is in fact a Hilbert space, and thus also every other component is a Hilbert manifold.

Spectral Theory Let X be a complete and separated locally convex topological
vector space over the field C of complex numbers. A value λ ∈ C is said to be an
element of the resolvent set of an operator T ∈ L(X), if λ−T is continuously invertible
31, and else λ is said to lie in the spectrum Σ(T ) of T . Contrary to the case of Banach
spaces, in general the spectrum Σ(T ) ⊂ C of an operator T on a complete and separated
locally convex topological vector space may be unbounded or empty, and might not be
closed, see [Maeda] for corresponding examples. However, the spectral radius r(T ) :=
supλ∈Σ(T ) |λ| can generally be estimated by the convergence radius of the Neumann
series.

Let T ∈ L(X) be an operator, then the convergence radius rN (T ) ∈ [0,∞] of the Neu-
mann series λ 7→

∑

n T
n/λn in L(X) is given by the formula rN(T ) = inf{|λ| | T n/λn →

0} or equivalently by rN (T ) = supq infp lim supn
n
√

qp(T n) 32. Indeed, |λ| > rN(T ) im-
plies the convergence of the Neumann series: Choose h < 1 such that |λ|h > rN(T ),
then T n/(λh)n → 0 in some Lτ (X) by definition of rN(T ), so that to every continuous
pseudonorm q on X and every ε > 0 there is a N ∈ N with qτ(q)(T n/λn) ≤ hnε for all

30Indeed, let x, x′ be in the same component. The equality p(x − x′)2 = p(P (x − x′))2+
2p(P (x−x′), (x−x′)−P (x−x′))+p((x−x′)−P (x−x′))2 is valid, and as p((x−x′)−P (x−x′), P (x−x′)) =
0 holds because of p(P (x−x′)) ≤ p(Px−x)+p(x−x′)+p(x′−Px′) <∞ ((Px, x), (x, x′) and (x′, Px′)
lie in the same component) and due to the orthogonality characterization, the equations p(P (x−x′))2 ≤
p(x− x′)2 and p((x − x′)− P (x− x′))2 ≤ p(x− x′)2 are valid, i.e. P and Id−P are continuous w.r.t.
the metric d(x, x′) = p(x − x′) on each component. Finally each component is complete, because a
Cauchy sequence xn in a component is also a Cauchy sequence in X due to pi(xn −xm) ≤ p(xn −xm)
for each i. Now completeness of X implies that xn has a limit x in X , and this limit lies in the same
component as all xm because of pi(x− xm) = limn pi(xn − xm) ≤ limn p(xn − xm) ≤ Cm for all i with
a constant Cm independent of i, i.e. p(x− xm) ≤ Cm <∞ is valid.

31If T is an operator on a Fréchet space X , then invertibility implies continuous invertibility by the
open mapping theorem, thus a value λ lies in the resolvent set if λ− T is bijective.

32Proof:

inf{|λ| | T n/λn → 0} = inf{|λ| | ∀q∃p : qp(T n)/|λ|n → 0} =

sup
q

inf
p

inf{|λ| | lim
n

qp(T n)/|λ|n = 0} = sup
q

inf
p

lim sup
n

n
√

qp(T n)
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n > N . Further
∑

n h
n is convergent because of h < 1, so that to every ε > 0 there is

an N such that
∑∞

n=m h
k ≤ 1 for all m > N . Thus to every q and ε > 0 there is an N

such that

qτ(q)(

m′

∑

n=m

T n/λn) ≤
m′

∑

n=m

qτ(q)(T n/λn) ≤
∞
∑

n=m

hnε ≤ ε

for all m,m′ > N . Hence the Neumann series
∑

n T
n/λn is Cauchy and converges

in Lτ (X) for |λ| > rN(T ). On the other hand, convergence of
∑

n T
n/λn implies

T n/λn → 0 and thus |λ| ≥ rN(T ), so that rN(T ) is really the convergence radius of the
Neumann series.

Now |λ| > rN(T ) implies the existence of the limit 1/λ
∑∞

n=0 T
n/λn, and this limit is

the inverse of λ− T . Indeed,

(λ− T )

(

1/λ

m
∑

n=0

T n/λn

)

=

m
∑

n=0

T n/λn −
m+1
∑

n=1

T n/λn = 1−
Tm+1

λm+1
→ 1

holds for m → ∞, so that by continuity of composition the limit is right-inverse to
λ−T , and by commutativity of the operators λ−T and T also left-inverse. Thus every
λ with |λ| > rN(T ) is a resolvent value of T and rN(T ) ≥ r(T ) is valid.

Hence the convergence radius rN(T ) of the Neumann series bounds the spectrum of T ,
but contrary to the Banach case rN(T ) = ∞ and rN(T ) > r(T ) are possible. In the
Banach case the finiteness of rN (T ) can be deduced from rN(T ) ≤ ‖T‖. This inequality
can be generalized as follows: Suppose that T ∈ Lσ(X) and that τ bounds σn for all
n ∈ N, i.e. Cn := σn(p)τ(p)(Id) <∞ is valid for all n ∈ N. Then pτ(p)(A) ≤ pσn(p)(A)Cn

holds for every operator A. Thus pτ(p)(T n) ≤ Cn

∏n−1
k=0 σ

k(p)σk+1(p)(T ) is valid, and
hence rN(T ) can be estimated by

rN(T ) ≤ inf{|λ| |

(

Cn

n−1
∏

k=0

σk(p)σk+1(p)(T )

)

/λn → 0} .

For values λ satisfying the growth condition on the right hand side, the operator (λ−
T )−1 lies in Lτ (X), as the growth condition implies the convergence T n/λn → 0 in
Lτ (X). But there are operators T ∈ Lσ(X), for which σn cannot be bounded by any
τ , or for which the growth of the numerator on the right hand side is larger than every
exponential growth n 7→ λn, and for such operators T the finiteness rN(T ) <∞ cannot
be deduced.

Example: The operator T : x(t) 7→ ax(−t), a 6= 0, on X := C(R,C) satisfies T ∈
Lσ(X) for σ(supK) = sup−K and pσ(p)(T ) = |a| is valid for all p = supK . Now
σn(supK)(x) ≤ supK∪−K(x) =: τ(supK) holds and |a|n/|λ|n converges to zero for all
|λ| > |a|. Thus the spectrum of T is contained in the circle of radius |a|. Indeed,
(Tx)(t) = ax(−t) = λx(t) is valid for λ = ±a and even resp. odd functions x(t), so
that in this case the Neumann bound of the spectrum by a convergence radius is the best
possible.

Example: The operator T : x(t) 7→ ax(t + 1), a > 0, on X = C(R,C) satisfies
T ∈ Lσ(X) for σ(supK) = supK+1 and pσ(p)(T ) = a is valid for all p = supK. But
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as there is no pseudonorm, which bounds supK+n for every n, our method yields no
bound of the spectrum of T . In fact, (Tx)(t) = ax(t + 1) = λx(t) is valid for every
x(t) := c(t)(λ

a
)t with a 1-periodic function c, thus every λ > 0 is an eigenvalue and the

spectrum of T is unbounded.

However, σn(sup[a,b])(x) ≤ sup[a,+∞)(x) is valid on the space of those x ∈ C(R,C)
which are bounded at +∞, and T restricted to this space has a spectrum bounded by
|a|, because the series |a|n/|λ|n converges to zero for all |λ| > |a|. Indeed, for λ > a the
functions t 7→ (λ

a
)t are not bounded at +∞.

As in the case of Banach spaces, the operator norm of T can be chosen arbitrarily
near to rN(T ). Indeed, let R > rN(T ), then T n/Rn → 0 in some Lτ . Thus the
supremum τ ′(p)(x) := supn≥0 p(T

n/Rnx) exists for every continuous pseudonorm p
and every x ∈ X, and τ ′(p) is a continuous pseudonorm on X, because the inequality
τ ′(p)(x) ≤

(

supn≥0 p
τ(p)(T n/Rn)

)

τ(p)(x) is valid with the continuous pseudonorm τ(p).
Finally from p(x) ≤ τ ′(p)(x) (n = 0) and

p(Tx) ≤ τ ′(p)(Tx) = sup
n≥0

p(T n/RnTx) = R sup
n≥0

p(T n+1/Rn+1x) ≤

R sup
n≥0

p(T n/Rnx) = Rτ ′(p)(x)

the inequality pτ ′(p)(T ) ≤ R can be deduced for all p.

The most important property of the resolvent λ′ 7→ (λ′ − T )−1 on Banach spaces is
its analyticity. Let us clarify, on which parts of the resolvent set the resolvent is also
analytic in the more general case of a complete and separated locally convex topological
vector space X.

A value λ in the resolvent set of T is called analytic, if it satisfies rN ((λ− T )−1) <∞,
because this condition implies the analyticity of the resolvent λ′ 7→ (λ′ − T )−1 ∈ L(X)
in λ. Indeed, let λ′ satisfy rN((λ− T )−1) < 1/|λ− λ′|, then there is a h < 1 such that
rN((λ−T )−1) < h/|λ−λ′|. Thus ((λ−λ′)(λ−T )−1)n/hn → 0 in some Lτ (X), and again
due to the convergence of

∑

n h
n, to every continuous pseudonorm q and every ε > 0

there is an N ∈ N such that qτ(q)(
∑m′

n=m((λ − λ′)(λ − T )−1)n) ≤ ε for all m,m′ > N .
Hence

∑

n((λ− T )−1)n(λ− λ′)n is Cauchy and converges in the complete space Lτ (X)
for every |λ − λ′| < 1/rN((λ − T )−1), so that this series defines an analytic function
depending on λ′ near λ. As the limit of this series is (Id−(λ−λ′)(λ−T )−1)−1 and as the
equality (λ′−T ) = (λ−T )(Id−(λ−λ′)(λ−T )−1) is valid, also λ′ 7→ (λ′−T )−1 ∈ Lτ (X)
is an analytic function within the circle of radius 1/rN((λ− T )−1) around λ.

Consequently the analytic part of the resolvent set is an open subset of C and the
resolvent is an analytic function on it. Denote by rA(T ) the supremum of all absolute
values |λ| for λ lying in the complement of the analytic part of the resolvent set, then
rA(T ) ≥ rN(T ) is valid. Indeed, f : λ 7→ (λ− T )−1 is an analytic function on {λ| |λ| >
rA(T )}. As (λ − T )−1 is represented by the series 1/λ

∑

n T
n/λn having convergence

radius rN (T ), but every representing series of an analytic function on {λ| |λ| > rA(T )}
automatically converges outside the circle with radius rA(T ), the inequality rA(T ) ≥
rN(T ) can be concluded.
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Analyticity of the resolvent can be used to prove the existence of spectral projections
for decompositions of the spectrum of T into two disjoint closed parts Σ(T ) = Σ1 ∪Σ2,
which are separated by the analytic part of the resolvent set, i.e. there is a cycle γ within
the analytic part of the resolvent set, which once winds around points of Σ1 and zero
times around points of Σ2. Then the continuous linear operator P := 1

2πi

∫

γ
(λ−T )−1dλ

is well-defined and does not depend on the choice of γ. Indeed, Riemannian integration
with values in (complete and separated) locally convex limit vector spaces like L(X)
has been defined before, the integrand (λ− T )−1 is analytic, and by Cauchy’s theorem
the integral is independent of a concrete choice of γ. As in the Banach case, now the
properties of P can be proved, see e.g. [Lanford, Proposition 2.3.1]: P satisfies P 2 = P
and thus is a projection called the spectral projection onto the generalized eigenspace
P (X) of Σ1, P commutes with every operator commuting with T , T leaves invariant
the closed decomposition X = P (X)⊕Ker(P ), and T restricted to P (X) resp. Ker(P )
has the spectrum Σ1 resp. Σ2.

Finally, if T is an operator on a real space X, consider its complexification T C on the
complexified space XC. If Σ(T ) = Σ1∪Σ2 is a decomposition of the spectrum of T into
disjoint closed sets, which are separated by the analytic part of the resolvent set and are
invariant under conjugation, then the spectral projection commutes with conjugation
and thus is the complexification of a projection P on the real space X. Thus also in
the real case there are spectral projections.
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5 Nonlinear Analysis

In this chapter basic theorems of nonlinear analysis on locally convex vector spaces are
proved. First we discuss integration and differentiation. Afterwards the contraction
mapping principle is generalized to locally convex topological vector spaces. As a con-
sequence we can prove the local existence and uniqueness of solutions of differential
equations to initial values, which satisfy a growth condition, and an implicit function
theorem on intersections of balls (shortly: on i-balls). Finally manifolds modeled over
dense i-balls in locally convex vector spaces are defined.

5.1 Integration

The aim of this section is to discuss the integration of maps having values in a vector
space X endowed with a compatible topological structure. On the one hand the com-
ponentwise Lebesgue integral of maps on a measure space (M,µ) with values in Rn is
generalized to an integral of maps with values in a separated locally convex topological
vector space. On the other hand Riemannian integration on complete and separated
locally convex limit vector spaces is mentioned. Both integrals coincide for continuous
maps on compact intervals with values in a complete separated locally convex topolog-
ical vector space, and thus in many parts of this thesis it is not important which notion
of an integral is used.

5.1.1 Lebesgue integration of maps with values in separated locally convex

topological vector spaces

For a separated locally convex topological vector space X the map j : X → (X ′)∗,
x 7→ (x′ 7→ x′(x)), into the algebraic dual (∗) of the topological dual (′) of X is injective
by the theorem of Hahn-Banach: There are enough continuous linear functionals to
separate points in X. For which locally convex topologies on X ′ the map j is onto
X ′′ ⊂ (X ′)∗ and therefore surjective as a map j : X → X ′′, is answered by the following
theorem of Mackey-Arens.

Theorem 5.1 Let X be a separated locally convex topological vector space. For a locally
convex topology on X ′ the map j : X → X ′′ is surjective iff the topology on X ′ is finer
than the weak topology σ(X ′, j(X)) and coarser than the Mackey topology τ(X ′, j(X)).

Proof: Use theorem [Heuser, 70.3] for the dual system (X ′, j(X)). 2

Therefore the Mackey topology τ(X ′, j(X)) is the finest locally convex topology on X ′

with X ′′ = j(X). A basis of its neighbourhood filter at zero is given by the polar sets

Ko := {x′ | sup
x∈K
|x′(x)| ≤ 1}
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to weakly compact33 and absolutely convex34 sets K ⊂ X. Note that the absolute
convex hull cb(K) of a (weakly) compact set K ⊂ X is in general not relatively (weakly)
compact, so that there are less absolutely convex and (weakly) compact sets than merely
(weakly) compact sets. However, for Fréchet spaces X the absolutely convex hull of a
compact set is again relatively compact.

Now let (M,µ) be a measure space. The following definition of a X-valued integral
generalizes the componentwise integral of maps with values in X = Rn 35: A map
f : M → X is called integrable if for every x′ ∈ X ′ the function x′ ◦ f : M → R is
integrable and x′ 7→

∫

M
(x′ ◦ f)dµ is continuous as a linear mapping from X ′ to R with

respect to the Mackey topology on X ′. Thus for an integrable map f the element

∫

M

fdµ := j−1

(

x′ 7→

∫

M

(x′ ◦ f)dµ

)

of X exists and is called the integral of f . Because the Mackey topology on X ′ is the
finest with X ′′ = j(X), the so defined class of integrable X-valued functions is the
largest possible class which can be obtained by componentwise integration.

By construction the formula x′(
∫

M
fdµ) =

∫

M
(x′ ◦ f)dµ holds for all x′ ∈ X ′, and

also A(
∫

M
fdµ) =

∫

M
(A ◦ f)dµ is valid for every continuous linear map A between

separated locally convex topological vector spaces. Further for a topological space M
with Borel measure µ a continuous function f from M to X is integrable over a compact
set K ⊂ M , if the absolutely convex hull of f(K) is relatively compact. Indeed, let
f : M → X be continuous, let K be compact and let the closure cb(f(K)) of the
absolutely convex hull of the compact set f(K) be compact. Obviously the continuous
real valued function x′ ◦ f |K on the compact set K is integrable for every x′ ∈ X ′.
To show continuity of x′ 7→

∫

M
(x′ ◦ fK)dµ w.r.t. the Mackey topology, note that the

compact set cb(fK(M)) is especially weakly compact36. Now let the filter F on X ′

converge to x′ in the Mackey topology, then to every ε there exists a set U ∈ F with
supx∈cb(fK(M)) |y

′(x) − x′(x)| ≤ ε for all y′ ∈ U , because the Mackey topology is the
topology of uniform convergence on weakly compact and absolute convex subsets of X.
Therefore

|

∫

K

(y′ ◦ f)dµ−

∫

K

(x′ ◦ f)dµ| ≤

∫

K

|(y′ − x′) ◦ f |dµ ≤ µ(K)ε

33A set K ⊂ X is called weakly compact iff it is compact with respect to the weak topology σ(X, X ′)
on X .

34A set K ⊂ X is called absolutely convex iff it is convex and balanced, i.e. x, y ∈ K and 0 ≤ λ ≤ 1
imply (1− λ)x + λy ∈ K and ±λx ∈ K.

35For a function f : M → Rn the componentwise integral is defined by
∫

M

fdµ = (

∫

M

(e′1 ◦ f)dµ, . . . ,

∫

M

(e′n ◦ f)dµ)

where e′i denotes the dual basis to the standard basis ei of Rn.
36The weak topology on X is coarser than the primary topology, hence every open covering in the

weak topology is an open covering in the primary topology. Thus for a compact set K ⊂ X w.r.t. the
primary topology, in every covering with weakly open sets a finite covering can be found, so that K is
also weakly compact.
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is valid and implies the convergence of the image of F under the map y ′ 7→
∫

K
(y′ ◦f)dµ

to
∫

K
(x′ ◦ f)dµ. Thus the continuity of this map w.r.t. the Mackey topology on

X ′ is proved. The same argumentation even shows that weakly continuous functions
f : M → X are integrable over a compact set K ⊂ M , if the absolutely convex hull
cb(f(K)) of the weakly compact set f(K) is relatively weakly compact.

Further recall that for Fréchet spaces X the absolutely convex hull of the compact set
f(K) ⊂ X is automatically relatively compact, thus the condition is not required and
hence every continuous map f into a Fréchet space is integrable over compact sets.
Finally let’s prove that the property |

∫

M
fdµ| ≤

∫

M
|f |dµ of the real valued integral

generalises to the X-valued case.

Lemma 5.2 Let p be a continuous seminorm on X. Then p(
∫

M
fdµ) ≤

∫

M
(p ◦ f)dµ

holds.

Proof: For the element
∫

M
fdµ of X there exists a x′ ∈ X ′ with x′(

∫

M
fdµ) =

p(
∫

M
fdµ) and |x′(x)| ≤ p(x) for all x ∈ X by the theorem of Hahn-Banach. With such

a continuous linear functional x′ the inequality

p(

∫

M

fdµ) = |x′(

∫

M

fdµ)| = |

∫

M

(x′ ◦ f)dµ| ≤

∫

M

|x′ ◦ f |dµ ≤

∫

M

(p ◦ f)dµ .

holds. 2

Integration of maps with values in reflexive Banach spaces For reflexive Ba-
nach spaces there exists an easier derivable, but not so powerful theory of integration.
Note that a Banach space X is reflexive iff the topology induced by the norm on X ′ is
coarser than the Mackey topology. In this case the definition

∫

M

fdµ := j−1

(

x′ 7→

∫

M

(x′ ◦ f)dµ

)

can certainly be used for functions f with integrable x′ ◦ f for all x′ ∈ X ′ and norm-
continuous mapping x′ 7→

∫

M
(x′ ◦ f)dµ. Both conditions are satisfied, if the real valued

function ‖f‖ is integrable, because

|

∫

M

(x′ ◦ f)dµ| ≤

∫

M

|x′ ◦ f |dµ| ≤ (

∫

M

‖f‖dµ)‖x′‖ .

holds. However, note that the integrability of ‖f‖ is a stronger condition than the one
given above, even for a reflexive Banach spaces.
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5.1.2 Riemannian integration on complete and separated locally convex

limit vector spaces

While in the former paragraphs integration w.r.t. a measure has been generalized to
functions with values in separated locally convex topological vector spaces, Riemannian
integration shall also be considered for the reader’s convenience. Let X be a complete
and separated locally convex limit vector space. For a function f on a compact interval
[a, b] with values in X, for subdivisions Z = {a = t0 < · · · < tn = b} with fineness |Z| :=
maxi=0,...,n−1(ti+1− ti) and for δ > 0 define the subsets SZ :=

∑n−1
i=0 (ti+1− ti)f([ti, ti+1])

and S(δ) :=
⋃

|Z|≤δ SZ of X. Obviously (S(δ))δ>0 is a filter base, and for continuous f
the so defined filter is, in fact, a Cauchy filter w.r.t. the induced uniform convergence
structure on X.

Indeed, recall that a Cauchy filter on a limit vector space is a filter F such that F ×F
is a uniformity. As the induced uniform limit structure on X is generated by filters
convergent to zero and the limit vector space X is locally convex, a filter F is Cauchy
exactly iff a locally convex filter G → 0 exists such that for every U ∈ G there is a
V ∈ F with V −V ⊂ U . Now let G → 0 be an arbitrary locally convex filter. Choose to
a convex set U ∈ G a δ > 0 with f(ξ)−f(ζ) ∈ U for |ξ− ζ| ≤ δ (such a δ exists because
the continuous map f on the compact set [a, b] is automatically uniformly continuous).
Then for ξi, ζi ∈ [ti, ti+1] the relation

n−1
∑

i=0

(ti+1 − ti)(f(ξi)− f(ζi)) ∈
n−1
∑

i=0

(ti+1 − ti)U = U

holds for all subdivisions Z with |Z| ≤ δ, because U is convex. Thus S(δ)− S(δ) ⊂ U
is valid, and hence the filter generated by (S(δ))δ>0 is a Cauchy filter.

Therefore call a function f on [a, b] with values in a complete and separated locally
convex limit vector space X Riemann integrable whenever (S(δ))δ>0 generates a Cauchy

filter, and denote its limit by the symbol
∫ b

a
f , called the Riemannian integral of f over

the interval [a, b]. If X is not complete, the limit
∫ b

a
f can still be considered as an

element of the completion of X. However, for arbitrary limit vector spaces there seem
are different types of completions, see [Reed].

The Riemannian integral is linear and the mean value theorem holds: For a continuous
f : [a, b] → X and a convex set C ⊂ X with f([a, b]) ⊂ C the relation

∫ b

a
f ∈ (b− a)C

holds. Also the inequality p(
∫ b

a
f) ≤

∫ n

a
p ◦ f is valid for every continuous pseudonorm

p on X. Further for complete separated locally convex topological vector spaces X the
Riemannian integral of a continuous map f on a compact interval and the Lebesgue
integral coincide. Indeed,

∫

[a,b]
x′ ◦ fdλ =

∫ b

a
x′ ◦ f holds for the R-valued Lebesgue

and Riemannian integral, and as x′(
∫ b

a
f) =

∫ b

a
x′ ◦ f is valid according to the equality

x′(SZ) =
∑

(ti+1 − ti)(x
′ ◦ f)([ti, ti+1]) and the continuity of x′, also the X-valued

Lebesgue and Riemannian integral coincide.
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5.2 Differentiation

There are various notions of differentiable maps on limit vector spaces. Some of them
shall be discussed in this section. As before, the focus lies on locally convex topological
vector spaces and the tensorial closed category of locally convex pseudotopological limit
vector spaces.

Partially Differentiable Maps

A continuous map c from an interval containing zero into a limit space M with c(0) = m
is called a curve in M through m. Note that zero could be the left endpoint resp. the
right endpoint resp. an inner point of the interval I, and thus there are three different
types of curves through m. Depending on the type of the curve c through m, define
its germ at zero as the equivalence class of c w.r.t. the equivalence relation on the set
of all curves of the same type, where c ∼ d if there is a neighbourhood I of zero in R

+
0

resp. R
−
0 resp. R with c|I = d|I . The germ at zero of a curve c through m is shortly

called an inner resp. outer resp. bothsided direction at m ∈M .

Omit the adjectives inner, outer or bothsided, whenever the type of a direction is not
important, and just say “the direction c at m“instead of “the direction at m represented
by the curve c“. To a direction c and a scaling parameter s ∈ R define the scaled
direction sc : t 7→ c(st). Note that (s, c) 7→ sc is an operation37 of (R, ·) on the set of
all directions at a certain point. A negative scaling parameter s maps inner directions
to outer directions, and conversely. Further note that every curve c : I → M on an
interval I with r ∈ I induces the direction t 7→ c(r + t) at the point c(r) ∈ M .

