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Hamburg, 2024





Some text

Supervisor: Dr. Martin Siebenborn (From August
2020 to October 2022)
Prof. Winnifried Wollner (From October
2022 to September 2023)

Date of oral defense: 05.03.2024
Chair of the examination commission: Prof. Dr. Ingenuin Gasser
Reviewers: Prof. Dr. Winnifried Wollner

Dr. Martin Siebenborn
Prof. Dr. Ing. Thomas Rung





Official Declaration

Hereby I declare, that I have not submitted this thesis in this or similar form to any
other examination at the Universität Hamburg or any other institution or university.

I officially ensure, that this paper has been written solely on my own. I herewith
officially ensure, that I have not used any other sources but those stated by me.
Any and every parts of the text which constitute quotes in original wording or in
its essence have been explicitly referred by me by using official marking and proper
quotation. This is also valid for used drafts, pictures and similar formats.

I also officially ensure that the printed version as submitted by me fully confirms
with my digital version. I agree that the digital version will be used to subject the
paper to plagiarism examination. Not this English translation, but only the official
version in German is legally binding.

Eidesstattliche Erklärung
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Abstract
Shape optimization is an area that aims at improving the design of an object with
respect to a given physical quantity expressed by an objective function. In most
meaningful applications the objective function requires the solution to a partial
differential equation (PDE). There are empirical techniques for improving existing
designs. However, recent developments in the mathematical theory used to formu-
late these kind of problems has triggered new research in this area. Moreover, the
development of progressively faster computers has lead to applications involving
very large number of degrees of freedom (DoFs).

The goal of this work is to investigate, develop, and implement state-of-the-art
techniques in shape optimization. The main area of interest is in applications which
require large deformations to optimize a given domain. Here, the formulation of the
problem is done in a continuous setting, and its followed by a discretization of the
domain via the finite element method (FEM). This discrete setting describes the
geometry which is to be optimized by applying a series of deformation fields across
the nodes of the grid. It is during this process, that the discrete elements might
undergo mesh quality losses. Therefore, this thesis is part of the ongoing interest
of the research community on techniques that allow for large deformations, while
preserving mesh quality.

In the context of finite element analysis, complex geometries usually require
highly refined computational meshes to yield accurate results. Thus, here we also
focus on implementing case studies with a very high number of DoFs. With this
purpose, the proposed algorithms are implemented using the parallel-computing
simulation framework UG4. Additionally, the results are generated using massive
distributed-memory systems, i.e. supercomputers.

A literature-based, fluid dynamics case study is used to benchmark the shape
optimization methods developed in this thesis. The used example is that of an
object located in the center of a flow tunnel, whose surface must be optimized with
respect to a certain quantity such as the drag or lift. For the studies within this
work, the shape of the object is set to include geometric singularities -e.g. edges and
corners- which are to be removed during the optimization. Furthermore, based on
the literature, it is known that the optimized obstacle must include newly generated
geometric singularities. Thus, this is a good benchmarking case for large deformation
techniques in shape optimization.
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Zusammenfassung
Formoptimierung ist ein Bereich, der darauf abzielt, das Design eines Objekts in
Bezug auf einen gegebene physikalischen Größe zu verbessern, die durch eine Ziel-
funktion ausgedrückt wird. In den meisten nicht-trivialen Anwendungen erfordert
die Zielfunktion die Lösung einer partiellen Differentialgleichung (englisch: partial
differential equation, PDE). Es existieren empirische Techniken zur Verbesserung
bestehender Designs. Allerdings haben neue Entwicklungen in der mathematischen
Theorie, die zur Formulierung dieser Art von Problemen verwendet wird, neue For-
schung in diesem Bereich ausgelöst. Darüber hinaus hat die Entwicklung von zuneh-
mend schnelleren Computern zu Anwendungen geführt, die eine sehr große Anzahl
von Freiheitsgraden (englisch: degrees of freedom, DoFs) umfassen.

Das Ziel dieser Arbeit besteht darin, hochmoderne Techniken in der Formop-
timierung zu untersuchen, zu entwickeln und umzusetzen. Das Hauptinteressenge-
biet liegt in Anwendungen, die große Verformungen erfordern, um eine gegebene
Domäne zu optimieren. Hier wird das Problem in einem kontinuierlichen Rahmen
formuliert und anschließend durch die Methode der finiten Elemente (FEM) diskre-
tisiert. Dieser diskrete Rahmen beschreibt die Geometrie, die durch die Anwendung
einer Reihe von Deformationsfeldern über die Knoten des Gitters optimiert wer-
den soll. Während dieses Prozesses können die diskreten Elemente möglicherweise
Qualitätsverluste im Gitter erleiden. Daher ist diese Arbeit Teil des fortwährenden
Interesses der Forschung an Techniken, die große Verformungen ermöglichen und
gleichzeitig die Gitterqualität erhalten.

Im Kontext der Finite-Elemente-Analyse erfordern komplexe Geometrien nor-
malerweise hochfeine Berechnungsgitter, um genaue Ergebnisse zu liefern. Daher
konzentrieren wir uns hier auch auf die Implementierung von Fallstudien mit einer
sehr großen Anzahl von DoFs. Zu diesem Zweck werden die vorgeschlagenen Algo-
rithmen mit einem parallelisierten Framework, UG4, implementiert. Darüber hinaus
werden die Ergebnisse mit massiven verteilten Speichersystemen, d.h. Supercompu-
tern, erzeugt.

Eine auf der Literatur basierende Fallstudie zur Fluiddynamik wird verwendet,
um die in dieser Arbeit entwickelten Formoptimierungsmethoden zu benchmarken.
Das verwendete Beispiel ist das eines Objekts in der Mitte eines Strömungstunnels,
dessen Oberfläche hinsichtlich einer bestimmten Größe wie dem Strömungswiderstand
oder dem Auftrieb optimiert werden muss. Für die Studien innerhalb dieser Arbeit
ist die Form des Objekts so festgelegt, dass sie geometrische Singularitäten wie Kan-
ten und Ecken enthält, die während der Optimierung entfernt werden sollen. Darüber
hinaus ist aus der Literatur bekannt, dass das optimierte Hindernis neu generierte
geometrische Singularitäten enthalten muss. Daher handelt es sich um einen guten
Benchmark-Fall für Techniken zur Formoptimierung bei großen Verformungen.
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Chapter 1

Introduction
There is ongoing research in the field of PDE-constrained shape optimization. An
introduction to the area can be found in the major monographs [16, 76, 31]. In
[61], shape optimization is introduced in the context of elliptical PDEs. The recent
book [33] and monograph [2], together with their respective bibliographies, provide
an extensive overview. Several applications can be found in the fields of structural
mechanics [21, 4, 3]; fluid dynamics [67, 66, 42, 12]; electrostatics [24]; and acoustics
[79], to mention some. Renewed interest in the field has resulted in further advances
in shape optimization [71, 14, 63].

This work proposes novel algorithmic schemes for solving optimization problems,
where the objective function depends on the domain, the so-called field of shape
optimization. Within the optimization process, one key step in a shape optimization
algorithm is finding a deformation field that can generate a better, optimized shape,
see e.g. [2, Chapter 5.1] for a general overview. In this thesis we are interested in
the algorithms used to obtain these descent directions, i.e. the deformation fields,
that are iteratively applied to the geometry to find an optimized domain. There
is extensive ongoing research in this field, as illustrated in [14, 38, 10], to mention
some recent examples. We place particular interest in shape functionals, which are
a function both of the domain and of a solution to a partial differential equation
(PDE).

On this topic, the preservation of mesh quality during the optimization process
has been the subject of recent research. By this, it is meant the appearance of
phenomena such as the overlapping of the domain with itself, as well as the de-
generation of the discrete elements in the computational grid. Some efforts in this
field are related to extending the deformation across the domain [38]. Another ap-
proach is based on remeshing the domain either after a fixed number of iterations,
or when the mesh quality goes below a certain threshold [82, 78, 65]. Or, for in-
stance, restricting the deformation in the discrete setting [22]. Recently, advances
on the simultaneous optimization of the shape and mesh quality [45, 46] have been
proposed. This thesis aims at contributing to this general line of research.

In this work we make use of two different approaches for the generation of an
optimized shape. As already mentioned, one approach is based on an iterative
process that results in a sequence of shape iterates, e.g. [56]. On the other hand,
the second approach is based on the method of mappings [52], that allows us to work
on the reference configuration by not requiring explicit domain deformations. As
explained in [32, 54], this formulation provides more control over the mesh quality
of the optimal shape. That is, the achieved optimal shape can fulfill constraints
over the deformation, which would otherwise not be fulfilled if a concatenation of
deformations would be used. It was used, for instance, within the context of shape
optimization on W 1,∞ in [15]. Therefore, this thesis is mainly focused on developing
and analyzing new techniques for obtaining the deformation fields in case studies
where large deformations are required to obtain an optimized shape. And where
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it is important to preserve the mesh quality of the computational grid across the
optimization process.

Our research dealt with algorithms in the widely used Hilbertian framework [2,
54, 44], as well as in the novel approaches that aim at finding descent directions in
Banach spaces [14, 15, 50]. These algorithms are benchmarked using a well-know
example from fluid mechanics, the so-called rugby ball case study [59]. It was used
recently for example in [69], in the context of shape optimization on Riemannian
manifolds. Given that geometric constraints are required for the formulation of this
problem, in this thesis we propose a method to handle these constraints. Addition-
ally, our experiments are implemented in a high performance computing setting as
a stepping stone for more complex, industrial applications.

The outline is as follows: in the remainder of Chapter 1, the theoretical back-
ground, algorithmic framework, as well as the case study and numerical setting used
in this thesis are presented. In Chapter 2, the publications that compose this thesis
are discussed via a theoretical introduction and some meaningful results, followed by
a discussion where the advantages and disadvantages between them are compared.
Finally, Section 4.1 provides the concluding remarks and an outlook for further
research in this field.

1.1 PDE-constrained shape optimization

The goal of shape optimization is to find the shape Ω∗, within a set of admissible
shapes, that minimizes the value of an objective function. An unconstrained problem
of this type can be abstractly defined as

min
Ω∈Sad

J(Ω), (1.1)

where Sad is a subset of all subsets of Rd, defined as the set of admissible shapes. The
objective function J : Sad 7→ R defines some property over the domain which is used
as a measure of performance, it is sometimes referred to as the shape functional.
These terminology will be used interchangeably from now on. The set of admissible
shapes Sad is assumed to be a collection of open and bounded domains in Rd, where
we limit ourselves to d ∈ {2, 3}. Here Ω is assumed to be a Lipschitz-bounded
domain, with boundary Γ. The boundary might include regions that are not part
of the optimization procedure. For instance, when a section of the boundary has
boundary constraints.

It is not our intention to give here a complete theoretical introduction to the topic
of shape optimization, but interested readers are directed to the major monographs
[16, 76]. In particular, topics such as existence of solutions, differentiability of shape
functionals, or convergence of shape optimization algorithms are out of the scope of
this thesis, but interested readers can refer to, e.g., [33]. An engineering perspective,
based on automatic differentiation, can be found in [44]. In this section, only the
theoretical aspects of shape optimization, which are required to introduce an the
algorithmic approach used in this thesis, are mentioned.

Assuming that a solution to (1.1) exists, an optimal shape Ω∗ ∈ Sad can be
found as the limit to a series of shape iterates. This can be understood as finding
a perturbed shape Ωu, starting from an initial configuration Ω0, such that J(Ωu) <
J(Ω0) is fulfilled. With this purpose, a mechanism to generate shape variations has
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to be defined. And in this sense, a perturbed domain can be parametrized by the
deformation field u : Rd 7→ Rd;x 7→ u(x), which is applied over the whole domain.
From now on, u(x) will be written as u. Thus, for a small enough u, a perturbed
domain can be obtained as

Ωu = {x+ u(x), x ∈ Ω}. (1.2)

This is understood as in [2, 33], i.e. as moving all the points in Ω according to the
descent direction u to generate a variation of Ω, where the topology remains the
same.

With this purpose, it is necessary to define a mapping, which transforms the
domain, such that F : Ω 7→ Ωu. In this work, F is defined as

F := id + u, (1.3)

called the perturbation of identity, where u is a sufficiently smooth deformation field
which parametrizes the transformed shape as Ωu = F (Ω). It is important for the
transformation F to be of Lipschitz type, with Lipschitz inverse [2, 33]. This is
the case for a sufficiently small u, see [76]. Therefore, the deformation field u is
considered to belong to the space W 1,∞(R,R) with ∥u∥W 1,∞ < 1, see [33, section
5.2.2].

In meaningful applications the shape functional is a function of the solution to a
PDE, known as the state equation. Let

J(Ω, y) :=

∫

Ω

j(y)dx, (1.4)

where y is refered to as the state variable and is the solution to the aforementioned
PDE defined on the domain Ω. Therefore, the optimization problem presented in
Eq. (1.1) is extended to include a constraint. It can be formulated as

min
Ω∈S

J(Ω, y)

s.t. e(Ω, y) = 0, (1.5)

where e(Ω, y) -the PDE constraint- depends on the state y and the shape of the
domain. Throughout this work, the state equation will be referred as e and J(Ω) as
J , for readability.

One common optimization method used to solve problem (1.5) is based on the
introduction of Lagrange multipliers [5, 40]. Assuming that y is the solution to (1.1),
as explained in [36], this can be viewed as obtaining the reduced objective function,
which can be formulated in terms of the Lagrangian function

J(Ω)red = L(Ω, y, λy) = J(Ω, y) + ⟨λy, e(y,Ω) ⟩, (1.6)

where λy are the multipliers associated to y. Moreover, based on control theory [36],
it is assumed that the state is unique on Ω and that the control-to-state mapping
Ω 7→ y(Ω) exists. This is an important assumption used to define optimality condi-
tions. The λy can be used as the adjoint variable to y, and obtained by solving the
corresponding adjoint equation. With it, J ′(Ω)red can be computed as described in
[2, 36].
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This leads us to the concept of shape derivative. It is usually defined in terms of
the Eulerian derivative

J ′(Ω)u := dJ(Ω)u = lim
t→0

J(Ωtu))− J(Ω)

t
,

and, here, it is assumed to exist for all directions u. The mapping u 7→ dJ(Ω) is
assumed to be linear. Under these conditions, dJ(Ω) is called the shape derivative
of J in the direction u. Moreover, the value of the shape functional evaluated on
the shape variation is defined by the expansion

J(Ωu) = J(Ω) + J ′(Ω)u+ o(u) where
o(u)

∥u∥W 1,∞(R,R)

∥u∥→0−→ 0

as in [2], where it is explained that the differentiability at Ω stems from the mapping
u 7→ J(Ωu) being Fréchet differentiable at u = 0. The shape derivative in the
direction u will be denoted, interchangeably, as J ′ or J ′(Ω) from now on, and it will
refer to the derivative of the reduced problem Jred.

In this work, the shape derivative J ′ is obtained via the method of Lagrange
multipliers. The problem is formulated in the deformed domain Ωu, and then pulled
back to the reference configuration. Then, the derivative is evaluated. It is computed
by obtaining the solutions to the state and adjoint equations. Under the mentioned
conditions, the deformation field minimizes the functional J for a descent direction,
so that the condition J ′(Ω)u < 0 is fulfilled. This means that for a sufficiently small
descent direction the value of J(Ω) is decreased when deformed in the direction of
u. This can be expressed as J(Ωu) = J(Ω)− tJ ′(Ω)u+o(t) < J(Ω) for a small t > 0.
Thus, finding a descent direction that fulfills the previously mentioned conditions is
a nontrivial task.

1.2 An algorithmic framework

As explained in Section 1.1, the Lagrangian multipliers method can be used to obtain
the shape derivative, whose computation depends on the state y and its adjoint
variable. With it, descent directions that fulfill J ′(Ω)u < 0 can be found. Therefore,
this can be used to formulate a steepest descent-like method, with which the initial
shape can be iteratively optimized by applying the aforementioned deformation field
inferred from J ′(Ω).

Several different methodologies have been proposed for this. In [2] an overview
of methods based on a Hilbertian framework is found. These methods are based on
computing the descent direction via the Riesz representation theorem, which allows
to relate a bilinear form to the shape derivative. The inner product of a Hilbert
space is then used to obtain regular deformation fields, for instance across the whole
domain.

Although in this work the shape derivative is defined in its volume integral form,
it is also possible to use its boundary form as in [2, 77, 19]. This implies some
differences which are discussed in [37]. It is explained there, that in a discrete setting
-such as FEM- the equivalence between the two formulations is lost. Nevertheless,
in a continuous setting both forms can be used without loss of generality.
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Algorithm 1 Descent Method

Require: Initial configuration Ω0

1: for n=0,...,until convergence do
2: y ← Solution of state equation
3: λy ← Solution of adjoint equation to the state
4: Compute the shape gradient J ′(Ωn), i.e. the shape derivative
5: Find a descent direction un that fulfills J ′(Ωn)un < 0
6: Apply the deformation to obtain Ωn+1, so that J(Ωn+1) < J(Ωn) is fulfilled
7: end for
8: return Optimized geometry Ωn

A generic methodology for PDE-constrained shape optimization is given in Al-
gorithm 1. This can be used to solve problem (1.5). Starting from an arbitrarily
shaped domain Ω0, a series of deformation fields is computed and applied partly or
completely over the geometry. This generates a series of shape iterates Ωn+1, as seen
in line 6. The condition J(Ωn+1) < J(Ωn) verifies that the newly generated geome-
try represents a decrease of the objective function. On each iteration, the state and
adjoint equations must be solved with the purpose of computing the shape derivative
J ′(Ω), which might prove both computationally challenging and expensive. Here,
however, we ignore the costs associated with finding the solution of the state and
adjoint equations, since it is not the focus of this thesis. Finally, and assuming that
the state and adjoint variables have been approximated, most of the computational
work is spent finding a descent direction u, as in line 5 of Algorithm 1. The latter
procedure is the core of this thesis.

The framework given in Algorithm 1 is an abstract construct which is not usable
in nontrivial applications, such as the ones covered here. Although it illustrates the
general workflow of how a shape optimization simulation could be carried out, in
our work a slightly more complex algorithm had to be implemented. For instance,
a step size control mechanism can be included to fulfill the condition in line 6. In
[51], we discuss why this proves challenging when the problem includes geometrical
constraints. Additionally, a routine to revert step 6 might be necessary when J
evaluated on Ωn+1 does not decrease with respect to the previous value. Also, no
constraints are considered in Algorithm 1, which would require a formulation in
terms of a Lagrangian function together with an update rule for the multipliers.
The general algorithmic scheme used in this work can be found repeatedly in [51,
34].

It is also worth mentioning another type of formulation, which we used in [55].
The so-called method of mappings [52, 74, 43, 75], where the problem is formulated
on the reference domain and the deformation step in line 6 is not performed. This
is achieved by introducing a transformation F , with which the current configuration
is pulled back to the reference domain. In this way, F is parametrized on every step
of the outer loop of Algorithm 1 by a deformation field u. The optimized grid, and
the sequence of shape iterates, can be generated in post-processing.
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1.3 Case study

The work presented in this thesis uses a case study taken from fluid mechanics to
benchmark the different strategies used to obtain a descent direction u. This case
study is used in [60] for a flow described by Stokes equations, where the shape of an
object is to be minimized with respect to the energy dissipation. An approximation
is given for the optimal shape of an object with unit-volume, however this is not
obtained through an algorithmic implementation. Nevertheless, the optimal profile
of a 2d obstacle is referred to as the prolate spheroid, with conical front and back
in the direction of the flow. In [59] this analysis is extended to Navier-Stokes flow,
where the Reynolds number is higher. Moreover, the resulting optimal profile is
referred to as a rugby ball with a wedge-like front end. Throughout this work, we
use this terminology.

The topic of optimal design for energy dissipation, or drag reduction, has also
been explored for other types of flows in [62]. Some computational aspects, such
as automatic differentiation, are discussed in [49, 44]. A topic-specific monograph
[48] provides an introduction to shape optimization in fluid mechanics, together with
many examples and case studies. Formulations oriented to industrial applications in
wing and jet design can be found in [40, 41, 26], where aerodynamic phenomena, such
as transonic flow, are studied. Together with the aforementioned sources, further
research of shape optimization in fluid mechanics can be found in [30, 11] and [8,
23].

In this thesis, the geometry is configured as in Fig. 1.1. It represents a flow tunnel
where an object is placed inside. There is a known flow in the inlet of the tunnel
Γin, which generates energy dissipation over the surface of the obstacle. Therefore,
the task is to optimize Γobs for the energy dissipation.

Figure 1.1: Schematic of the holdall domain, Ω. The obstacle Ωobs includes geometric constraints
which must be removed. The surface of the obstacle, Γobs is to be optimized, and the outer
boundary Γwall ∪ Γin ∪ Γout is fixed.

Additionally, we are interested on studying applications that require large defor-
mations of the initial configuration to obtain an optimized domain. The performance
of the algorithms in Chapter 2 is partly tested with respect to their capacity to re-
move and create geometric singularities. For this reason, some of the studies in
this work [55, 51, 34] were carried out using an initial obstacle shape that included
geometric singularities. These must be removed in the optimized surface, and the
conic front and back must be generated. And this must occur while preserving mesh
quality, inasmuch as the convergence of the used iterative solvers is not affected. The
outer boundaries of the domain are fixed throughout the optimization.

In this context, let Ωd be a Lipschitz-bounded domain, with boundary Γ = Γobs ∪
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Γwall ∪ Γin ∪ Γout. The spatial dimension is chosen as d ∈ {2, 3} and Ωd is written
as Ω from now on for simplicity. As previously mentioned, Γobs is considered to be
variable and the outer boundary of Ω remains fixed. The minimization is done with
respect to the energy dissipation functional, defined as

J(Ω) := j(Ω, v) =
ν

2

∫

Ω

Dv : Dv dx, (1.7)

where ν refers to the kinematic viscosity and the flow velocity is given by v. The
state variable corresponds to the solution of the incompressible, steady-state Navier-
Stokes equations

−ν∆v + (v · ∇)v +∇p = 0 in Ω

div v = 0 in Ω

v = 0 on Γobs ∪ Γwall

v = v∞ on Γin

νDv · n = pn on Γout.

(1.8)

where p is the pressure, and the state variable y is described by the pair v, p. For
simplicity, we will refer to the state variable either by y or by the appropriate variable
v or p from now on. The state equation (1.8) is used in its weak form, as given for
instance in [18]. As shown in Fig. 1.1, in Γin there is a known flow v∞, whose profile
is known by

v∞ =

(
max

{
0,

d∏

i=2

cos(
π|xi|
δ

)

}
, 0, . . . , 0

)
∈ Rd.

Where δ is the height of the entry surface. It reaches a peak uni-value at the center
of the inlet plane. The dimensions of the holdall and obstacle are known.

The addition of geometric constraints is found for instance in [48], where a con-
stant volume constraint in optimization with respect to the lift is found. This is ex-
tended in some formulations, for instance [69, 10, 38, 54, 50], to include a barycenter
constraint. In this case study, the volume and barycenter of the obstacle are fixed.
The purpose being to avoid trivial solutions, i.e. design optimizations which are
nonmeaningful or that do not provide an improved design. For instance, the object
can be reduced to a point if its volume is decreased on every iteration of Algorithm 1.
Or the object could move towards a wall or outside of the domain if the barycenter
is not fixed. Therefore, the constraints considered here, are formulated as

∫

Ω

(x+ u) det(DF ) dx = 0, (1.9)
∫

Ω

det(DF )− 1 dx = 0. (1.10)

Where (1.9) and (1.10), are the barycenter and volume constraints respectively. The
constraints are used in their volume form, as in [54], although it is also possible to use
them in their boundary form, see [32]. The volume was preferred over the boundary
based on the studies presented in [37], where it is explained that the volume form
provides better accuracy in a finite element discretization. As explained [55, 51],
in this work it is assumed that the barycenter of the initial domain is the origin
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0 ∈ R. The volume is considered to be a constant, therefore it can be taken out of
the integral (1.9).

Finally, the fundamental problem studied in this work can be formulated as

min
u∈V

(1.7)

s.t. (1.8)

(1.9)

(1.10),

where V is some vector space of admissible deformations, through which the set of
admissible shapes is defined.

This gives an abstract overview of the optimization problem used within this
thesis to benchmark the proposed methods. As explained in Section 1.1, the adjoint
method is used to obtain the reduced problem and the shape derivative. Addition-
ally, it is discussed throughout Chapter 2 that the geometric constraints can be
handled via an augmented Lagrangian function. As explained in [55], this has some
downsides which lead to an improved strategy in [51, 34].

1.4 Numerical methodology

The different implementations in this thesis were done using a parallel-simulation
framework, UG4 [81, 80]. Based on MPI communication [47], UG4 is oriented
towards applications in large supercomputers. It includes parallel implementations
for many iterative solvers, preconditioners, and discretization schemes. In addition,
it is possible to extend UG4 through its plugin capabilities, therefore we made
use of this to implement the required functionalities. Regarding the generation of
geometries, we made use of GMSH [25] and ProMesh [64]. In all cases, triangular
and tetrahedral elements were used in 2d and 3d, respectively. The visualization of
the results was done with ParaView [1].

We used the finite element method [20, 13] for the discretization of the continuous
systems of equations that appear throughout this work. The state equation, i.e.
the incompressible, steady-state Navier-Stokes equations, was discretized with a
stable P2 − P1 scheme, when possible. Given that its adjoint possesses the same
structure, the same set of finite elements were used. If required, a pressure-gradient
stabilization term was as used given in [18]. Similarly, most of the systems of
equations used for the computation of the descent directions were discretized with
P1 Lagrange shape functions.

Since this work deals with applications in a high-performance computing setting,
it was important to measure the parallel scalability performance of the proposed
algorithms. Standard metrics include the weak and strong scalability [29], which
are related to how the computational work behaves when the size of the problem
or the number of processors change. If the size of the problem -DoFs- is fixed, an
increment in computer processors should speedup the solution up to a theoretical
limit. Or if both the size of the problem and computational power increase pro-
portionally, the execution time should theoretically remain constant. Alas, here we
were concerned with weak scalability. To achieve this, it was important to appro-
priately precondition the iterative solvers used in this work. Thus, the geometric
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multigrid included in UG4 was used as a preconditioner, taking advantage of its
grid-size independent convergence properties [28]. With this, the iterative solvers
require an approximately constant number of iterations to solve the involved equa-
tion systems. Moreover, the solution time for these systems increases only linearly
with the number of DoFs.

