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Abstract

Passive seismic source localization plays a crucial role in understanding geodynamics, mon-
itoring geological activities, forecasting geological hazards, and managing geological frac-
turing processes. This doctoral thesis presents three consecutive approaches to enhance
the robustness and accuracy of time-reversal source localization. The proposed methods
address challenges such as source imaging artifacts, low-resolution source images, sparse
and small-aperture seismic data acquisitions, and unknown seismic velocity models.
In the first approach, the focus is on refining time-reversal imaging. Conventional time-

reversal source imaging methods like autocorrelation imaging or grouped crosscorrelation
imaging often suffer from source imaging artifacts due to the use of low-quality seismic
data or less constrained velocity models. These artifacts typically degrade the quality of
the image and can lead to subsequent misinterpretation, resulting in false source loca-
tion estimation. To overcome this, the Gaussian-weighted crosscorrelation imaging con-
dition is proposed. Each time step in this method includes dividing the back-propagated
wavefield, weighting seismic amplitudes using Gaussian functions, and using a zero-lag
crosscorrelation. This process effectively minimizes source imaging artifacts, resulting in
high-resolution, low-noise source images. Numerical examples of complex models and field
examples illustrate the method’s performance, demonstrating its effectiveness in identifying
sources, even within clusters and under conditions of noisy and sparse-sampled data.
The second approach addresses another challenge posed by sparse and small-aperture

seismic data acquisition in time-reversal imaging techniques. Such acquisitions often lead
to false wave focusing due to insufficient wave illumination. To address the issues, the
maximum-amplitude path method is introduced for source localization using maximum-
amplitude paths. The paths are constructed from back-projected wavefields using receiver
patches selected from the acquisition. They include the maximum amplitudes of the back-
projected wavefronts for each considered time step. The proposed method exploits the
continuity of the maximum amplitudes of the back-projected wavefields. The point of closest
proximity (or crossing point) of the paths is the source location and the corresponding
time is the source time. The maximum-amplitude path method successfully overcomes the
acquisition problems and provides accurate source location and source excitation time even
in challenging scenarios.
In the final approach, a data-driven hybrid workflow is presented to address the challenge

of the lack of velocity model in time-reversal localization methods including the proposed
first and second time-reversal localization approaches. The proposed workflow can simul-
taneously invert the source location, excitation times, and velocity model using wavefront
attributes of passive seismic data. By combining wavefront tomography and time-reversal
methods, the workflow eliminates the need for detailed prior information, making it par-
ticularly applicable in practical scenarios. The proposed workflow comprises the following
steps. First, a set of user-defined vertical gradient velocity models is designed. Time rever-
sal is then used to estimate the source excitation times for each model. After that, these
source times and gradient models are used in wavefront tomography. The second step uses
an optimization procedure to refine the velocity model and the source excitation time. Each
iteration of the optimization involves a sequential application of time reversal and wave-
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front tomography. In the final step, the source location is refined using the optimal velocity
model and the Gaussian-weighted crosscorrelation imaging condition. The proposed work-
flow overcomes the limitations of time reversal in the absence of a velocity model, providing
good velocity models and fairly accurate source locations and excitation times.
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Zusammenfassung

Die genaue Lokalisierung passiver seismischer Quellen spielt eine entscheidende Rolle für
das Verständnis der Geodynamik, die Überwachung geologischer Aktivitäten, die Vorher-
sage geologischer Gefahren und die Kontrolle von Frakturprozessen. In dieser Dissertation
werden drei aufeinander aufbauende Ansätze zur Verbesserung der Robustheit und Genau-
igkeit der zeitumgekehrten Quellenlokalisierung vorgestellt. Die vorgeschlagenen Metho-
den befassen sich mit Herausforderungen wie Artefakten bei der Quellenabbildung, niedrig
aufgelösten Quellenbildern, unzureichender Akquisition und unbekannten seismischen Ge-
schwindigkeitsmodellen.
Beim ersten Ansatz liegt der Schwerpunkt auf der Verfeinerung der zeitumgekehrten Bild-

gebung. Herkömmliche zeitumgekehrte Quellenabbildungsmethoden wie die Autokorrelati-
onsabbildung oder die gruppierte Kreuzkorrelationsabbildung leiden häufig unter Artefakten
bei der Quellenabbildung, die auf die Verwendung von seismischen Daten geringer Quali-
tät oder von zu ungenauen Geschwindigkeitsmodellen zurückzuführen sind. Diese Artefakte
verschlechtern in der Regel die Qualität des Bildes und können zu einer Fehlinterpretation
führen, die eine falsche Schätzung der Quellenposition zur Folge hat. Um dieses Problem
zu lösen, wird die Gauß-gewichtete Kreuzkorrelationsabbildung vorgeschlagen. Bei dieser
Methode wird in jedem Zeitschritt das sich rückwärts ausbreitende Wellenfeld geteilt, die
seismischen Amplituden mit Gaußfunktionen gewichtet und eine Kreuzkorrelation mit Null-
verzögerung verwendet. Dieses Verfahren minimiert effektiv Artefakte bei der Quellenab-
bildung und führt zu hochauflösenden, rauscharmen Quellenbildern. Numerische Beispiele
komplexer Modelle und Feldbeispiele veranschaulichen die Leistung der Methode und zei-
gen ihre Wirksamkeit bei der Identifizierung von Quellen, sogar innerhalb von Clustern und
unter Bedingungen verrauschter und spärlich abgetasteter Daten.
Der zweite Ansatz begegnet einer weiteren Herausforderung, die sich aus der Erfassung

von spärlichen und kleinen Seismikdaten bei den Zeitumkehrbildgebungstechniken ergibt.
Solche Erfassungen führen häufig zu einer falschen Wellenfokussierung aufgrund unzurei-
chender Abdeckung. Um diese Probleme zu lösen, wird die Maximum-Amplituden-Pfad-
Methode zur Quellenlokalisierung unter Verwendung von Maximum-Amplituden-Pfaden
eingeführt. Die Pfade werden aus rückprojizierten Wellenfeldern unter Verwendung von aus
der Erfassung ausgewählten Empfängerfeldern konstruiert. Sie enthalten die maximalen
Amplituden der rückprojizierten Wellenfelder für jeden betrachteten Zeitschritt. Die vorge-
schlagene Methode nutzt die Kontinuität der maximalen Amplituden. Der Punkt, an dem
sich die Pfade am nächsten kommen (oder kreuzen), ist der Ort der Quelle, und die entspre-
chende Zeit ist die Quellzeit. Diese Methode überwindet erfolgreich Akquisitionsprobleme
und liefert selbst in schwierigen Szenarien eine genaue Quellenortung und Quellenanre-
gungszeit.
Im letzten Ansatz wird ein datengesteuerter Hybrid-Workflow vorgestellt, um die Heraus-

forderung des fehlenden Geschwindigkeitsmodells in Zeitumkehrungslokalisationsmethoden,
einschließlich der vorgeschlagenen ersten und zweiten Zeitumkehrungslokalisationsansätze,
anzugehen. Dieser Ablauf kann gleichzeitig die Quellenposition, die Anregungszeiten und
das Geschwindigkeitsmodell unter Verwendung von Wellenfrontattributen der passiven seis-
mischen Daten umkehren. Durch die Kombination vonWellenfronttomographie und Zeitum-
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kehrverfahren macht der Arbeitsablauf detaillierte Vorabinformationen überflüssig und ist
daher besonders in praktischen Szenarien anwendbar. Zunächst wird eine Reihe von benut-
zerdefinierten vertikalen Gradientengeschwindigkeitsmodellen entworfen. Anschließend wird
die Zeitumkehr verwendet, um die Quellenanregungszeiten für jedes Modell zu schätzen.
Danach werden diese Quellzeiten und Gradientenmodelle in der Wellenfronttomographie
verwendet. Im zweiten Schritt wird ein Optimierungsverfahren eingesetzt, um das Geschwin-
digkeitsmodell und die Quellenanregungszeit zu verfeinern. Jede Iteration der Optimierung
beinhaltet eine sequentielle Anwendung von Zeitumkehr und Wellenfronttomographie. Im
letzten Schritt wird die Quellenposition unter Verwendung des finalen Geschwindigkeits-
modells und der Gauß-gewichteten Kreuzkorrelationsabbildungsbedingung verfeinert. Der
vorgeschlagene Arbeitsablauf überwindet die Beschränkungen der Zeitumkehr in Abwesen-
heit eines initialen Geschwindigkeitsmodells und liefert gute Geschwindigkeitsmodelle und
genaue Quellenstandorte und Zeiten.
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1 Introduction

A passive seismic source can be defined as the origin of seismic waves generated by natural
processes or human activities in the Earth’s interior. Passive seismic source localization is
the process of determining the epicenter, depth, and onset time of a source, which is im-
portant in both seismology and geoengineering (Shearer, 2019; Li et al., 2020). The sources
can be triggered by natural causes like tectonic events or by human activities such as fluid
injection/extraction (Eisner et al., 2009; Suckale, 2009). In seismology, earthquakes often
occur when the Earth’s crust is fractured or cracked (Shearer, 2019). Accurate localiza-
tion of earthquake sources serves as an important step in understanding the propagation of
fractures and facilitates subsequent seismological analysis, including magnitude assessment
(Grigoli et al., 2014), the delineation of seismicity models (Sawires et al., 2016), monitoring
of seismic source areas (Chen et al., 2022), and inversion of source mechanisms (Li et al.,
2020; Kwiatek et al., 2016; Anikiev et al., 2014). In geoengineering, activities such as hydro-
carbon production (Grechka et al., 2017; Li and Einstein, 2019), geothermal development
(Dyer et al., 2008), coal mining (Cheng et al., 2017; Dong et al., 2016), and CO2 injection
(Oye et al., 2013; Zhou et al., 2010; Mazzoldi et al., 2012) cause induced seismicities due to
the rock fracturing, underground explosion, or fault activation. High-precision estimation
of the excitation time and location of these fractures helps to assess the potential impact
on groundwater and nearby subsurface structures (Anderson, 2017; Schultz et al., 2021),
which helps to provide timely responses, manage induced seismicity, and optimize industrial
processes (Maxwell et al., 2010; Warpinski, 2009; Eisner et al., 2009) to reduce potential
environmental hazards and improve oil/gas production.
Early established localization methods are based on traveltime inversion, which uses

the arrival times of seismic waves to determine the precise location and onset time of
the event. These methods, exemplified by the work of Geiger (1912); Waldhauser and
Ellsworth (2000); Font et al. (2004), aim to minimize differences between observed and
model-predicted arrival times, resulting in accurate source positions and excitation times.
Waldhauser and Ellsworth (2000) proposed a source localization method by iteratively
fitting the synthetic differential traveltime to the observed one, known as the "hypoDD"
method. The principle of hypoDD is to use the differential traveltime between stations
to determine the location of an earthquake. Zhang and Thurber (2003) implemented the
double-difference approach to estimate event locations and the underlying velocity model.
This type of approach searches for the minimum misfit between modeled and observed
traveltimes using either inversion techniques or grid-based searches. While the approach
is known for its efficiency and reasonable reliability, it requires accurate picking of seismic
phases and arrival times, which can be challenging when dealing with data characterized
by a low signal-to-noise ratio (S/N) or data acquired from sparsely distributed receiver
networks.
With advances in computing power and storage capacity, time reversal has developed as

a common and powerful tool for passive seismic source localization that does not require
picking seismic arrival times and phases. Time reversal relies on the seismic wave equation,
and it focuses the energy of seismic waves back to the hypocenter if a reasonably accurate
velocity model is available (Fink et al., 2002; Gajewski and Tessmer, 2005; Artman et al.,
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2010; Chen et al., 2021). This type of method is robust to high noise levels and strong het-
erogeneity, and can accurately localize sources by performing numerical backpropagation
of the recorded waveforms Capdeville and Maron (2006); Yang and Gajewski (2022). Fink
(1996) introduced time reversal in acoustics, which laid the foundation for backpropagation
simulation in passive seismics. Gajewski and Tessmer (2005) presented the reverse modeling
for seismic event characterization. The recorded wavefield of the seismic acquisition was
reversed in time and then considered as the boundary value for the reverse modeling. After-
ward, time-reversal imaging was introduced for source localization. The imaging technique
is independent of the source excitation time and has been successfully applied to various
seismic events ranging from glacial earthquakes to microseismic activity to improve the
reliability of time-reversal source localization (Artman et al., 2010; Larmat et al., 2008).
Larmat et al. (2008) approximated the location and focal mechanism of relatively large
glacial earthquakes from time-reversal images. Artman et al. (2010) introduced a migra-
tion strategy for source localization, which adopts the autocorrelation imaging condition.
The time-reversal imaging method is robust and reliable for long-period event localization
(O’Brien et al., 2011; Folesky et al., 2015; Price et al., 2015).

1.1 Gaussian-weighted imaging condition
However, the established time-reversal imaging method like auto-correlation imaging (Steiner
et al., 2008; Artman et al., 2010), suffers from strong imaging artifacts and low spatial res-
olution (Yang and Gajewski, 2021b, 2022). To improve the quality of time-reversal images,
Sun et al. (2016); Chen et al. (2021) proposed the grouped crosscorrelation imaging method.
Although the spatial resolution of the image is improved, artifacts are still present. The
artifacts typically degrade the image quality and can potentially lead to subsequent misin-
terpretation, resulting in incorrect source location. In addition, the loss of data illumination
in the grouped crosscorrelation imaging is inevitable because of receiver grouping. Selecting
receivers for each group is a challenging task.

Figure 1.1: Schematic illustration of the Gaussian-weighted wavefield calculation. For each time
step, the full back-propagated wavefield u(x, t) is first divided into parts, uk(x, t),
according to the amplitude boundaries calculating by equation 2.3 given in Chapter
2. Then the spatial location xk(t) for the maximum absolute amplitude of the k-
th part of the wavefield uk(x, t) is calculated by equation 2.5 given in Chapter 2.
The Gaussian-weighted wavefield uk(x, t) is finally computed by applying a Gaussian
window to the full wavefield u(x, t). The Gaussian window centered at the position
xk(t) corresponds to the spatial extent of the dominant wavelength of the event.

To address the issues, the Gaussian-weighted crosscorrelation imaging condition (Yang
et al., 2023) is presented inChapter 2. The calculation of each Gaussian-weighted wavefield
at each time step is sketched in Figure 1.1. Zero-lag cross correlating the weighted wavefields
at each spatial point produces an image for this time step. The Gaussian-weighted crosscor-
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relation image is obtained by summing the images for all time steps. The proposed method
eliminates the need to group receivers and can provide clear and high-resolution source
images by time-reversal imaging. The details of the method are described in Chapter 2.

1.2 Maximum-amplitude path method

Aside from the issue of poor imaging quality mentioned above, time-reversal imaging meth-
ods, including those mentioned in Chapter 2, usually require a large-aperture seismic
acquisition to ensure sufficient data illumination. The established time-reversal imaging
methods (Artman et al., 2010; Nakata and Beroza, 2016; Yang et al., 2023) struggle to
accurately localize sources using the passive seismic data acquired from sparse and small-
aperture seismic acquisitions, however, such challenging acquisitions are often met in field
cases.
To solve the problem of acquisition limitation, the maximum-amplitude path method

(Yang and Gajewski, 2022) is introduced in Chapter 3. The construction of the maximum-
amplitude path is shown in Figure 1.2. The path is obtained by tracking the maximum
amplitudes of the wavefront formed by the back-projected wavefields. I construct three
maximum-amplitude paths from the time-reversed data of three receiver patches selected
from the recorded traces. The paths cross or display the closest proximity to each other,
which defines the source location. The time at this location corresponds to the source
excitation time. The proposed method allows the accurate estimation of source location
and excitation time in the sparse and small-aperture seismic acquisitions. I will describe
the details of the method in Chapter 3.

zb

source

surface

xmax_i, ti

xmax_i+1, ti+1

xb, tb

xe, te

receiver patch

Figure 1.2: Schematic sketch of the maximum-amplitude path construction. The threshold Zb is
a user-defined parameter for determining the maximum-amplitude path start (xb, tb).
Two snapshots at subsequent time steps ti and ti+1 are displayed. The black curve
describes the maximum-amplitude path. Assuming that the maximum amplitude for
the time step ti is located at xmax_i, the maximum for the next time step xmax_i+1,
denoted by the white circle, is determined by scanning the amplitude of the wavefront
for this time step, that is, ti+1, in the neighborhood of the previous maximum. This
neighborhood, indicated by the red rectangular box, is centered at the previous max-
imum and oriented in propagation direction with side lengths corresponding to the
prevailing wavelength of the signal.
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Figure 1.3: The flowchart of the hybrid workflow, sketching main procedures and their respective
outcomes. The black and blue arrows mark the first and second steps of the hybrid
workflow, respectively. The first step starts with a set of user-defined vertical gradient
models, each using time reversal to determine source excitation times ts. Using these
source times, along with the corresponding user-defined gradient models, wavefront
tomography is performed to produce the initial model for the second step. In the
second step, an optimization process unfolds: time reversal and wavefront tomography
are sequentially performed, with time reversal estimating source excitation times ts

and locations xs, and wavefront tomography providing the velocity model v.

1.3 Source localization and joint velocity model invesion
The accuracy of source location and onset time obtained by time-reversal methods, includ-
ing those proposed in Chapters 2 and 3 (Gajewski and Tessmer, 2005; Artman et al.,
2010; Yang and Gajewski, 2022; Yang et al., 2023), is highly dependent on the quality of
the provided underlying velocity model, however, the velocity model is often unknown in
field work. Image-domain wavefield tomography methods, using the PS energy imaging
function Oren and Shragge (2021) or the source-focusing function Song et al. (2019), aim
to minimize the image residues derived from these functions to simultaneously invert for
the source location and velocity model. However, these tomography methods rely on high-
quality source images, which require dense and well-distributed seismic data for effective
source imaging. Another approach to joint inversion is full waveform inversion (e.g., Wang
and Alkhalifah, 2018; Sun et al., 2016), which yields fine-scale velocity variations, but is sen-
sitive to the initial velocity model, susceptible to cycle skipping, and requires high-quality
data. Additionally, these methods typically do not include inversion of the source exci-
tation time. To overcome challenges arising from poor data quality and unknown source
time, Diekmann et al. (2019) introduced a robust alternative using wavefront attributes
(Hubral, 1983; Schwarz et al., 2016) for the joint inversion of source location, excitation
time, and velocity model. This data-driven approach requires only prior information of the
near-surface velocity and is capable of handling data with high noise levels and/or sparsely
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1.3 Source localization and joint velocity model invesion

sampled (Diekmann et al., 2019; Yang and Gajewski, 2021a). However, the approach faces
difficulties in accurately estimating the source time, particularly in scenarios with strong
lateral heterogeneity.
To address the issues of the lack of velocity model information and the limitations of

the conventional approach presented by Diekmann et al. (2019), I combine the potential to
determine the velocity model by wavefront attributes with the independence on the source
times of time-reversal methods. Figure 1.3 display the main procedures and their respective
outcomes of the hybrid workflow (for details, see Chapter 4). The proposed workflow
(Yang et al., 2024) performs time reversal and wavefront tomography sequentially. Time
reversal (Gajewski and Tessmer, 2005; Yang et al., 2023) determines the source parameters,
while wavefront tomography (Duveneck, 2004; Bauer et al., 2019a) provides the velocity
model. It is worth mentioning that I applied the Gaussian-weighted crosscorrelation imaging
conditions from Chapter 2.

Structure of the thesis

Following the introduction given in this chapter, Chapter 2 contains the paper Gaussian-
weighted crosscorrelation imaging condition for microseismic source localization, which was
published in 2023 in the journal Geophysics (Yang et al., 2023). This work introduces
the Gaussian-weighted crosscorrelation imaging condition to improve passive seismic source
imaging quality. The proposed imaging condition generates high-resolution images display-
ing little to no imaging artifacts, which is particularly suitable for noisy data acquired from
sparse acquisitions and provides good results for source clusters. The work successfully
addresses the problem of imaging artifacts in time-reversal imaging.
Chapter 3 consists of the paper Seismic source localization with time-reversal and max-

imum amplitude path for sparse and small-aperture acquisitions, which was published in
2022 in the journal Geophysics (Yang and Gajewski, 2022). Since the time-reversal imaging
methods discussed in Chapter 2, often face the challenge associated with sparse and small-
aperture seismic acquisition, this work proposes the maximum-amplitude path method to
overcome this challenge by constructing maximum-amplitude paths. The paths consist of
the maximum amplitudes of the back-projected wavefronts for each time step considered.
The source location and excitation time are determined by calculating the closest proximity
of the paths.
In Chapter 4, the paper Integrated wavefront tomography and time reversal for source

location, excitation time, and velocity model building is presented, which has already been
submitted to the journal Geophysics in 2024 (Yang et al., 2024) and is under review (since
February 2024). This work introduces a data-driven hybrid workflow by combining wave-
front tomography and time reversal methods. The time-reversal methods used in the work-
flow were proposed in previous chapters, which are independent of source time. The pro-
posed workflow can simultaneously invert for source location, excitation time, and velocity
model. It overcomes the common limitation of the previous time-reversal localization meth-
ods, that is, the previous methods require a reasonably accurate velocity model, which is
often unknown in practice, for accurate source location estimation.
In Chapter 5, I summarize the results and conclusions of the thesis. This chapter serves

to consolidate the findings and implications discussed throughout the research. Finally, in
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1 Introduction

Chapter 6, I offer an outlook on potential future work, suggesting directions for continued
research and development.

