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Summary 

Increasing urbanisation worldwide is a major conservation problem in the Anthropocene. 

Urban habitats represent evolutionarily novel environments that challenge wildlife at various 

levels. The multitude of urban stressors leads to biodiversity loss and species homogenisation. 

Yet, cities are home to a few apparently successful, so-called ‘synurban’, species that occur in 

higher densities than in their natural habitats, supported by factors such as supplemental food 

availability and buffered climatic conditions. However, consequences of living in urban habitats 

and particularly in core areas of increasingly larger cities might be detrimental in the long-term 

and are still poorly understood. Deeper insight into species responses and underlying 

mechanisms is essential though to mitigate the effects of present and future urbanisation by 

reaching informed and timely actions in urban planning and nature conservation.  

Against this background, my thesis combined a field study on the effects of urbanisation on 

a common synurban mammal, the Eurasian red squirrel (Sciurus vulgaris), in small centrally 

located parks with subsequent experiments under semi-natural conditions. It provides insight 

into species responses to urbanisation and associated changes in food supply with regard to 

population parameters, nutrient ecology, foraging behaviour and ecophysiology. Parks in city 

centres are surrounded by a dense urban matrix, but seem to be important habitats for wildlife, 

such as squirrels, given the comparably high population densities there. However, my findings 

document pronounced differences between parks of comparable size and location with regard 

to food abundance and composition as well as squirrel population density. This underlines the 

small-scale urban heterogeneity and demonstrates that environmental conditions and 

population parameters can differ even in nearby comparable urban patches.  

In general, I found a great variety of non-natural foods, such as bakery products, in the 

parks along with limitations in natural foods and a possibly maladaptive response in the 

foraging behaviour of urban squirrels living in a park with high conspecific density and high 

supplemental food abundance. My findings indicate concerning changes in the dietary 

composition of urban squirrels, as they frequently chose non-natural food items and high sugar 
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foods in possibly detrimental amounts compared to conspecifics from the forest in an 

experiment where they were free to choose. Similar indications have been found in other urban 

dwelling species. The results underline that the availability of inappropriate supplemental food 

sources increases the risk of malnutrition and health problems. 

Apart from dietary aspects, relevant for energy and nutrient intake, urban wildlife are 

affected by the urban heat island. The resulting warmer ambient temperatures reduce the need 

of endogenous heat production in endothermic mammals and influence an animals’ 

physiology. My study documented a less sensitive thermoregulatory response in urban 

squirrels compared to forest individuals, possibly driven by a lower diurnal temperature 

fluctuation than in rural habitats. The less steep slope of metabolism in relation to ambient 

temperature in urban individuals though indicated lower energetic costs at the colder range of 

temperatures, but comparably higher expenses in warmer conditions. In the light of climate 

change and rising temperatures globally, this is concerning given the fact that endothermic 

species are not only challenged by the need of heat production, but also by heat dissipation. 

This is even more true since climate change interacts with urbanisation and increase its 

negative effects, particularly in city centres. Mammals in urban core areas thus might get closer 

to their thermal limits, though they possibly might have better access to water or use 

adaptations that enhance cooling. However, knowledge about physiological responses and 

adaptations in urban environments in endothermic species remains scarce and little is known 

about thermal tolerance in squirrels.  

At present, we cannot fully answer the question whether or not urban green habitat patches 

act as source or sink habitats on the long-term and choosing an appropriate spatial scale for 

urban wildlife studies is fundamental for informed conclusions and conservation actions. 

Nonetheless, my results indicate maladaptive responses in synurban species. Abundant 

supplemental food sources likely act as potentially misleading environmental cue that 

increases the number of individuals at a given patch, but are not necessarily beneficial for 

fitness-relevant traits, such as nutrition or body condition. However, my study highlights the 

need of protecting and increasing urban vegetation. This would not only be beneficial for urban 



 SUMMARY 

 

3 
 

wildlife with regard to factors such as natural food supply, but can also provide crucial cooling 

to mitigate the impact of the global temperature rise for animals and humans. On top of this, 

the findings of this thesis emphasise that public guidance in supplemental feeding in 

combination with impeded access to refuse are crucial measures to increase the diet quality 

for urban dwelling species. With a view to future research, it is vital to consider that other 

factors, such as digestive constraints or the intake of widespread pollutants in cities likely 

interact with behaviour and physiology and this needs further investigation. To date, we are 

still in the beginning of understanding the full mechanisms and long-term consequences of 

living in urban habitats across the globe.
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Zusammenfassung 

Die zunehmende weltweite Urbanisierung ist ein großes Naturschutzproblem im 

Anthropozän. Städtische Lebensräume stellen evolutionär neuartige Umgebungen dar, die die 

Tierwelt auf verschiedenen Ebenen herausfordern. Die Vielzahl städtischer Stressfaktoren 

führt zum Verlust der Artenvielfalt und zu einer Homogenisierung der Arten. Dennoch 

beherbergen Städte einige scheinbar erfolgreiche, sogenannte „synurbane“ Arten, die in 

größerer Dichte als in ihren natürlichen Lebensräumen vorkommen, was durch Faktoren wie 

die Verfügbarkeit zusätzlicher Nahrung und abgefederte klimatische Bedingungen unterstützt 

wird. Allerdings könnten die Folgen des Lebens in städtischen Lebensräumen und 

insbesondere in Kerngebieten immer größerer Städte langfristig schädlich sein und sind noch 

immer kaum verstanden. Ein tieferer Einblick in die Reaktionen der Arten und zugrunde 

liegenden Mechanismen ist jedoch unerlässlich, um die Auswirkungen der gegenwärtigen und 

zukünftigen Urbanisierung durch fundierte und rechtzeitige Maßnahmen in der Stadtplanung 

und im Naturschutz abzumildern.  

Vor diesem Hintergrund kombinierte meine Dissertation eine Feldstudie zu den 

Auswirkungen der Urbanisierung auf ein weit verbreitetes synurbanes Säugetier, das 

Eurasische Eichhörnchen (Sciurus vulgaris), in kleinen, zentral gelegenen Parks mit 

anschließenden Experimenten unter naturnahen Bedingungen. Sie bietet Einblicke in die 

Reaktionen der Art auf Urbanisierung und damit verbundenen Veränderungen im 

Nahrungsangebot im Hinblick auf Populationsparameter, Nahrungsökologie, 

Futtersuchverhalten und Ökophysiologie. Parks im Stadtzentrum sind von einer dichten 

städtischen Matrix umgeben, scheinen aber angesichts der dort vergleichsweise hohen 

Populationsdichten wichtige Lebensräume für Wildtiere wie Eichhörnchen zu sein. Meine 

Ergebnisse dokumentieren jedoch deutliche Unterschiede zwischen Parks vergleichbarer 

Größe und Lage hinsichtlich der Nahrungshäufigkeit und -zusammensetzung sowie der 

Eichhörnchenpopulationsdichte. Dies unterstreicht die kleinräumige städtische Heterogenität 

und zeigt, dass Umweltbedingungen und Populationsparameter selbst in nahegelegenen 



ZUSAMMENFASSUNG  

 

6 
 

vergleichbaren Stadtgebieten unterschiedlich sein können. 

Ich fand in den Parks grundsätzlich eine große Vielfalt an nicht-natürlichen 

Nahrungsmitteln, wie z. B. Backwaren, zusammen mit Einschränkungen bei natürlicher 

Nahrung und einer möglicherweise maladaptiven Reaktion im Futtersuchverhalten von 

urbanen Eichhörnchen, die in einem Park mit hoher Artgenossendichte und hohem 

Vorkommen von Zufütterung leben. Meine Ergebnisse deuten auf besorgniserregende 

Veränderungen in der Nahrungszusammensetzung urbaner Eichhörnchen hin, da sie in einem 

Experiment, in dem sie die freie Wahl hatten, im Vergleich zu Artgenossen aus dem Wald 

häufig unnatürliche Nahrungsmittel und Lebensmittel mit hohem Zuckergehalt in 

möglicherweise schädlichen Mengen wählten. Ähnliche Hinweise wurden bei anderen Arten, 

die in Städten leben, gefunden. Die Ergebnisse unterstreichen, dass die Verfügbarkeit 

ungeeigneter Nahrungsergänzungsmittel das Risiko von Mangelernährung und 

Gesundheitsproblemen erhöht. 

Abgesehen von diesen Ernährungsaspekten, die für Energie- und Nährstoffaufnahme 

relevant sind, ist die Tierwelt auch von der städtischen Wärmeinsel betroffen. Die daraus 

resultierenden wärmeren Umgebungstemperaturen verringern den Bedarf an endogener 

Wärmeproduktion bei endothermen Säugetieren und beeinflussen die Physiologie der Tiere. 

Meine Studie dokumentierte eine weniger empfindliche thermoregulatorische Reaktion bei 

städtischen Eichhörnchen im Vergleich zu Waldhörnchen, was möglicherweise auf eine 

geringere tägliche Temperaturschwankung als in ländlichen Lebensräumen zurückzuführen 

ist. Der weniger steile Anstieg des Stoffwechsels im Verhältnis zur Umgebungstemperatur bei 

Eichhörnchen aus der Stadt deutet zwar auf niedrigere Energiekosten im kälteren 

Temperaturbereich, aber vergleichsweise höhere Kosten bei wärmeren Bedingungen hin. 

Angesichts des Klimawandels und weltweit steigenden Temperaturen ist dies 

besorgniserregend, da endotherme Arten nicht nur durch die Notwendigkeit der 

Wärmeerzeugung, sondern auch durch die Wärmeableitung herausgefordert werden. Dies gilt 

umso mehr, als der Klimawandel mit der Urbanisierung interagiert und negative Auswirkungen, 
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insbesondere in Innenstädten, verstärkt. Säugetiere in urbanen Kerngebieten könnten daher 

näher an ihre thermischen Grenzen stoßen, obwohl sie möglicherweise einen besseren 

Zugang zu Wasser haben oder Anpassungen nutzen, die die Kühlung verbessern. Das Wissen 

über physiologische Reaktionen und Anpassungen endothermer Arten in urbanen 

Lebensräumen ist jedoch nach wie vor dürftig und es ist wenig über die thermische Toleranz 

bei Eichhörnchen bekannt. 

Die Frage, ob urbane Grünflächen langfristig als Source- oder Sinkhabitate fungieren, lässt 

sich derzeit noch nicht abschließend beantworten. Die Wahl eines geeigneten räumlichen 

Maßstabs für Studien zur städtischen Tierwelt ist für fundierte Schlussfolgerungen und 

Schutzmaßnahmen von grundlegender Bedeutung. Meine Ergebnisse deuten jedoch auf 

maladaptive Reaktionen bei synurbanen Arten hin. Reichlich vorhandene Zufütterung fungiert 

wahrscheinlich als potenziell irreführender Umweltreiz, der die Individuenzahl an einem Ort 

erhöht, aber nicht unbedingt vorteilhaft für fitnessrelevante Merkmale wie Ernährung oder 

Kondition ist. Diese Studie unterstreicht jedoch die Notwendigkeit, die städtische Vegetation 

zu schützen und auszuweiten. Dies würde nicht nur der städtischen Tierwelt im Hinblick auf 

Faktoren wie natürliche Nahrungsversorgung zugutekommen, sondern kann auch für 

entscheidende Abkühlung sorgen, um die Auswirkungen des globalen Temperaturanstiegs für 

Tiere und Menschen abzumildern. Darüber hinaus unterstreichen diese Arbeit, dass öffentliche 

Leitlinien zur Zufütterung in Kombination mit einem erschwerten Zugang zu Müll 

entscheidende Maßnahmen zur Verbesserung der Ernährungsqualität städtischer Arten sind. 

Im Hinblick auf zukünftige Forschungen ist es jedoch wichtig zu berücksichtigen, dass andere 

Faktoren wie Verdauungseinschränkungen oder die Aufnahme weit verbreiteter Schadstoffe 

in Städten wahrscheinlich mit Verhalten und Physiologie interagieren und dies weiterer 

Untersuchungen bedarf. Bis heute stehen wir noch am Anfang des Verständnisses der 

vollständigen Mechanismen und langfristigen Folgen des Lebens in städtischen 

Lebensräumen auf der ganzen Welt.
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Urbanisation: a major conservation challenge in the Anthropocene 

Human activities and associated global change are growingly seen as driver of a new 

geological epoch – the Anthropocene (Steffen et al. 2011, Corlett 2020, Waters and Turner 

2022). The major challenges of this epoch are climate change and biodiversity loss (Corlett 

2020). Globally and rapidly increasing urbanisation is amongst the most profound man-made 

environmental modifications and impacts global wildlife in multiple ways (Grimm et al. 2008, 

Johnson and Munshi-South 2017, McDonald et al. 2019). It is projected that more than two 

third of the world’s population will live in urban areas by 2050 (United Nations 2018, Fig. 1.1). 

Cities reflect the strongest form of urbanisation and are predicted to further increase in number 

and size (Grimm et al. 2008, United Nations 2018, Fig. 1.2). The effects of urbanisation on 

species and wildlife communities are most severe in urban core areas (McKinney 2002).  

 

Figure 1.1 Urban (brown line) and rural populations (green line) of the world (1950 – 2050) with more 

than two thirds of the world’s population projected to live in urban settings by 2050 (graph modified from 

United Nations, Department of Economic and Social Affairs , Population Division (2018a), World 

Urbanization Prospects 2018) 
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Figure 1.2 Population and number of cities of the world, by size class of urban settlement (years 1990,  

2018 and 2030, graph modified from United Nations, Department of Economic and Social  Affairs,  

Population Division (2018a), World Urbanization Prospects 2018) 

There is no uniform definition of when a habitat is considered urban. Countries, institutions 

and researchers use different approaches, such as categorising sites by variables like human 

population density, amount of impervious surface or distance from a city centre (McIntyre et 

al. 2008, Liu et al. 2014, Short Gianotti et al. 2016). Furthermore, urban habitats are extremely 

heterogeneous (McIntyre et al. 2008, Birnie-Gauvin et al. 2016, Rivkin et al. 2019). Various 

factors, such as vegetation cover or socio-economic status can differ between or within a city. 

However, it was found that small mammal populations become effected by urbanisation when 

human population densities exceed 1,000 people per km2 (Łopucki et al. 2020).  

Environmental change & urban wildlife 

Urban settings are characterised by numerous abiotic and biotic environmental changes 

and a severe loss of natural habitats like forests (Birnie-Gauvin et al. 2016, Alberti et al. 2017, 

Johnson and Munshi-South 2017, McDonald et al. 2019). Land development and surface 
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sealing result in vast changes of landscape structure and vegetation cover (Grimm et al. 2008, 

Seress and Liker 2015). Remaining vegetation is often concentrated in managed public parks 

or private gardens and includes high numbers of non-native or ornamental plants (Rebele 

1994, McKinney 2006). Dense human populations and their activities cause altered chemical 

or nutrient cycles, pollution of air and soil as well as noise and artificial lights (Grimm et al. 

2008, Kight and Swaddle 2011, Johnson and Munshi-South 2017). Buildings and roads with 

dense traffic cut the landscape into fragmented habitat patches and can create movement 

barriers for wildlife (Johnson and Munshi-South 2017, DeCandia et al. 2019).  

Furthermore, buildings and impervious surfaces contribute to the urban heat island effect 

with higher air and soil temperatures compared to surrounding rural areas, as well as changes 

in precipitation and wind speed (Rizwan et al. 2008, Pickett et al. 2011, Han et al. 2014, Droste 

et al. 2018). Global climate change and associated extreme weather events are predicted to 

be most severe in cities (IPCC 2022). Consequently, wildlife species able to successfully 

colonise urban settings or persist on a long-term basis have to be resilient to various stressors 

(Fig. 1.3). Numerous animal species cannot cope, resulting in severe declines in biodiversity, 

species richness and abundance in cities (Faeth et al. 2011, McDonald et al. 2019, Łopucki et 

al. 2020). Moreover, species composition and consequently trophic structures and biotic 

interactions are changed (Faeth et al. 2005, Grimm et al. 2008, Berger-Tal and Saltz 2019). 

This is accompanied by a higher chance of successful establishment and spread of non-native 

or invasive species, thereby further exacerbating the problem (McKinney 2006).  
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Figure 1.3 Examples of human induced habitat modifications for urban wildlife: changes vary from 

buildings, loss of natural vegetation, elevated temperatures and pollution (noise, artificial lights, 

chemicals and toxins) to high contact rates with humans and abundant supplemental resources from 

human refuse or active feeding (Picture Credit: Pixabay, background map: OpenStreetMap 2023).  