Now let us specify certain properties of directions in a separated limit vector space X,
where the earlier defined properties will be weaker than the following. A direction c in X
is called locally Lipschitz continuous, if there is a neighbourhood I of zero such that for
every continuous pseudonorm p 38 there exists a constant L with p(c(s)−c(t)) ≤ L|s−t|
for all s, t ∈ I. The direction c is called differentiable, if the limit

ċ := lim
06=t→0

c(t)− c(0)

t

exists, and ċ is called the derivative of c. Note that the differentiation c 7→ ċ is homo-
geneous. If a direction can be represented by a curve c, which induces differentiable
directions at all points c(t) for t in some neighbourhood of zero, then the direction
represented by c is called differentiable. If further the derivatives ċ(t) of the induced
directions at c(t) form a continuous map t 7→ ċ(t) on a neighbourhood of zero, then the
direction is called continuously differentiable or a C1-direction. If moreover t 7→ ċ(t) is
not only continuous but locally Lipschitz continuous, then the direction is called locally
Lipschitz differentiable or a Lip1-direction. By regarding t 7→ ċ(t) as new direction in X,

37An operation of (R, ·) on a set C is a map R × C 3 (s, c) 7→ sc ∈ C such that (ss′)c = s(s′c),
1c = c and 0c = 0d is valid for all c, d ∈ C, s, s′ ∈ R.

38The notion of a continuous pseudonorm makes sense also for a limit vector space, although usually
we consider continuous pseudonorms on locally convex topological vector spaces only.
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these notions can be iterated to define k-times differentiable, Ck- and Lipk-directions.
Hereby higher order derivatives are denoted by c(k). Note that every Ck+1-direction on
a locally convex topological vector space is also a Lipk-direction 39. A direction c is
called smooth or a C∞-direction, if it is a Ck-direction (or a Lipk-direction) for every
k ∈ N, and analytical or a Cω-direction, if

∑

k = 1∞tkc(k) converges on some neigh-
bourhood of zero. Finally a direction of the form t 7→

∑n
k=1 t

kxk is called polynomial
and especially directions of the form t 7→ x+ th are called linear.

A map f : M → Y from a space M into a separated limit vector spaces Y is called
partially differentiable atm resp. partially differentiable resp. partially Ck resp. . . . into
the direction c, if the direction f ◦c is differentiable at f(m) resp. differentiable resp. Ck

resp. . . . , and its derivative ∂f
∂c

(m) := ˙(f ◦ c) is called the partial derivative of f into the

direction c at m. Analogously higher order derivatives ∂kf
∂ck (m) := (f ◦ c)(k) are defined.

Trivially the chain rule is valid, i.e. if g : L→M is a map and c is a direction at l ∈ L,
then a map f : M → Y is partially differentiable at g(l) into the direction g ◦ c, iff f ◦ g

is partially differentiable at l into the direction c, and ∂(f◦g)
∂c

(m) = ∂f
∂(g◦c)

(g(m)) is valid.
Moreover, as differentiation of directions is homogeneous, also partial differentiation
∂f
∂sc

(a) = s∂f
∂c

(a) is homogeneous.

From now on assume that M is a subset of a separated limit vector space X. To
distinguish directions in X and M , a direction c in M is called tangential to M . A
tangential direction c is called differentiable resp. Ck resp. . . . , if its prolongation to
X is differentiable resp. Ck resp. . . . . Derivatives ċ ∈ X of tangential directions are
called tangential vectors, and we denote the set of all tangential vectors at m ∈ M by
TmM . Note that at the moment TmM does not need to be a linear subspace of X, as
M does not need to be a nice subset of M like, for example, an open set.

A map f : X ⊃ M → Y is called differentiable resp. Ck resp. . . . along differentiable
resp. Ck- resp. . . . -directions atm, if f is partially differentiable resp. partially Ck resp.
partially . . . into all differentiable resp. Ck- resp. . . . -directions, which are tangential
to M at m.

In classical analysis a map f : X ⊃ M → Y is partially differentiable at an inner
point m ∈ M , if f is differentiable at m along linear directions40, as this condition is
equivalent to the existence of the limits

∂f

∂h
(m) := lim

06=t→0

f(m+ th)− f(m)

t
.

39Continuity of t 7→ c(k+1)(t) on some neighbourhood of zero implies that for every continuous
pseudonorm p on X the function p(c(k+1)) is locally bounded near every t and hence bounded on
compact intervals. Thus for a Ck+1 direction there is a compact interval I containing zero such that
for every continuous pseudonorm p there exists a constant C with suph∈I p(c(k+1)(h)) ≤ C. Now the
mean value theorem implies that the inequality p(c(k)(s) − c(k)(t)) ≤

(

supr∈I p(c(k+1)(r))
)

|s − t| is

valid for every continuous pseudonorm p on X and s, t ∈ I , hence c(k) is locally Lipschitz continuous.
40Note that all linear directions at m are tangential to M , because m is required to be an inner point

of M .
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For such maps f the derivative Df(m) : h 7→ ∂f
∂h

(m) is well-defined at inner points
m ∈ M , and in classical analysis f is called Gateux-differentiable at m, if Df(m) is a
continuous linear map from X to Y .

However, for maps f : X ⊃ M → Y , which are differentiable (or Ck or . . . ) along
differentiable (or Ck- or . . . -) directions at m, it makes more sense to consider the map
Tmf : ċ 7→ ∂f

∂c
(m) from the tangential space TmM ⊂ X to Y . This map is well-defined,

if every partial derivative ∂f
∂c

(m) depends on the tangential vector ċ of the direction c
only. A map f with this property could be called Gateux-differentiable at m, if Tmf
had a continuous linear extension to the linear subspace Span(TmM) ⊂ X 41. But as
closed subspaces have much better properties than arbitrary subspaces, let us call a map
f Gateux-differentiable at m, if f is differentiable along differentiable directions at m
and has a well-defined derivative Tmf , which can be extended to a continuous linear on
the closed linear subspace Span(TmM) ⊂ X. Note that this extension is automatically
unique, as Y is separated. Further for a complete space Y the existence of a continuous
linear extension to Span(TmM) implies the existence of a continuous linear extension
to Span(TmM) 42. Usually for a Gateux-differentiable map f the continuous linear
extension is again denoted by Tmf and is called the Gateux-derivative of f , while TmM
denotes the closed linear subspace generated by the original set of tangential vectors.

Due to our requirement, that a Gateux-differentiable map is differentiable along differ-
entiable (and not only linear) directions and that the partial derivative into a direction
c depends on ċ only, the chain rule is already valid on the level of Gateux-differentiable
maps: If g : W ⊃ L→M ⊂ X and f : X ⊃M → Y are Gateux-differentiable at l ∈ L
resp. g(l) ∈M , then f ◦g is Gateux-differentiable at l and Tl(f ◦g) = Tg(l)f ◦Tlg holds.
Indeed,

∂(f ◦ g)

∂c
(l) =

∂f

∂(g ◦ c)
(g(l)) = Tg(l)f ˙(g ◦ c) = Tg(l)f(

∂g

∂c
(l)) = Tg(l)f(Tlg(ċ))

is valid for all tangential directions c at l ∈ L, thus the continuous linear map Tg(l)f ◦Tlg
is the extension looked for.

But maybe a map, which transports a certain kind of directions, is automatically
Gateux-differentiable ? In general this is not true for maps, which transport differ-
entiable or Ck-directions 43. On the contrary, a map f , which is Lipk along Lipk-

41Here linear extensions have to be considered, because generally TmM is not a linear subspace.
42Proof: The continuous linear map Tmf on the linear subspace Span(TmM) of X is automatically

uniformly continuous, so that it maps Cauchy filters on Span(TmM) to Cauchy filters on Y . Let F be
a filter on Span(TmM), whose prologation to X converges to x. Then especially F is a Cauchy filter,
so that Tmf(F) converges to a point y ∈ Y , as Y is complete. Further the point y does not depend
on the filter F , but merely on its limit x: For every other filter G → x on Span(TmM) the Cauchy
filter Tmf(F ∩ G) = Tmf(F) ∩ Tmf(G) on Y is convergent, and its limit is again the point y, as the
finer filter Tmf(F) converges to y. Thus also Tmf(G) converges to y, as Tmf(F ∩ G) is coarser and
converges to y. Hence x 7→ y defines the continuous linear extension of Tmf to the closed subspace
Span(TmM).

43For example, [Kriegl,Michor, 3.3] discuss the map

f(x, y) :=
1

x2 + y2
(x3 − 3xy2, 3x2y − y3) ,
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directions, has automatically a Gateux-derivative for a large class of vector spaces, the
so-called convenient vector spaces. In fact, the convenient calculus of [Kriegl,Michor]
and [Fröhlicher,Kriegl] proves that for convenient vector spaces X, Y a map f on a
c∞-open set M ⊂ X 44 is Lipk along Lipk-directions, iff the partial derivatives form a
derivative Tf : M → L(X, Y ), m 7→ (ċ 7→ ∂f

∂c
(m)), which is Lipk−1 along Lipk−1 direc-

tions, see also A. Hereby L(X, Y ) denotes the natural space of maps in the tensorial
closed category of bornological locally convex vector spaces and is itself a convenient
vector space, see 4.3. Thus by considering convenient vector spaces X, Y to be en-
dowed with their bornological topology, a map which is Lipk along Lipk-directions has
automatically a Gateux-derivative which is Lipk−1 along Lipk−1-directions.

However, as in classical analysis on Banach spaces, maps with a Gateux-derivative
do not have to be continuous. Moreover convenient calculus does not help to prove
generalizations of existence theorems on Banach spaces. This is the reason why in this
thesis a nonlinear analysis using Ck-maps w.r.t. the tensorial closed category of locally
convex pseudotopological limit vector spaces is developed, where existence theorems
can be proved in a Banach-like style due to the fact that C1-maps are automatically
locally Lipschitz continuous.

But before we start to develop this analysis, let us discuss, under which conditions a
Gateux-differentiable map on a non-open set M has a derivative defined on the whole
space X. Indeed, to have a large class of manifolds modeled over locally convex spaces,
we have to consider Ck-maps on non-open sets M , as such sets are needed as domains
of charts. But to define a C1-map as a Gateux-differentiable map with continuous
derivative into the natural space L(X, Y ) of continuous linear maps, the derivative has
to be defined on the whole space X even for a non-open set M . Therefore the set
M should have the property that its tangential space TmM is at every point m the
whole space X, or equivalently that the original set TmM of tangential vectors satisfies
Span(TmM) = X. Call such a set M tangentially dense at m. Open subsets M of X
are tangentially dense at every m ∈ M , but there are much smaller sets M , which are
tangentially dense at every m ∈M , e.g. tangentially open or linearly dense sets.

To discuss such sets, let us introduce some notions: Denote by U(0) the neighbourhood
filter of 0 in R

+
0 , R

−
0 or R, depending on the type of the considered directions, tangential

spaces and derivatives. The topology generated by the convergences c(U(0)) → x for
every tangential differentiable direction c at x is called the tangential topology on X,
and obviously this topology is finer than the original topology of X. A set M ⊂ X is
called tangentially open if it is open w.r.t. the tangential topology on X, or equivalently,
if every direction c tangential to X at a point m ∈ M is also tangential to M . If M

which satisfies f(t(x, y)) = tf(x, y) and can be continuously extended to R2 by f(0, 0) := (0, 0). The
map f is partially (continuously) differentiable along (continuously) differentiable directions, and the
derivative Df(0, 0) is well-defined and continuous due to the validity of

∂f

∂c
(0, 0) = lim

t→0

f(c(t))− f(c(0))

t
= lim

t→0
f(

c(t)

t
) = f(ċ)

for (continuously) differentiable directions c at (0, 0). But obviously Df(0, 0) : ċ 7→ f(ċ) is not linear.
44c∞-open sets are defined in A and have the property TmM = X for all m ∈M .
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is a neighbourhood of the point m w.r.t. the tangential topology on X, then m is
called a tangentially inner point of M . Obviously every set M is tangentially dense
at tangentially inner points m ∈ M , in fact, the original set of tangential vectors is
the whole space X. Note that the tangential topology is intimately related to the c∞-
topology defined by [Kriegl,Michor] (see A), as the c∞-topology is given by the same
convergences, but instead of all tangential differentiable directions only the smooth
directions are used. In the same way, the linear topology on X can be defined by the
convergences c(U(0))→ x for linear directions c : t 7→ x+ th, h ∈ X, at x, and linearly
open sets M can be considered. Further a set M can be called linearly dense at m ∈ M ,
if the linear directions at m ∈ M span a dense subspace of X, i.e. if there is a dense
set of vectors h in X such that x + Ih ⊂ M is valid for some interval containing zero.
Trivially for a subset M of X the implications open ⇒ tangentially open ⇒ linearly
open ⇒ linearly dense ⇒ tangentially dense are valid. Thus there are a lot of sets M ,
which are not open, but where every tangential space TmM is the whole space X.

Differentiable Maps

If a map f : X ⊃ M → N ⊂ Y is Gateux-differentiable at a point m where M is
tangentially dense, then the continuous affine linear map m′ 7→ f(m) + Tmf(m′ −m)
is a good approximation of f along tangential differentiable directions at m, but not
uniformly on a whole neighbourhood of m in M . That’s why differentiable maps are
introduced.

Fix a tensorial closed category of vector spaces endowed with a compatible topological
structure. A map f : X ⊃M → Y is called differentiable at a tangentially dense point
m ∈ M (in the sense of approximation with continuous linear maps) if there is a map
∆ : M → L(X, Y ) into the natural space L(X, Y ) of continuous linear maps such that
f(m′) − f(m) = ∆(m′)(m′ − m) holds for all m′ ∈ M and ∆ is continuous at m. As
continuity of ∆ at m depends on the topological structure of L(X, Y ) and thus on the
chosen category, also differentiability depends on the chosen category.

A differentiable map f is automatically continuous and Gateux-differentiable at m
with derivative Tmf = ∆(m). Indeed, m′ 7→ ∆(m′)(m′ −m) is continuous and has the
value 0 at m, so that limm′→m f(m′) − f(m) = 0 holds. Further if c is a tangential
differentiable direction at m, then f is partially differentiable into the direction c with
∂f
∂c

(m) = ∆(m)(ċ), because f(c(t))− f(c(0)) = ∆(c(t))(c(t)−m) implies

∂f

∂c
(m) = lim

06=t→0

f(c(t))− f(c(0))

t
= lim

06=t→0
∆(c(t))(

c(t)− c(0)

t
) = ∆(m)(ċ)

due to the continuity of ∆ in both arguments and the homogenity of each continuous
linear map ∆(c(t)). Thus f is Gateux-differentiable at m with derivative Tmf = ∆(m).

Further the chain rule is valid for differentiable maps: If g : L → M and f : M → N
are differentiable at l ∈ L resp. g(l) ∈ M , then f ◦ g is also differentiable at l with
derivative Tl(f ◦ g) = Tg(l)f ◦ Tlg. Indeed,

f(g(l′)) = f(g(l)) + ∆f (g(l
′))(g(l′)− g(l)) = f(g(l)) + (∆f (g(l

′)) ◦∆g(l
′)) (l′ − l)
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is valid and ∆f◦g(l
′) := ∆f(g(l

′))◦∆g(l
′) is again continuous at l into the natural space of

continuous linear maps, as the composition of continuous linear maps is continuous and
g is continuous at l. Thus f ◦ g is differentiable, and the equality Tl(f ◦ g) = Tg(l)f ◦Tlg
is implied by

∆f◦g(l) = lim
l′→l

∆f (g(l
′)) ◦∆g(l

′) = Tg(l)f ◦ Tlg .

It is usually not easy to test, whether a map f is differentiable (in the sense of approx-
imation with continuous linear maps) at a tangentially dense point m, as it is not easy
to find a map ∆ with the requested properties. It would be much easier to test dif-
ferentiability, if apart from topological constructions only the supposed derivative Tmf
were used in the definition of differentiability, because Tmf can be computed a priori
by calculating partial derivatives. Such a notion of differentiability can be obtained by
considering convergence properties of the remainder and is called differentiability (in
the sense of remainder convergence).

For a differentiable map f at m (in the sense of approximation with continuous linear
maps) the remainder R(m′) := f(m′)−f(m)−Tmf(m′−m) = (∆(m′)−Tmf)(m′−m)
has usually special convergence properties, as A(m′) := ∆(m′)−Tmf is continuous with
value 0 ∈ L(X, Y ) at m and convergence in the natural space L(X, Y ) is usually much
stronger than merely convergence in C(X, Y ) for a chosen tensorial closed category of
vector spaces endowed with a compatible topological structure.

Example: In the category of normable vector spaces the continuity of a map A :
X ⊃ M → L(X, Y ) at a point m ∈ M with value A(m) = 0 implies the equality

limm6=m′→m
‖A(m′)(m′−m)‖

‖(m′−m‖
= 0 45. Thus the remainder R(m′) of a differentiable map

f (in the sense of approximation with continuous linear maps) has the convergence
property

lim
m6=m′→m

‖R(m′)‖

‖m′ −m‖
= 0 (4)

But why should we not use this consequence of differentiability (in the sense of approx-
imation with continuous linear maps) within the category of normable vector spaces
to define a new notion of differentiability (in the sense of remainder convergence)? A
map f : X ⊃ M → N ⊂ Y is called differentiable (in the sense of remainder conver-
gence) at a point m where M is tangentially dense, if there is a continuous linear map
Tmf : X → Y such that the remainder R(m′) := f(m′)− f(m)− Tmf(m′−m) has the
convergence property (4). In fact, for inner points m ∈ M this is the usual notion of
Fréchet differentiability in classical analysis.

More generally, fix a convergence property for a map R : X ⊃ M → Y at a point
m where M is tangentially dense, and assume that having this convergence property
implies R(m) = 0 as well as the Gateux-differentiability of R at m with derivative
0. Usually such convergence properties are derived by considering the convergence of

45Proof: If A : X ⊃ M → L(X, Y ) is continuous at m with value A(m) = 0, then to every ε > 0

there is a neighbourhood U of m such that ‖A(m′)h‖
‖h‖ ≤ ‖A‖ ≤ ε holds for all m′ ∈ U and h 6= 0,

especially for those h 6= 0 with h = m′ −m.
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R(m′) := A(m′)(m′ −m) at m ∈ M within some tensorial closed category, where A :
X ⊃ M → L(X, Y ) is a continuous map into the natural space L(X, Y ) of continuous
linear maps with value A(m) = 0 at m.

Now a map f : X ⊃ M → N ⊂ Y is called differentiable (in the sense of remainder
convergence) at a point m ∈M where M is tangentially dense, if there is a continuous
linear map Tmf : X → Y such that the remainder R(m′) := f(m′)−f(m)−Tmf(m′−m)
has the fixed convergence property at m ∈M . As then R is Gateux-differentiable at m
with derivative 0, the map f is automatically Gateux-differentiable at m with derivative
Tmf .

For example, in the category of limit vector spaces A(m′)→ 0 in L(X, Y ) for m′ → m
is equivalent to lim(m′,x′)→(m,x)A(m′)x′ → 0. Now if c is a tangential direction at m,
then

lim
06=t→0

R(c(t))

t
= lim

06=t→0
A(c(t))

c(t)− c(0)

t
= 0

holds for the map R(m′) = A(m′)(m′ − m). Thus the derived convergence property

is lim06=t→0
R(c(t))

t
= 0 for all tangential differentiable directions c at m. Using this

convergence property, a map f is differentiable (in the sense of remainder convergence)
at a point m where M is tangentially dense, if there is a continuous linear map Tmf :
X → Y with Tmf(ċ) = ∂f

∂c
(m) for all tangential differentiable directions c at m, i.e.

differentiability is the same as Gateux-differentiability. This is not surprising, as in the
category of all limit vector spaces the topological structure of L(X, Y ) is induced by
L(X, Y ) ⊂ C(X, Y ) and thus convergence in L(X, Y ) is not stronger than convergence
in C(X, Y ). Note that also for this weak notion of differentiability the chain rule is
valid, as it is valid for Gateux-differentiable maps, but continuity of f at m can not be
deduced. In [Keller, 1.2] convergence properties of remainders in other tensorial closed
categories are derived, e.g. in the category of bornological locally convex topological
vector spaces or the category of equable limit vector spaces.

Finally, let us consider the category of pseudotopological locally convex limit vector
spaces or equivalently the category of direct limits of locally convex topological vector
spaces (within the category of limit vector spaces) we are mainly interested in. Let
X, Y be locally convex topological vector spaces and let A : X ⊃ M → limσ Lσ(X, Y )
be continuous with value 0 at m, then there is a σ mapping continuous pseudonorms
on Y to continuous pseudonorms on X such that limm′→m q

σ(q)(A(m′)) = 0 holds for
all continuous pseudonorms q on Y . Especially for every pair (q, ε) (q a continuous
pseudonorm on Y and ε > 0) there is a pair (p, δ) (p a continuous pseudonorm on X
and δ > 0) such that p(m′ − m) ≤ δ implies q(A(m′)(m′ − m)) ≤ εp(m′ − m). Thus
the derived convergence property is the condition that to every (q, ε) there has to be
a (p, δ) such that p(m′ −m) ≤ δ implies q(R(m′)) ≤ εp(m′ −m), or symbolically that

to every q there is a p with limm′→m
q(R(m′))
p(m′−m)

= 0. As required, a map R satisfying this
convergence property has the value 0 and is Gateux-differentiable with derivative 0 at
m.

The notion of differentiability induced by this convergence property of the remainder
has many good properties. In fact, a differentiable map f : X ⊃ M → N ⊂ Y is
automatically continuous at m ∈ M , as the convergence property implies q(R(m′)) ≤ ε
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for p(m′ −m) ≤ min(δ, 1), thus R and hence f(m′) = f(m) + Tmf(m′ −m) +R(m′) is
continuous at m. Also the chain rule is valid, i.e. if g and f are differentiable, then also
g ◦ f is differentiable (in the sense of remainder convergence). Indeed, the equation

f(g(l+h)) = f(g(l)+Tlg(h)+Rg(h)) = f(g(l))+Tg(l)f(Tlg(h))+Tg(l)f(Rg(h))+Rf (h
′)

is valid, where h′ := Tlg(h)+Rg(h) has been defined. Now to every pseudonorm r there

is a pseudonorm p such that limh→0
r(Tg(l)f(Rg(h)))

p(h)
= 0 holds 46, and to every r there is

a p such that limh→0
r(Rf (h′))

p(h)
= 0 is valid 47. Hence Rf◦g(h) := f(g(l + h))− f(g(l))−

Tg(l)f(Tlg(h)) has the desired remainder property liml′→l
r(Rf◦g(l′))

p(l′−l)
= 0.

Ck-Maps

Fix again a tensorial closed category of vector spaces endowed with a compatible topo-
logical structure. For a Gateux-differentiable map f : X ⊃ M → Y on a tangentially
dense set M the derivative Tmf at each m ∈ M is defined on the whole space X,
and hence f induces a map Tf : M → L(X, Y ) into the natural space L(X, Y ) of
continuous linear maps. If this map Tf is continuous, then f is called continuously
differentiable or a C1-map. Especially the map Tf : M × X → Y is continuous,
because the topological structure of L(X, Y ) is finer than the one induced by the in-
clusion L(X, Y ) ⊂ C(X, Y ), and thus the continuous map Tf : M → L(X, Y ) yields
a continuous map Tf : M × X → Y . However, as a C1-map is merely required to
be Gateux-differentiable, it is not obvious, whether a C1-map is also continuous or
differentiable.

Let us merely discuss the case we are mainly interested in, where X is a locally convex
topological vector space. [Keller] proves for different categories - like e.g. the cate-
gory of limit vector spaces and the category of equable limit vector spaces - that a
C1-map on an open subset M of a locally convex topological vector space X is con-
tinuous and differentiable (in the sense of remainder convergence) 48. Let us sum-
marize his arguments and generalize them to tangentially dense subsets M ⊂ X.
Generally f(c(1)) − f(c(0)) =

∫ 1

0
Tc(t)f(ċ(t))dt is valid for every differentiable curve

c : [0, 1] → M , but it is not possible to conclude from this equation the continuity or
differentiability of f . In fact, even if c(0), c(1) are connected by a short path in X,
the subset M could have a fractal structure so that a path in M between c(0) and
c(1) could be forced to be long. But if M is locally convex, i.e. the convex neigh-
bourhoods of m in M generate the neighbourhood filter of m in the relative topology

46To r choose q with rq(Tg(l)f) <∞, to q choose p with limh→0
q(Rg(h))

p(h) = 0.
47To r choose q such that limh′→0

r(Rf (h′))
q(h′) = 0, to q choose p such that q(h′)

p(h) is bounded on a

neighbourhood of 0. The last choice is possible because h′ = Tlg(h)+Rg(h) and thus for every ε there
is a neighbourhood U of 0 such that h ∈ U implies q(h′) ≤ qp(Tlg)p(h) + εp(h).

