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Abstract

Laser-plasma accelerators (LPA) utilize intense laser pulses to drive plasma waves, generating
strong electric fields capable of accelerating electrons to relativistic energies. This technology
promises accelerator facilities that are orders of magnitude smaller than their conventional
counterparts. However, the compactness of LPA systems and the non-linearity of the laser-
plasma interaction create a highly coupled environment, where various input and output
parameters intricately interconnect. Consequently, manually identifying suitable working
points providing the desired beam quality and stability as well as precise tuning of beam
parameters to match the demands of specific applications becomes a tedious task, often
leading to sub-optimal performance.

The aim of this thesis is to explore the application of machine learning-based methods, par-
ticularly Bayesian optimization, within the realm of laser-plasma accelerators. The study
involves the implementation of Bayesian optimization to fine-tune the parameters of the LUX
accelerator, encompassing simulations and real-time experimentation.

The proposed approach is initially examined through particle-in-cell simulations of the ac-
celerator. After optimizing the system for beam quality, the predictive model built by the
optimizer is employed to identify sources of instability and explore potential avenues for
improvement. Subsequently, Bayesian optimization is implemented for online control of the
experiment. Various methods to address experimental noise and parameter fluctuations are
investigated, leading to the identification of techniques emphasizing ultimate beam quality or
stability. This way the machine can autonomously tune itself to generate electron beams with
sub-percent energy spread and significant charge. Furthermore, a robust operational regime
with less than five percent energy spread for 90 % of all shots is identified and studied.

Finally, Bayesian optimization targeting multiple beam parameters enables the identification
of tuning curves allowing precise adjustments to specific beam properties while maintaining
optimal beam quality. These complex tuning curves describe the intricate balancing of multiple
laser and plasma parameters to achieve the most favorable tuning of beam parameters. This
approach facilitates charge tuning over nearly 100 pC for various beam energies, while keeping
energy spreads below 5 %.

In combination, the methods presented in this thesis provide valuable tools for effectively
managing the inherent complexity of LPAs, spanning from the design phase in simulations to
real-time operation, potentially paving the way for LPAs to cater to a wide array of applications
with diverse demands.






Zusammenfassung

Laser-Plasma-Beschleuniger (LPA) nutzen intensive Laserpulse, um Plasma-Wellen zu erzeu-
gen und starke elektrische Felder zu generieren, die Elektronen auf relativistische Energien
beschleunigen. Diese Technologie verspricht Beschleunigeranlagen, die um ein Vielfaches
kleiner sind als herkdmmliche Linearbeschleuniger. Allerdings fiihren die Kompaktheit von
LPA-Systemen und die Nichtlinearitét der Laser-Plasma-Wechselwirkung zu einer stark ge-
koppelten Umgebung, in der verschiedene Eingabe- und Ausgabeparameter auf komplexe
Weise miteinander verbunden sind. Dadurch gestaltet sich die manuelle Suche geeigneter
Arbeitspunkte fiir die gewiinschte Strahlqualitédt und Stabilitdt sowie die prizise Feinabstim-
mung auf die Anforderungen spezifischer Anwendungen als miithsame Aufgabe, die oft zu
suboptimalen Ergebnissen fiihrt.

Das Ziel dieser Arbeit ist es, die Anwendung von Methoden auf Basis von maschinellem Ler-
nen, insbesondere der Bayes’sche Optimierung, im Bereich der Laser-Plasma-Beschleuniger
zu untersuchen. Die Studie umfasst die Implementierung der Bayes’sche Optimierung zur
Feinabstimmung der Parameter des L UX-Beschleunigers, sowohl in Simulationen als auch
in Echtzeit-Experimenten.

Der verfolgte Ansatz wurde zunichst in Particle-in-Cell-Simulationen des Beschleunigers
untersucht. Ein Vorhersagemodell, das bei der Optimierung erstellt wurde, diente dazu,
Instabilitdtsquellen zu identifizieren und potenzielle Verbesserungswege zu erkunden. Im
Anschluss daran wurde die Bayes’sche Optimierung fiir die Echtzeitsteuerung des Experiments
implementiert. Verschiedene Methoden zur Bewiltigung von experimentellen Rauschen
und Parameterfluktuationen wurden untersucht und Techniken entwickelt, die geziehlt
Strahlqualitét oder Stabilitidt optimieren. Auf diese Weise gelang es dem Beschleuniger, sich
autonom einzustellen und Elektronenstrahlen mit einer Energiebreite unter einem Prozent
bei signifikanter Ladung zu erzeugen. Dariiber hinaus wurde ein Betriebsregime identifiziert
und untersucht, das eine deutlich verbesserte Stabilitit aufwies und fiir 90 % aller Schiisse
eine Energiebreite von weniger als fiinf Prozent erzielte. Schlielich wurde die Bayes’sche
Optimierung mehrerer Strahlparameter verwendet, um Regelungskurven zu identifizieren,
die prizise Anderungen spezifischer Strahleigenschaften ermdglichen und gleichzeitig eine
optimale Strahlqualitit beibehalten. Diese Kurven beschreiben komplexe Variationen der
Parameter des Lasers und des Plasmas, die es ermdoglichen, die Ladung iiber nahezu 100
Picocoulomb fiir verschiedene Strahlenergien zu variieren, wahrend die Energiebreite unter 5
Prozent bleibt.

In Kombination bieten die in dieser Arbeit prisentierten Methoden wertvolle Werkzeuge,
um die inhdrente Komplexitit von LPAs effektiv zu bewiltigen—von der Entwurfsphase in
Simulationen bis hin zum Echtzeitbetrieb. Dadurch erdffnet sich das Potenzial mit LPAs, eine
breite Palette von Anwendungen mit vielfdltigen Anforderungen zu bedienen.
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Introduction

Particle accelerators, specifically electron accelerators, play a crucial role in a broad array of
scientific, medical, and industrial applications, thanks to their ability to generate intense, high-
energy beams of electrons. One of the most transformative applications of electron accelerators
has been in the realm of light sources, where they have driven major advancements across
numerous scientific disciplines. Synchrotron radiation sources [16-18] and free-electron
lasers [19-24] are now at the forefront of materials science, chemistry, biology, and medicine,
enabling researchers to delve deeper into the microcosmic world than ever before.

Synchrotron light sources produce incredibly bright and finely tuned light, from infrared
through X-rays, which can be used to probe the structure of matter at an atomic level. This is
instrumental in fields as diverse as semiconductor manufacturing [25-27], where it aids in the
design of more efficient microchips, to pharmaceutical research [28-30], where it helps in the
detailed study of proteins for drug design. Free-electron lasers (FELs) that leverage relativistic
electrons to generate ultrafast, intense X-ray pulses, allow scientists to capture rapid chemical
reactions [31, 9, 32] or visualize atomic structures in unprecedented detail [33-35]. Moreover,
accelerator based light sources are used to solve challenges of highest societal impact. For
instance, in environmental studies [36-38], they can aid in understanding and mitigating
climate change by analyzing microscopic particles in the atmosphere and materials capable
of storing greenhouse gases.

The above examples present only a selection of today’s applications of these devices. As the
processes relevant to nearly any technological development continue to scale down to the
nanomenter level, the need for high-resolution investigative tools is only expected to grow,
cementing the role of accelerators in future scientific, medical, and industrial advancements.

While particle accelerators have been revolutionary in propelling advances across a spectrum of
fields, their deployment on a larger scale is often hindered by practical constraints. Traditional
accelerators, such as synchrotrons and linear accelerators, are complex, sizeable machines that
require significant investments for construction, operation, and maintenance. This inherently
limits the number of facilities that can be built and the accessibility of these powerful tools for
research and industrial communities.

The size of a linear accelerator is fundamentally determined by two factors: the desired beam
energy and the achievable accelerating gradient. In modern radio-frequency based accelerators
the accelerating gradient is inherently constrained by material breakdown within the cavities,

limiting the maximum achievable electric field to approximately 100 MV m™!.

A promising strategy to overcome this limitation involves the utilization of plasma as a medium
for the accelerating fields. Given its atomic-level breakdown, a plasma can sustain fields that
are several orders of magnitude larger than those achievable in conventional accelerators.
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Introduction

The concept of a laser-driven plasma accelerator was initially proposed by Toshiki Tajima and
John M. Dawson in 1979 [39].

The principle of laser-plasma accelerators [40] is grounded in the interaction between intense
laser pulses and a plasma medium. The high-intensity laser pulse drives a wake in the plasma,
analogous to the wake left by a boat moving through water. This wakefield can generate
extremely high electric fields, capable of accelerating charged particles to very high energies
over very short distances. The field gradients in plasma accelerators can be thousands of times
greater than in conventional accelerators, with values of 100 GV m™! easily achievable. This
tremendous increase in the strength of the accelerating fields promises a dramatic reduction
in the size of accelerator facilities.

Although plasma accelerators were conceptualized over 40 years ago, their realization as
experimental systems with promising beam parameters has been a more recent development.
The advent of chirped-pulse amplification [41] and the subsequent revolution in high peak
power laser systems provided the necessary technological advancements. It was not until
2004 when three different research groups independently reported [42-44] on the successful
generation of narrow bandwidth, high-energy beams from laser plasma accelerators, marking
a significant milestone in the field.

The field has witnessed remarkable progress since these initial successes. Through numerous
experiments, the laser-plasma accelerator community has collectively demonstrated that
these novel devices can generate beam parameters nearly on par with those produced by
conventional accelerators. Laser-plasma accelerators have been successful in producing
beams with durations in the few-femtosecond range [45], peak currents in the kiloampere
scale [46, 47], transverse emittances on the scale of mm mrad [48-50], and energy spreads
on the level of 1% and below [5, 51, 52]. Moreover, there has been a steady increase in
achievable beam energy, extending into the GeV range [53-55]. This progressive trend recently
culminated in a significant achievement—the production of electrons with an energy of 8
GeV [56].

An essential milestone in this rapid progression was the recent demonstration of a free-
electron laser driven by a laser-plasma accelerator in the extreme ultraviolet range [57]. This
accomplishment not only affirms the maturity and capabilities of laser-plasma accelerators but
also stands as concrete evidence that these novel devices can truly deliver on their promise. By
successfully generating high-quality electron beams that can drive free-electron lasers, laser-
plasma accelerators have effectively begun to carve out their own niche in the landscape of
particle accelerators, underscoring their potential to play a pivotal role in advancing scientific
exploration and innovation in the years to come.

Despite the impressive strides made in the field of laser-plasma accelerators, there still exist
significant hurdles to their widespread adoption and readiness for user applications. Among
these challenges are the issues of stability, reproducibility, and controllability. Specifically,
these involve identifying a setpoint that yields optimal parameters, ensuring that these pa-
rameters can be consistently reproduced over a majority of shots, and effectively fine-tuning
the setpoint to match the demands of the intended application. The highly dynamic nature
of the laser-plasma interaction and its sensitivity to initial conditions often translate into
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fluctuations in the output beam parameters. This uncertainty is further compounded by the
fact that the generation and control of the beams require careful orchestration of multiple,
interdependent parameters. Consequently, achieving consistent, reliable performance and
exercising fine-grained control over the beam properties represent crucial, yet formidable
tasks. As such, these factors currently limit the applicability of laser-plasma accelerators for
demanding applications where stable, reproducible beam parameters are paramount.

In this context, an emerging solution resides in harnessing the power of advanced computa-
tional techniques, namely machine learning. The vast, multidimensional parameter space of
laser-plasma interactions invites the use of intelligent, data-driven methods to explore and
optimize the operational conditions.

This thesis introduces machine learning methods, specifically Bayesian optimization—a
strategy designed to optimize expensive, noise-affected, and potentially non-linear functions—
as essential tools in guiding the full life cycle of a laser-plasma accelerator experiment. From
the design of the setup using simulations, through the actual real-time operation of the
experiment, to the final interpretation of the results using detailed data-driven models, these
applied algorithms serve to unlock the full potential of a given setup in terms of beam quality,
and illuminate new regimes of the system, revealing, for instance, the stability required for
certain applications.

In particular, a comprehensive data-analysis, automated control, and machine learning
toolchain was implemented at the LUX accelerator at Deutsches Elektronen-Synchrotron
DESY [12, 4] which now enables autonomous Bayesian optimization of the plasma accel-
eration process on a reliable day-to-day basis. LUX is an experimental setup dedicated to
advancing laser-plasma acceleration from the realm of ad hoc lab experiments to that of
precision-engineered machines. This aim is followed by integrating modern accelerator tech-
nology for beam diagnostics and manipulation, and by implementing a comprehensive control
system to support online drift compensation as well as data-driven analysis and decision-
making. These features facilitated the first-ever continuous 24-hour operation of a laser-plasma
accelerator [4].

Within this context, Bayesian optimization was implemented to autonomously fine-tune the
machine and with that enabled the generation of electron beams with sub-percent level energy
spreads and application-relevant charges at LUuX. Furthermore, it unveiled an operational
regime of the machine that provides remarkable stability in the spectral properties of the
beam.

In a subsequent step, the use of Bayesian optimization techniques was extended to the broarder
scope of accelerator control. Once operational regimes with remarkable beam parameters
are established, the next critical step is to ensure the accelerator can adjust these parameters
to match the varying requirements of potential applications. To this end, Bayesian methods
were deployed to find optimal tuning curves of the LUX accelerator. These curves provide a
tool for adjusting critical parameters, such as beam energy or charge, while maintaining the
high-quality beam characteristics. Through this approach, the accelerator operation could
be finely tuned, offering precise control over the electron beam parameters and preserving
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Introduction

the overall beam quality, thus ensuring the accelerator is responsive and adaptable to a broad
range of experimental conditions.

This thesis is organized as follows: Chapter 1 provides an overview of the basic physics
underlying laser-plasma accelerators. This is followed by chapter 2, which introduces the
concept and methodologies of Bayesian optimization.

Moving from theory to practical implementation, chapter 3 demonstrates how Bayesian
optimization can be applied to laser-plasma accelerators through simulation studies.

To demonstrate the real-world applicability of these findings, a series of experiments was
conducted, the setup for which is detailed in chapter 4.

The experimental demonstration of Bayesian optimization and the results obtained are pre-
sented in chapter 5. The thesis concludes with chapter 6, where Bayesian techniques are
employed to derive optimal tuning curves for the beam parameters in a plasma accelerator.

20



1 Principles of Laser-Plasma Acceleration

This chapter will give an overview of the physics of laser-plasma accelerators. While many
readers will already have a good grasp of the key principles, the focus will be on the elements
most relevant to the later analyses in this thesis.

The upcoming derivations are not exhaustive in their mathematical detail, but they draw
largely from the excellent introductory works by Gibbon [58] and Esarey, Schroeder, and
Leemans [40]. The aim is to provide an understanding of the most important aspects of
laser-plasma interaction that are necessary for the following discussion in this thesis.

Section 1.1 will focus on the basic principles of laser-plasma interaction. This will be followed
by section 1.2, which covers the key concepts of laser-plasma acceleration.

1.1 Laser-plasma interaction

Before diving into the intricacies of laser-plasma accelerators, its worth to take a moment to
look at the core elements that define this technology—namely, lasers and plasmas and the
interplay between them.

1.1.1 Plasma

The term plasma refers to a state of matter in which a considerable portion of the atoms are
ionized, meaning they are separated into their constituent ions and electrons. This unique
environment is characterized by high-energy interactions, and distinct behaviors not observed
in the more commonly encountered states of matter such as solids, liquids, and gases.

On a microscopic scale, plasmas are composed of charged particles, but when viewed on a
larger scale, they appear charge neutral, a characteristic often termed as quasi-neutrality.

Quasi-neutrality arises from the plasma’s inherent tendency to shield local field perturbations.
Suppose a positive test charge is introduced into a plasma. Over time, the plasma’s ions will
recede from this charge while electrons will be attracted towards it resulting in a local variation
of the charge density. To understand the scale of this effect, consider a hydrogen plasma where
the electrons and ions have equal temperature (T, = T;) [59]. The velocities of the electrons
and ions then behave as,

m;v; = =kgT,, 1.1)
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1 Principles of Laser-Plasma Acceleration

where v is the average velocity and m the mass of the particles, kj is the Boltzmann constant.
According to this, the drift velocities of the two particle species are vastly different:
me

0.5
= <—) ~ 0.02 1.2)

i

On the timescales considered in the following the ions are practically stationary and are
therefore considered immobile.

In a state of thermal equilibrium, the density distribution of electrons, n,, within a plasma
adheres to a Boltzmann distribution [60]. This can be expressed as:

n, = n; exp (e¢(r)/kBTe) s (1.3)
Here, n; signifies the density of the immobile ion background, while ¢(r) represents the
electrostatic potential generated by the external disturbance.

This combined with Gauss’s law, expressed as:

P e
V2¢ = e = e (n; — ne) = Pexts (1.4)
0 0
where p,,; = Q&(r) represents the charge density of the test charge, provides the means to
derive the following relation:

__Q _
¢ = Irear exp (—r/Ap). (1.5)

Equation (1.5) elucidates the plasma’s ability to shield the field of the test charge. As we move
away from the site of disturbance, quasi-neutrality of the plasma is observed where ¢ — 0 as
r — oo.

The characteristic length scale, over which the potential decreases to exp (—1), is given by:

1/2

€okpT,
Ap =( o, ) , (1.6)

This scale, referred to as the Debye length, is a critical measure in plasma physics.

The responsiveness of plasma to external perturbations can be quantified by comparing the
Debye length to the thermal velocity of the electrons, denoted as v,, = \/k,T./m,. This
comparison allows us to derive the relevant timescale:

krT
GOBexm> 1.7)

th=A =
D D/vte ( ezne kBTe
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1.1 Laser-plasma interaction

An interesting consequence arises when we consider a perturbation introduced by a displace-
ment of an electron slab relative to the ion background, analogous to a capacitor [59]. The
plasma would try to neutralize the local potential and therefore such a disturbance would
provoke an oscillation of the electron slab around the origin, an oscillation with a distinctive
frequency known as the plasma frequency [60]:

1/2

2

e’n n

w, =ty = ¢ ~ 5.6 X 10* (—e> s~k (1.8)
€M, crn‘3

The plasma frequency is a defining factor in the interaction between a plasma and electro-
magnetic fields, like those produced by lasers. The plasma response depends significantly on
the speed of the field’s variation.

When the field varies slowly in relation to the plasma’s response time, the plasma can adjust
to the changes by repositioning its electrons, effectively turning into a mirror that reflects
the electromagnetic waves. Conversely, when the field fluctuates faster than the plasma’s
response time, the electromagnetic waves have the ability to penetrate through the plasma
instead of being reflected.

This behavior is dictated by the condition:

w>w (1.9

p’
where w denotes the frequency of the electromagnetic field. This equation gives rise to a
critical plasma density:

ne [em™3] & 102'4 [um] 2, (1.10)

Beyond this critical plasma density, electromagnetic waves with a wavelength 1 and longer
wavelengths are reflected. Plasmas with n, < n., which are those of interest for laser-plasma
acceleration, are called underdense.

1.1.2 Ponderomotive force

Having established a basic definition of a plasma, the second foundational component of a
laser-plasma accelerator is the laser pulse. In the previous section we have discussed, that
electromagnetic waves with a sufficient frequency can propagate through a plasma. What
remains to be discussed is how it interacts with it. For this it is useful to first look a the
behavior of a single electron in a light field.
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1 Principles of Laser-Plasma Acceleration

In this case the motion of the electron is governed by the Lorentz force F = q (E + v X B).
Expressed by the vector potential of the laser A so that E = —dA/dt and B = V X A [61], the
equation of motion of the electron is:

dp

o= —e[-0A/dt +v X (V X A)] (1.11)

To consider the interaction of light with an electron, we may initially simplify the light field as
an infinite train of linearly polarized plane waves. Upon encountering this wave, the electron
initiates an oscillation within the light’s polarization plane. As long as this oscillation, often
termed as quiver motion, stays at subrelativistic speeds, the E-field component of the Lorentz
force dominates the electron’s motion. This results in the electron oscillating back and forth
without a net gain in energy or change in position.

However, with a sufficiently strong field, the electron may reach relativistic speeds. At these
speeds, the B-field component of the Lorentz force becomes significant in dictating the elec-
tron’s motion. The transition to relativistic motion can be conveniently described by the
normalized vector potential a = eA/m,c and its peak amplitude a,, which is also referred to
as the laser strength parameter. Time-integrating eq. (1.11) for the component lying within
the field’s polarization plane yields:

pPL =am,.c (1.12)

This equation suggests that the quiver motion of the electron becomes relativistic once a; 2 1.
Thus, the strength of the light field can play a key role in determining the nature of electron
motion within the plasma.

The implications of the relativistic quiver motion are such that the electron’s motion is no
longer restricted to the polarization direction (x). It now includes an additional longitudinal
component (z). The motion of the electron can be described by the following relations [58]:

2

a
P, TO (1 + cos2¢), (1.13)
Dy & Qo COS P, (1.14)
a sin 2¢
0
zcx4<¢+ > ) (1.15)
X x agsin ¢, (1.16)

Here, ¢ represents the phase of the light field. In addition to the oscillation in the polarization
direction, the electron now exhibits longitudinal oscillation at twice the frequency of the
field. Crucially, the electron begins to drift along with the light field, carrying an average
momentum that is proportional to a; /4.
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1.2 Laser-plasma acceleration

Of course, the assumption of an infinitely long and wide plane wave does not practically
describe a high-intensity laser pulse, such as the ones employed in laser plasma acceleration.
These pulses have a finite temporal envelope, indicating that the field gradually intensifies as
the laser approaches and diminishes as it recedes.

For an electron subjected to this, it initiates both transversal and longitudinal oscillations and
becomes entrained with the laser pulse. As the peak of the laser envelope moves past the
electron, the oscillations begin to moderate, and the drift motion also slows down. Ultimately,
when the laser pulse has fully passed, the electron comes to rest again. However, it will be
longitudinally displaced from its initial position.

Furthermore, actual laser pulses aren’t infinitely wide either. A good approximation is that
the intensity of a laser pulse in the focal area exhibits a radial fall-off similar to a Gaussian
function. When an electron interacts with such a pulse, it initiates its oscillations as before.
However, as the electron drifts away from the laser’s axis, the field amplitude diminishes.
When the field’s sign changes, accelerating the electron back towards the axis, the reduced
field strength is inadequate to fully restore the electron to its initial position and momentum.
Consequently, the electron drifts away from the axis and gets accelerated.

The apparent force generated from the averaged motion within an oscillating field featuring
spatial inhomogeneities is often referred to as the ponderomotive force. In the non-relativistic
regime (q, < 1), this force can be expressed as [40]

F, = —m,c*V(a?/2). (1.17)
This equation implies that the ponderomotive force opposes the spatial gradient of the field’s
intensity, pushing the electron away from regions of high intensity. Hence, one can analogize
the ponderomotive force to a type of light pressure.

1.2 Laser-plasma acceleration

Building on the prior discussion of laser-plasma interactions, this section will detail how these
effects can generate macroscopic plasma waves. Subsequently, we will discuss how these
plasma waves can be harnessed for the purpose of electron acceleration.

1.2.1 Plasma waves

The previous section discussed how a perturbed plasma seeks to restore charge neutrality,
leading to oscillations of the electron density at the characteristic plasma frequency. Laser
pulses, through the ponderomotive force, can effectively trigger such disturbances.

When a high-intensity laser pulse (with a, =~ 1) is focused into an underdense plasma, it pushes
electrons away towards the front and the sides through the ponderomotive force, generating
a charge separation against the stationary ion background. The resulting electrostatic field
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1 Principles of Laser-Plasma Acceleration

pulls the electrons back towards their origin. However, gaining momentum in this process,
the electrons overshoot their initial positions and hence start to oscillate.

This collective response manifests as a train of plasma density waves trailing the laser pulse,
oscillating at the plasma frequency. These waves are commonly referred to as the laser
wakefield. Given that the wakefield tails the laser pulse, its phase velocity, vp, matches the
group velocity of the laser, v, ~ ¢. Consequently, this plasma wave exhibits a wavelength of
A, = 2mc/w,. For densities on the order of 10'7 to 10" cm™ at which plasma accelerators
typically operate, the plasma wavelength is between 100 and 10 um.

The dynamics of the plasma and the resulting electric fields, generated by a laser pulse, can
be expressed by one-dimensional cold fluid equations [62, 63]. These equations are best
expressed in a frame of reference that co-propagates with the group velocity of the laser vg. In
this frame, the longitudinal and temporal coordinates (¢, 7) are defined as { = z — v,t and
T = t respectively. Additionally, it is assumed that the evolution of the laser occurs on a time
scale that is significantly longer than the plasma perturbation. This assumption, known as
the quasi-static approximation, essentially implies that 6 /07 ~ 0.

The quasi-static approximation and the use of co-moving coordinates allow us to express
the plasma fluid quantities solely as functions of the co-moving coordinate {. Under these
conditions, the plasma’s response to excitation by a laser pulse with a normalized vector
potential a can be characterized by the following set of equations. These equations define the
plasma density n,, the normalized electrostatic potential ¢ = e®/m,c?, and the longitudinal
electric field E, [58, 40]:

(% g2 ¥ o¢

2
with ¥ =_,|1-— 1+—az’ (1.19)
Ve (1+¢)

where 8, = vg/candy, = (1—4;)) > and k, = w,/c, n, is the density of the static ion
background, and E,, the cold wave-breaking limit [64].

1 92 B 3
n./ng = 7;5; (- - 5g>, —¢ = kf,]/é (—g - 1), E, = —E0—¢ (1.18)

To determine the wakefield generated by a laser pulse with an arbitrary envelope, the 1-D
fluid equations (1.18) need to be solved numerically. Figure 1.1 presents the results of such a
calculation for both a weak (a, = 0.3) and a strong (a, = 3) drive laser, each with a Gaussian
temporal pulse shape.

In the case of the weak laser, the pulse drives a sinusoidal plasma density wave with a pe-
riodicity of 1,. This in turn generates a sinusoidal potential that consequently gives rise
to a longitudinal electric field. This electric field exhibits a phase shift of 7z /2 with respect
to the plasma density wave. This behavior, observed with weak laser pulses, is commonly
classified as the linear regime. The linear regime is typically characterized by a normalized
vector potential g, < 1.
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1.2 Laser-plasma acceleration
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Figure 1.1 - Wakefield excitation of a weak (top, a, = 0.3) and a strong (bottom, a, = 3) drive laser.
The wakefield is represented in co-moving coordinates { = z — ct that propagate with
the drive laser to the right. The fields are found by numerically solving the 1-D cold fluid
equations, eq. (1.18). Shown are the envelope of the laser’s normalized vector potential a
in red, the density response of the plasma n,/n, — 1 in green, the longitudinal electric
field E, /E, in blue, as well as the normalized electrostatic potential ¢ in grey.

When a, 2 1, the quiver motion of the electrons becomes relativistic. This significantly alters
the shape of the plasma wave, marking a transition from the linear regime to the non-linear
regime. As shown in fig. 1.1, the plasma’s density response diverges from a sine wave profile.
Instead, we observe large regions where the electron density is reduced, followed by a sharp
spike in density. This imbalance creates a sawtooth-like electric field, characterized by large
areas where the longitudinal field is negative—conditions suitable for electron acceleration.

In the non-linear regime, the wakefield’s periodicity no longer aligns precisely with the plasma
wavelength. Instead, it extends slightly beyond it. This change is due to the fact that the elec-
trons gain relativistic momentum during their interaction with the laser, leading to an increase
in their relativistic mass. As a result of this mass increase, the plasma frequency diminishes
causing the wavelength to extend correspondingly. The effective plasma wavelength 4,,, can
analytically be expressed as a function of the peak electric field of the wave E,,,, [40]:

2
_ g 1+3 (Emax/Eo)” /16 for By /E < 1 (1.20)
P P (2/7{) (Emax/EO + EO/Emax) fOI‘ EO/Emax >1

While an analytical model is available for understanding the three-dimensional linear regime
[40], its applicability does not extend to the non-linear case. To capture the complexities of
three-dimensional laser-plasma interactions, particularly in the non-linear regime, Particle-in-
Cell (PIC) simulations are typically employed [65]. These simulations discretize the plasma
into a finite number of macro-particles and the electromagnetic fields are defined on a spatial
grid. The dynamics of both the plasma and the fields are modelled by iteratively solving
Maxwell’s equations for the electromagnetic fields, and the equations of motion for the
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Figure 1.2 - Comparison between linear and non-linear plasma waves. The depicted wakefields are
driven by a weak (left) and a strong (right) laser pulse. The unperturbed plasma density n,
is 10'® cm™3, the drive laser has a Gaussian profile, a = a, exp (=¢?/c?t?) exp (—r?/w?),
with ¢t = 2/k, and w, = 12/k,. Shown are the plasma density n,/n, — 1 (top), the
longitudinal electric field E, /E, (center), and the focusing fields (E, — cB6)/E, (bottom).
The two cases were modelled with particle-in-cell simulations using the code FBPIC.

particles, which are governed by the Lorentz force. This approach facilitates the simulation of
complex systems with minimal assumptions regarding the underlying physics.