Costs and benefits of an urban life 

Urban habitats challenge wildlife species at numerous levels, yet they also offer advantages 

that can attract animals to settle in a completely altered environment. Supplemental feeding 

and easily accessible refuse contribute to a higher and more stable year-round food availability 

and urban structures can create a higher abundance of shelter for certain species (Lowry et 

al. 2013). Furthermore, natural predators are usually reduced in cities, even when this 
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reduction can be outcompeted to a certain degree by domestic pets or roadkill (Shochat et al. 

2004). 

Beyond this, the urban heat island in combination with snow removal in winter or the 

availability of non-natural water sources in summer (e.g., bird baths, fountains) produce 

buffered climatic conditions and extended growing seasons (Shochat et al. 2006). 

Consequently, natural seasonal variation in ambient temperature (Ta) and resource availability 

is decreased, and thereby the occurrence of unfavourable periods (Shochat et al. 2006, Lowry 

et al. 2013). These aspects are particularly interesting from a physiological perspective since 

ambient temperature and resource availability strongly influence an animals’ energetic supply 

and demands (Speakman 1999, Birnie-Gauvin et al. 2017, Diamond and Martin 2021). Urban 

endothermic species might benefit from relaxed environmental constraints through a lower 

need of metabolic heat production compared to the conditions in their natural habitats (Ricklefs 

and Wikelski 2002).  

For those reasons, some species, such as black-birds (Turdus merula), hedgehogs 

(Erinaceus europaeus), foxes (Vulpes vulpes) or Eurasian red squirrels (Sciurus vulgaris) 

apparently thrive in urban systems (Luniak 2004). Strikingly, some populations even display 

higher densities than in their natural habitats (McCleery 2010, Hubert et al. 2011). There are 

different terms for species that occur in urban habitats that refer to traits, such as population 

density or degree of utilisation of supplemental foods sources: from synanthrop or synurban to 

urban adapters, exploiters, utilisers or dwellers (Francis and Chadwick 2012, Fischer et al. 

2015). Independently of which term is used, phenotypic plasticity seems to be a key trait for 

urban species (Lowry et al. 2013). These are usually generalists and opportunists concerning 

their food and / or habitat preferences (McCleery 2010). Moreover, they display higher degrees 

of boldness or reduced neophobia, characteristics that support them to successfully exploit 

urban resources (Uchida et al. 2019).  

Notwithstanding the beneficial factors for urban wildlife, several urban stressors, such as 

pollution, noise or malnutrition can have profound impacts on urban dwelling animals (Kight 
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and Swaddle 2011, Birnie-Gauvin et al. 2016) and lead to modifications of several biological 

traits (McCleery 2010). Studies document changes in morphology, behaviour or reproduction 

of urban populations when compared to rural conspecifics (de Satgé et al. 2019, Austin et al. 

2022, Caspi et al. 2022). Those changes can be beneficial, neutral or negative (Seress and 

Liker 2015, Lambert and Donihue 2020). A range of studies found negative effects on 

reproduction in urban bird species (Demeyrier et al. 2017, de Satgé et al. 2019, Grabarczyk et 

al. 2022). Particularly the presence of supplemental food sources might represent a misleading 

cue of habitat suitability which masks the diverse urban stressors (Birnie-Gauvin et al. 2016). 

Individuals could then be attracted by false cues to settle in a low-quality environment with 

adverse effects on their long-term survival, reproduction and fitness (Lepczyk et al. 2017, de 

Satgé et al. 2019). Animals in urban habitats forage on significant amounts of human 

provisioned foods (Contesse et al. 2004, Evans and Gawlik 2020, Dasgupta et al. 2021). 

However, anthropogenic impacts on food availability and foraging behaviour are usually 

negative and the quality of food available in urban habitats might not equal its quantity (Murray 

2015, Birnie-Gauvin et al. 2017, Schulte-Hostedde et al. 2018). Hence, we do still not know, 

whether urban habitats act as sink habitats or ‘ecological traps’ on a long-term basis (Lepczyk 

et al. 2017, Zuñiga-Palacios et al. 2021). 

Studying consequences of urbanisation 

Studies about the effects of urbanisation have generally increased within the last few 

decades (McDonnell and MacGregor-Fors 2016). Nonetheless, urban ecology still remains a 

comparably young field of biology. We still lack basic understanding about underlying 

mechanisms of living in an urban environment and about how and why urban individuals differ 

from their rural counterparts (Ouyang et al. 2018). Moreover, research on urban wildlife is still 

biased towards certain geographic locations, taxa and research fields (Faeth et al. 2011, Magle 

et al. 2012, Fusco et al. 2021). Behaviour and physiology are stated to be particularly important 

for urban conservation actions (Cooke et al. 2014, Ouyang et al. 2018). However, many studies 

concentrate on arthropods or birds and behavioural traits are far more often studied than 
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physiology (Zuñiga-Palacios et al. 2021, Tranquillo et al. 2023). With regard to nutrient ecology, 

studies on anthropogenic effects often focus on food quantity rather than quality (Birnie-Gauvin 

et al. 2017). We further lack physiological data of urban versus rural populations in endotherms 

since, to date, studies mostly concentrate on ectotherms (Birnie-Gauvin et al. 2016, Miles et 

al. 2020, Diamond and Martin 2021). Population ecology, nutrition and energy expenditure 

form a crucial baseline for the fitness of urban animals though. Therefore, a better 

understanding of these aspects is essential to predict about urban population dynamics as well 

decision making in urban planning and conservation. 

The Eurasian red squirrel: an iconic urban-dwelling species 

The Eurasian red squirrel (Sciurus vulgaris, henceforth named “squirrel”) naturally lives in 

forests, but seems to be a success story in urban habitats, considering the apparently high 

population densities occurring there (Jokimäki et al. 2017, Fingland et al. 2021). As an arboreal 

species (Lurz et al. 2005), squirrels can easily climb onto houses or other man-made structures 

and also use non-natural roosts (pers. obs.). The species is welcomed by humans and 

provided with supplemental foods in many countries (Krauze-Gryz and Gryz 2015). Squirrels 

favour energy-rich foods, i.e. seeds and nuts, but as generalists and opportunists, they feed 

on a variety of other things, from fruits, flowers and buds to mushrooms or insects (Lurz et al. 

2005, Krauze-Gryz and Gryz 2015). They therefore have the prerequisites to utilise the urban 

food supply. Studies document behavioural adaptations to life in the city in squirrels, such as 

reduced antipredator behaviour, altered activity patterns or home range shifts towards artificial 

feeding sites (Reher et al. 2016, Thomas et al. 2018, Uchida et al. 2020b, Beliniak et al. 2021). 

However, while the species is well-studied in its natural range in terms of various aspects of 

its biology and ecology, several aspects, such as physiology, are still unknown in urban 

populations, especially in city core areas and in direct comparison to rural populations 

(Jokimäki et al. 2017).  
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The species is currently listed as Least Concern by the IUCN (Gazzard 2023). However, 

the population in GB, Ireland and Italy is threated by the invasive grey squirrel (Sciurus 

carolinensis), which can outcompete red squirrels in different ways (Gurnell et al. 2004, Lurz 

et al. 2005). For example, grey squirrels are bigger and more competitive at feeding sites, 

especially in deciduous forests and urban habitats (Bryce et al. 2001, Lurz et al. 2005). They 

also transfer a parapoxvirus that is highly lethal to S. vulgaris (Tompkins et al. 2002). It is likely 

that grey squirrels will reach other European countries such as Germany within decades 

(Bertolino et al. 2008, Di Febbraro et al. 2016). In particular, cities and highly disturbed core 

areas are at higher risk of being colonised by non-native species that exploit the imbalance of 

ecosystems (McKinney 2002, Alberti et al. 2017). Of particular concern is the assumption that 

urban habitats even serve as source habitats for grey squirrels (Wauters et al. 2023). 

Therefore, greater knowledge of urban red squirrels is essential to equip conservation 

decision-makers with the appropriate knowledge to take timely action. Finally, Eurasian red 

squirrels are widespread and can act as a model system for other urban mammals. 

Study set-up and overview 

My project aimed to study the effects of urbanisation on a typical synurban mammal, i.e., a 

species that occurs in higher densities in cities than in natural habitats. Therefore, I focused 

on Eurasian red squirrels and investigated whether and how they respond to urbanisation in 

their population and nutrient ecology, foraging behaviour and physiology. I studied populations 

from highly contrasting sites: urban core areas, characterised by an intense surrounding urban 

matrix and large distances to the city boundaries versus a forest in a rural area outside the 

city. As study sites, I chose three small and heavily disturbed parks in the centre of Hamburg, 

the second largest city in Germany, and a forest area under nature protection close to the city 

(Fig. 1.4, Fig. 1.5).  
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Figure 1.4 Map of Germany (left) and a close-up of the city of Hamburg (right), showing the three small 

urban parks in city centre as well as the rural forest study site Hahnheide (source: Open StreetMap 2023 

/ Natural Earth 2023) 
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Figure 1.5 Impressions from the Wohlerspark urban study area (A & B) and Hahnheide forest area (C),  

where stripped spruce cones indicated the presence of squirrels (D). Photo credits: Bianca Wist 

 

Based on initial observations and the background described above, I divided my project into 

a field study and a subsequent experiment with wild-caught individuals. For my dissertation, I 

focussed in particular on the following topics (Fig. 1.6): 

1. Studying natural and supplemental food availability as well as population 

parameters of squirrels at the different study sites (field study) 

2. Examining food choice behaviour and diet composition of urban versus forest 

squirrels in outdoor enclosures (experiment under semi-natural conditions) 

3. Investigating energy expenditure of urban versus forest squirrels (experiment 

under semi-natural conditions) 
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Figure 1.6 Project overview with the three main research topics of this dissertation: A field study 

investigating food availability and population parameters of urban versus forest squirrels formed the 

basis for the project (upper panel). A subsequent experiment under semi-natural conditions with wild-

caught squirrels in outdoor enclosures included a food choice experiment (left lower panel) and 

investigation of energy expenditure in relation to ambient temperature (right lower panel). (Photo Credit:  

Bianca Wist; Picture Credit: Pixabay) 
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The topics of my dissertation are dealt with in the following three chapters: 

Chapter 2: Food availability and population parameters 

Published as: Wist B and Dausmann KH (2023) Food availability and population 

parameters for squirrels differ even in neighbouring urban parks. Urban Ecosystems. 

https://doi.org/10.1007/s11252-023-01468-z 

Key findings: 

• Urban parks offer higher tree diversity and various supplemental foods compared to a forest 

site, yet nearby urban parks differed in abundance and composition of natural and 

anthropogenically provided food sources 

• Squirrel density was considerably higher in urban parks compared to the forest, but the 

highest density was found in the smallest park, which had highest number of trees and the 

highest availability of supplemental foods 

• Local population parameters and environmental conditions may differ at the smallest scale, 

which should be considered when drawing conclusions from studies or making decisions 

about urban conservation actions 

Chapter 3: Foraging behaviour 

Published as: Wist B, Stolter C & Dausmann KH (2022) Sugar addicted in the city: Impact 

of urbanisation on food choice and diet composition of the Eurasian red squirrel (Sciurus 

vulgaris). Journal of Urban Ecology 8(1), juac012. https://doi.org/10.1093/jue/juac012 

Key findings:  

• Urban squirrels: 

o had a higher kJ intake and higher weight gain throughout the experiment 

o consumed more non-natural foods and more sugar 

o had poorer body condition before and after the experiment 

• Urban populations with high access to non-natural or sugary foods may therefore be at risk 

of health-related side effects from malnutrition 
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Chapter 4: Ecophysiology 

Published as: Wist B, Montero BK & Dausmann KH (2023) City comfort: weaker metabolic 

response to changes in ambient temperature in urban red squirrels. Scientific Reports 13, 

1393. https://doi.org/10.1038/s41598-023-28624-x 

Key findings:  

• Urban squirrels showed a less steep increase of metabolic rate relative to ambient 

temperature compared to woodland squirrels, possibly due to a smaller daily Ta variation 

• This indicates lower metabolic costs for urban individuals in the colder Ta range, but higher 

costs at warmer Ta 

• The results are concerning in light of global warming and the increase in heat waves, as 

higher metabolic rates at warmer Ta levels might reduce the ability of urban individuals to 

dissipate heat 

 

Further projects affiliated with this thesis 

As a side project to this dissertation, I aimed to determine the genetic diversity of the species 

at the study sites with regard to possible urban-related effects, such as genetic differentiation 

or inbreeding. In addition, I have joined in an international project investigating anti-predator 

behaviour in urban versus rural squirrels from four different countries to assess whether 

squirrels show a general response to urbanisation and increased contact to humans in their 

flight behaviour (Fig. 1.7). 
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Figure 1.7 Illustration of further projects related to this thesis. Using hair samples collected in the field,  

we analyse the genetic diversity in urban and rural squirrels (top panel). A joint project with researchers  

from different countries furthermore investigated anti-predator behaviour, i.e., alert distance, flight  

initiation and vertical escape distances (bottom panel) (Picture Credit: Pixabay) 

 

Affiliated project 1: Genetic diversity of urban versus rural squirrels 

Ongoing: Bianca Wist, David Lohmann, Mathilde Cordellier, Heike Feldhaar und Kathrin 

Dausmann 

Suitable refuges for urban wildlife require not only features that are beneficial for the survival 

and fitness of individuals, such as adequate food sources or an favourable thermal 

environment, but also those, that allow populations to maintain genetic diversity. This is a 

prerequisite for adaptation and resilience to environmental change (Rezouki et al. 2014, 
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Berger-Tal and Saltz 2019, Dakos et al. 2019). Urban stressors, such as fragmentation or 

pollutants yet can influence gene flow, genetic drift, mutation and selective pressures. As a 

result, they can alter allele frequencies within populations and drive genetic differentiation 

between them (Munshi-South et al. 2016, Johnson and Munshi-South 2017, Brans et al. 2018, 

Beans 2019). Accordingly, it is assumed that cities represent a strong evolutionary driver within 

a short period of time (Alberti et al. 2017, Johnson and Munshi-South 2017, Miles et al. 2020). 

For example, urbanisation does not only reduce the amount of suitable green habitat patches, 

but also increases the distance between them (Merckx et al. 2018). Suitable habitat patches 

that are sufficiently large are often scarce and poorly connected, and the meaning of “sufficient” 

can depend on several other factors, such as distance from city boundaries or the composition 

of the urban matrix (Lepczyk et al. 2017). Green patches can therefore resemble islands at 

long distance to source habitats outside the city, as surrounding streets and buildings can act 

as movement barriers (Adducci et al. 2020, Alberti et al. 2020, Hardouin et al. 2021). This is 

likely to affect small parks in the centre of large cities. In addition, the dense urban matrix 

combined with abundant supplemental food sources reduces dispersal rates, resulting in 

offspring settling in close proximity to their parents (McCleery 2010, Selonen et al. 2018). 

Accordingly, I recaptured a high percentage of juveniles as adults in following seasons in a 

small park (Chapter 2). 

To date, the results of studies on the genetic diversity of urban species are not yet clear 

and vary depending on the species and site (Miles et al. 2019, Fusco et al. 2021). Genetic 

structuring between different sites within a city has been found in great tits (Parus major), red 

foxes (Vulpes vulpes) or brown rats (Rattus norvegicus) (Björklund et al. 2009, Combs et al. 

2018). On the other hand, urban hedgehogs (Erinaceus europaeus) or common opossums 

(Didelphis marsupialis) showed no genetic differentiation within the same city (Barthel and 

Berger 2020, Henao-Sáenz et al. 2023). However, our knowledge about genetic diversity in 

urban vertebrate populations, especially in urban core areas and in relation to environmental 

factors such as supplementary feeding, is still limited (Ouyang et al. 2018, Fusco et al. 2021). 
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This additional part of my project therefore focused on the genetic diversity of urban squirrel 

populations in small green habitat patches in the city centre. Previous studies on urban squirrel 

genetics are rare and found no evidence for reduced genetic diversity or genetic isolation 

(Rezouki et al. 2014, Selonen et al. 2018, Tranquillo et al. 2023). However, they were 

conducted in a comparably small city using an urban-rural gradient in Turku, Finland (Selonen 

et al. 2018) or in one large park (184 ha) outside Paris, France (Rezouki et al. 2014). The 

conditions may differ for populations in centrally located parks of a large city since effects are 

likely scale-dependent (Łopucki et al. 2020, Uchida et al. 2020a). I therefore collected hair 

samples from captured individuals for DNA extraction, and we studied microsatellite loci 

already established for squirrels (Todd 2000, Hale et al. 2001, Rezouki et al. 2014) to 

investigate their genetic diversity and signs for genetic differentiation and inbreeding. The 

samples collected in the field were supplemented with samples from squirrel nursing stations 

located in or near other major German cities (Berlin, Munich and Stuttgart). In this way, we aim 

to compare our results from the greater Hamburg area in northern Germany with other 

urbanised regions in the east and south of the country. The final analysis of the results is still 

ongoing, but will contribute to answer the question of whether small urban fragments act as 

source or sink habitats and to assess the long-term persistence of synurban populations. 

