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IV. Zusammenfassung

Das Vorkommen von Antibiotikaresistenzen stellt eine groRBe Bedrohung fur
hospitalisierte Patienten dar. Vor allem das vermehrte Auftreten von resistenten gram-
negativen Enterobacteriaceae wie Klebsiella pneumoniae oder Escherichia coli sind
besorgniserregend. Aufgrund dessen hat die Weltgesundheitsorganisation (WHO) der
Forschung und Entwicklung neuer Antibiotika gegen diese Erreger eine sehr hohe
Prioritdt zugeordnet.[1] Neben der Entwicklung von neuen antimikrobiellen
Wirkstoffen, kann das Umwidmen und Kombinieren von bereits zugelassenen
Substanzen dazu beitragen, Antibiotikaresistenzen zu Uberwinden und mogliche
vorteilhafte Arzneistoff-interaktionen auszunutzen.[2], [3] Die wirkungsvollsten
Methoden, um invitro Arzneistoffinteraktionen umfassend zu analysieren, zu
quantifizieren und deren klinisches Potential abzuschatzen, sind pharmakometrische
in silico Modellierungs- und Simulationstechniken.[4]

Neue Hoffnungen fur die Therapie von multiresistenten Erregern stellen in den letzten
Jahren Zulassungen von neuen Beta-Laktam/Beta-Laktamase-Inhibitor-Kombinationen
dar. Einer dieser Vertreter ist Ceftazidim/Avibactam, gegen welchen trotz seines
limitierten Einsatzes bereits Resistenzen beschrieben worden sind.[5] Daher kann die
Entwicklung von Kombinationstherapien beim Schutz vor weiteren Resistenz-
entwicklungen und zur Erhéhung der Wirksamkeit unterstiitzen.[6] Einen moglichen
Kombinationspartner stellt das Antibiotikum Fosfomycin dar, fur welches bereits
synergistische Arzneistoffinteraktionen mit Beta-Laktam/Beta-Laktamase-Inhibitor-
Kombinationen bekannt sind. Eine mechanistische und quantitative Untersuchung in
der Kombination mit Ceftazidim/Avibactam in E. coli steht allerdings noch aus.[7]
Daher ist das Ziel des vorliegenden Promotionsprojekts die pharmakodynamischen
Arzneistoffinteraktionen von Ceftazidim/Avibactam und Fosfomycin in verschiedenen
E. coli Stammen, die klinisch relevante Beta-Laktamasen mit erweitertem Spektrum
oder Carbapenemasen exprimieren, aufzuklaren. Dazu sollten systematische in vitro

Experimente mittels aussagekraftiger pharmakometrischer Methoden ausgewertet
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werden, um Arzneistoffinteraktionen semi-mechanistisch zu beschreiben, zu
quantifizieren und die Erkenntnisse letztlich ins klinische Umfeld zu ubertragen.

In der Publikation | wurden dazu experimentelle Checkerboard-Designs mittels
D-optimaler Design Strategie entwickelt, die eine Testung von Interaktionen effizienter
und rationaler gestalten. Die in silico Optimierung fuhrte zu rhombischen Designs,
welche nur vier getestete Kombinationen umfassen, die auf Arzneistoffpotenzen
basieren. Stochastische Simulationen und Schatzungen wurden durchgefiihrt, um die
entwickelten Designs statistisch mit Referenzdesigns mit bis zu 81 Kombination im
Hinblick auf Richtigkeit, Prazision und Klassifikationsraten von Interaktionen zu
vergleichen. Zweifelsohne fuhrte die Reduktion der experimentellen Designs zu einem
Informationsverlust, allerdings steigerten die rhombischen Designs im Vergleich zu
aufwandigeren Experimenten die Effizienz deutlich.

In Publikation Il wurde das entwickelte rhombische experimentelle Design in einem
Interaktions-Screening eingesetzt, welches vierzehn isogene und klinische E. coli Isolate
umfasste. Expositions-Effekt-Oberflachen-Analysen identifizierten starke syner-
gistische Interaktionen in 70% der untersuchten Bakterienstamme. In den meisten
Fallen verstarkte Ceftazidim/Avibactam die Fosfomycin-Effekte, wenngleich ein
eindeutiger Zusammenhang zwischen dem genetischen Profil der Isolate und den
jeweiligen Arzneistoffinteraktionen nichtidentifiziert werden konnte. Die Interaktionen
wurden in statischen Time-Kill-Experimenten in drei klinischen E.coli Stammen
bestatigt.  AnschlieBende  pharmakokinetisch-pharmakodynamische  (PK/PD)
Modellierungen quantifizierten bis zu 97% erhohte Arzneistoffpotenzen in Kombination
und bekraftigten die Art und Richtung der Synergien, die in den Checkerboard-
Experimenten festgestellt wurden. Zusatzlich konnte mit Hilfe der semi-mechanis-
tischen Modelle die Hypothese entwickelt werden, dass Ceftazidim/Avibactam und
Fosfomycin in Kombination eine verstarkte abtotende Wirkung von Bakterien erzielen
und dadurch zusatzlich die Entwicklung von Resistenzen unterdriicken.

Um die Arzneistoffinteraktionen bei dynamischer Pharmakokinetik zu untersuchen,
wurden in Publikation Il zundchst die Interaktionen von Ceftazidim und Avibactam

untersucht. Die vorangegangenen Modellierungen wurden daraufhin genutzt, um
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dynamische Hollow-Fiber-Experimente, die die Pharmakokinetik klinischer
Dosierschemata in einem in vitro Infektionsmodel imitieren, vorzubereiten. Ein PK/PD
Model mit semi-mechanistischen und subpopulations-synergistischen Elementen
wurde entwickelt, um die bakteriellen Dynamiken und das Aufkommen phanotypisch
resistenter Subpopulationen zu beschreiben. Simulationen hoben das Potential der
Synergie im Hinblick auf Dosis-Reduktionen in einer Kombinationstherapie hervor, da
sich eine simulierte Kombination von 0.5g alle 8h (gq8h) Fosfomycin and
0.25/0.06 g q8h Ceftazidim/Avibactam genauso wirksam zeigte wie eine vergleichbare

Monotherapie von 6 g q8h Fosfomycin oder 1.5/0.375 g q8h Ceftazidim/Avibactam.
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V. Abstract

The emergence of antimicrobial resistance (AMR) represents a major threat to
hospitalised patients. Especially rising resistances in gram-negative Enterobacteriaceae
such as Klebsiella pneumoniae or Escherichia coli are of concern. Therefore, those
pathogens were assigned with a ‘critical’ priority for research and development of new
antibiotics by the World Health Organisation (WHO).[1] Besides the development of new
antimicrobial agents, the repurposing and combination of approved drugs can allow to
overcome antimicrobial resistance and exploit beneficial drug interactions.[2], [3] The
most potent tools in order to thoroughly analyse and quantify in vitro drug interactions
as well as to translationally predict their clinical potential are in silico pharmacometric
modelling and simulation techniques.[4]

New hope for the treatment of resistant pathogens was brought by the approval of
novel beta-lactam/beta-lactamase inhibitor combinations in the recent years.
Ceftazidime/avibactam is one of those representatives, but despite its limited
application resistances were already described.[5] Therefore, the development of
combination therapies can support to protect against the further development of
resistances and to increase efficacy.[6] A potential combination partner is fosfomycin,
for which beneficial drug interactions with beta-lactam/beta-lactamase inhibitor
combinations are known, but a mechanistic and quantitative evaluation of the
combination with ceftazidime/avibactam in E. coli is lacking.[7]

Hence, the present PhD project aims to elucidate the pharmacodynamic drug
interactions of ceftazidime/avibactam and fosfomycin in different E. coli strains
expressing clinically relevant extended-spectrum beta-lactamases or carbapenemases.
Systematic in vitro experiments should be evaluated by meaningful pharmacometrics
to semi-mechanistically describe and quantify drug interactions and to ultimately
translate the knowledge into the clinical setting.

In Publication I, optimal experimental checkerboard designs were developed by means

of D-optimal design theorem to enable an efficient and streamlined interaction testing.



XVI

The insilico optimisation led to designs comprising solely four tested combinations
based on drug potency values arranged in a rhombic fashion. Stochastic Simulation and
Estimation (SSE) was used to statistically compare the developed designs to reference
designs including up to 81 combinations with regard to accuracy, precision and
classification rates of drug interactions. Apparently, the extensive reduction of the
experimental designs led to a loss of information, but the rhombic designs indicated to
be considerably more efficient than more cumbersome experiments.

In Publication Il, the developed rhombic experimental design was applied in an
interaction screening including fourteen isogenic and clinical E. coli isolates. Exposure-
response-surface-analyses identified strong synergistic interactions increasing the drug
potencies in 70% of the evaluated strains. In most cases ceftazidime/avibactam
enhanced the fosfomycin effects, but a distinct correlation between the genetics of the
isolates and the respective drug interactions could not be identified. The interactions
were corroborated in detailed static time kill experiments against three clinical E. coli
strains. Subsequent pharmacokinetic-pharmacodynamic (PK/PD) modelling quantified
up to 97% increased drug potencies in combination and confirmed the type and
directions of the synergies identified in the checkerboard experiments. Additionally, the
semi-mechanistic modelling evolved the hypothesis, that in combination
ceftazidime/avibactam and fosfomycin enhance bacterial killing effects, which also
suppresses the emergence of resistance.

In order to translate the drug interaction into dynamic pharmacokinetics the
interactions of ceftazidime and avibactam were firstly explored in Publication Ill. The
preceding modelling guided dynamic Hollow Fiber experiments mimicking the
pharmacokinetics of clinical dosing regimens in an in vitro infection model. A PK/PD
model with elements of semi-mechanistic and subpopulation synergy was able to
describe the bacterial dynamics and the emergence of phenotypic resistant
subpopulations. Simulations revealed the potential of the synergy for dose reductions
since a simulated combination of doses of 0.5gevery 8 h (q8h) fosfomycin and
0.25/0.06 g q8h ceftazidime/avibactam showed to be as efficacious as a respective

monotherapy of 6 g q8h fosfomycin or 1.5/0.375 g q8h ceftazidime/avibactam.
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1 Introduction

1.1 Antimicrobial resistance —the hidden pandemic

Antibiotic resistances are as old as the discovery of antibacterial agents.
Sir Alexander Fleming already foresaw the menace of antimicrobial resistance when
receiving his Nobel Price in 1945.[8] Today, nearly 80 years later, antibiotic resistances
represent a severe threat for public health and a ‘postantibiotic era’ is hypothesised.[6],
[9] In 2019, 1.27 million deaths were estimated to be directly linked to antimicrobial
resistance, which is comparable to the combined number of deaths associated with HIV
and malaria.[10] In order to streamline the urgent need for effective therapies the World
Health Organisation (WHO) defined priorities for research and development.[1] A
‘critical’ priority was assigned to gram-negative Enterobacteriaceae like E. coli and
K. pneumoniae, which are amongst the leading antimicrobial resistant pathogens
responsible for preventable deaths in 2019.[1], [9] As in many areas of health care, there
is an imbalance of the antimicrobial resistance burden from low to high income
countries. Nevertheless, also the European Centre for Disease Prevention and Control
stated for 2021, that 53.1% of all reported E. coli cases and 34.3% of all reported
K. pneumoniae in Europe were resistant to at least one antimicrobial group under
surveillance.[11] This highlights that antimicrobial resistance is a global health concern,
but in contrast to the raging pandemic of COVID-19, the pandemic of antimicrobial
resistance proceeds hidden.[10], [12] Thus, new and innovative treatment options are
urgently required to ensure efficacious antimicrobial therapies to limit further

emergence of resistance and prevent avoidable deaths.

1.2 Need for innovative treatment options

Development of new compounds represents the most apparent way to combat resistant
pathogens. Nevertheless, the repurposing of already approved drugs with regard to
label expansions or development of innovative combination therapies can establish

new treatment options as well.[2] The most prominent antibiotic drugs in the research
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and development pipelines are direct-acting small molecules encountering known or
new bacterial targets like the bacterial cell wall or protein biosynthesis. Other
investigated strategies are modulations of the host immune system, alterations of the
pathogenicity of the bacteria or phage therapy.[2] In the ‘arms race’ of researchers and
clinicians against the pathogens the development of new potentiators of anti-infective
drugs can be another mechanism to tackle resistant bacteria.[2], [13] A well-known
example for potentiators in antibiotic therapy are beta-lactamase inhibitors protecting
beta-lactam antibiotics against degradation by upcoming beta-lactamases and
restoring their activity against bacteria which became resistant.

Although these various research approaches are pursued and the discovery of new drugs
is promoted, the development of new compounds is challenging. Reasons are remaining
deficits in funding and complex translations from preclinical to clinical research.[2]
Additionally, the classic antibiotic targets have often been exploited extensively and
new identified targets are less easy druggable. Hence, often lower-risk paths such as
modifications of already existing drug classes are followed.[2] That is also the reason,
why the WHO warns that in the upcoming years only few innovative antibiotic agents
will recharge the antibiotic armouries.[14] Therefore, a repurposing and combination of
available drugs seem to offer the most immediate benefit from the options introduced
above. Motives of an application of combination therapy are mainly the following:
[) expansion of the antibacterial spectrum in the initiation phase of an empirical
therapy, when the identity and susceptibility of the pathogen is still unknown, Il) the
suppression of emergence of resistances, Ill) the exploitation of drug interactions
(e.g. synergies) to increase efficacy or IV) to re-sensitise bacteria, which would be
resistant against a monotherapy.[3] Moreover, reductions of dose levels in combination
with maintained efficacy could be conceivable in order to avoid or reduce exposure

driven toxicities and adverse effects.[15]
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Drug interactions 3

1.3 Druginteractions

When two or more drugs are administered in parallel, an immediate potential of
interactions arises. This comprises intended combination therapy (e.g. in treatment of
tuberculosis or hypertension) as well as polypharmacy in critically ill or geriatric
patients. When speaking of rational combination therapy of antibiotics, the drug
interactions are intentionally considered and utilised on purpose. This chapter
introduces the main forms and concepts of how drugs can interact.

Drug interactions can be distinguished by their pharmacology and their type of
interaction. Firstly, pharmacokinetic interactions can be discriminated against
pharmacodynamic interactions. Pharmacokinetic interactions occur, when the
absorption, metabolism, distribution or elimination of one drug is altered by the
combination partner (see 1.5.1). Pharmacodynamic interactions, which are the focus of
the present PhD project, display interactions, where the concentration-effect relation of
a drug is altered by another in an allosteric (i.e. regarding the maximum effect) or
competitive (i.e. regarding the potency) manner (see 1.5.2).[15]-[17] Secondly, drug
interactions can be discriminated by the deviation of the observed combined drug effect
from the expected additivity in combination. For this differentiation the underlying
criterion describing additivity is crucial.[18] The two most common used additivity
criteria are Bliss Independence and Loewe Additivity. Bliss Independence assumes that
two drugs act independently from the presence of the other drug.[19]-[21] In opposite,
Loewe additivity considers that two drugs have the same or a very similar target and in
combination they act like a drug, which is added to itself.[19], [20], [22] Based on those
criteria, deviations to higher effect sizes are defined as synergies and deviations to lower
effect sizes are defined as antagonism.[23] It is important to note, that those deviations
are concentration dependent. That means, that there will be areas in the concentration-
effect relation of two drugs, where the drug interactions manifest and others were
additivity prevails.

Special cases of synergy are described by coalism (i.e. two inactive drugs become active

in combination) and syncretism (i.e. one inactive drug potentiates the effect of an
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active one).[3] In opposite, a special case of antagonism is displayed by a suppressive
drug interaction (i.e. the combined effect is weaker than one single drug effect).[19] The
appearance of syncretism highlights, that, in theory, drug interactions are directional.
That includes monodirectional interactions like potentiation, but also bidirectional
interactions with both drugs enhancing or mitigating each other. Therefore, asymmetric
interactions with one drug lowering the effect of a combination partner while being
enhanced are mechanistically conceivable as well.[16]

From this variety of drug interactions, one might assume intuitively that synergies with
enhanced effect sizes and faster killing are the most beneficial ones, but there is also
evidence, that suppressive interactions can prevent or reverse the emergence of
resistances.[13], [19] The rational utilisation of drug interactions could therefore also
include the weighing of an immediate high (synergistic) effect size against a future
development of resistances.[19] In this context it is also important to note, that, when
drug interactions are investigated in preclinical in vitro or in vivo models, the ultimate
clinical relevance of a drug interaction has to be translated.[17] This covers evaluations
whether the magnitude of the interactions has a therapeutic impact and whether the

relevant concentration ranges for the interactions are clinically achievable.[17], [24]

1.4 Key antibiotics in the present thesis

Considering the possible benefits of drug interactions introduced above, novel and
innovative antibiotics provide a higher demand for protection against the emergence of
resistances. Additionally, agents with a likely synergistic potential can be of interest,
when it comes to a systematic evaluation of drug interactions.

Among the newly approved drugs in the recent years, some beta-lactam/beta-
lactamase inhibitor combinations entered the markets. One of the new beta-lactamase
inhibitors is avibactam, which was approved by the European Medicines Agency in 2016
in a fixed combination with ceftazidime.

When it comes to the rational design of antibiotic combinations, there are

considerations, that two drugs combatting the same target on different pathways have
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an increased likelihood for synergy.[19], [25] A prominent companion meeting these
prerequisites for beta-lactams is fosfomycin, which is an established drug and was
rediscovered as partner for combination therapy.[26] Additionally, it already indicated a
synergistic potential not only together with ceftazidime/avibactam but also in
combination with other beta-lactam and non-beta-lactam antibiotics.[27]—[30]

The following two sections introduce the key antibiotics investigated in the present PhD

project.

1.4.1 Ceftazidime/avibactam

Ceftazidime/avibactam is a fixed combination of a beta-lactam antibiotic and a beta-
lactamase inhibitor and is approved for the treatment of complicated intra-abdominal
infections, complicated urinary tract infections, including kidney infections, and
hospital-acquired pneumonia, including ventilator-associated pneumonia.[31] The
standard dose comprises the thrice daily administration of a fix combination of 2 g
ceftazidime and 0.5 g avibactam by intravenous infusion over 2 h.[31] The clinical dose
is reduced for children and renally impaired patients.[31] Ceftazidime/avibactam is
generally well tolerated, except the risk of beta-lactam related allergic reactions and
potential neurotoxicity.[20], [32]—[34]

Ceftazidime is the beta-lactam component in the fix combination and represents a
third-generation cephalosporine with enhanced binding activity against penicillin-
binding-protein 3 and improved stability against some beta-lactamases.[6] However, it
is still unstable in the presence of extended-spectrum beta-lactamases and
carbapenemases.[6] Its inhibition of penicillin-binding-proteins is a shared mode of
action of all beta-lactam antibiotics and leads to an inhibition of the bacterial cell wall
synthesis and ultimately to cell death.[35]

Avibactam is an innovative beta-lactamase inhibitor and in contrast to other beta-
lactamase inhibitors the molecule is not characterised by a beta-lactam ring.[6]
Avibactam inhibits Ambler class A (e.g. KPC, TEM, CTX-M) and Ambler class C (e.g. AmpC)

beta-lactamases as well as some Ambler class D (e.g. OXA) enzymes by covalent binding
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to the active sites of the beta-lactamases.[32], [36] Additionally, invitro studies
identified own antibacterial drug effects of avibactam at high concentrations.[37], [38]
In  combination ceftazidime/avibactam is highly active against different
Enterobacteriaceae and Pseudomonas aeruginosa strains. Although the combination is
only in use since 2016, resistances related to mutations in beta-lactamase genes, efflux
pumps or altered membrane permeability were already described.[5], [39] Therefore, it
is important to preserve ceftazidime/avibactam as a treatment option and its

protection against the development of resistance is of high interest.[6], [40]

1.4.2 Fosfomycin

Fosfomycin was discovered in 1969 and is therefore already considered an ‘old’
antibiotic.[41] Its chemical structure is derived from phosphonic acid and the
mechanism of action is based on the imitation of phosphoenolpyruvate.[7], [26] In
particular, fosfomycin combats bacteria by irreversible binding to the active site of the
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and thereby inhibits the first
step in the synthesis of UDP-N-acetylmuramicacid, a precursor molecule for the
bacterial cell wall formation.[26] The uptake of fosfomycin into the bacterial cell is
mediated by two transport mechanisms: the L-alpha-glycerophosphate transporter
(GlpT) and the hexose-6-phosphate transport (UhpT) system.[7] The activity of the UhpT
system is induced by physiologically available glucose-6-phosphate.[26], [42] In order to
closer correlate in vitro results to the invivo activity of fosfomycin, the transporter
system is extrinsically activated by the addition of 25 mg/L glucose-6-phosphate to the
bacterial growth media, when in vitro testing is performed.[7], [42], [43]

Because of the broad spectrum of fosfomycin against gram-negative and gram-positive
pathogens and the activity against bacteria expressing Ambler class B metallo-beta-
lactamases (e.g. NDM, VIM), which are not inhibited by most beta-lactamase inhibitors,
the intravenous administration of fosfomycin attracted clinicians worldwide.[26], [36],
[42], [44], [45] Its dosing depends of the type and severity of infection and ranges from
12 g to 24 g daily divided on 2 to 4 infusions with adjustments needed for children and
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renally impaired patients.[26] Those high drug amounts are not unproblematic.
Fosfomycin is a generally well-tolerated drug, but when administered as fosfomycin-
sodium salt one gram drug comes with 330 mg sodium.[46] The sodium load can lead
to direct hypernatremia and via a electrolyte shift to hypokalemia.[46]

When it comes to the emergence of resistance against fosfomycin, several different
mechanisms are described. The main ones are mutations in the transporter structures
outlined above, alterations of the target enzyme MurA and the expression of fosfomycin
modifying enzymes like glutathione S-transferases (e.g. FosA).[26], [43], [47] Especially,
those resistances emerge rapidly in vitro, but it seems to be inconsistent whether this
can be translated into the clinical setting.[47], [48] Yet, to avoid resistance development
during monotherapy and ensure efficacy for infections with variable pathogens,
fosfomycin is mainly used in combination. Also, the European Medicines Agency
recommended in 2020 to restrict the intravenous use in monotherapy to serious
infections when other treatments are not available.[44], [46], [49] The updated
recommendation for intravenous fosfomycin comprised among other indications the
use against complicated urinary tract infections, hospital-acquired pneumonia
including ventilator-associated pneumonia and complicated intra-abdominal
infections.[49] Nevertheless, due to the unique mode of action and the unique chemical
structure of fosfomycin the development of cross resistances is uncommon and

fosfomycin is a prominent partner in efficacious antibiotic combination therapy.[7], [26]

1.5 Key pharmacological elements in the present thesis

Pharmacology summarises the studies of how tissues and organ functions of a living
organism are affected by xenobiotics (e.g. pharmacological active substances) or
endogenous agents.[50] The two main branches of pharmacology are pharmacokinetics
and pharmacodynamics. As they are also important components of a pharmacometric

model (see 1.6.1), they will be introduced in the following chapters.
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1.5.1 Pharmacokinetics

Pharmacokinetics are often related to as how the drug is affected by the body.[17] They
can be summarised by the analysis of the ‘ADME’ principle, which includes all
mechanisms and paths of a drug passing through an organism.[51], [52] This acronym
comprises the description of absorption, distribution, metabolism and excretion of a
drug or its metabolites over time.[51]-[53] The pharmacokinetics of a drug can be
influenced externally by adjustable factors like changes of the dose, route and interval
of administration. Conversely, pharmacokinetics can also be subject to intended or
unintended drug interactions altering for instance the distribution or metabolism of
agents.[15], [17]

Within the framework of invitro assays conducted in the present PhD project,
experiments can be differentiated in static and dynamic pharmacokinetic conditions
(see 1.7). Static invitro experiments are assays with no changes in the drug
concentration over the investigation period. In opposite, in more elaborate dynamic
time kill experiments alterations in the drug concentration over time are realised to

mimic in vivo ‘ADME’ conditions.

1.5.2 Pharmacodynamics

Besides pharmacokinetics, pharmacodynamics are the second main branch of
pharmacology and can be described as the relationship of how the drug affects the
body.[17] Complementary to pharmacokinetic evaluations, a pharmacodynamic analysis
comprises an evaluation of the relationship of a certain drug exposure to a response
variable, such as blood pressure or heart rate.[53]

In the field of antibiotics, a pharmacodynamic response of a drug can be measured by
its impact on a bacterial population or by the influence on the emergence of resistances.
In particular, antibiotic agents can be divided in bactericidal or bacteriostatic drugs.
Bacteriostatic agents inhibit the bacterial growth, whereas bactericidal antibiotics like
the key antibiotics in the present thesis, ceftazidime/avibactam and fosfomycin,

introduced above (see 1.4), are able to kill a bacterial population.
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1.6 Pharmacometrics

Quantitative mathematical analyses of pharmacokinetics and pharmacodynamics can
contribute to an in-depth wunderstanding of the pharmacology of drugs.
Pharmacometrics displays a multidisciplinary science, that unites mathematical and
statistical methods with knowledge on pharmacology and medicine.[54] A
pharmacometric evaluation aims to characterise, understand and predict the
pharmacokinetics (see 1.5.1) and/or pharmacodynamics (see 1.5.2) of a drug whilst
informing about the uncertainty of this knowledge as well.[53], [55] The discipline has
its origins in the midst of the 20" century in the description of pharmacokinetics in
laboratory experiments.[56] Over the years, it evolved to the population
pharmacokinetic approach and to complex models to even describe exposure-response
relationships.[55], [56] Therefore, it is described as the science of quantitative
pharmacology.[55]

The different mathematical and statistical approaches enable quantitative descriptions
of drug concentration-time profiles, drug effects, biomarkers or surrogate endpoints
and progression of diseases.[53], [55], [57] Nowadays pharmacometrics is an important
tool to rationalise decision-making in drug development or optimise individual
pharmacotherapy.[53], [55], [57] Due to its versatile application areas, it is no longer just
applied to the evaluation of routine clinical data, but widely used from pharmaceutical
industry over academia to clinics.[56], [58], [59] Additionally, pharmacometric
considerations became pivotally requested by regulatory authorities to guide their
decision making.[56], [58], [60]

The following chapters introduce different pharmacometric techniques and how they

were applied in the present PhD project.

1.6.1 Pharmacometric modelling
Pharmacometric modelling together with simulations (see 1.6.2) summarises some of
the main pharmacometric techniques and provide the tools for a combined

pharmacokinetic and pharmacodynamic analysis. In frame of pharmacometrics a model
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can be described as ‘how you think your data were generated’ (Bonate, 2011).[61] The
concepts of traditional pharmacokinetic modelling and the constructions of non-linear
mixed effects (NLME) models go back to the early 1970s.[62] In the past as well as today,
a typical population model combines different elements: a structural model, a
variability model and a covariate model.[58] The structural model usually comes with a
compartmental structure and defines the functional form of a model. The variability
model introduces mainly interindividual and residual variability components, whereas
the covariate model introduces patient specific relations between a structural model
parameter (e.g. clearance, volume of distribution) and a patient specific characteristic
(e.g. renal function, weight, age).[58] The terminology ‘mixed effects’ refers to fixed
effects like structural model parameters and random effects like the variability
components mentioned above.[63]

That concept can be used to describe pharmacokinetic drug concentration-time-profiles
as well as pharmacodynamic observations (e.g. biomarker concentrations, bacterial
counts). It applies, that if the developed model structure is data-driven but influenced
by (micro-) biological considerations and mechanistic knowledge, they are often called
semi-mechanistic models as they are always simplifications of the more complex ‘real

world’.[61], [64]

Pharmacodynamic models

The focus of the present PhD project with regard to modelling was the elucidation of
concentration-effect-relationships as well as pharmacodynamic drug interactions. In
terms of antibiotics, a mathematically calculated effect could be a killing rate of a
bacterial population or an inhibition of its growth rate. There are several ways to relate
adrug concentration to a certain effect size. The most common approach is a calculation
of an effect as a function of a drug concentration by a sigmoidal maximum effect
model.[60] This type of model describes a saturable function and informs about a
maximum drug effect (Emax) and a drug potency, also known as EC50 or the

concentration at which the drug effect is half-maximum.[58] For concentrations
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noticeably below the EC50 the sigmoidal maximum effect model collapses to a linear or

power model.[58]

Pharmacodynamic interaction models

Pharmacodynamic interaction models can support an in-depth understanding of drug
interactions by mapping of combined effects as enhanced or reduced effect sizes
compared to the drugs in monotherapy. The most common concepts to describe
pharmacodynamic interactions of antibiotics are semi-mechanistic or subpopulation
synergy models.[65], [66] The semi-mechanistic modelling approach applied in the
present PhD project was based on the general pharmacodynamic interaction (GPDI)
model.[16] The GPDI model describes interactions as consequences of shifts of
pharmacodynamic parameters (i.e. Emax or EC50) driven by the present concentration
of an interaction partner.

