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Abstract

This dissertation explores downfolded models in condensed matter physics, emphasizing their role in
understanding the interplay between electronic and lattice degrees of freedom, particularly within the
low-energy domain.

The research demonstrates that downfolded lattice models accurately reproduce Born-Oppenheimer
potential energy surfaces of ab initio methods, while offering computational speedups of multiple
orders of magnitude. This enables extensive molecular dynamics simulations and insights into charge
density wave physics in real materials.

Through collaborations between experiment and theory, the work challenges the understanding of
conventional charge density wave physics by revealing nonlinear mode-mode coupling in materials
like monolayer 1T-VS2. It also confirms the existence of a charge density wave with unconventional
electronic gap features in monolayer 1H-NbS2. Furthermore, it demonstrates how molecular dynamics
simulations can be employed to determine the transition temperature of the charge density wave phase
transition in monolayer 1H-TaS2.

In summary, this research advances charge density wave physics through interdisciplinary collab-
oration, while providing downfolded lattice models as a valuable tool for understanding dynamics
and thermodynamics for systems beyond the charge density wave phenomenon. It opens avenues for
exploring phase transitions, correlations, and quantum phenomena, showcasing the transformative
potential of downfolded lattice models.
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Zusammenfassung

Diese Dissertation erforscht heruntergefaltete Modelle in der Festkörperphysik und betont ihre Rolle
bei der Verständigung des Zusammenspiels zwischen elektronischen und Gitterfreiheitsgraden, ins-
besondere im niederenergetischen Bereich.

Die Forschung zeigt, dass heruntergefaltete Gittermodelle Born-Oppenheimer-Potentialenergie-
flächen von ab initio-Methoden reproduzieren können und dabei rechentechnische Geschwindigkeits-
steigerungen von mehreren Größenordnungen erreichen. Dies ermöglicht umfangreiche Molekulardy-
namiksimulationen und Einblicke in die Physik der Ladungsdichtewellen in realen Materialien.

Durch Kollaborationen zwischen Experiment und Theorie stellt diese Arbeit das Verständnis
von konventioneller Ladungs-dichtewellen-Physik in Frage, indem sie nichtlineare Moden-Moden-
Kopplungen in Materialien wie Monolage-1T-VS2 aufdeckt. Sie bestätigt auch die Existenz einer
Ladungsdichtewelle mit unkonventionellen elektronischen Bandlückenmerkmalen in Monolage-1H-
NbS2. Außerdem zeigt sie auf, wie mit Hilfe von Molekulardynamik-Simulationen die Übergangstem-
peratur des Phasenübergangs zur Ladungsdichtewelle von einer Monolage-1H-TaS2 bestimmt werden
kann.

Zusammenfassend trägt diese Forschung zur Fortentwicklung der Ladungsdichtewellen-Physik
durch interdisziplinäre Zusammenarbeit bei und stellt heruntergefaltete Gittermodelle als wertvolles
Werkzeug zur Verfügung, um Dynamik und Thermodynamik von Systemen jenseits des Ladungsdichte-
wellen-Phänomens zu verstehen. Sie eröffnet Möglichkeiten zur Erforschung von Phasenübergängen,
Korrelationen und Quantenphänomenen und zeigt das transformative Potenzial heruntergefalteter
Gittermodelle auf.

ii



Preface

This preface provides an overview of all publications that form the basis for this cumulative dissertation,
including further publications that are not part of the dissertation. Additionally, it mentions conference
talks, posters, and participations accomplished during the doctoral phase.

Publications

This cumulative dissertation will be based on the following publications (1. – 4.). The author’s
individual contributions to each publication will be stated at the beginning of their respective dedicated
chapters.

4. T. Knispel, J. Berges, A. Schobert, E. G. C. P. van Loon, W. Jolie, T. O. Wehling, T. Michely, J.
Fischer, Unconventional charge-density-wave gap in monolayer NbS2, [accepted for publication
in Nano Letters], arXiv:2307.13791

3. A. Schobert, J. Berges, E. G. C. P. van Loon, M. A. Sentef, S. Brener, M. Rossi, and T. O.
Wehling, Ab initio electron-lattice downfolding: potential energy landscapes, anharmonic-
ity, and molecular dynamics in charge density wave materials, [submitted to SciPost Phys.],
arXiv:2303.07261

2. C. van Efferen, J. Berges, J. Hall, E. G. C. P. van Loon, S. Kraus, A. Schobert, T. Wekking,
F. Huttmann, E. Plaar, N. Rothenbach, K. Ollefs, L. M. Arruda, N. Brookes, G. Schönhoff, K.
Kummer, H. Wende, T. O. Wehling, and T. Michely A full gap above the Fermi level: the charge
density wave of monolayer VS2, Nat. Commun. 12, 6837 (2021), arXiv:2101.01140

1. A. Schobert, J. Berges, T. O. Wehling, and E. G. C. P. van Loon, Downfolding the Su-Schrieffer-
Heeger model, SciPost Phys. 11, 079 (2021), arXiv:2104.09207

Further publications

Published before doctoral phase:

F1. J. Berges, E. G. C. P. van Loon, A. Schobert, M. Rösner, and T. O. Wehling, Ab initio phonon
self-energies and fluctuation diagnostics of phonon anomalies: Lattice instabilities from Dirac
pseudospin physics in transition metal dichalcogenides, Phys. Rev. B 101, 155107 (2020),
arXiv:1911.02450

iii

https://arxiv.org/abs/2307.13791
https://arxiv.org/abs/2303.07261
https://www.nature.com/articles/s41467-021-27094-x
https://arxiv.org/abs/2101.01140
https://scipost.org/10.21468/SciPostPhys.11.4.079
https://arxiv.org/abs/2104.09207
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.155107
https://arxiv.org/abs/1911.02450


iv

Talks

5. A. Schobert, J. Berges, M. A. Sentef, E. G. C. P. van Loon, S. Brener, M. Rossi, and T. O.
Wehling, Nailing down charge-density-wave phase-transition temperatures with downfolding
approaches,
DPG Spring Meeting, Dresden, Germany (26–31 March 2023)

4. A. Schobert, J. Berges, M. A. Sentef, M. Rossi, E. G. C. P. van Loon, S. Brener, and T. O.
Wehling, Electronically driven anharmonicities in low-energy lattice models:
Affordable molecular dynamics of charge-density-wave systems,
DPG Autumn Meeting, Regensburg, Germany (4–9 September 2022)

3. A. Schobert, J. Berges, E. G. C. P. van Loon, M. A. Sentef, and T. O. Wehling, Electronically-
driven anharmonicity in charge-density-wave materials,
DPG Autumn Meeting, Online (27 September – 01 October 2021)

2. J. Berges, E. G. C. P. van Loon, A. Schobert, M. Rösner, and T. O. Wehling,
Ab initio phonon self-energies and fluctuation diagnostics of phonon anomalies:
Lattice instabilities from Dirac pseudospin physics in transition metal dichalcogenides,
APS March Meeting, Online (15–19 March 2021)

1. A. Schobert, J. Berges, E. G. C. P. van Loon, M. A. Sentef, and T. O. Wehling, Electronically-
driven anharmonicities in charge-density-wave materials,
APS March Meeting, Online (15–19 March 2021)

Posters

5. A. Schobert, J. Berges, M. A. Sentef, M. Rossi, E. G. C. P. van Loon, S. Brener, and T. O.
Wehling, Electronically driven anharmonicities in low-energy lattice models:
Affordable molecular dynamics of charge-density-wave systems,
Psi-K Conference 2022, EPFL, Lausanne, Switzerland (22–25 August 2022)

4. A. Schobert, J. Berges, E. G. C. P. van Loon, M. A. Sentef, and T. O. Wehling, Electronically-
driven anharmonicity in charge-density-wave materials,
International CECAM Workshop "Capturing Anharmonic Vibrational Motion in First-Principles
Simulations", Online (6–8 December 2021)

3. J. Berges, E. G. C. P. van Loon, A. Schobert, M. Rösner, and T. O. Wehling,
Ab initio phonon self-energies and fluctuation diagnostics of phonon anomalies:
Lattice instabilities from Dirac pseudospin physics in transition metal dichalcogenides,
"2021 Virtual School on Electron-Phonon Physics and the EPW code", Online (14–18 June 2021)



v

2. A. Schobert, J. Berges, E. G. C. P. van Loon, M. A. Sentef, and T. O. Wehling, Electronically-
driven anharmonicity in charge-density-wave materials,
"2021 Virtual School on Electron-Phonon Physics and the EPW code", Online (14–18 June 2021)

1. J. Berges, E. G. C. P. van Loon, A. Schobert, M. Rösner, and T. O. Wehling, Ab initio phonon
self-energies and fluctuation diagnostics of phonon anomalies: Lattice instabilities from Dirac
pseudospin physics in transition metal dichalcogenides, DPG Spring Meeting SurfaceScience21,
Online (1–4 March 2021)

Participations

3. Jülich Workshop "Autumn School on Correlated Electrons: Simulating Correlations with Com-
puters", Online (20-24 September 2021)

2. BYRD Workshop "Good Scientific Practice", Online (17-18 May 2021)

1. IMPRS-UFAST core course "Solid State Physics", Online (22-26 February 2021)



Contents

Abstract i

Preface iii

1 Introduction 1

2 Ab initio Hamiltonian 6
2.1 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Electrons 8
3.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Exchange-correlation functionals . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Solving the Kohn-Sham equations: Basis sets and pseudopotentials . . . . . 10

3.2 Wannier functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Phonons 14
4.1 Harmonic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Density functional perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Constrained density functional perturbation theory . . . . . . . . . . . . . . 16
4.2.2 Theory of unscreening: Phonons . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Electron-phonon interaction 21
5.1 Electron-phonon coupling Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Wannier representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Electron-electron interaction 24
6.1 Wannier representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1 Example: Coulomb matrix elements for two-dimensional monolayer TaS2 . . 25
6.1.2 Elimination of the Q = 0 divergence . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Hartree-Fock approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.1 Applying the Hartree-Fock approximation . . . . . . . . . . . . . . . . . . . 27

6.3 Random phase approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.1 Constrained random phase approximation . . . . . . . . . . . . . . . . . . . 30

7 Statistical mechanics 31
7.1 Canonical ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Free energy of non-interacting fermions . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Molecular dynamics 33
8.1 Born-Oppenheimer molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . 33

8.1.1 Integrating the equations of motion: Velocity-verlet algorithm . . . . . . . . 34
8.2 Path integral molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.2.1 Thermodynamics and expectation values from the path integral . . . . . . . . 36

vi



Contents vii

8.3 Replica Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Anharmonicity 38
9.1 Landau theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2 Soft phonon modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.3 Incorporating anharmonicity into phonon dispersions . . . . . . . . . . . . . . . . . 40

9.3.1 Quasi-harmonic approximation . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3.2 Self-consistent phonon theory . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3.3 (Downfolding-based) ab initio molecular dynamics . . . . . . . . . . . . . . 42
9.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10 Charge density waves 43
10.1 Origin of charge density waves? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.2 Peierls instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.3 Fluctuation diagnostics of phonon self-energies . . . . . . . . . . . . . . . . . . . . 45

11 First publication:
Downfolding the Su-Schrieffer-Heeger model 48
11.1 Statement of personal contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.2 Positioning within the scientific landscape . . . . . . . . . . . . . . . . . . . . . . . 48

12 Second publication:
A full gap above the Fermi level: the charge density wave of monolayer VS2 71
12.1 Statement of personal contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.2 Positioning within the scientific landscape . . . . . . . . . . . . . . . . . . . . . . . 71

13 Third publication:
Ab initio electron-lattice downfolding: potential energy landscapes, anharmonicity, and
molecular dynamics in charge density wave materials 104
13.1 Statement of personal contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
13.2 Positioning within the scientific landscape . . . . . . . . . . . . . . . . . . . . . . . 104

14 Fourth publication:
Unconventional charge-density-wave gap in monolayer NbS2 135
14.1 Statement of personal contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.2 Positioning within the scientific landscape . . . . . . . . . . . . . . . . . . . . . . . 135

15 Conclusion and outlook 178

A Appendix 180
A.1 Definitions of electron-phonon coupling matrix elements . . . . . . . . . . . . . . . 180
A.2 Determining the occupation of the state |α⟩ . . . . . . . . . . . . . . . . . . . . . . 180
A.3 Computational details of incorporated figures . . . . . . . . . . . . . . . . . . . . . 181

A.3.1 Figure 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.3.2 Figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Acknowledgement 182

References 183



List of Figures

3.1 Dependence of prototypical charge density wave Born-Oppenheimer potential energy
surface on various exchange-correlation functionals . . . . . . . . . . . . . . . . . . 12

4.1 Demonstration of two different approaches to obtain partially screened phonon frequen-
cies, namely cDFPT and unscreening. Both methods are employed in the downfolding
strategies to avoid double counting issues. . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 Sketch of the 3 × 3 supercell of 1H-TaS2 to illustrate the internal lattice vector rmn . . 26

9.1 Sketch of harmonic and anharmonic potential energy surfaces within the Landau theory 39

10.1 Fluctuation diagnostics of monolayer 1H-TaS2 . . . . . . . . . . . . . . . . . . . . . 46

viii



1
Introduction

Matter, in the form of solids and molecules, emerges from the interplay between two fundamental con-
stituents: electronic and nuclear degrees of freedom. These constituents hold the key to the remarkable
properties exhibited by materials, such as charge density waves (CDW) [1], (super)conductivity [2],
metal–insulator transitions [3] and magnetism [4]. The foundation for understanding these phenomena
lies in the solid state Hamiltonian (see Sec. 2). This theoretical construct, which can be simply written
in a single line, encapsulates the underlying physics governed in materials.

However, unlocking the secrets encoded within this Hamiltonian is no simple task. The complexity
arises from three formidable challenges: (i) the intertwined dynamics of electrons and nuclei, (ii) the
staggering number of particles involved (∼ 1023 electrons per cm3), and (iii) the quantum nature of
matter, resulting in an astonishingly vast Hilbert space. Tackling these challenges with the help of
creative approximations is a pursuit at the forefront of materials science.

One of these approximations to tackle (i) is the so-called Born-Oppenheimer approximation (see
Sec. 2.1). It is the simplest way of decoupling the dynamics of electrons and nuclei. It is justified
in the sense that electrons are much lighter than the nuclei, leading to different timescales in their
dynamics. As a result, the electronic motion can be approximated as instantaneous compared to the
slower nuclear motion. This justifies the assumption that the electronic and nuclear motions can be
treated as decoupled.

Decoupling the Schrödinger equations leaves a purely electronic problem, with the nuclear coor-
dinates entering as parameters. Still, the remaining task is due to (ii) and (iii) a complex many-body
problem. It is at this point, where two overarching methodologies have emerged as essential avenues
of exploration: ab initio and model approaches.

Density functional theory (DFT – see Sec. 3.1) is one of the most widely used ab initio approaches.
It transforms the complex many-body problem into a single-particle problem, which is solved self-
consistently and gives access to accurate Born-Oppenheimer potential energy surfaces. DFT has an
undeniable success, as evidenced by its inclusion among the top 100 most cited papers [5] and its
recognition through the Nobel Prize [5]. However, the unknown exchange-correlation functional and
the a priori unknown orbital composition of the electronic structure renders this method intransparent
— much like a black box [6]. Additionally, despite the availability of supercomputers, it is not
feasible to simulate much more than a few hundred atoms with traditional DFT (cubic scaling).
Albeit, linear-scaling DFT can improve this number [7]. Lastly, DFT fails to represent the physics of
strongly-correlated compounds [8].

The aforementioned disadvantages of DFT are circumvented in model approaches at the expense
of additional approximations. Model approaches often rely on the tight-binding approximation [9–21].

1
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In these approaches the orbital composition is predefined and specifically tailored for each individual
material by constructing a model Hamiltonian that consists of a few orbitals per atom only. Additionally
there are often restrictions on the form of the interaction tensor (e.g. purely local, density-density
only, ...). Hence, there is, on one hand, a gain in understanding of chemical bonding through this
method. On the other hand, this rigid construct poses an obstacle, meaning that transferability is
restricted. Transferability entails applying the model Hamiltonian to a different material or scenario
and expecting to yield similarly good results. On another note, this method shows significantly greater
speed compared to DFT, enabling the simulation of a far larger number of atoms. This acceleration in
computational efficiency arises from the small Hilbert space on which the model operates and also
often from being effectively non-interacting, hence a simple matrix diagonalization suffices.

In concluding the comparison between purely model and ab initio approaches, it is evident that
DFT excels in accurately predicting Born-Oppenheimer potential energy surfaces for relatively small
and weakly-correlated systems, without prior knowledge of the chemical bonding. On the other hand,
model approaches explicitly revolve around constructing a model Hamiltonian, which could potentially
lack transferability. Nevertheless, thanks to a substantial computational advantage, these methods can
be effectively applied to multiscale modelling [22].

It might come as no surprise that there are methods aiming to combine both the DFT-accuracy
and the ability to simulate as many atoms as the pure model-based approaches. Various strategies
have emerged in different domains. These include the creation of multiscale coarse-grained models,
utilization of machine-learning models [23–27], and the development of (density functional) tight
binding potentials [28–36]. These approaches involve defining models through the calibration of
semiempirical or "machine learned" parameter functions, often derived from DFT reference data.

This dissertation follows a different approach. It is well-established that numerous physical
phenomena are primarily governed by the characteristics of the low-energy electronic band structure.
This assertion can be illustrated through examples such as superconductivity [37, 38] or charge density
waves [39]. In scenarios of this nature, it becomes sensible to divide the electronic subspace into
distinct high-energy and low-energy sectors. This division sets the stage for the application of a
technique known as downfolding [40].

In essence, downfolding involves the mapping of the solid-state Hamiltonian onto a low-energy
lattice model. This can be done by the utilization of Wannier functions, which build a bridge between
ab initio and model approaches. These functions form a localized basis set in which all the components
of the lattice model can be expressed, including the single-electron term (see Sec. 3.2), electron-phonon
(see Sec. 5.2) and electron-electron interactions (see Sec. 6.1). The resulting low-energy lattice model
effectively captures the nuances of the low-energy sector, while the contributions from high-energy
bands are either neglected or implicitly taken into account by partially screened quantities. Methods for
the derivation of model parameters include the constrained random phase approximation (cRPA – see
Sec. 6.3.1) [41–47], constrained density functional perturbation theory (cDFPT – see Sec. 4.2.1) [39,
48–51], and the constrained functional renormalization group [52–54].

As previously mentioned, CDWs exemplify a specific phenomenon situated within the realm of
dominant low-energy physics. CDWs manifest as a consequence of spontaneous structural phase
transitions occurring in metals. These phase transitions result in a reduction of crystal lattice symmetry,
accompanied by the emergence of a superstructure.

It is widely recognized that the behavior of CDWs is often significantly dictated by the low-energy
bands near the Fermi level. The quintessential model for comprehending this phenomenon is the
Peierls model (see Sec. 10.2), which has a variant known as the SSH model. This model will be studied
in the first publication of this dissertation (see Ch. 11).
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In this study, the two-band model (per doubled unit cell) will be downfolded onto a single-
band effective model. The aim of this study will be to investigate the applicability of a downfolding
technique on an analytically solvable model, given the unclear limitations of this technique – specifically
focussing on two key quantities: the electronic structure and the Born-Oppenheimer potential energy
surfaces. The findings will reveal that the downfolded model accurately reproduces both the potential
energy surface and electronic dispersion. It is noteworthy that, by construction, the downfolded
model captures spectral weight solely within the target space. The results give confidence in using
downfolding methods for studying CDWs, as it aligns with the primary aim of the SSH model, which
is to describe CDW physics in a simplified way.

In this model, static atomic displacements lead to a gap opening at the Fermi level. This gap
contributes to an overall energy gain within the electronic sector. This energy gain can be substantial
enough to outweigh the elastic energy costs inherent to atomic displacements.

However, this simple model may not necessarily apply to real-world materials, as demonstrated
in the second publication of this dissertation (see Ch. 12). Chapter 12 presents a collaborative
investigation between theory and experiment regarding the CDW in monolayer 1T-VS2. The findings
illustrate that the CDW, observed in scanning tunneling microscopy (STM) experiments, does not
conform to the conventional Peierls type. Instead, non-linear mode-mode coupling is responsible for
the CDW, resulting in a full gap above the Fermi level.

Notably, a subsequent study by another research group, conducted after this publication, revealed a
CDW with a different lattice periodicity as seen in STM images. This group identified a gap opening
at the Fermi level, suggesting a Fermi-surface mechanism as the driving force. This controversy,
discussed in Section 12.2, underscores the importance of comprehending the low-energy physics
within CDW materials.

To this end, the following observations will be stated. It is well-established that the necessary
electronic energy gain to trigger a CDW can be disrupted by manipulating the low-energy sector,
e.g. through the introduction of electronic temperature (commonly referred to as smearing in DFT
calculations) [55] or doping [56]. Moreover, materials that were previously non-CDW hosts, such
as MoS2, can develop CDWs when subjected to doping [57]. These examples underscore a crucial
point: CDWs are overwhelmingly influenced by low-energy physics. This characteristic renders
them applicable to strategies like downfolding, which focus on modeling the low-energy behavior of
materials.

The development of the aforementioned downfolded lattice models will be the purpose of the
third publication of this dissertation (see Ch. 13). Chapter 13 introduces three different downfolding
strategies, which are based on constraining and unscreening techniques. These models will proven
effective in reproducing Born-Oppenheimer potential energy surfaces of diverse CDW materials with
a similar accuracy as DFT. This circumstance enables molecular dynamics simulations that achieve
a computational speed up of more than five orders of magnitude as compared to purely ab initio
calculations. Remarkably, this acceleration in computation speed is achieved without a significant
compromise in accuracy.

As a demonstration of this new method, classical and path integral replica exchange molecular
dynamics simulations are conducted for a monolayer of TaS2. Notably, these simulations are performed
with a large system that were previously unattainable through purely ab initio methods. The insights
derived from these simulations shed light on the influence of thermal and quantum fluctuations on the
CDW transition.

A new light on the CDW transition will be given in the fourth publication of this dissertation
(see Ch. 14) as well. The publication provides clear experimental evidence of a CDW in monolayer
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1H-NbS2. While the study focuses less on the origin of said CDW, it explores the unique CDW gap
that comes with low-energy peaks. These peaks are not solely of electronic origin but likely involve
combined electron-phonon quasiparticles in its emergence.

In conclusion, it can be stated that through the development of ab initio based downfolded lattice
models this dissertation will contribute to the exploration and understanding of electron-lattice coupled
systems, such as charge density waves and beyond.
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Outline

Chapters 2–10: Theoretical Background and Phenomena

Chapters 2–10, delve into the theoretical foundation and the phenomena under investigation in this
dissertation. Chapter 2 provides the fundamental ab initio solid state Hamiltonian and the Born-
Oppenheimer approximation to decouple electronic and nuclear degrees of freedom. Chapters 3–6
provide a comprehensive exploration of the origin and significance of the constituents within the
downfolded lattice models. Specifically, these encompass the following: the undistorted electronic
Wannier Hamiltonian (Ch. 3), the interatomic force constants (Ch. 4), the electron-phonon coupling
(Ch. 5), and lastly, the electron-electron interactions (Ch. 6).

Chapters 7 introduces fundamental concepts in statistical mechanics, such as free energy and
entropy, which are imperative for conducting molecular dynamics simulations (Ch. 8).

Subsequently, Chapter 9 delves into the critical concept of anharmonicity.
Chapter 10 is dedicated to discussing the charge density wave, a particular physical phenomenon

to which the downfolded models will be applied to and which are intrinsically associated with
anharmonicity. This chapter serves as the culmination of our exploration of the theoretical background.

Chapters 11–14: Research Publications

Chapters 11–14 are dedicated to the presentation and discussion of the four publications that form the
core of this cumulative dissertation. Each chapter begins with a statement on the personal contributions
to the publication, followed by an discussion on how the publication can be located within the scientific
landscape and ends with the publication itself.

Chapter 15: Conclusion

The final chapter, Chapter 15, provides a comprehensive summary of the conclusions drawn throughout
the development and application of downfolded models in the study of charge density waves.



2
Ab initio Hamiltonian

The general Hamiltonian of interacting electrons and nuclei in the position representation and atomic
units, where in particular me = e = 1 and e2/4πε0 = 1, reads

HFP = Te + Tk + Vee + Vek + Vkk (2.1)

= −
∑

i

∆i

2
−

∑
k

∆k

2Mk
+

∑
i< j

1
|ri − r j|

−
∑

ik

Zk

|ri − Rk|
+

∑
k<l

ZkZl

|Rk − Rl|
, (2.2)

where ri and Rk are electronic and nuclear positions, ∆i and ∆k are the corresponding Laplace operators,
and Zk and Mk are atomic numbers and nuclear masses. This Hamiltonian is also called “first-principles
(FP) Hamiltonian”, since only fundamental laws (i.e., the Schrödinger equation, Coulomb potential,
etc.) and fundamental constants (elementary charges etc.) enter. It accounts for full atomic scale and
chemical details. Numerical treatments leading directly from this Hamiltonian to physical results are
called ab initio.

2.1. Born-Oppenheimer approximation

The Born-Oppenheimer approximation [58] is a fundamental concept in quantum mechanics that is
used to simplify the first-principles Hamiltonian (Eq. 2.1). The electronic structure calculations which
will be presented throughout this dissertation are all based on this approximation. The assumption is
that the electronic motion is much faster than the nuclear motion, due to their vastly different masses.
Specifically, the Born-Oppenheimer approximation assumes that the electroncs follow the nuclei
instantaneously.

In this approximation, the kinetic energy of the nuclei will be treated as a perturbation:

H = H0 + Tk with H0 = Te + Vee + Vek + Vkk. (2.3)

In the remaining electronic Hamiltonian H0, the positions of the nuclei R will enter as parameters only.
By assuming that the electronic Hamiltonian can be solved in the following manner,

H0 ϕα(r, {R}) = εα(R) ϕα(r, {R}), (2.4)

the full wave function can be represented in the basis of the electronic wave functions,

Ψ(r, R) =
∑
α

ϕα(r, {R})χα(R). (2.5)

6



2.1. Born-Oppenheimer approximation 7

Inserting the full wave function into the full Hamiltonian yields,

HΨ(r, R) =
∑
α

[
H0 + Tk

]
ϕα(r, {R})χα(R). (2.6)

Here, the Laplace operator ∆R of the kinetic energy term Tk will act on the nuclear coordinates of the
wave functions, leading essentially to the terms ϕ∇2χ + 2∇ϕ∇χ + χ∇2ϕ. In the Born-Oppenheimer
approximation, the last two terms are neglected, which leaves a decoupled Schrödinger equation for
the nuclei [

Tk + εα(R)
]
χα(R) = Eχα(R). (2.7)

Thus, solving the many-body Schrödinger equation has been transformed into a two step process. First,
the electronic Schrödinger equation (2.4) is solved for fixed nuclear positions R. Then, the nuclei are
allowed to move in a potential εα(R) defined by the electrons.



3
Electrons

This dissertation primarily focuses on the development of downfolded lattice models, which character-
ize the low-energy behavior of the electronic subspace when atoms are displaced. It is equally crucial
to describe the state without any displacements – the undistorted state. This undistorted electronic
structure is based on Kohn-Sham energy states, accessible through density functional theory (Sec. 3.1),
and can serve as the natural starting point for the models. By employing Wannier functions (Sec. 3.2),
these Kohn-Sham eigenvalues can be efficiently mapped onto a model Hamiltonian with a localized
basis.

3.1. Density functional theory

This section is inspired by Ref. [59].

Density functional theory (DFT) is a comprehensive theory, which not only provides the electronic
structure of a material, but also vibrational properties, due to the extension of the density functional
perturbation theory (see Sec. 4.2), and especially the total energy by design of all constituents. It
allows to find a ground state solution of the isolated Born-Oppenheimer Hamiltonian (Eq. 2.3). This is
possible due to the Hohenberg and Kohn theorems [60], which prove that the ground state energy E is
uniquely linked to the ground state electron density n(r).

The idea of Hohenberg and Kohn motivates to express the total energy as a functional of the
electron density

E[n] = T [n] +
∫

dr Vext(r)n(r) +
1
2

∫
dr

∫
dr′

n(r)n(r′)
|r − r′|

+ Exc[n], (3.1)

where the first term is the kinetic energy

T [n] = −
1
2

Ne∑
i=1

∫
drψ∗i (r)∆ψi(r), (3.2)

which implicitely depends on the electron density via

n(r) =
Ne∑
i=1

f (εi)|ψi(r)|2. (3.3)

8



3.1. Density functional theory 9

The second term in Eq. (3.1) is the external potential, which describes the Coulomb attraction by the
static nuclei. Next to it is the density-density interaction or the so-called Hartree term, which describes
a classical electrostatic Coulomb repulsion. The last term is the so-called exchange-correlation (XC)
functional, which includes all many-body effects that have not been addressed yet. The exact form of
this term is not known as it would require to solve the full many-body problem. However, there are
some well-known approximations, which will be discussed in Sec. 3.1.1.

With the help of the variational method, it is possible to find the ground state of the total energy
functional (Eq. 3.1). The aim is to minimize the energy under the constraint that the single-particle
wave functions ψi(r) are normalized

δψ∗i

{
E[n(r)] −

Ne∑
j=1

ε j
( ∫

d3r |ψ j(r)|2 − 1
)}
= 0. (3.4)

This leads to the Kohn-Sham equations [61]{
−

1
2
∆ + Vext(r) +

1
2

∫
d3r′

n(r)
|r − r′|

+
δEXC{n(r)}
δn(r)

}
ψi(r) = εiψi(r), (3.5){

−
1
2
∇2 + VSCF(r)

}
ψi(r) = εiψi(r), (3.6)

with the effective single-particle potential

VSCF(r) = Vext(r) +
1
2

∫
d3r′

n(r)
|r − r′|

+
δEXC{n(r)}
δn(r)

. (3.7)

To conclude, DFT allows to solve the complex many-body problem by transforming it to an auxiliary
single-particle problem, which is a dramatic simplification. Although, in the upcoming sections, it will
be demonstrated that the solution is more complex than it appears at first glance – due to the use of
sophisticated XC functionals and so-called pseudopotentials.

3.1.1. Exchange-correlation functionals

This section is inspired by Ref. [62]. This reference tries to answer the question: “Which functional
should I choose?”. The outcome is that there is no definitive answer to the question of which exchange-
correlation functional to choose. Instead, experience and benchmarking are necessary to determine
the best approach for a specific property and system.

As shown above, DFT is an exact approach in principle, yielding the exact ground-state energy and
density. However, practical implementation requires approximating the XC functional. The quality
of the results depends on the accuracy of this approximation. Several classes of functionals have
been developed to tackle this approximation challenge, including the local density approximation
(LDA) [61], generalized gradient approximation (GGA) [63, 64], and the widely used Perdew-Burke-
Ernzerhof (PBE) functional [65, 66].

The LDA is the simplest form of XC functional, approximating the XC energy solely based on the
local electron density:

ELDA
XC [n(r)] =

∫
d3r n(r)εXC(n(r)). (3.8)
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While LDA provides reasonable accuracy for many systems, including the ones discussed in this
dissertation, it often results in an overestimation of molecular binding energies, which is deemed an
unacceptable level of error for chemical applications [62].

To overcome the limitations of LDA, the GGA class of functionals introduces an additional term
that accounts for the density gradient:

EGGA
XC [n(r)] =

∫
d3r n(r)εXC(n(r),∇n(r)). (3.9)

By considering not only the electron density but also its spatial variation, GGA functionals can better
describe molecular systems, surfaces, and chemical reactions.

In the pursuit of higher accuracy, the PBE functional emerged as a popular choice. It belongs to
the GGA family but stands out due to its simple formulation, where all parameters are fundamental
constants [65].

The development of XC functionals can be viewed as a progression on Jacob’s ladder [67], where
each rung represents an increasing level of accuracy and complexity. LDA stands at the bottom rung,
GGA stands a step higher, and PBE, with its aforementioned simplification, represents a notable
advancement. Researchers continue to climb this ladder, exploring and developing novel functionals to
address the limitations of existing approaches.

3.1.2. Solving the Kohn-Sham equations: Basis sets and pseudopotentials

This section is inspired by Ref. [59].

In practical calculations, the Kohn-Sham wave functions will be expressed in a basis set. In the
context of a periodic lattice structure, it is often advantageous to expand the wave functions using
plane waves

⟨r|nk⟩ = ψnk(r) =
1
√

V

∑
G

cn,k+G ei(k+G)r, (3.10)

which is the approach taken by the DFT code from Quantum ESPRESSO [68]. However, it is crucial
that the wave functions remain orthogonal to the core states of the inner electrons. This requirement
leads to the emergence of short-wave oscillations near the core region, a property that standard plane
waves cannot satisfy. To address this, the orthogonalized plane waves (OPW) method [69] is employed,
aiming to construct plane waves that are orthogonal to the inner core states.

In this approach, it is assumed that the inner core states do not overlap with their counterpart from
other unit cells. This means that the atomic eigenfunctions φl(r−R) correspond to discrete eigenvalues
El. The core states will therefore be

Ψc
lk(r) = ⟨r|Ψc

lk⟩ =
1
√

N

∑
R

eikRφl(r − R), (3.11)

which leads to the orthogonal plane waves∣∣∣Ψb
nk

〉
= |k⟩ −

∑
l<n

|Ψc
lk⟩⟨Ψ

c
lk|k⟩ (3.12)
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with the free plane wave |k⟩. By multiplying from the left with an inner core state ⟨Ψc
mk|, the

orthogonality can be seen:
〈
Ψc

mk

∣∣∣Ψb
nk

〉
= 0.

In principle, the "all-electron" treatment with OPWs works and has been applied [70]. However, it
requires a large basis set size to model the oscillations of the inner core states and the final basis set is
not transferable to other systems. With the knowledge that the core electrons in atoms are tightly bound
and less involved in most chemical reactions, the all-electron method might be a computational overkill
for most systems. Thus, it is beneficial to work in these situations with so-called pseudopotentials.

The influence of the projector Pk =
∑

l<n |Ψ
c
lk⟩⟨Ψ

c
lk| on the free plane wave |k⟩ can also be expressed

as a potential. To that end, one can assume Schrödinger equations such as

H|Ψnk⟩ = εn(k)|Ψnk⟩ and H|Ψc
lk⟩ = El|Ψ

c
lk⟩. (3.13)

The ansatz for the left Schrödinger equation is a linear combination of orthogonal plane waves,

|Ψnk⟩ =
(
1 −

∑
l<n

|Ψc
lk⟩⟨Ψ

c
lk|

)
|Φk⟩ =

(
1 −

∑
l<n

|Ψc
lk⟩⟨Ψ

c
lk|

)∑
G

akG|k + G⟩. (3.14)

This leads to an effective Schrödinger equation for the linear combination of plane waves,[
H +

∑
l<n

(εn(k) − El)|Ψc
lk⟩⟨Ψ

c
lk|

]
|Φk⟩ = εn(k)|Φk⟩ (3.15)

with the effective potential, called pseudopotential Vps

Vps = V +
∑
l<n

(εn(k) − El)|Ψc
lk⟩⟨Ψ

c
lk|. (3.16)

Due to the projector being inside of the pseudopotential Vps, it is not a real potential (scalar function of
spatial coordinates) anymore, but rather an operator. Additionally, the energies εn(k) are inside the
term of the potential as well, which makes it a non-trivial eigenvalue problem that has to be solved.

There are various types of pseudopotentials used in DFT calculations, including the Hartwigsen-
Goedecker-Hutter pseudopotentials [71, 72], ultra-soft pseudopotentials [73], and optimized norm-
conserving pseudopotentials [74].

Hartwigsen-Goedecker-Hutter pseudopotentials are a popular choice in many electronic structure
codes. The distinctive features of these pseudopotentials are the complete analytical form, where at
most, seven parameters are needed to fix these potentials [71]. Additionally, the all-electron wave
function and the pseudo wave function do not coincide after some radial distance. Instead the wave
functions approach each other exponentially.

Ultra-soft pseudopotentials are another type commonly employed in DFT calculations. These
pseudopotentials are designed to be smooth and well-behaved, ensuring accurate description of the
electron wavefunctions. The term “ultra-soft” refers to the smoothness of the pseudopotential, which
is achieved by relaxing the constraint of norm-conservation. Instead a generalized eigenvalue problem
has to be solved. These pseudopotentials were designed to yield the lowest possible energy cutoff for
the plane wave basis set.

Lastly, the optimized norm-conserving pseudopotentials are designed to keep norm-conservation
and present an extension to the standard norm-conserving pseudopotentials [75].

This dissertation focuses especially on the description of charge density waves. The phenomenon
itself will be discussed in Chapter 10. However, here, their dependence on the XC functionals will
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Figure 3.1: For a prototypical CDW displacement, DFT calculations were performed using Quantum
ESPRESSO for monolayer 1H-TaS2. The LDA (blue), PBE (orange) and PBEsol (gray) XC functionals
and norm-conserving pseudopotentials from the PseudoDojo table are applied. (Computational details concern-
ing this Fig. can be found in App. A.3.1)

be shown. As a prototypical example, Fig. 3.1 illustrates the utilization of DFT calculations to gain
an understanding of the relevant energy scales. LDA (blue), PBE (orange) and PBEsol (gray) XC
functionals and optimized norm-conserving pseudopotentials from the PseudoDojo table[74, 76] are
applied. It is evident that all XC functionals yield consistent qualitative results. This signifies that
a charge density wave is consistently identified within the framework of DFT across all instances.
Nevertheless, there exist quantitative differences on the order of a few meV.

To conclude, the chemical accuracy of the chosen XC functional might yield a few percent of
accuracy on the overall energy scale. If achieving such precision is the goal, performing benchmarks
becomes essential. However, if the existence of the physical phenomenon itself is prioritized, then the
significance of the various XC functionals diminishes.

3.2. Wannier functions

This section is inspired by Ref. [77].

Wannier functions are a set of localized functions used to describe the electronic states in a
periodic solid material. They were introduced as an alternative representation of the Bloch electronic
wavefunctions in a crystalline system [78]. Wannier functions have proven to be a powerful tool in
condensed matter physics and materials science for understanding the electronic structure based on
localized chemical orbitals.

To understand the concept of Wannier functions, it is insightful to consider a crystal with a periodic
potential described by the periodic lattice vector R. The electronic wavefunctions in this crystal can be
written as Bloch wavefunctions, given by:

ψnk(r) = eikrunk(r), (3.17)

where k is the crystal momentum, n denotes the band index, r is the position vector, and unk(r) is a
periodic function with the same periodicity as the lattice.
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The key idea behind Wannier functions is to find a set of localized and orthogonal functions that
have the same information as the Bloch wavefunctions. Mathematically, the Wannier function |Rn⟩
associated with the band n and the lattice vector R is given by the Fourier transform of the Bloch
wavefunction in Dirac bra-ket notation:

|Rn⟩ =
V

(2π)3

∫
BZ

dke−ikR|ψnk⟩, (3.18)

where the integral extends over the Brillouin zone, and V is the real-space primitive cell volume.
One of the significant advantages of Wannier functions is that they provide a natural basis for

studying the electronic properties of solids. They allow for a more intuitive understanding of electron-
electron or electron-phonon interactions. This is because the electronic degrees of freedom can be
represented with atomic-like orbitals. In the following this will be demonstrated with the so-called
tight-binding formalism.

The matrix elements of an electronic Hamiltonian can be represented with the Wannier functions
defined in Eq. (3.18), as

Hαβ(R) = ⟨Rα|H|0β⟩ := tαβ(R). (3.19)

The magnitude of tαβ(R) represents the amplitude for an electron to move from orbital β located at
the origin 0 to orbital α located at lattice site R. Larger tαβ values indicate a higher probability of
electrons hopping between adjacent sites, earning them the name hopping matrix elements. With a
Fourier transform, the matrix elements in k-space can be obtained via

tαβ(k) =
∑

R
tαβ(R)eikR, (3.20)

which leads to the momentum representation of the electronic Hamiltonian in second quantization:

H =
∑
kαβ

tαβ(k)c†αcβ. (3.21)

Solving the Hamiltonian yields the original eigenvalues that correspond to the Bloch wavefunctions.
Interestingly, this mapping procedure can be done in a way that only parts of the original Hilbert space
are reconstructed – e.g. the low-energy bands near the Fermi level. Thus, Wannier functions can be
used to construct effective model Hamiltonians for describing the low-energy physics of materials,
enabling the study of complex systems using simplified models.

The Wannier Hamiltonian from Eq. (3.21) will be the starting point for every downfoled model,
which will be presented in this dissertation. It will be called the undistorted Hamiltonian since
it provides the Kohn-Sham eigenvalues for the undistorted crystal structure. Distortions will be
incorporated via phonons in Chapter 4 and the electron-phonon coupling in Chapter 5.