 

Affiliated project 2: Joint study on anti-predator behaviour 

Behavioural changes, such as increased boldness, are among the best-studied species 

responses in urban habitats (Magle et al. 2012, Lowry et al. 2013, Caspi et al. 2022). However, 

there are few studies investigate whether animals show respond similarly across the globe and 

how their response depends on local factors such as human population density or availability 

of supplemental food sources. For these reasons, we took the opportunity to participate in an 

international study comparing anti-predator behaviour in squirrels from Japan, Finland, UK and 

Germany. Local alert distances, flight initiation distances and vertical escape distances were 

studied in each country using similar methodology at various sites with different degrees of 
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urbanisation. The fieldwork in Germany resulted in two master’s theses (see below in the 

section “Further publications affiliated with this thesis”) and the results of the entire study are 

currently being prepared for submission to Urban Planning: 

In preparation: Kenta Uchida, Kathryn Fingland, Bianca Wist, Rachel Cripps, Marja-Liisa 

Kaisanlahti-Jokimäki, Mark-André Kampmann, Maira-Lee Lindtner & Jukka Jokimäki (2023): 

Region-dependent tolerance to humans: a multi-country comparison of horizontal and vertical 

escape distance in arboreal squirrels 

Further publications affiliated with this thesis 

Bachelor‘s theses 

Björn Probst (2018) Verbreitungsmuster Eurasischer Eichhörnchen (Sciurus vulgaris) in einem 

stark anthropogen beeinflussten Habitat mit hoher Individuendichte 

David Lohmann (2020) Genetische Diversität von Sciurus vulgaris in Hamburger Stadtparks 

Sarah Wodtke (2021) Einfluss der Urbanität auf die Endoparasiten des Eurasischen 

Eichhörnchens (Sciurus vulgaris) 

 

Master‘s theses 

Janine Köthe (2018) Einfluss anthropogener Störungen auf die Aktivitätsmuster des 

Eurasischen Eichhörnchens (Sciurus vulgaris) 

Marc-André Kampmann (2019) Factors influencing flight and vigilance behaviour of the 

European red squirrel (Sciurus vulgaris) 

Maira-lee Lindtner (2019) Fluchtverhalten von europäischen Eichhörnchen (Sciurus vulgaris) 

unter dem Einfluss von Urbanisierung und Saisonalität 

Gina Völkers (2020) Futterplatzanalyse von Sciurus vulgaris anhand von Fraßspuren – 

Entwicklung eines Schulversuches 
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Abstract 

Some species occur in higher densities in cities than in natural habitats, despite the variety 

of urban stressors. Urban fragments can be extremely heterogeneous though, and species’ 

responses might vary between urban patches. However, only few studies examine mammalian 

populations from different fragments in the core of cities, where stressors are at their maximum. 

The Eurasian red squirrel (Sciurus vulgaris) is highly abundant in urban green spaces and 

readily makes use of supplemental food sources. We examined natural and supplemental food 

sources as well as squirrel populations in three small parks in an urban core. We found 

pronounced differences in natural and supplemental food availability between the parks. 

Squirrel population densities were generally higher at all three urban sites when compared to 

a geographically close located natural forest, but with variation between the parks. The squirrel 

density in the smallest park in the summer season was 42 times higher (index of minimum 

number alive: 8.8 individuals/ha) than in the forest, whereas it was only 20 or respectively 16 

times higher in the two other parks. Individuals from the park with the highest population 

density had access to the highest amount of supplemental food sources. However, side effects 

from non-natural food items, e.g., related to nutrition, also need to be taken into consideration 

and might counteract the advantages of supplemental food sources. This study shows that 

urban effects can vary even at the smallest scale between nearby urban habitat patches and 

this needs to be considered when drawing conclusions about the effects of urbanisation and 

deciding about conservation actions. 

Keywords 

Urbanisation, Sciurus vulgaris, population density, city centre, supplemental feeding  
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Introduction 

Urbanisation is a rapidly increasing threat for global biodiversity (Seto et al. 2012, McDonald 

et al. 2019, Simkin et al. 2022) and urban wildlife have to tolerate multiple stressors. Yet some 

species have successfully established dense populations in urban habitats (Luniak 2004, 

Hubert et al. 2011, Francis and Chadwick 2012). Urban stressors are most intense in the city 

centre (Grimm et al. 2008, Bateman and Fleming 2012). However, cities are composed of a 

heterogeneous mosaic of habitat patches and spatial scales can have considerable influence 

on wildlife responses (de Satgé et al. 2019, Alberti et al. 2020, Uchida et al. 2020). An important 

driver of high urban population densities is the higher availability of food (Shochat et al. 2006, 

McCleery 2010). Natural food sources in urban environments are strongly modified by humans 

due to vegetation cover being reduced and distributed in patches; primarily concentrated in 

green spaces such as parks and private gardens (Singh et al. 2018). However, urban habitats 

and vegetation can also offer benefits for wildlife. For example, planting of ornamental plants 

and neophyts as well as the heat island effect lead to higher plant diversity, earlier flowering 

and extended growing seasons. These processes can result in a more continuous natural food 

availability (Shochat et al. 2006, Pickett et al. 2011, Singh et al. 2018).  

Urban habitats also provide access to various intentional or unintentional food sources from 

humans, further contributing to a more stable food availability throughout the year (Shochat et 

al. 2006). Supplemental feeding can have diverse impacts on wildlife ecology and biology – 

both on the individual and the community level (Robb et al. 2008, Birnie-Gauvin et al. 2016), 

which are not necessarily advantageous. Abundant food sources in urban systems might not 

meet the nutritional needs of a species or even be detrimental (Birnie-Gauvin et al. 2017). 

Vertebrate species that receive supplementary food show higher population densities and 

body masses in general (Boutin 1990). The former is likely a result from increased birth rates, 

litter size and survival of juveniles and adults, affecting not only density, but also structure of 

populations (Dantzer et al. 2020). However, possible negative effects range from increased 

disease transmission and loss of natural behaviour to reductions in gut microbiome or 
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community restructuring (Robb et al. 2008, Galbraith et al. 2015, Gillman et al. 2022). Artificially 

increased food abundance thus might act as false cue of habitat quality, thereby creating an 

ecological trap for urban species (Reynolds et al. 2017, Zuñiga-Palacios et al. 2021).  

Given the local heterogeneity of urban green spaces and the high proportion of non-native 

and ornamental plants in parks and gardens, the availability of suitable natural energy rich and 

nutritionally adequate food can vary substantially between patches (Pickett et al. 2011, Seress 

and Liker 2015, Lepczyk et al. 2017). Moreover, utilization of urban green spaces by humans 

and their willingness to feed wildlife can also differ between urban patches, e.g., in relation to 

socio-economic status (Fuller et al. 2008, Hassell et al. 2021). An increasing number of studies 

investigate urban wildlife, however deeper insights into how green spaces within the same city 

core area differ in availability and composition of food sources in combination with mammalian 

population parameters, remain scarce. 

The Eurasian red squirrel (Sciurus vulgaris, henceforth named “squirrel”) is a synurban 

species; able to successfully inhibit urban habitats (Luniak 2004, Jokimäki et al. 2017, Fingland 

et al. 2021). This arboreal small mammal is naturally forest dependent and favours seeds and 

nuts in its diet. However, as a food generalist, the species can successfully exploit urban 

resources (Reher et al. 2016, Fingland et al. 2021, Wist et al. 2022). Food availability is known 

to influence population demography in squirrels, as well as several other traits, such as home 

range, body mass and reproduction (Wauters et al. 2007, Wauters et al. 2008, Di Pierro et al. 

2010, Reher et al. 2016, Selonen et al. 2016). Urban squirrels also show behavioural 

adaptations to the urban environment and the ever-abundant presence of humans, for 

example, by altering their anti-predator behaviour or activity patterns (Uchida et al. 2019, 

Beliniak et al. 2021, Fingland et al. 2021). Urban green spaces, such as parks, are expected 

to act as suitable refuges for squirrels (Rezouki et al. 2014, Kopij 2015, Beliniak et al. 2022). 

However, most of these results were obtained from comparably large parks or small cities. We 

therefore focused on three small urban parks located in the centre of a big city approaching 2 

million inhabitants. We deliberately chose parks that were similar in many environmental 
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conditions and investigated the availability of natural and anthropogenically provided food 

sources. Furthermore, we examined population parameters of Eurasian red squirrels within 

the parks to explore whether they were influenced by heterogeneity in food abundance. Our 

results help to elucidate the interplay of urbanisation and local urban food abundance with 

mammalian population parameters.  

Methods 

Study sites 

We conducted field work in northern Germany across three urban parks in the centre of 

Hamburg (Wohlerspark, Schanzenpark and Jacobipark; Fig. 1, Tab. 1). With around 1.9 million 

inhabitants (2,455 per km2) and an area of 755 km2, Hamburg is the second largest city in 

Germany. All parks were similar in several environmental factors. They were all small, with a 

size ranging from 4.6 to 7.4 ha, located in area with very high human population density and 

surrounded by a similar type of urban matrix (Tab. 1). In detail, we chose these parks using 

following criteria: 1) located in the city centre (6 – 9 km from the closest city limits), 2) area < 

10 ha, 3) surrounded by a dense urban matrix (at least 2 large streets closer than 250 m plus 

large residential or commercial buildings directly adjacent to the park), and 4) high degree of 

diverse human utilization, such as sports, dog walking and various other outdoor activities (own 

observations prior to this study). In order to better assess regional conditions and population 

parameters, we also captured squirrels in a mixed forest about 30 km away (Hahnheide) for 

comparison purposes (Fig 1, Tab. 1). The forest site was a nature conservation area with a 

high proportion of conifers and old trees (Bundesamt für Naturschutz 2019).  
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Fig. 1 Map of the city of Hamburg and the four study sites: Wohlerspark, Schanzenpark and Jacobipark  

located in the city centre and the forest site Hahnheide outside the city (source: Open StreetMap 2023 

and Natural Earth 2023) 

 

Tab. 1 Overview of study sites with total size (ha), human population density (including a ~ 1 km2 

catchment area around the siteA) and trap days (product of number of traps by number of capture days) 

per site and season 

Site Hahnheide Jacobipark Schanzenpark Wohlerspark 

classification rural forest urban park urban park urban park 

size (ha) 1,401 6.1 7.4 4.6 

human population 
density* 

212 13,125 11,557 15,784 

trap days     

winter 200   54 

spring 120   80 

summer 57 36 48 64 

autumn 51   32 

AStatistisches Bundesamt (DESTATIS) 
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Natural food abundance 

We compared tree species abundance and diversity per study site by using tree data 

obtained from Hamburg authorities (tree cadastres 2017, Freie und Hansestadt Hamburg), and 

the forestry office of Schleswig-Holstein (tree ledgers 2012, Schleswig-Holsteinische 

Landesforsten) respectively. Furthermore, we counted and classified tree seeds within two 1 

x 1 m random seed plots at each trap location (20 x 20 m around the trap) at each study site 

in the summer season. This included fallen seeds as well as seed remains, as a measure of 

relative seed abundance per site (Wauters and Lens 1995). We further used literature values 

from the species or genus (Suppl. Tab. 1) for assessment of available energy-content in kJ per 

seed. 

Supplemental food sources 

For assessment of supplemental food sources, we counted and weighed anthropogenically 

provided food items per trapping period at each study site. We used mean values from three 

different days per season whenever possible as human activities varied with weather 

conditions and weekday. To collect these samples, we walked all paths of each park, observing 

the shrubbery on both sides and inspected open lawns. In the forest, we walked the whole 

trapping grid, but never observed supplemental food. Food was weighed to the nearest 0.5 g 

with a spring balance (KERN & SOHN GmbH, Balingen-Frommern, Germany). If weighing was 

not feasible (e.g. due to non-accessible position), the approximate weight was estimated by 

either comparing the amount with already measured food items (e.g. ~half fat ball) or by 

reproducing the set in the lab and then weighing it (e.g. a thin layer of oats 20 x 30 cm in size). 

We included all kinds of anthropogenically provided foods, since initial observations and a food 

choice experiment revealed that urban squirrels forage on a broad range of supplemental foods 

(Wist et al. 2022). We assigned the different food items to broader categories (e.g. bakery 

products or vegetables) for further analysis. The bird food category included all kinds of bird 

foods, such as seed mix, fat balls or scattered oats. Peanuts as high energy food were included 
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into the “nuts or peanuts” category. We used literature values (Suppl. Tab. 2) to estimate the 

kJ content of the anthropogenic food items.  

Trapping and animal handling 

We trapped squirrels in all sites in summer 2017 or 2018 respectively. Furthermore, we 

trapped squirrels in the two most contrasting sites Wohlerspark and Hahnheide from winter 

2016/2017 to autumn 2017/2018. We baited cage traps (20 x 20 x 50 cm; Tomahawk Live 

Trap, Hazelhurst, Wisconsin, USA) at 07:30 hours with a mixture of seeds and nuts and kept 

them open for approximately 7 h. A longer trapping effort per day was not feasible due to the 

high degree of human activities in the later afternoons in the parks. Traps were placed around 

100 m apart (Magris and Gurnell 2002), at approximately 1.2 - 1.5 m height in the park 

shrubbery or on trees and checked regularly. Park traps were prebaited for 1 – 2 days prior to 

each trapping period. Forest traps were prebaited every few days for one month as forest 

individuals are not as accustomed to search for foreign food sources. 

We used a cloth cone for handling non-anesthetized trapped squirrels (Koprowski 2002). 

Individuals were weighed with a spring balance to the nearest 5 g (KERN & SOHN GmbH, 

Balingen-Frommern, Germany), sexed and aged (adult, subadult, juvenile) depending on their 

body mass, length and inspection of reproductive organs (Magris & Gurnell 2002, Wauters et 

al. 2007). The nose-anus length was determined to the nearest 0.5 cm by using a measuring 

tape (Wauters & Dhondt 1989a, b, Magris & Gurnell 2002, Wauters et. al 2007). Finally, the 

individuals were marked via subcutaneous implantation of a passive integrated transponder 

(ID-100B; Trovan Ltd., East Yorkshire, UK) between the shoulder blades. Animals were 

released immediately at the capture site after around 10 min of handling time.  

Population density 

We used the minimum number of individuals known to be alive (MNA) per site in one season 

as estimate of population density, a common method for squirrels (Magris and Gurnell 2002, 

Gurnell et al. 2004, Wauters et al. 2008). Furthermore, we calculated an index of relative 
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abundance (MNAind) per site and season for adequate visualization and comparison, as exact 

estimates were not possible (Jokimäki et al. 2017): 

𝑀𝑁𝐴𝑖𝑛𝑑

𝑀𝑁𝐴

𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑝𝑠 ∗ ℎ𝑎 ∗ 100
 

Statistics 

Statistics were performed in R 4.3.1 (R Core Team 2023) within the “RStudio” environment 

(RStudio Team 2023). Graphical data exploration was performed with the packages ‘lattice’ 

(Sarkar 2008) and ‘ggplot2’ (Wickham 2016). We used the ‘psych’ package (Revelle 2023) for 

descriptive statistics and Shapiro-Wilk test or Levene’s test respectively for testing normality 

and equality of variance.  

We compared tree species diversity at the four study sites by using the relative abundance 

in percent per tree species and site since absolute tree numbers were not available for the 

forest. We then calculated the Shannon-Wiener Index (H’) per site (package ‘vegan’, Oksanen 

et al. 2013). Despite data transformation, kJ content from fallen seeds in the counted seed 

plots (nJakobipark = 18, nSchanzenpark = 12, nWohlerspark = 19, nHahnheide = 38) did not follow a normal 

distribution or equality of variance (Shapiro-Wilk test and Levene’s test, both p < 0.05). We 

therefore used the non-parametric Kruskal Wallis test with kJ content of fallen seeds per seed 

plot as dependent variable to investigate differences in natural food availability between sites. 

We used Dunn’s test with adjusted p values for post-hoc comparisons (package ‘FSA’) (Ogle 

et al. 2023). Unless otherwise stated n represents the number of individuals / seed plots per 

site or group. A level of p < 0.05 represents statistical significance. 