Contributions of co-authors
Chapters 2 and 3 of this thesis are papers that have been published in scientific journals,
and Chapter 4 is based on a manuscript that will be published in the near future. In the
following, I briefly describe the contributions of the co-authors of each paper.
The results presented in Yang and Gajewski (2022) were generated by my efforts. I wrote

the computer programs and the original manuscripts for the journal paper. I authored
the computer programs and original manuscripts for the journal paper, with supervision
from my supervisor Prof. Dr. Dirk Gajewski, who provided continuous guidance and
participated in discussions. After substantial results were achieved, he made efforts to
improve the structure and clarity of my written materials and refined the manuscripts. I
made the final refinements to the manuscript. Although not listed as co-authors, I would
like to explicitly acknowledge the work of Dr. Alex Bauer and Dr. Claudia Vanelle, who
produced comments and suggestions that helped to improve the manuscript.
The idea and the implementation of Gaussian-weighted crosscorrelation imaging pre-

sented in Yang et al. (2023) were my own work. Based on the previous research on time-
reversal localization methods, I developed the 2D and 3D codes for time-reversal imaging.
Prof. Dr. Dirk Gajewski offered insights by discussing ideas and refining the manuscript.
Yujiang Xie contributed to discussions on mathematical methods and proposed methods,
refining the manuscript. The final adjustments to this manuscript were also made by me.
Recently, I submitted the third paper (Yang et al., 2024) presented in Chapter 4. This

paper addressed a common issue of the previous two published papers and constituted the
final chapter of my dissertation. I programmed this work and wrote the original manuscripts
for this journal paper. Prof. Dr. Dirk Gajewski supervised the entire work and refined the
manuscript. Yujiang Xie contributed to the continuous discussion of the proposed methods
and refined the written materials. I made the final refinements to the manuscripts and
composed this thesis by combining these three journal papers.
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2 Gaussian-weighted crosscorrelation
imaging condition for microseismic
source localization

Abstract

Time-reversal imaging is a powerful method for localization of microseismic events. Con-
ventional time-reversal imaging methods such as autocorrelation imaging or grouped cross-
correlation imaging may suffer from imaging artifacts, e.g., caused by less refined velocity
models, noise-contaminated data, and data acquired from sparse receiver networks. These
artifacts typically reduce imaging quality and may cause subsequent misinterpretation lead-
ing to false positives. To address these issues, we develop a new imaging condition that
comprises three steps for each time step. First, we divide the back-propagated wavefield
into parts according to their maximum absolute amplitudes. Second, the amplitudes of the
back-propagated wavefield are weighted by a Gaussian function with the spatial extent of
the prevailing wavelength of the event, centered at the absolute maximum of that part of the
wavefield. Finally, we zero-lag crosscorrelate these weighted wavefields at each space point
to obtain an image for this time step. The final image is gained by summing the images for
each time step. This process collects all energy concentrations along the back projection
process, and the energy on the wavefront overlaps and collapses at the hypocenter leading to
high-resolution images displaying little to no imaging artifacts. Numerical examples using
the Marmousi-II and the 3D SEG overthrust models and a 3D field data example indi-
cate the performance of our method. High-resolution low-noise source images allow unique
identification of sources even for source clusters, noisy data, and sparse acquisitions. The
source localization errors are smaller than the dominant wavelength of the signal, where
a smooth model with a mean velocity error of approximately 5% was considered in the
synthetic examples, and a homogeneous model was used in the field data example.

2.1 Introduction

Microseismic source localization is an important tool, e.g., for hydraulic fracturing or reser-
voir monitoring. Observing fluid-induced seismicity can help to characterize reservoirs for
oil and gas exploration. Accurate fracture localization helps to control fracturing processes
(Maxwell et al., 2010; Warpinski, 2009). Conventional source localization methods are trav-
eltime inversions, which use arrival times for microseismic monitoring. By minimizing the
differences between the observed and modeled arrival times, accurate source locations and
origin times of the events are obtained (Geiger, 1912; Waldhauser and Ellsworth, 2000;
Eisner et al., 2009). To identify seismic events from continuously recorded data, arrival
times are obtained by crosscorrelating template waveforms with time-windowed data out of
the continuous recording (Shelly et al., 2007). Zhang and Thurber (2003) use the double-
difference technique to approximate event locations and the velocity model. This method
searches for minimum misfit between the modeled and observed traveltimes based on either
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2 Gaussian-weighted microseismic localization

an inversion or a grid search. Although efficient and reasonably reliable, this method re-
quires accurately picking seismic phases and arrival times, which may be compromised for
data with a low signal-to-noise ratio (S/N) or data acquired from sparse receiver networks.

Advances in computational power and imaging techniques enable the use of waveforms
rather than the arrival times for source locations. The common and powerful types of
methods are time-reversal imaging and full-waveform inversion methods using wave equa-
tions to backpropagate seismic waves to the hypocenter. Time-reversal imaging techniques
require a reasonably accurate velocity model (Fink et al., 2002; Yang et al., 2019), and
full-waveform inversion methods simultaneously invert for the source image and velocity
distribution (Kaderli et al., 2015; Wang and Alkhalifah, 2018; Song and Alkhalifah, 2019).
In this paper, assuming the velocity model is known, only time-reversal imaging methods
are considered. Because the back-propagation process starts when the event is injected
into the model, it is source-time independent and does not require the picking of arrival
times. These types of methods are more robust and reliable for long-period event localiza-
tion (O’Brien et al., 2011) and are generally suitable for passive seismic imaging (Folesky
et al., 2015; Price et al., 2015). Artman et al. (2010) introduce a migration strategy for
source locations, which adopts the auto-correlation imaging condition. However, the image
displays strong artifacts and suffers from low spatial resolution (Yang and Gajewski, 2021b;
Artman et al., 2010; Yang and Gajewski, 2022). Sun et al. (2016) and Chen et al. (2021)
propose the grouped cross-correlation imaging method, which first groups several receivers
and then extrapolates the wavefield for each group. Although the spatial resolution of the
image is improved, artifacts are still present. The lack of wave illumination in the grouped
crosscorrelation imaging is inevitable because of receiver grouping. Moreover, selecting
receivers for each group is a challenging task.
We propose a method to mitigate the previously mentioned issues via a Gaussian-weighted

crosscorrelation imaging condition. It does not require grouping receivers and can provide
clear and high-resolution source images by time-reversal imaging. Numerical examples using
the Marmousi-II (Martin et al., 2002) and the 3D SEG overthrust models (Aminzadeh
et al., 1997), and a field 3D data example illustrate the proposed method for laterally
heterogeneous media. Effects caused by velocity errors, or low S/N data, and data acquired
from sparse receiver networks are investigated. The proposed method is compared with
two published time-reversal imaging methods, namely, the autocorrelation imaging method
(Steiner et al., 2008; Artman et al., 2010) and the grouped crosscorrelation imaging method
(Sun et al., 2016; Chen et al., 2021). Because multiple sources in close spatial proximity
may occur during hydraulic fracturing (Maxwell et al., 2010), in synthetic tests, we consider
this situation as well.

2.2 Time-reversal source imaging

The velocity-stress acoustic wave equation with constant density is used for forward model-
ing and time-reversal imaging (Aki and Richards, 2002; Cerjan et al., 1985). The recorded
data are reversed in time and served as boundary values for time-reversal imaging. We
assume that a velocity model consistent with the data is available for the imaging. In the
following sections, we first consider two published imaging conditions and then introduce
the new Gaussian-weighted imaging condition.
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2.2 Time-reversal source imaging

Figure 2.1: Schematic illustration of the Gaussian-weighted wavefield calculation. For each time
step, the full back-propagated wavefield u(x, t) is first divided into parts, uk(x, t),
according to the amplitude boundaries calculating by equation 2.3. Then the spatial
location xk(t) for the maximum absolute amplitude of the k-th part of the wavefield
uk(x, t) is calculated by equation 2.5. The Gaussian-weighted wavefield uk(x, t) is
finally computed by applying a Gaussian window to the full wavefield u(x, t). The
Gaussian window centered at the position xk(t) corresponds to the spatial extent of
the dominant wavelength of the event.

2.2.1 Imaging condition

Imaging conditions represent an important step in time-reversal imaging. We review briefly
two well established variants: the autocorrelation imaging condition and the grouped cross-
correlation imaging condition, which are subsequently used for comparison in the example
sections. Then we introduce the Gaussian-weighted imaging condition.

Auto-correlation imaging condition

The autocorrelation imaging condition (Artman et al., 2010) is a widely used time-reversal
imaging condition for microcosmic monitoring. The back-propagated wavefield u(x, t) is
obtained by simultaneously back-propagating the time-reversed recorded wavefields at all
receivers. Zero-lag autocorrelation of the wavefield for each time step is performed. The
summation of the autocorrelated wavefields for all times provides the autocorrelation image
I1, which may be expressed as

I1(x) =
∑

t

(u(x, t))2 , (2.1)

where x represents the spatial coordinates and t is the wave-propagation time. The maxi-
mum value of this image is considered to be the event location. The autocorrelation imaging
condition is sensitive to data with strong noise and/or data acquired from sparse receiver
networks, which may result in strong imaging artifacts.

Grouped cross-correlation imaging condition

The grouped cross-correlation imaging condition (Nakata and Beroza, 2016; Sun et al.,
2016; Chen et al., 2021) improves the image quality when compared with the autocorrela-
tion imaging condition. This imaging condition requires first grouping the receivers. The
adjacent grouping strategy (Bai et al., 2022) is commonly used to acquire the receiver groups
when the grouped crosscorrelation imaging condition is applied. The wavefields recorded
for each group are back propagated. Assuming that the receivers are divided into N groups,
the expression for the grouped zero-lag crosscorrelation imaging I2 is

I2(x) =
∑

t

∏
g

ug(x, t) , 1 ≤ g ≤ N , (2.2)
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Figure 2.2: Velocities for a subset of the Marmousi-II model. (a) True velocity model. Smoothed
models with the 2D Gaussian window of 300×300 m2 (b), 600×600 m2 (c), and 900×900
m2 (d). Dots indicate the source locations. The right top panel is a close-up of four
clustered sources.

where g denotes the group number and ug(x, t) corresponds to the back-propagated wave-
field obtained by the g-th receiver group. The wavefield of each receiver group goes through
the hypocenter. Multiplying these wavefields for each space and time sample and summing
over all times provides high-resolution images where imaging artifacts are reduced. The
event location is estimated by scanning the maximum value of the image. Because the re-
ceiver groups used for the back propagation comprise only a small portion of the total data,
illumination is decreased and some artifacts may still remain, particularly for subsurface
structures with strong heterogeneity or sparse receiver acquisitions. Moreover, choosing the
receiver groups is a nontrivial task.

Gaussian-weighted imaging condition

To circumvent the limitations of the preceding time-reversal imaging methods, we suggest
the Gaussian-weighted crosscorrelation imaging condition. The motivation of the procedure
is based on complicated amplitude patterns on the back-propagated wavefront. This pat-
tern may be caused by focusing and defocusing the effects of the back-propagated wavefront
in heterogeneous media and/or complicated radiation patterns of the source. For each time
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Figure 2.3: Images of the full back-propagated wavefield (a), the normalized absolute full back-
propagated wavefield (b), the first selected wavefield (c), and the first Gaussian-
weighted wavefield (d) at the time of 0.6 s. The green dot and red × represent
the position of the maximum absolute amplitude of the first selected wavefield and
Gaussian-weighted wavefield.

step, we decompose the total back-propagated wavefield in Gaussian-shaped contributions,
where the spatial extent of these contributions is linked to the prevailing wavelength of
the event. The individual wavefield contributions are classified according to their maxi-
mum absolute amplitudes. The normalized wavefield contributions are multiplied (zero-lag
crosscorrelation) to provide the image for this time step. The final image is obtained by
summing the images for all time steps. Due to focusing at the hypocenter, the wavefield
contributions increasingly overlap, resulting in large values of image amplitudes, whereas
the false maxima caused by image artifacts or arbitrary focusing are considerably smaller.

The formal realization of the procedure is as follows. For each time step, we scan the
maximum absolute amplitude of the back-propagated wavefield u(x, t). Then, we select
N wavefields from the total wavefield according to predefined lower and upper amplitude
bounds. The normalized absolute amplitude of the k-th selected wavefield uk(x, t) from the
full wavefield satisfies the following expression for each time step:

e−R2 + (k − 1)(1− e−R2

N
) ≤ |uk(x, t)|

umax(t) ≤ e
−R2 + k

1− e−R2

N
, 1 ≤ k ≤ N , (2.3)

where umax(t) denotes the maximum absolute amplitude of the full back-propagated wave-
field u(x, t):

umax(t) = max
{∣∣u(x, t)

∣∣} , (2.4)
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Figure 2.4: Images of the back-projected wavefields at the time of 0.6 s (a), 0.4 s (b), 0.2 s (c),
0 s (d), -0.2 s (e), and -0.4 s (f) for the Marmousi-II model. Blue and green dots
denote picks, corresponding to the maximum absolute amplitude of the whole back-
propagated wavefield and the selected back-propagated wavefields at the considered
time step, respectively. Red dots represent the exact source location. Red and purple
circles, with radii of the dominant signal wavelength, are centered at the picks and the
exact source location, respectively.

where e−R2 is a Gaussian shape factor and R and N are tuning parameters. A common
strategy for tuning the parameters is a control variate. We first set the parameter N to a
small value, and then we fix the N and tune the parameter R in the range (0, 1]. The same
process is applied to other N and R sets until the preferred result is obtained, which is based
on the user’s experience to judge the quality of the image, the same as the other imaging
methods. In principle, the larger the parameter N , the higher the image resolution and the
fewer the imaging artifacts. As a good general rule, R is set to one. We can decrease R or
N , or decrease both when there is insufficient focusing of the image, and increase N when
the image has strong artifacts.
After the wavefield selection process, the spatial position of the maximum absolute am-

plitude of each selected wavefield for each time step is picked:

max
{∣∣uk(x, t)

∣∣}⇒ xk(t) , 1 ≤ k ≤ N , (2.5)

where xk(t) represents the position of the maximum absolute amplitude of the k-th selected
wavefield for the corresponding time step. For each picked location of the maxima xk(t),
the surrounding wavefield selected from the full back-propagated wavefield is weighted by
a Gaussian function centered at that point. The spatial extent of each Gaussian window
is a circle in two dimensions and a sphere in three dimensions with a radius equal to
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Figure 2.5: Comparison of three time-reversal imaging methods for the source at x = 3.72 km, z
=1.9 km in the Marmousi-II model. The black dots denote the spatial locations of
the maximum amplitude of the images. White circles are centered at the true source
location with radii of a quarter and a half of the dominant wavelength. The right
column shows horizontal (top) and vertical (bottom) amplitude sections through the
source location.

the dominant wavelength. The dominant wavelength is calculated at the position of the
maximum absolute amplitude of the total wavefield. The spatial extension is considered
the resolution limit of the considered event. The kth-weighted wavefield uk is written as

uk(x, t) = u(x, t)Gk(x, t) , 1 ≤ k ≤ N , (2.6)

where the weighting function Gk for the k-th point is given by

Gk(x, t) =
{
e
−(x−xk(t))2

α(λ(t))2
,
∣∣x− xk(t)

∣∣ ≤ λ(t)
0 , otherwise

(2.7)

For each time step, the dominant wavelength λ(t) describes the spatial extent of the back-
propagated wavefield, which is preserved. The parameter α is another tuning parameter to
control the shape of the window function. Note that when we adjust the R and N using
the preceding scheme, the α is fixed, likewise, we fix the R and N when tuning the α. To
assure each selected and weighted wavefield has the same maximum, we choose α to be one.
In addition, the calculation of the kth-weighted wavefield uk at each time step is sketched
in Figure 2.1.
For each time step, we compute the zero-lag crosscorrelation (corresponding to a simple

multiplication) of the weighted wavefields uk. The final image is obtained by summing the
images of all time steps up to the predefined maximum time T , i.e.,

I3(x) =
∑

t

∣∣∣∣∏
k

uk(x, t)
∣∣∣∣ , 1 ≤ k ≤ N , (2.8)

This process provides a new imaging condition, which we call the Gaussian-weighted cross-
correlation imaging condition. The new imaging condition exploits the concentration of the
wave energy during the back-propagation process, which significantly enhances the energy
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Figure 2.6: Images of the back-projected wavefields at the time of 0.2 s, 0 s, and -0.2 s for the
model smoothed with the 2D Gaussian window of 300×300 m2 (a), 600×600 m2 (b),
and 900×900 m2 (c). Blue and green dots denote picks, corresponding to the maximum
absolute amplitude of the whole back-propagated wavefield and the selected back-
propagated wavefields at the considered time step, respectively. The red dots represent
the exact source location. Red and purple circles, with radii of the dominant event
wavelength, are centered at the picks and the exact source location, respectively.

in the neighborhood of the source position within the radius of the dominant wavelength.
Moreover, it greatly decreases the amplitudes outside the hypocentral area. False maxima
caused by arbitrary focusing of scattered energy in heterogeneous media are unlikely to be
observed. Because absolute amplitudes are considered, phase changes caused by complex
source radiation are no an issue. In the following section, we investigate the performance
of the new imaging condition under controlled conditions.

2.3 Numerical examples

We perform numerical experiments using the Marmousi-II and 3D SEG overthrust models.
For all examples, we use explosive sources and the standard Ricker wavelet. A dominant
frequency of 10 Hz is applied for the source-time function. A time shift is applied to simulate
the minimum phase signal. Synthetic data are generated using the velocity-stress acoustic
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Figure 2.7: Comparison of three time-reversal imaging methods in the presence of velocity errors.
Images at the true source location for the Marmousi-II model smoothed with the 2D
Gaussian window of 300×300 m2 (a), 600×600 m2 (b), and 900×900 m2 (c), are ob-
tained by auto-correlation imaging, grouped cross-correlation imaging, and Gaussian-
weighted cross-correlation imaging. The black dots denote the estimated source loca-
tions. The white circles, centered at the actual source location, have radii of a quarter
and a half of the dominant wavelength. The right column shows horizontal (top) and
vertical (bottom) amplitude sections through the source location.
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(a) (b)

(c) (d)

Figure 2.8: Data for the source at x = 3.72 km, z = 1.9 km in the Marmousi-II model. Noisy data
with S/N of 0.4 (a), 0.2 (b), and 0.1 (c). Band-pass filtered data (6 - 17 Hz) with S/N
of 0.1 (d).

wave equation (Aki and Richards, 2002; Gajewski and Tessmer, 2005) with constant density.
The time-reversed data are used as input to back propagate the wavefield using the same
wave equation. Unless noted, random noise with an S/N of 30 was added to the data.

Forward modeling was performed using the true velocity model to simulate the observed
data, whereas, for the time-reversal imaging, a smoothed version of the true model is used.
An optimized tuning parameter set of R, N and α can be found through some interactive
tests. In all examples, R, N , and α are 1, 8, and 1, respectively, and the imaging results
are set to the same clip [0.1, 1], unless stated otherwise. For the grouped crosscorrelation
imaging, we use eight receiver groups. Results of the two conventional time-reversal imaging
methods, the autocorrelation imaging (Artman et al., 2010) and the grouped crosscorre-
lation imaging method (Chen et al., 2021), are compared with the proposed method. To
produce the image for the grouped crosscorrelation imaging method, in all examples, we
use the absolute value of the image computed in equation 2.2.
Surface observations are considered in the examples. For input data with poor S/N, the

back-propagated wavefield displays insufficient focusing of the back-propagated energy. A
noise mask is present close to the injection points of the time-reversed data. The imaging
process starts at a depth when sufficient focusing is observed. A reasonable threshold for
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Figure 2.9: Images of the back-projected wavefields at the time of 0.2 s, 0 s, and -0.2 s for noisy data
with S/N of 0.4 (a), 0.2 (b), and 0.1 (c). Blue and green dots denote the picks, corre-
sponding to the maximum absolute amplitude of the whole back-propagated wavefield
and the selected back-propagated wavefields at the considered time step, respectively.
Red dots represent the exact source location. Red and purple circles with radii of the
dominant event wavelength are centered at the picks and the exact source location,
respectively.

this depth may be determined by visual inspection of images. For the numerical study,
controlled conditions are applied, i.e., source locations, source excitation times, and the
velocity model are known. The present work does not include an alternative approach
(Oren and Shragge, 2021) to mitigate imaging artifacts and minimize amplitude transitions
in depth. However, this approach will be integrated into future research.

Data with strong noise and sparse acquisition are considered for the 2D examples. The
depth threshold to avoid the noise mask is set to 1.2 km. In the 3D examples, the depth
threshold is set to 1.4 km. All times mentioned in the following examples are relative to
the actual source time, which is 0 s (zero time). The negative numbers indicate the time
prior to the real excitation time, and the positive numbers indicate the time after the real
excitation time.
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Figure 2.10: Comparison of three time-reversal imaging methods for noisy data with S/N of 0.4
(a), 0.2 (b), and 0.1 (c). Black dots indicate the source locations by the time-reversal
imaging methods. White circles, centered at the correct source location, have radii of
a quarter and a half of the dominant wavelength. The right column shows horizontal
(top) and vertical (bottom) amplitude sections through the source location.
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Figure 2.11: (a) Images of back-projected wavefields at the time of 0.2 s, 0 s, and -0.2 s for noisy
data with S/N of 0.1. Gaussian-weighted wavefields are obtained for R of 0.5. Blue
and green dots denote the picks, corresponding to the maximum absolute amplitude of
the whole back-propagated wavefield and the selected back-propagated wavefields at
the considered time step, respectively. Red dots represent the exact source location.
Red and purple circles, with radii of the dominant signal wavelength, are centered
at the picks and the exact source location, respectively. (b) Left: the result of the
Gaussian-weighted cross-correlation imaging method; Right: horizontal (top) and
vertical (bottom) amplitude sections through the source location.