4
Phonons

In the previous chapter discussing electrons, DFT is shown to provide Born-Oppenheimer potential
energy surfaces for arbitrary lattice configurations and thus enabling molecular dynamics simulations.
However, the computational demands for large systems over extended time scales are prohibitively
high. This dissertation introduces downfolded lattice models as an alternative, significantly reducing
computational requirements by utilizing interatomic force constants that give access to the second-
order Born-Oppenheimer potential energy surface. However, in the presence of phase transitions, the
harmonic term (Sec. 4.1) alone yields a downward opened energy surface around the equilibrium
positions and thus cannot stabilize atomic lattice positions. Consequently, solely calculating the second-
order force constants is insufficient for molecular dynamics simulations as they cannot faithfully
reproduce the full DFT potential energy surfaces. Therefore, it becomes necessary to compute
anharmonic terms originating from the electronic part of the model Hamiltonian. To avoid double
counting, the force constants must exclude virtual electronic processes within the electronic model
subspace. This can be achieved by partial screening via methods like constrained density functional
perturbation theory (Sec. 4.2.1) or unscreening (Sec. 4.2.2) with phonon self-energies.
This chapter is mainly inspired by the review article on density functional perturbation theory [79]
(Sec. 4.2). Furthermore, Ref. [80] is used for the description of the constrained density functional
perturbation theory. Lastly, Ref. [81] is insightful for a detailed description on different ways to obtain
partially screened phonon quantities for downfolded models.

4.1. Harmonic approximation

The Born-Oppenheimer Hamiltonian defined in Eq. (2.3) yields a ground-state energy E(R) of a
system of interacting electrons moving in the field of fixed nuclei. The derivative of this ground-
state energy with respect to the nuclei coordinates yields the force and can be evaluated using the
Hellman-Feynmann theorem:

FI = −
∂E(R)
∂RI

= −

〈
Ψ(R)

∣∣∣∣∣∂HBO(R)
∂RI

∣∣∣∣∣Ψ(R)
〉
= −

∫
nR(r)

∂VR(r)
∂RI

dr −
∂EN(R)
∂RI

. (4.1)

The Hellman-Feynman theorem is extremely useful as it allows one to calculate forces without having
to obtain derivatives of the electron density nR (wave function Ψ). In fact, it will be used for the
downfolded models as well (cf. Appendix B of Ch. 13). Differentiating Eq. (4.1) again, yields the

14
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interatomic force constants (cf. Eq. 10 of Ref. [79])

CIJ(R) =
∂2E(R)
∂RI∂RJ

=

∫
∂nR

∂RJ

∂VR(r)
∂RI

dr +
∫

nR(r)
∂2VR(r)
∂RI∂RJ

dr +
∂2EN(R)
∂RI∂RJ

, (4.2)

with the electron-nucleus interaction VR(r) = −
∑

iI ZI/|ri − RI |, the electrostatic interaction between
different nuclei EN(R) = 1/2

∑
I,J ZIZJ/|RI − RJ | and the ground-state electron charge density nR(r).

Thus, Eq. (4.2) is by construction part of the second-order term of the total (free) energy. An expansion
around relaxed equilibrium lattice vectors R0 clarifies this relation:

E = E(R0) +
∑

I

∂E(R)
∂RI

∣∣∣∣∣
R0

RI +
1
2

∑
IJ

∂2E(R)
∂RI∂RJ

∣∣∣∣∣
R0

RJ RI + ... . (4.3)

Truncating the Taylor series to the second order is called the harmonic approximation. Consequently,
all terms up to that point are referred to as harmonic terms, and all terms beyond that point are referred
to as anharmonic.

With the help of a Fourier transform to the q-space and dividing by the masses of the atoms, the
dynamical matrix from Eq. (4.2) can be obtained,

Dαα′

κκ′ (q) =
1

√
MκMκ′

Cαα′

κκ′ (q), (4.4)

where the index labeling has been changed to an index for the atoms κ in the unit cell and the direction
of displacement α = {x, y, z}. Diagonalizing the dynamical matrix∑

κ′α′

Dαα′

κκ′ (q)eα
′

κ′ (q) = ω2
qνe

α
κ (q) (4.5)

gives the phonon frequencies ωqν and the polarization vectors eακ (q).

4.2. Density functional perturbation theory

The vibrational quantities defined in the previous section can be calculated with the density functional
perturbation theory. As can be seen in Eq. (4.2), a direct evaluation of the force constants is hindered by
the unknown response of the electronic density to lattice distortions ∆n(r). Hence, the linear response
of the Kohn-Sham electronic density (Eq. 3.3) is needed and can be calculated with (cf. Eq. 69 of
Ref. [79] or Eq. 5 of Ref. [80])

∆n(r) =
∑
n,m

θ̃F,n − θ̃F,m

εn − εm
ψ∗n(r)ψm(r)⟨ψm|∆VSCF|ψn⟩ (4.6)

with composite indices for the band and the momentum n,m, the Kohn-Sham wave function ψn, and
the Kohn-Sham eigenenergy εn. The θ̃(x) is a smoothed step function which fascilitates the treatments
of metals in DFT calculations. It is related to the smearing function, δ̃(x), via θ̃(x) =

∫ x
−∞

δ̃(x′)dx′.
In the case of Fermi-Dirac smearing, it can be replaced with the Fermi-Dirac distribution θ̃F,n =

f ((εF − εn)/kT ).
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The change in the potential ∆VSCF due to displacements of the nuclei is given by

∆VSCF(r) = ∆Vext(r) + e2
∫
∆n(r′)
|r − r′|

dr′ +
dvXC(n)

dn

∣∣∣∣∣∣
n=n(r)

∆n(r), (4.7)

with the same contributions as defined in Eq. (3.7). Since the linear response of the density ∆n(r) is
part of this equation, the determination has to be achieved in a self-consistent iteration together with
Eq. (4.6).

The calculation of Eq. (4.6) would require extensive summations over conduction bands. Thus, in
practice, this equation will be projected onto the occupied states only. This will be demonstrated for
the example of a non-metal material with a gap between the conduction |c⟩ and valence states |v⟩. The
linear response of the electronic density can be written in this case as

∆n(r) = 2
∑
c,v

1
εv − εc

⟨c|∆VSCF|v⟩Ψ∗v(r)Ψc(r)

= 2
∑

v

Ψ∗v∆v(r), (4.8)

with the definition

|∆v⟩ =
∑

c

1
εv − εc

|c⟩⟨c|∆VSCF|v⟩. (4.9)

This leads to the so-called Sternheimer equation

(H − εv)|∆v⟩ =
∑

c

H − εv

εv − εc
|c⟩⟨c|∆VSCF|v⟩

=
∑

c

εc − εv

εv − εc
|c⟩⟨c|∆VSCF|v⟩

= −
∑

c

|c⟩⟨c|∆VSCF|v⟩

= −Pc∆VSCF|v⟩

= (Pv − 1)∆VSCF|v⟩,

where Pv and Pc are projectors onto the valence and conduction space. As can be seen, the final form
contains quantities of the valence space only. This is a computational advantage as it circumvents the
summation over the empty conduction space.

4.2.1. Constrained density functional perturbation theory

The constrained density functional perturbation theory is a downfolding technique for electron-lattice
coupled systems. In particular, it can be used to obtain partially screened phonon frequencies and
electron-phonon coupling matrix elements within the DFT-framework. In order to understand this
theory, it is insightful to look at each part of the interatomic force constants from Eq. (4.2) individually.

The third term on the right-hand side is a purely ionic contribution. Physically, this term describes
the total energy change upon displacing the bare nuclei in the crystal. Naively one might think
this is the only contribution to the force constants when dealing with “lattice vibrations”. However,
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lattice vibrations are influenced by the electronic density as well. Thus, there is the second term,
which consists of an electronic contribution due to the ground-state electronic density and a quadratic
electron-phonon coupling. Both terms taken together are defined as the bare force-constants

bareCαα′

κκ′ (q) =
1
N

[
∂2EN

∂u∗ακ (q)uα′κ′ (q)
+

∫
n(r)

∂2Vext(r)
∂u∗ακ (q)uα′κ′ (q)

dr
]
, (4.10)

and the contribution from the linear electron-phonon coupling is called the renormalizing term

ren.Cαα′

κκ′ (q) =
1
N

∫ (
∂n(r)
∂uακ (q)

)∗
∂Vext(r)
∂uα′κ′ (q)

dr. (4.11)

By inserting the linear response of the electronic density from Eq. (4.6), it can be shown (see Sec.
2.4.2 of Ref. [82]) that this expression leads to

ren.Cαα′

κκ′ (q) =
2
N

∑
kmn

f (εk+qm) − f (εkn)
εk+qm − εkn

⟨kn|
∂Vext

∂uακ (−q)
|k + qm⟩⟨k + qm|

∂VSCF

∂uακ (q)
|kn⟩, (4.12)

where the first term is the bare susceptibility χ0 (also called total irreducible polarization) and the two
last terms are the bare (screened) electron-phonon coupling matrix elements, which correspond to the
potentials Vext (VSCF) respectively [83].

Equation 4.12 is essentially known as the static (ω = 0) phonon renormalization within the random
phase approximation (RPA – see Sec. 6.3) and is related to the phonon self-energy, defined by

Πb0 :=
ren.C

2Mω(b) = |g
(b)|2χDFT = (g(b))†χ0g( f ), (4.13)

with χDFT = χ
0(1 − ṽχ0)−1∆Vext. Diagrammatically, the phonon self-energy can be expressed as (cf.

Eq. 40 of Ref. [81])

Πb0(T ) ≡ χ0(T )
g̃b g̃(σ)

, (4.14)

where a different definition of electron-phonon coupling matrix elements g̃ has been used (see Appendix
A.1). In this expression only the electronic temperature arguments σ and T are shown. Their meaning
will be discussed in Sec. 4.2.2, since they are of relevance for the downfolded lattice models.

It is crucial to highlight that in the RPA, the frequency renormalization of a phonon mode is
solely governed by the electron-lattice coupling and the electronic processes rendered by χ0. This
renormalization is not influenced by the presence or absence of other phonon modes. Consequently,
the RPA neglects what is commonly known as mode-mode coupling [84].

The idea of the constrained theories, cDFPT and cRPA (see Sec. 6.3.1), is to divide this screening
process into two steps. Meaning, the bare susceptibility will be separated as

χ0
qkmn(T ) = χ0,t

qkmn(T ) + χ0,r
qkmn(T ). (4.15)

Thus, the bare quantities are renormalized due to the coupling between the phonons and the high-
energy electrons, i.e. mediated by the “rest subspace” susceptibility χ0,r. This leads to partially
screened quantities. The coupling between the phonons and the low-energy electrons is the second
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renormalization. However, this step is considered when solving the low-energy model or by explicitely
reconstructing the fully screened quantities with phonon self-energies. The first part is presented in
Chapter 13 of this dissertation, while the latter will be demonstrated in the following.

The active-subspace phonon self-energy needed to reconstruct the fully screened phonons is given
by:

Πp0(T ) ≡ χ0,t(T )
g̃p(σ) g̃(σ)

. (4.16)

Thus, in the second step, the screened phonon Green’s function G(T ) is recreated from the partially
screened Gp(T ),

G(T )
=

Gp(T )
+

Gp(T ) G(T )
χ0,t(T )

g̃p(T ) g̃(T )
, (4.17)

which translates into a simple addition of dynamical matrix and phonon self-energy,

Dq(T ) = Dp
q(T ) + Πt

q(T ). (4.18)

This relationship is illustrated in Fig. 4.1. As can be seen, the partially screened phonons from
cDFPT plus the aforementioned phonon self-energy Πp0 (dark gray dashed line) is identical to the fully
screened phonons from DFPT (gray solid line). Furthermore, the partially screened phonons alone do
not show any instability as opposed to the screened phonons. Meaning that the instability is induced
by the low-energy electronic subspace. A situation like this gives rise to construct a low-energy lattice
model within the defined active subspace. This was done in one of the publications of this dissertation
(see Ch. 13). There, the downfolded model is called model I and the interatomic force constants for
this model are taken from cDFPT.

In practical calculations, it is not necessary to implement susceptibilities into an exisiting DFPT
code. Instead, as it is proposed in Ref. [80], in order to exclude target-target processes from Eq. (4.6),
one should include yet another projector into the Stermheimer equation, like (cf. Eq. 22 of Ref. [80])

(HSCF + Q − εn)|∆ψn⟩ = −Pr(θ̃F,n − Pn)∆VSCF|ψn⟩ (4.19)

with the initial projectors

Q =
∑

m

αm|ψm⟩⟨ψm|, Pn =
∑

m

βn,m|ψm⟩⟨ψm| (4.20)

and the additional projector Pr that projects onto the r subspace only. The parameters αm are chosen
such that null eigenvalues are avoided [79, 80]. Equation 4.19 is a more sophisticated version of the
Sternheimer equation shown in Eq. (4.10), since it is valid for metals with partially occupied bands as
well.

Instead of implementing the Pr projector, it is equivalent to modify the coefficients of the Pn

projector [80] in the following way:

β̃n,m =

 θ̃F,n (n,m ∈ t − subspace)

θ̃F,nθ̃n,m + θ̃F,mθ̃m,n + αm
θ̃F,n−θ̃F,m
εn−εm

θ̃m,n (other cases)
(4.21)

This modification can be conveniently applied to the existing DFPT code from Quantum ESPRESSO.
For the results of this dissertation, the necessary cDFPT modification was applied with the elphmod
code.
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Figure 4.1: (a) Electronic band structure of monolayer TaS2 from DFT (gray). The target subspace is highlighted
in orange and the corresponding three Wannier bands as dashed blue lines. (b) Standard fully screened phonon
dispersion from DFPT (light gray) with an instability of the longitudinal acoustic branch. Two types of partially
screened phonons, where the instability has been lifted: unsreened phonons (orange dots) and cDFPT phonons
(blue dots). A reconstruction of the fully screened phonons is recovered from the cDFPT phonons plus the
phonon self-energy Πp0 (dashed gray). (Computational details concerning this Fig. can be found in App. A.3.2)
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4.2.2. Theory of unscreening: Phonons

There is an alternative approach to obtain partially screened phonons and electron-phonon couplings.
This approach follows the philosophy of unscreening fully screened quantities:

Du
q(σ) ≡ Dq(σ) − Π00

q (σ), (4.22)

with the phonon self-energy,

Π00(T ) ≡ χ0,t(T )
g̃(σ, 0) g̃(σ)

. (4.23)

The phonon dispersion corresponding to Eq. (4.22) is shown in Fig. 4.1 as orange dots. Additionally,
the partially screened phonons from cDFPT are shown as blue dots. Qualitatively both curves are very
similar with the exception that the unscreened phonons do not fulfill the acoustic sum rule at Γ (q = 0).
This particular attribute of partially screened phonons is discussed in detail in Ref. [51].

Another interesting feature of the phonon renormalization is the temperature dependence. The
temperatures enter through the occupation function f (ε/kBT ) as shown in Eq. (4.12). The distinction
between σ and T is useful since the electron-phonon coupling is obtained through ab initio calulations
with a DFT smearing parameter σ, whereas the phonon renormalization can be carried out with a
different electronic temperature T . In Ref. [81] it is shown how accurate different renormalization
schemes can be when changing the electronic temperature T compared to the initial ab initio smearing
σ. Additionally, in Fig. 6 of Chapter 13, the agreement of the harmonic contribution between
approximative and exact approach is illustrated, which highlights that it is indeed possible to choose a
different electronic temperature within the active model subspace.

This concludes the discussion on phonons, which had the role to introduce the various second-order
terms in the downfolding models presented in Chapter 13. To elaborate further, cDFPT phonons were
applied in model I, while unscreened phonons were employed for model III. Additionally, a different
set of partially screened phonons was utilized for model II, with the unscreening process elaborated in
Chapter 13.



5
Electron-phonon interaction

The electron-phonon coupling plays a central role in downfolded lattice models as it enables interactions
between electronic and nuclear degrees of freedom. One might assume that introducing electron-
phonon coupling automatically leads to a departure from the Born-Oppenheimer approximation.
However, this is not the case. Within the Born-Oppenheimer approximation, atomic positions are
treated as parameters in the electronic Schrödinger equation, directly influencing the electronic structure
and, consequently, altering the free energy. Subsequently, by minimizing the free energy, new atomic
positions are determined, which in turn affect the electronic equations once again. The electron-phonon
coupling mediates between these two processes.

This chapter introduces the electron-phonon coupling as it is used within the downfolded lat-
tice models. This entails the coupling Hamiltonian (Sec. 5.1) for the supercell approach and the
representation with Wannier functions (Sec. 5.2). Inspiration for this chapter is drawn from Ref. [85].

5.1. Electron-phonon coupling Hamiltonian

The coupling between the electronic and nuclear degrees of freedom can be written in second quantiza-
tion as

Hel-n =
∑
qkmn

Vqkmn(u1, . . . ,uNn)c†k+qmckn, (5.1)

where V describes the coupling to displacements u in infinite order. From a technical perspective within
an ab initio approach, only the first-order coupling can be efficiently calculated. The higher-order
couplings are beyond the reach of nowadays ab initio software. In the following it will be described
how to prepare the linear electron-phonon coupling term, which is obtained from DFPT, for the
downfolded lattice models.

In the framework of the DFT Kohn-Sham formalism, the electron-phonon coupling Hamiltonian can
be derived by expanding the Kohn-Sham effective potential with respect to the nuclear displacements
∆uκp from their equilibrium positions u0

κp. To first order in the displacements, the potential is given by

VSCF({uκp}) = VSCF({u0
κp}) +

∑
κxp

∂VSCF

∂uκxp
∆uκxp, (5.2)

where uκxp denotes the displacement of the nucleus κ, from the unit cell p in the Cartesian direction x.

21
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With this expression, the coupling Hamiltonian can be rewritten as (cf. Eq. 36 of Ref. [85])

Hel-n =
∑

kn,k′n′
⟨ψkn|VSCF({uκp}) − VSCF({u0

κp})|ψk′n′⟩ c
†

k′n′ckn (5.3)

=
∑

kmqnκx

⟨ψk+qm|
∂VSCF

∂uqκx
|ψkn⟩ uqκx c†k+qmckn (5.4)

= u
∑
qkmn

dqkmnc†k+qmckn. (5.5)

In the case of the downfolded lattice models, the electron-phonon coupling is mapped onto a supercell.
For displacements with the supercell periodicity, one can set q = 0 in Eq. (5.5), which brings the
coupling term into the same form as the undistorted tight-binding Hamiltonian from Eq. (3.21). Adding
both terms together yields

Hel + Hel-n =
∑
kmn

(
tmn(k) + udmn(k)

)
c†kmckn, (5.6)

where u · dmn can be viewed as a displacement-induced deformation potential. Thus, similar to the
SSH model (see Ch. 11), the atomic displacements couple linearly to the electronic degrees of freedom
and directly induce changes in the electronic structure. Interestingly, even though the coupling is linear
on the level of the Hamiltonian, the resulting electronic eigenvalues response non-linearly to atomic
displacements. This non-linearity arises from the inherent nature of the eigenvalue problem, which is
fundamentally non-linear. Consequently, the Born-Oppenheimer potential energy surfaces resulting
from this non-interacting Hamiltonian can exhibit strong anharmonic behavior. This can be seen in the
third publication of this dissertation (see Ch. 13), where the non-interacting model is referred to as
model III.

In other approaches, e.g. the Peierls model (see Sec. 10.2), the coupling term is expressed with
the help of normal phonon coordinates. The coordinates transform the real cartesian displacement
of an atom into a collective displacement of a phonon wave. Consequently, there is an alternative
formulation of the coupling term

Hel-n = N−1/2
p

∑
k,qmnν

gqνkmn c†k+qmckn(aqν + a†−qν) (5.7)

with
gqνkmn =

1√
2ωqν

∑
i

eqiν
1
√

Mi
⟨ψk+qm|

∂VSCF

∂uqi
|ψkn⟩, (5.8)

where the indices κ and x have been combined to the index i = (x, κ)1.

5.2. Wannier representation

The use of the Wannier representation offers several advantages when studying electron-phonon
interactions. Apart from its computational efficiency, the Wannier representation serves as an excellent
analytical tool for investigating electron-phonon interactions using simplified tight-binding models
(for electrons) and force-constant models (for phonons) [86].

1The combined index i = (x, κ) labels the Cartesian direction x of the displacement and the atom in the unit cell κ.
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The downfoled lattice models, developed in this dissertation, will be written in the localized
Wannier basis and atomic displacements. Hence, the transform between the delocalized Bloch basis
and the localized Wannier basis will be shown here,

dRiR′αβ =
1

NN′
∑

qνkmn

e∗qiνUk+qαmdqνkmnU∗kβne−i(qR+kR′) (5.9)

with the matrix elements,

dRiR′αβ = ⟨α0|∂i,RV |βR′⟩. (5.10)

These matrix elements are written in real space with localized Wannier orbitals. They are the electron-
phonon equivalent to the tight-binding hopping matrix elements from Eq. (3.19). The physical
interpretation of these objects is the following: They describe the first order change of the hopping
process from the orbital α (located at the home cell 0) to the orbital β (located at the unit cell R′) under
the influence of the displacement i in the unit cell R.

For completeness, the back-transform will be given

dqνkmn =
∑

RiR′αβ
eqiνU∗k+qαmdRiR′αβUkβnei(qR+kR′). (5.11)

To give an insight into the technical aspects: both transforms (Eqs. 5.9 and 5.11) are part of the
EPW software, which was used to generate the electron-phonon coupling matrix elements from first-
principles. However, for the downfolded lattice models, only the first transform is carried out using
EPW. The resultant matrix elements dRiR′αβ are extracted and subsequently mapped onto a supercell to
build the tight-binding lattice model. The second part is carried out using the elphmod code.



6
Electron-electron interaction

The final ingredient of the downfolded lattice models are explicit electron-electron interactions hap-
pening within the low-energy model subspace. Implicitely, the Hartree and exchange-correlation
interactions are taken into account by the undistorted eigenenergies, the force-constants and electron-
phonon interactions from the high-energy electronic degrees of freedom. This is shown in the prior
sections discussing downfolding techniques like cDFPT or unscreening, where virtual electronic
excitations confined within the model subspace are deliberately excluded from the partially screened
variables. Thus, the initial model is “bare” within the low-energy subspace. Nevertheless, it is
imperative to incorporate these interactions since they carry the low-energy physics.

In an ideal scenario, one would seek to fully recover the ab initio solution from DFT — even
when atoms are displaced away from their high-symmetry positions. Nonetheless, in the anharmonic
terms, approximations come into play due to the perturbative approach with the linear electron-
phonon coupling. Additionally, the treatment of the electron-electron interactions involves the Hartree
approximation (Sec. 6.2), which is the simplest way of including the Coulomb interaction of the model
subspace. Furthermore, the ab intio generated Coulomb matrix elements on the level of the contrained
random phase approximation (Sec. 6.3.1) will be truncated to density-density type of interactions.

This chapter on explicit electron-electron interactions concerns the so-called models I and II
of Chapter 13. Please note that the effectively non-interacting model III only involves the implicit
Coulomb interactions carried by the fully screened electron-phonon coupling.

6.1. Wannier representation

This section is inspired by Chapter 2.3.3 of Ref. [87].

The general form of a Coulomb matrix element in reciprocal space is

U kk′q
αβγδ =

∫
d3r

∫
d3r′ϕ∗αk−q(r)ϕ∗βk′+q(r′)U(r, r′, ω)ϕγk′(r′)ϕδk(r), (6.1)

where the Bloch functions

ϕ∗αk(r) =
∑

R
eikRwαR(r) (6.2)

24
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are defined using Wannier functions wαR(r) with the orbital character α located in the unit cell around
R. Inserting the Bloch functions into the Coulomb matrix elements from Eq. (6.1), yields

U kk′q
αβγδ =

∫
d3r

∫
d3r′U(r, r′, ω)

∑
R1 R4

w∗αR1
(r)wδR4(r)ei(R4−R1)keiR1 q (6.3)∑

R2 R3

w∗βR2
(r′)wγR3(r′)ei(R3−R2)k′e−iR2 q. (6.4)

By assuming that the Wannier functions are strongly localized, the k- and k′-dependencies can be
eliminated in

Uq
αβγδ =

∑
R

∫
d3r

∫
d3r′U(r, r′, ω)w∗α0(r)wδ0(r)w∗βR(r′)wγR(r′)eiRq. (6.5)

Furthermore, the largest Coulomb matrix elements are assumed to be the so-called density-density
matrix elements, where α = δ and β = γ, which leads to

Uq
αββα =

∑
R

∫
d3r

∫
d3r′U(r, r′, ω)|wα0(r)|2|wβR(r′)|2eiRq (6.6)

=
∑

R
UR
αββαeiRq. (6.7)

6.1.1. Example: Coulomb matrix elements for two-dimensional monolayer TaS2

For the downfolded models, Q-dependent Coulomb matrix elements are needed, which live in the
Brillouin zone of the N × N supercell. Given for this task are the Coulomb matrix elements on the unit
cell, where q lives on the Brillouin zone of the unit cell.

At first, the Coulomb matrix elements in real space are obtained by a Fourier transform

Uαβ(R) =
VEZ

(2π)2

∫
d2q Uαβ(q)e−iqR =

1
N2

q

∑
q

Uαβ(q)e−iqR. (6.8)

The q sum runs over a uniform two-dimensional grid of the size Nq × Nq × 1. Note that all q points
must be in the first Brillouin zone of the primitive Bravais lattice. For instance, a grid of Nq = 24
q-points per axis corresponds to 24 × 24 × 1 primitive unit cells in real space. For the sake of clarity,
the inverse Fourier-transform is given by Eq. (6.7).

However, a transformation back to the original matrix elements Uαβ(q) is not desired. Instead, in
the case of 1H-TaS2, matrix elements for a 3 × 3 supercell shall be constructed. Since there are three
orbitals per unit cell α, β ∈ {dz2 , dxy, dx2−y2} and 9 unit cells, 27 matrix elements in total need to be
determined. These matrix elements can be calculated as matrix blocks

U
nm

(Q) =
∑

R̃

U(rnm + R̃)e−iQR̃ (6.9)

where U(rnm + R̃) is a 3× 3 matrix, which captures all the orbital dependencies. Note that R̃ is now the
Bravais lattice vector of the supercell. The result U

nm
(Q) still carries the indices n,m, which indicate

the unit cells within the supercell (see Fig. 6.1). Finally, the full matrix reads
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Figure 6.1: Sketch of the 3 × 3 supercell of 1H-TaS2 to illustrate the internal lattice vector rmn

U(Q) =


U

11
(Q) . . . U

19
(Q)

...
. . .

...

U
91

(Q) ... U
99

(Q)

 . (6.10)

By inserting the Fourier transform from Eq. (6.8) directly into Eq. (6.9), it is found that

U
nm

(Q) =
∑

R̃

[ VEZ

(2π)2

∫
d2q U(q)eiq(rnm+R̃)

]
e−iQR̃ (6.11)

=

∫
d2q U(q)eiqrnm

[ VEZ

(2π)2

∑
R̃

ei(q−Q)R̃
]
. (6.12)

The last term in the bracket would be simply a delta distribution δ(q − Q), if R̃ would be the original
primitive lattice vectors. However, since the supercell lattice vectors are being used, a sum over delta
distributions is obtained:

U
nm

(Q) =
∫

d2q U(q)eiqrnm
[∑

G

δ(q − Q + G)
VEZ

VSZ

]
(6.13)

=
VEZ

VSZ

∑
G

U(Q − G)ei(Q−G)rnm . (6.14)

6.1.2. Elimination of the Q = 0 divergence

The Coulomb matrix on the supercell (Eq. 6.10) has the size 27 × 27, which leads to 27 eigenvalues.
One of these eigenvalues diverges at Q = 0, which corresponds to a homogenous charging of the whole
system. This eigenvalue will be eliminated by setting it to zero in the spectral representation.

For the spectral representation, the Coulomb matrix at Q = 0 needs to be diagonalized:

U(Q = 0)|en⟩ = νn|en⟩. (6.15)

Thus, the spectral representation can be calculated as

Ũ(Q = 0) =
∑
n,0

νn|en⟩⟨en|. (6.16)

where the diverging eigenvalue with index n = 0 has been excluded from the sum.
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6.2. Hartree-Fock approximation

This section is inspired by Ref. [88].

Introducing Coulomb interactions in the simplest form can be done by using the Hartree-Fock approxi-
mation. Here, a non-interacting Hamiltonian H0 and an interaction Vint are defined:

H = H0 + Vint, (6.17a)

H0 =
∑
ν

ενc†νcν, (6.17b)

Vint =
1
2

∑
νν′,µµ′

Vνµ,ν′µ′c†νc
†
µcµ′cν′ . (6.17c)

By using Wick’s theorem, the four-term product can be factorized

c†νc
†
µcµ′cν′ ≈ c†νcν′⟨c

†
µcµ′⟩MF + c†µcµ′⟨c†νcν′⟩MF (6.18)

±c†νcµ′⟨c
†
µcν′⟩MF ± c†µcν′⟨c†νcµ′⟩MF (6.19)

−⟨c†νcν′⟩MF⟨c†µcµ′⟩MF ∓ ⟨c†νcµ′⟩MF⟨c†µcν′⟩MF, (6.20)

where the lower (upper) signs hold for fermions (bosons) respectively. Inserting this expression into
Eq. (6.17c) yields in the fermionic case:

VHartree
int =

1
2

∑
νν′,µµ′

Vνµ,ν′µ′ n̄µµ′c†νcν′ +
1
2

∑
νν′,µµ′

Vνµ,ν′µ′ n̄νν′c†µcµ′ −
1
2

∑
νν′,µµ′

Vνµ,ν′µ′ n̄νν′ n̄µµ′ (6.21)

and

VFock
int = −

1
2

∑
νν′,µµ′

Vνµ,ν′µ′ n̄νµ′c†µcν′ −
1
2

∑
νν′,µµ′

Vνµ,ν′µ′ n̄µν′c†νcµ′ +
1
2

∑
νν′,µµ′

Vνµ,ν′µ′ n̄νµ′ n̄µν′ . (6.22)

Thus, the final mean-field Hamiltonian within Hartree-Fock approximation reads

HHF = H0 + VHartree
int + VFock

int . (6.23)

6.2.1. Applying the Hartree-Fock approximation

The interaction term is defined as (cf. Eq. 1.136 of Ref. [89])

Vint =
1
2

∑
klmn

Vklmnc†kc†mcncl (6.24)

with the matrix elements

Vklmn =

∫
d3r

∫
d3r′ϕ∗k(r)ϕ∗m(r′)V(r, r′)ϕl(r)ϕn(r′). (6.25)

This means that the full interaction term corresponding to the matrix element from Eq. (6.1), can be
written as

Vint =
1
2

∑
αβγδ

∑
k,k′q

U k,k′q
αβγδ c†

αk−qc†
βk′+qcγk′cδk. (6.26)
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and the interaction term corresponding only to density-density matrix elements from Eq. (6.6), reads

Vint =
1
2

∑
αβ

∑
k,k′q

Uq
αββαc†

αk−qc†
βk′+qcβk′cαk. (6.27)

Mapping this interaction to a supercell, means that the former orbital index is replaced by a combined
index α→ α̃ = (n, α), where n indicates the unit cell within the supercell. Applying this substitution
yields

Vint =
1
2

∑
α̃β̃

∑
k,k′q

Ũq
α̃β̃

c†
α̃k−qc†

β̃k′+q
cβ̃k′cα̃k, (6.28)

where the matrix element is taken from Eq. (6.16).
All preparations have been made to apply the Hartree-Fock decoupling to the interaction term. Again,
Wick’s theorem will be used:

c†
α̃k−qc†

β̃k′+q
cβ̃k′cα̃k ≈ c†

α̃k−qcα̃k⟨c
†

β̃k′+q
cβ̃k′⟩MF + c†

β̃k′+q
cβ̃k′⟨b

†

α̃k−qcα̃k⟩MF (6.29)

±c†
α̃k−qcβ̃k′⟨c

†

β̃k′+q
cα̃k⟩MF ± c†

β̃k′+q
cα̃k⟨c

†

α̃k−qcβ̃k′⟩MF (6.30)

−⟨c†
α̃k−qcα̃k⟩MF⟨c

†

β̃k′+q
cβ̃k′⟩MF ∓ ⟨c

†

α̃k−qcβ̃k′⟩MF⟨c
†

β̃k′+q
cα̃k⟩MF. (6.31)

Accordingly, the Hartree term will be

VHartree
int =

1
2

∑
α̃β̃

∑
k,k′q

Ũq
α̃β̃

c†
α̃k−qcα̃k⟨c

†

β̃k′+q
cβ̃k′⟩MF +

1
2

∑
α̃β̃

∑
k,k′q

Ũq
α̃β̃

c†
β̃k′+q

cβ̃k′⟨c
†

α̃k−qcα̃k⟩MF

−
1
2

∑
α̃β̃

∑
k,k′q

Ũq
α̃β̃
⟨c†
α̃k−qcα̃k⟩MF⟨c

†

β̃k′+q
cβ̃k′⟩MF. (6.32)

Note, that all expectation values in the Hartree term are of the form ⟨c†
αk±qcαk⟩MF, which can be

rewritten to

⟨c†
αk±qcαk⟩MF = ⟨c

†

αkcαk⟩MFδq,0. (6.33)

This is due to the fact that the |αk⟩ states are orthogonal to each other. Next, by observing that there
is no mixture between k and k′ momenta in the expectation values, one k-sum in each term can be
evalauted. This leads to ∑

k

⟨c†
αkcαk⟩MF = nα = ⟨c†αcα⟩MF, (6.34)

which is the occupation of the orbital α (see App. A.2). Using both Eq. (6.33) and Eq. (6.34) in
Eq. (6.32), yields

VHartree
int =

1
2

∑
α̃β̃

∑
k

Ũq=0
α̃β̃

c†
α̃kcα̃knβ̃ +

1
2

∑
α̃β̃

∑
k′

Ũq=0
α̃β̃

c†
β̃k′

cβ̃k′nα̃ −
1
2

∑
α̃β̃

Ũq=0
α̃β̃

nα̃nβ̃. (6.35)
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By renaming α̃, β̃, k′ to β̃, α̃, k in the second summand, the first and second summand can be added
together, which will lead to the real part of the Coulomb matrix elementℜ(Ũq=0

α̃β̃
):

VHartree
int =

1
2

∑
α̃β̃

∑
k

Ũq=0
α̃β̃

c†
α̃kcα̃knβ̃ +

1
2

∑
α̃β̃

∑
k′

Ũq=0
β̃α̃

c†
α̃k′cα̃k′nβ̃ −

1
2

∑
α̃β̃

Ũq=0
α̃β̃

nα̃nβ̃ (6.36)

=
∑
α̃β̃

∑
k

1
2

(Ũq=0
α̃β̃
+ Ũq=0

β̃α̃
)c†
α̃kcα̃knβ̃ −

1
2

∑
α̃β̃

Ũq=0
α̃β̃

nα̃nβ̃ (6.37)

=
∑
α̃β̃

∑
k

ℜ(Ũq=0
α̃β̃

)c†
α̃kcα̃knβ̃ −

1
2

∑
α̃β̃

Ũq=0
α̃β̃

nα̃nβ̃. (6.38)

Finally, the β̃ sum in the first term can be defined as
∑
β̃ℜ(Ũq=0

α̃β̃
)nβ̃ =: U α̃:

VHartree
int =

∑
α̃

∑
k

U α̃c†
α̃kcα̃k −

1
2

∑
α̃β̃

Ũq=0
α̃β̃

nα̃nβ̃ (6.39)

=
∑
α̃β̃

∑
k

U α̃δα̃β̃c
†

α̃kcβ̃k −
1
2

∑
α̃β̃

Ũq=0
α̃β̃

nα̃nβ̃. (6.40)

The last equation shows that the Hartree term is diagonal in the orbital basis. In the matrix representa-
tion, this diagonal matrix is simply added to the previous non-interacting Hamiltonian.

6.3. Random phase approximation

The following (sub)sections on the (constrained) random-phase approximation are based on Refs. [40,
90, 91].

The random phase approximation (RPA) is a key concept in many-body physics, first developed to
describe the properties in the jellium, where electrons interact in a background of uniform positive
charge [92, 93]. The authors used a Hamiltonian formulation to separate the collective motion of
electrons (plasma oscillations) from their individual motions, known as RPA. This formulation was
later recognized as equivalent to an infinite summation of ring (or bubble) diagrams in diagrammatic
many-body perturbation theory [94, 95]. In the DFT framework, RPA is considered a fifth-rung
approximation to the exchange-correlation energy functional. This classification scheme, known as
Jacob’s ladder [67] of DFT, was already mentioned in Sec. 3.1.1. Lastly, it was recognized that RPA
can be understood as the time-dependent Hartree approximation. The linear density response function
calculated within RPA considers only the variation in the Hartree potential caused by a time-dependent
perturbing field [96, 97].

For this dissertation, the summation of bubble diagrams, such as

χ0 = (6.41)

is of particular interest. The polarization in RPA for a non-interacting system [98, 99], is given by

χ0(r1, r2) =
occ∑
n

unocc∑
n′

[
ψn(r2)ψ∗n′(r2)ψ∗n(r1)ψn′(r1)

−(εn′ − εn − iδ)
−
ψn(r1)ψ∗n′(r1)ψ∗n(r2)ψn′(r2)

(εn′ − εn − iδ)

]
(6.42)
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With the help of this polarization, the screened interaction W can be written in matrix form as (cf.
Eq. 3.97 of Ref. [40])

W = v + vχ0W or W = (1 − vχ0)−1v, (6.43)

where v is the bare Coulomb interaction. Similar to the renormalization of the force constants in Eq.
(4.13), this equation describes the screening process from the bare to the fully screened quantity. In the
next subsection, it will be shown how to divide this screening process into two steps.

6.3.1. Constrained random phase approximation

The purpose of the constrained random phase approximation is to obtain partially screened Coulomb
interactions. These can be used to construct model Hamiltonians such as the downfolded lattice models
discussed in this dissertation.

The idea is to divide the Hilbert space into a low-energy active subspace (also called target subspace
or correlated subspace), in which the downfolded model is solved, and the rest subspace, which consists
of high-energy states. Mathematically, this idea is realized by separating the summation in Eq. (6.42)
in the following way:

occ∑
n

unocc∑
n′
−→

occ∑
t

unocc∑
t′︸   ︷︷   ︸

t−subspace

+

occ∑
r

unocc∑
r′
+

occ∑
r

unocc∑
t′
+

occ∑
t

unocc∑
r′︸                                ︷︷                                ︸

r−subspace

(6.44)

Thus, the virtual target-target excitations have been excluded from the polarization due to the imposed
constraint. The resulting polarizations according to Eq. (6.44) are

χ0 = χ0
t + χ

0
r . (6.45)

Thus, according to the separation of the Hilbert space, the bare Coulomb interaction can be screened
by the high-energy states (r subspace) only (cf. Eq. B1 and B2 of Ref. [80])

W(p) = (1 − vχ0
r )−1v, (6.46)

which leads to the partially screened Coulomb interaction. For completeness, it is shown how to
recover the fully screened Coulomb interaction:

W = (1 −W (p)χ0
t )−1W (p) (6.47)

Thus, in principle, one would have to screen the partially screened interaction within the active subpace.
However, this renomalization effect is ideally imposed by solving the model within the correlated
subspace.
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Statistical mechanics

Density functional theory does not have access to the ensemble temperature of the lattice degrees
of freedom, often earning it the colloquial label of a “T = 0” theory. Nevertheless, through the
utilization of smearing functions and the inclusion of an entropy term, an electronic temperature can
be incorporated into the framework. This extension is sometimes referred to as ensemble DFT as it
makes simulations within the canonical ensemble possible [100]. In these simulations, the number
of particles remains constant, although exceptions exist in chemical applications, where the grand
canonical ensemble is applied [101].
In this chapter, the canonical ensemble (Sec. 7.1) is introduced and the significance of the free energy of
non-interacting electrons (Sec. 7.2) is emphasized. This quantity holds a central role in this dissertation,
as it is indispensable for the evaluation of Born-Oppenheimer potential energy surfaces in DFT and the
associated downfolded models.

7.1. Canonical ensemble

The canonical ensemble is a statistical mechanics concept used to describe a system in thermal
equilibrium with a heat reservoir at a fixed temperature, allowing for fluctuations in energy while
maintaining constant temperature and number of particles. The partition function of this ensemble is
given by

Z = Tr e−βĤ , (7.1)

where β = 1/kBT .
Similar to the microcanonical ensemble, the partition function signifies the total count of accessible

microscopic states. However, unlike the microcanonical ensemble, the canonical ensemble allows for
energy exchange with the surroundings, and therefore, the Hamiltonian is not conserved. As a result
of this energy exchange, the system follows the Boltzmann distribution, leading to variations in the
number of accessible microscopic states [102].