 

Results 

Natural food sources 

Number of tree species was highest in the smallest park (Wohlerspark) with 45 species in 

total (10 per ha), followed by Schanzenpark with 36 species (5 per ha) and Jacobipark with 32 
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species (5 per ha). The forest study site had 11 tree species (0.3 per ha). Among the urban 

sites, Wohlerspark also had the highest number of trees per ha (136), which was around 1.5-

times the trees per ha of Schanzenpark and 3 times that of Jacobipark. All parks were higher 

in tree diversity when compared to the forest site (Tab. 2). However, among the parks, 

Wohlerspark had the lowest tree diversity (Shannon-Wiener-Index H’ 2.1 vs. 2.7 in the other 

two parks). See Tab. 2 and Suppl. Tab. 3 for tree details. With regard to tree composition, 

Wohlerspark was dominated by lime (Tilia spec.) which accounted for around 55 % of the park 

trees, whereas total proportion of conifers was only 8 %. Schanzenpark was dominated by 

maple (Acer spec., 27 %) and lime trees (Tilia spec., 26 %), with only 3 % conifers in the park. 

The most common trees in Jacobipark were European white birch (Betula pendula, 20 %), 

maple trees (Acer spec., 20 %) and oaks (18 %, mostly Quercus robur). Conifers accounted 

for 9 % of the Jacobipark trees. In the forest, European beech (Fagus sylvatica, 36 %) and 

spruce (34 %, mostly Picea abies) were the most abundant trees and the proportion of conifer 

trees was 59 %.  

Tab. 2 Overview of trees at the four different study sites 

Site Hahnheide Jacobipark Schanzenpark Wohlerspark 

no. of tree species 11 32 36 45 

no. of tree species/ha 0.3 5 5 10 

no. of trees nA 266 684 625 

no. of trees/ha nA 44 92 136 

total share of conifers 

in % 
59 9 3 8 

tree diversity            

(Shannon-Wiener-Index H’) 
1.5 2.7 2.7 2.1 

 

kJ availability from seeds in summer differed significantly between sites (Chi2 = 41.45, df = 

3, p < 0.001). Pairwise post-hoc Dunn’s test revealed higher kJ availability in the forest vs. 

Schanzenpark (p < 0.001), but also vs. Wohlerspark (p < 0.001). Furthermore, among the 
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urban sites, Jacobipark had higher kJ availability from fallen seeds than Schanzenpark (p < 

0.001) or Wohlerspark (p < 0.001, Fig. 2).  

Fig. 2 Available kJ from fallen seeds in the seed plots (nJakobipark = 18, nSchanzenpark = 12, nWohlerspark = 

19, nHahnheide = 38) at the four different study sites. Boxes show the upper and lower quartiles (box 

limits) with the median as centre line. Whiskers indicate the 5 and 95 % percentiles and outliers are 

represented as circles. Different letters indicate significant differences between sites (Dunn’s test:p ≤ 

0.001) 

 

Supplemental food sources 

Anthropogenically provided food sources at the four study sites in summer ranged from zero 

supplementation in the forest to 1,683 g found in total on an average day in the highest 

supplemented park, corresponding to an available energy of 6,537 kJ (Tab. 3). In total, we 

found 13 different food items in Wohlerspark, three in Jacobipark and two in Schanzenpark 

(Suppl. Tab. 4). The availability of supplemental food sources in Wohlerspark, which was 

sampled throughout the year, clearly peaked in winter and was lowest in spring (Suppl. Tab. 

5). Additionally, we observed squirrels from Wohlerspark repeatedly feeding on various foods, 

such as fat balls, watermelon, grapes, cupcakes, bread, rice crackers and BBQ leftovers during 
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field work. We also observed hand feeding with walnuts, hazelnuts and peanuts in Wohlerspark 

on most trapping days, but not in the other two parks. This manifested itself in active begging 

behavior from the squirrels at Wohlerspark. 

Tab. 3 Overview of available anthropogenic food items in g and kJ at the four different study sites in the 

summer season; given are mean values from three days of observation. Peanuts have been included 

in a common category with nuts 

  Hahnheide Jacobipark Schanzenpark Wohlerspark 

  g kJ g kJ g kJ g kJ 

bird food 0 0 80 1,616 0 0 0 0 

nuts or peanuts 0 0 0 0 0 0 20 492 

fruits (fresh/canned) 0 0 275 349 57 124 1,010 1,876 

vegetables 
(raw/boilded/grilled) 

0 0 17 16 0 0 317 522 

bakery products 0 0 0 0 36 407 283 3,134 

fast food 0 0 0 0 0 0 53 514 

total in g / kJ 0 0 372 1,981 93 531 1,683 6,537 

 

Squirrel population density and structure 

In total, we trapped 67 squirrels at the urban sites (314 trap days) and 10 squirrels (428 trap 

days) in the forest. Within the urban sites we trapped 46 individuals in Wohlerspark (230 trap 

days), 12 in Jacobipark (48 trap days) and 9 in Schanzenpark (36 trap days). Summer 

population densities calculated as MNAind were substantially higher in the three urban parks 

compared to the forest. The smallest park (Wohlerspark) housed a 42-fold higher squirrel 

density than the forest. The density in this park was also higher than in the other two parks: 

2.2 times higher compared to Jacobipark and 2.6 times higher compared to Schanzenpark. 

Compared to the forest, Jacobipark had a 20-fold higher and Schanzenpark a 16-fold higher 

population density. Specifically, we found a MNAind of 0.21 individuals per ha in summer in the 

forest, 4.10 in Jacobipark, 3.38 in Schanzenpark and 8.83 in Wohlerspark. We did not trap any 

individuals in the forest in winter.  
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We never trapped subadults or juveniles in the forest, whereas they were trapped in all 

seasons in Wohlerspark (Tab. 4). In summer, 23 % of the trapped individuals in Wohlerspark 

were juvenile or subadult and in Jacobipark they accounted for 25 % of the individuals. We 

trapped more juveniles or subadults than adults in Schanzenpark (56 %), but absolute trapping 

numbers were low. Since all juveniles were trapped in the same corner of the park, they might 

have been siblings from the same litter. Apart from one exemption (Wohlerspark in winter), we 

always trapped more males than females, however, the proportions were neither statistically 

different between the four sites in summer (p = 0.40) nor between the forest and Wohlerspark 

in spring (p = 1.00, odds ratio 0.51, CI 0.01-6.63) or autumn (p = 0.49, odds ratio 0.00, CI 0.00-

6.75). We did not recapture any of the forest individuals from one season to another during 

this study, but three males were recaptured in the years 2018/2019 during another study. In 

Wohlerspark, recapture rate was fairly high with 20 (54 %) out of the 37 adult individuals being 

recaptured at least once in another season, thereof five individuals in two seasons, nine in 

three seasons and six in all four trapping seasons. Ten (53 %) of the subadults were recaptured 

as adults in following seasons. See Tab. 4 as well as Fig. 3 – 5 for full details on population 

structures and trapping success.  
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Tab. 4 Overview of trap days (product of no. of traps by no. of capture days per site and season) and 

population structure per study site and season. MNA: minimum number alive per ha; MNA ind: Index of 

MNA, calculated to account for differences in trapping effort (i.e., varying no. of trapping days and used 

traps) 

Site Hahnheide Jacobipark Schanzenpark Wohlerspark 

Sex f m total f m total f m total f m total 

Winter 2016/2017       2016/2017 

trap days   200         54 

individuals 0 0 0       13 11 24 

adults 0 0 0       9 6 15 

subadults 0 0 0       4 4 8 

juveniles 0 0 0       0 1 1 

MNA   0.00         5.22 

MNAind   0.00         9.66 

Spring 2017       2017 

trap days   120         80 

individuals 1 4 5       7 14 21 

adults 1 4 5       7 13 20 

subadults 0 0 0       0 1 1 

juveniles 0 0 0       0 0 0 

MNA   0.20         4.57 

MNAind   0.17         5.71 

Summer 2017 2018 2017 2017 

trap days   57   48     36   64 

individuals 1 2 3 5 7 12 1 8 9 10 16 26 

adults 1 2 3 4 5 9 1 3 4 8 12 20 

subadults 0 0 0 0 2 2 0 3 3 1 4 5 

juveniles 0 0 0 1 0 1 0 2 2 1 0 1 

MNA   0.12   1.97     1.22   5.65 

MNAind   0.21   4.10     3.38   8.83 

Autumn 2018       2017 

trap days   51         32 

individuals 0 2 2       11 12 23 

adults 0 2 2       9 11 20 

subadults 0 0 0       1 0 1 

juveniles 0 0 0       1 1 2 

MNA   0.06         5.00 

MNAind   0.11         15.63 
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Fig. 3 Squirrel density in summer at the four different study sites; shown as index of MNA (MNA ind; 

note the logarithmic scale) 

 

Fig. 4 Squirrel density across the year for the forest site (Hahnheide, open bars) and the most 

contrasting urban site with regard to size and food supplementation (Wohlerspark, grey bars); shown as 

index of MNA (MNAind; note the logarithmic scale). We did not trap any individuals in winter in the forest  

despite extensive pre-baiting, 10 trapping days and squirrel feeding signs (stripped spruce cones) 



CHA PTER 2: FOOD AVAILABILITY & POPULATION PARAMETERS  

 

50 
 

Fig. 5 Proportions (%) of female (white) and male (grey) squirrels trapped in summer at all four study 

sites. Proportions were not statistically different (Fisher’s exact test: p = 0.40) 

 

Discussion 

Our study highlights the heterogeneity of urban habitat patches that appear to be very 

similar. Urban stressors peak at urban centres, yet the spatial heterogeneity of cities can lead 

to distinct environmental conditions for wildlife in different green urban fragments even when 

located closely together (Alberti et al. 2020). The urban parks we studied showed pronounced 

differences in natural and supplemental food availability, though being located in the core area 

of the same city and sharing similar environmental conditions in terms of human population 

density, park size or type of urban matrix. Tree species richness as well as number of trees in 

total and per ha were highest in the smallest park (Wohlerspark), which might indicate higher 

availability of seeds and shelter for wildlife, compared to the other two parks. However, this 

park had the lowest tree diversity among the parks and was strongly dominated by lime trees. 

Lime tree seeds are not favored by squirrels, but represent secondary food items (Bertolino et 

al. 2004, Krauze-Gryz and Gryz 2015). Conifers, an important primary food source for 
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squirrels, were scarce in all parks, accounting for only 3 to 9 % of the local trees, thus suitability 

as permanent habitat could be disputable. Availability of kJ from fallen tree seeds was lower 

in Wohlerspark and Schanzenpark compared to the third park and the forest, but this could 

change throughout the year with different types of food ripening at different times. Natural seed 

availability might have been influenced by gardening activities in the parks where measures 

such as cutting of trees and cleaning of paths etc. occurred regularly during the trapping 

seasons. These activities might also impact the possibilities to retrieve hoarded food items.  

Besides natural food sources, anthropogenically provided foods also differed between the 

parks in amount and variety in the summer season and were highest in Wohlerspark. 

Throughout the year, we observed multiple feeding spots in this park with intentionally provided 

wildlife food, for example, bird food or nuts. However, supplemental foods in the parks also 

included leftovers, e.g., processed foods or bakery products, both inappropriate food for 

squirrels with regard to nutrients. We received reports and witnessed first-hand that squirrels 

in the park foraged on various food items, e.g., fat balls, rice crackers, cookies and even 

cupcakes. Moreover, peanuts – a non-native food – were frequently offered to squirrels in 

Wohlerspark. The chemical composition of peanuts, such as a high phosphorus content, is 

likely to restrict the peanut intake or can lead to nutrient deficiencies in squirrels (Shuttleworth 

2000). We did not take any data on trash bin content in this study, but squirrels often inspected 

them and food intake from trash bins was documented for grey squirrels (Rimbach et al. 2022).  

Supplemental foods can make up a significant part of the diet of urban wildlife and induce 

substantial shifts in the feeding repertoire (Dasgupta et al. 2021, Wist et al. 2022). For example, 

they accounted for more than half of the stomach content of urban foxes (Contesse et al. 2004). 

Consequently, abundant supplemental food sources in urban habitats can increase body mass 

or condition (relation between body mass and a measure of body length) in species that are 

able to exploit them successfully, as it is the case for, e.g., gulls, chipmunks and many 

carnivores (Auman et al. 2008, Bateman and Fleming 2012, Lyons et al. 2017). On the other 

hand, effects on health and fitness of wildlife can be ambiguous and an urbanized diet can 
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have multiple side-effects (Andersson et al. 2015, Murray et al. 2015, Pollock et al. 2017). This 

depends on further parameters, such as supplemental food quality and the simultaneous 

availability and quality of natural foods sources (Shuttleworth 2000, Birnie-Gauvin et al. 2017). 

We have indication for lower body condition in the highly supplemented Wohlerspark (Suppl. 

Tab. 6, Suppl. Fig. 1), possibly due to unsuitable food types and a lower availability of natural 

food sources. Body mass in squirrels can be age dependent, but usually varies with season 

and food availability (Wauters and Dhondt 1989a). We do not have indications for seasonal 

food shortages, i.e., body mass changes over the year in the Wohlerspark population (Suppl. 

Tab. 7, Suppl. Fig. 2).  

A study from Poland also documented lower body condition in urban squirrels when 

compared to forest individuals (Beliniak et al. 2022), though another recent study found higher 

body masses in urban squirrels (Tranquillo et al. 2023). These ambiguous results comply with 

studies on other species. House sparrows (Passer domesticus), for example, ranged in studies 

from no difference in body condition between urban and rural individuals to a significantly 

decreased body condition in urban individuals (Bókony et al. 2010, Meillère et al. 2017, 

Jiménez-Peñuela et al. 2019). We suggest that the heterogeneity of study sites, particularly in 

local food abundance and quality might have contributed to these findings, as we were able to 

show that even closely located patches can already differ substantially. Differences in city size, 

park area, human population density as well as socio-economical or cultural factors can 

influence natural food availability and also the amount of refuse or active wildlife feeding (Fuller 

et al. 2008, Aronson et al. 2017, Hassell et al. 2021). Furthermore, urban wildlife might also 

face different levels of intra- and interspecific competition for food sources. We frequently 

observed other species in high numbers in the parks, such as crows, jays and doves, but also 

rats. Most of these species interacted with the squirrels, particularly at feeding spots, and 

pillaged squirrel hoards.  

Increased population density is a common feature in successful urban species, including 

squirrels, and strongly driven by the availability of supplemental food sources (Luniak 2004, 
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McCleery 2010, Shochat et al. 2010, Jokimäki et al. 2017). Interestingly, species densities 

even seem to be highest in green patches surrounded by the densest urban infrastructure. 

Probably because the matrix does not offer enough other habitat options, supplemental 

feeding occurs and numbers of natural predators are often reduced (Luniak 2004, Parker and 

Nilon 2012). Local squirrel densities and habitat use at rural sites usually vary with forest stand 

structure, tree diversity and the proportion of conifers, representing food availability (Wauters 

et al. 2008, Rima et al. 2010, Flaherty et al. 2012, Dylewski et al. 2021). As expected, squirrel 

densities in this study were higher at all urban sites when compared to the forest, but with 

distinct variation between the parks. The park with the highest amounts and diversity of 

supplemental foods also had highest squirrel population density, despite natural food sources 

might have been limited. 

So far, studies in rural habitats, forest fragments, or larger urban parks, have found that 

densities of S. vulgaris rarely exceed 2.0 individuals/ha (Wauters et al. 1994, Wauters et al. 

1997, Magris and Gurnell 2002, Bosch and Lurz 2011, Rezouki et al. 2014, Haigh et al. 2015, 

Beliniak et al. 2021, Beliniak et al. 2022). Yet densities of grey squirrels (Sciurus carolinensis) 

and other synurban species can be up to 100 times higher in urban than in rural habitats 

(Rodewald and Gehrt 2014, Merrick et al. 2016). Our results for the Wohlerspark population 

even exceeded this level in the autumn trapping session. However, this might have been 

influenced by hoarding behaviour of squirrels in autumn, where foraging distances increase 

and thus individuals are more likely to be caught (Bertolino et al. 2004), together with a lower 

number of autumn trapping days in the forest location were trapping success was always low 

or even absent in winter.  

