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IV. Zusammenfassung

Infektionskrankheiten, insbesondere solche, die durch gramnegative Erreger verursacht werden,
belasten zunehmend das Gesundheitssystem und stellen medizinisches Personal vor grof3e
Herausforderungen. Die verfugbaren Antibiotika verlieren aufgrund der vermehrt auftretenden
Resistenzentwicklung ihre Wirksamkeit, und gleichzeitig geht die Zahl der neu zugelassenen
innovativen antibiotischen Arzneimittel besorgniserregend zurlick. Tigecyclin ist ein
Reserveantibiotikum und wird bei komplizierten Infektionen eingesetzt. Die zugelassene Dosis
(100 mg Initialdosis gefolgt von 50 mg Erhaltungsdosis) hat sich als zunehmend unzureichend
erwiesen, sodass hochdosiertes Tigecyclin (100 mg, 100 mg q12h) fiir Infektionen empfohlen wurde,
welche durch multiresistente Krankheitserreger ausgelést wurden (bis zu einer minimalen
Hemmkonzentration (MHK) von 1mg/L). Die klinische Datenlage, auf die sich diese Empfehlung

stutzt, ist jedoch begrenzt.

Ziel dieser Arbeit war es, das Potenzial von Tigecyclin durch Dosisoptimierungsstudien zu

evaluieren. Hierflir wurden in vitro- und pharmakometrische Ansatze genutzt.

Tigecyclin ist ein instabiler Arzneistoff, was das Experimentdesign und die Handhabung im Labor
einschrankt. Daher hat Veréffentlichung I den Einfluss von antioxidativen Zusatzen (Ascorbinsaure
und Pyruvat) auf die Arzneistoffstabilitat in der kationenstabilisierten Mueller-Hinton Bouillon
untersucht. Es stellte sich heraus, dass Tigecyclin durch den Zusatz von 2% Pyruvat mit
Beibehaltung der antibiotischen Aktivitat stabilisiert werden konnte. Diese Stabilisierung
ermoglichte die in Veroffentlichung Il durchgefiihrten Langzeit Tigecyclin in vitro Versuche gegen

klinische Klebsiella pneumoniae Isolate im Hollow Fiber Infektionsmodell.

Die Experimente in Veroffentlichung Il zielten darauf ab, die in vitro Wirksamkeit von Tigecyclin
gegen klinische Klebsiella pneumoniae lIsolate mittels erhohter Tagesdosis, oder durch neue
Dosierungsschemata zu verbessern. Zudem wurde die Resistenzentwicklung erfasst und
genomisch analysiert. Nur ein Vielfaches der zugelassenen Dosis (Initialdosis 200 mg,
Erhaltungsdosis 100 mg q8h vs. zugelassene Initialdosis 100 mg, zugelassene Erhaltungsdosis:
50 mg q12 h) verhinderte ein Wiederanwachsen von Subpopulationen mit einer MHK von

0,125 mg/L. Infolgedessen wurde auf ein limitiertes Dosisoptimierungspotenzial geschlossen. Diese
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MHK liegt jedoch deutlich unter dem aktuellen klinischen Epidemiologischen Cut-Off Wert (ECOFF)
von Klebsiella pneumoniae (2 mg/L). Dariiber hinaus zeigte sich ein durch die Tigecyclinexposition
induziertes Wiederanwachsen von resistenten Subpopulationen, fiir die eine bis zu 32-fach erh6hte
MHK gemessen werden konnte. Tigecyclin-induzierte Mutationen konnten identifiziert werden und
entsprachen zuvor beschriebenen klinischen Beobachtungen. Darliber hinaus stutzen die
Beobachtungen in Verdffentlichung Il die Hypothese, dass klinisches Versagen mit dem
Fortschreiten der Infektion zusammenhangen konnte. Daraus wurde geschlussfolgert, dass der
derzeit empfohlene klinische Grenzwert von MIC 1 mg/L firr die Tigecycline Hochdosistherapie
(100 mg, 100 mg q12 h) bei Infektionen, die durch multiresistente Bakterien verursacht sind, nicht

ausreichend ist.

Veroéffentlichung lll quantifizierte die Pharmakokinetik von Tigecyclin in kritisch kranken,
lebergeschadigten Intensivpatienten, einer unterreprasentieren Patientenpopulation. Mittels einer
pharmakometrischen Kovariatenanalyse wurde eine Dosisanpassung unter Verwendung klinischer
Parameter, insbesondere Leberparameter, ausgewertet und mit der aktuell empfohlenen Child-
Pugh-Score basierenden Dosisreduktion verglichen. Diese klinischen Daten zeigten, eine deutlich
abweichende Pharmakokinetik (e.g. Clearance (CL) von 8.6 L/h zu denjenigen, die nicht kritisch
krank sind (e.g. CL: 16.8 L/h', 18.6 L/h?). Dariiber hinaus hat sich gezeigt, dass eine Reduktion der
Erhaltungsdosis von 50 mg auf 25 mg in dieser Population in der gleichen Arzneimittelexposition
resultiert, wie 100 mg bei nicht kritisch kranken Patienten. Es wurde jedoch keine Korrelation
zwischen der Arzneimittelexposition und der klinischen Heilung festgestellt. Gesamtbilirubin
(210 mg/dL) und der MELD-Score (>30) haben sich als pradiktive MessgroRen fiir die
Arzneimittelexposition herausgestellt, allerdings waren sie dem Child-Pugh-Score als Orientierung

fir Dosisanpassungen nicht uberlegen.

Insgesamt gibt es mehrere Moglichkeiten zur Durchfuhrung einer pharmakometrischen
Kovariatenanalyse, wobei einige Methoden heutzutage nur selten angewendet werden oder wenig
in der Literatur vertreten sind. Daher wurde in der Veréffentlichung IV eine umfassende Evaluierung
von der am haufigsten verwendete ‘Stepwise covariate modelling’ Methode (‘scm’) mit der
neuartigen ‘Full random effects modelling’ (‘frem’) Methode vorgenommen. Hierfiir wurde unter

verschiedenen Annahmen Uber DatensatzgrofRe, des Kovariateneffekts und der Kovariaten-
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Kollinearitat eine Simulationsstudie durchgefiihrt. Zudem hat diese Studie, den ‘“fremposthoc
eingefihrt, um dessen Eignung fir eine Kovariatenselektion ausgehend von einem ‘frem’ Model zu
untersuchen. Die Ergebnisse zeigten, dass die statistische Teststarke (Power) die wahre Kovariate
in kleinen Datensatzen zu finden fiir beide Methoden gering war, was sowohl fir ‘scm’ als auch
“fremMpostnoc’ zur Uberschatzung und Ungenauigkeit der Kovariatenkoeffizienten in fiihrte. Allerdings
war die statistische Teststarke von ‘frempostnoc’ in kleinen Datensatzen im Vergleich zu ‘scm’ bis zu
dreimal hoher. Zusatzlich zeigte diese Methode bei grofRen Datensatzen (N > 100) eine vergleichbare
Zuverldssigkeit wie der ‘scm’. Ohne den Selektionsschritt lieferten ‘frem’ Modelle in kleinen
Datensatzen unverzerrte Schatzungen mit besserer Genauigkeit als ‘scm’. Insgesamt erwies sich
fremposthoc’ als eine geeignete neue Anwendung von ‘frem’, um die Selektion von Kovariaten zu
leiten, wdhrend die statistische Teststdrke (Power), Prézision und Genauigkeit, in kleinen

Datensatzen von ‘fremposthoc’ dem ‘scm’ Modellen tberlegen war.

Zusammenfassend lasst sich sagen, dass die vorgestellten Ergebnisse eine langfristige in vitro
Untersuchung von Tigecyclin ermdglichten, jedoch zeigten, dass das Potenzial zur
Dosisoptimierung fiir Klebsiella pneumoniae auf eine MHK von 0.125 mg/L begrenzt war. Dartiber
hinaus trug diese Arbeit zu einem tieferen und quantitativen Verstandnis von Tigecyclin in
schwerkranken Patienten bei und kommt zu dem Schluss, dass die Verwendung als Monotherapie

in Frage gestellt und gegebenenfalls neu bewertet werden muss.
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V. Abstract

Infectious diseases, especially those caused by gram-negative pathogens, are increasingly
burdening the global healthcare system and pose major challenges for medical staff. Available anti-
infective drugs are losing their efficacy, due to increasing resistance development. At the same time
the number of newly approved, innovative antibiotics is declining at an alarming rate. Tigecycline
is a last resort antibiotic that is used for complicated infections. The approved dose (100 mg loading
dose (LD), followed by 50 mg maintenance dose (MD) q12h) has shown increasingly insufficient
clinical effectivity, resulting in high-dose tigecycline (100 mg, 100 mg q12h) recommendations for
infections caused by multidrug-resistant pathogens up to a minimal inhibitory concentration (MIC)
of 1 mg/L. However, this is based on limited clinical data.

The aim of this work was to evaluate the dose optimization potential of tigecycline. Therefore, in
vitro and pharmacometric approaches were applied.

Tigecycline is an instable drug, which limits experimental design and laboratory handling.
Therefore, Publication | elaborated on the influence of antioxidant additives (ascorbic acid and
pyruvate) on tigecycline stability in cation-adjusted Mueller Hinton broth. It was found that
tigecycline could be stabilized by adding 2% pyruvate while its antibiotic activity was maintained.
Subsequently, these results enabled the long-term in vitro hollow fiber studies of tigecycline against
clinical Klebsiella pneumoniae isolates, which are described in Publication II.

Publication Il aimed to improve tigecycline’s in vitro efficacy against Klebsiella pneumoniae isolates
using increased daily doses, or new dosing regimens. In addition, resistance development was
recorded and genomically analyzed. As a result, only an intensified dose and regimen (200 mg LD,
100 mg gq8h MD vs. approved 100 mg LD, 50 mg q12h MD) prevented regrowth of Klebsiella
pneumoniae subpopulations with a MIC of 0.125 mg/L. Consequently, a limited in vitro dose
optimization potential was concluded. However, the investigated MIC is far lower than the current
clinical epidemiological cut-off value (ECOFF) of Klebsiella pneumoniae (2 mg/L). Furthermore, a
drug-induced regrowth of resistant subpopulations was observed, in which an up to 32-fold
increased MIC could be measured. Tigecycline-induced mutations were identified and corresponded
to previously described clinical observations. Moreover, the observations made in Publication II

support the hypothesis that clinical failure may be related to progression of infection. Therefore, it
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was inferred that the currently recommended breakpoint of MIC 1 mg/L for infections caused by

MDR-strains and for tigecycline high-dose therapy (100 mg, 100 mg q12h) might be insufficient.

Publication lll described tigecycline monotherapy pharmacokinetics in an underrepresented special
patient population: the critically ill, liver impaired patients. A pharmacometric covariate analysis
was used to investigate a covariate-based dose reduction guided by clinical liver parameters.
Additionally, their ability to guide a dose adaptation was compared to the currently used Child-Pugh
score. As a result, this population had significantly different pharmacokinetics (e.g., clearance (CL)
of: 8.6 L/h), compared to those obtained from non-critically ill (e.g. CL: 16.8 L/h', 18.6 L/h?).
Furthermore, it was observed that a maintenance dose reduction from 50 mg to 25 mg in critically
ill, severely liver impaired patients exhibited the same drug exposure as 100 mg in non-critically ill
patients. However, no correlation between drug exposure and clinical cure was observed. Moreover,
total bilirubin (2 10 mg/dL) and MELD-score (2 30) have been identified as predictive measures for
drug exposure, whereas they were not superior to the Child Pugh score to guide a dose reduction.

Overall, there are several ways to perform pharmacometric covariate analysis, with some methods
rarely used or at least poorly represented in the literature. Therefore, Publication IV provided an in-
depth evaluation of the most often used stepwise covariate modelling technique (‘scm’), compared
to the novel full random effects modelling (‘frem’). Therefore, various assumptions of dataset size,
covariate effect magnitude and -collinearity were evaluated in a simulation study. Moreover, this
study introduced ‘fremposthoc’ to guide, a covariate backward elimination from a ‘frem’ model. Both
‘scm’ and ‘fremposthoc Showed overestimated and unprecise covariate coefficients in small N
datasets with a low power to identify the true covariate. The power of ‘frempostnoc’ Was up to three
times higher compared to ‘scm’, which also resulted in better accuracy and precision of the
estimates. Both methods were highly reliable in large datasets (N > 100). Without the selection step
‘frem’ models provided unbiased estimates with superior precision compared to ‘scm’ in small N
datasets. Overall, ‘fremposthoc turned out as a suitable new application of the ‘frem’ to guide
covariate selection without forfeiting power, precision, and accuracy in large datasets, while

showing superiority to ‘scm’ in small N datasets.
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In summary, the presented results enabled a long-term in vitro investigation of tigecycline, but
found that its dose optimization potential was limited for Klebsiella pneumoniae to an MIC of
0.125 mg/L. Moreover, this work contributed to a deeper and quantitative understanding of
tigecycline in critically ill patients and concluded that its use in monotherapy must be questioned

and possibly reevaluated.
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1 Introduction

1.1 Infectious diseases and antibiotic therapy

Anne Miller became the first person in the world to be saved by an antibiotic back in 19423. Since
then, penicillin revolutionized the treatment of infectious diseases and many new antibiotics have
greatly reduced the mortality and saved thousands of lives across all age groups. The
commercialisation of antibiotics was a major milestone in history of medicine and were once
considered as ‘medical miracle’®, but their use, but also overuse and misuse of them, have led to
development of antibiotic resistance. Thus, infectious diseases reoccur as a major cause of death?.
The golden age of antibiotics refers to a period between 1940 and 1960 when several important
antibiotics were discovered and brought into clinical use. Since then the discovery and development
has slowed down and only a few new drug classes have been introduced: oxazolidinones,
lipopeptides, mutilins®. This is due to multiple factors, including increasing difficulties to find new
targets, high cost and lengthy development processes and the rise of antibiotic resistance. The lack
of new antibiotics has become a major concern, as existing antibiotics are becoming less effective,
and the development of new antibiotics still is a slow process. This conclusively created difficulties
for health care systems worldwide®.

Infections caused by antibiotic resistance bacteria can affect any person, but multimorbid special
patient populations, e.g. critically ill patients, are threatened by a higher risk of mortality’. Despite
the efforts made by introducing guidelines or antibiotic stewardships in clinical practice, 700.000
deaths were assigned to infections caused by drug resistant pathogens globally®. As an example, in
2017 (United States of America) 9100 deaths out of 194.400 infections occurred with extended
spectrum beta lactamase (ESBL) producing Enterobacteriaceae and 1100 deaths out of 13100
infections were related to carbapenem-resistance Enterobacteriaceae®. Most prominent
representative of this multi resistant gram-negative family are Escherichia coli and Klebsiella
pneumoniae with an increasing incidence over the past years. The following section introduces

multiseriate gram-negative bacteria with a focus on Klebsiella Pneumoniae.
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111 Gram-negative and multidrug resistant bacteria

Gram-negative bacteria have a peptidoglycan cell wall, which is between a cytoplasmic cell
membrane and the outer membrane, distinguishing them from gram-positives. As a result,
antibiotic drug pharmacokinetics are innately different with respect to penetration and retention.
They rapidly acquire resistance against antibiotics through new, inactivating proteins, target
alterations, restricted cell entries or efflux pumps?®?.

The term multi-drug resistant organism (MDRO) literally means ‘resistant to more than one

available antibiotic’ ", which makes them difficult to treat in the clinics.

1.1.11 Klebsiella pneumoniae

Klebsiella pneumoniae is a major representative of the family Enterobacterales. This bacterium is an
essential pathogen causing life threatening nosocomial infections such as pneumonia, surgical
wound infections, meningitis, and bloodstream infections™.

ESBL is a type of enzyme produced by different bacteria, including Klebsiella pneumoniae. This
enzyme can inactivate a wide range of beta lactam antibiotics, and for infections caused by bacteria
carrying this enzyme, carbapenems remain a last treatment option. Nevertheless, carbapenem
hydrolyzing enzymes in Klebsiella pneumoniae, for instance Klebsiella pneumoniae carbapenemase
(KPC), oxacilinase-48 (OXA-48), New Delhi Metallo-beta-lactamase (NDM) or Verona integron-
encoded metallo-beta lactamase, have been increasingly reported which further challenge its
treatment.

Tigecycline is no first line treatment option for MDR bacterial infection, but it has in vitro activity
against ESBLS, NDM, carbapenem resistant Enterobacterales (CRE), CRE-KPC, CRE-OXA-48"" Thus,
tigecycline remains a last resort antibiotic therapy in cases where no other treatment options are

available.

1.1.2 Tigecycline

Tigecycline is a last resort antibiotic, approved by the Food and Drug Administration (FDA) in 2005
as a firstin class glycylcycline. It evolved by addressing resistance mechanisms against tetracyclines

derived from minocycline as a backbone™. Tigecycline has a broad spectrum of activity against
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gram-positive and gram-negative bacteria, whereas Pseudomonas aeruginosa is not susceptible.”'®
The mechanism of action is a steric hindrance of the 30S ribosomal subunit with blocking the entry
of amino-acetyl transfer ribonucleic acid (RNA) into the A side'.

Tigecycline is approved to treat complicated skin and skin structure infections (cSSI)*°, complicated
intra-abdominal infections (clAl)?°, as well as community acquired pneumoniae®. The
recommended standard dosing composes of 100 mg loading dose (LD) followed by 50 mg q12 h.
Severely liver impaired patients (guided by Child Pugh score C) have a 50.6 % reduced drug
clearance, thus the maintenance dose (MD) should be reduced to 25 mg?2. Clinical studies showed
a high variability between healthy volunteers, intensive care patients (ICU) and non-ICU patients
with reported values for clearance (CL) of 7.5 — 23.1L and central volume of distribution (V.) of
212.2-1088 L2222 Moreover, tigecycline shows a rarely occurring atypical nonlinear protein
binding at therapeutic concentrations?, meaning that the fraction unbound is higher at lower
concentrations (66.3 %) and lower at higher concentrations (41.3 %)%

Over the past years, several clinical trials were published, using tigecycline in approved indications,
as well as in off-label use. A meta-analysis revealed an increased all-cause mortality when using
tigecycline at standard dose (100 mg LD, 50 mg q12h) versus the comparators. The adjusted risk
difference for death was 0.6 % (0.1-1.2 %), leading to an FDA black box warning letter. Overall, the
deaths were related to progression of infection during treatment, complications of infections, or
other underlying medical conditions (FDA Drug Safety Communication, 09/01/2010, 9/21/2013).

To address this, clinical trials used an increased MD of 100 mg q12h and observed increased
microbial eradication and clinical cure, while maintaining a comparable side effect profile as the
standard dose regimen?*2%393132 |n December 2018, this lead to the EUCAST recommendation of
high dose tigecycline (100 mg q12h) for the treatment of infections caused by muti-resistant
pathogens up to an MIC of 1mg/L®. This was confirmed and re-evaluated in July 202234 As

uncertainty about efficacious doses remains, further improvements are required?***3¢.

1.1.3 Special patient populations

A special patient population describes a population, which does not reflect most of the humankind

(e.g., paediatrics, elderly, obese, pregnant women, or patients suffering from severe diseases). They
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are more vulnerable compared to healthy humans, necessitating specific considerations for safe
and efficacious dosing regimens.

The paradigm ‘one size fits all’ ignores the heterogeneity of a patient population and many labels
of already marketed drugs used to ignore this fact during their clinical trials. Thus, these patients
remain unstudied which results in uncertainty about efficacy and safety of a dosing regimen. The
FDA affirms the importance of drug dosing information in special patient populations by
emphasizing the diversity of clinical trial populations®’. Progress is made in this field on the clinical
development side, whereas missing knowledge for already approved drugs is caught up in so called
‘small N’ clinical trials with up to 20-50 individuals in a rather academical framework. In these trials
however, uncertainty about accuracy and precision of the results, as well as uncertainty about the
choice of covariate analysis methods arise since population pharmacokinetics analysis were

originally developed to study larger cohorts.

11.3.1  Critically ill patients

In case of life-threatening multimorbidity, a patient is called critically ill. Physiological changes of
the cardiovascular or pulmonary system and/or renal, hepatic function are commonly present and
increase the risk of mortality. Those mentioned factors influence the pharmacokinetics (PK), but
also the pharmacodynamic (PD) of drugs. High patient heterogeneity and rare data availability
impede PK predictions.

Infectious diseases are frequently present at intensive care units and more likely related to
MDRO?#2? The risk of sub- or super therapeutic doses inducing therapeutic failure, which may cause
resistance development or drug intoxication is higher in ICU compared to non-ICU patients. Hence,
antibiotic treatment is challenging in this population“°.

Suboptimal care leads to progression of infections up to sepsis or septic shocks and are a major
challenge for ICU clinicians. Sepsis or septic shocks are associated with a high mortality and are a
leading cause of deaths*. Critically illness comes along with organ dysfunction or even failure,
worsening in case of sepsis.

The kidney and liver represent important drug elimination organs. In cases of organ impairment,
drugs might accumulate in the human body, driving dose reductions. Mainly the creatinine

clearance serves as a surrogate parameter for kidney function and as a guide for dose adjustments,
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whereas no individual biomarker informing about drug liver clearance has been identified yet.
Drugs that are highly cleared via the liver are typically dose-adjusted employing the Child Pugh
score*®, This bears some limitations, as a static assignment to scores does not cover disease
progression. Moreover, only little information about covariate-based dosing options is available for
liver-impaired patients. To address this, researchers develop population PK (popPK) models
describing the relationship between drug concentrations and patients’ individual covariates to
explain variabilities in exposure. By using covariates for dose adjustment, novel dosing strategies
can be derived.

The following section introduces liver specific parameters as possible covariates in popPK models.

1.1.4 Individual patient parameters for liver function assessment

The liver is a multifunctional organ of the human body and has its major function in
biotransformation, transport- and excretion of xenobiotics. Derived from the livers’ critical
functions, organ impairment can have a severe impact on multiple mechanisms, including the PK
of a drug. To assess liver function in critically ill patients, a variety of parameters and liver function
tests are routinely included in diagnostics. There are directly measurable parameters such as
aspartate aminotransferase, alanine aminotransferase, y-glutamyl-transferase, alkaline
phosphatase, bilirubin, albumin levels, and coagulation factors. In case of damaged or inflamed liver
tissues, enzymes are released into the bloodstream. This can cause the elevation of laboratory
measured parameters which are used in diagnoses of liver diseases. Liver function parameters are
not solely related to liver disease, as they can also be elevated temporarily in case of infections or
alcohol consumption. Liver enzymes can indirectly inform about liver cell damage, but they do not
provide specific information about the metabolization processes or biliary excretion of a drug.
Hence, those routinely measured serum liver function parameters are known to be less predictive
to inform about drug exposure, as they are not suitable to predict liver failure by its own**.
Therefore, physicians developed scores carrying bundled liver information e.g., Child Pugh or MELD
score. Alternatively, dynamic tests are applied based on intravenous administration of hepatically
cleared substances. These tests measure either plasma disappearance, metabolite concentrations

in urine or in exhaled air*>*¢,
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The Child Pugh Score, assess the severity of liver disease, particularly cirrhosis and was originally
developed to predict mortality during surgery in 1964 and further developed in 1973*". Nowadays, it
is used to inform about liver transplantation necessity and treatment decisions. The Child Pugh
score is graded from A to C with increasing severity of dysfunction (mild, moderate, severe) and
calculated by bilirubin, albumin, prothrombin time, ascites, and encephalopathy grades.
Consequently, it displays a multiorgan assessment.

To develop dose recommendations for cirrhotic patients, the FDA ‘Guidance for Industry’
recommends hepaticimpairment trials with patients of all three Child Pugh score categories*®. Dose
adjustment via the Child Pugh score has been added to several drug lables*. But still the static
classification schemes lack sensitivity to inform about drug elimination since none of the
considered biomarkers correlates with hepatic drug clearance as creatinine clearance does with
renal drug clearance. The prescribing information of tigecycline recommends Child Pugh Score
based dose adjustment for patients with severe liver impairment, because in these patients the
drug clearance is severely reduced. Moreover, tigecycline clearance has also shown correlation with
total bilirubin® and MELD* score, opening up important dose adjustment opportunities for this last
resort antibiotic.

Another composite score is the model for end-stage liver disease (MELD score) which includes
bilirubin, serum creatinine and the international normalized ratio of prothrombin time®. It was
developed to assess the severity of liver disease and predict the likelihood of three month survival
in patients with chronic liver disease or those awaiting liver transplantation®. Until now MELD score
was barely academically investigated as a parameter for dose adjustment in cirrhotic patients®*.
Since data is rare and authorities refrain from recommending an investigation yet, MELD score
needs further evaluation.

The Liver Maximum capacity test (LiMAx®) is a novel breath test to determine the current liver
function or to monitor disease progression via metabolization of 13C-methacetin®. A published
pharmacokinetic study described a strong association of LiMAX test to hepatic linezolid clearance
in liver impaired patients®. This publication reports a pilot study investigating the potential use of
LiMAX for dose adjustments with the advantage of capturing the metabolic capacity of the organ
of interest. Further investigations of its ability to guide dosing decisions for hepatically metabolized

drugs is promising.
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1.2 In vitro experiments

Interesting approaches for dose improvements are in vitro experiments. Such experiments can
guide dose optimization, as they inform about an exposure response relationship of a drug to a
pathogen of interest. Dynamic in vitro experiments help to simulate the human-like
pharmacokinetics of dosing regimens of interest allowing for insights into exposure and time
dependent pharmacological effects, without ethical concerns regarding animal testing or a clinical
trial. However, in vitro testing with tigecycline is challenging: The drug is sensitive to oxygen, light,
temperature, and pH. Therefore, freshly prepared (< 12 h) cation-adjusted Mueller Hinton broth (ca-
MHB) should be used to prevent degradation, as no cost efficacious stabilizing agent was identified

yet57,58,59

1.211  MIC determination
The lowest antibiotic concentration that prevents visible bacterial growth is called minimum
inhibitory concentration (MIC). Its determination is standardized according to the Clinical and
Laboratory Standards Institute (CLSI) guideline®®.
The MIC is an important clinical drug and dosing decision guide and bacteria are categorized to
either susceptible (S), increased exposure (I) and resistant (R) by the European Committee On
Antimicrobial Susceptibility Testing (EUCAST)®'. These categories are defines as following:

e (S) defines the standard dose regimen to be likely to for therapeutic success.

e (I) characterizes the bacteria as susceptible, whereas an increased exposure is necessary to

achieve therapeutic success.

¢ (R) defines resistance corresponding to a high likelihood of therapeutic failure.
The MIC breakpoint for tigecycline against Staphylococcus aureus is currently defined as < 0.5 mg/L
for susceptible (S) and >0.5 mg/L for resistant (R) bacteria®. Enterobacterales (e.g., Klebsiella

pneumoniae) are deemed to respond to tigecycline high dose regimen up to an MIC of 1 mg/L5%%,

1.21.2  Time kill curves
Time kill curves are an experimental tool used to evaluate the bactericidal or bacteriostatic activity
of antimicrobial agents against bacterial pathogens. They involve monitoring the growth or survival

of a bacterial population over time in the presence of an antimicrobial agent.
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In a typical time kill curve experiment, a standardized inoculum of the bacteria is exposed to a range
of concentrations of the antimicrobial agent in vitro. At predefined time points, samples are taken
from the culture flask and plated on nutrient agar to determine the number of viable bacteria
present at that time point. The number of bacteria is mostly expressed as logio colony forming units
(CFU)/mL. The resulting data is used to plot a time kill curve, which shows the change in bacterial

viability over time in response to the antimicrobial agent.

1.2.1.3  Hollow fiber infection model

The hollow fiber infection model (HFIM) is a dynamic in vitro tool used in preclinical studies to
evaluate the effect of antimicrobial agents against bacterial pathogens over time. Programmable
pumps are used to replicate clinical dosing regimens and their corresponding human-like PK
profiles. The drug is added to the central reservoir, containing the bacterial growth medium. The
elimination kinetics are controlled by the addition of drug free media to the central reservoir,
whereas the volume is kept constant over the experiment duration. Concentration time profiles are
thereby mimicked precisely. The test organisms are retained in a dialysis-like cartridge and thereby
physically separated from the central reservoir by a semi-permeable membrane. Liquids are
continuously recirculating to assure nutrient supply, as well as the distribution infused drug. An
exemplary setup is shown in Figure 1.

In the scope of PK/PD investigations, the hollow fiber system has firstly been described by
Blaser et. al®® and found its broad application in in vitro exposure response analysis for antibiotics
against Mycobacterium tuberculosis®*. Mycobacterium tuberculosis is a very slowly growing bacteria,
and the continuous nutrient supply of the HFIM supports a user individual adaptation of
experiment duration up to months. Moreover, the European Medical Agency (EMA) published an
option letter®. Within this letter, they underlined their support for preclinical tests using this
method to investigate resistance development over time, as well as to investigate combination
therapy.

This work used the HFIM to investigate tigecycline concentrations against clinical isolates.
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Figure 1 Schematic set up of the hollow fiber infection model. All liquid flows are guided via peristaltic
pumps (i.). Continuous nutrient supply is guaranteed via drug-free bacterial growth medium (ii.). Bacteria are
kept in the dialysis cartridge (iii.) and are circulating against the direction circulation of the central
compartment to assure equal distribution of nutrients, drug and to prevent biofilm formation. The drug is
infused into the central compartment (iv.) by a programmable syringe pump (v.) and eliminated drug and
bacterial waste products are collected in a waste bin (vi.). The graphic was created with BioRender.com
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1.3 Pharmacometric modelling and simulations

1.3.1 Pharmacometrics

Pharmacometrics is an emerging science at the intersection between pharmaceutical sciences,
mathematics, statistics, and data science. A pharmacometric model can mathematically describe
the complexity of the human body, e.g. the adsorption, distribution, metabolism, and elimination
processes. The aim is to quantify and characterize drug behavior and to assistin e.g., understanding
variability within a population, dose optimisation, dose selection, or simulating new scenarios.

Nowadays those models are also of regulatory interest and requested for drug applications®®.