2.3.1 Marmousi-II model

We consider a subset of the Marmousi-II model, defined by a 693× 385 grid with a spacing
of 10 m in the x- and z- directions. Figure 2.2 a shows the actual model, and Figures 2.2
b – 2.2 d denote the model smoothed by 300 m × 300 m, 600 m × 600 m, and 900 m ×
900 m 2D Gaussian windows, respectively. The true model is used to obtain the synthetic
data, and the smoothed models are used to simulate the back-propagated wavefield. The
time sampling for all synthetic data is 1 ms. Sources denoted by the black and red dots are
explosive sources placed near a fault in the presence of strong velocity variations.

A single source located at x = 3.72 km and z = 1.9 km, denoted by the red dot in
Figure 2.2, is used to evaluate the influence in terms of velocity errors, random noise, and
sparse receiver distribution for the time-reversal imaging. All of these factors are crucial
for field data applications.
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Figure 2.12: Images of the back-projected wavefields at the time of 0.2 s, 0 s, and -0.2 s for the
band-pass filtered data (6 - 17 Hz) with S/N of 0.1. Blue and green dots denote
the picks, corresponding to the maximum absolute amplitude of the whole back-
propagated wavefield and the selected back-propagated wavefields at the considered
time step, respectively. Red dots represent the exact source location. Red and purple
circles, with radii of the dominant signal wavelength, are centered at the picks and
the exact source location, respectively.
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Figure 2.13: Comparison of three time-reversal imaging methods for the band-pass filtered data
(6 - 17 Hz) with S/N of 0.1. The black dots indicate the estimated source location
by the time-reversal imaging methods. White circles, centered at the correct source
location, have radii of a quarter and a half of the dominant wavelength. The right
column shows horizontal (top) and vertical (bottom) amplitude sections through the
source location.

Influence of velocity models

In the first example, forward modeling and time-reversal imaging are performed in the true
model as shown in Figure 2.2 a. Receivers are evenly distributed with a distance of 10 m
at the surface. Eight receiver groups are chosen for the grouped crosscorrelation imaging.
The first group comprises the receivers between 0 and 0.5 km and the second receiver group
contains the receivers from 0.5 to 1.0 km. The receivers between 1.0 to 6.0 km are evenly
divided into five receiver groups and the last group comprises the remaining receivers. This
uniform, dense, and larger aperture acquisition provides good illumination for time-reversal
imaging.
Figure 2.3 a and 2.3 b shows the full back-propagated wavefield at the time of 0.6 s and

its corresponding normalized absolute value, respectively. Figure 2.3 c and 2.3 d shows
the first selected wavefield and Gaussian-weighted wavefield for this time step. By setting
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(a) (b) (c)

Figure 2.14: Band-pass filtered sparse data (6 - 17 Hz) for a receiver spacing of 300 m (a), 500 m
(b), and 700 m (c), respectively, for the source located at x = 3.72 km, z = 1.9 km
in the Marmousi-II model.

k to one in equation 2.3, the first wavefield is selected from the full wavefield according
to the lower and upper bounds as described in this equation. The first Gaussian-weighted
wavefield centered at the green dot, i.e., the position of the maximum amplitude of the first
selected wavefield, is obtained by applying a Gaussian window to the full wavefield using
equation 2.6. Other selected wavefields and Gaussian-weighted wavefields are acquired in
the same fashion. In the following, only the picked position of the maximum absolute
amplitude of each selected wavefield and the spatial extension of the window of each picked
position are displayed in the images of the full back-propagated wavefield at a few time
steps.
Figure 2.4 shows the full back-propagated wavefields at the time of 0.6, 0.4, 0.2, 0, -0.2,

and -0.4 s. In Figure 2.4, at the actual excitation time, the Gaussian-weighted wavefields
focus at the source location, whereas at other times, they scatter on the back-projected
wavefronts. Figure 2.5 shows the time-reversal imaging results. The grouped and Gaussian-
weighted crosscorrelation imaging methods deliver images of high quality, i.e., good reso-
lution, whereas a few weak artifacts are observed in the autocorrelation image, which is
less focused. The resolution of the Gaussian-weighted crosscorrelation imaging is similar
to that of the grouped crosscorrelation imaging. All estimated locations (the black dots)
coincide with the correct source location. This example confirms the feasibility of the
Gaussian-weighted crosscorrelation imaging method, which requires only a single run of the
back-propagated wavefield to provide a clear and high-resolution image for accurate source
localization, whereas, for the grouped crosscorrelation method, the number of runs to back
propagate the wavefield is equivalent to the number of groups.
Velocity uncertainty is a fact in field data applications. We explore time-reversal imaging

for several smoothed versions of the true models. These smoothed models are shown in
Figures 2.2 b – 2.2 d, which have a mean deviation of 5 %, 7 %, and 8 %, respectively.
Data acquisition and receiver groups used here are the same as for the first example. Back-
propagated wavefields are computed for the smoothed versions of the true model. Figure 2.6
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(a) (b) (c)

Figure 2.15: Receiver groups for the band-pass filtered (6 - 17 Hz) data with a receiver spacing of
300 m (a), 500 m (b), and 700 m (c) for the source at x=3.72 km, z=1.9 km in the
Marmousi-II model. The receiver groups are used for the grouped cross-correlation
imaging.

shows the wavefields at the time of 0.2, 0, and -0.2 s. The time-reversal imaging results
using the respective smoothed models (Figures 2.2 b – 2.2 d) are shown in Figures 2.7 a –
2.7 c. In comparison to Figure 2.4, the back-propagated wavefields display artifacts and do
not focus as well as for the true model. The results obtained by the autocorrelation imaging
method are of poor quality. These imaging artifacts caused by velocity errors display strong
amplitudes and may lead to false positives. The Gaussian-weighted crosscorrelation imaging
provides the best image quality with high resolution and almost no artifacts. Because of
velocity errors, the source locations show deviations from the true location. This applies to
all methods, however, the Gaussian-weighted crosscorrelation is the most robust approach
with respect to imaging artifacts, which in turn decrease the risk of false positives.

Poor data quality

To examine the effect of uncorrelated noise on the Gaussian-weighted crosscorrelation imag-
ing technique, random noise with the S/N of 0.4, 0.2, and 0.1, was added to the data. The
respective records are shown in Figures 2.8 a – 2.8 c. In Figure 2.8 c, the data are poor, and
no events are observed. In the following 2D examples, the back-propagated wavefields are
computed for the smoothed model as shown in Figure 2.2 b, i.e., 300 m × 300 m Gaussian
window. The seismic acquisition and receiver groups used are the same as in the previous
example. Time-reversal imaging is applied using the three noisy data sets. Wavefields at
time of 0.2, 0, and -0.2 s are shown in Figure 2.9 a – 2.9 c.
The results show that, with increasing noise levels, the wavefields selected are not located

on the actual wavefront. For the S/N of 0.4 and 0.2, very good foci at the source time
are observed. For the S/N of 0.1, most selected wavefields still focus near the source
but no distinct maximum is observed (Figure 2.10). This issue can be addressed by either
decreasing the R value to 0.5 or band-pass filtering of the data. Figure 2.11 shows the results
when R is set to 0.5. At the exact source time, the Gaussian-weighted crosscorrelation
image provides good focusing with high resolution and negligible artifacts. Figure 2.12 and
Figure 2.13 show the results using band-pass filtered data (6 - 17 Hz). Band-pass filtering
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Figure 2.16: Comparison of three time-reversal imaging methods for the band-pass filtered data (6
- 17 Hz) with a receiver spacing of 300 m (a), 500 m (b), and 700 m (c), respectively.
Black dots indicate the estimated source location by the time-reversal imaging meth-
ods. White circles, centered at the correct source location, have radii of a quarter
and a half of the dominant wavelength. The right column shows horizontal (top) and
vertical (bottom) amplitude sections through the source location.
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Figure 2.17: Comparison of three time-reversal imaging methods for a source cluster in the
Marmousi-II model. Left: auto-correlation imaging; Middle: grouped cross-
correlation imaging; Right: Gaussian-weighted cross-correlation imaging. White cir-
cles, centered at the true source location, have radii of 40 m.

improves the S/N to approximately 0.77. The filtered data are shown in Figure 2.8 d. The
event is now clearly visible. Using the filtered data, all three imaging methods provide a
reasonable source location, but the Gaussian-weighted cross-correlation imaging provides
the best focusing with weak to no artifacts.

Sparse receiver networks

For passive seismic acquisitions, the number of receivers is considerably smaller than for the
previous examples. In the following, we discuss the influence of sparse receiver networks on
imaging methods. For this example, receivers are distributed at the surface with a spac-
ing of 300, 500, and 700 m. Random noise with an S/N of 0.4 was added to the sparse
data and the band-pass filter (6 - 17 Hz) was applied to increase the S/N to approximately
3. In Figure 2.14, the resulting seismograms with the receiver number are shown. For
the grouped crosscorrelation imaging with sparse data, the choice of the receiver groups is
shown in Figure 2.15. Figure 2.16 shows the results obtained for the three filtered sparse
data sets. For the autocorrelation and grouped crosscorrelation imaging methods, imaging
artifacts increase substantially with increasing receiver spacing. Although the autocorre-
lation and grouped crosscorrelation imaging methods deliver reasonably accurate source
locations, strong artifacts still exist, which may cause ambiguities for event identification
leading to false positives. The Gaussian-weighted crosscorrelation imaging method yields
clear images when compared to the two conventional imaging methods. Moreover, almost
no artifacts are observed in the images. The Gaussian-weighted crosscorrelation imaging
method is thereby effective for data with noise from a sparse receiver network.

Multiple sources

As shown in previous examples, the Gaussian-weighted crosscorrelation imaging method
can produce clear and high-resolution source images. In the following, we will investigate
its performance for multiple sources which are spatially clustered. As shown in Figure 2.2,
four explosive sources with the same source characteristics are located around the fault.
They are excited at the time of 0.4, 1.25, 2.3, and 3.3 s. The velocity at the source
cluster is approximately 2.6 km/s. The minimum distance between the adjacent sources is
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Figure 2.18: Velocity sections of the 3D SEG overthrust model for the source located at x = 2.72
km, y = 4.0 km and z = 2.4 km. (a) and (b) show the crossline and inline sections of
the true model, respectively. (c) and (d) show the crossline and inline sections of the
smoothed model. Blue dot denotes the source located at x = 2.72 km, y = 4.0 km
and z = 2.4 km. Red dots denote the projected source located at x = 2.8 km, y= 4.24
km and z = 2.42 km, and x = 2.6 km, y = 4.52 km and z = 2.44 km, respectively.
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(a) (b)

Figure 2.19: (a) Seismic network for the 3D SEG overthrust model. Dots show the projection of
the sources to the surface. Black triangles denote receivers randomly placed at the
surface. (b) Receiver groups for the grouped cross-correlation imaging.

approximately 70 m, i.e., less than half of the dominant wavelength. Receivers are evenly
distributed at the surface with a spacing of 300 m. Random noise with the S/N of 0.4
was added to the sparse data. A band-pass filter (6 - 17 Hz) was applied. The S/N after
filtering is approximately 3. The targeted region of the time-reversal imaging is beneath 1.2
km. The square root of image amplitudes is considered in this example to enhance weaker
events. Figure 2.17 shows the time-reversed images. The results of the autocorrelation
imaging method suffer from strong artifacts with a low resolution of the image, where no
real foci are observed, except for a cluster of high energy.
The same set of receiver groups is used for the first sparse data example of the grouped

crosscorrelation imaging (Figure 2.15 a). Although the resolution is improved, the grouped
crosscorrelation image is ambiguous due to strong artifacts hampering interpretation. As
shown in Figure 2.17, the Gaussian-weighted crosscorrelation image shows a high-resolution
image and displays four distinct foci close to the correct source locations. The maximum
errors for the location are smaller than 40 m, which is far below the dominant wavelength.
The proposed Gaussian-weighted crosscorrelation imaging method demonstrates clearly dis-
cerning sources with concentrating distribution in comparison with the two conventional
imaging methods. In the next section, we consider a 3D example.

2.3.2 3D SEG overthrust model

The 2D examples shown in the previous section are suitable to investigate the general per-
formance of the Gaussian-weighted crosscorrelation method under the condition of noisy
data and sparse acquisitions. Because the localization of passive seismic events is an in-
herently 3D problem, we consider this situation. We use the 3D SEG overthrust model,
where velocities are defined on a 400 × 400 × 187 grid. The grid spacing is 40 m in the x-
(crossline-) and y- (inline-) directions and 20 m in z- (depth-) direction. In Figure 2.18 a,
three sources cluster in this model. Figure 2.18 a and 2.18 b shows the crossline and inline
sections of the model at the position x = 2.72 km, y = 4.0 km, and z = 2.4 km, i.e., the
location of the source denoted as a blue dot. The red dots denote the projection of the other
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Figure 2.20: Band-pass filtered sparse data (6 - 17 Hz) for the single source at x = 2.72 km, y
= 4.0 km and z = 2.4 km (a), and for the source cluster in the 3D SEG overthrust
model (b).

two sources on the sections. We perform the smoothing by a 1200 × 1200 × 600 m3 3D
Gaussian window, and the smoothed version of the sections is shown in Figure 2.18 c and
2.18 d. Data are computed again for the true model and the back-propagated wavefields
are computed in the smoothed model. The time sampling is 1 ms. In Figure 2.19 a, 36
receivers are randomly distributed at the surface, which reflects a sparse acquisition. The
surface projection of the sources are denoted by the dots. Receivers are sorted into eight
groups (Figure 2.19 b) for the grouped crosscorrelation imaging.
We first consider a single source located at x= 2.72 km, y = 4.0 km, and z =2.4 km, which

is denoted by the blue dot. Random noise with an S/N of 0.4 was again added to the data
and the band-pass filter (6 - 17 Hz) was applied, leading to an S/N of approximately 3. The
resulting waveforms sorted by receiver number are shown in Figure 2.20 a. The locations
retrieved from the autocorrelation and grouped crosscorrelation images (Figure 2.21 a and
2.21 b) display limitations for these time-reversal imaging methods. Figure 2.21 c shows
the results obtained by the Gaussian-weighted crosscorrelation imaging method. The source
location is obtained with good accuracy. The location error is smaller than one quarter of
the dominant wavelength.
To investigate the quality of the time-reversal images, we sum the time-reversal images

over the crossline and depth directions and use the inline, crossline, and depth slices of
the sum at the actual source location (see Figure 2.22 and Figure 2.23). Compared with
the conventional time-reversal imaging methods, the Gaussian-weighted crosscorrelation
imaging method yields the best image with almost no artifacts. It provides good source
locations by decreasing the risk of false positives.
In the following example, we consider multiple sources. In Figure 2.18 a and 2.18 b,

three explosive sources are excited at 0.6, 1.9, and 3.3 s with the same amplitude and
frequency range. The velocity at the locations is approximately 5.1 km/s. The minimum
distance between the adjacent sources is approximately 250 m, i.e., smaller than half of
the prevailing wavelength, reflecting the clustered sources. Random noise with the S/N of
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Figure 2.21: Comparison of three time-reversal imaging methods for the source at x = 2.72 km,
y = 4.0 km and z = 2.4 km in the 3D SEG overthrust model. The images at the
true source location are obtained by auto-correlation imaging (a), grouped cross-
correlation imaging (b), and Gaussian-weighted cross-correlation imaging (c). Black
dots indicate the estimated source locations. White circles, centered at the true source
location, have radii of a quarter and a half of the dominant wavelength.
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Figure 2.22: Results of auto-correlation imaging (a), grouped cross-correlation imaging (b), and
Gaussian-weighted cross-correlation imaging (c). Left: the sum of the images over
the cross-line direction. Right: the sum of the images over the depth direction. White
circles are centered at the true source location with radii of a quarter and a half of
the dominant wavelength.
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Figure 2.23: Horizontal and vertical amplitude sections of the images shown in Figure 2.22 at fixed
depth (top) and fixed distance (bottom) of the source at x = 2.72 km, y = 4.0 km
and z = 2.4 km in the 3D SEG overthrust model.

0.5 was added to the data and then a band-pass filter (6 - 17 Hz) was applied. The S/N
after the filtering was approximately 3.8. The filtered data sorted by receiver number are
shown in Figure 2.20 b. Figure 2.24 shows the inline slices of the images at the crossline
distance of 3.76, 4.0, 4.24, 4.52, and 4.76 km, and the slices of the images at the depth of
2.28, 2.4, 2.42, 2.44, and 2.56 km are shown in Figure 2.25. Figures 2.24 a, 2.24 b, 2.25
a, 2.25 b, 2.26 a, and 2.26 b show the results of the autocorrelation imaging and the
grouped crosscorrelation imaging methods. Many false positives are observed, which may
lead to image misinterpretation. The grouped crosscorrelation imaging generates many false
foci near the exact source locations because of noise and imaging artifacts. The Gaussian-
weighted crosscorrelation imaging method provides the image with almost no artifacts and
reduces the risk of false positives considerably (Figures 2.24 and 2.26 c). Three distinct
foci are imaged located close to the exact source locations. The maximum location errors
are about 90 m, which is smaller than half the dominant wavelength. In addition, for the
3D complex examples, the Gaussian-weighted crosscorrelation imaging method provides the
best performance which is preserved even for noisy data and sparse acquisitions.

2.4 Field data example

We use these time-reversal imaging methods to locate a weak event of mining-induced seis-
micity monitored by the HAMNET network (Wehling-Benatelli et al., 2013). To estimate
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Figure 2.24: Inline slice comparison of three time-reversal imaging methods for a source cluster
in the 3D SEG overthrust model. (a) Auto-correlation imaging. (b) Grouped cross-
correlation imaging. (c) Gaussian-weighted cross-correlation imaging. The five inline
slices of each method are shown at 3.76 km, 4.0 km, 4.24 km, 4.52 km, and 4.76 km
of the crossline direction, respectively. The black and purple dots indicate the exact
source locations.

the location error, we take the location inverted from the picking-based traveltime inversion
(Grigoli et al., 2013; Li et al., 2018) as a reference. Figure 2.27 a shows 13 receivers selected
from the HAMNET network, which are randomly distributed at the surface. The surface
projection of the event is denoted by the red dot. The weak event here has a magnitude
of -0.8. Figure 2.28 a shows the vertical component of the raw data sorted by the receiver
number recorded for the weak event, which contains strong P-wave energy and noise. A
frequency analysis (e.g., Priestley, 1996) was performed to estimate the dominant frequency,
and a band-pass filter (6 - 17 Hz) was then applied to the data. The resulting seismograms
are shown in Figure 2.28 b, where the S/N was significantly increased and the P phase
information is kept for the frequency band of 6 - 17 Hz, which is sufficient for the localiza-
tion. Receivers are sorted into five groups (Figure 2.27 b) for the grouped crosscorrelation
imaging. The same α and R values as for the previous 3D examples are used here, whereas
the N value is set to five.

We use the same homogeneous P-wave velocity model, 3880 m/s, as in the traveltime
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Figure 2.25: Depth slice comparison of three time-reversal imaging methods for a source clus-
ter in the 3D SEG overthrust model. (a) Auto-correlation imaging. (b) Grouped
cross-correlation imaging. (c) Gaussian-weighted cross-correlation imaging. The five
horizontal slices of each method are shown at the depth of 2.28 km, 2.4 km, 2.42 km,
2.44 km, and 2.56 km, respectively. The black and purple dots indicate the exact
source locations.
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Figure 2.26: Comparison of three time-reversal imaging methods for a source cluster in the 3D SEG
overthrust model. Images at the true source location are obtained by auto-correlation
imaging (a), grouped cross-correlation imaging (b), and Gaussian-weighted cross-
correlation imaging (c). Left: the square root of the sum of the images over the
cross-line direction. Right: the square root of the sum of the images over the depth
direction. The black and purple dots indicate the exact source locations.
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Figure 2.27: (a) Seismic network for mining-induced seismicity monitoring. The red dot shows a
projection of the reference source location to the surface which is provided by the
travel-time inversion. Black triangles denote the receiver located at the surface. (b)
A set of receiver groups for the grouped cross-correlation imaging.

inversion and consider only P waves to perform the time-reversal source imaging. The
same acoustic wave equation as used for the synthetic examples is adopted for the back-
propagation simulation. A reasonable depth threshold of 0.8 km is chosen to avoid the
noise mask. Figure 2.29 shows the results of the time-reversal imaging methods using the
band-pass filtered data. We can find that the Gaussian-weighted crosscorrelation imaging
method can still yield the best location result that has the clearest focus. A few artifacts
are observed in the image (Figure 2.29 c) that might be due to the less accurate velocity
model. The location errors of the autocorrelation imaging and the grouped crosscorrelation
imaging methods (Figure 2.29 a and 2.29 b) are approximately 1912 and 558 m, respec-
tively, beyond the dominant wavelength. The error of the proposed imaging method is
approximately 240 m, i.e., approximately 60% of the dominant wavelength. The results
are consistent with the previous numerical examples. In this example, the computational
time of the autocorrelation imaging and the Gaussian-weighted crosscorrelation imaging
is comparable, which is about one-third of the cost used by the grouped crosscorrelation
imaging. The results of this field example illustrate the Gaussian-weighted crosscorrelation
imaging method can serve as an advantageous alternative to the autocorrelation imaging
and grouped crosscorrelation imaging methods.

2.5 Discussion

In complex heterogeneous media, amplitudes on a propagating wavefront change smoothly
with time but may strongly vary along the wavefront, i.e., for a constant time. Due to
scattering in the back projection process, random focusing may be observed combined
with imaging artifacts because of insufficient receiver sampling and/or noisy recording
conditions. By selecting wavefields and sorting them according to their amplitudes, the
Gaussian-weighted crosscorrelation imaging method "collects" these energy concentrations.
However, only contributions on the wavefront collapse with increasing propagation time at
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(a) (b)

Figure 2.28: Data for the weak event from mining-induced seismicity (a). Band-pass filtered data
(6 - 17 Hz) (b). The waveforms within the red dashed windows contain strong P-wave
energy.

the hypocenter leading to high crosscorrelation results of these wavefields, whereas random
foci are considerably smaller in amplitude since they are not on the wavefront and do not
overlap with the wavefields at the source location.