Another important algorithmic property is mesh independence [36], where the
geometry converges to a similar optimized domain as the discretization is refined.
This was also studied in this work by using different levels of refinement for 2d
and 3d calculations. For instance, the resulting profile of the obstacle in 2d can be
compared across refinements. Or the distance between shapes in 3d can be measured
for highly refined grids. With this, also the quality of the mesh was measured in 2d.
The reason for this was that the visualization of element degeneracy was evident
for the triangular elements. This is accompanied by figures of the computational
mesh from critical areas of the domain. Many quality metrics are given in [72] and
a good analysis in the context of finite elements is given in [9], both of which were
consulted throughout this work. In a sense, the selected mesh quality metrics were
used as measure of how the computed descent directions affected the elements of
the computational grid.
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Chapter 2

Synthesis Essay
The main focus of this thesis is the development of algorithms that find descent
directions for shape optimization schemes. This was illustrated in line 5 of Algo-
rithm 1, as finding a deformation field using the shape derivative J ′(Ω). Particular
interest is placed on applications where large deformations are needed to reach an
optimized shape, and which can lead to loss of mesh quality in a discrete setting.
For this reason, an initial configuration with preexisting geometric singularities was
selected as the benchmarking geometry for the used case study. Additionally, this
work deals with systems of equations with very large numbers of DoFs. There-
fore, the research was carried out using distributed-memory systems, which implied
tailoring the different implementations to a parallel setting.

This chapter presents the results of three research articles published (or submitted
for publication) as part of the work of this thesis:

• [55]: Fluid dynamic shape optimization using self-adapting nonlinear extension
operators with multigrid preconditioners

• [51]: A Scalable Algorithm for Shape Optimization with Geometric Constraints
in Banach Spaces

• [34]: Shape optimization in W 1,∞ with geometric constraints: a study in
distributed-memory systems

Each of these publications presents a different approach to finding a descent direction
from the shape derivative. The case study described in Section 1.3 is used in all
articles to do a performance benchmark of the proposed techniques.

The outline is as follows. In Section 2.1, the nonlinear extension equation ap-
proach presented in [55] is discussed. It is based on the previous work found in
[32, 54], and expands the problem’s formulation to allow for a self-adapting scheme
which can identify domain regions where large deformations are required. In Sec-
tion 2.2, the topic of Banach spaces is addressed by presenting the work done in
[51], where the descent directions are found in W 1,p as an approximation to W 1,∞.
In this work, the p-Laplace relaxation is combined with the geometric constraints
described in Section 1.3. An algorithm is proposed to generate shape iterates that
fulfill g on every step. Emphasis is placed on achieving a simpler formulation of the
optimization problem. Finally, Section 2.3 discusses the methodology presented in
[34] for descent directions in W 1,∞. This combines the strategy in [51], which is used
to handle the geometric constraints, with the ADMM formulation given [15]. The
proposed methodology allows for large deformations, without pronounced negative
impacts on the convergence of the iterative solvers nor on the mesh quality.

The following sections are each composed of a theoretical description, highlighting
the meaningful aspects of each optimization method, which is followed by a selection
of meaningful results which illustrate the capabilities of each respective approach.
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The developed techniques are compared at the end of this chapter. The complete
articles are included as part of this thesis.
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2.1 Nonlinear extension equation

2.1.1 Background

This section covers the work presented in [55], where a nonlinear elliptic PDE is used
to find a descent direction in a Hilbertian framework. It is based on the common
approach [24, 70] of relating the shape derivative, J ′(Ω)u, to a bilinear product. For
instance, with u ∈ H, where H is a suitable Hilbert space and typically H ⊂ H1.
Thus, letting

a(u, δu) = J ′(Ω)δu ∀δu ∈ H, (2.1)

a descent direction -i.e., deformation field- can be obtained by solving the resulting
system of equations. Then the shape derivative evaluated in the direction δu can be
understood as the righ-hand side vector to an operator. In the extension equation
approach, a deformation field over the complete domain Ω is related to a control
variable defined over the surface of the object Γobs. This addresses the issues as-
sociated with loss of mesh quality when the deformation field is applied only over
Γobs and the surrounding mesh either becomes highly degenerate or remeshing is
required.

The mathematical argumentation can be found in [32], where a linear extension
operator S was proposed and where several choices of S are explored, for instance by
combining the solution of the Laplace-Beltrami operator to that of an elliptic equa-
tion. This approach is based on having a control variable defined over the surface of
the obstacle, c ∈ L2(Γobs). The boundary control is imposed as a Neumann bound-
ary condition for the extension operator S, whose solution links c to a deformation
field across the whole domain u : Ω 7→ R.

Unlike the optimization scheme presented in Algorithm 1, which is based on
the generation of shape iterates by computing a sequence of deformation fields and
applying them over the geometry, the method in this section is based on the method
of mappings [52, 74, 61]. It reformulates the problem over the reference domain Ω0

by using a transformation F to pull back the deformed configuration back to the
reference domain. The transformation is defined as F = id+u, the perturbation of
identity (1.3), and u is found as the solution to the operator S(c,Ω).

The shape optimization problem is now understood as finding an optimal trans-
formation F in a set of admissible transformations Fadm, so that a deformation from
reference to optimized configuration is obtained. The optimization is done without
explicitly deforming the domain on every iteration of the outer loop of Algorithm 1.

The optimization problem has to be enriched by the nonlinear constraint

det(DF ) ≥ b (2.2)

to guarantee local injectivity, with b > 0. Fulfilling this constraint allows for the
reference domain to be mapped to a Lipschitz domain by the transformation F .
Opposite to the iterative approach, here it is guaranteed that a sequence of defor-
mations F̃k := Fk ◦ · · · ◦ Fn does not violate condition (2.2)

Some of the caveats of a linear extension operator are studied in [54]. Mainly
that, under large deformations, a linear S might be too restrictive. And that com-
bined with (2.2), the set of admissible transformations might limit the reachable
optimal shape. With the intention of extending the set of admissible shapes Sad,
a nonlinear equation was proposed in [54], where a nonlinear term η(u · ∇)u was
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added to S. It is described as a nonlinear advective term, which promotes node
displacements along large gradients In this way, the compression provoked by the
deformations on the direction normal to the surface of the obstacle is avoided. The
advection’s influence is controlled by the constant scalar η.

As part of this thesis, a nonlinear extension operator with variable nonlinearity
control is proposed [55]. The scalar field η ∈ L2(Ω) thus plays the role of a control for
the amount of nonlinearity in the deformation field per element. It is introduced as
another control variable in the optimization problem. Within the context of removal
and creation of singularities, η helps to identify the regions which require larger
deformations. Additionally, through this functionality, the the extension equation
can self-adapt to the reference domain by promoting large deformations through an
element-specific value of η.

The self-adapting, nonlinear extension operator u = S(η, c,Ω) is defined to be
the solution of the PDE

∫

Ω

(Du+DuT) : Dδu + η(Duu) · δudx =

∫

Γobs

cn · δuds (2.3)

given in variational form. Where u, δu ∈ W , with W := {u ∈ H1(Ω,R) : u|∂Ω\Γobs
=

0a.e}. This is added as another constraint to the minimization problem.
For this approach, the optimization problem is formulated as

min
(c,η)∈L2(Γobs)×L2(Ω)

Jaug := j(y, F (Ω)) +
α

2
∥c∥2L2(Γobs)

+
θ

2
∥η − 1

2
(ηub + ηlb)∥2L2(Ω) +

β

2
∥[b− det(DF )]+∥2L2(Ω) + τ∥g(u)∥22,

s.t. e(y, F (Ω)) = 0

u = S(η, c,Ω) as in (2.3)

F = id+ u

ηlb ≤ η ≤ ηub in Ω

g(u) = 0,

(2.4)

where α is a regularization parameter, θ is the penalty factor associated to the box
constraints on η, and τ is the penalty associated to the geometric constraints. The
determinant inequality constraint (2.2) is introduced to the objective function via
the penalty term β, where (·)+ denotes the positive part function. This implies the
use of a semi-smooth Newton’s method, due to the non-differentiability introduced
by constraint (2.2).

A descent algorithm is formulated using the sensitivities of the objective function
given in (2.4). The reduced gradient must be found with respect to the variables
(c, η), for which the chain of mappings is differentiated as (c, η) 7→ u 7→ y 7→
Jaug. And the sensitivities of (c, η) are found by computing the Lagrange multipliers
corresponding to u. The system of equations follows from the augmented Lagrangian
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function

L(u, y, c, η, λu, λy, λg) =
ν

2

∫

Ω

(Dv((DF )−1)) : (Dv((DF )−1)) det(DF )dx

α

2

∫

Γobs

c2ds+
β

2

∫

Ω

([ηdet − det(DF )]+)dx+
η

2

∫

Ω

[η − 1

2
(ηub + ηlb)]

2dx

+ τ∥(g(u))∥22 + ⟨λu, S(η, c)⟩+ ⟨λy, e(y, F (Ω))⟩+ ⟨λg, g(u)⟩,

(2.5)

where λ∗ indicates the respective Lagrange multipliers to each variable. Notice that
λg starts with non-converged initial values, thus violations of geometric constraints
g(u) at the onset of the simulation are prevented by the penalty term τ and alto-
gether avoided once the Lagrange multipliers converge. This is related to Algorithm
1 in [55].

The core the optimization scheme is the solution of the PDE systems. These
consist of the derivatives of the Lagrangian (2.5), and they are solved in a block-
wise manner. This is shown in Algorithm 2, which yields a new deformation field u,
as well as the updates for (η, c) which define the nonlinear operator S.

Algorithm 2 Computation of reduced gradient, as in [55]

1: function Gradient(c, η, gdef)
2: c 7→ u solving equation (2.3)
3: u 7→ (y) solving the state equation e
4: (y, u) 7→ (λy) solving the adjoint state
5: (y, u, λy, λg) 7→ λu
6: λg 7→ (γ, κ)
7: return (u, γ, κ)
8: end function

The outer iteration, given in [55, Alg.1], consists of the updates for τ and λg. The
latter update is critical to the fulfillment of the geometrical constraints g(u) = 0.
Their initial, non-constrained values result on a violation of these constraints, until
sufficiently converged values are reached.

2.1.2 Results

The case study described in Section 1.3 was used to benchmark the 2d simulations
in [55]. This was done in a distributed-memory setting. Some fundamental results
are presented to illustrate the performance of the optimization process. A grid with
421 888 triangular elements was used.

The nonlinearity control η accumulates over the regions of the domain where
large deformations are needed. In this configuration, these regions correspond to
the surface of the obstacle, because this is where geometric singularities must be
removed or created. In this sense, it can be seen at a later stage of the optimization
process, that η adapts via the element-specific values to the given initial geometry.
As shown in Fig. 2.1, large deformations are promoted over critical parts of the
domain.

It is important to mention that no mesh deformations are performed during the
optimization process. The method of mappings allows us to work over a virtual
domain defined by the transformation F . However, the shape iterates can be gen-
erated during post-processing. For instance, knowing the optimal values that define
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Figure 2.1: Obtained deformation field u over the reference domain is shown (left), where the
associated scalar field η (right) defines the operator S together with the control variable c. Taken
from [55].

S(c, η), the deformation field could be computed by solving (2.3) over the reference
domain and by applying the obtained u the optimized grid could be generated. This
is featured in Fig. 2.1, where the magnitude of the deformation field is shown to have
larger values for the points in Γobs where the tips must be removed and generated.

Initial steps would show that the self-adapting η targets the corners of the initial
configuration, a box, within the first steps. As the simulation progresses, high values
can be found at the regions where the front and back are to be generated. However,
a lot of computational effort is required to fully smooth out the initial singularities.

The optimized front tip is shown in Fig. 2.2. As mentioned in Section 2.1.1, one
of the goals of this approach is to preserve mesh quality. This can be seen as the
even distribution of the triangular elements over the surface Γobs, as well as in the
surrounding domain. It is seen that the elements have not experienced noticeable
degeneration, also that no overlapping elements are present. This is related to the
constraint (2.2) which preserves local injectivity. Additionally, it is seen that the

Figure 2.2: Singularity generated at the front of the reference configuration. An even distribution
of the elements is observed. Taken from [55].

front tip is generated without compressing the elements that conform it.
An important property is that of mesh independence. As part of our experiments,

the optimized obstacle profile Γobs was compared over several levels of refinement.
The expected result would be that as the discretization is refined, the obtained
profiles converge to the same shape. The results are shown in Fig. 2.3 for a series of
simulations using a grid refined up to 1 687 552 elements, running for 400 outer loop
steps. As mentioned before, these shapes are generated only in post-processing. It
can be seen that this approach approximates to the same optimized profile for all
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Figure 2.3: Mesh independence for several refinement levels, signaled by different colors over the
nodes. A detail of the front tip is given. Taken from [55].

refinement levels for a given number of steps. The magnified tip shows how the
singularities appear at approximately the same point over Γobs, as well as how the
preexisting singularities are removed in the optimized Γobs.

A disadvantage of this approach is related to the convergence of the Lagrange
multipliers associated to the geometric constraints, λg. Given that these are up-
dated via a simple update rule, the constraints g are not fulfilled on every step.
Particularly at the initial steps, the augmented objective function Jaug in (2.4) does
not necessarily decrease.

Figure 2.4: Jaug plot (blue) compared against the norm of the Lagrange multipliers λg, ∥λg∥.
The vertical dashed lines (dark blue), indicate major changes in λg. A non-optimal shape (right),
related to the initial non-converged values of λg. (Left) Taken from [55]. (Right) Taken from [58].

This can lead to a bouncing of the shapes, which can result in reduced perfor-
mance of the iterative solvers. Figure 2.4 presents this by comparing the value of Jaug
against the Euclidean norm of λg, ∥λg∥. Some major changes in ∥λg∥ correspond
to increments of Jaug, indicated by the dashed vertical line. However, the objective
function and norm of the multipliers converge towards the end of the simulation.
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2.2 p-Laplace relaxation

2.2.1 Background

In this section the work published in [51] is discussed. It is based on a p-Laplace
relaxation problem, which aims at approximating descent directions in the W 1,∞-
topology. An algorithmic approach is presented which makes the implementation
less dependent on heuristically-determined parameters. It allows for large defor-
mations without requiring a constraint on the deformation, e.g. by limiting the
Frobenius norm of ∥Du∥ as in [73] or constraining the determinant of the deforma-
tion gradient [32].

This approach addresses some of the shortcomings of the extension equation
methodology in Section 2.1. For instance, by leaving the Hilbertian framework in
favor of a vector space where the Lipschitz property of transformation is preserved,
a constraint on the deformation, for instance (2.2), is no longer needed. It was
explained in [32], as well as in Section 2.1, that when condition (2.2) is fulfilled,
in the context of the method of mappings, it might limit the set of admissible
transformations. This was further investigated in [54], by using a nonlinear extension
operator to enable large deformations. Based on the studies carried therein, it
was observed that (2.2) limits the set of admissible shapes in such a way that the
benchmark, rugby-ball solution to the optimization problem in Section 1.3 might
not be reached depending on the value assigned to b in constraint (2.2). Therefore,
it would be profitable to remove a constraint on Du, while preserving Lipschitz
transformations. This could be achieved by finding a descent direction directly on
W 1,∞.

Another benefit is related to the amount of heuristically-determined parameters
required for the augmented Lagrangian approach used in Section 2.1. This caveat
in the formulation given in [55] is evidenced by the high amount of penalty and
regularization terms in the augmented Lagrangian (2.5). In which each of these
parameters must be determined for a given geometry. The determination of all
these parameters, not only consumes computational budget, but also can have a
negative effect on the set of admissible shapes, as previously described. It is then of
interest to find a formulation which requires a minimal amount of such parameters,
or which does not have them at all.

A similar concern is that of the convergence of the Lagrange multipliers associated
to the geometric constraints. As shown in Fig. 2.4, non-converged multipliers might
lead to shapes that do not necessarily fulfill g(u) = 0. Starting from an arbitrary
initial guess, the convergence of the multipliers is usually slow. Additionally, the
step-size could also play a negative role on the convergence of the multipliers. In
this line of though, this work aims at proposing a better methodology, where the
convergence of the geometric constraints is incorporated to the convergence of the
descent direction at the possible cost of an increase in computational work.

The p-Laplace relaxation was presented in [39] as an approximation for the limit
case p = ∞ case of the variational problem for the functional I∞ =

∫
Ω
f(x)u(x)dx

where {u ∈ W 1,∞
0 (Ω), ∥Du∥∞ ≤ 1}. Moreover, the work presented here is based on

the novel methodology for PDE-constrained shape optimization with W 1,∞ descent
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directions presented in [14, 50]. The problem under consideration is

min
u∈V p

0

1

p

∫

Ω

(Du : Du)p/2 dx+ J ′(Ω)u

s.t. g(F (Ω)) = 0,

F = id+u,

(2.6)

where the vector space V p
0 is defined as

V p
0 =

{
u ∈ W 1,p(Ω,Rd) : u = 0 a.e. on Γin ∪ Γout ∪ Γwall

}
. (2.7)

The relaxation term, the first integral term in problem (2.6), falls back to the Hilbert
space framework for p = 2. As before, the transformation F stands for the pertur-
bation of identity and g(F (Ω)) for the geometric constraints (1.9) and (1.10). The
shape derivative is computed with the Lagrange multiplier method, by taking the
derivative with respect to u and the limit as u 7→ 0. As explained in Section 1.1,
J ′(Ω)u stands for derivative of the reduced problem, so its computation requires the
solution of the state and adjoint equations.

The solution of the optimization problem follows from the Lagrangian

L(u, λg) =
1

p

∫

Ω

(Du : Du)p/2 dx+ J ′(Ω)u

+
d∑

i=1

λg,i

∫

Ω

(xi + ui) det(DF ) dx+ λg,d+1

∫

Ω

det(DF )− 1 dx ,

(2.8)

which is used to derive the optimality system.

The optimality system consists of the derivatives with respect to u and λg. The
resulting nonlinear system is solved using Newton’s method, for which the lineariza-
tion must be computed. This leads to an equation system of the form

(
A B
BT 0

)(
δu
δλg

)
=

(
ru
rλg

)
(2.9)

given in discrete form using, as in [51], the abbreviate notation for readability

Aδu :=
∂2

∂u2
L(uk, λk

g)(µu, δu) ∀ µu ∈ V p
0,h

Bδλg :=
∂

∂u dλg

L(uk, λk
g)(µu, δλg) ∀ µu ∈ V p

0,h

BT δu :=
∂

∂λg ∂u
L(uk, λk

g)(δu, µλg) ∀ µλg ∈ Rd

ru := − ∂

∂u
L(uk, λk

g)µu ∀ µu ∈ V p
0,h

rλg := −
∂

∂λg

L(uk, λk
g)µλg ∀ µλg ∈ Rd.

(2.10)

The space V p
0,h is the discrete approximation of V p

0 .
From the structure seen in the discrete system (2.9), a saddle point problem has

to be solved. Therefore (2.9) is reformulated in terms of the Schur complement
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operator S := −BTA−1B, which is used to obtain the increment δλg . After this, the
computation of δu follows from solving (−BTA−1B)δλg = (rλg − BT A−1ru) for δλg .
As mentioned before, additional computational effort is needed for this implemen-
tation, because a numerical solve is used to represent A−1 in the computation of S
with appropriate righ-hand-side vectors, see [51].

The core of the optimization method is the computation of the descent direc-
tions, carried out as shown in Algorithm 3. This process corresponds to line 5 of
Algorithm 1. It is worth noticing that the shape derivative J ′(Ω) is included in the
derivative with respect to u of the Lagrangian (2.8), the defect ru.

The optimization process used to find a descent direction using the p-Laplace
relaxation is given in Algorithm 3. Because the optimality system is highly nonlinear,
a very good initial guess is needed for a given value of p. This is obtained by solving
the nonlinear optimality system via Newton’s method for increasing values of p, up
to a preset pmax. Each successive solve, uses the computed up as initial guess. This
follows an increase rule pk = pinit + k pinc, for a preset pinc. The increment of p is
chosen so that a good initial guess is obtained for the following value of p. Starting
at an initial value of pinit = 2, Newton’s method is called for each update of p, and
within it the Schur complement system (2.9) is solved. The loop finishes when the
maximum value of p is reached, and the descent direction is used as a deformation
field to generate a new shape iterate.

Algorithm 3 p-Laplace Descent Direction, as in [51]

Require: pmax

1: p← 2
2: ū← 0
3: while p < pmax do
4: (up, λg)←NewtonSolver, as in [51, alg. 3.2]
5: ū← up
6: Increase p
7: end while
8: return (upmax

, λg)

One downside of this methodology is related to the operator A, i.e. the second
derivative of the function (2.8) with respect to u. The first term of this derivative,

∫

Ω

(p− 2)(Du : Du)
p−4
2 (Du : Dδu)(Du : Dµu) . . . ,

can lead to division-by-zero when Du = 0. Therefore, in [51] a modification using
a Heaviside function and a small number ϵ > 0 is implemented. This modification
affects the linearization, and not the defects, therefore a solution to the original
problem is obtained.

Additionally, the described Schur complement strategy implies that a large num-
ber of numerical solves is required within the linearization. This is the cost of in-
corporating the geometric constraints to the descent directions, so that only shapes
that fulfill the geometric constraints are obtained. However, because this introduces
the advantage of requiring no parameters in the Lagrangian, no computational time
is spent in tuning or determining appropriate values. The advantages in the imple-
mentation can be seen by comparing the Lagrangian function (2.8) to the augmented
Lagrangian function (2.5) of the extension equation approach given in Section 2.1.
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Moreover, since all the shape iterates fulfill the geometric constraints, no shape over-
shoots occur.

2.2.2 Results

The capabilities of the p-Laplace relaxation approach are discussed via some mean-
ingful results originally presented in [51]. For the case study described in Section 1.3,
2d and 3d simulations were performed in a distributed-memory system. The results
illustrate how the W 1,p descent directions remove the preexisting singularities, while
fulfilling the geometric constraints and preserving mesh quality. In this work, Algo-
rithm 3 was configured with pmax = 4.8 in 2d and pmax = 4.1 in 3d. These values
were chosen based on the studies carried out in [50], where p ≤ 4 is given as a rule
of thumb. Additionally, pmax = 4.8 provided good mesh quality results in the 2d, cf.
Table 2.1. For the 3d case studies, the selected pmax = 4.1 was a good compromise
between the values used in the literature and the administration of the assigned
computational time within the project. For all cases pinc = 0.19 was used, which
allowed for the convergence of Newton’s method by providing a good initial guess
up to pmax.

Figure 2.5: Deformation sequence for a 2d simulation, the reference configuration (red) is compared
to the optimized domain (blue). Taken from [51]

The workflow follows that of Algorithm 1, where a series of shape iterates is gener-
ated based on the computed descent direction. Unlike the approach in [55], here the
reference configuration changes on every optimization step, not in post-processing.
Based on the discussion in Section 2.2.1, it is expected that the application of the
deformation results in only shapes that fulfill g(F (Ω)) = 0.

This is visualized in Fig. 2.5 by overlapping the reference configuration with the
optimized Γobs, together with the intermediate shape iterates. In Fig. 2.5 this is
shown for a 2d computational mesh with 70 656 triangular elements. The creation
and removal of the geometric singularities is shown as a process that does not result
in shape overshoots, as some of the shape iterates generated by the nonlinear ex-
tension approach. As a comparison, see the right-hand side figure given in Fig. 2.4,
for which the geometric constraints are not necessarily fulfilled.

A detailed view of the singularity smoothing process for several levels of refine-
ment is shown in Fig. 2.6. The computational grid around the upper-left corner of
the reference configuration is shown. The several levels of refinement show that the
smoothing process is similar across all grids. In order to remove a preexisting sin-
gularity, large deformations are required. As previously discussed, this can present
several disadvantages, for instance the loss of mesh quality or the overlapping of
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Figure 2.6: Removal of the upper-left corner of the reference configuration for {4, 5, 6} levels of
refinement. Taken from [51].

individual elements. The stretching experienced by the mesh is clearly visible on
the coarsest level in Fig. 2.6. Finer meshes display similar deformations of the el-
ements that form the corner. It is seen that, even under large deformations, the
elements are not highly degenerate, and that at the end of the optimization process,
the singularities are completely removed.

Similar results were obtained in 3d, shown in Fig. 2.7. It follows the process
described in Algorithm 1, where the shape is deformed on each step of the outer
loop. Here a grid with 4 980 736 tetrahedral elements was used. The surface of the
obstacle was discretized by 49 152 triangular elements. The simulation was set to
run for a 100 steps. It can be seen how the initial singularities are removed as the
object is stretched in the direction of the flow. All the shape iterates fulfill the
geometrical constraints. As the preexisting edges are smoothed out, the front and
back tips are generated. Already at step 50, the rugby ball shape is evident. Finally,
at step 100 the tips are completely formed and the edges and corners of the reference
configuration are fully removed.

A mesh quality study in 2d was performed for the optimized domain. Although
the optimization scheme allows for a preservation of mesh quality at each step, it
does not improve on the quality of the initial grid -i.e., the original mesh. Therefore,
for the triangular elements in the mesh, the radius ratio between the initial config-
uration, ρ0 = 1.468, and the optimized grid is computed, ρ∞

ρ0
. The data in Table 2.1

Refs Elements Minimum angle Maximum angle Radius ratio ρ∞
ρ∞
ρ0

4 70 656 13.41 132.32 3.20 2.18
5 282 624 11.93 139.03 4.24 2.89
6 1 130 496 9.94 145.04 5.76 3.92

Table 2.1: Mesh quality measurements across several levels of refinement in 2d. The minimum and
maximum interior angles, largest radius ratio, and ratio of largest to initial (ρ0) are shown for the
optimized shape. Taken from [51].

reflects the approximation of p = ∞ in terms of the mesh quality. In this way, the
deformations with vector fields u ∈ W 1,p result in a mesh preserving deformation at
the end of the optimization process, even under the large deformations experienced
by the grid.

One of the disadvantages of Algorithm 3 is related to the amount of computa-
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Figure 2.7: Deformation sequence for a 3d example. The surface of an object is deformed until an
optimized shape is reached. Several optimization steps are shown. Taken from [51].
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tional work. It was mentioned that this simpler implementation, compared to the
Lagrangian (2.5), relies on iterative solves to compute the Schur complement oper-
ator via applications of A−1. For this reason, it is of interest to analyze the linear
iterations for the solution of the optimality system for all p increments up to pmax

across several levels of refinements. This was done in [51] as part of a weak scalabil-
ity study in 3 dimensions for the first optimization step. These results are presented
in Table 2.2.

Procs Refs Number of DoFs Total.Lin.
Elements Its.

512 2 77 824 44730 2080
4096 3 622 592 334 158 2458
32 768 4 4 980 736 2 581 014 2606
262 144 5 39 845 888 20 283 942 2912

Table 2.2: Linear iterations within Algorithm 3. Includes all A−1 required to compute u and λg.
Results computed for a 3d simulation with p = 4.1. Taken from [51].

In Table 2.2 it is taken into account that Algorithm 3 is called thirteen times,
moreover Newton’s method in line 4 of Algorithm 3 is called several times across a
single step. This implies a call to the linear solver for as many calls to to Newton’s
method until convergence of the nonlinear solver is reached. As explained in [51],
the high demands in computational work illustrate the importance of using pre-
conditioners with grid-size independent scaling. With this purpose, the geometric
multigrid is used to allow for an efficient solution of the linear systems. As shown
in the last column of Table 2.2, the preconditioner bounds the number of iterations
even when the number of DoFs increases by three orders of magnitude.
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2.3 W 1,∞-descent directions

2.3.1 Background

The p-Laplace relaxation approximates a descent direction in W 1,∞ by calculating
u ∈ W 1,p(Ω) for a sufficiently large p. This is necessary to preserve the Lipschitz
property of the transformation, which is of interest in terms of mesh quality preser-
vation and shape admissibility. This section is based on the work presented in [34],
where the alternate direction method of multipliers (ADMM) is used to obtain a
deformation field in W 1,∞.