Figure 1.2 presents wakefield simulations of the same two scenarios previously investigated
using 1-D fluid theory in fig. 1.1. In the linear regime, the sinusoidal behavior observed
earlier extends radially, resulting in wavefronts that are orthogonal to the laser propagation
axis. As the plasma excitation in the linear regime remains predominantly longitudinal, the
radial profile of the wakefield mirrors the profile of the laser pulse. As previously noted, the
longitudinal electric field exhibits a phase shift of 77/2 relative to the density modulation.
This creates an area behind the drive laser that serves as an acceleration region for electrons
(depicted in blue in fig. 1.2). However, this region cannot be entirely filled with electrons due
to the focusing fields induced by the plasma wave. Only half of the accelerating region offers
fields that focus electrons (illustrated in red in fig. 1.2), while the other half defocus them.

In the non-linear regime, the wakefield shape is significantly different. Consistent with the 1D
theory, the regions where the electron density n, is lower than the background plasma density
n, elongate, while the density peaks within a very narrow region. In contrast to the linear
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1.2 Laser-plasma acceleration

regime, these high plasma density fronts are not parallel, but curve towards the drive laser.
This curvature is attributed to the relativistic modification of the plasma wavelength. Electrons
near the laser’s center are exposed to a stronger field, thereby gaining more momentum, and
hence result in a longer wavelength than electrons farther from the axis.

The asymmetry of the density modulation in the non-linear regime has a critical consequence:
it significantly expands the overlap between regions that accelerate electrons and those that
focus them. Specifically, the extensive region of depleted electron density trailing the drive
laser—with half of it being suited for electron acceleration (blue in fig. 1.2)—also facilitates
stable transport of electrons (red in fig. 1.2).

In instances where the drivers are even stronger than those presented here—typically when
ay > k,w, and a, > 1—the area behind the laser can become completely devoid of electrons,
leaving behind only a spherical ion cavity. This scenario is often termed the blowout or bubble
regime. Within this ion cavity, the longitudinal field varies linearly with ¢ and remains
constant in 7. Meanwhile, the focusing fields exhibit linearity with respect to r and retain a
constant value in z [66].

1.2.2 Acceleration

Having established an understanding of plasma waves and the regimes of laser wakefields, we
now turn our attention to the practical application of these phenomena—the acceleration of
electrons using these plasma waves.

Returning to the one-dimensional representation of a non-linear wakefield, we can describe the
dynamics of an electron subjected to the longitudinal fields in the wake using the Hamiltonian
[67, 68]

H(¢ p) = (1+p2+a2)” - ¢ () - Bpp2 (1.21)

where p, = 8,y is the longitudinal momentum of the electron, y the corresponding Lorentz
factor, ¢ is the wakefield potential, and §,, = v,/c its phase velocity. This Hamiltonian models
the electron’s total energy, incorporating both potential and kinetic components. Therefore, the
principle of energy conservation equates to setting H to a constant value, H = H,,. Using this
approach, we can derive the evolution of a single electron’s momentum, p, (¢, Hy, {0, P10)-

Figure 1.3 gives an impression of the different kind of phase space trajectories (¢, p,) an
electron can follow depending on its initial conditions. Distinctly, there are two types of
trajectories—open and closed. Electrons initially at rest in front of the laser, i.e., ({, >
0,p,o = 0), follow open trajectories. As they interact with the laser, they acquire some
momentum and begin oscillating. They follow the fluid motion that makes up the plasma
wave. Over time, these electrons will lag behind, leading to { - —o0 ast — .

Behind the drive laser, there exist trajectories that form closed orbits. Electrons following
these paths are effectively trapped by the wakefield, and they subsequently co-propagate with
it. Electrons starting near the back of a wakefield period with low momentum, gradually gain
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Figure 1.3 — Motion of electrons in a laser wakefield. Top: Wakefield properties according to eq. (1.18)
for a driver with a, = 3. Bottom: Phase space trajectories (¢, p,) for different total energy
H,. Figure adapted from [69].

momentum, inching forward towards the drive laser. This movement results from the group
velocity of the laser being less than the speed of light within the plasma. However, once the
electron reaches the center of the wake period, where the field sign reverses, it begins to lose
momentum. Eventually, it lags behind the wake and starts slipping back in phase, triggering
another cycle of momentum gain.

The boundary between the closed and open trajectories is denoted by the separatrix. This
trajectory delineates the maximum possible momentum gain an electron can achieve within a
non-evolving wakefield.

1.2.3 Injection

As we have seen, for electrons to take advantage of the immense electric fields of the plasma
wave, they must be located on trapped orbits. However, these orbits are not naturally populated,
necessitating methods to inject electrons into the wakefield.

One could, in principle, introduce an external electron beam with adequate momentum into
the plasma alongside the laser, where it would then be further accelerated. However, this
external injection method imposes stringent requirements on the initial electron parameters,
essentially necessitating a sophisticated conventional accelerator in addition to the plasma
accelerator!. Therefore, it is often more desirable to devise methods for direct injection of
electrons from within the plasma.

I This approach is of cause also relevant when staging multiple laser-plasma accelerators [70].
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Figure 1.4 - Ionization of nitrogen by a laser pulse with a, = 3 at 800 nm wavelength. Outer shell
electrons are ionized in the leading edge of the laser pulse where the wakefield potential
is nearly zero. N6 and N*7 start appearing in the core of the laser where the potential is
non-zero, the corresponding electrons can be trapped and accelerated. The ionization
degree here is modelled according to the ADK-model [77, 78].

Self-injection—When the plasma wave is driven with sufficient intensity, the fluid description
of the plasma can break down locally, especially at the high-density spikes at the end of each
wake period. Specifically, this happens when the fluid momentum exceeds the phase velocity
of the wakefield (y > y,). In such situations, the plasma wave may break in a manner
similar to an ocean wave approaching the shore, and electrons may get caught in closed orbits.
This self-injection method is the most straightforward way to trap and accelerate electrons.
However, the onset of self-injection depends on several factors, including the shape of the
wakefield [71, 72], the temperature of the ionized plasma [73], and the precise evolution of
the drive laser [74]. Therefore, it can be extremely challenging to predict and control.

Downramp injection—Self-injection can be intentionally initiated by temporarily reducing
the phase velocity of the wakefield. One method to accomplish this is by introducing a negative
density gradient into the plasma profile [75, 76]. The accompanying elongation of the plasma
wavelength as the density decreases causes the wake’s wavefronts to lag behind the drive laser.
This implies a local reduction of the phase velocity, triggering wave breaking and, subsequently,
self-injection.

Ionization injection—While self-injection is based on trapping electrons from the plasma
background, the idea behind ionization injection involves the generation of electrons through
ionization, in phases of the wakefield where these electrons are already located on trapped
orbits. Typically, the plasmas that are used for laser-plasma acceleration are made from gases
with a low atomic number like hydrogen. Hydrogen starts to get ionized at an intensity of
1.4 x 10 W cm™2 [58]. With typical peak intensities on the order of 10'® W cm™2, hydrogen
atoms are primarily ionized well ahead of the main pulse. As previously discussed, these
early-ionized electrons aren’t trapped but rather engage in the collective fluid movement of
the plasma.

This is no longer the case if a high Z gas like nitrogen is introduced. In this case the inner
shell electrons that are more tightly bound are ionized only in the core of the laser pulse.
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This scenario is visualized in fig. 1.4. The nitrogen’s first five electrons are entirely ionized by
the leading flank of the laser pulse. Similar to hydrogen, these electrons cannot be trapped and
instead participate in the plasma’s collective fluid motion. However, the nitrogen’s inner K-
shell electrons are ionized solely within the pulse’s central region, where the partially formed
plasma wave causes the wakefield potential to be non-zero.

In order to be on a trapped orbit, the potential at the phase in which the electron is ionized
¢(¢ion) must fullfil the condition [79]:

¢(§ion) > Pmin — 751 +1, (1.22)

where ¢, is the minimum wakefield potential. In simple terms, this condition means that
while the electron starts off slower than the wakefield, it needs to gain enough speed to match
the phase velocity of the wakefield by the time it reaches the end of the wake period.

For eq. (1.22) to be fulfilled, the wakefield usually needs to be relatively non-linear with ay > 2
[79]. For a laser driver with a wavelength of 800 nm, the laser field then exceeds the threshold
for the N>+ — NS* jonization process.

The assumption behind eq. (1.22) is that the electron starts from rest. This is plausible if ioniza-
tion primarily happens at the peaks of the laser field where a = 0. However, ionization might
occur around these peaks, especially when the laser field surpasses the ionization threshold.
The momentum gained in these circumstances is conserved, leading to a degradation of the
transverse phase space volume (or emittance) of the electron bunch that’s injected [80]. Thus,
operation near the injection threshold is often favored. However, control over the injection
volume—the region where ionization results in phases of trapped electrons—remains critical
for managing both beam charge and quality. Moreover, the trapping condition eq. (1.22)
depends on the phase velocity of the wakefield, which means that ionization injection can be
combined with downramp injection for precise control over the injected charge.

There are other sophisticated injection methods as well, such as employing multiple colliding
lasers [81], or coupling ionization injection with the use of multiple multi-colored lasers
[82].

1.2.4 Acceleration limits
With an electron bunch injected the remaining question is how much energy can be extracted

from the wakefield. In the ideal case the energy gain of an electron over an acceleration length
L, 1is

AW =eE,L,. (1.23)

While the massive fields on the order of several hundred GV m~! might suggest the feasibility of
achieving astronomical energy levels with a sufficiently long plasma, practical considerations
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1.2 Laser-plasma acceleration

impose restrictions on the maximum length of a single acceleration stage. These limiting
factors must be taken into account when designing and operating laser-plasma accelerators.

Diffraction—To generate the intensity needed for driving plasma waves, the laser pulse
must be tightly focused. However, due to the Rayleigh diffraction, the laser spot size evolves
according to w = wy(1 + z2/Z3)"/?, where wy is the size at focus and Zz = 7rwA~! is the
Rayleigh length. This means that a more focused laser diffracts faster. For a laser propagating
freely, the intensity to generate wakefields is typically maintained only within a few Rayleigh
lengths which is typically on the order of millimeters.

Overcoming this limitation involves various methods to guide the laser pulse through the
plasma [83-85]. The most relevant approach is to create a plasma channel where the density
increases radially. This results in an index of refraction that effectively counteracts the inherent
diffraction of the laser.

Dephasing—As we previously discussed in the context of trapped orbits, the electrons gradu-
ally advance in phase towards the laser. This is a consequence of the laser’s group velocity
being lower than the speed of light, while the relativistic electron moves with a velocity v, = c.
An electron gains energy as long as it’s in a region where the electric field is negative, once it
reaches the center of the charge depleted region where the field flips—the dephasing point—it
starts to lose energy again. For an electron starting at the end of the wake period this happens
over the dephasing length [86]

L (1 foral <1

= — X 1.24
217 2/m)a, for az>1, 129

Ly

where 4, is the wavelength of the driver. In a dephasing-limited system, the maximum energy
gain scales inversely with plasma density AW o« n~! [40]. However, dephasing effects can
be partially offset using tapered density profiles [87]. By gradually reducing the plasma
wavelength during propagation, the accelerating wakefield phase can effectively keep pace
with the electron.

Depletion—By exciting a wakefield the laser transfers energy to the plasma. The pump
depletion length is the length after which the laser is fully absorbed by the plasma and can
be estimated by equating the total laser energy to the energy contained in the wake behind
it EZL,q ~ E.__ Liyer [40]. For a square pulse with Lj,e, = 4,,/2 the pump depletion length

laser

then is [86, 88]

A 2/ a foral <1

L (1.25)
pd A W2/m)a, for a; > 1.

It's worth noting that for non-linear cases, the pump depletion length (L,;) equals the de-

phasing length (L;). However, the pump depletion length is a somewhat drastic metric as it

denotes complete laser absorption. As the laser energy depletes, it experiences substantial

red-shifting and changes in temporal profile which significantly impacts the shape of the
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Figure 1.5 - Simulations demonstrating the influence of beam loading in a laser-plasma accelerator,
for a laser with a, = 3. Each wakefield is loaded with a Gaussian bunch with different
charge: 10 pC (left), 100 pC (middle), and 300 pC (right). The plots display the plasma
density (n,/n, — 1), with corresponding on-axis lineouts of the longitudinal electric field.
As beam charge increases from left to right, the significant alteration of the wakefield
structure becomes apparent.

wakefield. Generally, an acceleration length exceeding half the pump depletion length is
challenging to achieve in practice.

1.2.5 Beam loading

Just as with the achievable energy, it would be unphysical to assume there’s no limit to the
amount of charge that can be accelerated. To obey the law of energy conservation, the electron
bunch needs to absorb energy from the wakefield. The effect through which this happens is
called beam loading [89, 90].

The concept of beam loading is hinged on the interplay between the electron beam and the
plasma wave generated by the laser pulse. The space charge field of the accelerated electron
beam can "load" the wakefield, thereby altering its structure. Particularly, when the beam’s
charge is sufficiently high, it can level out the wakefield region it inhabits.

The simulations presented in fig. 1.5 show this phenomenon. We can observe that for a low
beam charge of 10 pC, the wakefield is barely affected, preserving its initial structure. As the
beam charge is increased to 100 pC, the influence of beam loading becomes evident as the
accelerating field is significantly flattened across the region occupied by the beam. This results
in a less variable accelerating gradient across the beam, which can be beneficial for reducing
energy spread. However, when the charge reaches 300 pC, the field reverses, such that the tail
end of the bunch experiences a lower field than the head, indicating an overloading of the
wake.

In an ideal beam loading situation, the wakefield can be adjusted to sustain a constant accel-
erating field across the electron bunch’s length. This scenario leads to a low energy spread
especially when accelerated to high energies. However, the realization of optimal beam loading
is a complex task. It necessitates precise control over variables such as the electron beam’s
position and current profile.
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The ideal beam loading scenario in the blowout regime would involve a triangular electron
beam current profile [91]. In practice, the laser-plasma accelerator may operate in other
regimes that aren’t strictly the blowout. These can introduce variations in the wakefield
structure and thus influence the optimal current profile for beam loading.

Additionally, over the course of propagation, the driver pulse itself undergoes evolution,
which in turn leads to changes in the wakefield structure. This dynamic nature of both the
driver and the wakefield needs to be factored into any optimization process for beam loading.
Consequently, achieving optimal beam loading is a complex task that requires a detailed
understanding of the interplay between the plasma, the driver laser, and the electron bunch,
likely aided by a combination of theoretical modelling, numerical simulations, and careful
experimental design.
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2 Bayesian Optimization

This chapter will give an introduction to the mathematical concepts behind Bayesian opti-
mization. Most readers of this thesis may find themselves on friendlier terrain with laser or
plasma physics than Bayesian statistics, and truth be told, I found myself in the same boat
prior to this venture. With that in mind, the following sections will strive to unravel this
complex topic.

Section 2.1 serves as an entryway to the concepts of Bayesian statistics and the mathematical
jargon used throughout this chapter, followed by an exploration of Gaussian process regression,
the modeling foundation of Bayesian optimization, in section 2.2. The details of Bayesian
optimization itself will be unfolded in section 2.3.

For those readers who have a date with destiny—or simply a tight schedule—or for those less
intrigued by the intricacies of the Bayesian approach, a digestible summary in section 2.4,
complemented by a quick reference glossary in table 2.1, should provide ample knowledge to
follow the discussions in this thesis.

2.1 Bayesian statistics

Before introducing the components of Bayesian optimization, this section will briefly dis-
cuss the fundamental concepts of Bayesian statistics and is meant to mostly introduce the
mathematical language that is used throughout this chapter. For a more comprehensive
introductions into the topic, see e.g., references [92] and [93].

At its core, the most distinguishing feature of Bayesian statistics lies in its interpretation of
probabilities as a degree of uncertainty. This viewpoint contrasts with frequentist approaches,
where probabilities represent the ratio of outcomes to a particular event, assuming the event
could be repeated an infinite number of times.

To deal with uncertainty, Bayesian statistics provides an elegant formalism of how the combi-
nation of an initial believe with further information leads to an updated uncertainty about an
event. This principle is expressed in Bayes’ rule:

_ p(B|A) - p(A)
P(A|B) = T (2.1)

The equation describes the probability of an event A given an observation B, p(A|B), or the
posterior of A given B. This depends on the prior p(A) which expresses the initial believe about
the probability of A. The prior is weighted with the likelihood p(B|A) which measures the
probability of the observation B in the case of event A. The prior and likelihood are normalized
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with the evidence or marginal likelihood p(B) which is the probability of observing B for any
event. These rather fuzzy definitions shall be further motivated in the example below.

A common application of Bayes’ principle is the interpretation of medical tests given a finite
accuracy of the test result. An example for this, that has gained relevance during the writing of
this thesis, are rapid tests that were used to fight the global COVID-19 pandemic. Confronted
with a positive result a reasonable reaction is to question the validity of the test. Using Bayes’
theorem we can calculate the posterior probability for this case, i.e., the probability of being
infected given a positive test result p(infected|+), from prior information that is available.
For this example eq. (2.1) reads as

p(+|infected) - p(infected)

(infected|+) =
P p(+)

(2.2)

A reasonable prior for the probability of being infected, p(infected), is the local weekly infec-
tion rate, e.g., 0.1% of the population. The likelihood, p(+|infected), i.e., the probability that
a test correctly shows a positive result, is given by the test’s sensitivity of ~99%. Finally, we
need to find the evidence, p(+), that a test shows a positive result. This is the combination of
all results leading to a positive test result, so in addition to the sensitivity we need to know the
specificity of the test. This is the probability of an accurate negative test, which is also ~99%.
More precisely, we need the opposite of this, i.e., the probability of a test showing a positive
result for a healthy person. With this the evidence is

p(+) = p(+|infected) - p(infected) + p(+|healthy) - p(healthy)

(2.3)
=0.99 - 0.001 + 0.01 - 0.999 ~ 0.011.

So in combination, the probability that the positive test result actually indicates an infection
IS 0.99 - 0.001
inf = 5 24

p(infected|+) 0011 9% (2.4)
which seems shockingly low, and in fact is a consequence of the low probability to be infected
in the first place. However, the beauty of Bayesian statistics is that it provides a framework to
incorporate additional information by updating our prior. So we can reduce the uncertainty of
the result with a second independent test. As a prior we use the posterior probability after the
first test. The probability of being infected given the second positive tests then increases to

p(+|infected) - p(infected|+)
p(+2) (2.5)
~ 91%

p(infected|+,) =

~0.99-0.09
T 0.098
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Figure 2.1 - Marginalization and conditioning on a joint probability density distribution. Integration
of the joint distribution p(A, B) over A gives the marginal distribution p(B) (left). A slice
through the joint distribution at A, represents the conditioned probability distribution
P(B|A = Ay).

2.1.1 Conditional probabilities

The example above implicitly used some concepts of probability that require a more detailed
definition at this point. These are the marginalization p(B) and conditioning p(B|A) of a joint
probability distribution p(A, B). The marginalized distribution expresses the probability of a
random variable independent of another. In the example above this is the chance that a test
shows a positive result independent whether the patient has the disease or not. It is the sum
of all properties leading to a given result

p(B) =’ p(A,B). 2.6)
A

For continuous random variables, which are more relevant in the following, the marginaliza-
tion of p(A, B) over A is

p(B) = f p(A, B)A. o
A

The left-hand side of fig. 2.1 shows the marginal probability density function of a bivariate
normal distribution that is generated by integrating along one of the variables.

The conditioning of a probability distribution can be understood as restricting the space of
considered possibilities. In the example this is the probability of being infected given the
positive test result. The conditional probability is defined as

p(A,B)
p(A)

p(B|A) = (2.8)
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The right-hand side of fig. 2.1 also shows a visual interpretation of the conditioned probability
of B given that A has a certain value A,. As shown p(B|A = A,) can be seen as a slice through
the joint probability of A and B where the condition A = A, is fulfilled.

2.1.2 Regression

The context in which Bayesian statistics is relevant in this thesis is to make predictions about
unobserved events based on previously measured data. The following gives an example,
adapted from Ref. [94], where Bayesian reasoning is applied to a linear regression problem.

The goal of linear regression is to find the weights w in a linear model that describe a set
of observations or in Bayesian terms, the probability distribution of the weights given the
observed data. This requires the definition of a linear model that describes the relationship of
the input x and w with the observation y:

fx) =x"w, y=f(x)+e¢, (2.9)

where f is the function value that combined with some noise ¢ results in the observation'. Here
the observation noise is assumed to follow a normal distribution with variance o? centered
around zero

e ~N(0,02). (2.10)

In the following it is assumed that o, is known, methods to infer this information from the
data will be discussed later.

Applying Bayes’ principle, the aim now is to find the posterior probability distribution of w
given a set of n observations p(w|y,X), wherey = (y;|i=1,..,n)and X = (x;|i =1, ...,n)
are the single measurements as a stacked vector and matrix, respectively. According to eq. (2.1)
the posterior over w is given by

p(yIX, w) - p(w)
p(w|y,X) = ) (2.11)
p(y1X)
Recall that the choice of the prior p(w) expresses the initial believe of probable values of w
and is rather problem dependent. For mathematical simplicity, here it is chosen to also be a
(multivariate) normal distribution centered around zero with covariance matrix

.
\/ (Qm)k detX),

where k is the dimensionality of w. This prior expresses the believe that weights near zero are
more likely.

w ~ N(0, Zp) = exp <—le2;1w) , (2.12)

The next term to determine is the likelihood p(y|X, w), which is the probability of the obser-
vation given the configuration of the model, or simply speaking how likely is it to observe

A constant offset in f(x) can be achieved by adding a dimension to x that is constant.
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the given data if the model has certain weights. According to the model in eq. (2.9), y; is the
sum of the function value f and the Gaussian noise ¢ so the distribution of y; is also a normal
distribution that is centered around f(x;). Considering the product of all n observations, this
is

p(yIX,w) = [ [ pilx;, w)
i=1 (2.13)
(v — XTw) '

=————-=%€ = NXTw,o?I,),
(2ma2y/2 Xp( 202 ) e

where I, is the n-dimensional identity matrix. The traditional least squares method of linear
regression is equivalent to maximizing this likelihood term.

The marginal likelihood p(y|X) is independent of w and can therefore be ignored at this
point.

So finally, combining all w dependent terms in the prior and the likelihood leads to the
posterior distribution (a detailed derivation can be found in Ref. [94])

p(w|y,X) ~ N(o;?A7' Xy, A7), (2.14)

with A = o7 2XXT + 3,1

The top panels of fig. 2.2 show the prior and posterior distributions of w for the case of a
one dimensional problem. The data samples are drawn according to eq. (2.9) with w =
(wg, w;)" = (—1,0.5)T with o, = 0.5. By incorporating the available data, the fairly unspecific
prior narrows in on the more informed posterior distribution of w. With this it is now possible
to make a probabilistic statement about the underlying model that describes the data, e.g.,
“How likely is it that the data is independent of x?”. According to the posterior distribution the
probability for that, i.e., p(w; = 0]y, X), is very close to zero.

Often when modeling data the aim is to make predictions about points that have not yet been
observed. With most non-Bayesian methods the approach for this would be to select a w by
some criterion, e.g., maximum likelihood (least squares regression) or maximum posterior
(ridge regression), and fix the model with this value. However, these approaches lose the
information about the uncertainty of the model. So the Bayesian approach is to yet again
treat the prediction as a random variable that follows a probability density distribution, the
posterior predictive distribution.

Therefore, the predictions about f(x,) at the new positions x,, are expressed by marginalizing
the distribution of possible outcomes at x, over w, i.e., averaging over all possible model
configurations weighted by their posterior likelihood

P(FCe)Ix X, y) = f (G w)p(wly, X)dw

=N(o72x] A Xy, xT A7 'x,).

(2.15)
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Figure 2.2 - Bayesian linear regression with noisy data samples (red dots). The prior distribution
(upper left) expresses the believe that the model parameters w, and w; are close to
zero. Conditioning the model on the data yields the posterior distribution (upper right)
according to which the data most likely follows a model with finite slope and intercept.
Bottom: Mean and confidence (+ two standard deviations) of the posterior predictive

distribution (eq. (2.15)).

The lower panel in fig. 2.2 shows the mean and + two standard deviations of the posterior
predictive distribution. Instead of a single prediction that is most certain by a given criterion,
linear regression in the Bayesian sense allows to make a statement about the realm of possible

outcomes given the fitted data.
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2.2 Gaussian process regression

2.2 Gaussian process regression

Although linear models like the one described above are important tools to describe many
aspects of physics including laser-plasma accelerators, they are often not expressive enough
for the non-linear dynamics that dominate the laser-plasma interaction. One approach to
tackle this is to use higher order parametric models. In this context, parametric means that
the model is fully described by its parameters like the weights in the case above. Parametric
models that capture more complex behavior are, for example, higher order polynomials or, on
the more complex end of the spectrum, neural networks.

A different approach are non-parametric models that are defined by the data itself. One
prominent example for this kind of model is a simple spline fit for which there is no global
model of parameters but just local interpolations between data points. Non strictly speaking,
this increases the value of each data point available to the model and consequently non-
parametric models tend to produce good results also with a sparse amount of information.

The class of non-parametric models that is commonly used for Bayesian optimization are
so-called Gaussian processes which will be discussed in this section. The discussion here
closely follows the excellent introduction to Gaussian process regression by Rasmussen and
Williams [94] and will cover the relevant aspects of Gaussian processes in the context of
Bayesian optimization.

2.2.1 Definition

A Gaussian process is the generalization of a multivariate normal distribution for the case
of infinitely many random variables. Additionally, per definition each finite subset of these
infinitely many random variable again follows a multivariate normal distribution.

To understand the implications of this rather abstract concept, consider a simple normal
distribution in one dimension. The distribution describes the realm of possible outcomes
for a given event, e.g., a measurement of some quantity at the input value x,. Consequently,
each measurement is a sample of this distribution and returns a single value y,. Next, take a
measurement of a set of inputs at (x,, x;), since the outcomes of these are potentially correlated
they follow a joint normal probability distribution, which for each measurement gives a pair
of samples (¥,, ¥;). If now, instead of at discrete positions the measurement is performed at
all possible locations along the entire domain x, the result of each measurement will be an
infinite set of values y(x). With each new measurement, the result will be a new y(x) which
then, in fact, is distributed according to a Gaussian process. Consequently, Gaussian processes
describe the probability distribution over functions.

The fact, that each finite set of random variables follows a normal distribution is important
here. When making statements about a Gaussian process, e.g., predictions, for a finite number
of points it’s a matter of dealing with normal distributions which as shown in the last section
is often analytically tractable.
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Although, a Gaussian process is admittedly not a concept that is particularly easy to grasp, it
will prove to be very useful to build rich models around measured data and importantly to
quantify uncertainty in these models.

Analogous to the normal distribution a Gaussian process is defined by a mean and a covariance.
However, since the Gaussian process describes continuous variables both are functions as
well. These relate to the collection of functions f(x) according to

m(x) = E[f(x)], mean function, (2.16)
k(x,x") = E[(f(x) — m(x)(f(x") — m(x))], covariance function, (2.17)

where E denotes the expected value. With this, a common notation to say that a function f(x)
follows a certain Gaussian process is,

f(x) ~ GP(m(x), k(x,x")). (2.18)

2.2.2 Kernel functions

Although Gaussian processes define a probability distribution over functions, they don’t
consist of all possible functions but are confined to functions of a specific characteristic. These
are fully defined by the covariance function of the Gaussian process, here also referred to as
kernel functions. The covariance is a measure for the similarity between the outcomes f(x)
and f(x") for the inputs x and x’. Simply speaking, if the covariance for two inputs is large
they tend to produce similar outputs. The choice of the covariance function in a Gaussian
process is arbitrary and problem dependent. Some of the most commonly used kernels and
their characteristics will be discussed in the following.

One of the simplest and widely found kernel functions is the squared exponential covariance
function, more commonly known as radial basis function (RBF) kernel

2
k(x,x') = exp (—%) . (2.19)

With this kernel the similarity between two points falls off as a Gaussian function of their
distance with the characteristic lengthscale .

To get an intuition what this means for the resulting class of functions that the Gaussian
process describes, it makes sense to draw some samples f, from it at some test positions X,
and plot them. Since we are looking now only at a finite number of points, the Gaussian
process reduces to a simple normal distribution,

f« ~N(m(X,),KX,,X.,)), (2.20)

where m and K are the vector and matrix that result when evaluating the mean and covariance
functions over all possible combinations of the test points. Figure 2.3 shows some samples
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Figure 2.3 - Gaussian process with RBF covariance function. Left column: Samples drawn from
Gaussian processes with large (top, [ = 1) and small (bottom, I = 0.1) lengthscale
parameters. Right column: Corresponding covariance matrices for the plotted x values in
the left column (blue to yellow, white indicates zero covariance).

from a Gaussian process with an RBF kernel and the corresponding covariance matrix (the
mean function is set to zero in this example).

As shown, the lengthscale of the kernel determines the rate at which f(x) changes as a function
of x. This can be understood when comparing the covariance matrices of the two cases. With
the long lengthscale there is a finite covariance over the entire range which means that points
far from each other still are correlated and therefore tend to have similar values. In the case
of a small lengthscale, the covariance is much more confined around the diagonal which
means that the range of influence of one point is confined to its close proximity. Points further
away are fully uncorrelated and therefore the functions can vary on a shorter lengthscale.
Nevertheless, both cases lead to smooth functions and in fact the RBF kernel produces only
functions that are infinitely differentiable.