This behavior results in a passive seismic source image of high resolution, which is al-
most free from imaging artifacts. Interpreting these images significantly reduces the risk
of false positives. The computational effort is comparable with other time-reversal imaging
techniques, which back project data in a single run. The selection of wavefields, the deter-
mination of maxima, and the crosscorrelation represent a small overhead when compared
with the computational expense of the back projection process.

It is obvious that velocity errors would lead to localization errors. This applies to all
methods that rely on the velocity model. In the numerical examples, all localization results
are carried out for smooth models. The mean deviations from the true velocity model are in
the order of 5% to 8% which appear fairly high for an acquisition in exploration. In the field
data example, the results are obtained by using an homogeneous model. Velocity errors
as considered in the examples provide localization results, which are in the resolution limit
of the data. One may suspect that velocity errors may increase random focusing during
the back projection process. Because of its superiority in suppressing imaging artifacts, the
Gaussian weighted cross-correlation method can outperform the considered conventional
techniques with respect to resolution and imaging noise.

The excellent performance in suppressing imaging artifacts also contributed positively to
the case of clustered sources, a case observed in hydraulic stimulation or for earthquake
swarms. The Gaussian-weighted crosscorrelation method spatially resolved a source cluster
with high accuracy, where the spacing between the sources is below the prevailing wave-
length of the data.
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Figure 2.29: Comparison of three time-reversal imaging methods for a weak event from mining-
induced seismicity. Images at the reference source locations provided by the travel-
time inversion are obtained by auto-correlation imaging (a), grouped cross-correlation
imaging (b), and Gaussian-weighted cross-correlation imaging (c). Black dots indicate
the estimated source locations. The white circles, centered on the true source position,
have radii of a quarter and a half of the dominant wavelength.
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2.6 Conclusion
We propose a new imaging condition for passive seismic source imaging, which we call the
Gaussian-weighted crosscorrelation imaging condition. The Gaussian-weighted crosscorre-
lation imaging method for microseismic source localization creates higher-resolution source
images than the conventional autocorrelation imaging method. Next to good localization
results, the method generates very few imaging artifacts in comparison with the autocor-
relation and grouped crosscorrelation imaging methods, which highly reduces the risk of
false positives in passive seismic source imaging interpretation. The new imaging condition
is particularly suitable for noisy data acquired from sparse acquisitions and provides good
results for source clusters. The method requires very little computational overhead com-
pared with the efforts needed for the back projection process. Similar to other time-reversal
source imaging methods, the proposed technique can be applied to multiple scales, ranging
from acoustic emissions to microseismic events and global earthquakes.
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3 Seismic source localization with
time-reversal and maximum amplitude
path for sparse and small-aperture
acquisitions

Abstract

Time-reversal imaging is a powerful technique for localizing passive seismic sources. It is
robust independent of the source time and applicable to heterogeneous media. However,
time-reversal imaging usually requires a dense, uniform, and large-aperture acquisition that
provides sufficient illumination to accurately localize passive seismic sources. This require-
ment often is not met in practice. In many field data cases, apertures are an insufficient and
spatial sampling of the recorded wavefield is irregular and sparse because of complex topo-
graphical conditions, technical issues, budget problems, etc. For a sparse and small-aperture
acquisition, it is difficult to identify events using common time-reverse imaging procedures
because of strong imaging artifacts leading to false positives. To mitigate these problems,
we have proposed a new approach that evaluates maximum-amplitude paths constructed
from back-projected wavefields using receiver patches selected from the acquisition. These
paths are built by scanning for the maximum absolute amplitude of the back-propagated
wavefronts within a spatial dimension of the dominant wavelength of the considered event.
The paths comprise maximum amplitudes of the back-projected wavefronts for each con-
sidered time step. The methods exploit the continuity of maximum amplitudes of the
back-projected wavefields. The point of closest proximity (or crossing point) of the paths
denotes the source location and the corresponding time is the source time. Numerical ex-
amples for the Marmousi-II and SEG 3-D overthrust models indicate that the proposed
approach can estimate the source excitation time and source localization simultaneously for
sparse and small-aperture acquisitions of noisy data with high accuracy. Source excitation
time errors are below the prevailing period, and maximum localization errors are below the
dominant wavelength, that is, within the resolution of band-limited signals. Using a wide
aperture acquisition, these results are further improved and lead to errors in the order of
the spatial and temporal sampling.

3.1 Introduction

The accurate location of seismic events is a key component in passive seismic monitor-
ing. It can provide valuable information on the seismicity caused by tectonic activity (e.g.,
Waldhauser and Ellsworth, 2000) or induced by anthropogenic actions, such as hydraulic
fracturing (e.g., Maxwell et al., 2010; Ellsworth, 2013; Kamei et al., 2015) or CO2 storage
monitoring (e.g., Goertz Allmann et al., 2014; Jones et al., 2014). There are many ap-
proaches available for the location of seismic events, which can be mainly categorized into
two types: ray-based methods and waveform-based methods(e.g., Bardainne et al., 2009; Li
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et al., 2020). Most ray-based methods need to identify seismic phases and arrival times. For
waveform-based methods, such as stacking/migration approaches, no picking is required.
Waveform data are stacked to back-project recorded data to the source. In seismology, sub-
surface velocities often are not known and techniques for simultaneous location of sources
and velocity model building are needed (Diekmann et al., 2019; Schwarz et al., 2016; Yang
and Gajewski, 2021a). Most localization methods require the velocity structure between
the passive seismic source and the receiver. A common approach is to estimate the locations
and origin times of events by minimizing predicted arrival-time differences between pairs of
events or stations (Waldhauser and Ellsworth, 2000; Eisner et al., 2009). Though efficient
and reasonably reliable, this type of approach is limited by low signal-to-noise ratios (S/Ns),
strong heterogeneity, and small-aperture seismic acquisition, resulting in large errors for the
estimation of source excitation time and source location (Yang et al., 2019).

Time-reversal relies on the seismic wave equation and focuses the energy of seismic waves
back to the hypocenter by reverse modeling if a reasonably accurate velocity model is avail-
able (Fink et al., 2002; Gajewski and Tessmer, 2005; Artman et al., 2010; Chen et al., 2021).
Because the back-projection process starts as soon as the event is injected into the model,
it is source time independent and does not require arrival-time picking or polarization esti-
mation of seismic phases. It is more robust and reliable for long-period event localization
(O’Brien et al., 2011) and suitable for passive seismic imaging (Folesky et al., 2015; Price
et al., 2015). Larmat et al. (2008) approximate the location and focal mechanism of rela-
tively large glacial earthquakes from time-reversal images. To improve the temporal and
spatial resolution of images, Douma and Snieder (2015) perform focusing of microseismic
images by deconvolution. Because time-reverse imaging methods focus on the wavefronts of
recorded data, they are also suitable for localizing weak or noisy seismic events. However,
in a sparse and small-aperture acquisition, reverse imaging approaches face challenges. If
only a few traces or traces with a spacing considerably larger than the prevailing wavelength
of the considered event are injected, no unique focusing of the wavefront is observed. To
improve the spatial resolution, Nakata and Beroza (2016) propose an alternative imaging
technique called geometric-mean reverse time migration (RTM)(GmRTM), which reduces
imaging artifacts and works well in a sparse network. However, this approach also still relies
on a large-aperture acquisition to obtain good estimates for the seismic events. We can sum-
marize that time-reversal imaging techniques usually require uniform and/or large-aperture
acquisitions.

Here, we propose a methodology to mitigate these issues by introducing the maximum-
amplitude path technique, which provides source location and source time simultaneously
for sparse and small aperture acquisitions. After the "Introduction", we describe how to
obtain the maximum-amplitude path from back-propagated wavefields. Synthetic examples
using the Marmousi-II and SEG 3D overthrust models are discussed for proof of concept
and to quantify the method’s location and source time estimation potential in laterally
heterogeneous media. Results are compared with conventional time-reverse imaging tech-
niques, namely, the auto-correlation imaging method (Steiner et al., 2008; Artman et al.,
2010) and the GmRTM approach (Nakata and Beroza, 2016). Moreover, issues related to
poor S/N and a wide-aperture acquisition also are quantified and discussed by numerical
examples.
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3.2 Outline of methodology
In this section, we provide a brief overview of the methodology and explain the details of
its implementation in the subsequent sections. The maximum-amplitude path technique to
localize passive seismic sources is a waveform-based method. The path is built by scanning
for the maximum absolute amplitude of time-reversed wavefields. The search area is chosen
according to the dominant wavelength of the considered event and is aligned in the direction
of propagation of the back-propagated wavefront. This procedure is performed for each time
step and exploits the continuity of amplitudes, which do not change discontinuously in the
dimension of the search area.
The maximum amplitude paths are not classical rays obtained by ray tracing. These

paths describe how the maximum amplitude of the wavefront back-propagates with time,
that is, the driving engine of the method is time-reverse imaging. We start the deter-
mination of maximum amplitude when the injected time-reversed traces are forming a
detectable wavefront by constructive interference, that is, focusing occurs. We construct
three maximum-amplitude paths from the time-reversed data of three receiver patches se-
lected from the recorded traces. The back-projected wavefront and therefore the maximum-
amplitude paths focus on the hypocenter. Here, the paths cross or display the closest prox-
imity to each other, which defines the source location. The time at this location corresponds
to the source excitation time.
Thus, the proposed method comprises two main steps:

(1) maximum-amplitude path construction

(2) seismic event and source time estimation.

The exploitation of the continuity of the maximum-amplitude path and the restriction of
the search area for the maximum to an area with the dimension of the prevailing wavelength
of the considered events distinguishes this approach from other reverse modeling techniques
using the maximum-amplitude imaging condition. Details of the previously described out-
line are provided in the following sections.

3.3 Maximum-amplitude path construction
We first perform some preprocessing on the recorded data, comprising the selection of traces
for the considered receiver patches, and frequency analysis (e.g., Priestley, 1996) followed
by band-pass filtering. Receiver patches and dominant frequency provided by the frequency
analysis are used for constructing maximum-amplitude paths.
There are many options to select receiver patches out of the seismic acquisition. We can

select patches from the first to the last receiver, or we may consider overlapping receiver
patches. Alternatively, we may randomly select three receiver patches. A good choice
is overlapping patches providing different illumination. Local coherence of the wavefield
(Schwarz et al., 2016; Diekmann et al., 2019) can aid the selection process. The recorded
wavefield in the patches should include the seismic event that we wish to localize. At
least two maximum-amplitude paths are constructed from the data of the selected receiver
patches. Here, we construct three paths from three patches, in which we use the following
selection strategy for the receiver patches: the first and second receiver patch are overlapping
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by a few traces with each other while the third receiver patch comprises all receivers of
the acquisition. The acquisition may be sparse and of limited aperture, that is, a situation
often observed in field data studies. After the selection of receiver patches, the seismograms
are reversed in time and serve as boundary values for the reverse modeling. The reverse
modeling requires a velocity model that is consistent with the data. We assume here that
such a model is available. Some details on the requirements of the velocity model are
discussed in the following numerical examples.

To localize passive seismic sources using the maximum-amplitude path method, we apply
reverse modeling, that is, back projecting the recorded seismic energy to its origin. There
are various types of wave equations for the propagation algorithm. In the present work, the
first-order velocity-stress acoustic wave equation for constant density (Aki and Richards,
2002; Cerjan et al., 1985) is adopted. The spatial and time derivatives are computed
by first-order finite differences. To avoid backscattering, we separate up- and downgoing
wavefields using the Hilbert transform (Zheng et al., 2018), which provides the downgoing
back-propagated pressure fields. Unless otherwise noted, back-propagated wavefields refer
to the downgoing fields.
The determination of the maximum-amplitude path starts after focusing caused by con-

structive interference of the back-projected wavefield is observed and a wavefront is formed.
Before sufficient interference is obtained, maximum absolute amplitude locations of the
back-projected wavefields are scattered close to the surface where the data are injected at
the receivers. This is displayed in Figure 3.1 in which the maximum-amplitude path is built
without any constraints, that is, only by picking the locations of the absolute maximum
amplitudes for each time step. The black, purple and white curve denotes the path for
the receiver patches comprising receivers between 0.0 and 0.8, 0.4 and 1.2, and 0.0 and
1.2 km at the surface, respectively. The red circle denotes the source at x=3.0 km and
z=3.0 km. We observe that the maximum-amplitude path starts to be spatially continuous
at a certain depth. This continuity reflects the focusing of the injected wavefields and al-
lows the construction of the path. The determination of the maximum amplitude path thus
should not start above a threshold "depth" Zb, displayed in Figure 3.2. As a good general
rule of thumb for this threshold, we use a depth corresponding to two times the prevailing
wavelength of the considered event. When the depth of the maximum amplitude exceeds
this threshold, its corresponding time is denoted by tb. At this time, the determination
of the maximum-amplitude paths start. The prevailing wavelength is obtained from the
dominant frequency of the event as determined by spectral analysis in the preprocessing
and an average of the velocities at the receiver patches. During the determination of the
maximum amplitude paths, we also evaluate the distances between them. These distances
decrease with increasing time until a minimum is reached. This minimum corresponds to
the source location and the corresponding time is the hypo-central time. After this time
is reached, the paths start to diverge and the determination of the paths is stopped. This
time is denoted by te. After the general description of the method, we provide additional
technical information on the implementation of the maximum amplitude path method in
the following paragraphs.
The path for each receiver patch is constructed by scanning maximum absolute ampli-

tudes of the back-propagated wavefields for each time step between tb and te, which is
schematically visualized in a 2D sketch shown in Figure 3.2. Two snapshots of adjacent
time steps are displayed. The first maximum is determined from the amplitudes of the
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Figure 3.1: Maximum-amplitude paths for the source at x=3.0 km, z=3.0 km without constraints
of the time window. The black, purple and white curves are the maximum-amplitude
paths for the first, second and third receiver patch containing receivers between 0.0
and 0.8, 0.4 and 1.2, and 0.0 and 1.2 km, respectively. Receiver sampling is 20 m.
Maximum amplitudes are scattered close to the surface since the injected wavefields
are not yet interfering and focusing.

back-projected wavefield at the time tb. The following maxima are determined by scanning
a rectangular box centered at the previous maximum where the axes of the box have a
length corresponding to the prevailing wavelength of the considered event and the box is
aligned in the direction of propagation, which is computed numerically (e.g., Jia and Wu,
2009).
The wave propagation angle is used for a rotation matrix R to align the rectangular box

in 2D ( or cube in 3D) into the direction of propagation, see also Figure 3.2. The position for
the maximum absolute amplitude within the rectangular box is picked using the following
expression,

uj(xm, ti+1) = max {|uj(x, ti+1)H(xm −R · x, ti)|} , 1 ≤ j ≤ 3 , (3.1)

with

H(xm −R · x, ti) =
{

1, |xm −R · x| ≤ λji

0, otherwise , (3.2)

where uj is the back-propagated wavefield generated in the j-th receiver patch; the vector
xm denotes the position of the maximum absolute amplitude of the wavefield, whereas ti
and ti+1 represent the time at the i-th and (i + 1)-th time step, respectively; λji is the
prevailing wavelength at the maximum xm obtained at the i-th time step; and H is the
step or Heaviside function. The maximum-amplitude path comprises all picked maxima xm

between starting and ending time for the considered patch.

3.4 Seismic event localization and source time estimation

The back-propagated wavefront shrinks to its spatial minimum at the source location.
Therefore, the maximum-amplitude paths should focus on the source location, and the
corresponding time is the source excitation time. The constructed maximum-amplitude
paths do not necessarily cross at the source location because these paths do not correspond
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zb

source

surface

xmax_i, ti

xmax_i+1, ti+1

xb, tb

xe, te

receiver patch

Figure 3.2: Schematic sketch of the maximum-amplitude path construction. The threshold Zb is
a user-defined parameter for determining the maximum-amplitude path start (xb, tb).
Two snapshots at subsequent time steps ti and ti+1 are displayed. The black curve
describes the maximum-amplitude path. Assuming that the maximum amplitude for
the time step ti is located at xmax_i, the maximum for the next time step xmax_i+1,
denoted by the white circle, is determined by scanning the amplitude of the wavefront
for this time step, that is, ti+1, in the neighborhood of the previous maximum. This
neighborhood, indicated by the red rectangular box, is centered at the previous max-
imum and oriented in propagation direction with side lengths corresponding to the
prevailing wavelength of the signal.

to classical rays but to the paths following maximum amplitude of the propagating wave-
front. Therefore, we consider the closest proximity of the maximum-amplitude paths as the
source location. We compute the distance between the paths for each time step. For the
case of three paths, we obtain three distances, which are summed. The position with the
minimum of these sums represents the source location and the time at this location is the
source time. The expression for calculating the sum, denoted by D, of the distances reads

D(t) =
∑

j

∑
k

√
(xjm(t)− xkm(t)) · (xjm(t)− xkm(t))T , j 6= k , (3.3)

where the subscripts j and k (with j 6= k) denote the receiver patch and xjm and xkm

correspond to the locations with the maximum absolute amplitude for the considered time
steps. After the maximum-amplitude paths start, that is, at starting time tb, the sum of the
distances D would first decrease, minimize at the source location, and then increase, which
can be visualized in Figure 3.5 c and 3.5 d. Therefore, the paths should stop when the
sum of the distances increases. Accounting for model complexity and strong noise, instead
of the sum of the distances D, we consider its average in a user-defined time window. It
reads

D̄l =
∑

tD(t)
N

, tb + l · w ≤ t < tb + (l + 1) · w , (3.4)

where D̄l denotes the average of D in the l-th time window, N = w/dt denotes the number
of time steps in the time window, dt indicates the time step used for reverse modeling,
and w represents the user-defined time window. A good choice of its size is two prevailing
periods of the considered event. When D̄l increases, the determination of the paths stop
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Figure 3.3: Velocities for a part of the Marmousi-II model. The black and red dots denote the
two considered sources located at x=3.0 km, z=3.0 km and x=3.15 km, z=2.4 km,
respectively. (a) The true velocity model used to generate data and (b) the smoothed
version used for reverse modeling.

and defines te. The minimum of the sum of the distances D over the time range L, that is,
from tb to te, provides the source location and source time:

min
L

[D(t)] ⇒ (xs, ts) , (3.5)

where ts indicates the source excitation time and xs is the corresponding source location.

3.5 Numerical studies
For proof of concept for the localization method, Marmousi-II and SEG 3D overthrust
models are used. The synthetic data for the tests have been computed using the constant-
density two-way first-order velocity-stress acoustic wave equation (Aki and Richards, 2002;
Gajewski and Tessmer, 2005) and the respective time-reversed data serve as input for reverse
modeling using the same acoustic wave equation with a scheme for up- and downgoing
wavefield separation using the Hilbert transform (Zheng et al., 2018). Forward modeling of
the data is performed with the true velocity model whereas reverse modeling is performed in
a smoothed version of the true model. For the synthetic examples, the exact locations and
excitation times are known. Unless otherwise noted, all times mentioned in the following
tests are relative to the exact source time, which is 0 s (zero time). Negative numbers
correspond to times prior to the real excitation time and positive numbers indicate times
after the real excitation time. We consider first a subset of the Marmousi-II model.

3.5.1 Marmousi-II model

In Figure 3.3 a, a part of the Marmousi-II model is displayed. Velocities are defined on
a 693×385 grid with a spacing of 10m in the x- and z- directions. Explosive sources
denoted by a black and red dot are located at x=3.0 km, z=3.0 km and x=3.15 km,
z=2.4 km, respectively. The latter source is placed on a fault in the presence of strong
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(a) (b) (c)

Figure 3.4: Data for the source at x=3.0 km, z=3.0 km in the Marmousi-II model. The back-
ground image is the wavefield recorded at the surface, and the black lines illustrate
waveforms at seven receivers used below for a sparse data acquisition. (a) Noise-free
data, (b) noisy data with S/N of 0.12, and (c) band-pass filtered (6 - 17 Hz) data.

velocity variations. The source time function is a Ricker wavelet with a dominant frequency
of 10Hz. A time shift was applied to simulate a minimum phase signal. The time sampling
is 1ms.

A data example is shown in Figure 3.4. The time reversed data serve as input for reverse
modeling. Reverse modeling is performed in the smoothed version of the Marmousi-II
model (Figure 3.3 b). Smoothing is performed with a 600×600m2 2D Gaussian window.
This model is used for reverse modeling to construct maximum-amplitude paths, as well as
for GmRTM and auto-correlation imaging. We consider a smoothed version of the velocity
model with a smoothing window considerably larger than the prevailing wavelength of the
event because, in practice, it is unlikely to achieve a velocity resolution comparable or close
to the true velocity model.
We will use the synthetic data for numerous tests beginning with densely sampled noise-

free data. In further examples, we investigate noisy and sparse data with small aper-
tures. Finally, we present a wide-aperture acquisition. Results of two time-reverse imaging
methods, namely auto-correlation imaging (Artman et al., 2010) and the GmRTM method
(Nakata and Beroza, 2016), are used for comparison with the results of the maximum-
amplitude path approach. Both time-reverse imaging methods localize sources by scanning
for the spatial position with the maximum absolute value of the image.

Densely sampled noise-free data

In a first example, we consider the source at x=3.0 km and z=3.0 km. Receivers are evenly
distributed at the surface between 0.0 to 1.2 km with a spacing of 20 m. The data example is
shown as an image plot in Figure 3.4 a. This example reflects a densely sampled acquisition
with limited aperture.
The threshold for determining the starting time is set to 650m below the surface, and the

ending time of the paths is automatically estimated by equation 3.3 and equation 3.4. This
provides the duration L of the time window for the construction of maximum-amplitude
paths.
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Figure 3.5: Comparison of methods for the source at x=3.0 km and z=3.0 km. Receivers are reg-
ularly distributed at the surface between 0.0 and 1.2 km with a spacing of 20m. The
red and white circles are centred at the true source location and with radii of half and
one dominant signal wavelength. The black circles represent the localization results
by (a) the auto-correlation imaging method, (b) the GmRTM method, and (c) the
maximum-amplitude path method using three receiver patches comprising receivers
between 0.0 and 0.8, 0.4 and 1.2, and 0.0 and 1.2 km, respectively. (d) The distance
between maximum-amplitude paths against time with a red star as a minimum, deter-
mines source excitation time.