The methodology discussed in this section is based on [15], where the ADMM
was used in an academic setting for shape optimization. Based on the benchmark
case used throughout this work, see Section 1.3, this approach introduces the ge-
ometric constraints to the problem formulation. This results in a computationally
demanding optimization method, which is solved in a distributed-memory system.

Here, the challenge of finding a solution to the optimization problem

min
u∈W 1,∞(Ω,Rd),∥u∥W1,∞<1

J ′(Ω)u (2.11)

is addressed. The main interest being that when u ∈ W 1,∞ with ∥Du∥∞ < 1 the
mapping F in (1.3) is Lipschitz with Lipschitz inverse. However, this is mathemat-
ically and numerically difficult. For instance, in [14] it was suggested to solve the
problem u∗ ∈ argmin{J ′(Ω)u : u ∈ W 1,∞(Ω,Rd), |Du| ≤ 1 a.e. in Ω} as the
limit case of the p-Laplace relaxation problem [39].

Thus, building on the work in [14, 15], we propose in [34] a methodology to find
a minimizer for the problem

min
u∈V ∞

0

J ′(Ω)u

s.t. g(Ω(u)) = 0,

∥Du∥L∞(Ω) ≤ σ.

(2.12)

where σ ∈ (0, 1). As in previous sections, the geometric constraints are given by
g. These have to be fulfilled on every iteration. The shape derivative J ′(Ω)u cor-
responds to the derivative of the reduced problem, as explained in Section 1.1. In
contrast to the formulation in [15], where the condition |Du| < 1 is fulfilled with
| · | the spectral norm; here, J ′(Ω)u does not necessarily equal −∥J ′(Ω)∥. This
discussion, however, is not within the scope of this work.

The algorithmic approach is based on the Lagrangian

L(u, λg, q, λ) :=J ′(Ω)u

+
d∑

i=1

λg,i

∫

Ω

(xi + ui) det(DF ) dx+ λg,d+1

∫

Ω

det(DF )− 1dx

+
τ

2
∥Du− q∥2L2 + τ(Du− q, λ)L2 ,

(2.13)

where the two last terms are taken from the methodology given in [15, 7, 6]. Follow-
ing the same strategy as in [51], a descent-like method can be formulated using the
derivatives with respect to u and λg. As mentioned before, the geometric constraints
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are fulfilled on every optimization step. With this purpose, algorithm 3.3 from [51]
is also used in [34].

The process of finding a descent direction in W 1,∞ is computationally expensive.
The use of the ADMM requires that two minimization problems and one update be
performed [15]. As part of the Lagrangian (2.13), two variables were introduced. A
slack variable q ∈ Qh

Qh := {q ∈ L2(Ω;Rd×d) : q|T ∈ P0(T ;Rd×d), |q| ≤ σ}, (2.14)

and the corresponding Lagrange multiplier λ that brings q close toDu. What follows
is an alternating minimization of L with respect to q and u, and an update of λ
via a simple update norm. These operations correspond to line 4, 5, and 7 from
Algorithm 4. The variable τ := 1 can be seen as a step size, but here its assumed
to be constant.

Algorithm 4 Descent Direction in W 1,∞. Taken from [34].

Require: J ′(Ω),σ,ϵ2, ϵ3, N
1: τ ← 1
2: u0 ← 0
3: for i = 0, 1, ..., N do
4: Find q ← argmin{L(u, q, λ) : q ∈ Qh, |q| ≤ σ}
5: Find u← argmin{L(u, q, λ) : u ∈ Vh, g(Ω(u)) = 0}
6: ∆λ ← τ(Du− q)
7: λ← λ+∆λ

8: ∆σ ← σ − max(|Du|L∞)
9: ∆u← u− u0

10: u0 ← u
11: if (∥∆λ∥2L2 + ∥∆u∥2L2 < ϵ2) and ∆σ > −ϵ3 then
12: if ∆σ > ϵ3 then
13: t← 2 t
14: J ′(Ω)← t J ′(Ω)
15: else
16: break
17: end if
18: end if
19: end for

It is worth mentioning, as in [34], that the system of equations solved to minimize
with respect to q, can be split into two steps. First, solving a mass matrix system

∂

∂q
L(u, λg, q, λ)(δq − q̃) = 0 ∀ δq ∈ Qh. (2.15)

It incurs a low computational cost, due to the resulting structure of the matrix, which
can be solved for instance with a Jacobi method. Second, a pointwise projection

q̃ 7→ q̃

max
(
1, |q̃|

σ

) =: q. (2.16)

The optimality system for the minimization of L with respect to u leads to
the same saddle point structure as described in Section 2.2.1. Nevertheless, one
advantage of this approach is that the second derivative of the Lagrangian (2.13) with
respect to u does not require a modification, because there is no risk of division by
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zero. One downside of using Algorithm 4, is the high computational cost associated
to calling the loop in lines 3-19 several times in the same optimization step. In each
iteration, line 4 requires the call to Newton’s method. Therefore, a high number
of linear solves might also be required in proportion to the number N of times the
ADMM loop is called.

2.3.2 Results

Special interest is placed here on discussing the results taken from [34], where the
p-Laplace and ADMMmethods are compared. As mentioned before, a descent direc-
tion in W 1,∞ or an approximation to this space, leads to a Lipschitz transformation
F of the domain. In this work, the optimized shape for the case study Section 1.3
includes the creation of tips and the initial configuration implies that geometric sin-
gularities must be removed. As will be observed, the ADMM approach leads to a
quick removal and creation of corners and edges by applying large deformations on
the very early steps. In contrast, the p-Laplace formulation is constrained by the
need to use small step-size to avoid convergence issues in the the solver used for the
highly nonlinear problem.

A direct comparison between the initial five shape iterates of the W 1,∞ and W 1,p

is presented in Fig. 2.8. While the initial configuration is the same in both cases,
the differences are evident since the first generated shape. It is seen how u ∈ W 1,∞

allows for a larger deformation and earlier removal of the preexisting corners. The
W 1,p directions are smaller in comparison. At the last shown shape iterate, Ω5,
the creation of tips is seen for the ADMM, and the corners of the box have been
smoothed out almost entirely.

Figure 2.8: The initial five shape iterates for the W 1,∞ (left) and the W 1,p (right) shape optimiza-
tion schemes. The initial configuration (blue) is deformed by applying the computed deformation
field until Ω5 (red) is obtained. Taken from [34].

These high deformations can be linked to a reduction of the objective function
(1.7). As seen in Fig. 2.9, an aggressive reduction of J is observed for the W 1,∞ case.
The values of J have been divided by the computed value J0 on the initial grid Ω0.
This shows that more than 15% reduction is achieved with the first computed W 1,∞

deformation field. On the other hand, the W 1,p sequence display a slower reduction
of J(Ω).

The larger deformations allowed by the descent directions in W 1,∞ have a direct
impact on the mesh quality. In Table 2.3, the quality of the edges that conform the
surface of the obstacle Γobs is studied. The initial five and last four shape iterates of
a simulation, configured to run for 50 iterations, are analyzed by presenting the ratio
between the longest and shortest edge length in Γobs. This is done across several
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Figure 2.9: Values of the dissipated energy, divided by J0, for the initial 10 shape iterates. Taken
from [34].

levels of refinement to study the mesh independence of the W 1,∞ approach.

Table 2.3: Ratio between longest and shortest edge length in Γobs for different refinement levels.
Taken from [34].

3-refs 4-refs 5-refs

Triangles in Ω 17 664 70 656 282 624
Edges in Γobs 128 256 512

Step ADMM PLAP ADMM PLAP ADMM PLAP
0 1.00 1.00 1.00 1.00 1.00 1.00
1 1.89 1.20 1.91 1.23 1.96 1.28
2 3.62 1.42 3.67 1.49 3.61 1.59
3 5.58 1.64 5.27 1.76 6.45 1.91
4 10.54 1.87 10.57 2.03 11.01 2.24
5 10.52 2.09 10.53 2.29 9.71 2.56
...
47 13.49 8.33 14.96 9.56 13.69 8.86
48 13.50 8.51 15.05 9.89 13.64 8.98
49 13.50 8.54 15.03 9.73 13.64 9.09
50 13.50 8.56 15.12 10.17 13.60 9.30

It can be seen that the larger deformations provoke an increase on the edge length
ratio. This can be observed in Table 2.3 for the initial shape iterates generated with
the ADMM approach, in comparison to the p-Laplace. However, as shown in [34],
the resulting grids do not display large element degeneracy over the surface of the
obstacle. Moreover, the large deformations do not prevent the iterative solvers from
converging, as shown in the iteration counts in Table 2.4. Given that a small step-
size was used for J ′ in the p-Laplace approach, see [51], the large deformations
obtained with the ADMM could not be achieved.

The computational cost in terms of the number of iterations for Algorithm 4,
and the solvers used therein, is shown in Table 2.4. The average iteration counts for
the first five optimization steps are presented for several levels of refinement. The
average ADMM iterations refer to the number of times the loop in Algorithm 4 had
to run before the convergence conditions in lines 11 and 12 were fulfilled. Within
it, Newton’s method is used and the average number of calls per step is measured
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Table 2.4: Iteration counts for first five steps in a 2d simulation. Average per step number of calls
to Algorithm 4, together with the iteration counts for Newton’s method and the linear solver used
in the linearization, are presented. Taken from [34].

Procs Refs Number of DoFs AVG ADMM AVG Newton AVG AVG Time
Elements Its. Its. Lin.Its per Shape[s]

48 3 17 664 18 016 31 166 5267 59
192 4 70 656 71 360 37 197 6825 76
768 5 282 624 284 032 25 139 5068 56
3072 6 1 130 496 1 133 312 25 141 5463 65

together with the average number of linear solver iterations needed to solve for the
corresponding increment of u within the linearization. It is seen that the com-
putational workload per step is larger than the reported values for the p-Laplace
approach in [51]. However, the use of adequately preconditioned iterative solvers
allows for a bounded number of iterations across several levels of refinement.
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2.4 Discussion

In this section a comparison between the used optimization schemes is provided. As a
reminder, the general line of research was in shape optimization applications where
large deformations were required, while preserving some notion of mesh quality
at the optimal shape. The overall goal is to obtain an optimized domain in the
fastest, most efficient manner possible. To illustrate this goal, a case study that
required the removal and creation of geometric singularities was selected and used
to benchmark the developed optimization techniques. In this section, the results
obtained using this case study are used to draw comparisons between the advantages
and disadvantages of each scheme.

The self-adapting nonlinear extension equation is presented in [55] and discussed
in Section 2.1. Our research, in comparison to the work in [32, 54], was carried
out over a domain as described in Fig. 1.1; and a variable scalar field was used to
control the nonlinearity. Thus, it was expected to see larger absolute values of the
nonlinearity field over the edges and corners of the surface of the obstacle. The values
of η would promote large deformations over the critical regions of the grid. This
is shown in Fig. 2.1, where η is plotted over the surface Γobs. The largest absolute
values correspond to the regions where the tips must be generated and the corners
removed. However, a large number of optimization steps was required to reach the
optimized shape. This is illustrated in detail in [55], where it can be seen that many
steps are needed to completely remove the preexisting corners. Though unexpected,
this could be partly related to the highly viscous flow used in our experiments.
Additionally, the augmented Lagrangian (2.5) implied that the formulation required
a high number of heuristically determined parameters. This was in part related to
the augmented Lagrangian approach used to handle the constraints, for instance
the geometric constraints and the determinant condition (2.2). Not only did these
parameters complicate the implementation, but also they had to be determined by
carrying out several test runs in the supercomputer, which depleted our assigned
computational budget.

Our research in [51] built on the short comings of the previously described ap-
proach. Based on the p-Laplace relaxation, the proposed algorithmic scheme allowed
for approximating descent directions inW 1,∞ , rather than being limited to a Hilber-
tian framework. Therefore, it was expected to obtain Lipschitz transformations of
the domain without requiring a constraint related to the descent direction, e.g. (2.2).
Approximating W 1,∞ required large enough values of p, this was done using the in-
cremental approach for p described in Algorithm 3. In comparison to the extension
equation, a larger number of calls to the iterative solvers per step was expected. On
the other hand, the used strategy for handling the geometric constraints allowed
for a reduction of the heuristically determined parameters. The downside was that
this came at the expense of more computational work, as described in Section 2.2
and [51]. Good results were obtained for 2d and 3d case studies. Compared to
the extension equation, less optimization steps were required in 2d to reach an op-
timized shape where the previously existing geometric singularities are completely
removed, see [58, 57], albeit at the cost of more linear iterations per step. Moreover,
all the generated shape iterates fulfilled the geometric constraints, which could have
contributed to the lower number of steps required before the end of the optimiza-
tion. One of the unexpected disadvantages was the scaling of the vector J ′, which
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was required as a step-size control mechanism, see [51]. The scaling resulted in
smaller steps, which could have increased the required number of iterations of the
optimization loop. Still, the number of test runs in the supercomputer was certainly
decreased by the Lagrangian formulation used in this approach. This enabled us to
spend the computational budget on the production runs, with which we obtained
valuable results such as the 3d examples presented in Section 2.2.

The topic of descent directions in W 1,∞ using the ADMM was recently explored
in [15], on which our research was built. Here we extend the formulation to include
geometric constraints, therefore a rather large number of linear iterations were ex-
pected for the solution of the equation systems on every optimization step. This
was certainly the case, as given in Table 2.4. Larger deformations were expected
compared to the p-Laplacian strategy. This was evident in the comparison of the
early steps of the 2d case studies in Fig. 2.8. The prolate shape was reached within
the first few steps, leading to a quick reduction of the objective function. On the
other hand, it was observed that the mesh quality was affected due to this large de-
formations. For our selected applications, this did not prevent the iterative solvers
from converging throughout the optimization process. One advantage, in terms of
the implementation, was that the computation of the second derivative with respect
to u no longer required a modification as in the p-Laplace. This is related to the fact
that in the second derivative of the W 1,∞ formulation, see the Lagrangian (2.13),
there are no risks of dividing by zero. This can be seen in [34, Eq. 16]. The tech-
nique proved useful for the removal and creation of geometric singularities, and can
be considered a good candidate for more complex applications.

It is worth mentioning that our observations on the advantages and disadvan-
tages of each scheme can only be seen as rules of thumb, and not as a definitive
set of rules. The different results obtained for each technique were subject to the
availability of the computational budget. Because different grids were used across
our work, comparing the respective mesh quality results might prove difficult. Still,
such an attempt is presented in [34] for the p-Laplacian and ADMM methods. A
comparison of the number of iterations or time-per-step provides some insight re-
garding the computational costs of each technique. Although, it does not account
for the magnitude of the computed deformation field. For instance, this trade-off
is described in Section 2.3. The mentioned limitations show that a proper ranking
of these methods is not a trivial task. However, some helpful insight for further
applications can be obtained from the discussion presented in this chapter.
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Abstract
In this article we propose a scalable shape optimization algorithm which is tai-
lored for large scale problems and geometries represented by hierarchically refined 
meshes. Weak scalability and grid independent convergence is achieved via a com-
bination of multigrid schemes for the simulation of the PDEs and quasi Newton 
methods on the optimization side. For this purpose a self-adapting, nonlinear exten-
sion operator is proposed within the framework of the method of mappings. This 
operator is demonstrated to identify critical regions in the reference configuration 
where geometric singularities have to arise or vanish. Thereby the set of admissible 
transformations is adapted to the underlying shape optimization situation. The per-
formance of the proposed method is demonstrated for the example of drag minimi-
zation of an obstacle within a stationary, incompressible Navier–Stokes flow.

Keywords  Aerodynamic shape optimization · Method of mappings · Geometric 
multigrid · Parallel computing

Mathematics Subject Classification  35Q93 · 49Q10 · 65M55 · 65Y05 · 65K10

1  Introduction

PDE-constrained shape optimization is a mathematical tool to obtain an optimal 
contour for a randomly-shaped obstacle subject to physical phenomena described 
by a partial differential equation (PDE). This is achieved by the evaluation of sen-
sitivities of a shape functional j(y,Ω) , which depends on the state variable y and 
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the domain Ω . The set of admissible shapes, Gadm , will be implicitly defined within 
the method of mappings by the set of admissible transformations. The functional 
is constrained by one or several PDEs, among them a state equation E(y,Ω) = 0 , 
which is fulfilled by the state variable y. In this article, we focus on the incompress-
ible flow case, which is described by Navier–Stokes equations. Here the objective 
is to minimize the energy dissipation around an obstacle in terms of its shape and 
additional geometrical constraints. Building on a long history ranging back several 
decades (see for instance Jameson 2003; Giles and Pierce 2000; Mohammadi and 
Pironneau 2010), the field of shape optimization with fluid dynamics applications is 
still very active today following various approaches (e.g. Schmidt et al. 2013; Mül-
ler et al. 2021; Garcke et al. 2016; Fischer et al. 2017). For an overview of shape 
optimization constrained by PDEs we refer the reader to Sokolowski and Zolesio 
(2012), Allaire et al. (2021), Delfour and Zolésio (2001). The iterative application of 
deformation fields to a finite element mesh can lead to distortions and loss of mesh 
quality, as studied by Dokken et al. (2019), Etling et al. (2018), Iglesias et al. (2018), 
Blauth (2021). This becomes particularly disruptive for numerical algorithms if 
there are large deformations leading from the reference domain to the optimal con-
figuration. Several approaches, especially in recent studies, have been proposed to 
prevent this. For instance, the use of penalized deformation gradients in interface-
separated domains helps maintain mesh quality but might still lead to element over-
laps when taken to the limit Siebenborn and Vogel (2021). Other approaches rely on 
remeshing the domain, as for instance in Wilke et al. (2005). More recent efforts on 
this area make use of pre-shape calculus to allow for the simultaneous optimization 
of both the shape and mesh quality of the grid Luft and Schulz (2021a).

Although the variable of the optimization problem is only the contour of the 
shape, the surrounding space plays a crucial role since it describes the domain 
for the physical effects. Due to the Hadamard–Zolésio structure theorem (see for 
instance Sokolowski and Zolesio 2012) changes of the objective function under con-
sideration can be traced back to deformations of the shape, which are orthogonal to 
its boundary. This has been recognized as a source for decreasing mesh quality and 
is addressed by many authors, for instance by also allowing displacements tangent 
to the shape surface (cf. Luft and Schulz 2021b). In contrast to the statement of 
the structure theorem, from a computational point of view, it can be favorable to 
extend surface deformations into the entire surrounding domain instead of building 
a new discretization around the improved shape after each descent step, i.e. avoid 
remeshing on each new iteration. In recent works it has become popular to reuse the 
domain around the shape, which describes the domain of the PDE, for the represen-
tation of Sobolev gradients (e.g. Schulz et al. 2016). Typically, elliptic equations are 
solved in this domain in order to represent the shape sensitivity as a gradient with 
respect to a Hilbert space defined therein Dokken et al. (2020), Gangl et al. (2015). 
The benefit of this approach is that the resulting deformation field not only serves as 
a deformation to the obstacle boundary, but can also be utilized as a domain defor-
mation. Thus, the discretization for the next optimization step is obtained without 
additional computational cost.

At this point, two different approaches can be distinguished within the context 
of the finite element method. On the one hand, the computed gradient can be used 
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directly as a deformation to the domain after each optimization step which can be 
seen as changing the reference domain iteratively. On the other, in the so called 
method of mappings Murat and Simon (1976), the reference domain is fixed and the 
shape optimization problem is interpreted via the theory of optimal control. These 
are implemented through the definition of a variable around the surface of the shape 
to be optimized and its connection with the deformation field affecting the whole 
domain through a so called extension operator. The solution of which results in the 
optimal deformation field for both the target shape and its surrounding domain. For 
an application of this method to aerodynamic shape optimization see for instance 
Fischer et al. (2017).

We can oppose these two approaches as

where either a set of admissible domains Gadm or a set of admissible transformations 
Fadm has to be defined. A link between these two can then be established via

in terms of a given reference configuration Ω.
The approach we propose here is based on the research carried out in Haubner 

et al. (2021). Compared to iteratively updating the shape, it offers the possibility to 
require properties of the deformation from reference to optimal shape. Moreover, 
it reformulates the optimization over a set of admissible transformations F ∈ Fadm , 
which enables us to carry out the optimization procedure on the reference domain. 
Additionally, it has been documented that such extension operators are possible 
without the need for heuristic parameter tuning. In Onyshkevych and Siebenborn 
(2021) an additional nonlinear term is introduced to the elliptic extension equation 
allowing for large deformations while preserving mesh quality, and preventing ele-
ment self-intersections and degeneration. In shape optimization this occurs when 
trying to obtain an optimal shape for an obstacle surrounded by media, for which the 
creation or removal of a singularity on the obstacle’s boundary is necessary.

In the present work we focus on applying parallel solvers for the solution of PDEs 
in large distributed-memory systems. This stems from the fact that the discretiza-
tions will lead to a very large number of degrees of freedom (DoFs), for which the 
application of the geometric multigrid method (see for instance Hackbusch 1985) 
guarantees mesh-independent convergence on the simulations. Its application within 
the context of parallel computing towards the solution of PDEs is an area of ongoing 
research Reiter et al. (2013), Gmeiner et al. (2014), Baker et al. (2011). The feature 
of mesh-independent convergence is a necessary condition towards weak scalabil-
ity of the entire optimization algorithm, which is why in this article we apply the 
multigrid method as a preconditioner for the solution of the PDE constraints. This 
requires to provide a sequence of hierarchically refined discretizations. However, the 
shape optimization problem is a fine grid problem, which means that the contour of 
the obstacle has to be representable within the entire grid hierarchy. This leads to 

(1)
min

Ω∈Gadm

j(y,Ω) min
F∈Fadm

j[y,F(Ω)]

s.t. e(y,Ω) = 0 s.t. e[y,F(Ω)] = 0

(2)Gadm ∶=
{
F(Ω) ∶ F ∈ Fadm

}
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undesired effects and conceptual challenges that have been addressed for instance in 
Nägel et al. (2015), Siebenborn and Welker (2017), Pinzon et al. (2020).

The finest grid in the hierarchy typically represents a high-resolution discretiza-
tion of a polygonal shape, which—besides the aforementioned sources for mesh 
degeneracy—also introduces challenges to the shape optimization. Given that the 
grid hierarchy stems from an initially coarse grid, the polygonal shape represented 
by the computational mesh includes geometrical singularities such as edges and cor-
ners. As the base level is refined, these singularities become more pronounced. This 
is an undersired effect that has a negative impact on the discretization, for instance 
on the mesh quality, which in turn can impact the convergence of the used numerical 
solvers. Particularly for fluid dynamics applications this is problematic. If the con-
sidered domain transformation is too smooth, i.e. the descent directions are chosen 
in an inappropriate space, it is not possible to remove or form new singularities. The 
latter is particularly important when using the geometric multigrid method, due to 
the hierarchical grid structure.

In this work, we propose an approach that is able to identify these regions and 
adapt the set of admissible transformations Fadm as part of the optimization problem. 
In Onyshkevych and Siebenborn (2021) it is illustrated how adding a nonlinear con-
vection term to the extension model that defines Fadm affects forming singularities in 
optimal shapes. We thus study in this article how the non-linearity can be adjusted 
according to the shape of the reference domain.

The rest of this article is structured as follows: In Sect. 2 the optimization prob-
lem is formulated and the underlying fluid experiment is outlined. Section  3 is 
devoted to the optimization algorithm and the computation of the reduced gradient 
via the adjoint method. Subsequently, in Sect.  4 the performance of the proposed 
method is discussed by presenting numerical tests. In Sect. 5 the numerical scalabil-
ity of the method is discussed. The article closes with a conclusion in Sect. 6.

2 � Problem formulation and mathematical background

The model problem under consideration is sketched in Fig. 1 in a bounded holdall 
domain G ∶= Ω ∪ Ωobs , where Ω is assumed to have a Lipschitz boundary. In Ω we 
consider a stationary, incompressible flow. It surrounds an obstacle Ωobs with vari-
able boundary Γobs , but fixed volume and barycentric coordinates. Throughout this 
article, the original setting of the domain will be referred to as the reference configu-
ration or domain.

In this section we present the theoretical background that culminates with the 
algorithm presented in Sect. 3. The problem is first formulated in terms of clas-
sical shape optimization, to be then reformulated as an optimal control problem. 
Later on, it is pulled back to the reference domain through the method of map-
pings. The weak form of the extension operator, presented in this section, is used 
to formulate the augmented Lagrangian. Finally, the Lagrangian is used to obtain 
the sensitivities necessary for the descent direction and for the approximation to 
the Hessian used. For an in-depth discussion of the underlying theory we refer 
the reader, as previously mentioned, to Onyshkevych and Siebenborn (2021), 
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Brandenburg et al. (2009), Haubner et al. (2021), the use of the adjoint method in 
fluid dynamics can be reviewed in Giles and Pierce (2000), Jameson (2003), and 
Hinze et al. (2009) can be consulted for a mathematical review of the theory used 
here.

Let X = L2(Γobs) × L2(Ω) , 0 < 𝜂lb < 𝜂ub , b > 0, 𝛼 > 0, 𝜃 > 0 and consider the 
optimization problem

where g(w) represents geometric constraints. Throughout this work D denotes the 
Jacobian matrix, while ∇ is the Euclidean gradient operator, and grad is used for 
the gradient related to the inner product of the corresponding space. S denotes an 
extension operator, which links the boundary control variable u ∈ L2(Γobs) to a dis-
placement field w ∶ Ω → ℝd . Examples of possible choices of S are given and inves-
tigated in Haubner et al. (2021). Therein a discussion of the properties of S which 
guarantee a certain regularity of w can be found, as well as the resulting regularity of 
the domain transformation. Here we enrich this operator with an additional control 

(3)min
(u,�)∈X

j[y,F(Ω)] +
�
2
‖u‖2

L2(Γobs)
+

�
2
‖� − 1

2
(�ub + �lb)‖2L2(Ω)

(4)s.t. e[y,F(Ω)] = 0

(5)F = id + w

(6)w = S(�, u,Ω)

(7)det(DF) ≥ b in Ω

(8)�lb ≤ � ≤ �ub in Ω

(9)g(w) = 0.