In opposite, a subpopulation synergy model captures drug interactions via the
introduction of different subpopulations with separate susceptibilities to the
combination partners.[65], [66] Both techniques can elucidate combined drug effects
and inform about interaction directions as well as about interaction potencies and

magnitudes.

Pharmacokinetic-pharmacodynamic models

Elaborate pharmacokinetic-pharmacodynamic (PK/PD) models enable an analysis of a
drug response over time. Thereto, the pharmacokinetics are linked indirectly or directly
to a pharmacodynamic effect to account for different shapes of their relationship or
temporal relations (i.e.delayed or immediate effects).[17], [53], [60] Indirect
pharmacodynamic links use turnover models or effect-compartments to mimic time
delays in the concentration-response-relation or the development of tolerances.[60],
[67] Direct links assume a fast distribution to the site of action and an immediate onset

of the effect without time delays.[60] To provide an example, the prompt responses of
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bacteria against antibiotics in the present PhD project were introduced as direct
response pharmacodynamic models.

The combined analysis of pharmacokinetics and pharmacodynamics unfolds the full
potential of a pharmacometric analysis connecting clinical doses to a likely treatment
outcome.[17], [53] An example is the concept of PK/PD indices in antibiotic therapy.
PK/PD indices link a drug exposure and a microbiological measure (i.e. the minimum
inhibitory concentration (MIC)(see 1.7.1)) to a clinical outcome.[68] Thus, antibiotics are
commonly assigned to one of three different indices, which define the pharmacokinetic
driver for clinical efficacy.[69] It was identified, that the efficacy of some antibiotics can
be linked to a time period of the dosing interval, where the drug concentration is above
the MIC (%T > MIC), whereas others depend from a certain ratio between the peak
concentration and the MIC (Cmax/MIC).[68] For antibiotics assigned to the third PK/PD
index the efficacy is driven by the ratio of a certain exposure calculated as the area under
the concentration-time curve (AUC) and the MIC (AUC/MIC).[68] The key antibiotics of
the present thesis ceftazidime/avibactam and fosfomycin can also be assigned to one
PK/PD index, respectively. Beta-lactam antibiotics as ceftazidime are commonly time-
dependent antibiotics (%T > MIC), while the fosfomycin efficacy was identified to be
exposure driven (AUC/MIC).[44], [70]

1.6.2 Pharmacometric simulations

After establishing a pharmacometric model, it can be used for simulations. Simulations
require one or more models and represent an application for evaluation or comparison
of models. Additionally, they offer the platform for model predictions and give answers
to ‘what if’ questions as for instance required in model informed precision dosing.[53],
[57], [61]

Among various techniques, which require simulations, especially Stochastic Simulation
and Estimation (SSE) is used in the present PhD project for comparison of different
models. In an SSE study, firstly data is generated by stochastic simulations and in a

second step model parameters are estimated based on the simulated dataset. Finally,
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statistical analyses like calculations of accuracy and precision of parameter estimates or
comparisons of different models with regard to power calculations can be performed.
Hence, SSE can be used for hypothesis testing and can contribute to the evaluation and

comparison of study designs.

1.6.3 Optimal experimental design

To inform complex pharmacometric models a sufficient amount of data is required,
especially when drug interactions are to be characterised. Detailed in vitro studies can
become time and resource intensive and therefore a rational planning of experiments
can be requested. A mathematical strategy to improve the experimental design with
regard to efficiency and the information content of the obtained data is the application
of optimal experimental design techniques.[71] Assuming that a mathematical model
characterised by a defined parameter set describes an experiment, an optimal design
strategy will minimise the variance of the estimates of these parameters and thus
increase their accuracy and precision. A measure of this variance and thereby of the
amount of information about a parameter, which comes with a given set of samples, is
the Fisher information matrix.[72] In essence, optimal design approaches minimise
different features of the Fisher information matrix with regard to design variables of an
experiment. Design variables of interest can be optimal sampling time points in a
pharmacokinetic analysis or optimal drug concentrations tested when evaluating
antibiotic effects or pharmacodynamic drug interactions. The most important and best-
known optimal design criterion reduces the general variance by minimising the
determinant of the inverse Fisher information matrix and is named D-optimality.[73],
[74] The D-optimality criterion is estimation oriented.[75] Therefore, it is suited for the
design of screening experiments and was also applied in the present PhD project to

optimise experimental checkerboard designs.[75]
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1.7 In vitro infection models

The preclinical research in the present PhD project focuses on data obtained in various
in vitro infection models. The applied in vitro assays are not only research but also
diagnostic tools to facilitate clinical decision making for antibiotic therapies and are

introduced in the following chapters.

1.7.1 Susceptibility testing methods

Susceptibility testing of bacteria represents a routine measure in clinical
microbiology.[76] The main metric for antimicrobial susceptibility is the MIC.
Surveillance networks like the European Committee on Antimicrobial Susceptibility
Testing (EUCAST) collect global MIC data to link a bacterial susceptibility to a probable
treatment outcome and thereby provide guidance for clinical decision making (i.e. MIC
breakpoints).

There are several different methods for susceptibility testing. Two common ones are the
Epsilometer test (Etest) and the broth microdilution assay. Both methods have in
common, that the readout of the experiment is not a surrogate for bacterial
susceptibility, but a direct MIC.

For the Etest, numeric labelled plastic strips carrying a predefined antibiotic gradient are
placed on inoculated agar plates. The antibiotic agents diffuse into the agar and lead to
an elliptical zone of inhibition around the strip after a pre-defined incubation period.
The intersect of this zone of inhibition and the plastic strip is directly read as MIC.[77]
The Etest strips can also be used for the evaluation of pharmacodynamic drug
interactions. For this purpose, the combined zones of inhibition of two strips placed
perpendicular to each other, intersecting at the MIC of each drug, are evaluated.[78]
For broth microdilution, bacteria are incubated with standard two-fold drug
concentration tiers usually centred around 1 mg/L. After a pre-defined incubation time,
the lowest concentration not allowing bacterial growth evaluated by visual inspection
of turbidity of the liquid growth medium is defined to be the MIC.[79] This can be

sufficient to assist clinical decisions, but with a lower limit of quantification of
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approximately > 107 cfu/mL the visual evaluation lacks sensitivity for research purposes
and cannot discriminate between bacteriostatic or bactericidal effects.[20], [60], [80]
Therefore, the quantification of the bacteria in a similar experiment combined with
modelling of the drug effect (e.g. with a sigmoidal maximum effect model (see 1.6.1))
provides more sophisticated information about the antibiotic pharmacodynamics
(e.g. maximum effect and EC50 values) and can guide the rational planning of series of
experiments.[20], [58]

However, to reduce external influences on the MIC measures and increase the
interlaboratory comparability of susceptibility testing, EUCAST among other
organisations sets standards for susceptibility testing and assigned broth microdilution

to be the reference method.[20]

1.7.2 Checkerboard assay

The checkerboard assay is a popular and simple method to assess pharmacodynamic
drug interactions of antimicrobials.[81] The assay is performed similar to a broth
microdilution MIC determination but in two-dimensions, evaluating combined drug
effects by calculations of a fractional inhibitory concentration (FIC) index.[82] Alike in
the broth microdilution MIC determination, the turbidity-based evaluation of arbitrary
two-fold concentrations tiers lacks sensitivity, limits the outcome to the qualitative and
does not allow mechanistic insights into pharmacodynamic drug interactions.[20]
Therefore, the ‘dynamic’ checkerboard provides remedy in contrast to the illustrated
‘conventional’ approach, because it adds the quantification of bacteria as endpoint
measure to overcome the turbidity threshold.[80] This quantitative data is more
sensitive and enables an exposure-response-surface analysis, which is more robust and
less biased than a classical index calculation.[83] Nevertheless, the quantification of
bacteria leaves the assay noticeably more elaborate and hinders efficient streamlined
interaction testing. Considering that most pharmacodynamic drug interactions can be
observed in concentration ranges where the exposure-effect relationship is changing

most (i.e. around the EC50), the experimental designs can be rationalised from standard
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concentrations with two-fold increments to adaptive experimental designs based on
drug potencies. As a consequence, the interaction testing will be more efficient and

informative.[84]

1.7.3 Static time kill experiment

‘Time kill experiment’ is the term of a series of in vitro assays observing the growth and
kill kinetics of bacteria exposed to antibiotic agents alone or in combination.[60] In a
static time kill experiment, which is usually conducted over 24 to 30 h, the
concentrations of the drugs do not change over the time course of the experiment. In
opposite to the endpoint-based susceptibility and checkerboard assays introduced
above, a series of samples can be drawn to quantify the bacterial load throughout the
incubation time. Therefore, the observed drug effect is not only a function of drug
exposure but also of time.[20] This inclusion of an additional layer provides mechanistic
insights and when coupled with PK/PD modelling techniques, semi-mechanistic and
quantitative features of the bacterial population dynamics as well as drug effects and
emergence of resistances can be elucidated.[60] Due to these benefits, static time kill
experiments are the most commonly applied technique to assess pharmacodynamic

drug interactions, although there is no real assigned ‘gold standard’.[78]
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1.7.4 Dynamic Hollow Fiber experiment
The Hollow Fiber experiment can also be o~
referred to as a two-compartment dynamic [

time kill experiment.[20] ‘Dynamic’ refers to PDsampling __
port

the change of the drug concentration over
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different modes of administration as well as Fi8ure 1: Sketch of the two-compartment Hollow

Fiber system. PK: pharmacokinetics; PD:
variable infusion lengths (Figure 1).[85] The pharmacodynamics
second compartment is represented by a bioreactor containing thousands of semi-
permeable hollow fibres with 200 pm of diameter which physically separate the central
compartment from an extra-capillary space.[85] The bacteria are cultured in that extra-
capillary volume, retained in the cartridge and supplied with oxygen, nutrients and
drugs by a circulation from the central compartment. In comparison to other established
dynamic one-compartment time kill experiments, in this set-up the bacteria are
contained and are not removed during the experiment.[20] This increases the safety of
the system, decreases contaminations and enables a more accurate evaluation of
mechanisms of resistance.[85] Therefore, among the various in vitro assays, the dynamic

Hollow Fiber experiment is the most elaborate one to simulate and predict potential

clinical outcome of antibiotic therapy.[60]
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Rational combination therapy of already approved antibiotic agents was introduced as
an option to increase efficacy or to suppress the emergence of resistance (see 1.2).
Especially, novel drugs are the most important agents to be protected from
development of resistances to preserve them for future use. One of the newer beta-
lactam/beta-lactamase inhibitor combinations is ceftazidime/avibactam. It displays a
more recent innovative treatment option against carbapenem resistant bacteria.[6]
Nevertheless, resistances have been already described and a call for protection against
resistance development to prolong its shelf-life emerged.[5] An elderly potential
combination partner to increase efficacy and protect against the emergence of
resistances is fosfomycin, which was rediscovered by clinicians and for which synergistic
interactions with other cell wall mediating antibiotics have been reported.[26], [29] Yet,
a systematic evaluation of the combination in clinically relevant E. coli is lacking.

The aim of the German-French consortium project called ‘CO-PROTECT’, in which frame
the present PhD project was conducted, was to rationally explore drug interactions and
derive combination therapies of beta-lactam/beta-lactamase inhibitor combinations
with several last-resort antibiotics. This thesis addressed a subset of the studied drug
combinations from ‘CO-PROTECT in detail. Hence, the objective of the present thesis
was to systematically elucidate in vitro pharmacodynamic drug interactions of
ceftazidime/avibactam and other newer beta-lactam/beta-lactamase-inhibitor
combinations with fosfomycin in different E.coli and K. pneumoniae strains. The
analysis was designed to follow a bottom-up approach starting with an efficient broad
interaction screening (S), followed by a confirmation(C) of the identified
pharmacodynamic interactions in selected strains and an application (A) study in
dynamic pharmacokinetic conditions providing a clinical translation of the previous

findings (Figure 2).
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Application: dynamic
in vitro HF experiments
mimicking human PK

Confirmation: static TKE
corroborating identified
PD interactions

Screening: systematic
evaluation of PD
interactions

Figure 2: Overview of the consecutive project levels of the present PhD thesis. HF: Hollow Fiber; TKE: time
kill experiment; PK: pharmacokinetics; PD: pharmacodynamics

The experimental data should be obtained in different in vitro assays and quantitively
and qualitatively evaluated by means of different pharmacometric modelling and
simulation techniques. The three publications aimed to gain an in-depth understanding
of the interactions and evolve a perspective of the clinical benefit of the combination of
ceftazidime/avibactam with fosfomycin with regard to increased efficacy, suppression
of the emergence of resistances and to allow for dose reductions to avoid toxicity.

In detail, the Publications I, Il and 11l aimed for:

Publication I: Optimized Rhombic Experimental Dynamic Checkerboard Designs to
Elucidate Pharmacodynamic Drug Interactions of Antibiotics

- Rational development of an experimental dynamic checkerboard design with

considerably reduced workload compared to reference experimental designs (S)

- Application of D-optimal design theorem to in silico identify highly informative

effective concentration tiers to support efficient invitro pharmacodynamic

interaction screening (S)
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Evaluation of the accuracy and precision of interaction parameter estimations
and classification rates of the proposed designs compared to reference designs

in SSE studies (S)

Publication II: Evaluation of invitro pharmacodynamic drug interactions of

ceftazidime/avibactam and fosfomycin in Escherichia coli

Systematic screening of pharmacodynamic interactions of ceftazidime/
avibactam and fosfomycin in different isogenic and clinical E. coli isolates
utilising the experimental design derived in Publication I (S)

Application of static exposure-response-surface modelling to elucidate
mechanisms and magnitude of the observed pharmacodynamic interactions (S)
Performance of detailed static time kill experiments coupled with semi-
mechanistic modelling in selected strains to confirm the identified

interactions (C)

Publication lll: Pharmacokinetic/pharmacodynamic analysis of ceftazidime/avibactam

and fosfomycin combinations in an invitro hollow fiber infection model against

multidrug-resistant Escherichia coli

Translation of the observed pharmacodynamic drug interactions from static into
dynamic time kill experiments (C, A)

In vitro Hollow Fiber experiments mimicking human pharmacokinetics of mono-
and combination-therapies (A)

Bioanalytical confirmation of antibiotic pharmacokinetics in bacterial growth
medium during the in vitro Hollow Fiber experiments (A)

Combination of semi-mechanistic and subpopulation modelling techniques to
describe and quantify the pharmacodynamic drug interactions with their impact
on antibiotic efficacy and resistance development (A)

Simulations to evaluate the clinical potential of the observed drug interactions

with regard to allow for dose reductions in combination (A)
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3 Cumulative part

The following cumulative part introduces and presents three peer-reviewed original

publications. The articles represent the key results of this thesis.

The articles were published in Pharmaceutical Research, Journal of Antimicrobial

Chemotherapy and Microbiology Spectrum.[86]—[88]
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Synopsis

Mechanistic understanding of pharmacodynamic drug interactions is essential to
develop rational combination therapies. Popular approaches for interaction testing are
different variants of the checkerboard assay (see 1.7.2).[81] In brief, ‘dynamic’
checkerboard experiments including a quantification of viable bacteria enable a more
sophisticated analysis of pharmacodynamic drug interactions than traditional
checkerboards based on visual turbidity of bacterial growth medium, but are
considerably more laborious.[80] To combine the benefits of the ‘dynamic’
checkerboard approach with the requirements of a high-throughput screening of
pharmacodynamic drug interactions the in silico study in Publication | aimed to use the
D-optimal design theorem to develop optimal experimental designs and evaluate them
against commonly applied reference designs.

Like in considerations of Chen et al., the design development focused on concentration
tiers based on drug potencies (e.g. EC50) instead of standard two- or eight-fold
concentrations.[84] Firstly, rhombic designs comprising solely four highly informative
combinations were developed. Potential reference designs covering nine (i.e. a design
by Chen et al. or a ‘conventional’ sparse design) or 81 combinations (i.e. a ‘conventional’
rich design) would be substantially more cumbersome in high-throughput in vitro
experiments.

Secondly, the accuracy and precision of the interaction parameter estimation and the
classification rates of the newly proposed designs were evaluated in SSE studies and
compared to the reference designs. There the proposed designs showed to be highly
efficient. Apparently, the reduction of tested combinations was linked to a loss of
information but the potency-based designs were superior to standard concentrations.
Hence, the rhombic designs showed to be applicable to streamline testing in a high-

throughput interaction screening.
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Abstract

Purpose Quantification of pharmacodynamic interactions is key in combination therapies, yet conventional checkerboard
experiments with up to 10 by 10 combinations are labor-intensive. Therefore, this study provides optimized experimental
rhombic checkerboard designs to enable an efficient interaction screening with significantly reduced experimental workload.
Methods Based on the general pharmacodynamic interaction (GPDI) model implemented in Bliss Independence, a novel
rhombic ‘dynamic’ checkerboard design with quantification of bacteria instead of turbidity as endpoint was developed. In
stochastic simulations and estimations (SSE), the precision and accuracy of interaction parameter estimations and classifi-
cation rates of conventional reference designs and the newly proposed rhombic designs based on effective concentrations
(EC) were compared.

Results Although a conventional rich design with 20-times as many combination scenarios provided estimates of interaction
parameters with higher accuracy, precision and classification rates, the optimized rhombic designs with one natural growth
scenario, three monotherapy scenarios per combination partner and only four combination scenarios were still superior to
conventional reduced designs with twice as many combination scenarios. Additionally, the rhombic designs were able to
identify whether an interaction occurred as a shift on maximum effect or EC50 with>98%. Overall, effective concentration-
based designs were found to be superior to traditional standard concentrations, but were more challenged by strong interaction
sizes exceeding their adaptive concentration ranges.

Conclusion The rhombic designs proposed in this study enable a reduction of resources and labor and can be a tool to
streamline higher throughput in drug interaction screening.

Keywords checkerboard design - drug interaction testing - optimized experimental design - stochastic simulation and
estimation - synergy

Introduction

Resistant bacteria with decreased susceptibility towards
antibiotics represent a major threat to human health. One
strategy to treat less susceptible strains is to use combination
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therapies in order to attain a synergistic killing effect or to
prevent resistance development and thereby protect the
drugs for future use [1].

Methods are required to investigate pharmacodynamic
interactions in a simple and efficient manner. Besides Etest,
multiple-combination bacterial test (MCBT) and time-kill
assays, checkerboard assays are a common method to inves-
tigate pharmacodynamic drug interactions [2]. Checker-
board experiments are based on the microdilution technique
and utilize turbidity as a surrogate of bacterial growth in the
broth for calculation of indices which are then translated into
synergistic, antagonistic or indifferent combinational effects
[3]. Conventional experimental checkerboard designs cover-
ing multiple concentrations chosen as twofold dilutions with
up to 10 by 10 concentration levels can be disadvantageous
due to a high number of reagents and resources needed [2].

@ Springer
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In addition, the criterion of evaluating the turbidity of the
broth as endpoint criterion lacks sensitivity, is subjective
and does not display a continuous effect read out and only
informs about bacteriostatic effects and interactions beyond
the turbidity threshold. To overcome this limitation, the
quantification of colony forming units (CFU) as determined
in ‘dynamic’ checkerboard experiments, can provide more
detailed and specific insights into pharmacodynamics of sin-
gle drugs and their interactions [4]. Together with model-
ling and simulation techniques the bacterial count can be a
strong tool for interaction screening and for quantification
of interaction parameters [4].

In order to reduce the workload, a rational reduced design
based on effective concentrations (EC) was proposed by
Chen et al. [5]. Their EC-4 X4 checkerboard design, includ-
ing one scenario of natural growth, six scenarios of mono-
treatment and nine combination scenarios provided higher
accuracy and precision than a conventional reduced design
with same number of scenarios, but unoptimized concentra-
tions [5]. Associated with checkerboard designs, a scenario
was defined as an experimental combination of two drugs
with distinct concentrations whereas the growth scenario
contains no drug and in the mono testing scenarios solely
one drug was present.

The objective of the present study was to further optimize
and reduce the design of Chen et al. [5]. The optimization of
those designs was inspired by a D-optimal design approach.
D-optimality is beside other optimality criteria one of the
most important ones and a design is considered optimal
when it is minimizing the determinant of the inverse Fisher
Information matrix [6, 7]. Such reduced designs should still
be able to classify drug interactions accurately, but should
be highly efficient to comply with the requirements of high-
throughput analyses. The general pharmacodynamic interac-
tion (GPDI) model implemented in Bliss Independence was
used for interaction modelling in the course of the experi-
mental design development and design evaluation [8, 9].
The applied GPDI model enables elucidation of synergistic
(syn), antagonistic (ant) or asymmetric (asym) drug interac-
tions and describes the direction of an interaction via iden-
tification of perpetrator and victim drugs [8]. Furthermore,
it can distinguish between allosteric and competitive inter-
acting drugs, i.e. interactions on the level of the maximum
effect (Emax) or potency (EC50) [8].

Materials and Methods

Conceptual Workflow of Design Development
and Evaluation

The workflow of the development and evaluation of the
experimental designs is illustrated on Fig. 1.
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Fig. 1 Flowchart illustrating the workflow of the experimental design
development and evaluation. EC: effective concentration, SSE sto-
chastic simulation and estimation, PD: pharmacodynamic.

The optimized experimental designs were planned as
adaptive designs based on EC with solely four combination
scenarios. For the design development 1000 parameter sets
of random drugs A and B were generated and for each drug
combination an optimal set of adaptive EC-values forming
an experimental design layout for estimation of the drug
interactions was determined inspired by D-optimality. The
median of the 1000 individual optimal designs was consid-
ered to be the optimized design layout.

In a second step, the developed designs were evaluated in
stochastic simulations and estimations (SSE) and compared
with reference designs with respect to their predictive per-
formance. Therefore, an experimental screening was simu-
lated. 1000 parameter sets of random drugs A and B were
generated and in a first simulation the mono drug effects
were simulated in an ordinary differential equation system.
The drug EC50 were re-estimated and used to calculate
the concentrations for the EC-based adaptive experimental
designs. The ordinary differential equation system was then
used again to simulate dynamic checkerboard experiments
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utilizing the reference and optimized designs. From these
simulations the pharmacodynamic drug interactions were
re-estimated. Finally, the misclassification of interactions,
the precision and the accuracy of the interaction estimation
of the different designs were compared.

General Pharmacodynamic Interaction (GPDI) Model

The GPDI model was used for design development, simula-
tion and estimation of drug interactions. In the GPDI model,
interactions caused by a perpetrator drug at the concentra-
tion C are described as shifts of pharmacodynamic param-
eters (0) of the victim drug, where 0 represents the EC50 or
Emax and the shifts are applied via the insertion of a GPDI
term (Eq. (1)) [8]:

INT - CHinr
0-11+ I T — (N
ECSOH\'I}T + CHur

The INT parameter describes the fractional change of
the pharmacodynamic parameter, EC50,y parameterizes
the interaction potency and Hyyp the sigmoidicity of the
interaction. These parameters are directional as indicated
by subscript letters in Eqgs. (3)-(6) (e.g. ,p indicates A as
victim and B as perpetrator drug) and enable the descrip-
tion of the direction of the interaction [8]. When the GDPI
term is applied on both combination partners, interactions
become bidirectional and both drugs can be perpetrator and
victim at the same time.

In this study, an implementation of the GPDI model in
Bliss Independence [9] was used for design optimization
and evaluation. The GPDI model for Bliss Independence is
derived as follows: A competitive interaction type for two
drugs A and B can be described as shift on EC50 (Eqgs. (2)-
(3)) with

H
Emax, - C, ™

E, =
HINT.AB Hy 2)
INTq-C H
(peson- (1+ i) )+
and
Emaxg, - Cy™
Eg = B LB

HINT BA Hy 3)
INTy,-C, H
<ECSOB ’ (1 + EC50TINT.BA :‘C:INT.B/\ >) * CB ?

INT.BA

An allosteric interaction type can be described as shift on
Emax (Egs. (4)-(5)) with

HINT,AB
INT\5-Cy

H,
Emax, - <l + EC50UINTAB +C:IN'I'./\B ) “Cx A @)
E, =

INT.AB
EC50," +C,™

and

HINT,BA
INT,-C, N H
Emax (I+BA—A)C B
B HINT.BA , ~HINT.BA B
B = ECS0r5a +Ca 5)
g =

EC50"s + CpMe

in which E, and Ejy describe the effect of the single drugs
A and B, Emax, and Emaxg display the maximum possible
mono drug effects for drugs A and B, C, and Cy each drug
concentration and H, and Hy are pharmacodynamic sigmoi-
dicity parameters.

The polarity of each INT parameter defines the inter-
action type. If INT=0, the GPDI term becomes 1 and
no interaction is present. For drug interactions on EC50,
-1 <INT <0 describes a synergistic interaction as the EC50
is decreased and INT > 0 an antagonistic interaction as the
EC50 is elevated. If both INT parameters have the same
polarity the occurring interaction is bidirectionally synergis-
tic or antagonistic and in opposite, the interaction becomes
asymmetric when the polarity of both INT parameters is
reversed. The polarity of INT is opposite, when the inter-
action is implemented on Emax (i.e. INT > 0 describes a
synergistic interaction as Emax increases). For simplifica-
tion, as in the study by Chen et al. [5], in the optimization
and SSE study the interaction potency was fixed to the drug
potency (EC50,,+=ECS50) and the interaction sigmoidicity
(Hynt) was set to 1.

The combinational drug effects were calculated using
Bliss Independence with single drug effects normalized to 1
for calculation of the probabilistic Bliss Independence term
and then scaled back to the effect scale (Eqs. (6)-(7)):

Emax = max(Emax.A’ Emax.B) (6)

EA Eg E, Eg
Bopopi= (| g B & B ) §
‘comb < E E Emax Emax max (7)

max max

using the terms for E, and E; containing the GPDI terms as
defined above (Eq. (2)-(5)).

Reference Checkerboard Designs and Novel Design
Candidates

Starting point for the development of new checkerboard
designs were layouts proposed by Chen et al. [5]. In their
study, two conventional designs build on standard drug
concentrations were compared to a novel, optimized design
based on drug potency values. The following three designs
were used as reference designs in this study:

i) The conventional rich design consisted of ten-by-ten

drug concentrations (i.e. 100 testing scenarios) includ-
ing one experiment without treatment (natural growth),
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nine mono testing scenarios for each drug and 81 drug
combination scenarios. The drug concentrations tiers
were set as two-fold increments ranging from 0.25 to
64 pg/mL (Fig. 2a).

ii) The conventional sparse design was reduced to four-
by-four drug concentrations (i.e. 16 testing scenarios)
including one scenario without treatment, three mono
testing scenarios for each drug and 9 combination
scenarios. The drug concentration tiers in this sparse
design were set as eight-fold increments ranging from 1
to 64 pg/mL (Fig. 2b).

iii) The optimized EC-4 X 4-design by Chen et al. [5] also
covered 16 testing scenarios, but instead of standard
eight-fold concentrations the concentrations depended
on drug potency values (EC20, EC50, EC80) (Fig. 2c¢).

The following two optimized rhombic designs which were
newly proposed in this study also relied on drug potency val-
ues and covered two-by-two combination scenarios, but with
no horizontal rectangular shape (Fig. 3):

i) In the free rhombic design, all combination scenarios
were independent from each other and the design, i.e.
the length and angles of the shape of the experimental
layout were solely driven by the optimization studies.

ii) The fixed rhombic design was a simplification of the free
rhombic design. In this design a middle EC of one drug
is used in two combination scenarios while an upper and
lower concentration are tested solely in one combina-

from 0.5-ECS50 to 2-EC50. The mono testing concentrations
scenarios were no component of the optimization studies.

All checkerboard concentrations (C) based on drug potency
values (ECXX) were calculated based on a sigmoidal Emax
model, with ECXX describing the decimal of the maximal
effect (e.g. 0.2 for EC20) (Eq. (8)):

- \/ ECXX - Emax - EC50"

(3)
Emax — ECXX - Emax

Development of the Optimized Rhombic Designs

The rhombic checkerboard designs were developed using the
R software (version 3.6.2)[10]. Minimizations were performed
using ‘optim’ from the R package stats (version 3.6.3)[10].