In molecular dynamics simulations of the canonical ensemble, a heat reservoir is introduced to
mimic the interaction between the system and its surroundings, allowing for energy exchange. The
heat reservoir serves as an infinite heat bath, maintaining a constant temperature during the simulation.
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7.2. Free energy of non-interacting fermions

For simplicity, the free energy of non-interacting fermions will be derived starting from the grand
canonical partition function. In second quantization, the particle operator is given by N =

∑
nk c†nkcnk

and the non-interacting Hamilton operator by H =
∑

nk εnkc†nkcnk. Thus, the grand canonical partition
function becomes

ZG = Tr eβ(H−µN) =
∏
nk

∑
nnk

[
e−β(εnk−µ)nnk

]
=

∏
nk

[
1 + e−β(εnk−µ)

]
, (7.2)

where it was used that the occupation of a fermionic state can only be nnk ∈ {0, 1}. From the partition
function, one can directly evaluate the grand canonical potential

Ω(µ,V,T ) = −kBT ln ZG = −kBT
∑
nk

ln
[
1 + e−β(εnk−µ)

]
. (7.3)

Important thermodynamic quantities can be obtained by derivations of the grand canonical potential
and will be listed in the following. The particle number

⟨N⟩ = −
∂Ω

∂µ
=

∑
nk

f (εnk) (7.4)

and the internal energy

⟨E⟩ =
∂Ωβ

∂β
=

∑
nk

f (εnk)εnk (7.5)

both depend on the Fermi-Dirac statistics

f (εnk) =
1

eβ(εnk−µ) + 1
. (7.6)

The entropy in the case of Fermi-Dirac smearing thus becomes (cf. Eq. 1.42 of Ref [100]):

S = −
∂Ω

∂T
= −kB

∑
nk

[ f (εnk) ln f (εnk) + (1 − f (εnk)) ln(1 − f (εnk))] (7.7)

Finally, taken together Eqs. (7.3), (7.5) and (7.4), the Helmholtz free energy [103] is given by

F = Ω + µN = E − TS . (7.8)

All downfolded lattice models developed in this dissertation and DFT as well, are either non-interacting
from the beginning or employ mean-field approximations. As such, the grand canonical potential for
non-interacting fermions is applicable.



8
Molecular dynamics

Once the free energy and corresponding forces are available, obtained either through DFT or a
downfolded lattice model, molecular dynamics (MD) simulations can be conducted. MD simulations
open up a new realm of physics that was previously beyond the reach of static DFT calculations.
Notably, MD simulations allow to utilize the ensemble temperature, granting access to thermodynamic
properties like transition temperatures in phase transitions. Furthermore, dynamic properties, such as
temperature-dependent phonon dispersions, can be extracted through MD simulations. Both categories
of properties can be investigated either using classical physics or extended through path integral MD
(PIMD - Sec. 8.2), which incorporates quantum mechanical effects.

In the third publication of this dissertation (see Ch. 13), classical and path integral replica exchange
MD simulations are performed using downfolded lattice model III. This approach is now referred to as
downfolding-based molecular dynamics. Consequently, this chapter will provide an introduction to the
fundamentals of MD simulations.

8.1. Born-Oppenheimer molecular dynamics

The Born-Oppenheimer molecular dynamics (BOMD) scheme is a variant of molecular dynamics. It
assumes, in accordance with Sec. 2.1, that the motion of atomic nuclei and electrons can be separated,
allowing the nuclei to move on potential energy surfaces generated by fixed electron distributions. This
approach enables efficient simulations of complex molecular systems by treating electrons as a static
background during the simulation of nuclear dynamics.

The potential energy surfaces in the BOMD scheme are typically generated from DFT [104, 105]
or tight-binding schemes, which provide representations of the electronic structure and interactions
within the system.

Depending on the chosen scheme, the total energy E has to be minimized (iteratively) w.r.t. the
electronic wave functions ψi in each time step of the simulation. This ensures that the electronic wave
function ψi resides on the Born-Oppenheimer potential energy surface, which leads to the following
equation of motion:

MIR̈I = −∇I min
{ψi}

E
[
{ψi}; {RI}

]
, (8.1)

where the nuclear masses MI and their coordinates RI enter as parameters.
The minimization of the total energy reduces the computational speed. Typically, the self-

consistency cycle in DFT requires around 10–100 interations. With a non-interacting approach,
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the self-consistency loop can be circumvented, leading to a computational speedup (see Benchmark of
model III in Ch. 13).

Moreover, there exists Car-Parrinello Molecular Dynamics (CPMD) [106], where the conventional
minimization step is omitted and replaced by fictitious dynamics of electrons, leading to a considerable
speedup in computation time. Consequently, in CPMD, the electrons are not inherently in the true
ground state. However, the evolution becomes adiabatic, with electrons adapting to the instantaneous
state of the nuclei, if the electron dynamics are significantly faster than the nuclear dynamics. Initiating
from the Kohn-Sham ground state at time t = 0, the system evolves with the electrons consistently
“wandering" around the instantaneous ground state under the condition of sufficiently fast electron
dynamics.

A challenge arises when the electron frequency fails to meet the specified condition. If the dynamics
of the electrons are not adequately fast, indicating that the fictitious mass is not sufficiently small, an
electron drag on the dynamics of the nuclei perturbs the accurate Born-Oppenheimer dynamics. This
dichotomy between CPMD vs. BOMD can be reconciled through a hybrid approach [107] that ensures
the system remains consistently close to the electronic ground state.

Additional molecular dynamics methods, such as Ehrenfest Molecular Dynamics (Ehrenfest-MD),
offer alternative approaches. Unlike traditional methods, Ehrenfest-MD does not rely on the Born-
Oppenheimer approximation. Instead, it explicitly addresses the time-dependence of both electronic
wave functions and nuclei simultaneously. In this method, the dynamic interplay between electrons
and nuclei is considered in a more direct and explicit manner, departing from the conventional
Born-Oppenheimer separation of electronic and nuclear motion.

Going beyond the Born-Oppenheimer approximation is beyond the scope of this dissertation.
Although the explicit dynamics of the electronic wave function in connection with downfolding models
should be explored in the future.

8.1.1. Integrating the equations of motion: Velocity-verlet algorithm

In this section, the Velocity Verlet algorithm [108] will be demonstrated, which is a widely-used
numerical integration method in molecular dynamics simulations. Before going into details, it should
be noted that equations of motion can be too complex or intractable, making numerical approaches
like Velocity Verlet essential for approximating solutions. The algorithm belongs to the symplectic
integrators, which means that the structure of the Hamiltonian is preserved.

It employs a Taylor series expansion alongside position and velocity updates for time advancement
up to second order in ∆t:

ri(t + ∆t) ≈ ri(t) + ∆tvi(t) +
∆t2

2mi
Fi(t), (8.2)

vi(t + ∆t) = vi(t) +
∆t

2mi
[Fi + Fi(t + ∆t)]. (8.3)

8.2. Path integral molecular dynamics

This section is inspired by Ref. [102].

Path integral molecular dynamics (PIMD) is a powerful simulation technique to investigate quantum
mechanical effects in solid state systems. By treating particles as quantum-mechanical objects rather
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than classical particles, PIMD offers a more accurate description of nuclear quantum effects, such as
zero-point energy, tunneling, and quantum statistics. This scheme becomes essential when studying
systems with light atoms, low temperatures, and strong quantum behavior, where classical molecular
dynamics fails to capture the intricacies of quantum effects [109].

The development of the path integral molecular dynamics equations can be viewed as a byproduct
in the search for an expression of the amplitude A of detecting a particle, initially prepared in the
eigenstate |x⟩, after a time t at a point x′. The particle evolves under the action of the time evolution
operator, which can be written as a matrix element in the position space

A ≡ U(x, x′; t) = ⟨x′|e−iĤt/ℏ|x⟩. (8.4)

Interestingly, by applying the Wick rotation [110], this expression is equivalent to evaluating the
canonical density matrix at an imaginary time t = −iβℏ

ρ(x, x′; β) = ⟨x′|e−βĤ |x⟩. (8.5)

For a Hamiltonian Ĥ = T̂ + V̂ , whose summands do not commute, it is a standard procedure to exploit
the Trooter theorem [111], which states that

e−β(T̂+V̂) = lim
P→∞

[
e−βV̂/2Pe−βT̂/Pe−βV̂/2P

]P

. (8.6)

Inserting Eq. (8.6) into Eq. (8.5) and additionally inserting (P − 1) identity operators 1̂ =
∫

dx|x⟩⟨x|
between the P products, yields the following terms

⟨xk+1|e−βV̂/2Pe−βT̂/Pe−βV̂/2P|xk⟩ (8.7)

= e−βV(xk+1)/2P⟨xk+1|e−βT̂/P|xk⟩e−βV(xk)/2P. (8.8)

Thus, the exponental terms of the potential could be pulled out of the matrix element, since the states
|x⟩ are eigenvectors of V̂ = V(x). Similarly, for the kinetic operator, the identity operator expressed in
momentum eigenvectors will be inserted, yielding

⟨xk+1|e−βT̂/P|xk⟩ =

∫
dp⟨xk+1|e−βT̂/P|p⟩⟨p|xk⟩ =

∫
dp⟨xk+1|p⟩⟨p|xk⟩e−βp2/2mP (8.9)

Using ⟨x|p⟩ = 1/
√

2πℏ eipx/ℏ and evaluating the momentum integral, yields the density matrix in the
coordinate basis

ρ(x, x′; β) = lim
P→∞

(
mP

2πβℏ2

)P/2 ∫
dx2...dxP (8.10)

× exp
{
−

1
ℏ

P∑
k=1

[ mP
2βℏ

(xk+1 − xk)2 +
βℏ

2P

(
V(xk+1) + V(xk)

)]}
(8.11)

Going from this expression to the canonical partition function requires only one addditional real space
integral, since

Z = Tr eβ(H) =

∫
dx ρ(x, x′; β). (8.12)
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Written in a compact form, with the definitions ωP =
√

P/βℏ and xP+1 = x1, the canonical partition
function becomes

Z = lim
P→∞

ZP, (8.13)

UP(x1...xP) =
P∑

k=1

1
2

mω2
P(xk+1 − xk)2 + V(xk), (8.14)

ZP =

(
mP

2πβℏ2

)P/2 ∫
dx1...dxPe−βPUP(x1,...,xP). (8.15)

The main result of the (imaginary time) path integral formalism is the establishment of an isomorphism
between the (discrete) quantum canonical partition function and the partition function of a ring
polymer coupled by harmonic springs vibrating with the frequency ωP. Effectively, the problem of
determining equilibrium properties in a quantum system has been transformed into an equivalent
problem of equilibrium properties in a classical system. This relationship is known as the “classical
isomorphism” [112]. Notably, this approach bears some resemblance to the Feynman path integral
formalism, where a particle traverses all conceivable trajectories simultaneously from one point to
another.

8.2.1. Thermodynamics and expectation values from the path integral

The expectation value of an observable A, which depends on the position x only, can be calculated
with the partition function

⟨A⟩ =
1
Z

Tr
[
Ae−βH

]
=

1
Z

∫
A(x)⟨x|e−βH |x⟩dx (8.16)

= lim
P→∞

1
Z

(
mP

2πβℏ2

)P/2 ∫
dx1...dxP

[
1
P

P∑
k=1

A(xk)
]
e−βPUP(x1...xP). (8.17)

In path integral calculations, the equilibrium expectation values can be estimated by employing
estimator functions that rely on the P coordinates, namely x1, ..., xP. Meaning, an appropriate estimator
for ⟨A⟩ will be

AP(x1, ..., xP) =
1
P

P∑
k=1

A(xk) (8.18)

and the expectation value will be given by an average over the probability distribution function
f (x1, ..., xP)

⟨A⟩P = lim
P→∞
⟨AP(x1, ..., xP)⟩ f , (8.19)

⟨A⟩ = lim
P→∞
⟨A⟩P. (8.20)

In pratical numerical calculations, only a finite number of beads can be included. This number is
chosen based on a convergence criterion.



8.3. Replica Exchange 37

8.3. Replica Exchange

Standard MD simulations are limited by their inherent dependence on the initial states of the system,
which can often lead to getting trapped in local energy minima and slow exploration of the phase
space.

To overcome these limitations, a method called replica-exchange molecular dynamics (REMD) was
introduced [113–116]. REMD, also known as Parallel Tempering, is an enhancement to conventional
MD that aims to accelerate the sampling of conformational space and address the challenge of getting
stuck in local minima. This is achieved by running multiple replicas, each at a different temperature,
and allowing them to exchange conformations periodically during the simulation.

The exchange of conformations between replicas is performed stochastically with a certain ex-
change probability that depends on the temperatures and potential energies of the replicas involved in
the swap. The exchange criterion is commonly based on the Metropolis-Hastings algorithm [117, 118],
and the acceptance probability for exchanging configurations between replica i and replica j is given
by (cf. Eq. 17 of Ref. [116]):

w(X → X′) ≡ w(x[i]
m |x

[ j]
n ) =

1 for ∆ ≤ 0
exp(−∆) for ∆ > 0

(8.21)

where

∆ ≡ (βn − βm)[E(q[i]) − E(q[ j])]. (8.22)
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Anharmonicity

In the chapter on phonons (see Ch. 4), the concept of lattice vibrations was explored, focusing
primarily on obtaining a lattice model that effectively captures the second-order, i.e. the harmonic
contributions within the Born-Oppenheimer potential energy surface. While this endeavor proved
relatively straightforward, it is essential to recognize that the harmonic terms alone are insufficient in
fully describing the behavior of lattice vibrations.

In fact, in the presence of phase transitions, it is the anharmonic terms within the potential energy
surface that eventually stabilize the crystal structure and subsequently dictate the characteristics of said
structural displacive phase transitions. Consequently, the objective within the scope of downfolded
lattice models is to reproduce these anharmonic contributions observed in DFT calculations.

In this chapter, the concept of anharmonicity will be discussed based on the phenomenological
Landau theory (Sec. 9.1) to provide insights into the nature of structural phase transitions. Subsequently,
the concept of soft phonons (Sec. 9.2) will be explored, which serve as an indicator of structural phase
transitions. Finally, temperature-dependent phonon dispersions [119] (Sec. 9.3) will be introduced,
showcasing one particular anharmonic effect through the eyes of various methods with the downfolding-
based molecular dynamics being one of them.

9.1. Landau theory

The Landau theory is a phenomenological theory for phase transitions in general and can be applied
to the subclass of structural displacive phase transitions. It is part of the review article [120] and the
following paragraph will follow it closely.

In the simplest form, a phase transition can be described by a free energy F expanded up to fourth
order

F = F0 + lα +
1
2

rα2 + dα3 + uα4, (9.1)

with a single order parameter α, where the coefficients may be temperature dependent. The assumption
is that a phase is only stable if

∂F
∂α

∣∣∣∣∣
α0

= 0 and
∂2F
∂α2

∣∣∣∣∣
α0

> 0. (9.2)
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Figure 9.1: The free energy F − F0 for the high-symmetry phase (green) and the distorted structure (blue)

Hence, the coefficient l needs to be zero and r > 0. Furthermore, according to Landau the coeffcient r
switches its sign at a critical temperature TC. A further assumption is that the coeffcient r follows a
linear temperature dependence,

r = a(T − TC), (9.3)

which is the so-called soft phonon approach (see also Sec. 9.2). For a continuous phase transition the
free energy shall increase with |α| at TC. Hence, the cubic term in Eq. (9.1) must vanish. This leads to
the free energy

F − F0 =
1
2

a(T − TC)α2 + uα4. (9.4)

In Fig. 9.1, the free energy from Eq. (9.4) was plotted for T > TC and T < TC. Since this is a
discussion on structural phase transitions, the order parameter α corresponds to displacements of
atomic coordinates. More specifically, α = 0 represents the high-symmetry phase of a material and
α , 0 a distorted phase with lower symmetry. For T > TC, the green line shows an energy increase
with a displacement away from high-symmetry phase. Thus, the high-symmetry phase will be stable.
However, for T < TC there are two lower minima, which are illustrated by the blue line. Since lower
free energies will be prefered, the system will undergo a phase transition.

This simple model is a good introduction to understand the structural phase transitions that are
associated with soft phonon modes.

9.2. Soft phonon modes

The following section will not only be based on the review articles Ref. [120, 121], but also on three
articles that deal with anharmonicity and soft phonon modes [122–124].
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In Ref. [120] it is claimed that “structural phase transitions occur only in crystals that are sig-
nificantly anharmonic and for which the strictly harmonic frequencies, ω j(q), may be imaginary”.
When a phonon mode has imaginary frequencies, one speaks of a soft phonon mode. Consider a
mechanical spring as a classical counterpart to help illustrate the concept of a soft phonon mode. The
term “soft phonon mode” is derived from this classical analogy, where a mechanical spring serves as a
representative example. According to the harmonic oscillator, the relation between the force constant
k, which describes the stiffness of the spring, and the frequency ω is given by

ω =

√
k
m
. (9.5)

A reduced constant k will result in a reduced frequency ω, which is called a softening of the spring.
However, the softening of a phonon mode can be so extreme that the phonon frequencies become
imaginary below a certain temperature TC , which indicates a lattice instability of the current lattice
structure.

In the context of the soft mode approach, phase transitions are interpreted as the crystal becoming
unstable with respect to a specific soft normal mode. The frequency of this mode approaches zero as
the temperature reaches T ≈ TC . Within the phase of lower symmetry, the crystal undergoes distortions
to support and stabilize this particular mode. These distortions are characterized by a fixed amplitude
of the normal mode that becomes frozen-in. In the following, a few real-world examples from the
literature will be presented for the interested reader.

In Ref. [123], soft phonon modes in Cs2SnI6 are identified at 44 K and 137 K via lattice-dynamics
calculations. Similarly, in Ref. [124], imaginary phonon frequencies appear in SnSe’s high-temperature
phase (700 K to 800 K). Lastly, Ref. [122] observes temperature-dependent softening in iron’s
transverse (T1) mode.

The essence of this matter is that all three articles present a lattice instability, which is indicated
by imaginary phonon frequencies. By displacing the lattice in the direction of this soft mode a new
stable lattice structure is found. In the case of Cs2SnI6 there are phase transitions at temperatures of
44 K (monoclinic-tetragonal) and 137 K (tetragonal-cubic) [123]. For SnSe, it is the transition from the
Cmcm phase to the Pnma phase [124] and lastly, for iron, it is the transition from a BCC to FCC lattice
and from FCC to a BCC lattice again, which is a unique feature of iron [122].

These phase transitions are illustrated by double-well potentials in all three articles, which remind
of the double-well free energy in Fig. 9.1. As order parameter α, the displacement in the direction of
the eigenvector has been chosen.

To conclude, imaginary phonons can indicate structural phase transitions, which are naturally
asscociated with double-well potentials and thus with anharmonicty. In this dissertation, a large focus
is laid on charge density waves, which are a variant of structural phase transitions. An introduction of
this phenomenon is given in Chapter 10.

9.3. Incorporating anharmonicity into phonon dispersions

Lattice vibrations of materials are often described using the harmonic approximation, which as-
sumes that the vibrations are small and thus justifying the neglect of anharmonic terms in the Born-
Oppenheimer potential energy surface (see Sec. 4.1). However, real-world systems rarely conform
to this simple assumption. In fact, anharmonicity is omnipresent, gaining importance with larger
displacements and ultimately contributing to the material’s melting, as elucidated by the Lindemann
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criterion [125]. Nevertheless, certain materials exhibit harmonic behavior across a substantial range of
displacements. To name a few candidates: Semiconducting materials like silicon [126, 127] or tungsten
disulfide (1H-WS2) (see Fig. 6 of Ch. 13) are considered to be harmonic. Meanwhile the isostructural
compound, tantalum disulfide (1H-TaS2), shows strong anharmonic contributions illustrated by the
double-well potential (see Fig. 6 of Ch. 13).

The figures depict the Born-Oppenheimer potential energy surface as obtained from static DFT or
downfolded model calculations. Meaning that the free energy only depends on the electronic temper-
ature via a smearing function and not on the overall ensemble temperature. As demonstrated later,
the literature explicitly employs the concept of anharmonicity to introduce the ensemble temperature,
which manifests in temperature-dependent lattice vibrations.

Hence, the consideration of anharmonicity is crucial for obtaining accurate dynamical properties
such as temperature-dependent changes in vibrational frequencies [128–133] and thermodynamic
properties such as heat capacities, entropies, and free energies.

This chapter introduces the concept of anharmonicity and its importance in understanding the
behavior of materials, followed by an exploration of methods used to calculate anharmonic free
energies. The method section should provide an overview that emphasises the complexity, popularity
and importance of this branch in the literature. The chapter concludes with an introduction to a novel
method for calculating anharmonic free energies, which offers significant advantages over existing
approaches.

9.3.1. Quasi-harmonic approximation

The quasi-harmonic approximation (QHA) is the most straightforward framework for including
anharmonic effects such as thermal expansion. This is achieved by introducing a direct dependence on
the volume of phonon frequencies, while still preserving the harmonic expression for the Helmholtz
free energy [126, 134, 135] (cf. Eq. 6 of Ref. [119]),

F =
∑
µ

[1
2
ℏωµ −

1
β

ln[1 + nB(ωµ)]
]
, (9.6)

where nB(ω) = 1/(eβℏω − 1) is the Bose-Einstein distribution, which introduces a temperature depen-
dence, even though the phonon frequencies themselves are independent of temperature.

9.3.2. Self-consistent phonon theory

The self-consistent phonon (SCPH) theory is a broad term encompassing a variety of methods [136–
139]. In these theories an effective harmonic potential is adjusted such that the nuclear density matrix
resulting from the potential minimizes the free energy at a certain temperature. The challenge at hand is
essentially to calculate the temperature-dependent interatomic force constants (cf. Eq. 7 of Ref. [139])

Cpκα,p′κα′(T ) =
〈

∂2U(τ)

∂τpκα∂τp′κ′α′

〉
T
, (9.7)

iteratively until self-consistency is achieved. The symbol
〈
.
〉

T denotes the ensemble thermal average
as the trace over the entire array of quantum harmonic oscillators. This average is weighted by
the conventional Boltzmann factor at temperature T and is normalized by the canonical partition
function [139].
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The SCPH theory is also performed with a Green’s function approach [140, 141]. In many-body
perturbation theory, anharmonic effects are treated as self-energies [128–132]. These self-energies
describe the intrinsic phonon–phonon scattering events. In Refs. [140, 141], a self-energy diagram
of fourth order (the loop diagram) is employed and the Dyson equation is solved self-consistently.
Furthermore, a third order bubble diagram is treated in a perturbative manner after solving the SCPH
equation.

Another SCPH-based approach is the self-consistent harmonic approximation (SCHA) [142–146],
originally developed in Ref. [136], which is a non-perturbative variational method. In order to simplify
the computation of quartic force constants, these techniques utilize stochastic methods in real-space
and displace atoms in the supercell to model anharmonic effects.

9.3.3. (Downfolding-based) ab initio molecular dynamics

Molecular dynamics simulations is a popular method for studying anharmonicity. It comes in several
variations such as ab initio molecular dynamics (AIMD) (see Sec. 8.1), path-integral molecular dynam-
ics (PIMD) (see Sec. 8.2) and the newly developed method in this dissertation called downfolding-based
molecular dynamics (see Ch. 13).

AIMD employs Newtonian mechanics to simulate nuclear motion, with forces determined by
on-the-fly DFT calculations. Anharmonic phonon frequency shifts and lifetimes can be derived
from velocity or position autocorrelation functions using Fourier transforms [147, 148]. While
AIMD’s classical nature limits accuracy at very low temperatures, methods like path-integral molecular
dynamics [149] incorporate quantum effects. However, PIMD comes with a greater computational
cost which hinders the combination with DFT for large systems and long time scales.

Downfolding offers a way out of this problem (see Ch. 13). Restricting the electronic subspace to a
minimal orbital model makes PIMD affordable for large systems while maintaining reasonable amount
of accuracy. Futhermore, in contrast to the methods mentioned above, the downfolding-based MD
does not rely on an effective second order Hamiltonian. Instead, the anharmonicity is treated explicitly
to infinite order, albeit approximately through the assumptions of the downfolding strategy.

9.3.4. Conclusion

In conclusion, various methods for incorporating anharmonicities into thermodynamic and vibrational
properties have been discussed. The QHA and SCPH theory, which includes the SCHA, have been
introduced, revealing their common reliance on an effective second-order Hamiltonian to describe
anharmonic behavior. These methods have provided valuable insights into the aspects of materials’
vibrational spectra. In contrast, the (downfolding-based) ab initio molecular dynamics method stands
out for its treatment of anharmonicity by explicitly considering higher-order terms beyond the harmonic
regime. The relationship between the discussed methods and the downfolding-based MD is not clear. It
is a complex task that requires analytical and numerical evaluations of Feynman diagrams and remains
as an open question for future investigations.
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Charge density waves

This dissertation focuses on developing downfolded lattice models, with charge density waves serving
as the key example of application. This chapter aims to establish the fundamentals of this physical
phenomenon. The foundation of this chapter draws inspiration from two review articles [1, 150],
primarily centered on elucidating the origins of charge density waves. The interested reader might also
find other review articles insightful [151–154].

10.1. Origin of charge density waves?

Charge density waves (CDWs) are fascinating electronic phenomena that occur in materials. They
involve periodic modulations in the charge density of electrons within a crystal lattice. These modula-
tions are accompanied by periodic lattice distortions, leading to a distinct periodic patterns such as the
Star of David [155].

CDWs have been observed in various materials, especially in low-dimensional systems like
one-dimensional chains of atoms [156] or two-dimensional layered structures [157]. But also three-
dimensional materials are known to host CDWs [158].

They can arise due to different mechanisms, such as electron-phonon interactions, Fermi surface
nesting, or electron-electron interactions as it is the case in the excitonic insulator instability [159].
Understanding the origin and behavior of CDWs is crucial for exploring their impact on material
properties and potential applications, especially in fields like superconductivity [160] and electronic
devices [161].

Hence, the origin of CDWs will be discussed based on two review articles [1, 150]. Both articles
introduce the Peierls model (see Sec. 10.2) as a classical textbook example for comprehending the
emergence of CDWs within metallic one-dimensional atomic chains. In the Peierls model, the
non-interacting susceptibility is the dominant player, which diverges in the one-dimensional case.
Consequently, CDWs in (quasi)-one-dimensional have been attributed to the Fermi surface nesting
mechanism [162].

However, the Peierls instability is unlikely to happen in real-world materials beyond the quasi-one-
dimensional case. This is due to the fact that the logarithmic divergence of the susceptibility is fragile
as it is less pronounced i.e. broadened in higher dimensions [163]. Nevertheless, there are studies
claiming that the observed CDW is driven by Fermi surface nesting in three-dimensional materials
such as bulk 1T-VSe2 [164–166]. From this, uncertainty arises regarding the true origin of the CDW,
leading to controversial discussions on this topic in the literature for several decades.
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Due to this prevailing uncertainty, a recent technique known as fluctuation diagnostics has been
applied to monolayer 1H-TaS2. This innovative approach effectively distinguishes between Fermi-
surface nesting and electron-phonon matrix element effects [39]. It relies on the momentum-resolved
decomposition of the phonon self-energy, allowing for the investigation of the origins of giant Kohn
anomalies in phonon dispersions. These Kohn anomalies provide insights into the dynamic instability
towards a CDW. This concept aligns with the fundamental principles of the Landau theory, where the
second-order term in the free energy plays a pivotal role in determining whether a phase transition
occurs in the vicinity of a high-symmetry phase.

While the harmonic term in the free energy holds significance, it cannot pinpoint the final atomic
positions of the CDW or determine which CDW takes precedence when multiple anomalies exist in
phonon dispersions. These intricate decisions are shaped by the anharmonic terms within the free
energy. This situation is exemplified in the second publication of this dissertation (see Ch. 12). Hence,
accurately describing anharmonicity within real-world materials is imperative, and this is precisely the
objective pursued in this dissertation through the development of downfolded lattice models.

10.2. Peierls instability

Peierls has shown that by displacing the atoms of a linear chain periodically from their rest positions,
the resulting periodic potential opens up a gap at the Fermi surface. Occupied states experience a
reduction of their energy and empty states experience a raise of their energy. Effectively, this results
in an gain in electronic energy, which can be large enough to compensate for the energy loss due
to elastic energy. When this condition is fullfilled, a CDW formation occurs. This delicate balance
between electronic and elastic energy within the one-dimensional atomic chain can be described using
the Fröhlich Hamiltonian:

HPI =
∑

k

εkc†kck +
∑

q
ℏωqb†qbq +

1
√

N

∑
k,q

gqc†k+qck(b†q + bq), (10.1)

with the undistorted electronic dispersion εk, the bare phonon frequency ωq and the bare electron-
phonon coupling matrix element gq. The total band energy change can be calculated within second-
order perturbation theory

δEband = −|vq|
2χ0(q), with the potential vq = gquq

√
2Mωq

ℏ
, (10.2)

and χ0, the non-interacting electronic susceptibility

χ0(q) =
1
L

∑
k

fk+q − fk

εk − εk+q
, (10.3)

where L is the length of the atomic chain, fk is the Fermi function. On the other hand, the lattice strain
energy due to the deformation is given by

δElattice =
1
2

Mω2
qu2

q, (10.4)

where uq is a static displacement of phonon mode q.



10.3. Fluctuation diagnostics of phonon self-energies 45

According to this model, a CDW will only appear, if δEband + δElattice < 0, which leads to a simple
instability condition [167]

4gq2

ℏωq
>

1
χ0(q)

. (10.5)

The instability condition states that the formation of a CDW can be achieved in systems with strong
electron-phonon interaction gq, a small lattice strain energy ωq or a large non-interacting susceptibility
χ0(q). This inequality was evaluated in Ref. [1] for 2H-TaSe2 with the result that a CDW formation
should appear, but “all estimates are based on crude models and strong approximations and the error
bars of some of the involved microscopic parameters are rather large”. Indeed, the CDW is observed
in experiments [168]. Thus, the instability condition can serve a valuable trend, but should not be
interpreted as a general law.

Another important aspect for the appearance of a CDW is the so-called Kohn anomaly. A Kohn
anomaly is a renormalization of the phonon frequencies in a narrow wavevector range, where the
non-interacting susceptibility χ0(q) diverges

ω̃2
q = ω

2
q
(
1 −

4g2
q

ℏωq
χ0(q)

)
. (10.6)

The bracket in Eq. (10.6) can lead to a reduction of the frequency, which results in a softening of the
phonon mode (cf. Sec. 9.2). The softening can be so extreme, that ω̃2

q ≤ 0, indicating that the lattice
phonon freezes completely, which is referred to as a CDW.

The Kohn anomaly highlights, similar to the instability condition, the interplay between electron-
phonon coupling and susceptibility. In the next section, this interplay will be decoded with the help of
fluctuation diagnostics.

10.3. Fluctuation diagnostics of phonon self-energies

This section is inspired by Ref. [39].

As stated in the introduction of this chapter, there is uncertainty regarding the origin of CDWs.
The method known as “fluctuation diagnostics” aims to uncover the mysteries behind this phenomenon
by investigating the momentum-resolved phonon self-energies. Before delving into this method, it is
worth examining the formula (cf. Eq. 10.6) for the Kohn anomaly in a simple one-dimensional metallic
chain. The term responsible for reducing the phonon frequency and ultimately leading to imaginary
phonon frequencies consists of the product of the squared electron-phonon matrix element and the
non-interacting susceptibility. Essentially, this constitutes the phonon self-energy. It is evident that
both components contribute to the emergence of the giant Kohn anomaly. However, it is unclear which
one dominates and which electronic processes are most significant.

This sets the stage for fluctuation diagnostics, which will be discussed using the example of
monolayer 1H-TaS2. What makes this material interesting is that the low-energy electronic band is
completely isolated from other bands, making it particularly suitable for downfolding techniques like
cDFPT (as done in the third publication, Ch. 13, and Ref. [39]). By applying the cDFPT method
to obtain partially screened phonon frequencies and electron-phonon coupling matrix elements, the
distinct electronic subspace can be analyzed.
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Figure 10.1: [Reproduced with permission from Ref. [39]] Momentum-resolved fluctuation diagnostics of
LA-phonon-mode softening at q = 2/3M (left) and q =M (middle) in undoped 1H-TaS2 as well as at q = 0.58K
(right) at Van Hove filling (chemical potential µ = −119meV). The k-dependent contributions to the phonon
self-energy 2ωΠ, the bare electronic susceptibility χ0, and the coupling matrix elements 2ωg2 are shown
color-coded. Solid (dashed) lines indicate the Fermi surface (shifted by the respective q vectors).
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At this point, revisiting the definition of phonon self-energy (cf. Eq. 4.16) and the corresponding
renormalization of the phonon frequencies (cf. Eq. 4.18) is useful. As can be observed, similar to
the simple Peierls model, the key players are the squared electron-phonon matrix element and the
susceptibility. However, the dependence on q and k momentum complicates the situation. Therefore,
it is insightful to plot each term of the momentum-resolved phonon self-energy, as shown in Fig. 10.1.
The hexagonal Brillouin zones sample the electronic k-values, where the solid lines represent the
Fermi surface. Additionally, shifted Fermi surfaces due to phonon momentum wave vectors q can
be plotted (in dashed lines), leading to immediate overlap of Fermi surfaces, so-called Fermi surface
nesting.

In pristine 1H-TaS2, which exhibits a 3 × 3 CDW at µ = 0, the primary wave vector of interest is
q = 2/3M. The analysis of phonon self-energy 2ωΠ reveals that the most significant contributions
stem from specific regions in k-space. These regions are where the original hole pocket around K
nearly touches the pocket around K’, shifted by −q, resulting in two intervalley processes that strongly
impact 2ωΠ. However, these contributions do not affect the bare electronic susceptibility χ0. The
coupling matrix elements 2ωg2 filter out intervalley coupling regions, and while one might initially
consider nesting as an explanation for the remaining contributions from regions with touching K and
K’ pockets, the results refute this idea.

Additionally, at q =M, 2ωΠ exhibits a distinct extremum mainly due to slightly overlapping K
and K’ pockets, indicating the absence of nesting. Although nesting exists for the hole pocket around
Γ, its impact on χ0 is approximately logarithmic, and matrix-element effects in the phonon self-energy
are the dominant factors in this scenario.
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Downfolding the Su-Schrieffer-Heeger
model

11.1. Statement of personal contribution

This work has been published in SciPost Phys. 11, 079 (2021), arXiv:2104.09207. It has been realized
in collaboration with J. Berges, T. O. Wehling and E. G. C. P. van Loon. The Su-Schrieffer-Heeger
(SSH) model is a typical textbook example. I have studied this model and carried out the calculations
in Section 2 and 3, including Figs. 1 and 2. Furthermore, I have written substantial parts of the
manuscript, which have been revised and edited by all authors of this work. The diagrammatic
evaluation of this model was done by E. G. C. P. van Loon, who also designed and supervised this
project.

11.2. Positioning within the scientific landscape

The scientific field of downfolding is not a recent development. It has primarily found applications in
electronic structure calculations of strongly correlated materials and has demonstrated considerable
success in this regard [40]. Nevertheless, the integration of lattice degrees of freedom into downfolding
approaches represents a relatively recent advancement. In this context, namely electron-phonon
coupled systems, the pioneering work of the cDFPT method [80] stands out as it incorporates the
cRPA ideas into DFPT. Subsequently, the cDFPT method has been employed in the study of various
materials, including superconducting materials such as alkali-doped fullerides [169], light elements
[170], monolayer 1H-TaS2 [39] and molecules such as nitrogren and benzene [51].

However, due to the novelty of downfolding techniques involving lattice degrees of freedom, there
exists uncertainty regarding their ability to faithfully recover Born-Oppenheimer potential energy
surfaces and electronic structures. This fundamental question serves as the motivation behind the
current study.

The SSH model [171] is an ideal candidate for applying downfolding techniques. This suitability
arises from the model’s distinctive characteristics, such as electronic bands that can be described using
analytical formulas. In fact, the simplicity of the SSH model even facilitates the analytical derivation
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of the potential energy landscape, which is completely out of reach for real-world materials. Notably,
our investigations have revealed that the downfolded model is able to reconstruct the potential-energy
landscape exactly. Furthermore, our findings confirm the accurate representation of band dispersions
upon atomic displacement, with the downfolded model inherently focusing on spectral weight within
the target space.

This work foreshadows the application of downfolding techniques, including lattice degrees of
freedom, to describe Born-Oppenheimer potential energy surfaces of real-world systems. Please note
that this achievement is discussed in the third publication of this dissertation (see. Ch. 13).
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Abstract

Charge-density waves are responsible for symmetry-breaking displacements of atoms
and concomitant changes in the electronic structure. Linear response theories, in partic-
ular density-functional perturbation theory, provide a way to study the effect of displace-
ments on both the total energy and the electronic structure based on a single ab initio
calculation. In downfolding approaches, the electronic system is reduced to a smaller
number of bands, allowing for the incorporation of additional correlation and environ-
mental effects on these bands. However, the physical contents of this downfolded model
and its potential limitations are not always obvious. Here, we study the potential-energy
landscape and electronic structure of the Su-Schrieffer-Heeger (SSH) model, where all
relevant quantities can be evaluated analytically. We compare the exact results at arbi-
trary displacement with diagrammatic perturbation theory both in the full model and
in a downfolded effective single-band model, which gives an instructive insight into the
properties of downfolding. An exact reconstruction of the potential-energy landscape is
possible in a downfolded model, which requires a dynamical electron-biphonon inter-
action. The dispersion of the bands upon atomic displacement is also found correctly,
where the downfolded model by construction only captures spectral weight in the target
space. In the SSH model, the electron-phonon coupling mechanism involves exclusively
hybridization between the low- and high-energy bands and this limits the computational
efficiency gain of downfolded models.
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1 Introduction

The study of electron-phonon interactions (EPIs) goes back to the early days of solid-state
theory. They are important for our understanding of basic material properties such as effective
masses [1–4] and lattice constants [5,6]. Furthermore, this interaction is responsible for phase
transitions, such as conventional superconductivity [7–18] and charge-density waves (CDWs)
[19–30]. Even in unconventional superconductors, signatures of EPIs can be found [31–43].
However, the precise interplay responsible for these phenomena is not fully understood, which
is one of the reasons that the fundamental interaction between electrons and phonons needs
to be described accurately. Developments in this direction occur along two main paths: first-
principles calculations and model Hamiltonians.

The standard ab initio method for calculating the EPI is the density-functional perturbation
theory (DFPT) [44]. The most important ingredients of this theory are the adiabatic Born-
Oppenheimer approximation [45], density-functional theory (DFT) [46], and linear-response
theory. Briefly put, these state that it is possible to separate the dynamics of the electrons
and ions, treat the electron in an effective one-body Schrödinger equation, and calculate the
response of the electrons upon displacement of the nuclei within linear order, based only on the
electronic density [47–49]. The resulting EPI simultaneously describes two sides of the same
coin, namely how the electrons screen and renormalize the phonons and how the electronic
structure will adjust to atomic displacements. For an overview of the historical development
and the recent accomplishments of calculating the EPI from first principles, see Ref. [50].

Despite the unquestionable success of the current ab initio computational methods, another
trend in the literature is to treat the important physical phenomena in correlated materials
with downfolding approaches. The central idea is to reduce the number of degrees of freedom
compared to the full system by keeping only the relevant states in a low-energy theory. The
other states are integrated out and determine the parameters of the downfolded system. The
overarching purpose of this procedure is the application of more advanced and expensive
computational techniques only to the low-energy space where correlations take place.

For phonon-related properties, the constrained density-functional perturbation theory
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(cDFPT) was introduced [51] and successfully applied to superconducting materials such as
alkali-doped fullerides [52] and light elements [53]. Additionally it was applied to monolayer
1H-TaS2 [29], where it was shown that the CDW in this material is induced by coupling be-
tween the longitudinal-acoustic phonons and the electrons from an isolated low-energy metal-
lic band. With the help of cDFPT it is possible to extract unscreened or partially screened
parameters such as the phonon frequency and the electron-phonon vertex from an ab initio
calculation and use these as the basis for an effective low-energy model Hamiltonian. The
usefulness of partially screened parameters lies in the fact that they get rid of the coupling
between phonons and the high-energy electrons.

As discussed, the description of real physical phenomena that are tightly linked to the EPIs
is frequently based on ab initio theories (DFPT, cDFPT) that involve substantial numerical and
computational effort. The structure of the theory is not always transparent, and also obscured
by details of the numerical implementation. To avoid these complications, a second branch in
the literature is focused on model Hamiltonians. The most popular models of the EPI are the
Fröhlich model [54] for polaron formation, the Holstein model [55] for optical phonons, and
the Su-Schrieffer-Heeger (SSH) model [56] for CDWs.