Fig. 1   2d Holdall reference domain of the flow field with square obstacle
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variable � ∈ L2(Ω) , which plays the role of a nonlinearity switch. In the following 
we assume that S is defined such that w|Γin∪Γwall∪Γout

= 0 almost everywhere.
In the experiment presented here, the geometric constraints require the barycenter 

and volume to be the origin and constant, respectively. This excludes trivial solutions 
where the obstacle shrinks to a point or moves towards a position where the objective 
functional is minimized. Thus, the principal geometric constraints are given by

This simplifies to

assuming, without loss of generality, that the barycenter of the reference domain is 
0 ∈ ℝ

d and the volume is precisely retained.
The condition (7) is approximated via a non-smooth penalty term. This results in an 

approximation via the objective function

In contrast to the PDE constraints (5), (6), (7), the geometric constraints (9) are fixed 
dimensional (here it is d + 1 where d ∈ {2, 3} ). Thus, the multipliers associated to 
these conditions are not variables in the finite element space but a d + 1-dimensional 
vector. This is incorporated into the optimization algorithm in the form of an aug-
mented Lagrange approach. This leads to the augmented objective function

where 𝜏 > 0 is a penalty factor for the geometric constraints and ‖ ⋅ ‖2 refers to the 
Euclidean 2-norm since g(w) is finite dimensional. The basic concept of the aug-
mented Lagrange method is to optimize the objective (13). By contrast to a pure 
penalty method, the geometric constraints (9) are not entirely moved to the objec-
tive function, but the corresponding multipliers �g are assumed to be approximately 
known and iteratively updated.

We consider the PDE constraint e[y,F(Ω)] to be the stationary, incompressible 
Navier–Stokes equations in terms of velocity and pressure (v, p) . In the following it is 
distinguished between PDE solutions defined on the reference domain Ω denoted by 
(v, p) and on the transformed domain F(Ω) as (v̂, p̂) . We thus consider

(10)ĝ(w) =
⎛
⎜⎜⎝�F(Ω)

1 dx − �
Ω

1 dx,
∫
F(Ω)

x dx

∫
F(Ω)

1 dx
−

∫
Ω
x dx

∫
Ω
1 dx

⎞⎟⎟⎠

⊤

(11)g(w) =
⎛
⎜⎜⎝∫Ω

det(DF) − 1 dx,∫
Ω

F(x) det(DF) dx

⎞
⎟⎟⎠

⊤

,

(12)
J(y, u,w, �) = j[y,F(Ω)] +

�

2
‖u‖2

L2(Γobs)
+

�

2
‖� − 1

2
(�ub + �lb)‖2L2(Ω)

+
�

2
‖[b − det(DF)]+‖2

L2(Ω)
.

(13)Jaug(y, u,w, �) ∶= J(y, u,w, �) + �‖g(w)‖2
2
,

(14)−𝜈Δv̂ + (v̂ ⋅ ∇)v̂ + ∇p̂ = 0 in F(Ω)
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where for compatibility it is assumed that ∫
Γin

v∞ ⋅ n ds = 0 holds for the inflow 
velocity profile v∞ . Notice that the boundaries Γin,Γout,Γwall in (15), (16), (17) are 
unchanged since the displacement w is assumed to vanish here. This assumption 
reflects that the outer boundaries of the experiment domain are not a variable in the 
optimization problem.

The variational formulation of the PDE (14) to (18) pulled back to the reference 
domain Ω is given by: Find (v, p) ∈ V × Q such that for all (�

v
, �p) ∈ V0 × Q it holds

where trial and test functions are chosen in

In the equations above Tr denotes the trace operator,  :  the double contraction, and 
det the determinant.

In the experiment considered in this work the physical part of the objective function 
(12) is given by the energy dissipation in terms of the velocity v , thus y = (v, p) and

which can be pulled back to the reference domain Ω as

(15)div v̂ = 0 in F(Ω)

(16)v̂ = v∞ on Γin

(17)v̂ = 0 on Γobs ∪ Γwall

(18)p̂n − 𝜈
𝜕v̂

𝜕n
= 0 on Γout,

(19)∫
Ω

�(Dv(DF)−1) ∶ (D�
v
(DF)−1) + (Dv(DF)−1v) ⋅ �

v

− pTr (D�
v
(DF)−1) det(DF) dx = 0

(20)− ∫
Ω

�p Tr (Dv(DF)
−1) det(DF) dx = 0,

(21)

V ∶=
�
v ∈ H1(Ω,ℝd) ∶ v�Γin

= v∞, v�Γwall∪Γobs
= 0 a.e.

�
,

V0 ∶= V with v∞ = 0,

Q ∶=

⎧⎪⎨⎪⎩
p ∈ L2(Ω) ∶ ∫

Ω

p dx = 0

⎫⎪⎬⎪⎭
.

(22)ĵ(v̂,F[Ω)] = 𝜈 ∫
F(Ω)

Dv̂ ∶ Dv̂ dx,
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The extension S(�, u,Ω) is defined to be the solution operator of the PDE

Consider the space

Then the variational formulation of (24), (25), (26) is obtained by: Find w ∈ W such 
that for all �

w
∈ W it holds

Finally, we can formulate the approximate optimization problem, which is then 
solved via the augmented Lagrange approach in Sect. 3, as

where the multipliers for conditions (33) are assumed to be known in each iteration.
In order to formulate a gradient-based descent algorithm, we have to compute the 

sensitivities of the final objective function Jaug in (13) with respect to the variables 
(u, �) . This means to differentiate the chain of mappings

and obtain the sensitivities in reverse order

(23)j(v,w) = � ∫
Ω

(Dv(DF)−1) ∶ (Dv(DF)−1) det(DF)dx.

(24)div (Dw + Dw⊤) + 𝜂(w ⋅ ∇)w = 0 in Ω

(25)(Dw + Dw⊤)n = un on Ωobs

(26)w = 0 on Γin ∪ Γout ∪ Γwall.

(27)W ∶=
{

w ∈ H1(Ω,ℝd) ∶ w|�Ω⧵Γobs
= 0 a.e.

}
.

(28)∫
Ω

(Dw + Dw⊤) ∶ D�
w
+ 𝜂(Dww) ⋅ �

w
dx = ∫

Γobs

un ⋅ �
w
ds.

(29)min
(u,�)∈X

Jaug(y, u,w, �)

(30)s.t. (14) to (18) and (29)

(31)F = id + w

(32)�lb ≤ � ≤ �ub in Ω

(33)g(w) = 0,

(34)(u, �) ↦ w ↦ (v, p) ↦ Jaug(v, u,w, �)

(35)Jaug(v, u,w, �) ↦ (�
v
, �p) ↦ �

w
↦ (�u, ��).
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The derivatives of the mappings mentioned in (34) have been omitted here for brev-
ity, but can be found in Onyshkevych and Siebenborn (2021), Haubner et al. (2021). 
The differentiability of the mapping is discussed in Sect.  3. Access to the adjoint 
gradient formulation can be obtained via the corresponding Lagrangian, which is 
given by

under the assumption that the barycenter of Ω is 0 ∈ ℝ
d.

From the Lagrangian (36) the adjoint Navier–Stokes equations follow as: Find 
(�

v
, �p) ∈ V0 × Q such that for all (�

v
, �p) ∈ V0 × Q it holds

The adjoint displacement equation is obtained by: Find �w ∈ W such that for all 
��w

∈ W it holds

In (39) R denotes the derivative of the Lagrangian (36) w.r.t. w . This is obtained 
after straightforward computations and omitted here for the sake of brevity. Finally, 
the reduced gradient is obtained as: Find (� , �) ∈ X such that for all (�u, ��) ∈ X it 
holds

(36)

L(w, v, p, u, 𝜂, 𝜆
w
, 𝜆

v
, 𝜆p, 𝜆bc𝜆vol) =

𝜈

2 ∫
Ω

(Dv(DF)−1) ∶ (Dv(DF)−1) det(DF) dx

+
𝛼

2 ∫
Γobs

u2 ds +
𝛽

2 ∫
Ω

([𝜂det − det(DF)]+)2 dx +
𝜃

2 ∫
Ω

�
𝜂 −

1

2
(𝜂ub + 𝜂lb)

�2
dx + 𝜏‖g(w)‖2

2

+∫
Ω

(𝜈[Dv(DF)−1] ∶ [D𝜆
v
(DF)−1] + [Dv(DF)−1] ⋅ 𝜆

v
− pTr [D𝜆

v
(DF)−1]) det(DF) dx

−∫
Ω

𝜆p Tr [Dv(DF)
−1] det(DF) dx + ∫Ω

[(Dw + Dw⊤) ∶ D𝜆
w
+ 𝜂(Dw ⋅ w)] dx

− ∫
Γobs

un ⋅ 𝜆
w
ds + 𝜆bc ⋅ ∫

Ω

F(x) det(DF) dx + 𝜆vol ∫
Ω

[det(DF) − 1] dx

(37)
∫
Ω

�(D�
v
(DF)−1) ∶ (D�

v
(DF)−1) + (D�

v
(DF)−1v) ⋅ �

v

+ (Dv(DF)−1�
v
) ⋅ �

v
− �p Tr (D�v(DF)

−1) det(DF) dx = 0

(38)− ∫
Ω

�p Tr (D�v
(DF)−1) det(DF) dx = 0,

(39)∫
Ω

(D�
w
+ D�

w

⊤) ∶ D�𝜆
w

+ 𝜂(Dw�
w
) ⋅ �𝜆

w

dx = R(w, v, p,�
v
, 𝜆p).
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With the sensitivity equations (40), (41) we are now prepared to apply a descent 
method.

3 � Optimization algorithm

In Sect. 2 we present the approximate optimization problem (29), (30), (31), (32), 
(33), which is solved via the augmented Lagrange approach shown in Algorithm 1. 
An initial guess is given to the Lagrange multipliers �g associated to the geomet-
rical constraints. These in turn are iteratively updated in each optimization step 
subject to the condition that the norm of the defect of the geometrical constraints 
is smaller than a prescribed tolerance 𝜖g > 0 . In Algorithm  1 only the problem-
dependent parameters have to provided, which are not the ones immediately related 
to the extension operator S(�, u,Ω) . The parameters that define the set of admis-
sible shapes, e.g. � , are simultaneously optimized. This is a significant improve-
ment to previous approaches, where the parameters had to be manually determined, 
e.g. Blauth (2021), Schulz and Siebenborn (2016).

Most of the computational time is consumed for solving the PDE systems pre-
sented in Sect. 2. This is carried out by Algorithm 3 in a block-wise manner, where 
the output consists of the new displacement field to update the transformation (5), 
as well as the results of the reduced gradient grad uk,� , grad �k,� , which will be fur-
ther used to obtain updates for the current control and extension factor, uk,�+1, �k,�+1 , 
respectively. A reference for the gradient method can be found for instance in (Hinze 
et al. 2009, p. 94). 

(40)∫
Γobs

��� + �u�u − �w ⋅ n�u ds = 0,

(41)∫
Ω

��� + �

(
� −

1

2
(�ub + �lb)

)
�� − (Dw ⋅ w) ⋅ �w�� ds = 0.
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The objective function is non-differentiable due to the presence of the positive 
part mapping in R in  (39), which is discussed in depth in  Haubner et  al. (2021). 
Moreover, a discussion on quasi-Newton methods for semi-smooth objective func-
tions and can be found in Mannel and Rund (2020). 
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The use of box-constraints for the extension factor � make it necessary to implement 
the BFGS method similarly to what can be found in Byrd et al. (1995), from which 
Algorithm 2 is partly inspired. For the box-constrained limited memory BFGS method, 
we introduce the indicator function for the condition �lb ≤ � ≤ �ub as

for some small 𝜎 > 0 . Recall that the canonical inner product on X is given as

This is now modified to take the active box-constraints into account by introducing 
�� into the second term and thereby reducing the integration to the region of inactive 
constraints

Eq. (44) defines the inner product appearing in lines 8, 11, 13 of  Algorithm  2. 
Whereas, in line 16 the operator P refers to the projection with respect to the box 
constraints on �.

(42)��(x) ∶=

{
1, if �lb ≤ �(x) − � grad �(x) ≤ �ub
0, else

(43)X = (u1, u2)L2(Γobs)
+ (�1, �2)L2(Ω).

(44)X̂ = (u1, u2)L2(Γobs)
+ (𝜂1,𝜒𝜂𝜂2)L2(Ω)
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Conceptually the optimization scheme presented consists of outer and an inner itera-
tions. The outer iteration, seen in Algorithm 1, updates either �g or the penalty factor � 
by increment factors �inc and �inc , respectively. In each cycle of the inner loop, a com-
plete optimization is solved using BFGS updates as seen in Algorithm 2. 

4 � Shape optimization applications

In this section we present shape optimization applications with the incompressible, sta-
tionary Navier–Stokes equations as state equation. The purpose of the featured case 
studies in this section is to show the application of the algorithm presented in Sect. 3, 
which includes the effect of the nonlinearity control variable � on the extension opera-
tor S. The obstacle shape deformations demonstrate the algorithm’s capabilities at 
the detection, smoothing and creation of domain singularities such as tips and edges. 
Aspects of the multigrid preconditioner’s effects are discussed. Moreover, a grid inde-
pendence study illustrates that the optimal shape is reached regardless of the number 
of refinements in the grid hierarchy. The latter result is a fundamental stepping stone 
towards a scalable parallel implementation of the methodology proposed in Sect. 5.

The flow tunnel is depicted as the holdall domain in Fig. 1 with

for the 2d and 3d cases respectively, taking into account that for the 3d case the 
obstacle has a spherical shape. Thus, in 2d we have Ωobs = (−0.5, 0.5)2 and 
Ωobs = {x ∈ ℝ

3 ∶ ‖x‖2 < 1} in 3d, respectively.
The boundary conditions at the inflow boundary Γin are set as

with � the diameter of the flow tunnel. The side length of the square obstacle is 
d = 1 , whereas the radius of the sphere in the 3d case is r = 0.5 . The simulations are 
performed using UG4 Vogel et al. (2013). We expand UG4 through its C++ based 

G2d = (−7, 7) × (−3, 3) and G3d = (−7, 7) × (−3, 3) × (−3, 3)

v∞ =

(
max

{
0,

d∏
i=2

cos(
�|xi|
�

)

}
, 0,… , 0

)
∈ ℝ

d
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plugin functionality. The code used for the studies here presented can be consulted 
at the online repository in Pinzon and Siebenborn (2021). The 2d and 3d grids are 
generated using the GMSH toolbox Geuzaine and Remacle (2009).

4.1 � 2d Results

In this section we present 2d simulations for a flow with viscosity � = 0.03 . All 
PDEs are discretized using a P1 approximation, except for the Navier–Stokes equa-
tions and its adjoint which are solved with a stable P2 − P1 finite element discretiza-
tion. For this example, � has initial value of 0.5 and box constraints are 0 ≤ � ≤ 1.0 
and b = 0.001 . The grid consists of 421,888 triangular elements, with 5 refinement 
levels. Figure 2 shows results for the optimization of a square obstacle subject to 
an incompressible, stationary flow. The reference configuration with the extension 
factor � and optimal displacement field are shown together with the transformed 
domain and a closeup of the front tip where the element edges are depicted. Regard-
ing the reference configuration, it can be seen that the extension factor approaches 
the imposed values of the box-constraints at two places, the corners of the square 
and the sections where new singularities have to be created. If we recall the weak 
form of the extension factor (28), � controls the nonlinearity in each element. Given 
that the same initial value of � is set for all elements at the beginning of the simula-
tion and the �-term in (12) penalizes the deviation from the average of 1

2
(�ub + �lb) , 

the different extension factor values, particularly the ones close to the obstacle’s sur-
face Γobs , show that equation (28) adapts depending on the current iterate for the 
displacement field w . This ensures that the w promotes both the generation of new 

Fig. 2   At the top, the reference configuration is shown with the optimal � (left) and w = S(u) . At the bot-
tom, the transformed grid F(Ω) with resulting singularities (left) is shown, altogether with a zoom on the 
singularity where mesh quality is preserved due to the choice of S 
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non-smooth points on the boundary, as well as the smoothing of such points intro-
duced by the choice of the reference domain, i.e. the four corners of the box inclu-
sion Ωobs . This can be observed in Fig. 2, where high valued displacements are pre-
sent at the sections where the tips and corners are generated or smoothed. Which in 
turn leads to achieving large deformations F(Ω) without loss of convergence of the 
iterative solvers.

In Sect. 2 we already mention that explicit mesh deformations are avoided. This 
comes from the fact that all optimization steps are solved on the reference domain 
through the method of mappings. Therefore we speak of obtaining an optimal defor-
mation field F, which is used to transform the domain Ω ↦ F(Ω) according to (5). 
This is used to obtain the optimal shape, as in Fig. 2. The transformed domain shows 
the smoothed corners and the generated front and back surface singularities, which 
are in accordance to the previously mentioned properties of � and w . However, 
throughout the optimization process the proposed algorithm does not require the 
nodal positions to be redefined, since the reference grid transformation is only per-
formed as part of the post-processing and not of the optimization. The close-up cor-
responds to the front singularity with respect to the direction of flow. Figure 2 also 
shows that elements around the generated tip show no distortion and no significant 
loss of quality. This stems from both the effect of the nonlinear term in the extension 
operator S and the imposed upper bound b on the determinant of the deformation 
gradient det(DF) , given in (7). The latter condition is what preserves local injectiv-
ity, thus avoiding the loss of mesh quality. In Fig. 2 this is shown as the absence of 
collapsed or overlapping elements, as is previously mentioned, even for the elements 
that clearly undergo large deformations, i.e. the ones that conform the generated tips 
and the smoothed square corners. Moreover, in Sects. 4.3 and 5 this can be under-
stood as a mesh independent preservation of the geometrical and numerical conver-
gence in terms of the final optimal shape achieved and the total iteration counts of 
the iterative solvers.

On the other hand, the extension equation adapts where the tips have to be cre-
ated to reach an optimal value of the objective function. This is illustrated through 
the changing value of the nonlinearity switch � on each optimization step. Figure 3 
shows the plot of � over the reference domain compared to the domain transformed 
by the displacement field w.

At the start of the simulation the extension equation is already adapted to find the 
corners of the reference configuration, this is shown as the concentrated value of � . 
As the obstacle’s initial singularities are removed, necessary ones are created. This 
causes a concentration of the extension factor at the reference configuration loca-
tions where new geometrical singularities have to be created. Afterwards, the opti-
mization scheme works towards smoothing the obstacle’s surface, therefore � goes 
through no major concentration values across the grid, as can be seen in step 74 
of Fig. 3.

The distribution of � across the grid has to be compared against the trans-
formed grid. Given that the Lagrange multipliers are yet to converge, the ini-
tial steps can incur in violations of the geometrical constraints. This can be 
seen as the highly deformed shapes at the initial steps of  Fig.  3. However, as 
the algorithm performs the multipliers’ update, as in  Algorithm  1 line 12, the 
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geometrical constraints are fulfilled according to the prescribed �g and the new 
obstacle surface’s singularities are formed. Moreover, since the reference config-
uration singularities are identified at the initial optimization steps, the necessary 
smoothing is carried out until the simulation converges or the maximum number 
of steps is reached. This can be seen comparing the last 2 steps of Fig. 3.

Fig. 3   Transformation of the reference domain by the application of the deformation field compared to 
the accumulation of the extension factor, given for steps 2, 8, 20, 56, 74
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4.2 � 3d Results

3d Results for the optimization of a unit-diameter sphere are presented here. For 
these results, 4 levels of refinements are used with up to 12,296,192 tetrahedral ele-
ments, while the obstacle’s surface consists of 54,784 triangular elements. The vis-
cosity is set to � = 0.1 , with a discretization scheme as in Sect. 4.1 where, in contrast 
to the 2d case, P1 − P1 mixed elements are used for the Navier–Stokes equations and 
its adjoint. Regarding the extension equation, � has initial value of 30 and the box 
constraints are 0 ≤ � ≤ 60.0 . A pressure projection stabilization term is used for the 
mixed finite element approximation, as given in Elman et al. (2014).

The discretized domain representing the 3d obstacle is shown in Fig. 4. Both the 
base level (bold blue lines) and highest refinement level are presented. As mentioned 
in Sect. 1, we investigate the application of the geometric multigrid method as a pre-
conditioner in shape optimization. This implies that we strive to maintain the base 
level as coarse as possible, as can be seen by the underrepresented sphere shown; 
with the idea of solving the coarsest problem with a direct method as quickly as pos-
sible. While this is ideal for the usage and convergence of the geometric multigrid 
method, it has some undesired effects. As can be seen, the several refinements intro-
duced by the creation of the hierarchical grid levels do not necessarily introduce a 
smoothing of the obstacle’s surface. The refinements are limited to subdividing the 
triangular faces present on Γobs , while the edges from the base grid remain.

The results after 61 steps are shown in Fig. 5. Non-smooth points, i.e. the two tips, 
are generated on the front and back of Γobs with respect to the direction of flow. This 

Fig. 4   3d Highest grid level is shown compared to the base level (bold lines) for the unit-diameter sphere 
obstacle



1106	 J. Pinzon, M. Siebenborn 

1 3

is comparable to the optimal shape obtained for the 2d case in Fig. 2. The effects of 
the grid hierarchy can be seen as the remaining edges of the super-elements.

4.3 � Grid independence study

In order for the proposed optimization scheme to be scalable in terms of time-to-
solution to very high numbers of DoFs, it is necessary for the obtained obstacle 
shape to be independent of the initial level of refinement. In other words, besides 
the scalability of the finite element building blocks of the optimization algorithm, 
the overall convergence of the objective function has to be mesh independent. This 
can be understood as obtaining the same optimized shape after a given number of 
outer iterations in Algorithm 1, with the necessary surface singularities appearing at 
approximately the same locations. Therefore, in this section we provide results for a 
comparative study between different levels of refinement.

The grid used in this section is formed by 412 triangular elements and refined 
to 1,687,552 elements. The results shown go from 2 to 6 refinement levels. The 
simulations are set with viscosity � = 0.1 . An equal number of 400 optimization 

Fig. 5   3d optimal shape on the highest level of refinement in flow with large viscosity
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steps is run for all grids, to have an adequate comparison point. Figure 6 shows 
the superimposed contours of the obstacle for 2, 3, 4, 5, and 6 levels of refine-
ment, indicated by the colored nodes. A magnification is used on the front tip, to 
emphasize that all tips appear on the same location, with slight differences owing 
to the discretization error introduced by different element sizes. In addition to this 
results, Fig. 7 shows a side-by-side comparison of the tips of the aforementioned 

Fig. 6   Optimal displacement field w , after 400 optimization steps, applied to the reference shape for sev-
eral levels of refinement, indicated by colored nodes

Fig. 7   Zoom into the tips of the deformed shapes of the experiment shown in Fig.  6. Comparison of 
generated boundary singularities for 2, 3, 4, 5, and 6 levels of refinement (from left to right). Shapes are 
aligned with fixed interspace for better comparability
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refinement levels. This indicates, that the singularities on the obstacle surface 
generated by algorithm Algorithm 1, are grid independent.

Moreover, in Fig. 8 the objective function plots for 2 different refinement levels are 
shown. With the same viscosity as in Figs. 6 and 7, the simulations are set to run for 
1000 steps. The purpose is to demonstrate that the achieved minimal value is independ-
ent of the geometry. We thus choose this large number of optimization steps regardless 
of any tolerance �outer . The value of (13) (in blue) is compared against the Euclidean 
norm of the Lagrange multipliers (in green) for each refinement, while the update of 
the multipliers is signaled by the dashed lines (dark blue). It is evident that before the 
convergence of the multipliers, the optimization process is local, which is why differ-
ences between the two plots with respect to the objective function value are present. 
In Algorithm 1, the condition for the update of the aforementioned Lagrange multipli-
ers is mentioned. This is related to the set tolerance �g . Given that the two geometries 
are different due to the level of refinement, the fulfillment of the geometrical tolerance 
is not necessarily achieved in the same optimization steps. Which in turn, as seen in 
Algorithm  1, has an effect as to when the multipliers are updated. Nevertheless, as 
previously mentioned in this section, the objective function converges altogether with 
the norm of the multipliers, as seen by comparing the plots in both refinement cases 
presented in Fig. 8. It can also be seen that in most cases, a significant update of the 
Lagrange multipliers is accompanied by a substantial jump, negative or positive, in the 
value of the objective function. This is signaled by the intersection data points between 

Fig. 8   Objective function plot for 3 (top) and 4 (bottom) refinements. Green line shows norm of geomet-
ric Lagrange multipliers. Dashed blue vertical lines indicate �g update in augmented Lagrange algorithm
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the changes in the norm level of the multipliers ‖�g‖ , the jumps of the objective, and 
the marked update steps.

5 � Algorithmic scalability

In this section we present weak scalability results for the 2d case presented in Sect. 4.1. 
These were carried out at HLRS using the modern HPE Hawk supercomputer. It con-
sists of 5632 dual-socket nodes with the AMD EPYC 7742 processor. Each node has a 
total of 128 cores and 256GB of memory. The machine presents a 16-node hypercube 
connection topology, therefore the core counts are aimed at maximizing hypercube use, 
without significantly reducing the bandwidth. The grid partitioning is based on ParME-
TIS Karypis et al. (2013).

Figure 9 shows accumulated wallclock times, gained speedup relative to 24 cores 
and iteration counts for the first three optimization steps. These results are shown for 
the nonlinear extension operator (28), state (14), (15), (16), (17), (18), and the adjoint 
displacement (39). A P1 finite element discretization is used for extension operator and 
its adjoint equation, while mixed P1 − P1 shape functions are used for the state equation 
Navier–Stokes equations. The nonlinear problems are solved using Newton’s method 
altogether with a BiCGStab solver for the underlying linearizations. The linear solver 
is preconditioned with the geometric multigrid, which uses a V-cycle, 3 pre- and posts-
moothing steps, and an LU base solver gathered on a single core. The error reduction is 
set to an absolute of 10−14 and relative 10−8 for the nonlinear solver, and 10−12 and 10−3 
for the linear solvers. The purely linear problem has a relative and absolute reduction 
of 10−16 . A Jacobi smoother is used within the geometric multigrid for the extension 
equation and the derivative, whereas the Navier–Stokes equation solver features an ILU 
smoother [see for instance Wittum (1989)]. The results presented start at 24 cores, with 
a fourfold increase for each mesh refinement.

The studies show scalability and speedup for up to 6144 cores and more than 
27 million triangular elements. Given that mesh refinements are performed for each 
core count increase, a different geometrical problem is solved therefore differences 
in iteration counts are expected. However, even for a significant increase in the num-
ber of geometric elements the iteration counts for the linear problems remain within 
moderate bounds. Moreover, it is important to point out that the total number of 
DOFs solved within the presented PDEs in Fig. 9 increases from about 783k to 189 
million. While the total number of DOFs solved in one optimization step is close to 
300 million.

Together with the grid independence study for the outer optimization routine we 
thus obtain weak scalability of the overall method.

6 � Conclusion

In this article we presented an optimization methodology which relies on the self-
adaption of the extension operator within the method of mappings. The results show 
that large deformations with respect to the reference configuration are possible while 
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Fig. 9   Weak scaling: For the first three optimization steps, the accumulated wallclock time is shown for: 
a the nonlinear extension equation, b the derivative of the objective function with respect to the displace-
ment field. In c, the accumulated iteration counts are presented for the geometric multigrid precondi-
tioned linear solver of the shape derivative, the number of Newton steps and linear iterations necessary to 
solve the extension equation and its linearization
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preserving mesh quality. This has been studied in situations where singularities dur-
ing the shape optimization process have to be smoothed out and new ones generated. 
It has been demonstrated that these two effects are particularly important to be tack-
led for applications of hierarchical multigrid solvers when experiments from fluid 
dynamics are considered.