Reliable conclusions about differences in population structures or breeding individuals were 

hampered by low absolute squirrel numbers in most sites. Generally, mammal species 

successful in urban habitats have larger litters (Santini et al. 2019). Yet, urbanisation can 

decrease the reproductive success within a species (de Satgé et al. 2019). However, the 

juvenile to adult ratio in all parks of our study was high and we assume that these individuals 
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were locally born. Year-round access to abundant supplemental foods might enable squirrels 

to allocate more resources into reproduction (Wauters et al. 1995, Wauters et al. 1997), 

although this possibly might contribute to the observed lower investment into body condition in 

highly supplemented parks. Higher proportions of juveniles within urban populations were also 

found in other studies on urban squirrels (Beliniak et al. 2022). The high recapture rate of 

juveniles and subadults as adults in following seasons in Wohlerspark might indicate high 

offspring survival and successful establishment in the parks, again possibly supported by the 

high amounts of supplemental foods and higher tree numbers, i.e. higher shelter availability. 

Furthermore, urban fragmentation can limit dispersal, and dispersal distances in urban 

squirrels are rather short (Selonen et al. 2018). 

Our results provide insight into differences between populations living in close proximity in 

the same urban core area, though we acknowledge the imbalance in trapping effort and 

success among the sites and seasons in our study. Living in an urban park with high access 

to supplemental food seems to support high population densities, however might not 

necessarily improve other fitness relevant traits. Urban grey squirrels, for example, showed 

poorer physiological condition represented by higher blood glucose levels and lower levels of, 

e.g., potassium resulting from an anthropogenic diet (Schmidt et al. 2019). We predict that 

there might be some kind of threshold where positive effects of urban conditions are 

outweighed by the costs of other urban factors, such as malnutrition of the urban diet or 

negative side-effects of high population densities.  

Future studies should address long-term fitness consequences, since reproductive success 

and survival are influenced by food availability and body mass (Wauters and Dhondt 1989b, 

Wauters et al. 1995) and there might be different effects on different life stages. Urban planning 

and conservation actions should focus on ensuring sufficient natural food availability for urban 

wildlife such as squirrels, e.g., by increasing tree diversity and particularly conifer numbers. It 

is also crucial to inform the human population about suitable supplemental feeding and 

possible threats to urban wildlife. Reducing littering and limiting the access to trash bins might 
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be beneficial to prevent animals from foraging on refuse and non-natural food items. These 

measures might also assist in preventing the spread of wildlife diseases at clumped feeding 

spots and onto humans. 

 

Conclusions 

Our study highlights the importance of studying the response of wildlife to urban conditions 

not only on a large, but also on a small scale. Differences in population parameters between 

different urban habitats within the same city can be substantial, even between parks with 

similar area and similar type of surrounding urban matrix. Small parks can hold surprisingly 

high population densities, likely dependent on vegetation structure and the availability of 

supplemental food sources and shelters. However, we cannot exclude that these habitats 

might also prove to be ecological traps on a long-term basis. Further studies are necessary 

investigating underlying mechanisms and consequences on long-term survival at those sites. 

It is also crucial to consider the urban heterogeneity when drawing conclusions from urban 

studies and deciding about appropriate conservation actions for a certain site. 
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Suppl. Tab. 1: kJ values per seed or average cone for tree seed species found in random seed plots at 
S

e
e
d
 s

p
e
c
ie

s
k
J
 p

e
r 

s
e
e
d
 

o
r 

c
o
n
e

re
fe

re
n
c
e

c
o
m

m
e
n
ts

A
b
ie

s
 a

lb
a

1
4
5
.8

0
S

a
lm

a
s
o
 e

t 
a
l.
 2

0
0
9

p
e
r 

c
o
n
e

A
c
e
r 

s
p
.

1
.7

0
G

ro
d
zi

n
s
k
i 
1
9
7
0
 a

n
d
 J

e
n
s
e
n
 e

t 
a
l.
 1

9
8
5

c
a
lc

u
la

te
d
 f
ro

m
 A

. 
p
s
e
u
d
o
p
la

ta
n
u
s

 u
n
d
 A

. 
p
la

n
ta

n
o
id

e
s

A
e
s
c
u
lu

s
 h

ip
p
o
c
a
s
ta

n
u
m

2
0
3
.3

0
P

a
p
a
g
e
o
rg

io
u
 (

1
9

7
8
)

A
ln

u
s
 g

lu
ti
n
o
s
a

0
.0

3
G

ro
d
zi

n
s
k
i 
1
9
7
0

B
e
tu

la
 p

u
b
e
s
c
e
n
s

0
.0

4
J
e
n
s
e
n
 e

t 
a
l.
 1

9
8
5

c
a
lc

u
la

te
d
 f
ro

m
 B

. 
v
e
rr

u
c
o
s
a
 a

n
d
 B

. 
p
e
n
d
u
la

B
e
tu

la
 s

p
.

0
.0

4
J
e
n
s
e
n
 e

t 
a
l.
 1

9
8
5

c
a
lc

u
la

te
d
 f
ro

m
 B

. 
v
e
rr

u
c
o
s
a
 a

n
d
 B

. 
p
e
n
d
u
la

C
a
rp

in
u
s
 b

e
tu

lu
s

0
.8

9
G

ro
d
zi

n
s
k
i 
1
9
7
0

C
o
ry

lu
s
 a

v
e
ll
a
n
a

1
8
.7

1
J
e
n
s
e
n
 e

t 
a
l.
 1

9
8
5

F
a
g
u
s
 s

y
lv

a
ti
c
a

3
.7

1
G

ro
d
zi

n
s
k
i 
1
9
7
0
, 
J
e
n
s
e
n
 e

t 
a
l.
 1

9
8
5
, 
W

a
u
te

rs
 &

 C
a
s
a
le

 1
9
9
6

m
e
a
n
 v

a
lu

e

F
ra

x
in

u
s
 e

x
c
e
ls

io
r

0
.8

8
J
e
n
s
e
n
 e

t 
a
l.
 1

9
8
5

Il
e
x
 s

p
.

1
1
.0

7
B

u
rn

s
 a

n
d
 V

ie
rs

 1
9
7
3
 (

Il
e
x
 v

o
m

it
o
ri

a
),

 W
ill

ia
m

s
 e

t 
a
l.
 2

0
0
0

c
a
lc

u
la

te
d
 v

a
lu

e
 u

s
in

g
 a

v
e
ra

g
e
 s

e
e
d
 w

e
ig

h
t

L
o
n
ic

e
ra

 x
y
lo

s
te

u
m

1
.3

0
B

u
rn

s
 a

n
d
 V

ie
rs

 1
9
7
3
; 
W

ill
ia

m
s
 2

0
0
1

c
a
lc

u
la

te
d
 v

a
lu

e
 u

s
in

g
 a

v
e
ra

g
e
 s

e
e
d
 w

e
ig

h
t

P
ic

e
a
 a

b
ie

s
5
1
.1

0
S

a
lm

a
s
o
 e

t 
a
l.
 2

0
0
9

p
e
r 

c
o
n
e

P
in

u
s
 s

y
lv

e
s
tr

is
7
.5

0
S

a
lm

a
s
o
 e

t 
a
l.
 2

0
0
9

p
e
r 

c
o
n
e

Q
u
e
rc

u
s
 s

p
.

2
5
.7

0
W

a
u
te

rs
 &

 C
a
s
a
le

 1
9
9
6

v
a
lu

e
 t
a
k
e
n
 f
ro

m
 Q

u
e
rc

u
s
 r

o
b
u
r

R
o
b
in

ia
 p

s
e
u
d
o
a
c
a
c
ia

0
.2

6
G

ro
d
zi

n
s
k
i 
1
9
7
0

R
o
s
a
 c

a
n
in

a
2
7
.4

0
U

S
D

A
 2

0
1
9
, 
E

s
it
k
e
n
 2

0
0
4

c
a
lc

u
la

te
d
 v

a
lu

e
 u

s
in

g
 a

v
e
ra

g
e
 f
ru

it
 w

e
ig

h
t

T
a
x
u
s
 b

a
c
c
a
ta

2
.2

8
B

u
rn

s
 a

n
d
 V

ie
rs

 1
9
7
3
; 
W

ill
ia

m
s
 2

0
0
1

c
a
lc

u
la

te
d
 v

a
lu

e

T
il
ia

 s
p
.

0
.6

3
G

ro
d
zi

n
s
k
i 
1
9
7
0

v
a
lu

e
 t
a
k
e
n
 f
ro

m
 T

il
ia

 c
o
rd

a
ta

T
s
u
g
a
 c

a
n
a
d
e
n
s
is

1
.3

7
B

o
o
n
e
 &

 M
o
rt

e
lli

ti
 2

0
1
9
, 
T

u
rg

e
o
n
 e

t 
a
l.
 2

0
1
1

c
a
lc

u
la

te
d
 v

a
lu

e
 u

s
in

g
 i
n
fo

rm
a
ti
o
n
 f
ro

m
 b

o
th

 r
e
fe

re
n
c
e
s

T
s
u
g
a
 s

p
.

1
.3

7
B

o
o
n
e
 &

 M
o
rt

e
lli

ti
 2

0
1
9
, 
T

u
rg

e
o
n
 e

t 
a
l.
 2

0
1
1

c
a
lc

u
la

te
d
 v

a
lu

e
 u

s
in

g
 i
n
fo

rm
a
ti
o
n
 f
ro

m
 b

o
th

 r
e
fe

re
n
c
e
s



 CHAPTER 2: FOOD AVAILABILITY & POPULATION PARAMETERS 

 

65 
 

the four different study sites  

Suppl. Tab. 2: kJ values (per g) and references for anthropogenically provided food items found in the 

three urban parks.  

 

  

food item kJ/g reference least assessed comments

apple 2.6 USDA (2022) 21.06.2023

bell pepper 1.3 USDA (2022) 21.06.2023

bird seed mix 20.2 vivara.de 29.06.2023 mean value, calculated from six comercial products

bread (white) 11.2 USDA (2019) 21.06.2023

bread and bread rolls (mix) 11.3 USDA (2019) 21.06.2023

bread roll (white) 11.4 USDA (2019) 21.06.2023

brussel sprouts 1.8 USDA (2019) 21.06.2023

cabbage 1.0 USDA (2019) 21.06.2023

carrot 1.7 USDA (2022) 21.06.2023

carrot, boiled 1.5 USDA (2019) 21.06.2023

chestnuts 20.3 Papageorgiou (1978) 21.06.2023

cucumber 0.7 USDA (2022) 21.06.2023

currants 2.6 USDA (2019) 21.06.2023

egg, boiled with shell 6.5 USDA (2019) 21.06.2023

fat and seed mix for birds 22.9 vivara.de 29.06.2023 mean value, calculated from six comercial products

Ferrero Küsschen 26.1 manufacturers specifications 21.06.2023

foxtail millet 13.1 Tirajoh et al. (2014) 21.06.2023

fruit salad 2.4 USDA (2022) 21.06.2023

corn 2.8 USDA (2019) 21.06.2023

grapes 3.3 USDA (2022) 21.06.2023

hazelnut 26.8 USDA (2023) 21.06.2023

home made seed dumpling 19.3 vivara.de 29.06.2023 mean value, calculated from six comercial products

honeydew melon 1.5 USDA (2019) 21.06.2023

kohlrabi 1.1 USDA (2019) 21.06.2023

leek 2.6 USDA (2019) 21.06.2023

lettuce 0.7 USDA (2022) 21.06.2023

mix for rodents 17.4 Alvarenga et al. (2017)

nectarine 1.8 USDA (2019) 21.06.2023

oats 15.9 USDA (2022) 21.06.2023

orange 2.2 USDA (2019) 21.06.2023

pancake 9.5 USDA (2019) 21.06.2023

peanuts 24.6 USDA (2023) 21.06.2023

pear peel 2.6 USDA (2019) 21.06.2023

pineapple, canned 2.3 USDA (2022) 21.06.2023

pistachios 23.9 USDA (2019) 21.06.2023

"PommDöner" (kebab with 

fries and salad)
9.6 fddb.de 21.06.2023

rice, boiled 4.1 USDA (2019) 21.06.2023

salad 1.8 USDA (2022) 21.06.2023

fat ball for birds 21.0 vivara.de 29.06.2023 mean value, calculated from six comercial products

seed ring for birds 22.9 vivara.de 29.06.2023 mean value, calculated from six comercial products

sunflower seeds 25.5 USDA (2023) 21.06.2023

tomato 0.8 USDA (2019) 21.06.2023

tomato, grilled 2.1 USDA (2022) 21.06.2023

vegetable mix 1.2 USDA (2022) 21.06.2023 mean value from carrot, cabbage and lettuce (USDA)

walnuts 30.6 USDA (2022) 21.06.2023

watermelon 1.3 USDA (2019) 21.06.2023
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Suppl. Tab. 3: Tree species abundance in % at the four different study sites  

tree species Hahnheide Jakobipark Schanzenpark Wohlerspark 

Abies spec. 0.8   0.2 

Acer campestre  1.5 9.6 0.5 

Acer ginnala  1.1   

Acer negundo    0.2 

Acer palmatum    0.5 

Acer platanoides  4.1 6.0  

Acer pseudoplatanus  12.8 11.0 5.4 

Acer saccharinum   0.4  

Acer spec.  0.4   

Aesculus hippocastanum  2.6 1.5 2.9 

Ailanthus altissima  0.4 0.7  

Alnus glutinosa  0.4   

Alnus rubra 2.2    

Betula pendula 0.1 19.9 1.9 9.9 

Betula pubescens    0.3 

Carpinus betulus  1.5 11.4 4.8 

Catalpa bignonioides    0.2 

Catalpa erubescens  0.4   

Cedrus atlantica    0.2 

Cercis spec.  0.4   

Chamaecyparis lawsoniana    0.2 

Cornus spec.   0.1  

Crataegus laevigata   0.3 0.2 

Crataegus monogyna   0.4  

Fagus sylvatica 36.0 7.5 3.2 1.6 

Fraxinus excelsior  7.1 0.9 0.2 

Ginkgo biloba  0.4 0.3 0.2 

Ilex aquifolium    0.2 

Ilex spec.    1.9 

Juniperus communis  0.4   

Larix decidua 0.2    

Larix kaempferi 6.7    

Liriodendron tulipifera    0.2 

Magnolia spec.    0.3 

Malus spec.  0.4 0.4 0.6 

Parrotia persica  0.4   

Picea abies 33.7   0.2 

Picea omorika    1.3 

Picea pungens    0.5 

Picea sitchensis 0.6    

Pinus nigra  0.4 2.8  

Pinus strobus  0.4  0.5 

Pinus sylvestris 14.0    

Platanus acerifolia   2.0  

Platanus spec.  1.5   

Populus canadensis   0.6  
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Populus canescens   0.3  

Populus lasiocarpa    0.6 

Prunus 'Accolade'  1.9   

Prunus cerasifera   0.3 0.5 

Prunus mahaleb   0.3  

Prunus padus   0.1 0.2 

Prunus serotina   0.1  

Prunus serrulata    1.3 

Prunus spec.   0.1 0.6 

Pseudotsuga menziesii 4.4   0.5 

Quercus palustris   0.1  

Quercus petraea   0.1  

Quercus robur  17.7 7.7 3.8 

Quercus rubra  0.4 1.8 0.5 

Quercus spec. 1.3    

Robinia pseudoacacia   9.1 0.3 

Robinia spec.  1.9   

Salix caprea    0.2 

Salix fragilis    0.2 

Sorbus aria    0.2 

Sorbus intermedia   0.6  

Taxodium distichum    0.5 

Taxus baccata  1.5  2.1 

Taxus spec.  5.6   

Thuja spec.    0.3 

Tilia cordata   4.5  

Tilia euchlora   0.1  

Tilia platyphyllos   3.4 0.2 

Tilia spec.  0.4 0.1  

Tilia tomentosa   0.3  

Tilia vulgaris  3.0 17.1 54.4 

Tsuga canadensis    0.6 

Tsuga heterophylla    0.2 

Ulmus glabra  1.1   

Ulmus hollandica  1.9  0.2 

unknown species  0.8   
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Suppl. Tab. 4 Overview of food item details from the four different study sites in the summer season 

  Hahnheide Schanzenpark Jacobipark Wohlerspark 

bird food     x   

bird seed mix     x   

nuts or peanuts     x x 

peanuts       x 

          

fruits   x x x 

apples   x   x 

honeydew melon       x 

watermelon     x x 

fruit salad       x 

grapes       x 

currants       x 

vegetables     x x 

tomato       x 

tomato (grilled)     x   

carrot       x 

cabbage       x 

bakery products   x   x 

bread   x   x 

pancake       x 

fast food       x 

kebab & fries       x 

 

Suppl. Tab. 5 Overview of human-provided food items across the year in g and kJ in Wohlerspark.  