For some use cases the smoothness of the RBF kernel can be problematic. The Matérn kernel
[95] is a generalization of the RBF kernel that allows to control the smoothness, i.e., the
differentiability, of the contained functions. It is defined as

k(x, x') = ;<@|x—x’|) Kv(ﬂlx—x’l), (2.21)

T2\ | 1
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Figure 2.4 - Characteristics of different kernel functions. Samples from Gaussian processes with given
kernels (top) and their corresponding covariance matrices (bottom).

where K, is a modified Bessel function and I' it the gamma function. The Matérn kernel
has two parameters: again the lengthscale parameter [, and the parameter v that controls
the smoothness of the considered functions. For v — oo the Matérn kernel converges to
the RBF kernel and for v = 3/2 and v = 5/2 it represents once and twice differentiable
functions, respectively. Figure 2.4 shows a comparison between samples from Gaussian
processes using an RBF and a Matérn kernel. Even though, the covariance matrices for the
two cases look very similar, the sampled functions look distinctly different. By not enforcing
infinite differentiability, the Matérn kernel produces less smooth functions.

The right panel in fig. 2.4 also shows how kernels can also enforce very distinct characteristics
on Gaussian processes. The kernel that is used here is periodic and consequently creates
periodic patterns in the sampled functions. The periodic kernel is given by:

(2.22)

. 2 ’
k(e x) = eXp(_Zsm (mr|lx —x |/p)>’

12

with the parameters [ and p that define the lengthscale and periodicity, respectively. Note
how the samples are not just simple sinusoids so they can express more complex periodic
behaviors. This kernel for instance can be used to model recurrent features in a time series,
like oscillations of a system or seasonal effects.

These three kernels are just some frequently encountered examples and in fact there is a
vast amount of different covariance functions to describe all types of functional behavior (see
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Figure 2.5 - Samples (colored lines) from a Gaussian process prior (left panel) and posterior (right
panel) after conditioning on data (red dots). The black line indicates the mean of the
Gaussian process and the gray area its 20 confidence region. By conditioning the process
its mean and confidence collapse so that the samples are forced through the data points
which in this example are assumed to be free of noise.

chapter 5 of [94] for a detailed breakdown). This highlights the potential expressiveness that
Gaussian processes can have compared to simple linear models.

2.2.3 Conditioning

So far these Gaussian processes are merely a mathematical construct to describe distributions
over functions and are not much use to model real world data. But again recall that evaluated
on a finite number of points, and this is typically what is of interest when building models,
a Gaussian process reduces to a multivariate normal distribution. As shown in the previ-
ous section, there is a simple way to incorporate knowledge in such a distribution through
conditioning and marginalization with Bayes’ theorem.

To build a model using a Gaussian process prior and some training data X, f = {x;, f;|i =
1...n} and to make predictions f, at some test inputs X,, the joint distribution of f and f,
needs to be considered. Similar to eq. (2.20) this is given by

. K(X,X) K(X,X,)
[f*l_N<0’[K(X*,X) K(X*,X*)D' (2.23)

Here, again K(X, X) refers to the matrix that results from evaluating the covariance function
over all combinations of inputs in X.

The posterior distribution, i.e., the distribution over f, that are compatible with the training
data, is now obtained by conditioning the joint distribution eq. (2.23) on the training data.
Making use of the properties of a normal distribution this can be done analytically [94] and
the posterior distribution then is

FulXo X, f ~ NKX.. X)KX, X)) f,

(2.24)
KX,,X,) - K(X*,X)K(X,X)_lK(X,X*)).
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Figure 2.6 - Predictions of a Gaussian process assuming noiseless (left) and noisy (right) data. Both
cases use the same data points for regression but in the right case they assumed to be
noisy observations of the underlying process with variance 0.05. Consequently, the mean
of the predictive distribution does not cross the data exactly and there remains a finite
uncertainty around the observations.

Figure 2.5 shows an example of conditioning a Gaussian process on data points. The prior, i.e.,
the process before conditioning, has a constant mean and variance. After conditioning, the
samples of the distribution are forced through the data and consequently so is the mean. Since
the samples no longer vary around the data points the variance collapses at these positions.

In terms of a more practical interpretation, close to the data points the confidence in the model
prediction, i.e., the mean of the Gaussian process, is high and the further a test point gets from
a known training point the more uncertain the prediction of the model gets.

Obviously, for modeling real world experimental data, the model in fig. 2.5 is too confident
in the data points. Since there is observation noise on the data the mean of the underlying
process does not necessarily coincide with all data points.

The presence of observation noise can easily be expressed in the covariance function of the
Gaussian process. As in the example of linear regression in the last section, the training data
y is not sampled from f(x) but contains additional noise ¢ that is assumed to be normally
distributed with variance o2, i.e., y = f(x) + €. In this case the covariance function over the
training data is just

cov(y;, y;) = k(x;,x;) + 048; (2.25)

where 6;; denotes the Kronecker delta which is one if i = j and zero otherwise. In analogy to
eq. (2.24) the posterior distribution for f, given noisy observations y is
flX X,y ~ NEKX,, XIKX,X) + 01y,

(2.26)
K(X,,X,) — K(X,,X)[KX,X) + o I 'K(X, X)),

where I is the identity matrix.

Figure 2.6 shows the mean and standard deviations of two Gaussian processes conditioned on
the same data, but in one case assuming it to be the underlying process directly and in the
other to be noisy samples of it. In the noisy case the sampled functions no longer need to pass
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Figure 2.7 - Gaussian process models (RBF kernel) with different hyperparameters conditioned on
the same data (red dots). Depending on the choice of lengthscale [ and noise o2 of the
covariance function the model is able to generalize the underlying sine function (blue)
better or worse. Without noise (middle) the model requires a small lengthscale to account
for all data points. This leads to erratic behavior of the mean when interpolating between
the measured data. If the lengthscale is too large (right), the information in the data is
interpreted as noise leading to a too simple model.

through the observations directly. Consequently, also the mean of the distribution does no
longer exactly cross all data points and there remains a finite uncertainty around them.

2.2.4 Hyperparameters

At the beginning of this section, it was mentioned that Gaussian processes are non-parametric
models. A given model is fully described by its mean and covariance function, which are
determined by conditioning the Gaussian process prior on the data. However, the choice of
covariance function and its parameters, such as the lengthscale or noise level, can lead to
different expressions of the Gaussian process. The selection of these parameters determines
how well a Gaussian process prior can adapt to data. As the parameters of the covariance
function are not parameters in the same sense of weights in a linear model, they are commonly
referred to as hyperparameters.

Figure 2.7 shows Gaussian process models using RBF kernels with different noise and length-
scales that are conditioned on data that was sampled from a sine function with added noise.
In the right panel of the figure, the process with the correct noise and lengthscale generalizes
the underlying function very well and is accurate in regions without observations. When
assuming no noise on the data, as depicted in the center panel, the mean is forced through
all data points and consequently the process requires a short lengthscale. This has the effect
that the model varies rapidly away from the observations, leading to wrong predictions. This
effect is often referred to as overfitting, i.e., specializing on the training data and thereby
losing the ability to generalize. In the other extreme when assuming a very long lengthscale,
all variations of the data need to be described by the noise of the model. As depicted in the
right panel of fig. 2.7, this leads to a too simple model that does not accurately describe the
underlying behavior of the data.
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Figure 2.8 - Log marginal likelihood for data and example models from fig. 2.7 (crosses). Complex
models with small lengthscales tend to overfit on the data. On the other end with too
simple models with large lengthscales much information in the data is interpreted as
noise. The marginal likelihood balances the data fit and model complexity.

In many machine learning approaches, a common method to find proper model parameters
is to define a loss function that quantifies the prediction error of the model with regard to
some test data. This loss function could for example be the mean absolute error, i.e., the mean
difference between model prediction and the test data. The parameters of the model can then
be optimized for minimal loss.

With probabilistic models like Gaussian processes there is a natural quantity that describes
the probability of measuring some data given a certain underlying model (or model hyperpa-
rameters), the marginal likelihood.

Since the marginal likelihood can vary drastically in amplitude depending on the model,
typically its logarithm is considered for numerical stability. For a Gaussian process with
hyperparameters 6 the log marginal likelihood for a set of n noisy observations (X, y) is given
by [94]

1 1
log p(y|X,0) = —EyT[K + a2y — 3 log |K + o2I| — glogZﬂ, 2.27)

where K is the covariance matrix that results from evaluating the covariance function for all
inputs. The first two terms of this equation have distinct meanings in describing the quality
of the model. The first term describes how far off the data is from the distribution described
by the Gaussian process. If y is equal to the mean of the Gaussian process at the respective
positions this term becomes zero. The second term describes the complexity of the model.
The determinant of the covariance matrix can be understood as a measure for the dependency
between the different data points. If it is zero, all y are perfectly correlated and therefore the
resulting functions need to be constant. On the contrary if it is one, all points are unrelated
and the function are very complex and can adapt to arbitrary data. Note that this term is
subtracted which means that simple models, e.g., slowly varying ones are favoured. This is
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resembling the principle of Occam’s razor that simpler explanations for an observation are
more likely.

In combination, the log marginal likelihood favours models that fit the data well but penalizes
them when they are overly complex. Figure 2.8 shows the marginal log likelihood for the
example data from fig. 2.7 as a function of the model’s lengthscale and noise level. The
marginal likelihood has a maximum for at the parameters that reproduce the underlying sine
function as shown in fig. 2.7. In fact the parameters of fig. 2.7 were found by maximizing the
marginal log likelihood. When increasing the lengthscale, which reduces the complexity, the
data fits the model worse and needs to be described by higher noise. On the other end, when
reducing the noise the data fit can be perfect at the cost of high model complexity through
the short lengthscale. When increasing the lengthscale while decreasing the noise the model
does not describe the data and quickly falls off.

Typically, the more data is available the more pronounced the optimum of the marginal
likelihood gets.

Also the derivatives of the log marginal likelihood can be computed without significantly
increasing the computational cost [94]. With them, conventional gradient based optimizers
can be used to find the hyperparameters 8 that maximize the log marginal likelihood and
therefore have the highest probability of describing the data. It is also possible to consider a
prior on the hyperparameters € for example if reasonable knowledge about the lengthscale of
the problem is available a priori. In that case the product of the marginal likelihood and the
prior of the hyperparameters p(8) is maximized, or equivalently the sum of their logarithms
[92]

6 = argmax(log p(y|X, 0) + log p(6)) (2.28)

6
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2.3 Bayesian optimization

Bayesian optimization [96] is a strategy to find global extrema in noisy black-box functions
that are costly to evaluate. In this context the term black-box describes the circumstance that
a priori there is no knowledge about the topology of the problem and its derivatives. This
includes, for example, non-convex problems that can have many local optima. Therefore,
information about the problem can only be gained by costly evaluations. The cost hereby
typically refers to the time to get a solution but can also refer to monetary or computational
cost for example when running simulations. Additionally, in experimental applications the
underlying black-box function cannot be accessed directly but only via noisy samples.

The combination of substantial cost evaluating the function, that is being optimized, and
noise on the observations limits the applicability of conventional optimization algorithms
like Newton methods. The approach of Bayesian optimization to overcome these issues is to
employ a surrogate model which approximates the actual optimization problem and is cheap
to evaluate and free of noise. Consequently, this surrogate model then again allows to use
conventional optimization methods. Due to their ability to cope with noise and little available
data, Gaussian process models are typically used for this task.

However, a model that is based on only a few measurements is bound to have inaccuracies
and therefore does not reveal the true optimum right away. Therefore, Bayesian optimization
employs a strategy to choose the parameters of additional measurements of the black-box
function that are then used to improve the model. This search heuristic is the so-called
acquisition function.

2.3.1 Acquisition function

The acquisition function quantifies the utility of a possible next measurement in finding the
global optimum. There are various different acquisition functions but most of them share the
same approach of what is often called balancing exploitation and exploration of the parameter
space. This means that the acquisition function identifies either regions of the parameter
space where evaluations with good results have already been made to improve upon these
(exploitation), or regions where data is still sparse that could therefore contain a yet unknown
optimum (exploration). Here, the concept of Gaussian processes proves useful since it directly
provides a measure for (un)certainty with the variance of the posterior predictive distribution
given by eq. (2.26).

A common and simple acquisition function is expected improvement (EI) [96]. It bases its
definition on the best observation made so far, denoted as f*. The function expresses the
anticipated improvement of the optimized function over f* for all possible input values x,
based on the surrogate model that is conditioned on existing measurements. In simpler terms,
the EI function forecasts how much better we can do over our current best value for each
input x.
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This is mathematically represented as

El(x) := E[max(f(x) — f*),0)], (2.29)

where E symbolizes the expected value. The term max(f(x) — f*),0) essentially indicates
that there is no such thing as negative improvement. Instead, when f(x) < f*’, it results in
zero improvement, i.e., no betterment is gained compared to our current best f*.

With the Gaussian process model f(x), eq. (2.29) can be solved analytically [96, 97] to give
the expression

EI(x) = o(x) [¢(u(x)) + u(x)2(u(x))], (2.30)

where u(x) = (m(x) — f*)/o(x) with the mean m(x) and variance o(x)*> = K(x, x) of the
surrogate model and ¢ and @ denote the probability density function and the cumulative
distribution function of the normal distribution, respectively.

The point that gives the largest expected improvement is used as the input for the next
measurement. To find it, there is a similar expression for the derivative of the expected
improvement which can be used to efficiently find the maximum of the acquisition function
with gradient based (quasi-)Newton methods, e.g., the commonly used L-BGFS-B algorithm
[98].

2.3.2 Optimization

Algorithm 1 Bayesian optimization of y = f(x) over N iterations

Define Gaussian process surrogate model M

Define acquisition function a(x, M)

Make n, initial observations D = (x;,y;|i =0...ny )

n=n,

while n < N do
Update M with D
Maximize log marginal likelihood to find hyperparameters of M
Find x,,,,; = argmax a(x)
Observe y,,1 = f(x,41), append dataset D = (x;,y;]i=0..n+1)
n=n+1

end while

Return best point

Now with a surrogate model and a search heuristic in place the optimization routine consists
of iteratively maximizing the acquisition function to find the most promising input parameters,
evaluating the black-box function at this position and then update the surrogate model with
the result as described in algorithm 1. Given enough iterations the algorithm then efficiently
explores the available parameter space to find the global optimum of the black-box function
[99].
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Figure 2.9 - One-dimensional Bayesian optimization with expected improvement as the acquisition
function (upper row). The lower panels show the unknown ground truth (green) that is
approximated with a Gaussian process model (red, 1,2,3-c uncertainty in grey shaded
areas) based on previous observations (red dots). In each iteration a measurement is
made at the position where the acquisition function is largest (grey star).

Figure 2.9 depicts an example of using Bayesian optimization on a one-dimensional problem.
After the first three initial observations (0) the surrogate model gives a very inaccurate rep-
resentation of the real problem and in particular seems to assume a too long lengthscale to
describe the true function. Still, taking into account the information that is present in the form
of the model mean and that which is absent, i.e., the model variance, the acquisition function
predicts improvements around the central data point. In the next step (1) the evaluation at
this position in fact yields improvement. The acquisition function again shows the highest
expected improvement close to the last evaluation. Although the following iteration (2) gives
no improvement it brings important information about the lengthscale of the problem so that
the surrogate now represents the true function much better in the relevant region. In the final
step (3) the true maximum of the function is found.

2.3.3 Observation noise

In many real world optimization problems there is no direct access to the underlying black-box
function, but evaluations are obscured by measurement noise. As discussed in section 2.2,
Gaussian process models have a natural way of taking this observation noise into account.
However, the simple definition of expected improvement in eq. (2.29) can be problematic in this
case since the real noise-free value of the best observation so far is unknown. If, for instance,
the best observation is a large outlier, this can falsely reduce the expected improvement relative
to this outlier in the rest of the search domain. As shown in fig. 2.10 this can result in situations
where the optimizer ignores the real global optimum which is lower than the outlier that was
measured earlier.
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Figure 2.10 - Same optimization case as fig. 2.9 but with observation variance of 0.05. The outlier in
the first step is interpreted as a very large best observation. This drastically reduces the
expected improvement in the rest of the search domain and the optimizer ignores the
true optimum.

Different approaches have been proposed to address this issue. A simple acquisition function
that does not rely on any explicit previous observations but just on the surrogate model is
upper confidence bound [100] which is simply the weighted sum of the model mean m(x) and
variance o(x)?

UCB(x) := f(x) +\Bo(x). (231)

B is a parameter that balances the amount of exploration and exploitation, i.e., a large beta
means that the acquisition function is large in regions with high uncertainty and consequently
the optimizer is encouraged to explore the parameter space. Upper confidence bounds has
been successfully used to optimize accelerators [101].

Another acquisition function that was shown to cope well with observation noise is knowledge
gradient [102]. This method is based on the principle that the decision-maker is willing to
accept a configuration that has not been evaluated previously and therefore trusts the surrogate
model. The goal of knowledge gradient then is to find the point that if evaluated would give
the largest expected improvement to the optimum of the surrogate model in the next step,
ie.,

KG(x) := E[m},, — my|x, 1 = n], (2.32)

where m;, is the current maximum of the surrogate model and m;,_, that of the next iteration.
Finding the maximum of the knowledge gradient involves solving a nested optimization
problem and is therefore associated with high computational costs. Recent implementations
that rely on Monte-Carlo sampling to approximate the integrals connected to the expected value
in eq. (2.32) [103] reduce this costs, but solving knowledge gradient still remains significantly
more costly than upper confident bound or expected improvement.
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Figure 2.11 - Comparison of acquisition functions using the data from the last step in fig. 2.10. The
rough features of knowledge gradient are caused by finite sampling when solving
eq. (2.32). All acquisition functions are computed using the Bayesian optimization
framework botorch [103].

Several adaptations to expected improvement have also been proposed, the simplest of which
is to replace the best observation f* in eq. (2.29) with the maximum of the values predicted by
the surrogate model at the observed positions, i.e., f(x,)* = max f(x,). With this a single
observation can no longer compromise the whole optimization. Even though the model
will likely overestimate the true function initially after measuring an outlier, it can be cured
by additional observations. Still, if the observation noise is large this approach can lead to
clustering of observations around single points and give non-ideal convergence rates [104].

A different solution is to treat the expected improvement acquisition in a more Bayesian way
where the best observation so far is considered a random variable just like the optimization
problem itself. Therefore, the best observation is defined by a probability distribution that is
conditioned on the previous observations. Averaging of the original expected improvement
function over previous observations then gives the noisy expected improvement acquisition
function [105]

NEI(x) := / EIGel f)p(f)df, (.39

where f" are the posterior distributions of the previous observations given their noisy obser-
vations, i.e., normal distributions according the Gaussian process model at the positions that
have been observed. Again this acquisition function has no analytic expression, but can be
solved efficiently and accurate with Monte-Carlo methods [105, 103].

Figure 2.11 shows a comparison of the described acquisition functions applied on the data
from the last iteration of fig. 2.10. All methods would still recommend a next evaluation in
the region where the outlier was initial measured, however knowledge gradient and noisy
expected improvement have almost equally large values in other regions of the parameter
space suggesting that exploration would still be valuable despite the large outlier. The modified
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Figure 2.12 - Pareto front of two competing objectives assuming a maximization problem. The Pareto
front separates the set of inefficient solutions that are suboptimal in both objectives from
outcomes that are infeasible. The solutions on the Pareto front can only be improved in
one objective by deteriorating the other.

expected improvement and upper confidence bound have far clearer preference for the region
that has already been explored. This plot is just meant to give an example for the characteristics
of the different methods and arguably doesn’t help much in predicting the optimization
behavior when using the different methods. Therefore, it is always helpful to benchmark
different methods and see what works best for the specific problem at hand.

2.3.4 Multi-objective Bayesian optimization

Many optimization problems relevant in scientific and engineering applications involve mul-
tiple potentially competing objectives. In the context of particle accelerators, this could be
for instance the maximization of the beam current while minimizing the energy bandwidth.
Usually, such problems do not have a unique optimal solution but rather a range of desirable
outcomes that involve various tradeoffs between the different objectives.

A common and simple approach in these scenarios is to scalarize the objectives by adding or
multiplying them. The scalar objective can then be optimized as discussed above. However,
the scalarization of the objectives has implications on the outcome of the optimization. By
weighting the single objectives the scalarization inhibits a certain bias. Therefore, finding
the scalarization that gives the desired results requires domain knowledge and an active
decision on the desired result. For example, a decision-maker could decide that the energy
spread of a beam is more important than its current and therefore give it a larger weight in the
scalarization of the objectives. This specific domain knowledge might not always be present,
when the interplay between the single objectives is complex or desired when there is no clear
preference for a certain weighting.
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An alternative approach to scalarizing the objectives is to search solutions at the so-called
Pareto front. This refers to the hypersurface where bettering one objective inevitably results
in the compromise of another, as illustrated in fig. 2.12. As per this definition, the Pareto
front provides the ideal balance between the objectives. Thus, every point on this front
symbolizes the optimum of a specific scalarization, showcasing a distinct equilibrium between
the objectives.

Bayesian optimization can be applied to identify the best, or Pareto optimal, solutions in a
multi-objective environment. This is achieved by using specialized acquisition functions and
multi-output Gaussian processes. In the simplest scenario, these processes can be understood
as independent models for each objective.

An intuitive extension of the expected improvement acquisition function is the Expected
Hypervolume Improvement (EHVI) [106]. Within this framework, existing measurements
are classified into dominated and non-dominated categories. A measurement is deemed
dominated if another superior measurement exists across all objectives. Ideally, the non-
dominated measurements would represent a subset of the Pareto front.

The hypervolume is defined as the volume encompassed by the non-dominated measurements
and a reference point (see fig. 2.13). This reference point is usually the limit of acceptable
outcomes. With this in mind, the hypervolume offers a measure of the quality of the set of
non-dominated measurements. Larger hypervolumes indicate solutions closer to the true
Pareto front.

The hypervolume is typically represented as a collection of n-dimensional rectangles, each
spanned by a non-dominated point and the reference point. Consequently, the discovery of a
new non-dominated point would lead to an improvement in the hypervolume, as depicted in
fig. 2.13.

By employing the Gaussian process surrogate model it is possible to calculate the expected
hypervolume improvement for all possible input parameters and therefore find the inputs
that have the largest potential increase of the hypervolume

EHVI(x) := E[HVI(f(x))], (2.34)

where HVI is the hypervolume improvement as depicted in fig. 2.13 and f(x) is the Gaussian
process surrogate model. Exact solutions to eq. (2.34) exist [107-109] but scale exponentially
with the number of objectives and can therefore be extremely costly to evaluate. Better
performance can be achieved by approximating the expected value in eq. (2.34) with Monte-
Carlo methods [110]. This further allows to define EHVI for multiple parallel evaluations and
in the presence of observation noise [111].

A hand full of other methods for Bayesian optimization in multi-objective scenarios exist
[96, 112, 113]. However, they either involve high computational complexity or achieve inferior
performance compared to EHVI on synthetic problems. As a result, these alternative methods
will not be extensively discussed or employed within the scope of this thesis.
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Figure 2.13 - In a multi-objective scenario, the hypervolume—represented here by the light grey
area—serves to quantify the quality of the non-dominated solutions, depicted in dark
red. When a new non-dominated point is identified, as shown on the right, it contributes
to an increase in the hypervolume. Upon convergence, all solutions align along the
Pareto front of the objectives, thus providing a comprehensive view of the trade-offs
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Figure 2.14 - Multi-objective optimization of two competing objectives. Top: input parameter space
with unknown objective functions (blue, red, darker is better) and evaluation of the
optimization loop (dots) colored by their iteration. Bottom left: Results of evaluations.
Bottom right: Improvement of the hypervolume during the optimization process.
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Figure 2.14 illustrates an example of multi-objective Bayesian optimization using expected
hypervolume improvement on two conflicting objectives. In this instance, the reference
point for both objectives is set to 0.1, indicating the desire for both objectives to surpass this
threshold. Observing the two objectives, it’s evident that the individual maxima of each
function are not accepted as solutions because the corresponding other objective falls short in
these scenarios.

After an initial exploration, the algorithm identifies the region where both objectives exceed
the reference point and begins to sample the Pareto front between them. Given these results,
a decision-maker can now choose the desired balance between the two objectives.

2.4 Summary

Bayesian Optimization is a model-based method for finding the optimum of a function that
is particularly suited to optimization problems where function evaluations are expensive.
The main idea is to use a probabilistic model to predict the objective function and use these
predictions to choose where to sample next. It is particularly useful when the function is
black-box (we do not have an explicit expression for it), costly to evaluate, or obscured by
noise.

At the core of Bayesian optimization is the Gaussian process, which is used to model the
function we want to optimize. A Gaussian process is a collection of random variables for which
any subset of those random variables has a multivariate normal distribution. It is used to
construct a prior distribution over functions, which can be updated into a posterior distribution
once data is observed. These updated distributions, reflecting the added knowledge from
observed data, are then used to determine the next sample point.

To choose the next sample point, Bayesian optimization uses an acquisition function, which
guides where to sample from the space of inputs. This function is derived from the Gaussian
process and balances exploration (sampling from regions where the outcome is uncertain)
and exploitation (sampling from regions where the model predicts a good outcome). The most
commonly used acquisition functions are the Expected Improvement and Upper Confidence
Bound. After each function evaluation, the Gaussian process is updated, a new acquisition
function is computed, and the process is repeated until the optimum is found.

Multi-objective Bayesian optimization (MOBO) extends the traditional Bayesian optimization
concept to handle multiple objectives simultaneously. In real-world scenarios, optimization
problems often involve several conflicting objectives. MOBO aims to find the Pareto front,
which is a set of optimal solutions where improving one objective will worsen at least one other.
Just like single-objective Bayesian optimization, MOBO utilizes Gaussian process models to
estimate the objective functions, but it needs to manage a trade-off between multiple objectives
rather than a single one.

A crucial part of MOBO is the acquisition function, and the Expected Hypervolume Im-
provement (EHVI) is a popular choice. The hypervolume measures the volume of the space
dominated by the Pareto front. The improvement refers to how much an additional sample
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could increase this volume. By maximizing the expected increase in the hypervolume, we
balance exploration and exploitation across all objectives. Computing EHVI can be challeng-
ing due to its complexity, but various efficient algorithms have been proposed to solve this
problem.
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TERM

Prior

Posterior

Likelihood

Marginalization

Conditioning

Gaussian Process

Covariance Function/Kernel

Hyperparameter

Log Marginal Likelihood

Surrogate Model

Acquisition Function

Hypervolume

DEFINITION

An a priori assumption about the distribution of a random
variable before considering observed data.

The updated probability distribution of a random variable
after incorporating observed data, calculated using the prior
distribution and the likelihood of the data.

A measure of how likely the observed data is, given the
parameters of a model.

The process of reducing the dimensionality of a problem by
integrating out or summing over certain variables to obtain
a marginal probability.

The process of modifying the probability distribution of
a variable based on known or observed values of other
variables.

A stochastic process where any finite collection of random
variables has a multivariate Gaussian distribution, often
used in machine learning for regression and optimization
tasks.

A function that determines the covariance, or the expected
level of dependence, between different points in a Gaussian
process.

Parameters of the prior distribution or the covariance func-
tion in a Gaussian process that control the behavior of the
model.

The log-likelihood of the observed data, marginalized over
the model parameters, used for model selection and hyper-
parameter optimization.

A simplified model that approximates the behavior of
a more complex model or a real-world process, used in
Bayesian optimization to reduce cost, typically a Gaussian
process.

A function used in Bayesian optimization that guides the
search process by balancing exploration of unvisited regions
and exploitation of known good regions.

In the context of multi-objective optimization, hypervol-
ume is a measure of the space covered by a set of solutions
in the objective space, often used as a performance indica-
tor for evaluating the quality of solution sets.

Table 2.1 — Glossary of terms related to Bayesian Optimization and Gaussian Process Regression
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This chapter will aim to put the concepts outlined in the previous chapters into a combined
context. By applying it to particle-in-cell simulations, Bayesian optimization will be used
as a tool to unravel the complex interplay of laser and plasma parameters and find optimal
configurations for a laser-plasma accelerator setup, like the one employed at LUX.

Section 3.1 will discuss the physical concepts behind the LUX laser-plasma accelerator and
the various tuning parameters of the system and their effect on the acceleration process.
Section 3.2 will then explain, how with the help of Bayesian optimization, these parameters
can be optimized to achieve remarkable beam quality. In section 3.3, the application of
multi-objective Bayesian optimization will be discussed.

3.1 LUX laser-plasma accelerator

At the core of every plasma-based accelerator lies a plasma source. This source contains either
the gas ionized by the drive laser or a preconditioned plasma generated, for example, by a
current discharge [53, 114] or a another laser [115]. Drawing parallels with conventional
accelerators, the plasma source simultaneously fulfills the roles of multiple components. The
most apparent functions are providing the electric fields to accelerate and guide the electron
bunches. As such, the plasma merges the roles of the RF cavity and focusing elements found
in conventional accelerators.