For understanding the interplay of electronic structure and atomic displacements, the SSH
model is the most instructive since it explicitly describes how the electronic band structure
is renormalized by the displacements of the atoms. Previous investigations using this model
have studied properties such as the effective mass [57, 58] and the band structure [59, 60],
but also phonon-related properties [61]. In the model, a periodic displacement of the atoms
can open a band gap and thereby lower the total energy of the system [56], leading to a CDW
transition. In other words, electronic screening makes the CDW phonon go soft. This textbook
example of a CDW transition [62] is appealing for the investigation of downfolding since it
is possible to perform all calculations exactly once the Born-Oppenheimer approximation has
been applied.

The origin of this extraordinary simplicity lies in the observation that the Born-Oppen-
heimer approximation makes the phonons classical and the remaining electronic degrees of
freedom in the SSH model are noninteracting. Thus, given any fixed displacement, the result-
ing electronic Hamiltonian is easily diagonalized. In some sense, this is similar to the method
employed in Hirsch-Fye Quantum Monte Carlo [63], where a Hubbard-Stratonovich transfor-
mation is used to generate a system of noninteracting electrons coupled to classical fields and
the subsequent analysis only involves varying the classical field and evaluating the noninter-
acting electron system. Unlike in Hirsch-Fye Quantum Monte Carlo, here the classical field is
directly observable and has a clear physical meaning.

We choose to study the SSH model here for its simplicity, acting as a minimal model for
electron-phonon coupling. At the same time, this means that there are many relevant aspects of
electron-phonon coupling and CDWs that are not captured by the SSH model. In particular, the
SSH model neglects Coulomb interactions between the electrons, and these are responsible for
important effects such as screening and entirely electronic CDWs without lattice displacement.
Furthermore, in higher dimensions, the shape of the Fermi surface can play an important role,
in the form of nesting and Van Hove singularities. Given the complexity of electron-phonon
systems, studying simple models is a useful way to identify relevant effects and mechanisms.

In this work, we compare the direct calculation of properties of the SSH model in the
Born-Oppenheimer approximation at finite displacement with a perturbative diagrammatic
expansion around the undistorted state à la DFPT. In this model, the diagrammatic expansion
can be evaluated analytically order by order and we show that it correctly captures how the
electron-phonon coupling renormalizes the phonon frequency and the electronic structure.
Then, in the spirit of downfolding, we move to an effective single-band model for the dimer-
ization transition in the SSH model. The diagrammatic structure in this effective model differs
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Figure 1: (a) Dimerization. (b) Band structure at various values of the atomic displacement
α. The thick lines represent the occupied states when there are 〈n〉 = 0.9 spinless electrons
per dimer.

substantially from the original model: an interaction between an electron and two phonons
appears and this interaction turns out to be dynamical with a frequency set by the high-energy
electrons that were integrated out. We show that this downfolded model faithfully reproduces
the energy landscape and the CDW. Furthermore, we discuss a cDFPT-like approach to down-
folding, which correctly describes the screening of the phonon frequencies. In the SSH model,
the displacement-induced orbital reconstruction between target and rest space is the central
aspect of the downfolding and there is no remaining electron-phonon coupling in the cDFPT
low-energy model.

2 Model

In this work, we consider the SSH model [56] in the classical Born-Oppenheimer limit [64], i.e.,
we ignore the kinetic energy of the atoms. We consider spinless fermions in a one-dimensional
lattice with Hamiltonian

H = −t
N−1∑
i=0

(1+ ui − ui+1)(c
†
i ci+1 + c†

i+1ci) +
ks

2

N−1∑
i=0

(ui+1 − ui)
2. (1)

Here, ui is a (classical) variable describing the atomic displacements, with 0 ≤ i < N . We use
the periodic boundary condition uN ≡ u0. The hopping t > 0 sets the electronic energy scale
and the force constant ks > 0 that of the phonons.

We consider dimerization, i.e., displacements of the form ui = (−1)iα/2, and double the
unit cell to include entire dimers. This is illustrated in Fig. 1a. Using the notation ai = c2i and
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bi = c2i+1, we obtain

H = −t
N/2−1∑

i=0

(1+α)(a†
i bi + b†

i ai)− t
N/2−1∑

i=0

(1−α)(a†
i+1 bi + b†

i ai+1) +
1
2

Nksα
2. (2)

Performing a Fourier transform to momentum space, the Hamiltonian in matrix form reads

H =
∑

k

�
a†

k b†
k

�
ε̂(k)

�
ak
bk

�
+

1
2

Nksα
2, (3)

ε̂(k) = −t

�
0 1+α+ (1−α)e2ik

1+α+ (1−α)e−2ik 0

�
, (4)

with eigenvalues

ε±(k) = ±2t
Æ

1+ (α2 − 1) sin2(k) = ±2t
Æ

cos2(k) +α2 sin2(k). (5)

These give the dispersion shown in Fig. 1b. Note that the Brillouin zone is
−π/2≤ k ≤ π/2, where k is made dimensionless by setting the atomic distance to unity.

In the following, we assume that the electronic density 〈n〉 is smaller than 1 electron/dimer.
Since the model is particle-hole symmetric, the case 〈n〉> 1 follows by symmetry. The situation
〈n〉 = 1 (half-filling) is special and will be discussed in more detail below, see Sec. 7. At zero
temperature, the electron density is proportional to the Fermi wave vector k f and independent
of α: 〈n〉= 2k f /π. The total electronic energy per dimer, in the thermodynamic limit N →∞,
is

Eel =
1
π

∫ k f

−k f

ε−(k)dk, (6)

and the total energy per dimer is

E = ksα
2 + Eel. (7)

Note that in this model, displacements do not change the Fermi surface and the electronic
energy Eel depends on α only via Eq. (5), which will allow us to pull derivatives through the
integral in Eq. (6).

In Fig. 2a, we show how the total energy depends on α for fixed ks and 〈n〉. The total
energy is obviously symmetric in α, and the undistorted lattice at α= 0 is an extremum of the
total energy. Without electrons, Ebare = ksα

2 is a convex parabola with a minimum at α = 0.
However, the coupling to the electrons can lead to a Peierls CDW phase transition where α= 0
turns into a local maximum and two global minima occur at α= ±α∗. The finite α lowers the
energy of the occupied states and thus the total electronic energy and this compensates for the
gain in potential energy due to α.
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Figure 2: (a) Energy landscape at ks/t = 0.8, 〈n〉 = 0.9. The curves show the exact energy
E(α), the harmonic approximation including electronic screening E(0)+ 1

2ω
2α2, and the bare

phonon energy E(α = 0) + 1
2ω

2
bareα

2. The arrows indicate the minima at ±α∗. (b) Phase
diagram of the SSH model for the density 〈n〉 and the force constant ks. The black star marks
the parameters of (a). We only consider the transition to the dimerized CDW.

3 Harmonic and anharmonic lattice potential

To analyze the phase transition, it is useful to perform a Taylor expansion of the lattice potential
E(α) around α= 0.

E(α)− E(0) =
1
2

d2E(α)
dα2

����
α=0
α2 +

1
4!

d4E(α)
dα4

����
α=0
α4 + . . . (8)

≡ 1
2
ω2α2 + h(4)α4 + . . . (9)

ω2 =ω2
bare +∆ω

2, (10)

ω2
bare ≡ 2ks, (11)

∆ω2 ≡ 1
π

∫ k f

−k f

dk
d2ε−(k)

dα2

����
α=0
= −2t

π

∫ k f

−k f

dk
sin2(k)
cos(k)

, (12)

h(4) =
1
π

∫ k f

−k f

dk
1
4!

d4ε−(k)
dα4

����
α=0
=

t
4π

∫ k f

−k f

dk
sin4(k)
cos3(k)

. (13)

Here, we have introduced the bare phonon frequencyωbare and the dressed phonon frequency
ω. The difference ∆ω2, the electronic screening of the phonon, originates in the change in
electronic structure in response to the lattice distortion. Screening lowers the phonon fre-
quency, and the Peierls transition occurs when the dressed phonon frequency is equal to zero,
i.e., ω= 0. In Fig. 2b, the Peierls transition is represented as the black line that separates the
phases ω2 < 0 (Peierls instability) and ω2 > 0 (no instability). As we can see, a weak force
constant ks and a density 〈n〉 close to half-filling is preferred for a Peierls instability. Beyond the
Peierls transition, α= 0 is a local maximum of the potential and the higher-order terms, such
as h(4), are responsible for ensuring that E(α) has a minimum at some finite α. In Appendix A,
we show that there can be at most two minima, symmetrically located around α = 0. Only
even orders of α appear due to the symmetry of the system.
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4 Electron-phonon coupling: Two-band model

In the previous section, we used our knowledge of the exact dependence of the electronic struc-
ture ε̂ on α to determine the potential-energy landscape. In ab initio calculations (e.g., DFPT),
one will usually not have access to this. Instead, the only known quantities are the electronic
structure of the undistorted structure ε̂0 and the electron-phonon coupling, the first derivative
of the electronic structure with respect to the displacement. Access to the latter quantity is
guaranteed by the 2n+ 1 theorem [47–49]. Because of this, it is instructive to calculate the
(approximate) potential-energy landscape of the SSH model—and in particular the screening
of the phonon frequency—based just on these quantities in a perturbative expansion around
α= 0.

The Feynman rules can be read off from the Hamiltonian, Eq. (3), by writing it as

Ĥ =
∑

k

f †
k ε̂0(k) fk +α f †

k ĝ(k) fk + N
1
2
ω2

bareα
2. (14)

Here, f † is shorthand for the vector (a†, b†). There is a single q = 0 phonon mode correspond-
ing to dimerization, with frequency ω2

bare = 2ks. This mode is entirely classical, since we are
interested only in a Born-Oppenheimer potential-energy landscape. The electron-phonon cou-
pling is a matrix in electronic space and is obtained as ĝ = d ε̂/dα evaluated at α= 0. In other
words, it consists of the parts of ε̂ that are proportional to α. Explicitly,

ĝ(k) = −t

�
0 1− e2ik

1− e−2ik 0

�
in the (a†, b†) basis. (15)

Note that we are considering a single phonon mode at q = 0, so we do not need a q label on
ĝ. The lack of higher-order electron-phonon-coupling terms in Eq. (14) is a special property
of the SSH model.

To evaluate the Feynman diagrams, it is most convenient to express the electronic part of
the Hamiltonian in the eigenbasis of the unperturbed electronic system. This basis transfor-
mation can be seen in Appendix B. The transformed electron-phonon coupling is

ĝ(k) = 2t

�
0 i sin(k)

−i sin(k) 0

�
in the band basis. (16)

We observe that g couples the two bands and has no intraband component. In other words,
to linear order in α around α= 0, distortions only change the orbital composition of the bands
but not the dispersion of the bands.

The vanishing diagonal elements of g can also be understood as a symmetry selection rule.
The inversion symmetry of the system implies that ε(α) and ε(−α) have the same eigenvalues
and this implies both Tr g = Tr d ε̂

dα =
d

dα Tr ε̂ = 0, which holds in any basis, and 〈n| ĝ |n〉 = 0
for any α = 0 eigenvector |n〉, since these |n〉 are eigenvectors of the inversion operator with
eigenvalue ±1.

4.1 Leading diagram

We are interested in establishing the effective potential felt by the atoms, including electronic
screening. Diagrammatically, this means that the phonon mode only appears as external lines,
whereas internally the diagram consists of electronic propagators and electron-phonon ver-
tices. All diagrams with n external lines need to be summed to obtain the αn coefficient in the
potential E(α).1

1For the diagrammatic expansion of the free energy, see Ref. [65].
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Figure 3: (a) Diagram for the renormalization of the phonon frequency. The black dots rep-
resent external phonon lines, the red and blue lines denote the electronic Green’s functions
G± in the band basis, and the triangles are the electron-phonon coupling. (b) Fourth order
diagram.

For all upcoming diagrams, we will use the electronic Green’s function

Ĝ(E, k) =
1̂

E 1̂− ε̂0(k) + iη̂k
, (17)

where 1̂ is the identity matrix, the division denotes matrix inversion, and η̂k denotes the usual
small imaginary constant that is positive (negative) for empty (occupied) states, respectively.

For the phonon self-energy, i.e., with two external lines, there is only a single diagram,
shown in Fig. 3a for one possible choice of the band indices, which corresponds to

∆ω2 =
∑

m,n∈{+,−}

∫
dk
π

gm,n(k)Πm,n(k)gn,m(k), (18)

Πm,n(k) =
fm(k)− fn(k)
εm(k)− εn(k)

, (19)

fm(k) =

¨
1 for m= −1 and |k| ≤ k f ,

0 otherwise.
(20)

This allows us to simplify the result to

∆ω2 = − 2
π

∫ k f

−k f

dk
|g+−(k)|2
ε+ − ε−

= − 2
π

∫ k f

−k f

dk
4t2 sin2(k)
4t cos(k)

= −2t
π

∫ k f

−k f

sin2(k)
cos(k)

dk. (21)

This is consistent with Eq. (12). This shows that the harmonic energy landscape can be cal-
culated entirely from the undistorted structure at α= 0, based on the electronic dispersion ε̂0
and the electron-phonon coupling ĝ.

4.2 Higher-order diagrams

It is also possible to calculate the energy landscape beyond the quadratic term. A special
property of the SSH model is that the there are no higher-order electron-phonon vertices nor
anharmonic bare phonon terms. Because of this, the entire perturbation theory is expressed in
ε± and g. For example, the diagram for the fourth order contribution α4 is shown in Fig. 3b.
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This is the only connected diagram at this order.2 Note that all external phonons have q = 0, so
all electronic lines have the same momentum k and energy E. The band index of the electronic
lines is alternating, since the electron-phonon coupling is entirely off-diagonal. The expression
corresponding to this diagram is of the form

h(4) =
1
2

∫
dk
π

∫
dE g+−(k)g−+(k)g+−(k)g−+(k) G−(k, E)G+(k, E)G−(k, E)G+(k, E), (22)

which already includes a factor 2 accounting for the fact that there is a second way to assign
the band indices.3

The product of Green’s functions can be reduced by repeated application of the relation
AB = (B − A)/(A−1 − B−1) for A 6= B, which is helpful because
G−1
± (k, E) = E ∓ |ε0(k)| + iηk is very simple. Below, all G’s have the same arguments k, E,

which were dropped for notational convenience.

G−G+G−G+ = (G+ − G−)
1

2 |ε0|
(G+ − G−)

1
2 |ε0|

=
G2
− + G2

+

4 |ε0|2
− G+ − G−

4 |ε0|3
. (23)

In the denominators we have already safely taken the limit η→ 0. Now, the integral over E
can be performed using

∫
dEG2

±(E) = 0 and
∫

dEG±(E) = n(ε±(k)). Here, n(ε±(k)) is the
occupation, which is unity for the − branch and |k| < k f and zero otherwise. This gives the
same result as Eq. (13),

h(4) =
1
2

∫ k f

−k f

dk
π
(2t)4 sin4(k)

1
4(2t)3 cos3(k)

=
t

4π

∫ k f

−k f

dk
sin4(k)
cos3(k)

. (24)

Diagrams at higher order can be evaluated in the same way, by repeated simplification of prod-
ucts of Green’s functions. An interesting aspect is that the entire potential-energy landscape
E(α) can be calculated in this way (for 〈n〉 6= 1, see Sec. 7) without ever determining how the
band dispersion changes.

4.3 Change in electronic structure

The change in the electronic structure is given by the self-energy Σ(E, k) and can be obtained
diagrammatically by considering the sum of all one-electron irreducible diagrams. Now, the
electronic lines are amputated and the phononic ends of the vertices are connected to crosses
representing α. This is similar to the way an external Zeeman magnetic field or scattering
potential can be included in a diagrammatic theory. Note that due to the Born-Oppenheimer
approximation, there is no true phonon propagator with two end points, which would repre-
sent the phonon dynamics.

In the present model, it turns out that there is only a single, trivial diagram for the self-
energy,

Σ+− = g+−α= α , (25)

with an equivalent diagram for Σ−+. Together, they recover the exact electronic Green’s func-
tion Ĝ via the Dyson equation,

Ĝ−1 = Ĝ−1 − Σ̂= E − ε̂0 −α ĝ + iηk = E − ε̂ + iηk. (26)
2We remind the reader that we consider classical displacements, in the sense of the Born-Oppenheimer approx-

imation. Thus, internal phonon propagators are not allowed in the diagrams.
3The − line starting at the top left could also go to the bottom left instead of the top right. To keep the diagram

connected, all other lines are then immediately fixed.
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Figure 4: (a) The interaction vertex of the effective single-band theory (left-hand side) can
be expressed in terms of the original vertices and the electronic band that is integrated out.
(b) The diagrams responsible for the α2 and α4 contributions to the energy in the single-band
model.

5 Single-band effective model

At 〈n〉 < 1, there is only one partially filled band and this motivates us to investigate the
possibility of describing the CDW via a single-band effective model. Here, we construct a
model consisting of the partially filled electronic band, the bare phonon, and the coupling
between the two. Formally, such a model is obtained by integrating out the unoccupied band
of the two-band model. The effective action of the single-band model contains (partially)
renormalized, dynamically screened interactions between these electrons and the phonons.
In fact, the interaction vertices in this effective model can and do have an entirely different
structure compared to those of the original two-band model. Generally, the vertices in the
effective theory are obtained by collecting all connected diagrams consisting of rest space
(here: ε+) internal lines with a particular number of external phonon and target space (here:
ε−) lines, and an infinite set of vertices can appear in this way. The only general constraints are
the conservation of the fermion number and momentum conservation. Thus, the low-energy
Hamiltonian can contain interactions of the form αm(c†c)n for arbitrary m and n. However,
additional symmetries of the system can provide further constraints on the effective action.

Here, the single-band model is energetically completely symmetric in α↔ −α and this
implies that only even powers of α can appear in the effective action. In other words, only
interaction vertices with an even number of phonon lines are allowed.4

In fact, looking at the diagrammatic structure, it turns out that the single-band effective
theory of the SSH model only contains one interaction vertex, shown in Fig 4a. This vertex
has two phonon and two external electronic lines (one incoming, one outgoing) and takes the
value

V (E, k) = |g+−|2 G(E, k) = 4t2 sin2(k)
1

E − |ε0(k)|+ iηk
. (27)

Note that V depends explicitly on E; the screened interactions that enter the effective model
are dynamical quantities. The effective model contains only a single fermion with dispersion
ε−, so no further electronic band label is necessary.

The downfolded SSH model has only a single effective interaction vertex. This happens
because the electron-phonon coupling in the original SSH model only has a single external
high-energy electron (blue line in Fig. 4a). On the other hand, if the original model had con-
tained either electron-electron interactions in the high-energy band or electron-phonon cou-
pling between different electronic states in the high-energy band, then the downfolding would
be more involved, since more diagrammatic contributions would appear in the expression for
the effective action.

4Note that in the two-band model, although the eigenvalues are symmetric in α, the eigenvectors are not and
this leads to the finite value of ĝ, which is entirely off-diagonal in the electronic eigenbasis.
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For the energy E(α), the second-order contribution, shown in Fig. 4b, is

1
2
∆ω2 =

∫
dk
π

∫
dE V (E, k)G(E, k), (28)

which upon insertion of Eq. (27) is equal to the result we obtained in the two-band model.
Similarly, the fourth-order contribution, also shown in Fig. 4b, is

h(4) =
1
2

∫
dk
π

∫
dE V 2(E, k)G2(E, k)

=
1
2

∫
dk
π

∫
dE

16t4 sin4(k)
(E − |ε0(k)|+ iηk)2

1
(E + |ε0(k)|+ iηk)2

. (29)

The denominator can be simplified using the same techniques as above and this gives the same
final result as the earlier expression for h(4).

5.1 Change in electronic structure in the single-band model

In the effective model, only the electronic target space is considered, corresponding to the
lower band at zero displacement. The rest space has been integrated out. Σ is now a scalar
quantity and it is once again given by a single diagram,

Σ(k, E) = α2V (k, E) = 4α2 t2 sin2(k)
E − |ε0(k)|+ iηk

. (30)

In this case, Σ(k, E) is an explicit function of E and it is not possible to interpret it purely as a
change in the dispersion. Since the true change in the electronic structure involves a change
in the orbital composition of the bands and thus coupling between the bands and changes in
the wave functions, it is not possible to capture this entirely in a single-band model. However,
if we restrict ourselves to the vicinity of the lower band in terms of energy, we find

Σ(k,−2t cos k) = −t
sin2(k)
cos(k)

α2, (31)

which is equal to the exact second-order expansion of Eq. (5).
At the same time, the self-energy of Eq. (30) has a pole at E = |ε0|, the energy of the upper

band that has been integrated out. In the spectral function A(E, k) = − 1
π Im G(E, k), this shows

up as interaction-induced spectral-weight transfer, as shown in Fig. 5. The original spectral
weight of the noninteracting, i.e., undistorted downfolded model (grey peak) is distributed
to the positions of the lower and upper band of the interacting, i.e., distorted model (orange
peaks). Thus, even though it cannot represent the matrix structure of the electronic Green’s
function, the downfolded model has spectral weight at the right locations. Note that there is
no imaginary part in the self-energy and thus no additional broadening of these peaks in the
downfolded model; all broadening comes from the constant η = 0.05 used for plotting the
spectrum.

6 Constrained density-functional perturbation theory

The downfolding procedure employed above is based on an explicit resummation of the dia-
grammatic series and is able to reproduce the screening from bare to dressed lattice potential
exactly. This approach can be applied here, since we have full knowledge of the entire elec-
tronic structure and the electron-phonon coupling. In ab initio calculations, the downfolding
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Figure 5: Spectral function of the downfolded single-band model for α = 0.5. Here, a broad-
ening η = 0.05 is used to improve visibility. (a) Spectral-weight transfer to the upper band
occurs due to the self-energy. See Fig. 1b for the dispersion in the original two-band model.
(b) Cross-section at k = 0.9· π2 , indicated by the grey dashed line in (a). The original model has
two bands with spectral weight at E = ±|ε(k)|, respectively (small vertical bars). In the single-
band model at α > 0, the self-energy leads to some spectral-weight transfer to the position of
the upper band.

is usually done somewhat differently. Indeed, cDFPT is a tool commonly used for downfold-
ing electron-phonon systems onto an electronic target space and calculating corresponding
partially screened phonon frequencies. In general, it evaluates a Feynman diagram similar to
Fig. 3a, with the restriction that at least one of the two electronic propagators shall not be part
of the target space.

In the SSH model, if the lower band is chosen as the target space, cDFPT includes the only
relevant screening process, with one + and one − electron, in its calculation of the partially
screened phonon frequency. In other words,

ΠcDFPT
m,n =

¨
0 for m= n= −,

Πm,n(k) otherwise.
(32)

Here Πm,n(k) is defined and used as in Eq. (19). In the SSH model, Π−− anyway does not
contribute to the phonon renormalization, and as a result the cDFPT phonon frequency is
identical to the fully screened phonon frequency.

The cDFPT low-energy model then basically consists of the fully screened phonon, the
lower electronic band, and no electron-phonon coupling, since g−− = 0. Because of this special
property of the SSH model, there is no real distinction between the partially and fully screened
phonon.

7 Breakdown of perturbation theory at half-filling

The series expansion of the potential E(α) around α = 0, performed either diagrammatically
or by directly taking derivatives of ε(k,α), shows a regular pattern. Only even powers of α are
allowed. For a given power α2n, the diagrammatic contribution will be of the form (modulo
prefactor) g2nGn

−Gn
+. The 2n electron-phonon vertices g contribute (2t)2n sin2n(k), whereas

the Green’s functions can be reduced to n(ε−(k))/(2ε0)2n−1∝ n(ε−(k))/ cos2n−1(k). The only
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role of the density is to determine the integration range, via k f . This becomes qualitatively
important for 〈n〉 → 1, k f → π/2, since ε0(k f )→ 0. The denominator in the integral diverges
and as a result the entire integral is no longer convergent. In other words, perturbation theory
around α = 0 is not possible since E(α) is not an analytical function anymore. Physically, the
dimerization at half-filling is a Peierls transition caused by the perfect nesting of the Fermi
surface points ±π/2 with respect to the dimerization wave vector π (in the original Brillouin
zone). Thus, at half-filling, dimerization will occur even at arbitrarily large force constant ks.

8 Conclusion and discussion

A key question in the investigation of coupled electron-phonon systems is the evolution of
the total energy and electronic structure as a function of atomic displacement. In ab initio
studies, it is desirable to gain (perturbative) access to this energy landscape starting from
the undistorted structure and a small set of relevant electronic bands. In the SSH model, it
is actually possible to perform this perturbative, diagrammatic expansion analytically and to
trace the performance of effective models. This both provides a unique insight into “exact
downfolding” and highlights the successes and possible failures of effective models.

The bare phonons in the SSH model are entirely harmonic by definition. Thus, all an-
harmonic effects in the potential energy have to be created by the (linear) coupling to the
electrons and the resulting electronic screening. Due to the simple structure of the model, the
screening can be calculated to arbitrary order in the displacement. It reduces the energetic
cost of displacements and eventually leads to a CDW transition, i.e., the appearance of a new
global minimum in the energy landscape at a finite displacement. In this model, all relevant
quantities can be reduced to integrals over the occupied part of the Brillouin zone.

It is also possible to downfold onto a single-band model with only half the electronic
degrees of freedom of the original system. The diagrammatic structure changes due to the
downfolding; the electron-phonon coupling is now dynamical and quadratic in the displace-
ment field. Still, the analytical evaluation of the diagrams determining the energy landscape
is possible and agrees with the exact result. Regarding the electronic structure, the effective
single-band model only has the ability to describe spectral-weight transfer and by construction
does not have the ability to describe the changes in the orbital composition of the bands as the
atoms move. In the cDFPT approach, as well as in the cRPA approach to Coulomb interactions,
these changes in the electronic structure are usually not considered at all.

This observation is potentially relevant for several two-dimensional transition-metal
dichalcogenides. For example, monolayer 1H-TaS2 has a single band crossing the Fermi level
and this band consists of a combination of d0,+2,−2 orbitals. It was already known that the
electronic matrix structure is imprinted on the momentum structure of the electron-phonon
coupling in ab initio downfolding [29] and that the resulting single-band electron-phonon
model accurately describes the phonon frequencies (i.e., the energy landscape close to the
undistorted structure). A similar situation, with a single composite band crossing the Fermi
level, occurs in 1H-NbS2 [66]. An open question is how these single-band effective models
perform in the description of the true electronic structure of the distorted phase. If the dis-
tortions lead to hybridization between target and rest space, downfolded models can only
capture the spectral-weight transfer. On the other hand, downfolded approaches can fully de-
scribe processes that occur entirely in the target space. Thus, fluctuation diagnostics of the
electron-phonon coupling [29] can provide an answer to this question.

The SSH model in the Born-Oppenheimer approximation—as studied here—is very much
a simplification of the complex reality of electron-phonon-coupling and charge-density-wave
physics. We assume that the lattice is one-dimensional, that the electronic hopping amplitudes

13

Downfolding the Su-Schrieffer-Heeger model 62



SciPost Phys. 11, 079 (2021)

and the bare restoring forces are linear in the displacement, that there is no electron-electron
interaction, that there is a single relevant phonon mode (dimerization), and that the system
is in the T = 0 ground state. Still, some general conclusions are possible from our work. It is
possible to generate anharmonic phonon terms entirely electronically, from an initial Hamil-
tonian that has purely harmonic phonons. Diagrammatic expressions can be constructed for
the electronic screening at and beyond the harmonic level; in the general case these will be
infinite series of diagrams, but here there is only a single diagram at any order in the displace-
ment. In the presence of multiple relevant phonons, see Appendix C, the Born-Oppenheimer
energy landscape will include mode-mode coupling as well. Downfolding of the electronic
space generates a new perturbation series, in which effective higher-order vertices appear nat-
urally. Unlike in the original Hamiltonian, the vertices of the downfolded system are also
dynamical (frequency-dependent). As a result, the self-energy is dynamical as well, leading
to spectral-weight transfer in the downfolded model. We note that this happens even though
the electrons are noninteracting. The magnitude of the self-energy in the low-energy band is
approximately given by the electron-phonon coupling (between the target and the rest space)
squared times the displacement squared divided by the energy separation between the low-
energy and the high-energy band. This supports the natural strategy of including bands in the
low-energy model that are close in energy and those that are strongly coupled to the target
space via the relevant phonon modes.
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Research Development Fund of the University of Bremen.

A Number of minima of E(α)

The SSH model in the limit of large α is unlikely to be an accurate description of any real
physics, but it is useful to establish some formal results. First of all, the triangle inequality
provides us with bounds on the dispersion,

max(cos(k),α |sin(k)|)≤ |ε±(k)|
2t

≤ cos(k) +α |sin(k)| . (33)

Thus, in the limit of large α, ε(k) is roughly proportional to α sin(k). The total energy is
then dominated by the purely lattice term proportional to ksα

2. We conclude that the energy
landscape E(α) is bounded from below, as it should be.

Two types of energy landscape E(α) are discussed in the text, one with a single minimum
at α = 0 and one with two minima at α = ±α∗. In fact, we can proof that these are the only
two possibilities, no further local minima are allowed.

First, we define the auxiliary function f (x) = −p1+ x2, so that

ε−(k,α) = |ε0(k)| f
�
α

����
sin(k)
cos(k)

����
�

. (34)

We observe that the second derivative of f , f ′′ = −(1+ x2)−3/2, is monotonously increasing
for x ≥ 0. This implies that d2ε−(k,α)/dα2 is also monotonously increasing as a function of
α for α ≥ 0 and the same holds for E(α), which is just a k-integral over ε−. Thus, there can
be at most one α≥ 0 where d2E(α)/dα2 = 0. In E(α), local minima (d2E/dα2 > 0) and local
maxima (d2E/dα2 < 0) alternate, so by the intermediate value theorem d2E/dα2 must cross
zero between every local optimum of E(α). This can happen only once for α≥ 0, so there are
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i − 1, 4 i, 1 i, 2 i, 3 i, 4 i + 1,1
t41 t12 t23 t34

t41

Figure 6: Length-4 unit cell with a periodic distortion (phonon eigenmode α2). The double
arrows indicate the four hopping parameters t i j . The atoms are labeled by their unit-cell
number and their position within the unit cell.

at most two optima at α≥ 0 and one of them is at α= 0 by symmetry. Since E(α)→ +∞ for
α→ +∞, there is either a single global minimum at α = 0 or a local maximum at α = 0 and
two global minima at ±α∗.

B Basis transformation of the electron-phonon coupling

The electronic part is most conveniently expressed in the band basis of ε̂0, which is ε̂ evaluated
at α= 0. The two eigenvalues of ε̂0 are ε±,0 = ±2t cos(k) with corresponding eigenvectors

~v±(k) =
1p
2

�
1
∓e−ik

�
. (35)

With the eigenvectors, we can form the transformation matrix

Û(k) =
1p
2

�
1 1
−e−ik e−ik

�
, (36)

which diagonalizes ε̂0. This yields the electron-phonon coupling in the band basis,

ĝ(k) = Û−1(k) ĝ(k)Û(k) = 2t

�
0 i sin(k)

−i sin(k) 0

�
. (37)

C Beyond dimerization: 4-site unit cell

At half-filling, the dimerization is commensurate in the sense that 2k f = qdimerization. We have
already shown that dimerization can also be energetically favorable away from half-filling, but
so far we have not considered CDWs with other periodicities. In this appendix, we consider
periodicity 4, which allows for the study of additional phonon modes. Because this doubling
of the unit cell increases both the number of phonons and the number of electronic bands,
it is more difficult to derive compact formulas and our treatment remains relatively brief,
highlighting some similarities and differences to the 2-site unit cell.

In this case, it is convenient to first consider the electronic dispersion as a function of the
four hopping amplitudes t i j , as shown in Fig. 6. In the SSH model, these hopping parameters
will be linear functions of the atomic displacements.

The electronic Hamiltonian is

ε̂(k) =




0 t12 0 t41 exp(4ik)
t12 0 t23 0
0 t23 0 t34

t41 exp(−4ik) 0 t34 0


 . (38)
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With t2
RMS = (t

2
12 + t2

23 + t2
34 + t2

41)/4, its four eigenvalues ε++, ε+−, ε−+, and ε−− read

ε±±(k) = ±
È

2t2
RMS ±

Ç
4t4

RMS + 2t12 t23 t34 t41 cos(4k)− t2
12 t2

34 − t2
23 t2

41. (39)

Here, −π/4 < k ≤ π/4 is the Brillouin zone corresponding to this unit cell. As for the dimer-
ization transition, the total electronic energy is given by

∑
m

∫
dk εm(k)n(εm(k)).

Now, in the SSH model, the hopping parameters depend linearly on the atomic displace-
ments. We consider three phonon modes α1, α2, and α3 defined by

t12 = t(1+α1 +α2),

t23 = t(1−α1 +α3),

t34 = t(1+α1 −α2),

t41 = t(1−α1 −α3). (40)

α1 is the dimerization mode studied in the main text, α2 is sketched in Fig. 6, and α3 is ob-
tained from α2 by translating the unit cell by one atom. They are eigenmodes at q = 0. Com-
bining Eqs. (39) and (40), it is possible to calculate ε(k;α1,α2,α3) and its derivatives with
respect to αi . Using computer algebra, it is possible to evaluate these derivatives straight-
forwardly, although the expressions quickly become unwieldy. Below, we will briefly discuss
the nonzero terms at the lowest orders. Finally, integrating these derivatives of the dispersion
over the filled part of the Brillouin zone (for each band) then gives the terms in the Taylor
expansion of E(α1,α2,α3), as in Sec. 3 of the main text. The first derivative vanishes as ex-
pected, ∂α1

ε = ∂α2
ε = ∂α3

ε = 0. The second derivative is diagonal in the phonon index,
∂α1,α2

ε = ∂α1,α3
ε = ∂α2,α3

ε = 0, so the only nonzero elements are ∂α1,α1
ε and ∂α2,α2

ε = ∂α3,α3
ε.

At the level of the third derivative, we find a finite term with mixed phonon labels, to be
explicit:

∂α1,α2,α2
ε = −∂α1,α3,α3

ε = t
�
−cos 2k

cos k
,
cos 2k
sin k

,−cos 2k
sin k

,
cos 2k
cos k

�
. (41)

Here, the four components in the vector correspond to the bands from lowest to highest en-
ergy, and we have assumed k > 0. At fourth order, we find nonzero expressions only for the
terms where the derivatives appear in pairs, e.g., ∂α1,α1,α2,α2

ε. Symmetries and momentum
conservation still ensure that many terms in the expansion vanish, but already at the third
order we see that qualitatively new terms appear compared to energy landscape for the 2-site
unit cell. In other words, the Feynman diagrams studied in the main text are all relevant in
general, but diagrams that were “forbidden” in that simple system can play a role. It is difficult
to make any statements about the sign and relative magnitude a priori; for a computational
case study of nonlinear mode-mode coupling, see Ref. [67].

Similarly, the Hamiltonian can be written in terms of the bare dispersion and the electron-
phonon couplings, now as 4×4 matrices. In analogy to the main text, the terms in the expan-
sion of E(α1,α2,α3) can then be obtained diagrammatically.
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12.1. Statement of personal contribution

This work has been published in Nat. Commun. 12, 6837 (2021), arXiv:2101.01140. It has been
realized in collaboration with C. van Efferen, J. Berges, J. Hall, E. G. C. P. van Loon, S. Kraus, T.
Wekking, F. Huttmann, E. Plaar, N. Rothenbach, K. Ollefs, L. M. Arruda, N. Brookes, G. Schönhoff, K.
Krummer, H. Wende, T. O. Wehling and T. Michely. My contribution to this work involved performing ab
initio DFT and DFPT calculations. To this end, I relaxed large supercells to find CDW displacements.
Afterwards, I calculated Born-Oppenheimer potential energy surfaces in the direction of these CDW
displacements. Part of this work is the decomposition of CDW displacements into normal phonon
modes. The idea was proposed by E. G. C. P. van Loon, where J. Berges and me constructed the
necessary Python software to do this. With the help of this software I created Fig. 2b and 3 and wrote
the corresponding parts of the manuscript, which have been revised and edited by all authors of this
work. Furthermore, for the supplement, I created the data shown in Supplementary Figs. 5, 6a and the
Table 1.

12.2. Positioning within the scientific landscape

As previously discussed in Chapter 10 of this dissertation, the most straightforward depiction of a
CDW is the Peierls model. According to this model, the displacements of atoms results in a complete
gap in the electronic structure, yielding an electronic energy gain that counterbalances the energy loss
from lattice distortion. Within the CDW literature, ongoing discussions have questioned whether these
simple nesting scenarios adequately account for CDWs in diverse materials [172].

Conversely, it is often hypothesized that a strong and wavevector-dependent electron–phonon
coupling serves as the principal driving force behind the transition [1]. In the case of such CDWs,
spectral reconstructions are not confined to a narrow energy range around the Fermi energy but can
manifest across the entire electronic structure. This opens the possibility for innovative spectral
signatures of the CDW, including the potential for a complete gap situated away from the Fermi energy.
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Despite this theoretical framework, there has been no experimental confirmation of a distinct CDW
gap away from the Fermi energy for well-explored, strong-coupling transition metal dichalcogenides.

In our study, we identify a full gap in the density of states above the Fermi level of 1T-VS2, using
scanning tunneling spectroscopy (STM). Utilizing density functional theory and density functional
perturbation theory, we confirm that, despite an initially unstable transverse phonon mode, the final
CDW exhibits a significant combination of longitudinal modes. Our calculations align exceptionally
well with experimental results, capturing the electronic structure of the CDW phase and the observed
spatial charge distribution on the 1T-VS2 islands.

After the publication of our work, another study emerged investigating CDWs in monolayer
1T-VS2 [173]. In the following, their findings will be discussed and the differences between their work
and ours will be highlighted. Their research combines experimental and theoretical approaches, much
like our own study.

To set the stage for the contrasting results, let’s first clarify the differences in the experimental
setups. While our study used Gr/Ir(111) as the substrate, the authors of the contrasting paper grew
1T-VTe2 on bilayer graphene/SiC(0001) and subsequently replaced Te atoms with S atoms. It should
be noted that subtrates can have an influence on the formation of CDWs [174].

After growing the sample, the authors performed STM experiments. The resulting STM image
reveals superlattice structures in the shape of a parallelogramm with a

√
21R10.9◦×

√
3R30◦ periodicity.

This stands in contrast to our experimental findings, where the STM image depicts rectangular shaped
7 ×
√

3R30◦ and 9 ×
√

3R30◦ supercells. Both measurements are compelling and as such it seems that
different CDWs are possible in monolayer VS2.

The authors suggest higher-order Fermi-surface nesting as the proposed mechanism for the origin
of the CDW. "Higher-order" refers to the doubling of the nesting vector 2q instead of the conventional
q nesting vector. This deviation from our findings warrants further investigation.

After proposing this mechanism, the authors continue to discuss the differences in the CDWs
between VS2 and VTe2. In both materials, the wavevector q = 1/2ΓM, which is commensurate with a
4 × 4 supercell, fulfills the nesting condition and additionally yields imaginary phonon frequencies.
In Supplementary Fig. 7, the authors present the electronic susceptibility χ0, with the largest peak
residing at q = 1/2ΓM. Based on these results one might be tempted to identify the 4 × 4 as the
preferred CDW in both materials. However, this is clearly not the case for VS2.

As written in our work, the clarification of the origin of the CDW based on nesting scenarios
or more sophisticated fluctuations diagnostics, only concerns the harmonic term. Ultimately, the
anharmonic terms are responsible for the stabilization. Consequently, the authors decision to conduct
DFT calculations is noteworthy. These calculations allow for an assessment of the overall energy
gain associated with different CDW configurations. For the

√
21R10.9◦ ×

√
3R30◦, the authors report

an energy gain of 18 meV per unit cell. This value is slightly lower than the ∼23 meV we reported,
suggesting that the 7 ×

√
3R30◦ and 9 ×

√
3R30◦ are more stable based on DFT calculations.

Meanwhile, the 4 × 4 only comes with an energy gain of 4 meV per unit cell as can be seen in Fig.
2b of our work. Interestingly, in VTe2, the 4 × 4 is preferred as seen in experiments [175, 176] and
also at the DFT level. In the Supplementary Table 1, we report an energy gain of about 34 meV for the
4 × 4. Thus, DFT calculations are in these cases reliable in determining the energy gain of different
CDWs, which align with the findings of experiments.

Lastly, I would like to propose the hypothesis that both identified CDWs (
√

21R10.9◦ ×
√

3R30◦

and 9 ×
√

3R30◦) are not very dissimilar. A direct comparison between Fig. 4d of Ref. [173] and
Fig. 2c in our paper suggests that the atomic displacements are nearly identical. It is assumed that the
apparent difference lies in the choice of the supercell geometry. In addition to the atomic positions,
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the electronic structures in the distorted phases are similar as well (cf. Fig. 4e of Ref. [173] and Fig.
5a in our paper). The electronic band at Gamma seems to touch and slightly overlap the Fermi level,
indicating that the gap opens above the Fermi level. This hypothesis should be further clarified in the
future through an exchange of theoretically and experimentally derived data among the authors.