1.3.2 Pharmacokinetics

In a generic sense, PK describes ‘what the body does to the drug’ and can be structured in
adsorption, distribution, metabolism, and elimination; short ‘ADME’ principles. Through the
interaction of these processes, drug specific concentration-time profiles can be derived providing
information about drug exposure. To quantitatively measure the drug behaviour within the body,
common PK parameters include flow parameters such as CL or intercompartmental clearance (Q),
as well as disposition parameters such as central (V.) or peripheral volume of distribution (V;). The
ClLis arate, that expresses the ability of the body to eliminate the drug, usually reported with a unit
of [L/h]. If a clinical trial collected PK measurements in urine, CL can also be quantified for renal and
non-renal elimination processes. The V., commonly reported in [L] is an apparent volume reflecting
the distribution of a drug in the central compartment and can be influenced by e.g., protein binding.
The central compartment is usually defined as the blood or plasma and highly perfused tissues. The
V, represent the apparent volume in which the drug is distributed in the deep tissues outside of the
central compartment. These include less perfused organs, such as fat or skin and is influenced by
the lipophilicity of a drug or tissue binding.

The drug exposure in plasma or target site can be expressed as maximum concentration (Cmax),
minimum concentration (Cmin) or the area under the concentration time curve (AUC).

Individual patient characteristics can alter ADME processes resulting in individual drug exposure in

dependence of the patients’ specific dispositions (e.g., body, disease, or genetic).
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Those patient variables are called covariates and are often related to CL or V. the major
representatives of PK parameters shaping concentration time profiles. CL can be separated into
renal and non-renal clearance; the latter often being associated with hepatic clearance. In general,
CL is the PK parameter of authority’s interest to guide the dose in special patient populations as it

determines the maintenance dose of a drug.

1.3.3 Pharmacodynamics

Pharmacodynamics (PD) can be described as ‘what does the drug to the body’ and with that, it is a
key component to understand the dose-exposure-response relationship of a drug. In general, the
desired pharmacological effect can be any process of the human body that gets stimulated,
depressed, or blocked by a drug. Parameters to describe the PD usually include potency, efficacy,
and toxicity: Potency refers to the concentration of a drug required to produce a specific effect,
while efficacy describes the maximum effect that a drug can produce. Toxicity refers to the harmful
effects of a drug on the body and can be separated into on-target and off-target toxicity.

In the case of antimicrobial drugs, the pharmacodynamics are related to bacteriostatic or

bactericidal effects on the pathogens.

1.3.4 PK/PD

By combining the PK and PD information, a dose-exposure-response relationship can be
established, which is used to guide the optimal dosage. Optimally, the identified dose and dose
regimen achieve a therapeutic effect while side effects are minimized.

In the field of antimicrobial therapy, PK is usually described as plasma or target site concentrations
and PD as clinical treatment outcome, e.g., clinical cure or microbial eradication. For in vitro
experiments PD refers to antibacterial effect with e.g., reduction in bacterial load over time.

A PK/PD index is a way to express the combined information of PK and PD. For infectious diseases
three different exposure response relationships haven been identified to link bacterial susceptibility
to treatment success: On the one hand a concentration dependent case, expressed as AUC divided
by the MIC (AUC/MIC), or Cmax divided by MIC (Cmax/MIC). On the other hand, if the drug effect on

the bacteria is time dependent, it is expressed as time or percent time above the MIC (T; mic)®". In
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case an index refers to unbound drug concentrations the abbreviation is complemented by an ‘f.
The magnitude of the desired treatment success with the suitable dose for each index (PK/PD
target), is induvial for the bacteria, the antibiotic, and the location of infection. These targets are
developed in either in vitro experiments, animal models or clinical trials®®. A reevaluation of doses
to achieve these targets is potentially necessary, as the drug PK may be altered in special patient
populations (e.g., critically ill patients).

For tigecycline an AUC/MIC exposure-relationship was identified in mice and confirmed in clinical

trials with a magnitude of 6.96 and 17.9 to treat cSSI and clAl, respectively®®.

1.3.5 Nonlinear Mixed Effects Modelling

Mathematical models are applied to describe PK/PD characteristics within a patient population.
Nonlinear mixed effects modelling (NLME) is the most used methodology in the scope of the
population approach, first introduced by Sheiner et. al ’°, and has replaced the naive pooling or
standard two stage approach. This work used NLME in all performed modelling work, which will be
explained in more detail in the following section.

The term ‘nonlinear’ in NLME refers to nonlinear regression giving the best vector of model
parameters using approximation algorithms. These algorithms are either based on maximum
likelihood estimation, or Monte Carlo sampling methods™".

Moreover, ‘mixed effects’ in NLME stands for the ability to estimate fixed (structural model
parameters) and random effects parameters (variability components) simultaneously for a
population™. As a result, parameters describing the population and each individual are obtained.
The NLME population approach can answer questions like ‘why do individuals differ’ or ‘how do
they differ quantitatively’ and this by using very sparse, unbalanced, up to rich datasets. A
population pharmacometric model composes of a structural model, a statistical model, and a

covariate submodel™. The following section introduces these sub models.

1.3.51  Structural base model
The structural base model in sense of NLME modelling describes the central tendency of population
parameters to fit the observed data. This set of model parameters refers to fixed effects, such as

typical clearance, or volume of distribution of the respective study population.
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1.3.5.2  Statistical model

The statistical model expresses variability of the population model. One the one hand, differences
in PK between individuals within a population are described via the inter-individual variability (1V)
or also known as between subject variability term. On the other hand, the statistical model may
also include the inter-occasion variability (IOV). This relates the PK variability within one individual
across multiple time points. Those occasions could be defined as e.g., dosing timepoints or clinical
visits. Furthermore, residual variability or unexplained variability refers to the remaining
discrepancies that remain unaccounted for in the individual prediction after considering all the
known factors or sources of variability in the pharmacometric model. These terms of variabilities

refer to the random effects of a developed model.

1.3.5.3  Covariate analysis

The covariate model includes intrinsic and extrinsic patient individual variables, such as
demographics (e.g., age, sex, race), organ/disease specific information (e.g., creatinine clearance,
Child Pugh score, type of infection), or study design information (e.g., formulation types, food
intake) into the pharmacometric model. The aim of including covariates is to better explain the
observed IIV among patients within a population, which also increases the model predictability.
Furthermore, they help to understand the PK-PD relationships, so that a covariate model can also
provide a valuable base for dose optimizations. Typically, the dataset includes several covariates,
although not all of them are necessarily useful and informative for the resulting model. This can be
due to lacking statistical significance or clinical relevance. Covariates can either be continuous
(bilirubin, MELD score) or categorical (Child Pugh score) which is addressed in the model code
differently: The relationship of a continuous covariates on the structural model parameter of
interest can be a linear, power, or exponential function. Categorical covariates are usually included
as fractional change of the parameter of interest. To analyze covariates in a dataset, statistical
methods based on the log likelihood ratio test or full model approaches are available.

The commonly used statistical method is the so-called stepwise covariate modelling technique
(‘scm’)”, which was also applied to this work. This method fully relies on statistical criteria and
captures the covariate effects in fixed-effect coefficients. The basic scm algorithm proceeds in a

forward inclusion step and a backward elimination phase usually related to p-values of <0.05, <0.01
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respectively. In the forward inclusion each pre-defined parameter-covariate combination is tested
univariately. The objective function value (OFV) provides a quantitative measure of how well the
model represents the observed data and is calculated as minus twice the log-likelihood function in
NONMEM. A p-value of 0.05 is related to a drop of objective function value (dOFV) of -3.84 (degrees
of freedom (df) =1, % distribution). The combination that yields the largest dOFV is retained in the
model. The remaining parameter-covariate relationships are then tested again in the updated
model and the one with the largest dOFV is again retained in the model. This stepwise inclusion
proceeds until no more significant relationships can be identified. Conditional on the model
identified during the forward inclusion, the backward elimination procedure removes the
significant covariates in a stepwise manner at a stricter significance level (e.g., OFV: 6.63, df =1, p-
value: 0.07). Once all parameter-covariate relationships are significant, the final covariate model
has been built.

On the other hand, full model approaches are available. In this thesis, the full random effects
modelling technique (‘frem’) is used as a full model approach’. ‘Frem’ is a novel technique and
barely represented in literature so far””’8’. This method treats covariates as observations, meaning
that covariates are handled as random effects in this method®°. In detail, the ‘frem’ routine
estimates a full IIV random effect covariance matrix in the omega block. This includes parameter
[IV, covariate IIV and the covariance between these two. To perform this estimation, the standard
deviation, but also the typical covariate value is calculated. By utilizing this estimation technique,
correlated covariates can be included in the model while single covariate effects are identifiable and
missing covariates can be derived from covariances®'. Furthermore, the common covariate
relationships (linear, exponential, power) that are tested in fixed effect covariate models can also
be explored in a ‘frem’ model. For this either an IIV or covariate data transformation is needed. The
full fixed effects model, representing another full model approach, is mathematically equivalent to
a 'frem’ model. Thereby a ‘frem’ model can be translated into a full fixed effects model by
calculating the covariate coefficient from the ratio of the covariance between the parameter and

covariate variability to the covariate variance.
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1.3.6 Application of PK/PD models

‘Learning and confirming’ is essential in drug development®?. Over the past decades the integration
of available data and knowledge enhanced drug development efficiency, decision making and
reduced costs®. Pre-clinical or early-stage data can be used to generate hypotheses that are being
investigated and ideally confirmed in large clinical trials. What is the optimal dose? What drug
exposure can we expect if the patient has a kidney or liver impairment? How often should we
administer the drug? How many study participants do we need in our trial? There are almost
unlimited sets of ‘what if’ scenarios to generate hypotheses where simulations can extrapolate to
the unknown?4. With an adequate model as a basis, Monte Carlo simulations®® are used in the field
of infectious diseases to generate data for e.g., PK/PD target evaluations and effective dose regimes,
that have not been studied yet. Additionally, there are more advanced simulations like stochastic
simulation and estimation (SSE). In the drug development setting, SSEs are used for clinical trials
simulations, which aim to optimize sampling timepoints as well as number of study participants to
overall create a framework that provides accurate and precise model parameters. In this work SSEs
were applied to evaluate the performance of ‘scm’ and ‘frem’ in different clinical settings. With that
power, accuracy, and precision of parameters across unlimited scenarios of interest can be

evaluated and applied to drug development.
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2 Obijectives

Critically ill patients are at considerable risk of antibiotic treatment failure and resistant bacteria
are on therise. As new therapy options are scarce, dose improvement of available drugs is a way to
tackle the current situation. Tigecycline remains a last option for clinicians. The aim of this thesis
was to evaluate the dose optimization potential of tigecycline using in vitro and clinical data, both
supported by pharmacometric approaches. For the in vitro part, a stability study aimed to prevent
tigecycline degradation as a prerequisite to conduct long duration hollow fiber experiments. These
experiments served as a tool to investigate dose escalations and changes in dose regimens against
clinical Klebsiella pneumoniae strains with the aim to enhance tigecycline’s in vitro efficacy. In the
clinical environment we have an unmet need for dose improvements in special patient populations.
The Child Pugh score guides a covariate-based dosing strategy for tigecycline in liver impaired
patients. As this is a static parameter, the aim was to compare its ability to predict drug exposure
in comparison to non-static liver function parameters, based on a clinical dataset. For this a
pharmacometric covariate model served as a tool, while several methods are available and
uncertainty about method selection small N datasets is present. To enlighten method
characteristics a simulation study compared the characteristics of the most often used ‘scm’ and

novel ‘frem’ method .

This work is based on four publications covering investigations for the translational dose
optimization of tigecycline using in vitro and in silico approaches. The individual scopes of

publication I-IV were as follows:

Publication I: Stability studies with tigecycline in bacterial growth medium

e Creating conditions to use tigecycline in long-duration in vitro experiments

e Investigation of low-cost supplements (pyruvate and ascorbic acid) for their ability to
protect the sensitive, unstable tigecycline from degradation

e Quantifying tigecycline stability in cation-adjusted Mueller Hinton broth

e Comparing tigecycline’s antibiotic activity in supplemented and non-supplemented cation

adjusted Mueller Hinton broth using time kill curves over 24h
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Publication II: Pharmacokinetic/pharmacodynamic evaluation of tigecycline dosing in a hollow

fiber infection model against clinical bla-KPC producing Klebsiella pneumoniae isolates.

e Mimicking human tigecycline pharmacokinetics using the hollow fiber infection model

e Exploring dose optimization opportunities of escalated daily doses, and variations of the
dose regimen up to continuous infusions to enhance the in vitro efficacy

e Investigation of resistance development before and after tigecycline exposure via MIC
determination and manifestation of genetic changes using whole genome sequencing of
resistant strains

e Establishing a PK/PD model to describe the dose-exposure-response relationship of
tigecycline against Klebsiella pneumoniae and translation to clinical patients using Monte

Carlo simulations
Publication Ill: Tigecycline in liver impaired critically ill patients

e Development of a population pharmacokinetic model to describe tigecycline
pharmacokinetics in critically ill liver impaired patients

e Assessment of covariate relationships to predict tigecycline drug exposure in this
underrepresented study population

e Dose adjustment simulations using the developed covariate model to challenge the Child

Pugh score

Publication IV:A covariate analysis method comparison: Full random effects modelling (‘frem’) vs.

stepwise covariate modelling (‘scm’)

e Enhancingthe understanding of covariate modelling techniques through a simulation study
that compares the most often used stepwise covariate modelling technique to the novel full
random effects approach

e Comparative interpretation of results from a practical use perspective and a statistical
similar framework using simulated clinical datasets, which include various assumptions of

dataset size, covariate effect magnitude and -collinearity
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3 Cumulative part

The cumulative part of this thesis presents the key results of four, shorty summarized, peer-
reviewed publications. This work focused on various aspects to optimize tigecycline’s dose through

an in vitro and clinical perspective, supported by pharmacometric approaches.

The articles are published in European Journal of Clinical Microbiology & Infectious Diseases®®,
Diagnostic Microbiology & Infectious Disease®’, Antibiotics®® and Journal of Pharmacokinetics and

Pharmacodynamics®.
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Synopsis

Tigecycline is known to be sensitive to temperature, light, and oxygen, thus the planning and
execution of in vitro experiments are challenging. However, the in vitro stability is key to obtain
reliable information on bacterial susceptibility, which is also used to guide therapeutic decisions in
clinical practice. This study investigated antioxidative stabilizing agents as additives to the cation-
adjusted Mueller Hinton bacterial growth medium and tigecycline’s degradation was quantitatively
analysed by a chromatography assay. The stabilizing chemicals pyruvate, ascorbic acid, and the
combination of both were directly investigated in their suitability for in vitro testing. Time-kill
curves using the strain Staphylococcus aureus (ATCC29213) were performed in freshly prepared vs.
aged growth medium with and without stabilizing agents.

A supplementation with ascorbic acid led to rapid degradation and thus to a loss of the antibacterial
activity of tigecycline. This study revealed that tigecycline could be stabilized by 2% pyruvate in aged
medium and its antibacterial activity was equivalent to that of freshly prepared broth without
supplementation. With the identification of pyruvate as a stabilizer, this study enabled the use of

tigecycline in long-term in vitro testing, e.g. in hollow fiber experiments..



Publication |

European Journal of Clinical Microbiology & Infectious Diseases (2021) 40:215-218

https://doi.org/10.1007/510096-020-03970-0

BRIEF REPORT

Stability studies with tigecycline in bacterial growth medium

and impact of stabilizing agents

Check for
updates |

Lisa F. Amann” - Emilia Ruda Vicente - Mareike Rathke' + Astrid Broeker' - Maria Riedner? - Sebastian G. Wicha'

Received: 30 April 2020 / Accepted: 28 June 2020 / Published online: 27 July 2020

i The Author(s) 2020

Abstract

Purpose This study aimed to examine the degradation of tigecycline in Mueller Hinton broth (ca-MHB), as knowledge about

bacterial susceptibility is key for therapeutic decisions.

Methods Antioxidative stabilizers were evaluated on tigecycline stability in a quantitative chromatography assay and tigecycline
induced kill against Staphylococcus aureus (ATCC29213) was determined in time kill studies.

Results Ascorbic acid caused rapid degradation of tigecycline and resulted in loss of antibacterial activity. Tigecycline was
stabilized in aged broth by 2% pyruvate and bacterial growth, and tigecycline killing was similar to fresh broth without

supplementation, but independent of age.

Conclusion Our results underline the importance of using freshly prepared ca-MHB or the need for stabilizers for tigecycline

susceptibility testing while using aged ca-MHB.

Keywords Tigecycline - Stability - Degradation - Mueller Hinton broth - Time-kill studies

Introduction

Tigecycline is a broad-spectrum antibiotic and indicated for
complicated skin and intra-abdominal infections, as well as
community-acquired pneumonia [1]. Tigecycline is known
to be light and oxygen sensitive [2, 3]. A growth
medium age-related effect on tigecycline stability was de-
scribed, probably mediated by the amount of dissolved oxy-
gen, which can lead to inconsistencies in MIC values [4]. A
novel formulation stabilized tigecycline up to 7 days by
adding 0.3% ascorbic acid and 6% pyruvate as oxygen-
reducing agents [2]. Nevertheless, these additives were only
tested in saline and antibacterial activity was determined with
Escherichia coli in Oxyrase-treated Mueller Hinton broth to
remove the dissolved oxygen. Hence, the degradation kinetics
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of tigecycline and potential impact of bacterial killing in aged
vs. fresh cation-adjusted Mueller Hinton broth (ca-MHB) and
the impact of stabilizing agents remain unknown.

The objective of this study was (i) to quantify the degradation
process in fresh and aged ca-MHB using different stabilizing
agents and (ii) to evaluate their impact on bacterial growth and
tigecycline-induced kill, to derive recommendations for consis-
tent in vitro susceptibility testing of tigecycline.

Material and methods
Materials

Lyophilized powder of tigecycline was obtained from Pfizer
(New York, United States of Amecrica, LOT: J49085).
Staphylococcus aureus (ATCC29213) was obtained from the
Amcrican Type Culture Collection (Manassas, Virginia, USA).
All other chemicals were purchased from Sigma-Aldrich.

Stability assay
Preparation of tigecycline samples A stock solution of tige-

cycline (1.0 mg/mL) was prepared in 0.9% saline solution and
diluted to 10 pg/mL with fresh (< 12 h) or aged (up to 7 days
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at 4 °C or room temperature) ca-MHB, with and without sta-
bilizing agents, incubated at 37 °C for 24 h, protected from
light stored in a Eppendorf vial rack. Stock solutions of stabi-
lizing agents were adjusted to pH 7.0 and spiked to ca-MHB
after storing. Aged ca-MHB, stored at 4 °C, spiked with 2%
pyruvate (ca-MHBguy p22), as well as the combination of
6% pyruvate and 0.3% ascorbic acid were tested (ca-
MHB7days_p6%e + aa0.3%). Ca-MHB spiked with 0.3% ascorbic
acid was tested in freshly prepared ca-MHB (ca-
MHB,.039.). Furthermore, we investigated tigecycline stabil-
ity in non-supplemented ca-MHB stored 7 days at room tem-
perature (ca-MHBg,,s rT) Versus supplementation with 2%
or 6% pyruvate. The pH of ca-MHB was measured and equiv-
alent to the manufacturer given value (pH 7.3).

HPLC analysis Calibration curve, quality control, and samples
were measured by UHPLC (Ultimate 3000 SD Dionex,
Softron GmbH, Germering, Germany) equipped with a
Nucleoshell RP 18 (MachereyNagel, Dueren, Germany) using
UV detection at 350 nm. Samples containing 0.3% ascorbic
acid reached the lower limit of quantification. Therefore, a
QTRAP 5500 mass spectrometer (SCIEX, Framingham,
Massachusetts, USA) coupled with a 1290 Infinity HPLC II
(Agilent Technologies, California, USA) was used to quantify
tigecycline in these samples. A detailed description of the
analytical method is described in Supplement Text 1.

Preparation of standards and quality control For cach mca-
surcment, a calibration from 0.1 to 10 mg/L using scven cal-
ibrators and double determination was prepared. Two inde-
pendently prepared quality controls were analyzed in cach
run with a high and a low concentration of tigeeycline. The
inaccuracy and imprecision of the assay across all analytical
runs was < 12% and < 4%, respectively.

Table 1 Tigeeycline concentrations expressed as a relative percentage
of the initially measured tigecycline concentrations (= 100%) in cation-
adjusted Mueller Hinton broth (ca-MHB) with or without supplementa-
tion, incubated in the dark at 37 °C over 24 h stored in Eppendorf vial
racks. Ca-MHB age of 0 days was defined as ca-MHB preparation less

Time-kill studies

The effect of stabilizing agents on bacterial growth was tested
with Staphylococcus aureus (ATCC29213), as recommended by
CLSI [5] in three settings: (i) fresh and aged ca-MHB without
adjuvants, (i) ca-MHB, 03¢, or (iii) ca-MHB7g4y5 p2e. Stock
solutions of ascorbic acid (25%) were adjusted to pH 7 and
spiked to aged ca-MHB to obtain a final concentration of
0.3%. The pH of the spiked ca-MHB was not altered in the
presence of the stabilizing agents and identical to the value given
by the manufacturer (pH 7.3). The “reference” MIC was tested in
freshly prepared broth according to the CLSI guideline before the
experiment [5].

Time kill curves were determined in » =2 at an initial inocu-
lum of 10° CFU/mL and incubated for 120 min at 37 °C to
logarithmic growth phase before the antibiotic was added.
Tigecycline concentrations of 0.5 MIC (0.063 pg/mL), 1x
MIC (0.125 pg/mL), 2x MIC (0.25 ug/mL), 4x MIC (0.5 ng/
mL), and 8x MIC (1 pg/mL), as well as growth controls were
studied over 24 h. The resulting MIC was determined visually, at
24 h, in presence of stabilizing agents or in aged ca-MHB, eval-
uating turbidity of testing solution alongside the time kill studies.

Results
Stability studies

The stability of tigecycline in fresh and aged ca-MHB with
and without adding stabilizing agents was investigated
(Table 1). In 7-day-old, non-stabilized ca-MHB, a rccovery
of 80.1% was found within 24 h. Converscly, in fresh, non-
stabilized ca-MHB, 99.6% tigccycline was mcasured.
Moreover, tigecycline degraded already to a remaining

than 12 h before the experiment started. Ca-MIB was stored up to 7 days
at 4 °C or at room temperature. Storage conditions and age refer to Ca-
MHRB without supplements in absence of tigecycline before the 24 h
incubation period with tigecycline with and without supplements at 37
°C was initiated

Matrix Age (days) Storage cond. Recovery at 24 h(%) Range (%) p value
Ca-MHB 0 99.6 94.5 103.5 0412

1 4 °C 89.7 87.4-94.8 0.400 - 10 2

7 4°C 80.1 82.8-75.6 244 -107°

7 Room temperature 27.9 25.9-30.0 22-107'¢
Ca-MHB +0.3% ascorbic acid 0 4.7 3.5-5.1 247-10°
Ca-MHB + 2% pyruvate 0 98.8 97.0-100.3 9.20- 1072

7 4 °C 97.1 96.4-99.6 8.40- 107

7 Room temperature 87.8 86.6-88.8 1.69- 107"
Ca-MHB + 0.3% ascorbic acid+6% pyruvate 0 972 93.4-100.2 0.079

74 4°C 95.1 91.3-97.3 6.40 - 10 2
Ca-MHB + 6% pyruvate 7 Room temperature 97.1 95.6-98.5 1.1-1072
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concentration of 89.7% using the same ca-MHB solution
1 day after preparation. The stabilizing agents had various
effects: In ca-MHB,,034, tigecycline degraded rapidly and
only 4.7% remained in a freshly prepared solution within
24 h. In ca-MHB74,y5 p2z, We observed a stabilizing effect
and 97.1% were recovered. Moreover, the combination of
6% pyruvate and 0.3% ascorbic acid, as recommended by
Jitkova et al. [2], was inferior to 2% pyruvate alone, and a
remaining concentration of 97.2%, if freshly prepared, and
95.1% in ca-MHB7guys_po% +aa0.3% Was measured.
Furthermore, the stability of tigecycline was investigated in
ca-MHB7g,ys rT and the age dependency of tigecycline
stability was even more observable. In MHB74,y, rT With
2% pyruvate, a remaining concentration of 87.8% was
measured (Table 1), whereas in non-stabilized ca-
MHB74,ys rT> Only 27.9% tigecycline were recovered.
As described above, the combination of 0.3% ascorbic
acid and 6% pyruvate was not superior to pyruvate alone
so that pyruvate was increased to 6% to enhance tigecyc-
line stability in MHB4,ys gt and 97.1% could be recov-
ered after 24 h.

d Fresh ca-MHB

Time kill studies

Time kill curves were conducted to investigate the impact of
tigecycline degradation on observed pharmacodynamic effects
(Fig. 1). The results show that neither ascorbic acid (p =0.410)
nor pyruvate (p=0.161) affected the natural growth in absence
of tigecycline, compared to non-supplemented ca-MHB. Using
fresh ca-MHB, > 1.5-log killing at >2x MIC and moderate kill-
ing at 1x MIC were observed afer 24 h. In contrast to that, at 1x
MIC in 1-week-aged ca-MHB, no killing but a growth to > 1-log
higher CFU/mL was observed compared to fresh broth. The
growth/killing pattern in ca-MHBg,ys p2g Was not different
from freshly prepared ca-MHB.

The strong degradation process related to 0.3% ascorbic
acid translated to substantially reduced killing: Antibacterial
activity at 1 x MIC ceased 1 h after addition of tigecycline, and
regrowth was observed even at 8x MIC.

In fresh or stabilized ca-MHB 4,y 2%, an MIC of
0.125 mg/L was determined. The use of aged broth led to
determination of a MIC of 0.25 mg/L, in ca-MHB 43¢, >
1 mg/L, respectively, concluded by visible turbidity.

b Aged ca-MHB

\
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Fig. 1 Time kill curves: colony-forming units (CFU) per mL over time by
MIC (minimal inhibitory concentration) of tigecycline. The reference
MIC was determined according the CLST guideline using treshly pre-
pared ca-MHB and was 0.125 mg/L. Error bars denote range of minimum

to maximum value. All experiments were carried out in duplicates. A
Freshly prepared ca-MHB. B Aged ca-MHB (7 days at 4 °C). C Aged
ca-MHB (7 days at 4 ° C) supplemented with 2% pyruvate. D Fresh ca-
MHB containing 0.3% of ascorbic acid
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Discussion

The present study clucidates the stability of tigecycline in the
most important bacterial growth medium ca-MHB thereby using
state-of-the-art bioanalytical assays as a prerequisite to obtain
quantitative stability data in combination with pharmacodynam-
ic studies [6]. Moreover, pyruvate and ascorbic acid as potential
stabilizing agents for tigecycline in ca-MHB were comprehen-
sively assessed.

The results of the present study in freshly prepared vs. aged
ca-MHB are in line with a previous study [4]. However, our
study adds quantitative information as previously, solely the
pharmacodynamic age-dependence of ca-MHB was studied
[4]. The use of freshly prepared broth might not be possible
in routine labs, or is also impractical in long-term in vitro stud-
ies such as hollow-fiber experiments. The addition of Oxyrase
has been proposed to stabilize tigecycline in broth to reduce the
amount of dissolved oxygen to stabilize tigecycline [3]. Yet,
Oxyrase represents a costly agent and the herein proposed an-
tioxidative pyruvate is much more economic. Pyruvate might
prevent tigecycline’s oxidation at its phenolic group [7] in order
to stabilize ca-MHB regardless of the ca-MHB age.

Another important aspect is that stability data generated in
saline does not allow inferring about ca-MHB: Jitkova et al [2]
found that 6% pyruvate in saline resulted in an insufficient stabi-
lization, with a remaining tigecycline concentration of approx.
70% after 24 h. In contrast to that, we found a recovery of 97.1%
in ca-MHB7ays yo4 after 24 h. The differences for ascorbic acid
arc cven more striking: By solely adding ascorbic acid, we quan-
tified rapid degradation, even though pH control was applicd,
suggesting that ascorbic acid induces a destabilizing reaction in
ca-MHB. A mass spectroscopic full scan could not detect any
known degradation product. Jitkova ct al. found that ascorbic
acid alone was also insufficient to fully stabilize tigecycline in
saline but did not obscrve a destabilization as quantificd by us. In
salinc solution, 67.6% of ficshly prepared tigecycline were re-
covered after 3 days [2]. Furthermore, a strong degradation of
tigecycline occurs in non-stabilized ca-MHB7q,y rt and 2% py-
ruvate is not sufficient to prevent tigecycline from degradation;
hence, 6% pyruvate is needed for stabilization. The broth aging
process occurs faster at room temperature, so that 2% pyruvate
cannot conserve tigecycline. Even though ca-MHB7gys rT With
6% pyruvate shows comparable results as ca-MHB74,y5 529
stored at 4 °C, we recommend storing the broth at 4 °C and
supplement with 2% pyruvate before use, or the use of fresh
ca-MHB, to save costs.

The measured kinetic data were consistent the pharmacody-
namic effects in our study, i.e., faster and more intense regrowth
was observed when tigecycline degraded faster. If ca-MHB age is
not controlled, a twofold higher MIC value might be found due to
tigecycline degradation, which can be avoided by addition of 2%
pyruvate. The use of ascorbic acid, although stabilizing tigecyc-
line in saline, cannot be recommended in ca-MHB.
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Synopsis

Tigecycline is not often used in clinics, but if used patients suffer from severe, possibly life-
threatening infections. Its use is restricted to cases where no other treatment is suitable, e.g. case
in of infections caused by gram-negative bacteria. Clinical studies have shown suboptimal response
to tigecycline, likely due to progression of infection during the treatment. Moreover, conflicting
study results about higher doses have been reported. This study investigated the dose optimization
potential of tigecycline using the dynamic hollow fiber infection model against clinical Klebsiella
pneumoniae strains with MIC values ranging from 0.125 mg/L to 0.5 mg/L. Escalated daily doses, and

variations of the dose regimen were compared to the approved dose regimen.
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No antibiotic activity was maintained at clinically used doses and a dose escalation to
200 mg, 100 mg gq8h was only effective against the strain with the lowest MIC of 0.125 mg/L. But
this is a MIC at the lower end of the ECOFF distribution. Moreover, a fast tigecycline induced
regrowth of resistant subpopulations, carrying clinically known mutations, was observed.