48The C1-maps of [Keller] are assumed to be defined on an open set M and are only required to
be partially differentiable into linear directions. But the chain rule proved by [Keller] guarantees that
a C1-map is also (continuously) differentiable along (continuously) differentiable directions, thus the
only difference to our setting is the openess of M .
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of M ⊂ X, then a continuously differentiable map f on M is continuous. Indeed,
limh→0 f(m + h) − f(m) =

∫ 1

0
(limh→0 Tm+thf(h)dt = 0 is valid, because on the one

hand for a convex neighbourhood U ⊂M of m with m+ h ∈ U the line c(t) = m+ th,
t ∈ [0, 1], is contained in U , and because on the other hand the derivative Tf is contin-
uous in both arguments so that limit and integration commute. Thus f is continuous
in this case, and f(m+ h)− f(m) = (

∫ 1

0
Tm+thfdt)h shows that f is also differentiable

(in the sense of approximation by continuous linear maps, and hence also in the weaker
sense of remainder convergence). Moreover the composition f ◦ g of two continuously
differentiable maps is continuously differentiable, i.e. the chain rule is valid for C1-
maps on locally convex sets. Indeed, T (f ◦ g) = Tg(·)f ◦ T·g holds by the chain rule
for Gateux-differentiable maps and is itself continuous by the continuity of g and the
continuity of the composition ◦ of continuous linear maps.

We want to make explicit these arguments again for the category we are mainly in-
terested in, the category of pseudotopological locally convex limit vector spaces or
equivalently direct limits of locally convex topological vector spaces: Let f be a contin-
uously differentiable map on a locally convex and linearly dense subset M of a separated
locally convex topological vector space X into Y . To prove that f is continuous and
differentiable, we have to show that there is a map σ between the sets of continuous
pseudonorms on Y resp. X such that for every continuous pseudonorms q on Y and
every ε > 0 there is a neighbourhood U of m in M with q(R(h)) ≤ εσ(q)(h) for all
m + h ∈ U . Now there is a convex neighbourhood U ⊂M such that TUf ⊂ Lσ(X, Y ),
because Tf is a continuous map into the natural space of maps limσ Lσ(X, Y ), and by
making U smaller it can also be guaranteed that qσ(q)(Tm+thf − Tmf)σ(q)(h) ≤ ε holds

for all h with m + h ∈ U . The remainder satisfies R(h) =
∫ 1

0
(Tm+thf − Tmf)hdt, and

thus the inequality

q(R(h)) ≤ sup
0≤t≤1

qσ(q)(Tm+thf − Tmf)σ(q)(h) ≤ εσ(q)(h)

holds for all h with m + h ∈ U . Hence f is differentiable in the sense of remainder
convergence.

The most important property of C1-maps w.r.t. the tensorial closed category of locally
convex pseudotopological limit vector spaces is that such C1-maps are locally Lipschitz
continuous. Call a map f locally Lipschitz continuous, if to every point m0 ∈ M
there is a neighbourhood U ⊂ M and a σ mapping continuous pseudonorms on Y to
continuous pseudonorms on X such that q(f(m)−f(m′)) ≤ Lqσ(q)(m−m′) holds with a
nonnegative number Lq <∞ for all continuous pseudonorms q on Y and all m,m′ ∈ U .
The smallest of such numbers Lq is denoted by qσ(q)(f)(U). Now let f be continuously
differentiable, then to a point x0 there is a convex neighbourhood U and a σ such that
TUf ⊂ Lσ(X, Y ). But on a convex set U the mean value theorem is valid, i.e. for every
m ∈ U , y′ ∈ Y ′ and h ∈ X with m + h ∈ U there exists a r = r(m, y′, h) ∈ (0, 1) such
that y′(f(m + h) − f(m)) = y′(Tm+rhf(h)) holds 49. Further, as to every continuous
pseudonorm q on Y , m ∈ U and h ∈ X with m + h ∈ U there exists a y ′ ∈ Y ′ with

49Proof: Applying the mean value theorem on R to the function t 7→ y′(f(m + th)) guarantees the
existence of a number r ∈ (0, 1) with y′(f(m + h)− f(m)) = y′(Tm+rhf(h))
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y′(f(m + h) − f(m)) = q(f(m + h) − f(m)) and y′(y) ≤ q(y) by the Hahn-Banach
theorem, the mean value theorem implies the existence of a r = r(q,m, h) ∈ (0, 1) with

q(f(m+ h)− f(m)) = y′(Tm+rhf(h)) ≤ q(Tm+rhf(h)) . (5)

Because of m + rh ∈ U also Tm+rhf ∈ Lσ(X, Y ) holds and thus

q(f(m+ h)− f(m)) ≤

(

sup
ξ∈U

qσ(q)(Tξf)

)

σ(q)(h)

is valid. By making U smaller, for a single q it is possible to choose the Lipschitz
constants arbitrarily near to qσ(q)(Tm0f) due to the continuity of Tf .

Remark that the Lipschitz continuity of a map f implies, that f has a really strong
local character. In fact, q(f(m)− f(m′)) depends merely on the contribution of m,m′

to the value σ(q)(m−m′). For example, an operator F on C(R,R), for which the value
F (x)(t) at t depends on the values of x(·) on the whole set R and not only on the values
of x(·) on a compact subset of R, can not be a C1-map, as this property contradicts
the existence of a compact set K such that |F (x)(t)− F (y)(t)| ≤ supK |x− y|.

Higher Order Derivatives

Let f be a C1-map and suppose that also Tf : X ⊃ M → L(X, Y ) is a C1-map. Then
f is called a C2-map and

T 2f := T (Tf) : X ⊃M → L(X,L(X, Y )) = L2(X, Y ) ∼= L(X ⊗X, Y )

is a continuous map into the continuous bilinear maps on X. More generally call
f : X ⊃M → Y a Ck-map if Tf : X ⊃ M → L(X, Y ) exists and is a Ck−1-map, while
the k-th derivative of f is defined by T k(f) := T (T k−1f) : X ⊃ M → Lk(X, Y ).

Note that the k-th derivative T kf(m) of a Ck-map f at m ∈M is a symmetric k-linear
map. Indeed, T 2

mf(x1, x2) = T 2
mf(x2, x1) has to be proved. By defining A : R

2 → X,
A(e1) := m + x, A(e2) := m + x′, it suffices to prove ∂φ

∂x∂y
= ∂φ

∂y∂x
for the function

φ := x′ ◦ f ◦ A : R2 → R and all x′ ∈ X ′. But this is a standard result of classical
analysis, and thus symmetry is proved also in the more general case of locally convex
topological vector spaces.

5.3 The Contraction Mapping Principle

Let X be a uniform space and T : X → X an operator. A point x ∈ X with Tx = x
is called a fixed point of T . To prove a generalisation of the contraction mapping
principle, recall that the uniform structure on X is generated by the uniformly con-
tinuous pseudometrics (see [Schubert, II.2.7, Satz 2]). Let d, δ be such uniformly con-
tinuous pseudometrics on X and denote by dδ(T ) ∈ [0,∞] the smallest number with
d(Tx, Ty) ≤ dδ(T )δ(x, y) for all x, y ∈ X. An operator T is called Lipschitz continuous
if there is a set D of pseudometrics generating the uniform structure of X and a map
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σ : D → D such that dσ(d)(T ) <∞ holds for all d ∈ D. Clearly a Lipschitz continuous
operator is uniformly continuous. A Lipschitz continuous operator T is called a strict
contraction if the series

∞
∑

k=0

(

k−1
∏

l=0

σl(d)σl+1(d)(T )

)

σk(d)(x, y)

converges for all d ∈ D and every x, y ∈ X.

Note that for a metric space (X, d) both notions are generalisations of the usual defini-
tions: The set D := {d} generates the uniform structure of X, so that the usual notion
of Lipschitz continuity is obtained by setting σ(d) := d and L := dd(T ) < ∞, while
being a strict contraction is equivalent to the convergence of

∑∞
k=0 L

kd(x, y) and thus
to L < 1.

Theorem 5.3 Let X be a complete and separated uniform space. Then every strict
contraction T : X → X has a unique fixed point, the limit of the sequence T nx0 starting
at an arbitrary x0 ∈ X.

Proof: Let σ : D → D be the map of pseudometrics associated to the strict contraction
T and choose an arbitrary pseudometric d ∈ D. Obtain from

d(T k+1x0, T
kx0) ≤

(

k−1
∏

l=0

σl(d)σl+1(d)(T )

)

σk(d)(Tx0, x0)

the inequality

d(T nx0, T
mx0) ≤

n−1
∑

k=m

d(T k+1x0, T
kx0) ≤

n−1
∑

k=m

(

k−1
∏

l=0

σl(d)σl+1(d)(T )

)

σk(d)(Tx0, x0)

for n > m. As T is a strict contraction and d ∈ D, the last term is a partial sum
of a convergent series. Hence for every ε > 0 there is an N such that this last term
is smaller than ε for every n > m > N . Thus for every ε > 0 there is an N with
d(T nx0, T

mx0) ≤ ε for all n,m ≥ N . As D generates the uniform structure of X and
d ∈ D is arbitrarily chosen, the sequence T nx0 is a Cauchy sequence. The completeness
of X now yields the convergence of the Cauchy sequence T nx0 to a limit x ∈ X.

This point x is a fixed point of T , because the continuity of T implies x = limn T
nx0 =

T (limn T
nx0) = Tx. Moreover every other fixed point of T equals x. Indeed, let y be

another fixed point of T , then to every d ∈ D and every ε > 0 there is an N such that

d(x, y) = d(T nx, Tmy) ≤
∑n−1

k=m

(

∏k−1
l=0 σ

l(d)σl+1(d)(T )
)

σk(d)(x, y) is smaller than ε for

all n > m > N , so that d(x, y) = 0 holds for every d ∈ D and hence the separateness
implies x = y. 2
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Corollary 5.4 Let X be a complete and separated locally convex vector space, let A ⊂
X be a closed subset and let T : A → A be a strict contraction 50. Then there exists a
unique fixed point x ∈ A of T .

The proof of the contraction mapping principle also shows that a fixed point already
exists whenever the series

∞
∑

k=0

(

k−1
∏

l=0

σl(d)σl+1(d)(T )

)

σk(d)(Tx0, x0)

converges for some x0 and all d ∈ D. However, in this case the fixed point x obtained
as the limit of T nx0 can be guaranteed to be unique only in the subspace of all y for
which the series

∞
∑

k=0

(

k−1
∏

l=0

σl(d)σl+1(d)(T )

)

σk(d)(x, y)

converges for every d ∈ D.

Example: Denote by C(R,R) the space of continuous functions endowed with the
uniform structure of uniform convergence on compact subsets and consider the linear
operator (Tx)(t) := 1

2
x(t + 1). Let pK := maxK | · | and σ(pK) := pK+1, then the

inequality pK(Tx − Ty) ≤ 1
2
σ(pK)(x − y) is valid, so that T is Lipschitz continuous

with p
σ(pK )
K (T ) = 1

2
. However, the series

∑∞
k=0

1
2k pK+k(x) converges only for function

x(t) growing more slowly than 2t, so that a unique solution only exists in the subspace
A := {x|∀K :

∑∞
k=0

1
2k pK+k(x) < ∞}. Indeed, Tx = x has the solutions c(t)2t with

1-periodic c and the only solution in A is the constant function 0.

5.4 Existence and uniqueness of solutions of differential equa-

tions

Being prepared by the theory of integration, differentiation and the contraction mapping
principle, let us now turn to our main question, the unique solvability of differential
equations in complete separated locally convex vector spaces X.

Solutions of the initial value problem ẋ(t) = f(t, x(t)), x(t0) = x0, correspond to
fixed points of the operator (Tx)(t) := x0 +

∫ t

t0
f(s, x(s))ds on C(I,X), where I is

some interval having t0 as an inner point. Indeed, a fixed point x ∈ C(I,X) of T is
differentiable and satisfies x(t0) = x0 as well as ẋ(t) = f(t, x(t)), while a (differentiable)
solution x(t) of the initial value problem has the fixed point property by the ordinary
fundamental theorem of calculus.

Let us try to find conditions which imply that T is a strict contraction: To a radius
family rq > 0 indexed by a generating set of continuous pseudonorms q on X denote by

50As the uniform structure of A ⊂ X is generated by continuous pseudonorms, a map T is a
strict contraction, if there is a map σ on a set D of pseudonorms p which generates the topology
such that with the smallest number pσ(p)(T ) defined by p(Tx − Ty) ≤ pσ(p)(T )σ(p)(x − y) the series
∑∞

k=0

(

∏k−1
l=0 σl(p)σl+1(p)(T )

)

σk(p)(x − y) converges for all p ∈ D and x, y ∈ A
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Brq
(x0) := {x|∀q : q(x − x0) ≤ rq} the closed i-ball around x0. Suppose that the map

f is q-bounded on Brq
(x0) by

Mq := sup
s∈I,x∈Brq (x0)

q(f(s, x)) <∞

and has the Lipschitz constant

Lq := sup
s∈I

qσ(q)(f(s, ·)|Brq (x0)) <∞

w.r.t. a map σ on the chosen generating set of continuous pseudonorms. Further assume
that there is a T0 with [t0 − T0, t0 + T0] ⊂ I and 0 < T0 ≤ rq/Mq such that the series
∑∞

k=0 T
k
0

(

∏k−1
l=0 Lσl(q)

)

σk(q)(x− y) converges for all x, y ∈ Brq
(x0).

Then the operator T maps C([t0−T0, t0 +T0], Brq
(x0)) into itself, as y ∈ Brq

(x0) implies

q((Ty)(t)− x0) ≤

∫ t

t0

q(f(s, y(s)))ds ≤ |t− t0|Mq ≤ T0Mq ≤ rq

for all t ∈ [t0 − T0, t0 + T0]. Further define q̂(x(·)) := supt∈[t0−T0,t0+T0] q(x(t)), then the
inequality

q((Tx− Ty)(t)) ≤

∫ t

t0

q(f(s, x(s))− f(s, y(s)))ds =

∫ t

t0

qσ(q)(f(s, ·)|Brq (x0))σ(q)(x(s)− y(s))ds ≤

|t− t0|Lq
ˆσ(q)(x− y)

implies q̂(Tx − Ty) ≤ T0Lq
ˆσ(q)(x − y) for all x, y ∈ Brq

(x0). Thus the convergence
of the above defined series assures that T is a strict contraction on the closed i-ball
Brq

(x0). Hence T has a unique fixed point, the local solution looked for.

Theorem 5.5 Let X be a complete and separated locally convex vector space, let x0 ∈ X
be a point of X and let I be an interval with inner point t0. Suppose that on a closed i-ball
Brq

(x0) to a radius family rq the map f : I×X → X is bounded by Mq and has Lipschitz
constants Lq w.r.t. a mapping σ on a generating set of continuous pseudonorms q on
X. Further assume that there is a 0 < T0 ≤ rq/Mq such that the series

∞
∑

k=0

T k
0

(

k−1
∏

l=0

Lσl(q)

)

σk(q)(x− y)

converges for all x, y ∈ Brq
(x0). Then there exists a unique solution x : [t0 − T0, t0 +

T0]→ X of the initial value problem ẋ(t) = f(t, x(t)), x(t0) := x0.

Although on a first glance the assumptions of this theorem seem to be rather restrictive,
they are not. Indeed, practically the theorem can be used as follows:
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• Calculate the Lipschitz constants of f near (s, x). If f is continuously differ-
entiable, this can be done by calculating the derivatives T(s,x)f and the values
qp(T(s,x)f) on a neighbourhood of (s, x) for continuous pseudonorms p, q on X.

• Choose an interval I and a radius family rq > 0 such that the positive num-
bers rq/Mq are bounded away from zero, were Mq denotes the q-bound Mq :=
sups∈I,x∈Brq (x0) q(f(s, x)) of f on the ball Brq

(x0). If it is difficult to compute Mq,

the estimate Mq ≤ sups∈I q(f(s, x0)) + Lqrσ(q) can be used.

• As rq/Mq is bounded away from zero, there is a T0 with 0 < T0 ≤ rq/Mq for all q.
Now try to enforce the convergence of the series

∞
∑

k=0

T k
0

(

k−1
∏

l=0

Lσl(q)

)

σk(q)(x− y)

for x, y ∈ Brq
(x0) by choosing a small T0 or by repeating the second step with

smaller I and smaller family rq, but pay attention that rq/Mq stays bounded away
from zero.

• If it is not possible to enforce the series to be convergent, there may be no solution
starting from x(t0) = x0.

Thus to conclude, it is possible to prove locally the existence and uniqueness of solu-
tions of differential equations to those initial values, which satisfy a growth condition
determined by the map f in form of the above series, however if f itself has a large
growth, there may be no local solutions starting at a certain initial value.

Example: Let S : R → R be locally Lipschitz. It is equivalent to solve the differential
equation ẋ = S ◦x on C(R,R) starting at the initial value x0, or to solve the differential
equation ẋ = S(x) on R for all initial values x0(m). If S and/or x0 grow so fast that
the solutions of ẋ = S(x) to the initial values x0(m) have an arbitrary short time of
existence, then there is no local solution of ẋ = S ◦ x in C(R,R) starting from the
initial value x0. But if e.g. S is globally Lipschitz and x0 is globally bounded, then
there is a solution. Indeed, supK |S(x(m)) − S(x0(m))| ≤ L supK |x(m) − x0(m)| (so
that σ = Id can be chosen) and supK |S(x(m))| ≤ M are valid with constants L,M
on the i-ball B1(x0) := {x| supR |x(m) − x0(m)| ≤ 1} 51. Thus the existence time of a
solution starting at x0(m) is independent from m, which is expressed in our context by
the convergence of

∞
∑

k=0

T k
0 L

k sup
K
|x(m)− y(m)|

for all K whenever T0 < min(L, 1
M

).

51If x0 is bounded, then also S ◦ x0 is bounded, so that |S(x(m))| ≤ |S(x(m)) − S(x0(m))| +
|S(x0(m))| ≤ L · 1 + B =: M is valid for all x ∈ B1(x0).

64



5.5 Inverse Mapping Theorem

Theorem 5.6 Suppose that a continuously differentiable map f : X → Y has a con-
tinuously invertible derivative Tx0f at the point x0 and that TUf ⊂ Lσ(X, Y ) holds on
a convex neighbourhood U of x0 with an invertible σ such that Tx0f

−1 ∈ Lσ−1(X, Y ).
Then f is invertible on an i-ball Brq

(f(x0)) with continuously differentiable inverse f−1,
and the radius family rq is estimated in the proof.

Proof: The map f has an inverse near x0, iff the map h : X → X defined by
h(x) := T−1

x0
(f(x + x0) − f(x0)) has an inverse near 0. Note that h(0) = 0 as well as

T0h = Id hold, and that Th : (U − x0)→ LId(X) is continuous.

Solving h(x) = y is equivalent to solving x = y + x− h(x), so that a fixed point of the
map gy(x) = y+ g(x) must be found, where g is defined by g(x) := x−h(x). Note that
g(0) = 0, T0g = 0 and that Tg : (U − x0) → LId(X) is continuous. Thus for every p a
neighbourhood of zero can be found, on which the inequality pp(Txg) ≤

1
2

is valid. The
intersection of all such neighbourhoods contains a closed i-ball Brp

(0) := {x|p(x) ≤ rp},
on which the inequality pp(Txg)) ≤

1
2

holds for all p, and the radius family rp can be
estimated by this condition.

By the mean value theorem p(g(x)) = p(g(x) − g(0)) ≤ 1
2
p(x − 0) ≤ 1

2
rp is valid for

x ∈ Brp
(0). Thus y ∈ Brp/2(0) and x ∈ Brp

(0) imply p(gy(x)) ≤ p(y) + p(g(x)) ≤ rp.
Hence gy maps the i-ball Brp

(0) into itself for every y ∈ Brp/2(0). Further gy has the
same Lipschitz constant 1

2
as g on Brp

(0), and is a strict contraction on Brp
(0) for every

y ∈ Brp/2(0), because
∑∞

k=0
1
2k rp = 2rp for every p.

Thus for every y ∈ Brp/2(0) there is a unique fixed point x = gy(x) in Brp
(0) :=

{x|q(x) ≤ rq}, i.e. a unique solution of h(x) = y. Hence h has an inverse h−1 :
Brp/2(0) → h−1(Brp/2(0)) ⊂ Brp

(0). Further h−1(Brp/2(0)) contains an i-ball, as i-balls
are intersections of finite balls, preimages of such finite balls contain open sets and
thus finite balls, and preimages preserve arbitrary intersections. Hence h is a bijection
between i-balls, whose radius family can be estimated by the above construction.

Further p(gy(x)−gy(x
′)) ≤ 1

2
p(x−x′) implies the inequality p(x−x′)−p(h(x)−h(x′)) ≤

1
2
p(x− x′) and thus p(x− x′) ≤ 2p(h(x)− h(x′)), i.e. p(h−1(y)− h−1(y′)) ≤ 2p(y− y′).

Hence h−1 is Lipschitz continuous on Brp/2(0). Moreover pp(Id−Txh) = pp(Txg) ≤
1
2
< 1 = (pp(Id))−1 holds, so that Txh

−1 exists by the invertibility theorem of linear
analysis, is an element of LId(X) for each x ∈ Brp

(0) and satisfies pp(Txh
−1) ≤ 2. Now

let y1 = h(x1), y2 = h(x2) ∈ Brp/2(0), then

p(h−1(y1)− h
−1(y2)− Tx2h

−1(y1 − y2)) =

p(Tx2h
−1(Tx2h(x1 − x2)− h(x1)− h(x2))) ≤

2p(h(x1)− h(x2)− Tx2h(x1 − x2))

is valid. From this inequality and the estimation p(x1 − x2) ≤ 2p(y1 − y2) there can be
deduced that h−1 is differentiable on Brp/2(0) and has the derivative T (h−1) = Th◦h−1.

2
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5.6 Manifolds

A Ck-manifold modeled over a Banach or Hilbert space is defined to be a set M endowed
with a maximal atlas of charts onto open subsets of a Banach or Hilbert space, where
the chart changes are Ck-mappings. Such an atlas induces a topology on M , and usually
this topology is assumed to be separated and paracompact, so thatM admits continuous
partitions of unity. Further M is usually supposed also to admit Ck-partitions of unity
52, so that there is a Finslerian or Riemannian metric53 on M . The choice of such a
Riemannian or Finslerian metric turns M into a metric space (M, d), and often (M, d)
is supposed to be complete w.r.t. the chosen metric.

An analogous definition of manifolds modeled over complete and separated locally con-
vex topological vector spaces has serious problems. First of all, the notion of a Ck-
mapping depends on the chosen tensorial closed category extending the category of
locally convex topological vector spaces. Here we choose the category of locally convex
pseudotopological limit vector space as extension. Second, open sets in a locally convex
topological vector space are really large sets, thus it is desirable to model manifolds
on more general subsets. Non-open sets have also been used to model manifolds in
other theories of differentiation, e.g. [Kriegl,Michor, Chapter VI] model manifolds over
c∞-open sets related to their convenient calculus. We choose dense i-balls to model man-
ifolds on locally convex spaces, because on these subsets the notion of a Ck-mapping is
still well-defined: Derivatives are continuous linear maps on the whole original locally
convex topological vector space and C1-maps are locally Lipschitz continuous, as dense
i-balls are locally convex and tangentially dense. Further the inverse mapping theorem
suggests to use dense i-balls to model manifolds.

However, using i-balls as chart domains prohibits the use of continuous deformations
in charts. In fact, if subsets of a manifold are identified with dense i-balls instead of
open subsets, then a continuous deformation in a chart generally runs out of the chart
domain and thus cannot be transported back into the manifold. But note that our local
existence theorem guarantees that a solution of a differential equation starting at x0

stays in an i-ball Brq
(x0) for some time. Thus if the radius family of the chart domain is

such that it contains the i-ball Brq
(x0), then a local solution of a differential equations

can be transported back to the manifold. Hence it is still desirable to have large chart
domains, i.e. i-balls to radius family which do not fall too fast, as then in a concrete
case it is easier to prove that some local deformation stays in a chart domain and does
not run out of it.

Further a manifold should have an induced topology and it should be possible to endow a
manifold with a uniform structure. But if merely dense i-balls are identified with subsets
of a manifold M , then there is no appropriate way to induce a topology on M . For
example, if we consider the identity on the locally convex space C(R,R) restricted to the

52However, not every Banach space X has the property that a Ck-manifold modeled over X admits
Ck-partitions of unity. But if the norm of the Banach space is Ck away from zero, than Ck-partitions
of unity exist.

53A Finslerian metric is a norm and a Riemannian metric is a scalar product on each tangential
space TmM , assigned in a differentiable way.
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i-ball supR |x(r)| ≤ 1, then there are many sequences, which converge to zero but have
no trace on this i-ball. For example, the sequence of mappings xn(r) := 1

n
r converges

to 0 in C(R,R), but no xn satisfies supR |xn(r)| ≤ 1. Thus if subsets of M are merely
identified with dense i-balls, then the notion of convergence in the modeling locally
convex topological vector space would be very different from the notion of convergence
defined by xm → x, if all xm lie in a chart domain and converge to the image of x in
this chart domain.