Moreover, in most instances, the plasma source also supplies the accelerated electrons, as
discussed in section 1.2.3, thereby substituting the gun in a conventional accelerator. This
consolidation of functions offers the clear advantage of compactness. However, it may intro-
duce complexity and reduce flexibility, particularly when parameters typically adjusted in
separate modules become correlated through shared control parameters.

As a result, to enable precise control over the beam parameters, it is desirable to retain as
much task separation and individual tuning capabilities as possible. Concretely, this implies
the need to decouple electron injection from acceleration. Typically, this requires spatial and
temporal isolation of the injection event. A common method to achieve this, is by inserting
obstacles into supersonic gas jets to generate a shock front along which the gas density rapidly
decreases [116-118]. The increase of the plasma wavelength corresponding to the change in
density causes a local reduction of the wakefield phase velocity and thereby allows isolated
injection of electrons (see section 1.2.3). This method, however, relies on the high velocity
flow that can be generated with gas nozzles. To handle the load on the vacuum system such
jets are typically operated in a pulsed fashion which ultimately limits the achievable repetition
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rate and can have implications on the reproducibility [119] and uniformity [120] of the plasma
profile.

These limitations can in principle be overcome by replacing the gas jet with a confined volume
that is continuously supplied with gas. This can be achieved in capillary or a gas cell based
designs. However, generating steep density ramps to trigger injection is not straight forward
in these devices which entails the need for different means of generating the accelerated
beam. Many early experiments relied on self-injection from wave breaking in very non-linear
wakefields [42-44] which can be difficult to precisely control and consequently also lacked
good shot-to-shot reproducibility. Currently, a very commonly used injection method, for
both gas cells and nozzle targets, is ionization injection. This is partly due to the relatively
easy implementation in experiments but also due to the robustness and reliability that can be
achieved with it over hours of operation [70, 119].

Also the LUX experiment has been relying on ionization injection since early iterations of its
plasma source design. In combination with stringent diagnostic and controls implementations
it enabled the first ever daylong operation of a laser plasma accelerator [4].

In its simplest form ionization injection is achieved by mixing a small amount of a high Z
dopant gas, typically nitrogen, to the hydrogen or helium that forms the majority of the plasma.
Consequently, the dopant gas is available in the entire interaction volume of the laser and the
plasma and therefore injection can occur in principle at any time. The continuos trapping
of fresh low energy electrons then typically results in large energy spreads. By tailoring the
evolution of the driver laser the length over which injection occurs can be reduced but the
energy spread that was experimentally achieved this way remains at several percent [121, 47]
and is therefore insufficient for the most demanding applications.

Alternatively, when managing to spatially confine the dopant gas within the plasma source the
injection event could be isolated and with that smaller energy spreads would be conceivable.
Additionally, independent control of beam injection and acceleration could be gained to a
certain extent. First realizations of this concept using two distinct gas volumes [122] showed
this independent control but were limited to few percent final energy spread.

In the current version of the LUX plasma source the separation of the gas species is achieved
through gas dynamics alone so that no distinct second gas volume is required [5, 69]. A similar
approach was followed in experiments at BELLA at Berkley lab [123].

In those designs the separation of injection and acceleration in a capillary type design is
achieved through the use of multiple supply inlets that provide different gas species. These are
either a high Z doped mixed gas for injection or pure low Z gas for acceleration. Typical gases
here are hydrogen or helium for the low Z gas and nitrogen for the high Z gas. Depending
on the pressure ratio between the inlets, the mixed gas diffuses more or less into the regions
that are supplied with the pure gas. When the pressure is roughly balanced a short transition
region forms that separates the mixed from the pure gas.

Figure 3.1 shows the cross section of the LUX plasma source design [5] that incorporates this
concept. A mixture of hydrogen and nitrogen is supplied through the first (left) inlet and
pure hydrogen through the second. This inlet is split before connecting to the axial channel
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Figure 3.1 - Left: Cross section of the LUX plasma source. The axial channel is supplied with gas via
two inlets. The first provides a mixture of hydrogen and nitrogen (magenta). The second,
which splits into to inlets supplies pure hydrogen (blue) to form a plateau in the back of
the plasma source. A gas outlet near the middle of the channel prevents mixing of the
two gas species. Right: Corresponding density profiles when using 10% nitrogen in the
mixed gas.

to provide a wide plateau of approximately constant density. A hole on the side of the main
channel (not shown in the figure) acts as gas outlet that further prevents mixing of the two
species in the plasma source.

Multi-species computational fluid dynamics (CFD) simulations that were used during the
design of the setup (see [69] for extensive discussion) confirm that this concept in fact leads
to a strict separation of the mixed and the pure gas when correctly setting the pressures of
the two inlets. The plot in fig. 3.1 shows the axial density profiles of the mixed and pure gas
and the resulting plasma density when considering ionization of the hydrogen and the outer
shells of the nitrogen.

In the fluid simulation the first inlet was supplied with a 9:1 mixture of hydrogen and nitrogen.
The second inlet was supplied with pure hydrogen at a slightly higher pressure than the mixed
gas. As shown in fig. 3.1, this configuration leads to a clear separation of the mixed from the
pure gas with a short transition region that is roughly 1 mm long. The pure gas profile shows a
slight drop at the transition point which is caused by the gas outlet at this point. The resulting
plasma profile has a peak at the beginning which is caused by the five outer shell electrons
of the nitrogen atoms that are ionized together with the hydrogen by the leading edge of the
drive laser. Behind the peak the gas outlet creates a lower density valley that creates a short
upward ramp into a flat plateau which has a slight downward density gradient.

3.1.1 Simulations
To further elaborate and study laser-plasma acceleration in gas profiles like the one shown

in fig. 3.1, particle-in-cell (PIC) simulations using the PIC code FBPIC [124] are performed.
FBPIC is specialized for simulating plasma based accelerators through two distinct features.
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First, it exploits the fact that many LPA related problems have an approximately cylindrical
symmetry, i.e., the wakefield is roughly rotation invariant. However, instead of modeling just
purely cylindrical fields, FBPIC models an azimuthal Fourier decomposition of the fields
[125]. This allows to simulate also fields that have azimuthal dependencies like the driver
laser that is typically linearly polarized. If the azimuthal dependency is not too complex, as
in the case of the laser, the Fourier decomposition can be truncated after a couple of modes.
With this a simulation that captures the relevant three-dimensional effects can be simulated
at the cost of a few 2D simulations.

The second important feature is that it is possible to run simulations in a Lorentz boosted
frame which allows orders of magnitude speedups [126] by reducing the strong discrepancy of
lengthscales that need to be resolved when modeling for example the small laser wavelength
during the propagation through the millimeter long plasma cell. The application of the boosted
frame is enabled through the use of a spectral solver and a special Galilean transformation
[15, 127, 10] that prevent the deteriorative effects of numerical Cherenkov radiation [13] and
the growth of the numerical Cherenkov instability.

If not stated differently, the simulations presented in the following use a grid resolution of
A;' = 50pum~! and A;! = 3um~! and a time step of A, = A, /c. Two azimuthal modes are
used to capture the cylindrical symmetry of the wakefields and the linearly polarized drive
laser. The simulations are performed in a Lorentz boosted frame with y = 5. The laser beam
in the simulations has a Gaussian temporal profile and the radial mode of a real high power
laser is approximated as a flattened Gaussian beam (order N=100) [128] which is defined bei
a weighted sum of cylindrically symmetric Laguerre-Gauss modes.

The hydrogen atoms in the simulation are modeled with 8 macro-particles per cell. To improve
the statistics on the ionization-injection process the nitrogen is represented by 16 macro-
particles per cell. The hydrogen and the first 5 electrons of the nitrogen, i.e., its outer shells,
are assumed to be ionized by the leading edge of the drive laser and are therefore pre-ionized
in the simulation. The field ionization of the inner nitrogen shells is modeled according to
the Ammosov-Delone-Krainov (ADK) model [77, 78].

3.1.2 Localized ionization-injection

To discuss the dynamics and unique properties of the plasma source concept in section 3.1, a
PIC simulation with laser parameters like they are typically used at the LUX experiment is
performed. Accordingly, a drive laser with 2.65J with 34 fs FWHM pulse duration is focused
5.41 mm behind the entrance of the plasma source to a vacuum spot size of 25 um.

The evolution of the wakefield and the longitudinal phase space (E, §) is shown in fig. 3.2.
When the laser, which still has a large radius and consequently low intensity, enters the plasma
(1), it drives a nearly linear sinusoidal wakefield. Despite the gas being already doped with
nitrogen atoms, the low amplitude of the wakefield and more importantly, the positive density
gradient of the plasma, inhibit the injection of electrons into the wakefield. As the density of
the mixed gas species peaks, the plasma density gradient inverts. This shift induces a change
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Figure 3.2 - Evolution of the wakefield and longitudinal phase space in a plasma source with localized
ionization-injection. Upper row: Charge density with on-axis accelerating field. Middle
row: Longitudinal phase space (E, £) for different positions in the plasma. Bottom plot:
Plasma and gas densities with markers for the positions of the corresponding plots above.
The vacuum focus position of the drive laser z;, is marked by the red line.

in the plasma wavelength, reducing the phase velocity of the wakefield, which then initiates
electron injection. As a result, an electron bunch starts to form.

Due to the ongoing elongation of the plasma cavity in the density downramp, the phase
at which new electrons are trapped continues to advance. Therefore, electrons injected at
different times occupy different phases of the wakefield. Consequently, a lengthy electron
bunch with a small slice energy spread is formed at the end of the downramp (2), where the
transition between the mixed and pure gas occurs. The bunch exhibits a positive correlation
(or chirp) between the longitudinal bunch coordinate and the energy. This correlation is
primarily a result of the shifting phase during injection. Electrons in the head of the bunch
are injected first, and thus, experience more acceleration, resulting in higher energy.

Following the gas transition region is a slight density upramp (3) wherein the wakefield
contracts a bit, causing some electrons at the bunch’s end to be defocused and decelerated.
The tail of the bunch is now positioned at the very rear of the plasma cavity where the
accelerating field is the strongest.

At this point, as the laser nears the focus, its intensity significantly increases, driving a strong,
non-linear wakefield in the blowout regime. Although the beam charge influences the longitu-
dinal electric field through beam loading, the field is not entirely flattened, leading to the tail of
the bunch receiving more acceleration than the head. As a result, the longitudinal phase space
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Figure 3.3 - Evolution of the accelerating field during the propagation through the plasma. Variations
of the beam loading effect due to changes of the wakefield strength result in on average
flattening of the field (red dashed line) over the majority of the bunch length (grey area).
The colors of the lines indicates the corresponding position in the plasma source, see
colorbar.

undergoes a shearing motion and its correlation decreases. As the plasma density plateau
concludes (4), the energy correlation is fully compensated and even slightly inverted.

However, soon after, at the plasma profile exit (5), the laser diffracts and the wakefield weakens.
Now, due to overly strong beam loading, the bunch reverses the slope of the accelerating field
so that the tail is accelerated less than the head. This results in the flattening of the majority
of the longitudinal phase space. The bunch has a tail with higher energies, which is attributed
to the field spike at the end of the plasma cavity. These electrons contribute less than 10 % of
the 66 pC of total charge.

The longitudinal field profiles in fig. 3.2 show that the setup does not operate at optimal beam
loading conditions, i.e., flat accelerating field along the bunch, at every given point in time.
This is not possible since the beam current is constant after the injection while the wakefield
amplitude changes due to the evolution of the drive laser. However, as indicated above, what
is relevant for the final phase space of the bunch is the average beam loading field. This
means that non-ideal beam loading at one position is acceptable as long as it is compensated
somewhere else.

This concept is illustrated in fig. 3.3 which shows the longitudinal field at a few positions in
the plasma and the average field between the point of injection and the end of the plasma. The
combination of over- and underloading at different positions leads to a field that is flat over
the majority of the bunch on average. Additionally, a perfectly flat field would not even be
desirable in this case, because the energy correlation that the bunch has after injection needs
to be compensated. Therefore, the ideal field has a slight slope that corrects this correlation
over the length of the plasma.
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Figure 3.4 - Evolution of beam energy spectrum in a plasma with and without localization of the
dopant gas. To get comparable beam charges the setups provide the same total amount of
nitrogen over the full gas profile. Consequently, the nitrogen concentration in the mixed
gas is 10 % in the localized and 1.96 % in the non-localized case. The laser focus position
is marked by the red line.

The benefits of localized over non-localized ionization-injection in terms of beam quality
become evident when comparing the evolution of the electron beam energy spectrum in both
cases. Figure 3.4 shows the energy spectra from the simulation above for each z Position
along the plasma and compares them to a simulation where the nitrogen is homogeneously
distributed over the full length of the gas profile. To provide the same amount of injectable
charge the total amount of nitrogen is the same in both simulations. Consequently, the
nitrogen ratio in the mixed gas was reduced from 10 % to 1.96 %.

In the case with localized mixed gas the injection event is limited to the presence of nitrogen
and is further constrained to the region where the plasma density is decreasing. Consequently,
since no further electrons are injected afterwards a single energy isolated bunch is formed
that is accelerated to higher energies in the density plateau.

In the scenario of continuous nitrogen doping, the initially injected beam loads the wakefield,
which subsequently diminishes the injection rate. Despite this, injection does not halt com-
pletely, and lower-energy electrons continue to be injected. This results in a spectrum that
peaks at higher energies due to the early-injected electrons, along with a tail extending across
the entire lower energy range. Near the end of the plasma profile, the wakefield becomes
overloaded with charge, causing some early-injected electrons to decelerate. Consequently,
the high-energy portion of the beam loses charge, leading to a decrease in spectral density.
The outcome is a wide spectrum with the charge evenly distributed over all energy levels.
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3.1.3 Tuning parameters

A distinct advantage of dividing responsibilities within the plasma source, such as injection
and acceleration, is the possibility to individually fine-tune these critical elements. However,
it’simportant to bear in mind that these elements aren’t entirely independent from one another.
For example, the injection process can influence the acceleration of the beam through effects
like beam loading. Yet, being equipped with the correct distinct control parameters means
that in principle both aspects can be adjusted to each other to give the best end result. The
following paragraphs will discuss the most important parameters of the setup and their effect
on the accelerated electron beams.

As the acceleration of electrons in an LPA is the result of the interaction between a laser
and a plasma naturally the parameters of both these constituents play important roles. The
drive laser is mainly characterized by its energy as well as its temporal and spatial profiles.
Although, higher order aberrations of the spatial and temporal phase of the beam can have
an impact on the accelerated beams [5, 129], the most relevant properties in this context are
the pulse duration 7}, and focus position z;... Additionally, the focal spot size of the beam
is important. However, since the focal length is fixed in experiments there is typically not
much dynamic control over it. For this reason the laser spot size is not considered a tuning
parameter in the following despite its importance in the designing phase of the accelerator.

The gas profile as well as the gas composition in the plasma source is controlled via the flow
and mixing ratio of the gases going into the inlets. This influences the overall density of the
resulting on-axis plasma and the amount of nitrogen in the injection region. Further, the
ratio of flows between the first and second inlet determines the position and the length of the
transition region between mixed and pure gas. For simulations, the complex gas dynamics
involved when changing the setpoint of the plasma source would ideally warrant a full multi-
species fluid dynamics (CFD) simulation to determine the resulting gas profile. Unfortunately,
the setup of these simulations is currently still a process that involves some manual tuning.
Implementation of this into fully automated start to end simulations including the CFD part
is currently being worked on, though. As an approximation, the CFD simulation for the gas
profile that is shown in fig. 3.1 is scaled and used for the PIC simulations. In particular, the
nitrogen concentration in the mixed gas and the overall gas density is varied. It was confirmed
through CFD simulations that the resulting gas profiles are feasible. Nevertheless, it should
be noted that this does not represent all possible degrees of freedom of the plasma source.

Figure 3.5 shows the effect of the most important laser and gas parameters on the longitudinal
phase space (E, &) of the accelerated electron bunch. Changes of the different parameters
have very distinct effects on the properties of the bunch during injection, acceleration or both.
These effects will be explained in the following going row by row in fig. 3.5.

Laser energy—Altering the laser energy influences both the injection and acceleration stages
of laser-plasma interaction. Initially, higher energy, and consequently higher intensity in the
mixed-gas region of the plasma source, leads to increased ionization of nitrogen atoms. In
addition, the increased wakefield strength enlarges the injection volume, which is the area
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Figure 3.5 - Effects of laser and gas tuning parameters on the longitudinal phase space of the acceler-
ated electron bunch. The center column corresponds to the setpoint illustrated in fig. 3.2.
The blue dots indicate the charge of the bunch.

where nitrogen atoms are ionized and the wakefield potential is sufficiently high to capture
the released electrons. Consequently, the beam charge increases with laser energy.

As the wakefield strength in the acceleration section also intensifies, the beam loading remains
roughly matched, meaning the linear part of the energy correlation in the bunch does not
significantly shift. However, observable changes occur in the higher-order correlations in
the (E, &) phase space, imparting a slightly parabolic curvature to the beam when the driver
energy is increased.

Pulse duration—Similar effects are present when tuning the pulse duration of the driver,
since this as well is a parameter that foremost determines the intensity of the pulse. However,
in the range shown here, +15% for both parameters, the effects of changing the pulse duration
are less pronounced. This is explainable by the fact that the leading edge of the drive laser is
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more or less steep depending on the pulse duration. With this the phase of the wakefield also
slightly changes. This slight shift of the wakefield with respect to the driver partly counteracts
the increased ionization volume.

Focus position—The longitudinal focus position determines the size and intensity of the
drive laser in the injection region. As the focus is located downstream of the mixed gas
region, the laser spot size w, at the point of injection is approximately a linear function of the
focus position. This implies that the ionization volume also changes linearly with the focus.
As a result, shifting the focus downstream or upstream by a few hundred micrometers can
significantly vary the beam charge.

In the acceleration region where the focus is located, shifting the focus position on this scale
has a negligible effect. This is primarily because effects occurring in front of the focus will
cancel out behind it, leaving the average wake amplitude unaffected.

In combination, altering the charge amount without affecting the wakefield results in different
amounts of beam loading. As shown in fig. 3.5, this leads to a linear chirp of the phase space
when deviating from the optimum. Due to its minor impact in the acceleration region of the
setup, the focus position can be used to match the beam charge to optimize beam loading in a
given wakefield.

Gas density—The overall gas density dictates both the plasma density and the quantity of
nitrogen atoms that can be ionized, which in turn corresponds to the charge that can be injected.
The plasma density directly scales the accelerating field and impacts the self-focusing of the
drive laser. Taken together, an increase in plasma density results in the enhanced acceleration
of the bunch.

As shown in fig. 3.5, there’s a slight increase in energy at the head of the bunch with rising gas
density. The tail of the bunch doesn’t experience this increase in accelerating fields due to the
stronger beam loading from the additional charge that’s injected.

Nitrogen concentration—The final free parameter under consideration is the dopant gas
concentration. At first glance, one might assume that the concentration of nitrogen in the
mixed gas would primarily scale the charge of the bunch. However, given the five outer shell
electrons of nitrogen that are already ionized in the leading edge of the driver, the dopant
concentration becomes essential for shaping the resulting plasma profile.

Specifically, the peak at the start of the plasma profile is primarily due to electrons from nitro-
gen atoms. Hence, an increase in nitrogen concentration leads to a larger density difference
in the plasma ramp that initiates the injection. This brings about a more substantial change in
the plasma wavelength, resulting in the beam being injected over more phases of the wakefield,
ultimately leading to a longer bunch length.

The rear of the wakefield at the start of the injection roughly determines the position of the
head of the bunch. With a higher initial plasma density, the bunch head is positioned closer
to the drive laser. As a result, in the second half of the plasma source, it will be situated in a
wakefield phase with a lower accelerating field, leading to a reduced final energy.
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3.2 Optimization

The intricate relationship between tuning parameters and beam parameters, as detailed in the
preceding section, is a feature of nearly all LPA setups. This complexity presents a significant
challenge when it comes to identifying an optimal set of input parameters that deliver superior
beam quality for a given task. For instance, demanding applications such as free-electron lasers
may require minimizing the energy spread of electrons while maximizing the beam charge or
current. However, other potential uses of LPAs may necessitate maximizing the beam energy
or the energy transfer efficiency between the laser and the accelerated electrons.

Moreover, the optimal set of input parameters could change due to iterative modifications of
the setup, such as adjustments to the plasma source geometry, or due to day-to-day variations
in uncontrolled environmental parameters in experiments. Consequently, a single setup
might require optimization on multiple occasions. Given the demanding and costly nature of
probing a setpoint in an LPA, either through Particle-In-Cell (PIC) simulations or experiments,
it becomes imperative to employ efficient numerical optimization methods. Therefore, as
discussed in chapter 2, Bayesian optimization is an obvious approach to this problem.

In the following the application of Bayesian optimization to produce high quality electron
beams will be demonstrated using PIC simulation of the LUX LPA setup that was discussed
in section 3.1.

3.2.1 Objective function

To set up an optimization workflow, the first step is to define an objective, which is the
optimization goal. This function maps the outcome of an optimization step to a scalar quantity
that is then optimized. In this case, the physical goal is to achieve optimal beam loading
conditions, which involves flattening out the average accelerating field while transporting
maximum beam charge. A reasonable objective is a combination of beam charge q and relative
energy spread AE /E. However, since it is often easier to increase beam charge than to decrease
energy spread, a simple objective of f(x) = q/(AE/E) would tend to find beams with high
charge at the cost of non-ideal beam loading. Conversely, if only energy spread is used as
the objective, the optimizer would find settings resulting in zero charge. To prevent this, the
objective function

f(x) =+/qlpCl/(AE/E)[%)] (3.1)

is used, where the charge is scaled with a square root to encourage the optimizer to find beams
with small energy spread. The goal of the optimizer is to maximize this objective function.

It’s important to acknowledge that this objective function was selected primarily through
domain knowledge and preliminary trial-and-error iterations. Even though the function
is grounded in physical reasoning, it’s not definitive in the sense that it holds ambiguities
regarding the final beam parameters. A more systematic approach, entailing the optimization
of multiple beam parameters using multi-objective optimization, will be explored later in this
chapter.
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Figure 3.6 - Comparison of the standard deviation (std) and the median absolute deviation (mad)
for ideal (left) and obscured signals (right). For comparison, the mad is scaled by 1.48 to
match the std in the ideal case.

For efficient optimization it is important to define an objective function that is robust against
noise and chaotic outliers. Otherwise, the surrogate model of the Bayesian optimizer needs to
introduce a larger noise level to interpret the data (see section 2.2) which can lead to overly
exploited regions of the parameter space. A common definition for the energy bandwidth
of an electron bunch is the standard deviation (std)!. However, this definition is prone to
overestimation of the energy spread in the presence of noise or small tails in the spectrum.
The median absolute deviation (mad) is a related width measure defined as

mad = median(|X; — X|) (3.2)

where X is the median of the dataset X1, ..., X,,. Due to its linear dependence on the distance
compared to the quadratic one of the standard deviation the mad is more robust against
outliers that are far away from the main signal.

The robustness of the median absolute deviation is demonstrated in fig. 3.6 where for compar-
ison the mad is scaled to match the standard deviation in the ideal case of a gaussian signal.
Once noise is added to the signal the standard deviation more than doubles while the mad
increases only slightly. Naturally, this is a constructed example, and improvements could
easily be made by limiting the range over which the signal is analyzed or employing denoising
methods.

However, during the optimization process, the shape and position of the signal, i.e., the
energy spectrum of the electrons, can substantially vary based on the input parameters. This
variation makes it challenging to anticipate suitable post-processing methods. Consequently,
to circumvent this issue, robust measures for the energy bandwidth (AE) and central energy
(E) are employed. As defined in the objective eq. (3.1), the objective uses the mad and the
median, respectively, to evaluate AE and E. This choice of robust statistics helps ensure the
performance measure isn’t significantly swayed by potential outliers or noise in the data.

!The standard deviation of the energy spectrum is commonly also referred to as the rms energy spread.
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Table 3.1 - Search space used for the Bayesian optimization of the LUX inspired LPA setup.

laser energy Ejeer 1.8 —2.7 J

laser pulse duration Tlaser 34 -51 fs

focus position Ztoc 3-175 mm

gas density Mgas 0.37-0.74  10*m~3
N, concentration CN, 1-15 %

3.2.2 Search space

The optimization process also requires defining the search space that the optimizer should
explore. Although Bayesian optimization is known for its sample efficiency, it can still fall
victim to the phenomenon known as the curse of dimensionality. This term refers to the fact
that the volume of the search space grows exponentially with the number of input parameters,
dramatically increasing the cost, i.e., the time required to find the optimum. Consequently,
a balance needs to be struck between using a few parameters to get a result in a reasonable
time, while still ensuring enough degrees of freedom to discover an optimal configuration.

Table 3.1 presents the parameters and their respective ranges that define the search space
employed in the following sections. These parameters are the same ones discussed in sec-
tion 3.1.3. The parameter ranges were chosen based on estimates where acceptable beam
quality could be expected and what is achievable in the experiment. These ranges serve as
constraints in the optimization process, guiding the optimizer towards feasible solutions.

The importance of using efficient methods like Bayesian optimization becomes evident when
estimating the number of simulations that would be required when trying to find the global
optimum using a systematic grid scan. Assuming that in order to find the global optimum
all parameters have to be tuned to a precision of 5 % of the full search space, the number of
configurations to test would be 20° = 3.2x10°. With a runtime of ~30 min per PIC simulation?
such a systematic scan would consume 1.6 X 10° h of computing time.

3.2.3 Bayesian optimization of localized ionization injection

Upon establishing the setup, search space, and an objective function, the problem can be opti-
mized. This is accomplished using Bayesian optimization with the g-expected-improvement
acquisition function [105], as implemented in the BOTORCH framework [103]. When opti-
mizing with PIC simulations, the advantage of running multiple evaluations in parallel can
be capitalized upon. The q in the name of the acquisition function represents its capacity to
evaluate using a batch of q concurrent simulations. However, the degree of parallelism that
makes sense is limited, as Bayesian optimization derives its efficiency from the information
used to construct the surrogate model. If many evaluations are run in parallel, the optimizer

2Run on a single nvidia A100 GPU on the DESY Maxwell cluster
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Figure 3.7 - Optimization of the beam quality of electrons accelerated in the LUX plasma source.
Bottom: Objective function values (eq. (3.1)) of individual simulations during the op-
timization (dots) and cumulative best result (solid line). Middle row: Selected setups
tested by the optimizer. Shown are the profiles of the mixed gas (magenta) with nitrogen
concentration, the pure hydrogen (blue) and the resulting plasma density (grey) as well
as the position of the laser (dashed line) with the pulse energy and duration. Top row:
Resulting longitudinal phase spaces (§ — E). The corresponding iterations are indicated
by the letters in the objective plot. The optimization was run for 400 iterations but only
the first 80 are shown here after which no further improvement was observed indicating
that the global optimum was found.

suggests many setpoints based on the same information, thereby reducing the utility of each
of these suggestions. In this study, g = 4 simulations are executed concurrently, offering an
decent trade-off between computational efficiency and information gain.

The results of 80 iterations of Bayesian optimization are presented in fig. 3.7. To begin the
process, six randomly selected configurations are simulated, which are then used to generate
a rough Gaussian process surrogate model of the problem.

The beam resulting from these initial evaluations is shown in fig. 3.7(a). It exhibits a very
broad energy spectrum, ranging from 0 MeV to nearly 300 MeV, while also having a charge
of 107 pC. The high charge suggests that the broad spectrum is due to overly strong beam
loading, where the wakefield is reversed, resulting in less acceleration or even deceleration of
the bunch tail. The suboptimal conditions of this configuration stem from the laser focus being
too close to the mixed gas region. The high laser intensity leads to a large ionization volume
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and the injection of a large amount of charge that is not supported by the weak wakefield,
which is due to the long pulse duration of 51 fs.

Following the initial random steps, the optimizer selects the subsequent input parameters
using to the acquisition function, i.e., points with a high expected improvement over the
current optimum according to the surrogate model. With this, after 15 evaluations a first
configuration is found that gives a relatively flat phase space (fig. 3.7b). The excessive beam
loading caused by too much charge is compensated by reducing the laser energy and shifting
the focus downstream and thereby reducing the intensity in the mixed gas region. Additionally,
the nitrogen concentration is reduced and with that the amount of injectable charge. In
combination, the bunch charge is reduced to only 3 pC, which however matches the wakefield
for this configuration and gives a phase space that is flat over a large fraction of the beam.
Compared to the phase space in fig. 3.7a the beam is much shorter. This is caused by the lower
nitrogen concentration and the resulting low plasma density in the injection region of the
plasma. The peak in the beginning of the plasma now has almost the same plasma density
as the following plateau. The plasma wavelength at this position where injection starts to
occur determines the phase of the head of the bunch and the wavelength in the plateau the
phase of the tail, i.e., the bunch is truncated by the defocusing region of the wakefield. The
fact that the plasma densities and with that the plasma wavelengths are almost balanced in
this configuration results in the short bunch length.