We thereby conclude that the currently used breakpoint of 1 mg/L might be too optimistic to treat

Klebsiella pneumoniae infections, especially with respect to prevention of blood-stream infections.
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ABSTRACT

The FDA announced a boxed warning for tigecycline due to progression of infections caused by Gram-negative
bacteria and increased risk of mortality during treatment. Plasma exposure of tigecycline might not prevent
bacteraemia in these cases from the focuses. Hence, we evaluated intensified dosing regimens and breakpoints
that might suppress bloodstream infections, caused by progression of infection by e.g., Gram-negatives. A
pharmacometric model was built from tigecycline concentrations (100-600 mg daily doses) against clinical
Klebsiella pneumoniae isolates (MIC 0.125-0.5 mg/L). Regrowth occurred at clinically used doses and stasis was
only achieved with 100 mg q8h for the strain with the lowest studied MIC of 0.125 mg/L. Stasis at 24 h was
related to fAUC/MIC of 38.5. Our study indicates that even intensified dosing regimens might prevent blood-
stream infections only for MIC values <0.125 mg/L for tigecycline. This indicates an overly optimistic breakpoint
of 1 mg/L for Enterobacterales, which are deemed to respond to the tigecycline high dose regimen (EUCAST

Guidance Document on Tigecycline Dosing 2022).

1. Introduction

The rapid worldwide emergence of antimicrobial resistance, espe-
cially in Gram-negative strains, is a leading cause of death and has
become a major health crisis [1]. Severe nosocomial infections, caused
by carbapenemase producing Klebsiella pneumoniae are associated with a
high mortality rate and are difficult to treat [2]. Tigecycline represents a
last-resort antibiotic in case other treatment options are not available.
Tigecycline is a glycylcycline antibiotic, inhibiting the 30S subunit of the
ribosome. It is indicated for complicated intra-abdominal infections
(cIAI), complicated skin and skin structure infections (¢SSI), as well as
community acquired pneumonia and one of the last opportunities to
treat carbapenemase producing Klebsiella pneumoniae (cp-KP). Several
clinical data analysis have shown a reduced efficacy for the standard
dose (100 mg loading dose (LD), followed by 50 mg q12 h) [3-6].
Furthermore, the US Food and Drug Administration (FDA) announced to

* Corresponding author.
E-mail address: sebastian.wicha@uni-hamburg.de (S.G. Wicha).

https://doi.org/10.1016/j.diagmicrobio.2023.116153

a black box warning letter due to a higher risk of mortality during
treatment compared to other antibiotics [7]. Since early clinical use of
tigecycline, resistance development has been reported [8,9] and a
considerable amount of clinical studies showed a resistance develop-
ment during tigecycline treatment [10-12] In 2018, the European
committee on antimicrobial susceptibility testing (EUCAST) revised
tigecycline’s breakpoint for Enterobacterales [13] and published an
updated guidance document on tigecycline dosing in 2022 [14]. Seri-
ously ill patients with infections caused by multi-resistant pathogens
should not receive standard dosing (50 mg q12h with a loading dose
(LD) of 100 mg), but high dose tigecycline (100 mg q12h with or without
a loading dose of 200 mg). Clinical data on the use of high dose tige-
cycline is limited but was recommended by Cunha et al. [15] and in-
fections caused by pathogens (Enterobacterales, other than E. coli) with
an MIC up to 1 mg/L could be treated with that regimen [13,16,17]. The
FDA breakpoint for susceptible Enterobacterales is < 2 mg/L and with

Received 22 February 2023; Received in revised form 23 November 2023; Accepted 29 November 2023
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that higher, compared to the EUCAST breakpoint. However, no details
about dose regimen specific breakpoints are provided (https://www.
fda.gov/drugs/development-resources/tigecycline-injection-products,
last accessed 03 November 2023).

Yet, in case of severe infections, the infection can progress and ul-
timately lead to systemic bloodstream infections. Indeed, plasma expo-
sure of tigecycline might not prevent bacteraemia in case of progression
of the infection from the focus. The present study using the dynamic
hollow fiber infection model (HFIM) evaluated optimisation of tigecy-
cline doses and dosing regimens by mimicking human-like concentra-
tion time profiles in conjunction with pharmacokinetic/
pharmacodynamic (PK/PD) modelling to investigate if higher doses or
lower breakpoints are needed to enhance tigecycline’s antibacterial ef-
fect to suppress progression of the infection to the blood stream.

2. Materials and methods
2.1. Bacterial isolates and susceptibility testing

Three clinical Klebsiella pneumoniae isolates were used for this study:
The isolates Klebsiella pneumoniae 2977 (KPC-2, OXA-9, TEM-1; referred
to as KP 2977) and Klebsiella pneumoniae R307 (KPC-2, OXA-2, OXA-9,
TEM-1, CTX-M-2; referred to as KP 307) were collected in France in
2012 by rectal swabs and Kiebsiella pneumoniae -N864 (KPC-3, OXA-9,
TEM-1, referred to as referred to as KP N864) was isolated from a
wound in Switzerland in 2019. Information on susceptibility to beta
lactam class antibiotics are provided in Supplement Table S1.

Freshly thawed isolates were subcultured on Columbia agar (Carl
Roth GmbH + Co. KG, Karlsruhe, Germany) for 24 h at 37°C before each
experiment.

The MIC was determined before and after the experiments using the
broth dilution method according to the CLSI guidelines and EUCAST
[18,19] with freshly prepared [20] cation-adjusted Mueller-Hinton
broth (ca-MHB) (Sigma-Aldrich, St. Louis, MO, USA). Tigecycline was
purchased from the United States Pharmacopeial Convention, Rockville,
MD 20852-1790, USA.

2.2. Genetic analysis of resistant subpopulations

Wild type K. pneumonia KP 307 and tigecycline-resistant derivates
(KP 307-148, KP 307-149) were subjected to whole genome sequencing
according to recently published procedures [21]. Total numbers of 1,
882,055, 1,305,753 and 1,473,150 2 x 151 paired-end reads were
generated from the Illumina sequencer, respectively. Bases less than
Q30, as well as adapter sequences of the reads were trimmed, and any
reads shorter than 36 nt removed using Trimmomatic v0.36 [22]. The
retained high-quality reads in the sample KP 307 were fed into the
SPAdes assembler (version 3.7.1) [23] for de novo genome assembly,
resulting in a putative genome of 5,795,692 bp, with a mean depth of
87.1x. The Prokaryotic Genome Annotation Pipeline (PGAP) [24]
identified 5822 putative open reading frames (ORFs) from the genome.
The trimmed reads of the samples KP 307-148 and KP 307-149 were
then mapped to the newly assembled and annotated genome
(CP114785) with the aligner BWA [25]. The variants were called with
the tool "GATK4 HaplotypeCaller" [26] from the alignments and anno-
tated using SnpEff [27]. The accession numbers for the sequencing raw
reads in the NCBI Sequence Read Archive (SRA) are SRR22681172,
SRR22681384, and SRR22681383.

2.3. Hollow fiber infection model

The dynamic in vitro experiments were performed as previously
described [28] at 37°C over 72 h with n-1 per scenario. Tigecycline’s in
vitro antibiotic effect induced by human-like concentration-time profiles
were evaluated against the three clinical Klebsiella pneumoniae isolates
outlined above. Tigecycline is known to be an instable drug in in vitro

Publication Il

Diagnostic Microbiology & Infectious Disease 108 (2024) 116153

experiments, as it degrades in the presence of oxygen. To prevent this, 2
% of sterile filtrated pyruvate was added as an antioxidative supplement
to the bacterial growth medium (ca-MHB) [29]. Furthermore, the
experiment was conducted in a dark incubator and the light exposure
was limited to short sampling windows. The HFIM set up is further
outlined in Supplement Text 1 and graphically displayed in Supplement
Fig. S1. The inoculum was 10°® CFU/mL and the experiment was started
after 2 h of preincubation. A growth control experiment was performed
without tigecycline solely containing the bacteria. The following dosing
scenarios were covered in this study using the PK model described below
(in PK simulations):

L) Current clinical recommendations: Standard dose (100 mg LD, 50
mg q12h, 30 min short infusion) and high dose (100 mg q12 h, 30
min short infusion).

11.) Continuous infusion of high dose (100 mg LD as 30 min short
infusion, 200 mg q24h)

III.) Shortening the dose interval with high dose (200 mg LD, 100 mg
q8h as 30 min short infusion).

IV.) Supratherapeutic dose with 200 mg LD, 600 mg q24 h as
continuous infusion.

2.4. Pharmacokinetic simulations

Human unbound concentration time profiles [30] for the above
mentioned doses and dose regimens were simulated in R (version 3.6.1)
using mrgsolve (version 0.10.7) using the published population PK pa-
rameters of the study of van Wart et al. [31]. The program R served for
data analysis and pump rate calculation to mimic the 95th percentile
concentrations of the population PK.

2.5. Determination of pharmacokinetics and pharmacodynamics

Pharmacokinetic samples were collected from the central compart-
ment and stored at -80°C. The quantification of tigecycline was per-
formed via LC-MS/MS, as previously described [29].

The bacterial count during the experiment was determined via a
droplet plate assay (Columbia agar plates (Carl Roth, Germany)) at
selected time points between 0 to 72 h

2.6. Pharmacokinetic-Pharmacodynamic modelling

PK/PD modelling was performed with NONMEM(R) 7.5 (ICON
Development solutions, Ellicott City, USA) using first order conditional
estimation with interaction (FOCE+I, ADVAN13 subroutine). The
measured tigecycline concentrations in the HFIM were used to develop a
PK model to provide most accurate PK profiles for PK-PD modelling. For
that, we investigated a one, two and three compartment model. For
residual unexplained variability, a proportional, additive, or combined
error model was evaluated. Moreover, inter-experiment variability (log-
normally distributed), as well as inter-occasion variability was tested on
clearance (CL), central volume of distribution (Vc), inter-compartmental
clearance (Q), and peripheral volume of distribution (Vp).

A sequential PK-PD approach with fixed individual parameters
linked to the PD model describing the bacterial counts over the experi-
ment duration was pursued. To describe tigecycline mediated killing, we
evaluated a slope and power model, a sigmoidal maximum effect model
(Emax model) and a sigmoidal maximum inhibition model (Imax model)
on the bacterial growth rate. The growth inhibition model linked the
tigecycline concentration (C) to the antibiotic effect on the susceptible
(8), as well as the resistant (R) subpopulation. The maximum growth
inhibition (IMAX) was assumed to be 1 assuming full inhibition of
bacterial growth as indicated by the raw data. The ICsy described the
tigecycline concentration inhibiting the maximum growth rate by 50%
(Eq. 1 and Eq. 2). The killing of the bacteria observed after full growth
inhibition for each subpopulation was parameterised by the killing rate
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Fig. 2. Colony forming units (CFU/mL) over time (points) together with predictions from the developed PK/PD model (lines) and their 95 % prediction intervals
(shaded areas) for different dosing regimens (facets) against three clinical bla-KPC producing Klebsiella pneumoniae isolates (colours).

KK. Bpax describes the maximal possible bacterial load within the HFIM.
To account for the different susceptibility of the three bacterial strains in
this study, the MIC was introduced as a scaling factor of the ICsq and
normalised to the median MIC of 0.25 mg/L. Candidate models were

evaluated by goodness-of-fit plots, and visual predictive checks. The
sampling importance resampling [32] technique was used to determine
parameter uncertainty. The model structure is displayed in Fig. 1.
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Table 1

Change of tigecycline MIC values against three clinical bla-KPC producing Klebsiella pneumoniae isolates after tigecycline exposure to different dosing regimens.
Klebsiella Pneumoniae Tigecycline dose regimen MIC before experiment [mg/L] MIG after experiment [mg/L] Factor
KP 2977 100 mg LD, 50 mg q12h (sti) 0.125 2.0 16 x MIC
KP 2977 100 mg LD, 100 mg q12h (sti) 0.125 0.5 4 x MIC
KP 2977 100 mg LD, 100 mg q24h (cont) 0.125 0.5 4 x MIC
Kp 2977 100 mg LD, 200 mg q24h (cont) 0.125 0.5 4 x MIC
KP 2977 200 mg LD, 100 mg q8h (sti) 0.125 0.25 2 x MIC
Kp 2977 Growth control 0.125 0.125 1x MIC
KP 307 100 mg LD, 50 mg q12h (sti) 0.25 2.0 8 x MIC
KP 307 100 mg LD, 100 mg q12h (sti) 0.25 2.0 8 x MIC
KP 307 100 mg LD, 200 mg q24h (cont) 0.25 4.0 16 x MIC
KP 307 200 mg LD, 100 mg q24h (cont) 0.25 4.0 16 x MIC
KP 307 200 mg LD, 100 mg g8h (sti) 0.25 8.0 32 x MIC
KP N864 200 mg LD, 600 mg q24h (cont) 0.5 4.0 8 x MIC

Abbreviations: short term infusion (sti), continuous infusion (cont.), Klebsiella pnewmoniae (KP), Minimum inhibitory concentration (MIC), area under the concen-

tration time curve (AUC)
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The fAUC/MIC was evaluated by nonlinear regression at 12 h and 24
h to determine a breakpoint for bacteriostasis.

2.7. Clinical trial simulations

Monte Carlo simulations (n=500, performed in R using mrgsolve
version 0.10.7) were used to simulate concentration-time profiles of
standard and high dose tigecycline using the population PK model
including covariates from van Wart et al. [31]. Furthermore, intensified
dosing regimens with an increased loading dose (200 mg) and an
extrapolation of the standard dose given every 8 h were simulated [31].
The model of van Wart et al. included the following values: CL: 15.7 L/h,
Ve: 115 L, Vp: 644 L, Q: 70.9 L/h, IIVqr: 35.1 %GV, IVy: 43.2 %CV,
1IVg: 49.3 %CV [31] and their covariances between 1t and 1y, @ =
0.385), 1)t and ng (r2 = 0.095) and no and nyc (t* — 0.666). The 500
simulations included 250 male and 250 female patients. Serum creati-
nine was sampled, such that the sex adjusted calculated creatinine
clearance reflected the published mean and standard deviation [31,33].
The unbound concentrations [30] were linked to the PD model, devel-
oped from HFIM experiment data. The simulations were analysed at 24 h
and 72 h.

— KKs-S 1)
— KKg-R (2)
3. Results

3.1. Bacterial isolates and susceptibility testing

The tigecycline MIC values was 0.125 mg/L for Klebsiella pneumoniae
strain KP 2977, 0.25 mg/L for KP 307 and 0.5 mg/L for KP N864.

3.2. Hollow fibre experiments

3.2.1. Pharmacokinetics

The measured tigecycline PK adequately matched the originally
planned PK profiles for the respective experiments. Individual model
predictions well described the observed concentrations (Supplement,
Fig. $2). Furthermore, concentrations within the bacterial compartment
showed minor deviations from the central compartment, see Supple-
ment Table S2.

3.2.2. Pharmacodynamics

For each performed HFIM experiment, the time course of determined
colony forming units per mL (CFU/mL) is displayed in Fig. 2.

For the KP 2977 (MIC of 0.125 mg/L), neither the standard dose (100
mg LD, 50 mg ql12h, 30 min short infusion), nor high dose (100 mg
q12h) tigecycline prevented regrowth to maximum bacterial counts. The
high dose regimen given as continuous infusion (100 mg LD, 200 mg
q24h) revealed a prolongation, but no suppression of the regrowth. A
dosing regimen with 200 mg LD, 100 mg g8h daily dose, revealed a
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Fig. 3. Observed logl0cfu/mL vs. fAUC/MIC at 12 h and 24 h, together with a fitted sigmoidal maximum effect model using extended least squares (solid line). Gray
dashed y-intercept displays the estimated start inoculum (6.7 log;oCFU/mL) of the pharmacometric PD model with corresponding x-intercept (left: fAUCg.;2,/MIC of
17.2, right: fAUCq.24n/MIC of 38.5) which is related to an exposure to achieve stasis).

sustainable antibiotic effect against KP 2977 with a reduction from 107
to 10* CFU/ml within 72 h.

High dose tigecycline against KP 307 (MIC 0.25 mg/mL) showed an
initial one log;o CFU/mL decline, but a fast growth to 10° CFU/mL
followed, which was also observed for the continuous high dose tige-
cycline infusion scenario. The dose regimen of 200 mg LD followed by
100 mg q8h initially reduced the bacteria from 107 to 10° CFU/mL but
did not show stasis or a reduction of CFU/mL until the end of
experiment.

For the strain KP N864 with the highest MIC (0.5 mg/L), we tested a
very intense dosing scenario of 200 mg LD, 600 mg q24h given
continuously to maintain the concentration at least 100 % above the
MIC, but stasis was only achieved for 10 h.

Table 2

The MIC was quantified before and at the end of the experiment. In
all scenarios with regrowth, the MIC increased to 16x MIC at 100 mg
loading dose followed by 50 mg q12h, and up to 32 x MIC for KP 307
with 200 mg LD, 100 mg q8h. This dose against KP 2977 achieved a
sustainable antibiotic effect and was also able to supress the resistance
development. In this scenario the MIC increased only by a factor of one
(Table 1).

Fig. 3 shows the PK/PD index evaluation using the fAUC/MIC target.
The observed data revealed that a fAUCq.19n/MIC of 17.2, fAUCq.24n/
MIC of 38.5 was required to achieve stasis.

3.2.3. Genetic analysis of resistant subpopulation
To identify evidence for the genetic basis of changes in tigecycline

Parameter estimates of the developed pharmacokinetic/pharmacodynamic model. Parameter uncertainty was evaluated by sampling importance resampling. For

interexperiment/ interindividual variability, the coefficient of variation (%CV) was obtained by y/

(e*) — 1 with »? representing the estimated variance in NONMEM.

Model Lxplanation Lstimate 95 % confidence
parameter interval
CL Tigecycline clearance (L/h) 20.2 15.4-25.1
Ve Central volume of distribution (L) 109 85.2-144
Q Intercompartmental clearance (L/h) 56.3 45.9-69.7
Vp Peripheral volume of distribution (L) 706 447-1138
RESpx Proportional residual error (pharmacokinetics) (%) 20.5 18.4-23.2
Ve, Interexperimental variability on CL (%CV) 15.8 1.70-33.9
1Vy, Interexperimental variability on Ve (%CV) 44.4 26.4-69.7
Vo Interexperimental variability on Q (%CV) 35.1 16.2-53.5
IVy, Interexperimental variability on Vp (%CV) 80.4 51.7-122
10V Inter-occasion variability on CL 40.6 21.6-57.9
10Vy Inter-occasion variability on V1 20.7 4.30-41.8
Sy Bacterial inoculum of susceptible bacteria at ty (log;yCFU/mL) 6.66 6.40-6.90
1Vso Variability of inoculum of susceptible subpopulation (%) 7.29 5.10-9.40
Ry Bacterial inoculum of resistant bacteria at ty (log;oCFU/mL) 2.0 1.95-3.18
Vo Variability of inoculum of resistant subpopulation (%) 34.0 24.6-41.2
Buiax Maximum bacterial count (log10CFU/ml.) 9.8 9.75-10.0
Ipax Maximum inhibition of growth of R and S 1 Fixed
ICs0,8 Tigecycline concentration at the half maximal growth inhibition for the susceptible bacterial subpopulation (mg/L) for 0.12 0.07-0.20
MIC of 0.25 mg/L
ICs0, & Tigecycline concentration at the half maximal growth inhibition for the resistant bacterial subpopulation (mg/L) for MIC ~ 0.19 0.09 0.33
of 0.25 mg/L
¥ Hill factor for the resistant subpopulation 0.47 0.40-0.56
¥ Hill factor for the susceptible subpopulation 1 Fixed
Kg Growth rate of bacterial subpopulations (h ) 3.68 3.20-4.14
Ky Killing of susceptible and resistant subpopulation ™" 1.56 1.21 1.94
Y Covariate MIC on ICsq s 0.29 0.01-0.55
Or Covariate MIC on ICso 1.73 1.53-1.94
RES;), Additive residual error (pharmacodynamics) (logyoCFU/mL) 1.02 0.74-1.23
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Fig. 4. Clinical trial simulations of standard dose (100 mg loading dose (LD), 50 mg q12 h), high dose (100 mg q12 h), intensified standard dose (100 mg LD, 50 mg
q8 h), as well as variation of the loading dose (200 mg LD, 100 q 12h). Coleny forming units (CFU/mL) at 24 h and 72 h are displayed for each simulated dosing
scenario. Gray dashed y-intercept displays the estimated start inoculum (6.7 log,oCFU/mL) of the pharmacometric PD model.

susceptibility, genomes of two tigecycline-resistant K. pneumonia iso-
lates obtained after exposure to a) the clinically recommended high dose
tigecycline (100mg, 100 mg q12) (KP 307-149) and b) from the scenario
observing the highest increase of MIC at the end of experiment (200 mg,
100 mg q8) (KP 307-148) were sequenced. Comparative genome anal-
ysis of KP307-148 with wild-type KP 307 identified a total of 21 non-
synonymous single nucleotide polymorphisms (SNPs) and 15 insertion/
deletion polymorphisms (INDELSs) in coding regions. Of those three have
previously been associated with tigecycline resistance in Enterobacterales
(ramR, lon, msbA; Supplement Table S3, marked yellow). In KP 307-149,
only one nonsynonymous SNP was identified in a coding region (Sup-
plemental Table S3, marked cyan). Moreover, only one INDEL was
found, intriguingly being identical to an insertion within mrkD (encod-
ing for a fimbria adhesion) also identified in KP307-148 (Supplement
Table $3, marked blue).

3.2.4. PK-PD modelling

The developed PK-PD model (Fig. 1) described all mimicked sce-
narios in the HFIM well (Fig. 2, Supplement Fig. S2). Parameter esti-
mates of the developed model are reported in Table 2. Tigecycline PK in
the HFIM was best described by a two-compartment model (dAIC: -235
to a one compartment model, dAIC: -0.54 to a three-compartment
model). Inter-experiment variability on clearance (15.8 %CV), central
volume of distribution (44.1 %), inter-compartmental clearance (35.1 %
CV), and peripheral volume of distribution (80.4 %CV) strongly
improved the model fit. For the residual unexplained variability, a
proportional error model was appropriate (dOFV to combined error
model: -0.18, dOFV to additive error model: +779). Moreover, inter-
occasion variability was supported on clearance (40.6 %CV) and cen-
tral volume of distribution (20.7 %CV).

A two-compartment bacterial population model was chosen to model
the colony forming units (CFU/mL) over time, as a one compartment PD
model was not able to describe the biphasic killing pattern in the data.
Additionally, a sigmoidal variant of the IMAX model was supported for
the resistant subpopulation (yR), see Fig. 1. A sigmoidal slope model for
S and R was inferior with respect so model fit (dAIC: +133), so as the
sigmoidal Emax model on R (dAIC: +358) or on both subpopulations
(dAIC: +747).

3.2.5. Simulations
The Monte Carlo simulations revealed a regrowth to maximum
bacterial counts for KP 307, KP 864 within the first 24 h using the

standard dose regimen (Fig. 4). Neither the high dose scenario with or
without loading dose, nor the scenario using the standard dose given
q8h prevented regrowth. On the other hand, the scenario of high dose
tigecycline with a loading dose (200 mg, 100 mg ql2h) achieved a
reduction from (ton: 10%7 to 10%° CFU/mL against KP 2977 (MIC of
0.125 mg/L at 24 h), see Fig. 4. In contrast to that, analysing the data at
72 h showed lower effect sizes. The initially observed antibiotic effect of
high dose tigecycline with loading dose of 200 mg against KP 2977 was
not permanent, and we observed a regrowth to 10° CFU/mL. With that,
tigecycline reduced the KP 2977 count only by -10%% CFU/mL,
compared to KP 307 and KP N864 at 72 h. In the van Wart’s et al. study
population, male patients exhibited a 20.6% higher clearance compared
to female patients. The simulations demonstrated a significant differ-
ence of CFU/ml between male and female patients within the first 24 h
(200 mg, 100 mg q12h, MIC of 0.125 mg/L: 10%° vs. 10%® CFU/mL, p-
value: 5.2 -1075 using a t-test), however the antibiotic effect was not
sustained over time, see Supplement Fig. S3.

4. Discussion

The study explored different dosing regimens against three Klebsiella
pneumoniae isolates to establish a PK/PD relationship. Despite the iso-
lates initially being considered susceptible to tigecycline, regrowth was
observed at standard doses. The study found that altering the dosing
regimen sustained effectiveness against one isolate (MIC 0.125 mg/L).
Yet regrowth in other scenarios indicated possible resistance to tigecy-
cline, as shown by an increase in minimum inhibitory concentration
(MIC) after treatment.

According to EUCAST guidelines indicating susceptibility to high
dose tigecycline [14] among the tested clinical isolates, this study
revealed limited in vitro efficacy at standard doses. It corresponded with
observed suboptimal clinical effectiveness [3,6,7,17].

Moreover, high dose regimens failed to delay regrowth, as the
regrowth started prior to the second dose. Falagas et al.’s systematic
review concluded that evidence supporting the use of high dose tige-
cycline is limited [17]. While no significantly improved microbial
eradication was observed, there was a possibility of enhanced clinical
outcomes. The published studies overall exhibit a high risk of bias and
uncertainty, attributed to small study sizes and a range of severe in-
fections in critically ill patients [6,17,34]. Additionally, there have been
no randomized controlled trials conducted to verify the efficacy of high
dose tigecycline.
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In our study, increased dosing (200 mg LD, 100 mg q8h) successfully
suppressed regrowth prior to 12 hours, specifically against Klebsiella
pneumoniae 2977, the strain with the lowest MIC of 0.125 mg/L. Stasis
was not observed within the first 24 hours with standard clinical doses.
Hence, tigecycline efficacy in the HFIM was seemingly dependant on the
MIC prior to drug exposure and presence of resistance genes. Emergence
of tigecycline resistance has been repeatedly reported to occur during
treatment in vivo. In fact, using KP 307 as an example, comparative WGS
identified frameshift mutations in ramR and lon, being reported to
negatively control expression of ramA [35,36]. Therefore, it appears
plausible to assume that in KP 307-148, up-regulation of ramA and
subsequent overexpression of acrAB is likely contributing to tigecycline
resistance in the isolate [35]. This mechanism has also been shown to be
relevant in vivo, supporting the clinical validity of the model employed.

According to EUCAST, the studied strains are deemed susceptible,
but the present data indicates that the breakpoint might be set too
optimistic, at least if the exposure shall also safely prevent progression of
the infection into the bloodstream. Similarly, this conclusion applies to
the FDA breakpoint, where isolates with MIC < 2 mg/L are deemed
susceptible. Ambrose et al. revealed that clinical response and PK-PD
target attainment (AUC/MIC > 6.96) is only poorly correlated at MIC
values >0.25 mg/L for Enterobacteriaceae, which is in line with our
analysis. However, the ECOFF of Klebsiella pneumoniae is 2 mg/L [13].
This means that the investigated MICs of strains are rather an optimistic
selection from the overall bacterial population. This underlines the need
to further evaluate the use of tigecycline against Klebsiella pneumoniae
and further review of clinical breakpoints.

Tigecycline showed atypical nonlinear protein binding in vitro and
we assumed a static fraction unbound of 66.3 %, as most of our
mimicked concentrations were below 0.3 mg/L [30]. Stein et al. sug-
gested higher exposure at the target site, but these values were derived
from homogenized biopsy samples, that represent a mixture of both free
and bound concentrations from different compartments (cells, intersti-
tial fluid, capillaries) [37].

Therefore, these values need to be interpreted with caution. Micro-
dialysis is a more accurate method to evaluate unbound tissue concen-
trations, showing similarity between unbound tissue and plasma
concentration [38]. Moreover, in a recent microdialysis study conducted
by Dorn et al., the concentrations in the interstitial fluid of subcutaneous
tissue were not observed to be higher than in plasma [39]. A common
assumption is that only unbound drug can exhibit PD activities, which
also applies to target sites. Therefore, we assume that the here mimicked
unbound plasma concentrations can provide insight into tissue target
site concentrations of tigecycline and its capability to prevent bacter-
aemia. Comparing tigecycline concentrations in the sampling and bac-
terial compartments showed minor differences. Therefore, we assumed
negligible losses from adsorption to the hollow fiber membrane. This is
supported by Broeker et al.’s findings of no tigecycline adsorption to a
polysulfone membrane in critically ill patients undergoing renal
replacement therapy [40].

Tigecycline effectiveness relies on both the immune system presence
and the bacterial load [41], leading to higher cure rates in patients with
lower bacterial burdens at the target site. However, the inoculum of 107
used in this study might not accurately depict this. The HFIM lacks the
host immune response and cannot mimic surgical interventions or
drainage. It represents optimal growth conditions, unlike infection sites
with lower nutrient supply and reduced pH, thus reflecting worst-case
scenarios for immunosuppressed patients.

5. Conclusion

In conclusion, the clinically used tigecycline doses did not have an in
vitro antibiotic activity against carbapenemase producing Klebsiella
pneumoniae whereas drug exposure induced a strong MIC increase.
Dose escalation to q8h high dose tigecycline might be a treatment
option for infections caused by Klebsiella pneumoniae with an

Diagnostic Microbiology & Infectious Disease 108 (2024) 116153

MIC < 0.125 mg/L to prevent progression of infection and transition to
bloodstream infection. Combination treatments with tigecycline should
be further explored to prevent resistance development.
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Synopsis

Tigecycline is a last treatment option for patients with severe infections, but pharmacokinetic data
in vulnerable liver-impaired patient population are lacking. Thus, dose adjustments to support
rational and effective treatments are necessary. The present study investigated the
pharmacokinetics of tigecycline in 39 patients with acute and chronic liver impairment, displaying
the largest study in this patient collective so far. With a population pharmacokinetic model,
covariate-based dosing strategies for that special patient population were evaluated and Monte
Carlo simulation applied. Possible covariates were obtained from liver and kidney related
physiological parameters. This study revealed, that tigecycline clearance was strongly reduced,
leading to remarkably high drug exposure, compared to non-critically ill populations. Moreover,
high tigecycline exposure was best predicted with the Child Pugh score and no other (liver-related)
covariates were superior. Furthermore, patients reached high dose tigecycline (100 mg q12h)
exposure of non-critically ill patients with a dose reduction (25 mg as a maintenance dose). Therapy
failure was related to chronic liver disease and renal failure, but survival was not related to drug
exposure. Due to the high variability of tigecycline pharmacokinetics across different study groups

further investigations to enhance clinical outcome are warranted.
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Abstract: This study investigated tigecycline exposure in critically ill patients from a population
pharmacokinetic perspective to support rational dosing in intensive care unit (ICU) patients with
acute and chronic liver impairment. A clinical dataset of 39 patients served as the basis for the
development of a population pharmacokinetic model. The typical tigecycline clearance was strongly
reduced (8.6 L/h) as compared to other populations. Different models were developed based on
liver and kidney function-related covariates. Monte Carlo simulations were used to guide dose
adjustments with the most predictive covariates: Child—Pugh score, total bilirubin, and MELD score.
The best performing covariate, guiding a dose reduction to 25 mg q12h, was Child-Pugh score C,
whereas patients with Child-Pugh score A/B received the standard dose of 50 mg q12h. Of note,
the obtained 24 h steady-state area under the concentration vs. time curve (AUCss) range using this
dosing strategy was predicted to be equivalent to high-dose tigecycline exposure (100 mg q12h) in
non-ICU patients. In addition, 26/39 study participants died, and therapy failure was most correlated
with chronic liver disease and renal failure, but no correlation between drug exposure and survival
was observed. However, tigecycline in special patient populations needs further investigations to
enhance clinical outcome.