Here we overcome these difficulties by considering merely projective limits of Banach
manifolds. More precisely, suppose that Mi is a family of Banach manifolds indexed
by elements of a directed set I, and that each Mi is endowed with a Finslerian or Rie-
mannian metric on the tangential bundle πi : TMi → Mi with corresponding distance
di and corresponding exponential map expi : TMi → Mi. Let |ji : TMj → TMi be
vector bundle maps over uniformly continuous and differentiable maps |ji : Mj → Mi

(denoted by the same symbol), which satisfy |ji ◦|
k
j = |ki and |ii = Id. Thus (i, j) 7→ |ji is a

functor from the directed set I (regarded as category) into the category of vector bun-
dle maps over uniformly continuous and differentiable maps, and hence the projective
limits M := limiMi and TM := limi TMi can be formed within the category of uniform
spaces resp. vector bundles over uniform spaces. Denote shortly by |i the restriction |ji
from some Mj to Mi whenever i ≤ j, and suppose that πi and expi are compatible with
the restrictions |i in the sense that |i ◦ pij = πi ◦ |j and |i ◦ expj = expi ◦|j are valid for
i ≤ j. Then, due to the universal property of projective limits and the compatibility of
|· with π· and exp·, unique maps π : TM →M and exp : TM → M can be defined by
|i ◦ π = πi ◦ |i and |i ◦ exp = expi ◦|i for all i. In this way, TM becomes a vector bundle
over M via the map π, however the fibers TmM := limi Tm|iMi are only projective limits
of Banach spaces and thus in general locally convex topological vector spaces. Further
let expi have local injectivity radius ri(mi) at mi, then exp is injective at m on the
i-ball {v ∈ TmM |v|iTm|iMi ⇒ ‖v|i‖i < ri(m|i)}.

Now we have a uniform structure on M , a tangential bundle TM on M with projection
π and charts exp on i-balls. But still we do not know whether the chart changes
exp−1

m′ ◦ expm are differentiable in our sense. Here the following lemma often helps.

Lemma 5.7 A map f : limXi → limYj is Lipschitz, iff for every j there is an i and a
Lipschitz map fij : Xi → Yj satisfying πj ◦ f = fij ◦ πi.

Proof: One direction is trivial: If for every j there is an i and a Lipschitz map
fij : Xi → Yj satisfying πj ◦ f = fij ◦ πi, then

qj(f(x)− f(x′)) = qj(πj(f(x))− πj(f(x′))) = qj(fij(πi(x))− fij(πi(x
′))) ≤

Lijpi(πi(x)− πi(x
′)) = Lijpi(x− x

′)

is valid and thus f is Lipschitz. For the other direction, note that f is Lipschitz if
all g := πj ◦ f : limXi → Yj are Lipschitz. Now g is Lipschitz if there is an i such
that qj(g(x) − g(x′)) ≤ Lpi(x − x′). Define fij : Xi → Yj by g = f ◦ πi, then fij is
well-defined, since πi(x) = πi(x

′) implies pi(x − x
′) = 0 and thus qj(g(x)− g(x

′)) = 0,
i.e. g(x) = g(x′). Further obviously fij has Lipschitz constant ≤ L. 2
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For example, letM be a noncompact, second countable and separated finite-dimensional
manifold, and let N be a Riemannian manifold with metric dN , tangential projection
πN and exponential map expN . Then the space of continuous maps from M to N
endowed with the topology of uniform convergence on compact subsets is defined as a
uniform space by the projective limit C(M,N) = limK(C(K,N), supK dN(·, ·)), where
K runs through all compact subsets of M and |K is the restriciton of maps. However,
each C(K,N) is not only a uniform space, but a Banach manifold:

The tangential space at g ∈ C(K,N) is the

Figure 1: Charts at f, g and Chart-
Changes

space C(g∗TN) of continuous vector fields X :
K → TN over g, i.e. X(k) ∈ Tg(k)N , and a
chart at g is given by expg : C(g∗TN) 3 X 7→
expN ◦X ∈ C(K,N). Thus we can endow
C(M,N) with the structure defined above.
In this way C(M,TN) is the tangential bun-
dle of C(M,N), the projection π is X 7→
πTN ◦X and the exponential map exp is X 7→
expTN ◦X. Further the i-ball, where exp is
injective, is dense, as the vector fields with
compact support are dense. Moreover, the
chart changes (exp−1

h ◦ expf) : C(f ∗TN) →
C(h∗TN), f, h ∈ C(M,N), are given by com-
position of vector fields X : M → TN over
f with exp−1

h(·) ◦ expf(·). Now for Ck-maps h, f
and restricted to compact domains this com-
position is Ck by the ordinary omega lemma.

Thus if there is a covering of M by a uniformly locally finite atlas of normal charts,
then especially exp−1

h(·) ◦ expf(·) is Lipschitz continuous by the above lemma. But we
have also a candidate for the derivative, namely the composition with the derivative,
and thus the chart changes exp−1

h(·) ◦ expf(·) are really differentiable in our sense.

This example C(M,N) is a typical example of a manifold of mappings on a noncompact
manifold M modeled over a locally convex topological vector space. In the next chapter
we will see, how other manifolds of mappings can be defined in the same way and can
be used in fluid dynamics.

Manifolds defined by directional and functional structures The category of
Ck-manifolds and Ck-maps does not have nice categorial properties like cartesian closed-
ness even for k =∞ 54. To obtain cartesian closedness, the notion of a manifold has to
be considerably generalized by considering directional and functional structures instead
of atlases of charts, see [Fröhlicher,Kriegl].

54By [Michor, 4.9], for noncompact M there is no way to make C∞(M, N) into a manifold using
charts on open subsets of a topological vector space, unless the topology on C∞(M, N) is finer than the
D-topology. And with the fine-D-topology C∞(M, N) becomes a manifold modeled on open subsets of
the locally convex topological vector spaces C∞

c (f∗TN), but this topology is so fine that C∞-maps f
and g lie in the same connected component, only if they are identical outside a set of compact support.
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A space M endowed with a set C of distinguished directions is called a directionally
structured space, if C contains the constant directions c : t 7→ m at all points m ∈ M
and is closed under scaling, i.e. c ∈ C implies sc ∈ C for every s ∈ R. Define the
bundle π : C → M , which to every direction c ∈ C assigns its base point c(0) ∈ M ,
and denote the fibers π−1({m}) of π at m by C(m). A map f : M → N between
directionally structured spaces M,N is called a morphism of directionally structured
spaces at m ∈M , if c ∈ CM (m) implies f ◦ c ∈ CN(f(m)). The category of directionally
structured spaces has initial and final objects 55. Often a directionally structured space
(M, C) is additionally endowed with a homogeneous bundle map J : C → JM from
π into a bundle JM over M called the jet bundle, where each fiber JmM carries an
operation of (R, ·). In this case, f : M → N is called a morphism at m ∈ M , if
additionally for every c ∈ CM (m) the value J(f ◦ c) ∈ JnN depends on Jc ∈ JmM only,
so that the map c 7→ f ◦ c induces a map Jmf : Jc 7→ J(f ◦ c) from JmM to JnN . If
further the bundle JM →M has an additional structure, e.g. the structure of a vector
bundle, then Jf is also required to be compatible with the additional structure, e.g.
Jf is required to be a vector bundle map.

Dually to directions and directionally structured spaces, functionals and functionally
structured spaces are defined. The germ of a continuous function φ : M → R with
φ(m) = 0 at a point m ∈ M is called a functional at m. Hereby the germ of φ at m
is the equivalence class of φ w.r.t. the equivalence relation defined by φ ∼ ψ, if there
is a neighbourhood U of m with φ|U = ψ|U

56. Again identify the continuous function
φ with the functional induced by φ at m, define to a functional φ at m the scaled
functional (sφ)(m′) := sφ(m′), and consider positive and negative functionals dually to
inner and outer directions. Further observe that every continuous function φ : M → R

induces the functional φ− φ(m) at m ∈M .

A space M endowed with a distinguished set F of functionals 57 is called a functionally
structured space, if F contains the zero functional at every m and is closed under scaling.
A map f : M → N between functionally structured spaces is called a morphism at m, if
φ ∈ FN(f(m)) implies φ ◦ f ∈ FM(m). The category of functionally structured spaces
has initial and final objects 58. Often functionally stuctured spaces are additionally
endowed with jet bundles J∗M over M , and then morphisms are required to induce
compatible bundle maps J∗f : J∗N → J∗M .

The combination of directionally and functionally structured spaces is the notion of an
S-structured space M , where S is a fixed set of germs of functions h on R at zero with

55The initial structure on M w.r.t. fi : M → Mi is given by the initial topological structure and
those directions c in M with fi ◦ c ∈ CMi

for all i. The final structure on M w.r.t. fi : Mi → M is
given by the final topological structure, the directions fi ◦ c, c ∈ CMi

, and the constant directions on
M .

56If M is a convergence or limit space, then a neighbourhood of m is a set U ∈ U(m) in the
neighbourhood filter U(m) =

⋂

G→m G induced by the topological structure on M at m.
57In this section the symbol F is reserved for functional structures and is not used for filters.
58The initial structure on M w.r.t. fi : M → Mi is given by the initial topological structure, the

functionals φ ◦ fi, φ ∈ FMi
, and the zero functional at every m. The final structure on M w.r.t.

fi : Mi →M is given by the final topological structure and those functionals with φ ◦ f ∈ FMi
for all

i.
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h(0) = 0, and on M a directional structure C as well as a functional structure F are
given, which determine each other by the requirements

• c ∈ C(m) iff φ ◦ c ∈ S for all φ ∈ F(m),

• φ ∈ F(m) iff φ ◦ c ∈ S for all c ∈ C(m).

A map f : M → N is a morphism, if c ∈ CM implies f ◦ c ∈ CN , or equivalently φ ∈ FN

implies φ ◦ f ∈ FM , or equivalently c ∈ CM(m) and φ ∈ FN(f(m)) imply φ ◦ f ◦ c ∈
S. The category of S-structured spaces has initial and final objects 59. Further this
category is cartesian closed, if the set S(R,R) of those functions f : R→ R with f(·+
t)− f(t) ∈ S for all t ∈ R becomes an S-structured space by allowing those directions
c : R → S(R,R), which are morphisms from R × R to R when interpreted as maps
c : R×R→ R. This is the case for the set S = Lipk(R,R) of Lipk-maps on R. However
note that for convenient vector spaces X, Y there is a difference between the convenient
vector space Lipk(X, Y ) and the Lipk-space Lipk(X, Y ), see [Fröhlicher,Kriegl, 4.5], so
that the category of convenient vector spaces and Lipk-maps is cartesian closed only if
k =∞.

59An arbitrary set C of directions on M generates a S-structure on M by φ ∈ FM , iff φ ◦ c ∈ S
for all c ∈ C, and c ∈ CM , iff φ ◦ c ∈ S for all φ ∈ FM . In an analogous way also an arbitrary set F
of functionals on M generates a S-structure. Now the intial structure on M w.r.t. fi : M → Mi is
generated by the initial directional structure CM , while the final structure on M w.r.t. fi : Mi → M
is generated by the final functional stucture FM .
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Part II

Dynamical Systems and Pattern

Formation under Symmetry

6 Manifolds of Mappings and Geometrical Fluid Dy-

namics

In this chapter geometric fluid dynamics - especially on noncompact domains - is dis-
cussed. Thereby we restrict ourselves to domains which are manifolds of bounded geom-
etry, possibly with boundary, because on such domains the Sobolev embedding theorems
(and other constructions used later) are valid. After an introduction to bounded ge-
ometry, manifold of mappings like the local and global Sobolev spaces of maps on a
domain of bounded geometry are defined, and especially the group of diffeomorphisms
within such manifolds of mappings is studied. As an application the Euler equations
are interpreted as ordinary differential equations with continuously differentiable right
hand side on such manifolds of mappings: The Euler equations are geodesic equations
on the manifold DiffV ol(M) of volume form preserving global Sobolev diffeomorphisms
w.r.t. the H0-metric, and other fluid dynamical equations can be characterized in a
similar way as Hamiltonian equations on manifolds of mappings. Finally we discuss,
which fluid dynamical equations can be interpreted as Hamiltonian equations on local
spaces of mappings. The conclusion is that the Euler and Navier-Stokes equations can
not be interpreted as geodesic equations on such local spaces of mappings, as they have
nonlocal properties due to incompressibility and viscosity, while the hyperbolic equa-
tions modeling compressible fluids can be interpreted as ordinary differential equations
on local spaces, as they are local equations due to their finite velocity of propagation.
Thus the analysis developed in the first part can be used to study pattern formation in
compressible inviscous fluids but not in incompressible viscous fluids.

6.1 Bounded Geometry

For all vector bundles E over a n-dimensional manifold M the local spaces Ck(E)
and Hs

loc(E) of sections of E can be defined in terms of a covering by charts and the
corresponding norms in Rn. They are independent of the choice of the covering by
charts, as merely properties of sections on compact subsets are required. But to define
the global spaces Ck

b (E) and Hs(E) for noncompact manifolds M may cause problems,
as the local definition in a chosen collection of charts may generally depend on the
choice of this collection and may differ from the definition in terms of a Riemannian
metric on E and M . This is not the case for manifolds and vector bundles of bounded
geometry, as on such manifolds there are distinguished uniformly locally finite covering
by charts.
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Define for a topological vector bundle p : E → M over a manifold M in analogy to
uniform structures the notion of entourages: The entourages shall form a filter of sets
V ⊂ E such that

• every entourage V contains the zero section,

• with V also −V is an entourage,

• for every entourage V there is an entourage W with W +W ⊂ V ,

• the topology on E generated by the neighbourhoods V |U of 0, V ⊂ E an entourage
and U ⊂M a neighbourhood of m, is the original topology on E.

On every topological vector bundle trivially

Figure 2: Injectivity Radiuses of Differ-
ent Metrics

the neighbourhoods of the zero section form
a filter of entourages. But for a Riemannian
metric on E (or more generally for a Finsle-
rian) also the sets of the form {v|‖v‖ ≤ ε}, ε >
0, generate a filter of entourages, which gen-
erally is not identical with the filter of neigh-
bourhoods of the zero section, as such neigh-
bourhoods can become arbitrary small at in-
finity. More precisely, every neighbourhood U
of the zero section contains sets of the form
{v|‖v‖m ≤ h(m)} with a continuous function
h : M → R+. Thus call a neighbourhood U
arbitrary small at infinity, if infm∈M h(m) = 0
holds for all such sets contained in U . Obvi-
ously neighbourhoods of the zero section that
are arbitrary small at infinity do not contain
sets of the form {v|‖v‖m ≤ ε}, ε > 0.

These different notions of entourages become especially important for the tangential
bundle TM of a Riemannian manifold M . There the Riemannian metric on M induces
beneath the uniform structure on TM generated by the entourages {v|‖v‖ ≤ ε} also a
uniform structure on M via the distance function

d(m,m′) := inf{

∫ 1

0

‖ċ(t)‖c(t)dt | c ∈ C
1([0, 1],M) : c(0) = m, c(1) = m′}.

Now recall that for every Riemannian manifold (π, exp) : TM → M × M is a dif-
feomorphism from a neighbourhood of the zero section onto a neighbourhood of the
diagonal in M ×M . But these neighbourhoods do not need to be entourages induced
by the Riemannian metric (i.e. on TM of the form {v|‖v‖ ≤ ε} and on M × M of
the form {(x, y)|d(x, y) ≤ ε′}) and (π, exp) does generally not need to be uniformly
continuous (i.e. for every entourage W on M there is an entourage V on TM such that
(π, exp)(V ) ⊂ W ).
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A manifold is said to have bounded geometry60 of order k, if

• the injectivity radius rinj(M) of M is positive,

• the Riemannian curvature tensor R is uniformly bounded up to order k, i.e.
‖∇iR‖ ≤ C for all 0 ≤ i ≤ k.

If M has boundary ∂M , assume further that

• the boundary has a normal collar, i.e. there is an r > 0 such that the normal
collar map N1 := [0, r)× ∂M → M , (t,m) 7→ exp(tνm) is a diffeomorphism onto
its image, where νm denotes the unit inward normal vector at m,

• the injectivity radius rinj(∂M) is positive and instead of rinj(M) > 0 it is required,
that exp is a diffeomorphism on {vm ∈ TmM |‖vm‖m < r} for a radius r > 0 and
all m ∈ M \ N 1

3
, where Ns denotes the image of [0, sr)× ∂M under the normal

collar map,

• the second fundamental form l is uniformly bounded up to order k, i.e. ‖∇il‖ ≤ C
for all 0 ≤ i ≤ k.

By a theorem of [Green] on every finite-dimensional manifold M there exists a complete
metric such that M is of bounded geometry of arbitrary high order k. Usually we do
assume that a manifold has bounded geometry of such a high order k that we do not
have to care about the best possible values of k in theorems. For example, the Sobolev
embedding theorem Hs ⊂ Ck

b can be proved for differentiability order s smaller than
the boundary order k, see [Eichhorn,Schmid, Proposition 2.6].

A consequence of the boundedness of the curvature tensor is that on a manifold of
bounded geometry the derivative d exp of the exponential map has uniformly bounded
differentials up to order k. Especially (π, exp) is globally Lipschitz continuous for k ≥ 1
and thus uniformly continuous.

Instead of ‖∇iR‖ ≤ C for i = 0, . . . , k equivalently it is possible to require that in
normal coordinates the metric tensor g and its inverse are uniformly bounded up to
order k, see [Schick, A.1].

A manifold of bounded geometry has for all small enough r > 0 a countable covering
with normal charts κi : Rn ⊃ Br(0) → N(mi, r) := {exp(v)|v ∈ Tmi

M, ‖v‖ ≤ r} ⊂ M
and a subordinate partition of unity εi such that

• the points mi lie either on the boundary ∂M or are bounded away from the
boundary, i.e. mi ∈M \N 2

3
,

60There are also weaker notions of bounded geometry. For example, if the Ricci curvature tensor is
bounded from below and the manifold has a positive injectivity radius, then also the Sobolev embed-
dings are valid, see e.g. [Hebey, Theorem 3.5, Proposition 3.6], and the manifold is said to have Ricci
bounded geometry.
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• the covering has uniformly finite multiplicity, i.e. for all m ∈ M the number of
indices i with N(m, r) ∩ N(mi, r) 6= ∅ is bounded by a constant independent of
m.

• the functions εi are bounded up to order k in normal coordinates.

Further the volume Vol(Bm(r)) of balls Bm(r) is uniformly bounded from below by
a nonnegative monotone function V (r) with V (r) → ∞ for r → ∞, see [Schick,
3.20+3.22].

On a manifold of bounded geometry, the Ck
b -norm

‖f‖Ck
b
(M) :=

∑

i

‖εi(f ◦ κi)‖Ck
b

and the Hs-norm
‖f‖Hs(M) :=

∑

i

‖εi(f ◦ κi)‖Hs

of a function f : M → R, defined in terms of normal charts κi of a uniformly finite
covering by normal charts and a subordinated partition of unity εi, are independent of
the choice of the covering and the partition of unity. In the same way, the spaces Ck

b (E)
resp. Hs(E) of sections of a bundle E over M of bounded geometry 61 are defined as
those Ck-sections φ with ‖φ‖Ck

b
(M) < ∞ resp. by the completion of Cs

b (E) w.r.t. the
Hs-norm. The definition of these spaces is independent of the particular choice of a
covering and a subordinate partition of unity, and these spaces of sections have the
usual properties well-known for compact manifolds, see [Schick, 3.25]:

• Ck
b (E) are Banach spaces, Hs(E) are Hilbert spaces,

• the norms ‖α‖Ck
b

:=
∑s

i=0 supm∈M ‖∇
iαm‖m resp. ‖α‖2Hs(ΛkM) =

∑s
i=0

∫

M
‖∇iαm‖

2
mdm

defined in terms of a Riemannian metric are equivalent to the norms defined in
charts,

• the embedding theorem Hs(E)→ Ck
b (E) for s > dim(E)

2
+ k is valid.

• the norms ‖α‖Ck
b

:=
∑s

i=0 supm∈M ‖∇
iαm‖m resp. ‖α‖2Hs(ΛkM) =

∑s
i=0

∫

M
‖∇iαm‖

2
mdm

defined in terms of a Riemannian metric are equivalent to the norms defined in
charts,

• for differential forms, i.e. E = ΛkM , also

(α, β)2
Hs(ΛkM) =

s
∑

i=1

∫

M

((d+ δ)iα, (d+ δ)iβ)

yields an equivalent norm onHs(E), where d is the differential, δ the codifferential,
∗ the Hodge operator on forms and (α, β) = α ∧ ∗β.

61A bundle E is said to have bounded geometry of order k, if over each normal chart of M a
trivialisation of the bundle is chosen such that the transistion functions are uniformly bounded up to
order k in normal charts. If E has a Riemannian metric, then the duality mapping E 7→ E ′ is required
to be uniformly bounded with uniformly bounded inverse up to order k, or equivalently the metric
tensor and its inverse have to be bounded uniformly.
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• the linear embedding Hs → H t, s > t, is continuous (but generally not compact),

• let F be another bundle of bounded geometry over a l′-codimensional submanifold
N of M , then differential operators L : C∞(E) → C∞(F ) of order l, which have
uniformly bounded coefficients up to order l, extend to continuous linear operators

L : Hs(E)→ Hs−l− l′

2 (F ) for s > l + l′

2
,

• the spaces Hs(E) and H−s(E ′) are dual to each other

6.2 Manifolds of Mappings

Let M,N be finite-dimensional complete smooth oriented Riemannian manifolds which
are not assumed to be compact but merely locally compact or - in other words - open
manifolds. The aim of this section is to describe how certain sets of maps f : M → N
can be defined and can be turned into manifolds.

Let Map be a functor62 which associates to every finite dimensional smooth Riemannian
vector bundle E over a finite dimensional smooth Riemannian manifold M a Banach
space Map(E) of sections of E over M containing C∞(E) ⊂ Map(E). For example, Cb

k

and Hs are such functors.

To associate a manifold Map(M,N) of mappings between M and N to such a functor,
let expN : TN → N be the exponential map to the Riemannian metric with norm
‖ · ‖N on TN . Note that expN is a local addition, i.e. expN(0n) = n holds for all
n ∈ N and with the projection πN : TN → N of the tangential bundle the map
(πN , expN ) : TN → N × N is a diffeomorphism from some neighbourhood U of the
zero section in TN onto some neighbourhood V of the diagonal in N × N . A vector
field X over f 63 is called U -near to the zero section if X(m) ∈ U is valid for all
m ∈ M , and a map x : M → N is called V -near to f if (f(m), x(m)) ∈ V is valid for
all m ∈ M . Denote by Uf the vector fields X(m) ∈ Map(f ∗TM) over f which stay
U -near to the zero section and by Vf the smooth maps x which stay V -near to f . Then
Uf ∩ C

∞(f ∗TN) and Vf can be identified via the bijection φf : X 7→ expN ◦X, whose
inverse is the map φ−1

f : x 7→ (πN , expN)−1 ◦ (f, x).

To construct the manifold Map(M,N) via these charts, transfer the uniform structure
of the linear space Map(f ∗TN) ∩ C∞(f ∗TN) 64 to a uniform structure on C∞(M,N)
by defining the base

Vε := {(f, x)|∃X ∈ C∞(f ∗TN) : x = expN ◦X, ‖X‖ ≤ ε}

for ε > 0. But notice that it still has to be verified, whether Vε is really the base of a
uniform structure. After this is done, Map(M,N) can be defined as the completion of

62In [Palais] a precise description of those functors Map which are convenient for constructing man-
ifolds of mappings can be found.

63A vectorfield X over f is a map X : M → TN which satisfies πN ◦X = f , or equivalently a section
of the pullback f∗TN of the bundle TN by f .

64The Riemannian metric and its associated Levy-Cita connection on the tangential bundle TN
over N are transported to the bundle f∗TN over M via pullback, thus f∗TN is a Riemannian vector
bundle over M and hence Map(f∗TN) is defined.
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C∞(M,N) w.r.t. this uniform structure. Then the charts φf can be uniquely continued
to charts from Uf to Vf ⊂ Map(M,N), as they are uniform maps65 due to the definition
of Vp,ε and thus map Cauchy filters to Cauchy filters.