For design development, 1000 parameter sets of two ran-
dom drugs A and B were simulated to mimic typical antibac-
terial drugs (Fig. 1). Additionally, to simulate different types
of drug interactions for each of those drug pairs three sets of
interaction parameters describing a synergistic, antagonistic
and asymmetric interaction were sampled and applied as inter-
actions on EC50 and Emax. The drugs Emax values (log10
CFU/mL) were sampled between 5 and 10, the EC50 values
(ug/mL) between 2 and 3 and H between 1 and 3. The INT
parameters were sampled between -0.9 and 4.

For the design development, the inverse determinant of
expected Fisher information matrix (FIM) was calculated and
used as objective function value (OFV) (Egs. (9)-(10)):

tion scenario. This simplification was designed to have FIM = X ( IT. J) 9
a more practical in vitro application as illustrated on o2 ©)
Fig. 3.
_ 1
The newly developed rhombic checkerboard designs also ~ det(FIM) (10)
included one scenario without treatment (natural growth) and
mono testing scenarios with two-fold concentrations ranging
a) o4 G o9 b) 64 ¢ 9 €)100
o R < 4 m B . ~ _ ~
S’ 16 < g) 16
D 8 G ry s o) <] W D 8 'y m 60
S Apsedpia S 4 S A S
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Fig.2 Overview of the literature-based reference designs: Design (a) is the conventional rich design, design (b) is the conventional sparse
design, design (c) is the EC-4 x4-design earlier proposed by Chen et al. [5], based on effective concentrations EC20, EC50 and EC80. For sim-

plification, only the combination scenarios are shown.
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with J being the Jacobian (matrix of first-order derivatives of
the offered combination scenarios with respect to the model
parameters) and o2 the additive residual variance (fixed to
a constant as it does not influence the minimization). For
each parameter set the drug concentrations for the adaptive
designs and their static effect sizes based on the GPDI model
outlined above were calculated.

The OFV was calculated separately for each parameter
set of the two drugs A and B. For each parameter set inter-
actions on EC50 or Emax including the three differently
sampled interaction types (synergism, antagonism, asym-
metric) were considered in the OFV as weighed sum [11] to
simultaneously optimize a design for different conceivable
drug interactions. All modes of interactions and interaction
types were weighted same, given that each scenario shares
the exact same number of parameters and data points.

Minimization of the OFV was then performed with EC-
values forming the combination scenarios as design vari-
ables using Nelder-Mead [12] algorithm pre-minimizing and
L-BFGS-B [13] algorithm for a final minimization.

Finally, the medians of the ECs of all 1000 simulated parameter
sets were considered to be the optimal design (Fig. 1). Optimiza-
tion runs converging in local minima with implausible results (e.g.
estimates with boundary problems) after application of 1000 retries
with different sets of initials were excluded from data analysis.

Design Evaluation in Stochastic Simulation
and Estimation

The optimized designs were subsequently evaluated
in stochastic simulation and estimation (SSE) studies.
The SSE were performed with the R software (version
3.6.3)[10]. Differential equations were solved using the
‘deSolve’ package (version 1.28)[14]. To improve per-
formance, differential equations were encoded in C, com-
piled as shared objects (.so) and linked to the ‘deSolve’
interface. Estimation of parameters was performed using
‘optim’ from the R package stats (version 3.6.3) [10].
For the SSE, a realistic time-kill experiment mim-
icking scenario was chosen: 1000 hypothetical drug
combinations were randomly sampled and the effect on
colony forming units (CFU) in an ordinary differential
equation system (Eq. (11)) with simultaneous growth
with a first order growth rate kg and killing effect rate
E was simulated.
dCFU

&2 k- CFU —E - CFU

dt (11)

As initial condition a typical inoculum of 5-10° CFU/mL

was assumed and the growth rate (k) was set to 2.08 h!,
which corresponds to a bacterial doubling time of 20 min,
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typical for E. coli [15]. The addition of drug was simulated
at t=0h and CFU were read after 4 and 24 h.

In all simulations, the EC50 of both interacting drugs
was sampled between 0.1 and 60 pg/mL, the sigmoi-
dicity parameters H, and Hy were sampled between 1
and 3 and the Emax of both drugs were sampled con-
servatively between 1 and 1.5 h™! to prevent the termi-
nation of runs due to excessive killing, which can lead
to very small CFU counts challenging the tolerance of
differential equation solver (< le-7 CFU/mL). To mimic
common drug interactions, the interaction parameters
INT were sampled from -0.9 to -0.5 and 0.5 to 4, cor-
responding to the additivity margins evaluated for the
GPDI model [8]. In a second approach strong mono-
directional antagonistic interactions were simulated to
imitate a drug combination in which one drug fully sup-
presses the effect of the companion drug (Supplement
Text 1). Additionally, the type of interaction (EC50 or
Emax) was randomly sampled.

In a first SSE (Fig. 1), a determination of the mono
drug pharmacodynamics before simulating the checker-
board experiments was simulated to challenge the robust-
ness of the adaptive EC-based designs being dependent
on the estimated EC50. This was done as the ‘true’ EC50
is usually unknown and the EC50 is also determined
with uncertainty, which might impact the calculation of
the concentrations in the design. This EC50 determina-
tion was based on the ODE system as outlined above and
included a growth scenario and three concentration sce-
narios based on standard two-fold concentration scenarios
around the EC50. The EC50s were estimated using a sig-
moidal Emax-model (Eq. (11)). The model described the
effect (E) as a function of the drug concentration (C) with
the maximum effect (Emax), drug potency (EC50) and
sigmoidicity of the drug effect (H) as parameters:

Emax - CH

= 12
EC50" + CH az

The estimated EC50s were then used to calculate the
final concentrations for the adaptive drug potency based
experimental designs used for the interaction estimation.
Therefore, the EC-4 X4 and rhombic checkerboard design
concentrations were calculated individually for all simu-
lated drug combinations whereas the conventional reference
designs always covered the same standard concentrations
as outlined above.

In a second SSE (Fig. 1) the designs were then com-
pared with respect to the abilities to identify drug interac-
tions. The ODE system outlined above was used to simulate
dynamic checkerboards with combined effects based on
the GPDI model. For interaction estimation the mono drug
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pharmacodynamic parameters were provided and the interac-
tion parameters were first assessed in a pre-evaluation using
the Nelder-Mead algorithm with different polarities of the INT
parameters as initial values. The OFV, that was minimized,
was calculated using the extended least squares criterion [16].

The Akaike information criterion (AIC) for a potential
Emax or EC50 interaction was calculated and the difference
between the best fitting EC50 model and the best fitting Emax
model was computed and used as decision criteria to identify
the correct interaction [17]. To evaluate the ability of the dif-
ferent experimental designs to discriminate between EC50 and
Emax interactions the minimum AIC difference for 95% of
the estimations was calculated. A higher AIC difference was
interpreted as a surrogate for a more distinct discrimination of
the experimental design between allosteric and competitive
interacting drugs.

After estimation of INT parameters, the Hessian was cal-
culated within the ‘optim’ function. The standard errors of the
estimates (SE’s) were calculated as square root of the diagonal
values on the inverse Hessian matrix evaluated at the OFV
minimum. 95% confidence intervals (CI) of the INT parameter
estimates were calculated as INT-parameter + 1.96 - SE. Rela-
tive bias (rBias) (Eq. (13)) and relative imprecision (rRMSE)
(Eq. (14)) were calculated as follows:

L 1 estimation; — true;
rBias = 100% - N’ Zi — (13)
(estimati true;)’
1 estimation; — true;
rRMSE = 100% - 4| = - ) . (14)
’ \J N Z‘ true?

with estimation, referring to the i"" estimated INT parameters
and true; being the i true parameters used for simulations.
N represents the number of true parameter-sets.

To evaluate the value of the experimental designs in a
qualitative interaction screening the misclassification rate
(MCR) (Eq. (15)) was calculated as a metric for a false
interaction identification neglecting the absolute value of
the INT parameter but assessing solely the polarity of the
INT parameters.

correctly classified interaction

MCR = 100% — 100% - N

(15)

An interaction was rated as correctly classified, when

the polarity of both INT parameters including the 95% CI

matched the underlying true value that was used for simu-

lation. Additionally, the MCR for the identification of the

correct mechanism of interaction (i.e. EC50 or Emax inter-
action) was calculated.
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Results
Development of the Optimized Rhombic Designs

The reference designs and newly proposed rhombic designs
are visualized on Figs. 2 and 3 respectively. The correspond-
ing EC-values forming the rhombic designs can be obtained
from Table I. Minimization problems within the optimiza-
tion did not occur for the fixed rhombic design. For the free
rhombic design 2% of the minimizations converged in local
minima with boundary problems and were removed. Con-
ventional checkerboard designs as the conventional rich and
conventional sparse reference design do have a symmetric
rectangular layout just as the EC-4 X 4-design proposed by
Chen et al. as a rationally derived experimental design. In
opposite to these designs, the optimization of the free design
formed a rhombic design with no classic rectangular shape.
The final free rhombic design is nearly mirror symmetric to
the diagonal of the checkerboard. In comparison, the fixed
rhombic design is forced to be mirror symmetric to be more
practicable for application in in vitro studies.

Table | Design Variables Corresponding to the Developed Rhombic
Checkerboard Designs (Fig. 2)

Free rhombic design Fixed rhombic design

In none of the developed designs the optimization led
to combinations scenarios formed out of equal EC-values,
as e.g. EC20:EC20, EC50:EC50 and EC80:EC80 in the
EC-4 x4-design.

Design Evaluation in Stochastic Simulation
and Estimation

The estimation of the EC50 resulted in unbiased estimates
with a mean relative imprecision of 2.10%. The accuracy
and precision metrics of the different experimental designs
estimating the interaction parameters are displayed on Fig. 4.
The misclassification rates of all designs are illustrated on
Fig. 5. The AIC differences between an EC50 or Emax
model, as metric for the discrimination between allosteric and
competitive interactions are shown in Table II. All designs
led to small relative bias (rBias) (<2.06%) (Fig. 4), indicating
that all designs were able to support an accurate estimation of
the interaction parameters. Comparing the relative impreci-
sion (rRMSE) of the different designs, the conventional rich
design with its 81 combination scenarios and the EC-4 x4
design with its 9 combination scenarios allowed estimation
of the INT-parameters most precisely (rRMSE rich design:
INT,5: 16.54%, INT,: 13.91%; rTRMSE EC-4 X 4-design:
INT,5: 14.19%, INTy,: 14.14%). The conventional sparse
design, which is like the EC-4 x 4-design a reduced design
by a factor of nine (nine combination scenarios) was least

EC39:EC81 EC44:EC82 ]
ECO6:ECS3 ~ ECSL:EC39  ECO8:EC44  EcsazEcas  precise (INTyp: 25.16%, INTy,: 24.78%).
EC52:EC08 EC44:EC08 The further reduced rhombic designs with only four combi-
nation scenarios, enabled a precision of the estimates between
Results are presented as ECXX Drug A:ECXX Drug B the EC-4 x4-design and the conventional sparse design (Fig. 4).
Rich Design Sparse Design EC-4x4 Design Fixed Rhombic Design || Free Rhombic Design
(n=81) (n=9) (n=9) (n=4) (n=4)
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Fig.4 The relative root mean square error (rRMSE) and relative bias (rBias) for the interaction parameters (INT_AB, INT_BA) estimated by the
different checkerboard design in the SSE study. n represents the number of combination scenarios included in the respective experimental design.
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Fig.5 Misclassification rates of the different checkerboard designs in the SSE study. Classification rates for discriminating competitive (EC50)
or allosteric (Emax) interactions were calculated as well as for identifying the correct type of the interaction (syn: synergy, ant: antagonism,
asym: asymmetry). n represents the number of combination scenarios included in the respective experimental design.

Table Il SSE Statistics on
the Ability of the Different
Experimental Designs to
Discriminate Between EC50
and Emax Interactions

Reference designs Rhombic
designs
conventional EC4x4 fixed free
rich sparse
Combination scenarios 81 9 9 4 4
Min. AIC" difference for interaction discrimination 47.83 0.81 15.24 9.22 5.52

(EC50, Emax) in >95% of the simulations

*AIC, Akaike Information criterion

The overall lowest misclassification rates were displayed
by the conventional rich design. The EC-4 X 4-design and
the rhombic designs led to lower misclassification rates
than the conventional sparse design (Fig. 5). The free
rhombic design overall misclassified less interactions than
the fixed rhombic design. In all designs synergistic inter-
actions were misclassified most often (Fig. 5).

When considering strong antagonistic monodirectional
drug interactions leading to full suppression of the effect of
the victim drug, the conventional designs relying on stand-
ard concentrations showed advantages against all adaptive
designs with effective concentrations since the effective
concentrations are less informative in such extreme cases
(Supplement Text 2, Supplement Fig. 1).

The AIC difference between an interaction on Emax and
EC50 for 95% of the estimations as marker for the distinct-
ness of the discrimination between EC50 and Emax interac-
tions was highest for the conventional rich design (47.83) and
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for the EC-4 X 4-design (15.24). Again, the rhombic designs
were inferior with regard to the distinctness of the interaction
discrimination than the richer EC-4 X4 design and the con-
ventional rich design but superior to the conventional reduced
design (Table II).

Discussion

The optimized rhombic designs proposed in this study
include solely four scenarios required for combination test-
ing and present universal applicable designs due to their
reference on effective concentrations. With their rhombic
shaped arrangement of the combination scenarios rather
than a conventional rectangular one, they suggest that the
combinations of similar effective drug concentrations (i.e.
EC50-EC50 combination) are less informative than off-
diagonal concentration combinations.
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These proposed designs were included in SSE studies
and were compared to reference designs. In this compari-
son, it was considered that a preliminary EC50 determina-
tion with additional uncertainty had to be performed for the
EC-based designs. The herein simulated EC50 determina-
tion led to very precise and unbiased estimates of the drug
potencies and therefore had limited impact on the EC-based
design in this simulated setting. Also, the other parameters
of the drugs were considered to be known and fixed to the
true values, when estimating the interactions. This influ-
ence will be more relevant, when transferring the optimal
design in application areas, where high-quality information
on the pharmacodynamics of the drugs is not available.

The substantial reduction in tested combination scenar-
ios in the here newly proposed rhombic designs is obvi-
ously linked to a loss of information. Despite their very
reduced layout, the optimized designs based on effective
concentrations were still superior regarding accuracy,
precision and misclassification rates compared to the
conventional sparse design and they could compete with
the reference designs in case of classification of interac-
tion. Therefore, this reduction could be very useful in
early phases of interaction screening to enable a higher
throughput when elucidating drug interactions. The sim-
ulation studies mimicked modern, so called ‘dynamic’
checkerboard experiments with readout of viable bacteria,
instead of turbidity. Therefore, the designs enable a wider
spectrum of interaction analysis. Moreover, as the designs
are based on the GPDI model, they are designed for the
identification of directional interactions and can identify
perpetrator and victim drugs and discriminate interac-
tions on EC50 and Emax. In conventional checkerboards
with turbidity as endpoint, single concentration testing
as performed in multiple-combination bactericidal tests,
time-kill assays or Etest [2], the generation of information
about the combined pharmacodynamic effect surface can-
not be achieved. Therefore, the workload reduction espe-
cially in dynamic checkerboards is effective and enables
a more straightforward understanding of drug interac-
tions to a fuller extent, even though the optimized designs
require prior knowledge regarding the drug-response rela-
tion to determine the by design needed effective concen-
trations. This requires solely active drugs and therefore
the designs based on effective concentrations can have
limited applicability for detection of the potentiation of
a drug by an inactive combination partner or coalism of
two inactive drugs. Nevertheless, it could be encouraged
to utilize the power of experimental design optimization
techniques to support rational approaches combination
designs beyond antibiotic drugs.

In opposite to the optimized design proposed by
Chen et al. [5], which was rationally developed and

evaluated with focus on EC50 interactions, the designs
in this study were developed with an D-optimal inspired
approach and considered interactions on Emax and EC50.
Additionally, the designs were all also evaluated exten-
sively in Bliss Independence using the GPDI model, allow-
ing a wide variability of possible interactions on EC50 and
Emax. Thus, all rhombic designs are associated with an
enormous improvement in gain of information on drug
interactions versus a reduction of workload to enable a
high throughput as compared to conventional approaches.
Moreover, through the usage of drug specific EC-values,
testing concentrations are defined rationally and the
designs allow more targeted studies of drug interactions.
This can make interaction testing more efficient, even
though the designs are inferior to conventional designs,
when very strong drug interactions are present, which are
not covered in the range of the effective concentrations
for the respective design. In these cases, unspecific stand-
ard concentrations can initially be beneficial through their
wider concentration range and additional testing for the
adaptive effective concentration-based designs is required
to enable a reliable identification of the drug interactions
(Supplement Text 3).

We acknowledge the following limitations of our study:
D-optimal design strategies are sensitive to underlying
prior information and the developed designs suffer if
the final model differs clearly from the prior model [18].
However, the chosen GPDI model is already compared
and validated against different interaction models. It
showed to be superior to an empiric Bliss Independence
interaction model and is universally applicable [8]. Fur-
thermore, it is able to infer about mechanistic information
in the underlying interaction [8]. Beside the underlying
model the optimality criterion can have an influence on
the identified design candidates [19, 20]. As this study was
inspired by the traditional D-optimality criterion alterna-
tive approaches like A- or E-optimality might result in
slightly different designs. Nevertheless, the SSE evaluation
confirmed the capabilities of the designs derived with the
D-optimal inspired method in the identification of pharma-
codynamic drug interactions.

The chosen optimization and evaluation settings are
focused on antibiotics that may limit the direct transfer of the
experimental designs, but does not exclude it. For simplifica-
tion, in our design development and in the SSE studies no
simultaneous interactions on EC50 and Emax were consid-
ered. In addition, base of the SSE studies was a simplified one
compartment model to describe the bacterial growth. This
means, that development of adaptive resistance or tolerances
were quantified as interactions and not in a mechanistic fash-
ion. Hence, further research is required, if the designs shall be
used within more complex mechanistic models.

@ Springer
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Conclusion

In this study rhombic checkerboard designs based on
D-optimized effective concentrations were proposed. For the
commonly used additivity criterion on pharmacodynamic
interaction modelling, Bliss Independence, a fixed rhombic
design with the combination scenarios ECO8/EC44, EC44/
ECO08, EC44/EC82, EC82/EC44 is the simplest of the devel-
oped designs due to the fixed middle concentration and ena-
bles the determination of synergistic, antagonistic or asym-
metric drug interactions with a reduced workload compared
to conventional checkerboard designs. The new proposed
designs, which reduce combination testing by 95% com-
pared to conventional rich designs and by 55% compared to
sparser design layouts, are inferior with regard to accuracy
and precision to the conventional rich design and an earlier
proposed EC-based design, due to a loss of information dur-
ing reduction, but can be beneficially compared to a con-
ventional sparse design in case of classification of an inter-
action. Thus, the present study showed that checkerboard
designs based on interaction models with optimized drug
specific effective concentrations are superior to conventional
designs with standard concentrations and are very attrac-
tive to enable higher throughput with maintained or even
increased quality of results. Additionally, a model-based
evaluation of the experimental data as suggested in this
study can contribute to a deeper elucidation of drug interac-
tions. Beside the optimization of checkerboard designs, the
benefit of powerful optimization strategies of experimen-
tal designs to economize and improve experimental setups
could also be used on various experimental settings. The
herein developed designs will be used and evaluated in fur-
ther in vitro experiments to examine drug interactions.
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Synopsis

Ceftazidime/avibactam and fosfomycin are known to interact synergistically against
some K. pneumoniae as well as P. aeruginosa strains, but a systematic evaluation in
other Enterobacteriaceae such as E.coli was lacking.[28] Important features of a
meaningful invitro study to gather insights for a clinical translation of the drug
combinations are the following: I) generation of detailed mechanistic and quantitative
understanding of bacterial dynamics, drug effects and interactions and Il) the inclusion
of various well-defined bacterial strains expressing clinically relevant resistance
mechanisms.[4] Therefore, the study conducted in Publication Il aimed for a systematic
analysis of the drug interactions of ceftazidime/avibactam and fosfomycin in eight
isogenic and six clinical E. coli strains expressing common extended spectrum beta-
lactamases or carbapenemases. Firstly, an interaction screening utilising the optimal
experimental design developed in Publication | (see 3.1) was performed and the
pharmacodynamic drug interactions were assessed in exposure-response-surface
analyses. Secondly, the identified interactions were corroborated in three clinical E. coli
isolates in detailed static time kill experiments and evaluated by means of semi-
mechanistic modelling.

The screening identified synergies for six out of eight isogenic strains and four out of six
clinical isolates. Significant reductions of the EC50 with variable directionality were
identified as mechanisms of the interactions.

The static time kill experiments confirmed the identified interactions. Subsequent
PK/PD modelling elucidated enhanced killing effects with EC50 reductions up to 97% as
mechanism of the increased antibacterial effect in combination. However, a correlation
of the genetic background of the individual strains and the manifestation of the drug
interactions could not be identified.

The broad synergistic interactions of ceftazidime/avibactam and fosfomycin against
E. coliverified the potential for a clinical application of the drug combination with regard

to dose reductions or re-sensitisation of resistant bacteria.
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Background: Combination therapy can increase efficacy of antibiotics and prevent emergence of resistance.
Ceftazidime/avibactam and fosfomycin may be empirically combined for this purpose, but a systematic and
quantitative evaluation of this combination is needed.

Objectives: In this study, a systematic analysis of the pharmacodynamic interactions of ceftazidime/avibactam
and fosfomycin in clinical and isogenic Escherichia coli strains carrying genes coding for several carbapenemases
or ESBLs was performed and pharmacodynamic interactions were quantified by modelling and simulations.

Methods: Pharmacodynamic interactions were evaluated in ‘dynamic’ chequerboard experiments with quanti-
fication of viable bacteria in eight isogenic and six clinical E. coli strains. Additionally, supplemental time-kill ex-
periments were performed and genomic analyses were conducted on representative fosfomycin-resistant
subpopulations. Models were fitted to all data using R and NONMEM®.

Results: Synergistic drug interactions were identified for 67% of the clinical and 75% of the isogenic isolates with
a mean ECsq reduction of >50%. Time-kill experiments confirmed the interactions and modelling quantified
ECso reductions up to 97% in combination and synergy prevented regrowth of bacteria by enhanced killing ef-
fects. In 9 out of 12 fosfomycin-resistant mutants, genomic analyses identified previously reported mutations.

Conclusions: The broad synergistic in vitro activity of ceftazidime/avibactam and fosfomycin confirms the po-
tential of the application of this drug combination in clinics. The substantial reduction of the ECso in combination
may allow use of lower doses or treatment of organisms with higher MIC values and encourage further research
translating these findings into the clinical setting.

be used alone.” In particular, efficacy of the combination of
extended-spectrum cephalosporins and fosfomycin has been ex-
tensively shown for the treatment of MRSA infections.®

Introduction

Infections with carbapenemase or ESBL-producing Enterobacterales

represent a major healthcare threat.™” Rational combinations of
antibiotics can extend the shelf-life of drugs by preventing
the emergence of resistance and achieve high efficacy.?
Ceftazidime/avibactam represents a novel B-lactam/p-lactamase
inhibitor combination for which benefits in treatment outcome
are reported when used in combination.” The fixed combination
is currently approved against complicated intra-abdominal infec-
tions, urinary tract infections and hospital-acquired pneumonig,
including ventilator-associated pneumonia. An empirically fre-
quently used combination partner is fosfomycin, which is indicated
for the same infections, when given 1V, but not recommended to

Additionally, combinations with ceftazidime/avibactam have
been evaluated in vitro to have potential against MDR Klebsiella
pneumoniae or Pseudomonas aeruginosa, but the effects are de-
pendent on underlying resistance enzymes.”®

Hence, this study provides a detailed in vitro analysis of the
pharmacodynamic (PD) drug interactions of ceftazidime/avibac-
tam and fosfomycin in 14 isogenic and clinical Escherichia coli
strains carrying genes coding for specific carbapenemases or
ESBLs. To elucidate the drug interactions, ‘dynamic’ chequer-
board experiments with quantification of viable bacteria beyond
turbidity as surrogate for bacterial growth were conducted.’

© The Author(s) 2023. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. All rights reserved. For

permissions, please e-mail: journals.permissions@oup.com
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Additionally, detailed time-kill experiments with selected strains
were performed. All quantitative data were evaluated by model-
ling and simulations using different implementations of the gen-
eral PD interaction (GPDI) model to characterize and quantify the
PD drug interactions.'® Ultimately, selected resistance develop-
ment was elucidated on a genetic level.

Materials and methods

Bacterial strains, antimicrobials and media

Eight isogenic E. coli CFTO73 strains carrying the cloning vector pACYC184
plasmid with selected genes coding for different carbapenemases or
ESBLs and six clinical E. coli strains where previous WGS identified ESBL
genes were investigated (Table 1). Those resistance markers were chosen
according to their extended distribution in Enterobacterales worldwide
and in particular in Europe.

Ceftazidime, avibactam, fosfomycin and glucose-6-phosphate (all
Sigma-Aldrich, USA) stocks were prepared in sterile 0.9% NaCl solution,
stored at —80°C and used timely. Growth medium and agar plates con-
taining ceftazidime were supplemented with a fixed concentration of
4 mg/L avibactam corresponding to the EUCAST guidelines, as well as
25 mg/L glucose-6-phosphate added to fosfomycin.

Bacteria were grown on Columbia agar (Carl Roth, Germany).
Depending on the cloning the isogenic strains were grown selectively
on agar containing 10 mg/L tetracycline (Chemodex, Switzerland) or
25 mg/L chloramphenicol (Sigma-Aldrich, USA). Agar plates containing

5x MIC concentrations were used to survey phenotypic resistance devel-
opment. The experiments were conducted in CAMHB (Millipore, USA).
Stability of the drugs was assumed over the short time course of the
experiments.

Susceptibility testing

The MICs of ceftazidime, ceftazidime/avibactam and fosfomycin were
determined in triplicate after 24 h by microdilution, according to the
CLSI guideline, and the modal value was reported.'* The avibactam con-
centration was kept constant at 4 mg/L for determination of the ceftazi-
dime/avibactam MICs.

PD interaction screening

In a first step, PD drug parameters including the ECsg.24n were deter-
mined in triplicate using the same concentration levels as in the MIC ex-
periment, but with an elevated inoculum of 10° cfu/mL and 2 h of
preincubation phase at 37°C ambient air before addition of the drugs.
For the determination of the ceftazidime/avibactam ECsg.54, as well as
for the successive chequerboard experiments, the avibactam concentra-
tion was kept constant at 4 mg/L. After 24 h of incubation, samples were
taken from a drug-free well, two visual turbid wells and two visual clear
wells, serially diluted and plated on agar plates. Manual counting of the
bacteria was performed after 24 h and the cfu/mL were calculated. A de-
scription of the estimation of the ECsg-241 Using a sigmoidal £qx model is
given in Supplementary Text S1 (available as Supplementary data at JAC
Online).