In summary, as highlighted in this section, the research field of CDWs is rich in complexity and
occasionally marked by debates. Embracing the diversity of CDWs within a single material is the
fascinating reality we must navigate. The competition between these different phases is what needs to
be understood in the future.
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The many-body ground states of two-dimensional (2D)
materials, wherein the reduced dimensionality leads to the
enhancement of correlation effects, have been extensively

researched in recent years. Of particular interest are the coex-
istence or competition between charge density waves (CDWs), as
found in many 2D transition metal dichalcogenides (TMDCs),
with superconducting and magnetic phases1,2. Since these phases
can be strongly dependent on the substrate3,4 or the defect
density5,6, the intrinsic properties of 2D materials are difficult to
determine experimentally. In addition, CDWs themselves are the
subject of an ongoing controversy regarding the driving force
behind the CDW transition and the exact structure of the elec-
tronic system in the CDW phase of 2D materials7,8.

Peierls’ explanation for the CDW in a one-dimensional chain
of atoms states that periodic lattice distortions open an electronic
gap at the nesting wavevector. This gap at the Fermi level lowers
the energy of the occupied states and thus the total energy, while
increasing the energy of the unoccupied states that do not con-
tribute to the total energy. Thus, this gapping mechanism requires
the gap to be at the Fermi level. However, in many (quasi-)2D
cases, CDWs form in the complete or partial absence of Fermi-
surface nesting, suggesting that the driving mechanism behind
their formation lies beyond a simple electronic disturbance9, and
it has been questioned whether the concept of nesting is essential
for understanding CDW formation10–12. Instead, a strong and
wavevector-dependent electron–phonon coupling is often pre-
dicted to be the driving force behind the transition7. For these
CDWs, spectral reconstructions are not limited to a small energy
window around the Fermi energy, but can occur throughout the
entire electronic structure, opening the door to novel spectral
fingerprints of the CDW. A full gap could occur away from the
Fermi energy. However, even for the well-studied strong-coupling
TMDCs 2H-NbSe29,13,14 and 1T-TaS27,15–17, no experimental
verification of a clear CDW gap located away from the Fermi
energy has been provided to date. Furthermore, at the Fermi
energy, the undistorted phase and the CDW can have different
Fermi-surface topologies, with the implication that the transition
is a metal–metal Lifshitz transition18.

Metallic 1T-VS2 is not only a promising electrode material in
lithium-ion batteries19,20, but also a prototypical d1 system,
expected to host strongly correlated physics21. It is stated to be a
CDW material22,23 and a candidate for 2D magnetism24,25 with
layer-dependent properties26, making it a model system for
investigating complex ground states. Although difficult to syn-
thesize, bulk 1T-VS2 has been well studied, with many authors
finding a CDW transition at around 305 K when it was prepared
via the de-intercalation of Li22,23,27–29. However, recent powder
samples prepared under high pressure show no CDW
transition30. Based on their finding of a phonon instability at
2=3 ΓK corresponding to the experimental CDW wavevector of
Li de-intercalated bulk samples23, Gauzzi et al. point out that bulk
“VS2 is at the verge of CDW transition”30 but not a CDW
material. Due to a similar difficulty in synthesis, the properties of
monolayer 1T-VS2 have proven equally elusive31. Theoretical
calculations had predicted ferromagnetism and a CDW with a
wavevector of 2=3 ΓK21,25. When it was first synthesized how-
ever, scanning tunneling microscope (STM) measurements did
not reveal a CDW31, presumably due to strong hybridization with
the Au(111) substrate, similar to the case of 2H-TaS2 on
Au(111)4,32,33.

Here we report the growth of VS2 monolayers on the inert
substrate graphene (Gr) on Ir(111) via a two-step molecular beam
epitaxy (MBE) synthesis developed for sulfur-based TMDCs34.
Using a combination of STM, scanning tunneling spectroscopy
(STS), and ab initio density functional theory (DFT) calculations,
we determine the spatial and electronic structure of monolayer

VS2. We observe a q � 2=3 ΓK CDW as the electronic ground
state at 7 K, which remains stable up to room temperature. A full
gap in the density of states (DOS), residing completely in the
unoccupied states, is measured via STS. From DFT and density
functional perturbation theory (DFPT), we find that, although a
transverse phonon mode initially becomes unstable in the har-
monic approximation, the final CDW has a substantial admixture
of longitudinal modes. The calculations are in excellent agree-
ment with experiment, regarding both the electronic structure of
the CDW phase and the spatial charge distribution observed on
the VS2 islands.

X-ray magnetic circular dichroism (XMCD) measurements at
7 K and 9 T robustly show vanishing total net magnetization. The
coupling of the CDW to a spin density wave (SDW), energetically
favored in DFT calculations, could explain this observation,
providing interesting prospects for future research on the inter-
play of CDWs and magnetism.

Results
CDW in monolayer VS2. The typical morphology of the MBE-
grown monolayer VS2 islands on Gr/Ir(111) is shown in the
large-scale STM image in Fig. 1a. The islands were grown by
room-temperature deposition of vanadium in a sulfur back-
ground pressure of Pg

S ¼ 1 ´ 10�8 mbar and subsequently
annealed at 600 K in the same sulfur pressure. Annealing to
temperatures of 800 K and above leads to the formation of a
variety of sulfur-depleted phases, which are not under concern
here. Similar observations were made by Arnold et al.31, who
established monolayer stoichiometric 1T-VS2 on Au(111) by
annealing in a sulfiding gas at 670–700 K, while sulfur-depleted
monolayer phases form when annealed to the same or higher
temperature in the absence of sulfiding species. We also note that
depending on growth temperature and sulfur pressure bilayer
samples without any monolayer islands evolve.

The monolayer islands are fully covered by a striped super-
structure which is present regardless of island size or defect
density and occurs in domains, typically separated by grain
boundaries. In the topograph of Fig. 1b, taken at 7 K, the VS2
lattice is resolved, exhibiting the hexagonal arrangement of top
layer sulfur atoms as protrusions. We find that monolayer VS2
has a lattice constant of aVS2 ¼ ð3:21 ± 0:02Þ Å, in good
agreement with the bulk lattice constant of 3.22Å of 1T-
VS227,35. The similarity of the lattice constants indicates also the
absence of epitaxial strain, consistent with the random orienta-
tion of the VS2 with respect to the Gr.

The stripes of the superstructure have an average periodicity of
ð2:28 ± 0:02ÞaVS2 . Close analogues to this structure have pre-
viously been observed in stoichiometric monolayer VSe2. There, a
superstructure of identical symmetry is attributed to a
CDW3,36–38 [compare Supplementary Fig. 1]. The superstructure
is found to persist up to room temperature, as can be concluded
from the STM topograph in Fig. 1c, taken at 300 K. At this
temperature, the superstructure appears spontaneously only on
larger islands, suggesting that the transition temperature between
the superstructure and the undistorted phase is not far above
room temperature. Indeed, on smaller islands the STM tip can be
used to reversibly switch between the undistorted (1 × 1) structure
and the superstructure, shown in Supplementary Fig. 2. This
directly excludes the possibility that the superstructure is due to a
sulfur-depleted phase. We conclude that the superstructure is
most likely a CDW in a stoichiometric monolayer of 1T-VS2.

For the DFT calculations below, the experimental wave
pattern must be approximated by a commensurate structure.
A close approximation with periodicity 2:25aVS2 is overlaid on
the atomic resolution image in Fig. 1b. It locally matches the
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incommensurate CDW quite well. The blue box indicates the
corresponding 9 ´

ffiffiffi

3
p

R30� unit cell. The Fourier transform of the
topograph is shown as inset in Fig. 1b, with the wavevector of the
CDW indicated (blue arrow). The same is done for the 300 K
topograph in Fig. 1c. Within the margin of error, the wavevector
is found to be temperature independent, with qCDWð7KÞ ¼
ð0:656 ± 0:006Þ ΓK and qCDWð300KÞ ¼ ð0:65 ± 0:03Þ ΓK. Since the

wavevector of the 9 ´
ffiffiffi

3
p

R30� unit cell, q9 ´
ffiffi

3
p

R30� ¼
2=3 ΓK � 0:667 ΓK, is slightly larger than the experimental
value, we will in the following also consider another unit cell of
size 7 ´

ffiffiffi

3
p

R30�, with a slightly smaller wavevector
q7 ´

ffiffi

3
p

R30� ¼ 9=14 ΓK � 0:643 ΓK. With the experimental wave-
vector lying in between q7 ´

ffiffi

3
p

R30� and q9 ´
ffiffi

3
p

R30� , calculations
with these two unit cells should capture the essential features of
the incommensurate structure and provide a check on any
artefacts or errors arising from using them for computational
purposes (cf. Supplementary Fig. 3).

Energetics of lattice instabilities. Ab initio DFPT calculations of
the acoustic phonon dispersion of undistorted monolayer 1T-VS2
confirm that a structural instability and corresponding tendencies
toward CDW formation exist for the experimental wavevector.
Figure 2a shows that the longitudinal–acoustic and
transverse–acoustic modes feature imaginary frequencies in sev-
eral parts of the Brillouin zone. In other words, the
Born–Oppenheimer energy surface is a downwards-opening
parabola for small atomic displacements in the direction of
these modes, as seen in Fig. 2b (triangle marks). At the experi-
mental wavevector between q ¼ 2=3 ΓK and q ¼ 9=14 ΓK, we
find an instability of the transverse–acoustic branch. However,
the dominant instability within the harmonic approximation (i.e.,
DFPT), is located at q ¼ 1=2 ΓM in the longitudinal–acoustic
branch.

To go beyond the harmonic approximation, we have
performed structural relaxations on appropriate unit cells. The
resulting atomic positions are shown in Fig. 2c–e. On the
aforementioned 9 ´

ffiffiffi

3
p

R30� and 7 ´
ffiffiffi

3
p

R30� unit cells, which can
approximately host an integer multiple of the observed
wavelength, the vanadium atoms are displaced from their
symmetric positions by up to 8% of the lattice constant, while

the positions of the sulfur atoms remain almost unchanged, see
Fig. 2c, d. The associated energy gains amount to about 23 meV
per VS2 formula unit (cf. ref. 21). The magnitude of these
distortions and energy gains is similar to other octahedral
TMDCs but exceeds by far what is found in trigonal–prismatic
TMDCs7,39. For instance, on the DFT level, the maximum
displacement in the

ffiffiffiffiffi

13
p

´
ffiffiffiffiffi

13
p

CDW of 1T-NbSe2 is 8.8% of the
lattice constant with an energy gain of 57 meV per formula unit40,
while in the 3 × 3 CDW of 2H-NbSe2 distortions and energy gain
amount to only 2.3% of the lattice constant and 3.7 meV per
formula unit41.

The vanadium displacement has components in both the
transverse and longitudinal direction (vertical and horizontal in
Fig. 2c, d), even though the instability of the phonons at q ¼
2=3 ΓK and q ¼ 9=14 ΓK is of transverse character (white arrows
in Fig. 2c, d). As a consequence, all longitudinal displacement
components must stem from non-linear mode–mode coupling
beyond the harmonic approximation. The admixture of long-
itudinal displacement components stems mainly from wavevec-
tors q ¼ 4=3 ΓK and q ¼ 9=7 ΓK, which are also commensurate
with the 9 ´

ffiffiffi

3
p

R30� and the 7´
ffiffiffi

3
p

R30� unit cells, respectively.
The admixed longitudinal modes at q ¼ 4=3 ΓK and q ¼ 9=7 ΓK
are stable in the harmonic approximation and the non-linear
admixture is not related to any nesting or Peierls physics (cf.
Supplementary Fig. 4e, f).

We also find a distorted ground state on a 4 × 4 unit cell, see
Fig. 2e. This structure is commensurate to the six wavevectors
q ¼ 1=2 ΓM, where we have instabilities in the
longitudinal–acoustic branch arising from near perfect Fermi-
surface nesting, see Supplementary Fig. 4a. However, here the
displacements amount to only 4% of the lattice constant with a
corresponding energy gain below 4meV per 1T-VS2 formula unit
—much less than what is found for the 7´

ffiffiffi

3
p

R30� or
9 ´

ffiffiffi

3
p

R30� CDW structures. Thus, the DFT total energies of
the fully relaxed structures are in line with the experimentally
observed CDW patterns.

To illustrate the significance of the non-linear mode–mode
coupling, in Fig. 2b, we also show the Born–Oppenheimer energy
surfaces for displacements toward the relaxed structures (circle
marks). The energy curve of the 4 × 4 structure is steeper in the
vicinity of the origin. In other words, the 4 × 4 structure wins for

a

x (nm)

b c

z 
(n

m
) 1.5

1.0
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0 25 50 75

Fig. 1 Structure of VS2 on Gr/Ir(111) at 7 and 300 K. a Large-scale 7 K STM topograph of monolayer VS2 islands with small bilayers present. A height
profile along the horizontal black line is shown below the image. b, c Atomically resolved STM images of monolayer VS2 at 7 K (b) and 300 K (c). The
Fourier transform of each image is shown as an inset, with the 1 × 1 VS2 structure in red and the superstructure spots indicated in blue. In b, an atomic
model for the 9 ´

ffiffiffi

3
p

R30� superstructure is included as an overlay. The model depicts the top sulfur atoms, with their apparent height in STM coded
in orange (low) and yellow (high). Measurement parameters: a 80 × 50 nm2, It = 0.8 nA, Vt=−800meV, b 6 × 6 nm2, It= 0.6 nA, Vt= 400meV,
c 6 × 6 nm2, It= 1.0 nA, Vt=−1000 meV.
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small displacements. However, for larger displacements, the
structures corresponding to the experimental wavevector reach by
far the lowest values. These large energy gains at large
displacements are inaccessible without non-linear mode–mode
coupling, i.e., without the contribution of stable phonon modes
(triangle marks). In the next section, we will address the non-
linear regime of the distortions in a quantitative manner.

Non-linear mode–mode coupling. We decompose the entirety of
atomic displacements of the relaxed 7´

ffiffiffi

3
p

R30� structure as
u+ v, where u points in the direction of the unstable
transverse–acoustic phonon modes at q ¼ ± 9=14 ΓK and the
orthogonal complement v⊥u combines contributions from all
other phonon modes. The unstable modes account for ∣u∣2/
∣u+ v∣2 ≈ 69% of the total displacement only. In Fig. 2b, we have
already seen one-dimensional cross sections of the
Born–Oppenheimer energy surface, E(αu) and E(β(u+ v)), where
α and β are dimensionless scaling factors. Now, we will consider
the full 2D Born–Oppenheimer surface spanned by u and v.
Figure 3 shows E(xu+ yv), where the minimum at x= y= 1
corresponds to the 7 ´

ffiffiffi

3
p

R30� structure and x= y= 0 is the
undistorted structure. A fourth-order polynomial fit,

Eðxuþ yvÞ
meV=VS2

��25x2 þ 29y2 þ 34x3 � 99x2y � 20xy2 � 12y3

þ 0:1x4 þ 44x3y þ 13x2y2 þ 4:8xy3 þ 7:2y4;

ð1Þ

Fig. 2 Lattice instabilities in monolayer 1T-VS2 from first principles. a Acoustic phonon dispersion from DFPT. LA, TA, and ZA stand for dominant
longitudinal, transverse, and out-of-plane atomic displacements. The insets show selected displacement patterns corresponding to indicated modes.
b Total energy from DFT as a function of the displacement amplitude for atomic displacements toward relaxed crystal structures and their projections onto
soft phonon modes. c–e Relaxed crystal structures on 9 ´

ffiffiffi

3
p

R30�, 7 ´
ffiffiffi

3
p

R30�, and 4 × 4 unit cells from DFT. Vanadium and sulfur atoms are represented
by black and yellow dots, their undistorted positions by gray shadows. Arrows represent the projections of the atomic displacements onto soft phonon
modes. (Only arrows longer than 2% of the lattice constant are shown.) The contributions of different phonon modes are quantified in the figure titles. The
displacements in c, d are drawn to scale, those in e have been magnified by a factor of three for better visibility. The primitive cell of the structure in
c, which is in agreement with the results of ref. 21, is outlined in yellow. Dashed lines and crosses mark reflection planes and inversion centers.

Fig. 3 Born–Oppenheimer energy surface for the 7 ´
ffiffiffi

3
p

R30� structure of
1T-VS2. The axes represent the projection of the full CDW displacement
onto the transverse–acoustic (TA) phonon modes at q ¼ ±9=14 ΓK and
the orthogonal complement, which combines all other contributing modes.
The full CDW displacement is located at the point (1, 1). The forces
resulting from this energy surface are predominantly non-linear and
coupled in both directions.
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accurately describes the DFT Born Oppenheimer surface. Here,
the first and second line give rise to linear and non-linear forces
F=−∇E, respectively. It turns out that the non-linear part of the
forces is dominated by mode–mode coupled terms42–44 (depen-
dent on both x and y). The energy reduction stems largely from
the x2y and xy2 terms above, which correspond to a shift of the
minimum of the potential-energy surface toward finite positive y
upon finite displacement in x direction and a softening of the
effective spring constant in y direction for finite positive x,
respectively. Note that within the harmonic approximation the x2

(y2) term lowers (raises) the energy.
The decisive role of mode–mode coupling terms x2y and xy2

distinguishes 1T-VS2 from systems like 2H-NbSe2 or 2H-TaS2,
where a single mode can be employed to describe anharmoni-
cities, and distortions along a single effective coordinate suffice to
explain the relaxation pattern of the full CDW and associated
energy gains (cf. Supplementary Fig. 5).

The non-linear mode–mode coupling also manifests in
monolayer 1T-VTe2, which is isoelectronic to monolayer 1T-
VS2. Monolayer 1T-VTe2 in experiment realizes a 4 × 4 CDW45

in contrast to monolayer 1T-VS2. In line with experiment, the
comparison of DFT total energies in the fully relaxed supercells
(Supplementary Table 1) reveals a clear preference of the
4 × 4 structure in 1T-VTe2. At the harmonic level, this is likely
related to a shift of the lattice instabilities, especially in the
transverse-acoustic branch, toward smaller wavevectors in 1T-
VTe2 as compared to 1T-VS2 (cf. Fig. 2a and Supplementary

Fig. 6a), which can be traced back to differences in the Fermi
surface (cf. Supplementary Figs. 4 and 6b–g). At the harmonic
level, a CDW with 7 ´

ffiffiffi

3
p

R30� structure of monolayer 1T-VS2 is
not expected, as Supplementary Fig. 6a shows. The small energy
gain and still appreciable distortions obtained from the relaxation
of a 7 ´

ffiffiffi

3
p

R30� structure of monolayer 1T-VS2 (Supplementary
Table 1) despite the stability on the harmonic level suggest that
non-linear mode–mode coupling is also effective, here.

Full CDW gap in the unoccupied states. To better understand
this CDW phase, we determined the electronic structure of
monolayer VS2 by a combination of STS experiments and
simulated dI/dV maps based on the ab initio calculations using
the 7´

ffiffiffi

3
p

R30� and 9´
ffiffiffi

3
p

R30� unit cells. STS spectra were used
to locally probe the DOS of monolayer VS2 at 7 K (black line) and
78.5 K (purple line), shown in Fig. 4a. Both spectra were taken
with a clean Au tip in the middle of VS2 islands. The most
prominent feature is the gap located at about 0.175 eV, which is
absent in calculations of undistorted monolayer VS221. At 7 K, the
dI/dV signal vanishes completely, corresponding to a full gap in
the DOS. At 78.5 K, this gap is not fully open, appearing as a wide
depression with a finite value at its minimum. In most other
characteristic features the spectra agree qualitatively.

While the lack of energy resolution at 78.5 K certainly smears
out the spectra and the gap, the reason for its absence is not
immediately evident. When discussing the band structure below,
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Fig. 4 Spatially and electronically resolved CDW phase in monolayer VS2. a Scanning tunneling spectroscopy (STS) dI/dV spectra taken with a Au tip on
monolayer VS2 at 78.5 K (purple) and 7 K (black). The spectra are plotted along with the DFT-calculated density of states (DOS) for the 7 ´

ffiffiffi

3
p

R30� (cyan)
and 9 ´

ffiffiffi

3
p

R30� (indigo) CDW phases of monolayer 1T-VS2. b Atomically resolved STM topograph of monolayer VS2 taken at Vt= 175meV. c, d Fourier-
filtered dI/dV conductance maps of the same region as in b, taken at Vt= 75meV (c) and Vt= 275meV (d). A linear yellow (maximum) to blue
(minimum) color scale is used to depict the dI/dV intensity. The blue box indicates the same location in b–d and corresponds to a single 9 ´

ffiffiffi

3
p

R30� unit
cell of the CDW. In the same color scale, DFT-simulated dI/dV maps below (c) and above (d) the gap of the charge density wave (CDW) are overlaid as
insets. The maps show the integrated DOS from 0 to 137meV (c) and from 137 to 275meV (d). Additionally, the Fourier transforms of the conductance
maps are shown in the upper-left corners with the 1 × 1 (red) and CDW peaks (blue) highlighted by circles. Measurement parameters: f= 777.7 Hz,
a T= 78.5 K, It= 0.3 nA, Vr.m.s.= 6meV and T= 7 K, It= 0.45 nA, Vr.m.s.= 4meV, b–d T= 7 K, 5.5 × 5.5 nm2, It= 0.3 nA, Vr.m.s.= 10 meV.
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it will be seen that the width and existence of the full gap depend
on the magnitude of the lattice distortions, which may already be
diminished at 78.5 K.

In the same figure, ab initio calculations for the DOS of VS2,
structurally relaxed in the 7 ´

ffiffiffi

3
p

R30� (cyan) or 9 ´
ffiffiffi

3
p

R30�

(indigo) unit cell, are shown. Both unit cells feature quite similar
structures, as expected for close-lying q vectors. Most striking, for
both cases a full gap in the unoccupied states is predicted. They
only differ in size: 0.13 eV and 0.21 eV for the 9´

ffiffiffi

3
p

R30� and
7 ´

ffiffiffi

3
p

R30� unit cell, respectively. The location of the gap
matches the STS data. That the width of the gap in the spectrum
is smaller than in DFT might stem from the ground-state
calculation assumed in DFT, overestimating the vanadium atom
displacement at realistic temperatures. Note also that while many
of the characteristic features of calculated and measured DOS
(peaks, minima) seem to agree, the experimental spectra appear
to be compressed with respect to the DFT calculated DOS. This
quasiparticle renormalization is indicative of strong
electron–electron correlations beyond the approximations of
DFT (compare Supplementary Fig. 7).

With theory and experiment largely agreeing on the electronic
structure, we turn to the relation between the gap and the CDW
measured on the VS2 islands. For that purpose, dI/dV
conductance maps were taken on either side of the gap (both
in the unoccupied states), in the location shown in Fig. 4b. The
maps help to distinguish structural from electronic contributions,
providing a close approximation of the spatial distribution of the
DOS at the selected energies. As shown in Fig. 4c, d, we find two
different DOS distributions on either side of the gap (see
Supplementary Fig. 8 for the in-gap DOS). Both distributions are
locked into the distorted lattice periodicity. They are out-of-
phase, as seen in the blue unit cell drawn in the same location in

Fig. 4b–d: The DOS maxima below the gap correspond to DOS
minima above the gap and vice versa. This behavior is perfectly
analogous to that for a CDW with a symmetric gap around the
Fermi level4. Simulated dI/dV maps derived from the DFT DOS
for a 9 ´

ffiffiffi

3
p

R30� CDW are shown as an overlay in Fig. 4c, d. In
Fig. 4c, the simulation reproduces both the alternating rows of
single and zigzag atoms and the DOS minima between the rows.
Its counterpart in Fig. 4d shows higher DOS contrast than
experiment, but presents the same qualitative features. With the
simulated maps based on the displacement patterns of Fig. 2c, the
close agreement with experiment emphasizes the need to look
beyond the harmonic approximation to understand this type
of CDW.

Band structure and Fermi-surface topology. To deepen our
understanding of the system, we calculated the spin-degenerate
band structure, density of states, and Fermi surface of monolayer
1T-VS2 with DFT. The results are shown in Fig. 5 and the Sup-
plementary Movies. In the undistorted case, we find a single
electronic band at the Fermi level, which strongly disperses
between M and K and features a Van Hove singularity in the
unoccupied states, as shown in Fig. 5a. The Fermi surface,
depicted in Fig. 5b, consists of cigar-shaped electron pockets
around the M points. For small distortions, partial gaps open at
the Fermi level (e.g., between M and K). With increasing
amplitude of the distortion, the gaps become larger and the bands
are heavily reconstructed also for high energies. Only then, a full
gap as observed in STS at 7 K emerges (cf. Supplementary
Movie 1).

The presence of the CDW is therefore in the first place
correlated with the gap between M and K, which opens already
for small displacements and results in a partial gapping of the

Fig. 5 Electronic structure of monolayer 1T-VS2 from DFT. Data for the undistorted structure and the 7 ´
ffiffiffi

3
p

R30� CDW is shown in black and blue,
respectively. The CDW data has been unfolded to the Brillouin zone of the undistorted structure. Here, the linewidth/saturation corresponds to the overlap
of CDW and undistorted wave functions for the same k point. Analogous results for 1T-VSe2 and the 9 ´

ffiffiffi

3
p

R30� CDW are shown in Supplementary Fig. 3.
a Electronic band structure and density of states (DOS) for 0%, 1/3, 2/3, and 100% of the displacements of the relaxed CDW structure. Please note that
since the CDW breaks the C3 symmetry, the chosen path, indicated in b, does not represent the full Brillouin zone. The bands along an extended path are
shown in Supplementary Fig. 9. b, c Lifshitz transition. The Fermi surface is shown for displacements toward the relaxed CDW structure (b) and its
projection onto unstable transverse-acoustic (TA) phonon modes (c). The Supplementary Movies 1 and 2 show animations of the transitions in b and c,
respectively (including bands, DOS, and structures).
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total DOS. Presumably it is the associated gain in electronic
energy that initially drives the CDW transition. Since the full gap
only starts to open at 70% of the final displacements, the
experimental observation of a full gap above the Fermi level is an
indication that the displacements in the experiments do not fall
much below the calculated ones.

At the Fermi level, there is no complete gap even at large
distortion, since the downwards-dispersing bands along Γ–M are
only slightly shifted downwards and remain above the Fermi level
near Γ. On the other hand, the originally flat portion of the band
structure between Γ and K now disperses downwards and crosses
the Fermi level. The preservation of states near Γ that mask the
partial gap at the Fermi level can be understood in terms of
band characters and degeneracies, as shown in Supplementary
Fig. 10. Altogether, the Fermi surface is reconstructed and not
completely destroyed by the lattice distortion. The CDW
transition is thus a metal–metal Lifshitz transition with a change
in Fermi-surface topology, instead of the usual metal–insulator
Peierls transition.

As shown in Fig. 5c, we cannot understand this Fermi-surface
reconstruction based on a single unstable mode: The displace-
ments expected from the harmonic approximation (u in Eq. (1))
only induce gaps in two-third of the cigar-shaped electron
pockets (cf. Supplementary Movie 2). The other component v
couples to segments of the Fermi surface that are not affected by
u, i.e., the remaining third of the electron pockets (cf.
Supplementary Movie 3). Together, they transform the Fermi
surface from multiple cigar-shaped electron pockets around the
M points to the single elliptical hole pocket around Γ visible in
Fig. 5b. The decomposition of the CDW contains modes at more
than one wavevector q, so several approximate Fermi-surface
nesting conditions and electron–phonon coupling matrix ele-
ments play a role (Supplementary Fig. 4b, c, e, f), enabling the
CDW to affect distinct parts of the Fermi surface.

Magnetic properties of monolayer VS2. Prompted by the pre-
diction of ferromagnetism for monolayer 1T-VS2 in its q ¼
2=3 ΓK CDW phase21, we also examined the magnetic properties
of VS2, by means of X-ray magnetic circular dichroism (XMCD).
The monolayer VS2 samples were grown in situ and investigated
with STM beforehand to make sure that the same phase and
decent coverage were obtained. A STM topograph of the sample
investigated by XMCD is shown in Supplementary Fig. 11. The
blue curve in Fig. 6a represents the X-ray absorption spectrum
averaged over both helicities and external field directions. The
overall line shape is very similar to previous bulk crystal
measurements23 and clearly fits to a 3d1 configuration46. The red
signal in Fig. 6a is the XMCD magnified by a factor of 10, where
no signal above the noise level is visible. This implies that the total
magnetization vanishes. Sum rule analysis would yield an upper

bound of 0.02μB per vanadium atom. Since it cannot be strictly
applied to the case of the V2,3 edges47, this analysis yields only a
zero-order estimate of the upper bound, but we can safely con-
clude that neither ferromagnetic nor paramagnetic behavior is
present in this system.

We investigated magnetic order in monolayer VS2 using spin-
polarized DFT. We were able to stabilize both ferromagnetic and
SDW structures within the 7 ´

ffiffiffi

3
p

R30� unit cell. In fact,
magnetically ordered CDW phases are preferred over nonmag-
netic CDW phases by energies of the order of 1 meV per VS2 unit.
Figure 6b shows the most favorable SDW pattern in the
7 ´

ffiffiffi

3
p

R30� CDW phase. The magnetic moments on vanadium
reach ±0.18μB, those on sulfur only ±0.01μB and are thus not
shown. While the CDW alone reduces the total energy to
−22.7 meV per VS2 unit with respect to the symmetric structure,
the SDW lowers this value by another 1.5 to −24.2 meV.
Interestingly, without the CDW, a similar SDW with larger local
moments of up to ±0.51μB (shown in Fig. 6c) leads to an energy
reduction of 7.1 meV. As already suggested by previous calcula-
tions of ferromagnetism in the 9´

ffiffiffi

3
p

R30� structure of 1T-VS221,
there is a competition between the lattice distortion and the
formation of local moments. Although a full account of
magnetism needs to go beyond the DFT level, in view of the
good agreement between our ab initio results and the experi-
mental STS and XMCD data, the formation of coupled
CDW–SDW state in 1T-VS2 is plausible. This presumption is
further supported by comparison of the calculated DOS in the
CDW–SDW state to the STS shown in Supplementary Fig. 12: the
SDW formation on top of the CDW leads to a reduction of the
gap size and the DOS of the coupled CDW–SDW is even in better
agreement with the experiment than the non-spin-polarized
CDW DOS.

Discussion
Both the electronic and magnetic results for VS2 shed some light
on the properties of the isoelectronic compound VSe2, which
displays a CDW of the same periodicity3,38,48. Our calculations
strongly suggest that also for this system non-linear effects are
relevant and that a full gap opens in the unoccupied states
(compare Supplementary Fig. 3). A full gap at the Fermi level, as
proposed for 1T-VSe26,38,48,49, would be unlikely to intrinsically
occur for a CDW with the observed wavevector. The strong
similarity between our calculations and experimental data, espe-
cially for those VSe2 systems where only the 7 ´

ffiffiffi

3
p

R30� CDW is
observed36,37, lends credence to our analysis (compare Supple-
mentary Fig. 13). It is possible that the simultaneous occurrence
of a 4 × 1 CDW3,6, perhaps due to substrate-induced strain50,
causes an additional gap opening near the Fermi level as a
result of the interplay between the CDWs. In any case, similar to
VS2, the presence of a SDW coupled to the 7 ´

ffiffiffi

3
p

R30� CDW

Fig. 6 Magnetic properties of monolayer 1T-VS2. a Plotted in blue is the X-ray absorption signal averaged over both helicities and directions of the B field.
The corresponding XMCD is shown in red. All measurements have been conducted in B fields of ±9 T and at a temperature of 7 K. b, c Possible SDW
pattern with (b) and without CDW (c).
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could explain the absence of net magnetization in XMCD
experiments37,38,48. Spin-polarized STM or XMLD might be able
to detect the magnetic ground state for both VS2 and VSe2.

In conclusion, VS2 defies the common phenomenology of
CDW formation, as the complete CDW gap occurs above the
Fermi level, there is giant non-linear longitudinal–transverse
mode–mode coupling, and the CDW formation is accompanied
by a change of the Fermi-surface topology. The unconventional
CDW appears to host further electronic correlations as signalled
by the quasiparticle renormalization and magnetic-moment for-
mation. In this respect, it is reminiscent of correlated phases in
superlattice structures such as Star of David phases7, moiré
superlattices51, and doped cuprate superconductors52. In the
latter class, lattice anharmonicities are central to boosting
superconductivity under THz optical driving44. The case of VS2
presents new terrain: A metal–metal Lifshitz transition from non-
linear electron–lattice effects in the strong-coupling regime is
intertwined with electronic correlations. We note that the full gap
in the DOS, situated within 0.2 eV from the Fermi level, opens up
the possibility of inducing a metal–insulator transition upon mild
gating or doping (e.g., with Li). Finally, we are convinced that the
excellent agreement of experiment and theory for the uncon-
ventional CDW of monolayer VS2 with the full gap in the
unoccupied states provides a paradigmatic case study of strong-
coupling CDWs in general.

Methods
The Ir(111) crystal is cleaned by grazing incidence 1.5 keV Ar+ ion exposure and
flash annealing to 1500 K. A closed monolayer of single-crystalline Gr on Ir(111) is
grown by room temperature exposure of Ir(111) to ethylene until saturation,
subsequent annealing to 1300 K, followed by exposure to 200 L ethylene at
1300 K53.

The synthesis of vanadium sulfides on Gr/Ir(111) is based on a two-step MBE
approach introduced in detail in ref. 34 for MoS2. In the first step, the sample is held
at room temperature and vanadium is evaporated at a rate of FV= 2.5 × 1016

atoms/(m2s) into a sulfur background pressure of Pg
S ¼ 1 ´ 10�8 mbar built up by

thermal decomposition of pyrite inside a Knudsen cell. This results in dendritic
TMDC islands of poor epitaxy. To make the islands larger and more compact, the
sample is flashed in a sulfur background to 600 K.

The VS2 layers were analyzed by STM, STS, and low-energy electron diffraction
(LEED) inside a variable temperature (30–700 K) ultrahigh vacuum apparatus and
a low-temperature STM operating at 7 and 78.5 K. The software WSXM54 was used
for STM data processing. XMCD measurements have been conducted at the
beamline ID32 of the European Synchrotron Radiation Facility (ESRF) in Gre-
noble, France. The VS2 samples were grown in situ inside the preparation chamber
and checked with LEED and STM before X-ray absorption spectroscopy mea-
surements. To be surface sensitive, the measurements were conducted in the total-
electron-yield mode under normal incidence. The measurement temperature was
7 K and fields of 9 T were used. The spectra were recorded at the L3,2 edges, i.e.,
using the dipole allowed transition from 2p states into the 3d shell potentially
generating magnetism.

All DFT and DFPT calculations were performed using QUANTUM ESPRESSO55,56.
We apply the PBE functional57,58 and norm-conserving pseudopotentials from the
PSEUDODOJO table59,60. In the undistorted case, uniform meshes (including Γ) of
12 × 12 q and 24 × 24 k points are combined with a Fermi–Dirac smearing of 300 K.
For a fixed unit-cell height of 15Å, minimizing forces and in-plane pressure to
below 1 × 10−5 Ry/Bohr and 0.1 kbar yields a lattice constant of 3.18Å and a layer
height (vertical sulfur–sulfur distance) of 2.93Å. For the superstructure calculations,
appropriate k-point meshes of similar density are chosen, except for the precise total
energies quoted in the section about magnetism and in Supplementary Table 1,
which required four times as dense meshes. The average lattice constant of super-
structures is kept fixed at the value of the symmetric structure. Fourier interpolation
to higher k resolutions (1000 × 1000 for calculations of the DOS) and the unfolding
of electronic states is based on localized representations generated with
WANNIER9061. For the visualization of the unfolded Fermi surfaces, a Fermi–Dirac
broadening of 10 meV is used.

Data availability
All the data and methods are present in the main text and the supplementary materials.
Any other relevant data are available from the authors upon reasonable request.

Code availability
Codes used in this work are available from the authors upon reasonable request.
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Supplementary Note 1: Unit cells

a b

Supplementary Figure 1: Correspondence between unit cells in monolayer VSe2 literature and
the unit cells used in this paper. In a and b, models of the 1T-VS2 atomic lattice are depicted
with V atoms in blue and bottom-S atoms in faint yellow. 7 ×

√
3R30◦ (a) and 9 ×

√
3R30◦

(b) superstructures are visible in the top-S atoms, which are drawn in two colors to mimic the
experimental apparent height in yellow (bright) and orange (dark). The dark gray rectangles indicate
the 7×

√
3R30◦ (a) and 9×

√
3R30◦ (b) unit cells. The blue rectangle is a 2×

√
3R30◦ unit, the

red rhombus a
√

7R19.1◦ ×
√

3R30◦.

In the isotypic material VSe2, a superstructure of same symmetry as in VS2, has been identified and
attributed to a charge density wave (CDW)1–4. In these studies, the superstructure was described
by a combination of 2×

√
3R30◦ and

√
7R19.1◦ ×

√
3R30◦ units, which we mark in our model in

Supplementary Figure 1a, b in blue and red, respectively. By the combination of a single 2×
√

3R30◦

and two
√

7R19.1◦×
√

3R30◦ units, the 7×
√

3R30◦ CDW lattice can be described; two 2×
√

3R30◦

units and two
√

7R19.1◦ ×
√

3R30◦ units make up the 9×
√

3R30◦ lattice.
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Supplementary Note 2: Tip-induced switching between distorted and undistorted phase

a b c

Supplementary Figure 2: Influence of STM tip on monolayer VS2: the two consecutive STM scans
in panel a and b document the STM-tip-induced switch from the undistorted to the superstructure
CDW phase. Scan c is taken 15 minutes later and shows no more signs of the superstructure. Images
taken at 300 K. Measurement parameters: a–c 7× 7 nm2, It = 0.5 nA, Vt = −90 meV.

The presence of the superstructure at room temperature can also be influenced by the scanning
tunneling microscope (STM) tip. Supplementary Figure 2a, b shows two consecutive STM scans,
taken at the same position, tunnelling current, and bias. In Supplementary Figure 2a, the STM
reveals only hexagonal atomic ordering inside the small VS2 structure. In the successive STM
scan in Supplementary Figure 2b, the wave superstructure is observed in the same region, with the
phase transition apparently triggered by the interaction with the STM tip. A subsequent STM scan
taken about 15 minutes later, displayed in Supplementary Figure 2c, again shows the absence of the
superstructure.
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Supplementary Note 3: 1T-VSe2 vs 1T-VS2 and 9×
√

3R30◦ vs 7×
√

3R30◦
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Supplementary Figure 3: Fermi surface and density of states (DOS) of monolayer a, b 1T-VSe2

and c, d 1T-VS2 in the undistorted phase as well as for the a, c 9×
√

3R30◦ and b, d 7×
√

3R30◦

CDW as obtained from DFT. The CDW data has been unfolded to the Brillouin zone of the
undistorted structure. Here, the color saturation corresponds to the overlap of CDW and undistorted
wave functions for the same k point.

In Supplementary Figure 3a, b, we show the Fermi surface and density of states (DOS) of monolayer
1T-VSe2 in the undistorted as well as 9 ×

√
3R30◦ and 7 ×

√
3R30◦ CDW phases from density

functional theory (DFT). In VSe2 a similar CDW as the one found in VS2 has been reported
repeatedly1, 2, 4–6. As points of reference, corresponding results for monolayer 1T-VS2 are displayed
in Supplementary Figure 3c, d. The results for the 9 ×

√
3R30◦ and 7 ×

√
3R30◦ cells agree

qualitatively. Furthermore, our calculations suggest that 1T-VSe2 and 1T-VS2 are very similar in
their electronic structure. In the distorted phase, 1T-VSe2 will also have a full gap in the unoccupied
states; at the Fermi energy, only a partial gap is expected. Though this has been observed in
experiment2, 3, most studies on monolayer VSe2 agree on a full gap located at the Fermi level1, 4, 6, 7.
To our understanding, such a gap would require a filling of the downwards-dispersing bands near
Γ, which are not gapped in the CDW configuration. According to our DFT calculations for both
1T-VS2 and 1T-VSe2 on a 9×

√
3R30◦ (7×

√
3R30◦) supercell, 1/9 ≈ 0.11 (1/7 ≈ 0.14) additional

electrons would shift the gap to the Fermi energy (compare Supplementary Figure 10a, b). This
charge could be provided by, e.g., the substrate or defects.
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Supplementary Note 4: Nesting conditions and electron–phonon coupling
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Supplementary Figure 4: Nesting conditions for different longitudinal– and transverse–
acoustic (LA and TA) phonon wavevectors q. We show the relevant electron–phonon coupling
2ωqgk+q,kg̃k,k+q as a function of the electron wavevector k (color scale) together with the original
Fermi surface (solid lines) and the Fermi surface shifted by −q (dashed lines). Nesting parts of the
Fermi surface can only have a strong effect on the phonons if they occur in k-space regions with
significant electron–phonon coupling (dark/brown spots). While the g̃ from DFPT is fully screened,
the partially screened g from constrained DFPT (cDFPT)8 excludes low-energy electronic screening
(precisely, from within the isolated band at the Fermi level). Together with the bare electronic
susceptibility χ0, they determine the phonon self-energy Π = g∗χ0g̃ responsible for the instabilities
in the phonon dispersion. This analysis is equivalent to the fluctuation diagnostics in Ref. 9. The
electron–phonon coupling has been obtained via the EPW code10, 11.