Figure 3.5 a and 3.5 b shows the time-reverse images, obtained by auto-correlation imag-
ing and the GmRTM method, respectively. Unless otherwise noted, time-reverse images for
these methods are obtained by stacking all snapshots over duration L in which only the
area beyond the threshold is considered. In Figure 3.5 a and 3.5 b, the source region is
smeared because of the limited aperture of the surface observations. The spatial resolution
of the images is low, resulting in localization uncertainties and incorrect source times. The
estimated source locations in the images are denoted by black circles, whereas the true loca-
tions are indicated by red circles. The white circles around the true source location display
a radius of half and one dominant wavelength of the considered event. In Figure 3.5 a and
3.5 b, the distances between the true and the estimated source locations are approximately
four times the dominant wavelengths leading to substantial deviations in source time. We
conclude that the two common time-reverse imaging methods fail to properly localize the
source for the dense acquisition with small aperture used in this example.
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Figure 3.6: Images of the analysis window along the maximum-amplitude path for (a) the first
receiver patch, (b) the second receiver patch, and (c) the third receiver patch at the
time of 1.25, 0.85, 0.55, 0.3, 0 and –0.3 s. Receivers are regularly distributed at the
surface between 0.0 and 1.2 km with a spacing of 20m. The yellow, purple, and white
curve represent the maximum-amplitude path using three receiver patches comprising
receivers between 0.0 and 0.8, 0.4 and 1.2, and 0.0 and 1.2 km, respectively. The red
circles are centered at the actual source location with x=3.0 km and z=3.0 km, and
the white circles are centered at the point on the path at the respective time.
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Figure 3.7: Comparison for the source at the fault (x=3.15 km and z=2.4 km). Receivers are
regularly distributed at the surface between 0 and 1.2 km with a spacing of 20m.
The red and white circles are centred at the true source location. The white circles
have radii of half and one dominant signal wavelength. The black circles represent
the localization results by (a) the auto-correlation imaging method, (b) the GmRTM
method, and (c) the maximum-amplitude path method using three receiver patches
comprising receivers between 0.0 and 0.8, 0.4 and 1.2, and 0.0 and 1.2 km, respectively.
(d) The distance between maximum-amplitude paths against time, with the red star
denoting a minimum, determines source excitation time.

For the maximum-amplitude path method we choose three receiver patches. The patches
comprise receivers between 0.0 to 0.8, 0.4 to 1.2, and 0.0 to 1.2 km, respectively. Together
with the maximum-amplitude path, images with the size of the analysis window evaluated
by equation 3.2 at time steps 1.25, 0.85, 0.55, 0.3, 0, and –0.3 s are displayed in Figure 3.6.
The paths start at 1.25 s and end at –0.3 s. At the actual source time, the paths are close
to the actual source location. Figure 3.5 c shows that the maximum-amplitude path (the
black, purple, and white lines) is focusing close to the actual source location. In Figure 3.5
d, the blue curve corresponds to the sum of the distance between paths as defined previously.
The minimum sum is indicated by a red star at 26ms. It corresponds to the determined
source excitation time which is within the prevailing period of the source signal. The
source location error is about 100m, that is, about 32% of the dominant wavelength.
For this small-aperture dense acquisition, we conclude that the maximum-amplitude path
approach yields a good estimate of source excitation time and location. Errors are within
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Figure 3.8: (a-c) Maximum-amplitude paths for three receiver patches. The patches include re-
ceivers between 0.0 and 0.8, 0.4 and 1.2, and 0.0 and 1.2 km, respectively. Receiver
spacing is 20m. Images of the analysis window at times of 1.05, 0.8, 0.55, 0.3, 0, and
–0.42 s also are displayed. The red circles are centered at the actual source location
with x=3.15 km and z=2.4 km, and the white circles denote the point on the path
at the respective time. The yellow, purple, and white curve represent the maximum-
amplitude path using three receiver patches comprising receivers between 0.0 and 0.8,
0.4 and 1.2, and 0.0 and 1.2 km, respectively.

the resolution of the seismic event.
In a second example we consider a passive seismic event on a fault with strong varia-

tions in velocity in its vicinity. This source is located at x=3.15 km and z=2.4 km (the
red dot in Figure 3.3). The acquisition as well as the selection of receiver patches are
the same as for the previous numerical test. The common time-reverse imaging methods
displayed in Figure 3.7 a and 3.7 b again show strong deviations from the true location.
Figure 3.8 displays the images within the analysis window evaluated by equation 3.2 along
the maximum-amplitude paths at times 1.05, 0.8, 0.55, 0.3, 0, and –0.42 s. Unlike classic
rays, the maximum-amplitude path displays a discontinuous change at the beginning of the
white path in Figure 3.8 c . Choosing a different threshold to estimate the starting time
of the path may have avoided this. However, with increasing time, the continuity of the
path is established. The result of the maximum-amplitude path method is displayed in
Figure 3.7 c and 3.7 d. Although the source is located in a challenging geologic region,
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Figure 3.9: Comparison of methods for noisy data. The source is located at x=3.0 km and
z=3.0 km. Receivers are regularly distributed at the surface between 0.0 and 1.2 km
with a spacing of 20m. The red and white circles are centred at the true source
location. The white circles have radii of half and one dominant signal wavelength.
The black circles represent the localization results by (a) the auto-correlation imaging
method, (b) the GmRTM method, and (c) the maximum-amplitude path method using
three receiver patches comprising receivers between 0.0 and 0.8, 0.4 and 1.2, and 0.0
and 1.2 km, respectively. (d) The distance between maximum-amplitude paths against
time, with the red star denoting a minimum, determines source excitation time.

the distance between the actual source location and the location where the paths focus is
again smaller than the prevailing wavelength. Furthermore, the source excitation time error
is smaller than the prevailing period of the signal. This promising result emphasizes the
potential of the maximum-amplitude path method for limited aperture networks even for
strongly heterogeneous media.

Noisy data

To examine the effect of uncorrelated noise on the localization accuracy of the maximum-
amplitude path method, random noise with an S/N of 0.12 is applied to the data. The
resulting data for a source at x=3.0 km and z=3.0 km and receivers with a 20m spacing
between 0.0 and 1.2 km at the surface are displayed in Figure 3.4 b. The seismic event
might be too weak to obtain focusing in the back-propagation process. A conventional
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Figure 3.10: Comparison of methods for sparse and noisy data comprising seven traces. The
source is located at x=3.0 km and z=3.0 km. Receivers are placed at the surface
between 0.0 and 1.2 km with a spacing of 200m. The red and white circles are
centred at the true source location. The white circles have radii of half and one
dominant signal wavelength. The black circles represent the localization results by
(a) auto-correlation, (b) GmRTM, and (c) maximum-amplitude path using three
receiver patches comprising receivers between 0.0 and 0.8, 0.4 and 1.2, and 0.0 and
1.2 km, respectively. (d) The distance between maximum-amplitude paths against
time, with the red star denoting a minimum, determines source excitation time.

preprocessing step is band-pass filtering. We apply a 6 – 17 Hz band-pass to the data,
which are displayed in Figure 3.4 c. The S/N ratio after filtering is 0.9. Although the event
is now weakly visible in the densely sampled data, the waveforms of the sparse data used in
the examples next do not allow a correlation of the event. In this example, the threshold for
estimating the starting time is chosen to be 1.0 km. The acquisition as well as the receiver
patches are the same as for the first numerical test in the previous section. In Figure 3.9 a
and 3.9 b, only the area below 1.0 km is considered. Auto-correlation and GmRTM result
in incorrect estimates far off the true source location.
The results of the maximum-amplitude paths approach are shown in Figure 3.9 c and

3.9 d. The paths focus approximately 200m off the true source location, which is within
a dominant wavelength of the event (about 62% of the dominant wavelength). The cor-
responding estimated source excitation time error is –0.069 s, which is smaller than the
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Figure 3.11: Comparison of methods for wide-aperture data. The source is located at x=3.0 km
and z=3.0 km. Receivers are located between 0.0 and 0.8, 1.4 and 2.2, and 2.8
and 3.6 km with a spacing of 200m. Localization results for (a) auto-correlation (b)
GmRTM, and (c) maximum-amplitude path. The red and white circles are centred
at the true source location. The white circles have radii of half and one the dominant
signal wavelength. The black circles indicate the estimated source locations. (d) The
distance between maximum-amplitude paths against time, with the red star denoting
a minimum, determines source excitation time.

prevailing period of the signal. This result illustrates that the maximum-amplitude path
approach yields good source estimates for small-aperture acquisitions even if the event is
weak.

Sparse and noisy data

For more realistic acquisitions, the number of receivers is usually considerably smaller than
in the previous examples. Therefore, we carry out another test for a source at x=3.0 km
and z=3.0 km where the number of receivers is only approximately one-tenth of the first
example. This means that only seven receivers are regularly distributed at the surface with
a spacing of 200m. The receivers are located at 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 km,
respectively. Again, random noise with S/N 0.6 is added to the sparse data. Band-pass
filtering (6 – 17 Hz) establishes an S/N of 4.35 in this case. The seven waveforms of the data
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are displayed in Figure 3.4. Figure 3.10 a and 3.10 b shows the images below the threshold
depth at 0.85 km and the estimated locations for auto-correlation and GmRTM, which are
far off the true source positions. Results of the maximum-amplitude path approach are
shown in Figure 3.10 c and 3.10 d. The first receiver patch contains five receivers from 0.0
to 0.8 km, whereas the second receiver patch contains five receivers from 0.4 to 1.2 km. The
third receiver patch includes all seven receivers of the acquisition. The threshold of 0.85 km
leads to a starting time of 1.05 s to ensure sufficient focusing and continuity of maximum
amplitudes. The estimates of the source excitation time and location are similar to the
previous examples. Therefore, we conclude that the maximum-amplitude path localization
scheme provides promising results even for very sparse small-aperture acquisitions.
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Figure 3.12: Velocity sections for the SEG 3-D overthrust model at the source location. (a) Inline
section and (b) crossline section. (c) Inline section and (d) crossline section of the
smoothed model. The red star denotes the source located at x=3.2 km, y=3.2 km,
and z=2.4 km.

Wide-aperture acquisition

In the previous examples, we have considered small apertures and sparse acquisitions to be
close to most field data situations. The maximum amplitude path method, however, is not
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Figure 3.13: Seismic network for the source at x=3.2 km, y=3.2 km, and z=2.4 km. The red star
shows the surface projection of the source. The black triangles denote receivers placed
between 4.16 and 7.36 km in both x- (crossline-) and y- (inline-) direction. Receiver
spacing is 640 m. The first, second, and third receiver patches comprise receivers of
the blue, purple, and gray rectangular boxes, respectively.

restricted to these cases but works equally well for wide-aperture acquisitions. We consider
three separated receiver lines distributed over the surface where the first line covers the area
from 0.0 to 0.8 km lateral distance, the second line covers the area from 1.4 to 2.2 km, and
the third line covers the area from 2.8 to 3.6 km. The receiver distribution has a spacing
of 200m for each line for the source at x=3.0 km and z=3.0 km. The three recording
lines form three receiver patches for the maximum-amplitude path approach. Each receiver
patch has a sparse and small-aperture setting. This acquisition geometry provides a wide
aperture layout and delivers a much more favorable situation for source localization because
of the improved illumination. Random noise and a band-pass filtering are the same as for
the previous example.
This acquisition requires less effort and costs if compared to a full-aperture acquisition

with a single 6.4 km receiver line. For this case, all methods provide good locations. Based
on the previous small-aperture results, it is no surprise that the maximum-amplitude path
method provides very good locations and times for this type of acquisition. The source
location and source time are very close to the true values (Figure 3.11 c and 3.11 d). The
source time deviates by only 6ms, and the source location deviates by approximately 30m,
which is far below the dominant wavelength of the signal. It has to be emphasized, however,
that very good results already have been obtained for cost-effective sparse small-aperture
acquisitions. This is the particular strength of the maximum-amplitude path method if
compared with other wave-equation imaging or time-reverse imaging techniques for source
localization.

3.5.2 SEG 3-D overthrust model

As a 3-D example, we consider the SEG 3-D overthrust model. Velocities are defined on a
400×400×187 grid. The grid spacing is 40m in the x- (crossline) and y- (inline) directions,
and 20m in z- (depth) direction. A source, denoted by a red star in Figure 3.12, is located
at x=3.2 km, y=3.2 km, and z=2.4 km. The source is an explosive source with a Ricker
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Figure 3.14: Results for (a) auto-correlation imaging and (b) GmRTM. The red and purple circles
are centred at the true source location. The purple circles have radii of half and one
dominant signal wavelength. The black circles indicate estimated source locations.

wavelet as time signal and a dominant frequency of 10Hz. A time shift is applied to simulate
a minimum phase signal. The time sampling is 1ms.
Figure 3.12 a and 3.12 b shows the inline and crossline sections of the actual model

at the source location, respectively. The corresponding smoothed version of the sections
is shown in Figure 3.12 c and 3.12 d. Smoothing is performed with a 600×600×300m3

3D Gaussian window. Data are again computed for the true model and back projections
are performed in the smooth model. In Figure 3.13, 36 receivers are evenly distributed at
the surface between 4.16 and 7.36 km in the x- and y- directions with a spacing of 640m.
The surface projection of the source is denoted by the red star. This example reflects a
sparse acquisition with limited aperture and therefore limited illumination in a complex
3-D model. The source location is laterally displaced with respect to the area covered by
the seismic network.
Figure 3.14 displays the results of auto-correlation imaging and GmRTM. The localization

results deviate from the actual source location by more than the dominant wavelength, that
is, beyond the resolution limit of the source signal. For estimating the seismic event by the
maximum-amplitude path method (Figure 3.13), the first receiver patch comprises receivers
in the blue rectangular box, the second receiver patch contains receivers in the purple
rectangular box, and the third receiver patch includes the receivers in the gray rectangular
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Figure 3.15: (a) Localization results for the maximum-amplitude path method. The black, pur-
ple, and red lines represent the maximum-amplitude path for the first, second, and
third receiver patch, respectively. The red and purple circles are centred at the
true source location. The purple circles have radii of half and one dominant signal
wavelength. The black circles indicate estimated source locations. (b) The distance
between maximum-amplitude paths against time, with the red star denoting a mini-
mum, determines source excitation time.

box. Figure 3.15 shows the paths that start at 0.45 s and end at –0.3 s. They focus on
a small region close to the actual source location. The location error is approximately
40% of the dominant signal wavelength, whereas the source-time errors are 64ms. The 3D
example shows that the maximum-amplitude path approach provides a good location and
source excitation time for the sparse small-aperture acquisition with limited illumination
because the source is located outside the seismic network.

3.6 Discussion

In a sparse and small-aperture acquisition, classic time-reverse imaging methods, such as
auto-correlation imaging or GmRTM (among others), usually have issues because of in-
sufficient focusing of the back-projected wavefield. The images display artifacts and no
unique focus is obtained to identify the source location, which may lead to false positives.
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To circumvent these limitations of time-reverse imaging methods, we propose a novel ap-
proach for simultaneously estimating source excitation time and location using maximum-
amplitude paths. Because of the wavefield back-propagation step in constructing the path,
the maximum-amplitude path approach belongs to the class of time-reverse imaging tech-
niques for source localization.

The maximum-amplitude path is constructed by scanning for the maximum absolute
amplitude of the back-propagated wavefields. The scan for maximum absolute amplitude
is performed in a limited area aligned in propagation direction with a spatial extent of the
dominant wavelength of the considered event for each time step. The maximum-amplitude
path then comprises the maximum absolute amplitudes of the wavefronts for each considered
time step. The methods exploit the continuity of the maximum amplitude in the back-
projection process as soon as focusing of the injected wavefields is achieved. Moreover,
the limitation of the analysis to a close proximity of the maximum avoids picks of false
positives. These aspects basically distinguish the proposed approach from other techniques
using back-projection methods. We choose maximum absolute amplitude as an imaging
condition; however, other imaging conditions can be considered as well at the expense of
computational efficiency.
In the presented examples, we have constructed three maximum-amplitude paths from

three receiver patches where a patch denotes a collection of different traces out of the
considered acquisition. The location where the three considered paths are closest to each
other or cross indicates the source location. The corresponding time of this point provides
the excitation time of the source.
Any point on the wavefront could be used to construct a path because, for a data consis-

tent velocity model, the wavefront collapses at the source. Because the maximum is easiest
to identify, we follow the propagation of the maximum amplitude. Rather than being de-
scribed as rays in the classical sense, that is, rays obtained by ray tracing, the resulting
maximum-amplitude paths connect the locations of the maximum amplitude of the wave-
front for each considered time step. The wavefront collapses to a focal "point" at the source
location, where "point" has to be physically interpreted in the sense of a band-limited seis-
mic event. Because of this focusing, the maximum-amplitude paths either cross or are close
to each other at the source location. The maximum-amplitude path method will work best
for such point-type sources. It has not yet been tested on extended sources as observed for
large earthquakes.
For quality control and improvement of results, more than three paths can be considered

at the costs of additional computing time. In the construction of the maximum-amplitude
path, it may be possible to skip some time steps by only considering snap shots which
differ in time by, for example, half the prevailing period of the signal. This, however, is
not yet adopted in our current work. Furthermore, it may lead to a decreased accuracy in
location and source time determination. To avoid the latter, a refinement approach for the
time steps between snapshots down to the sampling rate may be considered, if the distance
between the paths decreases to, for example, half the prevailing wavelength.
Numerical examples based on the Marmousi-II and SEG 3-D overthrust models have

shown that the maximum-amplitude path approach provides accurate locations and source
times. In the considered examples, the determined source locations and source times deviate
from the true locations and times by less than the prevailing wavelength and less than the
prevailing period of the considered event, that is, they stay in the resolution limit of the
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event. This observation holds even for very sparse acquisitions with only seven receivers
in the receiver patch for 2D examples and 36 receivers in the receiver patch for the 3D
examples. A denser receiver distribution in the patch leads to even better results. Because
of the improved illumination, the locations and source times for a wide-aperture acquisition
show only little errors. Because of the focusing during the back-propagation process, poor
data quality has not heavily influenced the results. For very sparse acquisitions and noisy
data, careful preprocessing should be carried out to optimize data quality.
Data enhancement techniques (e.g., Diekmann et al., 2019; Bauer et al., 2019b; Xie and

Gajewski, 2017; Saad and Chen, 2020) also can be applied to improve passive seismic data
quality. The data enhancement methods often require local coherence of the recorded events,
which is not met for sparse data. It is one of the particular strengths of the maximum-
amplitude path method that it is applicable to sparse and noisy data with limited-aperture
acquisition.
As for any time-reverse imaging method, the maximum-amplitude path approach also

requires a velocity model. We have used the true model for computing the synthetic data
and a smoothed version of the true velocity model for the reverse modeling in the numerical
examples. The resulting resolution of the smoothed velocity model turns out to be sufficient
for localization and source time determinations within the resolution limit of the considered
event. The requirements on the quality of the velocity model for passive seismic source
imaging are less strict if compared to, for example, reverse time migration of reflection
data. Particularly for the wide-aperture acquisition, locations and source times have been
obtained with high accuracy. Because source times play a crucial role in passive seismic
wavefront tomography (Diekmann et al., 2019; Yang and Gajewski, 2021a), the maximum-
amplitude path approach may be helpful to better estimate source times and to improve
passive seismic velocity model building by cascading both techniques.
The major driver in the computational effort of the maximum-amplitude path technique

is the reverse time imaging step because the construction of the paths consumes only a
small fraction of the total central processing unit (CPU) time. In this work, the reverse
time imaging step has been applied for each receiver patch separately. Using phase encoding
(Romero et al., 2000), it appears feasible to perform the reverse time imaging process for
all receiver patches simultaneously. This would lead to computational costs similar to
conventional time-reverse imaging methods for source location.

3.7 Conclusion

We have presented a methodology for seismic source localization using time-reverse model-
ing. By tracking the maximum amplitudes of the wavefront formed by the back-projected
wavefields, we obtain the maximum-amplitude path. This path is constructed from three
or more receiver patches comprising a selection of traces out of the recorded data. Be-
cause the back-projected wavefields focus on the source, the closest proximity or crossing
point of these paths specifies the source location and the corresponding time is the source
time. The methodology is capable of providing localization results within the resolution
limit of the considered event. This conclusion holds even for small-aperture sparse acquisi-
tions and noisy data, which provide major challenges to other current time-reversal imaging
techniques.
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4 Integrated wavefront tomography and
time reversal for source location,
excitation time, and velocity model
building

Abstract

The locations and excitation times of passive seismic sources are crucial for understanding
Earth’s physical processes. Most established localization methods require a reasonable ve-
locity model, which is usually unknown in practice. In this work, we propose a data-driven
hybrid workflow for simultaneously inverting the velocity model, source location, and source
onset times using wavefront attributes. This workflow combines wavefront tomography and
time-reversal methods. The latter are independent of source time and wavefront tomogra-
phy is used for velocity inversion. The hybrid workflow has distinct advantages over the
conventional workflow for joint inversion of velocities and source parameters using wave-
front attributes. The proposed workflow comprises the following steps. First, a set of
user-defined vertical gradient velocity models is designed. For these models time reversal
is carried out to estimate the source excitation times for each model. These source times
and gradient models are considered next for wavefront tomography. The second step uses
an optimization procedure to find the optimal velocity model and the optimal source exci-
tation time. In each iteration of the optimization, time reversal and wavefront tomography
are sequentially performed, with time reversal producing the source time and location, and
wavefront tomography providing the velocities. In a final step the source location is refined
using the optimal velocity model and the Gaussian-weighted cross-correlation imaging con-
dition. Numerical examples using the overthrust model illustrate the performance of the
hybrid workflow. For a source in a model region with strong lateral heterogeneity and data
acquired in a noisy environment or for a sparse source-receiver geometry, and sources dis-
tributed in a cluster, the hybrid workflow provides good velocity models, and fairly accurate
source locations and excitation times. The errors of source locations and excitation times
are smaller than the dominant wavelength and prevailing period, i.e., within the resolution
limit of band-limited passive seismic signals.