Table 1. Overview of the different included strains in the screening experiments with their respective MIC, ECsp-241 and the determined PD drug
interactions including the calculated interaction shift at ECsg.24n 0f the perpetrator with their CIs

ECs0-24n

Strain information MIC (mg/L) (mg/L)

PD drug interaction

Direction (victim/ Interaction shift at ECsg_24n

Name Genetic background CAZ CZA FOF CZA FOF Type perpetrator) (95% CI)

E. coliWT Isogenic: empty plasmid 0.125 0.125 4 0.11 38.58 Synergy FOF/CZA —-0.61 (-0.42 to —0.80)

E. coli CTX-M-1 Isogenic 0.5 0.125 8 0.11 3.53 Synergy CZA/FOF —0.70 (-0.60 to —0.80)

E. coli CTX-M-3 Isogenic 0.5 0.125 8 0.09 20.07 Synergy FOF/CZA —0.60 (-0.41 to -0.79)

E. coli CTX-M-9 Isogenic 0.25 0.125 4 0.14 15.39 Synergy FOF/CZA —-0.93 (-0.82 to —1.00)

E. coli Isogenic 2 0.125 16 0.12 2091 Bliss — 0
CTX-M-15 independence

E. coli OXA-48 Isogenic 0.125 0.125 8 0.13 41.50 Synergy FOF/CZA -0.55 (-0.39 to -0.72)

E. coli OXA-181 Isogenic 0.1250.125 8 0.1517.88 Bliss — 0

independence

E. coli KPC-3  Isogenic 256 1 4 2.5839.75 Synergy CZA/FOF —-0.24 (-0.18 to —-0.29)

E. coli Clinical: blaoxa-244, 16 0.125 16 0.09 4.08 Synergy FOF/CZA —-0.42 (-0.15 to —0.69)
YAL_AMA blacrx-m-15

E. coli Clinical: blagxa-ss, 16 0.06 4 0.04 4.02 Synergy CZA/FOF —0.16 (—0.04 to —-0.27)
JUM_JEA b[aCT)(-M~1S

E. coli Clinical: blapxa-as, 0.25 0.25 8 0.14 7.10 Synergy FOF/CZA -0.16 (-0.02 to -0.30)
MER_MIL blaTEM-lB

E. coli Clinical: blaoxa-244, 32 05 4 0283596 Bliss — 0
OLA_HAM blacrx-m-15 independence

E. coliN1067 Clinical: blaoxa-1s1 8 0.5 4 0.1911.90 Bliss — 0

independence
E. coliN790  Clinical: blaoxa-244 0.125 0.125 32 0.09 31.98 Synergy CZA/FOF —0.80 (-0.61 to —1.00)

The avibactam concentration was 4 mg/L in all experimental scenarios. CAZ, ceftazidime; CZA, ceftazidime/avibactam; FOF, fosfomycin.
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Ceftazidime/avibactam and fosfomycin interactions in E. coli
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In a second step, to identify PD drug interactions of ceftazidime/avi-
bactam and fosfomycin, ‘dynamic’ chequerboards with an optimized
fixed rhombic design consisting of four combination scenarios based on
effective concentrations as previously described was utilized.®!? In brief,
an experimental design was used where highly informative concentra-
tions of the antibiotics were calculated based on the determined
ECs0-24n and comprised drug combinations at (ceftazidime/avibactam
and fosfomycin, respectively): ECog+ECs4, EC44+ECog, EC4s+ECgs, ECgo +
EC,4. Additionally to these four highly informative combination scenarios,
two scenarios at EC44-245 Were included. The chequerboard experiments
were inoculated with 10° cfu/mL and after 2 h of preincubation phase at
37°C ambient air antibiotics were added. The total cfu count was quanti-
fied after 0, 24 and 48 h by serial dilution and plating on drug-free agar
plates as described above. To monitor the emergence of resistant subpo-
pulations, samples after 48 h were also plated on agar plates containing
fosfomycin or ceftazidime/avibactam at 5x MIC. Mutation frequencies
were calculated afterwards by division of cfu/mL determined on drug-
containing agar plates by cfu/mL determined on drug-free medium. Cfu
on plates containing the antibiotics were read after 48 h. Additionally
to the evaluation of the phenotypic resistance to ceftazidime/avibactam
and fosfomycin, fosfomycin-resistant mutants of three selected clinical
isolates were genomically analysed. The experiments were conducted
as duplicates.

Time-kill experiments

For three selected clinical E. coliisolates, static time-kill experiments were
performed in order to corroborate the interactions determined in the
chequerboard experiments. Additionally, the emerged subpopulations
resistant to fosfomycin during the chequerboard assays of those strains
were analysed genomically. The time-kill experiments were inoculated
with 10° cfu/mL and after 2 h of preincubation phase at 37°C ambient
air the antibiotics were added. Samples were drawn at 0, 2, 4, 8, 24
and 30 h after addition of the drugs, serially diluted and plated on agar
plates. After 24 h of incubation the colonies were counted manually
and the cfu/mL counts were calculated.

Each time-kill curve was performed at least in duplicate. Time-kill ex-
periments with concentrations reaching effect sizes ranging from full
eradication after 30 h to small effects with regrowth were performed
for ceftazidime/avibactam and fosfomycin alone and in combination.
The investigated concentrations in all experiments were based on
2-fold increments and titrated down until regrowth was observed.
Corresponding to the EUCAST recommendation for susceptibility testing,
the avibactam concentration was kept constant at 4 mg/L. At that con-
centration a neglectable antibacterial effect of avibactam by its own
and a full suppression of the B-lactamases was assumed.

Genomic analysis

The genomes of the six clinical strains were sequenced using Illumina se-
quencing technology, as previously described.’® Genomes were assembled
with Shovill v1.0.4 (https:/github.com/tseemann/shovill). The resistome
was identified using the ResFinder database available on the Center for
Genomic Epidemiology platform (https:/www.genomicepidemiology.org/).
SNPs and small insertions and deletions (indels) were identified by
comparing the genome of resistant mutants with the original strains
using breseq software.'* The contribution of mutated genes to the fosfo-
mycin resistance was tested against previously published studies.

Pharmacometric modelling
PD interaction screening

To identify the drug interactions in the PD interaction screening pharma-
cokinetic/pharmacodynamic (PK/PD) models were developed in RS
Therefore, the cfu/mL data of the chequerboard experiments after 24 h

were combined with the ECso experiment data and analysed jointly.
Single-drug effects at 24 h, expressed as log;o cfu/mL were modelled
using an Exnqx model. Combined-drug effects were calculated as Bliss in-
dependence. Subsequently, the expected ‘no interaction’ surface assum-
ing Bliss independence and interactions on drug potency (ECso) were
evaluated.’® PD interactions on ECso were estimated using the GPDI
term.'® The GPDI model is an interaction model that enables the direc-
tional description and quantification of drug interactions by identifying
perpetrator and victims of a drug interaction. In the context of the
GPDI model, a victim drug is a drug for which ECsq or maximum effect
is altered concentration-dependently in the presence of a perpetrator
drug. Thereby, not only monodirectional synergistic or antagonistic
drug interactions, but also bidirectional interactions with one drug being
perpetrator and victim at the same time can be described. The magni-
tude of a drug interaction can be directly interpreted by an interaction
parameter characterizing an interaction shift. This interaction shift corre-
sponds to a fractional change of a respective PD parameter as a result of a
drug interaction (e.g. —0.5 corresponds to a 50% reduction). A specific de-
scription of the GPDI model and the model-based evaluation of the PD in-
teractions is given in Text S2.

Time-kill experiments

Semi-mechanistic PK/PD models describing the data of the time-kill ex-
periments were developed in NONMEM® 7.5.0 (ICON, Gaithersburg, MD,
USA) using first-order conditional estimation with interaction (FOCE-I)
separately for the three clinical E. coli strains for which kinetic time-kill
data were produced. A detailed description of the model-building process
is described in Text S3. In brief, the data from the ECso determination, the
chequerboard experiments and from the time-kill experiments were
combined and in a first step the drug effects of ceftazidime/avibactam
or fosfomycin without combination partner were described with sigmoid-
al maximum effect (Eqnqy) or power effect models in a two-compartment
base model with a susceptible and a resistant subpopulation (Figure 1).
Like in the interaction screening, combined drug effects were calculated
as Bliss independence. The drug interactions were modelled via the im-
plementation of the GPDI model on the drug potencies or maximum
drug effects on the two subpopulations with focus on the resistant bac-
teria. Monodirectional interactions as well as bidirectional interactions
were considered. The model selection was based on Akaike information
criterion (AIC), visual model fit, model stability and condition number.'”
Biological variability was supported by an exponential interindividual vari-
ability on the inoculum of the resistant population. Parameter uncertainty
was assessed using the sampling importance resampling (SIR) algorithm
implemented by Perl-speaks-NONMEM (PsN) 5.0 (Uppsala University,
Sweden) with the relative standard errors (RSEs) produced by the covari-
ance step in NONMEM informing a proposal distribution.*®

Kas ker

() ()

— -
FOF . |
EczaS" "EporS EczaR' "EpoeR

Figure 1. Scheme of the PD models for the time-kill experiments of the
three clinical E. coli strains. CZA, ceftazidime/avibactam; FOF, fosfomycin;
E, effect; S, susceptible subpopulation; R, resistant subpopulation; INT,
drug interaction; kgs, growth rate of S (mainly characterizing unexposed
bacterial growth); kgg, growth rate of R (mainly characterizing regrowth
under drug exposure); cfu=S+R.
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Results
Susceptibility testing

The MICs and ECsps of ceftazidime/avibactam and fosfomycin for
the isogenic and clinical strains are listed in Table 1. The isogenic
strain carrying a gene coding for KPC-2 and four of six clinical iso-
lates were resistant to ceftazidime alone. All strains were suscep-
tible to ceftazidime/avibactam and fosfomycin according to the
EUCAST breakpoint tables v. 13.0, i.e. ceftazidime: resistant (R)
>4 mg/L; ceftazidime/avibactam: R>8 mg/L; fosfomycin IV: R>
32 mg/L.

PD interaction screening

The systematic screening identified strong synergistic in vitro PD
interactions for ceftazidime/avibactam and fosfomycin (reduc-
tion of ECso between 15% and 93%) for most of the evaluated
strains (Table 1). Synergies were identified for 75% of the isogenic
and 67% of the clinical isolates. No interactions were identified
for the remaining strains. No antagonistic drug interactions
were identified. When observing synergy, fosfomycin was mostly
the victim of the interaction, with ceftazidime/avibactam as per-
petrator enhancing the potency of fosfomycin, but no clear cor-
relation between the direction of the interaction and features
of the strains could be identified (Text S4, Figure S1). Calculated
response surfaces are illustrated in Figure 2. Those calculated re-
sponse surfaces highlight the concentration ranges bidimension-
ally at which the synergistic drug interactions led to higher drug
effects than expected Bliss independence (green areas).
Additionally, the corresponding estimated drug concentration re-
sponse surfaces are displayed in Figure S2.

The emergence of phenotypically resistant subpopulations
was reduced in combination compared with the exposure to cef-
tazidime/avibactam or fosfomycin alone. The detailed ratios of
phenotypically resistant bacteria after 48 h in the chequerboard
experiments are reported in Table 2. In some cases, the numer-
ical total bacterial count was resistant to 5x MIC and, therefore,
avalue limited to 1 was reported. Generally, the resistance devel-
opment was reproducible in the duplicates of the experiments.
However, the emergence of ceftazidime/avibactam-resistant
bacteria was especially subject to high variability. In total, in six
strains, emergence of a subpopulation resistant to ceftazidime/
avibactam was observed when exposed to the drug alone. In
all of those strains, the addition of fosfomycin at the inactive
ECog inhibited the emergence of a resistant subpopulation.
Higher emergence of resistance to fosfomycin was observed. In
all strains, resistances emerged when fosfomycin was used as
a single drug. The addition of ceftazidime/avibactam at the in-
active ECog reduced the number of strains displaying emergence
of resistance to fosfomycin by 60% to a total of six strains. In
three clinical strains the emergence of resistance to fosfomycin
could not be inhibited by the addition of ceftazidime/avibactam.
Notably, in those three strains no ceftazidime/avibactam-
resistant subpopulation emerged in the EC,,-ceftazidime/avibac-
tam scenario but did when fosfomycin was added with ECos.

Pharmacometric modelling

The time-kill curves were well described by a two-population
model with a susceptible and a resistant bacterial subpopulation.

Thereby the bacterial dynamics in the experiments with ceftazi-
dime/avibactam and fosfomycin, as well as their combination,
were described with those joint two subpopulations (Figure 1).
The estimated Eqqx values of ceftazidime/avibactam and fosfo-
mycin in all strains exceeded the growth rates of both respective
subpopulations and can thereby describe net bactericidal effects.
The exploratory graphical analysis of the combinational drug ef-
fects and different tested implementations of the GPDI model
suggested drug interactions on drug ECso. The GPDI model iden-
tified monodirectional PD drug interactions with strain-
dependent interaction directions (Table 3): while the ECsg of fos-
fomycin was reduced at a maximum by 89% or 91%, for E. coli
YAL-AMA or E. coli MER_MIL, respectively, for E. coli JUM-JEA the
ECs of ceftazidime was reduced by 97%. Hence, the models con-
firmed the synergistic interactions and directionalities of the in-
teractions, which were already determined in the chequerboard
screening experiments.

Details of the PD modelling are described in Text S5. The model
parameter estimates are displayed in Table 3. Visual predictive checks
(VPCs) confirmed an adequate predictive performance of the models
(Figures 3-5). The VPCs included additional simulations assuming no
drug interactions (blue shaded areas in Figures 3-5). The calculated
Bliss independence highlights the concentration ranges at which a
drug interaction becomes apparent. For very low and high drug con-
centrations the bacterial dynamics of ‘no interaction’ and synergistic
effects do overlap (e.g. Figure 3: ceftazidime/avibactam 0.06 mg/L-
fosfomycin 0.125 mg/L and ceftazidime/avibactam 0.125 mg/L-fos-
fomycin 16 mg/L). At intermediate concentrations the synergistic
drug interactions led to enhanced killing, which prevented regrowth
of the bacteria. In these scenarios, regrowth would have been ex-
pected for Bliss independence drug effects (e.g. Figure 3: ceftazi-
dime/avibactam 0.015 mg/L-fosfomycin 2 mg/L).

Genomic analysis

The resistome of the clinical strains is reported in Table 1. The
genomic analysis of the fosfomycin-resistant mutants obtained
from the selected clinical strains is reported in Table 4. All the
genomic data are publicly available through BioProject
PRJEB60842. In 9 out of 12 phenotypically fosfomycin-resistant
mutants, the genomic analysis identified one or two mutations
and/or deletions, which were previously reported as responsible
for fosfomycin resistance.

Discussion

The systematic PD interaction screening of ceftazidime/avibac-
tam and fosfomycin in 14 isogenic and clinical E. coliisolates car-
rying genes coding for ESBLs or carbapenemases identified
mainly synergistic or no interactions. Those positive interactions
between fosfomycin and ceftazidime/avibactam might have
been possible due to the fact that E. coli does not naturally pos-
sess fosfomycin resistance genes, in contrast to other enterobac-
terial species, such as Klebsiella spp., and Enterobacter spp., and
P. aeruginosa. While mainly additive and indifferent drug interac-
tions of ceftazidime/avibactam and fosfomycin beside synergy
have been assessed in K. pneumoniae or P. aeruginosa isolates,
this study adds insights into this drug combination for different
E. coli isolates.?’"**> The broad appearance of synergistic drug
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Figure 2. Deviation of the calculated effect from the expected Bliss independence surface. Directions of the interactions are illustrated by arrows (vic-
tim « perpetrator). Green areas represent synergistic areas of effect and red areas antagonistic areas of effect. The squares correspond to obtained in
vitro data filled with respective colour gradient as outlined above. The avibactam concentration as supplement for ceftazidime was fixed to 4 mg/L.
CZA, ceftazidime/avibactam; FOF, fosfomycin. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.

interactions and diverse directions of the interactions in this
screening do not allow clear conclusions to be drawn on an im-
pact of the specific B-lactamase genotype on the type of

interaction or the direction of the interaction. In contrast, the re-
sults indicate wide beneficial effects of the combination of cef-
tazidime/avibactam and fosfomycin in susceptible E. coli
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Table 2. Overview on the emergence of resistant subpopulations and identified resistances in the chequerboard experiments

Emergence of resistant subpopulations against 5x

MIC CZA

Emergence of resistant

subpopulations against 5x MIC
FOF

Mono drug exposure:

Combined exposure:

Mono drug exposure:

Combined exposure:

Strain EC., CZA EC4s CZA: ECog FOF EC., FOF EC4 FOF: ECog CZA

E. coli WT 0]9.43x107° o|o 9.86x107" | 8.72x 107! olo

E. coli CTX-M-1 0]5.75x10~° 0|0 2.95x107% | 7.72x1072 0]1.50x107"

E. coli CTX-M-3 0]6.40x107° 0|0 1.52x107° | 5.58x107¢ 1]0

E. coli CTX-M-9 0|0 0|0 1.89%x107" | 2.55x 107} 0|0

E. coli CTX-M-15 0]1.00x1073 0|0 8.33x107%|3.66x1073 0|0

E. coli OXA-48 0]1.36x10™* 0|0 1.64x107" | 7.78x1072 0]1

E. coli OXA-181 0|0 0|0 5.59x107% | 1.15x1073 0|0

E. coli KPC-3 9.96x107% | 6.95x 107" 0|0 11 0|0

E. coli YAL_AMA 0|0 0|0 1.10x107° | 1.92 x10°° 0|0
blaoxa-244, blacrx-m-15

E. coli JUM_JEA 0|0 1|0 1]8.03x107! 7.93%107! | 7.11x 107!
blaoxa-as, blacrx-m-15

E. coli MER_MIL 0|0 0|0 4.87x107%| 4.81x10°° 0|0
blaoxa-ss, blarem-1s

E. coli OLA-HAM 0|0 0]5.90x10™* 1]8.75x107! 1)1
blaoxa-244, blacrx-m-15

E. coliN1067 0|0 7.93x1071 | 0 9.28x107|5.17x107! 0|1
blaoxa-181

E. coliN790 olo 0|0 3.49%107% | 1.17x107* olo
blaoxa-244

Resistances are reported as two mutation frequencies (separated by |), accounting for variable emergence of resistance in the two chequerboard du-
plicates. 1’ is reported when the resistant bacteria represent the whole bacterial population after 48 h in the chequerboard experiment. CZA, ceftazi-

dime/avibactam; FOF, fosfomycin.

isolates already carrying genes coding for different B-lactamases.
Nevertheless, in 60% of the strains, fosfomycin was identified as
the victim of the interaction with amplified effects, when ceftazi-
dime/avibactam was present.

The genomic analysis identified already published mutations/in-
dels correlated to fosfomycin resistance among 9 out of 12 resistant
mutants; the genes coding for the two transport uptake systems
(glpT and uhpT) and the genes involved in their regulation (uhpABC,
cyaA, ptsl).”° Regarding the remaining mutants, the role of other me-
chanisms could be debated. For example, fosfomycin could act as
substrate for some efflux pumps naturally present in E. coli belonging
to the magjor facilitator (MFS) or the resistance-nodulation-cell
division (RND) family (such as MdtB, MdtC, MdtG/YceE or Bcr).?* To
go further in this hypothesis, additional experiments testing gene ex-
pression should be implemented.

A hypothesis for the observed synergistic mode of action could
be independent fosfomycin uptake into the bacteria in combin-
ation with ceftazidime/avibactam. The genomic analysis identi-
fied transporter-related mutations being responsible for
fosfomycin resistance. Cell-wall damage mediated by ceftazi-
dime/avibactam could bypass this mechanism of resistance
and enable independent uptake of fosfomycin into the bacterial
cell. This mechanism has been discussed earlier for combinations
of fosfomycin with other drugs.?

Usually many data are needed to gain appropriate informa-
tion of the combined PD of antibiotics and to investigate the

nature of drug interactions.?® In this study an adaptive in vitro
‘dynamic’ chequerboard design based on drug potencies was
used as a very condensed tool to elucidate drug interactions.*?
Thus, the interaction testing was streamlined and rationalized
and a comparable and systematic dataset for all tested strains
was generated. The ‘dynamic’ chequerboard approach with a
continuous quantification of cfu instead of reliance on categoric-
al turbidity of the broth provided semi-mechanistic insights into
the PD drug interactions, which were analysed using modellin%
and simulation techniques based on the GPDI model.
Therefore, a multidimensional interpretation of PD interactions
beyond a binary turbidity threshold was possible.?” The identified
interactions and interaction directions from the chequerboard
screening were corroborated for selected strains in time-kill ex-
periments and semi-mechanistic modelling and simulation con-
firmed the hypothesis of the prevention of the emergence of
resistant bacterial subpopulations by enhanced killing effects.
Modelling of the time-kill data quantified the synergistic drug
interaction as up to a 10-fold increase of the potency of the drugs
by the presence of the combination partner.

We acknowledge the following limitations of our study. The
focus of the interaction testing was the characterization of the
drug interaction of the fixed combination of ceftazidime/avibac-
tam with fosfomycin. To reduce the complexity of the drug inter-
actions and the PK/PD modelling, the avibactam concentration in
the chequerboard and time-kill experiments was fixed to 4 mgl/L,
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Table 3. Model parameters for the time-kill PD model presented with 95% CIs determined by SIR

Value (95% CI)

Parameter

E. coli YAL_AMA

blaoxa-244, blacrx-m-15

E. coli JUM_JEA

blaoxa-us, blacrx-m-1s

E. coli MER_MIL

blaoxa-s, blarem-18

Structural model parameters
Inoculum susceptible bacteria (S) logso cfu/mL)
Inoculum resistant bacteria (R) (log;o cfu/mL)
Maximum bacterial capacity (logyo cfu/mL)
Growth rate (S) (h™?)
Growth rate (R) (h™1)
Mono drug PD parameters
Ermax 0f CAZ on (S) (h™Y)
ECso of CAZ on (S) (mg/L)
Hill factor of CAZ on (S)
Ermax of CAZ on (R) (h71)
ECso of CAZ on (R) (mg/L)
Hill factor of CAZ on (R)
Slope of FOF on (S) (L/mgxh~1)®
Ermax of FOF on (S) (h™1)°
ECso of FOF on (S) (mg/L)¢
Hill factor of FOF on (S)¢
Emax Of FOF on (R) (h™)
ECsp of FOF on (R) (mg/L)
Hill factor of FOF on (R)
Interaction model
Direction of the interaction

Maximum interaction®
ECsp of the interaction (mg/L)
Hill factor of the interaction
Variability model
Inter-experimental variability on the inoculum of resistant
bacteria (R) (%CV)©
Additive residual variability o on log scale (log; cfu/mL)

6.81 (6.68-6.95)
2.83 (2.51-3.15)
8.84 (8.64-9.07)
1.47 (1.11-1.94)
0.54 (0.43-0.67)

3.37 (2.72-4.23)
0.05 (0.04-0.07)
1.48 (0.90-2.41)
0.74 (0.63-0.88)
0.08 (0.07-0.10)
3.45 (2.26-5.18)
2.51(2.17-2.93)

0.32 (0.28-0.37)
0.71 (0.60-0.86)
5.07 (4.13-6.18)
2.57 (1.76-3.96)

6.50 (6.29-6.71)
2.00 (1.52-2.61)
8.90 (8.61-9.23)
3.66 (2.39-5.14)
0.69 (0.55-0.86)

5.28 (3.89-7.15)

0.0099 (0.0058-0.02)

(

(

0.84 (0.54-1.27)
0.74 (0.60-0.91)
0.05 (0.04-0.06)
2.36 (1.56-3.43)
6.39 (5.10-7.97)
0.22 (0.11-0.49)
0.70 (0.49-1.08)
0.84 (0.69-1.00)
4.11 (3.96-4.34)

20°

6.77 (6.63-6.91)
2.59 (2.21-3.03)
8.65 (8.43-8.90)
1.11 (0.71-1.68)
0.51 (0.45-0.58)

2.14 (1.70-2.70)

0.048 (0.038-0.056)

4.60 (2.34-12.22)
0.65 (0.58-0.74)

0.0794 (0.0668-0.0930)

4.02 (2.40-7.21)

3.76 (3.27-4.46)

0.53 (0.38-0.78)

1.00 (0.73-1.41)

0.61 (0.54-0.68)

8.38 (8.09-8.82)
20°

CAZ affecting FOF-ECsg
—-0.89 (-0.91- -0.86)
0.0011 (0.0004-0.0015)
5.28 (2.23-14.75)

35 (31-44)

1.63 (1.55-1.77)

FOF affecting CAZ-ECso ~ CAZ affecting FOF-ECso

on (R) on (R) on (R)

—0.97 (-0.99- —-0.95) -0.91 (-0.98 to —-0.82)
0.51 (0.39-0.63) 0.0182 (0.0115-0.0245)
2.99 (2.22-4.07) 1.98 (1.27-2.55)

77 (56-104) 54 (43-69)

1.95 (1.84-2.18) 1.59 (1.51-1.74)

CAZ, ceftazidime; FOF, fosfomycin. The avibactam concentration was 4 mg/L in all experimental scenarios.
%For E. coli YAL_AMA the FOF effect on (S) was described as a power function; for E. coli JUM_JEA and E. coli MER_MIL the FOF effect on (S) was described

as a sigmoidal Enqx model.
bParameter was fixed to a constant.
“%CV was calculated as follows: %CV = y/exp (w?) — 1 x 100%.

“The in-combination altered drug ECso.cppr Of the victim drug by the GPDI model can be derived as follows: ECsg.gppr=ECs0x(1+ (INTx C"*-INT/
(ECso-ing =T+ CH-INT)). ECs, ECs of the victim drug; INT, maximum interaction; C, concentration of the perpetrator drug; H_INT, Hill factor of
the interaction; ECsg-inT, ECs0 Of the interaction. For small ECsq-yt the term can collapse to: ECsg-gppr=ECsex(1 +INT).

as recommended for susceptibility testing by EUCAST, and cef-
tazidime/avibactam was treated as one drug in the evaluation
of the data. Kristoffersson et al.”® and Sy et al.?° developed de-
tailed models on the PK and PD interaction of ceftazidime and
avibactam. However, due to the fixed concentration, the effect
of ceftazidime/avibactam could be modelled as one drug effect,
simplifying the complex effects of avibactam, which naturally inhi-
bits ceftazidime degradation by B-lactamases, has a drug effect on
bacteria on its own, and enhances the ceftazidime effect.?®
Therefore, the developed models are well applicable for the con-
firmation of the synergy identified in the chequerboard screening.

However, their predictive performance of patient-like dosing regi-
mens will need to be carefully evaluated in subsequent studies,
e.g. by inclusion of hollow-fibre experiments.

For fosfomycin, microdilution is not the recommended meth-
od for susceptibility testing by EUCAST (breakpoint tables v. 13.0)
due to high variability and less accurate results compared with
agar dilution.®° Yet, high variability in the results for fosfomycin
for the MIC and ECsg.»4 determination was observed and both
susceptibility parameters cannot be compared directly, as for
the ECso-24n a higher inoculum and a preincubation was applied.
This variability is also displayed by the variability of the MIC and
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Figure 3. Stratified VPC on the PD model describing the bacterial count log;o cfu/mL of E. coli YAL_AMA against ceftazidime/avibactam (CZA) and fos-
fomycin (FOF) (MICcza=0.125 mg/L; MICror=16 mg/L). The avibactam concentration as supplement for ceftazidime was fixed to 4 mg/L. Dots: obser-
vations; solid line: median prediction; dotted line: expected Bliss independence; shaded areas: 90% prediction intervals. This figure appears in colour in
the online version of JAC and in black and white in the print version of JAC.

ECs0-24n Within the results for the isogenic strains, whereas a re-
lationship between certain B-lactamases and decreased fosfo-
mycin susceptibility cannot be ruled out.

For model-based interaction evaluation in the chequerboards
some assumptions were made. Non-interaction drug effects
were calculated as Bliss independence. This additivity criterion
was chosen because it supports the calculation of combined ef-
fects of drugs with independent modes of action, which can be
assumed for ceftazidime/avibactam and fosfomycin.

The sparse rhombic experimental layout is designed as a
screening tool. Thereby it is able to identify the general fashion
of adrug interaction, but the sparse data do not allow estimation
of the interaction parameter and interaction potency in paral-
lel.*> A common simplification of the GPDI model would be the
fixation of the potency of the interaction (ECso-int) to the drug’s

ECso. Due to the observed strong synergies this strategy was
not sufficient and the potency of the interactions (ECso-1ny) had
to be fixed to very small values to stabilize the estimation of
the interactions. The focus was to rather correctly classify the in-
teractions to synergy, Bliss independence or antagonism. This as-
sumption led to a tendency of the models to underestimate the
interaction effect sizes. Additionally, due to these assumptions
and the design of the PK/PD models the interaction strengths be-
sides the confirmation of type and direction of the interaction es-
timated for the chequerboard and time-kill experiments cannot
be compared directly.