After ten more evaluations, the optimizer finds a configuration that gives a significant improve-
ment of the objective (fig. 3.7c). This is the result of again increasing the N, concentration
and slightly raising the laser energy. As a consequence, the charge increases to 19 pC and the
beam becomes longer again. With this, the longitudinal phase space is now flat over a larger
fraction than before which reduces the projected energy spread to 0.8 %.

Over the course of the next fifty iterations the objective is gradually increased before reaching
a maximum after a total of 70 evaluations (fig. 3.7d). To get there, the nitrogen concentration
is further increased while the beam loading is kept at an optimum by increasing the laser
energy to account for the additional charge.

Figure 3.8 shows the phase space resulting from this optimum in more detail. The increase of
the nitrogen concentration leads to a long beam with 8 um head to tail bunch length which
combined with a charge of 46 pC gives a peak current of 2.5 kA. By optimizing the wakefield to
match the beam loading generated by the bunch, the majority of the longitudinal phase space
is flattened resulting in a projected energy spread of 0.7 % (mad). The standard deviation of
the spectrum is comparably large with 4.5 % which is caused by the curled up tail of the bunch.
This tail accounts for less than 10 % of the beam charge and is a result of the strongly non-linear
field near the back of the wakefield bucket. Figure 3.8 also shows the transverse phase spaces
of the optimal setup which were not directly optimized. As expected from ionization injection,
the horizontal emittance, i.e., the polarization plane of the laser, is larger than the vertical.

The observed beam emittance, despite not being a direct target of the optimization, remains
relatively small with values of 1.4 and 0.3 mm mrad. This could be attributed to the optimiza-
tion’s focus on minimizing the energy spread. Both energy spread and beam emittance are
affected by the injection volume [80], suggesting a connection. If the beam emittance is of
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Figure 3.8 - Longitudinal (left) and transverse (right) phase spaces from the optimized setup. The
current profile and the energy spectrum are shown as projections on the x and y axis,
respectively.

critical importance for the intended application, it can be included in the objective function
for direct optimization. This option will be explored further later in this chapter. Indeed, the
task of experimentally measuring emittance is relatively more intricate compared to assessing
charge and spectrum, leading to a higher level of complexity when it’s incorporated into
optimization procedures.

Figure 3.7 illustrates a rapid decrease in the objective values following the discovery of the
optimum. This pattern suggests the optimizer is shifting toward a more explorative approach,
having identified that the region surrounding the perceived optimum no longer offers signifi-
cant anticipated improvement. The optimization process was carried out over 400 iterations
without discovering a better configuration, suggesting that the identified optimum is likely a
global optimum within the search space, or at least in close proximity to it.

3.2.4 Surrogate model based stability analysis

The subtle adaptations of the tuning parameters required to reach the improvement from
fig. 3.7b to fig. 3.7d indicate a certain sensitivity of the system to at least some of the inputs. In
practice, this can have severe implications on the achievable stability because of unavoidable
fluctuations of the input parameters. Therefore, proper analysis of the behavior of the objective
and its response to input variations is highly desirable. Typically, this would require to run
numerous additional simulations to scan the surroundings of the optimum or more ideally
even simulate the expected jitter with sufficient statistics. This task can quickly add up to
hundreds or thousands of additional costly evaluations.
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Table 3.2 — Lengthscale hyperparameter of the BO surrogate model. Values are given in SI units and
normalized to the search space range to show the relative importance of each parameter.

SI NORMALIZED
laser energy Elager 0.15J 0.16
laser pulse duration Tlaser 17.5fs 1.03
focus position Ztoc 0.05 mm 0.01
gas density Ngas 0.0210*m=3  0.07
N, concentration CN, 2.05% 0.15

For a more efficient way of estimating the behavior of the system, an extremely valuable
property of Bayesian optimization is that it provides insight beyond the optimization result
through its model based nature. The surrogate model that is used to guide the optimization
also allows to make statements about the importance of the individual tuning parameters.
Further, it allows to make quick predictions about the system at points that have not yet
been evaluated. With this the robustness of the optimization result to variations of the input
parameters can be estimated.

One benefit that Gaussian process models have over other complex regression methods like
neural networks is that their hyperparameters are actually describing the characteristics of
the data. Recall from section 2.2.2 the definition of the RBF kernel:

2
k(x,x') = exp (—%) . (3.3)

Actually the surrogate model for the optimization in section 3.2.3 uses a Matérn kernel but
the reasoning is the same. The kernel of a Gaussian process model describes the similarity
between the points x and x’. The lengthscale hyperparameter ! describes over which length
this similarity decays. Consequently, if [ is large the modeled function will only slowly change
as the distance between x and x’ increases. On the contrary if [ is very small it may change
rapidly. For a multi dimensional model like the one used for Bayesian optimization l is a vector
with one entry per tuning parameter. It therefore describes the sensitivity of the objective to
variations in each of the input parameters.

The lengthscale parameters from the surrogate model of the optimization above after 400
iterations are shown in table 3.2. The values for [ are shown in the corresponding units of the
input parameters and normalized over the range of the search space. The former can be seen
as a rough lower estimate on how much precision and stability of the tuning parameters is
required to hit the found optimum reliably. The normalized representation gives an impression
about the importance of each parameter for the optimization over the given search space. For
instance, the normalized lengthscale for the pulse duration is close to one, indicating that
within the range of the optimization this parameter has only very little influence. According
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to this analysis the focus position is by far the most influential parameter, where the objective
changes significantly for variation on the order of 1 % of the search space.

A more detailed impression of the interplay between the tuning parameters and the beam
quality can be gained by evaluating the surrogate model directly. Figure 3.9 shows the predicted
objective function by the model for slices through the search space around the optimum. The
first thing that stands out is again the high sensitivity of the objective to changes of the laser
focus position. This is probably best seen in the scan over z,. that is shown in the center
of the figure. The region over which the objective is large is extremely narrow compared to
the range over which the setup was optimized. In fact, the objective falls of to 50 % over just
100 wm of focus shift.

Apart from the relatively simple information about the importance of the tuning parameters
fig. 3.9 indicates some more complex interplay between the variables. For example, the scan
over the nitrogen concentration and the laser energy (fourth row, first column) shows an
interesting behavior. Starting from the optimum (X), when reducing the N, concentration, the
objective decreases as one would expect from the loss of charge associated with it. However,
at the same time the dependency on the laser energy seems to become less strong as indicated
by the widening of the bright patch along the x-axis. This hints towards the fact that with
this setup tradeoffs between the beam quality and the stability of the system can be made by
adapting the setpoints. A deeper discussion on this aspect will follow later in this chapter.

Figure 3.9 also again gives an impression about the complexity of the optimization problem.
Although only showing a very small fraction of the total search space volume, the individual
slices already show large dark regions, i.e., regions where the objective is expected to be small.
Consequently, beams with high beam quality can be expected only in a very small volume of
the parameters space.

The predictive power of the surrogate model should however be treated with caution. This is
because the data that the surrogate model is conditioned on was taken with the purpose of
finding the optimum and not maximising the information about the system. For example, the
optimizer would not try to sample regions in which the objective is expected to be very small
as these values would probably give low values of the acquisition function. Consequently, this
means that the surrogate model is likely inaccurate in these regions. The beauty of using a
probabilistic model, however, is that these inaccuracies or uncertainties are quantified and
with that the level of trust that can be put into the model.

Making predictions far away from the training data is most inaccurate when the lengthscale
of the model is particularly small as for the focus position in this example. In this case the
correlation between two points is only present over a small distance. Consequently, a sampled
data point provides predictive information only for a very confined region around it. For the
focus position it can be seen in fig. 3.9 that when moving away from the sampled point in the
center of the peak the uncertainty quickly increases as one moves away from it. Additionally, in
(Ztoc» Ngas)-plot discrete islands of high objective values can be seen. Although this is physically
thinkable it is more likely a result of the high degree of localization of information and missing
data to model the correct behavior.

80



3.2 Optimization

T T
(@) —_
(@]

-

50 - 10

= 40 f
- 10
o, 6
& —— £
4
)'( - 10
s 10 f
° 5
-0
- 10

g 0.6
< f

0.4 | Lo

20 25 5 10 050 0.75
Eraser Tlaser Zfoc CN, Ngas

Figure 3.9 - Surrogate model generated from the Bayesian optimization run in section 3.2.3. Shown
are the predicted objective function by the model (brighter equals higher) around the
optimum for all parameter combination (lower triangle) and scans over the search space
with corresponding model confidence for the individual parameters (diagonal). The x
indicates the position of the found optimum.
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Figure 3.10 - Validation of the surrogate model (black curve, 1,2, 3 — o confidence as shaded areas)
around the optimum through additional PIC evaluations (blue dots).

81



3 Bayesian Optimization of Plasma Accelerator Simulations

0.02 0.02
mean: 48.4pC mean: 271.6 MeV

std: 21.6pC std: 25.9MeV

Q 0.01 4 F0.01 o
OOO I T T I T T T OOO
0 50 100 150 200 250 300
Q (pC) E (MeV)
1.0 15
—— prob. density 10 é
2 054 —— cumulative ZL%
. -5
<
T T T T T T O
0 5 10 150 25 50 75 100

DNF/E (%) Q (pC)

Figure 3.11 - Behavior of the beam parameters when subject to laser fluctuations. The surrogate was
evaluated around the optimum with 10° samples to resemble jitters in the laser energy,
pulse duration and focus position (0.6 %, 2 %, 160 um rms jitter with independent normal
distributions). Shown are the resulting probability density functions for the beam charge
(top left), energy (top right), relative energy spread (bottom left) with its cumulative
distribution(black line) and median (grey dashed line) as well as the correlation between
the charge and the relative energy spread (bottom right).

To test the accuracy of the surrogate model in the direct vicinity of the optimum, an additional
scan of the focus position was performed. Figure 3.10 shows the result of these simulations
and the predicted objective by the surrogate model. The test simulations are unknown to
the model. Although the model slightly underestimates the true objective function far away
from the optimum, the true values of the test simulations stay within the uncertainty of the
model.

With indication that the surrogate model is reasonably accurate around the optimum it can
be used to model the behavior of the electron beam in the presence of realistic fluctuations of
the laser system.

Instead of modeling the objective function, the data from the optimization is used to build
Gaussian process models for each of the beam parameters directly, i.e., charge, energy and
energy spread. The experimental conditions are then simulated by probing the model around
the optimum while adding random fluctuations to the laser parameters. These jitters are
independent and normally distributed with rms amplitudes assumed based on previous
measurements at LUX [5].

Accordingly, the laser energy is assumed with a jitter of 0.6 %, the pulse duration with a 2%
jitter and the focus position with a shot-to-shot variation of 160 um. Since the cost of evaluating
the surrogate model is vanishingly small compared to a PIC simulation it allows to probe
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Figure 3.12 - Predicted fraction of shots with less than 1% energy spread as a function of the laser
stability. Grey lines mark the required stability improvement in all laser parameters
(solid line) or only the focus position (dashed line) to reach a percentage of 50 or 95.

the system with very large statistics. Here, to model the expected stability of the electron
parameters the model is probed with 10° samples. Figure 3.11 shows the resulting probability
density functions for the electron parameters when subject to realistic shot-to-shot variations
of the laser. From the distributions it is immediately clear that the high beam quality that is
suggested by the optimization result cannot be maintained for every shot with the assumed
laser fluctuations. The analysis suggests that for the beam charge a jitter of 43 % and for the
energy of nearly 10 % can be expected. The energy spread has a very asymmetric distribution
with a long tail towards high values. For this distribution the rms value is not a very descriptive
quantity instead it makes sense to look at properties of the cumulative distribution. Assuming
that applications need a certain energy spread to operate, a useful quantity is the fraction of
events that result in beams with this spread or better. In this case only 28.4 % of the events
give an energy spread of 1 % or better.

The asymmetry of the energy spread distribution is a result of the beam loading effects that are
essential to generate the high quality electron bunches. As shown in the bottom right panel
in fig. 3.11, the low energy spread, i.e., ideal beam loading, is only achieved for one specific
charge. If the charge is higher or lower, i.e., the wake is under- or overloaded, the energy
spread deteriorates so that in essence it can only get larger which then gives the asymmetric
distribution seen in fig. 3.11.

The stability of the laser assumed for the analysis in fig. 3.11 is the current state of the art in
laser plasma acceleration [4, 5, 119] and is mainly limited by low repetition rates of the lasers
and therefore missing feedback to stabilize against shot-to-shot fluctuations. With the current
advancement toward higher repetition rate systems, a steady improvement in stability is a
foreseeable. Therefore, it makes sense to estimate the improvement that is required for the
optimized setup to produce beams with a defined shot-to-shot reproducibility.
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For this purpose, the jitter of the laser parameters from before was scaled and the surrogate
model was again sampled with the improved laser stability. As a figure of merit the percentage
of beams with less than 1 % energy spread is used. Figure 3.12 shows scans over the stability of
all three laser parameters and only the focus position since this is the most sensitive parameter
according to the analysis above.

To go from the initial 28 % of beams that have sub-percent energy spread to 50 % the laser sta-
bility needs to be improved by roughly a factor of two. Until this point the jitter of the electron
parameters is dominated by the focus position jitter so that an improvement in only z;. yields
nearly the same stability as improving all parameters. To improve the electron reproducibility
further the other laser parameters become more and more relevant. In order to go to the point
where 90 % of the beams have sub-percent energy spread the focus stability alone would have
to be improved by nearly a factor of twenty. Improving all laser parameters simultaneously
would still necessitate a stability that is ten times superior to the best technology currently
available.

3.3 Multi-objective optimization

The previous section’s statistical analysis reveals that the beam quality optimum, identified
through Bayesian optimization, is greatly sensitive to input parameters, most notably the
focus position. While enhancing beam quality remains a core challenge for plasma-based
accelerators, the need for improved shot-to-shot stability, a previously often overlooked issue, is
equally critical. Foreseeable advancements in laser technology in the coming years will address
some of these stability issues. Yet, considering the extreme sensitivity of the optimization
result, these advancements alone won’t be enough to attain the high stability levels demanded
by rigorous applications. Therefore, designing LPAs that are naturally impervious to laser
driver fluctuations becomes a necessity.

A straightforward strategy to simultaneously tackle quality and stability challenges could
involve incorporating the stability of a setpoint into the objective function. However, the
balance between beam quality and stability may vary depending on the application. Some
applications might be comfortable with lower beam quality but require higher stability, or vice
versa. In the worst case scenario, it could be that higher quality beams inherently possess lower
stability with a given setup. In such a case, it’s essential to strike the right balance between
the two, a balance that best serves the needs of the particular application in question.

As discussed in section 2.3.4, problems like this with multiple potentially competing objectives
can also be solved with a Bayesian optimization approach. To do so, instead of choosing points
to evaluate based on the expected improvement of a single objective, the acquisition function
in this case describes the expected improvement of the hypervolume that is spanned up by
all non-dominated solutions. With this the optimizer tries to find points closer and closer to
the real Pareto front, i.e., the hypersurface where one objective can only be improved at the
cost of another one. Finally, it will provide a set of solutions that are optimal tradeoffs of the
competing objectives.
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Figure 3.13 - Multi-objective Bayesian optimization of the beam quality f (eq. (3.1)) and its robustness
against fluctuations of the focus position d f (eq. (3.4)). Left: Simulations results (grey)
and the Pareto optimal solutions (blue circles) found during the optimization. Together
with the reference point (red) the optimal solutions span a hypervolume (blue area) that
acts as the acquisition function for the Bayesian optimization. The dashed line indicates
the optimum found with single objective optimization in section 3.2.3. Right: Increase
of the hypervolume during the optimization process.

3.3.1 Beam quality and stability tradeoff

To find the optimal tradeoffs between the beam quality characterized by the objective function
f in section 3.2 and robustness against laser fluctuations a second objective needs to be defined
that describes the stability of a given setpoint. As a simple measure for this the standard
deviation of f is used when evaluating a setpoint with varying laser parameters, i.e.,

(34)

where f is the average of f over all N evaluations.

In practice, evaluating this stability objective including variations of all parameters would
require to run many simulations at each iteration of the optimization. Instead, to be more
efficient only the most sensitive parameter is varied, i.e., the laser focus position, and only
three simulations are run for each optimization step. Accordingly, each setup is simulated
at the position suggested by the optimizer and additionally at shifted laser focus positions of
+100 um. The beam quality f at the center position and the standard deviation of f are then
fed back as objectives.

The multi-objective optimization follows a similar path to the previous single-objective opti-
mization, with three points concurrently computed, but each point now encompasses three
simulations with varying focus positions. Upon completion of one set of simulations, the sur-
rogate model gathers the new data, and the acquisition function is maximized accordingly.
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As explained in section 2.3.4, for multi-objective Bayesian optimization, the enhancement of
the hypervolume, defined by the space between the non-dominated evaluations and a reference
point, is employed as the acquisition function. A solution is considered non-dominated if
there’s no other existing point that outperforms it across all objectives. The reference point
outlines the region of interest, directing the optimizer’s search for optimal solutions.

This reference point is set somewhat arbitrarily but is typically placed just below the acceptable
limit for each objective. In the current case, it’s positioned at 3 and 4 for the beam quality
objective f and its stability d f, respectively. This placement prevents the optimizer from
wasting time exploring areas producing either poor quality yet stable beams or the reverse.

Throughout the optimization loop, as illustrated in the right plot of fig. 3.13, the hypervolume
incrementally expands. This progression brings about two implications: the discovered
solutions gradually converge towards the system’s true Pareto front, and the front’s coverage
improves. This enhancement signifies the identification of more diverse optimal tradeoffs
between the objectives.

The final hypervolume, represented as the blue-shaded area in fig. 3.13, demonstrates the
results of this multi-objective optimization process.

An examination of the Pareto optimal solutions, depicted as blue circles in fig. 3.13, indicates
that no single solution simultaneously optimizes beam quality and stability. It becomes evident
that these two objectives are in competition: an enhancement in beam quality f corresponds
to an increase in sensitivity d f.

Specifically, trying to boost the beam quality factor beyond roughly 6 results in a significant
decline in stability. This decline is represented by a jump in the Pareto front and a subsequent
rise in the slope between f and df. When the beam quality factor is below this threshold, d f
is relatively independent of f and remains at a low level.

The point corresponding to the highest beam quality is proximate to the solution identified
via single objective optimization, which is represented by the green dashed line in fig. 3.13.

Examining the input parameters of the optimized setups, as displayed in fig. 3.14, offers
insight into the abrupt shift in the Pareto front that distinguishes highly stable beams from
high quality ones. The figure illustrates the beam quality objective f as it relates to the
individual input parameters of the system, with blue circles indicating the points correlating
to optimal solutions.

The observed Pareto front doesn’t correspond straightforwardly to any single input parameter,
indicating that navigating towards optimal solutions involves adjusting all available parameters
of the system. However, some patterns emerge in the form of clustering in the input space,
providing some explanation for the observed features of the Pareto front.

Notably, points on the Pareto front corresponding to low f values (thus indicating high
stability) all feature the lowest nitrogen concentration of 1% and a focus position close to
the mixed gas region. As addressed in section 3.1.3, lower mixed gas concentration results in
shorter bunches. Any potential chirp on these beams would have a less dramatic impact on
the projected energy spread, leading to less variation of f and therefore a smaller df.
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Figure 3.14 - Tested input parameters (grey) plotted against the beam quality objective f and configu-
rations that give optimal tradeoffs between stability and beam quality (blue). The single
objective optimum is indicated by the green circle.

However, decreasing the nitrogen concentration inherently reduces the amount of injectable
charge. To offset this, the focus must be shifted upstream to augment the ionization and
injection volume.

The points with the highest beam quality factor make up another cluster in input space. Here,
the focus position is set nearly at the end of the density profile. This allows to significantly
increase the nitrogen concentration without injecting too much charge to overload the wake-
field. This should result in the injection of long beams with potentially small slice energy
spread. If the phase space of such long beams is fully flattened it results in a very narrow
energy spectrum with high peak density like the one found with single objective Bayesian
optimization in the previous chapter.

As discussed in section 3.1.3, this precise flattening of high order correlations on the longitu-
dinal phase space can be achieved by tuning the laser energy. Consequently, the points on
the high quality end of the Pareto front do not use the full laser energy that is available but
a slightly reduced one that presumably flattens the phase space. Figure 3.13 also shows the
inputs for the single objective optimization before. They are fairly close to the setpoint with
the highest beam quality in all parameters except the gas density. As shown in the previous
section this point represents a very unstable optimum which therefore makes it extremely
challenging to find in the large parameter space. Still, the multi-objective optimizer was able
to find an alternative optimum with nearly equivalent beam quality.

To give explicit examples for the presumed effects discussed above, fig. 3.15 shows the electron
beams that correspond to the setpoints at each end of the Pareto front and one intermediate
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Figure 3.15 - Longitudinal phase spaces and projected energy spectra for different tradeoff between
the beam quality objective f and the stability objective df.

tradeoff. The final longitudinal phase spaces are shown for the intended focus position z;,,
and for a +100 um offset, i.e., the set of simulations that is used to calculate d f during the
optimization loop.

The first row shows the configuration with the highest stability. As expected from the low
mixed gas concentration, the bunches are very short with a length of ~3 um. Additionally, the
beam charge is changing only very slightly when the focus position is varied. The combination
of short beams with stable beam loading conditions leads to a projected energy spectrum that
is nearly unchanged when the focus position shifts. However, since the focus position is closer
to the mixed gas region, the injection volume is increased which leads to the large slice energy
spread that can be observed. As a consequence the projected energy spread is on the order of
2%.

At the other end of the spectrum, when stability is entirely sacrificed for the sake of beam
quality, as depicted in the bottom row of fig. 3.15, the resulting beams exhibit a bunch length of
approximately 8 um and a significantly reduced slice energy spread. This decreased slice energy
spread results from the far downstream focus position and the high nitrogen concentration
employed for this setpoint.

With the reduced laser intensity, the injection volume shrinks, and the steep density transition
caused by the high nitrogen concentration prompts a rapid change in the wakefield phase
where charge is injected. As a result, each longitudinal slice of the beam undergoes only a
brief injection event, leading to a small energy spread. Fully flattening this lengthy, narrow
phase space reduces the projected energy spread to 0.94 %.
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Figure 3.16 - Predictions of the surrogate model for variations of the focus position around the three
setpoints in fig. 3.15. Circles indicate the simulated points of each setting and the shaded
area marks the three sigma confidence interval of the model predictions.

However, variations in the focus position can cause the beam charge to fluctuate by more
than 25 %. This substantial alteration in beam loading imprints a strong chirp on the phase
space, and due to the lengthy bunch, it triggers a considerable increase in the projected energy
spread. Consequently, the energy spread can surge above approximately 2 %.

The intermediate case in the center row of fig. 3.15 is an example how the objectives can be
traded arbitrarily against each other by having knowledge about the Pareto front of the system.
The beams here are still changing significantly under variations of the focus position but since
they are slightly shorter than the bottom case the relative effect on the projected energy spread
is less severe.

Further understanding of the three setpoints can be obtained by utilizing a surrogate model
trained on the data gathered during the optimization. Instead of predicting f and d f as in the
optimizer’s case, this model is built to predict the energy spread and the charge. Figure 3.16
presents the predicted properties of the above three setpoints as functions of the laser focus
position.

According to the model, all three settings function as local optima for the energy spread,
suggesting that the best energy spread is achieved at the design focus position (z;, ). Inter-
estingly, all three settings generate highly similar energy spread for a focus position offset
of +£100pum. As a result, if the focus position jitter falls within this range, the high-quality
setpoint (c) would consistently generate a superior energy spread beam.

However, this phenomenon is primarily a consequence of the parabolic relationship between
the energy spread and the focus position, which leads to a small slope around the focus. As
one moves further from the design focus position, the three cases begin to diverge significantly.
While the energy spread of the stable case (a) remains nearly constant across the entire range,
the intermediate case (b) climbs to 7%, and the high-quality case escalates to nearly 15%
energy spread.

Similarly, the charge for the stable setting remains nearly constant across the full plotted range,
whereas the other two settings fluctuate between 0 pC and nearly 200 pC. Although the slope

89



3 Bayesian Optimization of Plasma Accelerator Simulations

10" 3 —— prob. density
] ——— cumulative
109 3
a .
1071 3
1072
0 2 4 6 8 10
AE/E (%)

Figure 3.17 - Distributions of the energy spread for the configurations in fig. 3.15 given realistic laser
parameter fluctuations.

of the intermediate case is slightly lower than the high-quality case, the charge it produces is
marginally higher.

While the goal of this optimization was to identify configurations that remain resilient against
variations in the driver laser parameters, the discussion until now has largely centered on
the effects of the focus position, based on the presumption that it significantly influences the
overall system stability. The advantage of the surrogate model is its ability to simulate the
system under any input parameters, thus allowing the examination of realistic fluctuations
across all laser parameters.

To compare the three setpoints from fig. 3.15 under realistic conditions 40 000 samples are
drawn from the surrogate model for each setpoint with normally distributed random variations
of the laser parameters. The rms jitters of the laser energy, pulse duration and focus position
are 0.6 %, 2 % and 160 um, respectively, which is the same as in section 3.2.4 and typical values
at LUX.

The resulting distributions of the predicted energy spread are shown in fig. 3.17. Even with
fluctuations in all parameters the probability mass of the stable setpoint is extremely localized
compared to the other two setpoints. The most frequent energy spreads, i.e., the peaks of
the three distributions at 1.9 %, 1.5 % and 1.1 %, still reflect the beam quality difference of the
three setpoints. However, due to the long tails of the higher quality settings their mean energy
spread is actually significantly larger than that of the stable setting—3 % for setting (b) and
3.2 % for the highest quality setting (c) and still 1.9 % for the more Gaussian distribution of
the stable setting (a).

These insights underscore the importance of tailoring the optimal tradeoffs within the system
to match specific application requirements. For instance, if an application necessitates the
best possible energy spread, using a configuration like (c) is unavoidable. However, for an
application with more lenient beam quality constraints—for example, a permissible energy
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Figure 3.18 - Multi-objective optimization of the setup with nitrogen (green) and with argon (violet) as
the dopant gas. Left: Obtained Pareto fronts of the quality objective f and the sensitivity
objective d f. Right: Energy spread stability of the most stable setpoints for each scenario
under the influence of realistic laser jitter. The probability distributions are generated
by sampling the surrogate models of the respective optimization runs. Both setpoints
have comparable median energy with 550 MeV (nitrogen) and 556 MeV (argon).

spread of less than 2 %—a setup like (a) could actually yield a greater proportion of shots
within tolerance, despite a poorer ultimate energy spread. This threshold is delineated by the
cumulative distributions in fig. 3.17. Below 2 %, the high-quality settings have a clear advantage
as the stable setting simply does not produce such beams. Beyond this point, configuration (c)
consistently delivers more shots within the specified tolerance. The cumulative distributions
also reveal a relatively marginal advantage of the intermediate setpoint in terms of energy
spread stability compared to the high-quality setting.

Finally, an essential question emerges: how could the alignment of these two objectives be
improved? More specifically, what modifications could lead to the production of superior
quality beams that also display enhanced stability? According to the optimization results,
which are considered to approximate the true Pareto front, such an improvement seems
impossible within the current setup and parameter space. However, inspection of the input
parameters used to generate the Pareto front depicted in fig. 3.14 suggests that the present
system might be restricted by the confines of the explored parameter range. Specifically, the
inputs leading to optimal solutions—parameters such as gas density, laser energy, and nitrogen
concentration—often lie at the limit or closely approach the boundaries of the parameter
range.

An alternative to extending the search space would involve fundamentally modifying the cur-
rent setup—for instance, by changing the dopant gas. However, comparing two distinct setups
can pose certain complexities, as each may have specific advantages depending on different
aspects. The Pareto front serves a useful role in this context by offering a comprehensive and
equitable comparison of the overall capabilities of a setup. This provides valuable insights
that could inform choices about potential modifications to the existing system.

Based on the indication that the current setup is potentially limited by the available laser
energy, the setup was reoptimized with argon as the dopant gas. The relevant ionization
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levels in argon have a lower binding energy and therefore require a lower laser intensity to be
accessed.

The side-by-side comparison of the Pareto fronts, achieved with each dopant gas, is displayed
in fig. 3.18. This visual comparison reveals that the hypervolume attained with argon exceeds
that of nitrogen. Notably, argon is seen to generate beams with similar quality metrics f,
but exhibiting superior stability. As a specific example, fig. 3.18 presents the energy spread
distributions for the most stable setpoints of each dopant, under the same laser jitter conditions.
Remarkably, when argon is utilized, the entire probability mass could be restricted below a
2 % energy spread. However, it’s crucial to underscore that the best quality beam realized with
argon falls short of the optimum quality accomplished with nitrogen. This observation further
emphasizes that the selection of the setup, or in this case the dopant, hinges significantly on
the specific beam parameters and tolerances that need to be satisfied. Hence, the choice truly
depends on the particular application requirements and operational constraints.