Keywords: population pharmacokinetics; Child-Pugh score; dose adjustment

1. Introduction

Tigecycline, belonging to the class of glycylcyclines, is a last-resort antibiotic and
currently approved for complicated skin and skin structure infections (¢SSI), complicated
intra-abdominal infections (cIAl), and community-acquired pneumonia. Its broad spec-
trum includes Gram-negative and Gram-positive strains, as well as multidrug-resistant
pathogens [1]. Tigecycline is considered a bacteriostatic drug that inhibits the bacterial
protein translation by binding to the 30S ribosomal subunit [2]. The 24 h steady-state
area under the drug concentration vs. time curve (AUC) to minimum inhibitory con-
centration (MIC) ratio (AUC/MIC) of >17.9 (cSSI) and >6.96 (clAl) describes the pharma-
cokinetic/pharmacodynamic (PK/PD) target of tigecycline [3,4]. The US Food and Drug
Administration (FDA) does not recommend tigecycline as a first-line therapy of patients
with severe infections. In a pooled analysis comparing tigecycline to other antibiotics in
serious infections, there was an increased risk of death (4% (150/3788) vs. 3% (110/3646)),
revealing an all-cause mortality of 0.6% (95% CIL, 0.1% to 1.2%) probably due to progression
of the infection [5]. This increased mortality was seen mostly in patients treated off-label
for ventilator-associated pneumonia [5] and led to a black box warning by the US FDA
(1 September 2010; 27 September 2013). However, with increasing resistance to first-line
antibiotics and/or the lack of other treatment options, tigecycline is often one of a few last
opportunities to treat severe infections. In addition to rational evaluation of the indication,
the optimal dose is crucial to balance microbial eradication and tolerable side-effects. Sev-
eral studies have reported increased microbiological eradication with higher tigecycline
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doses [6-10]. In addition, previously published studies have reported altered tigecycline
pharmacokinetics in ICU patients [6,11]. Therefore, standard dosing may not be suitable for
ICU patients, as compared to non-critically ill patients. Dose adjustment for drugs, which
are metabolized or eliminated through the liver, is mostly performed by applying Child-
Pugh Score (CPS) classification, as no single lab parameter can determine liver function and
elimination capacity. The CPS originally assesses prognosis in chronic liver diseases and
is generally classified in mild, moderate, and severe hepatic impairment, corresponding
to scores of A (CPSu), B (CPSg), and C (CPSc). The tigecycline drug dossier informs
about dosage in hepatic insufficiency, guiding no dose adjustment (100 mg initial dose,
50 mg q12h, i.v.) in mild or moderate impaired patients (CPS,, CPSg), but a maintenance
dose reduction to 25 mg q12h for severe impaired patients with CPSc. Moreover, cirrhotic
patients have a higher risk for infections with Gram-positive bacteria, which can also cause
progression of liver failure. In addition to that, the severity of infections in these patients is
often increased and correlated with a higher mortality [12]. Nevertheless, dosing decisions
are often associated with uncertainty. On the other hand, bilirubin was previously related
to tigecycline exposure, but has not been exploited for dose adjustments yet [13,14].

Hence, further data are required to elucidate the pharmacokinetics of tigecycline in
liver-impaired critically ill patients. Therefore, we performed a population pharmacokinetic
(popPK) analysis of tigecycline in this special patient population while evaluating liver-
related clinical laboratory parameters (covariates) using a nonlinear mixed-effects modeling.
Based on the developed popPK model, Monte Carlo simulations were used to investigate
suitable covariates for dose adjustment and simulations of target attainment.

2. Results
2.1. Study Participants

This study recruited 39 patients, who contributed 283 timed plasma measurements of
tigecycline to the pharmacokinetic (PK) model development. Table 1 summarizes patient
characteristics, clinical laboratory data, infective pathogens, as well as underlying liver
disease. Gram-positive bacteria or multiple pathogens mainly caused the infections. Two
patients were undergoing renal replacement therapy (RRT), which was not considered
as a relevant co-condition, as a previous study showed no relevant influence of RRT on
tigecycline PK [13].

Table 1. Demographic and clinical patient characteristics. Clinical laboratory values are described by
median with minimum and maximum values in square brackets.

Patient Characteristics Total (n = 39)
Male (n) 13 (32.5%)
Female (n) 27 (67.5%)
Age (years) 62 [34, 85]
Weight (kg) 80.0 [44.5,119]
Clinical laboratory parameters
ALT (U/L) 33.5(7.00, 928]
AST (U/L) 55.0 [13.0, 1300]
Total bilirubin (mg/dL) 2.64[0.190, 18.6]
De-Ritis ratio 1.54 [0.167, 4.00]
Y-Clutamyltransferase (U/L) 120 [23.0, 1670]
INR 1.44 [0.970, 2.69]
LiMAXx test [ug/h/kg] 170 [18.0, 596]
MELD score 18 [9.00, 37.0]
Serum creatinine [mg/dL] 1.09 [0.330, 3.31]
eGFR (CKD-EPI) 68.8 [17.2-149.8]
Thrombocytes (g/L) 148 [15.0, 777]
Child-Pugh score A (n) 21
Child-Pugh score B (n) 15

Child-Pugh score C (n) 3
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Table 1. Cont.

Patient Characteristics Total (n = 39)

Underlying diseases

Acute liver impairment 22
Chronic liver disease 17
Klatskin tumor (type I, ITa, TIb, IV) 7
Liver abscess 3
Cholangiocarcinoma 2
Complicated cholecystitis 1
Liver cirrhosis 2
Hypoperfusion of the liver 1
Cholangiogenic sepsis 1
Ascites: none (n) 7
Ascites: Grade 1(n) 16
Ascites: Grade 2 (n) 16

Microbiological isolates
Enterococcus avium (n) 1
Enterococcus faccalis (n) 4
Enterococcus faeciunt (n) 10
Escherichia coli (n) 4
Klebsiella pneumoniae (n) 1
MRSA (n) 2
Staphylococcus epidermidis (n) 6
VRE (n) 12

Abbreviations: ALT: Alaninc aminotransferase, AST: Aspartate aminotransferase, LIMAx: Maximum liver function
capacity, eGFR: estimated glomerular filtration rate, MELD: Model end-stage liver disease, INR: International
normalized ratio, MRSA: Methicillin-resistant Staphylococcus aureus, VRE: Vancomyecin-resistant Enterococci.

2.2. Pharmacometric Data Analysis
2.2.1. Base Model

To analyze the plasma pharmacokinetics, nonlinear mixed-effects modeling was ap-
plied. A two-compartment model with linear disposition and elimination described tigecy-
cline plasma pharmacokinetics and was superior to a one-compartment model to describe
plasma pharmacokinetics (difference in Akaike Information Criterion (dAIC): —397). The
residual unexplained variability was described by a proportional error model, and neither
an additive error (drop of objective function value (dOFV): +206) nor a combined additive
and proportional error model provided a better model fit (dOFV: —0.013). Interindivid-
ual variability (IIV) was supported on clearance (CL) (dOFV: —442), on central volume of
distribution (V) (dOFV: —48), and on peripheral volume of distribution (V) (dOFV: —35).
ETA-shrinkage was as low as 0% for CL and 13% for V,, indicating that most of the in-
dividuals contributed to these estimates of IIV. ETA-shrinkage was higher for V,, (43%),
indicating that this 11V estimate was not supported by all subjects.

2.2.2. Covariate Analysis

Exploratory graphical analysis and clinical relevance guided covariate selection for
a stepwise covariate analysis procedure. For aspartate aminotransferase (AST), alanine
aminotransferase (ALT), y—glutamyltransferase (GGT), platelet count, and international
normalized ratio (INR), no trends of individual PK parameters vs. these covariates were
observed. Moreover, we did not include serum creatine into the covariate analysis, as
estimated glomerular filtration rate (eGFR) carries more information about the kidney
function. eGFR, total bilirubin (bilirubini), the maximum liver function capacity test
(LiMAX test), the Model for End-Stage Liver Disease (MELD score), and CPS were tested on
CL, and weight, sex, and age on V. were considered as potential covariates in the population
PK model. In the first step of the forward inclusion procedure, eGFR, bilirubiny, CPS,
as well as MELD score on CL and weight on V. were significant covariates and reduced
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the IIV significantly (Table 2). From this starting point, three covariate models were
built using either composite covariates (Models A and B) or continuous ‘raw’ covariates
(Model C): Model A included CPS as a categorical covariate on CL to represent clinical
practice. Model B included the MELD score, and Model C was built following the regular
forward inclusion backward elimination procedure using the ‘raw’ covariates excluding
the composite covariates Child—Pugh score and MELD score.

Table 2. Covariate analysis results from base model to first step in the forward inclusion, full models,
and backward elimination.

Implementation of

bl Covariate Relationship el by Ik pealne
. . CL: 48.2%
Base model —914.3 Two-compartment model with proportional error model Ve: 85%
—928.6 linear bilirubinge /CL -14.3 CL: 40.9% <0.001
—947.9 power bilirubing /CL —33.6 CL: 36.5% <0.001
—931.7 exponential bilirubing, /CL —17.4 CL: 39.2% <0.001
—950.4 lincar cGFR/CL —36.1 CL: 47.3% <0.001
923.4 power eGFR/CL 9.0 CL: 43% 0.003
—942.1 exponential eGFR/CL —285 CL: 48.4% <0.001
—930.8 linear LiMAx test/CL —16.5 CL: 59.1% <0.001
—926.5 power LiMAX test/CL —12.3 CL: 41.7% <0.001
918.1 exponential LiMAXx test/CL 3.81 CL: 54.6% 0.051
. . . —926.0 categorical Child-Pugh/CL -11.8 CL: 41.6% <0.001
Fonvardindlusion . gig5 linear MELD/CL —394 CL: 39% 0.047
—919.7 power MELD/CL —5.45 CL: 37.9% 0.019
—918.1 exponential MELD/CL -3.83 CL: 38.7% 0.050
—924.1 linear WT/V. —9.88 Ve 68.6% 0.002
—920.9 power WT/V, —6.71 Vi 73.6% 0.009
—917.9 exponential WT/V, —3.60 Ve 77.7% 0.058
—-921.4 linear age/Vc —7.08 Ve: 75.5% 0.008
—916.9 power age/V. —2.60 Ve 85% 0.107
—920.8 exponential age/V¢ —6.51 Ve 77.7% 0.011
—918.1 categorical sex/Ve -39 Ve: 85.9% 0.048
Child-Pugh/CL (categorical) CL: 41.6%
Full model A —936.0 e Ve (linear)g 217 W
MELD/CL (power) CL: 37.9%
Full model B 929.5 WT/V, (linear) 153 Ve: 69.1%
55 cGFR (lincar), bilirubing, (power), on CL €1:37.5%
Full model C —974.4 W (linear) on 1\’,C —60.1 Vol 700%
linear eGFR/CL 16.9 <0.001
B.aclfwa.rd power bilirubing /CL 13.5 <0.001
elimabion lincar WT/ V. 10.1 0.0014

Abbreviations: CL: Clearance, Ve: Central volume of distribution, IIV: Inter-individual variability, bilirubing:
Total bilirubin, eGFR: Estimated glomerular filtration rate (CKD-EPI formula), LiMAx: Liver function capacity
test, MELD: Model for end-stage liver disease, WT: Weight.

For Model A, the inclusion of the CPS as a categorical covariate was significant (dOFV:
—11.7) and resulted in a descending order of tigecycline CL in relation to CPS. CPS¢
patients showed a 50.1% reduced CL compared to patients with a score of CPSy /5. In
addition, weight on V. was significant (linear, dOFV: —9.9). TV, was reduced from 48.2%
to 41.8% and IIVy, from 85% to 70%. Supplementary Table S1 shows all final parameter
estimates of that model.

For Model B, the MELD score, as a composite measure of liver and kidney function
parameters, was a significant covariate on clearance (power, dOFV: —5.45). IV was
reduced from 48.2% to 37.9%. 1IVy, was reduced from 85% to 69.1% with weight on V..
Final model parameters are displayed in Supplementary Table 52.
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For Model C, the final model included eGFR (linear, dOFV: —16.9) and bilirubing
(power, dOFV: —13.5) on CL and weight (linear, dOFV: —10.1) on V.. IV, was reduced
from 48.2% to 38.3% and IIVy, from 85% to 72.4%. Reduced eGFR and higher bilirubing
values corresponded to a lower CL to different extents. From the minimum to the maxi-
mum eGFR and bilirubing: value, the CL range totaled 5.62-10.5 L/h and 4.15-11.0 L/h,
respectively. Supplementary Table 53 shows the final model parameter estimates of this
model. Both the goodness-of-fit plots and prediction-corrected visual predictive checks
(pe-vpe) indicated a good overall fit (Supplementary Figures S1 and S2). The median pe-vpc
predictions and observations are best overlayed in Model A, and Model B showed a slight
increase in confidence intervals at the 95th percentile.

The statistically best fitting model was Model C with an AIC of —952 and residual
unexplained variability (RUV) of 12.4%, compared to Model A: —913 and Model B: —909.
Nevertheless, the MELD score as a single covariate on clearance (Model B) could best
reduce the [TV (—10%) and, with that, to the same extent as Model A, which included
two covariates on CL.

2.3. Monte Carlo Simulations

Standard- (100 mg loading dose (LD), 50 mg q12h maintenance dose (MD)) and low-
dose tigecycline (100 mg LD, 25 mg q12h MD) were simulated (n = 1000). Simulation
results were used to explore dose adjustment strategies and probability of target attainment
(PTA). In our study population, the simulated AUCs; values after standard dosing using
the best fitting covariate model (Model C) were 12.4 mg-h/L in median (2.5th to 97.5th
percentile: 4.10-27.1 mg-h/L) and thus in the range of the median ‘reference’” AUCgs values
after high-dose tigecycline (100 mg q12h MD) in non-critically ill patients (10.1 mg-h/L,
5.28-17.1 mg-h/L) (AUCgs.yw in Figure 1), yet more variable, indicating the need for dose
adjustments. Indeed, if patients with CPSc received the standard dose of 50 mg q12h, they
displayed a 44.4% increased AUC,, and a 117.5% increased steady-state Cryin, compared to
CPSy /. Therefore, only 33% of the patients would lie in the AUCg; reference range due to
overexposure (Figure 1).

40 8
o
8
o
301 =
r=an g AUCss—vW
2|~ —- 25th
%) 1 <=+ 50th
S 20
< e ———f-——1 =—- 975th
10. ————— - - - - - -—tmecmmeme
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Figure 1. Simulated AUCg in patients with Child-Pugh A/B and C and standard-dose tigecy-
cline (50 mg q12h MD) compared to the simulated AUCg,.w ‘reference’ of high-dose tigecycline
(100 mg q12h MD) in non-critically ill patients.

Using CPSc to guide a dose adjustment to a maintenance dose of 25 mg q12h MD pro-
vided the best alignment with the AUC,; ‘reference’ range, both in terms of the agreement
of median AUC,; and the fraction of simulated patients lying within the 2.5th and 97.5th
AUC; interval (Figure 2). For the covariates MELD score, bilirubin, and eGFR, the optimal
cut-offs for a dose reduction were found at >30, >10 mg/dL, or <30 mL/min, respectively.
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Figure 2. AUC; from dose-adjusted low-dose tigecycline (25 mg q12h MD) groups vs. non-adjusted
groups receiving standard-dose tigecycline (50 mg q12h MD) in our cohort, compared to the 95%
interval of 100 mg q12h MD tigecycline from van Wart et al. in non-ICU patients without hepatic
impairment (AUCg,.vw, vertical lines). Optimal cutoffs for dose adjustment investigation were CPSc,
total bilirubin > 10 mg/dL, MELD score > 30, and eGFR < 30 mL/min. The quantity [%] of simulated
individuals within the 95% interval of AUC,,.,w is displayed.

However, the agreement of both median AUCs and the fraction of patients lying
within the ‘reference’ range was considerably lower as compared to when using CPSc to
guide dose adjustment, and eGFR was found to perform worst (Figure 2).

2.4. Probability of Target Attainment

The alignment of the probability of PK/PD target attainment vs. MIC curve was highest
when using the CPS-guided dosing. Nonetheless, all evaluated dose adjustment strategies pro-
vided a high (>90%) probability to attain the target for cIAI (PTAgygy,, AUCss/MIC > 6.96 [4])
for pathogens with a MIC < 0.5. For the higher ¢SSI target (AUCss /MIC > 17.9 [3]), PTAggy,
was attainted for pathogens with a MIC < 0.25 (Figure 3).

2.5. Study Outcome

In this study, 8/39 patients (20%) showed clinical cure, 5/39 (13%) intermediate cure,
and failure was observed for 26/39 (67%) patients. To evaluate clinical outcome, this
analysis used odds ratios. The strongest correlation between therapy failure was observed
for chronic liver disease (OR: 14.2 Clgse;,: 8.89-24.3), followed by serum creatinine (OR: 4.55,
Clgse,: 3.34-6.37), where the probability of therapy failure increased with increasing serum
creatinine. eGFR, calculated by the CKD-EPI formula, was less significant (OR: 0.98, Clgse;:
0.95-0.99), compared to solely serum creatinine. INR with an OR of 0.36 (Clgsy,. 0.25-0.51),
bilirubinge: (OR: 1.30, Clgse,: 1.22-1.39) and MELD score (OR: 1.13, Clgso,: 1.10-1.16) were
significant predictors of death. Neither the CPSc, AUC,yy, of tigecycline, nor the pathogen
causing the infection or other laboratory data were predictive for therapy failure or death.
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Figure 3. Probability of target attainment (PTA) analysis of AUCs,/MIC ratio > 17.9 and > 6.96
over minimal inhibitory concentration (MIC). Dose adjustment (25 mg q12h MD) was applied for
individuals with bilirubin > 10 mg/dL, MELD score > 30, and eGFR < 30 mL/min and compared
to non-adjusted (50 mg q12h MD) groups, as well as Child—Pugh score-based dose adjustment.
Horizontal dotted line denotes 90% PTAggy,.

3. Discussion

The present study aimed to assess the effects of different covariates on tigecycline
exposure to evaluate their potential use as predictors for high and potentially suprathera-
peutic AUC values and their ability to guide dose adjustments in severe liver impairment.
This patient cohort had highly variable AUC values, but the results agreed with previous
findings, that CPSc is able to guide a maintenance dose reduction from 50 mg to 25 mg q12h.

This study recruited a very vulnerable cohort with tigecycline treatment, which has
not been represented well in the literature so far. Patients had different stages of acute and
chronic liver impairment, exemplified by the strongly reduced typical CL of 7.52 L/h in our
cohort compared to healthy volunteers, other ICU patients (e.g., 18.3 L/h [13], 22.1 L/h [15],
13.5 L/h [16]), and non-ICU patients (e.g., CL of 16.8 L/h [17] and 18.6 L/h [18]). Hence,
simulated AUCgs values were strongly increased at standard tigecycline dosing. Un-
doubtedly, safe and effective treatment is mandatory for these patients. However, dose
adjustment for hepatically eliminated drugs is challenging, because the hepatic clearance
cannot be solely determined by a single endogenous marker, such as creatinine clearance
as a surrogate for renal drug clearance [19]. In our dataset, the CL reduction for patients
with severe liver impairment with CPS¢ was 50.1% and hence in line with the findings of
Korth-Bradley et al. who found a CL reduction of 50.6% [20]. Hence, our results affirm the
proposition by Korth-Bradley et al. to use CPS¢ to guide dose adjustment. Furthermore,
our covariate analysis identified bilirubini., eGFR, and MELD score as covariates of CL.
Tigecycline is not exclusively metabolized, but substantially biliary excreted, explaining
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the correlation of bilirubin and MELD score to tigecycline clearance [21]. Moreover, the
MELD score was recently suggested for dose adjustment in critically ill, liver decompen-
sated patients, but was not directly compared to the CPS [22]. Furthermore, eGFR was a
highly significant covariate in our study population. Kidney function is also affected with
progression of liver disease [23], which could explain this strong correlation to tigecycline
clearance. Korth-Bradley et al. observed a 20% decreased tigecycline clearance in renally
impaired subjects, but no dose changes were recommended, as renal clearance accounts for
only 20% of the total body clearance [24]. Our study results are in line with these findings,
that strong eGFR reduction is not a signal to adjust the dose. Hence, CPS performed best to
equalize tigecycline exposure in dose-adjusted (25 mg q12h MD) vs. non-adjusted patients
(50 mg q12h MD), while maintaining an exposure equivalent to 100 mg q12h tigecycline
observed in non-critically ill patients [18]. However, the CPS bears some limitations for use
in clinical practice, as it is a composition of clinical variables and subjectively determined
disease statuses [16,25]. In case CPS is unavailable, bilirubing: or MELD score might serve
as alternatives to guide dose adjustment.

The dose adjustment algorithms evaluated in this study aimed to achieve an exposure
profile equivalent to high-dose tigecycline (100 mg q12h MD) in non-ICU patients, as
several studies have reported that the standard dose regimen of 50 mg q12h MD is not
sufficient to achieve a reliable treatment success [6,10,26-28]. The current EUCAST MIC
breakpoints for susceptible Enterobacterales and Staphylococcus is <0.5 mg/L (http://www.
eucast.org/clinical_breakpoints/, accessed on 21 March 2022). Our simulations challenge
this breakpoint as the PTAg, results indicate sufficient target attainment at an MIC of
0.5 mg/L only for the cIAl target, but insufficient target attainment for the ¢SSI target even
under high-dose tigecycline conditions. This is in line with the findings of Kispal et al., who
concluded with escalating the dose to 150 mg i.v. q12h in patients with higher MICs [29].

The clinical data revealed MELD score and their components (bilirubin and SCR) to be
predictive for survival in our collective. Contrarily, higher AUCyy, or AUC7yy, values were
not associated with a higher cure rate, indicating that other factors such as the underlying
(liver) disease, organ dysfunction, and infection mostly affected the patient outcomes.
According to that, previous studies of tigecycline use in critically ill patients associated
the Sequential Organ Failure Assessment score (SOFA) with clinical failure [6,30]. Finally,
further trials are warranted to enhance safety and efficacy of tigecycline treatment.

This study contributes significantly to the understanding of tigecycline pharmacoki-
netics in patients with different degrees of liver impairment. As a strength of this study,
our study individuals showed a wide spread in covariate values: Well distributed covari-
ate values are needed for derivation of reliable relationships of patient covariates with
PK parameters. However, stepwise covariate modeling is known to have problems with
selection bias and multiple testing [31], causing uncertainty in the covariate parameter
estimates. Even if this study represents the largest in the liver-impaired patient collective
with tigecycline monotherapy, a higher patient would be necessary to increase the accu-
racy of the estimates to further strengthen the conclusions. As another limitation of this
study, the study documentation did not include assessment of encephalopathy, and hence,
this variable was neglected in the CPS calculation. Several patients were mechanically
ventilated, and therefore, assessment of encephalopathy is difficult in ICU patients with
the presence of liver-unrelated comorbidity. On the other hand, the investigated dose
adjustment with CPS was proven to be a robust covariate even with the related uncertainty.

Another limitation is that tigecycline itself can induce hepatotoxicity. However, the
patients included in this study displayed pre-existing liver impairment before treatment
with tigecycline was initiated. Moreover, the frequency of tigecycline-induced hepatotoxic-
ity is low as transient elevations of serum aminotransferase levels occurs in only 2-5% of
the patients [32], and tigecycline pharmacokinetics was stable over the therapeutic course.
Hence, it is very unlikely that the observed high exposure of tigecycline in our collective is
a consequence and not a cause of liver impairment.
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4. Materials and Methods
4.1. Patients and Study Design

Patients from the surgical ICU of the Charité University Hospital, Berlin, Germany
were recruited after ethical approval (EA4/022/13). Parts of the clinical raw data were
already previously published [33], but neither were utilized for population PK modeling
nor for the development of dose adjustment algorithms. The study cohort included adult
patients older than 18 years with acute liver dysfunction secondary to sepsis, as well
as patients with chronic liver dysfunction. Moreover, pathogens associated with the
infection and clinical outcome were documented. Cure was defined as the resolution
or significant improvement of signs and symptoms of the index infection, such that no
additional antimicrobials or interventions were required. Clinical failure was defined as
death due to infection prior to end of therapy, persisting or recurrent infection requiring
additional intervention, or treatment with additional antimicrobials for ongoing symptoms
of infection. Moreover, an intermediate cure was defined as trial data, which included death
unrelated to the index infection, or extenuating circumstances that precluded classification
as cure or failure.

In brief, patients received a loading dose of 100 mg administered as a 30 min infu-
sion, followed by a maintenance dose of 50 mg q12h. Based on the treating physician’s
assessment, eight patients received high-dose tigecycline with 100 mg q12h. Medical staff
sampled at 0.3, 2, 5, 8, and 11.5 h after infusion at least 36 h after the start of therapy.
Bioanalytical quantification of tigecycline plasma concentrations was performed, as previ-
ously described [34]. In addition to patient characteristics, clinical lab parameters included
AST, ALT, GGT, SCR, eGFR according to CKD-EPI formula [35], albumin, bilirubingt,
platelet count, and INR. AST and ALT served for De-Ritis ratio calculation. This study also
evaluated the MELD score, as well as the LIMAX test, which provides a direct measure
of the metabolic capacity of the liver through phenotyping of CYP1A2 metabolism [36].
Furthermore, age, sex, body weight, and ascites status were documented. The CPS was
calculated with the given parameters of bilirubin, albumin, INR, and ascites. Ascites
were graded in none, mild (Grade 1), and moderate (Grade 2). The Child-Pugh Score
calculations assumed no present encephalopathy, due to missing data. Moreover, no drug
interaction of tigecycline was present and fluid balance was not considered. For evaluation
of the clinical outcome, this analysis calculated odds-ratios using logistic regression for all
laboratory liver parameters, the AUC;, of tigecycline, and pathogens” Gram type.

4.2. Pharmacometrics Analysis
4.2.1. Base Model

This study used the nonlinear mixed-effects modeling program NONMEM® (ICON,
Gaithersburg, MD, USA, version 7.5), controlled by PsN 5.0 (Uppsala University, Sweden),
for population pharmacokinetic analysis [37]. The population PK models were devel-
oped with first-order conditional estimation with interaction (FOCE+I). During model
development, different compartments, and residual error models (additional, proportional,
and combined) were tested. Inter-individual variability was assumed to be log-normally
distributed and tested on all pharmacokinetic parameters, which were tigecycline CL, V,
inter-compartmental clearance (Q), and peripheral volume of distribution (V).

4.2.2. Covariate Analysis

An exploratory graphical analysis in combination with clinical relevance guided
covariate selection. A stepwise method, based on the log-likelihood ratio test (forward
inclusion: p-value < 0.05, backward elimination: p-value of <0.01), was applied. This study
tested continuous covariate relationships such as power, linear, and exponential relation-
ships on the respective pharmacokinetic parameters. In addition to the pure statistical
criteria, we defined a strong 1TV, reduction > 10% as a further specification of a covariate
to be considered for evaluation of potential dose adjustment.
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4.2.3. Final Model Evaluation

We evaluated candidate models by graphical and numerical criteria (goodness-of-fit
plots, prediction-corrected visual predictive checks, drop of objective function value, and
difference in Akaike Information Criterion between two competing models (lower AIC
indicates superior model)). Parameter uncertainty was evaluated using a log-likelihood
profiling-based sampling-importance resampling routine (LLP-SIR), a technique for evalu-
ating parameter uncertainty in small datasets [38].

4.2.4. Simulations

Monte Carlo simulations (n = 1000) were utilized to simulate low- (100 mg LD,
25 mg q12h MD) and standard-dose (100 mg LD, 50 mg q12h MD) tigecycline. Covariates
were resampled with replacement from the study participants to acknowledge potential
correlations of the covariates in our study population. The candidate covariate models
were exploited for dose adjustment. The target range for dose adjustment was defined by
the AUCyy, range (10.12, 5.3-17 4 (50th, 2.5th-95th percentile). This range was achieved by
simulating high-dose tigecycline (100 mg LD; 100 mg q12h MD) in non-critically ill patients
using published pharmacokinetic information of the clinical study of van Wart et al. [18].
We chose to target the exposure after high-dose tigecycline, as it is associated with a more
favorable clinical outcome than standard-dose [6-9].

Moreover, we performed a probability of target attainment analysis (PTAgqe,) using
the target for cIAI (PTAyqy,, steady-state AUCyyp, nvic = 6.96 [4]) and the higher ¢SSI target
(steady-state AUCy4, /MIC > 17.9 [3]).