Overall, the evaluation of the drug interactions identified
strong synergies across many different E. coli strains, but the
screening experiments were only conducted in static PK condi-
tions and E. coli isolates susceptible to ceftazidime/avibactam
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Figure 4. Stratified VPC on the PD model describing the bacterial count log;o cfu/mL of E. coli JUM_JEA against ceftazidime/avibactam (CZA) and fos-
fomycin (FOF) (MICcz4=0.06 mg/L; MICror =4 mg/L). The avibactam concentration as supplement for ceftazidime was fixed to 4 mg/L. Dots: observa-
tions; solid line: median prediction; dotted line: expected Bliss independence; shaded areas: 90% prediction intervals. This figure appears in colour in
the online version of JAC and in black and white in the print version of JAC.
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Figure 5. Stratified VPC on the PD model describing the bacterial count logso cfu/mL of E. coli MER_MIL against ceftazidime/avibactam (CZA) and fos-
fomycin (FOF) (MICcza=0.25 mg/L; MIC¢or =8 mg/L). The avibactam concentration as supplement for ceftazidime was fixed to 4 mg/L. Dots: observa-
tions; solid line: median prediction; dotted line: expected Bliss independence; shaded areas: 90% prediction intervals. This figure appears in colour in
the online version of JAC and in black and white in the print version of JAC.
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Table 4. Overview on the identified mutations in selected clinical E. coli strains during the chequerboard experiments known to be responsible for

fosfomycin resistance

Clinical strain name Mutant name

Non-synonymous mutations/indels involved in fosfomycin resistance

Reference

E. coli JUM_JEA
blaoxa-4s, blacrx-m-15

E_coli_JUM_JEA clone_16
E_coli_JUM_JEA clone_18
E_coli_JUM_JEA clone_24
E_coli_JUM_JEA clone_25
E_coli_JUM_JEA clone_26

frameshift in the transcriptional regulatory protein UhpA

missense mutation in glpT

Takahata et al.*®

premature stop codon (Y399X) in uhpB Cattoir et al.?°
A76 bp deletion in hexose-6-phosphate:phosphate antiporter Falagas et al.”
mutation in uhpB Cattoir et al.?°

Cattoir et al.?°

A76 bp deletion in hexose-6-phosphate:phosphate antiporter

E. coli MER_MIL E_coli_MER_MIL_clone_57 stop mutation in uhpB
blOoxAAz,g, blaTEM~1B E_CO“_MER_MIL_C[OI’]E_GZ
E. coli YAL_AMA E_coli_YAL_AMA clone_89  Coding mutation in ptsI

blaoxa-244, blactx-m-1s

E_coli_YAL_AMA clone 94  deletion in uhpT

disruptive in-frame deletion (cyaA—adenylate cyclase)

Cattoir et al.?°
Falagas et al.”
Falagas et al.”

deletion in hexose-6-phosphate:phosphate antiporter

Falagas et al.”

frameshift in ptsl

and/or fosfomycin. A further evaluation of the identified synergy
of ceftazidime/avibactam and fosfomycin in additional (double-)
resistant strains is reasonable to evaluate the combination for
potential resensitization and successful therapy of resistant
pathogens against monotherapy. For a translation of the syner-
gistic effects of ceftazidime/avibactam and fosfomycin into a
clinical setting, dynamic hollow-fibre infection model studies
could be utilized. Those studies mimicking human pharmacokin-
etics could add additional insights to simulate dosing regimens
invitro and develop a rationale for optimal application of the anti-
biotic combination therapy of ceftazidime/avibactam and fosfo-
mycin. Additionally, dynamic experiments are needed to
elucidate the impact of avibactam on the synergy of ceftazidime
and fosfomycin. So far, clinical evidence on the translatability of
the synergy into the clinics is lacking, but case reports indicate
positive treatment outcomes of the combination therapy.®! In
the clinical setting, broad synergistic drug interactions could be
beneficial as in infections one defined strain can not always be
identified.?® Additionally, the observed suppression of develop-
ment of resistances could contribute to expand the lifecycle of
ceftazidime/avibactam as a therapeutic option until resistances
are spread widely. With respect to fosfomycin, the strong syner-
gistic effect sizes and reduced emergence of resistant subpopu-
lations could enable a repurposing of this older drug, when
resistances already occur. Generally, the observed strong syner-
gistic effects could ensure sufficient therapeutic effect sizes at re-
duced target site concentrations or in critically ill patients with
altered pharmacokinetics and reduced drug exposures. To ultim-
ately utilize these benefits clinically, innovative combination dos-
ing regimens with loading doses or reduced daily doses in order
to decrease adverse effects could be conceivable.

Conclusions

The in vitro interaction screening coupled with GPDI model-based
evaluation techniques identified synergistic interactions in 10 out
of 14 evaluated clinical and isogenic E. coli strains. Ceftazidime/
avibactam was mostly identified to enhance the fosfomycin po-
tency and hence inhibit the regrowth compared with when fosfo-
mycin would be used as single treatment. These in vitro results

confirm the potential for the clinical use of ceftazidime/avibac-
tam and fosfomycin to increase efficacy and improve the treat-
ment outcome.
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Synopsis

The screening performed in Publication Il (see 3.2) identified synergistic interactions of
ceftazidime/avibactam and fosfomycin in a variety of isogenic and clinical E. coli strains.
However, the evaluation came along with some limitations with regard to the direct
translation of the findings into the clinical setting. In essence, the applied assays were
conducted with static standard concentrations. Additionally, independent bactericidal
effects of avibactam alone and the potentiation of ceftazidime mediated by avibactam
was neglected. Hence, the study conducted in Publication Il aimed to develop a clinical
perspective of the synergy by translation of the observed interactions from static into
dynamic pharmacokinetic conditions. Firstly, static time kill experiments were
conducted to update the semi-mechanistic time kill model developed for Publication Il
with the interaction of ceftazidime and avibactam. Secondly, dynamic Hollow Fiber
experiments mimicked mono and combination therapies of clinical and subtherapeutic
doses to fully elucidate the synergistic drug interactions of ceftazidime, avibactam and
fosfomycin. The data on the bacterial dynamics were used to expand the PK/PD model
by description of the emergence of phenotypically resistant subpopulations.
Simulations revealed the full potential of the synergy to allow for clinical dose
reductions. In particular, a combination of simulated doses of 0.5 g g8h fosfomycin and
0.25/0.06 g q8h ceftazidime/avibactam led to the same outcome as a respective
monotherapy of 6gq8h fosfomycin or 1.5/0.375gq8h ceftazidime/avibactam
representing the possibility of twelve-fold and six-fold dose reductions for fosfomycin
and ceftazidime/avibactam, respectively.

Thus, the study confirmed the clinical potential of the combination therapy and
encourages to additionally optimise combined dosing regimens and include resistant

strains to proof the hypothesis for the potential of re-sensitisation.



33 Publication Il 55

AMERICAN M|Cr0b|O|Ogy R
é SOCIETY FOR Spec rum c@m |

MICROBIOLOGY updates

8 | Antimicrobial Chemotherapy | Research Article

Pharmacokinetic/pharmacodynamic analysis of ceftazidime/
avibactam and fosfomycin combinations in an in vitro hollow
fiber infection model against multidrug-resistant Escherichia coli
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ABSTRACT Rational combination therapy offers a valuable option to increase
efficacy and prevent emergence of resistance. Therefore, this study provides a transla-
tional pharmacokinetic/pharmacodynamic analysis of the synergy of /avibactam and
fosfomycin in a clinical Escherichia coli strain expressing extended spectrum beta-lac-
tamase (CTX-M-15 and TEM-4) and carbapenemase (OXA-244) genes. Detailed static
time-kill experiments primed dynamic hollow fiber studies mimicking mono- and
combination therapies with doses of ceftazidime/avibactam ranging from 0.06/0.015
to 2/0.5 g every 8 h (q8h) and doses of fosfomycin ranging from 0.125 to 6 g q8h. The
drug effects and interactions were quantitatively evaluated by pharmacokinetic/pharma-
codynamic modeling using semi-mechanistic and subpopulation synergy. A pharmaco-
kinetic/pharmacodynamic model describing the effects of ceftazidime, avibactam, and
fosfomycin and their synergy was developed from the static time-kill experiments and
hollow fiber studies. Simulations revealed that combined doses as low as 0.5-g g8h
fosfomycin and 0.25-/0.06-g q8h ceftazidime/avibactam lead to suppression of the
bacterial count. Conversely, in monotherapy, substantially higher doses by a factor of
12 for fosfomycin (6 g q8h) or by a factor of 6 for ceftazidime/avibactam (1.5/0.375 g
q8h) were needed to achieve a comparable killing over 72 h. The combination of
ceftazidime/avibactam and fosfomycin was therefore shown to be highly synergistic
and suppressed the emergence of resistances. Clinical evaluations of potential dose
reductions or the possibility to treat strains with high-level resistance with this combina-
tion are warranted.

IMPORTANCE Mechanistic understanding of pharmacodynamic interactions is key for

the development of rational antibiotic combination therapies to increase efficacy and

suppress the development of resistances. Potent tools to provide those insights into

pharmacodynamic drug interactions are semi-mechanistic modeling and simulation Editon Tomeks & Asemps, Larford Hiaspial
techniques. This study uses those techniques to provide a detailed understanding Fortford. Conpecticut USA

with regard to the direction and strength of the synergy of ceftazidime-avibactam
and ceftazidime-fosfomycin in a clinical Escherichia coli isolate expressing extended
spectrum beta-lactamase (CTX-M-15 and TEM-4) and carbapenemase (OXA-244) genes.
Enhanced killing effects in combination were identified as a driver of the synergy and
were translated from static time-kill experiments into the dynamic hollow fiber infection See the funding table on p. 11.
model. These findings in combination with a suppression of the emergence of resistance Received 24 October 2023

in combination emphasize a potential clinical benefit with regard to increased efficacy or Accepted 10 November 2023
to allow for dose reductions with maintained effect sizes to avoid toxicity. Published 8 December 2023
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he emergence of carbapenemase- and extended spectrum beta-lactamase (ESBL)-

producing Escherichia coli and Enterobacterales, in general, is a threat to global
health (1, 2). Besides the development of new antibiotics, rational combination therapy
using marketed antibiotics is an option to increase efficacy due to synergistic interac-
tions or to suppress the development of resistance and prolong the lifecycle of new
agents (2).

A frequently evaluated drug for this purpose is fosfomycin (FOF) that has shown its
synergistic potential in combination with other cell wall-interfering agents (3-5). Also,
ceftazidime/avibactam (CZA) has already shown synergy for treating various multidrug-
resistant Enterobacterales and Pseudomonas aeruginosa strains (6-8). Additionally, the
common indications of CZA and FOF such as complicated intra-abdominal infections
or urinary tract infections and hospital-acquired pneumonia, including ventilator-associ-
ated pneumonia, offer their use in combination. However, an evaluation on the clinical
relevance of their drug interaction is lacking, and it remains unclear if the synergy could
be exploited for dose reductions.

Pharmacokinetic/pharmacodynamic (PKPD) modeling is a state-of-the-art technique
to translate the results from preclinical studies into the clinical setting (9, 10). With regard
to drug combinations, PKPD models provide a semi-mechanistic understanding and
quantification of drug interactions.

Hence, in this study, detailed static time-kill experiments were performed to elucidate
the drug interactions of ceftazidime, avibactam, and FOF and evaluated by semi-mech-
anistic PKPD modeling. The model was then used to transfer the drug interactions
into conceptual dynamic hollow fiber infection model (HFIM) experiments mimicking
clinically achievable pharmacokinetics. Simulations were subsequently used to evaluate
the potential for dose reductions in a combination therapy.

RESULTS
Bacterial isolate and susceptibility

The MICs against ceftazidime, CZA, and FOF of the clinical E. coli used in this study were
16, 0.125, and 16/0.5 mg/L (microdilution/agar dilution), respectively, and, therefore,
classified as susceptible to CZA and FOF and resistant to ceftazidime alone accord-
ing to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (11).
Sequencing identified genes coding for CTX-M-15, TEM-4, and OXA-244 (OXA-48-like).

Static time-kill experiments

Strong synergistic drug interactions were observed in the static time-kill experiments
leading to enhanced killing effects in combination. In detail, concentrations of 128-mg/L
ceftazidime or 16-mg/L FOF alone were required to achieve reproducible suppression of
bacterial growth over 30 h, and no evaluated concentration of avibactam alone led to
killing effects (Fig. 1). In contrast, combinations of 0.125-/4-mg/L CZA were efficacious.
In combination with 2-mg/L FOF, even lower concentrations of CZA (0.002/4 mg/L) were
sufficient to suppress the bacterial growth over 30 h.

Dynamic HFIM

In the HFIM experiments, doses ranging from 6- to 0.125-g every 8 h (q8h) FOF and 2-/
0.5- to 0.06-/0.015-g q8h CZA were mimicked. A dose of 1-g g8h FOF was the highest
exposure tested not being able to reduce the bacterial count to or below the lower limit
of quantification and prevent regrowth. Utilizing CZA in monotherapy, simulated doses
of 0.5/0.125 g q8h displayed the highest exposure not suppressing regrowth. In combi-
nation, quarters of those doses (CZA 0.125/0.03 g q8h and FOF 0.25 g g8h) still achieved
killing effects (Fig. 2). Below a certain exposure, a rapid emergence of 3x MIC FOF-
resistant bacteria was observed within the first 12 h of experiment. On opposite,
phenotypic resistance against 3x MIC CZA emerged later between 24 and 48 h.
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FIG 1 Stratified VPC (n = 1,000) on the static pharmacodynamic time-kill experiment model describing the bacterial count in logy (CFU/mL) of the clinical E. coli
isolate against ceftazidime (CAZ), avibactam (AVI), and FOF. Respective concentrations of the scenarios are given in milligrams per liter. Dots, observations; solid
line, median prediction; dotted line, expected bliss independence; shaded areas, 90% prediction intervals.
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FIG 2 Stratified VPC (n = 1,000) on the PKPD model describing the bacterial count in logjo (CFU/mL) of the hollow fiber experiments of the clinical E. coli isolate
against CZA and FOF (MICcza = 0.125 mg/L; MICgof = 16 mg/L). The percentiles (50th or 5th) of the doses correspond to the distribution of pharmacokinetic

profiles, which would be expected from simulations of 1,000 patients given the defined dose. Dots, observations of different subpopulations; solid line, median

prediction of different subpopulations; shaded areas, 90% prediction intervals of different subpopulations.

The bioanalytical quantification of ceftazidime, avibactam, and FOF confirmed that
the planned pharmacokinetic profiles in the HFIM experiment were adequately mim-
icked (Fig. S1). Therefore, the nominal pharmacokinetics were used for modeling and
simulations of the HFIM data.

PKPD modeling to quantify synergy and the tripartite effect relationship
between CZA and FOF

The effects of ceftazidime, avibactam, and FOF in the static time-kill curves were
well described by a two-compartment model with a susceptible and a joint resistant
subpopulation against CZA and FOF (Fig. 3). The individual bacterial killing effects
against both subpopulations were mainly implemented as sigmoidal maximum effect
models. Power models were only used to describe the drug effects of FOF on the
susceptible subpopulation and of avibactam on the resistant subpopulation (Text S5).
The general pharmacodynamic interaction (GPDI) model was able to capture synergies
beyond bliss independence (12). In detail, those drug interactions were described best
by a reduction of the ECsy on the susceptible and resistant populations of ceftazidime
by avibactam by >99% and a reduction of the ECsy on the resistant population of FOF
by ceftazidime by >99%. Interexperimental variability was implemented as exponential
interindividual variability on the inoculum of the resistant population and on its growth
rate. Visual predictive checks (VPCs) confirmed a high predictive performance of the
static time-kill experiments (Fig. 1) but revealed a lack of predictability of the dynamic
HFIM data, especially with regard to the rapid regrowth in the early phase of the
experiments (0-12 h) or later when less susceptible subpopulations emerged and drove
the regrowth profile (>30 h) (Fig. S2). Therefore, the model was further developed to
fit the HFIM data by the addition of compartments describing the 3x MIC-resistant
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FIG 3 PKPD model structure combining elements of semi-mechanistic and subpopulation synergy. Upper part: model
describing the static time-kill experiments. Lower part: model extension on the dynamic hollow fiber data. AVI, avibactam;
CAZ, ceftazidime; CFU, sum of S + R (static time-kill curves) or sum of S + R + Rcza + Rror (HFIM data); EcazR, EaviR,
ErorR, effects on the resistant bacteria by the respective drugs; EcazS, EaviS, ErorS, effects on the susceptible bacteria by
the respective drugs; IczaRror, IForRFor, growth inhibition of the phenotypic FOF less susceptible bacteria by the respective
drugs; IporRcza, IczaRcza, growth inhibition of the phenotypic CZA less susceptible bacteria by the respective drugs; INT,
interaction; kgg, growth rate of the resistant bacteria; kggr-2, growth rate of the phenotypic-resistant bacteria; kgs, growth rate
of the susceptible bacteria; Rcza, Reor, phenotypic-resistant bacteria against the respective drugs. Dotted line, interaction
direction; bold arrow, drug effects on the susceptible bacteria; dashed arrow, drug effects on the resistant bacteria; inhibition

arrow, growth inhibition.

subpopulations and the suppression of those resistances in combination via subpopu-
lation synergy (Fig. 2 and 3). Interexperimental differences in the regrowth behavior
were captured by exponential interindividual variability on the inoculum of the resistant
population and on the inoculum of the CZA less susceptible subpopulation. Details on
the results of the modeling and the full-model parameters can be obtained from Text S5
and Tables S3 and S4.

PKPD simulations to translate the synergy between CZA and FOF in the
clinical perspective

The dose-response surface of the simulations of additional HFIM experiments revealed
the possibility for a dose reduction in combination to achieve the same outcome as the
monotherapy (Fig. 4). In particular, a combination of 0.5-g q8h FOF and 0.25-/0.06-g q8h
CZA would lead to a suppression of the bacterial count, while a 12 times higher dose of
FOF (6 g q8h) or a six times higher dose of CZA (1.5/0.375 g q8h) would lead to the same
effects in monotherapy.

DISCUSSION

This PKPD study translated the strong synergy of CZA and FOF in a representative
multidrug-resistant clinical E. coli from static into dynamic pharmacokinetic conditions. In
opposite to an endpoint-driven evaluation of drug interactions, this study follows a
translational approach based on clinical pharmacokinetics and evaluates the synergy of
CZA and FOF in wide dose ranges with outcomes from suppression to regrowth of
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FIG 4 Dose-response surface of the outcome of hollow fiber experiments simulated with the dynamic
PKPD model. Effect sizes are calculated as logyg (CFU/mL) reductions compared to no treatment after
72h.

bacteria in static and dynamic time-kill experiments (13). Concentration-dependent
emergence of resistance was identified as a missing link for the translation from static
time kill to the HFIM. The emergence of resistance in the HFIM as well as the regrowth of
bacteria after an initial decay in the static time-kill experiments occurred within the first 2
days of the experiments. This emphasizes the importance of an efficacious treatment
away from the start of therapy. However, it cannot be ruled out that also doses suppress-
ing the regrowth for 72 h would have allowed a delayed regrowth as a total eradication
of bacteria was not investigated. Nevertheless, the suppression of the emergence of
resistance in the static time-kill experiments as well as in the HFIM played a major role in
the increased efficacy of the antibiotic drug combination and could potentially be
explained by collateral sensitivity mechanisms and increased uptake of antibiotics when
cell wall-interfering drugs are combined or by suppressed mutation frequencies (14-16).
Commonly, higher mutation frequencies against FOF than against CZA are reported in
Enterobacterales (17, 18). This nature was already confirmed for the evaluated E. coli in
this study (E. coli YAL_AMA in Kroemer et al. (8)). Additionally, reduced mutation frequen-
cies were identified against the combination of CZA and FOF. This is in line with the
observed earlier resistance development against FOF in the hollow fiber experiments
and, therefore, the significantly higher estimate of the inoculum of the phenotypically
less susceptible subpopulation compared to CZA. The lower resistance development
against CZA was additionally subjected to a higher variability. Therefore, interexperimen-
tal variability was needed in the model to describe the data. This led to relatively wide
prediction intervals in the VPC plots covering the observed less susceptible bacteria
against CZA. When implementing avibactam in PKPD models with ceftazidime, three
major modes of action are conceivable: (i) own killing effect, (ii) potentiation of the
ceftazidime effect, and (iii) suppression of beta-lactamase-mediated ceftazidime
degradation. PKPD models have been developed including those three mechanisms (19,
20). In the present study, the bioanalysis identified no degradation of ceftazidime in the
presence of the avibactam concentrations studied. Therefore, a permanent inhibition of
the beta-lactamases by avibactam was assumed in this study, and a concentration-
dependent inhibition was not implemented in the model. To reduce the complexity of
the model, the avibactam effects were also simplified when modeling the suppression of
the less susceptible subpopulations, and the combined suppressive effect of CZA was
only described as a function of the ceftazidime concentrations. The results of the hollow
fiber study and the simulations with the PKPD model emphasize enhanced killing effects
leading to maintained high drug effects in combination at subinhibitory monotherapy
exposures. This offers different potential benefits of a rational combination therapy. A
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rational combination therapy exploiting the synergistic effects could use lower doses
while still being efficacious. Thereby, reduced drug exposures would avoid concentra-
tion-driven adverse effects such as neurotoxicity mediated by ceftazidime or hypokale-
mia mediated by FOF. In the presented study, the enhanced killing effects also prevented
regrowth and the emergence of resistance. Thereby, also the combination of CZA and
FOF against susceptible bacteria can be used to prolong the shelf life of CZA before
resistances occur. Additionally, combination therapy could ensure maintained target site
efficacy in critically ill patients with reduced drug exposures or altered target site
pharmacokinetics. Lastly, synergistic drug effects could also contribute in re-sensitizing E.
coli strains that are already resistant against monotherapy. In this context, it is important
to note that the results of the HFIM study agree with the breakpoints for resistance set by
EUCAST of >8 mg/L for CZA and >32 mg/L for FOF IV (11). The investigated E. coli strain is
deemed susceptible to FOF and CZA according to EUCAST, and standard-dose mono-
therapies killed the bacteria and suppressed regrowth successfully.

We acknowledge the following limitations of our study: the dosing schemes were
simplified for the HFIM experiments. The application of bolus injections in deviation to
the clinical practice of 2-h infusions for CZA or 0.5-h infusions of FOF was driven by
practicability reasons. Additionally, the focus on the reproduction of the peak (Cpax)
and trough (Ciyin) concentrations of the pharmacokinetic profiles enabled a simplified
control of the elimination of all three drugs with a then-joint elimination half-life of
approximately 2 h. This matches the clinically observed half-life for ceftazidime and
avibactam, but the clinical half-life of FOF was shortened by 50% (21, 22). It could
be expected to even increase the efficacy of the drug combination further, when also
the dosing regimens have become a subject of optimization. So far, this study adds
a conceptual approach to translating this drug interaction from static time-kill experi-
ments into dynamic HFIM experiments.

This study was solely conducted as a single experiment in one clinical E. coli strain.
However, previous research highlighted that the interactions of CZA and FOF behave
relatively consistent among different clinical E. coli strains without an identified influence
of the expressed genes (8). Hence, this study adds a conceptual demonstration of the
synergy of CZA and FOF in an exemplary strain, but a confirmation of the synergy
and further extrapolation to less susceptible or resistant strains would be desirable.
The simulated pharmacokinetics were derived from published plasma pharmacokinetic
models. Therefore, the target site exposition might be different, and additionally,
host-bacteria interactions (e.g., the immune system) need to be considered when a
clinical outcome is discussed. Nevertheless, clinical exploitation of the drug interaction
might increase the robustness of the antibiotic therapy with regard to efficacy, preven-
tion of the emergence of resistance, and tolerability against pharmacokinetic variability
even in infections where a monotherapy could be sufficient.

To conclude, the presented translational in vitro study outlined the potential clinical
benefit of the drug interaction of CZA and FOF in a clinical E. coli isolate. If the synergy
demonstrated in in vitro experiments can be corroborated clinically, the combination
of CZA and FOF comes with the potential for dose reductions or increased treatment
success due to enhanced killing effects and suppression of the emergence of resistance.
Perspectively, advanced dosing schemes as prolonged or continuous infusions should be
evaluated to further benefit from the prevailing synergy of CZA and FOF. To be finally
able to translate the drug interaction from “bench to bedside,” the development of a
rational guidance like breakpoints of the drug combination or PKPD indices is required to
advise clinical combination therapy.
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MATERIALS AND METHODS
Strains, media, and antimicrobials

One clinical E. coli isolate carrying genes coding for both ESBL and carbapenemase
was used. The strain was isolated from a rectal swab in a routine screening for multi-
drug-resistant bacteria in the Henri-Mondor Hospital in the East of Paris region. The
genomes were assembled with shovill v1.0.4 (https://github.com/tseemann/shovill), and
the resistome was identified using the ResFinder database available on the Center for
Genomic Epidemiology platform (https://www.genomicepidemiology.org/).

Ceftazidime (Sigma-Aldrich, USA), avibactam (Sigma-Aldrich, USA), FOF (Sigma-
Aldrich, USA), and glucose-6-phosphate (Sigma-Aldrich, USA) stock solutions were
freshly prepared in sterile 0.9% NaCl solution and stored short term at —80°C.

The bacteria were cultivated on Columbia agar (Carl Roth, Germany). Serial dilution
of bacterial samples and plating on Columbia agar plates containing no drug were
used to determine total bacterial counts. Agar plates supplemented with 3x MIC were
used for monitoring of emergence of phenotypically less susceptible subpopulations
during the HFIM. Ceftazidime-containing agar plates were supplemented with a constant
concentration of 4-mg/L avibactam. 25-mg/L glucose-6-phosphate was added to agar
plates containing FOF corresponding to EUCAST recommendations.

The experiments were conducted in cation-adjusted Mueller-Hinton broth 2 (MHB)
(Sigma-Aldrich, USA). In addition to the agar plates, MHB containing FOF was supple-
mented with glucose-6-phosphate. The final concentration of glucose-6-phosphate after
all the dilution steps was kept at 25 mg/L.

Susceptibility testing

Broth microdilution according to the CLSI guideline was applied for MIC determination
(23). Turbidity endpoints were read for ceftazidime, CZA, and FOF after 24 h. Although
microdilution is not the reference method for FOF susceptibility testing, threefold of the
MIC determined by microdilution was used to monitor the emergence of phenotypic-
resistant subpopulations of the E. coli strain in liquid growth medium during the hollow
fiber experiments. To account for the elevated variability, the MIC determination was
performed in triplicate, and the modal value was reported. Additionally, the MIC of FOF
was determined by agar dilution.

Static time-kill experiments

Static time-kill experiments over 30 h at 37°C ambient air were conducted to explore the
pharmacodynamics of ceftazidime, avibactam, and FOF alone and in combination. The
concentrations were selected covering full effect ranges from eradication to regrowth
as well as clinically relevant concentrations. The time-kill experiments were performed
with a total volume of 10 mL and were inoculated with 10° CFU/mL. After 2 h of
preincubation, the drugs were added. The bacterial counts were quantified at 0, 2, 4, 8,
24, and 30 h after addition of the drugs by serial dilution, plating, and manual colony
counting. The lower limit of quantification for this method was around 10'-10> CFU/mL.
Not quantifiable bacterial counts were empirically set to 1 CFU/mL and included in the
model-based data evaluation. The experiments were performed as duplicates.

Dynamic HFIM

Dynamic HFIM experiments over 72 h at 37°C ambient air were utilized to investigate
the pharmacodynamics of CZA and FOF and their drug interactions mimicking human
pharmacokinetics (24). MHB was circulated from a central compartment through a
hollow fiber cartridge (C2011; FiberCell Systems Inc., USA). Peristaltic pumps pumped
fresh MHB from a reservoir into the central compartment, and the same volume was
removed to control the pharmacokinetics of the drugs. The 40-mL extra-capillary space
of the hollow fiber cartridge was inoculated with 10° CFU/mL. After 2 h of preincubation,
the first dose was administered by a syringe driver.
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The total and phenotypic-resistant bacterial count against 3x MIC was quantified
by sampling from the bacterial compartment, serial dilution, and plating of the
dilutions on agar plates followed by manual counting. Alike in the static time-kill
experiments, not quantifiable bacterial counts were empirically set to 1 CFU/mL
and included in the model-based data evaluation. Samples to confirm the drug
pharmacokinetics within the HFIM were drawn from the central compartment and
stored at —80°C until analysis. Details on the HFIM experiments and the used
equipment are described in Text S1.

Pharmacokinetics

Pharmacokinetic profiles of different CZA and FOF doses were simulated from published
pharmacokinetic models derived from clinically observed drug concentrations (21, 22).
From simulations of 1,000 virtual patients, defined percentiles were calculated to ensure
that the mimicked pharmacokinetics profiles in the HFIM cover the clinically relevant
concentration ranges. Simulated 50th percentiles thereby represent the antibiotic
exposure within a typical patient, whereas the simulation of 5th percentiles represents
the lower end of the exposure distribution in an inhomogeneous patient population,
for example, due to altered pharmacokinetics by increased volume of distribution
and/or clearance. In addition to standard doses, subtherapeutic doses were mimicked
to evaluate the potential clinical relevance of the synergies. Dosing regimens with thrice
daily doses q8h were focused, and for simplification, the drugs were administered to
the HFIM as bolus injection maintaining the simulated peak (Cryax) and trough (Cin)
concentrations. The planned pharmacokinetics profiles are illustrated on Fig. 5, and the
key pharmacokinetic properties are summarized in Table 1.