The method’s scalability and grid independency have been illustrated with the 
results of Sects. 4.3 and 5. Grid independence is necessary for applications where a 
high level of refinement is needed, since it guarantees that the same optimal shape 
is obtained regardless of the number of elements. This becomes particularly impor-
tant for the weak scalability, where the grid is refined on each core count increase. 
The results shown in Fig. 9, in combination with the ones of Figs. 6 and 7, establish 
a proof of concept for industrial applicability, where a high number of DOFs are 
expected. Overall, in this article we have presented an algorithm towards scalable 
shape optimization for large scale problems with the potential to work reliably also 
in complex geometric situations.
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Abstract. This work develops an algorithm for PDE-constrained shape optimization based
on Lipschitz transformations. Building on previous work in this field, the p-Laplace operator is
utilized to approximate a descent method for Lipschitz shapes. In particular, it is shown how
geometric constraints are algorithmically incorporated avoiding penalty terms by assigning them to
the subproblem of finding a suitable descent direction. A special focus is placed on the scalability of
the proposed methods for large scale parallel computers via the application of multigrid solvers. The
preservation of mesh quality under large deformations, where shape singularities have to be smoothed
or generated within the optimization process, is also discussed. It is shown that the interaction of
hierarchically refined grids and shape optimization can be realized by the choice of appropriate
descent directions. The performance of the proposed methods is demonstrated for energy dissipation
minimization in fluid dynamics applications.

Key words. shape optimization, Lipschitz transformations, geometric multigrid, parallel com-
puting

MSC codes. 35Q93, 49Q10, 65M55, 65Y05, 65K10

DOI. 10.1137/22M1494609

1. Introduction. In this paper we present a numerical scheme for the efficient
treatment of geometrical constraints in shape optimization within the context of fluid
dynamics applications. Several advantages over other well-known techniques are de-
scribed, particularly how the need for penalty terms is relinquished in favor of a
more robust approach. Additionally, we argument how the presented algorithm is
well-suited for geometrical constraints of integral form, which are preserved up to a
numerical tolerance during the optimization process.

Constraints on the volume and barycenter are often required in fluid dynamics.
This is particularly true for the minimal drag problem of a free floating body (see
[30, 23, 22, 25]). Another example is in [3], where a volume and perimeter constraints
are considered for a structural optimization problem. A constraint for minimum and
maximum thickness is formulated in [2, 12] in order to meet requirements stemming
from the manufacturing process.

In order to preserve these constraints, we include them in the process of finding de-
scent directions in Banach spaces. This is especially challenging, since the geometrical
constraints are of a different type than that of the state equation, i.e., the governing
partial differential equation (PDE), meaning that the flow field is characterized by the
stationary, incompressible Navier--Stokes equations, which lead to a PDE constraint
optimization problem over infinite-dimensional Banach spaces, whereas the geometri-
cal constraints are given by a finite number of integral type constraints, independently
of a finite element model (see section 2).
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We focus on a well-established benchmark problem in the field of shape optimiza-
tion constrained by Navier--Stokes equations, where the shape of an obstacle located
within a flow channel is to be optimized with respect to the drag generated over its
surface. In general, the optimization problem can be summarized as determining a
geometry \Omega \subset \BbbR d that minimizes a shape functional J . The functional represents
a physical quantity, e.g., drag of an obstacle or the energy dissipation associated
with the flow around an obstacle such that a fixed number of geometric constraints
g(\Omega ) = 0 \in \BbbR m is also fulfilled. There are two major challenges in this problem, one
concerning admissibility and optimality and another related to the regularity of the
obstacle's shape. In addition, the aforementioned geometrical constraints have to be
preserved in order to avoid trivial and nonfeasible solutions.

Many popular approaches rely on strategies to simultaneously update state vari-
ables and Lagrange multipliers of the constraints; for an overview see [4]. In other
words, optimality and admissibility are established simultaneously within one itera-
tion. However, the optimization problems addressed here tend to be nonmeaningful
or even unsolvable, provided that the constraints are not precisely fulfilled. For in-
stance, if the barycenter of the obstacle is not fixed, then the object would leave the
domain. In the same way the optimization procedure usually yields a trivial solution
if the volume is not preserved, because then the obstacle would be contracted to a
single point. The second issue is the regularity of initial and optimized shapes. On
one hand, it might be essential that singularities can be represented in the optimal
shapes, e.g., kinks and sharp edges. On the other, it is necessary for the scalability
of the algorithm to apply multigrid methods as a grid-independent preconditioner for
a Krylov subspace solver. The discretization for a multigrid approach might feature
sharp kinks and edges at the initial coarse mesh. The mesh at a higher refinement
level, however, should represent the actual geometry more accurately than the coarse
mesh. Therefore the shape update should not only generate sharp edges and kinks,
but also smooth the boundary.

A common approach in shape optimization is to map a reference domain \Omega \subset \BbbR d
with d = 2 or d = 3, to a perturbed domain (id + u)(\Omega ) := \{ x+ u(x) \in \BbbR d : x \in \Omega \} 
with u \in W 1,\infty (\BbbR d,\BbbR d) such that id + u is a Lipschitz homeomorphism (cf. [31, 9,
2]). Note that this does not require any parametrization of the geometry, e.g., like
in a CAD description with NURBS-surfaces. For the shape deformation we follow [8,
18] and consider the steepest descent direction in W 1,\infty -topology with a p-Laplace
relaxation and the deformation vector field u then is the solution to a minimization
problem. In contrast here we consider a constraint optimization problem in order to
take the geometric constraints into account.

The well-known fluid dynamic example for a minimal drag problem in [27] consid-
ers the volume constraint, which is 1d. Because the shape update in [27] is performed
solely in the surface normal direction, the corresponding Lagrange multiplier is given
by the mean value of the deformation. In [21], constraints as maximum thickness
and volume have been taken into account via penalization of the cost function. Even
though this approach allows also for more general shape deformations the shape up-
date has to be rather small in order to keep the procedure numerically stable. Besides
this one, two other approaches have successfully been applied to shape optimization
problems of this kind. First, an augmented Lagrange method can be used to deter-
mine the Lagrangian multipliers associated with the geometric constraints [3, 30, 2,
22, 11]. However, this approach has difficulties that are challenging to overcome, e.g.,
several parameters are problem dependent and have to be assigned to appropriate
initial values. Furthermore, the constraints first have to be violated in order to de-
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A SCALABLE ALGORITHM FOR SHAPE OPTIMIZATION B233

termine the desired multipliers and the whole shape optimization problem has to be
solved repetitively until the multipliers converge. This can lead to unfeasible shapes
throughout the optimization procedure, as was previously mentioned. Second, the
method of mappings [23, 15] enables for the fulfillment of the geometric constraints
up to machine accuracy. Therefore, the shape optimization problem only has to be
solved once and within each iteration only feasible geometries are computed. Here,
the state as well as the adjoint variables are determined on the transformed domain
by applying the perturbation of identity. Thus, the descent vector field couples to
all the constraints. Nevertheless, it is necessary to solve the fully coupled optimality
system as a whole, which is challenging, not only from an implementation point of
view, but because it is computationally expensive.

In contrast, in this approach we use a second order method only to determine
the steepest descent direction in a first order shape optimization. This reduces the
dimensions of the linear systems to be solved. However, our optimization scheme
requires that the geometric constraints only depend on the descent vector field u and
not on the physical state variables, e.g., velocity or pressure. Therefore, the optimality
system can be solved sequentially starting with the state, then the adjoints to the
state, and finally the descent direction. This gives us the ability to handle problems
with very large degrees of freedom (DoFs), while fulfilling the geometric constraints
up to an arbitrary tolerance. It may be mentioned that the approach presented
has analogies to optimization on manifolds and the investigations carried out in [24,
29], although it is based on Hilbert space settings. We also want to mention the
Uzawa iteration [33] for solving a saddle point problem which occurs in the presented
approach.

The remainder of this paper has the following structure: In section 2, the physi-
cal problem is introduced and the basics of shape optimization in Banach spaces are
recalled. Section 3 proposes an algorithm which determines admissible shape defor-
mations or descent directions, respectively. In section 5, we demonstrate a scalable
multigrid implementation for a fluid dynamics benchmark problem, while the per-
formance of the method is investigated in section 5.3. In section 6, the presented
algorithm and numerical experiments are recalled and summarized.

Regarding the notation in the upcoming equations, D(\cdot ) denotes the Jacobian.
For the spatial Euclidean gradient operator we use \nabla (\cdot ). The directional derivatives
with respect to a specific variable are indicated using \partial 

\partial u (\cdot )\delta u in direction \delta u. The
shape derivative of the functional J(\Omega ) in direction u is denoted by J \prime (\Omega )u as defined
in (2.7).

2. Model equations. In the present work, we propose an optimization method-
ology for PDE constraint shape optimization problems of the abstract form:

min
\Omega \in \scrS 

j(\Omega , y)(2.1)

s.t. e(\Omega , y) = 0(2.2)

g(\Omega ) = 0(2.3)

where e denotes the PDE constraint on a state variable y. The mapping g refers
to some finite-dimensional geometric constraints on the bounded Lipschitz domain \Omega 
with boundary \Gamma =\Gamma obs\cup \Gamma in\cup \Gamma out\cup \Gamma wall, where \Gamma obs is to be optimized. Furthermore,
\scrS denotes an abstract set of admissible shapes, as explained, for instance, in [31, 9],
and specified in (2.6).
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For some m \in \BbbN the geometric constraint is thus given as g : \scrS \rightarrow \BbbR m. We
assume the existence of the mapping \Omega \mapsto \rightarrow y(\Omega ). Thereby, we obtain the reduced cost
functional J(\Omega ) := j(\Omega , y(\Omega )) := J(\Omega ) : \scrS \mapsto \rightarrow \BbbR . In order to obtain sensitivities of the
objective J we follow [31, 9, 3, 6]. For this purpose, the domain \Omega is parameterized in
the sense of the perturbation of identity with the displacement field u :\BbbR d\rightarrow \BbbR d; x \mapsto \rightarrow 
u(x). For the sake of readability, u(x) is written as u. For a sufficiently small u we
thus obtain deformed configurations

(2.4) \Omega u := \{ x+ u : x\in \Omega \} 

of the reference shape \Omega . For the sake of readability we abbreviate the perturbation
of identity as

(2.5) F : \Omega \rightarrow \Omega u; F := id + u.

Moreover, the previously mentioned abstract set of admissible shapes \scrS can be further
specified as

(2.6) \scrS :=
\bigl\{ 
F (\Omega ) : F = id+ u,u \in Uad \subseteq W 1,\infty (\BbbR d,\BbbR d)

\bigr\} 
.

As parts of the boundary of \Omega shall remain fixed, the displacement field u is
chosen in such a way that it vanishes on all boundaries of \Omega which are not to be
optimized. Following [2], the directional shape derivative of J evaluated in \Omega in the
direction u is then defined by

(2.7) J(\Omega u) = J(\Omega ) + J \prime (\Omega )u+ o(u) where
o(u)

\| u\| W 1,\infty (\BbbR d,\BbbR d)

u\rightarrow 0 - \rightarrow 0,

where J \prime (\Omega ) is a linear operator applied to u. Then we can interpret the shape
optimization problem (2.1)--(2.3) locally, as a problem in Uad \subseteq W 1,\infty (\BbbR d,\BbbR d). In
the present work, Uad is the admissible set of displacements u defining the transfor-
mation F , which inherently fulfills the geometric constraints (2.3) in the sense that
g(F (\Omega )) = 0. Note that Uad \not = \emptyset as u= 0 is an admissible transformation if the initial
geometry \Omega fulfills the geometrical constraints, i.e., g(\Omega ) = 0. The crucial aspect of
the present method is to separate the geometric constraints (2.3) from the remain-
ing PDE-constrained shape optimization problem (2.1) and (2.2) and move it to the
admissible set Uad of descent directions. In contrast to other popular approaches,
where admissibility is only guaranteed in the optimal configuration, we ensure that
(2.3) is fulfilled in each optimization step. This can be done because the geometric
constraints do not depend on the state y and rely on the properties of the shape only.

For the computation of the shape derivative J \prime (\Omega )u, we formally apply the La-
grange multiplier method [17]. A rigorous derivation is beyond the scope of this paper,
which, however, follows the standard approach from optimal control theory and re-
quires to show that the control-to-state map \Omega \mapsto \rightarrow y(\Omega ) is continuous differentiable [17,
Assumption 1.47] in the sense of (2.7). This allows us to define the reduced problem,
that is, minimize J(\Omega u) on the space of transformations u \in Uad, and derive first
order optimality conditions. To obtain the derivative of the reduced objective func-
tion the problem is formulated on the perturbed domain \Omega u and pulled back to the
reference domain \Omega , where the derivative is evaluated. The derivative of the reduced
function then can be expressed with the help of the adjoint state or Lagrange mul-
tipliers, respectively. For details the reader may be referred to [5]. In the following,
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A SCALABLE ALGORITHM FOR SHAPE OPTIMIZATION B235

we consider the particular problem of minimizing energy dissipation of the fluid flow
mainly caused by an obstacle in a laminar, stationary flow, where the function

(2.8) J(\Omega ) := j(\Omega , v) =
\nu 

2

\int 

\Omega 

Dv :Dvdx

is to be minimized. Here and in the following, we denote velocity v, the density-
specific pressure p, viscosity \nu , and an inflow velocity v\infty . As the PDE constraint
e(\Omega , y) = 0, with state variable y = (v,p), we consider the stationary, incompressible
Navier--Stokes equations in a weak sense:

 - \nu \Delta v+ (v \cdot \nabla )v+\nabla p= 0 in \Omega ,

divv= 0 in \Omega ,

v= 0 on \Gamma obs \cup \Gamma wall,

v= v\infty on \Gamma in,

\nu Dv \cdot n= pn on \Gamma out.

(2.9)

In the following we consider the weak formulation [10, Chapter 8.2]; see also [7]. Here,
we consider the adjoint approach for determining the directional shape derivative
J \prime (\Omega )u. For details on the adjoint Navier--Stokes equations, see, e.g., [16, 32, 23, 25].
For details on the shape derivative J \prime (\Omega )u of the objective function in (2.8), see, e.g.,
[20, 23].

2.1. Descent direction. Following [2, Proposition 4.1] we want to approximate
the steepest descent direction u in

V\infty 
0 :=

\bigl\{ 
u\in W 1,\infty (\Omega \cup \Omega obs,\BbbR d) : \| u\| W 1,\infty (\BbbR d,\BbbR d) < 1,

u= 0 a.e. \Gamma in \cup \Gamma out \cup \Gamma wall\} 
(2.10)

with the corresponding minimization problem

min
u\in V\infty 

0

J \prime (\Omega )u

s.t. g(F (\Omega )) = 0,

F = id+ u.

(2.11)

Therefore, we introduce a p-Laplace relaxation with p > 2 inspired by [18, 8]. Hence
let

(2.12) V p0 =
\bigl\{ 
u\in W 1,p(\Omega ,\BbbR d) : \| Du\| Lp(\Omega ,\BbbR d) \leq 1, u= 0 a.e. on \Gamma in \cup \Gamma out \cup \Gamma wall

\bigr\} 

and consider

min
u\in V p

0

1

p

\int 

\Omega 

(Du :Du)p/2 dx+ J \prime (\Omega )u

s.t. g(F (\Omega )) = 0,

F = id+ u,

(2.13)

where it is assumed that g(F (\Omega )) : V p0 \rightarrow \BbbR m, u \mapsto \rightarrow g((id + u)(\Omega )), m\geq 1. Notice that
this is consistent with (2.1)--(2.3) for g over a fixed \Omega and a variable displacement
field u. Thus, the admissible set \scrS is locally parameterized by V p0 -deformations of \Omega .
In the present work, m= d+ 1 refers to the barycenter and volume constraints

\int 

\Omega 

(x+ u)det(DF ) dx= 0,(2.14)
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\int 

\Omega 

det(DF ) - 1 dx= 0,(2.15)

and without loss of generality, we assume that the barycenter of the initial domain \Omega 
is located at the origin 0 \in \BbbR d of the domain (cf. [25]) and det(DF ) > 0 for u small
enough [31]. Furthermore, due to the constant volume constraint (2.15), we can omit
in (2.14) the division by the reference volume and deformed domain \Omega and F (\Omega ),
respectively.

2.2. Optimality system. For the derivation of the optimality conditions of the
steepest descent problem (2.13), we define the Lagrangian function

L(u,\lambda ) :=
1

p

\int 

\Omega 

(Du :Du)p/2 dx+ J \prime (\Omega )u

+
d\sum 

i=1

\lambda i

\int 

\Omega 

(xi + ui)det(DF ) dx+ \lambda d+1

\int 

\Omega 

det(DF ) - 1 dx

(2.16)

with \lambda = (\lambda 1, . . . , \lambda d, \lambda d+1)
T , where \lambda 1, . . . , \lambda d are associated with the barycenter

(2.14) and \lambda d+1 with the volume constraint (2.15). In the following we want to recall
some rules of differentiation. Therefore, let \delta u, \mu u : \Omega \rightarrow \BbbR d be generic differentiable
vector fields, B : \Omega \rightarrow \BbbR d\times d and

(2.17) DF =

\biggl( 
\partial 

\partial xj
Fi

\biggr) 

1\leq i,j\leq d
= I +Du

the Jacobian of F . We specify the following useful formulae by applying the product
and chain rule:

\partial 

\partial u
DF \delta u =D\delta u,

\partial 

\partial u
det(DF ) \delta u = tr((DF ) - 1D\delta u)det(DF ),

\partial 

\partial u
(tr(DF B)) \delta u =BT :

\biggl( 
d

du
DF \delta u

\biggr) 
=BT :D\delta u,

\partial 

\partial u

\bigl( 
(DF ) - 1

\bigr) 
\delta u = - (DF ) - 1D\delta u(DF )

 - 1,

\partial 

\partial u

\bigl( 
tr((DF ) - 1D\delta u)

\bigr) 
\mu u = - D\delta Tu : (DF ) - 1D\mu u(DF )

 - 1

= tr( - D\delta u(DF ) - 1D\mu u(DF )
 - 1)

= tr( - (DF ) - 1D\mu u(DF )
 - 1D\delta u).

(2.18)

By making use of the rules above, we obtain the derivatives of the Lagrangian (2.16)
with respect to u in the direction \mu u \in V p0 :

\partial 

\partial u
L(u,\lambda )\mu u =

\int 

\Omega 

(Du :Du)
p - 2
2 (Du :D\mu u) dx+ J \prime (\Omega )\mu u

+ (\lambda 1, . . . , \lambda d)
T \cdot 
\int 

\Omega 

\mu u det(DF ) + (x+ u)tr((DF ) - 1D\mu u)det(DF ) dx

+ \lambda d+1

\int 

\Omega 

tr((DF ) - 1D\mu u)det(DF ) dx.

(2.19)
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A SCALABLE ALGORITHM FOR SHAPE OPTIMIZATION B237

Together with the usual derivative with respect to \lambda into direction \mu \lambda \in \BbbR d+1, the
optimality system reads

\partial 

\partial u
L(u,\lambda )\mu u = 0 \forall \mu u \in V p0 ,

\partial 

\partial \lambda 
L(u,\lambda )\mu \lambda = 0 \forall \mu \lambda \in \BbbR d+1.

(2.20)

As the derivatives with respect to \lambda can directly be taken form (2.16), we omit
the details here. In order to solve the nonlinear system (2.20) we require the lin-
earization

\partial 2

\partial u2
L(uk, \lambda k)(\mu u, \delta u) +

\partial 

\partial \lambda \partial u
L(uk, \lambda k)(\mu u, \delta \lambda ) = - 

\partial 

\partial u
L(uk, \lambda k)\mu u \forall \delta u, \mu u \in V p0 ,

(2.21)

\partial 

\partial u\partial \lambda 
L(uk, \lambda k)(\delta u, \mu \lambda ) = - 

\partial 

\partial \lambda 
L(uk, \lambda k)\mu \lambda \forall \delta \lambda , \mu \lambda \in \BbbR m(2.2)

and the updates

(2.23) uk+1 = uk + \delta u, \lambda k+1 = \lambda k + \delta \lambda ,

where

\partial 2

\partial u2
L(u,\lambda )(\delta u, \mu u)

=

\int 

\Omega 

(p - 2)(Du :Du)
p - 4
2 (Du :D\delta u)(Du :D\mu u) + (Du :Du)

p - 2
2 (D\delta u :D\mu u) dx

+ (\lambda 1, . . . , \lambda d)
T \cdot 
\int 

\Omega 

\Biggl( 
\delta u tr((DF )

 - 1D\mu u) + \mu u tr((DF )
 - 1D\delta u)

+ (x+ u)
\bigl( 
tr( - (DF ) - 1D\mu u(DF )

 - 1D\delta u)

+ tr((DF ) - 1D\delta u)tr((DF )
 - 1D\mu u)

\bigr) 
\Biggr) 
det(DF ) dx

+ \lambda d+1

\int 

\Omega 

\Biggl( 
tr( - (DF ) - 1D\mu u(DF )

 - 1D\delta u)

+ tr((DF ) - 1D\delta u)tr((DF )
 - 1D\mu u)

\Biggr) 
det(DF ) dx.

(2.24)

Reviewing the first integral in (2.24), one observes that these terms do not exist for
p < 4, where Du :Du= 0 holds on a set of nonzero measure. However, this issue does
not appear in the defect equation (2.19), since there all exponents are nonnegative.
We thus modify the first integral in (2.24) to

\int 

\Omega 

(p - 2)(Du :Du+ \epsilon \Theta (4 - p)) p - 4
2 (D\mu u :Du)(D\delta u :Du)

+ (Du :Du+ \epsilon )
p - 2
2 (D\mu u :D\delta u) dx,

(2.25)

where \Theta denotes the Heaviside function and \epsilon > 0 a sufficiently small constant. Notice
that, within Newton's method in (2.21) and (2.22), this modification only affects the
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linearization and not the defect. Thus, solutions of the original problem (2.13) are
still obtained upon convergence. Adding \epsilon in (2.25) serves two purposes. On the one
hand it guarantees invertibility, and on the other it prevents divide-by-zero operations
in the first term.

3. Optimization algorithm. In this section we describe an algorithm for the
solution of (2.13). By the restriction of descent directions to maintain g(F (\Omega )) = 0,
it is guaranteed that the geometric constraints are fulfilled up to a given tolerance at
each iteration of the optimization process and not only on the limit. The geometric
constraints considered here, i.e., barycenter and volume of a free floating obstacle, are
particularly challenging to handle. In an augmented Lagrangian or even pure penalty
approach, the violation of g = 0 in one iteration might lead to a strong overshoot of
the shape deformation. This causes oscillation of the shape because the geometry is
unfeasible in each iteration. For example, in particular at low Reynolds number flows,
a major influence to the minimization of the energy dissipation is associated with the
displacement of the flow by the obstacle. Also minimizing the volume minimizes the
energy dissipation. For higher Reynolds number flows, a descent direction is to move
the obstacle downstream. From a practical point of view this can only be solved by
carefully adjusting initial values of the multipliers \lambda , the penalty factors, and the
penalty increment values. Thus, the practical appeal of the approach outlined here
is that there are less heuristic and problem-dependent quantities to be adjusted. The
user only has to provide the convergence criteria, the parameters of the step size
control, and the values corresponding to the sequence of p, i.e., pmax and pinc.

From a mathematical point of view, the computational price one has to pay is
the following: The set of admissible descent directions is not convex anymore, but
the solution manifold of the nonlinear equation g(F (\Omega )) = 0. For example, having
computed an admissible step up does not imply that 1

2up is also admissible. This
makes a step size control expensive, since the geodesics on the solution manifold are
not straight lines in this case. In Algorithm 3.1 the step size control is thus handled
by scaling the shape sensitivity J \prime (\Omega ) with a decreasing sequence \sigma = (1, 12 ,

1
4 , . . .).

The latter is possible because multiplying the objective function in (2.11) with \sigma > 0
does not change the descent direction but the maximum displacement; it is sufficient
to search for a minimizing function for \sigma J \prime (\Omega )u.

As a note, for numerical reasons it might prove profitable to multiply (2.20) with
1/\sigma . For the sake of readability we abbreviate the linearized optimality system (2.21)
and (2.22) using the symbols

A\delta u :=
\partial 2

\partial u2
L(uk, \lambda k)(\mu u, \delta u) \forall \mu u \in V p0,h,(3.1)

B\delta \lambda :=
\partial 

\partial ud\lambda 
L(uk, \lambda k)(\mu u, \delta \lambda ) \forall \mu u \in V p0,h,

BT \delta u :=
\partial 

\partial \lambda \partial u
L(uk, \lambda k)(\delta u, \mu \lambda ) \forall \mu \lambda \in \BbbR d,

ru := - 
\partial 

\partial u
L(uk, \lambda k)\mu u \forall \mu u \in V p0,h,

r\lambda := - 
\partial 

\partial \lambda 
L(uk, \lambda k)\mu \lambda \forall \mu \lambda \in \BbbR d

with V p0,h a discrete approximation of V p0 used for a finite element discretization of
(2.21) and (2.22), which then leads to the saddle point problem.

(3.2)

\biggl( 
A B
BT 0

\biggr) \biggl( 
\delta u
\delta \lambda 

\biggr) 
=

\biggl( 
ru
r\lambda 

\biggr) 
,
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Algorithm 3.1. Shape optimization steepest descent method.
Require: \Omega , pmax

1: y\leftarrow Solve primal problem
2: y0\leftarrow y
3: Compute objective \Phi 0 = J(\Omega )
4: repeat
5: y\ast \leftarrow Solve adjoint problem
6: \sigma \leftarrow 1
7: while True do
8: p\leftarrow 2
9: \=u\leftarrow 0
10: while p\leq pmax do
11: (up, \lambda )\leftarrow NEWTONSOLVER(\=u,\sigma , y, y\ast )
12: \=u\leftarrow up
13: Increase p
14: end while
15: Update geometry \Omega with up\mathrm{m}\mathrm{a}\mathrm{x}

16: y\leftarrow Solve primal problem
17: Compute objective \Phi = J(\Omega )
18: if \Phi \geq \Phi 0 then
19: Update geometry \Omega with  - up\mathrm{m}\mathrm{a}\mathrm{x}

20: \sigma \leftarrow \sigma /2
21: y\leftarrow y0
22: else
23: \Phi 0\leftarrow \Phi 
24: y0\leftarrow y
25: break
26: end if
27: end while
28: until \| up\mathrm{m}\mathrm{a}\mathrm{x}\| W 1,p(\Omega ) < \epsilon 1

where A \in \BbbR n\times n and B \in \BbbR n\times m. In order to solve for the increments \delta u and \delta \lambda , we
formally apply one block-wise Gauss elimination and obtain

(3.3)

\biggl( 
A B
0  - BTA - 1B

\biggr) \biggl( 
\delta u
\delta \lambda 

\biggr) 
=

\biggl( 
ru

r\lambda  - BTA - 1ru

\biggr) 
,

where S :=  - BTA - 1B is the so-called Schur complement operator. In order to not
explicitly compute A - 1 an equation system with A is solved instead. In general, the
optimality system (2.20) of problem (2.1)--(2.3) is highly nonlinear. Especially with
increasing values of p, the solution process becomes more challenging unless a good
initial guess u0p is provided. To overcome this issue, and to reduce computational
effort, we consider a finite sequence pk := pinit + kpinc, where pinit := 2. First, the
solution for pinit with initial up\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t} = 0 and \lambda = 0 is computed. Thereafter the so-
lution of the constraint pk-Laplacian problem (2.13) is used as an initial guess for
the pk+1-Laplacian problem (cf. [22]). Here, with the choice of pmax we adjust the
approximation quality of Lipschitz deformations.