Now we have constructed charts around f ∈ Map(M,N) with values in Map(f ∗TN),
but for different points f, g ∈ Map(M,N) these charts map into different spaces
Map(f ∗TN), Map(g∗TN), and also the differentiability of the chart changes φ−1

g ◦ φf

has not yet been verified. Thus to conclude finally that Map(M,N) is a differentiable
manifold, it remains to verify that the chart changes φ−1

g ◦ φf are diffeomorphisms.
Especially in this case their linearization is an isomorphism between Map(f ∗TN) and
Map(g∗TN), i.e. up to isomorphy these locally convex vector spaces are identical, and
thus Map(M,N) is modeled at each point over the same linear space. The chart changes
are given by φ−1

g ◦ φf : X 7→ (πN , expN)−1 ◦ (g, expN ◦X) for a vectorfield X over f .
But a better way to describe chart changes is as follows: Let x ∈ Vf ∩ Vg, let X ∈ Uf

be the vector field over f with expN ◦X = x and let Y ∈ Ug be the vector field over g
with expN ◦Y = x. Then the vector field (φ−1

g ◦ φf)(X) over g is obtained at the point
m by transporting the vector X(m) over f(m) parallel along the curve [0, 1] 3 s 7→
expf(m) sX(m) to the vector Pf (X(m)) over x(m) = expf(m) X(m), and afterwards by
transporting the vector Pf(X(m)) over x(m) = expg(m) Y (m) parallel along the curve
[0, 1] 3 s 7→ expg(m)(1− s)Y (m) to the vector P−g(Pf(X(m))) = (φ−1

g ◦ φf)(X)(m).

Thus to establish continuity and differentiability of the chart changes, generally it has
to be controlled how expN , composition and parallel transport act on vector fields and
their derivatives, what requires especially the estimation of Jacobi vector fields.

Global Ck
b - and W k,p-spaces on noncompact manifolds While for compact mani-

folds M and Map = Ck
b resp. Map = W k,p the above construction goes through without

problems, for noncompact M it is difficult to control parallel transport, but possible in
the case of bounded geometry.

Let us have a closer look how the global spaces are constructed for noncompact man-
ifolds. To a Riemannian vector bundle E over a manifold M the space Ck

b (E) is de-
fined as the set of Ck-sections X : M → E endowed with the norm ‖X‖Ck

b
(E) :=

∑k
i=0 supm∈M ‖∇

iX‖N . To construct the manifold Ck
b (M,N) via completion, we use

only those smooth maps f whose differentials are bounded globally up to order k, i.e.
∑k−1

i=0 supM ‖∇
idf‖ < ∞, instead of all C∞-maps, as else it is not possible to estimate

the Jacobi fields. Therefore we have to assure, that the charts φf (X) = expN ◦X really
map smooth Ck

b -vector fields X over f to such bounded smooth maps. This is the case
for manifolds of bounded geometry, as on such manifolds the exponential map expN

has bounded derivatives ∇id expn up to the boundedness order. Now the charts are
well-defined and it must be proved that the sets Vε really generate a uniform structure.
This has been done by [Eichhorn,Schmid] for Ck

b - and also for the global Sobolev W k,p-
spaces. In the proof lengthy calculations are needed which estimate Jacobi vectorfields,
exponential maps and curvature terms globally by usage of the assumptions of bounded
geometry. Finally the differentiability of chart changes has to be verified. Here the lo-
cal ω-lemma is used: If h ∈ C∞,m+k(Ri,Rj) and f ∈ Ck

b (U,Ri) (U an open subset of

65Indeed, φ : ˙⋃
f Map(f∗TN)→ Map(M, N) maps {(f, Xf )|‖Xf‖ ≤ ε} onto Vε.
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some Rl), then the map ωh : f 7→ h ◦ f from Ck
b (U,Ri) to Ck

b (U,Rj) is a Cm-map with
differential D(ωh) = ωDh. Now apply the local ω-lemma in the domains of a uniform
covering by normal charts of M to the chart change

(φ−1
g ◦ φf)(X) = ωexp−1

g(·)
◦ expf(·)

(X)

for f, g ∈ C∞,k. Using the fact that the derivatives d(exp−1
g(m) ◦ expf(m)) are globally

bounded up to the boundedness order b, so that exp−1
g(m) ◦ expf(m) is a C∞,b+1-map, it

can be concluded that the chart changes ωexp−1
g(m)

◦ expf(m)
are Cb+1−k-maps.

Doing the same for the global Sobolev spaces proves the main theorems [Eichhorn,Schmid,
4.20+5.2]: For complete noncompact manifolds M,N of bounded geometry up to or-
der b, b ≥ k and in the case of Sobolev spaces additionally k > dim N

p
+ 1 the spaces

Ck
b (M,N) resp. W k,p(M,N) are Cb−k+1-manifolds. Note that both spaces decompose

into connected components, as maps which differ by vector fields with unbounded resp.
not-globally-integrable derivatives smaller than k can not belong to the same compo-
nent.

Local Ck- and W k,p
loc -spaces As already introduced in section 5.6, the local spaces

are defined as the projective limits Ck(M,N) = limK Ck
b (K,N) and W k,p

loc (M,N) =
limK W k,p(K,N) in the category of uniform spaces. Charts around a point f ∈ Ck(M,N)
resp. f ∈ W k,p

loc (M,N) are given by X 7→ expN ◦X for X ∈ Ck(f ∗TN) resp. X ∈

W k,p
loc (f ∗TN). These charts are defined generally merely on dense i-balls, and in the

case of a manifold of bounded geometry we have a uniformly finite covering by normal
charts, so that the chart changes from a chart at f to a chart at h are in fact differen-
tiable, if h, f have more regularity than k. But as these more regular maps lie dense,
we have enough charts to cover the whole space of mappings.

Manifolds with Boundary IfN has boundary, then a space of maps into N is gener-
ally not a manifold, as Hs(M,N) has infinite dimensional corners, see [Marsden, Ratiu,
2]. However, N can be embedded into a manifold Ñ without boundary such that N
and ∂N are submanifolds of N . Then the space Hs(M, Ñ) is again a smooth manifold.

6.3 Diffeomorphism Groups

The last section has discussed the manifold structure of spaces of maps on noncompact
manifolds. In this section we want to discuss, whether the groups Diff(M) of orientation
preserving diffeomorphisms associated to these spaces of maps are submanifolds and
some kind of Lie groups.

Local case For a diffeomorphism f : M →M in Ck(M) there is always a dense i-ball
around f , which consists of diffeomorphisms only. In fact, let λ(m) be the absolutely
smallest eigenvalue of Tmf w.r.t. some chosen covering of M in charts. Disturb f by
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a vectorfield over f which is so small that at every m the eigenvalues of the disturbed
map do not become zero, then the disturbed map is again a diffeomorphism. Obviously
here vectorfields which are small enough and have compact support can be used. As
these span a dense subspace, there is a dense infinite ball around f consisting of dif-
feomorphisms. Thus the diffeomorphisms form a submanifold, however not modeled on
an open set but on an infinite dense ball, and in fact the smaller the eigenvalues of Df
are, the smaller is this i-ball. Recall that the smaller the i-ball is, the more difficult is
it to prove that local deformations, as e.g. to solve a differential equations starting at
f , do not leave the chart domain.

The composition (f, g) 7→ f ◦ g of diffeomorphisms is continuous, but differentiable by
the ω-lemma only if the diffeomorphism f is of a better differentiability order. The
inversion is continuous, as M is a locally connected space, see the paragraph about
inversion in 2.5, but again differentiability depends on the differentiability of the map
which shall be inverted.

In W k,p
loc (M,M) the notion of a diffeomorphism makes sense for k > dim(M)

p
+ 1, as

by Sobolevs embedding theorem all such maps are C1-maps and thus classical diffeo-
morphisms. Also here the set of diffeomorphisms is a submanifold modeled on infinite
dense balls around f , whose width depends on the smallest eigenvalues of f . Note that
in the Sobolev setting composition makes sense for Sobolev diffeomorphisms, but not
for arbitrary Sobolev maps, as the composition of such maps does not need to be a
map from the same Sobolev class. But for Sobolev diffeomorphism composition and
inversion are well-defined and continuous, however differentiability again depends on a
better differentiability order of the diffeomorphisms.

Global case In Ck
b (M) it is required that for a diffeomorphism f the absolutely

smallest eigenvalue λ(m) of Tmf is bounded globally on M by a constant λ > 0 in
some uniformly finite covering by normal chart. Then these diffeomorphisms form an
open submanifold Diffk

b (M) in the usual sense of Banach manifolds, as now there is
not only a dense infinite ball but an open neighbourhood of f consisting of diffeomor-
phisms, namely those maps g = expN ◦X, X ∈ Ck

b (f ∗TN) for which X is so small
that to eigenvalue of f becomes 0 under the disturbance by X. Thus every connected
component of Diffk

b (M) is again a Cb−m+1-Banach manifold. Especially the component
of identity is mapped to itself under composition and thus the diffeomorphisms form a
topological group, however differentiability is again only possible for diffeomorphisms
of a better differentiability order.

For the group Diffr(M), r > dim(M)
2

+ 1, of Hr-Sobolev diffeomorphism on M the same
result is valid. But there is another problem, as the group is defined as the completion
of C∞-maps with bounded derivatives up to order r. But then Diffr+s(M) is generally
not dense in Diffr(M), as Diffr+s(M) is the completion of those C∞-maps with bounded
derivative up to order r+ s, but Diffr(M) is defined as the completion of the C∞-maps
with bounded derivative only up to order r. That’s why the group Diff∞,r should be
used, which is obtained by completing those smooth maps which are bounded in all
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derivatives. However, on the component of identity Diff∞,r
Id (M) = Diffr

Id(M) holds66.
Proofs of these statements can be found in [Eichhorn, Section 6].

Boundary In the case of boundary Diff(M,M) should be considered as a subset of
Map(M, M̃) where M̃ is a manifold containing M and ∂M as submanifolds. Further
there are different types of diffeomorphism groups, and it has to be proven for each
type that Diff(M,M) is a submanifold of Map(M, M̃).

Two types of such diffeomorphism groups are most naturally, namely the group of those
diffeomorphism which leave ∂M invariant, i.e. η(∂M) ⊂ ∂M , and the group of those
diffeomorphisms which leave ∂M pointwisely fixed, i.e. η(m) = m for all m ∈ ∂M . The
proof that these diffeomorphism groups are submanifolds, whose tangential space at η
consists of the vector fields over η tangent to the boundary resp. zero on the boundary
is contained in [Ebin,Marsden, Section 6] for compact manifolds and Sobolev diffeo-
morphism, but the same proof is valid for Ck

b -diffeomorphisms, noncompact manifolds
of bounded geometry and the local spaces.

Note that there are also other useful types of diffeomorphism groups on manifolds with
boundary, e.g. those diffeomorphisms which leave the boundary invariant and satisfy a
free-slip condition at the boundary, see [Shkoller].

6.4 The Group of Volume Form preserving Diffeomorphisms

Not only those subgroups of the group of orientation preserving diffeomorphism which
preserve in some sense the boundary, but also the subgroups which preserve addition-
ally a given form on the manifold are important. Here we mainly consider the subgroup
of those diffeomorphisms η which preserve the orientation and the volume form µ asso-
ciated to the Riemannian metric on the manifold M , i.e. η∗µ = µ is valid. But in the
same way diffeomorphisms which preserve other volume forms than the one associated
to the Riemannian metric or a symplectic form can be considered.

Denote the set of orientation and volume preserving diffeomorphisms by DiffVol(M).
For compact manifolds (with boundary) and Sobolev diffeomorphism it is shown in
[Ebin,Marsden, Sections 4+8] by using Hodge theory that DiffVol(M) is a submanifold
of Diff(M). In [Eichhorn,Schmid, Theorem 3.3] for noncompact M of bounded geom-
etry (without boundary, but the arguments generalize to manifolds with boundary)
and global Sobolev spaces the same is shown under the assumption that the essential
spectrum σess(∆|Ker(∆)⊥) of the Laplace-Beltrami operator ∆ acting on functions and
restricted to the complement of its kernel is bounded away from zero. Let us briefly
review how these results can be proved.

66Those diffeomorphisms which differ from Id by a Hr-vector field are arbitrary near to Id at infinity
and thus especially bounded in all derivatives, as Id is bounded in all derivatives.

79



6.4.1 Hodge Theory

Let M be a n-dimensional complete oriented Riemannian manifold and denote by
C∞(ΛkM) the set of smooth k-forms on M . Further let d be the differential which
maps k-forms to (k + 1)-forms, denote by ∗ the Hodge star operator which maps k-
forms to (n − k)-forms, let δ := (−1)n(k+1)+1 ∗ d∗ be the codifferential which maps
k-forms to (k − 1)-forms, and let ∆ := (d + δ)2 = dδ + δd be the Laplace-Beltrami
operator which maps k-forms to k-forms. Note that ∗, δ and ∆ depend on the choice
of the Riemannian metric and orientation on M . For M = Rn the Laplace-Beltrami
operator on functions is in normal coordinates the usual Laplacian −

∑n
i=1

∂2

∂2x
.

Define the H0-pseudoscalar product (α, β)K :=
∫

K
α∧∗β of k-forms α, β over a compact

n-dimensional submanifold K ⊂ M with smooth boundary, or more generally of a k-
form α and a l-form β over a compact k+n− l-dimensional submanifold K with smooth
boundary. Then the differential d and the codifferential δ satisfy the equation

(dα, β)K = (α, δβ)K + (α, β)∂K

for smooth k− 1-forms α, smooth k-forms β and compact K with smooth boundary by
the theorem of Stokes. Indeed, integrate

d(α ∧ ∗β) = dα ∧ ∗β + (−1)k−1α ∧ d ∗ β = dα ∧ ∗β − α ∧ ∗δβ

over K to obtain

(α, β)∂K =

∫

∂K

α ∧ ∗β =

∫

K

d(α ∧ ∗β) = (dα, β)K − (α, δβ)K .

Further partial integration remains valid for the whole noncompact manifold M instead
of K and smooth H1-forms α, β, i.e. α, β, dα, dβ are smooth and square-integrable 67.

Denote by (α, β)K,s :=
∑s

i=0((d + δ)iα, (d + δ)iβ)K the Hs-pseudoscalar product of
forms, and define the local and global Sobolev spaces Hs

loc(Λ
kM) resp. Hs(ΛkM) as

the completion of C∞
c (ΛkM) w.r.t. the pseudoscalar products (·, ·)K,s resp. the scalar

product (·, ·)M,s.

Compact Manifolds On compact manifolds the differential d, the codifferential δ
and the Laplacian ∆ can be extended to operators d : Hs+1(Λk−1M) → Hs(ΛkM),
δ : Hs+1(Λk+1M) → Hs(ΛkM) and ∆ : Hs+2(ΛkM) → Hs(ΛkM) on the Sobolev

67See e.g. [Lott, Lemma 1] for manifolds without boundary, but the arguments are also valid for
manifolds with boundary. Indeed, if φi is a sequence of compactly supported functions with φi → 1
and dφ→ 0, then

lim
i

∫

M

φid(ω ∧ η) = lim
i

∫

∂M

φi(ω ∧ η)−

∫

M

dφi ∧ ω ∧ η →

∫

∂M

ω ∧ η

is valid.
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spaces. The Laplacian is a uniformly elliptic differential operator68 and an essentially
self-adjoint operator on the Hilbert space Hs(ΛkM) 69. The kernel of ∆ in Hs is usu-
ally denoted by H and its elements are called harmonic forms. By regularity theory
the harmonic forms are automatically smooth. As the Laplacian has further a compact
resolvent70, its spectrum consists of non-negative discrete eigenvalues whose correspond-
ing eigenspaces are pairwise orthogonal and finite-dimensional. Especially Hs is finite
dimensional.

On a compact manifold M without boundary the formula (∆α, α)M = (dα, dα)M +
(δα, δα)M is valid, thus being a harmonic form is equivalent to dα = 0 and δα = 0, and
the Laplacian is nonnegative71. The Hodge decomposition theorem now says that the
orthogonal complement of H is the image of ∆:

Hs(ΛkM) = ∆(Hs+2(ΛkM))⊕H = d(Hs+1(Λk−1M))⊕ δ(Hs+1(Λk+1M)⊕H

is an orthogonal decomposition of Hs(ΛkM) in the H0- and also in the Hs-norm, see
e.g. [Warner, 6]. Denote by Cs the forms α ∈ Hs+1(Λk+1M) which satisfy δα = 0 and
are called coclosed, then the Hodge decomposition theorem implies also the validity of
the orthogonal decomposition

Hs(ΛkM) = d(Hs+1(Λk−1(M)))⊕ Cs (6)

Now let M be a compact manifold with smooth boundary δM . Note that by the trace
theorem 72 every form inHs(ΛkM) can be restricted to a Hs− l

2 -form on an l-dimensional
submanifold of M . Especially Hs-forms on M , s ≥ 1, can be restricted to H0-forms on
the boundary ∂M . A form α is called tangential to ∂M if its normal part nα := ι∗(∗α)
vanishes, and it is called normal to the boundary if its tangential part tα := ι∗(α)
vanishes. Hereby ι : ∂M →M denoted the inclusion of the boundary and the pullbacks
are well-defined by the trace theorem.

On a compact manifold M with boundary the Laplace operator together with its bound-
ary condition is still uniformly elliptic and essentially self-adjoint. But the formula
(∆α, α)M = (dα, dα)M + (δα, δα)M is not valid anymore, and thus a harmonic form

68A differential operator L of order l on k-forms is called elliptic at a point m ∈ M if its symbol
at m defined by σL,m(ξ)(v) := L(φlα)(m) for a v ∈ Λk

mM , a k-form α with α(m) = v and a function
φ with φ(m) = 0 and dφ(m) = ξ ∈ T ∗

mM is an isomorphism σL(ξ) : Λk
mM → Λk

mM for each
0 6= ξ ∈ T ∗

mM . Equivalently in coordinates a differential operator L(m) = Pl(m, D) + · · · + P0(m, D)
of order l is elliptic at m ∈ M , if the matrix Pl(m, ξ) obtained by inserting ξ ∈ R

n instead of the
partial differentials D = ( ∂

∂x1
|m, . . . , ∂

∂xn
|m) is non-singular at the point m. A differential operator L

is called uniformly elliptic if the symbol of L is bounded uniformly on M , i.e. there is a constant C
with ‖σL,m(ξ)−1‖‖ξ‖l ≤ C for all m ∈ M and ξ ∈ T ∗

mM . Note that on a compact manifold every
elliptic operator is uniformly elliptic, because the positive function m 7→ ‖σL,m(ξ)−1‖ on the compact
space M is bounded away from 0.

69A densely defined operator A on a Hilbert space is called self-adjoint if A∗ = A and essentially
self-adjoint if A∗ = A∗∗ or equivalently if A has a self-adjoint extension.

70The map (A − λ Id)−1 defined for λ 6∈ σ(A) is called the resolvent of A. An operator is called
compact if the image of a bounded sequence has a convergent subsequence.

71An operator A on a Hilbert space is called non-negative if (Ax, x) ≥ 0
72See [Evans, 5] or [Ebin,Marsden, at the end of 2].
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does not need to be closed and coclosed. To still obtain a correspondence, decompose
the boundary ∂M = ∂MD∪̇∂MN into submanifolds where on ∂MD Dirichlet boundary
conditions and on ∂MN Neumann boundary conditions are assumed. These conditions
up to a certain order can be written in the form

α|∂MD
= 0 δα|∂MD

= 0 δdα|∂MD
= 0 . . .

∗α|∂MN
= 0 ∗ dα|∂MN

= 0 ∗ dδα|∂MN
= 0 . . . .

Now the harmonic forms which satisfy these boundary conditions up to the second order
correspond exactly to the closed and coclosed forms which are tangential to ∂MN and
normal to ∂MD, see [Schick, 5.8]. Denote these forms by Hs and mark by lower indices t

or n that only tangential or normal forms are considered, then the Hodge decomposition

Hs(ΛkM) = d(Hs+1
n (Λk−1M))⊕ δ(Hs+1

t (Λk+1M))⊕Hs

is valid, where the fact has been used that for an Hs+1-form α there is a closed Hs+1-
form β with tβ = 0, nβ = nα, and similar there is a coclosed Hs+1-form β with tβ = tα
and nβ = 0, see [Ebin,Marsden, after Lemma 7.2]. Further the analogue

Hs(ΛkM) = d(Hs+1(Λk−1M))⊕ Cs
t

of the decomposition (6) is valid. Indeed, by the formula (dα, β) = (α, δβ)+
∫

∂M
α∧∗β

a coclosed form β is tangential, i.e. satisfies ∗β|∂M = 0, if and only if (dα, β) = 0 holds
for all α.

Noncompact Manifolds Now let M be a noncompact manifold of bounded geome-
try with or without boundary. An elaborate discussion of such manifolds can be found
in [Schick], a summary of this discussion has been given in 6.1. Especially a result of
this discussion is that every bounded differential operator L of order l extends to a
continuous linear operator Hs+l → Hs by [Schick, 3.25(5)], and the differential, codif-
ferential and Laplacian are such operators by [Schick, 5.13,5.14]. Further the Laplacian
is uniformly elliptic and essentially self-adjoint, and also the regularity theory is valid
for a uniformly elliptic operator. Thus the Hodge decomposition

Hs(ΛkM) = d(Hs+1
n (Λk−1M))⊕ δ(Hs+1

t (Λk+1M))⊕Hs .

is valid ([Schick, 5.10]), where instead of tangentiality and normality, i.e. the 0-th
boundary conditions, it is also possible to assume all boundary values being zero
([Schick, 5.19]). But in general it is not possible to conclude that the image of d, δ
or ∆ is closed. However, under the spectral assumption inf σess(∆|ker(∆)⊥) > 0 these
images are closed, see [Eichhorn,Schmid, Proof of Theorem 3.3].

Note that the spectral assumption inf σess(∆|ker(∆)⊥) > 0 is not valid for arbitrary
manifolds. For example, on Rn and for k = 0 the kernel of ∆ consists of those square-
integrable functions with df = 0 and thus is trivial, but the spectrum of ∆ is [0,∞),
as by Fourier transformation the Laplacian is the multiplication operator given by
(aξ) 7→ (|ξ|2aξ).
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6.4.2 DiffVol(M) is a submanifold of Diff(M)

Now let us outline the proof that Diffs
Vol(M) is a submanifold of Diffs(M). First note

that the preimage of {µ} under the map ψ : Diffs(M) → Hs−1(ΛnM), η 7→ η∗(µ), is
exactly the subgroup of volume form preserving diffeomorphism. Next consider only
diffeomorphisms η in the component Diffs

Id(M) of the identity in Diffs(M), and note
that ψ maps the component Diffs

Id(M) into the subset µ+dHs(Λn−1M) of Hs−1(ΛnM),
see [Eichhorn,Schmid, Theorem 3.2]. But by Hodge theory on compact manifolds or by
the spectral assumption inf σess(∆|Ker(∆)⊥) > 0 on noncompact manifolds of bounded
geometry the set µ + dHs(Λn−1M) is a closed affine subspace of Hs−1(ΛnM) and thus
especially a closed submanifold. Further the value µ is a regular value of ψ. Indeed, it
suffices to show that the differential TIdψ of ψ at Id is onto dHs(Λn−1M), as then also
Tηψ(X) = η∗(LX◦η−1µ) is surjective, because η∗ and right multiplication with η−1 are
isomorphisms. Therefore observe that TIdψ(X) = LXµ = diXµ + iXdµ = diXµ is valid
(because of dµ = 0). Now by nondegenerancy of µ the map X 7→ iXµ is an isomorphism
Hs(TM)→ Hs(Λn−1M), thus X 7→ diXµ is onto dHs(Λn−1M), and hence TIdψ is really
surjective. This proves that ψ−1({µ}) ∩ Diffs

Id(M) is a submanifold of Diffs
Id(M), and

by right multiplication also the other components are submanifolds.

Especially the tangential space of Diffs
Id(M) at Id is the space of divergence free Hs-

vector fields, as the tangential space is the kernel of TIdψ, i.e. the space of all X with
diXµ = LXµ = 0, and a vector field is divergence-free if LXµ = 0, or equivalently
diXµ = 0, or equivalently δX [ = 0 (i.e. the one-form X [ associated to X is coclosed) is
valid.

6.5 Fluid Dynamical Equations are Geometric Equations

Now we come to the reason why we studied manifolds of mappings: Fluid dynamical
equations can be interpreted as Hamiltonian equations on manifolds of mappings, and
especially the Euler equations are geodesic equations w.r.t. the H0-metric on the group
DiffVol(M) of volume form preserving diffeomorphisms. Let us give a brief summary
of the important facts. During this summary have in mind, that there are different
possibilities to describe a fluid: Either by a particle map η(t) ∈ Diff(M) (a particle in
the fluid, which is at time t′ at the point m, moves to the point η(t)(m) at time t), by
the velocity field η̇(t) ∈ Tη(t) Diff(M) of the fluid in body coordinates or by the velocity
vector field u(t) ∈ TId Diff(M) of the fluid in spatial coordinates. The last description
in terms of the spatial velocity vector field is probably the most popular, as e.g. the
famous Euler equations

∂u

∂t
(t) +∇u(t)u(t) = − grad p(t)

div u(t) = 0 , u(t) ‖ ∂M

for an inviscous incompressible fluid are formulated in terms of u(t). The particle map
η(t) and the velocity vectorfield u(t) are related by u(t) = η̇(t) ◦ η(t)−1, and conversely
η is the solution operator generated by the time-dependent differential equation ṁ =
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u(t)(m). In our discussion we will see that the description of a fluid in terms of the
particle map has many advantages, as the corresponding equations on a manifold of
mappings are merely ordinary differential equations with continuously differentiable
right hand side and can be solved by the usual existence theorem. Now let us start
summarizing the results of [Ebin,Marsden] and [Eichhorn,Schmid].