Protein binding for FOF is reported to be neglectable (25). For avibactam, a frac-
tion unbound of 92% was assumed, and for ceftazidime, 85% fraction unbound was
presumed as a compromise of the compared literature (21, 25).

CZA 2/0.5 g q8h 50th CZA 2/0.5 g g8h 5th CZA 1/0.25 g g8h 5th CZA 0.5/0.125 g 8h 5th CZA 0.125/0.03 g g8h 5th
30.0
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FIG 5 Overview of the simulated pharmacokinetics for the different hollow fiber experiments against CZA and FOF alone and in combination. The percentiles
(50th or 5th) of the doses correspond to the distribution of pharmacokinetic profiles that would be expected from simulations of 1,000 patients given the

defined dose. Cryyax, maximum concentration at steady state; Cjn, minimum concentration at steady state.

January 2024 Volume 12 Issue 1 10.1128/spectrum.03318-23 9

Downloaded from https://journals.asm.org/journal/spectrum on 21 January 2024 by 2003:e5:¢729:2b00:bc77:267a:fa5b:e30c.



64

3 Cumulative part

Research Article

Microbiology Spectrum

TABLE 1 Overview of the simulated pharmacokinetics for the different hollow fiber experiments against CZA and FOF alone and in combination?

Avibactam (mg/L) Ceftazidime (mg/L) FOF (mg/L)
Hollow fiber experiment Cmin Cinax Cmin Gimax Crin Cimax Simulated half-life (h)
CZA 2/0.5 g q8h 50th 143 8.71 5.70 41.11 - - 3.03
CZA 2/0.5 g g8h 5th 0.32 6.69 1.40 29.06 - - 1.81
CZA 1/0.25 g q8h 5th 0.16 334 0.71 14.66 = = 1.81
CZA 0.5/0.125 g q8h 5th 0.08 1.67 0.35 7:33 - - 1.81
CZA 0.125/0.03 g q8h 5th 0.02 0.40 0.09 1.83 - - 1.81
FOF 6 g q8h 5th - - - - 13.67 18537  2.10
FOF 4 g gq8h 5th - - - - 6.74 124.31 1.88
FOF 1 g g8h 5th . . - - 1.68 31.08  1.88
FOF 0.25 g q8h 5th - - - - 0.37 102 1.81
CZA 2/0.5 g q8h 5th FOF 6 g q8h 5th 0.36 6.63 1.59 29.26 6.74 124.31 1.88
CZA 0.5/0.125 g g8h 5th
FOF 1 g q8h 5th 0.08 1.67 0.35 7.33 1.50 31.12 1.81
CZA 0.25/0.06 g q8h 5th
FOF 0.5 g q8h 5th 0.04 0.80 0.18 3.65 0.75 15.56 1.81
CZA 0.125/0.03 g q8h 5th
FOF 0.25 g q8h 5th 0.02 0.40 0.09 1.83 0.37 7.72 1.81
CZA 0.06/0.015 g q8h 5th
FOF 0.125 g g8h 5th 0.01 0.20 0.04 0.87 0.19 3.86 1.81

“The percentiles (50th or 5th) of the doses correspond to the distribution of pharmacokinetic profiles that would be expected from simulations of 1,000 patients given the

defined dose. Ciyyax, maximum concentration at steady state; Ciyin, minimum concentration at steady state.

Bioanalysis

To confirm the pharmacokinetics of ceftazidime, avibactam, and FOF in the HFIM,
samples covering the time course of the experiment were analyzed by ultra-high
performance liquid chromatography-mass spectrometry (Text S2).

PKPD modeling

In the first step, a semi-mechanistic PKPD model describing the static time-kill experi-
ments was developed in NONMEM 7.5.0. (ICON, Gaithersburg, MD, USA) using second-
order conditional estimation with interaction (LAPLACIAN-I). In brief, the monodrug
effects of ceftazidime, avibactam, and FOF were modeled as sigmoidal maximum
effect (Emax) Or power models on a two-compartment base model with susceptible
and resistant subpopulations. Additivity was calculated by bliss independence (26, 27).
Sequentially, drug interactions were introduced by the GPDI model (12). An increase
of the ceftazidime potency mediated by avibactam and mono- and bidirectional drug
interactions of ceftazidime and FOF was tested. Model selection was guided based on
the Akaike information criterion, visual model fit, model stability, and condition number
(28). To describe interexperimental variability, interindividual variability was tested on
different growth parameters of the resistant population. The model was then evolved for
the dynamic HFIM data. The pharmacodynamic parameters determined from the static
experiments were fixed, and the model was extended to capture regrowth, which could
not be mapped by the static time-kill PKPD model. Therefore, a submodel describing
the emergence of phenotypic-resistant subpopulations against 3x MIC CZA or FOF was
added. Drug effects were implemented as inhibition of the emergence of the resistan-
ces, and the drug interaction of ceftazidime and FOF was described by subpopulation
synergy (29). Adjustments of the variability model with regard to interexperimental
variability were again tested on growth parameters of the resistant population and the
newly introduced subpopulations. Parameter uncertainty for both models was assessed
by the sampling importance resampling routine implemented in Perl-speaks-NONMEM
5.0 (Uppsala University, Sweden) with the relative standard error calculated in the
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covariance step as proposal distribution (30). Details on the PKPD model building are
described in Text S3.

PKPD simulations

The dynamic PKPD model was then used for simulations of additional HFIM experiments.
To evaluate the outcome of different dose combinations, the median reduction of the
bacterial count after 72 h compared to no treatment was calculated.
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4 Discussion

The following chapters provide a summarising and overarching discussion of the results
presented in the Publications I, Il and IIl.

The aim of the present PhD project as well as of the parent ‘CO-PROTECT’ project was to
elucidate in vitro pharmacodynamic drug interactions of ceftazidime/avibactam and
fosfomycin and to derive the clinical potential of this combination. Alike the project, the
discussion follows a bottom-up approach. The outcomes of the three publications are
discussed from a technical perspective with regard to the experimental designs, the
applied in vitro assays, identified interactions and from a clinical perspective with regard

to the therapeutic and translational relevance and current therapeutic strategies.

4.1 Design of experiments

D-optimised designs for interaction screening

Rational and efficient planning of experiments was crucial while performing the
extensive invitro research presented in this PhD project. The efforts of design
rationalisation culminated in the development and evaluation of dynamic checkerboard
designs to enable an efficient pharmacodynamic interaction screening.[86], [87] The
optimisation based on the D-optimal design theorem identified innovative rhombic
checkerboard designs. Those were based on drug potencies (i.e.effective
concentrations (EC) leading to fractions of the maximum effect) rather than on standard
concentrations. A design comprising four drug combinations of ECO8/EC44, EC44/ECO8,
EC44/EC82 and EC82/EC44 was evaluated as the best compromise between a reduced
workload and high performance with regard to the identification of interactions. Among
the evaluated designs, this fixed rhombic design was the most straightforward and
efficient experimental layout. Hence, it was subsequently applied in various in vitro
experiments (see 3.2).[86], [89]-[94]

The significant reduction of the experimental layout led to a lack in precision and
accuracy with regard to the estimation of interaction parameters compared to

considerably more labour-intensive reference designs. However, the experimental
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design was designed as a screening tool and therefore those losses during the
estimation were accepted under the premise of the designs being highly efficient when
it comes to the correct classification of pharmacodynamic drug interactions. The
subsequent in vitro application and confirmation studies supported the properties of
the experimental design, but they also attested its theoretically foreseen weaknesses.
In Publication |, it was already anticipated that strong drug interaction magnitudes can
exceed the adaptive concentration ranges.[86] To account for this limitation the
interaction potency in the checkerboard experiments was fixed to very small
concentrations during the estimation of the drug interactions in Publication 11.[87] A
comparison of the maximum interaction shift estimates from the checkerboard
experiments with those of the static time kill experiments reveals that this adjustment
led to an underestimation of the maximum synergistic effect sizes of
ceftazidime/avibactam and fosfomycin. In detail, the maximum EC50 reductions in the
checkerboard experiments against the three clinical E. coli isolates YAL_ AMA, JUM_JEA
and MER_MIL were estimated to range from 16% to 42% whereas the static time Kkill
experiments identified higher maximum EC50 reductions of > 89%.

In general, the experimental design captured the drug interactions well for the majority
of the evaluated bacterial strains and antibiotic agents during the checkerboard
screening. However, also such strong synergistic interactions were detected, that
additional experiments at lower concentrations were required to properly inform the

estimation of exposure-response-surfaces.[92]

Model assumptions for D-optimal design approaches

Since the checkerboard designs reduced the workload and streamlined the interaction
screening, the argument might arise, why the D-optimal design theorem was not used
for the planning of the subsequent static and dynamic time kill experiments. As
introduced (see 1.6.3), D-optimality minimises the variance of parameter estimates of a
mathematical model with respect to design variables. Therefore, it is the nature of

D-optimal designs to rely heavily on the prior assumption of a mathematical model.
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That implies that a developed design will perform weaker, when the PK/PD model used
for data evaluation differs significantly from the prior model assumption.[95], [96] In
exploratory research, a model is not always known yet and its structure might be driven
from an evolving hypothesis, when further data is acquired.[61] Consequently, the
optimal design techniques are predestined for specified straightforward research
questions, where the mathematical model and an idea of the experimental design is
already defined rather than exploratory research. Conversely, exploratory research
questions, in which models are developed based on data patterns like for the time kill
experiments in Publication Il and IIl, are less suited for D-optimal design approaches.[97]
In those cases, translational studies including simulations with preliminary PK/PD
models can serve as a rational to guide efficient planning of experimental series. In
particular, the dosing choices of 1gq8h fosfomycin and 0.5/0.125gqg8h
ceftazidime/avibactam in Publication Il have been derived from the model developed
from the static time kill assays. Its predictions guided the dose finding to observe
therapy failure and regrowth, which was then experimentally corroborated.[88] The
experiments were thereby not only rationalised and optimised based on mathematical
criteria, but also by gained knowledge and experience. Nevertheless, both approaches
lead to increased efficiency and their value can be clearly emphasised as shown in

Publications Il and .

4.2 Evaluation of drug interactions

Theidentified drug interactions presented in the Publications Il and Ill were investigated
with different in vitro assays. The following chapter discusses and compares those
techniques to alternative invitro assays for interaction testing. Additionally, the
presented findings will be contrasted to previous published knowledge on the drug

interaction of ceftazidime/avibactam and fosfomycin.
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Potential of model-based evaluation

As already introduced (see 1.7.3), there is no defined ‘gold standard’ for in vitro
interaction testing.[78] Therefore, a variety of test-methods are applied. They all have in
common, that detailed elucidation of drug interactions requires lots of data and is most
insightful with regard to the information of mechanistic relationships, when it is
supported by pharmacometric modelling and simulation techniques.[4], [64], [65], [98]
Since pharmacometrics require complex skills and software, which are not available to
all research groups, other (more straightforward) strategies compared to the
development of full PK/PD models are often applied.[98]

However, also the approaches of the quantitative modelling of the ‘dynamic’
checkerboard and time kill experiments presented in Publications Il and Ill differ in their
levels of semi-mechanistic insights into the observed drug interactions. The different
applied methods unite, that they are able to quantify drug interactions and add
information on the relevant interaction concentration ranges. This understanding can
either be directly derived from the GPDI model parameter estimates (e.g. the maximum
interaction shifts of PD parameters such as Emax and EC50 or the corresponding
potencies of the interaction) or by investigating meaningful graphics such as
comparisons of model predictions including the quantified interactions against
expected additivity or exposure-response-surface plots. In particular, exposure-
response-surface analyses are powerful tools to investigate concentration-effect
relations in a multidimensional fashion. Originating from process improvement within
the chemical industry, the application of exposure-response-surfaces on drug
interactions can help to identify and understand at which concentrations the drug
interactions become most apparent.[99]

Additionally to the advantageous parametrisation, the GPDI modelling approach adds
semi-mechanistic layers by allowing allosteric and/or competitive interactions.[16]
Especially, the missing possibility for description of allosteric interactions with increased
effect sizes beyond the maximum effect of a single drug is a limitation of many other

interaction models.[65], [100] But it has to be acknowledged, that the parametric
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modelling approaches are highly complex and require an appropriate data base to
inform the different model parameters. However, the quantification and direct
interpretability of the GPDI model parameters represent advantages compared to
empiric models, which quantify interactions solely by a factor describing a deviation
from the calculated additive effects.[16], [101], [102] Unlike the interaction parameters
included in the GPDI model those deviation parameters cannot be interpreted directly.
Additionally, those models are not able to distinguish between interactions affecting
EC50 or Emax and do not consider a directionality of drug interaction.

For all modelling approaches, it isimportant to note, that the type of the model is crucial
for the interpretation of the model parameters. The different models developed for the
Publications Il and Ill can be divided in static endpoint driven evaluations (i.e. the
calculation of exposure-response-surfaces of the checkerboard experiments at a
defined timepoint) or time-resolved models (i.e. the dynamic description of the time kill
experiments). The inclusion of time as a variable when solving time-resolved models has
to be considered when comparing different model parameters. A prominent example is
Emax. For time-resolved models Emax describes a kill rate over time (h™') whereas it
displays a logio reduction of the bacterial count compared to uninhibited growth in
frame of the checkerboard exposure-response-surfaces. This needs to be considered,

when it comes to communication or translation of the results.

Impact of the additivity criterion

Unlike to the development of pharmacometric models, less complex approaches like
‘conventional’ checkerboard experiments or Etest cross methods are easier to perform
and commonly evaluated by the calculation of an FIC index. Thus, they can be easier
implemented in routine diagnostics. However, the calculation of FIC indices lacks semi-
mechanistical insights, reproducibility, sensitivity and does not provide information
whether the concentration, at which the interaction is observed, is actually clinically
relevant.[78], [81]—[83] Furthermore, the calculation of an FIC index assumes Loewe

additivity, which might not always be considered and can become problematic.[103] As



72 4 Discussion

introduced earlier, Loewe additivity (see 1.3) hypothesises similar or equal agents with
same sites of action, which might not always be the case for antibiotics with different
modes of action.[19], [20], [22], [103] In essence, Bliss Independence (see 1.3) might be
the more suitable additivity criterion for the independently acting
ceftazidime/avibactam and fosfomycin. Hence, Bliss Independence was applied for the
calculation of expected additivities in the present PhD project. As drug interactions are
defined as deviations of the combined drug effect from additivity, the choice of the
additivity criterion will directly influence the identification of drug interactions and will
also affect their interstudy comparability.[18], [83] Therefore, the careless assumption
of Loewe Additivity when calculating an FIC index can hinder the final translation of the

findings into the clinical setting.[103]

Influence of the in vitro testing method

The method of in vitro interaction testing must be considered, when comparing the
results of in vitro studies.[4], [83] For example, Mikhail et al. conclude antibacterial
activity based on shifts of the MIC and recommend the combination of
ceftazidime/avibactam and fosfomycin against K. pneumoniae.[28] Conversely,
Romanelli et al. and Avery et al. conclude solely additivity or indifferent interactions in
K. pneumoniae and other selected Enterobacteriaceae based on Etests.[104], [105] On the
opposite, data was also published identifying synergy rates of nearly 50% in
K. pneumoniae evaluated by Etest.[106] In concordance to those ambiguous results, a
study based on ‘dynamic’ checkerboard experiments, conducted in this PhD project,
identified strain dependent additive or synergistic drug interactions in carbapenemase
producing and fosfomycin resistant K. pneumoniae.[94] The different outcomes
highlight a general consensus with regard to the identification of similar interactions
for K. pneumoniae and selected Enterobacteriaceae and indicate uniformity of the
results from different methods. Nevertheless, even if this agreement is encouraging, it

remains unclear, whether a mechanistic explanation (e.g. genetic disposition of the
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different investigated strains) can be found or whether the differences can be traced
back to the different in vitro assays and evaluation methods.

An additional layer in the evaluation of drug interactions can be provided by the
determination of mutation frequencies against the different antibiotics alone and in
combination. They were calculated in Publication Il and a comparable approach was
performed in Publication Il when the phenotypic emergence of resistant
subpopulations against ceftazidime/avibactam and fosfomycin was monitored. The
results in in both publications indicate a suppression of the emergence of resistances in
combination, which was already shown for a P. aeruginosa strain by measurements of
decreased mutation frequencies in combination compared to a mono treatment.[107]
Comparing the evaluation of the data, the different assays have different sensitivities.
Conventional checkerboard experiments are relatively insensitive due to the high
turbidity threshold of > 107 cfu/mL, whereas model-based evaluations of bacterial
concentrations are highly sensitive.[80] This increased sensitivity might require the
necessity to introduce additivity margins or measures of interaction parameter
uncertainty (e.g. confidence intervals) to not overinterpret the data and report false
positive drug interactions.[16] To avoid this, additivity margins were applied and
95% confidence intervals of the interaction parameter estimates were calculated during
the experimental design development in Publication | and for the evaluation of the
interaction screening presented in Publication Il. Subsequently, the drug interactions
were then evaluated under the condition of a non-overlap of the confidence intervals
with zero.

Nevertheless, the purposes and the desired applications must be considered, when
comparing the different methods. Exploratory research has different requirements than

routine or high-throughput testing and vice versa.

4.3 Extrapolation of in vitro results

Extrapolation of preclinical research from ‘bench to bedside’ and deriving conclusions

for the clinical setting are the ultimate goals of the present PhD project. However, it is a
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great challenge, due to major differences in the experimental conditions between
different invitro assays, variability between different laboratories and wide
extrapolations from in vitro experiments into living organisms.[2], [108] The following
sections focus on the translational challenges, the values of the results obtained in the
in vitro studies published in Publications Il and Il as well as which constraints might

remain.

4.3.1 In vitro-in vitro transfer

The transfer of findings between different in vitro assays and laboratories becomes
important, when it comes to the extrapolation of knowledge from more basic in vitro
assays into complex and more meaningful experiments. Yet, it can provide major
challenges with regard to reproducibility and consistencies of outcomes throughout
different experimental conditions.[98] In vitro-in vitro transfer is inevitable, because of
the different purposes of the available invitro assays. For instance, the MIC
determination is a simple diagnostic measure, but does not picture dynamic antibiotic
effects. It cannot distinguish between bactericidal and bacteriostatic effects, which
might be needed for research purposes and could be provided by time Kill

experiments.[109]

Impact of the experimental conditions

The most apparent influence factors on the experimental outcome and therefore
potential challenges for transfer of findings can be summarised as those of the general
experimental conditions. Instable incubation temperatures, different pH values, carbon
dioxide concentrations, experimental volumes and incubation times directly impact the
experimental outcome and can vary between different laboratories.[20], [76] To reduce
those influences, especially for diagnostic measures (i.e. MIC determination),
standardised reference methods with reduced variability were established to improve
interlaboratory reproducibility.[20] To obtain comparable results and evaluate the

susceptibility with regard to clinical guidelines the MIC determinations included in
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Publications Il and Il were based on the guidance of the Clinical and Laboratory
Standards Institute (CLSI) and EUCAST.[110]

Additionally, the growth medium influences the experimental outcome and affects
observed growth as well as killing effects.[117] Even though Mueller Hinton Broth is
commonly used, it is not fully standardised and its composition may vary.[20] In the
context of in vitro experiments with fosfomycin, it is also important to note that its
effect is directly influenced by the concentration of inorganic phosphates, which could
conceivably vary between different culture media.[112] To reduce this influence the
Mueller Hinton Broth for all of the experiments conducted in this PhD project was
purchased from one distinct supplier.

Besides the external influences the bacterial inoculum has a known influence on the
in vitro effect sizes. The so-called inoculum effect describes reduced drug effect sizes
correlating to elevated bacterial counts at the start of an experiment. The phenomenon
is frequently observed for beta-lactam antibiotics against bacteria expressing beta-
lactamase enzymes.[113] Additionally, the inoculum effect was also captured for
fosfomycin.[114]

During the in vitro assays in Publications Il and Ill, the broth microdilution MIC tests
were inoculated with 5x10° cfu/mL. For the EC50 determinations, the static and dynamic
time kill experiments the inoculum was increased to 108 cfu/mL and a preincubation
was introduced. Those adjustments changed the total number of bacteria as well as
their growth phase at the beginning of the experiments. Consequently, that influenced
the elevated determined EC50s in Publication Il compared to the determined MICs.
Those adjustments for the EC50 determination were necessary to enable a direct
in vitro-in vitro transfer of the pharmacodynamics to checkerboard assays and time Kkill
experiments, which are commonly conducted with higher inocula compared to MIC
determinations.[20] Thus, a mergeable database (i.e. data generated under the same
experimental conditions) was generated to plan the adaptive checkerboard
experiments and the amount of data to estimate the exposure-response-surfaces was

increased.[87]
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Influence of biological variability

The variability of fosfomycin effect sizes in in vitro testing is enhanced by a higher
mutation frequency of many bacteria against fosfomycin compared to
ceftazidime/avibactam.[47], [107], [115] Spontaneous and random mutants, especially in
combination with elevated inocula, make the reproducibility of experiments conducted
in liquid growth medium more challenging. Therefore, fosfomycin is the only agent
EUCAST deviates from the general directive and recommends agar dilution as reference
method for MIC testing instead of broth dilution.[116] However, the disagreements of
agar and broth dilution are still subject for discussions in the scientific community,
because their comparability seems highly variable and strongly dependent on the
bacterial species.[43], [114], [117]-[119] Most MICs in the present PhD project were
determined by broth dilution to provide comparable experimental growth conditions
between the MIC determination and the subsequent checkerboard and time kill
experiments, which were inevitably performed in liquid growth medium.

The alignment of the inocula and growth conditions build the foundation for the
transfer from the EC50 determinations over the checkerboard assays to the time Kkill
experiments in Publications Il and lll. Finally, the static time kill experiments confirmed
those considerations by corroborating the synergies and the variable interaction
directions observed in the checkerboard experiment. Additionally, the detailed static
time kill experiments performed in Publication Il confirmed the higher variability of the
fosfomycin effects and the PK/PD models had to be expanded by variability components

describing the interexperimental differences.

Importance of pharmacokinetics

The most important change between the static time kill experiments and the Hollow
Fiber experiments was the addition of dynamic pharmacokinetics. Dynamic
pharmacokinetics can enhance the emergence of resistant subpopulations, when the

concentrations fall below certain thresholds. That can be correlated to the concepts of
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mutant selection windows and mutant prevention concentrations as upper boundaries
of the resistance selection range.[19]

Earlier pharmacometric approaches indicated a limited impact of the pharmacokinetics
for several beta-lactam and non-beta-lactam antibiotics. Nielsen et al. demonstrate the
prediction of bacterial counts in a dynamic experiment from static PK/PD models.[120]
The simulations of dynamic Hollow Fiber experiments from the static model in
Publication Ill cannot fully confirm those findings. The static PK/PD model developed for
ceftazidime, avibactam and fosfomycin was always able to pick up the general trend of
the bacterial dynamics, but lacked the ability to capture rapid regrowth mechanisms
accurately.[88]. Hence, static time kill curves can indeed help to predict and reduce

cumbersome Hollow Fiber experiments, but cannot replace them.[120]

Summarising the aspects of in vitro-in vitro transfer of the present PhD project, the
observed drug interactions were consistent throughout the different in vitro assays
within the species of E. coli as well as in the distinct evaluated strains. Those agreements
encourage to derive quantitative and mechanistic knowledge from less labour-intensive
in vitro assays to predict and spare complex experiments. However, a successful in vivo

translation into the clinics is not guaranteed and is discussed in the following section.

4.3.2 In vitro-in vivo translation

The ultimate leap of preclinical studies is the translation into in vivo animal models and
finally patients. The following section focuses on challenges regarding a translation of
in vitro findings into the in vivo clinical setting and neglects special features related to

the translation into animal models as they were out of the scope of this thesis.

Impact of the bacterial growth conditions
Many of the aspects related to the in vitro-in vitro transfer can be applied directly onto
the invitro-in vivo translation. Especially, the physiological growth conditions differ

significantly from the optimised growth conditions invitro. This includes already
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discussed influencing factors (see 4.3.1) on the bacterial growth as well as the inoculum
effect.[113] For instance, the already discussed Mueller Hinton Broth is optimised for
in vitro experiments. It displays a very rich growth medium and provides optimal
conditions for bacteria, which does not apply for a physiological invivo infection
site.[20], [111] Therefore approaches were developed to perform invitro testing in
biological media or close imitations.[108], [121]

The experiments presented in Publication Ill indicate a rapid emergence of resistance,
when fosfomycin is used in monotherapy. This phenomenon is commonly observed
in vitro but cannot be fully translated into the clinics.[41], [42], [47], [48], [122] A potential
explanation for that discrepancy between the resistance development invitro and
invivo are the optimised invitro growth conditions. In detail, different rates of
mutations in the fosfomycin inactivating enzyme MurA are discussed as a consequence

of those different conditions.[122]

Influence of in vitro testing conventions

A series of in vitro testing conventions display additional challenges for the in vitro-
in vivo translation. Two of them proposed by EUCAST were mainly faced in the present
PhD project: 1) applying a standard concentration of 4 mg/L avibactam, when
performing invitro susceptibility testing with ceftazidime/avibactam and Il) the
supplementation of fosfomycin in in vitro experiments with
25 mg/L glucose-6-phosphate. Both assumptions are discussed in the following
paragraphs.

1) The recommendation of the standard concentration of 4 mg/L avibactam is
justified by EUCAST with a full inhibition of beta-lactamases and restauration
of the ceftazidime activity to wild-type level.[123], [124] A comparison with
the mimicked pharmacokinetic profiles in Publication Il reveals that 4 mg/L
is indeed an arbitrary concentration which is not permanently achieved in
patients. Therefore, the avibactam effects could get overestimated in

standard invitro testing. For the particular E.coli strain included in
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Publication Ill, a concentration of 4 mg/L avibactam did not have an own
killing effect in static time kill experiments, but was also not always sufficient
to potentiate the ceftazidime effect to a maximum.

1) The second convention is the addition of 25 mg/L glucose-6-phosphate for
invitro activation of the UhpT transporter system to observe in vitro
antibacterial effects of fosfomycin (see 1.4.2).[116] Similar to the avibactam
convention, the glucose-6-phopshate concentration is based on a maximum
activation of the transporter system and intended to display a maximum
potentiation of the fosfomycin effects.[43], [125] In vivo, glucose-6-phosphate
is physiologically present, but its concentrations are strongly dependent from
the tissue and infection site and are assumed to be lower than 25 mg/L.[108],
[125] Hence, the plausibility and the clinical correlations of the addition of
glucose-6-phosphate are subject to debate.[42], [43], [108], [125], [126] The
in vitro experiments conducted in the present PhD project followed the
recommendation of the addition of 25 mg/L glucose-6-phosphate. A series of
static time kill experiments (data not shown) indicate an influence of glucose-
6-phosphate on the fosfomycin effects but not on the synergy of ceftazidime
and fosfomycin. This outcome is encouraging when considering the glucose-

6-phosphate concentration as limitation for a clinical translation.

In vitro-in vivo pharmacokinetic differences

Another, apparent translational challenge between most standard in vitro assays and
patients are the pharmacokinetics and whether the evaluated in vitro concentrations
are clinically relevant.[24], [106] As discussed above (see 4.3.1), dynamic time kill
experiments such as the Hollow Fiber system can overcome those limitations.
Nevertheless, those experiments require detailed prior knowledge on the
pharmacokinetics of the researched drugs. In early stages of research and development
of new agents physiologically based pharmacokinetic (PBPK) models or allometric

scaling can be tools to predict human pharmacokinetics from invitro or animal
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models.[60] In an ideal world also target site pharmacokinetics, which can alter from
plasma pharmacokinetics, are available for the design of the in vitro study.[127] Special
features of the drugs such as nonlinear protein binding, active metabolites or prodrugs
will challenge the in vitro Hollow Fiber system.[85], [128] Additionally, the standard set
up of the Hollow Fiber system lacks the simulation of bacteria-host interactions (i.e. the
patient’s immune system).[85] There are advances to include neutrophil granulocytes in
in vitro experiments with bacteria in order to mimic parts of the immune system, but
eukaryotic cells in combination with bacteria are very fastidious to cultivate and have

short survival half-lives.[129]

Clinical relevance of the evaluated strains

The impact of the evaluated bacterial strains on public health needs to be considered
for a clinical translation. Often times not a specific strain or species takes advantage of
an infection.[98] Therefore, studies with series of strains with clinically relevant
susceptibilities add more valuable knowledge for the development of clinical dosing
regimens.[4] The evaluated strains in the present PhD project were selected based on
their clinical relevance. Various isogenic strains carrying genes coding for different
extended-spectrum beta-lactamases and carbapenemases were included as well as
clinical counterparts. Das et al. identified an MICqp, which defines the MIC for 90% of the
evaluated isolates, for ceftazidime/avibactam against clinically isolated
Enterobacteriaceae of 0.25 mg/L to 0.5 mg/L.[130] This corresponds to the MICq of the
evaluated clinical E. coli strains in Publication Il (MICgo: 0.5 mg/L). Hence, despite the
relatively small selection of strains evaluated in the present PhD project, this selection
might still depict the clinical susceptibilities of E. coli against ceftazidime/avibactam
and helps to draw conclusions for the clinical application of the combination therapy of

ceftazidime/avibactam and fosfomycin.