4.1 Introduction

Precisely determining the excitation time and location of the passive seismic sources is
important in both seismology and geoengineering (Shearer, 2019; Li et al., 2020). These
sources can be triggered by natural causes like tectonic events or human activities such
as fluid injection/extraction (Suckale, 2009; Mazzoldi et al., 2012; Maxwell and Urban-
cic, 2001; Warpinski, 2009; Eisner et al., 2009). In seismology, earthquakes originate from
crustal fractures (Shearer, 2019) and accurately determining the onset time and location of
earthquake sources offers fundamental information for seismological analyses like magnitude

61



4 Source localization and joint velocity model building

calculations and seismic source mechanism inversion (Li et al., 2020). In geoengineering ap-
plications, like hydraulic fracturing and CO2 sequestration, induced seismicity is triggered
during fluid injection. High-precision estimation of the excitation time and location of
these events aids in assessing the potential impacts on groundwater and nearby subsurface
structures (Anderson, 2017; Schultz et al., 2021), which helps in making timely responses,
managing induced seismicity and optimizing industrial processes to reduce potential envi-
ronmental hazards.

With advances in computing power and storage capacity, time reversal has developed as
a common and powerful tool for passive seismic source localization that does not require
picking seismic arrival times and phases. This type of method is robust to high noise lev-
els and strong heterogeneity, and can accurately localize sources by performing numerical
backpropagation of the recorded waveforms through a given velocity model (Fink et al.,
2002; Gajewski and Tessmer, 2005; Larmat et al., 2008; Yang and Gajewski, 2022). Gajew-
ski and Tessmer (2005) introduced the reverse modeling approach to characterize passive
seismic events, which can estimate the excitation time and location of the events. Yang
et al. (2023) proposed the Gaussian-weighted cross-correlation imaging condition for source
localization, which provides higher-resolution and clearer source focusing compared to the
auto-correlation imaging method presented by Artman et al. (2010). Since the observed
waveforms are injected at the receiver locations, time reversal techniques are independent
of source time. The accuracy of the source location and excitation time obtained from the
time-reversal methods highly depends on the quality of the provided underlying velocity
model which is often unknown in field monitoring projects.
To address the issue regarding the velocity model, waveform-based approaches for joint

inversion of source location and velocity distributions have been developed. Image-domain
wavefield tomography methods using the PS energy imaging function (Oren and Shragge,
2021) or the source-focusing function (Song and Alkhalifah, 2019) simultaneously invert for
the source location and velocity model by minimizing the image residues calculated from
the functions. Yet, these tomography methods require the use of high-quality source images
in the inversion process, and therefore they need dense and well-distributed seismic data
for source imaging. Another waveform-based approach to the joint inversion task is full
waveform inversion (e.g., Wang and Alkhalifah, 2018; Sun et al., 2016). In this approach
modeled waveforms are fitted to observed data. Full waveform inversion techniques yield
fine-scale velocity variations, however, they are sensitive to the initial velocity models,
prone to cycle skip, and require high-quality data. Moreover, these methods typically do
not include inversion of the source excitation time.
To overcome the limitations of poor data quality and unknown source time, a powerful

alternative presented by Diekmann et al. (2019) uses wavefront attributes (Hubral, 1983;
Schwarz et al., 2016) to jointly invert source location, excitation time, and velocity model,
which can handle noisy and/or sparsely sampled data (Diekmann et al., 2019; Yang and
Gajewski, 2021a). It is a data-driven workflow that requires only prior information of the
near-surface velocity. However, this workflow struggles to produce precise source excitation
times, particularly in scenarios with strong lateral heterogeneity.
To address these issues of the conventional workflow presented by Diekmann et al. (2019)

we combine the potential to determine the velocity model by wavefront attributes with
the independence on the source times of time reversal methods. This hybrid workflow
performs time reversal and wavefront tomography sequentially: time reversal (Gajewski
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and Tessmer, 2005; Yang et al., 2023) determines the source parameters, while wavefront
tomography (Duveneck, 2004; Bauer et al., 2019a) provides the velocity model.
In the following sections we first review the determination of wavefront attributes and

its use in wavefront tomography which is followed by a brief description of time reversal
imaging. The description of the hybrid approach is followed by numerical examples which
lead to discussion and conclusions of the method.

4.2 Wavefront attributes

Wavefront attributes and first estimates of the source excitation time need to be determined
before performing the joint inversion workflow. Estimating the source excitation time re-
quires wavefront attributes estimated by the parabolic traveltime operator (Schwarz et al.,
2016; Yang and Gajewski, 2021a). In the 2D case, it is expressed as:

t(x) ≈ t(x0) + sin(α)
v0

·∆x+ 1
2 ·

cos(α)2

v0 ·Rxx
·∆x2 , (4.1)

where the arrival time t of the passive seismic source signal recorded at the receiver location x
is approximated by a Taylor series expansion (Castle, 1994) in the vicinity of a given receiver
location x0. The displacement ∆x = x − x0, represents the distance from the receiver
position x0, and v0 indicates the locally constant near-surface velocity around x0, which is
assumed to be known in this work. The wavefront attribute α represents the emergence
angle of the locally observed wavefront, while Rxx represents the radii of wavefront curvature
(Hubral, 1983). The parabolic traveltime operator has also been formulated for the 3D cases
(Schwarz et al., 2016; Diekmann et al., 2019). Because the expression proposed by Diekmann
et al. (2019) for source excitation time estimation is derived from the parabolic traveltime
operator (equation 4.1), we use the above-mentioned parabolic traveltime operator instead
of the hyperbolic traveltime operator (Ursin, 1982; Jäger et al., 2001) for wavefront attribute
estimation in the numerical examples below.
Wavefront attribute determination can be considered as an optimization problem, aiming

to maximize the coherent energy for each target sample, in which the shape of the event such
as the wavefront curve passed through the sample of the zero-off section is approximated
by a parabolic traveltime operator. Global optimization algorithms, such as particle swarm
optimization (Kennedy and Eberhart, 1995) and differential evolution (Storn and Price,
1997), can be used to estimate the wavefront-related quantities accurately (Walda and
Gajewski, 2017; Xie and Gajewski, 2018). In the present work, we use particle swarm
optimization, to simultaneously search for the optimal set of wavefront attributes. The set
of wavefront attributes (α, Rxx) is extracted from the data in an automatic, data-driven
fashion by searching the largest local semblance coefficient (Taner and Koehler, 1969) for
a subset of traces located in a predefined aperture around the central point (t0, x0) (Yang
and Gajewski, 2021a). The process of estimating wavefront attributes involves a stacking
procedure, contributing to the identification of weak events in controlled-source seismology
(Mayne, 1962; Taner and Koehler, 1969).
Afterward, the wavefront attributes obtained by equation 4.1, are used to enhance the

S/N and data resolution by creating a stacked section by summing all the samples along
the traveltime trajectories within a certain range around x0. It can suppress the noise
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and enable data interpolation and regularization (Baykulov and Gajewski, 2009; Xie and
Gajewski, 2017). In addition, using the obtained wavefront attributes, the source excitation
time ts can be approximated by a hyperbolic expression (Diekmann et al., 2019), which is
derived from the parabolic expression (equation 4.1):

t(x) ≈
[
(t(x0)− ts + sin(α)

v0
·∆x)2 + (t(x0)− ts) · cos2(α)

v0 ·Rxx
·∆x2] 1

2 + ts , (4.2)

The 3D expression of the hyperbolic traveltime operator is also formulated by Diekmann
et al. (2019). The source excitation time estimated in this way is used as an initial guess
of the source excitation time in the conventional workflow presented by Diekmann et al.
(2019).

4.3 Wavefront tomography and time-reversal methods
The proposed hybrid workflow used for joint inversion of the source location, excitation
time, and velocity model, consists of both wavefront tomography and the time-reversal
methods, while the conventional workflow used for the joint inversion task primarily relies
on wavefront tomography.

4.3.1 Wavefront tomography

Wavefront tomography is a robust, data-driven approach for inverting smooth velocity
models down to the scale of the prevailing wavelength of the considered data. The picking
is performed in the stacked section which has a high S/N ratio and is easier than picking in
pre-stack data (Duveneck, 2004). The input data vector of wavefront tomography contains
four components in 2D and eight components in 3D (Diekmann et al., 2019). In the 2D
cases, it comprises the actual traveltime τ , the lateral coordinates x, the horizontal slowness
px, and the curvature-dependent parameter Mxx:

di = (x, τ, px,Mxx)i , i = 1, ..., ndata , (4.3)

where τ = t − ts is the time of the considered sample minus the corresponding source
excitation time, and ndata represents the total number of picked data points. The horizontal
slowness px and the wavefront curvature-related quantity Mxx, are calculated using the
wavefront attributes (α, Rxx) (Schwarz et al., 2016):

px =
sin(α)
v0

, Mxx =
cos2(α)
v0 ·Rxx

, (4.4)

The input data d contains all data points di, which are automatically extracted within a
selected window as displayed in Figure 4.4. The length of the selected window is chosen to
be smaller than the width of the event in the coherence section. The coherence section and
the stacked seismic section are obtained during the search of wavefront attributes. Since
our study only investigates individual events, tagging of events is not required as used by
Bauer et al. (2019b).
The model vector m of wavefront tomography, comprises the velocity model and the

starting positions and directions of the upward propagating rays, whose expressions are
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given by Diekmann et al. (2019) in two and three dimensions. The m in 2D is represented
by

vjk , j = 1, ..., nx , k = 1, ..., nz

(x0, z0, ex)i , i = 1, ..., ndata ,
(4.5)

where vjk denotes the velocity model defined in terms of B-spline coefficients (De Boor,
1978), nx and nz mark the number of knots used in x- and z-direction, respectively. The
location (x0, z0)i represents the starting locations for the upwards propagating rays cor-
responding to the i-th data subset di while the respective ray direction is determined by
the horizontal components (ex)i. Under the initial velocity model, we perform downward
kinematic ray tracing using the picked data to complete the initial set of model vector m,
including the initial ray starting locations and directions. Then using the starting locations
and directions of the rays, we conduct upward dynamic ray tracing to derive the modeled
data dmo

i for each picked data point. This data vector contains modeled values for the
surface location, traveltime, and wavefront attributes of each data point in the registration
surface:

dmo
i (m) = (x(m), τ(m), px(m), Mxx(m))mo

i , (4.6)

The inversion is formulated in a damped weighted least-squares sense (Tarantola, 2005).
The misfits between the modeled and the picked observed quantities are calculated using
the following objective function:

S(m) = 1
2

∥∥∥(d− dmo(m)
)
·W

∥∥∥2

2
+ Λ(vjk) , (4.7)

Here, the modeled dataset dmo comprises all dmo
i , W denotes the vector scaling the physical

quantities, and Λ(vjk) represents the regularization term that favors the smooth velocity
model. In each iteration of the inversion, dynamic ray tracing is performed with an updated
model vector. The optimal velocity model is determined when the data misfits derived by
equation 4.7 are minimized.

This velocity inversion method using wavefront attributes, known as wavefront tomogra-
phy, originally introduced by Duveneck (2004), has been further developed with an enforced
focusing strategy presented by Bauer et al. (2019a). This enhanced wavefront tomography
method, termed wavefront tomography with enforced focusing, uses the mean event lo-
cations of all equally picked data points to enforce focusing and initializing the upward
ray tracing from these positions. It reduces the dependence of wavefront tomography on
second-order wavefront attributes, thereby improving the stability of the inversion in com-
plex situations with lateral heterogeneity. We introduce this advanced inversion approach
into the second step of the proposed workflow. However, in passive seismic applications,
this advanced inversion approach may fail when the excitation time and location of the
considered event are less accurately determined. Therefore, the first step of the proposed
workflow is used to provide a good initial velocity model for the enforced focusing step.

4.3.2 Time-reversal localization

The Gaussian-weighted cross-correlation imaging condition, proposed by Yang et al. (2023),
is particularly effective for handling noisy data and data acquired from sparse source-
receiver geometry. Each time step includes dividing the total back-propagated wavefield
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into Gaussian-shaped contributions that are classified by their maximum absolute ampli-
tudes. The spatial extent of these contributions is linked to the dominant wavelength of the
source signal. Multiplying these wavefield contributions, which are weighted by Gaussian
functions, yields the image for the considered time step. The final image is attained by
summing the images of all time steps, and the location corresponding to the maximum of
the final image is the source location. The final image I is calculated by:

I(x) =
T∑

t=1

∣∣∣∣∏
k

uk(x, t)
∣∣∣∣ , 1 ≤ k ≤ Nw , (4.8)

where uk(x, t) represents the k-th Gaussian-weighted wavefield at the considered time step,
and T denotes the predefined maximum time for the backpropagation. The value of the
parameter Nw, which indicates the count of the number of Gaussian-weighted wavefields,
is consistently set to 2 in all numerical tests unless otherwise stated. The other tuning
parameters used in this imaging condition follow the conventional set (Yang et al., 2023).

The more accurate the velocity model, the more energy is focussed during the backprop-
agation. We use this imaging condition as the basis for developing a new objective function
in the optimization of the second step of the hybrid workflow, discussed in the following sec-
tion. The final source location in both, hybrid and conventional workflows, are determined
using the Gaussian-weighted cross-correlation imaging condition. However, the strategy for
source excitation time estimation based on the Gaussian-weighted cross-correlation imaging
condition is not applied in the present work.
We use reverse modeling to estimate the excitation time of the source in the hybrid work-

flow because reverse modeling is a well-established and easily implemented technique for
estimating source excitation time. Reverse modeling introduced by Gajewski and Tessmer
(2005), is a time-reversal localization method. Assuming a reasonably accurate velocity
model, the method uses the observed data that is reversed in time to simulate a backprop-
agation and focuses the energy of the back-propagated wavefield toward the hypocenter.
The time of the maximum absolute amplitude of the back-propagated wavefield over the
entire backpropagation time is the source excitation time:

max
{∣∣u(x, t)

∣∣}⇒ ts , 1 ≤ t ≤ T , (4.9)

Here, u(x, t) represents the back-propagated wavefield at the considered time step, and ts
denotes the estimated source excitation time.

4.4 Hybrid workflow
The conventional workflow (Figure 4.1 a) proposed by Diekmann et al. (2019) suffers from
poor source time estimation. In addition, the workflow faces challenges in accurately local-
izing sources in scenarios where models exhibit strong lateral heterogeneity, data obtained
from noisy environments, or data obtained from sparse networks, which are often met in
practice. Thus, we propose a hybrid workflow to improve the reliability of localization
results in these scenarios.
This hybrid workflow provides a technique to evaluate the quality of initial models, po-

tentially improving the accuracy of inversion results in wavefront tomography. Moreover,
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(a) (b)

Figure 4.1: (a) The flowchart of the conventional workflow (for details, see text) (b) The flowchart
of the hybrid workflow, sketching main procedures and their respective outcomes. The
black and blue arrows mark the first and second steps of the hybrid workflow, respec-
tively (for details, see text). The first step starts with a set of user-defined vertical
gradient models, each using time reversal to determine source excitation times ts. Us-
ing these source times, along with the corresponding user-defined gradient models,
wavefront tomography is performed to produce the initial model for the second step.
In the second step, an optimization process unfolds: time reversal and wavefront to-
mography are sequentially performed, with time reversal estimating source excitation
times ts and locations xs, and wavefront tomography providing the velocity model v.

by employing time-reversal methods (i.e., reverse modeling (Gajewski and Tessmer, 2005)
and Gaussian-weighted imaging method (Yang et al., 2023)), the source localization within
the workflow becomes independent of the source excitation time, thereby improving overall
accuracy. The hybrid workflow, displayed in Figure 4.1 b, consists of two main steps:
(1) The first step involves selecting a suitable velocity model for source excitation time
estimation and velocity inversion. We begin by creating a set of vertical gradient velocity
models using the following equation:

vljk = v0 + wl · (Zk − Z1) , 0 ≤ wl ≤
vm − v0

Nv · (Znz − Z1) ,

l = 1, ..., Nv , j = 1, ..., nx , k = 1, ..., nz

(4.10)

The velocity models are defined using B-splines, with nx and nz holding the same definitions
as in equation 4.5. The parameter Zk denotes the depth of the k-th nodes in the z-direction,
and v0 stands for the surface velocity that is assumed to be known. The vm represents the
user-defined maximum velocity value, which is determined using a few interactive tests, and
it can be initialized from a value greater than v0, such as 8.0 km/s, and gradually increases
if the time-reversal image lacks unique focusing or if the objective function value remains
large. The Nv denotes the total number of models. Each model is created using a vertical
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(a) (b)

Figure 4.2: The overthrust velocity model. (a) True velocity model. (b) Smoothed version of the
true velocity model after applying a Gaussian smoothing window of 300×300 m2. The
dots indicate the sources, where the red and purple dots indicate the fault-side and
layer-in sources located at the point (x = 3.01 km, z = 2.03 km) and point (x = 4.59
km, z = 2.67 km), respectively.

gradient wl. Reverse modeling is then applied to each gradient model to estimate the
source excitation time. By employing each gradient model as an initial model and with the
fixed corresponding estimated source excitation time, we conduct wavefront tomography
(Duveneck, 2004) to obtain the respective inversion velocity model. The inversion model
displaying the minimum objective function value is selected as the initial model for the
second step.
(2) The second step optimizes the velocity model and source excitation time. This opti-
mization aims to maximize the velocity-dependent objective function JG, the expression of
which reads:

JG(v) =
∑

x

I(x, v)
Im

, (4.11)

where I(x, v) indicates the Gaussian-weighted cross-correlation image obtained through
equation 4.8 using the velocity model v, and Im denotes the maximum value of this image.
Each iteration of the optimization process involves the following steps: reverse modeling and
Gaussian-weighted time-reversal imaging are first conducted to determine the source exci-
tation time and source location while calculating the objective function JG (equation 4.11).
Subsequently, by fixing the source excitation time and using the source location as the ini-
tial ray starting location, we perform wavefront tomography with enforced focusing (Bauer
et al., 2019a).

4.5 Numerical examples
We test the proposed workflow using the overthrust model (Aminzadeh et al., 1997). The
overthrust models, as displayed in Figure 4.2, are defined on an 800 × 432 grid with a
spacing of 10m in both the x- and z- directions. The actual model in Figure 4.2 a is used
to generate synthetic data using the density-constant two-way first-order velocity-stress
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Figure 4.3: Seismic data and semblance for the fault-side source excited at x = 3.01 km, z =
2.03 km. (a) Seismic section with S/N of 2 generated by the fault-side source. (b)
Maximum semblance obtained by the parabolic traveltime operator searched for the
seismic data of (a). (c) Stacked section with S/N enhanced based on the traveltime
operator determined by the maximum-semblance-determined wavefront attributes, α
and Rxx. The red solid curve indicates the first pick sample on each trace. The red
dashed curve indicates the selected window around the red solid curve. Samples within
the window are selected.

acoustic wave equation (e.g., Aki and Richards, 2002; Gajewski and Tessmer, 2005), while
the smoothed version of the overthrust model in Figure 4.2 b is employed to simulate back
propagation using the same wave equation. Smoothing is carried out using a 2D Gaussian
window of dimensions 300×300m2. We use explosive sources with a Ricker source-time
function with a dominant frequency of 10Hz. A time shift is applied to the waveform signal
to simulate a minimum phase source wavelet. The prevailing signal period is 0.1 s in all
examples.

Reverse modeling using the same acoustic wave equation with a scheme for up-going and
down-going wavefield separation using the Hilbert transform (Zheng et al., 2018; Yang and
Gajewski, 2022) is conducted to obtain the down-going wavefield. The down-going wavefield
serves as the back-propagated wavefield in all examples. In addition, we generate seismic
data of improved quality by stacking with the parabolic operator (equation 4.1) for reverse
modeling in all tests.

For all numerical examples, we chose a maximum velocity vm of 12000m/s and a total
number of models Nv = 20 to generate a set of gradient models for the first step of the
proposed workflow to obtain first estimates of source time and velocities. All initial constant
models for the conventional workflow are built with the provided near-surface velocity of
1.5 km/s. Moreover, all the time errors mentioned in the following examples are calculated
relative to the actual source time, where negative numbers indicate that the estimated
source time is prior to the real excitation time and positive numbers denote the time after
the real excitation time.
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Figure 4.4: Wavefront attributes determined by maximum semblance using the parabolic travel-
time operator. (a) Emergence angle α. (b) Radii of curvature Rxx. (c) Sample-wise
source excitation times ts. The samples beyond the selected window are shown in blue.

4.5.1 Fault-side source

To analyze the hybrid workflow for joint source localization and velocity inversion in the
model region of strong lateral heterogeneity, we consider a fault-side source located at x =
3.01 km, z = 2.03 km near a geological fault. This source, marked by a red dot in Figure 4.2,
is triggered at the time of 1.144 s. In this example, a densely uniformly sampled network
with a receiver distance of 10m is used to record the seismic event. Random noise with an
S/N of 2 was added to the data. Figure 4.3 a displays the resulting data.