In Supplementary Figure 2a of the manuscript, we can observe two main instabilities in the acoustic
phonon dispersion of monolayer 1T-VS2from density functional perturbation theory (DFPT): one
in the longitudinal branch at q ≈ 1/2 ΓM and one in the transverse branch at q ≈ 2/3 ΓK. A
mode with momentum q will be favoured if there is a large electron–phonon coupling matrix
element connecting momenta k and k + q close to the Fermi surface. These nesting conditions are
investigated in Supplementary Figure 4. In the longitudinal case, shown in Supplementary Figure 4a,
we have almost perfect Fermi-surface nesting together with a strong electron–phonon coupling
(cf. Fig. 5c, d of Ref. 12 for the case of 1T-VSe2). This q point is compatible with the formation
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of a 4× 4 CDW, as found, e.g., in bulk VSe2
13. Interestingly, despite these favorable conditions,

this is not the preferred ground state of monolayer VS2. Instead, a CDW with a wavevector near
q = 2/3 ΓK and q = 9/14 ΓK develops, which features only approximate nesting and a slightly
reduced coupling strength, as seen in Supplementary Figure 4b, c. As discussed in the main text,
the formation of the CDW can only be understood considering non-linear mode–mode coupling.
Phonon modes that appear stable in the harmonic approximation contribute significantly to the final
atomic displacements, especially the longitudinal–acoustic modes for twice the momenta of the
unstable modes, i.e., q = M, q = 9/7 ΓK, and q = 4/3 ΓK, see Supplementary Figure 4d–f. For
both the harmonic (Supplementary Figure 4b, c) and the higher-order contributions (Supplementary
Figure 4e, f) to the experimentally observed CDW, we find a similar situation of partially overlapping
Fermi pockets in k-space regions of considerable coupling, except that different pairs of pockets are
involved.
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Supplementary Note 5: Born–Oppenheimer energy surface in TaS2
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Supplementary Figure 5: a CDW distortion in monolayer 2H-TaS2 and b corresponding Born–
Oppenheimer energy surface. Full circles indicate atomic positions and energies for displacements
in the direction of the relaxed structure, arrows and triangle marks those for the projection onto
the unstable longitudinal–acoustic (LA) phonon modes at the six wavevectors q = 2/3 ΓM. The
relaxed atomic displacements have been amplified by a factor of five for better visibility.

While the experimentally observed CDW in VS2 can only be explained by the nonlinear coupling
between soft and stable phonon modes, the 3 × 3 CDW in the trigonal–prismatic TMDCs is an
example of a lattice instability that is determined essentially by a single unstable phonon mode.
Analogous to Supplementary Figure 2b–e, Supplementary Figure 5 shows the 3× 3 CDW structure
and the corresponding Born–Oppenheimer energy surface of monolayer 2H-TaS2 from DFT: Here,
the distortion along the leading unstable phonon normal-mode coordinate largely captures the
energy gain associated with the full CDW relaxation. We used the same computational parameters
as in Ref. 9.
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Supplementary Note 6: Phonon dispersion, nesting conditions, and electron–phonon cou-
pling in 1T-VTe2
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Supplementary Figure 6: a Longitudinal–, transverse– and z–acoustic (LA, TA and ZA) phonon
dispersion of monolayer 1T-VTe2. b–g Corresponding electron–phonon coupling 2ωqgk+q,kg̃k,k+q
together with the k and k + q Fermi surfaces (cf. Supplementary Figure 4).

The phonon dispersion of monolayer 1T-VTe2 obtained from DFPT is shown in Supplementary
Figure 6a. We find similar lattice instabilities as in the case of 1T-VS2 (cf. Supplementary Figure 2a
of the main text), albeit shifted to smaller |q|. This shift, which is more pronounced for the
transverse–acoustic instability in the ΓK direction than for the longitudinal–acoustic instability in
the ΓM direction, can be traced back to differences in the Fermi surface (topology) rather than
in the electron–phonon coupling, see Supplementary Figure 6b–g: Instead of the cigar-shaped
electron pockets around the M points in 1T-VS2 (cf. Supplementary Figure 4), we find triangular
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hole pockets around the K points (as well as a small hole pocket at Γ) in 1T-VTe2. In the latter case,
the approximately parallel segments of the Fermi surface are closer together.
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Supplementary Note 7: CDW energy gains in VS2 vs VTe2

Supplementary Table 1: Comparison of maximum atomic displacements and energy gains upon
CDW formation for different materials and periodicities from DFT (PBE). All energies refer to a
single VX2 unit; the reference for the displacements is the lattice constant.

1T-VS2 1T-VTe2

4× 4 4 % 3.4 meV 13 % 34.2 meV

7×
√

3R30◦ 8 % 22.7 meV 6 % 2.5 meV

To compare the energy gains associated with CDW formation in 1T-VS2 and in 1T-VTe2 for
the different periodicities, we performed structural relaxations on corresponding supercells in the
framework of DFT (PBE). The energy gains reported in Table 1 show that in 1T-VS2 the 7×

√
3R30◦

CDW is favored over the 4× 4 CDW; in 1T-VTe2 vice versa. The DFT prediction is thus in line
with experimental observation for both materials.
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Supplementary Note 8: Compression of electronic spectrum
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Supplementary Figure 7: Compression of experimental scanning tunneling spectroscopy (STS)
data relative to density-functional theory (DFT)-calculated density of states (DOS). In a, the 7 K
spectrum from the main manuscript is compared to the calculated DOS for the 7×

√
3R30◦ and

9×
√

3R30◦ unit cells. In b, the calculated DOS is compressed to about 80 % of its original width.
The red arrows in a, b indicate three major features in the spectrum and DOS that can be harmonized
between them when the DOS is compressed.

In Supplementary Figure 4a of the main text, the DOS from DFT appears to be wider than the
experimental spectrum. Dynamic electronic correlation effects beyond DFT are a possible source of
this discrepancy, since they can lead to band renormalization14. More precisely, they effect a mass
enhancement of the electrons, i.e., the quasi-particle dispersions become flatter than what is expected
from theories like DFT. In the case of purely local correlations15, this effect is described by a
single renormalization factor Z or the corresponding mass enhancement factor 1/Z. Supplementary
Figure 7 shows that we obtain a good match between experimental and theoretical spectra by setting
Z = 0.8. This is indicative of moderate electronic correlations. For comparison, examples range
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from diverging mass enhancement at Mott–Hubbard transitions, via mass enhancement factors of
about 10 to 1000 in Kondo or heavy fermion systems, to enhancement factors between 1 and 10
in transition-metal compounds like metallic chromium or iron-based superconductors. The mass
enhancement factor of 1/Z ≈ 1.25 puts VS2 at similar electronic correlation strengths as, e.g.,
metallic chromium16.

The rise in the normalized dI/dV beyond −0.5 eV can be attributed to contributions from the
graphene/Ir(111) substrate, which can come to dominate the signal for large V when the VS2 has a
small DOS. In this case, the graphene spectrum (not shown) diverges beyond the Ir(111) surface
state at −190 meV.
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Supplementary Note 9: Suppression of CDW Fourier intensity within the gap
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Supplementary Figure 8: Suppression of charge density wave (CDW) within the gap. a Logarith-
mic plot of the CDW intensity in the Fourier transform of dI/dV conductance maps, normalized
to the 1 × 1 lattice intensity. Additionally, a dI/dV spectrum is plotted in order to indicate the
location and width of the gap. b–d dI/dV conductance maps taken at the voltages indicated in a.
Measurement settings: (maps) 9.5× 5.5 nm2, It = 0.3 nA, except for the map at 50 meV, which
is taken at It = 0.6 nA; (dI/dV spectrum) f = 777.7 Hz, It = 0.4 nA, Vr.m.s. = 6 meV. All data
taken at T = 7 K.

Apart from the different charge distributions on either side of the gap discussed in the main
manuscript, dI/dV maps taken within the gap show a clear suppression of the CDW. For a
quantitative analysis, we have Fourier analyzed the dI/dV maps and normalized the CDW peak
in the Fourier spectrum with respect to the 1 × 1 lattice peak intensity. The resulting value
R = ICDW/I1×1 is observed to fall by an order of magnitude within the gap. Since a gap of other
than CDW origin would have the same value of R in- and outside of the gap region17, this is another
clear indication of the relation between gap and CDW.
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Supplementary Note 10: Bands along extended Brillouin-zone path
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Supplementary Figure 9: Electronic band structure along an extended Brillouin-zone path and
density of states (DOS) of monolayer 1T-VS2 for a the full 7×

√
3R30◦ charge density wave (CDW)

displacements, b their projection onto unstable phonon modes, and c the orthogonal complement.

In Supplementary Figure 5a of the manuscript, we show the electronic band structure of monolayer
1T-VS2 in the 7×

√
3R30◦ phase along a selected high-symmetry path Γ–M–K–Γ of the undistorted

phase only. Once the distortion breaks the C3 symmetry, this path is not representative of the full
Brillouin zone anymore. For completeness, in Supplementary Figure 9a, we thus reproduce the
respective data along an extended path, again supplemented with the DOS. In Supplementary
Figure 9b, c, we show the analogous results for the projection of the displacement onto the soft
transverse–acoustic phonon modes at q = ±9/14 ΓK and the orthogonal complement. There
are some salient differences between the electrons for the full and partial CDW displacement. In
Supplementary Figure 9b, the gap between M′ and K is missing; in turn, in Supplementary Figure 9c,
there is no gap between M and K′ as well as M and K. The combination of both displacement
components is needed to open a full gap.
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Supplementary Note 11: Preservation of states at the Fermi level
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Supplementary Figure 10: a, b Band structure of symmetric and distorted 1T-VS2 along path
through Brillouin zone corresponding to 7 ×

√
3R30◦ cell. The low-energy band is half-filled

and splits into seven four-fold (including spin) bands between X and S. Thus, there must be 1/7
unoccupied states per V atom below the gap. c, d Orbital-resolved low-energy electron dispersion
of 1T-TaS2 and 1T-VS2 near Γ. In the case of 1T-VS2 there is an avoided crossing between V-d and
S-px,y bands.

The CDW does not create a complete gap at the Fermi level. For the commensurate structures
used to approximate the incommensurate CDW, it is the combination of the electron count and the
symmetry of the unit cell that guarantees a partially filled band, i.e., a metallic DOS. A complete
gap at the Fermi level in the CDW would require the splitting of bands that must be degenerate by
symmetry of the CDW structures (Supplementary Figure 10a, b), i.e., further symmetry breaking.

The particular form of the remaining spectral weight at the Fermi level resembling a down-
wards dispersing parabola around Γ in the CDW state (cf. Supplementary Figure 5) can be un-
derstood in terms of orbital band characters: In 1T-VS2, we find an avoided crossing of V-d and
S-px,y bands in the relevant region and thus a signification hybridization between these states
(Supplementary Figure 10c). This is opposed to, e.g., the case of 1T-TaS2, where the S-px,y states
are much lower in energy (Supplementary Figure 10d). Now, while the d-type bands are heavily
reconstructed due to the CDW, the p orbitals are less affected and can contribute to a new Fermi
surface in the case of 1T-VS2 in contrast to 1T-TaS2.
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Supplementary Note 12: XMCD sample morphology

Supplementary Figure 11: Magnetic properties of VS2: STM topograph illustrating the sample
morphology of the XMCD measured sample. Image size: 100× 50 nm2.

In the main manuscript, we describe the magnetic properties of VS2 as measured by x-ray absorption
spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). Supplementary Figure 11
displays the sample morphology of the investigated sample. Like the samples shown in the main
text, the island shape is dendritic. By comparison to substrate step edges, the monolayer height is
measured to be 7 Å. The sample has a monolayer coverage of about 40 %. Distinct height levels
indicate up to three layers, with multilayer VS2 making up approximately 25 % of the total amount
of VS2 present on the surface.
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Supplementary Note 13: DOS for SDW
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Supplementary Figure 12: a Scanning tunneling spectroscopy (STS) data taken with a Au tip
on monolayer VS2 at 7 K along with density-functional theory (DFT) calculated charge density
wave (CDW) density of states (DOS) with (red) and without (cyan) SDW. b The same data after
compressing calculated DOS to 80% of original size.

In Supplementary Figure 12a, we show the DOS of the CDW structure with and without spin density
wave (SDW), along with the experimental dI/dV spectra. The most prominent difference in the
DOS is the reduction of the gap size. For the 7×

√
3R30◦ structure, the gap shrinks from 0.21 eV

to 0.06 eV when the CDW is coupled to a SDW. Since the CDW gap is indeed much larger in DFT
than the experimental gap, this can be considered as an additional argument for the simultaneous
presence of a SDW. Taking into account the compression of the experimental data, discussed under
Supplementary Figure 7, the DOS of the coupled CDW–SDW is in even better agreement with the
experimental spectra, as seen in Supplementary Figure 12b.
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Supplementary Note 14: Comparison of DFT results with literature data for VSe2

a

b

c d

Supplementary Figure 13: Fermi surface of 7×
√

3R30◦ CDW of monolayer 1T-VSe2 averaged
over regions of different CDW orientations and comparison to experiment. a Fermi surface reprinted
with permission from Ref. 2 © 2018 American Physical Society. b Symmetrized Fermi surface
calculated in this work. c Energy isolines reprinted with permission from Ref. 7 © 2018 American
Chemical Society. d Symmetrized energy isolines calculated in this work.

In order to compare our DFT results for monolayer VSe2 to existing ARPES studies, we have
averaged our calculated Fermi surface of VSe2 in the 7×

√
3R30◦ CDW phase over all domains of

the CDW with respect to the lattice. In this way, many of the familiar ARPES characteristics of VSe2

are uncovered. If we compare to VSe2 systems where only the 7×
√

3R30◦ CDW was observed2, 3,
we see that the experimental data in Supplementary Figure 13a, taken from Ref. 2, shows excellent
agreement with our calculated Fermi surface in Supplementary Figure 13b. In particular, we observe
the formation of gaps between M and K, while the rest of the Fermi surface remains intact. The
apparent persistence of the six cigar-shaped electron pockets and the appearance of the hole pocket
around Γ are visible in both theory and experiment. That the ARPES measurements show such small
changes during the transition to the CDW phase can therefore be understood as stemming mostly
from the fact that it is an averaging technique. More subtle changes to the band structure around Γ
and the elliptic electron pockets cannot easily be compared by eye. All in all, our theoretical studies
match very well to experimental ARPES reports of VSe2 in the 7×

√
3R30◦ phase2, 3.

It must however be noted that most publications on VSe2 find, in contrast to our prediction,
a full gap at the Fermi level1, 4, 6, 7. Monolayer VSe2, especially in the light of recent works12, 18, 19,
seems to have a strong substrate-dependence. It is therefore likely that our calculation, which
is based on freestanding VSe2, does not capture the intricacies of all experimental systems. At
the Fermi surface, an (additional) 4 × 1 CDW found on some substrates1, 6, 12, 19, might induce

18
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an insulating state. A possible cause for the presence of different and competing CDW orders
might be substrate-induced strain20, which is not included in our DFT calculations. Supplementary
Figure 13c shows the Fermi surface and constant-energy contours at higher binding energies of
a VSe2 system where the Fermi surface is fully gapped at 25 K, taken from Ref. 7. In this case,
though our calculation in Supplementary Figure 13d does not predict the fully gapped surface, we
see that it captures the features of the band structure away from the Fermi level quite well. The
dissimilarities between VSe2 systems with different CDW orders might therefore pertain mostly to
the Fermi surface and the unoccupied states.
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Third publication:
Ab initio electron-lattice downfolding:
potential energy landscapes, anharmonicity,
and molecular dynamics in charge density
wave materials

13.1. Statement of personal contribution

This work has been published as a preprint in arXiv:2303.07261 and is submitted to SciPost Phys. It
has been realized in collaboration with J. Berges, E. G. C. P. van Loon, M. A. Sentef, S. Brener, M.
Rossi and T. O. Wehling. The development of the downfolded lattice models was lead by T. O. Wehling.
For the diagrammatic theory, J. Berges, E. G. C. P. van Loon and S. Brener have been consulted.
The molecular dynamics simulations have been supervised and initiated by M. Rossi with the i-PI
code, where J. Berges created the interface between the downfolded models and the i-PI code. The
benchmark has been performed by J. Berges, who created Fig. 7 consequently. The introductory Fig. 1
was created by J. Berges as well. Apart from that, all calculations have been performed by me. To be
more specific, setting up the downfolded models for all materials, benchmarking the potential energy
surfaces, and lastly, performing and analyzing the MD simulations. In the course of this I created Figs.
2, 3, 4, 5, 6, 8 and 9. Furthermore, I have written substantial parts of the manuscript, which have been
revised and edited by all authors of this work.

13.2. Positioning within the scientific landscape

The primary focus of this work revolves around the development of downfolded models, which
explicitly consider both electronic and lattice degrees of freedom. These models have been utilized to
explore CDW materials through MD simulations.

In the realm of scientific literature, only one article has reported molecular dynamics simulations for
an H-phase transition metal dichalcogenide, specifically NbS2 [177]. In this case, the authors conducted
full ab initio MD simulations on 3 × 3 supercells. They determined free energies and forces using DFT
calculations with the VASP software package [178–180]. As detailed in the computational section,
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they utilized AIMD (PIMD) simulations for twelve (six) picoseconds, highlighting the substantial
computational costs associated with full ab initio simulations.

In contrast, the newly developed method presented in this work demonstrates a computational
speedup of more than five orders of magnitude compared to full ab initio methods. This advancement
allows for simulations of an 18 × 18 supercell for 500 picoseconds. This breakthrough not only
eliminates finite-size effects [181] but also has the potential to approach the thermodynamic limit.

From a technical perspective, the approach developed here is considered an ab initio method rather
than a post-processing technique. This is because all components of the downfolded Hamiltonian
can be directly derived from first principles without requiring alterations. This stands in contrast
to machine learning or (density functional) tight-binding potentials, which often rely on parameter
training or fitting to specific datasets.

Although not demonstrated in this work, it is possible to utilize this method for the computation of
temperature-dependent vibrational quantities such as phonon frequencies and lifetimes [147, 148]. In
principle, the combination of PIMD simulations with computationally efficient downfolded models
offers an extension beyond conventional methods like the quasi-harmonic approximation and self-
consistent phonon theory, including the stochastic self-consistent harmonic approximation. This
extension is attributed to the explicit treatment of anharmonicity, as opposed to the effective harmonic
framework traditionally employed in these methods.

The downfolded lattice models developed in this work are applicable to materials under two condi-
tions. First, the material exhibits a distorted ground state in which the original atomic positions are still
meaningful. Complete reconstructions, including scenarios of bond breaking, are not compatible with
the chosen perturbative approach in these models. And second, the low-energy subspace significantly
influences the physical phenomena of interest, as it is the case for CDWs. In the model ansatz, the
low-energy electrons couple linearly to the nuclear degrees of freedom, which leads to anharmonic
Born-Oppenheimer potential energy surfaces that can describe CDW physics. To study polarons,
Refs. [182, 183] employ an approach based on the linear electron-phonon coupling as well. Thus, it is
anticipated that the downfolding methodology can be applied to explore polaron physics also.
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Abstract

The interplay of electronic and nuclear degrees of freedom presents an out-
standing problem in condensed matter physics and chemistry. Computational
challenges arise especially for large systems, long time scales, in nonequilib-
rium, or in systems with strong correlations. In this work, we show how down-
folding approaches facilitate complexity reduction on the electronic side and
thereby boost the simulation of electronic properties and nuclear motion—in
particular molecular dynamics (MD) simulations. Three different downfolding
strategies based on constraining, unscreening, and combinations thereof are
benchmarked against full density functional calculations for selected charge
density wave (CDW) systems, namely 1H-TaS2, 1T-TiSe2, 1H-NbS2, and a
one-dimensional carbon chain. We find that the downfolded models can re-
produce potential energy surfaces on supercells accurately and facilitate com-
putational speedup in MD simulations by about five orders of magnitude in
comparison to purely ab initio calculations. For monolayer 1H-TaS2 we re-
port classical and path integral replica exchange MD simulations, revealing
the impact of thermal and quantum fluctuations on the CDW transition.
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1 Introduction

The coupling of electronic and nuclear degrees of freedom is an extremely complex problem
of relevance to multiple branches of the natural sciences, ranging from quantum materials
in and out of thermal equilibrium [1–6] to chemical reaction dynamics [7,8]. Long-standing
problems include the simulation of coupled electronic and nuclear degrees of freedom for
large systems and large time scales, in excited states of matter or systems with strong
electronic correlations. A central contributor to these challenges is the complexity of
first-principles treatments of the electronic subsystem usually required to address real
materials.

Charge density wave (CDW) materials exemplify these challenges. The bidirectional
coupling between electrons and nuclei results in a phase transition, where the atoms of the
CDW material acquire a periodic displacement from a high-temperature symmetric struc-
ture [1, 3, 9]. Understanding the characteristics of the CDW phase transitions, the emer-
gence of collective CDW excitations, the control of CDW states, and excitation induced
dynamics of CDW systems [10–19] requires typically simulations on supercells involving
several hundred or thousand atoms, where eV-scale electronic processes intertwine with
collective mode dynamics at the meV scale. CDW systems thus define a formidable spatio-
temporal multiscale problem. Solutions to this problem can be attempted with variational
techniques [20–24], which neglect certain anharmonic effects like the anharmonic phonon
decay, or by trying to circumvent the multi-scale problem by scale-separation [25,26].

Corresponding complexity reduction strategies have been developed in distinct fields:
multi-scale coarse-grained models, machine-learning models [27–31], or (density func-
tional) tight binding potentials [32–53] have been put forward. In these methods, models
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Figure 1: Ab initio versus ab initio based downfolding approaches to coupled electron-
nuclear dynamics.

are defined by fitting semiempirical or “machine learned” (neural networks, Gaussian
processes, others) based parameter functions to reference data often taken from density-
functional theory (DFT) [54] calculations.

In the field of strongly correlated electrons, one also deals with minimal models, which
typically focus on low-energy degrees of freedom: The electronic system is divided into
high- and low-energy sectors. Then, the high-energy states are integrated out via field
theoretical or perturbative means, leaving an effective low-energy model [55]. Methods for
the derivation of model parameters include the constrained random phase approximation
(cRPA) [56–62], constrained density functional perturbation theory (cDFPT) [63–67], and
the constrained functional renormalization group [68–70]. The field theoretical integrating
out of certain electronic states is often called “downfolding”.

In this work, we demonstrate how downfolding approaches for complexity reduction
on the electronic side boost the simulation of coupled electronic and nuclear degrees of
freedom—in particular molecular dynamics (MD) simulations. The idea is to map the first-
principles solid-state Hamiltonian onto minimal quantum lattice models, where “minimal”
refers to the dimension of the single-particle Hilbert space. Three different downfolding
strategies based on constraining, unscreening, and combinations thereof, are compared
and demonstrated along example cases from the domain of CDW materials.

We start by introducing the first-principles electron-nuclear Hamiltonian and the min-
imal quantum lattice models together with the three downfolding schemes in Section 2.
Potential energy surfaces resulting from the downfolded models are benchmarked against
DFT for exemplary CDW systems in Section 3. MD simulations based on a downfolded
model are presented in Section 4, where the CDW transition of 1H-TaS2 is studied as
a function of temperature, and the computational performance gain from downfolding is
analyzed.
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2 From first-principles to minimal lattice models

The general Hamiltonian of interacting electrons and nuclei in the position representation
and atomic units, where in particular me = e = 1, reads

HFP = −
∑

i

∆i

2
−
∑

k

∆k

2Mk
+
∑

i<j

1

|ri − rj |
+
∑

k<l

ZkZl

|Rk −Rl|
−
∑

ik

Zk

|ri −Rk|
, (1)

where ri and Rk are electronic and nuclear positions, ∆i and ∆k are the corresponding
Laplace operators, and Zk and Mk are atomic numbers and nuclear masses. This Hamil-
tonian is also called “first-principles (FP) Hamiltonian”, since only fundamental laws (i.e.,
the Schrödinger equation, Coulomb potential, etc.) and fundamental constants (elemen-
tary charges etc.) enter. It accounts for full atomic scale and chemical details. Numerical
treatments leading directly from this Hamiltonian to physical results are called “ab initio”,
cf. Fig. 1 (left).

In principle, DFT provides us with a tool to calculate the total (free) energy and forces
given fixed atomic positions Rk as needed for MD simulations in the Born-Oppenheimer
approximation [71]. However, since DFT calculations with large supercells are prohibitively
expensive, it is desirable to obtain these energies and forces in a cheaper way, while re-
maining close to the quantum mechanical accuracy of ab initio simulations.

Here, our goal is to use a reduced low-energy electronic Hilbert space for this purpose,
with only a few orbitals per unit cell, cf. Fig. 1 (right).

We thus aim to work with a lattice model

H = Hel + Hn + Hel-n, (2)

which consists of the low-energy electronic subsystem

Hel = H0
el + H1

el + HDC (3)

with one-body

H0
el =

∑

kn

ε0knc
†
knckn, (4)

Coulomb interaction

H1
el =

1

2N

∑
Uqkmnk′m′n′c

†
k+qmc†k′n′ck′+qm′ckn, (5)

and double counting (HDC) parts, the nuclear subsystem

Hn = −
∑

k

∆k

2Mk
+ V 0(u1, . . . ,uNn), (6)

and a coupling between the electronic and nuclear degrees of freedom

Hel-n =
∑

qkmn

Vqkmn(u1, . . . ,uNn)c†k+qmckn. (7)

The electronic subspace is spanned by a set of low-energy single particle states |kn⟩,
with k the crystal momentum, and n summarizing further quantum numbers (band index,

spin). c†kn (ckn) are the corresponding electronic creation (annihilation) operators. N is
the number of k points summed over. The nuclear degrees of freedom are expressed in
terms of displacements (u1, . . . ,uNn) ≡ u = R − R0 from a relaxed reference structure
R0.

4
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Hel describes the low-energy electronic subsystem in the non-distorted configuration
(u = 0) with the effective electronic dispersion ε0kn and an effective Coulomb interaction U .
In this work, ε0kn is always taken from the DFT Kohn-Sham eigenvalues of the undistorted
reference system. Whenever U ̸= 0, a term HDC has to be added to avoid double counting
(DC) of the Coulomb interaction already contained in the Kohn-Sham eigenvalues (see
Appendix A).

V 0 plays the role of an effective interaction between the nuclei, or equivalently a par-
tially screened deformation energy, which accounts for the Coulomb interaction between
the nuclei and the interaction between the nuclei and the high-energy electrons not ac-
counted for in Hel. In this work, we expand V 0 to second order in the atomic displacements
u,

Hdef = V 0 = −
∑

i

F0
i ui +

1

2

∑

ij

uiCijuj , (8)

where F0 is a force vector and C a force constant matrix. The coupling between the
displacements and the low-energy electronic system from Eq. (7) is expanded to first
order in the displacements u:

Hel-n = u
∑

qkmn

dqkmnc
†
k+qmckn. (9)

Here, dqkmn = ∇uVqkmn(u), and u · dqkmn plays the role of a displacement-induced
potential acting on the low-energy electrons.

MD simulations are a major motivation for constructing the low-energy electronic
model. These simulations are here performed at various temperatures, using an electronic
model that is established based on a single DFT and density functional perturbation theory
(DFPT) calculation. The effective free energy of the system at given nuclear coordinates
R = R0 + u is

F (u) = −kT logZ(u). (10)

Here, the partition function Z(u) = Trel exp(−βH) traces out the electronic degrees of
freedom but not the nuclei. Thus, F (u) plays the role of a potential energy surface,
which governs the dynamics of the nuclei in Born-Oppenheimer approximation. Forces
acting on the nuclei are then F = −∇uF (u) and can be conveniently obtained using the
Hellman-Feynman theorem (see Appendix B):

F = −
∑

qkmn

dqkmn⟨c†k+qmckn⟩. (11)

C, U , and d entering the model Hamiltonian H are not bare but (partially) screened
quantities. The (partial) screening has to account for electronic processes not contained
explicitly in H. Here, we consider three different schemes to determine C, U , and d:

Model I strictly follows the idea of the constrained theories [57,64]. In these theories, the
high-energy electronic degrees of freedom are integrated out to derive the low-energy
model. The parameters entering the low-energy Hamiltonian are therefore “partially
screened” by the high-energy electrons. In particular, we use cRPA for the Coulomb
interaction U and cDFPT for the displacement-induced potential d and for the force
constant matrix C.

Model II again applies U from cRPA. Now, however, d and C are based on the unscreen-
ing of the respective DFPT quantities using U inspired by Ref. [72].

5
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Model III considers a non-interacting low-energy system, U = 0. d is taken from DFPT.
C is obtained from unscreening DFPT. This approach is inspired by Ref. [73].

In all models, the force vector F0 entering Hdef in Eq. (8) is chosen to guarantee that
dF/dui|u=0 = 0, i.e., vanishing forces also in the models for the reference structure R0.
The term −F0u, thus, plays the role of a “force double counting correction” similar to
Refs. [63, 64].

Since the downfolding is done on the primitive unit cell for u = 0, and we are interested
in the potential energy surface for displacements on supercells, we have to map the model
parameters ε0, C, U , and d from the unit cell to the supercell. For displacements with
the supercell periodicity, we can set q = 0 in Eq. (9) and—within the random phase
approximation (RPA)—also in Eq. (5) and drop the corresponding subscripts.

We have implemented this mapping for arbitrary commensurate supercells defined by
their primitive lattice vectors Ai =

∑
j Nijaj with integer Nij [74]. It relies on localized

representations in the basis of Wannier functions and atomic displacements [75], for which
the mapping is essentially a relabeling of basis and lattice vectors.

2.1 Unscreening in models II and III

The central idea of models II and III is to choose C entering Hdef such that d2F/duiduj |u=0 =
CDFT
ij , where the latter are the DFT force constants, accessible via DFPT. In model II we

additionally require that the screened deformation-induced potential and accordingly the
screened electron-phonon vertex at the level of the static RPA matches the corresponding
DFPT quantity.

The unscreening procedure is represented diagrammatically: The Green’s function
resulting from the undistorted Kohn-Sham dispersion ε0kn is shown as a black arrow line,
G → . We use a wavy line to denote the Coulomb interaction U → obtained from
cRPA. The deformation-induced potential obtained from DFPT, which is by definition
fully screened, is represented as a black dot, dDFT = dIII → .

2.1.1 Model II

We define the unscreened deformation-induced potential dII → (red dot) entering model
II via Eq. (9) as

= − , (12)

which can be written in shorthand notation as dII = d− UΠd, or explicitly as

dII
kmn = dkmn − 1

N

∑

k′m′n′αβ

φ∗
kαmφkβnUαβφk′αm′φ∗

k′βn′
f(εk′m′) − f(εk′n′)

εk′m′ − εk′n′
dk′m′n′ . (13)

Here, εkn, φkβn are the eigenvalue and -vector of band n from the undistorted Wannier
Hamiltonian, and Uαβ is the cRPA Coulomb interaction in the orbital basis.

The definition in Eq. (12) implies that the static RPA screening of the deformation-
induced potential in model II indeed matches the DFPT input, since

= +

= + + + . . . (14)
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Table 1: Comparison of downfolding models

Model I Model II Model III

Coulomb interaction [Eq. (5)] cRPA cRPA —

Electron-phonon coupling1 [Eq. (9)] cDFPT DFPT (⋆)* DFPT

Force constants [Eq. (8)] cDFPT DFPT (⋆)* DFPT (⋆)*

1 as in displacement-induced potential
* (⋆) refers to unscreened quantities.

The force constant matrix C = CDFT − ∆CRPA entering model II is obtained by un-
screening the DFPT fully screened force constants CDFT on the RPA level, i.e., we subtract
the second-order response in RPA of the electronic system to the atomic displacements,
as given by the bubble diagram

∆CRPA = . (15)

2.1.2 Model III

Again, we construct the total free energy to be exact in second order. As in model II,
we have to subtract the unwanted second order, C = CDFT − ∆CIII. The change in the
interatomic force constants for this non-interacting model is given by the bubble diagram
(cf. Appendix B)

∆CIII = . (16)

The unscreening is exact when the DFT force constants, the bubble diagram, and the free
energy are evaluated at the same electronic temperature TDFT. This electronic tempera-
ture facilitates the treatment of metals within DFT calculations. However, on the model
side we have the freedom to evaluate the free energy at a different electronic temperature
TM . Interestingly, the resulting second order is still a very good approximation to the
DFT force constants at temperature TM [73, 76], as it will be demonstrated in this work.

This completes the definitions of models I, II, and III, which are also summarized in
Table 1. In the following, we will explain and demonstrate the downfolding according to
models I–III along the case example of monolayer 1H-TaS2.

3 CDW potential energy landscapes in 1H-TaS2: DFT vs
downfolding

Monolayer 1H-TaS2 exhibits a 3 × 3 CDW [77–79], where atoms are displaced from their
symmetric positions as illustrated in Fig. 2a. Coupling between electrons within the low-
energy subspace (highlighted in Fig. 2b) and the lattice distortions u is responsible for the
3 × 3 CDW instability [66]. Hence, we choose these three bands to span the low-energy
subspace of electrons in the Hamiltonian H.

We present practical calculations using downfolding models I–III and benchmark the
resulting potential energy landscapes against full DFT calculations. Details of the DFT
calculations are presented in Appendix C. The energy landscapes will be illustrated along
the displacement direction of the CDW distortion: u = α(RCDW −R0). Here, R0 is the
symmetric relaxed structure, and RCDW is the CDW structure as obtained by DFT. α
plays the role of a scalar coordinate, where by construction α = 0 yields the symmetric

7
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Figure 2: (a) Crystal structure of the 3×3 CDW in 1H-TaS2 (displacements are increased
by a factor of 5 for visibility). (b) Electronic bands of 1H-TaS2 from DFT (gray) and
Wannier bands (blue dashed), which span the cDFPT active subspace highlighted in yel-
low. (c) Born-Oppenheimer potential energy surface from DFT for the 3 × 3 CDW in
1H-TaS2 (blue crosses). Its negative curvature matches the DFPT parabola (gray curve).
The cDFPT parabola, which is not screened by the active subspace electrons, is opened
upward (dark gray curve).

state and α = 1 the CDW displacement pattern. Note, however, that the models readily
yield the full energy landscape for arbitrary displacements.

Model I starts with partially screened force constants C from cDFPT in Hdef, which
exclude screening processes taking place within the low-energy electronic target space
highlighted in Fig. 2b. The “bare” harmonic potential energy versus displacement curves
resulting from Hdef (dark gray cDFPT parabola) is compared to full DFT total energy
calculations (crosses) in Fig. 2c. The upward opened cDFPT parabola shows that the
CDW lattice instability is induced by the electrons of the target subspace, in accordance
with Ref. [66].

We account for density-density type Coulomb matrix elements in Hel, which we ob-
tain from cRPA, and solve the resulting model Hamiltonian H for the potential energy
landscape F (u) in Hartree approximation. See Appendix A for a detailed description of
the Hartree calculations. The resulting total (free) energy versus displacement curve is
compared to DFT in Fig. 3a. Model I generates an anharmonic double-well potential and
thus features a CDW instability like DFT, which is qualitatively reproduced. Nevertheless,
there is some deviation of model I from DFT, which originates mainly from the harmonic
term. In comparison to DFT, model I and its subsequent Hartree solution involve two
additional approximations, which could be responsible for the deviations to second order:
neglecting non density-density type Coulomb terms, and neglecting exchange-correlation
effects.

Model II suppresses deviations from the DFT potential energy landscape to second
order in u by construction: Since the fully screened deformation energy from DFPT
agrees with the DFT energy versus displacement curve (see Fig. 2b), as it must be, also
the solution of the downfolded model II matches DFT to second order in the displacement
(Fig. 3b). The overall match between the downfolded model II and DFT is clearly much
better than for model I and indeed almost quantitative also at displacements |α| > 1,
where anharmonic terms are substantial.

Also model III, which involves non-interacting electrons coupled to lattice deforma-
tions via fully screened DFPT displacement-induced potentials, recovers the DFT potential

8
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Figure 3: Free energies of the 3 × 3 CDW mode in 1H-TaS2 from DFT (blue crosses)
and downfolded models. (a) Interacting model with partially screened quantities from
constrained theories cRPA and cDFPT (start from cDFPT parabola). (b) Interacting
model with partially screened quantities from unscreening (start from DFPT parabola).
(c) Non-interacting model with fully screened quantities (start from DFPT parabola).
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Figure 4: Free energies of (a) the 2 × 2 CDW in 1T-TiSe2, (b) the CDW in the carbon
chain, and (c) the 3 × 3 CDW in 1H-NbS2. The blue crosses are data points from DFT
and the orange curves are the model III results.

energy vs displacement curve for the 3 × 3 CDW distortion in 1H-TaS2 almost quantita-
tively (Fig. 3c) and even slightly better than model II.

We also applied downfolding model III to monolayer 1T-TiSe2, a one-dimensional car-
bon chain, and monolayer 1H-NbS2 as examples of further CDW materials. The resulting
potential energy landscapes in Fig. 4 show the agreement between DFT and the down-
folded model. Hence, model III captures the most important anharmonicities in these
cases. CDWs are especially, but not exclusively, found in low-dimensional systems. As a
consequence, we focussed on low-dimensional materials for this benchmark. However, the
downfolding formalism is independent of dimensionality.

3.1 Influence of Wannier orbitals and electronic Hilbert space dimension

Since the electronic Hamiltonian [Eq. (3)] is represented via Wannier functions, we have
a certain freedom of choice. From a computational standpoint, we are aiming for a max-
imal reduction of the dimension of the single-particle Hilbert space, while maintaining a
reasonable level of accuracy. Thus, the natural question arises: How many and which
Wannier orbitals to choose to create the single-particle Hilbert space?

9
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Figure 5: Free energies of the 3 × 3 CDW in 1H-TaS2. We show DFT data points (blue
crosses), model III results for three Wannier orbitals (orange solid curve), and model III
results for eleven Wannier orbitals (blue dashed curve).

For 1H-TaS2, we compare a “minimal” and a “maximal” model involving, respectively,
three and eleven Wannier orbitals per unit cell: In the case of three orbitals, there are
three d-type orbitals on the Ta atom (dz2 , dx2−y2 , dxy), and in the case of eleven orbitals,
there are five d-type orbitals on the Ta atom (dz2 , dxz, dyz, dx2−y2 , dxy) and three p-type
orbitals on both S atoms (px, py, pz). Note, that these are the Hilbert space dimensions
on the primitive unit cell. On the 3 × 3 supercell calculations, the dimensions are 27 and
99 respectively.

We compare the energy-displacement curves resulting from model III for both Hilbert
space sizes to DFT in Fig. 5. While the results are similar in both cases, the eleven orbital
model is slightly closer to full DFT than the three orbital model. In the eleven-orbital
model, the displacement potentials directly induce changes in the d-p hybridization. We
speculate that anharmonicities associated with these rehybridization terms are responsible
for the slightly improved accuracy of the eleven band model.

3.2 Electronically generated anharmonicities

Models I, II, and III are based on the electronic structure at the symmetric equilibrium
positions of the atoms, as well as the linear response to displacements that is accessible
in DFPT. By construction, models II and III guarantee agreement with the full DFT
calculation at small displacements u, up to order u2 in the energy and up to order u in
the electronic structure. One might wonder if these models, based on linear response, can
ever be useful for the description of the distorted phase, which is necessarily stabilized by
anharmonicity and terms of order u3, u4, and beyond.

The close match between the significantly anharmonic DFT potential energy land-
scapes and models II and III in Figs. 3, 4, and 5 at |α| > 1 might thus come as a surprise.
The reason behind the good match even in the anharmonically dominated region can
be understood in the following sense: linear changes in the electronic potential lead to
non-linear changes in eigenvalues of the electronic Hamiltonian and therefore in the total
energy. Thus, if the low-energy electrons are responsible for the anharmonicity that sta-
bilizes the CDW, then a low-energy electronic model based on DFPT quantities has the
possibility to describe this.
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Figure 6: (a) Free energy and (b) anharmonic part of the free energy for 1H-TaS2 at
electronic smearings kT = 14 meV (blue), 68 meV (orange), 680 meV (dark red) and for
1H-WS2 at smearing kT = 68 meV. Solid lines originate from model III and crosses from
DFT. Even though the inputs for model III (see Table 1) were generated at the electronic
temperature TDFT = 68 meV, we can still evaluate the free energy at higher or lower
model temperatures TM and get a good agreement with DFT.