The Riemannian metric < ·, · > on a manifold M induces the H0-Riemannian metric
(X, Y ) :=

∫

M
< X, Y > µ on Diffs(M). However, this is only a weak Riemannian

metric, as the tangential space is the space of Hs-vector fields endowed with the Hs-
norm and not with the H0-norm. But although the Riemannian metric is weak, the
connector K : TTM → TM on M induces a connector K̄ on Diffs(M) by K̄(V ) :=
K ◦ V , where V ∈ TT Diffs(M) ∼= {V ∈ Hs(M,TTM)|πTTM ◦ V ∈ T Diffs(M)}. In
the compact case all manifolds Diffs(M) are smooth and thus K̄ is also smooth by the
ω-lemma, as K is smooth. However, in the noncompact case the manifolds Diffs(M)
have only a finite differentiability order depending on the order of bounded geometry
M . Thus it must either be assumed that M has an infinite boundedness order, so
that the manifolds and also K̄ is smooth, or else a work-around has to be established
to guarantee that K̄ has a sufficient high differentiability order (see [Eichhorn,Schmid,
Proposition 4.3 + Corollary 4.4].

Using the connector K̄, a linear connection ∇̄ on Diffs(M) can be defined by ∇̄XY :=
K̄ ◦ TY ◦ X. To show that ∇̄ is compatible with the H0-metric, torsion-free and
thus really the Levi-Cita connection to the H0-metric, the equations ∇̄XY − ∇̄YX =
[X, Y ] (torsion-freeness) and X(Y, Z) = (∇̄XY, Z) + (Y, ∇̄XZ) (compatibility) are
first established for right-invariant vectorfields X, Y, Z on Diffs, and afterwards the
formulas are generalized to arbitrary vector fields ([Ebin,Marsden, p.129, Step 1-3],
[Eichhorn,Schmid, Lemma 4.3-4.7]). Hereby in the noncompact case it is necessary to
use the group Diff∞,s obtained by the completion of those C∞-maps, whose derivatives
are bounded in all orders of differentiability instead only up to order s. Indeed, the
proof establishes torsion-freeness and compatibility for H s+r-vector fields and then uses
denseness, but generally Diffr+s(M) is not dense in Diffs(M), only Diff∞,r+s is dense in
Diff∞,s.

Thus although the H0-metric is only weak, a connector and a linear connection to the
H0-metric exist on Diffs(M) in the compact case and on Diff∞,s(M) in the non-compact
case. Further it is also easy to describe the geodesics on the diffeomorphism groups:
Denote the spray on M by Z : TM → TTM , then the spray to the H0-metric on
Diffs(M) is given by Z̄(X) = Z ◦ X. Thus the geodesic equation is η̈(t) = Z ◦ η̇(t)
and the geodesic to the initial value X ∈ T Diffs(M) is simply η : t 7→ (m 7→ γXm

(t)),
where γXm

denotes the geodesic within the manifold M to the initial value Xm. Note
that the geodesic equation in terms of the spatial velocity vector field u(t) has the
form ∂u

∂t
(t) + ∇u(t)u(t) = 0, because every spray to a linear connection ∇ satisfies

Z ◦u = Tu ·u− (∇uu)
l for a vector field u (where (·)l denotes the vertical lift from TM

to TTM). Thus

Tu(t) · u(t)− (∇u(t)u(t))
l = Z ◦ u(t) = Z ◦ η̇(t) ◦ η(t)−1 = η̈(t) ◦ η(t)−1 =

˙(u(t) ◦ η(t)) ◦ η(t)−1 = (u̇(t) ◦ η(t) + Tu(t) · η̇(t)) ◦ η(t)−1 = u̇+ Tu(t) · u(t)
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is valid and implies ∂u
∂t

(t) +∇u(t)u(t) = 0.

Let us now consider the geometry w.r.t. the H0-metric on the submanifold Diffs
Vol(M).

This metric has the linear connection ∇̄Vol = P ◦ ∇̄, where PId : TId Diff(M) →
TId DiffVol(M) assigns to each vector field X = grad p + PIdX its divergence-free part
PIdX obtained by the Hodge decomposition Hs(Λ1M) = d(Hs+1(Λ0M)) ⊕ Ct. An
equivalent way to define PId is PIdX := X − grad p, where p denotes the solution of the
Poisson equation ∆p = div(X) on M with inhomogeneous Neumann boundary condi-
tions ∂p

∂ν
p = nX on ∂M (nX is the part ofX normal to the boundary ∂M). Indeed, then

div(PIdX) = div(X)−div(grad p) = div(X)−∆p = 0 and nPIdX = nX −n grad p = 0
are valid, i.e. PIdX is divergence-free and parallel to the boundary. Note that this later
description is the one which can directly be used in the noncompact setting, where due
to the spectral assumption inf σess(∆|Ker(∆)⊥) > 0 and because of Ker(∆) ∩ L2(M) = 0
(as Vol(M) = ∞ for manifolds of bounded geometry) the Laplace operator ∆ has a
continuous inverse. To conclude finally that ∇̄µ = P ◦ ∇ is the linear connection asso-
ciated to the H0-metric on the group of volume-preserving diffeomorphism, first it has
to be assured that the extension Pη(V ) = PId(V ◦η

−1)◦η of PId to the whole tangential
bundle T Diffs(M) is at least C2, see [Ebin,Marsden, Appendix A] or [Eichhorn,Schmid,
Proposition 4.9], before torsion-freeness and compatibility of ∇̄µ can be proved. In the
noncompact case it is hereby again necessary to use Diff∞,s

V ol (M) instead of Diffs(M).
To establish the differentiability of P is in fact the main step, as it assures that the
geodesic spray Z̄Vol(X) = TP (Z ◦X) to the H0-metric on Diffs

V ol(M) is a C1-map and
thus the geodesic equations are solvable by the ordinary existence theorem.

Finally let us show that the geodesic equations η̈(t) = Z̄(η̇(t)) really are the Euler
equations in terms of the velocity vector field u(t). Indeed, using again Z ◦u = Tu ·u−
(∇uu)

l as well as TP ((Y )l) = (P (Y ))l, TP (Tu · η̇) = T (PIdu) · η̇ (see [Ebin,Marsden,
Proposition 14.1]) and the divergence-freeness PIdu(t) = u(t) of u(t) = η̇(t) ◦ η(t)−1,
the equality
(

Tu(t) · u(t)− (PId(∇u(t)u(t)))
l
)

◦ η(t) = T (PIdu(t)) · η̇(t)− (PId(∇u(t)u(t)))
l ◦ η(t) =

TP
(

(Tu(t) · u(t)− (∇u(t)u(t))
l) ◦ η(t)

)

= TP (Z ◦ u(t) ◦ η(t)) = TP (Z ◦ η̇(t)) = η̈(t) =

˙(u(t) ◦ η(t)) = (u̇(t) ◦ η(t) + Tu(t) · η̇(t)) = (u̇(t) + Tu(t) · u(t)) ◦ η(t)

can be obtained. Thus with the Hodge decomposition PId(∇u(t)u(t)) = ∇u(t)u(t)+grad p
the Euler equations

∂u

∂t
(t) +∇u(t)u(t) = − grad p(t)

div u(t) = 0 , u(t) ‖ ∂M

are equivalent to the geodesic equations on Diffs(M).

6.5.1 Other Fluid Dynamical Equations

Having characterized the Euler equations geometrically as geodesic equations on the
group of volume preserving diffeomorphisms, let us ask whether other kinds of fluid
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dynamical equations are geometrical. This question can be answered by giving different
directions:

• The Euler equations could be coupled with other equations via the Trotter prod-
uct. So for example the Navier-Stokes equations arise via coupling the geodesic
flow Φt on T DiffV ol(M) with the semigroup U t generated on TId Diffs

Vol(m) =
{u ∈ Hs(TM)| div(u) = 0, u||∂M} by u̇ =: ν∆u 73 in M and prolonged to
T DiffVol(M) by right multiplication according to the Trotter product Ψt :=
limn→∞(Φt/n ◦U t/n)n. Then Ψt is generated by the sum of the vector fields which
generate Φt and U t. Thus for the concrete case where ν∆ is the generator, the
curve Ψtu0 ◦ η

−1 (where η denotes the base point of Ψtu0 ∈ Tη Diffs
V ol(M)) solves

the Navier-Stokes equations74

u̇(t) +∇u(t)u(t) = ν∆u(t) + grad p(t) div(u(t)) = 0 .

But instead of ν∆ also other generators could be used, e.g. those describing
external forces like gravity.

• Instead of the H0-metric other metrics can be considered, e.g. metrics equivalent
to the H1-metric. For example, the averaged Euler equations are characterized
as geodesic equations on the group of volume-form preserving diffeomorphisms
w.r.t. the H1-equivalent metric

< u, v >L2 +2α2 < Def(u),Def(v) >L2

for u, v ∈ TId Diffs
Vol(M), where Def(u) = 1

2
Lug = 1

2
(∇u + (∇u)T ) denotes the

deformation tensor, see [Shkoller].

• Instead of the group of volume preserving diffeomorphisms one could go back
to the whole group Diff(M) of diffeomorphism and could, for example, consider
Hamiltonian equations on semi-direct products with the group Diff(M): Let G be
a Lie group and let V be a representation space of G. Further let Hv : T ∗G→ R

be a family of Hamiltonians depending on the parameter v ∈ V which is left
invariant under the action of the stabilizer Gv := {g|gv = v} of v in V . Then the
family of Hamiltonians Hv induces a Hamiltonian H on the dual of the Lie algebra
of the semi-direct product group G o V (having multiplication (g, v)(g ′, v′) =
(gg′, gv′ + v)) by H : T ∗

eG o V ∗ → R, H((TeLg)
∗αg, g

∗v) = Hv(αg), and the
solutions correspond, see [Marsden,Ratiu,Weinstein, 3.4]. Hereby αg ∈ T

∗
gG, Lg

is left multiplication with g and g∗ denotes the dual of the linear map g : V → V
given by the representation of G on V , and in fact the whole construction is
Lie-Poisson reduction on semi-direct products.

73Here ∆ denotes the negative of the Laplace-Beltrami operator applied to the one-form u[ induced
by the vector field u, and ν is a constant.

74However, here we consider only manifolds without boundary, as solving u̇ = ν∆u under the
boundary condition ∂u

∂ν
= 0 on ∂M is problematically, see [Marsden, Ratiu, 15.6.ii)].
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To apply this construction to the dynamics of ideal compressible isentropic fluids,
let G = Diffs(M) act on the space Hs(M) of functions on M by (η, ρ) := ρ ◦ η−1

and consider the family of Hamiltonians

Hρ(X
[) :=

1

2

∫

M

< Xη(m), Xη(m) > ρ(η(m))dm+

∫

M

ρ(m)w(ρ(m)◦J(η)−1(m))dm ,

where dm denotes the Riemannian volume form on M , the function w : R → R

models the thermodynamical inner energy at a given density value, and J(η) is
the Jacobian of the diffeomorphism η (which is the base point of X) defined by
η∗(ρdm)J(η) = ρdm. Then the above construction yields the equations

u̇(t) +∇u(t)u(t) = −
1

ρ(t)
grad p(t) ρ̇(t) + div(ρ(t)u(t)) = 0 p(t) = ρ(t)2w′(ρ(t))

for (u, ρ) ∈ TId Diff(M) × V , and thus the usual model for the dynamics of an
ideal compressible isentropic fluid.

6.6 Fluid Dynamics on Local Spaces

Now let us discuss what happens when instead of global Sobolev spaces the local
Sobolev spaces are used. The diffeomorphism group Diffs

loc(M) is again a subman-
ifold of Hs

loc(M,M), not modeled on an open subset but merely on a dense i-ball.
However, the geodesics induced by the H0-metric (the norm function associated to the
Hs

loc-metrics on the pseudo-Hilbert space Hs
loc(M,M), see 4.4), i.e. the solutions of

the equation η̈ = Z̄(η̇) with the spray Z̄(X) := Z ◦ X on Diffs
loc(M) induced by the

spray Z on M , stay for local spaces the same as for global spaces: They are given
by t 7→ (m 7→ γXm

(t)), where γXm
(t) denotes the geodesic on M to the initial value

Xm over η(m). But if the derivative Tη of the base point η ∈ Diffs
loc(M) of X has

small eigenvalues |λ| or the vector field X is large at infinity, then the geodesic η(t)
could instantly loose the property of being a diffeomorphism. Thus although η(0) is a
diffeomorphism, the geodesic η(t) does not need to be a diffeomorphism for any t 6= 0.
However, the only problem produced by this defect in fluid dynamics is the impossibility
to define the velocity vector field u(t) = ˙η(t) ◦ η(t)−1 of the fluid in spatial coordinates:
The particle map η(t) in Hs(M,M) (instead of Diffs(M)) and the vector field η̇ in
body coordinates stay well-defined. The loose of the diffeomorphism property is highly
related to the occurence of discontinuities like shocks in u(t).

Further note that the spray Z̄ is smooth not only as a map on THs(M,M) but also as a
map on THs

loc(M,M): Due to the standing assumption of bounded geometry, the spray
Z on M is globally Lipschitz in all derivatives up to the boundedness order (which is
assumed to be larger than s), and thus like in the example of 5.4 the ordinary differential
equation Ẋ = Z ◦X can be solved locally at least for all bounded Hs

loc-vector fields X.

Thus the pressureless fluid dynamics onHs
loc(M,M) to the equation ∂u

∂t
(t)+∇u(t)u(t) = 0

(in 1D this is Burger’s equation) can be formulated also rigorously for local Sobolev
spaces. But also if Z is not the geodesic spray, but an arbitrary second order equation
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S on M , then Ẋ = S ◦X can be solved in the same way by applying the local existence
theorem. Especially ∂u

∂t
(t)+∇u(t)u(t) = f can be solved in this way with aHs-vectorfield

f on M . Note that all these equations given by composition with S are in fact equations
with a finite propagation of velocity and can be solved by the method of characteristics.
But while discontinuities can arise in the vectorfield u(t) = η̇(t) ◦ η(t)−1, on the level of
the particle map η ∈ Hs

loc(M) this problem can not appear: Even if η is not invertible
anymore, it still solves the second order equation and is well-defined.

Further also if the second order equation is not given by composition but by η̈ = S̄(η̇)
with a continuously differentiable right hand side S̄ : THs

loc(M,M) → TTHs
loc(M,M),

the problem can be attacked by using our existence theorem on locally convex spaces.
Note that S̄ is continuously differentiable if the mapK◦S̄ : THs

loc(M,M)→ THs
loc(M,M)

between locally convex topological vector spaces is continuously differentiable, as on the
other component of TTHs

loc(M,M) the equality Tπ ◦ S̄ = IdTHloc
with the smooth map

IdHloc
is valid due to the second order property of S̄.

In fact, the requirement is essentially that S̄ is local, i.e. the value of S̄(X) on a compact
set is determined by the values of X on a maybe larger, but still compact set, and not by
values of X outside every compact set. But incompressibility or inviscosity of equations
are non-local properties, and that’s why the Euler or Navier-Stokes equations can not
be solved in the local spaces. The cause for this defect is that the projection X 7→ PX
of vector-fields onto its divergence-free part is not local: PX(m) does not depend on
the values of X in a compact set around m but globally on all values of X. In fact,
we have seen in section 4.4 that projections on pseudo-Hilbert spaces X = limi(Xi, pi)
are in general not continuous w.r.t. the original topology, but only w.r.t. the metric
induced by p := limi pi. Here this metric is the Hs-metric and thus P is in general
not continuous w.r.t. the Hs

loc-pseudo-norms but only w.r.t. the Hs-norm. Or in other
words: The solution of the Poisson equation75 ∆p = f does generally not have the
property that if f has compact support, then also p has compact support. For example,
Green’s function, which solves the equation for the delta distribution at some point as
right hand side, has generally not compact support. Thus as long as we are not on a
manifold M where Green’s function has compact support, dynamics of incompressible
fluids can not be modeled by geodesics in a local diffeomorphism group.

Thus to conclude: Although the most popular examples of systems with pattern forma-
tion, the Euler- or Navier-Stokes-equations, can not be discussed using local Sobolev
spaces, the fluid dynamical equations describing the dynamics of inviscous compressible
fluids can be formulated using local Sobolev spaces. This is due to the fact that these
equations have a finite velocity of propagation and thus are local, but our calculus on
locally convex vector spaces exactly requires locality of C1-maps.

75A short summary about properties of the Poisson equation on arbitrary manifolds can be found
in B.
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7 Pattern Formation under Symmetry

This final chapter discusses the general theory of pattern formation under symmetry
in dynamical systems, whose state space is a manifold of mappings on a noncompact
domain, modeled over a Banach space or a complete locally convex topological vector
space.

Let X be such a manifold of mappings on a domain M and let Φt be a (at least locally
defined) flow onX. For example, the flow Φt could be the solution of the Euler or Navier-
Stokes equations on a compact or noncompact manifold M , where Φt is (at least locally)
defined on the Hilbert space X = {u ∈ Hs(TM)| div(u) = 0, u||∂M} = TId Diffs(M)
or on the whole tangential bundle X = T Diffs(M). Or Φt could be a flow generated by
fluid dynamical equations with finite propagation of velocity on a manifold of mappings
X modeled over a locally convex topological vector space. Another important class of
examples consists of flows generated by reaction-diffusion equations ẋ = Ax + f(x) on
a domain M , where x : M → RN models the density of N species, which react and
move under diffusion.

Suppose further that the isometry group G = Isom(M) on M induces via composition
an operation on the manifold X of mappings, and assume Φt to be equivariant w.r.t.
this action, i.e. Φt(gx) = g(Φtx) is valid. For example, the isometry group G on M
induces the operation (g, η) 7→ g◦η on the configuration space Diffs

Vol(M) of the Euler or
Navier-Stokes equations, the operation (g, U) 7→ Tg ◦U on the state space T Diff s

Vol(M)
and the operation (g, u) 7→ Tg ◦ u(t) ◦ g−1 on the reduced state space TId Diffs

Vol(M).
On these manifolds of mappings X again every g ∈ G is an isometry of X because of
∫

M
‖Tg◦u(t)◦g−1‖2dm =

∫

M
‖u‖2dm, and the flow Φt generated by the Euler or Navier-

Stokes equations is equivariant, as the the H0-metric is invariant and the Laplace-
Beltrami operator ∆ is equivariant under isometries on M . The same is true for other
Hamiltonian equations modeling fluids like e.g. ideal compressible isentropic fluids. Or
let the group G = Isom(M) of isometries on M act on the densities x ∈ X = L2(M,RN)
or X = BCunif(M,RN) of a reaction diffusion system ẋ = Ax+f(x) by (g, x) 7→ x◦g−1,
and suppose that A is the Laplacian or another G-invariant operator, then again every
g is an isometry of X 76 and the generated flow Φt is equivariant.

But note that for global spaces of mappings on a noncompact manifold M the induced
operation of the isometry group is often not strongly continuous 77, continuous or dif-
ferentiable. Indeed, the topology of uniform convergence on compact sets is the finest
topology on a space of continuous mappings on a noncompact domain M such that
composition and evaluation are continuous. But for noncompact M the global spaces
of mappings do not have a coarser topology than the topology of uniform convergence
on compact sets. Thus, for example, the operation (g, η) 7→ g ◦ η on the Hilbert mani-
fold Diffs(M) is not strongly continuous, in fact, η and g ◦ η even do not belong to the
same connected component unless g = Id, as Id and g do not differ by an H s-vector
field unless g = Id. However, the induced operation on the Hilbert space TId Diffs

Vol(M)

76Indeed, supM ‖x ◦ g−1‖ = supM ‖x‖ is valid for x ∈ Cunif (M, RN ), and
∫

M
‖x(g−1m)‖2dm =

∫

M
‖x(m)‖2dm holds for x ∈ L2(M, RN ) are valid.

77An action is called strongly continuous if g 7→ gx is continuous for every x ∈ X .

89



of divergence-free vector fields is strongly continuous, because
∫

M

‖Tg(u ◦ g−1)− u‖2dm ≤

∫

K

‖Tg(u ◦ g−1)− u‖2 +

∫

M\K

‖Tg(u ◦ g−1)− u‖2dm ≤

ε1

∫

M

‖u‖2dm+ ε2

is valid, whenever K is so large that
∫

M\K

‖Tg(u ◦ g−1)− u‖2dm ≤

∫

M\K

‖Tg(u ◦ g−1)‖2 + ‖u‖2dm < ε2

and g is so near to the neutral element Id that ‖Tg(u ◦ g−1)− u‖2 ≤ ε1‖u‖
2 on K. But

this strongly continuous operation has other defects, namely for noncompact M and
G there are generally no nontrivial finite-dimensional invariant subspaces 78 and the
operation is neither continuous nor differentiable. Further, while the induced operation
on Hs(TM) is strongly continuous, as Hs-vectorfields vanish at infinity, the induced
operation is usually not strongly continuous on spaces like BCunif(M,R). For example,
consider M = R2, G = E(2), f(x, y) = cos(x) and a rotation g about an angle φ, then
supR2 |(f ◦ g)− f | = supx,y | cos(cosφx+ sin(φ)y)− cos(x)| = 2 is valid for all φ 6= 0, so
that the operation cannot be strongly continuous.

To the contrary, for the local spaces of mappings on a noncompact domain M the
induced operation of the isometry group is continuous, as the topology of these spaces
is finer than the topology of uniform convergence on compact subsets. In fact, this was
the starting point of this thesis. Moreover, the operation is often differentiable, e.g.
on Ck(M,M) or Hs

loc(M,M), s > dim(M)/2 + 1, the induced action (g, η) 7→ g ◦ η is
smooth by the omega-lemma, as g is smooth. Also there are usually nontrivial finite-
dimensional invariant subspaces, e.g. in C(Rn,R) the polynomials of degree smaller
than a fixed k are invariant under E(n). Thus the properties of the induced operation
of the isometry group strongly depend on the used spaces and are much better for local
spaces of maps than for global spaces. This should be reflected in a discussion of pattern
formation.

Finally assume that the flow Φt depends on external parameters λ. For example, in
the case of the Navier-Stokes equations the velocity vector field at the boundary could
depend on a parameter λ. By changing into a frame moving with the boundary velocity
vectorfield, the boundary data often can be made homogeneous, but then - from the
Hamiltonian point of view - the right hand side of the Hamiltonian second-order equa-
tion U̇ = S̄λ(U) depends on the parameter λ, as an extra force term arises due to the
change of the frame. Such a system is the famous Taylor-Couette experiment, where

78For example, consider M = Rn and let V be an invariant subspace of the complexified space
Hs(Rn, C), then E(n) acts on V by isometries. Because of d

dt
u(m+ tei)|t=0 = ∂u

∂xi
(m) the translations

into direction ei are generated by the operator ∂
∂xi

. As V is invariant, every ∂
∂xi

restricts to a linear
operator on V . As all these operators commute, they can be diagonalized simultaneously. But if
V were finite-dimensional, the operators would have common eigenfunctions v ∈ V . However, the
common eigenfunctions of the operators ∂

∂xi
are m 7→ exp(< b, m >), b ∈ Cn, and these function do

not belong to Hs(Rn, C), so that a contradiction is obtained.
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a fluid between two rotating cylinders is observed, while the rotational velocity of the
cylinders depends on a parameter and can be changed, see [Chossat,Iooss].

We are interested in the bifurcations of patterns, which occur in such dynamical systems,
when the parameter is varied. Hereby patterns are subsets S of the state space, which
are invariant under the flow and under the symmetry. The simplest patterns are relative
equilibria, i.e. flow invariant group orbits S = Gs0, and relative periodic orbits S =
ΦRGs0, i.e. S is up to symmetry a periodic orbit, or more formally, there is a group
element g ∈ G and a time T > 0 such that ΦT (s0) = gs0 holds. For example, in the
Taylor-Couette experiment spiral flows, wavy vortices and other interesting patterns can
develop. Many of these patterns discussed in literature are simply relative equilibria
or relative periodic orbits, and all of them are essentially finite-dimensional, i.e. they
seem to be determined by a finite number of parameters.