5. Conclusions

To summarize, dose reduction in severe liver impairment to a maintenance dose of
25 mg q12h was the best-guided CPS leading to AUCs values, which are equivalent to
those found in non-ICU patients undergoing high-dose tigecycline (100 mg q12h MD),
which was previously related to improve outcome. Bilirubing,: and MELD score might serve
as alternatives to guide dose adjustment but were inferior to CPS. Hence, a prospective
evaluation of the tigecycline dosing strategy in patients with severe liver impairment
is warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/antibiotics11040479/s1, Figure S1: Population or individual
tigecycline predicted vs. observed concentration and conditionally weighted residuals or normalized
prediction distribution errors (NPDE) vs. time; Figure 52: Visual predictive checks show prediction-
corrected observations of tigecycline versus time after dose of the structural two-compartment
base model and the covariate models (Model A-C); Table S1: Population pharmacokinetic model
parameter estimates stratified by Child-Pugh score as a categorical covariate on clearance (Model A)
and weight as a covariate on central volume of distribution V; Table 52: Population pharmacokinetic
model parameter estimates using the MELD score as a covariate on clearance as a power relationship
and weight on V. as a lincar relationship (Model B); Table S3: Population pharmacokinetic parameter
estimates of the final backward climination model using raw covariate values (Model C).
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Synopsis

Covariate analysis is an inherent part in pharmacometric analyses. So far, a comparison of the most
often used stepwise covariate modelling procedure (‘scm’) to the full random effects modelling
technique (‘frem’) was missing. This study introduced a ‘frem’ guided covariate selection, named
‘fremposthoc’ Standing for how ‘frem’ could be used to guide a covariate backward elimination. Both
methods are different approaches to analyse and communicate a covariate analysis, so that this
study compared on the one hand ‘scm’ with commonly used settings (scenario 1), but alsoin a ‘head-
to-head’ comparison applying a statistically similar framework (scenario 2). Moreover ‘frem’
coefficients without a selection step were analysed in scenario 3. The scenarios were evaluated
upon power to identify the true covariate, as well as precision, and accuracy of the estimated
covariate coefficients. ‘Fremposthoc’ had a up to three-fold higher power to detect the true covariate
with lower bias in small N studies (N < 50) compared to ‘scm’ (scenario 1). This finding was vice versa
in scenario 2 of note that the application of ‘scm’ does not represent common settings. For
‘fremposthoc, power, precision and accuracy of the covariate coefficient increased with higher
number of individuals and covariate effect size. Moreover, ‘frem’ coefficients without a selection
were unbiased and more accurate (scenario 3). We conclude that “frempostnoc’ is also a suitable
method to guide covariate selection, especially in small N datasets and that it is as reliable as ‘scm’

in large datasets (N >100).
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Abstract

An adequate covariate selection is a key step in population pharmacokinetic modelling. In this study, the automated
stepwise covariate modelling technique (‘scm’) was compared to full random effects modelling (‘frem’). We evaluated the
power to identify a ‘true’ covariate (covariate with highest correlation to the pharmacokinetic parameter), precision, and
accuracy of the parameter-covariate estimates. Furthermore, the predictive performance of the final models was assessed.
The scenarios varied in covariate effect sizes, number of individuals (n = 20-500) and covariate correlations (0-90% cov-
corr). The PsN ‘frem’ routine provides a 90% confidence intervals around the covariate effects. This was used to evaluate
its operational characteristics for a statistical backward elimination procedure, defined as ‘fremp,ogno.” and to facilitate the
comparison to ‘scm’. ‘Frempegnoe’ had a higher power to detect the true covariate with lower bias in small n studies
compared to ‘scm’, applied with commonly used settings (forward p < 0.05, backward p < 0.01). This finding was vice
versa in a statistically similar setting. For ‘frempognoc’, power, precision and accuracy of the covariate coefficient increased
with higher number of individuals and covariate effect magnitudes. Without a backward elimination step ‘frem’ models
provided unbiased coefficients with highly imprecise coefficients in small n datasets. Yet, precision was superior to final
‘scm’ model precision obtained using common settings. We conclude that *fremy,ooc” 18 also a suitable method to guide
covariate selection, although intended to serve as a full model approach. However, a deliberated selection of automated
methods is essential for the modeller and using those methods in small datasets needs to be taken with caution.

Keywords Covariate analysis - Population pharmacokinetics -

Introduction

Over the past decades, population pharmacokinetic mod-
elling with nonlinear mixed effects (NLME) approaches
efficiently supported drug development. During model
development covariates are analysed to establish a rela-
tionship between a model parameter and a patient specific
variable. A covariate can be any variable on patient-level
(not time varying) that influences the pharmacokinetics
(PK) or pharmacodynamics (PD) of a drug. I informative,
it reduces unexplained inter-individual PK or PD vari-
ability. To guide dose adjustments in special patient pop-
ulations (e.g. elderly, adipose, hepatically or renally
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Simulation study - NONMEM®

impaired patients), a covariate analysis is also of interest to
regulatory authoritics [1]. To date, a number of automated
covariate sclection techniques arc available [2]: these
include e.g. stepwise covariate modelling (‘scm’) [3], or
least absolute shrinkage and selection operator (lasso) [4].
The stepwise procedure tests predefined covariates on
structural PK or PD parameters of interest. Automated
covariate selection methods are statistically driven meth-
ods. The ‘sem’ includes covariates by the highest drop of
objective function (dOFV) with a predefined p-value dur-
ing the forward inclusion. In one of the more common
implementations covariates are included until the likeli-
hood ratio test identifies no significant covariate parameter
relationship anymore. Afterwards, the backward elimina-
tion reduces the covariate model to obtain the final model,
by applying a stricter p-value. This method has been
evaluated on their properties and compared to other
established methods before [5, 6]. In contrast to that, the
‘frem’ is a full model approach and includes all covariates
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ol interest as observations (i.e., explicitly defining the
likelihood of the covariate values) [7]. A full covariance
matrix quantifies the random effects of PK parameters and
describes parameter covariate relationships [8]. With the
matrix, covariances of covariates can inform for other
covariates so that this method is less sensitive to
collinearity. Covariate coefficients are obtained from the
ratio of covariance between parameter and covariate vari-
ability to the covariate variance [7].

The novel ‘frem” method has not been applied to many
clinical datasets yet |9-11]. Although ‘scm’ and ‘frem’ are
techniques that are rather complementary in nature due
their inherently different way to approach covariate mod-
elling, a structured comparison of the operational charac-
teristics using a simulation study is lacking. The aim of this
study was to compare the ‘scm’ and ‘frem’ as automated
covariate analysis methods. In order to enable a compar-
ison, we here introduce the ‘frempoeno.’ that offers a
covariate selection step from the final ‘frem’ model using
the confidence intervals around the estimated covariate
effect sizes in the final ‘frem’ model. In the present study,
the following aspects between ‘scm’, ‘frem’ and
“fremposthoc’ Were compared: (1) the power to identify the
true covariate (here defined as the covariate with the
highest correlation with the PK parameter), (2) accuracy
and precision of the estimated relationship, as well as (3)
the predictive performance. To cnable a thorough com-
parison, we investigated the impact of dataset size
(n = 20-500), and covariate correlation (0-90%) for three
covariate effect sizes in sparse simulated datasets using the
commonly used (‘scm’) or predefined (‘frem’/ fremposthoc”)
settings of both approaches as well as statistically equal
settings.

Methods

The workflow of this simulation study is shown in Fig. 1.
The simulation dataset contained three covariates sampled
from a multivariate normal distribution. The datasel was
used to simulate with a one compartment model including
the true covariate relationship on clearance. These simu-
lated clinical datasets served for ‘scm’ and ‘frem’ analyses
(n = 1000 for each scenario). Based upon the final models,
power, precision, and accuracy were evaluated. The fol-
lowing section describes the single steps in detail.

Software
NLME modelling was applied with NONMEM® 7.5.0

[12], controlled through PsN 5.0.0 [13]. The software R
(version 3.6.0) [14] was used for automated run executions
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and data analysis. The NONMEM® models as well as
relevant R code are provided in Supplement 1.

Generation of datasets and simulation of PK data
Continuous covariates

Three vectors of three covariates (i.e., covariate; covari-
ate;; and covariatey;;) with defined means, and variances
were drawn from a multivariate normal distribution (Sup-
plement 3, Figure S3-1). The datasets included various
correlations of covariate; (cov,.,.) and covariate;; from 0 to
90%. Covariatey); represented pure “noise” and was inde-
pendent from cov,,. and covariatey;. All simulations used
individually simulated datasets with 20, 50, 100 or 500
virtual patients (n) including 2 (sparse) concentration-time
points per individual. The sparse sampling datasets inclu-
ded samples in the sixth and twelfth dosing interval (1 and
11.5 h time after last dose, respectively). PK profiles of the
scenarios (1-CMT PK model, i.v. short infusion, linear
elimination) were obtained via Monte Carlo simulations.
The true PK model (run001) is described in Supplement
L.1. The simulated dose was 100 mg q12 h with 30 min
infusion. The PK model parameters were clearance (CL) of
18 L/h with inter-individual variability on CL (IV¢: 0.1
variance, log-normal distribution), central volume of dis-
tribution (V1) of 400 L and a residual proportional error
(%CV) of 15%. Covyye was implemented as an exponential
covariate on CL (0¢;) with the 0., as covariate coetficient
(Eq. 1):

CL=10c, - oo - (COV=COVrean)) . M, (1)

The individual covariate value (cov) was normalized by
the mean of the covariate distribution (cov — coVyean). The
remaining unecxplained inter-individual variability (;)
described  the individual deviation from the typical
parameter O¢; for the ith individual (Eq. 1).

The observed concentration Yopsened,i; Was calculated by
the predicted concentration Y,,egicreq; multiplied by the
proportional residual unexplained variance per individual
at each time point j (Eq. 2). No inter-occasion variability
was included:

(l + “':pmp-fd')‘ (2)

The simulated covariate cffect magnitudes varied
between 0, = 0.026, 0.032 and 0.045, respectively. This
resulted in relative effect sizes of — 18 to + 22%, — 22 to

+ 27% and — 29 to + 41% on CL at the 5th — 95th
percentile of covariate values.

Y observed,ij — { predicted.ij *
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Fig. 1 Graphical workflow of
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Evaluation using ‘scm’ or ‘frem’ models

Parameter estimation was performed using first order
conditional estimation with interaction (FOCE+TI), allow-
ing three minimum retries on each simulated dataset (for
each scenario, n = 1000). The structural model used for
estimation is described in Supplement 1.2 (run002). The
ADVAN 1 subroutine was used as analytical solution of
the 1-CMT model. All three previously simulated covari-
ates in the simulated dataset were provided to the ‘scm’, as
well to ‘frem’ for analysis. The ‘scm’ and ‘frem’ were
executed on each simulated dataset. The final ‘scm’ model
results were either obtained in the last forward/backward
step, or if the covariate identification failed, no covariate
model was obtained. The ‘frem’ is a full model approach
that includes all provided covariates simultaneously.
Thereby, results cannot be compared to ‘scm’ without
restrictions. To address the fundamental differences of
these methods we evaluated the results in three settings:

(i) Scenario 1 evaluated the operational characteris-
tics of “frempgmoe’- A covariate backward elim-
ination from final ‘frem’ models was performed
via the 90% confidence intervals of the estimated
covariate effect and compared to final ‘sem’
models obtained with commonly used settings
(forward inclusion, p < 0.05 and a backward
elimination p < 0.01).

(ii)  Scenario 2 assessed a statistical ‘head-to-head’
comparison of ‘frempoghec’ and ‘scm’ COViyc
coefficients with only forward inclusion (p < 0.1)

(iif)  Scenario 3 showed a comparison of all estimated
‘frem’ covyy,e covariate coefficients without a
selection step compared to ‘scm’ results of Sce-
nario 1.

Scenario 1

A forward selection with a p-value of < 0.05 and a back-
ward elimination (p < 0.01) was used reflecting the com-
monly used settings of the ‘scm’. We compared those
‘scm’ runs, which selected covye to those ‘frem’ runs that
identified covyy,e With a covariate effect significantly dif-
ferent from zero. The significance was interpreted by the
90% confidence interval obtained from sampling impor-
tance resampling (SIR) [15]. The results were extracted
from the PsN provided results files (PsN 5.0.0), and the
cffect sizes (5th — 95th pereentile of the covariate cffect,
90% confidence interval) reflect the default sctting of the
‘frem’ PsN routine. Since this setting evaluated a backward
elimination, we define this use case of the ‘frem’ as
‘freMposthoc’ - We  furthermore defined power (1-type
Il error) as the frequency of selecting covyye in the
covariate model (‘scm’), or as frequency to identify covyye
as a covariate with the highest effect size ditferent from
zero and non-overlapping 90% confidence interval
(*freMpogmoc’). For the ‘frempogne.’s the estimated univari-
ate 0., coeflicient was evaluated (PsN ‘frem_results.csv’),
which represents the effect of a single covariate in isolation
[7]. Conditional accuracy and conditional precision,
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expressed as rbias (Eq. 3) and rrmse (Eq. 4), were calcu-
lated as follows for significant cov,e coefficients:

1 z’: (estimated; — true;)

BIAS(%) = — - - 100, 3
$ (%) N true; ' (3)

FRMSE(%) = % >
1

(estimated; — true;)”

" . 100. (4
true,—' ( )

The denominator (N) was different across the simulated
scenarios and methods, as the number of simulations for
which covy,. coefficients was evaluated changed
accordingly.

Moreover, true alpha values (Type-l error rate) were
evaluated based on covyy inclusion in the forward ‘scm’
models and the final ‘fremgsme.’ models. Covyy is inde-
pendent of the others and represents pure noise without
having any simulated relationship between the pharma-
cokinetics and covyy. The alpha values in the final
‘fremyosihac’ models were defined as the frequency of runs
in which the cov,y effect was not overlapping with zero.

According to Ribbing et al., we calculated the fraction
of predictive models by assuming an estimated covariate
coefficient between zero and two times covy., to be likely
to improve the predictive performance of a model [16]. For
each scenario the fraction of predictive models was cal-
culated (Eq. 5), where e represents the covariate cffect
size, ¢ the correlation between covyye and covyy and N the
dataset size varying from n = 20-500. S~ represented
the models which included covyqe (‘scm’) for the respec-
tive scenario. For ‘frempognoe’ coctficients, scenn repre-
sented all runs or those including a significant Covye
relationship with the highest effect of all three covariates in
the models for comparison to the ‘scm’.

Fraction of predictive model:

Z](K)U(P it v § \I)
_ n—I1 ecnt Qecnt Q, ‘
Seeny = 100 - 1000 (%), (5)
Zn:l SeenN
where,
1 i f eecm\" - Hec‘nN 1
Peoeny = ’ 9“,”\,‘ :
0 otherwise
Scenario 2

For a comparison of cqual sclection criteria, ‘scm’ runs
with only forward inclusion (p-value < 0.1) were com-
pared to ‘fremposthoc’ results (which evaluates overlap/non-
overlap with zero of the 90% confidence interval). Settings
for “frempogino.” Were not changed compared to scenario 1.
Power, conditional accuracy and precision were calculated

@ Springer

for those runs, where the included cov,. was statistically
significant. Similar to scenario 1, the predictive perfor-
mance of final ‘scm’ and fremy,,gne.” models was evaluated
according to Ribbing et al. [16]. As the number of signif-
icant runs changed across the simulated scenarios (e.g. n,
covariate effect magnitude, cov-corr) the denominator to
calculate these evaluation metrices changed between also
between both methods.

Scenario 3

In this scenario, conditional accuracy, and precision, but
also the predictive performance of all estimated ‘frem’
coVe coefficients (i.e. no posthoc selection step from the
final ‘frem’ model) were compared to ‘scm’ models
obtained in scenario 1.

Categorical covariates

Additionally, a simulation study (n =500) with a true
dichotomous categorical covariate was performed. The
dataset size varied from n = 20-500 and covariate corre-
lation to a continuous covariate was 0% or 80%. The third
covariate (continuous) was independent of the others. The
true model included the categorical covariate as a frac-
tional change of clearance with an ctfect size of cither
— 20% or — 40%. IIVy, but also inter individual vari-
ability on central volume of distribution (IIVV,) was
included in the model. More details on this study are
described in Supplement 2.

Results

Power of covy,,. inclusion for ‘scm’
and ‘frempogenoc”

The power to include the covy,. throughout the investi-
galed scenarios was highly variable. Overall, the power to
select cov,e Increased with dataset size or covariate elfect
and decreased in presence of covariate collinearity.

In scenario 1, the simulations and estimations showed
that “frempogne.” power was higher compared (o the ‘scm’
throughout all scenarios (Fig. 2), likely due to the higher
value for alpha of 0.1 in the ‘frem,yno” (NON-overlapping
90% confidence interval of the covariate effect size) vs.
0.01 in the ‘scm’. The dataset size (n = 20 to n = 100)
strongly increased power for both methods. The presence
of covariate correlation reduced the power of ‘frempggmoc’
from 82 to 59% (n = 50, ,,,,,, = 0.032) whereas the ‘scm’
power was less affected by correlation in the simulated
scenarios (Table 1). Moreover, with an increasing covariate
effect on clearance, we observed an increase of power from
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Fig. 2 ‘Scm’ and *frempgmo.’ tesults of scenario 1. Tllustration of
power (%), conditional relative bias (%) (rbias) and conditional
relative root mean squared error (%) (rrmse) of cov,,,. estimates.

28% (‘sem’, n = 50, 0% cov-corr, B, = 0.026) to 80%
(Bcovye = 0.045) and from 64 to 96% for ‘frempyognoc -
Scenarios with n = 500 showed a power of > 91%, inde-
pendent of covariate effect magnitude and were less in-
fluenced by covariate collinearity (Fig. 2 and Table 1).

Moreover, the frequency of a significant covy effect in
the final ‘fremp,gno.’ models was > 77% in presence of
> 80% cov-corr (n > 100). In contrast to that, covy was
significantly included in < 16% of ‘scm’ runs.

In scenario 2, a ‘head-to-head’ comparison with a sta-
tistically similar setting was performed (same setting for
the ‘fremp,gnoc’ as in scenario 1 and ‘scm’ with sole for-
ward inclusion using an alpha value of 0.1): the less strict
alpha value in combination with only forward inclusion led
to an increase of power for the ‘scm’, resulting in above
53% and with that being superior to ‘frempognoe’ (Fig. 3).
More details are described in Supplement 3.

No comparison of power is possible for scenario 3 due
to the missing selection step in the ‘frem’.

Correlation = 0% = 15% ++: 50%

== 80 % == 90 %

Conditional accuracy and precision for the ‘frempogmoc” is shown for
the univariate coelficients

Conditional accuracy and precision of 0,,,,,
estimates

In scenario 1, an overestimation in small n datasets was
more pronounced for ‘scm’ than for ‘frem,ynoe” (Fig. 2).
Thus, ‘frempegne.’ covariate coefficients were more accu-
rate and precise. (Fig. 2, Supplement 3, Figure S3-2). We
observed for both methods a power-dependent increase in
conditional accuracy up to unbiased estimates, see Table 1
and Fig. 2. For example, the rbias of ‘scm’ coefficients was
reduced from 50% (0., = 0.026) to 8% (8.0,,, = 0.045)
in small datasets (n = 50) in presence of 90% cov-corr.

The conditional precision of the estimated coefficients in
scenario 1 showed the same trend: Imprecision steeply
decreased with increasing power (Table 1). With both
methods, we obtained imprecise estimates in small n
datasets (n = 50, 0.y, = 0.032, “frempogpoc’: 35%, ‘scm’
42%), independent of correlation.

In scenario 1, CL and V. were accurately (rrmse <
10%) and precisely (rbias < 3%) estimated in the final
‘scm’ as well as the ‘frempggno.’ model. The proportional
error model estimate trended to underestimation (rbias >
— 11%) and was less precise with rrmse < 27%.
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Table 1 Simulation and estimation results of ‘scm’ and ‘frempggpoc” in scenario 1

N Covariate correlation Method  Ocov = 0.026 Ocoy = 0,032 Ocov = 0.045
) power rbias rmse power rbias rmse power rbias rrmse
(%) (%) (%) (%) (%) (%) (%) (%) (%)
20 0 frem 36.5 68.3 87.0 47.2 8.1 67.6 70.1 17.2 40.2
sem 10.4 118 128 18.1 84.8 95.3 35.2 36.4 47.3
50 frem 335 68.5 87.8 46.6 47.8 68.5 3.0 18.6 40.9
scm 9.60 118 127 16.2 83.6 97.0 33.2 36.4 47.4
90 frem 25.0 69.2 89.0 36.8 47.1 68.7 493 17.9 423
sem 8.20 120 129 13.2 85.0 99.1 27.6 36.8 47.7
S0 0 frem 64.2 23.8 40.5 81.5 12.5 33:9 96.0 250 253
scm 28.4 473 54.9 50.1 28.3 39.0 80.0 7.60 242
50 frem 60.4 237 40.6 78.0 12.8 34.4 92.6 3.00 252
sem 275 47.2 54.8 48.4 28.8 39.6 78.0 8.00 242
90 frem 46.5 234 41.8 58.8 13.2 34.9 71.8 270 258
secm 22.1 49.5 57.1 38.0 31.6 422 67.2 830 242
100 0 frem 89.2 4.40 28.3 97.0 120 253 99.9 020 19.2
sem 62.7 16.1 27.1 85.1 570 228 99.2 - 070 195
50 [rem 83.8 5.70 28.7 94.5 1.50 258 99.3 030 188
sem 60.8 16.5 27.5 84.1 630 229 98.3 — 0.6 19.4
90 frem 69.1 3.80 27.7 76.6 1.50  25.0 83.0 0.70  19.2
sem 51.8 16.9 27.6 70.6 630 23.0 87.4 0.10 194
500 0 frem 99.2 —-22 154 99.9 - 02 12.4 100 — 0.50 8.80
scm 100 - 2.1 14.6 100 - 1.0 11.9 100 o £ 8.60
50 frem 99.2 —-23 153 100 - 02 12.4 100 - 1.0 8.70
sem 100 -20 14.6 100 - 1.0 11.9 100 - 11 8.60
90 [rem 91.96 - 18 15.1 95.8 - 0.7 12.1 98.1 - 1.0 9.10
scm 93.5 - 17 14.6 96.7 - 0.8 11.9 99.6 = 1.1 8.60

The simulated relative covariate effect sizes were — 18 0 + 22% (O¢coy = 0.026), — 22 0 + 27% (Ocoyv = 0.032) and — 29 o + 41%
(Bcov = 0.045) on clearance at the 5th to 95th perc percentile of covariate values. Conditional accuracy and precision were expressed as rbias

(%) and rrmse (%)

In scenario 2, the higher alpha value of 0.1 in scenario 1
for ‘scm’ forward selection strongly reduced overestima-
tion of coefficients to a rbias below 48%. As a result,
conditional accuracy was higher compared to ‘fremponoc’
whereas conditional precision of ‘scm’ coefficients was
similar to ‘frem’ coefficients throughout the scenarios
(Fig. 3, Supplement 3 Table S3-1). Additional details are
described in Supplement 3.

Furthermore, scenario 3 compared all ‘frem’ covy,,
estimates without a selection step to those of the final ‘scm’
models obtained after backward elimination. This analysis
quantitatively shows the effect of selection bias if com-
pared to scenario 1 results. In sum all ‘frem’ coefficients
were unbiased. Moreover we observed still a high impre-
cision of ‘frem’ coefficients in small n datasets (n < 100)
which was independent of the selection step, but ‘frem’
showed a superior precision compared to ‘scm’ especially
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in small n datasets, (Fig. 4). Further details are described in
Supplement 3.

The simulation study using a true categorical covariate
showed the same trend of power, conditional rbias and
rrmse for scenario 1 and scenario 2, whereas the differ-
ences of our evaluation criteria were smaller between ‘scm’
and ‘“frempggnec’, if compared to the simulation study using
a true continuous covariate. Supplement 2 provides a
detailed description of all obtained results.

Predictive performance of ‘scm’ and ‘“fremp,og¢hoc’
models

Scenario 1 evaluated the estimated covariate coefficients of
the final ‘scm’ and ‘fremposime.’ models for their predic-
tivity, i.e., were termed predictive when estimated between
zero and two times the true value. The results are shown in
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Fig. 5. The predictive performance of the covyy. estimates
was a function of power for the ‘scm’, but also for
“fremposthoc’- The ‘fremposmee’ showed a higher power in
small n datasets, thus the fraction of predictive models was
more than twice as high compared to ‘scm’. On the other
hand, the fraction of predictive ‘scm’ models increased
morc stecply with increasing power. At a power valuc
of > 28% morc than 90% of the final models were likely to
improve the predictivity (‘frempognoc’ > 47% power).

As power is a composite of dataset size, covariate effect
size and correlation, we analysed the individual compo-
nents on their relation to influence the fraction of predictive
models (Supplement 3 Figure S3-3). We observed that
dataset size, covariate effect size, rbias and rrmse most
influenced the fraction of predictive models and that pre-
dictive performance was less impacted by covariate
correlation.

The fraction of predictive ‘scm’ and *fremp,gno.” models
in scenario 2 were similar (scm: 97.0% ‘frempegmoc’
97.5%, n =350, cov-corr = 80%, 0, =0.026) and
reached both 100% in the scenario with the highest simu-
lated covariate effect magnitude, Ocp,,, = 0.045, n > 50),
see Supplement 3 Figure S3-4.

‘truve

Correlation = 0% = ' 15% =+ 50%

*= 80% == 90%

Conditional accuracy and precision for the ‘frempemee’ is shown for
the univariate coefficients

Overall, final ‘frem’ models (scenario 3) were providing
highly predictive covariate coefficient estimates, which
were mainly driven by covariate effect magnitude and
independent of the dataset size (Supplement 3 Figure S3-
6).

Type 1 error

For scenario 1, the true alpha values are displayed in
Fig. 6. Overall, ‘frempogno.’ indicated a false significant
covariate effect of the dummy covariate covyp in more
cases, than the given 10% confidence intervals of the
covariate effects would imply, i.e., an inflated type 1 error
rate was observed. The ‘scm’ also displayed inflated type 1
error rates for small datasets. For n > 100 both methods
approached the set alpha value of 10% (‘frempgpec’) Or 5%
(‘sem’).

In scenario 2, the true ‘scm’ alpha values were between
6 and 11% and with that close to the expected 10% value.
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Discussion

In the present study, we compared operational character-
istics of the novel ‘frem’ technique to ‘scm’ as automated
covariate analysis methods. As the ‘frem’ method is a full
model approach and does not originally comprise a selec-
tion step, we introduced the ‘“fremyosihoc’ step to account for
a covariatc backward climination based on significant
covariate cffect sizes. This reflects an additional applica-
tion of a ‘frem’ model in an exploratory analysis. Overall,
this study gave insights in operational characteristics of the
‘frem’ method, but also showed the ability of ‘frempogioc’
to guide covariate sclection. Yet, for ‘frempoghoc’ the same
caution as for the ‘scm’ should be applied since this
posthoc step also can introduce selection bias in scenarios
with low power (i.e. small covariate effect size, small
sample size). Of note, an evaluation of precision and
accuracy of all covy,e ‘frem’ estimates without a selection
step showed that the covariate effect estimates were unbi-
ased and showed lower imprecision as those determined
using the ‘scm’, which were biased due to the selection
step, in particular in scenarios with low power. This un-
derlines the value of the ‘frem’ method. It has the addi-
tional advantage of interpreting the covariate effect
simultaneously to statistical significance without the need
for further evaluate the parameter uncertainty, which is
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needed for ‘scm’ (o evaluate clinical relevance (e.g. boot-
strap, llp-sir [17]). In large datasets, both methods provided
precise and accurate inference on covariate effects in our
simulation study. Moreover, Yngman et al. described an
advantage of ‘frem’ model, that it can provide covariate
coefficients for any subset of the examined covariates and
thus be applied to different covariate datasets [7]. In
addition, a model reduction of the full model could be done
in a stepwise manner, if a more parsimonious model is
desired [2, 7|. This simulation study comprised an inves-
tigation of final ‘frem’ model subsets for the purpose of
covariate  backward  elimination,  presented  in
scenarios 1-2.

The statistical power to detect true covariate effects is
important to guide clinical study design. Ribbing et al.
described that dataset size, magnitude of collinearity, and
covariate effect size influence the power of the ‘sem’
method [16]. Ahamadi et al. investigated the operating
characteristics of ‘scm’ using different complexities of true
models (i.e. 14 true covariates). Those scenarios with one
true covariate (n = 300, cov-corr 32% or 89%, 250 simu-
lations) reached a high power [18]. This is in line with our
results in datasets n > 100. Beyond that, our observed
power increase, as a result of increased dataset- and
covariate effect size, as well as a reduction of power caused
by collincarity of covariates are in line with Ribbing et al.
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[19]. In comparison to that, the ‘frempegstnoc’ sShowed an up
to three-fold higher power in the worst-case scenario with
high correlation in small cohort studies (scenario 1,
Ocovy, = 0.026), likely as a result of the different alpha
values in the sclection step. In scenario 2, power differ-
ences of the two methods were smaller, rather favouring
‘scm’. We however think that ‘scm’ with only forward
inclusion and an alpha value of 0.1 does not represent

lation. In contrast to that, ‘scm’ with forward selection (p
value < 0.05) and backward elimination (p value < 0.01),
but also with applying only forward inclusion (p-
value < 0.1) is intrinsically not able to capture the true
present correlation. However, the model prediction using a
wrong, but highly correlated covariate, that carries infor-
mation of the true covariate could be comparable to
including the true covariate. One the one hand, the inclu-
sion would lead to interpretation difficulties, on the other
hand, an exclusion of correlated covariates could also cause
confounded interpretation of covariate effect estimates, as
the correlated covariate carries parts of the true covariate
information. Thereby pharmacological understanding is
key for decision making.
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We also investigated a scenario with a true categorical
covariate with and without an additional level of variabil-
ity, the TIVV.. The results showed a similar behaviour as
observed for continuous covariates. Scenarios 1 and 2
showed only minor differences in power for ‘scm’ and
‘frempgunoe’ in cases when the covariate has a strong effect
size. The additional level of variability decreased power by
up to ca. — 5%. The simulation study using a true con-
tinuous covariate did not include [IVV,, so we assume an
overall worsening effect of the presented continuous
covariate study results in presence of IIVV, here.

Moreover, conditional accuracy and precision of the
covariate coefficients were investigated in case cOV,e Was
selected in the final models. In scenario 1 bias was present
in both methods, however slightly lower when using the
‘fremposmoe’ (especially in low power scenarios). In sce-
nario 2 the findings were vice versa, so that overestimation
was less pronounced for ‘scm’, resulting from a less strict
alpha value in the selection step. According to Wahlby
et al. selection bias is only moderate in typical PK mod-
elling dataset [5], but this was only confirmed for covari-
ates with high effect sizes [16]. In scenario 3 unbiased
‘frem’ estimates were obtained, as no covariates were
selected, and all estimated coefficients were considered for
the evaluation.

Conditional precision was more precise for ‘fremposthoc’
compared to ‘scm’ in scenario 1 and equally high in sce-
nario 2. Precision was improved by a less strict alpha value
(‘scm’ in scenario 1 vs. scenario 2). As precision is a
function of power, we assume that the increased precision
is caused by increased ‘scm’ power.

Beyond that, in scenario 1 we evaluated the predictive
performance of the final models and used the range of zero
to two times the true coefficient value as a predictor for
improvement of the model fit, according to Ribbing et al.
[16]. The present study confirmed the predictive perfor-
mance of ‘scm’ models being a function of power and we
confirmed this for ‘frempygno.’ estimates. Compared (o
‘scm’ models, the [raction of predictive ‘frempogmoc’
models was higher, especially in scenarios which achieved
power < 50%. The predictive performance was positively
correlated with rbias, rrmse and number of study individ-
uals. Interestingly, covariate collinearity did not impact the
predictive performance (Supplement 3 Figure S3-3).