4.4

Combination therapy in clinical practice | 81

4.4 Combination therapy in clinical practice

Antibiotic combination therapy is frequently used in clinical practice.[20], [98] The
origins reach back more than 70 years for the therapy of tuberculosis. As already
introduced (see 1.2), the four main purposes for antibiotic combination therapy are the
following: 1) expansion of the antibacterial spectrum in an early phase of an empiric
treatment, when the pathogen causing the infection is not identified yet, Il) the
suppression of the emergence of resistance in combination in contrast to monotherapy,
l1l) exploitation of drug interactions for increased efficacy or IV) the re-sensitisation of
bacteria which would be resistant against monotherapy.[3], [15], [24], [98]

The following paragraphs discuss the results obtained in the present PhD project in
frame of the mentioned four main purposes and how the identified synergies of
ceftazidime/avibactam and fosfomycin could be beneficial for the clinical practice.

[)  The screening of the interactions of ceftazidime/avibactam and fosfomycin in
the present PhD project identified mainly synergistic and fewer additive
interactions across different strains and species.[87], [94] Additionally, no
relation between the genotype of the strains and the interaction type or
directionality could be identified.[87] Those results encourage the use of the
combination in an empiric therapy for E. coli independently from the expression
of a certain extended-spectrum beta-lactamase or carbapenemase.

l) Increased drug effect sizes often come with a suppression of resistance.
Mechanistic explanations are the efficient decrease of the total count of bacteria,
which could mutate and become resistant, or a shortening of the time frame for
the pathogens to develop a resistance before they become eradicated. Moreover,
the combination of different modes of action increases the biological cost to
develop resistances against both drugs and a high likelihood remains, that a
second agent stays active, when a resistance is developed against the first.[20]
For ceftazidime/avibactam-fosfomycin combinations, fosfomycin does not share

the limitations of avibactam not being able to overcome an emergence of
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1D)

resistance against ceftazidime mediated by an alteration in drug uptake
(i.e. mutations of porins or increased efflux mechanisms).[5], [35], [44]

The phenotypical resistance development in the present PhD project was
surveyed during the checkerboard and dynamic time kill experiments. In both
assays the drug combination was able to suppress resistance development and
the semi-mechanistic PK/PD modelling confirmed those effects by enhanced
killing mechanisms. Especially, the emergence of fosfomycin resistances was
suppressed in combination. Therefore, less regrowth of phenotypic resistant
bacteria or regrowth at significant lower concentrations was observed in
comparison to the monotherapy.

The calculated exposure-response-surfaces and comparisons of additivity
against interaction model predictions in Publications Il and Ill visualize that the
synergy mainly promotes effect sizes at sub-inhibitory concentrations. Therefore,
a possibility for dose reductions in combination can be discussed. Dose
reductions could positively contribute to avoid exposure driven adverse events
such as neurotoxicity by beta-lactams or electrolyte imbalances by fosfomycin-
sodium.[33], [46] Additionally, maintained high effect levels at decreased drug
exposures can be beneficial for critically ill patients with altered
pharmacokinetics undergoing standard dosing and no therapeutic drug
monitoring.[131] In particular, critically ill patients often times suffer from
increased volumes of distribution as a result of altered fluid balances.[132] Hence,
hydrophilic drugs such as fosfomycin or beta-lactams might be under-dosed and
thereby promote treatment failure or the development of resistances.[34], [132],
[133] The observed synergies could ensure sufficient effect sizes in those patients
or at reduced target site exposures.

The investigated E. coli strains in Publication Il and Ill express clinically relevant
extended-spectrum beta-lactamases and carbapenemases, but were all
considered to be susceptible against ceftazidime/avibactam and fosfomycin
with regard to the EUCAST classifications.[87], [116] This was confirmed by

successful standard dose monotherapies in the Hollow Fiber infection model.[88]
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Considering the simulated potential for a dose reduction also a re-sensitisation
seems conceivable, however, remains subject to speculation. It might also
depend on the expression of additional resistance mechanisms such as Ambler
class B beta-lactamases, which are not inhibited by avibactam, or
glutathione S-transferases degrading fosfomycin.[44] Nevertheless, a re-
sensitisation was observed for the clinical E. coli YAL_AMA strain included in the
Hollow Fiber experiments with regard to the drug combination of ceftazidime
and avibactam. An MIC of 16 mg/L against ceftazidime without avibactam was
determined for the particular E. coli strain and hence, it was classified as resistant
according to EUCAST (R > 4 mg/L).[116] Conversely, an MIC of 0.125 mg/L was
determined for the combination of ceftazidime/avibactam and categorised the
strain as susceptible (i.e. S < 8 mg/L).[116] Thus, in this scenario, the potentiation

of avibactam re-sensitised the E. coli against ceftazidime.

4.5 Guidance of clinical decision making

To support clinical decision making and to guide the treatment of infectious disease
different concepts were established. Traditional PK/PD indices (see 1.6.1) are used to
define pharmacokinetic targets which are then evaluated in probability-of-target-
attainment analyses with regard to different doses, dosing regimens or modes of
application.[68] Based on that exploratory knowledge EUCAST defines MIC breakpoints
(i.e. classification of pathogens in susceptible against standard dose (S), susceptible
against increased exposure (I) and resistant (R)) to support clinicians in their choice for
the right antibacterial agent and therapeutic regimen.[116] Usually, a detailed database
is required to derive those clinical breakpoint parameters. The systematic interaction
screening performed in Publication Il adds valuable data for a high-level evaluation of
the synergy of ceftazidime/avibactam and fosfomycin in E.coli. To the author’s
knowledge, no other systematic studies of the drug interactions of
ceftazidime/avibactam and fosfomycin against E. coli were conducted yet. As discussed

above (see 4.2), extensive interaction testing was performed in P. aeruginosa or other
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Enterobacteriaceae species such as K. pneumoniae with varying results identifying
synergy and/or additivity.[28], [94], [104]-[106], [134], [135] In combination with those
results, the present PhD project adds valuable data about broad synergistic interactions
of E. coli and identifies an independency of the interactions from the expression of
specific extended-spectrum beta-lactamases or carbapenemases. Thus, a general
additive and synergistic effect against Enterobacteriaceae and P. aeruginosa could be
assumed. That would be especially relevant as infections are not always caused by one
defined pathogen.[98] Additionally, the broad effects facilitate the recruiting of patients
for potential clinical studies compared to the cumbersome recruitment of patients
infected by highly defined pathogens and/or genotypes.

However, standardised methods for interaction testing such as the reference methods
for MIC determination to generate a universal database are still lacking. But more
important, the traditional PK/PD indices and MIC breakpoints which commonly provide
clinical guidance cannot be directly transferred onto drug combinations. The
calculations of PK/PD indices require an MIC as fixpoint, which can be highly dynamic
and dependent on the concentration of the combination partner. The most accurate
method might be the calculation of an instantaneous MIC, i.e. the computation of an
MIC as a function of the concentration of the combination partner. [136], [137] However,
this approach is considerably more laborious and might not be suitable for clinical
routine diagnostics.

Transferring this argument to the MIC breakpoints set by EUCAST, the determination of
measures for combinations dependent from pathogen and combination partner would
inflate breakpoint tables and leave them inappropriately complex. Those challenges
were noticed by EUCAST and scientific discussions were launched, but no appropriate
solution is defined yet. An example for the initiative of a discussion about breakpoints
in combination is fosfomycin. Due to its mainly exclusive use in combination therapy,
EUCAST questioned the definition of breakpoints for the monotherapy against some
pathogens and initiated the scientific exchange, how to handle breakpoints for drug

combinations.[138]
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Summarising, the insights in the synergy of ceftazidime/avibactam and fosfomycin are
a valuable expansion of the existing knowledge on the drug combination in
K. pneumoniae and P. aeruginosa. However, further confirmations of the findings and
the development of a format or index to compile clinical treatment recommendations

of combinations are required to derive general clinical guidance.
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5 Limitations and Perspectives

The present PhD project comprised a translational invitro study and thoroughly
elucidated the synergy of ceftazidime/avibactam and fosfomycin in different E. coli
strains expressing clinically relevant extended-spectrum beta-lactamases and
carbapenemases. The application of mathematical and statistical methods in form of
D-optimal design theorem and pharmacometric modelling and simulation techniques
played a paramount role in streamlining in vitro screening experiments, providing in-
depth mechanistical insights into drug pharmacodynamics as well as in contributing to
the transfer of findings from simplistic to complex in vitro assays.

Nonetheless, some limitations have to be acknowledged for the present PhD project.
The optimal experimental checkerboard designs were very condensed and highly
specific for the aimed application in a pharmacodynamic interaction study. They
successfully enabled a fast and target-oriented evaluation of drug combinations, but
already the SSE study in Publication | indicated that unforeseen scenarios such as a
potentiation or coalism in highly resistant strains would exceed the limits of the
designs.[86] Additionally, those designs were developed with a focus solely on the
identification of drug interactions neglecting clinically achievable concentration ranges.
A future compromise unifying those two elements seems to be even more promising
with regard to a clinical translation of the findings. Nevertheless, the drug interactions
identified in the checkerboard experiments were corroborated in more elaborate static
and dynamic time kill experiments, but a clinical in vivo translation is still lacking. As
discussed (see 4.5), broad evidence of beneficial drug interactions of ceftazidime/
avibactam and fosfomycin in E. coli besides the results presented in this PhD project is
missing. Therefore, a further evaluation of the combination in an extended set of
bacterial strains is desirable. Especially, the hypothesis of a potential re-sensitisation of
resistant strains remained unmet as the main E. coli strain of the analysis was indeed
resistant against ceftazidime alone but susceptible against ceftazidime/avibactam and

fosfomycin, respectively.[88], [116]
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The dynamic Hollow Fiber experiments in Publication Il remained conceptual and
simplified all dosing regimens to bolus injections. Hence, additional benefits of the
synergy could be exploited by the development of optimised dosing regimens and focus
on target site pharmacokinetics, which were out of scope for the present PhD project. In
the context of optimised dosing regimens prolonged infusions as well as the application
of loading doses or pulsed dosing would be conceivable.

This study was not able to identify detailed hypotheses for the appearance and the
strength of the observed interactions. Therefore, further genomic and metabolomic
investigations are warranted to elucidate the mechanistic cores of the interactions. A
detailed understanding would be valuable for the development of rapid molecular
diagnostics, which could already identify patients benefiting from combination therapy
in the critical first hours of treatment.

But to steer a rational combination therapy, clinical guidance parameters categorising
drug interactions in a handy manner like PK/PD indices or clinical breakpoints are still
missing (see 4.5). The development of such measures could be supported by the
assignment of a standard assay and evaluation tool for combination testing. Although
the MIC has its superficialities and limitations, it can be an example with regard to assay
simplicity and method standardisation.

To finally conclude, owning the principles of rapid molecular diagnostics and
pharmacometric model-guided treatment, modern rational combination therapy of
antibiotics has the potential to fight the bacteria back and improve the clinical position

in the global chess match of science against pathogens.[6]
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7.1 Supplementary material of Publication |

Supplement Text 1: Materials and Methods: SSE for strong monodirectional
antagonisms

To evaluate the different experimental designs in their ability to identify very strong
monodirectional antagonistic interactions where one drug fully suppresses the effect of
the companion drug an SSE with the following adjustments was conducted: the INT-
parameters for one drug was set to 99 for competitive EC50 interactions or to -0.99 for
allosteric Emax antagonisms. The INT parameter of the combination partner was set
to 0. To account for the monodirectional interactions the criterion for a correct classified
interaction was adjusted and a conservative additivity margin for the INT parameter of
-0.2 to 0.2 was added. In this case an additivity margin means a threshold value of an
INT parameter that is necessary to identify a synergistic or antagonistic interaction over

additivity.

Supplement Text 2: Results: SSE for strong monodirectional antagonisms

The misclassification rates for the SSE evaluating strong monodirectional antagonistic
interactions are displayed on Supplement Figure 1. The misclassification of EC50 or Emax
interactions are similar to interactions with more moderate interaction effect sizes. The
identification of Emax interactions by the conventional sparse design was worst, which
corresponded to the very small AIC differences when discriminating both types of
interactions (Supplement Table I).

Comparing the misclassification rates of the antagonistic interactions, the two groups
of conventional and EC-based designs clearly differed. While the conventional rich and
sparse designs display misclassification rates < 5.08%, all EC-based designs misclassified

>12.99% of the antagonistic interactions.
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Supplement Figure 1: Misclassification rates of the different checkerboard designs in the SSE
study investigating strong monodirectional antagonistic interactions. Classification rates for
discriminating competitive (EC50) or allosteric (Emax) interactions were calculated as well as for
identifying the correct type of the interaction (ant AB: antagonism drug A affected by drug B,
ant BA: antagonism drug B affected by drug A). n represents the number of combination
scenarios included in the respective experimental design.

Supplement Table I: SSE statistics on the ability of the different experimental designs to
discriminate between EC50 and Emax interactions when analyzing strong antagonistic
interactions.

Reference designs

Rhombic designs

conventional
EC
rich spars fixed free
4x4
e
Combination scenarios 81 9 9 4 4
Min. AIC* difference for
interaction discrimination
19.05 1.03 | 28.85 18.05 14.10
(EC50, Emax) in 2 95% of the
simulations

2AIC, Akaike Information criterion
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Supplement Text 3: Discussion: SSE for strong monodirectional antagonisms

Very strong interactions as full antagonism can be challenging for experimental designs.
Especially EC-based designs showed inferior classification of the interactions, because
their flexible and adaptive layout is linked to the drug potencies in opposite to wider
standard concentrations as the conventional rich or conventional sparse design.
Therefore, the concentrations to quantify very strong interactions can lay outside the
concentration range of the experimental design, which is less likely to happen in an
unspecific design with standardized concentration levels. Therefore, it would always be
recommended to check the results for biological plausibility and consider retesting,

when strong interactions occur.
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7.2 Supplementary material of Publication II

Text S1: Pharmacometric modelling of the ECsp.24n

The ECsp after 24 h was determined by description of the cfu/mL using a sigmoidal Emax
model (Eqg. (1)), with Baseline being the bacterial count without antibiotic exposure,
Emax the maximum logio(cfu/mL) reduction, C the concentration of the drug (mg/L),
H the sigmoidicity parameter and the ECso being the concentration at which the effect
is half-maximum.

Emax - CH

E(C) = Baseline — ————
© ECso™ + CH

(1)

Parameter estimation was performed by minimizing the negative log-likelihood (-LL)
objective function criterion (Eqg. (2)) using ‘optim’ from the R package stats (version

3.6.3). The criterion was calculated as follows:

.. d:)?
OF i, =05 X1, [% +In 6? 2)

)

with obs; being the jt observation, pred; the respective j'" model prediction and o2 being
the residual variability. To guide the minimization the pharmacodynamic (PD)
parameters were estimated in four different implementations of the sigmoidal Emax
model (Eg. (1)): i) all parameters were freely estimated, ii) the Baseline value was fixed
to the median of the bacterial count without antibiotic exposure, iii) the Baseline and
Emax value were fixed to the median of the bacterial count without antibiotic exposure
and iv) Emax value and Baseline were estimated as one parameter value. The initials for
the parameter estimation were based on the data of the respective antibiotic and
bacterial strain. Model selection was based on the -LL, graphical model fit and biological

plausibility (e.g. Emax not higher than Baseline value).



12 7 Appendix

Text S2: Pharmacometric modelling of drug interactions of the ‘dynamic’ checkerboard
experiments

The mono drug PD parameters were updated after the checkerboard experiment as
outlined above and fixed for the estimation of the drug interactions. No interaction was
described by Bliss Independence with single drug effects normalised to 1 for calculation
of the probabilistic Bliss Independence term and then scaled back to the effect scale
(Egs. (3)-(4)), drug interactions were assessed in a naive pooling data approach using the

general pharmacodynamic interaction (GPDI) model implemented in R.23

Emax = max (Emax,A: Emax,B) (3)
Ea Ep Ea Eg
Beomy = (= + = — =2 - =) .E (4)
com Emax Emax Emax Emax max

The GPDI model describes interactions directionally by the insertion of a GPDI-term.
Depending on the polarity of the INT-parameter synergistic, antagonistic or no drug
interactions can be described and the GPDI model enables a discrimination between
interactions on ECso (competitive) or Emax (allosteric).

As for the bactericidal drug effects of ceftazidime/avibactam and fosfomycin without
combination a total killing was observed, it applied that Emax = Baseline. Therefore,
interactions on level of Emax were not possible and solely competitive interactions as

shifts of the drugs potency (ECso) of a victim drug by a perpetrator were considered

(Eq. (5)).

EC = EC. - |1+ INT - Chn (5)
B N

with ECso being the potency of the victim drug, INT the maximum fractional shift of the
interaction, C the concentration of the perpetrator of the interaction, ECso.nt the
potency of the interaction and Hyrthe sigmoidicity of the interaction. For simplification
Hint was fixed to 1and as very strong PD drug interactions were observed the ECso.nt
was not only fixed to the perpetrators ECso but to a small fraction of the lowest
checkerboard concentration (0.05 - ECog). Alternatively, the GPDI could be collapsed to
ECso-cpoi = ECso X (1 + INT) to account strong PD interactions. Parameter estimation was

performed by minimizing the -LL objective function criterion (Eq. (2)) using ‘optim’ from
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the R package stats (version 3.6.3). To guide the minimization no or mono- and
bidirectional interactions were tested and the Akaike Information Criterion (AIC) was
calculated. After estimation of the INT parameters the Hessian was calculated within
the ‘optim’ function. The standard errors of the estimates (SE’s) were derived as square
roots of the diagonal values on the inverse Hessian matrix. 95% confidence intervals (Cl)
of the INT parameter estimates were calculated as INT-parameter + 1.96 - SE. The model
selection was based on the model with the lowest AIC and Cls of the INT parameters not
overlapping with 0. The INT parameters were reported as fractional interaction shifts at

the ECsp of the perpetrator drug.
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Text S3: Pharmacometric modelling of the time kill experiments

PD models for the static time kill data were developed sequentially for the three
different clinical E. coli strains. The lower limit of quantification (LLOQ) for bacterial
counts by serial dilution and plating on agar plates was at 10™-10% cfu/mL. Below limit of
quantification (BLOQ) data was empirically set to 1 cfu/mL and included in the
modelling. Base for the model was a two compartmental ordinary differential equation
(ODE) system describing a susceptible (S) and a resistant (R) subpopulation experiencing
different drug effects (Es and Eg). Both subpopulations were described with separate
inocula as initial conditions, separate growth rates (kgs and kgg) and a global bacterial
capacity limit Bmax of the system. To capture biological variability with regard to
resistance development inter-experimental variability was introduced as exponential

coefficient of variation on the inoculum of the (R) subpopulation.

B 5.k (1 S+R) S - (6)
dt GS ax S

dR S+R

— =R kGR-(l— )—S-ER (7)
dt max

In a first step the mono drug effects were introduced separately for each subpopulation
preferred as sigmoidal Emax models (with or without sigmoidicity parameter fixed to 1)

or power function (Egs. (8)-(9)).

E(C) = Emax - CH @)
 ECg, 4 CH
E(C) = Slope-CH (9)

Model selection was made on graphical model fit, model stability, AIC and biological
plausibility.

After estimation of the mono drug PD parameters, they were fixed and the model was
applied on combination experiment data. For description of no interaction Bliss
Independence with single drug effects normalised to 1for calculation of the probabilistic
Bliss Independence term and then scaled back to the effect scale was used to calculate
the combined drug effects on the S or R subpopulations (Egs. (3)-(4)). In case of effects
were described by a power function effect sizes below 50% of a presumable Emax were

assumed. In these cases, effect addition was applied as an approximation of Bliss
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Independence as the probabilistic correction becomes neglectable for small effect
sizes (Eq. (10)).4

Ecomb = Ea + Eg (10)
Druginteractions were introduced using the GPDI model outlined above (Eg. (5)).1 Beside
Bliss Independence four different mono- and bidirectional interactions affecting the
ECso or Emax of the drugs on the R subpopulation utilizing the GPDI model were
evaluated: i) monodirectional interaction with ceftazidime/avibactam as perpetrator
affecting fosfomycin ECsp or Emax (ceftazidime/avibactam -> fosfomycin),
if) monodirectional interaction with fosfomycin as perpetrator affecting
ceftazidime/avibactam ECso or Emax (ceftazidime/avibactam <- fosfomycin),
iii) bidirectional interactions with ceftazidime/avibactam and fosfomycin being
perpetrator and victim at the same time with the same INT-parameter
(ceftazidime/avibactam <-> fosfomycin one INT), iv) bidirectional interactions with
ceftazidime/avibactam and fosfomycin being perpetrator and victim at the same time
with different INT-parameters (ceftazidime/avibactam <-> fosfomycin separate INT).
The model describing the combination data best was chosen based on graphical model
fit, AIC, model stability and condition number.
The model fit was evaluated by visual predictive checks based on 1000 simulations and
plotting of the 90% prediction interval (Fig. 3-5)

Parameter uncertainty was assessed using the SIR algorithm implemented by PsN 5.0
(Uppsala University, Sweden) with 10% inflated relative standard errors (RSE) produced
by the covariance step in NONMEM as proposal distribution. M/m was increased to 20

to reach stable differences in objective function value (dOFV) distributions.
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Text S4: Results of the pharmacodynamic interaction screening

The drug interaction screening revealed inhomogeneous results with regard to the
direction of the drug interaction of ceftazidime/avibactam and fosfomycin. An
exploratory graphical analysis was performed to detect correlations between the
identified interaction and characteristics of the bacterial strains, the drug effect sizes or
ratios of susceptibility (Figure S1). None of the inspected variables could be identified to
explain the direction of the interaction. Therefore, no clear conclusion can be drawn and
a composite mechanism of interaction with different expressions in different strains is

the most likely explanation.
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Figure S1: Exploratory graphical analysis to investigate potential correlations of the determined
interaction directions (Bliss Independence or drug interaction (victim/perpetrator)) against
different parameters of susceptibility and drug effect. CZA, ceftazidime/avibactam;
FOF, fosfomycin.
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Figure S2: Calculated interaction response surfaces based on Bliss Independence GPDI models
for each clinical or isogenic E. coli strain presenting the estimated drug interactions. Directions
of the interactions are illustrated by arrows (victim <- perpetrator). Calculated combined effects
are illustrated as colour gradient. Green areas display areas of high effects and red areas
highlight low effect sizes measured in logio[cfu/mL] after 24 h. The squares correspond to
obtained in vitro data filled with respective colour gradient as outlined above. The avibactam
concentration as supplement for ceftazidime was fixed to 4 mg/L. CZA, ceftazidime/avibactam;

FOF, fosfomycin.



N8 7 Appendix

Text S5: Model selection for modelling of the time kill experiments

The exploratory graphical analysis of the drug combinations suggested drug
interactions on ECso because the drug interactions led to maintained drug effects at
reduced drug concentrations rather than to stronger killing effects. The
implementations of the GPDI model on Emax were not supported by the data and led
to instable models, termination of runs and elevated objective function values.
Therefore, for E.coli YAL_ AMA an interaction model with ceftazidime/avibactam
altering the fosfomycin ECso described the data best (AIC: Bliss Independence: 6372.316;
ceftazidime/avibactam->fosfomycin:  811.179; ceftazidime/avibactam<-fosfomycin:
1069.613; ceftazidime/avibactam<->fosfomycin one INT: 815.958; ceftazidime/
avibactam<->fosfomycin separate INT: 815.3). The data for E.coli JUM JEA was
described by an interaction with fosfomycin altering the ceftazidime/avibactam ECs
(AIC: Bliss Independence: 3606.366; ceftazidime/avibactam->fosfomycin: 934.731;
ceftazidime/avibactam<-fosfomycin: 764.334; ceftazidime/avibactam<->fosfomycin
one INT: 943.782; ceftazidime/avibactam<->fosfomycin separate INT: 887.009). The
interaction of ceftazidime/avibactam-fosfomycin in E. coli MER_MIL was described by
ceftazidime/avibactam altering the fosfomycin ECs (AIC: Bliss Independence: 1688.836;
ceftazidime/avibactam->fosfomycin: 761.448; ceftazidime/avibactam<-fosfomycin:
764.831; ceftazidime/avibactam<->fosfomycin one INT: 768.831; ceftazidime/
avibactam<->fosfomycin separate INT: 770.772).

In the last step all model parameters were unfixed and the model was fitted to the
whole dataset to obtain final parameter-estimates. Shrinkage of the inter-experimental

variability on the inoculum of the (R) subpopulation was < 25% for all three models.
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Methods

Text S1: Methods of the hollow fiber infection model (HFIM)

The HFIM system was conducted with polysulfone cartridges (C2011) purchased from
FiberCell® Systems Inc. The central compartment had a volume of 200 mL and its
circulation through the hollow fiber cartridge was ensured by a Duet Pump (FiberCell®
Systems Inc, USA) with a flowrate of approximately 80 mL/min. The central
compartment was connected with the hollow fiber cartridge by 4 m of oxygenator
tubing. An Ismatec® Reglo ICC (12 rolls; VWR, USA) was used to pump fresh Mueller-
Hinton-Broth 2 (MHB) (Sigma-Aldrich, USA) from a reservoir into the central
compartment with flow-rates ranging from 0.834 mL/min to 1.28 mL/min. The same
volume was removed by a Masterflex L/S® digital pump drive (100 RPM, VWR, USA).
Doses of the drugs were administered into the central compartment by a programmable
syringe driver (Masterflex® Touch-Screen Syringe Pump 74905-54; VWR, USA). Because
the elimination half-life of ceftazidime, avibactam and fosfomycin for the chosen
conditions were approximately similar the HFIM setup was not augmented by
additional dosing compartments (1). Before inoculation of the experiments the sterility
of the cartridge and central compartment was checked by plating and incubation of
samples of the respective compartments. The retention of the previously identified
beta-lactamases CTX-M-15 and OXA-244 in the hollow fiber cartridge was corroborated
exemplary by antigen tests of the bacterial suspension and the central compartment
after 2 h of preincubation before the addition of the first dose. To identify the respective
beta-lactamases the NG-Test ® CTX-M and NG-Test ® CARBA-5 (NG Biotech, France) were
used. Those tests identify CTX-M and OXA-48 like enzymes.

Up to 20 pharmacokinetic and pharmacodynamic samples were drawn at
predetermined timepoints.

Pharmacodynamic samples were serially diluted and plated on drug-free agar plates

and plates containing threefold minimum inhibitory concentrations (MIC). The growing
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colonies were counted after 24 h and 48 h respectively. The HFIM were performed as

single experiments.