The emergence of electronically driven anharmonicities can be illustrated with an elec-
tronic two-level system, H0

el = ∆σz, coupled linearly to a nuclear displacement u through
Hel-n = u · dσx [following Eq. (9)]. Here, σi denote Pauli matrices, 2∆ is the level-
splitting and d encodes the strength of the coupling of electrons to nuclear displacements
as in Eq. (9). The ground state eigenvalue of H0

el + Hel-n reads E0 = −
√

∆2 + (du)2 ≈
−∆(1 + 1

2

(
du
∆

)2 − 1
8

(
du
∆

)4
+ . . . ). Thus, electronically generated anharmonicities appear

at displacements on the order u ≈ ∆/d. Taking the level splitting ∆ as a proxy for the
electronic bandwidth W ∼ ∆ or for the inverse of the density of states at the Fermi level
ρ ∼ 1/∆, we have electronically generated anharmonicities appearing at displacements
on the order u ≈ W/d ≈ 1/(ρd). In other words, systems with strong electron-lattice
coupling and high density of states at the Fermi level are expected to be domains where
the linearized electron-lattice coupling preferably works. In addition, the approximation
of a linearized electron-lattice coupling as in Eq. (9) has also been successfully applied to
describe polaronic lattice distortions [80,81].

This hypothesis is further corroborated by the comparison of energy-displacement
curves for 1H-TaS2 at different electronic smearings to those of the related system 1H-
WS2, in Fig. 6.

The electronic band structure of WS2 [82] is very similar to the one of TaS2 (see
Fig. 2b) with the key difference that it has one additional valence electron per unit cell.
Hence, the half-filled conduction band of TaS2 becomes completely filled in the WS2 case,
which renders WS2 semiconducting and quenches the response of the low energy electronic
system. Similarly, an increased electronic smearing/temperature quenches the response of
the low-energy electronic system. Both WS2 and TaS2 at high smearing, are dynamically
stable, which is indicated by the positive second order of the free energy in Fig. 6a. This
tells us that at least the harmonic term is significantly affected by the occupation of the
low-energy subspace. Furthermore, in Fig. 6b, we show the corresponding anharmonic part
of the free energies. The flat shape of the high smearing (dark red) and the WS2 (gray)

11

Ab initio electron-lattice downfolding: potential energy landscapes, anharmonicity, and ... 116



SciPost Physics Submission

curves show that the anharmonicity is strongly reduced compared to the low smearing
cases. These observations suggest that the anharmonicities associated with the CDW
formation in 1H-TaS2 indeed originate to a large extent from non-linearities in the response
of the low-energy electronic system to the external displacement-induced potentials.

Anharmonicities associated with the non-linear low-energy electronic response com-
prise single-particle and Coulomb contributions. We analyze these contributions diagram-
matically in the following for the grand canonical potential Ω:

Model III has the Coulomb contributions accounted for indirectly via the fully screened
DFPT deformation-induced potential and the diagrams contributing to anharmonicities
in Ω are of the following types:

ΩIII
anh = + + . . . (17)

Model II has explicit Coulomb interaction entering and the diagrammatic content is
determined by the approximation used to treat the Coulomb interaction in model II. When
solving model II in self-consistent Hartree approximation, we generate terms screening the
deformation-induced potential according to Eq. (14). Thus, the anharmonic contributions
to the grand potential in model II, ΩII

anh, contain those diagrams also present in model III
but also further ones. For example, at order u4, model II contains a diagram of the form

, (18)

which is not present in model III.
Both the Green’s function (not shown here) and total energy or grand canonical po-

tential in models II and III agree at small displacements (by construction) and disagree at
higher orders in u, and their difference scales with the strength of the Coulomb interac-
tion. Fundamentally, the Green’s function of the exact DFT solution contains interaction-
mediated anharmonic response to displacements, just like model II does. At the same
time, in our current implementation model II only contains Hartree-like diagrams of this
kind and lacks other diagram topologies present in the exact DFT solution. These ad-
ditional diagrams can lead to substantial error cancellation. Thus, it is hard to make
general arguments about which model to prefer beyond order u2, given the opaqueness
of the underlying DFT exchange-correlation functional. We speculate that cancellations
similar to those occurring in second order [73, 76] in u could be also effective in higher
orders. In our numerical studies, we find that the total energy curves of model II and III
are relatively close for the systems studied here.

4 Downfolding-based molecular dynamics

So far we have seen that the downfolded models can reproduce total free energies from
DFT. In the following Section 4.1, we assess the computational speed of these models,
which ultimately paves the way to enhanced sampling simulations based on MD. As a
demonstration of this enhancement, we perform the downfolding-based MD for the case
example of monolayer 1H-TaS2 in Section 4.2.
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4.1 Benchmark of model III against DFT: force and free energy calcu-
lations

To demonstrate the performance gain of model III, we benchmark the calculation of forces
and free energies against DFT. For this benchmark, we perform structural relaxations of
1H-TaS2 starting from random displacements |ui| < 0.01 Bohr—to mimic the conditions
of a MD simulation step—on different supercells. Durations are averaged over five steps,
excluding the first step starting from the initial guess for the density in the DFT case. Cal-
culations are performed on identical machines, using equivalent computational parameters
(cf. Appendix C). The results are shown in Fig. 7.

More precisely, we benchmark two implementations of model III: Calculations on finite
k meshes, as shown in the previous Section 3, currently require a lot of memory to store
the deformation-induced potential in the real-space (dR,R′) and reciprocal-space (dq=0,k)
representations, which limits the system to similar sizes as achievable in DFT (Fig. 7a).
Thus, in this section, we instead use a sparse representation, which uses significantly
less memory (Fig. 7b), reaching linear scaling with the system size (cf. Ref. [46]), but is
currently restricted to k = 0, appropriate for large supercells. It also increases the time
needed to initialize the program (Fig. 7c, d), which however does not influence the MD
simulations. Comparing to the same DFT program we use to obtain the parameters for
the downfolded model, i.e., the plane-wave code Quantum ESPRESSO [83,84], we find
a speedup of about five orders of magnitude in the downfolding approach for the relevant
systems (Fig. 7e, f). Note that our implementation is based on NumPy and SciPy [85,86]
and that optimizations both on the ab initio and on the model side are possible.

The computational advantage from the non-interacting model III over DFT is easily
explained: While DFT relies on the self-consistent solution of the Kohn-Sham system,
model III only needs a single matrix diagonalization to solve the Schrödinger equation.
Most importantly, through downfolding, the matrix in model III only covers the low-
energy subspace of the electronic structure, as opposed to DFT, whose matrix accounts
for low- and high energy bands. In fact, most of the time is spent on setting up the
Hamiltonian matrix and evaluating the forces [Eq. (11)]. To guarantee that the former
is Hermitian and to make the use of sparse matrices more efficient, we have symmetrized
dR,R′αβ = d∗

R−R′,−R′βα and neglected matrix elements smaller than 1 % of the maximum,
the effect of which on the free-energy landscape is negligible.

4.2 Enhanced sampling simulations based on downfolded model III

We now perform enhanced sampling simulations based on MD with the downfolding
scheme defined by model III. To this end, we implemented a Python-based tight-binding
solver [74], which delivers displacement field dependent forces and total free energies to
the i-PI (path integral) MD engine [87].

As stated in the previous section, we find a speedup of about five orders of magnitude in
the downfolding approach. Thus, the downfolding approaches make larger system sizes and
longer time scales well accessible. While for instance Ref. [88] simulates the dynamics of
3×3 supercells of 1H-NbS2 with AIMD for time scales of about 6 to 12 ps, the downfolding-
based MD allows us to address much larger 18 × 18 supercells for time scales of about
500 ps using a similar amount of CPU core hours.

For monolayer 1H-TaS2, we performed classical (and path integral) replica exchange
MD simulations (see Appendix D) on the 18 × 18 supercells using 26 replicas (and 10
beads) spanning a temperature range from 50 to 200 K in the canonical (NVT) ensemble.
In each MD step ν we record the position vectors of all nuclei Rl(ν, T ) for all temperatures
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Figure 7: Comparison of (a, b) memory requirements, (c, d) initialization times, and
(e, f) durations of energy and forces calculations using Quantum ESPRESSO (blue)
and our Python implementations of model III (orange) (cf. Appendix C). We consider
(a, c, e) k meshes of constant density and (b, d, f) the Γ-only case, for which model III has
been implemented using arrays of sparse matrices for the electron-phonon coupling diαβ.
The DFT calculations have been parallelized over plane waves and real-space grids (-nk
1 -nd 1) using 40 CPUs; the model calculations have been run serially. In both cases,
Intel Skylake 6148 processors have been used.
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Figure 8: Structure factors ⟨S(q, T )⟩ [Eq. 19] for 1H-TaS2 on the 18× 18 supercell. (a–d)
Structure factor SCL from classical MD. (e–h) Structure factor SPI from PIMD. The peaks
at q = 2/3 ΓM and q = K for T = 50 K are characteristic for the 3 × 3 CDW. At higher
temperatures, the peaks are broadened and reduced in intensity. (i–l) Ratio of structure
factors SCL/SPI from classical and path integral MD. A value close to 1 (indicated in
white) corresponds to minimal differences between classical and quantum simulations.

T . Defining the structure factor

S(q) =
1

N

∣∣∣∣∣
N∑

l=1

e−iq·Rl

∣∣∣∣∣

2

(19)

for a given atomic configuration Rl, we obtain the temperature-dependent MD ensemble
averaged structure factors ⟨S(q)⟩T . We confine the summation to the positions of the
tantalum atoms and normalize the structure factor such that S(q = 0) = 1.

The resultant structure factor maps on the first Brillouin zone of 1H-TaS2 are shown
in Fig. 8 for temperatures T = 50, 81, 96, 200 K 1. The upper row corresponds to clas-
sical MD simulations. At 50 K, we find peaks in the structure factor at q = 2/3 ΓM,
which are characteristic of the 3 × 3 CDW. These peaks broaden and become reduced
in intensity upon increasing temperature. Fig. 9 shows the temperature dependence of
⟨S(q = 2/3 ΓM)⟩T in more detail. We see the aforementioned temperature-induced re-
duction in ⟨S(q = 2/3 ΓM)⟩T with an inflection point around TCL ≈ 96 K. We take this
inflection point as the finite system size approximation to the phase transition temperature
that would be expected for an infinitely large simulation cell.

While a 3×3 CDW has been observed in monolayer 1H-TaS2 [89], the exact transition
temperature is not known in this system. For the three-dimensional bulk of 2H-TaS2

CDW, transition temperatures on the order of T exp ≈ 75 K have been reported [90–95].

1We show those q-vectors compatible with the periodic boundary conditions on the 18× 18 unit cell.
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Figure 9: Structure factor ⟨S(q = 2/3 ΓM, T )⟩ at the characteristic CDW wavevector q =
2/3 ΓM for the classical MD (light blue) and path integral MD (blue). The effective shift
of the PIMD curve toward the experimental value can be attributed to nuclear quantum
effects.

Our classical finite system size estimate exceeds these temperatures by about 25 %. One
possible origin of this deviation can be quantum fluctuations in nuclear degrees of freedom.

Therefore, we performed path integral MD (PIMD) replica exchange simulations to
assess the influence of nuclear quantum effects on the CDW formation. The PIMD struc-
ture factor maps in the middle row of Fig. 8 behave qualitatively similar to the classical
counterpart. Their ratio is quantitatively illustrated in the lowest row. The overall area
of the Brillouin zone turns from blue to white by heating up the system. Thus, as ex-
pected, the classical and quantum simulations agree at high temperatures. However, the
CDW fingerprints (q = 2/3 ΓM and q = K) clearly increase in intensity and survive at
higher temperatures in the classical case. Note that while there is no phonon instability
at q = K, the corresponding displacements are commensurate with a 3× 3 superstructure
and couple anharmonically to the soft modes at q = 2/3 ΓM. This explains the high ratios
at the Brillouin-zone corners in Fig. 8 (i–k), especially in the vicinity of the transition
temperature.

This difference between classical and quantum simulations can be inspected in more
detail in Fig. 9. While the qualitative shape of the PIMD curve (dark blue) is similar
to the classical MD (light blue) simulation, we find an effective shift of the curve and
an inflection point at TPI ≈ 82 K. Thus, quantum effects can significantly reduce the
estimated CDW transition temperature as compared to the classical estimate and lead to
a closer match with experiment.

From these demonstrator calculations it becomes clear that the downfolding-based
MD developed in this work opens the gate for precise computational studies of CDW
(thermo)dynamics, which were inaccessible in the domain of ab initio MD hitherto.

5 Conclusions

We presented three downfolding schemes to describe low-energy physics of electron-lattice
coupled systems—in particular CDWs—on a similar level of accuracy as full ab initio DFT:
model I is based on constrained theories and models II and III are based on unscreening,
where model II features explicit Coulomb interactions and model III is effectively non-
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interacting. The central goal of these downfolding schemes is to reduce the complexity of
first-principles electronic structure calculations. This is achieved by mapping the general
solid-state Hamiltonian onto minimal quantum lattice models with only a few localized
Wannier orbitals per unit cell. The solution of these models is significantly faster than
DFT. For model III, we found a speedup of about five orders for the example case of
monolayer 1H-TaS2. Despite this enormous speedup and an complexity reduction, we
demonstrated a quantitative recovery of DFT potential energy surfaces in downfolded
models II and III.

As a demonstration, we performed classical and path integral MD simulations using
model III of the 1H-TaS2 CDW systems. The downfolding-based speedup opens the gate
for enhanced sampling techniques and path integral simulations of nuclear quantum effects
on the CDW transition. This makes downfolding models the method of choice for precise
computational studies of dynamics and thermodynamics in CDW systems, which were
hitherto largely inaccessible to ab initio MD.

While we focussed, here, on Born-Oppenheimer MD, the Hamiltonians resulting from
downfolding models I–III are generic and likely applicable also when dealing with non-
adiabatic phenomena, electron-lattice coupled dynamics in excited electronic states, and
situations where strong electron-electron correlations are at play. Due to the explicit
account of Coulomb interactions in models I and II, these schemes offer themselves for
treatments of situations where electronic interaction effects beyond semilocal DFT are to
be included in studies of coupled electron-nuclear dynamics.

Future applications of the downfolding schemes developed here might reach to the
physics of (nonequilibrium) phase transitions involving CDW order [10–18] or the interplay
of correlations and (dis)ordering [19,96] as well as driven quantum systems [4–6].
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A Free energy calculations of the downfolded models in
Hartree approximation

The Coulomb interaction in models I and II renders the electronic Hamiltonian inter-
acting and requires approximate treatments. Here, we solve the interacting Hamiltonian
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in Hartree approximation, which is the simplest mean-field approximation and as such
requires a self-consistency loop.

For the Coulomb interaction, we assume here a density-density type interaction

H1
el =

1

2N

∑

qkk′αβ

Uq
αβc

†
k+qαc

†
k′βck′+qβckα (20)

with Uq
αβ being cRPA density-density matrix elements evaluated at momentum transfer

q.
The Hartree decoupling of Eq. (20) reads

H1
el =

1

N

∑

kk′αβ

Uq=0
αβ

(
c†kαckα

〈
c†k′βck′β

〉
−1

2

〈
c†kαckα

〉〈
c†k′βck′β

〉)
. (21)

Since the DFT input parameters of models I and II already contain Coulomb contributions,
we have to avoid double counting. The hopping terms t0kαβ stem from the Kohn-Sham
eigenvalues of the undistorted structure, which contain (among others) a Hartree term.
Here, we choose HDC to compensate for the Hartree term of the undistorted structure:

HDC = − 1

N

∑

kk′αβ

Uq=0
αβ

(
c†kαckα

〈
c†k′βck′β

〉
0
−1

2

〈
c†kαckα

〉
0

〈
c†k′βck′β

〉
0

)
, (22)

where ⟨. . . ⟩0 denotes expectation values obtained for the undistorted structure.

We introduce the Hartree potentials Uα and U
0
α for the distorted and undistorted

structures, respectively,

Uα =
∑

β

Uq=0
αβ nβ and U

0
α =

∑

β

Uq=0
αβ n0

β, (23)

where n
(0)
β = 1

N

∑
k′β⟨c

†
k′βck′β⟩(0) denotes local orbital occupations. Then, the electronic

mean-field Hamiltonian written in the Wannier orbital basis of the supercell reads

Hel + Hel-n =
∑

kαβ

(
t0kαβ + udkαkβ + (Uα − U

0
α)δαβ

)
c†kαckβ − 1

2

∑

αβ

Uq=0
αβ (nαnβ − n0

αn
0
β).

(24)

This Hamiltonian is solved self-consistently. The converged electronic dispersion εkn
and occupations nα are used to determine the free energy:

Fel =
2

Nk
kBT

∑

nk

ln
(
f
[
−(εkn − µ)/kT

])
+ µNel −

1

2

∑

αβ

Uq=0
αβ (nαnβ − n0

αn
0
β). (25)

The Coulomb matrix Uq
αβ contains one divergent eigenvalue for q → 0, which is as-

sociated with the homogeneous charging of the system. Since we are working at fixed
system charge, we exclude the divergent contribution of Uq

αβ. In practice we perform the
eigenvector decomposition of Eq. (15) from Ref. [97] and exclude the contribution from
the leading eigenvector.
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B Perturbation expansion of grand potential and free en-
ergy

Changes of the grand potential of non-interacting electrons due to atomic displacements
can be straightforwardly evaluated using diagrammatic perturbation theory [98]:

Ω = Ω
∣∣
0

+
∑

i

Ω
(1)
i

∣∣
0
ui +

1

2

∑

ij

Ω
(2)
ij

∣∣
0
uiuj + . . . (26)

≡ Ω
∣∣
0

+ + + . . . , (27)

Without loss of generality, we consider q = 0 in Eq. (9) and drop the corresponding
subscript.

In first order, we then have

Ω(1) =
kT

N

∑

knν

dknn
1

iων − εkn + µ
=

1

N

∑

kn

dknnf(εkn − µ), (28)

with the Matsubara frequency ων = (2ν + 1)πkT .
In second order, we have

Ω(2) =
kT

N

∑

kmnν

dkmn

1

iων − εkm + µ

1

iων − εkn + µ
dT
knm (29)

=
1

N

∑

kmn

dkmn

f(εkm − µ) − f(εkn − µ)

εkm − εkn
dT
knm. (30)

We deliberately have omitted the superscript zero from εkn [cf. Eq. (3)] as in our models
with linear electron-phonon coupling these formulas also hold for u ̸= 0 as long as d is
represented in the electronic eigenbasis.

The number of electrons Nel is typically conserved in DFT and MD calculations, so
we are instead interested in the canonical ensemble and the free energy

F (Nel) = Ω(µ(Nel)) + µ(Nel)Nel. (31)

Its first derivative with respect to displacements is

F
(1)
i =

dF

dui
=

∂Ω

∂ui
+
[∂Ω
∂µ

+ Nel

] dµ

dui
= Ω

(1)
i , (32)

since ∂Ω/∂µ = −Nel. In other words, the expression for the forces [cf. Eq. (11)] is the
same in the canonical and the grand-canonical ensemble.

For the unscreening of the force constants (cf. Section 2.1), we also need access to the
second derivative of the free energy at constant electron density,

F
(2)
ij =

dF
(1)
i

duj
=

∂Ω
(1)
i

∂uj
+

∂Ω
(1)
i

∂µ

dµ

duj
. (33)

Expectedly, the first term on the right is Ω
(2)
ij from Eq. (30). Here, the second term does

not vanish, at least not for monochromatic perturbations with q = 0 [99]. The change of
the chemical potential upon atomic displacements follows from the electron conservation,

0
!

=
dNel

du
=

1

N

d

du

∑

kn

f(εkn − µ) = − 1

N

∑

kn

[
dknn − dµ

du

]
δ(εkn − µ), (34)
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with δ(ε) = −df(ε)/dε. We have used the Hellmann-Feynman theorem,

dεkn
du

=
d

du
⟨kn|H0

el + Hel-n|kn⟩ = ⟨kn| d

du
(H0

el + Hel-n)|kn⟩ ≡ dknn. (35)

Note that here the matrix element of the deformation-induced potential dknn is represented
in the basis of eigenstates |kn⟩ of the perturbed Hamiltonian. Rearranging Eq. (34) shows
that the change of the chemical potential is nothing but the Fermi surface (FS) average
of the intraband deformation-induced potential,

dµ

du
=

∑
kn dknnδ(εkn − µ)∑

kn δ(εkn − µ)
≡ ⟨dknn⟩FS. (36)

From Eq. (28), we can also readily evaluate

∂Ω(1)

∂µ
=

1

N

∑

kn

dknnδ(εkn − µ) ≡ ρ(µ)⟨dknn⟩FS, (37)

where ρ is the electronic density of states per unit cell. Combining Eqs. (34), (36) and
(37) yields

∆CIII
ij = Ω

(2)
ij + ρ(µ)⟨diknn⟩FS⟨djknn⟩FS. (38)

The first term are the force constants in the grand canonical ensemble, i.e., at constant
chemical potential. The second term is the correction for going from the grand canonical
to the canonical ensemble.

C Computational parameters DFT

All DFT and DFPT calculations are carried out using Quantum ESPRESSO [83, 84].
The modification that is required for cDFPT is described in detail in Ref. [64]. For the
transformation of the electronic energies and electron-phonon couplings to the Wannier
basis, we use Wannier90 [100] and the EPW code [101, 102]. The cRPA Coulomb in-
teraction was calculated using RESPACK [103]. In the following, we will list the specific
DFT and DFPT parameters for each material individually:

1H-TaS2 Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials [104, 105]; 18 × 18 × 1
k mesh and 6 × 6 × 1 q mesh for unit cell; Fermi-Dirac smearing of 5 mRy (Gaus-
sian smearing of 0.1 Ry for Fig. 7b, d, f); energy convergence threshold of 10−15 Ry
(10−8 Ry per unit cell for Fig. 7); lattice constant of 3.39 Å. The cRPA Coulomb
interaction has been calculated on a 32 × 32 × 1 q mesh taking 80 electronic bands
into account.

1H-NbS2 HGH pseudopotentials [104,105]; 18× 18× 1 k mesh and 6× 6× 1 q mesh for
unit cell; Fermi-Dirac smearing of 3 mRy; lattice constant of 3.34 Å.

1H-WS2 HGH pseudopotentials [104,105]; 18 × 18 × 1 k mesh and 6 × 6 × 1 q mesh for
unit cell; Fermi-Dirac smearing of 5 mRy; lattice constant of 3.23 Å.

1T-TiSe2 Ultrasoft pseudopotential [106] from the SSSP library [107, 108]; 18 × 18 × 1
k mesh and 6 × 6 × 1 q mesh for unit cell; Fermi-Dirac smearing of 5 mRy; lattice
constant of 3.54 Å.

20

Ab initio electron-lattice downfolding: potential energy landscapes, anharmonicity, and ... 125



SciPost Physics Submission

Carbon chain Optimized norm-conserving Vanderbilt pseudopotential (ONCVPSP) [109]
from the PseudoDojo library [110]; 200 × 1 × 1 k mesh and 20 × 1 × 1 q mesh for
unit cell; Fermi-Dirac smearing of 5 mRy; lattice constant of 1.30 Å.

In all cases, we have applied the Perdew-Burke-Ernzerhof (PBE) functional [111], set the
plane-wave cutoff to 100 Ry, and minimized forces and pressure in the periodic directions
to below 1 µRy/Bohr and 0.1 kbar. We have used a unit-cell dimension of 15 Å to separate
images in the non-periodic directions.

D Replica Exchange

In order to characterize the CDW phase-transition, we employed replica exchange molec-
ular dynamics (REMD) and replica exchange path integral molecular dynamics [87] (PI-
REMD), as implemented in the i-PI code. For the 18 × 18 1H-TaS2 supercell, we ran NVT
simulations of 26 replicas in parallel that differed in the ensemble temperature. We covered
a temperature range between 50 and 200 K. In the PI-REMD simulations, each tempera-
ture replica was represented by ten imaginary-time replicas (commonly called “beads” in
the ring-polymer representation). This amount of beads proved to be converged within
1 meV/atom for the potential and quantum kinetic energy at the lowest temperature of
50 K. We note that due to the high dimensionality of the system, enhanced by the use of
many imaginary-time replicas, the PI-REMD simulations with 26 temperature replicas in
this range was not efficient in terms of the frequency of replica swaps, while the REMD
simulations were.
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melting of a charge-density wave in the Mott insulator 1T-TaS2, Phys. Rev. Lett.
105, 187401 (2010), doi:10.1103/PhysRevLett.105.187401, 1004.4790.
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[102] S. Poncé, E. Margine, C. Verdi and F. Giustino, EPW: Electron–phonon coupling,
transport and superconducting properties using maximally localized Wannier func-
tions, Comput. Phys. Commun. 209, 116 (2016), doi:10.1016/j.cpc.2016.07.028,
1604.03525.

[103] K. Nakamura, Y. Yoshimoto, Y. Nomura, T. Tadano, M. Kawamura, T. Kosugi,
K. Yoshimi, T. Misawa and Y. Motoyama, RESPACK: An ab initio tool for deriva-
tion of effective low-energy model of material, Comput. Phys. Commun. 261, 107781
(2021), doi:10.1016/j.cpc.2020.107781, 2001.02351.

[104] S. Goedecker, M. Teter and J. Hutter, Separable dual-space Gaussian pseu-
dopotentials, Phys. Rev. B 54, 1703 (1996), doi:10.1103/PhysRevB.54.1703,
mtrl-th/9512004.

28

Ab initio electron-lattice downfolding: potential energy landscapes, anharmonicity, and ... 133



SciPost Physics Submission

[105] C. Hartwigsen, S. Goedecker and J. Hutter, Relativistic separable dual-space
Gaussian pseudopotentials from H to Rn, Phys. Rev. B 58, 3641 (1998),
doi:10.1103/PhysRevB.58.3641, cond-mat/9803286.

[106] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue for-
malism, Phys. Rev. B 41, 7892 (1990), doi:10.1103/PhysRevB.41.7892.

[107] G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet and N. Marzari, Precision
and efficiency in solid-state pseudopotential calculations, npj Comput. Mater. 4, 1
(2018), doi:10.1038/s41524-018-0127-2, 1806.05609.

[108] G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, E. Passaro and N. Marzari,
A standard solid state pseudopotentials (SSSP) library optimized for precision and
efficiency, Materials Cloud Archive 2021.76 (2021), doi:10.24435/materialscloud:rz-
77.

[109] D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev.
B 88, 085117 (2013), doi:10.1103/PhysRevB.88.085117, 1306.4707.

[110] M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann,
X. Gonze and G. M. Rignanese, The PseudoDojo: Training and grading a 85 element
optimized norm-conserving pseudopotential table, Comput. Phys. Commun. 226, 39
(2018), doi:10.1016/j.cpc.2018.01.012, 1710.10138.

[111] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made
simple, Phys. Rev. Lett. 77, 3865 (1996), doi:10.1103/PhysRevLett.77.3865.

29

Ab initio electron-lattice downfolding: potential energy landscapes, anharmonicity, and ... 134



14
Fourth publication:
Unconventional charge-density-wave gap in
monolayer NbS2

14.1. Statement of personal contribution

This work has been published as a preprint in arXiv:2307.13791 and is accepted for publication in
Nano Letters. It has been realized in collaboration with T. Knispel, J. Berges, E. G. C. P. van Loon, W.
Jolie, T. O. Wehling, T. Michely, and J. Fischer. My contribution to this work involved performing ab
initio DFT and DFPT calculations to establish the downfolding model for monolayer 1H-NbS2. In this
case, model III from the previous publication was used (see Ch. 13). This means specifically that I
have calculated the undistorted Wannier Hamiltonian, the force constants, and the electron-phonon
coupling. Subsequently, a relaxation study was performed by me to benchmark the model against
exisiting relaxed 3 × 3 CDW structures from the literature [177].

14.2. Positioning within the scientific landscape

Isoelectronic and isostructural materials of the TMDC family, such as 1H-MX2 (M =Nb, Ta; X = S, Se),
behave similarly within DFT. More specifically, on the harmonic level, the phonon dispersion predicts
instabilities for the phonon wave vector q = 2/3 ΓM, which is commensurate with a 3×3 supercell [82].
Structural optimization on the anharmonic free-energy surface for this supercell yields qualitatively
similar distorted CDW ground states for all mentioned H-phase TMDCs. However, on the experimental
side, these materials show different CDW physics. For example, in 2H-NbSe2 (bulk) the phase
transition temperature towards the CDW was measured to be TCDW = 33 K [184]. Meanwhile, no
CDW order was observed in 2H-NbS2 (bulk) [185–187]. In monolayer 1H-NbS2, the existence or
absence of a CDW appears to depend on the substrate [188, 189].

Here, the current publication reports unambiguous experimental evidence for a CDW in monolayer
1H-NbS2. The subsequent experimental and theoretical investigations are less dedicated on the origin
of the CDW, but rather on the features that come with the presence of the CDW in this material.
Interestingly, a CDW gap on the order of ∼20 meV opens at the Fermi level, which entails the
emergence of low-energy peak features within the gap. The observed peaked structure cannot be
attributed to a pure electronic origin, since the gap in the electronic strucutre is on the order of
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∼100 meV. Instead, combined electron-phonon quasiparticles must play a significant role in the
emergence of these peaks. These findings extend the scope of the conventional CDW physics and
should be further investigated in the future.

In addition, this publication provides an experimental estimation of the phase transition temperature
of the CDW transition, which is determined to be TCDW = 40 K. The theoretical determination of
this temperature falls within the realm of thermodynamics. Ensemble DFT may have the capability
to predict this temperature if electronic entropy were the primary factor. However, for an accurate
prediction, lattice entropy and possibly lattice quantum effects are necessary, which is why methods
like SSCHA, ab initio MD or PIMD are needed.

Furthermore, the discrepancy between the presence of a CDW in the monolayer and its absence in
the bulk phase has not been sufficiently explored. This discrepancy between static DFT calculations
and experimental observations has been the subject of previous theoretical studies, employing state-of-
the-art methods such as ab initio MD [177] and the SSCHA [190].

The ab initio MD study simulated a monolayer of 1H-NbS2 on a 3 × 3 supercell. Both the system
size and the simulated time are constrained by the computational expense of performing full ab initio
calculations of energies and forces, making it impractical to calculate thermodynamic properties. The
SSCHA method incorporates the anharmonicity of the free-energy landscape using a self-consistent
approach within a trial harmonic Hamiltonian, primarily focusing on vibrational properties such
as temperature-dependent phonon dispersion. Consequently, the literature lacks a comprehensive
thermodynamic analysis across the CDW phase transition for H-phase TMDCs.

The developed downfolded lattice models, in conjunction with path integral molecular dynamics
simulations, could be a valuable tool for addressing these research gaps and shedding light on these
complex phenomena.
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Abstract

Using scanning tunneling microscopy and spectroscopy, for a monolayer of transi-

tion metal dichalcogenide H-NbS2 grown by molecular beam epitaxy on graphene, we

provide unambiguous evidence for a charge density wave (CDW) with a 3 × 3 super-

structure, which is not present in bulk NbS2. Local spectroscopy displays a pronounced

gap of the order of 20 meV at the Fermi level. Within the gap low energy features are

present. The gap structure with its low energy features is at variance with the ex-

pectation for a gap opening in the electronic band structure due to a CDW. Instead,

comparison with ab initio calculations indicates that the observed gap structure must

be attributed to combined electron-phonon quasiparticles. The phonons in question

are the elusive amplitude and phase collective modes of the CDW transition. Our

findings advance the understanding of CDW mechanisms in two dimensional materials

and their spectroscopic signatures.
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Interacting electron systems give rise to a diverse array of ordered states at low temper-

atures, such as superconductivity,1 magnetism,2 and charge density waves (CDWs).3 These

ordering tendencies generically stem from the interplay of kinetic and interaction energies

with entropy. The ordering-induced energy gains often translate into the opening of gaps

in the electronic excitation spectra.4–7 Spectroscopy of these electronic gaps has been in-

strumental in understanding the nature of these ordered states: The momentum structure

of the gap as well as its response to impurities point toward order-parameter symmetries.

Typically, the comparison of gaps with transition temperatures is instrumental in discerning

weak versus strong coupling physics, i.e., to distinguish between the BCS (Bardeen-Cooper-

Schrieffer) and BEC (Bose-Einstein condensate) limits of superconductivity,8 between Slater

and Heisenberg antiferromagnets,9 or between Peierls to strong coupling CDWs.3 Time-

dependent gap spectroscopy in pump-probe setups10–12 offers a means to identify the relevant

degrees of freedom associated with a certain type of order. Correspondingly, the analysis of

gaps has been widely used to pinpoint which mechanism is responsible for CDW formation.

A well-established CDW mechanism is Fermi surface nesting in the classical Peierls pic-

ture,5 valid for a one dimensional metallic chain developing a periodic lattice distortion.

Due to the electronic response of the system, such a distortion is accompanied by an energy

gap emerging at the Fermi energy and charge modulation with its periodicity given by the

so-called nesting wave vector. CDWs in real materials can deviate from this idealized Peierls

picture in several ways. For many materials, the electron-phonon coupling is strongly wave-

vector dependent, which becomes the force driving the CDW.13–15 Instead of gapping out the

entire Fermi surface, the wave-vector-dependent electron-phonon coupling can induce partial

gaps and changes in the Fermi surface topology.16 Generally, the change in the electronic

structure is not limited to the Fermi energy, like in the classical Peierls transition, but occurs

over a broader energy range3,16,17 — particularly in strong coupling situations.3 Regardless,

however, of strong versus weak coupling scenarios, CDW gap opening is generically explained

in a Born-Oppenheimer picture, where electrons move within an effectively static distorted
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lattice.

Here, we investigate the CDW in monolayer NbS2 using scanning tunneling microscopy

(STM) and spectroscopy (STS) as well as theoretical ab initio based modeling. Within a clear

gap in the STS measured dI/dV spectra, a persistent and position dependent fine structure

is observed. We demonstrate that the measured unconventional gap with its low energy

spectral features reflects the robust presence of collective CDW phonon modes, specifically

amplitude and phase modes, which couple to the electrons rather than the opening of a gap

in the electronic band structure.

Monolayer NbS2 was grown in situ on single crystal graphene (Gr) on Ir(111) and trans-

ferred in ultrahigh vacuum to the STM, see Supporting Information (SI) for details. The

STM topograph of Figure 1a displays coalesced monolayer islands covering most of the Gr

substrate. (see Figure S1 of SI for a low-energy electron diffraction pattern). The NbS2 layer

conforms to Gr, which itself is continuous over Ir(111) steps running from the upper left to

the lower right. The apparent height of NbS2 is in the range of 0.53–0.64 nm depending on

the tunneling parameters. An exemplary profile is shown in Figure 1b taken along the black

line of Figure 1a. The atomic lattice of NbS2 as visible in all STM dI/dV maps of Figure 2

has a periodicity of 0.331(3) nm as measured by STM and low energy electron diffraction.

The STS inferred density of states (DOS) in the range of ±2 eV around the Fermi energy

(see Figure S2 of SI) and the dispersion of the Γ pocket measured by STS quasiparticle

interference (see Figure S3 of SI) make plain that the monolayer has H-NbS2 and not T-

NbS2 structure. The measured in-plane lattice parameter and apparent height match with

bulk values for 2H-NbS2
18 and previously measured monolayer values on Gr/SiC(0001)19

and Au(111).20

The sequence of constant-height fast Fourier transform (FFT) filtered dI/dV maps in

Figure 2a-c are all taken in the same area and with the same STM tip at sample bias voltages

Vs = −15 mV, Vs = 7 mV, and Vs = 40 mV, respectively (see Figure S4 of SI for details on

FFT filtering). While the atomically resolved maps in Figure 2a and c display a clear 3 × 3
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Figure 1: Structure of the NbS2 monolayer: (a) STM topograph of coalesced monolayer
islands of H-NbS2 on Gr/Ir(111). (b) STM height profile along the black line in (a). Image
information: (a) size 250 nm × 166 nm, Vs = 1 V, It = 0.1 nA, Ts = 1.7 K.

superstructure, it is absent in Figure 2b, as expected for a map taken within a CDW gap.

The intensity ratio I3×3/Iatom
21 of the first order 3×3 superstructure spots and the first order

NbS2 lattice spots is shown as a function of bias voltage Vs in Figure 2d. The plot displays

a clear minimum at 7 mV, where the intensity ratio is lower by a factor of 20 compared to

the maximum at about −15 mV. The maxima of the 3 × 3 superstructure shift between the

dI/dV maps taken at Vs = −15 mV and at Vs = 40 mV as expected for a CDW when crossing

its gap and as highlighted by the insets of Figure 2d.

Additional insight into the CDW stems from the temperature dependence of the 3 × 3

superstructure. Figure 2e–g shows a sequence of dI/dV maps measured at sample tem-

peratures of 4 K, 30 K, and 40 K respectively. The superstructure intensity diminishes with

increasing temperature and vanishes at 40 K, as obvious from the topographs and their FFT

insets. Figure 2h is a plot of I3×3/Iatom as a function of temperature. Based on the data, we

estimate a transition temperature TCDW ≈ 40 K.

Taken together, the existence of a 3 × 3 superstructure, the I3×3/Iatom intensity ratio

minimum next to the Fermi level, the phase shift of the superstructure when crossing the

Fermi level, and the disappearance of the superstructure at 40 K sum up to sound evidence

for the presence of a CDW in monolayer NbS2.
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Figure 2: CDW in monolayer NbS2: (a), (b), and (c) are bandstop filtered constant-height
dI/dV maps taken at Vs = −15 mV, Vs = 7 mV, and Vs = 40 mV, respectively. Red diamonds
in (a) and (c) mark the 3 × 3 superstructure. The insets are the FFTs of the dI/dV maps.
Spots of the 3 × 3 superstructure are marked in red. (d) Intensity ratio I3×3/Iatom of the
first order 3 × 3 superstructure spots and first order NbS2 spots visible in the FFTs as a
function of sample bias. The data points for (a), (b), and (c) are indicated. Insets of (d)
highlight the lateral shift of superstructure maxima when crossing the Fermi level. The red
line pattern is located at the exact same position in relation to the atomic lattice. Only first
order 3 × 3 spots were back-transformed (see Figure S4 of SI for details on FFT filtering).
(e–g) Constant-current dI/dV maps taken at sample temperatures Ts indicated. The insets
are the FFTs of the dI/dV maps. Spots of the 3 × 3 superstructure are marked in red.
(h) Intensity ratio I3×3/Iatom as a function of temperature. Image information: (a–c) size
12 nm × 12 nm, Vstab = 300 mV, Istab = 5 nA, Vmod = 5 mV, fmod = 1890 Hz, Ts = 4 K, FFT
filtered; (e–g) size 9 nm × 9 nm, Vs = 100 mV, It = 0.7 nA, Vmod = 10 mV, fmod = 1890 Hz.

Although unambiguous experimental evidence for a CDW in monolayer NbS2 was miss-

ing, our finding is no surprise. While it is well established that bulk NbS2 does not display

a CDW,22,23 it was pointed out that bulk NbS2 is at the verge of forming a CDW due

to strong electron-phonon coupling.24 In monolayer NbS2 on Au(111) no CDW was ob-

served,20 while on Gr on SiC(0001) the 3 × 3 superstructure was observed and attributed

to a CDW.19 In subsequent theoretical investigations and using the experimental lattice

parameter, the monolayer phonon dispersion indeed was shown to become unstable close

to qCDW = 2/3 ΓM,25 which is indeed the CDW wave vector corresponding to the 3 × 3

superstructure observed.
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High-resolution dI/dV spectra are taken along a high symmetry line in the 3 × 3 unit

cell of the CDW at locations indicated in the dI/dV map of Figure 3a and represented in

Figure 3b. In all spectra at roughly ±10 mV (thin dashed lines) the dI/dV intensity slopes

down forming a trough valley with dI/dV intensity reduced by 20–30 % (compare Figure 3c).

Inside the trough valley small peaks of dI/dV intensity are visible. Despite a strong intensity

variation of these peaks, if present, they tend to be at the same bias symmetric locations

of ±6 mV and ±2.5 mV with a spread of less than 0.5 meV. These locations are highlighted

by dashed lines in Figure 3b. Figure 3c shows as black curve the average of 43 × 43 dI/dV

spectra taken within the white box in the image of Figure 3a. The flanks of the trough valley

are well visible, as are three out of the four inner peaks, while the fourth at +6 mV appears

as a shoulder. Figure 3c also presents as red curve a dI/dV spectrum of NbS2 with less

electrons in the band structure, i.e., on p-doped NbS2. P-doping was achieved by oxygen

intercalation under Gr (see Figure S5 of SI for details), thereby increasing its work functions

by around 0.5 eV. Vacuum level alignment implies the build-up of an interface dipole through

transfer of electrons out of NbS2.26 Comparing the two spectra in Figure 3c makes plain that

the width of the trough valley decreased and the peaks at the bottom of the valley changed

their position.