The type 1 error rate was evaluated with covy; being
independent from the other two available covariates. The
previously described inflated type 1 error rate in the ‘scm’
approach [5] was confirmed in this study but was also
observed for the ‘frempggmoe’- The ‘frempgne.’ alpha val-
ues were decreasing with increasing study size but were
still slightly inflated. The confidence interval of the
covariate effect is calculated by SIR in the PsN imple-
mentation of ‘frem’ [15]. The confidence interval served
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for the calculation of the [requency in how many of the
performed runs the covy effect size was estimated to be
significantly different from zero. Broeker et al. found, that
especially in small n datasets the SIR-derived confidence
interval tends to be underestimated, in particular for the
omega values [17]. This underestimation might explain the
inflated alpha values, as zero is less often included in the
SIR-based confidence intervals if they are too narrow.

‘Frem’ is mathematically equivalent to FFEM, which
has been suggested as an alternative to stepwise procedures
[2]. Although a backward elimination is not originally
intended by the full model approach, as this may curtail its
benefits, a guidance for this backward elimination step has
been proposed by Gastonguay et al. [2]. A model reduction
based on covariate effect size, has also been applied to
clinical data [20]. A reduction of a full model for predictive
purposes can be done via exclusion of non-statistically
significant (CI includes null value) and non-clinically
important (entire Cl contained within no effect range)
covariate effects. Covariates which are clinically important
and statistically significant, or are not statistically signifi-
cant but may be clinically important should be retained in
the model [2]. The clinical relevance criteria was not
considered in our study evaluation, as this additional filter
is subjective in a simulation study and driven by the
pharmacological considerations. Furthermore, statistically
significant cffects are clearly defined, whereas the often
used clinical relevance threshold of 20% is not. This
threshold may apply for clearance; however, it can be
different for other PK parameters related to a covariate
cffect. Moreover, this threshold can be dependent on the
indication, pharmacometric question to be answered or
substance itself, e.g. a narrow therapeutic window could
reduce the threshold. These factors cannot be fully reflec-
ted in a simulation study.

A few more limitations shall be mentioned: the here
evaluated scenarios only display a portion of the com-
plexity of covariate analysis in real clinical datasets. The
here simulated covy,. effect magnitudes were chosen
around the often-used clinical significance threshold of
20% on clearance [12] displaying a weak, moderate, and
strong effect as it could be expected in a real clinical
dataset. However, neither collinearity between more than
one covariate, nor the presence of more than one true
covariate carrying information was investigated.

To calculate the fraction of predictive models amongst
the evaluated runs in each scenario, we assumed an esti-
mated covariate coefficient between zero and two times
COVie 1o be likely to improve the predictive performance
of a model [16]. This in other words accounts for up to
100% overestimation, so that even in presence of a strong
selection bias, coefficients were rated as predictive. Highly
biased covariate coefficients make the model less adequate
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for predictive purposes and could ultimately cause mis-
leading clinical interpretation on e.g., clearance if the
covariate coefficient originates from small n datasets
(< n=100). However, as ‘frempygn,.’ has not been
applied to clinical data yet, this needs to be (urther
evaluated.

Besides that, this simulation study investigated only
covariates on clearance, but usually clinical covariates are
also found on other model parameters. Moreover,
interindividual variability on central volume of distribution
is very common in clinical datasets but was not included in
the analysis using a true continuous covariate. Based on
prior knowledge and confirmatory results obtained in the
simulation study with categorical data, we assume a
reduction of power in presence of more levels of vari-
ability. Moreover, the covariate coefficients directly
obtained via the PsN ‘frem’ routine, represent exponential
covariate parameterization in fixed effects models [8].
Other implementations might be of interest, too, and could
be explored in subsequent studies.

Conclusion

Overall, this study contributed to the understanding of the
‘frem’ and showed properties and characteristics of the
methods for continuous but also categorical covariates. We
introduced with “frempogno.’ @ possibility to guide covari-
ate selection, mimicking how ‘frem’ could be additionally
used in practise. With that, covariate effect size interpre-
tation and selection can be done simultancously and a
predictive model with capturing correlation in the datasets
can be obtained. Using the commonly applied settings of
‘scm’ and ‘frem’, in small n datasets the power of
‘fremposmoc’ Was substantially higher, leading to a lower
bias, compared to ‘scm’ in scenario 1. In datasets with
n > 100 power, precision, and accuracy of ‘frempognoc’
were comparable to ‘scm’. However, the simulated sce-
narios still highlight the need for thoughtful choice of the
method to answer the underlying pharmacometric question
in small datasets.
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4 Discussion

The presented publications I-1V cover various facets of the in vitro and clinical use of tigecycline, as
well as the application of pharmacometric modelling techniques with the focus on tigecycline dose
optimisation. Tigecycline remains a last resort antibiotic and its approved standard dose of
100 mg LD, followed by 50 mg q12h MD showed suboptimal microbial eradication and clinical cure
over the past years?®. Combined with increasing amount of (multi-) resistant bacteria causes
difficulties to treat patients successfully. New treatment options are rare, so that finding new
opportunities to optimise currently approved drugs is one strategy to tackle the current situation.
Approved drugs can be optimized via e.g., escalated doses, new regimens or via patient individual
covariate-based dose adjustment guided by pharmacometric approaches®’. This work reflects the
investigation of such an approach for the use of tigecycline. The following part provides an

overarching discussion of the four articles in this work.

4.1 Tigecycline in in vitro experiments and clinical considerations

Tigecycline is an instable drug, particularly susceptible to dissolved oxygen in bacterial growth
media. Thus, its handling in vitro is challenging. Previous studies observed a formation of an
oxidative by-product, which increased from 3.5 % to 25 % in fresh vs. aged bacterial growth medium
(containing dissolved oxygen), causing a strongly diminished antibacterial activity within 24 h®.

This is of high relevance if the experiment duration lasts longer than the typical 24 h.

In Publication | it was hypothesized, that adding antioxidative agents (pyruvate, ascorbic acid)
prevent tigecycline from in vitro degradation in the bacterial growth medium ca-MHB. Until now
solely Oxyrase®, a costly supplement, or the use of freshly prepared broth enabled the use of stable
tigecycline at bench side®®. This, however, involved costly supplementation or increased daily
working hours if the broth needs to be autoclaved on the same day as starting the in vitro
experiment. Furthermore, the maximal duration of an experiment is limited. To tackle this,
Publication | provided a cost and time saving alternative: The key outcome of Publication | was that
ca-MHB supplemented with 2 % pyruvate prevented tigecycline from degradation while keeping its

in vitro antibiotic activity.
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By utilizing the results of Publication I, the execution of HFIM, as reported in Publication Il, was
feasible. This publication investigated tigecycline’s in vitro dose optimization potential with
variations of the daily dose and regimen up to continuous infusion. Alterations to continuous or
prolonged infusions have shown benefits for drugs of the beta lactam family, as they have a time
dependent antibiotic effect®®'. Benefits for tigecycline therapy by changing the regimen have been
hypothesized but have not been tested in vitro yet®’. Publication Il is the first in vitro study that
introduced new tigecycline regimens assessed in a dynamic HFIM. The experiments addressed the
hypothesis that a change of the regimen or an increased dose could improve tigecycline’s antibiotic
activity in vitro. As shown in Publication | by the magnitude of tigecycline degradation over time an
antioxidative supplementation would be necessary to enable continuous tigecycline infusions to
humans. Therefore, safety aspects of the chemical agents need to be questioned. Pyruvate is a
metabolic intermediate that engages in the production of energy in cells, such as glycolysis or
gluconeogenesis. Jitkova et al have shown a high tolerability of 6 % pyruvate in mouse®. Thus,

adding up to 2 % of this endogenous molecule to infusions applied to humans might be of low risk.

A key result of Publication Il was that the clinically recommended and escalated doses were found
ineffective against the investigated strains. This led to the conclusion that the optimization
potential of tigecycline against the studied clinical Klebsiella pneumoniae isolates was limited.
Neither intensified dosing, higher front loading, nor continuous infusion were able to suppress the
regrowth and resistance development in vitro for strains > 0.125 mg/L. At clinically used doses,
Publication Il revealed a strong MIC increase of the regrowing resistant subpopulation. Additionally,
the detected mutations were matching those previously described in patients undergoing

tigecycline therapy®*.

According to literature doses of up to 200-400 mg loading dose, 100-200 mg q12h were well
tolerated in humans. The most common side effects of tigecycline (nausea and vomiting) can be
mitigated via comedication®°2% Thereby, it can be assumed that the investigated doses are in a
tolerable range and practicable. However, case reports with severe liver associated side effects with
an unidentifiable frequency were published and partly added to the prescribing information®°".

This might limit future dose increasements in patients, especially in patients with liver diseases.
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Besides tolerability, the effectiveness of an antibiotic is the driver for a clinical cure and microbial
eradication. In Publication I, no correlation between tigecycline drug exposure and survival was
observed. The clinical failure rate was highest in patients with infections caused by gram negatives,
which all had an MIC of 0.5 mg/L. This is consistent with the in vitro results of Publication Il where
tigecycline had no sustained antibiotic effect against the Klebsiella pneumoniae isolates with a MIC
of 0.25 mg/L or 0.5 mg/L. Tigecycline’s in vitro effectiveness was confined to an MIC of 0.125 mg/L,
at which point the drug successfully kept the CFU/mL below the inoculum and prevented a re-
growth of resistant subpopulations. Nevertheless, the MIC values of 0.125 mg/L is at the lower end
of the ECOFF distribution of Klebsiella pneumoniae, therefore this MIC is less likely to be
recommended for a clinical breakpoint. Beyond the limited in vitro efficacy Publication Il has shown
a tigecycline-induced resistance development. According to the FDA black box warning it is
hypothesized that a progression of infection might explain clinical failure. This is in line with the
strongly occurring regrowth of resistant subpopulation in vitro (determined via MIC increase) and
might support this hypothesis and high failure rate observed in Publication Ill. Both, the high
mortality of patients in Publication Il but also the confirmatory in vitro results (e.g. limited
antibiotic activity for Klebsiella pneumoniae with an MIC > 0.125 mg/L and drug-induced MIC
increase) are in line with the current recommendations of the latest ESCMID Guideline (2022) for
the treatment of infections caused by multidrug-resistant gram-negative bacilli®. In this guideline

tigecycline is seldomly recommended given its lack of evidence to treat those infections.

For tigecycline a time but also an exposure dependent in vitro, in vivo and clinical effect has been
previously discussed, whereas the AUC/MIC ratio is most commonly used as a PK/PD
target 69.9899100101102 pypljcation Il showed that the continuous infusion of tigecycline did not
improve its antibiotic activity, so we assumed that the time above the MIC is not a driver for

tigecyclines effectiveness.

In the recruited study population of Publication Ill eight patients were infected with gram-negative
bacteria (E. coli, K. pneumoniae, MIC 0.5 mg/L) of which only one showed clinical cure. This patient
had an fAUCo.24/MIC of 11.3 while the observed mean fAUCo.22/MIC of these eight patients was 13.9.
The HFIM experiments in Publication Il revealed a fAUCo.24/MIC ratio of 38.5 to achieve stasis

against Klebsiella pneumoniae, which is a multiple of the observed exposure in the investigated
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patient population. Such an increase to a multiple of exposure however could increase the risk of
side effects, e.g. coagulopathy®®°"1% The highest exposures were observed in the patients with
Child Pugh C (n = 3, average fAUCo.24/MIC = 17), whereas their exposure was still below half of the
stasis target (fAUCo.24/MIC of 38.5) obtained from Publication Il. Of note, these patients had
infections with gram-positive bacilli, thus a comparison to the HFIM results (all conducted using
gram-negative bacteria) is limited. It needs to be considered that the PK/PD target for tigecycline
varies across underlying type of bacteria that cause the infection, but also across indications, or site
of infections®®9219" published clinical studies usually evaluate clinical cure or microbial eradication
among types of infection, while a distinct evaluation of the outcome between infections caused by
gram-positive and gram-negative is rare. Sevillano et al. observed that higher AUC/MIC values were
needed for Escherichia coli (gram-negative), compared to Staphylococcus aureus or Enterococcus
faecium (gram-positive) to achieve the same in vitro antibiotic effect'®. In a clinical setting, Meagher
et al. performed an exposure-response analysis of tigecycline in the treatment of cSSI infections,
where Staphylococcus aureus and streptococci (both gram-positive bacteria) were the predominant
pathogens'®. Their analysis of microbiological response and clinical cure vs. AUC/MIC revealed a
breakpoint of 17.9 for cSSI'®. By applying the same factor for protein binding, as used in
Publication Il, this would correspond to an fAUC/MIC value of 11.3, being lower than the exposure
which was seen in Child Pugh C patients in Publication Ill. Withal, the clinical outcome was
inconclusive in these three patients (cure, intermediate, failure). Beyond that no correlation with
tigecycline exposure and survival, but also no correlation between gram-type or pathogen causing
the infections and survival was observed in Publication Ill: Overall, patients who died had an
average fAUCo.24/MIC of 13.3 and patients with clinical cure had an average fAUCo. 24/MIC of 13.4. Of

note, these findings were based on a low patient count and must be taken with caution.

Tigecycline’s effectiveness was shown to be influenced by the presence of an intactimmune system,
as demonstrated by Crandon et al'. This may also help to explain the absence of a correlation
between drug exposure and survival in Publication Ill. In a murine thigh model, it was observed that
the required drug exposure to achieve a maximal reduction of CFU/mL (decrease of
approx. -1.7 logioCFU/mL) was significantly reduced by a factor of 7, when comparing neutropenic
mice (fAUC/MIC of 1.8) to immunocompetent mice (AUC/MIC = 13)"". Thus, this might explain why

clinically derived PK/PD targets are lower compared to targets derived from in vitro experiments. In
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Publication Ill we saw a negative and significant correlation between survival and chronic liver
disease, meaning that with the severeness of the underlying disease the survival probability was
reduced. Critical health status, often associated with a lower activity of the immune system might
explain the clinical failure of patients in Publication Ill. With this in conjunction to the strong
occurring in vitro regrowth seen in Publication Il, it was assumed that the presence of an intact
immune system is a key factor for clinical cure undergoing tigecycline therapy. Consequently, an
indication of tigecycline in immunocompromised patients is an alarming signal and must be

carefully evaluated.

In Publication Il no immune cells were included, so that these HFIM experiments represent rather
worst-case scenarios. Despite the impact of the immune system, Publication Il and Ill were probably
different in their bacterial burden. Depending on the site and severeness of infections the bacterial
burden at start of treatment could be lower than tested in the in vitro experiments of Publication II.
Tsala et al. observed, that the required fAUCo..4/MIC exposure were influenced by the size of
inoculum (e.g. fAUCo.24/MIC to achieve half maximal activity was 16 with 10° CFU/L and 28 with 10°
CFU/mL)". This shows that an antibiotic therapy with tigecycline could be optimised if the bacterial
burden is known. However, a clinical determination of CFU at the site of infections is not practical
as this would need a painful biopsy. Moreover, published information about bacterial burden at the

site of infection are rather base on post-mortem studies'®.

By the nature of the HFIM model unbound concentrations are investigated, while the calculated
AUC in Publication lll referred to total concentrations. Overall, it can be assumed that only unbound
concentrations can have a pharmacodynamic effect in the tissue. The conversion with a static factor
for fraction unbound simplifies the complex protein binding behavior of tigecycline known to be
nonlinear. Tigecycline has a high volume of distribution, showing a large apparent distribution into
tissues. Nevertheless, the available information about unbound (i.e., active) concentrations at
target sites is rare. Stein et al. observed a serum:soft tissue ratio of > 2.8, however being imprecise
with a wide range from 0.7 —5.5"". Moreover, this ratio was derived from tissue biopsies. Those
biopsy samples are usually homogenized and thus they represent a mixture of both free and bound
concentrations from different compartments (interstitial fluid, cells, capillaries). Therefore, this

ratio needs to be interpreted with great caution. Instead of determining total tissue concentration,
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the state-of-the-art technique to measure active unbound drug concentrations is the microdialysis
technique. Bulik et al. applied this method in patients with chronic wounds'®®. Here, the penetration
ratio of thigh and wound fAUC to fAUC in plasma was 1 and no significant difference between
infected and uninfected tissue was observed'®®. Beyond that a more recent study by Dorn et al.
investigated tigecycline’s penetration into soft tissue in obese vs. non-obese surgical patients using
the microdialysis technique'®. They also confirmed, that the concentrations in interstitial fluid of
subcutaneous tissue were not higher compared to the free plasma concentrations'. Thereby we
conclude that the mimicked PK profiles in Publication Il were appropriate concentrations to derive

an in vitro PK/PD relationship.

4.2 Covariate analysis in small N studies

‘Covariate-based dose adjustment’ refers to the process of adjusting the dose of a medication based
on individual intrinsic or extrinsic factors (e.g., age, weight, organ function parameters). The goal is
to maintain the drug exposure in a therapeutic range by considering factors that affect the drug’s
pharmacokinetics and pharmacodynamics. Publication Il gives insights into tigecycline exposure in
liver impaired critically ill patients and provides an in-depth covariate analysis using various
parameters of the liver panel, such as liver enzymes or composite scores. Considering that
tigecycline is mainly eliminated through the liver, we investigated alternatives to the recommended

static Child Pugh score to allow for a covariate-based dose adjustment of the antibiotic.

For this purpose, the stepwise covariate analysis method was applied. This method was extensively
evaluated in Publication IV. In an academic framework, as well as in early-stage clinical trials,
small N study data are ubiquitous. Nonetheless, small N studies can provide valuable information
about patient populations that are insufficiently represented in larger studies, just as the clinical
trial of Publication IIl. Although this study recruited only thirty-nine patients, it represented the
largest trial in this special patient population of liverimpaired, critically ill patients. In general, small
N studies potentially suffer from various sources of bias, e.g., the sample size is not representative
of the larger population. Methods like ‘scm’ are known to overestimate the covariate effect in these
types of data, which may lead to incorrect assumptions. Publication IV demonstrated a noticeable

selection bias when the simulated population was smaller than N=50. Nevertheless, even with a
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limited number of participants, these studies provide valuable insights and contribute to advancing
scientific knowledge. But their limitations must be considered, and their results must be interpreted
carefully. Therefore, it is important to acknowledge that the results of Publication Ill should only be
interpreted within the observed population. This study can serve as a foundation for larger, more
comprehensive studies that aim to confirm their results and deepen our understanding of

tigecycline in special patient populations.

The ‘frem’ technique has not been widely applied to clinical data yet, although the method was
developed a decade ago. Therefore, Publication IV aimed to increase knowledge about a novel ‘frem’
covariate analysis approach, while evaluating its potential for covariate selection against the
benchmark ‘scm’ technique. This step was introduced in Publication IV as ‘frempostnoc,
distinguishing from the original ‘frem’ idea to serve for a full model approach. ‘Fremposthoc’ Showed
promising operational characteristics in small N datasets, being superior to ‘scm’ applied with
commonly used settings. However, in Publication Ill the ‘scm’ technique was chosen to develop the
covariate model based on data from thirty-nine study participants. For the sake of comparability
with already published data, we used the standard ‘scm’ method for the model development in
Publication lll. ‘Fremposthoc’ is @ new application of the ‘frem’ and thereby not yet clinically
established to develop a covariate-based dose adjustment strategy but a future application to

clinical data in comparison to established methods is of interest.
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5 Perspectives

The aim of this work was to investigate the dose optimization potential of tigecycline therapy by
evaluating in vitro and clinical data supported by pharmacometric modelling. The results clearly
showed that the use of tigecycline in monotherapy should be questioned. Therefore, the following

paragraph highlights future perspectives and limitations:

The family of gram-negative bacteria is broad, and Klebsiella pneumoniae is only one representative.
As mutational frequency and resistance genes can change across bacteria, and clinical tigecycline
efficacy varied across pathogens, the extension of HFIM to other bacteria would be needed to
broaden the picture and foster the findings. The approved standard dose monotherapy has only
limited applications, hence an effective combination partner is needed to preserve the drug. To
address this, the optimized experimental rhombic checkerboard experiment can serve as an
efficient interaction screening tool to plan future HFIM with tigecycline combinations™.

Furthermore, this work discussed the importance of a functioning immune system while
undergoing tigecycline therapy. Therefore, an extension of HFIM including immune cells could give

an even more realistic experiment design.

Overall, pharmacometric modelling has increased the informative value of in vitro, in vivo, and
clinical data™. However, models rely on the quality of data. In the past years only small n studies
evaluated tigecycline’s clinical safety and efficacy. Across study populations tigecycline has shown
a broad range of PK variability but also with respect to effectiveness. As these studies are limited in
theirinformative value, an integration of all available data using an approach such as a model based
meta-analysis could elucidate the picture of the current clinical situation a quantitative summary,
which is also in the spirit of future ‘Model Informed Drug Discovery and Development’.

Right now, patients suffer from severe and complicated infections and decisions need to be made
at bedside. To overcome challenges to treat multi-drug resistant bacteria, programs such as
antibiotic stewardships need to be emphasized and expert groups must update guidelines
considering the current situation while academic institutions further investigate dose optimization

strategies for approved drugs. Herewith pharmacometrics helps to quantitatively describe



individuals within populations to infer about clinically important measures like: What is the
therapeutic dose range? How effective is the drug against different bacteria and what is the target
we need to achieve to balance efficacy and safety? But to do so, pharmacometricians should be
aware of technical advancement and new methodologies to perform state of the art analyses that

help to get most out of the available data to improve antibacterial therapies in future.
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LC-UV and LC-MS/MS methods

All samples (200 pL) were processed for protein precipitation by adding 200 pL of ice-cold acidic
methanol to reduce adsorption to plastic labware, derived from Dorn et al [1]. The samples
were centrifuged afterwards and 10 pL of the supernatant were injected. Calibration curve,
quality control and samples were measured by UHPLC (Ultimate 3000 SD Dionex, Softron
GmbH, Germering) equipped with a Nucleoshell RP 18 (100x3 mm, 2.7 um particle size,
Macherey Nagel, Dueren, Germany) using UV detection at 350 nm. As mobile phases (A) Milli-
Q® water containing formic acid (95:5, v/v) and (B) methanol, acetonitrile, formic acid
(47.5:47.5:5, v/v) were used in a gradient program. The gradient conditions were as follows:
linear gradient starting at 1% B to 15% B within 3 min, then linear gradient to 70% B over 2 min
and then isocratic at 70% B for 3 min. Afterwards, the pumps were programmed to 1% B over 1
min. A 4 min reconditioning time was used before injection of the next sample. Total run time
was 13 min at a flow rate of 0.8 mL/min. The retention time of tigecycline was 3.4 min. A QTRAP
5500 (SCIEX, Framingham, Massachusetts, USA) electrospray ionisation mass spectrometer
coupled with a 1290 Infinity HPLC Il (Agilent Technologies, California, USA) was used for LC-
MS/MS quantification of broth samples containing ascorbic acid, due to reaching the limit of
quantification. For LC-MS/MS solvents were used in LC-MS grade. Separation was performed
on a Nucleodur C18 Gravity-SB (100x3 mm, 3um particle size, Macherey Nagel, Dueren,
Germany). Solvents (A) water containing formic acid (99.9:0.1, v/v) and (B) methanol,
acetonitrile, formic acid (49.9:49.9:0.1, v/v) were used in a gradient program. The gradient
conditions were as follows: starting conditions 1% B, linear gradient starting at 1% B to 20% B
within 4 min, then linear gradient to 70% B over 2 min and then isocratic at 70% B for 3 min.
Afterwards, the pumps were programmed to 1% B over 1 min. A 4 min reconditioning time was
used before injection of the next sample. Total run time was 15 min at a flow rate of 0.3
mL/min. The retention time of tigecycline was 6.3 min. LC-MS/MS data were acquired and
analysed using Analyst 1.7 software (SCIEX, Framingham, Massachusetts, USA). The multiple
reaction monitoring (MRM) transitions used were m/z 586.3/513.2 (quantifier) and 586.3/569.2
(qualifier).
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Supplement Text 1

The dynamic in vitro experiments were performed at 37 °C over 72 h with n=1 per scenario. A
stirred central compartment was connected via a tubing to a FX-pead dialyser (Fresenius Medical
Care AG & Co. KGaA, Bad Homburg, Germany)'“. The dialyser served as bacterial compartment.
An additional bacterial cycle (Supplement Figure 1), connected to a peristaltic pump, was used to
keep the liquids in the cartridge moving. By this approach, we assumed rapid nutrient
distribution and fast drug equilibrium between the central compartment and the cartridge. The
total volume used in the HFIM was 200 mL and was kept constant over the experiment duration.
Liquid flow was assured via peristaltic pumps: Drug elimination kinetics were controlled via
inflow of drug-free Mueller-Hinton broth using an Ismatec Reglo ICC pump (Cole-Parmer GmbH,
Wertheim, Germany) and circulation of the drug and the nutrients in the central compartment
at a flow rate of 60 mL/min was assured via a Masterflex®L/S (Cole-Parmer GmbH, Wertheim,
Germany). A Masterflex® syringe pump (Cole-Parmer GmbH, Wertheim, Germany) infused

tigecycline into the central compartment.
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Supplement Figure S1Schematic set up of the hollow fiber infection model. All liquid flows are guided via
peristaltic pumps (i.). Continuous nutrient supply is guaranteed via drug-free bacterial growth
medium (ii.). Bacteria are retained in the dialysis cartridge (iii.) and are circulating against the direction
circulation of the central compartment to assure equal distribution of nutrients, drug and to prevent
biofilm formation. The drug is infused into the central compartment (iv.) by a programmable syringe

pump (v.) and eliminated drug and bacterial waste products are collected in a waste bin (vi.). The graphic
was created with BioRender.com.
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Supplement Figure S2 Measured tigecycline concentrations in the hollow-fiber infection model versus
individual model predictions (IPRED) per experiment.
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Supplement Figure S3 Clinical trial simulations of standard dose (100 mg loading dose (LD), 50 mg q12 h),
high dose (100 mg q12 h), intensified standard dose (100 mg LD, 50 mg g8 h), as well as variation of the
loading dose (200 mg LD, 100 g 12h). Colony forming units (CFU/mL) at 24 h and 72 h are displayed for each
simulated dosing scenario, stratified by sex. Gray dashed y-intercept displays the estimated start inoculum
(6.7 logioCFU/mL) of the pharmacometric PD model.
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Supplement Table S1 Susceptibility information for Klebsiella pneumoniae isolates used in this study.
Klebsiella pneumoniae 2977 (KPC-2, OXA-9, TEM-1; referred to as KP 2977), Klebsiella pneumoniae R307
(KPC-2, OXA-2, OXA-9, TEM-1, CTX-M-2; referred to as KP 307) and Klebsiella pneumoniae -N864 (KPC-3,
OXA-9, TEM-1, referred to as referred to as KP N864) against beta-lactam class antibiotics.

MIC of KP 2977 MIC of KP 307 MIC of KP N864
Antibiotic
(mg/L) (mg/L) (mg/L)
Ceftazidime >32 32 32
Ceftazidime/
<05 1 1

Avibactam

Meropenem 4 >16 2

Imipenem 4 >32 8




12 Supplementary material Publication Il

Supplement Table S2 Comparative analysis of sampling in central vs. bacterial compartment.

Tigecycline concentration in Tigecycline concentration in Deviation from central
bacterial compartment (mg/L) central compartment (mg/L) compartment (%)

118 1.25 -5.93

0.988 0.107 -8.29

0.792 0.736 -1.07

0.540 0.480 n.n

0.514 0.573 -4

0.378 0.389 -3.05

0.27 0.275 -1.48

0.205 0.193 5.85

0.189 0.191 -1.06
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Supplement Figure 1 Population or individual tigecycline predicted vs. observed concentration (upper

panel) and conditionally weighted residuals (CWRES) or normalized prediction distribution errors (NPDE)

vs.time (lower panel); black line indicates the smoothed conditional mean incl. the 95t confidence interval

(shaded area).
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Model A: Child Pugh score
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Supplement Figure 2: Visual predictive checks show prediction corrected observations of tigecycline versus
time after dose of the structural 2 compartment base model and the covariate models (Model A-C). All
covariate models include beside the described covariate on clearance weight on central volume of
distribution. The red lines show median and 80 % interval of the prediction corrected observations, black
dashed lines describe the 80 % interval of the simulated data’s percentiles. Blue shaded area shows the
95 % confidence interval (Cl) of the 5t and 95t prediction interval, red shaded area the 95 %-Cl of the

median prediction.
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Supplement Table 1 Population pharmacokinetic model parameter estimates stratified by Child Pugh

score as a categorical covariate on clearance (Model A) and weight as a covariate on central volume of

distribution Vc (Eq. 1-2). Confidence intervals were determined by the log-likelihood profiling-based

sampling importance resampling (llp-sir) method. Abbreviations: RUV: residual unexplained variability,

TVVCL: Typical value of clearance. TVVc: Typical value of central volume of distribution.

Parameter Explanation Estimate Closy, RSE [%]

Cless.a [L/h] Clearance of individuals with Child 13 93-136 9.7]
Pugh score A

Cless.s [L/h] Clearance of individuals with Child 769 6.61—9.16 8.46
Pugh score B

Cless.c [L/h] Clearance of individuals with Child 4.81 506—7.68 250
Pugh score C

Ve [L] Central volume of distribution 64.7 49.6 —85.0 14.0

QL/h] Intercompartmental clearance 48.4 42.1-56.3 7.46

Vp [L] Peripheral volume of distribution ~ 119 100 —142 9.08

B - weight Linear covariate parameter 244102  187-102-277-102  9.46
estimate of weight on V,
Interindividual variability of Child

Vcup-cL [%] Pugh A, B, Cindividuals on 41.8 34.3-50.6 20.3
clearance

o Interindividual variability of

Vv [%] central volume of distribution 700 226855 24.6

Vv, [%] interindividual variability of =~ 54 ¢ 19.7-40.6 345
peripheral volume of distribution

RUV [% CV] Residual proportional variability 13.5 12.2-15.0 5.21

IF(CPS = “A”) TVCL = Clcps-a Eq.1

IF(CPS = “B”) TVCL = CLcps 5

IF(CPS = “C”) TVCL = CLeps.c

Ve=TVVe - (14 Bve- weight - (WT - 80))
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Supplement Table 2 Population pharmacokinetic model parameter estimates using the MELD-score as a
covariate on clearance as a power relationship and weight on V. as a linear relationship (Model B) (Eq. 3-

4). Confidence intervals were determined by the log-likelihood profiling-based sampling importance

resampling (llp-sir) method. Abbreviations: RUV: residual unexplained variability. TVVCL: Typical value of

clearance. TVV.: Typical value of central volume of distribution.