Therefore in a mathematical study of bifurcation, one tries to reduce the bifurcation
problem from the original infinite-dimensional state-space given by a manifold of map-
pings, to a finite-dimensional state-space given by a finite-dimensional submanifold of
the infinite-dimensional state space, which is invariant under the flow and the induced
action of the isometry group. This can be done via Lyapunov-Schmidt reduction or
center-manifold reduction, but on Banach spaces in both reduction schemes problems
arise due to the discontinuity and non-differentiability of the induced operation. We dis-
cuss these two methods of reduction in the Banach case, and generalize center-manifold
reduction to the case of locally convex spaces. Having obtained a finite-dimensional
manifold by reduction, bifurcations under symmetry of the original system can be dis-
cussed by using skew-product flows on this finite-dimensional manifold, and the results
of this discussion are summarized in the final section.

7.1 Lyapunov-Schmidt Reduction on Banach Spaces

Bifurcations of relative equilibria and relative periodic orbits in reaction-diffusion equa-
tions on noncompact domains with symmetry first have been studied rigorously by
[Wulff] using Lyapunov-Schmidt reduction. Let us summarize her results.

Let Φt be the parameter-depending equivariant Ck-flow of a reaction-diffusion equation
ẋ = Ax+f(x, λ) on a Banach space X endowed with an operation of a finite-dimensional
Lie group G by isometries g : X → X, where A is a sectorial operator, f is Ck and
A + f is equivariant. Suppose that S0 is a relative equilibrium or a relative periodic
orbit of Φt at the parameter λ0. Choose s0 ∈ S0 and let T > 0 be arbitrary in
the case of a relative equilibrium resp. in the case of a relative periodic orbit let
T := inf{t > 0|∃g ∈ G : Φt(s) = gs} be the minimal time, at which the group orbit
and the time orbit through s0 intersect. Further denote by g0 the group element with
ΦT (s0) = g0s0.

We want to study, whether S0 can be continued w.r.t. the parameter λ, i.e. we look for
a family Sλ of relative equilibria resp. relative periodic orbits with Sλ0 = S0. To obtain
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such a family, we have to discuss the solvability of the equation

H(s, g, λ) =

(

g−1ΦT
λ (s)− s

x′i(s− s0)

)

= 0

near (s0, g0, λ0). Here the x′i define a transversal section to Gs0 at s0, so that the
decomposition X = Ts0(Gs0) ⊕ {x|x

′
i(x) = 0} is valid. The equations x′i(s − s0) = 0

guarantee that solutions s of H = 0 are not merely translations of s0 along the group
orbit. Note that a transversal section x′i to Gs0 at s0 exists, whenever Gs0 is a C1-
submanifold of X. But the G-operation on X is generally not differentiable, so that
g 7→ gs0 is not automatically a C1-map. Therefore it has to be required that for s0 the
subset Gs0 is a submanifold. This requirement is essentially a regularity requirement,
as e.g. for X = Cr(M,RN) the map g 7→ s0 ◦ g

−1 is Ck by the omega lemma, if s0 is
Ck+r.

Observe that the solvability of H = 0 cannot discussed directly by the ordinary implicit
function theorem, because the G-action is not differentiable and thus H is not differ-
entiable in the G-component. The work-around provided by [Wulff] is the following
method:

Assume the spectral hypothesis that the values |µ| ≥ 1 form a spectral set79 of the
spectrum of the operator L := g−1DΦT

λ (s0) obtained by linearizing the Poincare map
g−1ΦT at s0, and suppose that the corresponding spectral projection P has a finite-
dimensional image Ecu, which is called the center-unstable eigenspace.

Restrict the flow to the space Y := {x ∈ X|gx is a C0 − map in g}, i.e. on the space
where G acts strongly continuous. Then a scale of Banach spaces Yj is inductively
defined by Yj := {u ∈ Yj−1|∀ξ ∈ G : ξu ∈ Yj−1} equipped with the norm ‖u‖Yj−1

+
supξ∈G,|ξ|=1 ‖ξu‖Yj−1

, where G denotes the Lie algebra of G and ξu is a short notation

for d
dt

exp(tξ)u|t=0. Note that Yj consists of those elements for which g 7→ gx has a
derivative in Yj−1. In the same way the scale Y ′

j ⊂ X ′ is defined.

Because of equivariance the equation ξΦt(u) = DΦt(ξu) is valid, and thus the Ck-flow
on Y restricts to a Ck−j-flow on Yj. Now [Wulff, Lemma 4.4] proves that there is a

projector P̂ near P in the L(Y )-norm such that gP̂ and P̂ g are Ck in g, and further
from the spectral hypothesis it can be concluded that s0 ∈ Y1 holds, see [Wulff, Lemma
4.5], which yields inductively Ck-regularity of Gs0.

The idea is then to solve instead of H = 0 first the fixed point problem

y = Π(y, q, g, λ) := (1− P̂ )g−1ΦT (y + q, λ)

for y ∈ (1 − P̂ )Y and q ∈ P̂ (Y ) near (q0 := P̂ (s0), g0, λ0) by Banach’s contraction
mapping principle on the scale of Banach spaces (1−P̂ )Yj to obtain a solution y(q, g, λ),
which is Ck−j in its variables when y is considered as function into Yj. After such an y
has been found, the reduced equation

Hred(q, g, λ) =

(

P̂ g−1ΦT
λ (y(q, g, λ) + q)− q

x′i(y(q, g, λ) + q − s0)

)

= 0

79A subset of the spectrum of an operator on a Banach space is called a spectral set if it is a union
of connected components or equivalently open and closed.
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can now be solved by the ordinary implicit function theorem, as this equation is C1 in the
variable g. Using this method, bifurcation of relative equilibria or relative periodic orbits
S can be observed directly in the equation Hred = 0, and thus the bifurcation problem
can be solved, although the action of the symmetry is not continuous or differentiable
on the original Banach space.

7.2 Center-Manifold Reduction

Instead of Lyapunov-Schmidt reduction, which allows to observe bifurcations directly
in a reduced finite-dimensional equation, also center-manifold reduction can be used to
reduce the complexity of the bifurcation problem: Let S be a pattern of an equivariant
dynamical system Φt on a manifold X endowed with an operation of a Lie group G, i.e.
S is a flow- and G-invariant submanifold of X. To such a pattern S equivariant center-
manifold reduction tries to construct a finite-dimensional locally flow- and G-invariant
Ck-manifold Mcu ⊂ X, which is locally attracting and contains all time-orbits staying
close to S for t → −∞. Such a manifold Mcu is called a center-unstable manifold
of S and determines the long-time behaviour of the original dynamical system near S
completely in the sense that Mcu locally attracts all orbits near S.

The Banach Case

Again let us consider a reaction-diffusion equation u̇ = −Au+f(u) on a Banach space X
with a sectorial operator A and a Ck+2-function f . Assume that the finite-dimensional
noncompact Lie group G acts by isometries on the Banach space X and leaves the equa-
tion invariant, so that the flow Φt on X generated by the reaction-diffusion equation is
equivariant. Then the following main theorem of [Sandstede, Scheel, Wulff] guarantees
the existence of center-unstable manifolds.

Theorem 7.1 Let S = Gs0 be a relative equilibrium of the flow Φt on the Banach space
X. Choose ξ ∈ G such that Φt(s0) = exp(tξ)s0 and denote by Gs0 := {g|gs0 = s0} ⊂ G
the isotropy subgroup of s0. Suppose that {λ| |λ| ≥ 1} is a spectral set for the linear
operator exp(−ξ)DΦ1(s0) such that the associated generalized eigenspace Ecu, the image
of the associated spectral projection P , is finite-dimensional 80. Finally require the
technical assumptions

• g 7→ gs0 is Ck+2

• for ε > 0 there is a δ > 0 such that ‖gs0 − s0‖ ≥ δ for all g with dist(g,Gs0) ≥ ε.

• g 7→ gv is Ck+1 for any v ∈ Ecu

• g 7→ g−1Pg ∈ L(X) is Ck+1

80Especially, if X does not admit finite-dimensional invariant subspaces of noncompact subgroups
of G, the isotropy subgroup Gs0

has to be compact, as Ecu is finite-dimensional and invariant under
Gs0

.
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Then there is a G-invariant manifoldMcu ⊂ Y which is locally backward-invariant under
the map Φt for any t ≥ 0, locally exponentially attracting and contains all solutions,
which stay close to S for all backward times. The manifold Mcu and the action of G on
Mcu are of class Ck+1.

The second technical assumption also guarantees that the action of G on the center-
unstable manifold Mcu is proper 81. The technical assumptions can be justified rigor-
ously in many cases for reaction-diffusion systems, so that the essential assumption is
merely the finite-dimensionality of the center-unstable eigenspace Ecu.

The Locally Convex Case

Let us indicate, how center-manifold reduction can be generalized to complete and
separated locally convex topological vector spaces, first for fixed points of a map, and
then for patterns S like relative equilibria and relative periodic orbits in analogy to the
approach of [Sandstede, Scheel, Wulff]. Such a generalization is possible, because the
existence of center-manifolds can be proved by essentially using merely Lipschitz con-
tinuous maps and the contraction mapping principle, which both have been generalized
to locally convex spaces in chapter 5.

The proof for the fixed point case presented below is similar to the Banach proofs, see
e.g. [Lanford, Chapter 8]. Let F : X → X be a C1-map (w.r.t. the tensorial closed
category of locally convex pseudotopological limit vector spaces), on the complete and
separated locally convex topological vector space X and consider the discrete dynamical
system generated by F . Suppose that F has the fixed point 0 82 and that the linearized
map DF (0) : X → X at the fixed point has a center-unstable eigenspace, i.e. Σcu :=
{λ ∈ Σ(Df(0))| |λ| ≥ 1} is a spectral set83 of DF (0). Denote the image of the
corresponding spectral projection by Ecu and call it the generalized center-unstable
eigenspace of DF (0), while its closed complement - the kernel of the spectral projection
- is denoted by Es and is called the generalized stable eigenspace of DF (0). Both Ecu

and Es are invariant under DF (0), the spectrum of DF (0) restricted to Ecu lies outside
or on the boundary of the unit disk, the spectrum of DF (0) restricted to Es lies inside
a disk of radius smaller than one, and an analytic part of the spectrum lies between
both boudary circles.

81An operation of G on a manifold M is called proper, if the map h : (g, m) 7→ (m, gm) is proper, i.e.
preimages of compact sets under h are compact. Especially every isotropy subgroup Gm is compact
because of Gm ×m = h−1({m, m}).

82If F has the fixed point x0, consider F (x0 + ·)− x0 as new map.
83A closed subset Σ1 ⊂ Σ(T ) is called a spectral set of an operator T , if its complement Σ2 :=

Σ(T ) \ Σ1 is also closed in Σ(T ) (or equivalently Σ1 is a union of connected components of Σ(T ))
and is separated from Σ1 by the analytic part of the resolvent set of DF (0), see the paragraph about
spectral theory in 4.4. In the Banach case, a subset Σ1 is a spectral set iff it is a union of connected
components, as all parts of the resolvent set are automatically analytic.
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Theorem 7.2 Let X be a complete and separated locally convex topological vector space
admitting C1-cut-off functions and consider a C1-map F . Then there exists a backward
F -invariant84 locally defined Lipschitz-manifold Mcu at zero given by the graph of a
Lipschitz continuous map H : Ecu ⊃ Bεp

(0) → Es on an i-ball Bεp
(0) around zero

satisfying H(0) = 0. The manifold Mcu is called a center-unstable manifold of the fixed
point 0 of F .

As in the Banach case, if X admits Ck-cut-off functions, for a Ck-map F the manifold
Mcu and the map H can be chosen to be Ck, see e.g. [Lanford, 8.3] for the Banach
proof. However, we merely prove the Lipschitz case, as the Ck-case can be proved in
complete analogy to the Banach case, but requires lengthy estimates.

Proof: There is a neighbourhood U of the fixed point 0 and a map σ on the set of
continuous pseudonorms on X such that DF : U → Lσ(X). As Ecu and Es are invariant
under DF (0), the linear map DF (0) has the form DF (0) = A⊕B, where A : Ecu → Ecu

has spectrum on the boundary or outside of the unit circle and B : Es → Es has
spectrum inside a circle of radius strictly smaller than 1, while an analytic part of
the resolvent set of DF (0) lies between these circles. Thus σ can be chosen such that
qσ(q)(B) < 1 and σ(q)q(A−1)qσ(q)(B) < 1 for all continuous pseudonorms q on X.

Write F = A ⊕ B + (f, g), where the nonlinear parts f : X → Ecu and g : X → Es

have values f(0) = 0cu, g(0) = 0s and are locally Lipschitz continuous w.r.t. σ with
vanishing local Lipschitz constants 85 at zero. In fact, for a C1-map F the nonlinear
parts are not only locally Lipschitz continuous but C1, however here we only want to
prove the Lipschitz case.

Thus we search for a backward F -invariant and locally defined Lipschitz manifoldMcu =
{(xcu, H(xcu)) | p(xcu) ≤ εp} given by the graph of a Lipschitz continuous map H on
an i-ball Bεp

(0). In the following we will see that backward F -invariance of Mcu is
equivalent to H being a fixed point of the graph transform operator T , and we prove
the existence of H by using the contraction mapping principle for T on the space H of
all maps H : Ecu 7→ Es satisfying H(0) = 0 and having Lipschitz constants pp(H) ≤ 1.
This space H is a closed subset of the complete and separated locally convex space of
globally Lipschitz continuous maps H : Ecu → Es satisfying H(0) = 0 and endowed
with the pseudonorms pp(H) 86.

However, to prove that the graph transform T is a contraction, certain inequalities
have to be satisfied. These inequalities can be satisfied by requiring that f, g are not
only locally small with small Lipschitz constants at zero, but globally small with small
Lipschitz constants. This requirement can be reached by changing the original nonlinear
parts f, g outside an i-ball Bεp

(0), which is possible if Lipschitz continuous (or Ck-) cut-

84A set S is called backward F -invariant, if S ⊂ F (S) is valid.
85The local Lipschitz constants qσ(q)(f)(x) of a map f at a point x w.r.t. σ are defined by

qσ(q)(f)(x) := infU qσ(q)(f |U ), where U runs through the neighbourhoods of x. Consequently the
global Lipschitz constants of f w.r.t. σ are qσ(q)(f) = supx qσ(q)(f)(x).

86The space is separated, as pp(H) = 0 for all p implies p(H(x)) = p(H(x)−H(0)) ≤ pp(H)p(x) = 0
for all x ∈ X . Further it is complete, as pp(Hn − Hm) → 0 implies p(Hn(x) −Hm(x)) → 0, so that
Hn(x) is a Cauchy sequence and converges in X to give a map H , which itself is Lipschitz because of
pp(Hn) ≤ pp(H) + pp(Hn −H)→ pp(H).
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off functions on X exist. From now on denote the changed nonlinear parts by f, g, and
have in mind that the Lipschitz constants of these changed nonlinear parts can become
arbitrary small, so that certain inequalities can be satisfied. Now let us begin with the
main part of the proof:

Backward invariance of Mcu means Mcu ⊂ F (Mcu), or equivalently that to every xcu

there is a ξcu such that (xcu, H(xcu)) = F (ξcu, H(ξcu)). Thus to establish backward
invariance of Mcu, we have to find an H such that for every xcu there is a ξcu with

xcu = Aξcu + f(ξcu, H(ξcu)) (7)

H(xcu) = BH(ξcu) + g(ξcu, H(ξcu)) (8)

Now to every xcu and every H with pp(H) ≤ 1 the first equation (7) has a unique solution
ξcu(xcu, H). Indeed, pp(H) ≤ 1 implies qσ(q)(f(·, H(·))) ≤ qσ(q)(f), so provided that the
inequality σ(q)q(A−1)qσ(q)(f) < 1 is valid (which can be satisfied for small qσ(q)(f)),
lemma 7.3 implies the global invertibility of the map ξcu 7→ xcu = Aξcu + f(ξcu, H(ξcu)).
Further the lemma estimates the global Lipschitz constants of the inverse map xcu 7→
ξcu(xcu, H) in the xcu-component by

σ(q)q(ξcu(·, H)) ≤
(

σ(q)q(A−1)−1 − qσ(q)(f)
)−1

=

σ(q)q(A−1)

1− σ(q)q(A−1)qσ(q)(f)
.

The second equation (8) is a fixed point problem H = TH on the space H, where the
operator T is given by (TH)(·) := BH(ξcu(·, H)) + g(ξcu(·, H), H(ξcu(·, H))). We show
that T is a contraction:

• The operator T maps functions H with pp(H) ≤ 1 into functions TH with
pp(TH) ≤ 1, provided that the inequalty

(

qσ(q)(B) + qσ(q)(g) + qσ(q)(f)
)

σ(q)q(A−1) ≤

1 is valid (which can be satisfied for small qσ(q)(g), qσ(q)(f) because of σ(q)q(A−1)qσ(q)(B) <
1). Indeed, qq(TH) ≤ (qσ(q)(B)+qσ(q)(g))σ(q)q(ξcu(·, H)) holds due to σ(q)σ(q)(H) ≤
1, and hence

qq(TH) ≤ (qσ(q)(B) + qσ(q)(g))
σ(q)q(A−1)

1− qσ(q)(f)σ(q)q(A−1)
≤ 1

is valid, where (7.2) and the assumption
(

qσ(q)(B) + qσ(q)(g) + qσ(q)(f)
)

σ(q)q(A−1) ≤
1 have been used. Further obviously H(0) = 0 implies TH(0) = 0, so that T maps
H into itself.

• The operator T is a contraction on H. Indeed, write

(TH)(xcu) = G(ξcu(xcu, H), H(ξcu(xcu, H))) ,

where G(ξcu, xs) := Bxs + g(ξcu, xs). Let ξ = ξcu(xcu, H) and ξ′ = ξcu(xcu, H
′),

then the equality

(TH − TH ′)(xcu) = G(xi,H(ξ))−G(ξ,H ′(ξ) +G(ξ,H ′(ξ))−G(ξ′, H ′(ξ′))
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is valid. Now

q(G(xi,H(ξ))−G(ξ,H ′(ξ))) ≤ qσ(q)(G(ξ, ·))σ(q)σ(q)(H −H ′)σ(q)(ξ) ≤

qσ(q)(G(ξ, ·))σ(q)σ(q)(H −H ′)σ(q)q(ξcu(·, H))q(xcu)

and q(G(xi,H ′(ξ)) − G(ξ′, H ′(ξ′)) ≤ qσ(q)(G)σ(q)(ξ − ξ′) are valid. To estimate
σ(q)(ξ− ξ′), note that by equation (7) Aξ+f(ξ,H(ξ)) = xcu = Aξ′ +f(ξ′, H ′(ξ′))
and thus also Aξ + f(ξ,H(ξ))− Aξ ′ − f(ξ′, H(ξ′)) = f(ξ′, H ′(ξ′)) − f(ξ′, H(ξ′))
holds. Hence

σ(q)(ξ − ξ′) ≤ σ(q)q(ξcu(·, H))q(Aξ + f(ξ,H(ξ))− Aξ ′ − f(ξ′, H(ξ′))) =

σ(q)q(ξcu(·, H))q(f(ξ′, H ′(ξ′))− f(ξ′, H(ξ′))) ≤

σ(q)q(ξcu(·, H))qσ(q)(f)σ(q)σ(q)(H −H ′)σ(q)(ξ′)

is valid, and because of σ(q)(ξ ′) ≤ σ(q)q(ξcu(·, H)q(xcu) we obtain σ(q)(ξ − ξ ′) ≤
σ(q)q(ξcu(·, H))2qσ(q)(f)q(xcu)σ(q)σ(q)(H −H ′).

All these inequalities together imply

q(TH − TH ′)(xcu) ≤
(

qσ(q)(G(ξ, ·)) + qσ(q)(G)σ(q)q(ξcu(·, H))qσ(q)(f)
)

σ(q)q(ξcu(·, H))σ(q)σ(q)(H −H ′)q(xcu)

and thus (qq)σ(q)σ(q)
(T ) < 1 is valid provided that

(

qσ(q)(G(ξ, ·)) + qσ(q)(G)σ(q)q(ξcu(·, H))qσ(q)(f)
)

σ(q)q(ξcu(·, H)) ≤ 1 .

The last inequality can be satisfied for small Lipschitz constants of the non-
linear parts f, g. In fact, qσ(q)(G(ξ, ·)) is arbitrary near to qσ(q)(B) for small
qσ(q)(g), σ(q)q(ξcu(·, H)) is arbitrary near to σ(q)q(A−1) for small qσ(q)(f) and
σ(q)q(A−1)qσ(q)(B) < 1 holds.

Thus if the Lipschitz constants of the changed nonlinear parts are so small that the
needed inequalities are satisfied, then T is a contraction and by the contraction mapping
principle there is a fixed point H. Now the whole graph {(xcu, H(xcu)) | xcu ∈ Ecu}
of the fixed point H is backward invariant for the map with changed nonlinear parts,
but as the changed nonlinear parts coincide with the original nonlinear parts f, g inside
of the i-ball, we obtain a locally defined and backward-invariant Lipschitz manifold
Mcu = {(xcu, H(xcu)) | p(xcu) ≤ εp} for the original map F . 2

Lemma 7.3 Let A ∈ Lσ(X) be a continuously invertible operator on the complete
and separated locally convex topological vector space X with inverse A−1 ∈ Lσ−1(X),
and let F : X → X be a (globally) Lipschitz continuous map w.r.t. σ such that
σ(q)q(A−1)qσ(q)(F ) < 1 for all continuous pseudonorms q on X. Then A+F is invertible

and its inverse has Lipschitz constants σ(q)q((A+F )−1) ≤
(

σ(q)q(A−1)−1 − qσ(q)(F )
)−1

.
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Proof: For every y the equation (A + F )(x) = y has a unique solution x. Indeed,
let x0 := A−1y, then x = x0 + v is a solution of (A + F )(x) = y, if v is a solution
of v = −A−1F (x0 + v). Because the operator Tv := −A−1F (x0 + v) has Lipschitz
constants σ(q)σ(q)(T ) ≤ σ(q)q(A−1)qσ(q)(F ) < 1, the contraction mapping theorem can
be applied. Thus T has a unique fixed point v, and hence A + F is invertible. Finally
the estimate of the Lipschitz constants of (A + F )−1 follows from

q((A+ F )(x)− (A+ F )(x′)) ≥ q(Ax− Ax′)− q(F (x)− F (x′)) ≥
(

σ(q)q(A−1)−1 − qσ(q)(F )
)

σ(q)(x− x′) .

2

Thus center-unstable manifolds of fixed-points of maps exist also in the case of locally
convex spaces. Further the existence ofG-invariant center-unstable manifolds of relative
equilibria and relative periodic orbits in dynamical systems under symmetry can be
obtained in analogy to the Banach proof [Sandstede, Scheel, Wulff, 3.4]. However, in
the locally convex case it does not make sense to use the norm supxcu

p(H(xcu)) on H,
but the Lipschitz norm has to be used, and contrary to the Banach case the technical
assumptions on the G-action are usually automatically satisfied, as the action is usually
continuous and differentiable, which makes the proof easier.

7.3 Pattern formation

Assume that by center-manifold reduction a finite-dimensional center-unstable Ck+1-
manifold M of a relative equilibrium or a relative periodic orbit S with a proper Ck+1-
action has been obtained. Because G acts proper, there is a Riemannian metric on M
such that G acts by isometries on M , and bifurcations of S can be studied within the
finite-dimensional Riemannian manifold M , see e.g. [Merker], where also the proofs of
the theorems below can be found.

The main tool to study bifurcations of patterns in M is an equivariant tubular neigh-
bourhood TS⊥ → S around S, whose existence can be proved for relative equilibria
and relative periodic orbits S. Further this tubular neighbourhood can be parametrized
in a convenient way by skew-products: If X has a G×H-action and Y has merely an
H-action, then denote by X ×H Y the quotient (X × Y )/H and call this space, which
has the G-action g(H(x, y)) = H(gx, y), the skew product of X and Y . Especially if
X = G, consider the Lie group G as endowed with the G×H-action ((g, h), g̃) 7→ gg̃h−1.
In the following K always denotes the isotropy subgroup {g ∈ G|gs0 = s0} of some fixed
s0 ∈ S.

Theorem 7.4 The equivariant tubular neighbourhood of a relative equilibrium S has
an equivariant parametrization

TS⊥ ∼= G×K V ,

where the compact subgroup K acts linearly on the vector space V ∼= Ts0S
⊥.
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If S = GΦR(s0) is a relative periodic orbit, then there is a minimal time T > 0 such
that ΦT (s0) = gs0 for some group element g ∈ G, and there is a minimal P ∈ N∪ {∞}
such that ΦPT (s0) = s0 (set P =∞ if there is no such P <∞; this can only happen in
the case of a noncompact G). Denote further by L the set {g|∃t : Φt(s0) = gs0}, then
L/K ∼= Z/PZ is valid via a homomorphism Θ.