Spring and summer values show means from three days of observation, winter from eight days (autumn: 

one day). Peanuts have been placed into a common category with nuts  

  winter spring summer autumn 

  g kJ g kJ g kJ g kJ 

bird food 960 18,366 50 874 0 0 689 13,918 

nuts or peanuts 303 7,841 0 0 20 492 0 0 

fruits (fresh/canned) 4,633 11,817 230 367 1,010 1,876 15 50 

vegetables (raw/boilded/grilled) 523 614 182 287 317 522 620 674 

bakery products 78 877 63 708 283 3,134 40 447 

fast food 0 0 50 203 53 514 0 0 

egg (boiled) 0 0 23 151 0 0 0 0 

sweets (chocolate) 0 0 6 157 0 0 0 0 

total in g / kJ 6,497 39,515 604 2,747 1,683 6,537 1,364 15,089 
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Body condition index (BCI) 

Methods 

We assessed body condition by using a simple ratio index of the measured body mass in 

grams and the nose-anus length in centimeters (Labocha et al. 2014, Wist et al. 2022). 

We tested for difference in BCI between sexes using a t-test prior to further analysis which 

was non-significant (t = 1.00, df = 34, p = 0.32). We performed a one-way analysis of variance 

(ANOVA) with one BCI per individual to examine differences in BCI group means between 

sites in the summer season. This was followed by post-hoc multiple comparisons (Tukey HSD). 

ANOVA assumptions were tested by using residual analysis. Furthermore, we used two-tailed 

Fisher’s exact test to test for differences in sex proportions between sites. Repeated measures 

ANOVA (rmANOVA) including Mauchly’s test of sphericity (Mauchly 1940) was used to 

investigate differences in BCI means across all four seasons in Wohlerspark. We used 

Greenhouse-Geisser correction since sphericity was violated (Girden 1992).  

Results 

A one-way ANOVA showed significant differences in BCI between sites (F3,32= 8.34, p < 

0.001; Suppl. Tab. 3, Suppl. Fig. 1). However, post-hoc multiple comparisons revealed that 

only Wohlerspark differed significantly from the other three sites (p < 0.05). 

Tab. 6 Descriptive statistics for summer BCI at the four different study sites. Given are the numbers of 

adult individuals per site (n), BCI group means, standard deviation as well  as minimum and maximum 

values per site. 

Site n Mean SD min max 

Hahnheide 3 17.52 1.03 16.43 18.47 

Schanzenpark 4 17.70 2.02 16.38 20.65 

Jacobipark 9 16.94 1.36 14.52 19.52 

Wohlerspark 20 15.37 0.83 13.92 17.40 
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Fig. 1 Body condition index of adult individuals at the four different study sites in summer. N = 36 (thereof 

nHahnheide: 3, nJacobipark: 9, nSchanzenpark: 4 and nWohlerspark: 20 individuals); different letters indicate statistical 

difference (Tukey HSD, p < 0.05) 

 

Suppl. Tab. 7: Descriptive statistics for BCI of adult individuals at Hahnheide and Wohlerspark in all 

trapping seasons. Given are the number of individuals per site and season (n), BCI group means, 

standard deviation, standard error as well as minimum and maximum values per group 

 

Site season n mean SD min max 

Hahnheide spring 5 16.61 0.65 15.78 17.50 

Hahnheide summer 3 17.52 1.03 16.43 18.47 

Hahnheide autumn 2 16.98 1.46 15.95 18.02 

Wohlerspark spring 20 15.67 0.93 13.89 17.97 

Wohlerspark summer 20 15.37 0.83 13.92 17.40 

Wohlerspark autumn 21 15.36 0.70 13.89 16.51 

Wohlerspark winter 17 15.49 0.78 14.13 16.58 

 

BCI of individuals from Wohlerspark did not significantly differ between seasons 

(rmANOVA: F1.21, 6.05 = 3.51, p = 0.11, Suppl. Tab. 5, Suppl. Fig. 2). Low sample sizes in 

combination with no trapped individuals in winter did not allow for robust analysis of seasonal 
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differences in BCI in the forest (Suppl. Tab. 5, Suppl. Fig. 2). However, lower body condition 

in squirrels from Wohlerspark in comparison with forest squirrels seemed to occur year-round 

and confirmed during trapping in spring for another study on male individuals in the years 

2018/2019 (Wist et al. 2022).  

 

Suppl. Fig. 2 Body condition index (BCI, of adult individuals at Hahnheide (a, nspring = 5, nsummer = 3, 

nautumn = 2) and Wohlerspark (b, nspring = 20, nsummer = 20, nautumn = 21, nwinter = 17) for all four seasons 

 

Supplementary references 

Girden ER (1992). ANOVA: Repeated measures. Sage Publications, Inc., California, USA. 

Labocha MK, Schutz H and Hayes JP (2014) Which body condition index is best? Oikos 

123(1): 111-119. https://doi.org/10.1111/j.1600-0706.2013.00755.x 

Mauchly JW (1940) Significance test for sphericity of a normal n-variate distribution. Ann Math 

Stat 11(2): 204-209. https://www.jstor.org/stable/2235878 

Wist B, Stolter C and Dausmann KH (2022) Sugar addicted in the city: impact of urbanisation 

on food choice and diet composition of the Eurasian red squirrel (Sciurus vulgaris). J Urban 

Ecol 8(1). https://doi.org/10.1093/jue/juac012 

  



CHA PTER 2: FOOD AVAILABILITY & POPULATION PARAMETERS  

 

72 
 

Authors’ contributions 

 

I hereby confirm that Bianca Wist (BW) and Kathrin H. Dausmann (KHD) conceived and 

designed the study. BW conducted the field work and analysed the data. BW wrote the 

manuscript. All authors revised the manuscript and approved the final version of it. 

 

      

Prof. Dr. Kathrin Dausmann 



 

73 
 

 

 

 

Chapter 3 

 

Sugar addicted in the city: Impact of 

urbanisation on food choice and diet 

composition of the Eurasian red squirrel 

(Sciurus vulgaris)  

Bianca Wist, Caroline Stolter and Kathrin Dausmann 

 

2022 published in the Journal of Urban Ecology 8 (1) 

 

  



CHA PTER 3: FOOD CHOICE & DIET COMPOSITION  

 

74 
 

Abstract 

Urban wildlife faces a great variety of human-induced habitat alterations, among others 

changes in resource availability and composition, often resulting in serious declines in 

biodiversity. Nevertheless, Eurasian red squirrels (Sciurus vulgaris) occur in high densities in 

urban areas and seem to benefit from supplementary feeding. However, we still lack 

knowledge about consequences of urbanisation on mammalian foraging behaviour and 

nutrient intake. Thus, we investigated body mass, food choice and diet composition in squirrels 

from an urban core area versus a forest population in a cafeteria experiment. Urban individuals 

were lower in initial body mass and condition, but consumed significantly more g and kJ per 

day and significantly gained weight over the course of the experiment (around 2 weeks); 

nevertheless, the difference in body mass and condition persisted. All squirrels preferred 

hazelnuts, but urban squirrels had a wider dietary range and consumed more non-natural food 

items. Both groups prioritised fat and there was no difference in protein intake. Urban squirrels 

though had a significantly higher sugar intake, mainly by eating biscuits. Our results 

demonstrate clear effects of urbanisation on foraging behaviour and preferences, which has 

the potential for nutritional mismatch or negative side effects due to consumption of non-natural 

food items. Our findings show that highly supplemented urban core fragments might not serve 

as adequate refuge for wildlife. 

Keywords 

urbanisation, dietary range, supplemental feeding, nutrient ecology 
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Introduction 

Urban habitats are ever-faster growing in nearly all parts of the world (McDonald et al. 2020) 

and are therefore representing a severe global challenge for the survival of wildlife (Birnie-

Gauvin et al. 2016). Animals in urbanised areas face multiple human-induced habitat 

alterations and this effect is strongest in cities, which represent the most intense type of urban 

settings (Grimm et al. 2008; Donihue and Lambert 2015; Alberti et al. 2017). Besides aspects 

such as, e.g. habitat fragmentation, high levels of disturbances through human activities, noise 

and pollution, urban wildlife experiences changes in landscape and vegetation structure and 

consequently in food availability. This is critical, since diet, i.e. energy and nutrient intake, is 

essential for all vital life processes and influences traits like body condition, physiology, 

reproduction and finally fitness (Baldwin and Bywater 1984; McNab 1986; Silva, Jaksic, and 

Bozinovic 2004; Perissinotti et al. 2009). In urban habitats, supplemental food sources, either 

intentional or inadvertently, can account for a substantial part of an animal’s diet (Shochat et 

al. 2006; Coogan et al. 2018). This might be rather positive, e.g. through buffering of 

seasonality or negative, e.g. through non-natural food items of possible poor quality, which can 

have adverse effects for animals (Murray et al. 2015, Coogan et al. 2018, Isaksson 2018). 

Furthermore, urban habitats and large cities, in particular, are composed of an extremely 

heterogeneous habitat mosaic (Rebele 1994; Faeth et al. 2005; Faeth, Bang, and Saari 2011) 

with natural as well as human-provided resources being distributed very patchy, often in parks, 

private gardens or on balconies (Contesse et al. 2004). High densities of urban species 

increase competition for these patchy resources (Bowers and Breland 1996) and animals could 

be forced to feed on what they get rather than what might be part of their natural diet. 

Furthermore, species that naturally favour food items high in fat can be led to forage on 

detrimental amounts since the access to those food items might not be limited in cities with 

substantial supplemental resources. Therefore, food provided by humans is likely to influence 

energy intake, diet composition and foraging behaviour (McDonnell and Pickett 1990; Faeth et 

al. 2005; Coogan et al. 2018) and has the potential to alter diverse aspects of animals’ life 
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histories and ecologies (Contesse et al. 2004; Luniak 2004; Newsome and Rodger 2008; Robb 

et al. 2008; Lowry, Lill, and Wong 2013). 

In general, vertebrate diversity and abundance are lower in urbanised habitats, as several 

species cannot cope with the challenging conditions that often have negative consequences 

on fitness and evolution (Faeth, Bang, and Saari 2011, Birnie-Gauvin et al. 2016; Johnson and 

Munshi-South 2017). However, some bird, mammal and arthropod species tend to thrive in 

urban settings and display higher densities than in their natural habitats, such as corvids 

(Corvidae), rats (Rattus rattus), red foxes (Vulpes vulpes) or Eurasian red squirrels (Sciurus 

vulgaris; Luniak 2004; Francis and Chadwick 2012; Feng and Himsworth 2014). This is a 

phenomenon known as ‘synurbanisation’ and refers to certain ecological and behavioural 

differences between urban populations and those living in natural habitats (Luniak 2004; 

Francis and Chadwick 2012). Successful urban species are usually generalists concerning 

their habitat or food preferences and show phenotypic plasticity in their behavioural responses 

(Lowry, Lill, and Wong 2013), enabling them to benefit from urban resources and supplemental 

feeding (Francis and Chadwick 2012). Foraging behaviour is driven by complex mechanisms 

that link physiological demands with environmental conditions. In contrast to earlier foraging 

models, there is growing evidence for a multidimensional nutritional ecology perspective 

(Simpson and Raubenheimer 2011; Coogan et al. 2018). Animals should select their food with 

focus on obtaining a nutritionally balanced diet (Raubenheimer et al. 2012) and in 

consideration of costs (e.g. processing time) and benefits (e.g. energy intake). Diet selection 

of several species aims at achieving a specific balance of target nutrients, i.e. individuals feed 

on different food items in varying quantities to a particular mix (Simpson et al. 2004; Felton et 

al. 2009; Simpson and Raubenheimer 2011; Raubenheimer, Simpson, and Tait 2012). This 

can be challenging in urban habitats with possibly limited access to high-quality natural food. 

Thus, it is likely that dietary balances are disturbed in cities. Moreover, the advantages of being 

a food generalist might be compensated by a higher risk to include non-suitable supplemental 

food items into the diet (Luniak 2004; Lefcheck et al. 2013). 
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In an evolutionary background, urbanisation is a comparably young phenomenon, but one 

with highly effective selective power on wildlife species (Donihue and Lambert 2015; Ouyang 

et al. 2018; Łopucki et al. 2020). As contrary to urban areas, natural habitats are constantly 

disappearing, species not being able to adapt successfully to urban habitats will be particularly 

at risk. Studying those species being apparently successful and seem to cope well with urban 

conditions, can give valuable insight in the mechanistic link between food availability, feeding 

behaviour and high urban abundances. Although research on urban wildlife has considerably 

increased over the past decades, many open questions remain and there is an urgent need to 

increase knowledge about mechanisms and consequences of urbanisation (Magle et al. 2012). 

Most notably, mammalian nutritional ecology in urban core areas is still poorly understood. 

Among the species being apparently successful in urban habitats is the Eurasian red 

squirrel (henceforth ‘squirrel’). The species is a food generalist and opportunist (Gurnell 1987) 

and occurs in high densities in urban and supplemented areas (Magris and Gurnell 2002; 

Jokimäki et al. 2017, Beliniak et al. 2021, Fingland et al. 2022). Squirrels change their feeding 

behaviour according to habitat type and environmental conditions. Despite favouring seeds 

and nuts (Moller 1983), the species’ diet comprises several other food sources (Wauters, 

Swinnen, and Dhondt 1992; Krauze-Gryz and Gryz 2015) which might be one of the key traits 

enabling it to be successful in urban habitats. Especially in urban parks, squirrels feed on a 

great variety of human-provided food items (Krauze-Gryz and Gryz 2015) from nuts provided 

by hand-feeding, bird food, kitchen waste, as well as leftovers from picnics or at playgrounds 

(Wist, pers. obs.). As there is indication for higher food competition in urban habitats (Bowers 

and Breland 1996), not only with conspecifics, but also with other species such as corvids, 

urban squirrels might profit from those supplemental food sources. It has been shown, e.g. that 

the abundance of natural food sources alone is insufficient to explain the high densities of 

North American grey squirrels (Sciurus carolinensis) in urban parks, indicating the important 

role of supplemental foods for urban wildlife (Parker and Nilon 2008). Furthermore, semi-urban 

Eurasian red squirrels, i.e. squirrels living in an extensive cemetery park landscape within a 
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city, shift their home range core areas closer to supplemental food sources in seasons of higher 

food provisioning (Reher et al. 2016). On the other hand, urban habitats can also act as 

ecological traps, if feeding on non-natural, possibly non-suitable, food items and subsequently 

on an imbalanced diet lead to negative effects as described above. Study results on the effects 

of human-provided food sources are still ambiguous in different species including squirrels 

(Shuttleworth 1996; Magris and Gurnell 2002; Lurz, Gurnell, and Magris 2005; Auman, 

Meathrel, and Richardson 2008; Rodewald and Shustack 2008). As long as natural food 

sources are available in sufficient amounts, species like squirrels and hedgehogs (Erinaceus 

europaeus) use human-provided food sources only as a supplement (Morris 1985; 

Shuttleworth 2000). However, this effect is questionable in highly urban fragments like parks 

where high competition occurs along with a restricted abundance of natural resources (Parker 

and Nilon 2008). It is not known how urban squirrels compose their diet in city core areas and 

whether they shift their foraging behaviour compared to rural populations. 

Therefore, our study investigated habitat-related food choices and diet composition of the 

Eurasian red squirrel in a cafeteria experiment under semi-natural conditions. We compared 

body mass and body condition index (BCI) as well as energy and macronutrient intake (fat, 

protein and sugar) of different, natural and anthropogenic food items when offered ad libitum 

to squirrels adapted to two completely contrary habitat types: i.e. squirrels from a highly urban 

park versus forest individuals. We hypothesised that: (i) urban individuals would be higher in 

body mass and condition than their forest counterparts as found in other urban species 

(Auman, Meathrel, and Richardson 2008; McCleery 2010; Łopucki et al. 2019). (ii) With regard 

to diet composition, we hypothesised that a species favouring seeds and nuts should prioritise 

fat intake as macronutrient when being able to feed ad libitum, independent of its original 

habitat since it was shown that squirrels prefer high-energy foods when available (Shuttleworth 

2000, Krauze-Gryz and Gryz 2015, Kostrzewa and Krauze-Gryz 2020). (iii) On the other hand, 

boldness and a lesser degree of neophobia seem to be crucial traits for urban exploiters 

(Lowry, Lill, and Wong 2013; Audet, Ducatez, and Lefebvre 2016, Krauze-Gryz et al. 2021). 
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Thus, we expected urban squirrels to be more used to supplemental foods and to show a wider 

dietary range. (iv) Finally, according to the nutrient balance theory, we expected all individuals 

to incorporate similar proportions of fat, protein and sugar in their diet, independently of their 

food item mix. The results of our study will contribute to the understanding how urbanisation 

influences and alters food choice behaviour and might detect mismatches in nutritional intake. 