3.3.2 Beam parameter optimization

The previously discussed cases illustrate how Bayesian optimization serves as a tool for identi-
fying optimal tradeoffs in a system with competing objectives, customized for a specific appli-
cation. Technically, this optimization scenario bridges single and multi-objective optimization:
the quality objective f incorporates multiple sub-objectives, including the maximization of
charge and beam energy and the minimization of energy spread. Yet, this approach can result
in ambiguities in the final outcome. For instance, a combination of smaller energy spread
and lower charge or larger energy spread and higher charge can yield identical objective
values. As demonstrated earlier, disentangling these objectives into their basic elements and
directly optimizing them allows more control. Through understanding the entire Pareto front
of all pertinent beam parameters, the system can be fine-tuned to meet the exact operational
needs of a given application. Moreover, by understanding the transformation from the input
parameter space to the beam parameters defining the Pareto front, dynamic fine-tuning of the
beam’s properties for optimal results can be achieved.

To explore the versatility of the system in terms of varying the electron beam properties,
MOBO is run with four different beam quality metrics as objectives. These are the divergence,
emittance, energy spread and charge of the electron beam. The divergence and emittance are
averaged over the horizontal and vertical plane.

In addition to these four objectives, a fifth objective is introduced that is the absolute difference
of the median energy to a defined reference, i.e., |E — E,|. This objective is added to encourage
outcomes in a limited energy range, making the results comparable. In the following E|, is set
to 250 MeV. Combined, the objectives can be summarized by the vector f:

f = (0,60, AE, Q, |E — Ey). (3.5)

The reference point for the optimized hypervolume is given in table 3.3 and is chosen to
promote a baseline of acceptable beam parameters for all objectives.
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Table 3.3 — Reference point defining the lower bounds (upper for minimized objectives) of the hyper-
volume that is maximized in the multi-objective optimization.
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Figure 3.19 - Pairwise correlations of objectives (black) and inputs (blue) of the five dimensional
Pareto front.
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The optimization process ran for 1000 iterations with three concurrent simulations. The result
was a Pareto front comprised of 299 non-dominated solutions. Naturally, comprehending
a five-dimensional Pareto front is more complex than the two-dimensional case previously
discussed. Yet, a general understanding of the relationship between the objectives and tuning
parameters can be deduced by examining their correlations, as shown in fig. 3.19. This figure
illustrates the pairwise correlations between the tuning parameters and objectives of the
optimal solutions identified during optimization.

Some correlations can be attributed to the basic properties of localized ionization injection
discussed earlier, while others are a result of simultaneous tuning of multiple parameters.
The most pronounced correlation is between charge and emittance, as seen in fig. 3.19a. This
vividly highlights the dilemma of handling conflicting objectives. Any increase in charge
invariably leads to an elevation in beam emittance—a compromise that appears inescapable
under the conditions of the setup. This is expected when considering that the increased charge
is a consequence of a larger injection volume, which also expands the occupied transverse
phase space volume of the bunch, hence increasing the emittance.

On the other hand, an unexpected and somewhat counterintuitive relationship is observed
between the focus position and charge, as shown in fig. 3.19b. Previous discussions suggested
that to adjust the charge using only the longitudinal focus position, the focus should be
moved upstream, that is, to smaller values, to intensify the laser in the mixed gas region and
subsequently increase the charge. However, in the discovered Pareto front, the focus position
is shifted downstream as the charge increases.

This can only be the result of a combined adjustment of laser energy, gas density, and focus
position, which collectively create optimal conditions during acceleration. Indeed, the Pareto
front explicitly links the focus position to gas density, as evidenced by the clear correlation
between the two, illustrated in fig. 3.19c. Considering that increasing the magnitude of these
two parameters has contrasting effects (as previously discussed in section 3.1.3), coordinating
their adjustments could be a way to finely tune the electron parameters while ensuring ideal
beam loading conditions.

The Pareto front has an additional feature that is worth noting, which is the behavior of the
beam energy offset relative to the target energy of 250 MeV. When beams are constrained to
be close to the reference energy, the gas density is restricted to a certain range. This effect
is reflected in the V-shaped distribution shown in fig. 3.19d, which reaches its minimum at
approximately 0.45 x108cm™3. Furthermore, since the focus position and gas density are
linked, a similar V-shaped correlation can be observed between the energy offset and the focus
position.

These examples highlight some of the complexities within the Pareto front—intricacies that
aren’t readily apparent when investigating the system under single objectives and single tun-
ing parameters, such as through dedicated parameter scans. The visualization in fig. 3.19
highlights the most prominent characteristics, but more subtle features, such as the precise
interplay between focus position, density, and laser energy, remain obscured due to the simulta-
neous variation of all parameters. Thus, fig. 3.19 should primarily serve as an illustration of the
complexity of the Pareto front in a system with multiple tuning parameters and objectives.
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Figure 3.20 - Optimal configurations for each objective presented in a parallel coordinate plot. Each
line shows a single optimal setpoint, color-coded by the objective it optimizes. Lines
are for guidance and do not imply interpolation. The plot shows that optimal setpoints
cluster around specific values for each objective, illustrating the unique requirements of
each optimization task.

The impact of the different competing objectives can be observed by examining the regions
of the input parameter space that they tend to occupy. As depicted in fig. 3.20, the input
parameters of the top five configurations for each beam quality objective exhibit distinct
preferences. While pulse duration tends to be towards the lower end of the available range
for all but one configuration, each objective demonstrates specific preferences within the
available range for the other input parameters.

The distinct usage of the input parameters to optimize each objective naturally leads to
different characteristics of the accelerated electron beams. The optima of each objective while
keeping the others in the preference region defined by the reference point in table 3.3 are
depicted in fig. 3.21. Notably, all objectives produce reasonably flat phase spaces, and only the
maximum charge case comes close to the 10 MeV energy spread limit. This confirms that the
optimization approach of keeping all objectives as good as possible in all configurations in
fact works.

The phase spaces depicted in fig. 3.21 exhibit noteworthy behaviors worth discussing indi-
vidually. The first phase space showcases the case with the optimal absolute energy spread.
The beam has a nearly completely flattened longitudinal phase space with only a very minor
tail with a slight energy deviation. Notably, the median energy is on the lower end of the
acceptable energy offset at 200 MeV. Further accelerating the beam to the desired 250 MeV
might expose it to detrimental effects, such as remaining variations in the accelerating field,
potentially causing a slight increase in the absolute energy spread. This could be the rationale
for its lower median energy.

The second case focuses on optimizing the beam divergence and still demonstrates an im-
pressively flat phase space. This suggests that energy spread and divergence are relatively
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Figure 3.21 - Transverse (top) and longitudinal (bottom) phase spaces for best setpoints for each
individual objective. The design energy of 200 MeV is indicated by the dashed line.

compatible objectives. Notably, this beam is at the higher end of the acceptable energy range.
This can be explained by the divergence being the ratio of transverse to longitudinal momen-
tum. As the beam accelerates, the divergence naturally decreases, provided that the beam
isn’t subject to significant deteriorative effects.

The third case, which optimizes for beam emittance, presents a stark trade-off in terms of
energy spread and beam charge. When compared to the best energy spread case, a 28 % reduc-
tion in emittance results in over a fourfold increase in energy spread. This dramatic increase
in energy bandwidth stems from the inability to effectively load the wakefield, manifesting as
a correlated energy spread in the longitudinal phase space. Despite these effects, it’s worth
noting that the slice energy spread in some areas is similar to or even lower than in the first
case. This suggests that measures that improve transverse emittance, such as reducing the
injection volume, can also enhance the longitudinal momentum distribution.

Finally, the fourth case prioritizes maximizing charge, which inversely leads to nearly a
threefold increase in emittance. This high charge beam, which excessively loads the field,
features a substantial tail and a nonlinear chirp at the beam’s center. This results in the energy
spread nearing the acceptable limit of 10 MeV.

These four cases represent the extreme tradeoffs that can be made in the system. In practice,
often a much more fine-tuned control over the beam parameters is required. As long as the
optimization result samples the Pareto front densely enough, it is possible to custom tailor a
beam that matches the requirements of an intended application.

For example, to inject the plasma accelerated beam into a synchrotron typically normalized
emittances on the order of tens of mm mrad are sufficient [6]. However, the energy acceptance
of these devices is generally very tight so that the LPA needs to provide low bandwidth beams
at precisely the design energy. For the sake of this example, it is assumed that the energy
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Figure 3.22 - Longitudinal phase space of an electron beam customized to match application con-
straints. The beam is designed to provide highest beam charge while keeping the devia-
tion from the design energy (dashed line) and the energy spread within a tolerance of
1%

deviation and energy spread need to be below 1%>. The final free beam parameter is then
the beam charge. For efficiency reasons this objective should be maximized while staying
within the tolerances for the other parameters. Figure 3.22 shows the beam that best matches
these specifications under Pareto-optimal conditions within the optimized parameter space.
As required, the median energy of the beam is within 0.01 % of the design energy and the
energy spread of 0.8 % is smaller than the specified tolerance. By design of the reference point,
table 3.3, the emittance of all considered phase spaces is sufficient. With these constraints the
maximum charge that can be loaded into the electron bunch amounts to 60.8 pC.

3.4 Summary

This chapter discussed the application of Bayesian optimization to challenges specific to
laser-plasma acceleration. It demonstrated that in a setup like LUX, it is indeed possible to
generate beams with subpercent energy spread and substantial charge through a meticulous
adjustment of input parameters in a complex and high-dimensional parameter space.

The Gaussian process surrogate model served as a tool in studying these optimized setpoints
under conditions with realistic parameter fluctuations like they would be present in the
experiment. The analysis revealed that achieving high beam quality incurs a cost in the
form of increased sensitivity towards variations in laser parameters, specifically the laser
focus position. This sensitivity emerges from variations in the injected beam charge, which

3In high brightness synchrotrons the energy acceptance is on the order of 1 % so that the energy spread needs to
be significantly smaller than that, which is not achievable with the setup discussed here. Concepts to reach
this level of energy control have been proposed in [6, 7].
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impacts the energy spread and median energy by altering the beam loading conditions in the
wakefield.

Utilizing multi-objective optimization enabled the discovery of trade-offs between the ultimate
quality of the beams and their susceptibility to parameter fluctuations. To achieve this,
different regimes of the setup were exploited, thus either providing long beams for high
spectral density or short beams that are less influenced by changes in beam loading.

Following this, multi-objective optimization was used to manage the key features of the
accelerated beams. While the setup does permit finding a good balance among all parameters,
trade-offs remain necessary due to inherent competition among some parameters. However,
multi-objective optimization results underscore the flexibility of the setup, illustrating its
capacity for producing a tailored beam suitable for a specific application.
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The preceding chapter’s simulation results demonstrated the suitability of Bayesian optimiza-
tion for application in laser-plasma accelerators. This potential was put to the test in a series of
experiments conducted at the LUX accelerator. This chapter will provide a concise overview
of the key instruments and components utilized in these experiments. Section 4.1 will give
an overview of the experimental setup, section 4.2 will provide a short description of the
laser system. The relevant laser and electron diagnostics will be discussed in section 4.3 and
section 4.5. The used plasma sources will be presented in section 4.4. And finally, section 4.6
will give details about the control system.

The experiments presented in the following chapters are building upon the collective efforts
of numerous individuals. To delve deeper into specific aspects of the system, readers are
encouraged to explore the works of these colleagues. Specifically, references [130] and [131]
provide comprehensive discussions on the laser system and diagnostics setup. Extensive
coverage on electron beam transport and diagnostics can be found in reference [132]. For
a more comprehensive understanding of the plasma source setup and gas dynamics, please
refer to references [133] and [69].

4.1 Overview

The experiments outlined in this thesis were performed at the LUX laser-plasma accelerator
located at Deutsches Elektronen-Synchrotron (DESY). LUX [12, 4], an acronym for Laser-
Driven Undulator X-Ray Source, is an experimental research facility designed to study the
generation of stable and reproducible electron beams capable of producing high brightness
undulator radiation. A key research emphasis at LUX is the exploration of laser-plasma
accelerator based free-electron lasing.

Distinct from many previous LPA experiments, LUX prioritizes a robust machine design that
includes extensive online diagnostics and a comprehensive set of control variables. These are
tightly integrated into a machine control and data acquisition system.

This design approach enables precise control and feedback throughout the experiment. It
covers the generation of the laser pulses, the laser-plasma interaction, and the transport and
application of the accelerated electrons. The LUX design paradigm is crucial in enabling the
successful application of Bayesian optimization. The rich diagnostic data available allows for
the construction of precise surrogate models. These models can then be utilized to optimize
the complex parameter space represented by the various tuning parameters. By integrating
the optimizer with LUX’s comprehensive control system, it becomes possible to achieve fully
autonomous tuning and optimization of the accelerator.
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Figure 4.1 - Schematic setup of the experiments discussed in this chapter. The high-power laser is
focused into the plasma source, where it drives a plasma wave and accelerates an electron
bunch. The accelerated bunch is then focused into a dipole spectrometer by a pair of
quadrupole magnets, the charge of the electron bunch is measured using a charge monitor
cavity. Figure adapted from [1].

The LUX components can be categorized into three main groups: the high-power laser system,
the plasma source, and the electron beam line. The following discussion will focus on the
relevant parts of these components for the experiments presented in this thesis.

Figure 4.1 provides a schematic overview of the experimental setup. The plasma interaction
is driven by the Ti:sapphire laser system ANGUS, which is focused into the plasma source
with an off-axis parabolic (OAP) mirror. The energy of the laser is controlled with a motorized
attenuator, operated in closed loop with an energy detector that measures the leaked signal
through one of the transport mirrors. The defocus of the wavefront, corresponding to the
longitudinal focus position, is measured with a wavefront sensor behind the OAP and tuned
by shifting the defocusing lens of the final beam expander in the laser. The plasma source
uses localized ionization injection, either with nitrogen or argon, to generate high quality
electron bunches. After exiting the plasma source, the diverging electron bunches are captured
with a pair of quadrupole magnets and focused into a dipole spectrometer to measure the
energy spectrum of the electrons. The bunch charge is measured with a cavity-based charge
monitor.

In the upcoming sections, a detailed overview of the LUX setup will be provided.

100



4.2 ANGUS laser system

4.2 ANGUS laser system

To drive the laser-plasma interaction, LUX relies on the ANGUS high-power laser system,
which employs chirped pulse amplification (CPA) using titanium-doped sapphire [134] to
produce pulses with a wavelength of 800 nm, duration of 25fs, and energy of up to 67J.

Originally, the system was designed to operate at a repetition rate of 5 Hz. However, it was
discovered that heat-induced deformations of the compressor gratings [11] can reduce the
intensity in the laser focus [135]. To prevent this and to also avoid laser-induced damage to
the compressor gratings, the system is typically run at a lower repetition rate of 1 Hz, and with
a reduced output energy of 3 to 4J.

ANGUS is comprised of a low-power (~100 uWJ) front-end that runs at a kHz repetition rate
and a high-power (~67) back-end running at 1 Hz (originally 5 Hz).

Significant improvements were made to the laser system, particularly to its front-end, around
the time of this thesis. However, the results presented in chapter 5 are based on the system’s
original front-end configuration. During that time, the laser was seeded by a mode-locked
oscillator (Venteon) that produced broadband pulses (100 nm) with energy levels in the nano-
joule range. These pulses were stretched from a few femtoseconds to more than 100 ps and
amplified up to ~400 wJ in a regenerative amplifier.

After this first amplification stage, the beam was compressed again in order to enhance the
temporal pulse contrast through a cross-polarized wave generation (XPW) [136] based filter.
After the XPW stage the pulses with ~40 uJ remaining energy were stretched again for further
amplification.

Prior to the measurements described in chapter 6, the original front-end was replaced with a
seed laser based on optical parametric chirped pulse amplification (OPCPA) [137, 138]. The
system [139] is driven by an industrial ytterbium laser (Pharos-SP) that provides 1 mJ, 1030 nm,
500 fs pulses at 1 kHz repetition rate. A small fraction (1 uJ) of the laser is compressed and
focused into a YAG crystal to generate white light in a spectral range of 750 to 850 nm. The
remaining fraction of the laser is sent into a 3-barium borate (BBO) crystal for second harmonic
generation (SHG). The SHG output is used to pump two optical parametric amplifier (OPA)
stages that increase the white light energy to a final energy of ~50 uJ. Again, the pulses are
stretched in time to allow further amplification.

Compared to the original front-end, the OPCPA based system provides dramatically improved
short-term and long-term stability of the laser properties with measured energy stability as
low as 0.2 % over several days of operation [139].

After stretching, the laser pulses are sent into an acousto-optic programmable dispersive filter
[140] (Fastlite Dazzler) which allows to control the spectral phase and amplitude. The device
allows to tune the final temporal properties of the laser pulses.

Finally, a two-pass Booster amplifier increases the energy to ~100 pJ before a Pockels cell
reduces the repetition rate from 1 kHz to the 1 Hz rate of the back-end.
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The back-end features three multi-pass amplifiers that are pumped by frequency-doubled
flash-pumped Nd:YAG lasers. These amplifiers increase the energy to first 35 mJ, then 1.47J,
and finally 67J.

Following the final amplifier, an attenuator comprising a motorized half-waveplate and a
pair of thin-film polarizers (TFP) is installed. The waveplate adjusts the laser’s polarization,
causing a variable fraction of the energy to be rejected by the TFPs. This setup enables stepless
tuning of the laser’s energy down to approximately 100 mJ. For alignment tasks and low-power
measurements an additional pair of neutral density filters can be placed in the beam path to
reduce the energy to less than 1 mJ.

Behind the attenuator a Galilean telescope magnifies the beam to ~70 mm FWHM to reduce
the fluence on the subsequent optics. The first lens of this telescope is motorized to slightly tune
the divergence of the laser. This proofed to be very useful to precisely adjust the longitudinal
focus position.

The magnified beam is sent onto a deformable mirror to compensate wavefront imperfections
accumulating in the amplifier chain.

Finally, the beam is sent into an in-vacuum grating compressor to reduce the pulse duration
to ~35fs. The compressed beam is transported to the accelerator tunnel via a 35 m transport
beamline and focused to a spotsize of ~25 um FWHM by a 2 m focal length off-axis parabolic
(OAP) mirror. Combining the losses from the compressor and the transport beamline, ~60 %
of the pulse energy reaches the plasma source.

4.3 Laser diagnostics

As mentioned at the beginning of this chapter, LUX and ANGUS feature a noteworthy set of
diagnostics that allows stringent event based tracing of the experiment from the seed pulses
in the laser to the final electron beams. An overview of the most important laser diagnostics
used for the measurements in the following chapters is shown in fig. 4.2.

The diagnostic tools for the laser system can be classified as either online or offline. Online
diagnostics enable non-destructive measurement of the laser on a shot-to-shot basis, and are
designed to operate at full power. They are invaluable for stabilizing the system and analyzing
correlations between different parts of the experiment. For example, each stage of the laser
system features a full set of online diagnostics to measure the energy, spectrum as well as the
near and far field profiles of the beam. The beam profile information is used to stabilize the
position and angle of the laser to defined references between each section of the system.

The offline diagnostics require to attenuate the laser to low-power and are used to characterize
and optimize the pulse properties prior to experiments. At LUX this is done by inserting a
mirror just before the plasma source that reflects the converging beam to a diagnostic table
out of vacuum. A 1:1 image of the focus that still lies in the vacuum chamber is projected onto
a camera that is mounted on a motorized stage. By moving the stage, the transverse modes of
the beam around the focus is measured.
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Figure 4.2 - Laser diagnostic setup. The shot-to-shot pulse energy is recorded with a pyroelectric
energy detector that measures the leakage through a transport mirror. The leaked signal
through the OAP is imaged to a set of diagnostics that measure the near field and far
field profiles as well as the wavefront of the incoming pulse. To characterize the beam in
low-power mode a mirror is driven into the focused beam that reflects the laser to set of
diagnostics outside of the vacuum chamber.

A wavefront sensor [141] is installed in a second diagnostic arm that images the surface of
the deformable mirror in the laser system. This wavefront sensor operates in closed loop
with the deformable mirror to optimize the focal spot in the plasma source, compensating
for systematic wavefront errors such as mirror surface imperfections or misaligned lenses.
Running the optimization loop typically achieves a Strehl ratio of > 0.9. An example for the
low-power focus measurement is shown in fig. 4.3.

The low-power diagnostic has a third arm to measure and optimize the temporal properties of
the laser. The corresponding measurement is done through self-referenced spectral interfer-
ometry (SRSI) [142]. To achieve ultra-short pulses, a closed-loop procedure is implemented
between the measurement device and the acousto-optic programmable dispersive filter in the
laser front-end to flatten the spectral phase. With this method, pulse durations of 30 to 40 fs
can be reached. An exemplary measurement is shown in fig. 4.4.

During high-power operation it is essential to measure the properties of the laser non-invasively
to ensure an undisturbed delivery of the pulses to the experiment. This is achieved by capturing
the leaked laser signal through various optics in the system. A pyroelectric detector measures
the shot-to-shot energy behind the last mirror before the pulse compressor. To obtain absolute
measurements, the detector is calibrated against a larger pyroelectric detector placed directly
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Figure 4.3 — This figure presents the measurement of the low-power focus. Panel (a) and (b) show the
horizontal and vertical cross-sections of the beam profile at varying z-positions around the
focus, respectively. Panels (c) to (e) display the transverse profiles of the laser around the
focus point, along with the Full Width at Half Maximum (FWHM) of the focal spot. Panel
(f) illustrates the residual wavefront aberrations post optimization with the deformable
mirror.

into the fully amplified beam before the experiments. One challenge with measuring the beam
energy behind a mirror is the significant spectral dependence of the transmitted signal through
the highly reflective coatings of the optics. As a result, a drift in the pulse’s central wavelength
could be incorrectly interpreted as a change in the energy. As a spectrally independent energy
diagnostic, an additional pyroelectric detector is placed in the reflected beam of the polarizers
in the attenuator. However, this measurement is inversely dependent on the setting of the
waveplate and is therefore difficult to use in a closed loop with the attenuator, when the goal
is not only to stabilize, but also to tune the pulse energy.

The previous chapter demonstrated that the longitudinal focus position plays a critical role
for the performance of the LPA. Variations in the laser divergence can cause unintended
shifts in the focal plane. During high-power operation, thermal distortions in various optics,
particularly the compressor gratings [11], and the mirrors that transport the beam can cause
the wavefront to drift away from its optimized low-power state.

To detect deteriorative effects on all optics, a wavefront diagnostic must be positioned as close
to the focal point as feasible. As shown in fig. 4.2, a final laser diagnostic setup is installed
behind the OAP. A lens behind the OAP collects the transmitted signal, which is divided into
three beam paths after exiting the vacuum chamber. The first arm collimates the beam to
image its near field in the plane of the OAP surface. In the second arm, a camera measures
the focused signal to detect the beam’s far field, i.e., the angular distribution on the OAP. The
centroids in the near and far field correspond to the angle through the plasma source and the
transverse position of the focus, respectively.
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Figure 4.4 - The measurement of the pulse duration with SRSI post spectral phase optimization is
illustrated. The left panel shows the average temporal profile over 60 shots, featuring
an average pulse duration of 33 fs (FWHM, represented by the grey area). Notably, post-
pulses fall below 1 % of the peak power (delineated by the dashed line). The right panel
presents the temporal profiles of consecutive individual shots. The pulse duration has an
rms jitter of 1 %.

A wavefront sensor is located in the third arm of the diagnostic, which also images the OAP
surface. Although this sensor cannot measure the absolute wavefront in the vacuum chamber
due to the thick OAP substrate, it can detect changes to the initial state caused by thermal
effects. Crucially, this diagnostic can detect drifts in the beam divergence that cause a shift in
the longitudinal focus position [130].

To get a calibration for the actual focus shift from a change in the divergence, the laser
was focused into the vacuum chamber that hosts the plasma source, which was filled with
hydrogen. The recombination signal of the plasma that was created around the focus was
used to determine the focus position [133, 69]. By shifting the focus with the movable lens in
the beam expansion telescope a calibration for the defocus component of the wavefront was
recorded. According to this, a change of the defocus (rms normalization) of 1 nm corresponds
to a 26 um shift of the longitudinal focus position. The typical jitter of the defocus at LUX is
on the order of 5 to 10 nm rms, i.e., a focus position jitter of 130 to 260 pm.

4.4 Plasma source

The general concept of the localized ionization injection based plasma source at LUX was
already discussed in section 3.1. In practice, the plasma source concept is realized by milling
the geometry into a pair of 10 X 10 X 3 mm sapphire slabs, which are then mounted against
each other in a sandwich-like configuration. The plasma source design was originally con-
ceived by Manuel Kirchen and discussed in [69] and [5]. The experimental results presented
in chapter 5 are based on this original version, while an improved design was implemented
at LUX prior to the measurements presented in chapter 6. The structured halves of the two
plasma sources is shown in fig. 4.5.

Both sources operate based on the same underlying concept. As explained in section 3.1,
mixed gas and pure hydrogen are supplied through separate inlets. These gases do not fully
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Figure 4.5 - Geometries of the original plasma source used in chapter 5 (left) and the improved
version used for the experiments in chapter 6 (right). A second sapphire slab (not shown)
is pressed against the machined sapphire to seal the channel structure. The plasma
sources are supplied with a mixture of hydrogen and nitrogen/argon (magenta) and pure
hydrogen (blue).

dissolve but instead form a short transition region, approximately 500 um in length [69], where
electron injection takes place.

To minimize the length of this transition region, a perpendicular exhaust channel is in-
corporated alongside the axial channel responsible for the laser-plasma interaction. This
arrangement allows the two gas species to escape quickly instead of extensively mixing with
each other. In the original design, the exhaust port was drilled into the cover plate. However,
in the new design, two triangular channels are machined into the main sapphire plate. This
symmetric design ensures that the transition from mixed to pure gas occurs perpendicular to
the laser axis, eliminating potential unintended laser perturbations caused by a tilted transition
region.

Furthermore, compared to the single-sided inlets in the old design, the new design features
inlets from both the top and bottom, further enhancing the symmetry. In both designs, two
additional lateral accesses allow to measure the on axis pressure in the mixed gas region and
in the plateau with two capacitive pressure gauges.

The gas flow through the inlets is managed using dedicated mass flow controllers (Bronkhorst
EL-FLOW) for each gas species and inlet. In the original configuration, three controllers
are employed to regulate the flow through two inlets. Two controllers control the flow of
hydrogen and the dopant gas in the mixed gas inlet, while an additional controller manages the
hydrogen flow in a second inlet that is divided to create the gas plateau used for acceleration.
In the updated design, individual controllers are employed at each end of the plateau section,
enabling enhanced flexibility, such as the creation of density ramps in this region.

Figure 4.6 shows the results of computational fluid simulations (Ansys Fluent, see [69] for
details) of the two plasma source designs, in which the gas flows are tuned to roughly create
the same on axis density in both cases. As shown, both sources generate similar gas density
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Figure 4.6 - Fluid Simulation of the original (green) and updated (blue) plasma source geometries.
Both sources are supplied with a 1:9 mixture of nitrogen and hydrogen (represented by
dashed lines) in the first inlet, while pure hydrogen (denoted by solid lines) is supplied
in the plateau region. In the transition region, as depicted in the top plot, the dopant
concentration rapidly decreases to zero, thereby enabling localized ionization injection.
The dotted lines indicate the plasma density after the ionization of the molecular hydrogen
(2 electrons) and the outer shells of the nitrogen (10 electrons).

profiles. In the new design the exhaust outlet is positioned slightly further inside the plasma
source, giving a broader mixed gas region. However, by having exhaust outlets on each side
of the central channel, more gas can escape which leads to a steeper transition between the
mixed gas and the hydrogen (see upper plot in fig. 4.6).

In the experiments described in chapter 5, nitrogen was employed as the dopant gas, while
argon was used for the experiments discussed in chapter 6. The relevant levels of argon have
a lower ionization potential and therefore allow for operation at lower laser energy. This
approach has since been adopted to prevent damage to the compressor gratings and, as shown
in the previous chapter, the use of argon can result in more stable setpoints.

4.5 Electron beam transport and diagnostics

A distinguishing feature of LUX are the state-of-the-art beam optics and diagnostic com-
ponents that are also used for the conventional machines at DESY. These allow advanced
manipulation and accurate measurements of the phase space of the accelerated electrons. For
the FEL experiments at LUX, 13 Quadrupole magnets, 10 corrector dipoles, a decompression
chicane and various beam position monitors (BPM) [143] and profile screens can be utilized to
match the electron beams into the undulator. For the experiments presented in this thesis only
a small subset of these is used to diagnose the relevant properties of the bunches at different
machine setpoints.

An overview of the utilized beamline elements is shown in fig. 4.7. The diverging electron
beams are captured by a quadrupole doublet (Q3, Q4) positioned 3.9 m downstream of the
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Figure 4.7 — Sketch of the electron beamline. The electron beam (blue) at the exit of the plasma source
is imaged onto the fluorescent screen in the spectrometer by the quadrupole doublet
Q3/Q4. A cavity (Damon) measures the bunch charge. Only the first section of the LUX
electron beamline is shown; components that are not explicitly used in this chapter are
greyed out.

plasma source. These quadrupole magnets image the electron beams from the plasma exit onto
a fluorescent screen (Kodak Lanex OG 16) located behind a deflecting dipole magnet [144].
Due to the energy dependent deflection angle this acts as a spectrometer for the electrons.