Theorem 7.5 The equivariant tubular neighbourhood of a relative periodic orbit S has
an equivariant parametrization

TS⊥ ∼= G×L (R/PZ× V ) ,

if the vector bundle TS⊥/K → S/K ∼= R/PZ (=R in the case P =∞) is trivializable
(non-Möbius case), and an equivariant parametrization

TS⊥ ∼= G×L (R/2PZ×Z2 V )

in the case the vector bundle TS⊥ → R/PZ is not trivialisable (Möbius case, not possible
if P =∞).

Hereby L acts by vector bundle maps on the vector bundle R/PZ × V → R/PZ resp.
R/2PZ ×Z2 V → R/PZ over the L-action (l, r + PZ) = r + Θ(l) + PZ on R/PZ.
Especially the K-action on V is linear.

Using these equivariant parametrizations of

Figure 3: Parametrization of Tubular
Neighbourhoods of Relative Equilibria
and Relative Periodic Orbits

tubular neighbourhoods of a relative equilib-
rium resp. relative periodic orbit, the flow on
the tubular neighbourhood can be lifted into
the total spaces G× V resp. G×R/PZ× V .
For a relative equilibrium the flow in the lift
has the form

ġ = Tg · a(v)

v̇ = φ(v)

with vectorfields a and φ satisfying the equiv-
ariance conditions

a : V → TeG, a(kv) = Tk · a(v) · Tk−1

φ : V → V, φ(kv) = kφ(v), φ(0) = 0

In this skew-product form of the flow, changes
of the pattern S can be easily observed and
classified: Changes in the G-component cor-
respond to not-type-changes of the pattern. S

stays a relative equilibrium, but may change its appearance. So an inward meandering
spiral may become a drifting spiral and then an outward meandering spiral, depend-
ing on the sign of a in some component, but the type of S is unchanged. Contrary,
bifurcations of the equilibrium 0 in the V component correspond to type-changing bi-
furcations of S. As on V merely the compact group K acts linear by isometries, here
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the usual theorems of equivariant bifurcations under compact symmetry can be used
to solve the bifurcation problem and to observe e.g. Hopf bifurcations, which generate
relative periodic orbits.

Near a relative periodic orbit the lifted vector field on G× R/PZ× V has the form

ġ = Tg · a(r, v)

ṙ = ψ(r, v)

v̇ = φ(r, v)

with vector fields a, ψ and φ which are equivariant according to

a(l(r, v)) = T l · a(r, v) · T l−1

ψ(l(r, v)) = ψ(r, v), ψ(r, 0) 6= 0

φ(l(r, v)) = l · φ(r, v), φ(r, 0) = 0

Again, not-type changing bifurcations can be observed in the G-component, while type-
changing bifurcations like period doubling or bifurcations to relative periodic tori can be
observed in the R/PZ×V -component, using the usual equivariant bifurcation lemmata
for the compact subgroup K acting linearly on V by isometries.

Conclusion

Starting from the observation that on a noncompact domain M the isometries induce a
noncontinuous and nondifferentiable action on nearly all Banach manifolds of maps on
M and that - as a consequence - the study of infinite dimensional dynamical systems
on noncompact manifolds with symmetry becomes complicated, we began to explore
manifolds of maps modeled over locally convex spaces. We discussed natural spaces of
maps and developed a natural calculus on manifolds modeled over locally convex spaces,
based on the tensorial closed category of locally convex pseudotopological limit vector
spaces. The C1-maps of this calculus have the good property to be locally Lipschitz
continuous. This enabled us to generalize well-known theorems of nonlinear analysis on
Banach manifolds to manifolds modeled over locally convex spaces. For example, the
solvability of ordinary differential equations with C1-differentiable right hand side was
proved for initial values satisfying certain growth conditions.

In the second part we discussed, which fluid dynamical equations on noncompact do-
mains can be interpreted as ordinary differential equations on manifolds of maps mod-
eled over locally convex spaces. While incompressible or viscous problems do not allow
the use of such manifolds due to their nonlocality, compressible inviscous fluid dynam-
ical equations can be interpreted as ordinary differential equations on such spaces of
maps due to their locality, and thus the formerly developed theory can be applied.
Finally we discussed pattern formation under symmetry in such infinite dimensional
dynamical systems. There the differentiability of the action induced by the isometries
on manifolds of maps on M modeled over locally convex spaces helps to avoid many
difficulties appearing in the Banach case.
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A A comparison between Convienent Calculus and

Analysis on Natural Spaces of Maps

The convenient calculus developed in [Fröhlicher,Kriegl] and [Kriegl,Michor] has its
origin in the fact that the notion of a Lipschitz curve does not depend on the topology
of a locally convex topological vector space X, but merely on its dual X ′ or equivalently
on its bornology, and that for the so called convenient vector spaces also the notion of
a Lipk-curve does merely depend on the bornology.

Call a curve c : R→ X into a locally convex topological vector space X locally Lipschitz
continuous at t, if there is a neighbourhood I of t in R such that B := { c(s)−c(s′)

s−s′
| s−s′ ∈

I} is bounded87. A curve c is called locally Lipschitz continuous, if it is locally Lipschitz
continuous at every t. Because the boundedness of a subset does not depend on the
topology of X but on the dual X ′ of X only, also the notion of a locally Lipschitz con-
tinuous curve depends on the dual X ′ or equivalently the bornology of X only88. Thus
in the discussion of locally Lipschitz continuous curves we can use without restriction
instead of the original space X its bornologification b(X), which is the vector space
X endowed with the finest locally convex topology having the same bounded sets as
the original locally convex vector space X. Hence we can work in the tensorial closed
category of bornological locally convex vector spaces discussed in section 4.3.

Recall that a curve c is called a C1-curve, if the limit ċ(t) := limh→0
c(t+h)−c(t)

h
exists for

every t and t 7→ ċ(t) is a continuous curve. This notion can be iterated by calling c a Ck-
curve, if the derivatives ċ(t) exist and form a Ck−1-curve. Further call c a Lipk-curve,
if c is a Ck-curve and all derivatives up to order k are locally Lipschitz continuous.
However, while being locally Lipschitz continuous does not depend on the topology of
X but only on its bornology, being a Ck- or Lipk-curve does generally depend on the
topology of X, as the existence of the limits ċ(t) := limh→0

c(t+h)−c(t)
h

depends on the
topology and not merely on the bornology of X.

Let us ask, for which kind of spaces also the notion of a Lipk-curve depends on the
bornology only. Call a curve c a scalarly Lipk-curve, if x′ ◦ c is a Lipk-curve on R for
each x′ ∈ X ′. Note that being a scalarly Lipk-curve does not depend on the topology
of X, but only on the dual X ′ or equivalently the bornology of X. Now the key result
[Kriegl,Michor, 2.1] is that difference quotients of scalarly Lipk-curves up to order k
are automatically Cauchy sequences in the Mackey limit structure 89 on X. Hereby

87A set B ⊂ X is called bounded, if it is absorbed by any neighbourhood U of zero, i.e. there is a λ
such that λB ⊂ U .

88The collection of all bounded subsets of X is called the bornology of X . Let B be bounded w.r.t.
a topology on X which is compatible with the duality (X, Y ), then B is also bounded w.r.t. all other
topologies on X compatible with the duality (X, Y ). In fact, a subset B ⊂ X is bounded, iff it is
scalarly bounded, i.e. x′(B) is bounded for every x′ ∈ X ′. As boundedness can be tested scalarly, a
curve c is locally Lipschitz continuous at t, if there is a neighbourhood I of t in R such that for every
continuous pseudonorm p on X there exists a constant L with p(c(s)− c(s′)) ≤ L|s− s′| (which is the
usual definition of locally Lipschitz continuous curves).

89The Mackey limit structure is also called the structure of quasibounded convergence in [Keller]
and turns X into a limit vector space. Its associated topology is called the Mackey closure topology
and should not be changed with the Mackey topology τ(X, X ′) used in duality theory. The Mackey
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the Mackey limit structure on X is generated by the convergences F → 0 of filters F ,
which are finer than UR(0)·B for some bounded set B in X and the neighbourhood filter
UR(0) of zero in R. Thus for a Mackey complete space X, i.e. a locally convex space X
for which every Cauchy filter w.r.t. the Mackey limit structure converges, the limits of
the difference quotients of scalarly Lipk-curves up to order k exist. Using these limits
as candidates for the derivatives, [Kriegl,Michor, 2.3] proves that every scalarly Lipk-
curve in a Mackey complete space X is automatically a Lipk-curve. Thus in a Mackey
complete space X also the notion of a Lipk-curve does not depend on the topology of
X, but merely on the dual X ′ or equivalently the bornology of X.

Mackey complete spaces X are also called convenient. Being a convenient vector space
can be characterized by many other useful properties instead of Mackey completeness,
e.g. by the existence of an anti-derivative C to every smooth curve c, see [Kriegl,Michor,
2.14]. Instead of discussing such properties characterizing convenient vector spaces, let
us rather discuss Lipk-maps between convenient vector spaces X, Y : A map f : X ⊃
U → Y on a c∞-open set U is called a Lipk-map, if it maps Lipk-curves to Lipk-curves.
The main result [Fröhlicher,Kriegl, 4.3.27] (or [Kriegl,Michor, 12.8]) regarding Lipk-
maps is that f is a Lipk-map, iff it is has a Lipk−1-derivative Df : U → L(X, Y ), where
L(X, Y ) is the natural space of maps within the tensorial closed category of bornological
locally convex vector spaces. This natural space L(X, Y ) is the bornologification of the
topology of uniform convergence on bounded subsets on L(X, Y ), see 4.3.

Thus Lipk-maps have a linear derivative, and obviously the chain rule is valid. Further
the space Lipk(U, Y ) of Lipk-maps from a c∞-open subset U of a convenient vector
space X to a convenient vector space Y itself can be turned into a convenient vector
space, and the category of convenient vector spaces and Lipk-maps with these spaces
of maps has a lot of properties of a cartesian closed category. In fact, if k = ∞, the
category itself is cartesian closed, and if k <∞, then the category of Lipk maps between
Lipk-spaces (see 5.6) is cartesian closed, where the natural spaces of maps differ only
slightly from a convenient vector space.

However, while the categorial properties of Lipk-maps are really satisfying, Lipk-maps
are generally not continuous w.r.t. the locally convex topology. Further convenient
calculus allows to discuss properties of geometric structures on infinite dimensional
manifolds modeled over convenient vector spaces instead of Banach spaces, but it does
not help to generalize existence theorems on Banach manifolds to more general man-
ifolds. This is the main difference to the approach in this thesis, where the tensorial
closed category of locally convex pseudotopological vector spaces instead of the category
of bornological locally convex topological vector spaces is used to develop a calculus on
locally convex spaces. In this setting, the C1-maps are locally Lipschitz continuous,
and this property helps to prove existence theorems in a Banach-like style, contrary to
the convenient calculus.

closure topology is generally not a vector space topology, because it is not compatible with addition,
and is identical with the the final topology on X w.r.t. all Lipk-curves in X , k ∈ N∪{∞} fixed, called
the c∞-topology on X , see [Kriegl,Michor, 2.13].
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B Solving the Poisson equation on Noncompact Man-

ifolds

In this section the solvability of the Poisson equation ∆u = f on a complete oriented
Riemannian manifold M is discussed for the Laplacian90 ∆ acting on functions. In
the case of boundary, additionally the Neumann boundary condition ∂u

∂ν
= g on ∂M

is imposed, where ν denotes the normal vector field to ∂M . Note that the Neumann
boundary condition makes sense only if g and f satisfy the compatibility condition
∫

M
f =

∫

∂M
g because of

∫

M

f =

∫

M

∆u =

∫

∂M

∂u

∂ν
=

∫

∂M

g .

First let us discuss whether a Green’s function G to ∆ exists. A function G on
(M ×M) \ {(m,m)|m ∈ M} is called a Green’s function if it satisfies ∆m′G(m,m′) =
δm(m′) and G(m,m′) = G(m′, m). A manifold is called nonparabolic, if it admits
a positive Green’s function G, and in this case there is also a unique minimal posi-
tive Green’s function. This minimal positive Green’s function can be constructed by
G(m,m′) := 1

2

∫∞

0
p(t,m,m′)dt using the heat kernel p(t,m,m′), which is the smallest

positive fundamental solution to the heat equation ṗ(t,m,m′) = −1
2
∆m′p(t,m,m′) sat-

isfying limt↘0 p(t,m, ·) = δm. However, the integral 1
2

∫∞

0
p(t,m,m′)dt is finite only if M

is non-parabolic. An equivalent condition for non-parabolicity is that Brownian motion
- the Markov process defined by using p as transition density - is not recurrent91. Note
that non-parabolicity can also be formulated in terms of capacity, proper massive sets
or non-constant positive bounded superharmonic functions, see [Grigor’yan, Theorem
5.1]. Further on a manifold M with boundary it can be assumed that the heat kernel

satisfies the Neumann boundary condition
∂m′p(t,m,m′)

∂ν
= 0, or equivalently that Brown-

ian motion is reflected at the boundary. In the non-parabolic case then also the minimal

positive Green’s function satisfies the Neumann boundary condition
∂m′G(m,m′)

∂ν
= 0.

An alternative way to construct Green’s function uses an exhausting sequence M =
⋃

i Ωi, see [Li] or the original reference [Li,Tam]: Let each Ωi be a precompact domain
such that m ∈ Ωi ⊂ Ωi+1 and M =

⋃

i Ωi are valid. Let Gi(m,m
′) be the solution of

∆m′Gi(m,m
′) = δm(m′) in Ωi satisfying the Dirichlet boundary condition Gi(m

′, m) = 0
on ∂Ωi. By the maximum principle Gi(m, ·) ≤ Gj(m, ·) is valid, and thus Gi(m, ·)
increases monotonically. If the limit G(m, ·) of this functions is finite, then it is the
minimal positive Green’s function and M is nonparabolic. If the limit is infinite, then
a Green’s function G can still be obtained as the limit of the sequence Gi(m, ·) − ai,
where ai := sup∂Bm(1) Gi(m, ·). However, now G changes its sign and M is parabolic.
Further G may be not unique (it could depend on the exhaustion) and in the case of

90In this section, the Laplacian on functions is the negative of the Laplace-Beltrami operator, to be
in convenience with the case Rn.

91Brownian motion is called recurrent, if for any nonvoid open Ω ⊂M and any m ∈M there is with
probability one a time sequence tk → ∞ such that the random walk starting at m runs through Ω at
the times tk. Thus in a recurrent Markov process a random walk runs infinitely times through every
open set.
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boundary there may exist no Green’s function which satisfies the Neumann boundary
conditions. For example, if M is a bounded domain in Rn, then the Neumann boundary
conditions would imply the contradiction

1 =

∫

M

∆G(m, ·) =

∫

∂M

∂G(m, ·)

∂ν
= 0 .

This problem can be solved by requiring an inhomogeneous Neumann boundary con-

dition
∂m′G(m,m′)

∂ν
= 1

Vol(∂M)
or more general

∂m′G(m,m′)

∂ν
= h(m′) with a function h inde-

pendent of m such that
∫

∂M
h(m′) = 1 holds, because then G satisfies the compatibility

condition: The mass 1 generated by G(m, ·) at m is allowed to flow off via the boundary.

On the one hand now theorems can be obtained which deduce non-parabolicity from
curvature assumptions, volume growth conditions or inequalities. For example, if M
has non-negative Ricci curvature, or has the volume doubling property C Vol(Bm(r)) ≥

Vol(Bm(2r)) and admits a Poincare inequality
∫

Bm(r)
|f − f̄ | ≤ Cr

(

∫

Bm(2r)
|∇f |2

)
1
2

for

f ∈ H1(Bm(2r)) (where f̄ := 1
Vol(Bm(r))

∫

Bm(r)
f denotes the middle value of f on Bm(r)),

then M is non-parabolic if and only if
∫∞ t

Vol(Bt(m))
dt < ∞ holds for a point m ∈ M .

Note for example that Rn is parabolic for n = 2 and nonparabolic for n ≥ 3. Further
in the case of nonnegative Ricci curvature also Green’s function can be estimated.

On the other hand it can be discussed under which conditions a solution of ∆u = f ,
∂u
∂ν

= g, can be obtained via

u(m) =

∫

M

G(m,m′)f(m′)dm′ +

∫

∂M

G(m,m′)g(m′)dm′ + const ,

Note that f and g have to satisfy some growth conditions assuring the existence of
the integrals. Such growth conditions are obtained for example in [Tam, Theorem 1.1
+ 1.2, Corollary 1.2]: Let M be a noncompact manifold without boundary having
nonnegative Ricci curvature, let f be locally Hölder continuous and define k(m, t) :=

1
Vol(Bm(t))

∫

Bm(t)
|f |. Suppose that

∫∞

0
k(m, t)dt < ∞ is valid for some m ∈ M , and

further suppose that M is nonparabolic and its Green’s function satisfies an estimate

σ−1 d2(m,m′)
Vol(Bm(d(m,m′)))

≤ G(m,m′) ≤ σ d2(m,m′)
Vol(Bm(d(m,m′)))

. Then the Poisson equation with right
hand side f has a solution u. If f ≥ 0, then u can be estimated. For arbitrary f still
∇u can be estimated, e.g. if

∫

k(m, t)dt is uniformly bounded, then supM |∇u| < ∞.
Note also that the nonparabolicity assumption and the Green’s function estimate can
be replaced by assuming the existence of some 1 > δ > 0 and a function 0 ≤ h(t) = o(t)
such that

∫ t

0
sk(m, s) ≤ h(t) is valid for all m and t ≥ δd(m, 0) where 0 ∈M is a fixed

point, see [Tam, Theorem 1.1 + 1.2, Corollary 1.2]
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mentarii mathematici Helvetici 41, p. 137-156, 1966.

[Binz,Meier-Solfrian] E. Binz, W. Meier-Solfrian , Zur Differentialrechnung in
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[Fröhlicher,Kriegl] Alfred Frölicher, Andreas Kriegl , Linear Spaces and Dif-
ferentiation Theory John Wiley & Sons, Series: Pure and applied mathematics,
Chichester, 1988.

105



[Gliklikh] Yuri Gliklikh , Global analysis in mathematical physics : geometric and
stochastic methods Springer, Applied mathematical sciences 122, 1997.
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gie et Géométrie Différentielle Catégoriques, ISSN 1245-530X (formerly ISSN 0008-
0004), Volume XLII, p. 285-316, 2001.

[Steen] L.A. Steen, J.A.Seebach . Counterexamples in Topology, Dover Publica-
tions, Springer, 1978.

[Steenrod] N. Steenrod . A Convenient Category for Topological Spaces, Michigan
Mathematical Journal 14, 1967.

[Tam] Lei Ni, Yuguang Shi, Luen-Fai Tam . Poisson Equation, Poincaré-Lelong
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Jochen Merker, “Analysis of Natural Function Spaces and Dynamics on Noncompact
Manifolds under Symmetry“, 2005.

Abstract

The main goal of this doctoral thesis is to discuss the foundations of dynamical systems,
whose state space is a space of maps defined on a noncompact domain and whose
dynamics are compatible with the symmetries of this domain.

Obviously, a mathematical rigorous treatment of such dynamical systems requires to
specify, which spaces of maps are used, e.g. Sobolev spaces. However, regarding pattern
formation on noncompact manifolds under symmetry, solutions of dynamical equations
within the class of Sobolev vector fields do not include typical patterns with noncompact
symmetries, as they vanish at infinity. But even if solutions within other Banach spaces
of maps can be established, the problem remains that for noncompact manifolds the
symmetry group in general does not act continuously on Banach spaces of maps, as it
acts by composition, but composition and evaluation are not continuous.

Therefore, in this thesis locally convex spaces of maps like the local Sobolev spaces are
used to model dynamical systems, where composition, evaluation and thus also the sym-
metry action are continuous. However, as the analysis of such natural function spaces is
not far developed in literature, a main task of this thesis is to extend the analysis to such
spaces, and to provide theorems used in the study of dynamical equations. Contrary to
the category of normable spaces, the category of locally convex spaces is not tensorial
closed, and thus there is no natural space of continuous linear maps between locally
convex spaces. A problem is that it is not clear how to define continuously differentiable
maps. However, by using a tensorial closed category of vector spaces endowed with a
slightly more general topological structure than a locally convex topology, this problem
can be solved and a sufficient differential calculus can be developed.

But analysis requires more than just a differential calculus: Differential equations must
be solved, an inverse function theorem is needed, and other theorems of classical analysis
must be transfered to the new setting. However, on locally convex spaces there exist
locally not solvable differential equations with continuous linear right hand side, so that
a precise discussion is needed. Also here our choice of the tensorial closed category is
helpful, because it guarantees that continuously differential maps are locally Lipschitz
continuous, so that solvability of differential equations can be characterized by growing
conditions. Finally, also manifolds modeled on complete locally convex topological
vector spaces are considered.

After having laid the analytic foundations, in the second part of this thesis fluid dy-
namical systems and pattern formation on noncompact manifolds are discussed. It is
shown that fluid dynamical equations like those modeling inviscous compressible fluids
can be modeled using natural spaces of maps, the pattern formation under symmetry
in the Banach case and in the locally convex case is compared, and methods to obtain
the bifurcation equation in the locally convex case are developed.
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Jochen Merker, “Analysis natürlicher Funktionenräume und Dynamik auf nichtkompak-
ten Mannigfaltigkeiten unter Symmetrie“, 2005.

Zusammenfassung

Das Hauptziel dieser Doktorarbeit ist es, die Grundlagen dynamischer Systeme zu ent-
wickeln, deren Zustandsraum ein Raum von Abbildungen auf einem nichtkompakten
Gebiet und deren Evolution kompatibel mit den Symmetrien des Gebietes ist.

Ein rigoroses Studium solch dynamischer Systeme erfordert natürlich, den benutzten
Raum von Abbildungen festzulegen, z.B. einen Sobolev-Raum. Für die Untersuchung
von Musterbildung unter Symmetrie auf nichtkompakten Mannigfaltigkeiten ist die
Wahl eines Sobolev-Raumes aber ungünstig, da die Differenz von Mustern mit unter-
schiedlicher nichtkompakter Symmetrie nicht im Unendlichen verschwindet und somit
durch kein Sobolev-Vektorfeld repräsentiert werden kann. Auch die Benutzung anderer
Banachräume ist keine Alternative, da für nichtkompakte Mannigfaltigkeiten i.a. die
Symmetrie nicht stetig auf Banachräumen operiert, denn Komposition von und das
Einsetzen in Abbildungen ist dort nicht stetig.

Deswegen werden in dieser Arbeit lokalkonvexe Räume von Abbildungen wie lokale
Sobolev-Räume benutzt, auf denen die Komposition, die Evaluation und somit auch
die Symmetrie-Operation stetig ist. Jedoch ist die Analysis solch natürlicher Funktio-
nenräume bisher nicht so weit entwickelt, daß man dynamische Systeme mit analyti-
schen Methoden untersuchen kann. Dort Abhilfe zu schaffen, ist eines der Hauptziele
der Arbeit. Nun ist im Gegensatz zur Kategorie der normierbaren Räume die Kate-
gorie der lokalkonvexen Räume leider nicht tensoriell abgeschlossen, so daß der Raum
der stetigen linearen Abbildungen zwischen lokalkonvexen Räumen nicht in natürlicher
Weise mit einer Topologie versehen werden kann. Insbesondere erschwert dies die Defi-
nition von stetig differenzierbaren Abbildungen. Dieses Problem wird hier gelöst, indem
eine tensoriell abgeschlossene Kategorie von Räumen mit einer nur wenig allgemeineren
Strukutur als einer lokalkonvexen Topologie konstruiert wird. Diese erlaubt dann die
Entwicklung eines leistungsfähigen Differentialkalküls.

Aber Analysis ist mehr als ein Differentialkalkül: Man muß Differentialgleichungen
lösen können, benötigt einen Satz über implizite Funktionen und auch andere Sätze
der klassischen Banachraum-Analysis. Aber z.B. existieren auf vollständigen lokalkon-
vexen Räumen stetige lineare Differentialgleichungen, die lokal nicht lösbar sind, so
daß eine präzise Diskussion nötig ist. Auch hier hilft die betrachtete Kategorie weiter,
denn stetig differenzierbare Abbildungen sind automatisch lokal Lipschitz stetig, so daß
man die Lösbarkeit von Anfangswertaufgaben durch Wachstumsbedingungen charakter-
isieren kann. Ebenso wird die Modellierung von Mannigfaltigkeiten über vollständigen
lokalkonvexen Räumen diskutiert.

Nachdem die analytischen Grundlagen gelegt sind, wird im zweiten Teil der Arbeit
Fluiddynamik und Musterbilldung auf nichtkompakten Mannigfaltigkeiten diskutiert.
Es wird gezeigt, daß inviskose kompressible Fluide mittels natürlicher Funktionenräume
modelliert werden können, es wird die Musterbildung unter Symmetrie im Banach-
und im lokalkonvexen Fall miteinander verglichen, und Methoden zur Gewinnung der
Bifurkationsgleichung im lokalkonvexen Fall werden entwickelt.
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