The overall optimization procedure is outlined in Algorithm 3.1. The steepest
descent method is reflected in the loop spanning from lines 4 to 29, where the necessary
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Algorithm 3.2. Newton's method for p-Laplacian problem.
1: function NewtonSolver(up, \sigma , y, y

\ast )
2: \lambda \leftarrow 0
3: repeat
4: (A,B,ru,r\lambda ) \leftarrow Assemble(u,\lambda , y, y\ast ) according to (3.1)
5: (\delta up

, \delta \lambda )\leftarrow SCHURSOLVER(A,B, ru, r\lambda , \delta up
, \delta \lambda )

6: up\leftarrow up + \delta up

7: \lambda \leftarrow \lambda + \delta \lambda 
8: until \| \delta up

\| W 1,p(\Omega ) + \| \delta \lambda \| 2 < \epsilon 2
9: return (up, \lambda )
10: end function

Algorithm 3.3. Schur complement product.
1: function SchurComplementProduct(A, B, w)
2: for i= 1, . . . ,m do
3: b\leftarrow b+B(:, i)wi
4: end for
5: Solve Az = b
6: for i= 1, . . . ,m do
7: bi\leftarrow  - B(:, i)T z
8: end for
9: return b
10: end function

optimality condition is checked. Here, y again denotes the state variable of the PDE
constraint e, which we refer to as the primal problem. Nested within this loop, a step-
size control operates in the lines 8 to 28. It checks whether the proposed next shape
F (\Omega ) leads to an improvement of the objective function, in terms of the displacement
field up. If not, then the parameter \sigma is reduced. Note that, in contrast to the classical
backtracking line search in linear spaces, we have to recompute the descent direction
up hereafter. This is due to the fact that by shortening the step-length, we can not
follow straight lines toward 0 \in V p0 , but have to stay within the solution manifold
of the nonlinear geometric constraints g(F (\Omega )) = 0. In line 5 the adjoint PDE is
solved, which yields the adjoint state y\ast . After this, the shape sensitivity J \prime (\Omega ) can
be evaluated in line 6, which depends on y and y\ast .

In line 11 of Algorithm 3.1, the nonlinear solver for the steepest descent problem
(2.13) is called, which can be seen in Algorithm 3.2. The key part of this solver is the
solution to the saddle point problem (3.2) in the Schur complement form (3.3). This
could be realized with a variety of iterative solvers, which are not further specified here.
Popular approaches for these kind of problems are the Uzawa iteration and the Arrow--
Hurwicz algorithm. For this purpose, Algorithm 3.3 outlines the computational steps
for a matrix-vector product with S.

4. Numerical methodology. Results of the present study are obtained from
the open-source toolbox UG4 [34]. This simulation framework has MPI-based par-
allelization and features a geometrical multigrid preconditioner [14]. The grid parti-
tioning and load balancing scheme is based on ParMetis [19].

Stable P2  - P1 finite elements were used to discretize the governing nonlinear
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Navier--Stokes equations (2.9) and their linearization, and therefore no additional
stabilization is required. Moreover, the viscosity is \nu = 0.02 in all cases. The same
setting was used to discretize the linear adjoint problem; cf. [25, 23] and the references
therein. As regards the p-Laplace relaxation problem, for which the optimality system
is described in (3.3), P1 Lagrange shape functions were employed. Computational
grids consist of triangular (two-dimensional (2d)) and tetrahedral elements (3d). They
were generated using GMSH [13].

The simulations followed the workflow proposed in Algorithm 3.1. At the begin-
ning of each optimization step, the steady, incompressible flow, described by Navier--
Stokes equations (2.9), was computed followed by the solution of the corresponding
adjoint system. The p-Laplacian descent algorithm Algorithm 3.1 initially employed
pinit = 2.0 and incremented p by pinc = 0.19. The given maximum values of p read
pmax = 4.8 [pmax = 4.1] for the computed 2d (3d) test cases. Termination criteria of
Algorithms 3.1 and Algorithm 3.2 were set as \epsilon 1 = 1E--5 and \epsilon 2 = 1E--8, respectively.
The modification term introduced in (2.25) reads \epsilon = 1E--8 for all cases.

As a practical note, care must be taken to correctly interpolate the values of v,
p, and their respective adjoints. These are involved in the assembly of J \prime , which is
present in (3.3). The geometrical constraints are part of this system of equations.
It has been described that they lead to an m \times m system of equations, so their
discretization is not within a finite element space but in \BbbR m. For the investigated
case cases, m\in \{ 3,4\} in two and three dimensions, respectively. Thus, we use a direct
solver to find the solution of the Schur complement system.

The corresponding codes used for these results can be found in the online repos-
itory [26].

5. Results. This section presents results for 2d and 3d fluid dynamics appli-
cations. They either refer to an initial square (2d) or cube (3d) centrally placed in
a rectangular flow domain at low Reynolds number, i.e., Re = 1 \cdot H/\nu =20, where
H refers to the length of the initial edges. The employed box-domain is outlined in
Figure 1. It spans 20 units in length and \gamma = 6 units in height (2d, 3d) and depth
(3d), respectively, and the flow enters the domain through the left vertical boundary.
The inflow profile on \Gamma in features a peak unit-value in the center of the inlet plane
and is described by

v\infty =

\Biggl( 
max

\Biggl\{ 
0,

d\prod 

i=2

cos

\biggl( 
\pi | xi| 
\delta 

\biggr) \Biggr\} 
,0, . . . ,0

\Biggr) 
\in \BbbR d,

where \delta corresponds to the inlet height.
The central aspect of the paper is the creation and removal of geometrical sin-

gularities. Emphasis is placed on illustrating and explaining how the corners of the
obstacle are removed during the optimization process, as well as how tips are generated
to reach an optimal shape. Since a high viscosity is used in our studies, the energy
dissipation decrease is not strongly related to the resulting singularities. However,
these were created to showcase the capabilities and properties of the optimization
scheme, based on the convergence condition of Algorithm 3.1. A crucial aspect is the
evolution of the mesh quality during an optimization. We utilize the 2d studies to
compare the mesh quality of the optimal and the initial design by means of the ratio
\rho between the radii of circumcircle and incircle and report the extreme values of the
interior angles of the triangulation. Moreover, we describe the behavior of the pro-
posed algorithm in two different 3d configurations, where the surface of the obstacle
is highly resolved.
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Fig. 1. Schematic view on a flow tunnel-like domain \Omega with the obstacle \Omega \mathrm{o}\mathrm{b}\mathrm{s} encircled by its
surface \Gamma \mathrm{o}\mathrm{b}\mathrm{s}, wall boundaries \Gamma \mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}, inflow \Gamma \mathrm{i}\mathrm{n}, and outflow \Gamma \mathrm{o}\mathrm{u}\mathrm{t}. The height of the flow tunnel is
defined by \gamma > 0.

Notice that the geometrical constraints are preserved during each optimization
step for every value of p, since they are incorporated to the system of equations.
Their fulfillment is included in the convergence condition set for Newton's method in
Algorithm 3.2, and therefore there is no need to provide results for their fulfillment per
step. Solving the nonlinear system of (2.20) implies solving the geometrical constraints
(2.14) and (2.15) to the error reduction a tolerance set for Newton's method. The
major portion of the computational effort in Algorithm 3.1 is spent on solving the
p-Laplace relaxed problem via the scheme described in section 3. Particularly, lines
11--15 of Algorithm 3.1 are computationally expensive, as will be explained here and
in subsection 5.3.

5.1. Two-dimensional studies. Simulations in the 2d domain were performed
for several levels of refinement to better describe the removal of the geometrical sin-
gularities, as well as the mesh quality. Figure 2 compares the initial design (red) with
the converged design (blue), together with a contour plot of a deformation sequence
(gray). A robust removal of the box corners is clearly visible, as well as the creation
of the tips in the rear and the aft sections. As described in section 2, the geometrical
constraints are preserved in all optimization steps. This feature can be observed by
the continuous transition between shape iterates until an optimum is obtained. In
contrast, in [25] bouncing of the shapes during the early stages of the optimization is
reported, which is related to an approximate solution of the geometrical constraints.
Figure 3 magnifies the geometry and the mesh in the upper-left corner of the obsta-
cle. The initial and final shapes are presented on the top and bottom, respectively,
for different grid refinement levels from left to right. The figure displays that the
smoothing occurs similarly on all grids, and the elements around the initial singular-
ity are not dramatically degenerated during the optimization. Toward the last step,
no indication of the initial geometric singularity is visible on the obstacle's surface.

The mesh quality is investigated for the final step using 4, 5, and 6 levels of
refinement. As outlined in section 3, a series of shape iterates are obtained until an
optimum, with respect to (2.8), is found. The geometric multigrid preconditioner,
which is used to allow for numerical scalability, requires the generation of a grid
hierarchy, of which we provide the base level, i.e., the coarsest mesh. This implies
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A SCALABLE ALGORITHM FOR SHAPE OPTIMIZATION B243

Fig. 2. Superposition of the deformation sequence for a 2d configuration. The obstacle's
initial shape red is presented superimposed to the sequence of generated shapes gray until an optimal
shape blue is obtained upon convergence.

Fig. 3. Removal of the geometrical singularity in the obstacle's initial configuration across
several levels of refinement. For 4, 5, and 6 refinements the upper left corner of the box is smoothed
via updating the geometry \Omega iteratively, as stated in line 16 in Algorithm 3.1.

that the simulations are based upon a predetermined mesh quality, and while the
optimization we propose in Algorithm 3.1 aims at preserving grid quality, it doesn't
contemplate improving it with respect to the initial geometry. Table 1 provides quality
measurements for the final step, when the optimal shape is found, using several grid
refinement levels. The presented data refers to the worst triangular elements extracted
from the 2d grid, i.e., the observed minimum and maximum interior angles, and
the largest radius ratio. We also compare the radius ratio between the last and
first configurations. The value of \rho 0 = 1.468 indicates that the initial mesh does
not have an ideal quality. Results also demonstrate that if p is high enough, the
approximation of Lipschitz transformations, as seen in (2.10) and (2.12), prevents a
significant loss of mesh quality over mesh refinements. For the presented 2d cases,
a value of p = 4.8 yielded a sufficient approximation to p =\infty in terms of the mesh
quality, while allowing for the creation and removal of geometrical singularities. The
mesh refinement study might reveal that higher maximum p-values are necessary for
the finer grids, since the quality slightly deteriorates. Nevertheless, numerical stability
must be taken into account when increasing this value, given that it is used in (2.24)
as an exponent. The latter fact turned out to be a limiting factor in our numerical
simulations. However, the measurements of the worst minimum and maximum angles
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Table 1
Assessment of mesh quality evolution for several refinement levels observed in 2d. Displayed

data for minimum and maximum interior angles supplemented by the largest radius ratio of the
triangulation extracted for the last optimization step, where an optimal shape is reached. The last
column compares the largest radius ratio of the optimal shape (subscript \infty ) and the initial config-
uration (subscript 0, \rho 0 = 1.468).

Refs Elements Minimum angle Maximum angle Radius ratio \rho \infty \rho \infty 
\rho 0

4 70,656 13.41 132.32 3.20 2.18

5 282,624 11.93 139.03 4.24 2.89

6 1 130 496 9.94 145.04 5.76 3.92

Fig. 4. Streamlines for the rear of the obstacle located in the wind tunnel.

express that the triangles, which have undergone the largest deformation, are still not
close to being critical.

5.2. Three-dimensional studies. Results for the 3d simulations refer to 4 lev-
els of grid refinement. The computational grid has a total of 4,980,736 tetrahedrons,
and 49 152 triangles discretize the surface of the obstacle, \Gamma obs, on the highest re-
finement level. Our optimization scheme generates a series of deformation fields up
that, applied to the domain \Omega , results in an optimal shape with respect to the energy
dissipation (2.8).

Figure 4 presents iterated shapes from the initial to the final optimization step. It
shows the downstream part of the geometry. For the reference shape the streamlines
visualize a region where the flow direction points backward with respect to the main
flow direction. Since this effect contributes to the energy dissipation it vanishes during
the optimization at an early stage. This phenomenon can be quantified by observing
the shear stress acting on the surface of the obstacle \tau \cdot e1 = (\nu (Dv +DvT ) \cdot n) \cdot e1.
Here e1 is the first unit vector describing the main flow direction. For the 3d (cf.
section 5.2) case \tau \cdot e1 \in [ - 11.06,1.27] for the initial shape and \tau \cdot e1 \in [ - 20.53, - 1.12]
for the final one, respectively.

Similar to the 2d case, the edges and corners displayed by the initial geometry are
gradually removed as part of the optimization process; cf. Figure 5. Additionally, the
tips created at the central upstream and downstream ends form a streamlined body
that does not feature any separation, as shown in row (b) of Figure 4.
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Fig. 5. Deformation sequence for optimization steps \{ 0, 5, 15, 35, 50, 100\} . The complete
obstacle, together with a detailed view of the geometrical singularity removal and generation process,
are presented.

Figure 5 shows a deformation sequence of the 3d case, starting from the initial
configuration and ending with an optimum obstacle surface. The figure focuses on
the overall shape (left), an exemplary corner of the initial geometry (center), as well
as the location of the upstream end of the final geometry (right). During the initial
steps, the obstacle aligns to the flow, i.e., is stretched in the direction of the flow
and compressed in the other two directions. Edges begin to emerge from the round
upstream and downstream facing surfaces, thus creating the geometry observed in
step 15. Subsequently, a round cross section starts to take form in the center and as
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Fig. 6. 3d results for 3 and 4 levels of refinement are compared. The energy dissipation (see
(2.8)) is plotted against the difference between shapes of each refinement level per step.

seen in step 35, where the final tip locations also become more apparent. Recall that
the mesh deformation corresponds to line 15 in Algorithm 3.1. We again emphasize
that all shape iterates meet the volume and barycenter constraints, which are deemed
crucial for the success of this optimization scheme. Footprints of initial corners and
edges are still visible in the mesh at later stages of the optimization, e.g., step 50.
However, they are completely smoothed out toward the end of the simulation and only
the macro elements, resulting from the grid hierarchy, are visible. The front tip is
shown for step 100, where also the previously existing singularities have disappeared.

As mentioned in section 2, this approach optimizes the obstacle's shape for the
functional given in (2.8). Therefore, results are provided in Figure 6 for a 3d setting,
which show how the generated shape, after convergence of Algorithm 3.1, consists of
an optimum with respect to the cost function.

Figure 6 depicts the objective function plot evolution over 120 optimization steps
using 3 and 4 levels of grid refinement, respectively. The fact that the objective
function (2.8) decreases monotonically is linked to lines 15--26 of Algorithm 3.1, where
a line search strategy is implemented. Once the deformation field is obtained for
pmax, the geometry is updated and we get a new obstacle shape. The state equation
is solved and the cost function calculated to guarantee that the new shape iterate
represents a descent direction. As seen in lines 18--21, whenever the condition is false,
the deformation is withdrawn and the step size control value is reduced to repeat the
unsuccessful step with a scaled shape sensitivity J \prime . As a further indicator for the
convergence, we approximate the distance between the iterated shapes \Omega k3ref of the 3
refinements run to the optimal solution of the 4 refinements run \Omega \infty 

4ref . Figure 6 shows
the integrated volume that refers to the symmetric difference as

(5.1) d(\Omega k3ref ,\Omega 
\infty 
4ref) :=

\bigm| \bigm| \Omega k3ref \setminus \Omega \infty 
4ref

\bigm| \bigm| +
\bigm| \bigm| \Omega \infty 

4ref \setminus \Omega k3ref
\bigm| \bigm| .

The integration is carried out using the boolean filters of the VTK library [1], with
which a triangulation of the surface of the volumes of interest can be obtained. A
concatenation of the VTK boolean filters gives us a surface triangulation together
with its normal vector. Then, utilizing divergence theorem the volume can be found.

5.3. Scalability study. Weak scalability of the solution strategy for the p-
Laplacian relaxed problem from pinit = 2.0 up to pmax is presented here. This so-
lution strategy, described in section 3, is referred in these results as the p-solver.
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This corresponds to lines 11--15 of Algorithm 3.1. It was studied for up to 262,144
cores in a 3d setting. The study was carried out with the supercomputer Hawk
at HLRS. It features 5632 compute nodes, each with a dual-socket architecture
and a total of 128 cores, each core with a maximum frequency of 2.25GHz, and
256GB of RAM. The runs were carried out taking into account the hypercube
topology of the system to maximize core usage and minimize parallel communica-
tion> overhead.

A 3d computational grid with 2 levels of refinement is used as an initial measure-
ment in order to optimize the number of cores used at the finest level. The wallclock
times, speedup, and iteration counts are shown in Figure 7. An eightfold increase in
the number of cores is performed for each level of refinement Results are presented for
the solution of the nonlinear system of equations given in (2.20) via its linearization
in (2.21) and (2.22). This system is solved using Newton's method with a BiCGStab
as a solver for the underlying linearization. The linear solver is set to absolute and
relative error reductions of 1E--10 and 1E--16, respectively. It is preconditioned by a
geometric multigrid method with 3 pre- and post-smoothing steps of a Gauss--Seidel
smoother with a V-cycle. An LU factorization solves the base level gathered in a
single core.

We measure the accumulated times and iteration counts for the routines in lines
11--15 of Algorithm 3.1 for one optimization step. This can be understood as the
time it takes to assemble the linearization, initialize the grid hierarchy necessary for
the geometric multigrid preconditioner, and apply the linear solver until convergence
within each call to the Newton's solver. This is done for each value of p starting at pinit
up to pmax with pinc intervals as explained in section 3. The time measurement starts
for every optimization at up\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t} and ends once the corresponding Newton solver for
up\mathrm{m}\mathrm{a}\mathrm{x}

has converged. The speedup (b) is presented relative to the base measurement
with 512 cores, and in (c) the iteration counts are shown in relation to the number
of DoFs and tetrahedral elements. The column of the total linear iterations includes
all the necessary calls to the linear solver used within the linearization. As shown
in (3.3), for each solution of the linear system of equations it is necessary to solve
m+ 2 times with A - 1. These include one time for the right-hand side in the second
equation of (3.3), and m for the computation of S. Addtionally, the first equation of
(3.3) has to be solved for \delta u, whose iteration counts are shown, individually, in the
rightmost column of Figure 7(c).

It can be seen that good scalability results are obtained for up to 262,144 cores.
The communication costs impose a time overhead significantly lower to the very large
increase of the number of DoFs. Altogether, the results show the need for using nu-
merical solvers with grid independent convergence. Recall that our target is to use
the solution of the p-Laplace relaxed problem for the highest value of p, i.e., pmax,
as a deformation field to generate a series of shape iterates. Moreover, we do this by
solving the same problem for lower values of p, in order to have a good initial guess as
we approach the maximum p. The latter fact is necessary, since with each increment
of pinc, our problem becomes more nonlinear, implying it becomes more difficult to
solve, particularly without a good initial guess. For the given settings, pinit = 2.0
to pmax = 4.1 and an increment of pinc = 0.19, Algorithm 3.2 has to be called thir-
teen times. Newton's method has to call the linear solver for each of these p values.
Therefore, there is an evident need for an efficient, fast, and computationally cheap
preconditioner which allows for grid-size independent bounds on the convergence rate
of the iterative methods. This is possible with the geometric multigrid method. One
of the downsides is that this preconditioner requires a base level computational mesh
that describes a geometry that can be represented by a grid hierarchy (see [28]), which
implies that care must be taken during the generation of the grid. Nevertheless, it is
a very effective approach toward solving for up with increments of the p value. The
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Fig. 7. Weak scaling: Results for the first optimization step. Accumulated wallclock time for
all p-levels and speedup relative to 512 cores are shown. The number of Newton steps across several
levels of refinement, as well as the linear solver iterations, are presented in relation to the number
of tetrahedrons per refinement level and the corresponding DoFs in the discretization of (3.2).

results in Figure 7 show that the p-relaxed problem becomes inexpensively solvable.
Additionally, the benefits of the multigrid preconditioner are evident by noticing how
the Newton's method is perfectly scalable in the number of steps needed for all re-
finement levels, as well as in the slight increase in linear solver iterations between the
initial and final runs. As seen in the table, even when the number of DoFs increases
by three orders of magnitude, the timings and iteration counts are bound by the
preconditioner.

In order to preserve numerical scalability across all optimization steps, it is nec-
essary to apply the deformation field across the complete grid hierarchy. This is
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Fig. 8. The base level and the second level of refinement are compared for a 2d simulation for
the last step before convergence. The macro and refined triangular elements are shown in bold and
thin black lines, respectively. Given that the deformation field is restricted and applied throughout
the grid hierarchy, the coarsest grid is an interpolation of the finest.

shown in Figure 8, where the base level is compared to the finest grid with two
refinements. It is visible how up is restricted and applied to all levels, therefore
generating an optimal coarse grid. Given that this implies an interpolation of the
vector field, and that by definition the obstacle's surface on the coarsest grid has
fewer nodes than the upper levels, there is a slight mismatch between the two grids.
However, this has no detrimental effects nor adds more computational complexity
to the shape optimization scheme. Our scheme works on arbitrary Lipschitz shapes.
Therefore, it is not necessary to incorporate extra geometric information to the grid
hierarchy.

Overall, good weak scalability results were obtained for up to 39 million elements.
This represents an increase of three orders of magnitude, both in tetrahedrons as in
DoFs, with a slight increase in the necessary computational work in terms of lin-
ear iterations. Although the performance dropped marginally, the wallclock times
and speedup show that the numerical scheme we propose, for the solution of the p-
Laplace relaxed problem, could be used for problems with large numbers of DoFs,
corresponding to real-world industrial applications.

6. Conclusion. In this work we presented a steepest descent method based
on W 1,p approximations of W 1,\infty for shape optimization problems with PDE and
fixed-dimensional geometric constraints. We demonstrated that the algorithm works
for general Lipschitz shapes since deformations allow singularities in the surface to
be smoothed or newly generated. Furthermore, we incorporated fixed-dimensional
constraints together with the PDE constraints into the optimization algorithm via
a Schur Complement approach. Compared to approximate algorithms such as the
penalty based and augmented Lagrangian approaches, we demonstrated a signifi-
cant gain of robustness in the treatment of geometric constraints over the optimiza-
tion steps. Additionally, this work addressed line search schemes for the steep-
est descent direction in W 1,\infty , which---in contrast to the aforementioned Hilbert
space methods---is here a nonlinear problem. Moreover, this problem lives on the
solution manifold of the nonlinear geometric constraints posing a nonconvex set in
general.
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The essential part of this work was to investigate the application of geometrical
multigrid preconditioners on hierarchical grid structures without needing any further
information, such as curvature based on spline surfaces. It was demonstrated that,
via the shape optimization, a body-fitted hierarchical grid structure is found for the
optimal shape. Our numerical studies indicated that under this circumstances the
multigrid preconditioner features a mesh-independent solver for the deformation sub-
problem. As a consequence, we were able to demonstrate that the proposed method
exhibits weak scalability up to 262,144 CPU cores of the distributed-memory system
Hawk at HLRS.
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Abstract

In this paper we present a shape optimization scheme which utilizes the alternating direc-
tion method of multipliers (ADMM) to approximate a direction of steepest descent in W 1,∞.
The followed strategy is a combination of the approaches presented in Deckelnick, Herbert,
and Hinze, ESAIM: COCV 28 (2022) and Müller et al. SIAM SISC 45 (2023). This has ap-
peared previously for relatively simple elliptic PDEs with geometric constraints which were
handled using an ad-hoc projection. Here, however, the optimization problem is expanded to
include geometric constraints, which are systematically fulfilled. Moreover, this results in a
nonlinear system of equations, which is challenging from a computational perspective. Simu-
lations of a fluid dynamics case study are carried out to benchmark the novel method. Results
are given to show that, compared to other methods, the proposed methodology allows for
larger deformations without affecting the convergence of the used numerical methods. The
mesh quality is studied across the surface of the optimized obstacle, and is further compared
to previous approaches which used descents in W 1,p. The parallel scalability is tested on a
distributed-memory system to illustrate the potential of the proposed techniques in a more
complex, industrial setting.
Keywords: PDE-constrained shape optimization, Lipschitz transformations, W 1,∞-descent,
ADMM, parallel computing
MSC codes: 35Q93, 49Q10, 65Y05, 65K10

1 Introduction

In this paper we investigate the efficient optimization of shapes where the optimization must
take geometrical constraints into consideration. We are particularly interested in so-called PDE-
constrained shape optimization, where the objective functional, which depends on a domain, also
depends on the solution of a PDE within that domain. Shape optimization is well studied and
we refer to [35, 7, 11] for an overview. Here, special interest is placed in the case where only a
subset of the boundary should be deformed, the so-called obstacle, and where it should be possible
to experience large deformations with minimal degradation of the mesh. The example considered
here is that of an object, which we will refer to as an obstacle, inside a flow tunnel. Inside this
flow tunnel the flow is described by a PDE, such as Stokes or Navier–Stokes, and the surface of
the obstacle is optimized for a given functional. We will consider only the case where the PDE
constraint is given by the non-linear stationary Navier–Stokes equations and the functional is the
energy dissipation. In this setting, the obstacle should maintain a fixed volume and barycenter,
otherwise the minimizer would be no obstacle. There is widespread interest in this topic, for
instance [28, 29] and the algorithmic approaches considered in [20, 32]. This problem is classically
studied and the solution is described in [27, 26] as being a prolate-spheroid or rugby ball, given that
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tips have to formed on the surface of the object as part of the optimization process. Additionally,
this problem was explored more recently in a shape optimization context in [19, 4, 30].

In shape calculus, one is often interested in using a descent method to obtain a series of shapes
which should approximate a minimizer of the objective, J . This requires the computation of the
first derivative of the objective with respect to the domain, which we will refer to as the shape
derivative, J ′. A widely used approach to finding a descent direction is based on Hilbert spaces.
In such an approach, one relates the shape derivative J ′ to the so-called shape gradient ∇J by
use of Riesz representation in the topology of the Hilbert space. This is the case, for instance,
in [33, 25]. A variety of this is the so-called extension equation approach, [22, 20, 12, 33], where
an elliptic PDE is solved to find a deformation field in H1. For further details, we refer to the
overview article [1] and the bibliography within.