Prior to entering the spectrometer, the electrons pass through a resonator cavity (Damon) [145]
for a bunch charge measurement. The Damon measurement works by detecting the TM;
mode induced by the electron bunch in the resonator, with the voltage of the signal directly
proportional to the beam charge. The Damon has a measurement resolution of approximately
1% [145].

The simulations conducted in the previous chapter suggest that the LPA setup has the po-
tential to achieve energy spreads as low as 0.5 %. To fully investigate these capabilities in the
experiment, the diagnostics setup must obviously be capable of providing the corresponding
energy resolution. However, if the electron bunches were allowed to propagate freely to the
spectrometer, the typical divergences of 1 mrad [69] would result in beam sizes of approxi-
mately 5 mm on the screen, significantly constraining the achievable resolution. By employing
a suited beam optic that images the plasma exit into the spectrometer, the resolution at a
desired energy can be severely increased. To demonstrate this, beam tracking simulations
using the transport matrix based code LUX TRACKER [146] are performed. Figure 4.8 shows
the simulated signal on the spectrometer when tracking monoenergetic beams at different
energies through the beamline that was optimized to image 250 MeV in this example.

Due to the large distance between the quadrupoles and the plasma source (3.9 m) in com-
parison to the spectrometer (1.1 m), the beam is demagnified in the spectrometer. This
demagnification results in a focused spot size of <1 um for a typical source size of 4 um, the-
oretically providing an energy resolution well below 0.1 %. However, the optical imaging
system, granularity of the scintillator screen and scattering in the wall of the vacuum chamber
before reaching the screen, set a lower limit for the spatial resolution at ~200 um, which on the
energy axis is equivalent to ~0.1 %. Additionally, as the beam deviates from the imaged energy,
it either focuses in front of or behind the screen, resulting in an increase in beam size and the
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Figure 4.8 — Estimation of the electron spectrometer resolution for 250 MeV focused energy. (Top)
Beam tracking simulations of monoenergetic beams at different energies (green crosses)
with 4 um source size and 1 mrad divergence. Blue curves indicate the projection onto the
energy axis, the in-focus beam (250 MeV) is too small to be resolved in the plot. (Bottom)
Energy resolution around the focused energy given by the rms beam size along the energy
axis (blue, solid) and by the optical system and scattering effects in the vacuum chamber
(green, dashed).

characteristic butterfly shape on the spectrometer screen and a consequent degradation in
energy resolution.

Overall, the spectrometer combined with the beam optics setup provides the required res-
olution of <0.5 % over a range of +20 MeV around the imaged energy (see fig. 4.8 bottom).
Similar, resolutions are achieved for focused energies in a range of 200 to 300 MeV

To avoid chromatic growth of the beam emittance, that results from free drift propagation of
the diverging beam [147, 148, 132], LUX is equipped with an additional pair of quadrupoles
positioned directly behind the plasma source. These magnets also in principle allow for less
tight focusing into the spectrometer, resulting in smaller beams over a wider energy range.
However, the high magnification of this setup makes the measurement more sensitive to varia-
tions in the source position. Therefore, this configuration was not utilized for the optimization
experiments in the following chapters, as the source position could vary significantly from
one setpoint to another.

4.6 Control system

To leverage the full potential of all components presented in the previous sections, a machine
control system is tightly integrated into LUX. The system, which is based on the boocs
framework [149], allows real time access to all diagnostics in the system and control of every
actuator, e.g., motors, flow controllers or magnets. A data acquisition system (DAQ) records
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Figure 4.9 - Control system schematic for Bayesian optimization at LUX. The optimizer sets the target
values for feedback controllers that tune the machine to the specified defocus and energy.
The flow controllers provide an internal control loop. The optimizer gathers data from
the electron diagnostics that is processed in real time through data processing pipelines.

the complete state of the machine for every individual shot and allows data driven post-analysis
of the experiments [4, 5].

The robust control system implemented at LUX facilitates the effortless integration of diverse
control algorithms necessary for autonomous operation and optimization of the machine. In
this context, the Bayesian optimizers employed for this thesis could be seamlessly incorporated
as plug-ins within LUX’s existing data and command framework. A schematic overview of
the setup is shown in fig. 4.9. As in the previous chapter, the optimizer is allowed to control
the focus position, via the wavefront curvature, and energy of the laser as well as the various
gas flows in the plasma source. As feedback it gathers the beam charge measurement from
the Damon and spectral data from the spectrometer. The raw data from the cameras recording
the spectrometer screen is run through a processing pipeline [150] to retrieve the denoised,
calibrated spectrum in real time. For more detailed information regarding the processing
steps, refer to [132].

As indicated in fig. 4.9, the optimizer does not directly communicate with the beam expander
and the attenuator, which in essence both are just stepper motor stages moving the respective
optics. Instead, the communication is run through a feedback controller. In principle, the
Bayesian optimizer could use the motor positions of the actuators as inputs, but this poses
certain downsides. Most importantly, the state of the system might drift independently
of the motor position, eventually leading to a misinformed surrogate model. Further, the
laser parameters undergo shot-to-shot variations. If motor positions are used as inputs, the
optimizer would not be able to detect these variations.

The feedback controllers allow to specify the desired physical state of the system in terms of the
focus and laser energy directly and potential drifts of the laser will be caught and compensated.
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Figure 4.10 - Regulation of the laser defocus using the motorized lens in the final beam expander. The
feedback control system utilizes the wavefront measurements taken behind the OAP.
The measured defocus (blue) promptly tracks the sequence of setpoints (green).

Having the physically relevant properties as control variables also enables the utilization of
individual shot-to-shot measurements for training the surrogate model to account for the laser
jitter.

To regulate the focus position, the first lens in the last telescope of the laser system (beam
expander), which is placed on a motorized stage, is shifted longitudinally. Feedback for this
movement is based on the defocus measurements of the wavefront sensor that is placed behind
the OAP. The controller is a simple P-type feedback loop, i.e., it adjusts the control variables
based on the difference between the desired state and the current state, using proportional
gain to determine the correction. Figure 4.10 shows an example where the feedback controller
is used to cycle the system between two defocus setpoints. The gain of the system is adjusted
to strike a balance between achieving a quick response and minimizing overshooting. This
tradeoff ensures that the system rapidly reaches the desired setpoint without exceeding it
significantly, avoiding any potential damage caused by setting the focus too far away from the
plasma source. The controller effectively tunes the defocus to the target state within a few
seconds.

However, around the setpoints, there are significant shot-to-shot variations, that the control
loop does not compensate. They have a comparable amplitude to the unregulated system as
shown in the last interval in fig. 4.10 where the regulation is turned off, meaning that they are
an inherent property of the laser and not caused by the regulation, e.g, by introducing high
frequency noise.

A detailed analysis of the regulation bandwidth is shown in fig. 4.11. For the analysis two
~50 min timeseries of the defocus were recorded; one in free drift and the other with feedback
regulation. The time domain graph already shows that the free running system undergoes slow
drifts on the order of a few nm on a timescale of several minutes. These drifts are effectively
suppressed in the regulated case. The short term, shot-to-shot variation of the defocus error is
comparable for the two data sets. The frequency domain analysis shows that the feedback
controller successfully mitigates almost all drift components below 0.01 Hz. Overall, the
regulation reduces the mean absolute defocus error from 6.08 nm to 5.88 nm. However, the
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Figure 4.11 - Performance of the defocus regulation. (Top) Time domain signal of the defocus error, i.e.,
difference between target and actual defocus, with regulation on (blue) and off (green).
The lines indicate the rolling average over 100 s and the shaded areas + one standard
deviation around the average. (Bottom) Power spectral density of both measurements.
Low frequency jitters are effectively suppressed by the regulation.

length of these sample dataset is still comparably short compared to typical measurement
campaigns. Especially, during warmup of the system or during larger temperature shifts
from day to night, the defocus drift can be more severe [4] and the regulation therefore more
effective. Also note that the feedback controller was specifically tuned for the task of quickly
cycling through different setpoints and not primarily for jitter mitigation. While the controller
bandwidth is ultimately limited by the 1 Hz laser repetition rate, further improvements could
be achieved by using a well tuned PID-controller instead of the simple P-controller employed
here.

The same feedback controller method is used for the laser energy. Here, the motorized
waveplate of the attenuator is moved with feedback of the energy detector that measures the
leakage through the last mirror before the compressor. The mass flow controllers are equipped
with internal PID controllers.
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This chapter presents experimental results on the application of Bayesian optimization for the
improvement of beam quality and stability at LUX. The discussion primarily builds on findings
published in the work "S. Jalas et al., Bayesian Optimization of a Laser-Plasma Accelerator,
Physical Review Letters (2021) [1]. Although this chapter mostly mirrors the contents of the
publication, it also incorporates additional details to offer a more comprehensive discussion
of the topic.

5.1 Overview

Laser-plasma accelerators have demonstrated tremendous potential in previous experiments,
showcasing the generation of few-femtosecond [46, 45] GeV-level electron beams over centimeter-
scale distances [53, 56].

However, despite the remarkable progress in the field, meeting the demands for high-quality
electron beams necessary for practical applications [4, 151, 152] remains a significant challenge.
This difficulty arises from the need to balance various physical effects that non-linearly interact
with laser and plasma parameters. The process involves generating electrons with a small
initial phase space volume and then accelerating them without compromising the beam
quality. Also, for efficient operation, the wakefield must be properly beam-loaded. Achieving
these optimal conditions is only feasible in a tiny fraction of the vast parameter space of the
system, rendering manual tuning almost impossible.

Additionally, investigating the underlying mechanisms of laser-plasma accelerators is often
associated with substantial effort. The limited repetition rates and poor shot-to-shot stability
of current drive laser systems, combined with measurement noise, impose constraints on the
quantity and quality of data that can be collected about the system.

In this context, Bayesian optimization, designed to find optimal solutions based on limited
and noisy data [96], is a promising approach to optimize the complex parameter space of
particle accelerators.

As demonstrated in chapter 3, Bayesian optimization is well suited for the application in
LPA setups. However, the discussion there was limited on the application on particle-in-cell
simulations. While these simulations benefit from the cost-effectiveness of Bayesian opti-
mization, they present an idealized view concerning measurement noise and input parameter
variations.

Therefore, translating these results to the practical experiment poses two major complica-
tions:
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o The input and output parameters are partly obfuscated with significant measurement
noise.

o System parameters might deviate from the machine’s design configuration requested by
the optimizer due to shot-to-shot fluctuations.

The influence of these factors on the performance of the BO algorithm is discussed in sec-
tion 5.2.

By successfully applying BO in the experiment at LUX, we optimized the accelerator to produce
sub-percent energy spread beams at 254 MeV and few-10 pC bunch charge. The details of
these optimization results are presented later in this chapter in section 5.3. Furthermore,
a slight adjustment to the BO algorithm allowed us to identify a regime that improves the
stability of these beams. This particular aspect is further discussed in section 5.4. The physical
characteristics of the optimized setpoints will be discussed in section 5.5.

5.2 Parameter fluctuations and noise

Experimental conditions in laser-plasma accelerators can give rise to several forms of noise.
This noise can originate from measurement uncertainties in the diagnostic tools, or from
fluctuations in unmonitored laser parameters, which ultimately appear as noise in the output
of the laser-plasma accelerator.

As discussed in chapter 2, the surrogate model based approach of BO gives it a natural way
to deal with measurement noise. The probabilistic Gaussian process model, can naturally
express observation noise (see section 2.2.3), and specialized acquisition functions like noisy
expected improvement [103] (see section 2.3.3) can take it into account when suggesting the next
measurement. However, the presence of noise means an inevitable reduction of information
per data point and could therefore also negatively impact the performance of BO.

Shot-to-shot variations of the laser parameters that are online monitored can be treated
differently to simple observation noise. Although not avoidable to a certain extend, they can
be measured for each event through the online diagnostics. This means that, for example, a
change of the beam charge can be precisely traced back to a variation of the focus position. For
the surrogate model of the optimizer this means, that there is a consistent mapping between
the input parameter and the output. Consequently, the surrogate model does not need to
introduce noise to explain the observed data. This is not the case for hidden parameters that
are not covered by the online diagnostics as they would have an effect on the output that
seemingly is not caused by changes to the input.

The challenge, however, lies in the fact that only the average state of the machine can be
adjusted (e.g., mean laser energy and focus), which means that the optimizer may not get
data for the exact machine state it requests. This discrepancy can particularly hinder the
optimization’s performance when aiming for a narrow optimum.

The precise influence of noise and jitter on the optimization process varies depending on the
particular characteristics of the problem and is difficult to anticipate in general. To evaluate
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Figure 5.1 - Convergence tests for Bayesian optimization on LPA surrogate model (see section 3.2.4).
Each line denotes the average performance (maximum objective found so far) over 50
independent optimization runs under each scenario. Experimental conditions (green
lines) are simulated by introducing a fluctuation of 5% on the laser energy and 150 um
on the focus position and by adding normally distributed noise (¢ = 0.1) to the measured
objective. The different lines indicate different optimization approaches and scenarios:
Standard Bayesian optimization of the ideal (blue) and noisy (green dashed) setup, purely
random selection of different setpoints (red), and Bayesian optimization of the noisy setup
but collecting six measurements at each setpoint (green).

whether these effects significantly hamper performance in our experiment, the system is
approximated using the surrogate model from the optimization of LPA PIC simulations in
chapter 3. This surrogate model is presumed to serve as a reliable representation of the actual
optimization problem in the experiment. It enables the modeling of the system under different
scenarios, such as with or without noise, providing valuable insights into the impact of these
factors. The performance of BO loops under different conditions is depicted in fig. 5.1. The
unmodified predictions of the surrogate model act as a baseline comparison for the ideal stable
and noiseless case.

To simulate the condition of the experiment, a shot-to-shot jitter of 5% and 150 um is added
to the laser energy and focus position before querying the model, respectively. The objective
value predicted by the surrogate model is obscured with normally distributed noise (o = 0.1).
Figure 5.1 shows the average performance over 50 independent runs for each scenario. The
results of the individual runs can differ from each other due to the random noise and because
the optimization is started by measuring six randomly selected setpoints.

The tests show that noise and jitter in fact have a negative impact on the performance of the
optimization. The average objective found within 100 iterations (green dashed line) is 20 %
smaller than without deteriorative effects (blue line). However, it is still significantly better
than if the machine is tuned with a purely random search heuristic (red line).

Assuming that the performance of BO degrades due to the optimizer facing uncertainties from
noise and not receiving the requested points, it would be logical to consider collecting more
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data for each setpoint. This increased data collection would serve two purposes: reducing
local uncertainty and utilizing the jitter to explore multiple points around the desired setpoint.
This strategy in fact dramatically improves the performance as shown in fig. 5.1 (green solid
line). By collecting six shots at each setpoint and using them to inform the surrogate model,
the original performance of BO in the ideal case can be recovered and even surpassed. It
should be noted that this comes at the cost of runtime, but in the experiment the system can
anyways not be changed on a shot-to-shot basis. Therefore, it is reasonable to collect multiple
events for each setpoint.

5.3 Beam quality optimization

Based on the surrogate model tests conducted in the previous section, it appears feasible to
enhance the beam quality with Bayesian optimization in the experiment to a level and in a
rate comparable to the simulations presented in chapter 3.

Mirroring the approach with the simulations, we used the objective f = \/EE /AE as ameasure
for the beam quality, specifically the spectral density. The exposed control parameters were
the laser energy and longitudinal focus position as well as the three gas flows in the plasma
source (1 X N,, 2 X H,). These five parameters resembled the same degrees of freedom that
were used in the simulations presented in chapter 3. Moreover, they allowed us to control
the pressure difference between the front and back of the plasma source, a critical factor in
determining the transition between mixed and pure gas regions. The permitted range for each
of the parameters is given in table 5.1.

Using the online measured laser energy and defocus, the actual shot-to-shot machine inputs
were mapped to the measured objective function. Thereby, as discussed in the previous section,
the surrogate model could attribute fluctuations of the objective function to variations of the
recorded laser parameters and the model could be trained with consistent single shot data.
During the experiments the shot-to-shot rms jitters of the laser energy and focus position
were 1.6 % and 200 wm, respectively. Noteworthy laser fluctuations, which were not directly
considered during the optimization and therefore effectively treated as noise, included the
pulse duration (2% rms jitter), central wavelength (0.3nm), and higher-order wavefront
aberrations (<5nm). Also not included in the surrogate model were the laser pointing and
transverse focus position jitter on the order of 100 purad and 5 pm, respectively.

Table 5.1 - Search space used for the Bayesian optimization.

laser energy Elager 2.1-2.6 J
focus position Azgo —0.55-10.85 mm
N, flow Vx, 0.0 -3.0 ml/s
H, flow front Vi, rone 0.0 —-3.6 ml/s
H, flow back Vi, 0.0 — 6.0 ml/s
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Figure 5.2 - Experimental optimization of LPA electron beams: (a-c) Measured energy spectra; (d)
Measured objective function (dots) with the cumulative best result (blue line); (e-g) Input
parameters with shot-to-shot measurements of the laser energy, focus position and gas
flows for each input setting. The figure is adapted from [1].

In accordance to the optimal setpoint found in chapter 3, we set the quadrupole doublet to
image 270 MeV electron beams onto the spectrometer. Beams with an energy far off this
setpoint would be ignored by the optimization, due to the reduced energy resolution of the
spectrometer and the larger measured energy spread (see section 4.5).

To start the optimization and initialize the surrogate model, we acquired data at 10 random
input settings. For each iteration, the optimization gathered 6 shots and fed these individually
to the surrogate model, maximized the acquisition function on the updated model, and then
determined a new setpoint. Changes to the gas system took a few seconds to have an effect.
Therefore, the machine was not tuned after every shot but by measuring 6 shots at each
machine setting the jitter of the laser parameters could be used to locally explore the objective
function (see section 5.2).

Figure 5.2 shows the evolution of the system during the optimization process. The initial
beam, panel (a), has a spectrum with a small peak and a pedestal towards higher energies,
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Figure 5.3 — Energy spectrum at optimized settings: averaged spectrum (black) and 5th-95th percentile
(grey area) of the best 10 % of 2500 measured shots with a Gaussian fit (o 5,green) and
corresponding statistics. The energy spectra are normalized to their respective median
energy, to eliminate the effects of shot-to-shot energy variations (1.5% rms) from the
statistics. Over the considered spectra the average median energy is 255 MeV, the average
energy spread is 0.75 % median absolute deviation or 1 % rms based on Gaussian fits. The
average charge is 32 pC. The figure is adapted from [1].

which indicates that the beam still has a correlated energy spread from un-matched beam
loading. After a few iterations, panel (b), a well-defined peaked spectrum is measured. Slight
adjustments increase the energy of the beams to ~250 MeV, panel (c). The decrease of the
relative energy spread that comes at the cost of beam charge results in the improvement of the
objective function. By balancing the relevant laser and plasma parameters the algorithm was
able to find a setting with sub-percent energy spread starting from initially random conditions
after a runtime of 45 min.

To thoroughly characterize the accelerator performance at this setpoint, we adapted the
focusing to image the final beam energy of 250 MeV for best spectral resolution. Figure 5.4
shows the average spectrum of the best 10 % of the 2500 recorded events, which we consider
representative for operation at the optimized settings. On average, these beams had 32 pC and
an energy of 255 MeV with 1% rms (0.75% mad) energy spread. The average objective value
of the selected shots was 7.6. Notably, these parameters closely align with the optimal state
obtained in the simulations in section 3.2.3 (AE = 0.7 %, Q = 46 pC) which confirms that BO
performs well even under the unstable and noisy conditions of the experiment.

While beams with excellent quality are produced for a significant fraction of shots, a consider-
able shot-to-shot variation in the electron spectra is observed at the optimized setpoint, as
demonstrated by the waterfall plot of sequential energy spectra in fig. 5.4a. A closer examina-
tion of the correlation between the beam energy, energy spread, and the charge, shown in
fig. 5.4b-c, indicates that these fluctuations arise from variations in the beam loading condi-
tions of the system. The correlations demonstrate an inverse dependency between energy and
charge, along with a characteristic V-shape that was similarly observed in the model-based
analysis of the simulated case in chapter 3. These correlations can be explained as follows:
As more charge is injected into the wakefield, the average accelerating field along the bunch
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Figure 5.4 - Shot-to-Shot energy spectra at optimized setpoint. (a) Waterfall plot of consecutive elec-
tron energy spectra. (b) Correlation between beam charge and median energy. (c) Corre-
lation between charge and energy spread (median absolute deviation). (d) Shot-to-shot
distribution of the objective function. The red shaded area indicates the 10 % best beams
used for fig. 5.3.

diminishes due to beam loading, leading to the observed energy reduction. The point at which
beam loading negates the slope of the wakefield, resulting in an average flat accelerating
field (refer to section 3.1.2), corresponds to the minimum of the charge and energy spread
correlation, which in this case is at ~30 pC.

The deviations from this point of optimal beam loading conditions are the result of the shot-
to-shot fluctuations of the laser parameters [5]. By building the surrogate model on the basis
of all individual events, the algorithm aimed at settings where the best possible beam could
be generated, regardless of how frequently these would occur. Thereby, the optimizer fully
ignores the distribution of the objective function, i.e., the stability of the setpoints. This
can be seen when looking at the shot-to-shot distribution of the objective function at the
optimized setpoint as shown in fig. 5.4d. Even though the setpoint can generate beams with
high objective values, peaking as high as 10, the associated distribution is greatly skewed
towards the lower end due to the inherent jitter of the laser. Consequently, the objective value
most frequently encountered is notably low, only at 0.6.

5.4 Stability optimization

Demonstrating that we can identify and examine setpoints achieving the highest possible
beam quality with the aid of Bayesian Optimization represents a significant achievement.
These setpoints are particularly pertinent for investigating high-demand applications such as
free-electron lasers and provide a glimpse into the future potential of LPAs as driver stability
continues to improve. Yet, for most applications, the stability of the beam parameters holds
equal importance to the achievable beam quality. Therefore, until the driver stability reaches
the necessary levels, it is also favorable to find setpoints that are more robust against the
fluctuations of current laser systems, even if this compromises the overall beam quality.
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Figure 5.5 — Objective distributions of setpoints optimized with single shots (green) and with the
mode of the distribution (blue). By optimizing the mode (dashed line) of the shot-to-shot
distribution, the probability mass is shifted to higher objective values compared to the
single shot method.

With the aim to discover if there are such setpoints that could improve the stability of the
accelerator, we modified the optimization algorithm: instead of feeding the surrogate model
with individual shots, we collected 20 shots at each setting. For each dataset we estimated the
shot-to-shot distribution of the objective function, like the one shown in fig. 5.4d, through
Gaussian kernel density estimation' [153]. From the given distributions, we identified the most
frequent objective value, which was then used to train the surrogate model in conjunction with
the averaged input parameters of the given setpoint. By optimizing this most frequent value,
also known as the mode of the probability distribution, our aim was to shift the probability mass
towards higher values, thereby reducing the occurrence of beams with extremely low objective
values. The rationale behind these modifications is to incentivize the algorithm to enhance
the overall distribution of electron beams, in the presence of the laser jitter, while dissuading
it from identifying setpoints that exhibit high sensitivity to parameter fluctuations.

This approach differs from the one in section 3.3.1, where multi-objective optimization was
used to balance stability and quality objectives, but essentially follows the same goal. Although
this method provides less customization of the final outcome compared to the MOBO approach,
it doesn’t necessitate any modifications to the foundational optimization algorithm, making it
straightforward to implement.

We ran the adapted BO method on the same search space (table 5.1) as the single shot opti-
mization before. Figure 5.5 shows a comparison between the shot-to-shot distributions of the
objectives of optimal setpoints. These setpoints were identified using single-shot optimization
in the prior section, shown in green, and the modified method of optimizing the mode of
the distribution, in blue. As intended, the peak of the distribution obtained by the modified

IKernel density estimates are closely related to histograms. Instead of accumulating data into fixed bins, each
data point is represented by a Gaussian function. The sum of these functions then gives the estimate for the
probability distribution of the data.
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Figure 5.6 - Comparison between optimized setpoints. Top row: Waterfall plot of consecutive spectra
for the setpoints optimized for highest quality (left) and for stability (right). Bottom row:
Shot-to-shot distributions of the energy spread, energy and charge for the high quality
(red) and stability (blue) setpoints. The distributions for the energy (§E) and charge (6Q)
are the deviations from the respective mean values.

Table 5.2 — Input parameters for stable and reference setpoint and the resulting on-axis pressures in
the plasma source.

MODE SINGLE SHOT
laser energy Elager 2.5] 2.5]
focus position AV 0mm 0.09 mm
N, flow Vx, 0.083ml/s  0.16ml/s

H, flow front 2.17ml/s 1.5ml/s

H, flow back Vi 3.83ml/s 6.0ml/s

H2,fr0nt

pressure front Prront 15.9 mbar 18.9 mbar

pressure back Dback 18.2 mbar 25.5 mbar

optimization method is at larger values compared to the setpoint found in the previous sec-
tion. Importantly, the probability for beams with small objective values falling below 1 is
significantly reduced. However, also the largest possible objective value is decreased.

The distributions in fig. 5.5 confirm that the modified BO algorithm operates as we anticipated.
The more relevant question, however, is how the changed distribution of objective values
relates to the physical quantities of the electron beams. To this end, fig. 5.6 compares the
relevant beam properties of the setpoint identified through the mode-optimization method to
a reference setpoint similar to the one discussed in the previous section, which was manually
fine-tuned to achieve a comparable beam energy. The input parameters for the two setpoints
can be found in table 5.2. Both settings share similar laser conditions, but the stability-
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optimized setting has a lower N, concentration (3.6% compared to 10%), and a reduced
pressure in the plateau.

As clearly visible by the waterfall plots in fig. 5.6, the stability of the electron energy spectrum
amidst the shot-to-shot fluctuations of the drive laser is markedly enhanced: 90 % of the
accelerated beams maintain an energy spread smaller than 5 %, compared to the 60 % in our
reference scenario. Simultaneously, the energy stability sees an improvement of more than a
factor of 2, while sharing a comparable charge instability of 45 % and 35 %.

Echoing the findings from the simulations in chapter 3, this is another demonstration of the
adaptability of our setup. That is, it can either produce beams with the highest spectral density
or generate beams of adequate quality that exhibit remarkable robustness against instabilities
of the drive laser.

5.5 Simulations

To unravel the mechanisms that lead to the distinct characteristics of the two setpoints shown
in fig. 5.6, we conducted particle-in-cell simulations that accurately mimic both scenarios.

Establishing simulation parameters that precisely mirror the experimental conditions poses a
significant challenge. Given the sensitivity of our setup, inevitable systematic measurement
errors—particularly in parameters such as laser energy, focus position and size, pulse dura-
tion, and plasma density—can yield simulation outcomes that markedly deviate from the
experimental results. To mitigate these disparities, we leveraged Bayesian optimization to
subtly adjust these error-prone input parameters. The optimizer compared the correlations
of the beam charge, energy and energy spread to the experimental results by varying the
focus position in the simulation and minimized the difference. The discrepancy of the input
parameters of the simulation and the experiment found this way were on the order of 10 %. A
more comprehensive explanation of our method to accurately determine input parameters
with minimal bias can be found in the supplemental material of [5].

The results of the simulations for the two setpoints are illustrated in fig. 5.7, alongside the
data obtained from the experiment. As shown in fig. 5.7(a-f) the simulations accurately
reproduce the observed behavior caused by changes of the focal position. As anticipated, the
focus position significantly influences the properties of the resulting electron bunch for both
configurations of the LPA.

A noticeable linear decrease in the beam charge is observed as the focus shifts downstream, a
result of the diminished injection volume caused by the reduced intensity in the mixed gas
region, as previously discussed in chapter 3. For the stable setpoint the absolute dependency
between charge and focus position is reduced, from —77 pC mm™! to —27 pC mm™!. However,
the average charge also experiences a reduction, leading to an equivalent relative charge
sensitivity for both setpoints at 145 % per 1 mm focus shift. This aligns with expectations as
the change in charge is primarily driven by the variation of the ionization volume resulting
from the focal shift. Given that both settings employ nearly identical laser parameters, they
consequently exhibit the same relative charge sensitivity.
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Figure 5.7 - Stability-optimized LPA: (a)-(f) Measured (heatmaps) and simulated (circles) correlations
between the laser focus position and beam parameters for a typical reference (purple)
and the stability optimized (blue) setting. Colormaps indicate the number of recorded
events. (g) Longitudinal phase spaces from PIC simulations with the corresponding
current profiles. The figure is adapted from [1].

However, when it comes to the spectral properties of the bunch, the previously observed
pattern does not apply. Influenced by the effects of beam loading, these properties hinge
on not only the absolute bunch charge but also significantly on the current profile. When
observing the stable setpoint, the V-shaped behavior of the energy spread appears notably more
shallow, which consequently leads to less severe beam deterioration when deviating from the
optimal point. This tendency is also mirrored in the median energy of the beams. For the
stable case, the focus variation sensitivity is 45 MeV mm™, less than half of the 95 MeV mm™!
observed in the reference case.

This particular behavior can be understood by examining the shapes of the longitudinal phase
spaces of the beams generated by the two specific setpoints, as depicted in fig. 5.7g.