Understanding nutritional ecology can be a powerful tool in conservation planning and urban 

park management (Raubenheimer, Simpson, and Tait 2012). Only detailed knowledge about 

mechanisms of urbanisation will enable us to conserve urban biodiversity appropriately and to 

decide whether urban parks can serve as suitable habitats for wildlife like squirrels as has been 

proposed by recent studies (Rezouki et al. 2014; Haigh et al. 2017). 

Methods 

Trapping and handling 

We captured squirrels in a small park (Wohlers Park, 4.6 ha) in the core area of Hamburg, 

northern Germany (N53° 33′ 29.646″ E9° 57′ 11.459″), as well as in a forest study site close to 

the city (Hahnheide; N53° 37′ 14.146″ E10° 27′ 1.667″). The park is surrounded by a highly 

urban matrix with a mix of small and large roads, apartments and commercial buildings being 

located directly adjacent or near the park. Park vegetation had a mixed structure with 45 tree 

species, thereof many non-native. Many of the tree species (∼75%) were suitable for squirrels 

with regard to their seed preferences. However, tree cover was dominated by linden trees (Tilia 

sp.), interspersed with lawn areas and high proportions of fallen seeds were removed by 

gardening activities. Despite a high degree of human disturbance, such as intensive use of the 

park for sports and parties, we found a very high density of squirrels in the park (average of 

5.1 squirrels/ha, calculated as minimum number alive) as well as year-round intensive 

supplemental feeding (Wist et al., unpublished data). The latter consisted of intentional feeding 

with, e.g. peanuts and unintentional feeding with leftovers like fast food and butter biscuits or 

bird food that was frequently distributed throughout the park and in adjacent backyards or 

balconies (Wist et al. unpublished data). The forest study site is located ∼30 km from the city 



CHA PTER 3: FOOD CHOICE & DIET COMPOSITION  

 

80 
 

centre. The mixed forest nature reserve comprises 1.460 ha with a high tree cover of eleven 

tree species (mainly Norway spruce and beech), and consisting mainly of old trees. The forest 

floor was covered with high amounts of fallen seeds and there was no supplemental feeding. 

Trapping took place for 4–5 days per trapping run in spring 2018 and 2019 using Tomahawk 

live traps (20 × 20 × 50 cm; Tomahawk Live Trap, Hazelhurst, WI, USA) placed in the park 

shrubbery or at tree trunks at 1.5 m height in the core area of the forest. We used 6–8 traps in 

the park and 18–20 traps in the forest, placed in a trapping grid with a distance of about 100 m. 

We baited traps with a seed and nut mix (walnuts, hazelnuts, peanuts and sunflower seeds) 

when opened in the morning around 07:30 h and closed the traps after 5–8 h, depending on 

trapping success and study site. Traps were controlled every 30–60 min in the urban park and 

every 90–120 min in the forest. Trapped individuals were transferred into a cloth handling cone 

with zippers (Koprowski 2002) to enable handling of the non-anaesthetised individuals with a 

minimum of stress. Individuals were pit-tagged (ID-100B; Trovan Ltd., East Yorkshire, UK) and 

we recorded initial body mass to the nearest 5 g by using a spring balance (KERN & SOHN 

GmbH, Balingen-Frommern, Germany). Furthermore, we assessed age 

(juvenile/subadult/adult), sex, reproductive status (via inspection of the external reproductive 

organs, following Magris and Gurnell 2002), length of body (nose-anus to the nearest 0.5 cm, 

mean from multiple measurements whenever possible) and right hind foot (in mm, measured 

with a small transparent ruler). For the body length measurement, we positioned the animals 

with their snouts directed into the narrow tip of the bag. The animal was then restrained and a 

tape measure was passed from the tip of its snout to the base of the tail. We used only adult, 

obviously healthy males in this study to minimise the influence of sex, reproduction, disease 

or growth. Male adults were transferred into a cloth bag and transported to the Institute of Cell 

and Systems Biology of Animals, Universität Hamburg. 
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Study period and housing conditions 

In total, we housed 20 adult male squirrels in outdoor enclosures under natural photoperiod 

and ambient temperature for 13–18 days in spring 2018 and 2019. Owing to limitations in 

housing capacities, we conducted the experiment in four different runs, each with a mix of 

urban and forest individuals (Table 1). The number of urban individuals per run was higher, as 

trapping success in the forest was very low (urban park: mean of 6.1 individuals, forest: 1.7 

individuals per trapping day). We conducted all runs in a 2 months period (from end of March 

to end of May) in spring to minimise seasonal effects. 

Table 1 Overview of housing periods and no. of individuals of Sciurus vulgaris per habitat (N = 20, urban: n = 13, 

forest n = 7), housed for the food choice experiment in outdoor facilities of Hamburg University, Germany.  

Housing period Date No. of urban individuals No. of forest individuals 

A 04 – 24 April 2018 4 2 

B 08 – 28 May 2018 4 1 

C 28 March – 12 April 2019 3 2 

D 02 – 22 May 2019 2 2 

Total  13 7 

 

Housing facilities were located at Hamburg University (53°34′ 02.2″ N 9°58′ 45.6″ E) in 

outdoor aviaries (2.3–2.7 m high and 4.4–7.9 m2 floor area). We housed only one squirrel per 

aviary to account for their solitary lifestyle and used panels for some privacy screen. The 

aviaries were equipped with branches, some bedding material and a nest box (Elmato 10064 

Großsittichkobel, Elmato GmbH, Holzheim, Germany, 30 × 22 × 20 cm), insulated with organic 

material (Pavatex Pavaflex, Soprema GmbH, Germany), and whole complex was covered with 

a roof. After the experiments, we recorded the final body mass of the individuals by weighing 

them three times in their nest boxes to the nearest 5 g (Kern PCB 3500 precision scale, KERN 

& SOHN GmbH, Balingen-Frommern, Germany). Afterwards, we released them at their 

trapping locations. Recapture of nine individuals (45%, thereof four forest and five urban 

individuals) during trapping sessions for the following runs proved them to be in good condition 
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with no observable adverse effects of the treatment. Since we did not perform any trapping 

after the last run, there was no recapture opportunity for animals from the last run. 

Food bars and food choice (cafeteria experiment) 

Each aviary was equipped with a food bar (65 × 35 × 40 cm), constructed from plywood 

panels forming a floor and a roof. We placed the bars on the ground of the aviaries to allow 

access to the food bar from all sides and chose a location in the shade, away from the door 

and close to a ‘rescue’-branch, to create a comfortable foraging site for the squirrels. We 

supplied food daily in paper food containers, which we placed into tacked containers to avoid 

sliding. A bowl with fresh water was positioned at the top of each food bar. Food items were 

placed in random order (using a random list generated in R 3.4.3), to avoid bias through side 

preferences by the individuals. 

We used eight different food items, which we chose according to our field observations of 

supplemental food sources and the known natural diet for squirrels. For instance, we decided 

to include biscuits in the experiment, since we observed squirrels feeding at highly processed 

and sweetened foods like biscuits and cake leftovers in the park. We classified spruce cones, 

whole hazelnuts, dried grasshoppers and apples as ‘natural’ food, representing food items 

usually available in the wild. Whole peanuts, butter biscuits (Gut & Günstig Butterkekse, 

EDEKA Zentrale AG & Co. KG, Germany), fat balls (MultiFit Meisenknödel, MultiFit 

Tiernahrungs GmbH, Krefeld, Germany) and carrots were classified as ‘urban’-related as these 

items are usually provided by humans and not (or very rarely in the case of carrots) available 

in natural squirrel habitats in Germany. Butter biscuits and insects were dried to constant 

weight in advance. Spruce cones were stored in the freezer after collection to avoid opening 

and seed loss under warm conditions. All other items were stored in closed plastic boxes at 

ambient temperature or in the fridge. 

Food items were provided ad libitum. We collected leftovers every day at 14:00 h and 

weighed them with a scale (Kern PCB 3500 precision scale, KERN & SOHN GmbH, Balingen-

Frommern, Germany) to the nearest 0.1 g. Given the low weight of dried grasshoppers and 
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owing to the fact that the squirrels consumed only minor quantities of them (usually only heads 

or abdomen rather than whole insects), we provided 10 whole grasshoppers, to enable reliable 

determination of eaten amounts. All values were corrected for water loss or intake by using 

correction values taken from control items left in an empty aviary or by redrying leftovers of 

butter biscuits and insects. As many squirrels stayed in their nest boxes during food inspection, 

the nest boxes were only inspected for leftovers after release of the animals to avoid further 

disturbances. These, very rare, leftovers were weighed and evenly distributed over the days 

of the experiment. 

Food intake in g eaten per day and food items were corrected as described above. We 

identified gross energy content of eaten food in kJ by bomb calorimetry (PARR 6100 bomb 

calorimeter, PARR Instruments Deutschland GmbH, Frankfurt, Germany) with benzoic acid as 

calibration standard. Crude protein was determined by using the standard Kjeldahl procedure 

for analysis of nitrogen content and the conversion factor of 6.25 (Association of Official 

Analytical Chemists 1984 in Ortmann et al. 2006). Additionally, we extracted fat with petroleum 

ether and analysed sugar content with the phenol-sulphuric acid-method (Kates, Work, and 

Work 1972; Jiang et al. 2014). We analysed each food type with at least two and up to six 

replicates. All results were converted from dry matter to fresh weight (i.e. weight of offered food 

items) by correcting the weight loss of the food items being dried for 24 h at 105°C. For the 

insects, we analysed whole animals versus heads and abdomen according to the squirrels’ 

food choices. We excluded days with incomplete data from the analysis. On average 13 days 

per individual were analysed (range: 5–17 days). Food intake was corrected for body mass 

and therefore given in consumed kJ (total/fat/protein/sugar) per g of body weight. We used a 

simple ratio index with body weight (g)/body length (nose-anus length in cm) for assessment 

of body condition (BCI) which was validated to assess body condition (i.e. fat mass) of small 

rodents (Labocha, Schutz, and Hayes 2014). 
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Statistical analysis 

We used the food intake from all measurement days to calculate a daily mean in g and kJ 

per individual over the housing period. Correspondingly, values are given as mean ± SD and 

n reports the number of individuals per group. Statistics were performed in R 3.4.3 (R Core 

Team 2017) within the “RStudio” environment (RStudio Team 2019) and the packages ‘lattice’ 

(Sarkar 2008), ‘ggplot2’ (Wickham 2016), ‘psych’ (Revelle 2016) and ‘vegan’ (Oksanen et al. 

2019). 

We used the Shapiro–Wilk-test to test for normality (Shapiro and Wilk 1965) and F-tests for 

homogeneity of variances (Duncan 1955). To test for differences in body weight, BCI and food 

intake (g, kJ, fat, protein, sugar and the single food items), we used (paired) t-tests, Welch-

tests or Wilcoxon rank sum tests respectively. Non-metric multidimensional scaling (NMDS, 

e.g. Rabinowitz 1975) with Bray–Curtis as distance measure was performed to investigate 

dissimilarities in the diet composition between the individuals of different habitats and analysis 

of similarity (ANOSIM, Clarke and Green 1988) for testing of statistical significance. We used 

the significance level of P ≤ 0.05 and a stress level < 0.2 as indication of goodness of fit in the 

NMDS. Statistic differences between the groups in the NMDS were tested with ANOSIM (Bray–

Curtis coefficient and 9999 permutations) using the P-value and ANOSIM statistic R (−1 to +1) 

for hypothesis testing. We plotted the results of the NMDS as a spider diagram with centroids 

per group. We added polygons using the chull() function (base R) to create convex hulls 

connecting the outermost points per group. 

 

Results 

Body mass and condition 

Initial and final body mass of urban individuals (i.e. body mass at trapping and after the 

experiment) was significantly lower compared to their forest counterparts (initial body mass: t-

test, t = 3.60, df = 18, n = 20, P < 0.005; final body mass: t-test, t = 3.37, df = 18, n = 20, 

P < 0.005; Fig. 1 and Supplementary Fig. S1), as was BCI (initial BCI: t-test, t = 3.85, df = 18, 
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n = 20, P < 0.005; final BCI: t-test, t = 2.99, df = 18, n = 20, P < 0.01; Fig. 1 and Supplementary 

Table S1). Mean daily mass change for forest individuals was 0.3 ± 1.2 and 0.7 ± 0.9 g for urban 

squirrels (Fig. 1 and Supplementary Fig. S1). In total, 15 out of 20 individuals maintained or 

increased their body mass during the experiment with mass gain ranging from 0.3% to 10.9%. 

Only five individuals showed mass loss (−0.6% to −4.8%). However, mass change was only 

statistically significant in the urban squirrels (paired t-test, t(13) = −2.52, n = 13, P < 0.05). 

 

 

 

 

 

 

 

 

 

Figure 1 Box and whisker plots showing the initial body mass (a) and initial BCI (b) calculated from body 

mass g/nose-anus-length in cm as well as daily mass change (c), of forest (n = 7; open boxes) versus 

urban individuals (n = 13; grey boxes); each box represents 50% of the sample data around the median 

(indicated by the black bar); the whiskers show the 5% and 95% percentiles for each sample with outliers  

shown by circles; asterisks indicate significant differences between the groups (**P ≤ 0.01) 

 

Energy intake and diet composition 

Urban squirrels consumed significantly more energy with a daily mean of 1.51 ± 0.39 kJ 

(526.53 ± 148.90 kJ/day) versus 1.16 ± 0.16 kJ per g of body mass (411.37 ± 57.25 kJ/day) in 

forest individuals (Welch-test: t = −2.78, df = 17.17, n = 20, P-value < 0.05). We found no 

difference in protein or fat intake between the two groups, but the difference in daily sugar 

intake was highly significant (t-test: t = −4.40, df = 18, n = 20, P-value < 0.001; Fig. 2 and 
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Supplementary Table S2) with urban individuals consuming on average 0.12 kJ per g body 

mass from sugar (forest individuals 0.08 kJ). 

 

Figure 2 Box and whisker plots showing total daily energy intake in kJ per g body mass (a) as well as 

kJ intake from fat (b), protein (c) and sugar (d) for forest (open boxes, n = 7) and urban individuals (grey 

boxes, n = 13); note the differences in scales; each box represents 50% of the sample data around the 

median (indicated by the black bar); the whiskers show the 5% and 95% percentiles for each sample 

with outliers shown by circles; asterisks indicate significant differences between the groups (*P ≤ 0.05,  

***P ≤ 0.001) 

 

With regard to macronutrient intake per individual, all tested squirrels prioritised fat over 

protein intake, with fat accounting on average for 55.6% of their total kJ consumption (forest 

individuals 58.8%, urban individuals 52.4%; Fig. 3a and b). Interestingly, concerning sugar 

versus protein intake, we gained ambiguous results with some forest and urban individuals 

ingesting higher amounts of protein (Fig. 3c). 
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Figure 3 Scatterplots of mean daily energy intake in kJ per individual derived from fat versus protein 

(a), fat versus sugar (b) and sugar versus protein (c); note differences in scale; forest individuals are 

shown as open circles, urban individuals as grey triangles 

 

There were no significant differences between urban and forest individuals (NMDS, 

stress = 0.08, ANOSIM R: −0.06, Significance: 0.69) when testing for dissimilarities in total diet 

composition (differential intake of the eight different food items). Possibly the results are 

skewed, because of the overlap in hazelnut consumption (highest energy intake from 

hazelnuts in both groups, Supplementary Fig. S2). However, the clustering in Fig. 4 clearly 

suggests differences between urban and forest squirrels, with urban squirrels being more 

dissimilar in their food choice, whereas the forest individuals are more uniform in their food 

preferences. 
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Figure 4 NMDS plot showing two dimensions of the diet diversity of forest (open circles, n = 7) versus 

urban squirrels (black triangles, n = 13) with regard to all eight food items used in the cafeteria 

experiment; both groups are marked with polygons (forest: dashed line, white filling, urban: solid line, 

grey filling), each sample is connected to its group centroid (black squares) 

 

When comparing ‘natural’ with the ‘urban’ food items, there was no difference in the energy 

amount consumed from the four ‘natural’ food items with a mean of 1.12 kJ in forest and 1.21 kJ 

in urban squirrels (Welch-test, t = −0.77, df = 16.84, P > 0.05). The difference in kJ intake from 

the four ‘urban’ food items though was highly significant. Urban individuals gained an average 

of more than six times as many kJ from ‘urban’ food, accounting for 20% of their daily 

consumption, whereas forest squirrels got only 4% of their daily kJ intake through the ‘urban’ 

items (Wilcoxon rank sum test, W = 6, P ≤ 0.001; Fig. 5, Supplementary Fig. S2 and 

Supplementary Table S2 for details per food item). 
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Figure 5 Box and whisker plots showing daily energy intake from ‘natural’ food in kJ per g of body mass 

on the left (a) and daily energy intake from ‘urban’ food items in kJ per day and g of body mass on the 

right (b) with forest individuals represented by open boxes (n = 7) and urban individuals by grey boxes 

(n = 13); each box represents 50% of the sample data around the median (indicated by the black bar);  

the whiskers show the 5% and 95% percentiles for each sample; asterisks indicate significant  

differences between the groups (***P ≤ 0.001) 

 

Discussion 

We investigated how provenance of male Eurasian squirrels, adapted to very distinct habitat 

types, influences food choice behaviour when food is available ad libitum. More specifically, 

we studied the squirrels’ body mass and condition as well as their energy intake and diet 

composition with regard to macronutrients when individuals from a highly urban park versus a 

natural forest were free to choose. We found significant differences in body mass, energy 

intake, consumption of non-natural food items and sugar intake between urban and forest 

squirrels. The lower body mass and condition of urban squirrels in our study contradict our 
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assumptions and a number of studies that found comparable or even higher body mass or 

condition in urban birds and mammals including squirrels (Auman, Meathrel, and Richardson 

2008; McCleery 2010; Meillère et al. 2017; Łopucki et al. 2019; Shimamoto et al. 2020). This 

is usually assumed to be strongly influenced by higher availability of human-provided 

resources throughout the year, buffering seasonal scarcities (Auman, Meathrel, and 

Richardson 2008; McCleery 2010). With squirrels, the absence of high-energy food sources 

such as seeds and nuts in spring usually leads to weight reductions in populations from natural 

habitats (Wauters and Dhondt 1989a). In urban habitats, this effect could be compensated by 

supplemental feeding (Reher et al. 2016; Turner et al. 2017). Nonetheless, supplemental 

feeding of wild animals, in general, is very controversially discussed and studies showed 

varying responses of different species to human-provided resources (Shuttleworth 2000; 

Auman, Meathrel, and Richardson 2008; Robb et al. 2008; Sorensen, van Beest, and Brook 

2014; Starkey and del Barco-Trillo 2019). The topic is particularly relevant for cities and their 

core areas where species encounter the maximum expression of urbanisation and highest 

amounts of supplemental food sources (Grimm et al. 2008; Bateman and Fleming 2012). 