Wavefront attribute estimation

In the fault-side source example, we use the parabolic traveltime operator (equation 4.1) to
determine the wavefront attributes from the recorded seismic data using a coherence analysis
with an optimization aperture of 800m. Afterward, the estimated wavefront attributes are
used to enhance the S/N of the recorded events where the stacking aperture is set to 1000m.
The aperture for coherent analysis and stacking in the following examples is set to be the
same as in this example, unless otherwise noted.

Figure 4.3 b shows the coherence section of the densely sampled data generated by the
fault-side source signal, with specific samples marked by a continuous red solid curve. This
curve aids in setting selection windows for wavefront attributes and stack sections. The
wavefront attribute α and Rxx in the selected windows are depicted in Figure 4.4 a and 4.4
b, respectively. The stacked data is presented as an image plot in Figure 4.3 c. Using
these estimated wavefront attributes, a hyperbolic best fit is sought for each sample to
estimate source time ts, as seen in Figure 4.4 c. Source time is a global property of the
event and should be constant over the whole aperture. We consider the median value ts of
all estimated source excitation times. The conventional workflow uses this estimate as the
initial guess of the source excitation time, which deviates from the true source excitation
time by about 0.354 s, i.e., roughly three and a half prevailing signal periods.
Using the enhanced data obtained by stacking, the Gaussian-weighted cross-correlation

imaging condition is used to determine the source location using the true and smoothed

70



4.5 Numerical examples

0 2 4 6 8
Distance (km)

0

2

4

D
ep

th
 (

km
)

0 0.5 1
normalized amplitude

(a)

0 2 4 6 8
Distance (km)

0

2

4

D
ep

th
 (

km
)

0 0.5 1
normalized amplitude

(b)

Figure 4.5: Source location results for the fault-side source. (a) Images of the source located at x
= 3.01 km and z = 2.03 km near the fault, obtained by the Gaussian-weighted cross-
correlation imaging condition using the true velocity model. (b) Same as (a) but using
a smoothed model. The white dots indicate the true source locations. The two white
circles, centered at the actual source location, have radii of half and one dominant
signal wavelength, respectively.

overthrust models for reverse modeling. The respective results, as displayed in Figure 4.5
a and 4.5 b, demonstrate estimates with the location errors of only 10m, and 30m for
the true and smoothed models, respectively, which are notably smaller than the dominant
signal wavelength (392m), along with negligible errors of only about -0.009 s in the source
time estimate. Because the smoothed velocity model allows an accurate determination of
source location and excitation time, in the following tests we evaluate the inversion velocity
errors by calculating the relative velocity error w.r.t. the smoothed model, considering
the illuminated part of the model. The location errors are evaluated using the dominant
wavelength of the source signal calculated in the smoothed model.

Conventional workflow

We first perform the conventional workflow to localize the fault-side source using an initial
constant model and an initial gradient model, respectively. The initial constant model is
established with the near-surface velocity of 1.5 km/s, while the initial gradient model is
generated using equation 4.10 with a gradient wl of 1.5. Figure 4.6 a and 4.6 b illustrate the
ray starting locations obtained by the initial constant model and the initial gradient model,
respectively. During the velocity inversion process, we focused only on the illumination part
of the model where rays cover, as displayed in Figure 4.6 and Figure 4.7. The illuminated
portion of the true and smoothed model are illustrated in Figure 4.6 c and 4.6 d, respectively.
Figure 4.7 a and 4.7 b display the outcomes of the conventional workflow using the initial
constant model and the initial gradient model. The estimated source locations deviate
from the true source position by 471m, and 36m, respectively, with the source time errors
of -0.976 s and -0.201 s. This example demonstrates the superiority of the initial gradient
model over the initial constant model in the conventional workflow, which significantly
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(a) (b)

(c) (d)

Figure 4.6: Initial constant model (a) and initial vertical-gradient model (b) of the conventional
workflow for the fault-side source. The illuminated parts of the true model (c) and
smoothed model (d) are shown. The white dots in (a) and (b), indicate the ray starting
locations. The red dots denote the true source positions.

improves localization accuracy. When using the initial constant model, the joint inversion
of the conventional workflow fails, resulting in localization errors far beyond the resolution
limit of the source signal. However, finding a reasonable initial gradient model is a non-
trivial task. Furthermore, even with a well-chosen initial gradient model, the conventional
workflow provides a less accurate estimate of the source excitation time.

Hybrid workflow

We then apply the hybrid workflow to the fault-side source, exhibiting the results at each
step of the workflow to evaluate its effectiveness. The first step involves selecting a suitable
initial gradient model, generated using equation 4.10, for wavefront tomography. Figure 4.8
demonstrates the cost function values obtained from wavefront tomography for each defined
initial gradient model, with the minimum value indicating the final velocity model of the
first step that is used as the initial model for the second step.

Figure 4.9 a and 4.9 b illustrate the final results of the first and second steps of the hybrid
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(a)

(b)

Figure 4.7: Comparison of results obtained for the conventional workflow using the initial constant
model (a), and the initial gradient model (b), for the fault-side source. The left panel
exhibits the final inverted velocity models, the middle panel displays the relative ve-
locity error of the inverted velocity models to the smoothed velocity models, and the
right panel represents the Gaussian-weighted cross-correlation source location images.
The red dots in the left- and middle-panel images, and the white dots in the right-
panel images, indicate the true source locations. The white circles, centered at the
actual source location, have radii of half and one dominant signal wavelength. Only
the illuminated part of the model is shown.

workflow, respectively. The results of the first step are quite similar to those obtained by
the conventional workflow using the initial gradient model above. The source location error
remains at about 36m, smaller than half the dominant signal wavelength, and the source
time error is at -0.207 s, about two prevailing signal periods. Subsequent refinement is
evident in the second step of the hybrid workflow, which particularly improves the quality
of the arc-like structures of the inversion model while reducing the source excitation time
error to -0.089 s, smaller than the dominant signal period. Besides, the source location error
is also smaller than half of the dominant signal wavelength, that is, the errors of the source
location and excitation time provided by our hybrid workflow are within the resolution limit
of the source signal. It reflects that the hybrid workflow is more advantageous in dealing
with cases where the source is excited in the model region of strong lateral heterogeneity
as demonstrated in this section in comparison to the conventional workflow.
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Figure 4.8: The cost function value shown for the first step of the hybrid workflow. The top-right
red panel shows a close-up view of the bottom-right red panel. An increase in cost
occurs after the red dot.

4.5.2 Layer-in source

To evaluate the effect in terms of random noise and sparse receiver acquisition for the joint
inversion of the conventional and hybrid workflows, we consider a layer-in source located at
x = 4.59 km, z = 2.67 km, denoted by the purple dot in Figure 4.2. This layer-in source is
excited at the time of 1.099 s in the model region of weak lateral heterogeneity.

Dense data

In the first example of the layer-in source, we use the same dense seismic receiver network as
in the previous examples of the fault-side source to record the seismic event, obtaining dense
data. Random noise with an S/N of 2 was added to the data. The respective record is shown
in the top panel of Figure 4.10 a. The source excitation time estimation of the conventional
workflow, wavefront attribute determination, and data enhancement are performed the
same as in the previous examples. The enhanced data is displayed in the bottom panel of
Figure 4.10 a. The error of the source excitation time obtained from the best hyperbolic fit
used as the initial estimate of the source time in the conventional workflow is about 0.422 s.
The illuminated part of the model displayed in Figure 4.11 a for this dense data example
is not as complex as the fault-side source example. Thus, both workflows yield fairly good
source locations and resolve reasonable velocity models. Despite that, the hybrid workflow
outperforms the conventional workflow, as displayed in Figure 4.12. The hybrid workflow
improves the quality of velocities of the structures around the faults. Besides, the error of
the source location from the hybrid workflow is smaller than half the dominant wavelength
and the source time error is approximately -0.055 s, i.e., the errors are within the resolution
limit of the source signal. However, the final source excitation time from the conventional
workflow is still of poor quality with an error of about -0.201 s, though the corresponding
source location deviates from the true source position by only 268m, about 60% of the
dominant signal wavelength. This example illustrates that the hybrid workflow can still
yield better inversion results than the conventional workflow for source localization within
weak lateral heterogeneity.
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(a)

(b)

Figure 4.9: Comparison of results obtained from the first step (a) and the second step (b) of the
hybrid workflow for the fault-side source. The left panel exhibits the final inverted
velocity models, the middle panel displays the relative velocity error of the inverted
velocity models to the smoothed velocity models, and the right panel represents the
Gaussian-weighted cross-correlation source location images. The red dots in the left-
and middle-panel images, and the white dots in the right-panel images, indicate the
true source locations. The white circles, centered at the actual source location, have
radii of half and one dominant signal wavelength. Only the illuminated part of the
model is shown.

Noisy data

As a next step, we investigate the influence of strong random noise on the performance of
the joint inversion of the workflows. The same seismic source setting and seismic receiver
acquisition as for the dense data example is used to obtain the synthetic data. Then we
added random noise to the synthetic data to simulate noisy data with an S/N of 0.2 (Fig-
ure 4.10 b), where the event is difficult to identify. To improve the S/N of the data, we
stacked the data using the parabolic traveltime operator (equation 4.1). The stacked section
is shown in the bottom panel of Figure 4.10 b, where the event is clearly observed. This
enhanced data is used for reverse modeling and time-reversal imaging in both conventional
and hybrid workflows. In this example of noisy data, the conventional workflow initiates
with the source excitation time estimated from the best hyperbolic fit, displaying an error
of 0.313 s. As displayed in Figure 4.11, compared to the dense data example, the part of
the model where the ray coverage becomes smaller. As seen from Figure 4.13, the hybrid
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(a) (b) (c)

Figure 4.10: Data for the layer-in source excited at x = 4.59 km, z = 2.67 km. (a) Dense data from
a dense receiver acquisition with an S/N of 2 (top) and its enhanced stacked data
(bottom). (b) Noisy data from a dense receiver acquisition with an S/N of 0.2 (top)
and its enhanced stacked data (bottom). (c) Sparse data from a sparse acquisition
with an S/N of 2 (top) and its enhanced stacked data (bottom).

workflow maintains its superior performance over the conventional approach, consistently
delivering fairly accurate results for the source location, excitation time, and velocity in-
version. The hybrid workflow estimates the source excitation time with an error of -0.062 s
(smaller than one prevailing signal period) and the source position with a deviation of 93m
(smaller than half the dominant signal wavelength), while the conventional workflow shows
errors of -0.212 s (greater than a prevailing period) and a deviation of 335m (about 75%
of the dominant wavelength) for the source excitation time and position, respectively. This
noisy data example shows that the hybrid workflow performs well on poor-quality data with
an S/N of 0.2 and the localization error is within the resolution limit of the source signal.

Sparse data

In the last example of this layer-in source, we consider a sparse network where receivers
are regularly placed on the surface with a spacing of 600m to record the event. Random
noise was added to the data to make the S/N equal to 2 (Figure 4.10 c). We use the
wavefront attributes to interpolate the recorded wavefield by stacking samples along the
traveltime trajectories defined by equation 4.1. A stacking aperture of 1200m is used in
the interpolation process. Despite some minor amplitude deviations caused by noise and
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(a)

(b)

(c)

Figure 4.11: Initial setting of the conventional workflow for the layer-in source in the example of
densely sampled data (a), noisy data (b), and sparse and noisy data (c). The images
in the left panel show the initial constant models, while the middle- and right-panel
images display the illuminated part of the true model and smoothed model in the
inversion process, respectively. The white dots in the left-panel images indicate the
ray starting locations. The red dots denote the true source positions. Only the
illuminated part of the model is shown.
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(a)

(b)

Figure 4.12: Comparison of results obtained from the conventional (a) and hybrid workflow (b)
using densely sampled data for the layer-in source. The left panel exhibits the final
inverted velocity models, the middle panel displays the relative velocity error of the
inverted velocity models to the smoothed velocity models, and the right panel rep-
resents the Gaussian-weighted cross-correlation source location images. The red dots
in the left- and middle-panel images, and the white dots in the right-panel images,
indicate the true source locations. The white circles, centered at the actual source
location, have radii of half and one dominant signal wavelength. Only the illuminated
part of the model is shown.

spatial aliasing, most of the missing data is well recovered (bottom panel of Figure 4.10
c). The initial value of the source excitation time in the conventional workflow, which is
estimated using equation 4.2, deviates from the actual source excitation time by 0.243 s. In
this sparse data example, only a limited portion of the left-side model could be illuminated
during the inversion. Figure 4.14 a and 4.14 b show the final inversion results obtained by
the conventional and hybrid workflows, respectively. The hybrid workflow performs better
than the conventional workflow. The velocity errors of the illuminated model region are
significantly reduced (Figure 4.14 b), leading to a more accurate determination of the source
location and excitation time. The hybrid workflow achieves a source location error of 220m,
about 51% of the dominant signal wavelength, and a source excitation time error of 0.079 s,
smaller than the prevailing signal period. In contrast, the conventional workflow results in
final source location and excitation time errors of 583m and 0.246 s, respectively, exceeding
the resolution limit of the source signal. This sparse data example shows that the hybrid
workflow is more robust for source localization with noisy and very sparse data.
From these good inversion results obtained by the hybrid workflow for the fault-side source
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(a)

(b)

Figure 4.13: Comparison of results obtained from the conventional (a) and hybrid workflow (b)
using noisy data for the layer-in source. The left panel exhibits the final inverted
velocity models, the middle panel displays the relative velocity error of the inverted
velocity models to the smoothed velocity models, and the right panel represents the
Gaussian-weighted cross-correlation source location images. The red dots in the left-
and middle-panel images, and the white dots in the right-panel images, indicate the
true source locations. The white circles, centered at the actual source location, have
radii of half and one dominant signal wavelength. Only the illuminated part of the
model is shown.

and layer-in source examples, we conclude that the hybrid workflow provides improved
results if compared to the conventional workflow for event localization in strongly laterally
heterogeneous regions and is better able to handle strong random noise data and very sparse
data. Even with a single source, it provides a reasonable velocity model and produces fairly
accurate localization results. Source localization errors are all within the signal resolution.

4.5.3 Multiple sources

The proposed hybrid workflow works well for a single source and performs equally well
for multiple sources distributed in a cluster. Because the sources are often clustered in
practice, we consider a source cluster of 20 seismic sources, represented by red, black, and
purple dots in Figure 4.2. Compared to the examples of the fault-side and layer-in sources,
the illuminated part of the velocity model (Figure 4.15) expands in this example. We use
the same dense seismic network as in the fault-side source example to record the seismic
events. Random noise is added to the data from each source to ensure that the S/N is
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equal to 2 for all sources. Figure 4.16 a and 4.16 b show the results of the conventional
and hybrid workflows, respectively. Both workflows provide high-quality velocity models,
with the hybrid workflow providing much better lateral resolution results. It improves the
accuracy of inverted velocities, especially for arc-like structures in the vicinity of faults.
The mean relative velocity error for the hybrid workflow is approximately -2%, which is
much better than the mean relative velocity error for conventional workflow of about -5%.
Consequently, the hybrid workflow provides more accurate source excitation times compared
to the conventional workflow, with errors smaller than a prevailing period, as illustrated in
Figure 4.17 a. While both workflows provide good source location estimates (Figure 4.17
b), the hybrid workflow demonstrates good accuracy, with most of the estimated source
position errors being less than half the dominant wavelength. These accurate estimates of
source excitation times, locations, and velocities emphasize the superiority of the hybrid
workflow over the conventional workflow. Moreover, the use of multiple sources allows the
hybrid workflow to generate a long-wavelength velocity model of higher accuracy.

(a)

(b)

Figure 4.14: Comparison of results obtained from the conventional (a) and hybrid workflow (b)
using sparsely sampled and noisy data for the layer-in source. The left panel exhibits
the final inverted velocity models, the middle panel displays the relative velocity
error of the inverted velocity models to the smoothed velocity models, and the right
panel represents the Gaussian-weighted cross-correlation source location images. The
red dots in the left- and middle-panel images, and the white dots in the right-panel
images, indicate the true source locations. The white circles, centered at the actual
source location, have radii of half and one dominant signal wavelength. Only the
illuminated part of the model is shown.

80



4.6 Discussion

(a) (b) (c)

Figure 4.15: (a) Initial model of the conventional workflow for the source cluster of 20 sources.
The part of the true model (b) and smoothed model (c) that could be illuminated by
rays in the inversion process. The white dots indicate the ray starting locations. The
red dots denote the true source positions.

4.6 Discussion

The conventional workflow for joint source localization and velocity model building from
passive seismic data described by Diekmann et al. (2019) suffers from inaccurate estimation
of source excitation time. When an event is excited within the model region of strong lateral
heterogeneity or when an event is recorded in a sparse seismic network, the conventional
workflow may lead to significant errors in the inversion results of source time, location, and
velocities. This paper presents a robust hybrid workflow for the joint inversion of source
location, excitation time, and velocity model, which integrates wavefront tomography with
time reversal methods. The proposed workflow involves a search process and an optimization
process. The search is designed to establish the optimal initial model for the optimization
process, while the optimization process refines the quality of the velocity model and the
source excitation time. Both processes involve a sequential use of wavefront tomography and
time-reversal methods. Wavefront tomography provides the velocities that are required for
the time-reversal methods, and the time-reversal methods determine the source excitation
time and source position for wavefront tomography. The improvement of the results of the
proposed workflow is caused by the independence of time reversal methods on source time
and the potential of wavefront tomography to determine velocities.
Numerical examples display the performance of the proposed workflow in comparison

to the conventional workflow. In scenarios where the source is excited in proximity to a
complex geological fault, the proposed workflow provides fairly accurate source location
and excitation time estimates with errors smaller than the dominant wavelength and the
prevailing signal period, respectively. These errors are within the resolution limits of the
used passive seismic data. In contrast, the conventional workflow produces source local-
ization results with errors significantly exceeding the signal resolution limit. Furthermore,
the proposed workflow outperforms the conventional workflow when applied to noisy data
and data from sparse acquisitions. Despite the limited model illumination, the presence of
strong random noise and sparse sampling (Figure 4.11 b and 4.11 c), the quality of source
localization remains quite good (Figure 4.13 and 4.14). The source location and excitation
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(a)

(b)

Figure 4.16: Comparison of results obtained from the conventional (a) and hybrid workflow (b) for
the example of the source cluster. The left panel exhibits the final inverted velocity
models, the middle panel displays the relative velocity error of the inverted velocity
models to the smoothed velocity models, and the right panel represents the estimated
source locations. The red and black dots in the images indicate the true and estimated
source locations, respectively. Only the illuminated part of the model is shown.

time errors of the proposed workflow are within the resolution limit of the signal. The
proposed workflow consistently provides highly accurate source locations and times, with
errors well within the resolution limits of the signal in all examples. It should be emphasized
that these results are obtained despite limited ray coverage.
Compared to the conventional workflow proposed by Diekmann et al. (2019), the proposed

workflow circumvents both, the hyperbolic fitting for estimating the source excitation time
and the global optimization for finding the optimal source excitation time refinement. These
processes become computationally expensive in scenarios with many sources. Although the
first step of the proposed workflow requires several runs of reverse modeling, the number
of runs depends on the number of predefined gradient velocity models, which accounts for
most of the workflow’s computational cost. Thus, we can reasonably reduce the number
of models to reduce the computation cost of interactive tests. Besides, in comparison to
the inversion methods using either recorded waveforms or back-propagated wavefields Song
et al. (2019); Wang and Alkhalifah (2018), the proposed workflow does not require detailed
prior model information, and it can deal with poor-quality seismic data due to the built-in
data enhancement capability using the wavefront attributes.
The time-reversal localization method using the maximum amplitude path (Yang and
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(a)

(b)

Figure 4.17: Relative errors of the source excitation time (a) and location (b) for the example
of the source cluster. The black and red dots indicate the errors in the localization
results obtained by the conventional and hybrid workflows, respectively. The λ and
Td denote the dominant wavelength and prevailing period of the signals.
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Gajewski, 2022) offers robust results for sparsely sampled data with noise and proves to be
effective even in scenarios with small aperture seismic networks. If a good velocity model
is provided, e.g., through the workflow proposed here, the localization method using the
maximum amplitude paths holds the substantial potential to enhance the accuracy of source
time and location. Moreover, the smooth velocity model obtained by the proposed workflow
can serve as an initial model in subsequent applications, such as full waveform inversion for
both, active-source and passive-source seismic data.

4.7 Conclusion
We present a data-driven hybrid workflow for jointly determining source location, excita-
tion time, and velocity model from passive seismic data. The proposed workflow integrates
wavefront tomography and time-reversal methods. Wavefront tomography provides a good
velocity model and time-reversal methods yield source excitation time and source location.
It is automatic and independent of a priori information. The investigated examples show
the improved performance of the proposed workflow in the presence of strong lateral het-
erogeneity, for noisy data, data acquired for sparse acquisition, and a cluster of events if
compared to the conventional approach. The proposed workflow clearly has superior perfor-
mance in source time estimation. It successfully resolves a velocity model down to the scale
of the prevailing wavelength of the data and simultaneously yields fairly accurate source
location and source excitation time. The errors of the source times and locations are within
the resolution limit of the source signals. The proposed workflow offers a promising and
efficient alternative to the currently established techniques for joint inversion of the source
location, source excitation time, and velocity model.
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5 Conclusions

Time reversal emerged as a powerful tool in passive seismic source localization during the
late 20th century and its prominence began to grow in the late 1980s and early 1990s with
the development of advanced seismic imaging techniques and computational capabilities.
Time-reversal imaging is a common type of time-reversal localization method. It does not
require picking seismic arrival times and seismic phases and is robust to high noise levels and
strong heterogeneity. However, this type of method often faces challenges, such as strong
imaging artifacts due to noisy sparse data, insufficient data illumination due to sparse and
small-aperture data acquisitions, and the lack of a sufficiently constrained velocity model.
To clearly identify seismic sources even for source clusters and to reduce imaging noise

for data obtained from sparse data acquisitions, I proposed the Gaussian-weighted crosscor-
relation imaging condition in Chapter 2. This imaging condition yields high-resolution,
low-noise source images and it successfully solves the challenges of strong imaging artifacts
and the low-resolution issues in the classical time-reversal localization methods. Nonethe-
less, the Gaussian-weighted crosscorrelation imaging method has the same problem as the
common time-reversal imaging methods such as the autocorrelation imaging method or
the geometric-mean reverse time migration (GmRTM), that is, the time-reversal imaging
requires a large-aperture acquisition that provides sufficient illumination to accurately lo-
calize passive seismic sources. This requirement for seismic data acquisition may not meet
in practice. The maximum-amplitude path method proposed in Chapter 3 successfully
addresses this type of seismic data acquisition problem. It can produce accurate source
location and excitation time using the passive seismic data obtained from sparse and small-
aperture acquisitions. Although the methods proposed in Chapters 2 and 3 overcome
the challenges related to poor image quality and limited-aperture acquisitions, they require
a reasonably constrained velocity model for accurate passive seismic source localization.
However, the velocity model is often unknown in practice. This remains an issue for most
established time-reversal localization techniques. In Chapter 4, I combined wavefront to-
mography and time-reversal methods (mentioned in Chapter 2) and proposed a hybrid
data-driven workflow that allows simultaneous inversion of source location, excitation time,
and velocity model. It overcomes the limitation of the lack of velocity model information
in time-reversal localization.