While a gap in the measured dI/dV spectra located at the Fermi level is often taken as

an indication of a gap in the electronic band structure, a CDW gap at the Fermi level is

not necessarily reflected in a gap in an STS dI/dV spectrum.16 Although due to a CDW at

least partial electronic band gaps will open at the Fermi level, they may be inconspicuous to

STS. STS is mostly sensitive to electronic states with small parallel momentum. NbS2 has

no states with small parallel momentum near the Fermi edge (compare Figure S3 of SI).

Indeed, the trough shape of our gap does not appear like a single gap in the spectral

function,27,28 but is more reminiscent to a spectrum resulting from an inelastic tunneling

process setting in at about ±10 meV.29,30 Through the additional tunneling channel the

overall tunneling probability increases beyond the onset energy. One might be tempted to
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Figure 3: dI/dV spectra of monolayer NbS2 near the Fermi-level: (a) dI/dV map of mono-
layer NbS2. (b) High-resolution dI/dV spectra taken at the points color-coded in (a). Thin
dashed lines at ±10 mV highlight flanks of gap. Thin dashed lines highlight positions of
toggling peaks within gap. The dI/dV spectra are shifted vertically for better visualiza-
tion. (c) Black curve: average of 43 × 43 dI/dV spectra taken within the white box in (a).
Red curve: dI/dV spectrum taken of monolayer NbS2 grown on O-intercalated graphene
on Ir(111). The red dI/dV spectrum is vertically shifted down by 5 nS. Image informa-
tion: (a) size 2.7 nm × 2.7 nm, Vs = 100 mV, It = 1.0 nA, Vmod = 15 mV, fmod = 1873 Hz,
Ts = 0.4 K; (b) Vstab = 100 mV, Istab = 4.7 nA, Vmod = 0.5 mV, fmod = 311 Hz, Ts = 0.4 K;
(c) black curve: Vstab = 100 mV, Istab = 4.7 nA, Vmod = 0.5 mV, fmod = 311 Hz, Ts = 0.4 K;
red curve: Vstab = 50 mV, Istab = 0.5 nA, Vmod = 0.5 mV, fmod = 797 Hz, Ts = 0.4 K.

assign the inelastic feature at ±10 mV to bulk phonon modes of NbS2 expected at ±12 mV.31

Such modes have been observed in STS of defected bulk 2H-NbS2
32 and bulk 2H-NbSe2,33

but displayed no link to a CDW. In addition, the substantial reduction of the gap and its

changed internal features upon p-doping rule out this assumption, as bulk phonon modes

are not expected to change drastically upon doping.

Worse yet, none of the ideas invoked up to now provide an explanation for the internal fine

structure of our gap with tiny peaks at ±2.5 meV and ±6 meV. However, strong indication

that these features are related to the CDW is given by the spatial distribution of the peaks,

that retains the periodicity of the CDW (see Figure S6 in the SI).

We note that the gap and its internal peak structure in the dI/dV spectra are unchanged

through an external magnetic field of up to 8 T. This rules out a superconducting or magnetic

origin (see Figure S7 of SI), such as the spin density waves which have been discussed in the

theory literature.34–36
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In search for an explanation for the observed features in the low-energy dI/dV spectra,

we perform calculations based on density functional theory (DFT) and density functional

perturbation theory (DFPT), which provide us with the electronic and phononic properties,

respectively. Since DFT and especially DFPT for large systems are computationally costly,

we use the downfolding strategy described in Ref. 37 to construct a low-energy model from

a single calculation in the undistorted phase. Within this downfolded model, we can then

efficiently calculate the (free) energy, forces, and electronic band structure in the distorted

phase, which requires a supercell that is several times larger than the original unit cell. Here,

we briefly remark on the Marzari-Vanderbilt cold smearing38 parameter σ, which is used to

stabilize the simulation of metals. Varying this parameter illustrates how stable the results

are and acts as an indication of the effects of temperature and substrate hybridization39 (see

SI for more details).

The experimentally observed CDW phase involves a distortion of the original atomic

lattice into a 3 × 3 superstructure. A DFPT calculation of the phonon spectrum in the

symmetric (undistorted) phase shows several degenerate unstable phonon modes that would

result in a 3 × 3 superstructure. By relaxation of a 3 × 3 supercell starting from randomized

atomic positions within the model, we were able to identify four qualitatively different pos-

sible CDW structures, shown in Figure 4 (a). They all feature a significant displacement of

the Nb atoms that preserves both the in-plane mirror symmetry and the three-fold rotation

symmetry at the points toward or away from which the Nb atoms move. As in Ref. 40 on

NbSe2, we label them as T1 (toward S), “hexagons” (toward Nb), T1′ (toward gap), and

T2′ (away from gap). The fact that the experimental dI/dV maps largely show a single

pronounced peak per 3 × 3 cell and are mainly sensitive to the S atoms suggests that the

T1 structure is observed in experiment. Thus, we focus our discussion in the main text on

the T1 structure (all other structures are described in the SI). To facilitate the comparison,

a smearing σ = 5 mRy is used unless otherwise noted, since all four structures are stable at

this smearing.
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As we are trying to better understand the low-energy dI/dV spectra shown in Figure 3,

we first consider the calculated electronic structure. Figure 4b–d shows the band structure

and electronic DOS of the T1 CDW structure. There is a significant reconstruction compared

to the high-temperature undistorted structure with several partial gaps opening mainly in

the vicinity of the K point. Instead of a sharp gap directly at the Fermi level, there is a

rather constant depression of the DOS in an interval of about 150 meV around the Fermi

level. Inside this depression region, there are small peaks (Van Hove singularities) whose

position is characteristic of the individual CDW structure (see Figures S9, S10, and S11 in

the SI for the other three structures) and the displacement. However, these peaks do not

fit the experiment energetically and they are not symmetric around the Fermi level. This

suggests that the experimentally observed dI/dV is not purely electronic in nature.

One possibility is that inelastic phonon excitations could be responsible for the specific

signatures in the STS. Thus, we continue with an analysis of the phononic excitations present

in the CDW state. Once the system has undergone a CDW transition, signatures of the

competing CDW structures remain visible in the phonon spectrum. Figure 4e, f shows the

phonon dispersion in the T1 CDW phase. Highlighted in magenta are phonons corresponding

to any of the four displacement patterns in Figure 4a, which are longitudinal-acoustic modes

corresponding to the experimentally observed 3 × 3 periodicity. Of these, the mode with

the highest energy is the amplitude (or Higgs) mode, where the atoms oscillate toward

their undistorted position and back. The other modes are phase (or Goldstone) modes,

corresponding to oscillations toward any of the other CDW patterns. The phase modes

have a small but non-zero energy in a dynamically stable commensurate CDW. The precise

energy of these modes depends on the cold smearing parameter σ. At σc = 14.7 mRy, the

undistorted structure is on the edge of being stable, and all highlighted phonon modes have

precisely zero energy. For σ < σc, as in Figure 4e, f, the system is in a stable CDW phase.

Lowering smearing further, the displacement compared to the symmetric state increases,

with a corresponding increase of the phonon energies, i.e., the magenta block in Figure 4e
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moves upwards for smaller σ. Figure 4e, f and the corresponding panels in the SI have a

smearing just below the point where the given structure becomes stable, here σ = 13 mRy,

so that the magenta and black modes are clearly separated at q = Γ. From the point of view

of the undistorted structure, the finite energy of the phase modes in the distorted phase is

a non-linear phonon-phonon coupling effect. Importantly, if we are sufficiently deep inside

the CDW phase, the amplitude and phase mode energies lie robustly within the range of the

experimentally observed trough valley (amplitude mode) and the smaller inner-valley peaks

(phase modes). This energetic match is generic in the sense that it also applies to the other

CDW structures considered in the SI.

To assess the impact of the phonons on the STS, we need to know not only their frequency

but also how they couple to the electrons. This is quantified by the Eliashberg function

α2F (ω) shown in Figure 4h. The electron-phonon coupling appears squared in the Eliashberg

spectral function, since the electron needs to emit and absorb a phonon. The Eliashberg

function has a clear onset at the energy corresponding to the lowest phase mode. This

shows that the modes corresponding to the longitudinal-acoustic modes at q = 2/3 ΓM

in the undistorted state still dominate the coupling in presence of the CDW, due to their

large electron-phonon matrix elements.41 On the other hand, the phonon DOS itself has

contributions all the way down to zero frequency, coming from the acoustic branches close

to q = Γ, but these are weakly coupled to the electrons, as usual. The Eliashberg function is

qualitatively similar in all four CDW structures (see SI for details) with the onset and peak

energies matching the STS spectral features qualitatively. Only the precise quantitative

energies of the onset differ between the four structures. The absorption and emission of

phonons naturally lead to symmetric structures around the Fermi level, therefore offering an

explanation for the main experimental observations.

In summary, we present a comprehensive characterization of the CDW in quasi-freestanding

H-NbS2 monolayers grown in situ on Gr/Ir(111) by low-temperature STM and STS and by

DFT and DFPT calculations. We investigated the electronic footprints and temperature

12

Unconventional charge-density-wave gap in monolayer NbS2 148



dependence of the 3 × 3 modulation pattern and unambiguously link the modulation to a

CDW phenomenon. In high-resolution dI/dV spectra, we found a gap with additional fea-

tures inside. We demonstrated that the gap and features are intertwined with the CDW,

given by the new bias locations after doping. The most likely explanation of these low-energy

features is not purely electronic, but involves combined electron-phonon quasiparticles where

the phase and amplitude phonon modes of the CDW couple to the remaining electronic states

at the Fermi level. Our finding of an unconventional CDW gap in monolayer NbS2 provides

an alternative perspective on gap opening mechanisms in CDW systems, revealing the role

of dynamic effects and lattice fluctuations. These insights underscore the significance of in-

corporating dynamic lattice effects to accurately interpret the low-energy electronic spectra

in CDW or generically ordered systems.
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Experimental methods

Sample preparation was accomplished in an ultrahigh vacuum (UHV) system with a base

pressure of p < 2 × 10−10 mbar. Ir(111) was cleaned using cycles of 1 kV Ar+-sputtering

and subsequent flash annealing to 1520 K. Graphene (Gr) was grown by ethylene exposure
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to saturation, subsequent flash annealing to 1470 K and a final exposure to 800 L ethylene

at 1370 K. The quality of the closed single crystal Gr monolayer was checked by low energy

electron diffraction (LEED) and scanning tunneling microscopy (STM).

Monolayer H-NbS2 was grown on Gr/Ir(111) by reactive molecular beam epitaxy (MBE).

The substrate was exposed to an Nb flux of 5.8 × 1015 atoms/m2s from an e-beam evaporator

in an elemental sulfur (S) background pressure of p = 1×10−8 mbar created by a pyrite (FeS2)

filled Knudsen cell. The growth was conducted for 660 s at 300 K substrate temperature.

Subsequently, the sample was annealed to 800 K to improve the layer quality.1 In order to

maximize the monolayer coverage, the island seeds were extended to final size by additional

growth at 800 K for 660 s.

After synthesis, the H-NbS2 layer was checked using LEED. Subsequently, the sample was

transferred in UHV to the connected UHV bath cryostat STM chamber for investigation. The

temperature Ts of STM or scanning tunneling spectroscopy (STS) investigation is specified

in each figure and was either 0.4 K using a He3 cycle, 1.7 K when pumping on He4, 4 K

using He4 cooling without pumping, or even higher than 4 K by using an internal heater.

Dependence of the STS features on magnetic field was checked by a superconducting magnet

creating fields of up to 9 T normal to the sample surface.

Both, constant-height and constant-current modes, were used to measure topography and

dI/dV maps. dI/dV spectra were recorded only at constant height. Constant-current STM

topographs and constant-current dI/dV maps were recorded with sample bias Vs and tunnel-

ing current It specified in corresponding figure captions. Constant-height dI/dV spectra and

dI/dV maps were recorded with stabilization bias Vstab and stabilization current Istab using

a lock-in amplifier with a modulation frequency fmod and modulation voltage Vmod specified

in corresponding captions. In case that for a constant-height dI/dV map the sample bias

during measurement does not coincide with Vstab, the sample bias Vs is specified additionally.

When needed, a voltage divider was applied to improve resolution. To ensure a reproducible

and flat tip density of states (DOS) for the STS measurements, Au-covered W tips were

2
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used and calibrated beforehand using the surface state of Au(111).2,3 Details on STM image

processing are given in Figure S4.

Low-energy electron diffraction (LEED)

Γ

b2

b1

NbS2

IrGr

S(√3x√3)R30°

M
K'

K

Figure S1: 100 eV microchannel plate LEED pattern. First order reflections of NbS2 are
marked in turquoise, of Gr in red, of Ir in black, and of S intercalated between Gr and Ir
in pink. Two faint moiré satellite rings are highlighted by blue arrows. Primitive reciprocal
space translations b1 and b2 are indicated.

The LEED pattern corresponding to the STM topograph of Figure 1a displays first order

NbS2 intensity as superposition of (i) prominent elongated spots (several encircled turquoise)

reasonably aligned with Gr (encircled red) and Ir (encircled black) and (ii) a diffraction ring

due to randomly oriented islands (dashed turquoise segment). Apparently, most islands are

aligned with small angular scatter to Gr/Ir(111), while some display random orientation.

Additionally, faint off-centered rings are visible (two highlighted by blue arrows). These

rings belong to NbS2, but are each shifted by one moiré periodicity of Gr. S intercalation

between Gr and Ir gives rise to a (
√

3 ×
√

3)R30◦ structure with respect to Ir(111) and

corresponding reflections, of which one first order reflection is encircled in pink.
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Local density of states of monolayer NbS2
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Figure S2: dI/dV spectra of monolayer NbS2: (a) Large-range dI/dV spectrum from −2.5 V
to +2.5 V. (b) Calculated band structure of freestanding H-NbS2. (c) dI/dV spectrum of
boxed voltage range in (a) with tip very close to sample. Spectra parameters: (a) Vstab =
2.5 V, Istab = 1.0 nA, Vmod = 15 mV, fmod = 797 Hz, Ts = 0.4 K; (c) Vstab = −0.5 V, Istab =
0.5 nA, Vmod = 5 mV, fmod = 1873 Hz, Ts = 0.4 K.

To gain further insight into the electronic structure, differential conductance dI/dV spectra

were measured on NbS2, shown in Figure S2. Figure S2a displays a large-range constant-

height dI/dV spectrum which can be compared to the density functional theory (DFT)

band structure in Figure S2b. We note that (i) Van Hove singularities appear pronounced in

dI/dV spectra due to the large local DOS (LDOS) associated to them, and (ii) states with

large parallel momentum k|| are diminished or even suppressed in dI/dV spectra, since a

large k|| is associated with a large decay constant κ, i.e., a rapid decay of the wave function

into vacuum.4,5

The pronounced peak at −1.25 V in Figure S2a is attributed to the three occupied S

p-bands with minima or maxima around −1.25 V at the Γ-point in Figure S2b. Additional

maxima in the occupied states along the ΓM or the ΓK direction are hardly visible in the

dI/dV spectrum because of their larger k||. The broad and intense maximum with its peak

at about +0.85 V in Figure S2a is associated to the band maximum of the Nb dz-type

hole-like pocket at the Γ-point in Figure S2b, though located at slightly lower energies as

in the calculation. The steep rise in the dI/dV spectrum at energies above about +2.2 V

is associated to the empty Nb d-bands with energies above 2 eV in the calculated band

4
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structure. Figure S2c displays an STS spectrum for the energy range from −0.5 V to 0 V

(boxed in Figure S2a). It is stabilized at −0.5 V, i.e., at an energy with a low DOS as seen

in Figure S2a. To pick up the stabilization current of It = 0.5 nA the tip moves close to the

surface and thus becomes sensitive to less pronounced features in the LDOS. The peak at

−0.15 V in the resulting spectrum can be interpreted as the Van Hove singularity associated

with the toroidal minimum of the Nb d-band surrounding the Γ-point.

Band structure of NbS2 near the Γ-point from quasi-

particle interference

Besides the charge density wave (CDW) superstructure, another electronic feature cannot

be overlooked in NbS2 monolayer islands. The 100 mV dI/dV map in Figure S3a displays

standing wave patterns at the NbS2 island edges originating from quasi-particle interference

(QPI) of electron waves. Zooming into the island, Figure S3b shows a constant-current

dI/dV map recorded at 30 mV. At this bias voltage damping of the QPI is weak and the

interference pattern is spread out over the whole island. The inset with the fast Fourier

transform (FFT) exhibits a ring-like feature, which shows enhanced intensity in the ΓM

direction. QPI at 30 meV is thus close to isotropic in wave vector, but anisotropic in scattering

intensity. The QPI pattern is used to extract the dispersion7–9 of the d-band crossing the

Fermi level, discussed in Figure S2b.

In Figure S3c the FFT intensity profiles along the high-symmetry directions in k space

are plotted as function of energy. Superimposed to the dispersing feature in the data is the

DFT calculated band as dotted-blue line. The bright cut-off toward larger k values agrees

reasonably with the calculation.

The dispersion is also determined by analysis of the real space periodicity of the standing

waves at NbS2 island edges. Following the approach of Crommie et al.,7 the standing wave

pattern resulting from backscattering at a straight island edge is fitted after proper back-

5
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Figure S3: Quasi-particle interference in NbS2: (a) Constant-current dI/dV map.
(b) Constant-current dI/dV map of the area inside the black square shown in (a). Inset
displays the FFT of the dI/dV map. An atomic lattice reflection is marked turquoise, the
reciprocal space directions marked orange. (c) FFT intensity of the dI/dV maps along
ΓM and ΓK as a function of energy E = eVs. Data extracted from a 200 × 200 grid of
constant-height dI/dV spectra in an area of 9 nm×9 nm on NbS2. To represent dispersion,
experimental wave vectors are divided by a factor of two.6 Superimposed as dotted-blue line
is our DFT calculated dispersion of the H-NbS2 d-band. (d) Constant-current dI/dV map
with the standing wave pattern due scattering at island edge. Direction of the wave vector
indicated by an orange arrow. Inset is the FFT of the dI/dV map. (e) Line profile along
the orange arrow in (d) (black dots) fitted by a Bessel function (red line).7 (f) E(k) disper-
sion relation extracted from the Bessel function fits and compared to the calculated band
structure also displayed in (c). Image information: (a) size 13 nm × 13 nm, Vs = 200 mV,
It = 1.0 nA, Vmod = 20 mV, fmod = 797 Hz, Ts = 0.4 K; (b) size 9 nm × 9 nm, Vs = 30 mV,
It = 0.8 nA, Vmod = 7 mV, fmod = 1890 Hz, Ts = 0.4 K; (d) size 10 nm × 10 nm, Vs = 150 mV,
It = 0.3 nA, Vmod = 20 mV, fmod = 1890 Hz, Ts = 1.7 K.

6
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ground subtraction through dI/dV [Vs, x] = L0[1 − J0(2kx + ϕ)]. Here J0 is the zeroth order

Bessel function, L0 = m∗/(πh̄2) with m∗ being the effective mass, ϕ is a phase constant,

x the distance from the step edge and k is the wave vector related to the electron energy

E = eVs. Figure S3e exemplifies our approach for a profile (black dots) taken along the

orange arrow in the 150 mV dI/dV map shown in Figure S3e. The fit is shown as thin red

line and yields the k vector for E = 150 meV. Figure S3f presents our analysis in the energy

range from −250 meV to 800 meV (black dots), which compares favorably with our DFT

calculated dispersion shown as blue line.

7
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Details on FFT filtering of the dI/dV maps
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Figure S4: (a) Atomically resolved constant-current STM topograph of monolayer NbS2.
The Gr/Ir(111) moiré unit cell is indicated as yellow diamond. (b) Constant-height dI/dV
map. The Gr/Ir(111) moiré and the NbS2 unit cell are indicated as yellow and turquoise
diamonds, respectively. (c) FFT of (b). Spots corresponding to the Gr/Ir(111) moiré, the
atomic NbS2 lattice, and the 3 × 3 CDW superstructure are encircled yellow, turquoise,
and red, respectively. A ΓM- and a ΓK-direction are indicated by orange arrows. (d) The
application of bandstop filtering to remove the moiré is visualized. (e) Back transformed
moiré bandstop filtered dI/dV map. Red circles and rhomboid in (e) highlight 3 × 3 CDW
superstructure. (f) The application of bandstop filtering to remove all, but the 3 × 3 CDW
superstructure spots is shown. (g) Back transformed bandstop filtered image of (f) leaving
only 3×3 periodicity in real space. Images: (a) size 10 nm × 10 nm, Vs = 100 mV, It = 0.7 nA,
Ts = 1.7 K; (b) size 12 nm × 12 nm, Vs = −15 mV, Vstab = 300 mV, Istab = 5 nA, Vmod = 5 mV,
fmod = 1890 Hz, Ts = 4 K.

8
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In the atomically resolved STM topograph of Figure S4a the Gr/Ir(111) moiré (yellow dia-

mond) can be recognized being superimposed on the atomically resolved NbS2 lattice. The

lack of an own moiré between the NbS2 monolayer and Gr indicates a very weak interaction

between the two materials.

The FFT of the −15 meV constant-height dI/dV map shown in Figure S4b is presented as

Figure S4c. The red encircled spots at 1/3 and 2/3 of the distance between the Γ-point and

the first order NbS2 lattice spots (encircled turquoise) are indicative of a 3×3 superstructure.

It is obvious that the three equivalent wave vectors related to the superstructure are oriented

along the ΓM-directions. For better visualization of the 3×3 superstructure in real space, the

moiré spots are bandstop filtered as shown in the Figure S4d. Upon back transformation,

the 3 × 3 superstructure highlighted by red circles and a rhomboid becomes obvious in

Figure S4e. Figure S4e is identical with Figure 2a of the main text. The same procedure

was implemented for Figure 2b, c of the main text.

To visualize the CDW without background disturbances all FFT spots except of the CDW

spots can be bandstop filtered, as demonstrated in Figure S4f. Upon back transformation

only the CDW spots are visible in Figure S4g. This technique was used to obtain the maps

of Figure 2d in the main text.

9
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Doping of Gr underlayer effect on NbS2 CDW
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Figure S5: (a) Constant-current STM image of NbS2 on O-intercalated Gr on Ir(111). Inset:
High-resolution topograph of Gr between NbS2 islands with stripes reflecting the (2 × 1)
adsorption pattern of atomic O on Ir(111) through the Gr layer.10 (b) Constant-current
dI/dV map. Inset: FFT of (b) with CDW spots encircled red. (c) Large range dI/dV
spectra of NbS2 on O-intercalated Gr/Ir(111) (red) compared to non-intercalated, pristine
NbS2 (black) as in Figure S2a. Image information: (a) size 58 nm × 58 nm, Vs = 4 V, It =
0.1 nA, Ts = 1.7 K; (b) size 10 nm × 10 nm, Vs = −200 mV, It = 0.7 nA, Vmod = 7 mV,
fmod = 1890 Hz, Ts = 10 K. Spectra information: (c) red: Vstab = 2.5 V, Istab = 1.0 nA,
Vmod = 15 mV, fmod = 797 Hz, Ts = 1.7 K: black: Vstab = 2.5 V, Istab = 1.0 nA, Vmod = 15 mV,
fmod = 797 Hz, Ts = 0.4 K.

Figure S5a displays an STM topograph with NbS2 islands on O-intercalated Gr/Ir(111).

Details of the intercalation method are described elsewhere.11 From Figure S5b it is obvious

that the (3 × 3) CDW superstructure is present. Figure S5c compares the dI/dV spectra

of NbS2 on O-intercalated Gr/Ir(111) with the pristine case. The overall dI/dV features of

p-doped NbS2 (red curve) are shifted toward positive energy in respect to the pristine case

(black curve), in agreement with p-doping.

10
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Real space visualization of inelastic dI/dV features
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Figure S6: Constant-height dI/dV maps at bias voltages of −10 mV in (a), −6 mV in (b),
−2.5 mV in (c), +10 mV in (d), +6 mV in (e), +2.5 mV in (f). The energies are selected
according to the energy positions of the inelastic excitations displayed in Figure 3b, c of the
main text. The black lines indicate the diamonds of the (3 × 3) CDW superstructure, which
are additionally segmented by them into two triangular areas. Image information: (a–f) size
2 nm × 2 nm, Vstab = 100 mV, Istab = 4.7 nA, Vmod = 0.5 mV, fmod = 311 Hz, Ts = 0.4 K

The six constant-height dI/dV maps in Figure S6 are taken in the white box of Figure 3a

and at the energies indicated by the dashed lines of Figure 3b of the main text. Although

the interpretation of the local variation of the dI/dV -intensity is not straight forward and

may certainly be affected by details of the tip apex, it is obvious that the intensity variation

in all maps reflects the (3 × 3) CDW periodicity. The down-pointing triangles generally

possess lower intensity and the up-pointing triangles higher intensity, the later varying in

lateral intensity distribution as a function of energy.

11

Unconventional charge-density-wave gap in monolayer NbS2 166



Magnetic field dependence of the inelastic excitations
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Figure S7: Average spectra at different magnetic field applied normal to the surface, as in-
dicated. Each spectrum in a set of 49 spectra for one magnetic field is taken at a location
defined by the grid in the inset. Inset: Constant-current STM topograph of NbS2. Image
information: Inset: size 7 nm × 7 nm, Vs = 100 mV, It = 0.7 nA, Ts = 1.7 K. Spectra infor-
mation: Vstab = 40 mV, Istab = 0.7 nA, Vmod = 0.5 mV, fmod = 797 Hz, Ts = 0.4 K.

Figure S7 shows a data set different from the one represented in Figure 3 of the main

manuscript. Each point spectrum shown is an average of 49 dI/dV spectra taken on a grid

defined by the inset of Figure S7. Again, low energy features within the trough gap are well

visible. No change of the average spectra is found as a function of external magnetic field

up to 8 T. The somewhat larger dI/dV intensity at negative voltages and fields of 3 T, 4 T

and 8 T is presumably a drift effect.

Computational methods

Simulations of metals require a so-called smearing factor for stabilization of the calculations.

Here, we use Marzari-Vanderbilt cold smearing.12 Compared to the Fermi-Dirac distribution

with a finite temperature T , this cold smearing has the advantage that the low-temperature

behavior (most experimental measurements here were performed at 4 K) can be estimated

from electronic structure calculations at larger broadening and therefore sparser Brillouin-

12
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zone sampling. In any case, even using the Fermi-Dirac distribution as the smearing func-

tion still disregards thermal motion of the nuclei and therefore overestimates the critical

temperature. Furthermore, effects such as hybridization with substrates can have a similar

smearing-like influence on lattice instabilities as electronic temperature.13 In some figures,

we show results as a function of the smearing σ to illustrate how stable the results are and

as an indication for the influence of temperature. Note that the mentioned smearing values

are only used for the structural relaxation, not for the electronic and phononic DOS.

For our downfolding, we consider an effectively noninteracting model with a linearized

electron-lattice coupling. Its free energy as a function of atomic displacements reads F (u) =

Eel(u)−TSel(u)+Elat(u)+Edc(u) with the total single-electron energy Eel of the linearized

low-energy Kohn-Sham Hamiltonian Hel
0 + ud, the corresponding generalized entropy Sel,

as well as the quadratic lattice term Elat and the linear double-counting term Edc, chosen

such that the second and first order of the free energy match DFT and density functional

perturbation theory (DFPT) for the undistorted system.

The calculations for the undistorted system are done with Quantum ESPRESSO.14–16

We apply the PBE functional17 and normconserving pseudopotentials from PseudoDojo18,19

at an energy cutoff of 100 Ry. A Marzari-Vanderbilt cold smearing12 of σ0 = 20 mRy is com-

bined with uniform 12×12 k and q meshes including Γ. When going to lower values σ on the

model level, the number of k points per dimension is scaled by a factor of ⌈σ0/σ⌉. Phonon

dispersions of the undistorted system for low smearings have been obtained in a computa-

tionally efficient way from the data for the highest smearing using the method of Ref. 20,

which has proven to yield excellent results for TaS2.21 Here, we generalize this method with

respect to distorted structures on supercells. To separate periodic images of the monolayer,

we choose a unit-cell height c = 2 nm and truncate the Coulomb interaction in this direc-

tion.22 The relaxed lattice constant a = 0.335 nm is close to the experimental value. The

downfolding to the low-energy model in the localized representation of atomic displacements

and Wannier orbitals (Nb dz2 , dx2−y2 , and dxy) is accomplished using Wannier9023 and the

13
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EPW code.24–26

Note that including spin-orbit coupling into the calculation leads to a band splitting

and thus increases the number of peaks in the DOS. Nevertheless, this does not lead to an

explanation of the experimentally observed dI/dV spectra.

Generalized free energy

2 4 6 8 10 12 14 16 18 20−3
−2

−1
0

1
2

3

Cold smearing (mRy)

Fr
ee

en
er

gy
(m

eV
/N

bS
2
)

14 14.5

2
2.

1
2.

2

Cold smearing (mRy)

symmetric
T1
hexagons

T1′

T2′

Figure S8: Free energy for different stable (CDW) structures as a function of cold smearing.
Inset: Close-up of the region of the phase transition.

Figure S8 shows the generalized free energy for the symmetric and the four distorted phases as

a function of cold smearing σ. Here, all colored points correspond to fully relaxed structures.

The structure could always be unambiguously classified as one of the four structures shown

in the main text, even though the absolute and relative displacements change with the

smearing. Below the critical smearing σCDW ≈ 14.7 mRy, the energy gain from the lattice

distortion continuously increases up to about 2.8 mRy/NbS2. Here, the energy difference

between the different CDW structures is very small, most likely smaller than the expected

accuracy of our theoretical approach. Thus, Figure S8 should not be considered the final

answer to the question of which CDW structure is observed and we consider all structures in

the following. Not all structures are stable at all smearings; “hexagons” and T1 are favored
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directly below the CDW transition, T1′ and T2′ for smaller smearings. Only T1 is found for

the whole smearing range considered.

Four possible CDW phases
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Figure S9: Electronic and phononic properties in the “hexagons” CDW phase, cf. T1 in the
main text.

In our calculations, four different CDW phases were stabilized, which we denote as T1,

“hexagons”, T1′, and T2′.27 In the main text, we have shown detailed information about the

T1 phase. Here, the corresponding results for the other three phases are shown in Figures S9,

S10 and S11.
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Figure S10: Electronic and phononic properties in the T1′ CDW phase, cf. T1 in the main
text.
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Figure S11: Electronic and phononic properties in the T2′ CDW phase, cf. T1 in the main
text.

17

Unconventional charge-density-wave gap in monolayer NbS2 172



The electronic band structure and DOS are shown in panels (b–d). For panels (c–d), dif-

ferent displacement amplitudes (with respect to the undistorted structure) are shown, with

gray corresponding to the undistorted structure and blue to the fully distorted structure

whose band structure is shown in (b). In all cases, the reduction of the symmetry in the

distorted phases leads to the appearance of additional bands and additional Van Hove sin-

gularities. The position of these Van Hove singularities depends on the displacement, often

approximately linearly, and the magnitude of the changes is on the 100 meV scale. Thus,

although it is possible to interpret peaks in the experimental STS as Van Hove singularities,

fine-tuned parameters are needed to place these peaks at the desired position close to the

Fermi level.

Panels (e) and (f) show the phonon dispersions in the supercell and original Brillouin

zone, respectively. The magenta marking shows to what extent these phonons correspond to

the unstable phonon modes in the undistorted structure. To be more precise, the absolute

value squared of the scalar product of the respective displacements determines the fraction

of the line that is color magenta. For each plot, the smearing is listed in the bottom right.

Panel (g) shows all smearings where the structure can be stabilized and the energies of the

phase and amplitude phonons at the Γ point in the supercell as a function of smearing.

Figure S11(g) in particular shows that the vanishing energy of one of the phonon modes

denotes the end of the stable region in parameter space: at the transition point, a local

minimum in the free energy becomes a local maximum. Although their details differ, all four

structures have phase and amplitude modes at very similar energy scales of approximately

10 meV. Moving over to panel (h), we show the phononic DOS and the Eliashberg function

α2F (ω). The amplitude and phase modes at Γ are hardy visible in the phononic DOS, which

is dominated by acoustic phonons.

For the formation of polaronic excitations, we need to know both the frequencies at which

there are phonons and how strongly these phonons are coupled to the electrons. This can

be quantified using the Eliashberg spectral function α2F (ω). The electron-phonon coupling
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appears squared in this expression since the electron needs to emit and absorb a phonon. The

Eliashberg spectral function is shown in panel (h) of the figures. The Eliashberg spectral

function has a clear onset at the energy corresponding to the lowest phase mode. This

shows that the modes corresponding to the longitudinal-acoustic modes at q = 2/3 ΓM

in the undistorted state still dominate the coupling in presence of the CDW, due to their

large electron-phonon matrix elements.28 On the other hand, the phonon DOS itself has

contributions all the way down to zero frequency, coming from the acoustic branches, but

these are weakly coupled to the electrons and irrelevant for the formation of combined

electron-phonon excitations.
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15
Conclusion and outlook

This dissertation focused on the development of downfolded models, which aim to capture the complex
intertwined electronic and lattice degrees of freedom. Downfolding, in this context, refers to reducing
to the most critical electronic degrees of freedom necessary to describe the relevant physical phenomena
of interest. Typically, these critical electronic degrees of freedom reside within the low-energy sector.
While this dissertation specifically applies downfolded lattice models to the study of CDWs as an
illustrative example of a physical phenomenon, it is important to emphasize that these models possess
the capability to describe a broad spectrum of physics beyond CDWs.

In the first publication of this dissertation (see Ch. 11), it was observed that downfolded models
can accurately reproduce Born-Oppenheimer potential energy surfaces. This finding was grounded
in the simplified and analytically solvable nature of the SSH model. However, this finding may
not necessarily apply to real-world systems. Nevertheless, the overarching concept is as follows:
The nonlinear response of the low-energy sector to atomic displacements results in anharmonic
Born-Oppenheimer potential energy surfaces.

In subsequent research (see Ch. 13), it was demonstrated that these energy surfaces, derived from
downfolded lattice models, align with results obtained through DFT calculations. This alignment
enables the characterization of anharmonicities, which are inherent in CDWs. Thus, downfolding
models can indeed describe CDW physics of real-world materials.

Compared to ab initio methods, generating free energy and forces using these models is several
orders of magnitude faster, facilitating molecular dynamics simulations on large systems over extended
timescales. Molecular dynamics simulations provided access to thermodynamic quantities, such as
transition temperatures for structural phase transitions, and will also allow the exploration of vibrational
properties, such as temperature-dependent phonon spectra in the future.

In the context of CDWs, it was once more confirmed that real-world materials exhibit more
complexity than the simplified Peierls model found in textbooks. Specifically, the notion that a single
phonon mode opens a gap in the electronic structure at the Fermi level, leading to an energy gain
outweighing the displacement-related energy costs, is overly simplistic. In monolayer 1T-VS2, both
experimental and theoretical investigations revealed that nonlinear mode-mode coupling is necessary
to describe the CDW, which results in a complete gap above the Fermi level (see Ch. 12).

Interestingly, another research group with similar team composition published an article asserting
a different CDW behavior in 1T-VS2, which opens a gap at the Fermi level, based on the concept of
higher-order Fermi surface nesting. In Chapter 12, it is discussed that the CDWs may appear different
initially. Nevertheless, upon comparing the depictions of atomic displacements, the CDWs exhibit
striking similarities. Bridging this apparent difference could be achieved through a collaborative
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data exchange between the two groups of authors. This illustrates that the work in this dissertation
contributes to an ongoing debate in the field of CDW physics.

Furthermore, in the latest publication (see Ch. 14), comprising both experimental and theoretical
collaboration, it was definitively established that a CDW exists in monolayer 1H-NbS2, a matter
previously lacking unambiguous confirmation in the literature. This CDW exhibits intriguing features
within the electronic gap, attributed to combined electron-phonon quasiparticles. Consequently, this gap
is termed unconventional, in contrast to the conventional gap arising from static atomic displacements.

In summary, this dissertation makes a contribution to the field of CDW physics through collabora-
tive efforts encompassing both experimental and theoretical approaches. The theoretical investigations
have unveiled intriguing aspects of CDW research, including non-linear mode-mode coupling and
unconventional CDW gap behaviors. While the theoretical investigations using ab initio methods
achieved significant success, the introduction of downfolded lattice models adds another valuable tool
for studying the dynamics and thermodynamics of CDWs.

Downfolding models are expected to have a broad impact on materials design, engineering,
and dynamic manipulation. By providing a foundational understanding of CDW materials at the
atomic level, the creation of new materials with specific electronic and optical properties are enabled.
Moreover, this approach opens the door to studying nonlinearly driven systems through computational
analysis, where factors such as external electromagnetic fields, lattice configurations, and correlated
electrons interact in complex ways.

Looking ahead, the developed downfolding approaches hold potential for investigating the physics
of (nonequilibrium) phase transitions involving CDW order [191–199], as well as the interplay of
correlations and (dis)ordering [200, 201]. Additionally, these methods offer opportunities to delve
into the realm of driven quantum systems [202–204]. This wider range of applications highlights the
transformative possibilities of the methodologies outlined in this dissertation.
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Appendix

A.1. Definitions of electron-phonon coupling matrix elements

In the course of this dissertation different definitions of electron-phonon coupling matrix elements
have been used. This section of the appendix should clarify these definitions.

The electron-phonon coupling matrix elements g, used in Eq. (4.13), are defined by

g(b)
νn,n′(k, q) =

∑
κα

√
ℏ

2Mκωqν
eακ (qν)

〈
n′k + q

∣∣∣∣∣∂Vext(r)
∂uακ(q)

∣∣∣∣∣nk
〉
, (A.1)

g( f )
νn,n′(k, q) =

∑
κα

√
ℏ

2Mκωqν
eακ (qν)

〈
n′k + q

∣∣∣∣∣∂VSCF(r)
∂uακ(q)

∣∣∣∣∣nk
〉
, (A.2)

which can be found in Eq. (14) of Ref. [80] and which is almost identical to the definition of Eq. (5.8),
except that ℏ := 1.

Meanwhile the electron-phonon coupling matrix elements g̃, used for the diagrammatic expression
in Eq. (4.14), are defined by

g̃b
qκαkmn =

1
√

Mκ

⟨k + qm|
∂Vext

∂uqκα
|kn⟩, (A.3)

g̃qκαkmn =
1
√

Mκ

⟨k + qm|
∂VSCF

∂uqκα
|kn⟩, (A.4)

which can be found in Eq. (12) of Ref. [81].

A.2. Determining the occupation of the state |α⟩

For the Hartree term, the occupation of the orbital α is needed, which is written as

nα = ⟨c†αcα⟩MF. (A.5)

According to Ref. [205], the ensemble average is given by

⟨A⟩ =
∑

i

pi⟨ψi|A|ψi⟩, (A.6)

180



A.3. Computational details of incorporated figures 181

which means that the classical ensemble average is determined by the quantum mechanical expectation
value weighted with the probability pi. This occupation can expressed in terms of the occupations of
eigenvalues |nk⟩. First, it is necessary to diagonalize the non-interacting Hamiltonian

HNI |ψnk⟩ = εnk|ψnk⟩ (A.7)

to obtain the eigenfunctions |ψnk⟩ and eigenvalues εnk. Next, these eigenfunctions are represented in
the orbital basis

|ψnk⟩ =
∑
α

φαnk|α⟩. (A.8)

Finally, the occupation of the orbital α is given by

nα = ⟨c†αcα⟩MF =
∑
nk

⟨ψnk|c†αcα|ψnk⟩ f (εnk) (A.9)

=
∑
nk

〈
⟨β|

∑
β

φ
β
nk|c

†
αcα|

∑
γ

φ
γ
nk|γ⟩

〉
f (εnk) (A.10)

=
∑
nk

∑
β

∑
γ

(φβnk)∗φγnk ⟨β|c
†
αcα|γ⟩︸      ︷︷      ︸

=δαβδαγ

f (εnk) (A.11)

=
∑
nk

|φαnk)|2 f (εnk). (A.12)

A.3. Computational details of incorporated figures

A.3.1. Figure 3.1

The DFT calculations were performed using Quantum ESPRESSO [68, 206]. Uniform meshes 6 × 6
k points are combined with a Fermi–Dirac smearing of 157.8 K. For a fixed unit-cell height of 15
Å, minimizing forces and in-plane pressure to below 1 · 10−5 Ry/Bohr and 0.1 kbar yields a lattice
constant of 3.39 Å

A.3.2. Figure 4.1

The DFT and DFPT calculations are carried out using Quantum ESPRESSO [68, 206]. The modi-
fication that is required for cDFPT is described in detail in Ref. [49]. For the transformation of the
electronic energies and electron-phonon couplings to the Wannier basis, we use Wannier90 [207] and
the EPW code [208, 209]. The calculation of the phonon self-energies was done with elphmod [210].
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