Parameter Explanation Estimate  Closy RSE [%]
CL[L/h] Clearance 8.57 7.58-9.63 6.11
Ve [L] Central volume of distribution 64.2 50.8-83.4 12.93
Q[L/h] Intercompartmental clearance 48.7 42.2-56.0 7.23
Vp [L] Peripheral volume of distribution 19 100 - 141 8.75
Power relationship estimate of 6.35-107 —
Oct-meo MELD-score on clearance "0.453 2.78 -107 20
Linear covariate parameter
Ovc - weight estimate of weight on V 0.024 0.019-0.028 9.42
Ve [%] Interindividual on clearance 37.9 30.4-483 25.1
Ve [%] Inter|nd|V|dl.JaI.var|:?1b|l|ty of central 691 51.6—89.4 785
volume of distribution
Vv, [%] Interindividual variability of 29.1 17.8-403 39.4
peripheral volume of distribution
RUV [% CV] Residual proportional variability 13.9 12.6 —15.6 5.59
CL=TVCL- (MELD-score/18)®Ct~ MELD Eq.3
Ve=TVVe - (14 Bve-weight - (WT - 80)) Eq. 4
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Supplement Table 3: Population pharmacokinetic parameter estimates of the final backward

elimination model using raw covariate values (Model C). Confidence intervals (Closs) were

determined by log-likelihood profiling-based sampling importance resampling (llp-sir); RSE:

relative standard error. eGFR (CKD-EPI formula) and weight were included as a linear relationship

bilirubin using a power function (Eq. 5-6).

Parameter  Explanation Estimate Cly,,, RSE [%]
CL[L/h] Total tigecycline clearance 7.52 6.68 —8.46 6.03
VA Central volume of distribution 63.4 49.8-83.0 13.4
Q[L/h] Intercompartmental clearance 48.0 43.0-54.7 6.25
v, [l Peripheral volume of distribution 120 102 —144 8.84
v, [%] Inter-individual variability of 383 314458 19.4
clearance
Inter-individual variability of
v, 1% -
wo %] central volume of distribution 24 >4.0-30.7 258
Inter-individual variability of
Vv [%] nter-individual variability of 29.9 20.7-37.1 27.0
peripheral volume of distribution
OcL eGFr eGFRon CL 4.92-103 2.48-103-7.83-103 27.8
OcL- bilirubin Bilirubinit on CL 212107 3.09-10"7-1.13 10" 23.7
Ovc-wr Weight on V. 2.45-102 2.0-102-2.8-1072 8.43
RUV [%] Residual unexplained 124 13-13.8 5.21

proportional variability

CL=TVCL - (1+OcLecrr - (eGFR - 68.8)) - (bilirubintot /2.64) 6t biliubin

Vc = TVVC " (1 + ch—Weight - (WT - 80))
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7.4.1 Supplement1

Run001

Run001 represents the true one compartment model with iv. infusion and linear
pharmacokinetics including the true covariate relationship on clearance.

$PROBLEM SIM

$INPUT
ID, TIME, DV, AMT, RATE, EVID, MDV, CMT, OCC, COV1, COV2, COV3
$DATA sim_temp.csv IGNORE=@

$SUBROUTINE ADVAN1 TRANS2

$PK

TVCL = THETA(1)* EXP(THETA(5)*(COVI- XXX ))
CL = TVCL*EXP(ETA(1))

TW1 = THETA(2)

V o= Twi

KE = CL/V

S1=V

$ERROR

IPRED = A(1)/V

W = SQRT( THETA(3)**2*IPRED**2 + THETA(4)**2)
Y = IPRED + W*EPS(1)

IRES = DV-IPRED

IWRES = IRES/W

$THETA

(18) FIX
(400)  FIX
(0.15) FIX
(0.001) FIX
(0.026) FIX

$OMEGA
0.1 FIX

$SIGMA 1 FIX

$SIM(20101994) (1234) ONLYSIM
NSUBPROBLEMS=1

$TABLE ID TIME AMT PRED IPRED RATE IPRED EVID MDV CMT CL V ETA1 OCC COV1 COV2
COV3 WRES CWRES NPDE ONEHEADER NOPRINT FILE=sdtabeol
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Run002

Run002 represents the structural base model without a covariate relationship serving for ‘scm’
and ‘frem’ executions.

$PROBLEM SCM vs FREM

$INPUT  ID, TIME, DV,AMT,RATE,EVID,MDV,CMT, OCC,COV1,COV2,COV3

$DATA cov_temp.csv IGNORE=@ IGNORE(ID>100)
$SUBROUTINE ADVAN1 TRANS2

$PK

TVCL = THETA(1)

CL = TVCL*EXP(ETA(1))
TW = THETA(2)

Vv = TW
KE = CL/V
S1=V

PROP = THETA(3)
ADD = THETA(4)

$ERROR

IPRED = A(1)/V

W = SQRT( THETA(3)**2*IPRED**2 + THETA(4)**2)
Y = IPRED + W*EPS(1)

IRES = DV-IPRED

IWRES = IRES/W

$THETA
(0,21)
(0,400)
(0,0.2)
(0.001) FIX

$OMEGA
0.2

$SIGMA 1 FIX

$EST METHOD=1 INTER MAXEVAL=9999 PRINT=20 NOABORT SIGL=3
$cov

$TABLE ID TIME MDV AMT EVID OCC CL V PROP ADD PRED ETA1 IPRED IWRES CWRES NPDE
ONEHEADER NOPRINT FILE=sdtabee2

5 XXTABLEXX
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SCM configuration file

;;config template_standard.scm

5;;1lines starting with ; are comments

;3if a line starts with ; it must not end with \ because that will
;;cause strange errors.

;;Some of the options in this file can also be given on the command-line,
;;but it is convenient to set them in the config file

;;Most of the options in this file are optional, but this file is a good
;;check-1ist. Not all scm options are listed here, see the user guide for
;;a complete list.

;;Edit as needed, comment/uncomment options to suit your run

;;model file without any of the covariate combinations in test_relations.
;;0ther covariates may be included

model=run@02.mod

;;search direction can be forward, backward or both

;;to be adjusted in case of 'head to head' comparison
search_direction=both

;;provided that the perl module Math::CDF is installed, any p-values can
;;be used. p_backward should be smaller than p_forward

;> backward elimination was not present in 'head to head' comparison
p_forward=0.05

p_backward=0.01

;5it is required to list the covariates to test
continuous_covariates=C0V1,C0V2,C0OV3

;;By default option parallel states=0 and scm tries parameterizations
;;one at a time, in the order set in valid_states. Only if the covariate
;3is included in the model with the first parameterization is the next
;;parameterization tried.

;;1if parallel states is set to 1, scm will test all possible relation
;;forms for a parameter-covariate pair simultaneously.

parallel states=1

;;These general PsN options that can be set in the configuration file.
;;Most general PsN options must however be set on the command-line
retries=3

threads=1

tweak_inits=1

picky=0

5;5In the configuration file all single-line options must come BEFORE the
;;first bracket-header section, otherwise the options will be ignored by scm
;;Each bracket-header section can have many lines, but each header must
;;appear at most one time

[test _relations]

CL=COV1,C0OVv2,C0oV3

;3valid_states (possibly in combination with [code]) tells scm which

; ;parameterizations should be tested for the covariates

;;There are default meanings to numbers 1-5, but by adding a [code] section
;;new parameterizations can be defined, and numbers can be set to mean
;;different parameterizations for different parameter-covariate pairs

5;The first valid state must always be 1.

[valid_states]
continuous = 1,4
categorical = 1,2




Clinical dataset generation and study scenario creation

Run001 was used to simulate and Run002 for ‘scm’ and ‘frem’ executions.

rm(list=1s())
#-read in packages
library(data.table)
library(tidyverse)
require(zoo)
require(boot)
require(xpose4)
library(dplyr)
library(foreach)
library(doParallel)
library(tidyr)
library(MASS)
library(janitor)
library(stringr)

create.workingdata = function(regimen, observations, covariates.const,
uncertainty.time.sd,
uncertainty.RATE.sd,
n_ID){
input.list = list(regimen, observations)

input.list
dummy_out

input.list[which(!sapply(input.list,is.null))]
NULL

for (i in 1:n_ID) {

dummy = as.data.table(dummy)

dummy$EVID = ©

dummy$EVID[dummy$AMT > @] = 1

#tdummy[dv >= @, EVID := 9]

#-add uncertainty to sampling TIME if needed (not used in this study)

dummy$TIME[dummy$EVID==0]=dummy$TIME [ dummy$EVID== O] +
rnorm(n=1ength (dummy$TIME[dummy$EVID==0]),mean=0, sd=uncertainty.time.sd)
dummy$RATE[ dummy$EVID==1] = abs(dummy$RATE[dummy$EVID==1] +

dummy$RATE=dummy$AMT/ (dummy [, "RATE" ,with = F])
dummy$RATE[is.na(dummy$RATE) ]=0

dummy$AMT [is.na(dummy$AMT) ]=0

dummy$ID=1i

dummy = Reduce(function(...) merge(..., all = TRUE, by = "TIME"), input.list)

rnorm(n = length(dummy$RATE[dummy$EVID==1]),mean=0,sd=uncertainty.RATE.sd))




dummy$CMT=1
dummy = dummy[order(TIME), ]

dummy[EVID == 1, OCC := seq(1,length(dummy[EVID == 1]$TIME),by=1)]

dummy[,0CC := na.locf(0CC)]
dummy$MDV = 1

dummy$MDV[ dummy$EVID == 0] = @
dummy _out = rbind(dummy_out, dummy)

}
return(dummy_out)
}
n_ID = 500

n_sim = seq(from = @, to = 1000, by =1)

seed=round(runif(1000,min=10000,max=99900),digits=0)

regimenl = data.frame(TIME = c(0,12,24,36,48,60,72,84,96,108,120),
AMT = c(100, rep(50,10)), RATE = c(0.5))

observationsl = data.frame(TIME = c(71.5, 109), DV = NA )
covariates.constl = NULL

rep_list data = vector("list", length(n_sim))
rep_list_pop = vector("list", length(n_sim))
frem_evaluation_out = vector("list", length(n_sim))

correlation = c(0, 0.15,0.5, 0.80, 0.90)
IDs =c(20,50,100,500)

n_cores=20

for( j in IDs){
for (z in correlation) {
print(j, z)

cl = makeCluster(n_cores)
registerDoParallel(cl)




simulations = foreach (a = unique(n_sim),
.errorhandling = "pass",
.verbose = T) %dopar% {

library(data.table)
require(zoo)
require(xpose4)
library(dplyr)
library(tidyr)
library(MASS)
library(janitor)
library(stringr)
require(boot)

datasetl = create.workingdata(
regimen = regimenl,
observations = observationsl,
covariates.const = covariates.constl,
uncertainty.time.sd = 0,

uncertainty.RATE.sd = 0,

n_ID = n_ID)
datasetl[,DV := as.character(DV)]
datasetl[,DV := "."]

datasetl1$RATE[is.na(dataset1$RATE)] = "."

N <-500

mu <- c(28,8, 5.8)

sigma <- matrix(c(15, z*sqrt(15*1.2), 0O,
z*sqrt(15*1.2), 1.2,0,
9,0, 0.3),3,3)
set.seed(seed[a])

dfl <- mvrnorm(n=N,mu=mu,Sigma=sigma)

covil

as.data.frame(df1)

data = data.frame(ID=c(1:n_ID))

data$Ccovl = Covigvi
data$Cov2 = COV1$V2
data$Cov3 = COV1i$Vv3

data_out = left_join(datasetl,data, by="ID")
data_out = dplyr::select(data_out,ID, TIME, DV, AMT, RATE,
Vvib, MDV, CMT, OCC, COV1, COV2, COV3)

write.csv(data_out,
paste("Datasets_SIM/sim_temp", j, "IDs",
z*100, "corr_sim", a, ".csv", sep= "" ),
row.names = F, quote = F)




modfile = scan("run@@l.mod", sep = "\n", what = character(),
quiet = TRUE)

seed_n_sim=seed[a]

modfile train=gsub("20101994",
as.character(seed_n_sim),
modfile, ignore.case=T)

modfile_seed_train=gsub("XXX",
round(mean(COV1$V1), digits=3),
modfile_train, ignore.case=T)

modfile_seed train[19]= paste(

"$DATA Datasets_SIM/sim_temp",

j, "IDs",z*100, "corr_sim", a,
.CSV IGNORE=@ "," IGNORE(ID >",j, ™)",
sep = "")

modfile_seed train=gsub("FILE=sdtabeol",
as.character(paste("FILE= sdtab_train_",
j, "IDs_", z*100,"corr_sim", a, sep = "")),
modfile seed train, ignore.case=T)

write(modfile_seed_train,
file = paste("rune@@lseed_train_ ",
j, "IDs_", z*100, "corr_sim", a, ".mod" , sep = ""))
system(paste("execute ","run@@lseed train_ ",
j, "IDs_", z*1e@, "corr_sim", a, ".mod",
" -model _dir_name -silent -clean=3", sep = ""),
wait = T, intern = F)

datasetl.sim_train = read.table(
paste("sdtab_train_",
j, "IDs_", z*100,"corr_sim",
a, sep = ""),
skip = 1, header = T)

dataset2 = copy(data_out) %>% dplyr::filter(ID <= j)
dataset2[,DV := datasetl.sim_train$DV[datasetl.sim_train$ID <= j]]
dataset2$DV[dataset2$MDV == 1] = "."

write.csv(dataset2,
paste("Datasets_SIM/cov_temp",
j, "IDs", z*1e@, "corr_sim", a, ".csv",
sep= "),
row.names = F, quote = F)




run@@2 = scan("run@@2.mod", sep = "\n", what = character()
quiet = TRUE)

run@02[20] = paste("$DATA =

"Datasets_SIM/cov_temp",j, "IDs",z*100,"corr_sim",

a, ".csv"," IGNORE=@ IGNORE(ID>", j, ")", sep = "")
write(runee2,file = paste("runee2_",j,

"IDs_", z*1@0, "corr_sim",a,".mod",sep = ""))
scm.file = scan("scm_run@@2.scm", sep = "\n",
what = character(), quiet = TRUE)

scm.file = gsub("model=run©02.mod",

as.character(paste("model= runee2_",j, "IDs_",
z*100, "corr_sim",a,".mod", sep = "")),scm.file)
write(scm.file, file = paste("scm_runee2 ",j,
"IDs_", z*1e@, "corr_sim", a, "

sep = ""))

.scm",

system(paste("execute ", "runee2_ ",j, "IDs_", z*100,
"corr_sim", a, ".mod",
" -model_dir_name -min_retries=3

-silent -clean=3",sep =""), wait = T, intern = F)

system(paste("scm ","rune@2_",j, "IDs_", z*100, "corr_sim",
a, ".mod"," -dir=SCM_RUN_",j, "IDs_ ",
z*100, "corr_sim",a, " -silent -config file=
scm_run@e2_",j,"IDs_",z*100, "corr_sim", a,
".scm -clean=3",sep =""),wait = T, intern = F)
system(paste("frem ", "runee2_",j, "IDs_",z*100, "corr_sim", a,
".mod", " -dir=FREM_RUN_", j,IDs_",*1@@,"corr_sim",a,
" -silent -covariates=COV1,C0V2,COV3 -run_sir
-check -rplots=2 -clean=3", sep =""),
wait = T, intern = F)

X =1

while(length(list.files(path = paste("FREM_RUN_", j, "IDs_ ",
z*100,“corr_sim", a, sep=""), pattern = "*.html")) == 0 && (x <=3
A

X= X+1

system(paste("rm -r FREM_RUN_", j,"IDs_", z*100, "corr_sim", a,
sep=""), wait = T, intern = F)

system(paste("frem","runee2_ ",j,"IDs_",z*100, "corr_sim",a,".mod",
" -dir=FREM_RUN_", j, "IDs_ ", z*100, "corr_sim",a,

" -silent -covariates=COV1,C0OV2,COV3 -run_sir -check -rplots=2 -
clean=3", sep =""),

wait = T, intern = F)

}
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R code for ‘frem’ results extraction

rm(list=1s())
#-load R packages
library(data.table)
library(tidyverse)
library (zoo0)
library (boot)
library (xpose4)
library(stringr)
library(janitor)

IDs = c(20,50,100,500

SIM = seq(1,1000)

loopl = 1list()
loop2 = list()
loop3 = list()

for( i in IDs){
for(c in CORR){
for(s in SIM){

}
loop2[ [which(CORR

}
}

rep_list_coeff
rep_list_cov
rep_list_pop
rep_list_coeff.loop
rep_list_cov.loop
rep_list_pop.loop

pattern
pattern2
pattern3

)

CORR = ¢(0,0.15,0.5,0.8,0.9)

loopl[[s]] = paste("FREM_RUN_",i, "IDs_", c*100, "corr_sim", s, sep ="")
== c)]] = as.character(unlist(loopl))
loop3[[which(IDs == i)]] = as.character(unlist(loop2))

fremruns = unique(as.character(unlist(loop3)))

list()
list()
= list()
list()
list()
list()

for (d in c("COV@@26")){# ', "COVE@32", "COVO@45"'

true = ifelse(d == "COV0026",0.026,
ifelse(d == "COV@@32", 0.032, 0.045))

for (b in fremruns){

print(paste(d, "FREM data Cycle",b, Sys.time()))

paste(d,"/FREM/", b,"/frem_results.csv", sep="")
paste(d,"/FREM/", b,"/results.csv", sep="")
paste(d,"/FREM/", b,"/final_models/sdtab@e2", sep="")




if(file.exists(pattern2) == FALSE){
print(paste(pattern2, "does not exsist"))
frem_cov = data.frame( parameter = NA,

covariate = NA,

condition = NA,

p5 = NA,

mean = NA,

p95 = NA,

RUN = b,

IDs = NA,

CORR = NA,

SIM = NA,

DIR = d,

SIGCOV = o,

INFO = "FAILED" )
rep_list cov[[which(fremruns == b)]] = frem_cov
}

if(file.exists(pattern2) == TRUE){
frem_cov_results = as.data.table(read.csv(paste(d,"/FREM/",
b,"/results.csv", sep = ""),
header = FALSE, stringsAsFactors = F))

index3 = which(frem_cov_results$Vl == "covariate_effects")+1
index4 = which(frem_cov_results$Vl == "individual_effects")-1
frem_cov = filter(frem_cov_results[index3: index4, ])

frem_cov = frem_cov %>%
mutate_all(funs(na_if(., ""))) %>%
remove_empty(“cols") %>%
row_to_names(row_number = 1) %>%
mutate("RUN" = b)

matches.cov <- regmatches(frem_cov$RUN,
gregexpr("[[:digit:]]+", frem_cov$RUN))

runID.cov = as.numeric(unlist(matches.cov))[1:3]
frem_cov$IDs = runID.cov[1]

frem_cov$CORR = runID.cov[2]

frem_cov$SIM = runID.cov[3]

frem_cov$DIR d

covariates= c("Covi", "cCov2", "COV3")




for(c in covariates){

if(( frem_cov$mean[frem_cov$covariate == c &
frem_cov$condition == "5th"] <
frem_cov$mean[frem _cov$covariate == c &
frem_cov$condition == "95th"]) == TRUE){

frem_cov$SIGCOV[frem_cov$covariate == c] =
ifelse(frem_cov$p95[frem_cov$covariate == c &
frem_cov$condition == "5th"] < 1 , 1,
ifelse(frem_cov$p5[frem cov$covariate == c &
frem_cov$condition == "95th"] > 1, 1,0))}

if(( frem_cov$mean[frem_cov$covariate == c &
frem_cov$condition == "5th"] >
frem_cov$mean[frem _cov$covariate == c &
frem_cov$condition == "95th"]) == TRUE){

frem_cov$SIGCOV[frem_cov$covariate == c] =
ifelse(frem_cov$p5[frem_cov$covariate == c &
frem_cov$condition == "5th"] > 1 , 1,
ifelse(frem_cov$p95[frem_cov$covariate == c &
frem_cov$condition == "95th"] < 1, 1,0))}
}

if(length(frem_cov$SIGCOV[frem_cov$SIGCOV == B]) == 2 & # 4x SIGCOV == 1
length(unique(frem_cov$covariate[frem_cov$SIGCOV == 1])) == 2){

frem_cov$INFO = "2 covariates significant"

}

if(length(frem_cov$SIGCOV[frem cov$SIGCOV == 0]) == 1 &

length(unique(frem_cov$covariate[frem_cov$SIGCOV == 1])) == 3){
frem_cov$INFO = "2 covariates significant"
}

if(length(frem_cov$SIGCOV[frem cov$SIGCOV == 0]) == 0 ){
frem_cov$INFO = "all covariates significant"

}




if (length(frem_cov$SIGCOV[frem cov$SIGCOV == 0])
length(frem_cov$SIGCOV[frem cov$SIGCOV == 0])
frem_cov$INFO = "no significant covariate"

6 |
5) {
}

if (length(frem_cov$SIGCOV[frem_cov$SIGCOV == 0]) == 4 &
length(unique(frem_cov$covariate[frem_cov$SIGCOV == 1])) > 1) {
frem_cov$INFO = "no significant covariate" }

if (length(frem_cov$SIGCOV[frem_cov$SIGCOV == @]) == 3 &
length(unique(frem_cov$covariate[frem_cov$SIGCOV == 1])) ==3 ) {
frem_cov$INFO = "no significant covariate" }

if(length(frem_cov$SIGCOV[frem_cov$SIGCOV == 0]) >= 3
length(frem_cov$SIGCOV[frem cov$SIGCOV == 0]) <= 4
length(unique(frem_cov$covariate[frem_ cov$SIGCOV =
frem_cov$INFO = "1 covariate significant" }

if (length(frem_cov$SIGCOV[frem_cov$SIGCOV == 0]) == 2 &
length(unique(frem_cov$covariate[frem_ cov$SIGCOV == 1])) > 2) {

frem_cov$INFO = "1 covariate significant"

}

if (length(frem_cov$SIGCOV[frem_cov$SIGCOV == 0]) == 3 &

length(unique(frem_cov$covariate[frem_cov$SIGCOV == 1])) == 2 ) {
frem_cov$INFO = "1 covariate significant"

}

if (length(frem_cov$SIGCOV[frem_cov$SIGCOV == 0]) == 4 &
length(unique(frem_cov$covariate[frem_cov$SIGCOV == 1])) == 1) {
frem_cov$INFO = "1 covariate significant"

}

frem_cov$COVISIG[frem_cov$SIGCOV == 1 & frem_cov$covariate == "COV1" &

frem_cov$INFO == "1 covariate significant"] =1

effect.diff = frem_cov %>%
mutate(mean = as.numeric(mean) ) %>%
group_by(covariate) %>%
summarise_at(vars(mean), diff) %>%
pivot_wider(names_from = covariate , values_from = c(mean))

frem_cov$COVlieffect
frem_cov$COV2effect
frem_cov$COV3effect

effect.diff$Ccovi
effect.diff$cov2
effect.diff$cov3

frem_cov = frem_cov %>%
mutate("covl_highest" =
ifelse(COVlieffect > COV2effect&
COVlieffect > COV3effect,1,0)) %>%
mutate("cov2_highest" =
ifelse(COV2effect > COVlieffect &
COV2effect > COV3effect, 1, 9)) %>%
mutate("cov3 highest" =
ifelse(COV3effect > COV2effect &
COvV3effect > COVieffect, 1, 9))
rep_list_cov[[which(fremruns == b)]] = frem_cov




if(file.exists(pattern3) == TRUE){

lIst_frem = read.lst(
paste(d, "/FREM/", b,
"/final_models/model_4.1st", sep= ""))

frem_theta data.frame(unlist(lst_frem["thetas"]))
frem_theta = frem_theta %>%
mutate("NUM"=seq(1:1length(frem_theta$'unlist.lst frem..thetas..."')))%>%
mutate("PARAMETER" = c("CL","V",
"PROP", "ADD",
"CLCOV1","CLCOV2","CLCOV3")) %>%

filter(NUM<4) %>%

mutate("RUN" = b) %>%

mutate("NUM" = NULL) %>%

rename("est" = "unlist.lst_ frem..thetas...")

matches.theta <- regmatches(frem_theta$RUN,
gregexpr("[[:digit:]]+",
frem_theta$RUN))

runID.cov = as.numeric(unlist(matches.theta))[1:3]

frem_theta$IDs = runID.cov[1]
frem_theta$CORR = runID.cov[2]
frem_theta$SIM = runID.cov[3]
frem_theta$DIR = d

frem_theta$true = ifelse(frem_theta$PARAMETER == "CL", 18,
ifelse(frem_theta$PARAMETER == "V", 400,
ifelse(frem_theta$PARAMETER == "PROP", ©.15,-99)))

frem_theta = frem_theta %>%
group_by(RUN,DIR) %>%
mutate (RUNDIR=paste(RUN, DIR)

rep_list_pop[[which(fremruns == b)]] <- frem_theta

rep_list_coeff.loop[[d]] <- bind_rows(rep_list_coeff)
rep_list cov.loop[[d]] = bind_rows(rep_list cov)
rep_list pop.loop[[d]] <- bind_rows(rep_list pop)

}
data_out_frem = dplyr::bind_rows(rep_list coeff.loop)
data_out_frem_cov = dplyr::bind_rows(rep_list cov.loop)

data_out_frem_cov$parameter = NULL
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data_out_frem= data_out_frem %>%
group_by(RUN, DIR) %>%
mutate(RUNDIR=paste(RUN, DIR))

data_out_frem_cov = data_out_frem_cov %>%
group_by(RUN,DIR) %>%
mutate(RUNDIR=paste(RUN, DIR))

data_out_frem_cov$COV1SIG[is.na(data_out_frem_cov$COVISIG)] = ©

data_out frem cov$covariate[data out frem_ cov$covariate == "COV1i"] = "CLCOV1"
data_out frem cov$covariate[data out frem_ cov$covariate == "COV2"] = "CLCOV2"
data_out_frem_cov$covariate[data_out_frem_cov$covariate == "COV3"] = "CLCOV3"

names(data_out_frem _cov)[1] = "PARAMETER"
data_out = left_join(data_out_frem_cov,
data_out_frem,
by= c("RUN","IDs","CORR","SIM","DIR", "RUNDIR", "PARAMETER"))
write.csv(data_out, file= "FREM.csv", row.names = F)
data_out_frem_popl = dplyr::bind_rows(rep_list pop.loop)

data_out_frem_pop = dplyr::bind_rows(data_out_ frem_popl, data_out_frem)

write.csv(data_out_frem_pop, file="FREM_PK_parameter.csv", row.names = F)




R code for ‘scm’ results extraction

rm(list=1s())
library(data.table)
library(tidyverse)
library(zoo)
library(boot)
library(xpose4)
library(stringr)
library(MASS)
library(janitor)
library(stringr)

IDs = c(20,50,100,500)
CORR = ¢(0,0.15,0.5,0.8,0.9)
SIM = seq(1,1000)

loopl = list()
loop2 = list()
loop2a= list()

for( i in IDs){
for(c in CORR){
for(s in SIM){

loop2[[which(CORR == c)]]= as.character(unlist(loopl))

}
loop2a[[i]] =as.character(unlist(loop2))

scmruns = unique(as.character(unlist(loop2a)))
rep_list_scm_tab_pop.loop = 1list()
rep_list _scm_tab_pop = list()

vector.is.empty <- function(x) return(length(x) ==0 )

for (d in c("COV@026", "COVO@32" and "COVOO45" )){

cov_pattern =";;; CLCOV"
FILE pattern = "FILE=/home/YOUR_DIRECTORY/"

cov_def = ") ; CLCov"
covl = "CLCOvVi11"
cov2 = "CLCOvV21"

cov3 = "CLCOvV31"

loopl[[s]] = paste("SCM_RUN_",i, "IDs_", c*100, "corr_sim", s, sep

)

true = ifelse(d == "COV0026", 0.026,
ifelse(d == "COV@@32", 0.032, 0.045))
for(l in scmruns){
print(1l)
pattern4 = paste( d,"/SCM/", 1,"/final _models/final_backward.lst",sep="")
pattern5 = paste( d,"/SCM/", 1,"/final _models/final_ forward.lst" ,sep="")




if(file.exists(patternd4) == FALSE & file.exists(pattern5) == FALSE) {
matches <- regmatches(l, gregexpr("[[:digit:]]+", 1))
runID = as.numeric(unlist(matches))[1:3]

mod.rerun = scan(paste(“run@ol_est.mod",sep=""),
sep = "\n", what = character(), quiet = TRUE)

mod.rerun[19] = paste("$DATA cov_temp",
runID[1], "IDs", runID[2],
"corr_sim", runID[3] ,

".csv  IGNORE=@",sep = "")
if(d == "C0vee26"){ mod.rerun[46] = "(0.026) ; 5_CL-covi" }
if(d == "Covee32"){ mod.rerun[46] = "(0.032) ; 5_CL-covi" }
if(d == "Covee45"){ mod.rerun[46] = "(0.045) ; 5_CL-covi" }

write(mod.rerun, paste( d, "/SCM/" ,1,"/run@@l_est.mod",sep=""))

system(paste("execute -model dir ",
d, "/scM/" ,1,"/run@@l_est.mod",
" -clean=3 -silent",sep=""),
wait = T , intern = F)

1st_scm_rerun = read.lst(paste(d, "/scM/", 1,
"/run@@l_est.lst", sep= ""))["thetas"]

scm_theta = data.frame(unlist(lst_scm_rerun["thetas"]))

scm_pop = scm_theta %>%
mutate("NUM" = seq(1:length(scm_theta$unlist.lst scm_rerun..thetas...
))) %>%
mutate("PARAMETER" = c("CL", "V", "PROP", "ADD", "CLCOV11")) %>%
mutate("RUN" = 1) %>%
mutate("NUM" = NULL) %>%
rename("est" = "unlist.lst scm_rerun..thetas...")