Recent trends have involved the use of Lipschitz, orW 1,∞, functions and their approximation by
W 1,p functions. The case ofW 1,∞, to the best of our knowledge, was first introduced in a practical
setting in [5] where it was restricted to the optimization of star-shaped domains. Generic, non-
star shaped domains were considered in [6] using deformations in W 1,∞. The approximation with
functions in W 1,p is based on relaxing the space and choosing p large enough so that one is, in
some sense, close to being a minimizer in W 1,∞. A method which handled geometric constraints
by using an augmented Lagrangian method was introduced in [20]. In order to handle large values
of p, an iterative approach which incrementally increased p was used. The convergence, optimal
achievable shape, and mesh quality were compared to a Hilbert space method approach. In [21], an
algorithm for handling geometric constraints of the integral type is combined with the p-Laplace
relaxation to find descent directions that preserve volume and barycenter.

For many applications, the initial configuration must go through large deformations to reach an
optimal shape. While, mathematically and in the real world, there is no mesh, for computational
methods, it is often utilized. Large deformations can lead to a loss of mesh quality, i.e. degeneration
of discrete grid elements. Degeneration of elements has a negative impact on the convergence of
iterative solvers as well as the approximation properties of the discrete solution. It is therefore
important to take into account the mesh quality, if remeshing is to be prevented. Preservation
mechanisms are often taken into account in computational methods. In [22, 24, 12], a constraint
on the determinant of the deformation gradient was imposed, and enforced using an augmented
Lagrangian. The incorporation of such constraints may reduce the space of attainable shapes.

This article firstly wishes to build upon the work of [21], which considers computational scaling
to utilize the steepest descent methods in W 1,∞ discussed in [6]. Secondly, we investigate, to
a limited extent, the quality of the produced mesh. Finally we demonstrate the computational
scalability of the method, which is in no way guaranteed from the previous work which studied
W 1,p as the scheme is entirely different.

The article is structured as follows: In Section 2, we present the essential background for shape
optimization in W 1,∞ [6], as well as the benchmark physical model which will be the subject
of study. Section 3 introduces the algorithms used within the novel components in this work.
Simulation results for the W 1,∞ methodology appear in Section 4. We present in Section 5 a
comparison between the resulting meshes and objective function for W 1,∞ and W 1,p approaches.
Finally, the parallel scalability for the W 1,∞ method is measured in Section 6.

2 Shape optimization in W 1,∞ and the model problem

This and the following sections build heavily on the work presented in [21, 5, 6]. An in-depth
discussion of the theoretical aspects of shape optimizations is not within the scope of this work,
therefore interested readers are referred to well-known monographs such as [35, 7, 13]. It is however
necessary to recount a few aspects in order to build towards the methodology described in Section 3.

2.1 Shape Optimization

The task of (PDE constrained) shape optimization is to, given a collection of admissible domains
Sad and a functional on those domains J : Sad → R, find Ω∗ ∈ Sad which attains the minimum.
Typically Sad will be a collection of open and bounded domains domains in Rd for d ∈ {2, 3}. It
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may also be the case that one wishes to restrict the minimization to be over domains which satisfy
a (geometric) constraint, say g(Ω) = 0.

Finding minimizers in practice is a difficult task. Iterative methods are often used to find
stationary points. A standard strategy is to, given the current domain Ω, update the domain
Ωnew := Ω(u) := {x + u(x) : x ∈ Ω} for some suitably chosen u. For convenience, we denote the
perturbation of the identity by F := id + u, so that Ωnew = F (Ω). This means that our iterates
yield a natural parameterization over the initial domain.

The task of choosing u in practice is non-trivial and many such choices can be made, as discussed
in the introduction. In this work, we will consider the steepest descent in W 1,∞. Where possible,
parallels are drawn to the p-Laplace optimization scheme proposed in [20, 21]. A particular reason
for using W 1,∞ functions is the following fact: When Ω is convex and |Du| < 1 a.e. in a sub-
multiplicative norm, then the map F is bi-Lipchitz. Where Du is the Jacobian matrix of u. Two
examples of sub-multiplicative norms are the spectral and Frobenius norms. In the case that Ω is
not convex, this bi-Lipschitz property need not hold, however one has that for any convex subset
K of Ω, the restriction F |K is bi-Lipschitz onto its image. In [6] it is suggested to account for
potential non-convexity by the use of a fictitious domain. For the situation we consider, this is not
done. In the experiments the constructed maps remain bi-Lipschitz.

To formulate a direction of steepest descent, it is useful to have a derivative. We say that J is
shape differentiable at Ω if the map u 7→ J(Ω(u)) is suitably differentiable at u = 0 in W 1,∞. We

denote the directional derivative as J ′(Ω)u := limt→0
J(Ω(t u))− J(Ω)

t . For the problem we consider,
the derivative J ′ is well known, however one may wish to use the so-called Lagrange multiplier
method to calculate it, see [15] for example. In order to handle the geometric constraints, we will
make use of a non-linear space to find the steepest descent so that at each iteration the constraints
are fulfilled to a given tolerance rather than approximated, which is the case when using, for
example, an augmented Lagrange approach. This direction of descent is found as: given σ ∈ (0, 1)
find

min
u∈W 1,∞(Ω;Rd)

J ′(Ω)u

s.t. u|∂D = 0,

∥Du∥L∞(Ω) ≤ σ,
g(Ω(u)) = 0,

(1)

where D is a sufficiently smooth hold-all domain which will be introduced later. It is worth
mentioning that due the geometric constraints, J ′(Ω)u need not equal −∥J ′(Ω)∥ as in e.g. [6],
where

∥J ′(Ω)∥ := sup{J ′(Ω)ũ : ũ ∈W 1,∞(Ω;Rd), ũ|∂D = 0, ∥Dũ∥L∞(Ω) ≤ 1, g′(Ω)ũ = 0} (2)

is the (dual) norm of J ′(Ω) on the subspace which corresponds to constraining g. One may however
expect that J ′(Ω)u/σ converges to −∥J ′(Ω)∥ as σ → 0. Such an expectation comes from the notion
of the Hadamard derivative. The existence of such a u in the continuous has not yet been developed,
but will be considered in upcoming work. Let us note that obtaining a function satisfying (1) is not
necessarily trivial; the construction we specifically use in the experiments is given by an ADMM.
Full details are given in Section 3.3

Now that we have discussed the shape optimization framework we are interested in, let us
discuss the PDE constraint.

2.2 Physical model

We are interested in the case that the energy J is given by

J(Ω) =
ν

2

∫

Ω

Dv : Dv dx, (3)

3



EΓin ΓoutΓobs

Γwall

Γwall

Ω

Figure 1: A 2d view of the used domain.

where ν > 0 is given and, for a given prescribed inflow v∞, the velocity v weakly satisfies the
incompressible stationary Navier–Stokes equations

−ν∆v + (v · ∇)v +∇p = 0 in Ω

div v = 0 in Ω

v = 0 on Γobs ∪ Γwall

v = v∞ on Γin

νDv · n = pn on Γout.

(4)

The regions Γobs, Γwall, Γin, and Γout are to be described shortly. In this setting, ν may be referred
to as the kinematic viscosity, and v, the velocity. We will assume that the solution pair (v, p) is
unique, up to an additive constant for the pressure p.

We are interested in the case of an open and bounded domain D ⊂ Rd, where again d ∈ {2, 3},
which will take the physical interpretation of a flow tunnel. Inside this flow tunnel we consider
an obstacle, represented by an open and simply connected set E ⊂ D. The obstacle E should
satisfy ∂E ∩ ∂D = ∅, i.e. the obstacle should not touch the boundary of the flow tunnel. We are
then interested in optimizing the domain Ω := D \ Ē. For convenience we denote Γobs := ∂E, the
boundary of the obstacle. This has, in words, described the collection Sad. The full details of the
necessary regularity of the domains is beyond the scope of this work. A sketch of the flow tunnel
appears in Figure 1.

Let us note that the way in which we describe the domain Ω means that one has that ∂Ω =
∂D ∪ Γobs, where we are not to perturb the flow tunnel D, only the obstacle i.e. Γobs.

Let us now discuss the physical motivation for the constraints which we consider. It is expected
that reducing the volume of E would lead to a lower value for (3). For instance, E could vanish,
leading to a degenerate minimizer. Furthermore, if the obstacle were to move to an area which is less
impactful on the overall energy, e.g. closer to Γwall, where the velocity is vanishing, or downstream
within the flow tunnel, one may again expect a reduction in value. To prevent these cases, geometric
constraints are imposed on Ω. These constraints are on the (normalized) barycenter and volume,
and are given by

gi(Ω(u)) :=

∫

Ω

(Fi det(DF )− id) dx = 0 for i = 1, . . . , d, (5)

gd+1(Ω(u)) :=

∫

Ω

(det(DF )− 1) dx = 0, (6)

which represent the difference between the reference configuration, described via the method of
mappings, and the deformed domain. These expressions are used under the assumption that the
barycenter is set to the origin, and that the volume remains constant.
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3 Optimization Method

In this section, the algorithmic approach to finding a minimizing shape is described. The algorithm
we are using is relatively straightforward besides finding descent directions in W 1,∞. The majority
of the section is dedicated to the description of how we choose to find this steepest descent. We
explain the methodology used to approximate a solution to the optimization problem formulated
in (1), which relies on the computation of the shape derivative J ′(Ω)u to formulate a descent-
like method [1]. As mentioned before, the proposed methodology uses the ADMM, as in [6],
to approximate a deformation field which preserves the mesh topology between shape iterates.
Nevertheless, it is worth noting that the following optimization scheme is in no way limited to
the use of the ADMM, but could be adapted to other approaches to find u in W 1,∞. The task of
finding a potentially better-suited solver is not only interesting, but an ongoing topic of research.
In the following, the implemented routines are described, starting with the descent-like method
and followed by the ADMM in the context of an iterative shape optimization scheme.

Henceforth, we will deal only with discrete quantities, that is to say, our shape is now represented
by the moving mesh with triangulation Th. On that mesh we approximate the solution of stationary
Navier–Stokes equation by means of a finite element discretization with lowest order Taylor-Hood
elements, and the energy is computed using this finite element solution.

3.1 Shape optimization algorithm

The main routine is outlined in Algorithm 1, where a descent-like method is used to obtain an
optimized geometry from a given arbitrarily shaped initial guess, Ω0. Within the outer loop of
Algorithm 1, a series of shape iterates is generated by computing a deformation vector u and
applying it over the nodes of the current discrete domain Ωk to propose a domain Ω̂, as described
in Section 2. The resulting geometry is carried on to the next step if J(Ω̂) < J(Ωk), which
requires solving the state equation and computing the objective function. On the contrary, if the
aforementioned condition is not fulfilled then σ is reduced as indicated in line 13.

Algorithm 1 Shape Optimization-Descent method

Require: Initial shape Ω0,ϵ1,ϵ2, σ,N
1: k = 0
2: uk ← 0
3: yk ← Solve state (4)
4: Compute J(Ω)k

5: for k=0,1,. . . ,M do
6: Compute the shape derivative J ′(Ωk) using the adjoint method
7: Modification of J ′(Ωk) as in Section 3.2
8: uk ← ADMM(J ′(Ω), σ, ϵ2, ϵ3, N) as in Section 3.3
9: Temporary geometry Ω̂ = Ωk(uk)

10: y ← Solve state equation e on Ω̂
11: Compute objective function J(Ω̂)
12: if J(Ωk) ≤ J(Ω̂) then
13: σ ← σ/2
14: else
15: yk+1 ← y
16: Ωk+1 ← Ω̂
17: k = k + 1
18: end if
19: end for

The core of Algorithm 1 lies on finding the descent direction u, shown in line 8. This requires
the solutions to the state equation (4) and its adjoint, for the computation of the shape derivative
J ′(Ω). The solution y is used to compute the objective function on the temporary geometry, which
determines if a descent direction has been found.
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The deformation field constitutes a descent direction such that, for the solution of the equation
system (15), J ′(Ω)u < 0 on every step. If one were to have unlimited computational time, one
might choose to use the descent as the convergence criterion. Where we recall that J ′(Ω)u, when
rescaled, approximates the directional derivative. In such a situation, for some ϵ1 > 0, one might
choose to run the outer loop until

| − J ′(Ωk)uk| < σϵ1, (7)

which would, for σ small, roughly correspond to ∥J ′(Ωk)∥ < ϵ1.

3.2 Modification of the shape derivative in the interior of the mesh

It is well known by the Hadamard structure theorem that for sufficiently regular domains, the
shape derivative J ′(Ω) should be supported only at the boundary, e.g. [7, Section 3.4, Theorem
3.6], moreover that it should be a measure. However, it is not the case that the shape derivative
evaluated on the solution of the discrete state equation is supported at the boundary only. This
may be attributed to the finite element approximation errors - see [16] who discuss the error due to
different forms of the shape derivative. It is suggested in [34] that one can remove the values which
have contributions only in the interior. Such an approach has been noted to produce qualitatively
better results [31]. Computationally, this corresponds to only assembling (integrating) the shape
derivative over cells which have a vertex which intersects the boundary Γobs. This is performed in
line 7 of Algorithm 1.

Mathematically speaking, since we are expecting the shape derivative to be a measure, we may
represent this by the discrete functional which is a sum of Dirac deltas over the vertices of the
mesh. The aforementioned expert knowledge then says that the relevant nodes are those which
are at the boundary of the obstacle. This recovers the method of [34].

3.3 The ADMM for the solution of the steepest descent

The minimization problem for the direction of steepest descent in (1) is highly non-trivial, both in
terms of the constraint on the Jacobian, but also the geometric constraints. To handle the Jacobian
condition, inspired by [2], [6] utilized the ADMM to find directions of steepest descent for PDE-
constrained shape optimization problems. This approach is here extended to include geometric
constraints, building on the scheme presented in [21]. In there, a methodology to incorporate the
geometric constraints was proposed with the intention of avoiding an augmented Lagrangian.

The function which we will consider for the problem in (1) is given as

L(u, ψg, q, λ) := J ′(Ω)u+
d+1∑

i=1

ψg,igi(Ω(u)) +
τ

2
∥Du− q∥2L2 + τ(Du− q, λ)L2 , (8)

where the last two terms appeared in [6] as part of the ADMM augmented Lagrangian, cf. [3,
2]. Here, ψg,i are components of the finite dimensional vector ψg ∈ Rd+1 of Lagrange multipliers
associated to the geometric constraints (6) and (5). In addition to the expected deformation and
Lagrange multipliers, u and ψg, we also have the appearance of q and λ in L. Here q takes the role
of a slack variable, and λ of a Lagrange multiplier which pushes q towards Du.

The ADMM strategy we consider is provided in Algorithm 2. It operates by alternatingly
minimizing L over q ∈ Qh and u ∈ Vh such that the geometric constraints are fulfilled, then a
simple update is used for the multiplier λ. The iterative process is repeated until the convergence
criteria, line 11 are fulfilled. The condition ∥∆λ∥2L2 + ∥∆u∥2L2 < ϵ2 is similar to that used in [2,
6], and represents the residual of the updates. To ensure that ∥Du∥L∞ is as close as possible to
σ, we introduce an additional condition on the convergence. The loop stops when ∥Du∥L∞ is also
close to the given σ, up to a small value ϵ3 > 0, which may depend on σ itself.

Let us discuss the ad-hoc modification which has been made in lines 12-14 of Algorithm 2.
When ∥J ′(Ω)∥ is not equal to zero, we expect the deformation field u to satisfy ∥Du∥L∞ is close
to σ - in the setting without the geometric constraints, these quantities are equal. In order to
avoid degenerate solutions, the vector which stores the shape derivative J ′(Ω) has its components
doubled. This could be compared to the variable step-size ADMM presented in [3], where the value
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τ is determined as part of the algorithm. Here however, this has not been undertaken to speed up
the convergence, but to ensure an appropriate deformation field is found.

Algorithm 2 Descent Direction in W 1,∞

Require: J ′(Ω),σ,ϵ2, ϵ3, N
1: τ ← 1
2: u0 ← 0
3: for i = 0, 1, ..., N do
4: Find q ← argmin{L(u, q, λ) : q ∈ Qh, |q| ≤ σ} as in Section 3.3.1
5: Find u← argmin{L(u, q, λ) : u ∈ Vh, g(Ω(u)) = 0} as in Section 3.3.2
6: ∆λ ← τ(Du− q)
7: λ← λ+∆λ

8: ∆σ ← σ − max(|Du|L∞)
9: ∆u← u− u0

10: u0 ← u
11: if (∥∆λ∥2L2 + ∥∆u∥2L2 < ϵ2) and ∆σ > −ϵ3 then
12: if ∆σ > ϵ3 then
13: J ′(Ω)← 2 J ′(Ω)
14: else
15: break
16: end if
17: end if
18: end for

Within every iteration of Algorithm 2, Newton’s method is called to solve the nonlinear op-
timality system, as shown in line 5. This is described in Section 3.3.2. The strategy is based on
that which is described in [21, Section 3], where the Schur complement operator is computed by
using d + 1 numerical solves. The computational cost is reduced by using preconditioners with
grid-independent convergence, such as the geometric multigrid.

Let us expand further on the minimization with respect to q and the saddle point for (u, ψg)
corresponding to minimization of u under the geometric constraints which are utilized for the
ADMM algorithm.

3.3.1 Optimality for q

For the system involving q, it is useful to denote the discrete space

Qh := {q ∈ L2(Ω;Rd×d) : q|T ∈ P0(T ;Rd×d)}, (9)

where we note that this is not the only possible discrete space one could choose for q, however it
retains a level of simplicity. The optimality system for q is given by

∂

∂q
L(u, ψg, q, λ)(δq − q) ≥ 0 ∀ δq ∈ Qh : |δq| ≤ σ

|q| ≤σ
(10)

which is a convex minimization problem. For convenience, we note that

∂

∂q
L(u, ψg, q, λ)δq = τ

∫

Ω

(q −Du− λ) : δq dx. (11)

This may be decomposed into two steps, solving

∂

∂q
L(u, ψg, q, λ)(δq − q̃) = 0 ∀ δq ∈ Qh (12)

which, observing (11), is seen to correspond to a mass solve, and a pointwise projection

q̃ 7→ q̃

max
(
1, |q̃|σ

) =: q. (13)
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3.3.2 Optimality for (u, ψg)

For the optimality system involving (u, ψg), it is convenient to introduce

Vh := {u ∈ C0(Ω̄;Rd) : u|T ∈ P1(T ;Rd), T ∈ Th, u|∂D = 0} (14)

which is the natural space for deforming a mesh which has flat triangles. The optimality system
for the saddle point for (u, ψg) is

∂

∂u
L(u, ψg, q, λ)δu = 0 ∀ δu ∈ Vh

∂

∂ψg
L(u, ψg, q, λ)δψg

= 0 ∀ δψg
∈ Rd+1,

(15)

which corresponds to a (discrete) Poisson problem with non-linear constraints. Following the
strategy proposed in [21], the system is solved via its linearization in the context of Newton’s
method. A particular advantage in our setting is that the second derivative of L with respect to u
is more convenient to handle:

∂2

∂u2
L(u, ψg, q, λ)(δu, µu) = τ

∫

Ω

Dδu : Dµu +
d+1∑

i=1

⟨g′′i (F (Ω))δu, µu⟩. (16)

The advantage becomes evident by contrasting (16) to the first integral term of the same derivative
presented in [21], the second variation of the p-Laplace energy, which is a degenerate elliptic
operator. In the p-Laplace case, Luu was modified to prevent divide-by-zero operations. Here, this
is not necessary.

To solve the saddle point system which appears in (15), the increments due to the Newton
method may be expressed as

(
A B
0 −BTA−1B

)(
δu
δλ

)
=

(
ru

rλ −BTA−1ru

)
,

where, for readability purposes, we write

Aδu :=
∂2

∂u2
L(uk, ψg

k, qk, λk)(·, δu)

Bδψg
:=

∂

∂u dψg
L(uk, ψg

k, qk, λk)(·, δψg
)

BT δu :=
∂

∂ψg ∂u
L(uk, ψg

k, qk, λk)(δu, ·)

ru := − ∂

∂u
L(uk, ψg

k, qk, λk)

rψg := − ∂

∂ψg
L(uk, ψg

k, qk, λk).

(17)

Let us comment that the Schur complement operator, S := −BTA−1B, is related to the compu-
tation of the ψg Lagrange multipliers.

4 Results

We present simulation results for 2d and 3d fluid dynamics case studies, where the domain is as
described in Figure 1. The initial obstacle E is set as a square, or a box, in 2d and 3d, respec-
tively. This showcases the successful creation and removal of geometric singularities through the
optimization process. Results are shown to highlight the large deformations present, particularly
at the initial steps, in 2d. This can be compared to the results presented in similar studies, e.g. [22,
12, 21], to mention some. Mainly, emphasis is placed on the preservation of mesh quality even
under the aforementioned large deformations within a single optimization step.
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These results are generated using UG4 [36], a simulation framework tailored for distributed-
memory systems [37, 38]. Most importantly we make use of its geometric multigrid preconditioner
[10] for the iterative methods used within this work. Our models were implemented using UG4’s
plugin functionality, and the performance was measured with its builtin profiler. The parallel
communication is MPI-based [8]. The computational grids were created with GMSH [9], using
triangular (2d) and tetrahedral (3d) elements. ParMetis [18] was used for grid partitioning.

We recall that the state equation is described by the weak form of the incompressible Navier-
Stokes equations and is discretized via the mixed Taylor-Hood finite element, with the lowest order
elements P2 − P1. The adjoint equation is similarly discretized with this. The viscosity is set to
ν = 0.02 for all simulations. The dimensions of the flow tunnel, the holdall domain, for 2d and 3d
are

D2d = (−7, 7)× (−3, 3) and D3d = (−10, 10)× (−3, 3)× (−3, 3),
respectively. The obstacles are given by

E2d = (−0.5, 0.5)× (−0.5, 0.5) and E3d = (−0.5, 0.5)× (−0.5, 0.5)× (−0.5, 0.5)

and are not triangulated, since we are interested primarily on the optimization of its outer surface
Γobs. At Γin the inflow profile is described by

v∞(x) = e1

d∏

i=2

cos
(π
3
xi

)
∈ Rd

where e1 := (1, 0, . . .) ∈ Rd. Note that v∞ · e1 ∈ [0, 1] on Γin.
We recall that (15) is approximated with vector-valued P1 finite elements. Following the

methodology described in [21], the Lagrange multipliers of the geometric constraints, ψg, are not
associated to a finite element discretization. As described in Section 3, their solution is obtained
via a direct solver of an m×m system of equations, i.e. the Schur complement system S.

The code used for the simulation can be found in [23].

4.1 Simulations in 2d

In these a studies, a computational mesh with 282 624 triangular elements was used. The surface of
the obstacle consists of 512 edges. We utilize the spectral norm for (1), in this setting. In order to
reduce the dissipated energy, the deformations must remove the preexisting geometric singularities,
which in this case are the corners of Γobs. At the same time, the necessary tips must be created
parallel to the direction of the flow.

Figure 2: 2d simulation results for a 282 624 element grid. The streamlines are shown over the
initial (top) and optimized (bottom) Γobs configurations.

The optimization process of Algorithm 1 is illustrated by the results given in Figure 2, where
the removal and creation of grid singularities is evident. This optimized object surface corresponds
to 50 steps of the outer loop of the shape optimization method of Section 3. The resulting grid for
these simulations appears later in Section 5 and is shown in the upper row of Figure 9. It shows the
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Figure 3: The objective function J(Ω) divided by the initial value - J0 - over 50 steps is shown,
together with the convergence criterion (7).

regions of the surface Γobs where singularities were created and removed. In the figure, the front
tip is featured, together with the area corresponding to the upper left corner of the obstacle in the
reference configuration. As previously mentioned, tips must be generated parallel to the direction
of the flow and the corners must be smoothed out. These show that, although the obstacle’s surface
experiences very large deformations already on the initial deformation steps, the elements retain
their shape and, since theW 1,∞ deformation is assured to yield a bi-Lipschitz map, no overlapping
between elements occurs.

The plot in Figure 3 shows the energy dissipation divided by the value calculated on the initial
configuration, J0 := J(Ω0). Together with the objective function, a scaling of the absolute value
of the directional derivative is plotted. Let us recall the discussion after (7) which comments that
this rescaled directional derivative can potentially be related to the norm of the derivative. The
observed monotonic decrease of J(Ω) is related to the condition in Algorithm 1, where its checked
whether the new geometry Ω̂ obtained from the calculated descent direction reduces J(Ω). During
the first steps, a very large reduction of the objective function and the derivative can be observed.
The energy dissipation is reduced in the range of 25% from the initial value, while the directional
derivative is reduced several orders of magnitude, which is to be expected.

We provide in Figure 4 a few of the shape iterates. These demonstrate the large deformations
which the optimization scheme provides in the first steps. In the first column, shape 5 already
shows the removal of the preexisting corners of Γobs, as well as how the obstacle stretches across
the direction of the flow. This can be observed in detail in the next columns, where the elements
across the upper left corner and the front tip are shown. It is observed that large deformations
are possible without provoking a failure of the numerical solver due to highly degenerate elements.
Moreover we wish to emphasize, besides solver tolerances, there are no quantities to tune, especially
quantities which are designed to preserve mesh quality.

4.2 Simulations in 3d

For the 3d case a grid with 622 592 tetrahedral elements was used. The surface of the obstacle
consists of 12 288 triangular elements. The derivative J ′ is scaled by a factor of t = 0.1 for the
computation of descent direction. Moreover, for computational reasons, we utilize the Frobenius
norm for (1) in this setting. The outer loop in Algorithm 1 is again set to stop after 50 iterations.

The initial and final step of a 3d simulation are shown in Figure 5. The streamlines show
the regions on the initial grid where there is a disruption in the flow, leading to a higher energy
dissipation. As in the 2d case, the edges and corners of the box must be removed. This is shown
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Figure 4: Selected steps {0,5,10,15,20,40} of the optimization process show the large deformations
occurring during the initial steps. The upper left corner and front tip are featured together with
the profile of Γobs.
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Figure 5: 3d results for a grid with 622 592 tetrahedrons. The optimized obstacle is shown next
to the reference. The streamlines around the object are shown (top), together with the grids
(bottom).

in the lower row of Figure 5, where the optimized geometry can be seen. The triangular elements
are shown over the surface of the object, which allows one to see the large deformations necessary
for the removal of the geometric singularities. Additionally, the creation of tips leads to a more
optimal flow across Γobs, as can be seen on the streamlines of the optimized geometry.
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Figure 6: The objective function J(Ω), for a 3d simulation, divided by the initial value - J0 - over
50 shapes is shown, together with the convergence criterion (7).

The results in Figure 5 can be linked to the plots given in Figure 6. As the preexisting
singularities, i.e. the edges and vertices, are removed, the dissipated energy decreases pronouncedly.
By step 10, an 8% reduction has been achieved. This is similar to the sequence shown in Figure 4,
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where in the early steps the obstacle is elongated parallel to the flow direction. Together with
the streamlines for the optimized geometry in Figure 5, it can be seen how the more uniform flow
around the surface results in a lower energy dissipation.