Text S2: Methods of the bioanalysis

The bioanalysis of the pharmacokinetic samples from the HFIM was performed to
confirm the nominal concentrations and experimental conditions. To confirm the
planned pharmacokinetic profiles, the drug concentrations at the beginning of each
dosing interval (0.75 h time after dose) and mid-interval concentrations (4 h time after
dose) were measured. The samples from the central compartment were stored at -80 °C
after collection and thawed immediately before preparation. Calibration curves
including seven calibration standards were prepared based on the expected drug
concentrations in the HFIM experiments. The calibration curves ranged from 0.1 pg/mL
to 40 pg/mL for ceftazidime, from 0.02 pg/mL to 10 pg/mL for avibactam and from
0.5pg/mL to 50 pg/mL for fosfomycin. Samples expecting a higher fosfomycin
concentration than 50 pg/mL were diluted 1:3 with MHB prior to sample preparation. To
precipitate proteins 100 pL of sample were mixed with 50 pL internal standard solution
(0.2 pg/mL moxifloxacin in methanol) and 300 pL ice-cold acetonitrile. The samples
were then centrifuged at 17968 g at 4 °C for 20 min and 2 plL supernatant were directly
injected on an Agilent 1290 Infinity 2 (Agilent Technologies, USA) UHPLC system coupled
with a QTRAP 5500 (Sciex, USA) electrospray ionization mass spectrometer. Separation
was achieved on a reverse phase Nucleodur PFP column (100x2 mm, 3 um particle size;
Macherey-Nagel, Germany) at 35 °C with a gradient elution. Solvents used were water
containing 0.1% formic acid (A) and acetonitrile containing 0.1% formic acid (B). The
gradient elution was performed as follows: starting conditions were 100% (A). After
0.8 min (B) linearly increased to 20% until 2 min and from there further increased to 40%
(B) until 3.5 min, followed by isocratic elution with 40% (B) until 4.5 min and a return to
starting conditions of 100% (A) after 4.6 min and reconditioning until 6 min. Fosfomycin
and avibactam were detected within the first four minutes with the mass spectrometer

operating in negative mode and then switched to positive mode for the detection of
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ceftazidime and moxifloxacin. Details on the ion source and detection parameters of

the analytes are provided in Tables S1and S2.
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Table S1: lon source parameters of the two different ESI phases of the method

Curtain Collision lon Spray Voltage Temperature Nebulizer Gas Heater Gas (psi)
Gas (psi) Gas (volt) (°C) (psi)

Phase 1(0-4 min) 40 Medium -3500 450 50 50

Phase 2 (4-6 min) 20 Medium 4000 450 50 50

Table S2: Fragments and parameters used for each antibiotic and the internal standard (IS). Individual standard solutions of each analyte and internal
standard were directly injected to optimize their mass spectrometry parameters.

Antibiotic Identifier ESI Retention QI Q3 Dwell  Declustering Entrance Collision Collision Cell

mode time (Da) (Da) Time Potential Potential Energy  Exit Potential
(min) (msec) (volts) (volts) (volts) (volts)

Fosfomycin Quantification - 1.22 136.884 789 150 -100 -10 -62 -13

Fosfomycin Qualification - 122 136.884 81.1 150 -100 -10 =32 -13

Avibactam Quantification - 2.60 263913 80 150 -80 -10 -38 -1

Avibactam Qualification - 2.60 263.913 958 150 -80 -10 -20 -9

Ceftazidime Quantification + 4.29 546.957 468 150 96 10 17 20

Ceftazidime Qualification  + 4.29 546.957 167.2 150 96 10 33 18

Moxifloxacin (IS) Quantification + 5.20 402.118 384.2 150 96 10 33 22

5.20 402.118 96.1 150 96 10 79 12

+

Moxifloxacin (IS) Qualification
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Text S3: Methods of the pharmacokinetic/pharmacodynamic (PKPD) modelling

Static time kill experiments

The PKPD model describing the static time kill data was built sequentially: in a first step
the mono drug effects of ceftazidime, avibactam and fosfomycin were estimated, in a
second step the mono drug parameters were fixed and solely the drug interaction
parameters were estimated and in a final estimation step all parameters were unfixed
and estimated together. The CVODES differential equation solver implemented as
ADVAN14 in NONMEM® 7.5.0. (ICON, Gaithersburg, MD, USA) was used for model
development. The base model consisted of a two-compartment ordinary differential
equation system describing a susceptible (S) and a resistant (R) population affected by
different drug effects (Es and Eg) (Egs. 1-2). The growth kinetics of the bacteria were
described by individual inocula of the two compartments and individual growth
constants (kgs and kgg). The growth of the bacteria was limited to a global capacity limit

(Bmax)-

B 5.k (1 S+R) S-E (1)
dt GS ax S

dR S+ R

=R Ko (1-5 ) =S B @

The individual drug effects were preferably described by sigmoidal maximum effects

models or power functions (Egs. 3-4).

Emax - CH

E(C) = —F—— (3)
ECsM + CH

E(C) = Slope-CH (4)

with Emax being the maximum kill rate of the respective agent (h), C the concentration
of the drug (mg/L), H the sigmoidicity parameter, the ECso the concentration (mg/L) at
which the drug effect is half-maximum and Slope being the linear correlation factor of
the concentration to the killing rate of an agent (L/(mg x h)). The model selection was
made based on graphical model fit, model stability and Akaike information criterion
(AIC).

For combined drug effects the applied additivity criterion was Bliss Independence. To

calculate the probabilistic Bliss Independence term for three drugs the single drug
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effects were normalized to the maximum drug effect of the combined drugs and
afterwards scaled back to the effect scale (Egs. 5-6) (2, 3).

Emax = max (Emax,A» E:max,B' EmaX,C) (5)

Ea Eg Ec Ea Eg Ea Ec
Ecomp = ( + + - : — .

EmaX EmaX EmaX EmaX Emax Emax EmaX (6)
Ep Ec Ea Eg Ec
- ' + ’ ’ ) 'Emax
EmaX EmaX EmaX Emax Emax

In cases, where the drug effects of ceftazidime, avibactam or fosfomycin were described
by a power function effect sizes below 50% of the maximum effect were assumed. In
these cases the probabilistic correction terms in Bliss Independence become neglectable
and criterion collapses to simple addition of the effect sizes (Eq. 7) (3).

Ecomb = Ea + Eg + E¢ (7)
Semi-mechanistic modelling of the drug interactions was performed by application of
the general pharmacodynamic interaction (GPDI) model (4). The GPDI model describes
drug interactions by the insertion of a GPDI-term shifting pharmacodynamic
parameters (©) like Emax or ECsq affected by a present concentration of a combination
partner (Eq. 8). Depending on the affected parameter and the polarity of the maximum
interaction shift (INT) synergistic or antagonistic drug interactions can be modelled. The
magnitude of the shift is depending from the concentration of the perpetrator drug
(C; mg/L), the sigmoidicity of the interaction (Hnt) and the potency of the interaction
(ECso-inT; mg/L)-

(8)

INT - CHint >

ECLINT 4 CHint

G)GPDI = @ N (1 +
50—INT

If the GPDI-term is implemented on one combination partner, interactions are
monodirectional. They can become bidirectional when the GPDI-term is implemented
on both interaction partners. In those cases, both drugs are perpetrator and victim of
the interaction at the same time and also asymmetric drug interactions with
simultaneous synergy and antagonism are possible. For the drug interaction of
avibactam and ceftazidime the interactions were implemented as shifts on the ECs of

ceftazidime mediated by avibactam.
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For the drug interaction of ceftazidime and fosfomycin four different implementations
of the GPDI model were tested before unfixing all mono drug effects for the final
simultaneous estimation of all parameters: 1) a monodirectional interaction of
ceftazidime affecting fosfomycin, 11) a monodirectional interaction of fosfomycin
affecting ceftazidime, Ill) a bidirectional interaction described by one shared maximum
interaction shift and IV) a bidirectional interaction described by separate maximum
interaction shifts.

Uncertainty of the parameters of the static time kill model was assessed by the sampling
importance resampling (SIR) routine implemented in Perl-speakes-NONMEM (PsN) 5.0
(Uppsala University, Sweden) with the relative standard errors (RSE) calculated in the

covariance step as proposal distribution (5).

Dynamic hollow fiber infection model

The model developed based on the static time kill curve data was further developed to
include the HFIM data. All parameters related to the drug effects were fixed. The ODE
system was extended by two compartments describing the phenotypic less susceptible
subpopulations which emerged against ceftazidime/avibactam or fosfomycin (Rcza and

RFOF) (EqS 9-1 2)

dS S+R+Rcza +R

—=5'st'<1_ czA FOF)_S_ES (9)

dt Bmax

dR S+R+Rcza +R

RoR - kg _<1_ CZA FOF)_S - Eg (10)

dt Bmax

dReza _ : (1 — StR+RezatRror) (4 _ (1= n
dat Reza kGRCZA/FOF (1 Bmax ) (1 ECZARCZA) a EFOFRCZA) ( )

dRpor __ ) (1 _ StR+Rcza+RroF) | (41 _ (1 _ 12
ac Rror kGRCZA/FOF (1 Bmax ) (1 EFOFRFOF) ¢ ECZARFOF) ( )

with additional effects of ceftazidime and fosfomycin supressing the emerging
subpopulations (Ecza and Egop).

For suppression of resistance development, the maximum effect was assumed to be a
full inhibition of the growth of the respective subpopulation. Therefore, a simplification

of the sigmoidal maximum effect model was applied (Eqg. 13).
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H

E(C) = (13)

ECso" + CH
The sigmoidicity parameters were either estimated or fixed to constants (i.e. 1for model
simplification or 20 for steep concentration effect relations). The inhibitory effects of
the two drugs ceftazidime and avibactam were merged for the subpopulation synergy
and the effect was estimated as a function of the concentration of ceftazidime.

To account for the lower limit of quantification of the less susceptible subpopulations a
baseline was set to 0 log10(CFU/mL) and the time points of the emergence of resistance
were solely driven by the inoculum of the respective subpopulation and the drug
concentrations supressing their growth.

As described above the uncertainty of the parameters of the dynamic HFIM model was
also assessed by the SIR routine implemented in PsN 5.0 (Uppsala University, Sweden)
with the relative standard errors (RSE) calculated in the covariance step as proposal

distribution (5).
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Results
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Figure S1: lllustration of the quantified concentrations of ceftazidime (CAZ), avibactam (AVI) and

fosfomycin (FOF). Planned pharmacokinetic (PK) profiles (lines) are compared to the measured

concentrations (symbols).

Facets A to E display the monotherapy simulations of

ceftazidime/avibactam, facets F to | display monotherapy simulations of fosfomycin and facets

J to N display combination therapy simulations. The percentiles represent the percentage of

patients from 1000 simulations achieving the displayed or lower pharmacokinetic profiles.
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Text S4: Results of the dynamic hollow fiber infection model

The antigen test against the beta-lactamases CTX-M-15 and OXA-244 after 2 h of
preincubation confirmed the expression of the beta-lactamases and their retention in
the hollow fiber cartridge.

The quantified drug concentrations matched the planned pharmacokinetic profiles and

no extensive degradation of the ceftazidime by beta-lactamases was apparent.

Text S5: Results of the pharmacokinetic/pharmacodynamic modelling

Static time kill experiments

Comparable regrowth patterns of the bacteria incubated with the different drugs alone
and in combination allowed for a combination of the emerging bacteria in one joint
resistant (R) subpopulation. Most calculated drug effects of ceftazidime, avibactam and
fosfomycin were supported by sigmoidal maximum effect models. Solely the drug effect
of fosfomycin on (S) and the drug effect of avibactam on (R) were described by power
models. Therefore, for the (S) population the Bliss Independence criterion collapsed to
effect addition. Because of the small effect sizes of avibactam compared to ceftazidime
and fosfomycin (Emaxcaz: 0.659 h”and Emaxgor: 0.635 h"1 compared to the avibactam
effect at the highest applied concentration: 0.294 h), just the maximum effects of
ceftazidime and fosfomycin were considered for the normalization for the calculation
of Bliss Independence on the (R) population.

The exploratory graphical analysis of the drug interactions of avibactam with
ceftazidime and ceftazidime with fosfomycin indicated maintained drug effects at
significantly reduced drug concentrations (e.g. Fig. 1: ceftazidime 0.0625 pg/mL +
avibactam 8 pg/mL had a similar effect as ceftazidime 128 pg/mL alone and
ceftazidime 2 pg/mL + fosfomycin 4 ug/mL had a similar effect as fosfomycin 16 pg/mL
alone). Therefore, the implementation of the drug interaction via the GPDI model was
focused on ECsp interactions. A pharmacokinetic drug interaction of avibactam and
ceftazidime by means of an inhibition of the degradation of ceftazidime by beta-
lactamases was neglected, because of the absence of quantitative data for the static

time kill experiments.
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The drug interaction of ceftazidime and fosfomycin was described best by a mono
directional interaction with a potentiation of the fosfomycin ECso on the (R) population.
The respective Akaike Information Criteria differences for the different GPDI model
implementations computed against Bliss Independence were as follows:
Monodirectional interactions:

) ceftazidime affecting fosfomycin: -271.991

I) fosfomycin affecting ceftazidime: -2.035

Bidirectional interactions:

1) interactions described by one shared maximum interaction shift: -262.994

IV) interactions described by separate maximum interaction shifts: -251.171

The model estimated strong synergistic interactions with maximum interaction shifts
(INT) reducing the ECso by >99% for both interacting drug pairs
(i.e. ceftazidime/avibactam and ceftazidime/fosfomycin). Those estimates are in line
with the invitro observed interaction effect sizes outlined above. To support the
accurate estimation and to avoid boundary issues the INT-parameters and interaction
potencies (ECsos of the interaction) were transformed to a logarithmic scale. This
rescaling enabled the estimation of the full concentration-interaction-relations without
any further assumptions. For example, the interaction of ceftazidime and avibactam is
characterised by a very small ECso of the interaction and a Hill factor of 0.266. This leads
mathematically to an onset of the potentiation of ceftazidime by avibactam at very
small concentrations followed by a less steep concentration-potentiation-relation when
the avibactam concentration is further increased. This finding is in line with the in vitro
observations. The full set of model parameters is displayed on Table S3.
Interexperiment variability was tested as interindividual variability on the inoculum and
the growth rate of the (R) population and was implemented on both parameters as

exponential coefficient of variation.
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Table S3: Typical PD parameters (©) of the static PD model developed based on data of static
time kill experiments including 95% confidence intervals obtained by the sampling importance
resampling (SIR) technique.

Structural model parameters

Inoculum susceptible bacteria (S) [logio(CFU/mL)] 6.86 [6.74-6.96]
Inoculum resistant bacteria (R) [logio(CFU/mL)] 3.14 [2.81-3.43]
Maximum bacterial capacity [logio (CFU/mL)] 8.92 [8.76-9.06]

Growth rate (S) [h]

1.81[1.61-2.15]

Growth rate (R) [h]

0.45 [0.41-0.52]

Mono drug PD parameters

Emaxof CAZ on (S) [h7]

3.40 [3.08-3.87]

ECso of CAZ on (S) [mg/L]

5.31[4.23-6.54]

Hill factor of CAZ on (S)

2.32[1.77-2.88]

Emax of CAZ on (R) [h7]

0.659 [0.592-0.746]

ECso of CAZ on (R) [mg/L]

74.40 [64.25-92.04]

Hill factor of CAZ on (R)

8.45 [5.98-10.95]

Slope of FOF on (S) [L/mg x h]

2.71[2.51-3.09]

Hill factor of FOF on (S)

0.333[0.292-0.377]

Emax of FOF on (R) [h]

0.635 [0.582-0.718]

ECso of FOF on (R) [mg/L]

4.70 [3.67-5.72]

Hill factor of FOF on (R)

4.08 [2.76-5.79]

Emax of AVIon (S) [h7]

3.3[2.76-3.98]

ECso of AVIon (S) [mg/L]

22.3[16.50-29.10]

Hill factor of AVI on (S)

113 [0.92-1.39]

Slope of AVI on (R) [L/mg x h™]

0.0787 [0.0554-0.1101]

Hill factor of AVI on (R)

0.317 [0.194-0.420]
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Interaction model: avibactam affecting ceftazidime

INT: maximum change of ECso of CAZ on (S) mediated by AVI

-6.70 [-8.13- -5.65] !

ECso of AVI in the interaction on ECso of CAZ on (S) [mg/L]

-16.20 [-18.93- -13.99] 2

Hill factor of AVI in the interaction on ECso of CAZ on (S)

0.266 [0.226-0.312]

INT: Maximum change of ECso of CAZ on (R) mediated by AVI

-13.50 [-19.43- -9.69] !

ECso of AVI of the interaction on ECso of CAZ on (R) [mg/L]

-5.23 [-5.53- -5.04] 2

Hill factor of AVl in the interaction on ECso of CAZ on (R)

13

Interaction model: ceftazidime affecting fosfomycin

INT: Maximum change of ECso of FOF on (R) mediated by CAZ

-7.85 [-10.08- -5.58] '

ECso of CAZ in the interaction on ECso of FOF on (R) [mg/L]

-12.40 [-15.01- -10.50] 2

Hill factor of CAZ in the interaction on ECsg of FOF on (R)

0.239 [0.179-0.311]

Variability model

Inter-experimental variability on the inoculum of resistant

bacteria (R) [%CV] *

33.9 [27.8-38.9]

Inter-experimental variability on the Growth rate (R) [%CV] 4

22.6 [19.9-25.8]

Additive residual variability o [log(CFU/mL)]

1.30 [1.20-1.38]

Abbreviations: AVI: avibactam; CAZ: ceftazidime; CFU: colony forming units; ECso: drug

concentration at which the effect is half-maximum; Emax: maximum effect; FOF: fosfomycin;

INT: maximum interaction shift

' parameter was estimated on log scale: TV = e®-1
2 parameter was estimated on log scale: TV = e®
3 parameter was fixed to a constant

4 %CV was calculated as follows: %CV = ,/exp(w?) —1 -100%
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Dynamic hollow fiber infection model

Simulations of the HFIM experiments using the static time kill PKPD model revealed,
that the model solely informed by the static time kill experiments missed to capture
rapid regrowth in the early phase of the HFIM experiments (0 h - 12 h) or later regrowth
profiles (> 30 h) (Figure S2). These regrowth patterns were driven by the emergence of
phenotypic 3xMIC resistant subpopulations. Hence, the static time kill PKPD model was
further developed to describe the dynamic HFIM experiments by the addition of two
bacterial subpopulations describing the CFU growing on agar plates containing each
drug at a concentration of 3xMIC. Those subpopulations were assumed to contribute to
the total CFU count of the ODE system and allowed to quantify and accurately describe
the emergence of 3xMIC resistance against the present antibiotics in the respective
experiments.

To account for different growth conditions in the HFIM due to a constant supply of
growth medium compared to static time kill experiments where the medium is not
replenished, the bacterial inocula of the previous (S) and (R) populations as well as their
growth rates and the maximum bacterial capacity were initially attempted to be
estimated from the HFIM data. The data was insufficiently able to fully inform all
growth parameters and the estimates tended towards the final static time kill PKPD
parameter estimates. Therefore, both growth constants of the (S) and (R) populations as
well as the inoculum of the (S) population were fixed, following previous studies where
the phenomenon of non-diverging growth constants between static and dynamic
experiments was also observed (6).

The model parameters are displayed on Table S4. The inoculum of the (R) population
was estimated to be lower than for the static time kills curves (i.e. 2.89 logio(CFU/mL)
instead of 3.14logio(CFU/mL)), because the newly introduced phenotypic
subpopulations covered parts of the regrowth pattern and the (R) population remained
to describe lower resistance level besides the 3xMIC resistance. Describing the growth
of the additional subpopulations, the additive residual error as well as the growth rates
of both phenotypic less susceptible subpopulations were estimated to be similar.

Therefore, they were merged to one respective parameter describing the residual error
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and growth rate of both phenotypic less susceptible subpopulations. Of note, the final
estimate of the growth rate of the less susceptible subpopulations unexpectedly
exceeds the growth rate of the (S) population (2.37 h™against 1.81 h™) (Tables S3, S4).
Nevertheless, the confidence intervals of both estimates overlap, thus, a significant
difference of the growth rates cannot be concluded. The relatively similar values
indicate a low biological cost of the resistance development against
ceftazidime/avibactam and fosfomycin.

The inoculum of the phenotypic resistant bacteria against ceftazidime/avibactam was
fixed to the final estimate to stabilize the model. The very low inoculum of 108 CFU/mL
corresponds to the later observed emergence of resistances against
ceftazidime/avibactam compared to fosfomycin and allows to describe the higher
variability of the emergence of resistance against ceftazidime/avibactam.

Regarding the effects suppressing the growth of the phenotypically resistant bacteria,
the sigmoidicity parameters were either fixed to 1 or freely estimated. For very steep
concentration effect relations the parameter was empirically fixed to 20.

Adjustments were made to the variability model to explain the observed
interexperimental variability especially for the development of phenotypic resistances
against ceftazidime/avibactam. The interindividual variability on the growth constant
of (R) estimated for the static time kill data was not necessary to adequately describe
the HFIM data. In contrast an interindividual variability on the inoculum of the
phenotypic less susceptible subpopulation against ceftazidime/avibactam was

implemented to capture the observed variability of the resistance development.
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Table S4: Typical PD parameters (©) of the dynamic time kill model based on data of dynamic
hollow fiber experiments evolved from the model developed for static time kill curve (TKC)
experiments (Table S3) including 95% confidence intervals obtained by the sampling importance
resampling (SIR) technique.

Structural model parameters

Inoculum susceptible bacteria (S) [logio(CFU/mL)] 6.86 FIX to TKC parameter
Inoculum resistant bacteria (R) [logio(CFU/mL)] 2.89[2.68-2.99]

Maximum bacterial capacity [logo (CFU/mL)] 9.73 [9.50-9.91]

Growth rate (S) [h7] 1.81 FIX to TKC parameter
Growth rate (R) [h] 0.45 FIX to TKC parameter
Mono drug PD parameters

Emaxof CAZ on (S) [h7] 3.40 FIX to TKC parameter
ECso of CAZ on (S) [mg/L] 5.31 FIX to TKC parameter
Hill factor of CAZ on (S) 2.32 FIX to TKC parameter
Emax of CAZ on (R) [h] 0.659 FIX to TKC parameter
ECso of CAZ on (R) [mg/L] 74.40 FIX to TKC parameter
Hill factor of CAZ on (R) 8.45 FIX to TKC parameter
Slope of FOF on (S) [L/mg x h] 2.71 FIX to TKC parameter
Hill factor of FOF on (S) 0.333 FIX to TKC parameter
Emax of FOF on (R) [h7] 0.635 FIX to TKC parameter
ECso of FOF on (R) [mg/L] 4.70 FIX to TKC parameter
Hill factor of FOF on (R) 4.08 FIX to TKC parameter
Emaxof AVl on (S) [h7] 3.3 FIX to TKC parameter
ECsoof AVIon (S) [mg/L] 22.3 FIX to TKC parameter
Hill factor of AVl on (S) 1.13 FIX to TKC parameter
Slope of AVl on (R) [L/mg x h™] 0.0787 FIX to TKC parameter
Hill factor of AVl on (R) 0.317 FIX to TKC parameter
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Interaction model: avibactam affecting ceftazidime

INT: maximum change of ECso of CAZ on (S) mediated
by AVI

-6.70 FIX to TKC parameter

EC50 of AVI
on (S) [mg/L]

in the interaction on ECsg of CAZ

-16.20 FIX to TKC parameter 2

Hill factor of AVIin the interaction on ECso of CAZ on (S)

0.266 FIX to TKC parameter

INT: maximum change of ECsg of CAZ on (R) mediated
by AVI

-13.50 FIX to TKC parameter’

ECso of AVI
on (R) [mg/L]

in the interaction on ECsg of CAZ

-5.23 FIX to TKC parameter ?

Hill factor of AVI in the interaction on ECsy of

CAZon (R)

1 FIX to TKC parameter

Interaction model: ceftazidime affecting fosfomycin

INT: maximum change of ECso of FOF on (R) mediated
by CAZ

-7.85 FIX to TKC parameter’

ECso of CAZ in the interaction on ECsy of FOF
on (R) [mg/L]

-12.40 FIX to TKC parameter 2

Hill factor of CAZ in the interaction on ECso of
FOF on (R)

0.239 FIX to TKC parameter

Less susceptible subpopulation model

Inoculum ceftazidime/avibactam less susceptible

subpopulation [logio(CFU/mL)]

_183

Inoculum fosfomycin less susceptible subpopulation

[Iogm(CFU/mL)]

-2.15[-2.98- -1.52]

Growth rate less susceptible subpopulations [h7]

2.37[2.09-2.68]

ECso of FOF suppressing the FOF less susceptible
subpopulation [mg/L]

6.84 [6.48-717]

Hill factor of FOF suppressing the FOF less susceptible

subpopulation

204
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ECso of CZA suppressing the CZA less susceptible | 0.576 [0.441-0.765]

subpopulation [mg/L]

Hill factor of CZA suppressing the CZA less susceptible | 14

subpopulation

ECso of CZA suppressing the FOF less susceptible | 0.049 [0.040-0.057]

subpopulation [mg/L]

Hill factor of CZA suppressing the FOF less susceptible | 2.49 [1.76-4.20]

subpopulation

ECso of FOF suppressing the CZA less susceptible | 1.38 [1.00-2.49]

subpopulation [mg/L]

Hill factor of FOF suppressing the CZA less susceptible | 20 4

subpopulation

Variability model

Inter-experimental variability on the inoculum of | 48.2[40.4-56.9]
resistant bacteria (R) [%CV] >

Inter-experimental variability on the on the inoculum | 47.7 [28.6-65.9]
of the ceftazidime/avibactam less susceptible

subpopulation [%CV] >

Additive residual variability on the total bacterial | 3.28 [2.98-3.67]
count o [log(CFU/mL)]

Additive residual variability on less susceptible o | 0.906 [0.837-1.00]
[log(CFU/mL)]

Abbreviations: AVI: avibactam; CAZ: ceftazidime; CFU: colony forming units;
CZA: ceftazidime/avibactam; ECso: drug concentration at which the effect is half-maximum;
Emax: maximum effect; FOF: fosfomycin; INT: maximum interaction shift; TKC: static time kill
curve

' parameter was estimated on log scale: TV = e®-1

2 parameter was estimated on log scale: TV = e°

3 parameter was fixed to final estimate

* parameter was fixed to a constant

> %CV was calculated as follows: %CV = /exp(w?) —1 -100%
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CZA 2/0.5 g g8h 50th CZA 2/0.5 g g8h 5th CZA 1/0.25 g g8h 5th CZA 0.5/0.125 g g8h 5th CZA 0.125/0.03 g g8h 5th

10 10+ 104 10 | 104 "

72

* OxMIC = Model prediction
= = * Expected additivity

CZA 2/0.5 g g8h 5th CZA 0.5/0.125 g g8h 5th CZA 0.25/0.06 g g8h 5th CZA 0.125/0.03 g g8h 5th CZA 0.06/0.015 g g8h 5th
FOF 6 g g8h 5th FOF 1g g8h 5th FOF 0.5 g q8h 5th FOF 0.25 g g8h 5th FOF 0.125 g g8h 5th

Time [h]

Figure S2: Stratified visual predictive check (VPC) (n=1000) on the PKPD model developed on
static time kill experiments applied to the experimental data of the dynamic hollow fiber
experiments. The percentiles (50t or 5) of the doses correspond to the distribution of
pharmacokinetic profiles which would be expected from simulations of 1000 patients given the
defined dose. Dots: observed bacterial count; solid line: median prediction; dotted line:
expected Bliss Independence; shaded areas: 90% prediction intervals.
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8 Hazardous materials

Table 1: List of the hazardous substances used in accordance with GHS including the GHS pictograms and
hazard and precautionary statements

GHS Signal

Substance Hazard Precautionary

pictogram word statements statements

210, 280,
301+312,
. 225,
Acetonitrile Danger 303+361+353,
302+312+332, 319
P304+340+312,
305+351+338
201, 273,
301, 319, 361d,
Danger 410 301+310+330,
305+351+338
261, 264, 271,
280, 302+352,

Amitriptyline

304+340,
Avibactam @ Warning 315,319,335 305+351+338, 312,
321, 362+364,
332+313, 337+313,
403+233, 405, 501
261, 272, 280,
Danger 317, 334 284,302+352,
333+313
261, 272, 280,
302+352,
333+313, 321,
362+364, 501,
284, 304+340,
342+311
202, 280,
Warning 318, 351, 361fd 305+351+338,
308+313, 405, 501
210, 243, 280,
Danger 225, 319 305+351+338,
403+235

Ceftazidime

Ceftolozane

Danger 317,334

Chloramphenicol

Ethanol
(absolute)
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Lk Signal Hazard Precautionary
Substance .
pictogram word statements statements
210, 280,
3014312,
Formic acid (98%) @ Danger 226,302, 314, 331 303+361+353,
304+340+310,
305+351+338
_ The substance is not classified by GHS according to regulation
Fosfomycin
(EC) No 1272/2008.
Glucose-6- The substance is not classified by GHS according to regulation
phosphate (EC) No 1272/2008.
261, 272, 280,
Meropenem Danger 317, 334 284,302+352,
333+313
210, 233, 280,
225, 301+3114331, 3014310,
Methanol é Danger
370 303+361+353,
304+340+311
264, 270, 273,
Moxifloxacin @ Warning 302, 319, 412 280, 3014312,
305+351+338
i ) ) 261, 280,
Sulfadimethoxine Warning 315, 317, 319, 335
305+351+338

Tazobactam

The substance is not classified by GHS according to regulation
(EC) No 1272/2008.

Tetracycline

Warning 361d, 411 201, 273, 308+313

Vaborbactam

) 264, 270,
@ Warning 302
301+312, 330, 501
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