scm_pop$SIG =
scm_pop$model "no covariate selected"
scm_pop$IDs = runID[1]

scm_pop$CORR = runID[2]

scm_pop$SIM = runID[3]

scm_pop$DIR = d

0

scm_pop$true[scm_pop$PARAMETER == "CL"] = 18
scm_pop$true[scm_pop$PARAMETER == "V"] = 400
scm_pop$true[scm_pop$PARAMETER == "PROP"] = 0.15
scm_pop$true[scm_pop$PARAMETER == "CLCOV11"] =

ifelse(d=="COV@026", ©.026,
ifelse(d == "COV@®32", ©.032, 0.045))




scm_pop$est = as.numeric(scm_pop$est)
scm_pop$IDs = as.numeric(scm_pop$IDs)
scm_pop$CORR = as.numeric(scm_pop$CORR)
scm_pop$SIM = as.numeric(scm_pop$SIM)
scm_pop$true= as.numeric(scm_pop$true)
scm_pop$SIG= as.numeric(scm_pop$SIG)
scm_pop$METHOD = "SCM"

scm_pop$RUNDIR = paste(scm_pop$RUN, scm_pop$DIR)

rep_list scm_tab_pop[[which(scmruns == 1)]] <- scm_pop

if(file.exists(patternd4) == TRUE){

print("final backward model present™)
mod = scan(paste(
d,"/scMm/",1,"/final_models/final_backward.mod",sep=""),
sep = "\n", what = character(), quiet = TRUE)

search_cov_rel = grep(cov_pattern, mod)
matches <- regmatches(l, gregexpr("[[:digit:]]+", 1))
runID = as.numeric(unlist(matches))[1:3]

if(vector.is.empty(search_cov_rel) == TRUE){
mod.rerun= scan(paste("run@@l_est.mod",sep=""),
sep = "\n", what = character(), quiet = TRUE)

mod.rerun[19] = paste("$DATA cov_temp", runID[1], "IDs",
runID[2],
"corr_sim", runID[3] ,".csv IGNORE=@", sep
=)
if(d == "COVe026"){ mod.rerun[46] = "(0.026) ; 5 _CL-covi" }
if(d == "COVee32"){ mod.rerun[46] = "(0.032) ; 5 _CL-covi" }
if(d == "C0ovee45"){ mod.rerun[46] = "(0.045) ; 5_CL-covi" }

write(mod.rerun, paste( d, "/SCM/" ,1,"/run@@l_est.mod",sep=""))

system(paste("execute -model dir ", d, "/SCM/" ,1,"/run@@l_est.mod", "
-clean=3 -silent",sep=""), wait = T , intern = F)

1st_scm_rerun = read.lst(paste(d, "/scMm/", 1,
"/run@@l_est.lst",sep= ""))["thetas"]
scm_theta = data.frame(unlist(lst_scm_rerun["thetas"]))




scm_pop = scm_theta %>%
mutate("NUM"=seq(1:1length(
scm_thetag$unlist.lst scm_rerun..thetas...))) %>%

mutate ("PARAMETER" = c("CL", "V", "PROP", "ADD", "CLCOV11")) %>%
mutate("RUN" = 1) %>%

mutate("NUM" = NULL) %>%

rename("est" "unlist.lst_scm_rerun..thetas...")

scm_pop$model "backward_NOCOV"

scm_pop$SIG = ©

}

if(vector.is.empty(search_cov_rel) == FALSE){
mod_scm = gsub("IPRED IWRES CWRES",
as.character("COVCOEFF IPRED IWRES CWRES"), mod,
ignore.case=T)

mod_scm2 = gsub(";FREELINE1;",
as.character("COVCOEFF = THETA(5)"),
mod_scm,
ignore.case=T)
file_repl = grep(FILE_pattern, mod_scm2)
lst_scm = read.lst(paste( d,"/ScM/", 1,
"/final_models/final_backward.lst", sep= ""))

scm_theta

data.frame(unlist(lst_scm["thetas"]))

search_scm = grep(cov_def, mod_scm2)
mod_search_scm = mod_scm2[search_scm]

scm_pop = scm_theta %>%
mutate("NUM" =
seq(1:length(scm_thetag$'unlist.lst_scm..thetas..."'))) %>%

mutate("PARAMETER" = c("CL", "V", "PROP",

"ADD", word(mod_search_scm, -1))) %>%
filter(NUM!=4) %>% # num. 4 is add error, which is fixed
mutate("RUN" = 1) %>% mutate("NUM" = NULL) %>%
rename("est" = "unlist.lst scm..thetas...")

scm_pop$model "backward”

scm_pop$SIG = 1




if(scm_pop[4,2] %in% c("CLCOV21", "CLCOV31")){

matches <- regmatches(scm_pop$RUN, gregexpr("[[:digit:]]+",
scm_pop$RUN))

runID = as.numeric(unlist(matches))[1:3]

mod.rerun = scan(paste("run@@l_est.mod",sep=""),
sep = "\n", what = character(),
quiet = TRUE)

mod.rerun[19] = paste("$DATA cov_temp", runID[1], "IDs"
runID[2], "corr_sim", runID[3] ,".csv

IGNORE=@",

sep = ")
if(d == "COVe026"){ mod.rerun[46] = "(0.026) ; 5_CL-covi" }
if(d == "COVee32"){ mod.rerun[46] = "(0.032) ; 5_CL-covi" }
if(d == "COvee45"){ mod.rerun[46] = "(0.045) ; 5_CL-covi" }

write(mod.rerun, paste( d, "/SCM/" ,1,"/run@@l_est.mod", sep="" ))
system(paste(“execute -model_dir ", d, "/SCM/",1,

"/run@@l_est.mod -clean=3 -silent",sep=""),
wait = T , intern = F)

1st_scm_rerun = read.lst(paste( d,"/", 1,
"/run@@l_est.lst", sep= ""))["thetas"]

coeff.covl = unlist(lst_scm_rerun)[5]

scm_pop[nrow(scm_pop)+1, ] = c(coeff.covl, "CLCOV1", 1, O,
"backward_wrong cov")

}
scm_pop$IDs = runID[1]
scm_pop$CORR = runID[2]

scm_pop$SIM = runID[3]
scm_pop$DIR = d

scm_pop$true[scm_pop$PARAMETER == "CL"] = 18
scm_pop$true[scm_pop$PARAMETER == "V"] = 400
scm_pop$true[scm_pop$PARAMETER == "PROP"] = 0.15
scm_pop$true[scm_pop$PARAMETER == "CLCOV11"] =
ifelse(d == "COV@026", ©0.026,

ifelse(d == "COV@@32", 0.032, 0.045))




scm_pop$true[scm_pop$PARAMETER == "CLCOV21"] =
scm_pop$true[scm_pop$PARAMETER == "CLCOV31"] = @
scm_pop$est = as.numeric(scm_pop$est)

scm_pop$IDs = as.numeric(scm_pop$IDs)
scm_pop$CORR = as.numeric(scm_pop$CORR)
scm_pop$SIM = as.numeric(scm_pop$SIM)
scm_pop$true= as.numeric(scm_pop$true)
scm_pop$SIG= as.numeric(scm_pop$SIG)
scm_pop$METHOD = "SCM"

scm_pop$RUNDIR = paste(scm_pop$RUN, scm_pop$DIR)

|
(]

rep_list scm_tab_pop[[which(scmruns == 1)]] <- scm_pop

}

if(file.exists(pattern5) == TRUE & file.exists(patternd4) == FALSE){
mod = scan(paste( d,"/scM/",1,
"/final_models/final_forward.mod",
sep=""),
sep = "\n", what = character(), quiet = TRUE)

search_cov_rel = grep(cov_pattern, mod)
matches <- regmatches(l, gregexpr("[[:digit:]]+", 1))
runID = as.numeric(unlist(matches))[1:3]

if(vector.is.empty(search_cov_rel) == TRUE) {
mod.rerun= scan(paste("run@el_est.mod",sep=""),
sep = "\n", what = character(), quiet = TRUE)

mod.rerun[19] = paste("$DATA cov_temp", runID[1], "IDs", runID[2],
"corr_sim", runID[3] ,".csv  IGNORE=@",
sep = ")
if(d == "COve026"){ mod.rerun[46] = "(0.026) ; 5_CL-covi" }
if(d == "C0ovee32"){ mod.rerun[46] = "(0.032) ; 5_CL-covi" }
if(d == "COvee45"){ mod.rerun[46] = "(0.045) ; 5_CL-covi" }

write(mod.rerun, paste( d, "/SCM/" ,1,"/run@@l_est.mod",sep=""))

system(paste("execute -model dir ", d, "/SCM/" ,1,
"/run@@l_est.mod", " -clean=3 -silent",sep=""),
wait = T , intern = F)




1st_scm_rerun = read.lst(paste(d, "/SCM/", 1,"/run@@l est.lst",
sep= Illl))[llthetasll]

coeff.covl = unlist(lst_scm_rerun)[5]

scm_theta = data.frame(unlist(lst_scm_rerun["thetas"]))

scm_pop = scm_theta %>%
mutate("NUM" = seq(1l:length(
scm_thetagunlist.lst scm_rerun..thetas...))) %>%
#-use the name of the cov relation
mutate ("PARAMETER" = c("CL", "V", "PROP", "ADD", "CLCOV1")) %>%
mutate("RUN" = 1) %>%
mutate("NUM" = NULL) %>%
rename("est" = "unlist.lst_scm_rerun..thetas...")

scm_pop$SIG

=0
scm_pop$model =

"forward_NOCOV"

}
if(vector.is.empty(search_cov_rel) == FALSE) {
1st_scm = read.lst(paste( d,"/scMm/",
1,"/final_models/final_ forward.lst",
sep= ""))
scm_theta = data.frame(unlist(lst_scm["thetas"]))

search_scm
mod_search_scm

grep(cov_def, mod) # need to know the position
mod[search_scm]

scm_pop = scm_theta %>%
mutate("NUM" = seq(1l:length(
scm_theta$'unlist.lst scm..thetas...'))) %>%

mutate("PARAMETER" = c("CL", "V", "PROP",
"ADD", word(mod_search_scm, -1))) %>%

filter(NUM!=4) %>%

mutate("RUN" = 1) %>%

mutate("NUM" = NULL) %>%

rename("est" = "unlist.lst scm..thetas...")
scm_pop$SIG = 1

scm_pop$model = "forward"




if(scm_pop[4,2] %in% c("CLCOV21", "CLCOV31")){
mod.rerun = scan(paste(“run@l_est.mod",sep=""),
sep = "\n", what = character(),
quiet = TRUE)

mod.rerun[19] = paste("$DATA cov_temp",
runID[1], "IDs", runID[2], "corr_sim",
runID[3] ,".csv  IGNORE=@",

Sep = IIII)
if(d == "COve026"){ mod.rerun[46] = "(0.026) ; 5_CL-covi" }
if(d == "Covee32"){ mod.rerun[46] = "(0.032) ; 5_CL-covi" }
if(d == "COvee45"){ mod.rerun[46] = "(0.045) ; 5_CL-covi" }

write(mod.rerun, paste(d, "/SCM/",1,"/run@@l_est.mod",sep=""))

system(paste("execute -model dir ", d , "/SCM/",
1,"/run@@l_est.mod -clean=3",sep=""),
wait = T , intern = F)

1st_scm_rerun = read.lst(paste(d,"/SCM/", 1,"/run@@l est.lst",
sep= ""))["thetas"]

coeff.covl = unlist(lst_scm_rerun)[5]

scm_pop[nrow(scm_pop)+1, ] = c(coeff.covl, "CLCOV1", 1, O,
"forward_wrong_cov")

}

matches <- regmatches(scm_pop$RUN, gregexpr("[[:digit:]]+", scm _pop$RUN))
runID = as.numeric(unlist(matches))[1:3]

scm_pop$IDs = runID[1]

scm_pop$CORR = runID[2]

scm_pop$SIM = runID[3]

scm_pop$DIR = d

scm_pop$true[scm_pop$PARAMETER == "CL"] = 18

scm_pop$true[scm_pop$PARAMETER == "V"] = 400

scm_pop$true[scm_pop$PARAMETER == "PROP"] = 0.15

scm_pop$true[scm_pop$PARAMETER == "CLCOV1l1"] =
ifelse(d == "COV@026", 0.026,

ifelse(d == "COVe@32", 0.032, 0.045))
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scm_pop$true[scm_pop$PARAMETER == "CLCOV1"] =
ifelse(d == "COV@026", ©.026,
ifelse(d == "COV@@32", ©.032, 0.045))

scm_pop$true[scm_pop$PARAMETER=="CLCOV21" |scm_pop$PARAMETER == "CLCOV31"

] =290

scm_pop$est = as.numeric(scm_pop$est)
scm_pop$IDs = as.numeric(scm_pop$IDs)
scm_pop$CORR = as.numeric(scm_pop$CORR)
scm_pop$SIM = as.numeric(scm_pop$SIM)
scm_pop$true= as.numeric(scm_pop$true)
scm_pop$SIG= as.numeric(scm_pop$SIG)
scm_pop$METHOD = "SCM"

scm_pop$RUNDIR = paste(scm_pop$RUN, scm_pop$DIR)

rep_list scm_tab_pop[[which(scmruns == 1)]] <- scm_pop

}
}

rep_list scm_tab_pop.loop[[d]] = bind rows(rep_list scm_tab_pop)

}

scm_pop_out = bind_rows(rep_list scm_tab_pop.loop)

scm_pop_ out$PARAMETER[scm_pop_ out$PARAMETER == "CLCOV11l"] =
scm_pop_ out$PARAMETER[scm_pop_ out$PARAMETER == "CLCOV21"] =
scm_pop_out$PARAMETER[scm_pop_ out$PARAMETER == "CLCOV31l"] =

scm_pop_out$PARAMETER = as.character(scm_pop_out$PARAMETER)
scm_pop_out$RUN = as.character(scm_pop out$RUN)
scm_pop_out$model = as.character(scm_pop out$model)

scm_pop_out$true[scm_pop_out$PARAMETER == "ADD"] = 0.001
write.csv(scm_pop out, file= paste("SCM_DATA ",Sys.Date(),
Sep =llll),

row.names = F)

"CLCov1"
"CLCov2"
"CLCOV3"
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7.4.2 Supplement 2

Simulation study using a true categorical covariate
In this simulation sub study, we investigated 0 % and 80 % correlation between the true dichotomous
categorical covariate and covariate. Covariatey was independent of the other two covariates and

represents pure noise. Covariate values were sampled with the code below.

N <-500

mu <- c(28,8)

sigma <- matrix(c(15, @, 0, 1.2 ),2,2)

set.seed(seed[a])

df <- as.data.frame(mvrnorm(n=N, mu=mu, Sigma=sigma))

dfl<-df%>%
mutate(CATEGORICAL = case_when(

Vl<quantile(V1,0.25) ~ sample(c(1,0), n(),replace = TRUE, p = c(1,9)),
Vi<quantile(V1,0.5) ~ sample(c(1,0), n(), replace = TRUE, p = c(1,0)),
Vi>quantile(V1,0.5) ~ sample(c(1,0), n(), replace = TRUE, p = c(0,1)),

Vi>quantile(V1,0.75) ~ sample(c(1,0), n(), replace = TRUE, p = c(0,1))))

round(cor(dfl1)[3,1], digits= 3)

All simulations used individually simulated datasets with 20, 50, 100, 500 virtual patients (n)
including 2 (sparse) observations per individual. PK profiles of the scenarios (1-CMT PK model, i.v.
short infusion, linear elimination) were obtained via Monte Carlo simulations. The true model
included the categorical covariate as fractional change on clearance (Eq. 1)
IF(CATEGORICAL.COV == 0) CL = THETA(1) Eq.1
IF(CATEGORICAL.COV ==1) CL = THETA(1) * (1+0cat-cov )

Simulated coefficients represented a covariate effect of -20 % or -40 % (-0.2, -0.4) on clearance.
In cases that a categorical covariate of 1was identified as the ‘reference’ value, the true value is
+0.25 or +0.67.

Beside interindividual variability on clearance (llVc.: 0.1 variance, log-normal distribution), this
sub study compared simulations in presence with and without inter individual variability on
central volume of distribution (IIVy: 0.2 variance, log-normal distribution). PK parameter

estimation was performed with first order conditional estimation with interaction (FOCE+I),
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using the simulated datasets (n = 1000) and a structural model without any covariates included.
From here 500 ‘scm’ and ‘frem’ runs were executed. Scenario 1simulated a comparison applying
‘scm’ forward selection (p < 0.05) and a backward elimination (p < 0.01), as well as applied only
‘scm’ forward selection (p< 0.1) as comparison to ‘fremposthoc’ (SCenario 2). We evaluated the
power to select/identify the true categorical covariate, but also conditional accuracy (Eqg. 2) and
precision (Eq.3) of the estimates. For ‘fremposthoc the mean effect of ‘other’ compared to
‘reference’ served for calculation of the fractional change coefficient. Whether 0 or 1 was the

reference in the datasets was extracted from the PSN provided ‘results.csv’ file.

rBIAS [%] _ %le (estimated;— true;) 100 Eq. 2

true;

(estimated;—true;)?

rRMSE [%] = \/% >y -100 Eq.3

true?

Scenario 1 (categorical covariate)

The results of scenario 1 are displayed in Figure S2-1. For ‘fremposthoc’ models with a significant
covie effect were evaluated. The power to identify the true categorical covariate was 47 %
(‘frempostnoc’) VS. 28 % (‘scm’) in the scenario with n = 20, cov-corr 80 % and the covariate effect
being -20 % on clearance. With increasing the covariate effect size to -40 % we revealed a power
of 89 % using the “frempostnoc’ and 74 % in ‘scm’ (n = 20, cov-corr: 80 %). Thus, the observed
behavior of power was similar as in the study handling continuous covariates. Power increased
with increasing covariate effect size and was reduced in presence of 80 % cov-corr. In large
datasets (n=500), both methods approached 100 % power.

Additionally, we investigated the presented scenarios without inter individual variability on
central volume of distribution (IIVV) to investigate its impact. The power of the “fremposthoc
method increased from e.g., from 89 % to 95 % (n = 20, cov-corr: 80 %, -40 % on clearance). For
‘scm’ power was increased in this scenario from 74 % to 78 %.

Besides that, the correlated continuous covariate (80 %) had a significant effect in 2 79 % of the
“fremposthoc models and in 2 95 % in large datasets (n = 500). In contrast to that, ‘scm’ included
the true categorical covariate together with covariate; in none of the models. As a single
covariate, ‘scm’ selected covariate; at a maximum of 15 %.

Moreover, the independent, non-correlated covariate (covariaten) had a significant effectin 10 %

(n=500) - 16 % (n = 20) of ‘frem’ runs and between 4—9 % in ‘scm’ runs.
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Conditional accuracy and precision were functions of power. Rbias was strongly reduced with
increasing power and the effect of correlation had only minor impact, regardless of the method.
‘Scm’ (-5.3 to 7 %) and “fremposthoc’ (-4 to 0.2 %) estimates were slightly biased in small n datasets,
if the covariate effect was strong (-40 %). In the simulations without IIVV rbias was comparable
(9 % to 12 %, covariate effect:-40 %).

The rrmse of the true covariate coefficient estimated, obtained via ‘scm’ was reduced from 110 %
to 15% (n = 20 — 500, - 20%) or with increasing effect size from 110 % to 43 % (n=20, 80 %
correlation). Without 1IVV, rrmse was reduced from 108 % to 13 % (‘scm’, n= 20-500, 80 % corr, -
20 %) and from 108 % to 39 % with increasing effect size of the covariate (‘scm’, n=20, 80 % corr,
-20 %). Across all simulated scenarios, 6/16000 ‘frem’ models provided an estimated true
covariate effect of >2500 % on clearance, so that these models were excluded for the evaluations

as these outliers would blur the statistics.

( -20% on CL ) ( ~40% on CL )
100 1 = E———
c g
804 - - § %
601 53
e =g
401 2

[%] seiq
"A0D |eolI0Ba1eD

[94] @suL
‘A0D |eoloba1en

Individuals (n)

Method - FREM -=— SCM Correlation — 0% — - 80%

Figure S2-1 Power precision and accuracy of the true categorical covariate (cat. cov) in the comparison of
‘scm’ (forward selection, p<0.05; backward elimination p>0.01) vs. “frempostnoc’ for two covariate effect
sizes (scenario 1).
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Scenario 2 (categorical covariate)

For this comparison, the scm was performed with forward selection only (p<0.1), as a direct
comparison to the 90 % confidence interval of the covariate effects in the ‘frempostho’ method.
The overall results followed the same trend as observed for the true continuous covariate but
were also comparable to scenario 1 (Figure S2-2). Power increased from 40 % to 100 % (‘scm’,
n=20-500, cov-corr: 0 %, covariate effect: -20 %) and from 40 % to 89 % with increasing covariate
effect size.

Rbias decreased from 57 %/48 % to -5.8 %/-14 % and rrmse from 94 %/84 % to 14 %/29 %
(‘scm’/'frem’, n=20-500, cov-corr: O %, covariate effect: -20 %), as a function of power. In the
scenarios with -40 % covariate effect size, power was strongly increased (> 74 %) and rbias was
between 2.2 % and -7.4 %. The correlated continuous covariate; was statistically significant in
39 % of simulated small n datasets (n=20, covariate correlation 80 %, covariate effect: -20 %) and
in 95 % in large datasets (n=500). In contrast to that, none of the final forward ‘scm’ models
included both covariates. The independent covariaten had a significant effect in 15 — 10 %
(n =20 -500) of the final ‘frem’ models with a mean error between -0.017 - 0.02. The alpha value

for ‘scm’ was between 6 and 12 %.

( -20% on CL ) ( -40% on CL )

100 =]

80 A

60 -

[o5] 4omod
‘AOD [eoloba)ed

404

[%] seiqu
‘AOD Bouobe)ED

[o6] @sWw
‘AOD [BeolIoba)1eD

20 50 100 50020 50 100 500
Individuals (n)
Method -~ FREM =-e= sCM Correlation — 0% = 80%

Figure S2 -2 Power, precision, and accuracy of the true categorical in scenario 2 of ‘scm’ (forward selection,
p <0.1) and “fremposthoc . The covariate effect on clearance was -20 %, -40 % respectively.
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7.4.3 Supplement 3

0.6

Sampled covariates

0.4 . COVirye

covy

. cov

0.2

s -

00 58 8.0 28.0
Covariate values

0.0

Figure S3 - 1 Multivariate normal distribution of continuous covariate values with the mean displayed as
vertical lines
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Results for Scenario 1
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Figure S3 - 2 Density plot with estimated covariate coefficients for scenario 1with three different covariate

relative effect sizes on clearance (CL). The vertical line denotes the true covariate coefficient.
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Results for Scenario 2

‘FreMposthoc’ results were compared to ‘scm’ forward inclusion models (p-value <0.1) to provide a
statistically similar ‘head-to-head’ comparison. Throughout scenario 2, the ‘scm’ power to include
covirue Was less affected by correlation compared to “fremposinoc’ (Figure 3 and Table S3-1). In small n
datasets, the ‘scm’ performed slightly better with a maximum difference in power of +23 % (n = 20,
Ocovy,, = 0.026).

For “fremposthoc’, the frequency of significant covy inclusions in the final ‘fremposthoc’ models was >
74 % in presence of > 80 % correlation between the covariates (n 2100). In contrast to that, cov was
significantly included in < 23 % of ‘scm’ runs with a maximum mean error (me) of covy estimate of
0.2(n=20, 8.0y,,,, = 0.045, cov-corr 90 %). The highest mean error of “fremposthoc’ cOViestimates was
0.18 (n=20, O.0y,,,,, = 0.045, cov-corr 90 %).

Overestimation of the 6.,,, _ was observed for ‘frempostnoc’ and ‘scm’, favouring ‘scm’ in small n
datasets. The rbias of fremposthoc Ocoy,,,,, COEfTicients were reduced with an increasing number of
study subjects, but also with increasing relative covariate effect size (Table S3-1). In large datasets,
estimated covariate coefficients were unbiased. Although power differences were observed, the
fraction of predictive models in scenario 2 were similar (scm: 97.0 % “fremposthoc :97.5 %, n = 50, cov-
corr = 80 %, Ocoy,,,, = 0.026 ) and reached both 100 % in the scenario with the highest simulated

covariate effect magnitude (6 = 0.045, n > 50), see Figure S3 - 4. Conditional accuracy and

COVirye
precision for each method is presented in Table S3-1.

The direct comparison of the estimated ‘frempostnoc’ and ‘scm’ coefficients (based on the same
dataset) is displayed in Figure S3 - 5. This representation of the results shows that “fremposthoc’
estimates are similar to ‘scm’ in case both methods found a significant covie relationship based on

the same dataset.
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Table S3 - 1: ‘Scm’ and ‘fremposthoc’ simulation results of scenario 2. The relative covariate effect
sizes were -18 - +22 % (8coy,,,._true) 0.026), -22 to +27 % ( B4y, 0.032) and -29 to +41 % (Bcov,,,.

0.045) on clearance.

Covariate
N Method 0c0v,,,, 0- 026 Bcovyyy, 0- 032 Bcov,,y, 0- 045
correlation [%]

power | rbias | rrmse | power | rbias | rrmse | power | rbias | rrmse

[%%] | [%] | [%] %] | [%] | [%] 6] | [%] | [%]

“frem’ 40.7 69.3 | 884 50.1 431 64.7 71.1 21.9 43.9

° ‘scm’ 56.0 | 38.6 | 88.0 639 | 284 | 645 78.6 16.7 441

“frem’ 40.0 70.3 88.5 451 435 64.7 65.5 20.5 | 43.0

20 >0 ‘scm’ 56.7 41.7 87.9 63.2 289 | 643 71.9 14.8 | 435
“frem’ 29.9 673 | 86.9 33.2 441 | 66.6 46.7 20.7 | 431

%0 ‘scm’ 527 476 | 879 61.0 33.6 | 64.0 76.5 16.5 | 427

“frem’ 67.0 26.5 | 427 80.1 144 | 344 95.5 340 | 26.2

° ‘scm’ 77.1 17.5 42.2 86.2 9.5 35.1 97.3 1.70 26.7

“frem’ 62.6 26.5 | 431 75.4 15.3 34.9 91.7 230 | 259

> >0 ‘scm’ 76.1 18.0 | 41.9 86.2 | 9.90 | 34.6 97.5 0.10 | 26.7
‘frem’ 481 27.2 | 43.0 58.1 13.7 34.6 68.8 210 | 26.8

%0 ‘scm’ 75.8 18.6 | 41.0 86.7 | 9.60 | 345 97.5 0.10 | 26.9

“frem’ 899 | 7.60 | 29.8 96.1 290 | 25.9 100 0.13 18.9

° ‘scm’ 925 5.10 30.1 97.7 1.00 | 25.9 100 -0.7 18.9

“frem’ 85.4 8.4 29.9 94.0 | 340 | 258 98.7 | 0.05 | 193

100 50

‘scm’ 925 510 | 29.8 97.7 1.10 26.0 99.8 -1.0 19.6

“frem’ 67.6 7.50 | 30.0 76.9 | 3.00 | 25.8 81.0 -0.5 20.1

%0 ‘scm’ 929 | 480 | 30.0 98.1 0.80 | 26.2 99.9 -11 19.8
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Figure S3 - 4 Fraction of models with high predictive performance for scm and final “fremposthoc’ models with
significant true covariate relationships in scenario 2. Estimated coefficients between zero to two times the
true value were assumed to improve the predictive performance.
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Figure S3 - 5 Estimated ‘scm’ vs. ‘frempostnoc’ coefficients per study scenario (0 = 0.032). Dotted lines represent
the true coefficient value.
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Results for scenario 3

Scenario 3 compared all estimated ‘frem’ covie coefficients without a posthoc selection against
those of the final ‘scm” model obtained after forward inclusion (p < 0.05) and backward elimination
(p < 0.01). In sum all “frem’ coefficients are unbiased (-1.4 — 3.7 %) compared to the ‘scm’ where a
selection is default. Even if unbiased, the estimated ‘frem’ coefficients are highly imprecise,
especially in datasets n < 100. Nevertheless ‘frem’ provides coviwe coefficients with a higher
precision in small n datasets. Rrmse was reduced from 48 % to 27 % from weakest to strongest
covariate effect scenario (n = 50) and from 80 % to 8 % with increasing dataset size (n = 20 — 500).
In sum final “frem’ model provide a high faction of predictive models (> 87 %), mostly impacted by

covariate effect magnitude as shown in Figure S3 - 6.
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Figure S3 - 6 Fraction of models with high predictive performance for final scm and ‘frem’ models in scenario 3.
Estimated coefficients between zero to two times the true value were assumed to improve the predictive
performance.
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Chemicals CAS-Nr.: Pictogram H statement P statement
P210, P280,
H225, H302, H312,
Acetonitrile 75-05-8 <&>® P303+P361+P353,
H332, H319
P403+P235
P210, P280,
H226, H290, P303+P361+P353,
Formicacid | 64-18-6 @ H302, H331, H314, | P304+P340,
H314, H318 P305+P351+P338,
P310
P280, P310,
Hydrochloric H290, H314, H335, | P303+P361+P353,
7647-01-0 @
acid H318 P304+P340,
P305+P351+P338
P210, P280,
H225, H301, H311, | P301+P310,
Methanol 67-56-1
H331, H370 P303+P361+P353,
P308+P311
P233, P280,
Sodium P303+P361+P353,
1310-73-2 H290, H314, H318
hydroxide P305+P351+P338,
P310
P201, P202, P264,
P280,
Tigecycline 220620-09-7 @ H319, H360 P305+P351+P338,
P308+P313,

P337+P313,P405,P501
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Hazard statements

8.1 Hazard statements

H225 Highly flammable liquid and vapour

H290 Substance or mixture corrosive to metals

H302+H312+H332 Harmful if swallowed, in contact with skin or if inhaled

H314 Skin corrosion/irritation

H318 Serious eye damage/eye irritation

H319 Causes serious eye irritation

H331 Toxic if inhaled

H335 Specific target organ toxicity - single exposure (respiratory tract irritation)
H360 May damage fertility or the unborn child

8.2 Precautionary statements

P201 Obtain special instructions before use
P202 Do not handle until all safety precautions have been read and understood.
P233 Keep container tightly closed
P264 Wash thoroughly after handling
P280 Wear protective gloves/protective clothing/eye protection/face protection.
P301+P310 If swallowed: Immediately call a poison center/doctor.
If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin
P303+P361+P353 )
with water or shower.
P308+P313 If exposed or concerned: Get medical advice/attention.
P308+P310 If exposed or concerned: Call poison center/doctor.
P337+P313 If eye irritation persists: Get medical advice/attention
P304+P340. If inhaled: Remove person to fresh air and keep comfortable for breathing
IF in eyes: Rinse cautiously with water for several minutes. Remove contact
P305+P351+P338 ) ) o
lenses, if present and easy to do. Continue rinsing.
P310 Immediately call a poison center/doctor.
P405 Store locked up
P403+P235 Store in a well-ventilated place. Keep cool
P50 Dispose of contents/container in accordance with

local/regional/national/international regulations
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