5 Comparison of descent directions in W 1,∞ and W 1,p

In this section a comparison between the approach given in [21] for vector fields in W 1,p and
W 1,∞ is performed. The so-called p-Laplace relaxation scheme was proposed in [5] in a shape
optimization context and first applied in [20]. It is based on solving a relaxed problem in W 1,p

which is meant to approximate a steepest descent in W 1,∞. The work [14] discusses some of these
approximations. This relaxed formulation was inspired by [17] which considers scalar functions.
Even moderate values of p are found to be useful, however high values of p are necessary to yield
a good approximation to W 1,∞.

As in [21], let the Lagrangian

Lp(u, λ) := J ′(Ω)u+
1

p

∫

Ω

(Du : Du)p/2 dx+

d+1∑

i=1

ψg,igi(Ω(u)), (18)

be used to obtain a highly nonlinear optimality system, which is solved for u. For moderate values
of p, the solution is found by using increasing values of p, which compute the initial guess for the
next increment, up to a given pmax. The latter is a caveat on itself, given the high computational
requirements of successively solving a problem, which depends on an arbitrary increment to p.
Additionally, as described in [21, Sec.2.1], care must be taken to prevent numerical problems
associated to the second derivative of the Lagrangian, (18). The algorithm proposed in [21] is
tailored in such a way that the largest possible deformations are allowed per step, without loss of
solver convergence, which is a limiting factor for this p-Laplace algorithmic approach. An in-depth
discussion and high-performance computing results are presented in [21].

In order to compare both optimization schemes, the same energy dissipation problem (3) is
used. The viscosity continues to be given by ν = 0.02. A 2d computational mesh with four
refinement levels and 70 656 triangular elements is used for these simulations. As in [21], for the
p-Laplace algorithm the maximum value of p is set to pmax = 4.8. The ADMM-based optimization
is configured as described in Section 4. Similarly, the initial configuration features a box-shaped
obstacle, thus it is necessary to remove and create geometric singularities.
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Figure 7: The dissipated energy for each approach, divided by their corresponding initial value -
J0- for the first 10 shapes is given.

Given that a highly viscous model is used, a large reduction of the dissipated energy is not
necessarily related to the appearance of sharp geometric singularities over the surface of obstacle,
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Γobs, but to the deformation of the obstacle into the well-known prolate spheroid [27, 26]. As
shown in Figure 4, for the ADMM this occurs within the initial 10 steps of Algorithm 1.

The reduction of the objective function for the first 10 steps is illustrated in Figure 7. The values
of J are divided by the initial value J0, with the purpose of allowing for a correct visualization
of the differences between the two methods. The ADMM-based algorithm with u ∈ W 1,∞ allows
for a 15% objective function reduction within the first shape optimization step. On the contrary,
the p-Laplacian approach reaches this reduction level only after about four shape iterates. Around
step 6, the W 1,∞ approach allows for a 25% decrease on the initial dissipated energy. The relaxed
approach required more than 10 steps to achieve this level of reduction, as seen in the figure.

Figure 8: The initial and first five shape iterates for the W 1,∞ (left) and the W 1,p (right) shape
optimization schemes. The initial configuration Ω0 (blue) is deformed by applying the computed
deformation field until Ω5 (red) is obtained.

When observing the shapes rather than the energy, one might attribute the large differences
of the energies between the methods to the aggressive deformations which appear from the W 1,∞

method. A comparison of the first five shapes for the W 1,p and W 1,∞ are presented in Figure 8. It
may be seen that, while we expect that they will eventually provide the same shape, their paths to
becoming an optimized shape are rather different. The deformation fields with the W 1,p method
gently deform Γobs, slowly stretching it out. As the geometry is updated, the edges perpendicular
to the flow are elongated and acquire a rounded profile. UsingW 1,∞ for the descent it immediately
generate this oblong and elongated shape which is seen as the fifth shape for the p-Laplace approach.
The appearance of the tips can already be observed in step 2, together with a large elongation
parallel to the flow direction. By steps 4 and 5, the tips have been created and the geometric
singularities, i.e. the corners of the box, have mostly been removed.

Figure 9: Computational meshes, corresponding to the optimized shapes after 50 steps, for aW 1,∞

(top) and W 1,p (bottom) optimization schemes. The front tips (left) and upper left corners (right)
are shown.

However, these large deformations during the early stages of the optimization process may
have a negative impact on mesh quality. In the context of the finite element discretization, it is
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of interest that the optimized shape retains mesh quality, so that remeshing can be avoided. For
instance, the computational grid must allow for the efficient and accurate solution of the state
equation and the computation of the objective function. A particular concern is the overlapping
of the grid, which is prevented by the W 1,∞ method, and degeneracy of triangles (in 2d) which is
not guaranteed.

The grids of the optimized shape are compared in Figure 9. Two regions around Γobs are
studied, the tip frontal to the flow direction and the section of the grid where the upper left
corner of the box has been smoothed out. Given that the W 1,∞ vector fields largely deform these
regions in the initial steps, the effects can be seen in the triangles over the surface of the obstacle.
Compared to the p-Laplace descent directions, the elements have moved around the Γobs. The
surrounding elements are more evenly distributed in the relaxed case, compared to the uneven
pattern at the front tip of the W 1,∞. Nevertheless, the large deformations enabled by the ADMM
do not result in degenerate elements, particularly on the critical areas shown.

Table 1: Edge quality data for different refinement levels. The edge length ratio is used as a quality
metric, i.e. the ratio of the longest to the shortest edge over Γobs.

3-refs 4-refs 5-refs

Triangles in Ω 17 664 70 656 282 624
Edges in Γobs 128 256 512

Step ADMM PLAP ADMM PLAP ADMM PLAP
0 1.00 1.00 1.00 1.00 1.00 1.00
1 1.89 1.20 1.91 1.23 1.96 1.28
2 3.62 1.42 3.67 1.49 3.61 1.59
3 5.58 1.64 5.27 1.76 6.45 1.91
4 10.54 1.87 10.57 2.03 11.01 2.24
5 10.52 2.09 10.53 2.29 9.71 2.56
...
47 13.49 8.33 14.96 9.56 13.69 8.86
48 13.50 8.51 15.05 9.89 13.64 8.98
49 13.50 8.54 15.03 9.73 13.64 9.09
50 13.50 8.56 15.12 10.17 13.60 9.30

The differences in the resulting grids, across the whole optimization process, can be quantified
by the effect of the deformations on the elements that conform the obstacle surface Γobs. In the
2d computational grid, the surface of the obstacle is formed by the edges of the adjacent triangles.
This is the region of the domain where the geometric singularities are to be created and removed,
thus it is one of the regions that undergoes large deformations. In this sense, it is of interest to
study the effect that these deformations have on the quality of the surface Γobs.

In Table 1, tests were carried out for several levels of refinements, up to 282 624 elements in Ω
and 512 edges in Γobs. The simulations were configured to run for a total of 50 steps. The edge
length ratio, that is ratio between the longest and the shortest edge of Γobs, is shown for the first
5 and last 4 shape iterates. A comparison is made between the grids resulting from simulations
based on W 1,∞ and W 1,p descent directions.

The evenly distributed grid allows for the edge length ratio to be equal to a unit for the initial
grid Ω0. In line with the previously mentioned aggressive objective function reduction and with
the observed large deformations in the initial steps, the mesh quality data in Table 1 shows how
the ratio increases faster for the W 1,∞ than for the p-Laplace method. This trend is repeated
across all refinement levels. At the end of the simulation the quality metric for the edges is higher
for the W 1,∞ case. Nonetheless, the ADMM algorithm allows for larger deformations without
provoking negative effects on the iterative solvers used for the system of equations. While such
large deformations would most likely not be reachable by the p-Laplace approach or would have
a negative impact on the convergence of the solvers used to compute u, using the ADMM it is
possible to promote the preservation of mesh quality while allowing for a very aggressive shape
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optimization.

6 High-performance computing results

In this section we present a parallel scalability study for weak scaling in 2d simulations. The results
were computed using the supercomputer Lise at HLRN. This distributed-memory system consists
of a total of 1270 compute nodes, each with a dual-socket architecture of 48 cores per CPU at a
maximum frequency of 2.30GHz and 384GBs of RAM. The initial core count is set to 48 cores, all
assigned within one socket. This study was carried out for up to 3072 cores, distributed across 32
nodes at full usage.
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(a) Weak scalability: time measurements and speedup relative to 48 cores.

Procs Refs Number of DoFs AVG ADMM AVG Newton AVG Lin.Its. AVG Time
Elements Its. per Shape Its. per Shape per Shape per Shape[s]

48 3 17 664 18 016 31 166 5267 59
192 4 70 656 71 360 37 197 6825 76
768 5 282 624 284 032 25 139 5068 56
3072 6 1 130 496 1 133 312 25 141 5463 65

(b) Average iteration counts for the weak scaling results

Figure 10: Parallel scalability results for the first five optimization steps in a 2d simulation. Accu-
mulated time and gained speedup relative to 48 cores are shown for the linearization solved within
the minimization with respect to u. Average iteration counts are given for the ADMM routine and
Newton’s method used therein.

A 2d mesh with 17 664 triangular elements was used as starting point for these measurements.
The number of elements is increased by a factor of four with each level of refinement. Accumulated
wallclock times and speedup relative to 48 cores are provided for up to a million elements for the
first five optimization steps. Measurements of the time for the assembly, (Tass), of the linearized
system; the initialization of the preconditioner, (Tinit); and the application of the linear solver,
(Tsolve), for each step within Newton’s method are presented. Specifically, line 5 of Algorithm 2
is measured, because it is the most computationally relevant aspect of the routine. It is where
the majority of the computational effort is spent. Since it is not the focus of this article, the time
required for the solution of the state and adjoint equation systems are excluded from the displayed
measurements.

In addition to the mentioned wallclock times, average iteration counts of the ADMM routine
are analyzed, together with an estimate of the average time per shape of the whole outer loop
where shape iterates are created. For the ADMM, an iteration represents one full cycle of the
loop in lines 3-18 of Algorithm 2. From this loop, the average calls to Newton’s method are given,
including the linear iterations required to find u in line 5 of Algorithm 2. The time-per-shape
measurement is comprised of all the calls to the routine Algorithm 2 within an iteration of the
outer loop in Algorithm 1, excepting for the previously mentioned fluid solver quantities.

Further to the algorithmic details given in Section 3, we now describe the implemented linear
algebra solvers. The linearization within (15) is solved using a BiCGStab method preconditioned by
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a geometric multigrid. The preconditioner uses 3 pre- and post-smoothing Gauss-Seidel steps with
a V-cycle configuration. The linear solver is configured to reach a relative and absolute reduction
of 10−10 and 10−12, respectively. Moreover, the coarsest grid is solved in a single core via an LU
factorization. For the solution of (12), a BiCGStab method is used with a Jacobi preconditioner.
Given the structure of this problem, the system can be solved in a single iteration.

The weak scalability study is presented in Figure 10, where scalable results are seen for up to
3072 cores. The accumulated times show a slight performance drop for a 192 core distribution
in the assembly phase. Also note that there is a coinciding increase in the average calls to the
ADMM routine. Correspondingly, there is an increase in the average time required to generate
the shape iterates. For the latter core counts, the average computational cost remains roughly
equal, as observed in the iteration counts table. The number of degrees of freedom (DoFs) refers
to the size of the system used to compute u, which is equal to d times the number of vertices
of the mesh. This equation system increases in size by two orders of magnitude at six levels of
refinement. Nevertheless, the measurements in Figure 10 show that the computational load is
bound throughout all refinement levels.

7 Conclusion

In this paper, we presented a shape optimization methodology that uses the ADMM to obtain
descent directions in W 1,∞. The advantages of this approach were illustrated through 2d and 3d
results, which show how this methodology allows for large deformations in the early steps of the
optimization process. Our formulation introduced nonlinear geometric constraints, necessary to
avoid trivial solutions. The method to handle these constraints was taken from [21] and it allows
for fulfillment of the geometry constraints on each generated shape.

Weak parallel scalability results for up to 3072 processes in a distributed-memory system were
presented. The use of appropriate preconditioners, with mesh-independent convergence properties,
were utilized to achieve an scalable implementation. This is accentuated within the large number
of linear iterations required for one shape optimization step. In our studies it was seen that
the geometric multigrid method bounds the average computational workload, even under large
increments of the number of DoFs. Additionally, a comparison of the early optimization steps was
performed between the approach here proposed and the p-Laplace method as formulated in [21].
This showed that larger deformations are encouraged with aW 1,∞ optimization scheme. Per shape,
it is seen that the objective function decreases faster for the W 1,∞ method. A mesh quality study
shows that the W 1,∞ approach results in a not-meaningful decrease in quality of the line elements
which compose the surface of the obstacle, as compared to theW 1,p algorithm. Taking into account
that large deformations are needed to take the initial geometry to the optimized domain, a decrease
in mesh quality is expected. However, in industrial applications, by expert-knowledge, the initial
mesh is likely to be closer to the sought optimizer.

In this work a fixed step-size ADMM is used, unlike in [6] where the variable step-size version
is implemented. It is worth mentioning that the methodology here presented is not bound to the
ADMM, i.e. another method could be used. However, the area of shape optimization inW 1,∞, and
the algorithms required to compute adequate descent directions, is an ongoing field of research.

We suggest that our proposed technique could be considered for more complex geometries. The
topic of mesh quality, in terms of its impact on the state variable, is to be explored in further work
to widen our understanding of the advantages and disadvantages of different shape optimization
methodologies.
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Based on Steklov–Poincaré-Type Metrics”. In: SIAM Journal on Optimization 26.4 (2016),
pp. 2800–2819. doi: 10.1137/15M1029369.

[32] M. Siebenborn. “A Shape Optimization Algorithm for Interface Identification Allowing Topo-
logical Changes”. In: Journal of Optimization Theory and Applications 177(2) (2018), pp. 306–
328. doi: 10.1007/s10957-018-1279-4.

[33] M. Siebenborn and A. Vogel. “A shape optimization algorithm for cellular composites”. In:
PINT Comput.Visual Sci. (2021). doi: https://www.doi.org/10.51375/IJCVSE.2021.1.5.

[34] M. Siebenborn and K. Welker. “Algorithmic Aspects of Multigrid Methods for Optimization
in Shape Spaces”. In: SIAM Journal on Scientific Computing 39.6 (2017), B1156–B1177.

[35] J. Sokolowski and J.-P. Zolésio. Introduction to Shape Optimization. Shape Sensitivity Anal-
ysis. Springer, Berlin, Heidelberg, 1992. doi: 10.1007/978-3-642-58106-9.
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Chapter 4

Conclusion and Outlook
4.1 Concluding remarks

In this thesis the topic of PDE-constrained shape optimization was addressed. The
main concern being algorithmic implementations used to infer a descent direction
using the shape derivative J ′ within a descent-like method. In turn, these are used
as deformation fields to iteratively optimize the given domain, resulting in an op-
timized domain with respect to a shape functional. The different strategies had in
focus the preservation of mesh quality throughout the optimization process -for in-
stance by avoiding overlapping of elements-, the removal and creation of geometric
singularities, and the implementation and benchmarking of algorithms in an HPC
setting.

A fluid dynamics application was used to benchmark the proposed optimization
methods. In it, a domain represents a flow tunnel with an object located at its
center. The surface of the object is to be optimized, and the flow is described by
Navier–Stokes equations. As explained in Section 1.3, geometrical constraints are
needed to avoid trivial solutions. Consequently, the optimization problem must be
formulated in such a way that these constraints are fulfilled. However, implementing
this is numerically and computationally challenging. This was detailed in Chapter 2.

For instance, the nonlinear extension approach [55] in Section 2.1, formulated the
problem via an augmented Lagrangian function. It was discussed how the associated
Lagrange multipliers, and their convergence, can have an impact on the space of ad-
missible shapes. E.g., non-converged values of these multipliers can lead to shapes
which do not necessarily fulfill the imposed constraints. This can be detrimental to
the convergence of iterative methods, as well as posing difficulties for the algorithmic
implementation. On the other hand, the methodology proposed in [51], where the
geometric constraints are incorporated to the descent direction, which was featured
in Sections 2.2 and 2.3, leads to a nonlinear system of equations. In this way, only
shapes which fulfill the geometric constraints to machine precision can be obtained
on every step. The disadvantages being the computation of the Schur complement
operator, which requires several numerical solves of the aforementioned system of
nonlinear equations; as well as the use of incrementing values of p to approximate
W 1,∞. On the other hand, this also simplified the formulation of the Lagrangian
function, because no penalization was required to enforce the geometric constraints.
This also removed the need for a heuristically determined step-size for the update
of the multipliers, i.e. step sizes. In computational terms, this reduced the required
time needed to determine the parameters used for the augmented Lagrangian. In
the context of a distributed-memory system, this helped reduce the expense of com-
puting budget spent on test runs, which are used to determine a correct set of
parameters to configure a simulation.

The simulations in this thesis involved a very large number of DoFs. Both with
the purpose of correctly representing the geometric constraints, as to be a starting
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point for more complex, industrial applications. As previously mentioned, this made
it necessary to use distributed-memory systems with high computational power.
Therefore, the shape optimization algorithms were also tested in terms of their
parallel feasibility. In order to reduce the computational workload, the iterative
solvers were preconditioned with a geometric multigrid method, due to its mesh-
independent convergence properties. The generation of results was limited by the
availability of the computational resources at the used computing centers. Neverthe-
less, the methods here proposed were tested for their parallel computing capabilities
in several thousand cores. As explained in Chapter 2, the weak scalability and grid
independence of the algorithms were studied within this work.

It was shown that applying successive deformation fields to the initial discretized
domain, can have a negative impact on the mesh quality. This is particularly evi-
dent when the initial object has features, such as edges and corners, that have to be
smoothed out. This highlights the importance of developing strategies that decrease
the loss of mesh quality, i.e. preventing the elements from becoming highly degen-
erate. The latter can also result in the domain overlapping itself. The importance
of this, for instance, can be related to the convergence of iterative solvers being de-
pendent on the quality of the computational mesh. Throughout this work, several
strategies were investigated. For instance, constraining the deformation gradient by
imposing a constraint as part of the optimization. However, determining the correct
set of corresponding parameters for the augmented Lagrangian proved challenging,
because the set of admissible shapes was affected by the heuristic determination
of these parameters. This increased the difficulty of the formulation and solution
of the optimization problem. This is the reason why a simpler approach was pur-
sued in this work, i.e. finding descent directions in Banach spaces that preserve the
Lipschitz quality of the transformed domain, even under large deformations. This
can be understood as the formulations in W 1,p and W 1,∞ Banach spaces described
Sections 2.2 and 2.3, as opposed to the Hilbertian setting in Section 2.1. One of
the caveats, was the increase in computational work needed to compute the de-
scent direction. As an example, the solution of the optimaltiy system in [51] for
increments of p, together with the computation of the Schur complement operator,
resulted in a computationally expensive optimization methodology. Similarly, the
use of the ADMM in a W 1,∞ descent method, required a higher number of calls
to linear solvers compared to other approaches. As a concluding remark, it could
be said that descent directions in W 1,∞ or W 1,p promote the preservation of the
Lipschitz property, which can lead to a better mesh quality. However, based on the
methods proposed and studied in this thesis, this comes at a high computational
cost. Therefore, finding descent directions in different Banach spaces presents sev-
eral trade-offs which have to be taken into taken account and can be the subject of
further studies.

4.2 Outlook

The solution of the state equation was carried out using the default iterative methods
included with UG4. Given that a precise value of the state variable was needed for
the computation of the shape derivative, J ′, the use of a stabilization term was
avoided were possible. This required the use of a P2 − P1 stable finite element
discretization for the Navier-Stokes equation. However, the assembly of the discrete
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linearized system results in a saddle point problem, which usually requires specialized
preconditioning techniques. An efficient solution scheme for this problem is proposed
in [18] and further expanded in [35]. These can be a good starting point for further
parallel studies, where the computational effort and time required to solve the state
equation could be reduced.

Further work in a parallel setting could be performed by increasing Reynolds
number, which for these studies remained large. A higher Reynolds number would
require a more complex model for the description of the flow than the one used in this
work, for instance as implemented in [50]. Moreover, further studies could implement
a time-dependent model, although this would increase the memory requirements
and computational costs. Additionally, the flow could account for other phenomena
proper of high Reynolds numbers [17].

The shape optimization scheme used here was limited to descent-like methods,
based on the first shape derivative J ′(Ω). However, a second order optimization
scheme can be proposed, which would require the computation of the second shape
derivative J ′′(Ω). Within the context of this thesis, this was not implemented.
Therefore, it can be explored in future work. As previously mentioned, a high com-
putational effort is needed to solve the state equation and the adjoint, particularly
for very large number of DoFs. This effort increases for the computation of J ′′(Ω),
as described in [36]. Based on [68, 15], further studies could be carried out in this
area.

Mesh quality is a recurring topic in this work. This work relied on [72] for
a description of many mesh quality metrics used in finite elements. Generally, 2
dimensional simulations were used to visualize the grid and analyze the quality of
individual elements. With these metrics the different methodologies were compared
to each other [34]. However, an in-depth study of how mesh quality is preserved
across several techniques and the impact these have, is yet to be done. Further
studies would require a unified metric to determine the advantages and disadvantages
of the large deformations generated by a shape optimization algorithm. The latter is
directly related to determining which shape optimization method is better for a given
application. Taking into account that a shape functional is used as a performance
metric for the domain, and that this functional depends on the state variable, it is
evident that the solution of the state equation is a key aspect in PDE-constrained
shape optimization. As mentioned before, the accuracy of the approximate solution
of the state equation is directly related to the quality of the mesh. Therefore,
it makes sense to use an a-posteriori error estimator as a performance metric of
different shape optimization schemes. The general overview in [27] and the Navier-
Stokes error estimators given in [53] could be used as a starting point for a study of
this kind.
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Chapter 5

Declaration of personal contribution
The doctoral candidate specifies the following contributions to each chapter of the
dissertation:

• Chapter 1: the content of Chapter 1 is due to the candidate with no contribution
from other people. No other sources were used besides the referenced citations.

• Chapter 2: the written content of Chapter 2 is due to the candidate, no other
sources were used besides the referenced citations. In this chapter, the pub-
lications included in this cumulative dissertation are discussed in the style of
a synthesis essay. With this purpose, the figures and tables presented in this
chapter have been taken from the publications [55, 51, 34] and referenced ac-
cordingly. For these figures and tables, the data collection, generation and
visualization was carried out by the candidate.

• Chapter 3: a detailed description for each of the three publications included in
this cumulative dissertation is provided. They are subdivided as in the contents
table.

Paper I : the paper [55] is co-authored by Dr. Martin Siebenborn and the can-
didate. The writing of the preprint was mostly done by the candidate (approx-
imately 85% of the workload). The corrections required by journal reviewers
were mostly performed by the candidate (an estimated 90% of the workload),
Dr. Siebenborn was available for verification and consultation. The content of
section 1 was written mostly by the candidate, this included a literature review
as well as the abstract. The content and analysis of section 2 was written and
developed mostly by the candidate. The adjoint work consisted of the veri-
fication of formulas and concepts by the co-author in a supervisory capacity.
The algorithmic development in section 3 is jointly due to the two co-authors.
The candidate carried out most of the investigative work of this section(an es-
timated 90% of the workload) guided by Dr. Martin Siebenborn, who provided
insight and guidelines. The results in section 4 and its text were done by the
candidate, although no other co-authors contributed directly to the presented
text and figures, these were done in consultation with all the co-authors. The
parallel studies in section 5 were carried out by the candidate. And the conclu-
sion in section 6 was written with equal contributions by all co-authors. The
software was written by the candidate (approximately 85% of the workload),
and Dr. Martin Siebenborn reviewed and debugged when needed. The data
generation and collection was performed mostly by the candidate (90%), as well
as the preparation of the figures (90%). Dr. Martin Siebenborn contributed to
the figures via consultation and suggestions on design.

Paper II: the publication [51] was written in collaboration with Dr. Martin
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Siebenborn, Dr. Peter Marvin Müller, and Prof. Dr. Thomas Rung. The
underlying idea was investigated previously by the other co-authors (excluding
the candidate) in [50], and our work built partly on those studies. The writing
of the preprint was carried out by the candidate and Dr. Peter Marvin Müller.
The candidate wrote most of the text (approximately 75% of the text). Before
submission, the paper was reviewed by all co-authors. Dr. Martin Siebenborn
and Prof. Dr. Thomas Rung were available for consultation, as well as for pro-
viding suggestions related to the presentation of the results. The corrections
requested by the journal reviewers were done mostly by the candidate (approx-
imately 75% of the text), and Dr. Müller provided insights, suggestions, and
corrections when needed. The content of section 1 was mostly written by the
candidate. The text in section 2 was a joint work of the candidate with Dr.
Peter Marvin Müller, with equal contributions from both parts. The mathe-
matical formulations presented in section 2 were carried out by the candidate
and verified individually by all co-authors. The algorithmic developments of
section 3 were carried out by the candidate, Dr. Martin Siebenborn, and Dr.
Peter Marvin Müller in equal contributions. The content of section 3 was writ-
ten by the candidate, and verified by Dr. Martin Siebenborn and Dr. Peter
Marvin Müller, who provided corrections and guidelines where necessary. The
content in section 4 was written by the candidate. The results presented in
section 5 were generated by the candidate. Of this section, Figure 6 was partly
prepared by Dr. Martin Siebenborn using the boolean filter in Paraview. The
parallel studies in section 5 were carried out, written, and presented by the
candidate with no contributions from other co-authors. The text of section 5
was mostly written by the candidate. The software was written by the candi-
date (approximately 90% of the workload), the co-authors helped to find bugs
through testing. The data generation and collection was performed by the can-
didate (100%), the preparation of the figures was mostly done by the candidate
(85%).

Paper III: paper [34] was written together with Dr. Martin Siebenborn and
Dr. Philip Herbert. This work was based on previous work from one of the
co-authors [15] (Dr. Philip Herbert), and our work builds on it. Dr. Martin
Siebenborn carried out the initial testing of the methodology. The preprint
was mostly written by the candidate (an estimate of 75%). The co-authors
carried out corrections and suggested changes where needed. The content of
section 1 was mostly written by Dr. Philip Herbert, the candidate provided the
initial version. Section 2 was mostly written by the candidate, and corrected
by Dr. Herbert. The formulations presented in section 2 were verified by Dr.
Philip Herbert. The algorithmic developments of section 3 were equally con-
tributed by all authors. Section 3 was mostly written by the candidate, and
Dr. Philip Herbert contributed with corrections and verification of the formu-
lations presented therein. The results in section 4 and 5 were generated by the
candidate with no contributions from other authors. The text in both sections
was mostly written by the candidate, the other co-authors contributed through
corrections and suggestions. The parallel studies in section 6 were performed
by the candidate with no contribution from other authors, this includes the
presentation of results. The conclusion in section 7 was done with equal contri-
butions by the candidate and Dr. Philip Herbert. The software was written by
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the candidate (approximately 90% of the workload), the co-authors helped to
find bugs through testing. The data generation and collection was performed
by the candidate (100%). Although the preparation of the figures was mostly
done by the candidate (90%), Dr. Herbert contributed through suggestions,
corrections, and design observations where needed.

• Chapter 4: the concluding remarks were written solely by the candidate, no
other sources were used other than the mentioned citations.
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