In both setpoints, changing beam loading conditions—induced by the alteration in charge—
lead to a noticeable change of the energy correlation (chirp) along the bunch. An upstream,
or negative shift in the focus, and consequently an increase in charge, causes the tail of the
bunch to lose energy compared to the head. Conversely, energy is gained in instances of
downstream shifts away from the optimum. Consequently, the median energy of the bunches
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Figure 5.8 - Dynamics of the injection process. Top rows: Charge density (brighter is higher) of the
wakefield at different points in the plasma source. Bottom: Plasma and mixed gas density
for the stable and reference setpoints.

either diminishes or increases, and the projected energy spread deteriorates when departing
from the optimum.

Interestingly, the chirp—defined as the change in energy per unit bunch length—remains
virtually identical for corresponding cases of the stable and reference setpoints. The notable
distinction lies in the fact that beams originating from the stable setpoint are significantly
shorter, as evident in the comparison of current profiles in fig. 5.7g. This reduction in bunch
length translates into a lesser impact on the projected energy spectrum when the phase space
undergoes the shearing motion induced by mismatched beam loading.

The shortened bunch length can be traced back to the plasma density profile, a comparison of
which is depicted in fig. 5.8. For the stable setpoint, which features a reduced N, concentration
of 3.7 % in the mixed gas in contrast to the 10 % found in the reference case, the plasma density
peak at the start of the plasma source—resulting from the nitrogen’s lower ionization levels—
is considerably less pronounced. Indeed, the plasma density in the mixed gas region is even
lower than that in the subsequent plateau.

This difference in the plasma profile profoundly influences the injection process dynamics,
as evidenced by the charge density plots in fig. 5.8. Owing to the reduced overall plasma
density and the correspondingly longer plasma wavelength, the injection is initiated at a larger
distance ¢ behind the drive laser (frame A). As the mixed gas concentration decreases, thereby
reducing the plasma density (frame B), the back of the wakefield falls back and with it the
phase of the newly injected electrons. The injected bunch increases in length.
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The non-linear relationship between the plasma wavelength 4, and the density n, i.e., 4,
1/ \/n_ , along with the smaller overall density difference, results in a lesser phase advance in
the lower density stable setting compared to the reference case. Consequently, the length of
the injected bunch is shorter at the end of the mixed gas region (frame C). Following this, the
plasma density rises again into the plateau region (frame D), causing the wakefield’s peak to
advance towards the injected bunch’s back, and even truncate a portion of the bunch tail.

For the stable setpoint, where injection is triggered at a density lower than in the plateau, the
bunch head lies in a phase that would normally be truncated by the wake’s back when the
wakefield contracts. The bunch only survives due to the convergent evolution of the drive
laser, which in the non-linear regime increases the plasma wavelength. This culminates in the
creation of a short bunch in the wakefield when entering the plateau region for acceleration
(frame E), with the bunch for the stable setpoint being approximately half the length of that
in the reference case.

5.6 Summary

In summary, we've successfully demonstrated the use of Bayesian optimization to tackle
the intricate problem of identifying optimal operation points in a laser plasma accelerator.
We discussed strategies to cope with the noisy and unstable conditions presented by the
experiment. Running the optimization on single shot data collected at each setpoint allowed
us to explore a regime of the setup that consistently provided electron beams with subpercent
energy spread and significant beam charge.

By introducing a modified optimization objective that accounted for the shot-to-shot distribu-
tion of the system, we identified an operation regime which improved the shot-to-shot stability
of the system by more than a factor of two. Through the correlations of the beam parameters
and the corresponding particle-in-cell simulations, we linked this improved stability to a re-
duction in bunch length. This was achieved by meticulously fine-tuning the injection process,
specifically by adjusting the plasma profile.

The data featured in this chapter originated from the initial experiments demonstrating the
application of Bayesian optimization. Since then, Bayesian optimization has become a routine
tool at LUX, employed regularly to reoptimize the system following larger changes to the
plasma source or laser system. The setpoints found this way can typically be used for many
beam times spanning over several weeks.

In conclusion, our application of Bayesian optimization for adjusting the parameters of a laser
plasma accelerator has led to the discovery of two extremely beneficial operational regimes.
The first regime delivers an exceptional beam quality, characterized by subpercent energy
spread and high spectral density. The second regime significantly enhances the shot-to-shot
stability, where 90 % of shots maintain an energy spread better than 5 %.
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6 Tuning Curves for a Laser-Plasma Accelerator

This chapter presents the experimental demonstration of multi-objective Bayesian optimiza-
tion (MOBO) employed to discover optimal tuning curves for a laser-plasma accelerator. These
curves enable precise adjustments to system characteristics such as charge and energy, while
simultaneously maintaining optimal energy spread. The findings discussed here have been
published in ”S. Jalas et al., Tuning Curves for a Laser-Plasma Accelerator, Physical Review
Accelerators and Beams (2023) [2]. Similar to the previous chapter, this discussion is primarily
a reproduction of that publication.

6.1 Overview

The previous chapter showcased how Bayesian optimization can serve as a powerful instru-
ment for realizing exceptional performance from a laser-plasma accelerator. The selection of
the objective function—whether it’s based on single shots or the full distribution—permitted
us to expose two very distinct characteristics of the setup. The strategy adopted in the previous
chapter, though effective, lacks precision when forecasting the outcomes of the optimiza-
tion, especially concerning beam parameters such as charge and energy. While the objective
function can guide the general direction of desired beam characteristics, it leaves room for
ambiguities. However, the ability to control these parameters with high precision and inde-
pendence is indispensable for a variety of real-world applications that demand specific beam
properties to meet their unique requirements.

LPAs have previously demonstrated some tunability [154] but reaching the desired level of
control is a very challenging task: Multiple tuning parameters can act directly or indirectly on
the same beam property, and beam parameters may influence or even counteract each other
through the complex laser-plasma interaction. For example as shown in the previous chapters,
beam loading [91, 47, 155, 5] couples bunch charge and energy spread. Simply varying one
property (e.g., higher charger) can easily deteriorate (e.g., higher energy spread) the other.

Consequently, tuning the electron beam phase space represents a multi-objective optimization
problem, with the goal to identify solutions that provide the best trade-offs between mul-
tiple, conflicting objectives. The set of all of these optimal trade-offs forms a hypersurface
through the space of possible solutions that is commonly referred to as the Pareto front (see
section 2.3.4). Gaining insight into the Pareto front is crucial for achieving optimal beam
properties, as it helps to identify and reconcile the underlying conflicting mechanisms.

This chapter will present Pareto-optimal tuning curves to control the energy, charge, and
energy spread in our laser-plasma accelerator. We utilize multi-objective Bayesian optimiza-
tion [106, 110, 111] to sample the system’s Pareto front and derive tuning curves that provide
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accurate control over the relevant beam properties. We demonstrate the concept using simu-
lations and present a method to handle the added complexity from noise under experimental
conditions. Our experiments show that we can maintain optimal beam loading conditions
over a broad range of beam configurations, allowing for flexible charge adjustments while
minimizing negative impacts on energy spread at different specific design energies.

In section 6.2, a brief return to simulations is made to elucidate the concept and its potential.
Following that, in section 6.3, the application of MOBO in the experiment will be discussed,
along with a presentation of the experimental findings. Lastly, in section 6.4, a tuning model
that enables precise adjustment of LUX’s electron beam parameters is derived from the MOBO
results.

6.2 Simulations

The application of MOBO to simulated LPA setups was already discussed in section 3.3.
However, the discussion there focused on the generalization of the optimization procedure
to take multiple beam parameters into account simultaneously. In practice, it can be useful
to quickly switch between optimal states of the setup and importantly to seamlessly tune
between them. The following discussion will focus on this aspect.

To do this, the LUX setup is simulated once more. This time the setup employs the revised
version of the plasma source (as referred to in section 4.4) and incorporates argon as the mixed
gas dopant.

The goal is to begin from a point of optimal beam loading conditions with the minimum
energy spread, and then adjust the beam charge while maintaining a low energy spread. As
previously elaborated, an uncomplicated method to modify the bunch charge in the given
setup is to alter the focal plane of the drive laser: Typically, the focus is set to the second half
of the plasma profile to maximize the wakefield strength in the acceleration region. Shifting
the focus upstream towards the mixed gas region increases the injection volume (ionization of
inner shell Ar electrons) and thus beam charge. This effect is shown in fig. 6.1a, continuously
shifting the focus upstream over a range of 300 um. Starting off with a beam that is optimally
beam loaded with 50 pC at 0.7 % energy spread, the charge increases as intended. However,
with this simple increase in charge, the previously flattened wakefield becomes overloaded
and deforms, causing the bunch tail to experience a lower accelerating gradient than the head.
As a result, the energy spread rapidly grows to unacceptable levels.

In principle, it is possible to counter-act this effect by increasing the wakefield strength.
However, parameters that control the wakefield do not act in an isolated manner: For instance,
raising the plasma density in return affects self-focusing and the evolution of the drive laser.
Further adjustments of the laser energy and focus position would be required to recover the
injection conditions; yet, they also influence the shape of the accelerating wakefield, which in
turn could make a different bunch current profile necessary to achieve optimal beam loading.
This requires adjustments of the Ar-concentration, which not only changes the injection rate,
but also the current profile by affecting the plasma profile in the mixed gas region.
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Figure 6.1 - LPA Tuning Curves (Simulations): The LPA setup is optimized for both charge and energy
spread at 200 +10 MeV using MOBO. Panel (a): energy spread, tuning the charge with the
laser focus position only (crosses), or by a combined complex tuning of many parameters
(circles), which are individually shown in panels (b)-(e). (A) and (B) mark two different
tuning strategies. Panel (f): longitudinal phase spaces for the optimized tuning (blue)
and the focus scan (violet). Solid lines, panels (a)-(e) mark the continuous tuning curves,
derived from the optimization. The figure is adapted from [2].

This cascade of consequences illustrates, that manually searching the functional dependencies
that result in tuning of the beam charge while maintaining optimal beam loading and energy
spread is futile. Instead, we apply MOBO to systematically study the input parameters that
make up this optimal tuning behavior. Here, we chose beam charge Q, relative energy spread
AE/E (median absolute deviation), and the deviation from a design energy of 200 MeV, as
objectives for optimization.

The results of this optimization, consisting of 700 individual simulations, are shown in fig. 6.1a.
Compared to the simple focus scan, we can increase the charge while keeping the energy
spread low. As expected, to achieve this Pareto-optimal tuning, the input parameters (laser
energy, focus position, gas density, and Ar concentration) need to be varied in non-obvious
ways as shown in fig. 6.1b-e.

Notably, for lower charges (region A) the focus position z;,. and Ar concentration c,, have to
be tuned in opposite directions from what would be expected when increasing the charge with
these parameters individually. Instead, the focus is moved away from the mixed gas region,
the Ar concentration is reduced, and gas density and laser energy are increased. The higher
gas density increases the plasma density and the amount of Ar. Together with the higher laser
energy, this results in an increase of the injected charge and a modification of the wakefield
strength, which prevents excessive beam loading. Shifting the focus downstream prevents
diffraction of the drive laser towards the end of the plasma and maintains optimal beam
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loading throughout the acceleration process. Moreover, a slight decrease in Ar concentration
is necessary to match the injected current profile to the wakefield at the increased plasma
density.

The tuning behavior changes completely once the gas density approaches the upper limit of
the tuning range (0.72 x10**cm™3) at around 100 pC (region B). Now, to even further increase
the charge, the focus needs to be tuned in the opposite direction, i.e., upstream, and the Argon
concentration needs to be increased again slightly. The laser energy that was previously also
reaching the maximum of the permitted range is slightly reduced.

As shown in fig. 6.1f, this way of precisely balancing the input parameters maintains a flattened
phase space over a wide range of charges, while keeping the beam energy fixed. The residual
energy spread increase is primarily caused by correlated energy spread, building up only in
the head and tail of the bunch. In contrast, the beams from the simple focus scan develop a
significant energy correlation and energy deviation.

To derive an actual tuning curve that can be used in practice, the discrete, optimized working
points have to be generalized. We fitted a multivariate kernel ridge regression model ! [156] to
the data, that maps the desired beam charge Q to the set of input parameters X, i.e., laser energy,
focus position, gas density, and Ar concentration, that provide this charge at Pareto-optimal
energy spread: Xp,.c;,(Q). The model is shown in fig. 6.1b-e, with the solid line indicating
the continuous variation in input parameters as we continuously increase the beam charge.
Using these tuning curves, the beam energy spread closely follows the Pareto front, compare
fig. 6.1a (solid line). Following our tuning curve, we can precisely set the beam charge, while
providing the best possible energy spread and retaining the design energy.

6.3 Multi-objective Bayesian optimization at LUX

Realizing the same concept experimentally is significantly more challenging, due to added
measurement noise and shot-to-shot variations (jitter) in the experimental conditions.

Conceptually, several sources of noise need to be distinguished, as discussed in the previous
chapter. First, the optimizer might set the machine to a certain target state (e.g, laser energy
and focus position), that could be different for the actual shot. We can account for this with
online shot-to-shot measurements of the laser parameters. Second, all measurements suffer
from at least some measurement noise, that we cannot avoid. This random noise leads to
uncertainty in the predictions of the surrogate model that can only be mitigated with additional
data.

To navigate the shot-to-shot fluctuations and inherent noise, data from 40 shots were recorded
at each setpoint. Merely taking the average from these shots would inherently consider the
shot-to-shot laser fluctuations as random noise. This would result in the introduction of

1Kernel ridge regression is a method in machine learning that introduces a kernel function to perform regression
in a higher dimensional feature space. This essentially allows the algorithm to model complex, nonlinear
relationships between variables. It’s comparable to Gaussian process regression but provides a single function
instead of a distribution over functions.
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Figure 6.2 - Experimental results: (a) Pareto fronts of the beam charge and energy spread for beams
within +£10 MeV of the target energies with corresponding input parameters (b-g), i.e. the
shift of the focus position Az;,., laser energy Ej ., and the flows of the gas supplies V.
The figure is adapted from [2].

extra uncertainty into the surrogate model, an outcome that isn’t desirable. Instead, at each
working point, we trained a local Gaussian process model using the online measurements of
the laser energy and focus position as inputs and the electron parameters as outputs. This
allowed us to disentangle the effects of the laser jitter from the remaining noise and interpolate
the properties of the electron beam for the exact input parameters that were requested by
the optimizer. Then we used this information to train the surrogate model that guided the
optimization.

The employed method shares similarities with the single-shot approach discussed in the
previous chapter in that it describes the accelerator at a singular point in the parameter space.
However, due to the computational expense associated with using the MOBO algorithm on
extensive datasets, this approach, using local modeling, was chosen. An alternative would have
been to use the mode-based method from before, potentially constraining the optimization
results to more stable setpoints. However, as our goal was to achieve a more unfiltered
depiction of the accelerator’s performance, this alternative was disregarded.

To explore the capabilities of our setup, we performed a series of experiments with MOBO
runs at 150, 200 and 250 MeV. As before, the objectives for the optimization were the beam
charge, relative energy spread, and deviation from the reference energy. The resulting Pareto
fronts with their corresponding input parameters after 100 iterations, i.e., 4000 individual
shots, are shown in fig. 6.2.

For all three target energies we find low energy spread setpoints over a significant range of
beam charges. Consistent with the simulations, the energy spread grows with increasing
charge. For lower target energies, the achievable charge increases as one would expect from
an aspect of energy conservation. As a result, for 150 MeV, it was possible to tune the beam
charge between 50 and 130 pC, while maintaining a relative energy spread of less than 5 %.
Up to a charge of 100 pC, the energy spread only shows a modest growth and stays below 2.5 %
but rapidly increases from there on. This behavior implies that the available input parameter
range did not support optimal beam loading beyond this point. Therefore, additional charge
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can only be loaded into the wakefield at the cost of significantly distorting the accelerating
field. For the two higher energy cases, this quick increase of the energy spread is present
already at low charge, indicating that here beam loading conditions immediately worsen so
much with increasing beam charge that a significant energy correlation is imprinted.

Figure 6.2b-g shows, that the three different energies populate very different islands in the
input parameter space, especially for Az;,., V5, and VH2,3- Also the way some parameters are
tuned varies from energy to energy. For example, for 150 MeV, the focus is moved downstream
to increase the charge similar to the lower charged beams in the simulated setup before. For
the other two cases it is moved upstream towards the mixed gas comparable to the higher
charge cases in the simulations. This again hints that these two cases are already in a regime
that is dominated by strong beam loading. Assuming this is true, we expect that these cases
would behave similar to the 150 MeV case when provided with more laser energy and exhibit
lower energy spread over a wider tuning range. The fact that these three cases behave so
diverse in regard to the input parameters highlights the complexity of, first, finding beams
with acceptable quality and then, second, being able to control them.

A general feature that is shared by nearly all configurations in fig. 6.2 is that the flow through
the last gas inlet VH2,3 is higher than through the middle one VHZ,Z- By creating a slight density
ramp the slippage between the electrons and the laser can be compensated through contraction
of the wakefield which is a way to increase efficiency and load more charge.

6.4 Tuning model

The Pareto fronts observed in our experiment, depicted in fig. 6.2, possess fewer sample points
relative to the prior simulations discussed in section 6.2. This outcome stems from fewer
iterations run by the optimizer, possibly further impacted by the more challenging conditions
encountered during the experiment. Consequently, providing a continuous tuning curve
is even more important. The data shows a less non-linear behavior than the simulations
before, possibly because it is less converged to the true Pareto front of the system. In this
case, it is sufficient to use a simple multivariate linear model to describe the main parameter
variations.

We derived such a model, exemplary for 250 MeV,

Xpareto(Q) = (AZfOC(Q)’ VAr(Q)’ VHM(Q))

9.5 1.25 4
~([59 —4Q]um, | — 4+ — mls‘l,[1.8+— ]mls‘l),
<[ Qlu [102 103 Q] 102 Q
with Q in units of pC. Here we only considered parameters that made significant contributions
to the tuning of the beam charge, keeping the remaining inputs constant (E,., = 2.157,
Vi, =2.24ml/s, Vi , = 0.84ml/s). For example, to generate beams with 10 pC, according
to the tuning curve, an operator would set the machine to Azg,, = 19 um, V,, = 0.107 ml/s

and Vy,, = 2.2ml/s.
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Figure 6.3 - Beam charge tuning curve at 250 MeV. A linear model (green line) is fitted to the optimiza-
tion result mapping the requested beam charge to the corresponding input parameters
along the Pareto front (b-d). (a) The tuning curve was validated and compared to the
measured data (circles) with predictions from a Gaussian process surrogate model. For
comparison the effect of a laser focus position scan over 450 um is shown (red line). The
figure is adapted from [2].

The input parameters over the full range of the tuning curve and the underlying data is shown
in fig. 6.3b-d. The tuning strategy is to shift the focus towards the mixed gas region and to
increase the flow of argon to enhance the beam charge. To support the additional charge and
balance beam loading, the flow of hydrogen in the back of the plasma source needs to go up.
This leads to a higher gas pressure in the plateau region and creates a density ramp towards
the back of the plasma profile, ensuring optimal performance.

To evaluate the effectiveness of the tuning curve, we employ the surrogate model obtained
from the optimization process to forecast the response of the LPA when adjusted based on the
curve. For the example above, the surrogate model predicts that the LPA generates beams
with 10.9pC at 1.2 % energy spread that are within 4.3 MeV of the 250 MeV design energy.

The green line in fig. 6.3a shows the predicted behavior of the energy spread when scanning
the charge according to the tuning curve. The resulting working points closely align with
those measured during optimization, indicating their proximity to the presumed Pareto front
of the system. Remarkably, this behavior is achieved using only the three most important
input parameters identified through our analysis. In contrast, when tuning the charge only
with the focus position, the resulting growth of energy spread is roughly a factor of two larger
than what is obtained with our tuning curve. Provided with the simple tuning curve, operators
can precisely set the beam charge required for their application, while still achieving the
smallest possible energy spread.

6.5 Summary

In summary, we have demonstrated dedicated control over electron bunch parameters in our
laser-plasma accelerator using continuous tuning curves, both in simulations and experiments,
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that have been build via multi-objective Bayesian optimization of the machine. In particular,
the bunch charge was varied over a range of nearly 100 pC and at different electron energies
(150-250 MeV), while providing the smallest possible energy spreads (<5 %) by moving the
laser and plasma control parameters along Pareto-optimal tuning curves. Even more impor-
tantly, we could show that the derived tuning curves itself are meaningful expressions of
the control and output parameter relationships, which allowed us to identify and explain
how different physics mechanisms have to be balanced to provide optimal trade-offs between
competing beam parameters.
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Conclusion

If laser-plasma accelerators live up to their promise—providing electron beams of a quality
that rivals conventional accelerators, but in a package compact enough for a small lab or
portable enough to be transported in a truck—the implications for society will unquestionably
be profound.

Plasma accelerators have made significant strides in recent proof-of-concept experiments,
demonstrating an array of promising features. However, the robustness and reliability they
have exhibited still falls short of the established performance standards set by their conven-
tional counterparts. For laser-plasma accelerators to truly advance and gain widespread
adoption, they need to consistently deliver the precise parameters that users demand. This
isn’t about meeting performance criteria occasionally, but consistently producing results with
every single shot on every single day.

As the affordability of these machines increases, their accessibility will likewise expand,
leading to an inevitable diversification in user demands. This evolution means that laser-
plasma accelerators need to offer not only high-fidelity performance, but also flexible tuning
capabilities. The capacity to adjust and vary beam parameters to cater to a multitude of
applications is a crucial attribute that will heavily impact their broad utility and ultimate
societal benefit.

Undoubtedly, while advancements in technology, such as more stable driver technology
operating at kilohertz rates, will likely alleviate some of the challenges, they alone are not
a universal solution. The complexity of laser-plasma accelerators is expected to increase,
not decrease, potentially complicating their operation further. This trend underscores the
necessity for systematic strategies to not only operate but also fine-tune these machines. Mere
technical progress can improve certain aspects, but the demand for precise, reliable, and
flexible control over beam parameters calls for a dedicated approach. This need is where
the methodology introduced in this thesis, specifically the application of machine learning
techniques, and more precisely Bayesian optimization, comes into play.

Bayesian optimization, with its unique strengths such as its robustness when dealing with
sparse and noisy data, emerges as an ideal tool for navigating the intricate parameter spaces
that characterize laser-plasma accelerators. As discussed in chapter 3, it can play a pivotal role
in transforming particle-in-cell simulations into versatile design instruments. This technique
allows for quick optimization of the degrees of freedom in a proposed setup, providing a
fair assessment of the potential of any given idea. In this particular case, an LPA setup was
optimized that utilized localized ionization injection for the generation of the electron beams.
Through the optimization it was possible to quickly find parameters that in the simulation
generate beams with 0.7 % energy spread and almost 50 pC charge, resulting in 2.5 kA beam
current and a spectral density of 7pC MeV L.
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While it’s important to note that other forms of optimization could theoretically achieve similar
results—albeit at higher cost—Bayesian optimization stands out due to its surrogate model.
This model offers more than just an optimized result—it provides insightful and interpretable
data about the system being optimized. This capability to reveal the underlying mechanisms
and relationships of the parameters within the system is a distinctive advantage of Bayesian
optimization. Thus, it provides not only the means to refine and improve designs, but also
deepens our understanding of the systems themselves. This concept was demonstrated in
chapter 3, where the surrogate model was employed to understand the effects and interplay of
various input parameters, and in particular to study the sensitivity of the optimized LPA setup
to variations of the laser and estimate its stability under realistic conditions.

The model-based analysis revealed the system’s significant sensitivity to changes in the longi-
tudinal focus position of the drive laser. Such shifts can cause variations in the beam charge,
which in turn impacts the beam loading conditions. Consequently, the spectral properties of
the beam can change.

Through the application of multi-objective optimization it was demonstrated that the same
system can support operational modes that are far less sensitive to such fluctuations in the focus
position. Notably, it was shown that the overall quality of the electron beams can be balanced
against shot-to-shot stability, effectively allowing for tailoring to match an application’s specific
tolerances. This insight showcases the flexibility inherent in the system when optimized
effectively. Further, the use of multi-objective optimization and the Pareto front has proven
to be a reliable method for comparing different design concepts. By contrasting the impacts
of different dopant gases on beam stability and quality, the advantages and disadvantages of
each choice were clearly delineated.

The latter portion of this thesis involved the practical application of the Bayesian optimization
approach to a real laser-plasma accelerator at LUX. Following a concise introduction to the ex-
perimental setup of the LUX accelerator in chapter 4, chapter 5 demonstrated the autonomous
tuning of the machine. This autonomous tuning successfully achieved a consistent setpoint,
resulting in electron beams with subpercent energy spreads and approximately 30 pC of charge.
The resulting spectral densities reached up to 5pC MeV~'—beam parameters remarkably
close to those achieved in the idealized simulations before. Mirroring observations from the
simulations, the beams also showed a strong sensitivity to changes in the laser conditions.

Adjusting the objective function to account for the full distribution of the produced electron
beams in light of the laser jitter, a stable regime like those seen in simulations was attained
experimentally. In this stable regime, an impressive 90 % of the shots achieved an energy
spread of less than 5 % and the shot-to-shot energy stability was 3.7 %. Detailed particle-in-cell
simulations and analysis of the correlations between beam parameters revealed the source of
this enhanced stability. It was found to be due to a reduced bunch length achieved through
careful adjustment of the plasma profile.

With the achievement of improved stability and beam quality, in chapter 6 this thesis finally
addressed the challenge of precisely tuning the beam parameters of the LPA. Multi-objective
Bayesian optimization was introduced as an effective tool for this purpose. It enabled the
identification of tuning curves for the accelerator that modified beam parameters, such as
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bunch charge, in accordance with the system’s Pareto front. This approach ensured optimal
energy spread while tuning the desired beam parameters.

The versatility of this technique was demonstrated by tuning the electron beam charge over
a broad range—nearly 100 pC—while maintaining optimal beam loading conditions and
keeping the energy spreads below 5 % for energies between 150 and 250 MeV. The derived
tuning curves were valuable in elucidating the sometimes counter-intuitive relationships
between the control variables of the laser and plasma.

The methods developed in this thesis have since been adopted as standard tools for the
operation of LUX. Whether it’s modifications to the plasma source, adjustments to the laser,
or even adaptations for new experiments in different energy regimes, Bayesian optimization
has proven valuable in restoring previous beam parameters and swiftly adjusting the machine
to suit the demands of the experiment at hand.

The broader impact of the research carried out in this thesis is evident already now, shortly
after the first demonstration of Bayesian optimization in laser-plasma accelerators [129, 1].
The method has gained substantial interest within the community, evidenced by numerous
publications that have leveraged this approach [6-8, 157-161]. Notably, simulations for a
potential plasma based injector of the planned PETRA IV upgrade at DESY are being based
on this methodology [6, 162].

Meanwhile, Bayesian optimization and machine learning-based strategies have been identified
as important instruments in advancing the field and enabling potential future plasma-based
facilities. This perspective is echoed in both the European Strategy for Particle Physics [163]
and multiple contributions to the Snowmass 2021 Accelerator Frontier in the US [164-166],
further emphasizing the recognition and embrace of these methods.

The imminent era of high repetition rate drive lasers, operating in the kHz range, undoubtedly
signifies a transformative phase for the laser-plasma community. This development creates
an opportune moment to proof the practical utility of laser-plasma accelerators. However, the
benefits of a higher repetition rate can only be fully realized by also advancing our methods
to keep pace with the increased data output. As data rates surge, it becomes vital to develop
innovative techniques capable of managing the higher data throughput effectively. This
challenge necessitates strategies that not only cope with the volume of data but also leverage
this wealth of information to extract greater insight and drive further improvements.

Bayesian optimization, given its resilience in dealing with sparse and noisy data, will un-
doubtedly continue to be a key instrument in the toolbox of laser-plasma accelerator research.
However, the higher data rates enabled by kHz repetition lasers will broaden the horizon of
applicable machine learning techniques. With the luxury of more substantial datasets, meth-
ods that are more data-intensive can come into play. This includes reinforcement learning
[167,168], where machines learn to make specific decisions for example to act on environmen-
tal changes, or stochastic gradient descent [169], a potent optimization algorithm routinely
employed in large-scale machine learning tasks, both of which could be adapted for real-time
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Conclusion

accelerator tuning. Similarly, deep learning methods, known for their appetite for vast quanti-
ties of data, could become viable for uncovering complex, high-dimensional relationships in
accelerator performance data [5].

As the field progresses, the repertoire of data analysis tools is expected to grow, offering a range
of methods tailored to the particular challenges and opportunities of laser-plasma acceleration
research.

The challenges and solutions being investigated for laser-plasma acceleration in this regard now
reflect those also encountered in the realm of conventional accelerators [101, 170-174]. This
parallel development signifies a departure from the established pattern where developments
from conventional accelerators were predominantly imported into the field of laser-plasma ac-
celerators, but rarely vice versa. Now, there exists a novel, bilateral opportunity for knowledge
exchange between these two domains. This fresh perspective underscores a significant stride
in the evolving synergy between the laser-plasma and traditional accelerator communities,
paving the way for more robust and sophisticated technological advancement.
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