5.1 Gaussian-weighted crosscorrelation imaging condition

The Gaussian-weighted crosscorrelation imaging condition (Chapter 2) contributes to the
improvement of the image quality of passive seismic sources, and enhances the adaptability
of time-reversal localization to challenges such as source clusters and noisy data obtained
from sparse acquisitions. When dealing with source clusters and noisy and sparsely sam-
pled passive seismic data, the proposed imaging condition can provide high-quality source
images for clearly identifying sources while the common time-reversal imaging methods, i.e,
the autocorrelation and grouped crosscorrelation imaging methods, cannot. Numerical ex-
amples using the Marmousi-ii and 3D SEG overthrust models, and a field example using the
HAMNET network in this chapter, demonstrate the advantages of the Gaussian-weighted
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crosscorrelation imaging condition. The proposed imaging condition outperforms the au-
tocorrelation and grouped crosscorrelation imaging methods in source imaging, even using
passive seismic data of good quality. Compared to the autocorrelation imaging method,
the proposed method can produce higher-resolution source images. When compared to
the autocorrelation and grouped crosscorrelation imaging methods, the proposed method
stands out for its minimal generation of imaging artifacts, reducing the risk of incorrect
source location estimation. The errors of source locations obtained by the proposed imag-
ing condition in the examples are all smaller than the dominant wavelength, i.e., within the
resolution limit of band-limited passive seismic signals.

5.2 Maximum-amplitude path method

Aside from the problem associated with poor source imaging quality, time-reversal imaging
is usually limited by sparse and small-aperture seismic data acquisitions. The maximum-
amplitude path method (Chapter 3) contributes to improving the accuracy of the time-
reversal localization in such acquisitions. It allows accurate estimation of the source location
and excitation time using the maximum-amplitude paths. The maximum-amplitude paths
are constructed from three or more receiver patches containing a selection of traces from the
recorded data. Because the back-projected wavefields focus on the source, the closest prox-
imity or crossing point of these paths specifies the source location, and the corresponding
time is the source time. Examples using the Marmousi-ii and 3D SEG overthrust models
in the chapter show that the proposed method performs better than the autocorrelation
imaging method and the geometric-mean reverse time migration (GmRTM). Despite insuf-
ficient data illumination due to such challenging acquisitions, the maximum-amplitude path
method still provides accurate source locations and excitation times. The errors of source
locations and excitation times estimated in the examples are smaller than the dominant
wavelength and prevailing period, i.e., within the resolution limit of band-limited source
signals.

5.3 Joint inversion of source location, excitation time and
velocity model

In Chapter 4, I presented a data-driven hybrid workflow to solve the common issue of un-
known velocity models in time-reversal localization. The time-reversal localization methods
(mentioned in Chapters 2, 3), require a reasonably accurate velocity model to perform
numerical backpropagation of the recorded waveforms for accurate source location estima-
tion, however, the velocity model is often unavailable in field cases. The proposed hybrid
workflow integrates wavefront tomography and time-reversal methods for simultaneously
inverting source location, excitation time, and velocity model from passive seismic data.
The wavefront tomography and time-reversal methods are performed sequentially in the
workflow. The time-reversal methods, including the Gaussian-weighted crosscorrelation
imaging condition proposed in Chapter 2 and reverse modeling, are used for estimating
source location and excitation time, while wavefront tomography is used for velocity in-
version. The proposed workflow, independent of a priori information, successfully resolves
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a velocity model down to the scale of the prevailing wavelength of the data and simulta-
neously yields fairly accurate source location and source excitation time. The examples
using the overthrust models in the chapter demonstrate the improved performance of the
proposed workflow over the conventional approach proposed by Diekmann et al. (2019) (for
details, see Chapter 4). The proposed workflow clearly exhibits superior performance in
source time estimation. It effectively handles situations involving source clusters, data ob-
tained with random noise, and data acquired from sparse seismic acquisitions. The errors
of source locations and excitation times estimated in the examples are within the resolution
limit of band-limited passive seismic source signals. The proposed workflow offers promising
and efficient alternatives to the currently established source localization techniques and im-
proves the robustness of time-reversal methods in passive seismic source localization when
no velocity models are provided.
The proposed methods (Chapters 2, 3, 4) in this thesis consecutively address the

challenges associated with passive seismic source image quality, passive seismic data ac-
quisition limitation, and the lack of seismic velocity model, in time-reversal localization.
These advances have direct implications for practical applications, especially in situations
where data quality is compromised, which can ultimately enhance our ability to understand
Earth’s processes and monitor microseismic events with high accuracy. Similar to other
source localization methods, the three proposed methods can all be applied over different
scales, from acoustic emissions to microseismic events to global earthquakes.
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The proposed methods in this thesis offer robust solutions for determining source locations
and excitation times even in complex scenarios. These methodologies hold potential for
application in the development of real-time microseismic monitoring systems, facilitating
the management of fracturing processes in geoengineering endeavors. In addition, accu-
rate source locations and excitation times improves the ability to analyze the earthquake
source mechanism. This detailed knowledge will help to elucidate the characteristics and
patterns of microseismicity in the Earth’s interior, thus contributing to our understanding
of microseismic phenomena.

Seismicity monitoring system

Accurate localization of microseismic sources plays an important role in the development
and optimization of real-time microseismic monitoring systems. These systems, equipped
with the capability to quickly determine the precise location and excitation time of micro-
seisms, are instrumental in facilitating rapid response protocols during emergencies, such
as mine collapses. Improving the localization accuracy of such systems is significant be-
cause it enables rapid estimation of fault focus mechanisms (Wamriew et al., 2020). This
understanding of fault behavior is crucial for mitigating potential environmental hazards
and increasing oil/gas production in geoengineering projects.
The time-reversal localization methods proposed in this thesis (Yang and Gajewski, 2022;

Yang et al., 2023) demonstrate their efficacy and robustness in source localization. Future
research endeavors should focus on further refining the localization accuracy of real-time
monitoring systems by integrating these proposed methods into deep learning frameworks
(Zhang et al., 2021; Saad et al., 2021). This integration holds the potential to significantly
enhance the capabilities of microseismic monitoring systems, thereby advancing our ability
to predict and respond to microseismic events effectively.

Source mechanism inversion

Seismic mechanism inversion improves our understanding of physical processes within the
Earth’s interior. This knowledge not only contributes to hazard assessment and risk mitiga-
tion, but also plays a crucial role in predicting passive seismic events. These insights have
far-reaching implications for various fields including petroleum engineering and disaster
management (Abercrombie, 2013; Stein, 2003; Hanks and Kanamori, 1979). In petroleum
engineering projects involving hydraulic fracturing, accurate determination of location and
excitation timing of microseisms can reveal details about fault strike and behavior. This
information can also help to infer fault mechanics and aid in the understanding of fault
geometry, sliding dynamics, and the modeling of rupture propagation and fault sliding dy-
namics (Gomberg et al., 2010). The use of source location and onset time as constraints can
enhance the inversion algorithms, leading to more accurate mechanism estimation (Wald
et al., 1999).
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Future research should explore the integration of source parameters estimated by the
proposed methods (Yang and Gajewski, 2022; Yang et al., 2023) into source-mechanism
inversion techniques, such as the hybrid moment tensor (HMT) technique (Kwiatek et al.,
2016) and the scanning algorithm (SSA) (Kao et al., 2006). Such integration has the poten-
tial to further refine our understanding of earthquake processes and improve the accuracy
of source mechanism determination.

Velocity analysis
The development of a cascade workflow that combines the proposed hybrid workflow (Yang
et al., 2024) with the full waveform inversion (FWI) method (Kaderli et al., 2015; Wang
and Alkhalifah, 2018; Sun et al., 2016) is a promising research. This study has the po-
tential to improve the resolution of velocity models, while also refining the the accuracy
of source localization. FWI techniques (Wang and Alkhalifah, 2018; Sun et al., 2016) are
able to simultaneously invert source location, excitation time, and velocity model by fitting
modeled data to observed data. While this type of method can produce fine-scale velocity
variations, however, it is sensitive to the quality of the initial velocity models, prone to cycle
skip, and requires high-quality data. Moreover, it does not include inversion of the source
excitation time. The hybrid workflow (Yang et al., 2024) overcomes these limitations of the
FWI techniques, which does not require detailed a priori information. Additionally, it can
improve the quality of the recorded data. The improved data can be used as the observed
data for the FWI, while the inversion results obtained from the hybrid workflow can be
used as the initial model setup for the FWI. This integration allows for a more complete
understanding of the velocity distribution beneath the Earth’s surface and a more accurate
characterization of events occurring in the Earth’s interior.
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Appendix A

Illustrating 2D and 3D rotation in Cartesian coordinates
In Chapter 3, the maximum amplitude path is built by scanning for the maximum absolute
amplitudes of the back-projected wavefronts within the spatial extent of the dominant
wavelength of the considered event. Apart from the first maximum, which is determined
from the back-projected wavefield amplitudes at a specified starting time (see Chapter 3),
the following maxima are identified by scanning for the maximum absolute amplitude of
the back-projected wavefield within a rectangular box or cube. The box or cube is centered
at the previous maximum, with its axes having a length corresponding to the dominant
wavelength of the event.
The orientation of the box in 2D or the cube in 3D is consistent with the wave propagation

angle, which is determined by rotating the coordinates. The illustration for calculating the
rotation in 2D and 3D Cartesian coordinates is given by the following matrices:
(1) 2D Rotation Matrix: The 2D rotation matrix R for a counterclockwise rotation by
an angle θ, i.e., the direction of propagation, is given by

R(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (A.1)

where θ denotes the wave propagation angle,

θ = arctan
(
u
′
x

u′z

)
, (A.2)

In this formula, u′x and u
′
z represent the first derivative of the seismic wavefield u(x, z, t)

with respect to x- and z- axis at the considered time step, respectively. To perform a
rotation on a point (x, z) by an angle θ, we can apply the following formula:[

x′

z′

]
= R(θ)

[
x
z

]
, (A.3)

(2) 3D Rotation Matrices: In 3D, the rotations are around the x, y, and z axes. The
corresponding rotation matrices Rx, Ry, and Rz, are defined as follows:

Rx(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 ,
Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 ,
Rz(γ) =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 ,
(A.4)
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where α, β, and γ, Euler angles, describe the orientation of a coordinate system in three-
dimensional space. The α, the roll angle, representing a rotation around the x-axis, corre-
sponds to a tilting motion along the direction of the x-axis in the context of a seismic wave.
The β, the pitch angle, which represents a rotation around the y-axis, corresponds to an
upward/downward tilting motion along the direction of the y-axis. The γ, the yaw angle,
denotes a rotation around the z-axis. To perform a rotation at a point (x, y, z) by these
angles, the following formula is appliedx′y′

z′

 = Rx(α) ·Ry(β) ·Rz(γ)

xy
z

 , (A.5)

These Euler angles (α, β, γ), representing the rotation of the seismic wavefield in 3D, are
required to align the coordinate system with the principal axes of the seismic wavefield.
They are related to the gradients of the wavefield, which can be obtained by performing
an eigenanalysis on the gradient tensor or covariance matrix of the seismic wavefield. The
eigenanalysis comprises the following steps. Firstly, we numerically calculate the gradient
tensor by differentiating the seismic wavefield u(x, y, z, t) in 3D, resulting in a 3× 3 matrix

G =


u
′′
xx u

′′
xy u

′′
xz

u
′′
yx u

′′
yy u

′′
yz

u
′′
zx u

′′
zy u

′′
zz

 , (A.6)

where u′′ij represents the gradient component in the i-th direction with respect to the j-th
coordinate at the considered time step. Then, we compute the covariance matrix C from
the gradient tensor G using the given formula:

C = GT ·G, (A.7)

, and we perform an eigenanalysis on the covariance matrix C to obtain its eigenvectors
and eigenvalues. The eigenvectors denote the principal axes of the seismic wavefield, and
the eigenvalues indicate the magnitude of the gradients along these axes.

C · v = λ · v, (A.8)

Where v represents the eigenvector, and λ indicates the corresponding eigenvalue. Finally,
the eigenvectors obtained from the eigenanalysis can be used to calculate the Euler angles
(α, β, γ) using the following expressions:

α = arctan
(
vy,1
vx,1

)
, β = arcsin(vz,1), γ = arctan

(
vz,2
vz,3

)
, (A.9)

Here, (vx,1, vy,1, vz,1) represents components of the first eigenvector, and (vz,2, vz,3) indicate
the second and third components of the third eigenvector. Note that, the specific notation
may vary depending on the convention used.
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Calculating modeled wavefront attributes

In Chapter 4, the wavefront attributes, determined from a parabolic fitting process in a
data-driven fashion, serve as observed data for the velocity inversion, i.e., wavefront tomog-
raphy (Duveneck, 2004; Bauer et al., 2019a), while the modeled data used for calculating
the data misfits in the inversion is obtained by kinematic and dynamic ray tracing. In the
following, I will show how to compute the wavefront attributes by kinematic and dynamic
ray tracing in the general Cartesian coordinates x1, x2, x3, assuming a certain smooth, lat-
erally inhomogeneous background velocity model is given. Reducing the general Cartesian
coordinates from three to two dimensions makes it a two-dimensional case.

Kinematic ray tracing is important for forward modeling to compute travel time and
the slowness vector along a reference ray. While kinematic ray tracing is in general ex-
pressed using curvilinear coordinates ξ1, ξ2, and ξ3, it can be complicated to perform in
such coordinates because of the need to analytically express the scale factors h1, h2, and
h3 in orthogonal coordinates (Červený, 2001). Spherical polar coordinates r, θ, and φ
are commonly used, but can be problematic in some regions. Therefore, ray tracing in
ray-centered coordinates is used, requiring parameter transformations between these and
general Cartesian coordinates. In this work, I focus on kinematic and dynamic ray trac-
ing in inhomogeneous isotropic media, similar relations for anisotropic media can be found
elsewhere (Červený, 2001).

Here, I provide a solution for performing kinematic and dynamic ray tracing in the gen-
eral Cartesian coordinate system and explain how the slowness vector and ray-propagation
matrix computed by kinematic and dynamic ray tracing are related to the data-driven wave-
front attributes. In general, the Cartesian coordinate system for isotropic media simplifies
the eikonal equation to

3∑
i=1

(p(x)
i )2 − v−2(x1, x2, x3) = 0, p

(x)
i =

∂τ

∂xi
, i = 1, 2, 3, (B.1)

where τ represents the traveltime along a given ray and v(x1, x2, x3) denotes the background
medium velocity. By assuming no turning point with respect to the x3- direction and
eliminating one space variables, the reduced Hamiltonian H is defined as

p
(x)
3 =

[
v−2 − (p(x)

1 )2 − (p(x)
2 )2]1/2 = −H

(
x1, x2, x3, p

(x)
1 , p

(x)
2

)
, (B.2)
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with associated reduced ray-tracing systems reads

dx1
dx3

= ∂H
∂p

(x)
1

= p
(x)
1

p
(x)
3
,

dx2
dx3

= ∂H
∂p

(x)
2

= p
(x)
2

p
(x)
3
,

dp
(x)
1

dx3
= − ∂H

∂x1
= − 1

v3p
(x)
3

∂v

∂x1
,

dp
(x)
2

dx3
= − ∂H

∂x2
= − 1

v3p
(x)
3

∂v

∂x2
,

(B.3)

The traveltime variation along the given ray is integrated as

dτ

dx3
= 1
v2p

(x)
3
, (B.4)

The reduced Hamiltonian offers several advantages, such as reducing the differential equa-
tions in kinematic ray tracing from seven to five and requiring derivatives of velocity only in
the x1- and x2- directions, which improves computational efficiency in the three-dimensional
case. The reduced Hamiltonian is particularly beneficial since rotating normals rarely occur
in practice (Duveneck, 2004).

Dynamic ray tracing, also known as paraxial ray tracing, involves the computation of the
4× 4 ray propagator matrix Π(x) or the wavefront curvature matrix M(x). The previously
mentioned reduced Hamiltonian is applied in dynamic ray tracing, and the dynamic ray
tracing system in the Cartesian coordinate system is written as

d

dx3
∆w = S∆w, (B.5)

where S is a 4× 4 matrix

S =



∂2H
∂p

(x)
1 ∂x1

∂2H
∂p

(x)
1 ∂x2

∂2H
∂p

(x)
1 ∂p

(x)
1

∂2H
∂p

(x)
1 ∂p

(x)
2

∂2H
∂p

(x)
2 ∂x1

∂2H
∂p

(x)
2 ∂x2

∂2H
∂p

(x)
2 ∂p

(x)
1

∂2H
∂p

(x)
2 ∂p

(x)
2

−
∂2H

∂x1∂x1
−

∂2H
∂x1∂x2

−
∂2H

∂x1∂p
(x)
1
−

∂2H
∂x1∂p

(x)
2

−
∂2H

∂x2∂x1
−

∂2H
∂x2∂x2

−
∂2H

∂x2∂p
(x)
1
−

∂2H
∂x2∂p

(x)
2


, (B.6)
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with elements calculated using equation ((B.2)), which is given by

∂2H
∂p

(x)
1 ∂x1

= p
(x)
1

v3(p(x)
3 )3

∂v

∂x1
,

∂2H
∂p

(x)
1 ∂x2

= p
(x)
1

v3(p(x)
3 )3

∂v

∂x2
,

∂2H
∂p

(x)
1 ∂p

(x)
1

= (p(x)
1 )2

(p(x)
1 )3

+ 1
p

(x)
3
,

∂2H
∂p

(x)
1 ∂p

(x)
2

= p
(x)
1 p

(x)
2

(p(x)
3 )3

,

∂2H
∂p

(x)
2 ∂x

= p
(x)
2

v3(p(x)
3 )3

∂v

∂x1
,

∂2H
∂p

(x)
2 ∂x2

= p
(x)
2

v3(p(x)
3 )3

∂v

∂x2
,

∂2H
∂p

(x)
2 ∂p

(x)
1

= p
(x)
1 p

(x)
2

(p(x)
3 )3

,
∂2H

∂p
(x)
2 ∂p

(x)
2

= (p(x)
2 )2

(p(x)
1 )3

+ 1
p

(x)
3
,

− ∂2H
∂x1∂x1

= − 1
v4p

(x)
3

[
v
∂2v

∂x2
1

+ ( 1
v2(p(x)

3 )2
)( ∂v
∂x1

)2],
− ∂2H
∂x1∂x2

= − 1
v4p

(x)
3

[
v

∂2v

∂x1∂x2
+ ( 1

v2(p(x)
3 )2

)( ∂v
∂x1

)( ∂v
∂x2

)
]
,

− ∂2H
∂x1∂p

(x)
1

= − p
(x)
1

v3(p(x)
3 )3

∂v

∂x1
, − ∂2H

∂x1∂p
(x)
2

= − p
(x)
2

v3(p(x)
3 )3

∂v

∂x1
,

− ∂2H
∂x2∂x1

= − 1
v4p

(x)
3

[
v

∂2v

∂x1∂x2
+ ( 1

v2(p(x)
3 )2

)( ∂v
∂x1

)( ∂v
∂x2

]
,
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∂x2∂x2

= − 1
v4p

(x)
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v
∂2v
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v2(p(x)
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)( ∂v
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(x)
1

= − p
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1
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∂x2∂p
(x)
2
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v3(p(x)
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∂v

∂x2
,

(B.7)

The matrix Π(x) satisfies
d

dx3
Π(x) = S Π(x), (B.8)

and is defined as

Π(x) =
(
Q(x)

1 Q(x)
2

P(x)
1 P(x)

2

)
, (B.9)

The matrices Q(x)
1 , Q(x)

2 , P(x)
2 , and P(x)

2 can be integrated along the reference ray with
the increment of dx3 starting from a ray source to a receiver. In the general scenario, the
solutions of (Q(x),P(x))T in the dynamic ray-tracing system can be employed to determine
the wavefront curvatures M(x)

M(x) = P(x)Q(x)−1, (B.10)
with M11 = ∂2τ/∂x2

1, M12 = M21 = ∂2τ/∂x1∂x2, and M22 = ∂2τ/∂x2
2. The expression of

paraxial traveltimes of rays near the central ray belonging to a specified wave reads

τ(x1 + ∆x1, x2 + ∆x2, x3) = τ(x1, x2, x3) +
2∑

i=1
p

(x)
i ∆xi +

2∑
i,j=1

M
(x)
ij ∆xi∆xj , (B.11)
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