Human-provided food has the potential to familiarise wildlife with inappropriate foods (i.e. of 

poor quality or digestibility). Thus, despite the extensive supplemental feeding that we 

observed in the urban habitat, our findings might reflect a deficit in food quality from the 

perspective of the animal in the park, which might be caused by a lack of adaption of the 

digestive system to non-natural food. Another aspect is that high population densities and 

contact rates can, e.g. lead to higher stress levels or higher transfer of diseases and parasites 

(Bradley and Altizer 2007; McCleery 2010; Isaksson and Hahs 2015; Haigh et al. 2017) and 

therefore could negatively influence body mass. During park trapping, we found a very high 

population density (calculated as an index of minimum number alive, Wist et al., unpublished 

data) and observed numerous interactions among squirrels, but also with corvids and other 

bird species like blackbirds, city pigeons or great spotted woodpeckers. Those encounters 

were particularly common at feeding sites, indicating strong intra- and inter-specific 

competition for resources (Wist et al., pers. obs.). We cannot fully exclude that we might have 
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trapped individuals from outside the park for this experiment. However, we strongly assume 

that those lived in close neighbourhood and experienced quite similar habitat conditions. Our 

results would be in line with some studies on urban mammals and birds that live in very high 

population densities, which seems to negatively influence body mass (Prange, Gehrt, and 

Wiggers 2003; Shochat 2004; Anderies, Katti, and Shochat 2007). Though, recent studies 

demonstrate that the interplay among densities, stress, parasites and body mass/condition in 

squirrels can be ambiguous and dependent on further factors (Romeo et al. 2013, Santicchia 

et al. 2022, Tranquillo et al. 2022). However, as body condition is fundamental for reproductive 

success in red squirrels (Wauters and Dhondt 1989b; Wauters et al. 2007), the differences 

found in our study could be an indication of negative effects in the urban parks. 

When compared with the forest individuals, urban squirrels consumed significantly more kJ 

per g of body weight and day (+30%) and, contrary to forest individuals, significantly gained 

weight from the start to the end of the experiment (on average 3%). Mean daily consumption 

of urban squirrels in total was 527 ± 149 kJ per day [411 ± 57 kJ in forest individuals] and thus 

exceeded literature values from field studies, ranging from 340 to 420 kJ (Gurnell 1987; 

Wauters, Swinnen, and Dhondt 1992; Bosch and Lurz 2011). We are aware of that gross 

energy intake does not equal digestible and metabolisable energy (Ortmann et al. 2006). 

However, under the cafeteria experiment urban individuals were obviously able to consume 

more kJ and gain weight significantly, indicating some critical limitations in the urban habitat 

as mentioned above. Squirrels are seed specialists, i.e. their main food has a very high 

digestibility (up to 96%, Gurnell 1987). A diet high in other plant materials than seeds needs 

longer intestines for efficient digestion than usually found in squirrels (Gurnell 1987). Feeding 

on high amounts of other food items when seed availability is low might thus lead to less 

assimilation even when the intake is high, as the digestive system is not adapted to process it 

efficiently. On the other hand, urban squirrels are more habituated to interactions with humans 

and general disturbances (Uchida et al. 2016, 2019, Krauze-Gryz et al. 2021). Thus, forest 

individuals might have been more stressed by the housing situation and not taking full 
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advantage of the food presented. Urban squirrels calmed down earlier when released into the 

aviaries, were more often observed during food change and in total spent more time outside 

their nest boxes (Wist et al. unpublished data). Accordingly, this might have increased both, 

their total energetic demands and foraging amounts. Additionally, high competition for food in 

their urban habitat might have trained urban individuals to maximise their food intake whenever 

they can, leading to a higher exploitation of the offered cafeteria compared with the forest 

squirrels. 

In line with our hypotheses, we found no differences in fat or protein consumption between 

the study groups. Furthermore, both groups have prioritised fat in their diets. This met our 

expectations for a small homeothermic mammal favouring seeds and nuts, a food source that 

allows for comparably high metabolic costs without torpor use (McNab 1986; Dausmann et al. 

2013). The percentage of protein intake on the other hand (urban: 3.7%, forest: 4.4%) was 

below existing literature values for minimum maintenance (10–12% crude protein; Pulliainen 

1984). However, this value was obtained under very different conditions, in a study conducted 

in the winter of Lapland, i.e. at low ambient temperatures and with dense snow cover. It is likely 

that nutrient and energetic demands fluctuate on a seasonal basis and with latitude. Squirrels 

from both habitats fed mainly on hazelnuts, one of the primary food items in their natural diet 

(Krauze-Gryz and Gryz 2015). Consumption of spruce seeds was higher in urban squirrels, 

but in total, both groups ate only very few spruce seeds despite spruce cones being another 

one of their major food sources in the wild (Moller 1983; Gurnell 1987; Di Pierro et al. 2011, 

Rubino et al. 2012). However, squirrels have to invest more time for stripping cones than for 

cracking a hazelnut whereas the latter provides a higher amount of energy. It is known that 

squirrels compose their diet according to seasonal availability and possible energy intake rate 

versus processing time (Moller 1983; Gurnell 1987). As mentioned above, the digestibility of 

seeds in general is reported to be high for squirrels and further enhanced by a high-fat content 

(Gurnell 1987 and references therein), but, food quality is not only a matter of high crude fat or 

energy content. Interestingly, fat balls were consumed very rarely in both groups, despite 
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several own and reported observations of squirrels feeding on fat balls in the park and 

surrounding areas. The low consumption in our study indicates that fat balls are not chosen 

preferentially, but rather used as a supplement when other food is limited. Peanut intake was 

also low in both of our study groups although urban squirrels seemed to be more open to 

peanut consumption. The chemical composition of peanuts can have detrimental effects, e.g. 

on amino acid absorption, and field studies showed that squirrels, even if provided ad libitum, 

restrict their peanut consumption (Shuttleworth 2000) and favour other nut types (Kostrzewa 

and Krauze-Gryz 2020). Quality of food always has to be seen in relation to the adaption of 

the digestive system of the investigated animal species. 

Seen from a general perspective, even if the high amount of hazelnut intake in both study 

groups might have masked a statistical difference, our hypothesis that urban squirrels would 

show a wider dietary niche was confirmed. Urban squirrels were more willing to incorporate 

higher proportions of non-natural food items into their diet than forest squirrels. This is worrying 

as feeding on an unnatural and possibly poor quality or imbalanced diet can lead to possibly 

adverse effects on multiple traits like physiology, health status and reproductive success 

(Simpson and Raubenheimer 2011; Isaksson and Hahs 2015; Birnie-Gauvin et al. 2016; 

Pollock et al. 2017). Urban coyotes, e.g. were shown to feed on a more diverse diet than their 

rural counterparts by including higher amounts of anthropogenic food, but this was linked to 

lower protein intake and higher rate of diseases (Murray et al. 2015). Furthermore, despite a 

higher rate of food provisioning, urban blue-tits (Cyanistes caeruleus) fed their offspring with 

much fewer caterpillars than forest blue-tits did, indicating a dietary shift to urban food items 

like human-provided bird food, resulting in a reduced reproductive success (Pollock et al. 

2017). A study on urban and rural house sparrows found higher plasma cholesterol and blood 

urea nitrogen in urban individuals, which reflected higher protein and fat intake (Gavett and 

Wakeley 1986). Additionally, there is indication for a negative effect on physiological important 

fatty acid composition in urban bird species through feeding on supplemental food sources, 

especially on bird food like sunflower seeds, which are often contained in fat balls (Andersson 
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et al. 2015). Interestingly, an urban diet can also alter or reduce gut microbiota (Gillman, 

McKenney, and Lafferty 2022; Dillard et al. 2022). This reduction can be accompanied by a 

lower ability to gain weight, which has been shown very recently for urban sparrows (Teyssier 

et al. 2020). In our study, we found highest differences in consumption of single food items for 

butter biscuits with urban individuals consuming about seven times more kJ from butter biscuits 

than the forest group. In line with this, total sugar intake was significantly higher in the urban 

group. This corresponds to findings of other studies on sugar intake of species having high 

access to human-provided food. Urban grey squirrels (S. carolinensis) as well as raccoons 

(Procyon lotor), e.g. were shown to have higher blood glucose levels (Schulte-Hostedde et al. 

2018; Schmidt et al. 2019). The fact that urban squirrels consumed so many butter biscuits 

while forest squirrels have not, might reflect a habituation to the taste of sugar by the urban 

squirrels, contradicting our assumption that all individuals should incorporate similar 

proportions of nutrients into their diet, independently of their dietary mix. This is alarming as 

high sugar consumption can lead to detrimental side effects. For example, sugar is linked to 

several diseases and dysfunctions (Johnson et al. 2007, 2013; Malik et al. 2010) as well as 

addiction properties through alterations in behaviour and neurochemistry, i.e. the brain reward 

system (Avena, Rada, and Hoebel 2008; Kendig 2014). It was, e.g. found to negatively 

influence behaviour and cognition in rodents by impairing memory and spatial learning (Kendig 

2014). This might be particularly problematic for a hoarding species like squirrels, which relies 

on a successful recovery of cached food items. Although it is not known above what threshold 

sugar can cause detrimental effects, there is evidence of impairments starting from ∼8% of the 

daily intake (Kendig 2014), which is less than what we found for the urban squirrels. We 

acknowledge the small sample size in our study and the possibility of urban individuals could 

have adjusted better to the housing situation, making higher use of the full cafeteria. However, 

prior data inspection showed that urban squirrels consumed cookies from the very beginning 

of the housing period whereas forest individuals rather refused them all through the 

experiment. We are thus convinced that our results are highly relevant in the background of 

intense supplemental feeding in urban settings and associated changes in feeding behaviour. 
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We recommend that local authorities should consider results from studies like ours as a basis 

for informing citizens about unhealthy food items and possible consequences for wildlife. 

People could be guided to provide natural foods, such as whole hazelnuts or even conifer 

cones collected elsewhere. Additionally, access to waste should be impeded. This could be 

done by, e.g. using bins that are not accessible to animals or even fines for littering since we 

often observed squirrels and birds feeding on waste items in the park. 

 

Conclusion 

The results from our cafeteria experiment are worrying and might reflect a lack of natural 

food alternatives for urban squirrels. Urban squirrels in our study were more willing to feed on 

non-natural food items and sugar. Thus, our results indicate a wider dietary range within urban 

individuals, whereas dietary flexibility within the forest group seems to be smaller. Plasticity in 

feeding behaviour and a wider dietary niche can be crucial assets for being successful under 

urban conditions where natural food sources might be less available and species seem to 

benefit from the plastic or adaptive ability to shift their food choice. On the other hand, food 

generalists like squirrels might have disadvantages on a long-term basis as they are at higher 

risk to incorporate inappropriate food items into their diet than specialists, which seems to be 

particularly true for urban habitats. Our results give valuable insight in potential nutritional 

mismatches and negative side effects on the health of urban wildlife in general. It remains 

questionable, whether urban parks represent adequate refuges for wildlife like squirrels. This 

might heavily depend on park structures, surrounding habitat types and availability of natural 

resources, providing food and shelter as well as restrictions in supplemental feeding. Future 

studies should investigate possible consequences on further aspects such as, e.g. the gut 

microbiome or long-term reproductive success. Only detailed knowledge about mechanisms 

of urbanisation will help to conserve urban wildlife successfully and to tackle appropriate 

conservation actions in the face of ongoing transformation of natural landscapes into urban 

areas. 
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Supplementary figure 1 Example of a food bar (sheltered from rain) with eight different foods used within this 

experiment (left picture) and leftovers collected from one of the cages after 24 hours (right picture). 

Supplementary table 1 Initial and final body mass / BCI per study group as well as total and daily change in body 

mass; values are given as mean ± SD and supplemented by t-test results 

Habitat n 

Initial body 

mass (g) 

Final body 

mass (g) 

∆ Body 

mass (g) 

Daily mass 

change (g) 
Initial BCI Final BCI 

Forest 7 371.4 ± 27.0 376.3 ± 19.5 4.8 ± 17.6 0.3 ± 1.2 17.2 ± 0.8 17.4 ± 1.2 

Urban Park 13 334.2 ± 19.0 343.8  ± 21.1 9.5 ± 13.6 0.7 ± 0.9 15.6 ± 0.9 16.1 ± 0.9 

t   3.6 3.37 -0.66 -0.7 3.85 2.99 

df   18 18 18 18 18 18 

p-value   < 0.005 < 0.005 > 0.05 > 0.05 < 0.005 < 0.01 

 

Results on single food items 

All individuals fed mainly on hazelnuts, ranging from 56 to 99 % of the daily kJ intake (mean 

82 %) with forest squirrels ranging from 84 to 99 % and urban squirrels from 56 to 92 % (see 

Supplementary fig. 1 and tab. 2 for details of daily consumption per food item). The differences 

in energy amount from hazelnut or peanut consumed between the groups were not significant 

(hazelnuts: t-test, t = - 0.49, df = 18, p > 0.05, peanuts: Wilcoxon rank sum test, W = 25.5, p > 

0.05). Urban individuals had a significant higher kJ intake from butter biscuits (urban squirrels: 

10.2 % of the daily kJ intake, forest squirrels 1.5 % of the daily kJ intake, Welch-test based on 

kJ intake: t= -2.98, df= 13.08, p < 0.05) as well as from spruce seeds (2.5 % of the daily kJ 
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intake in urban squirrels, forest squirrels < 0.01 % of the daily kJ intake, Wilcoxon rank sum 

test: W = 17, p < 0.05, Fig. 5), but the latter was consumed to a very low degree by both groups. 

Insects and fat balls were also eaten only rarely and in very minor quantities (insects < 0.1 % 

in both groups, fat ball < 0.01 % in forest and 1.9 % of the daily kJ intake in urban squirrels, 

Fig. 5). When considering weight, apples and carrots made up for a substantial percentage of 

the total daily intake (forest squirrels: apples 21.6 %, carrots 14.9 %; urban squirrels: apples 

10.3 %, carrots 21.5 %), but owing to their low energy content, their proportion of daily kJ intake 

was also in the low single digits (forest squirrels: apples 3.3 %, carrots 1.5 %; urban squirrels: 

apples 1.2 %, carrots 2.0 %) and not significantly different. 

 

Supplementary figure 2 Box and whisker plots showing daily intake [kJ per g body mass] per food item and habitat 

(N = 20), open boxplots showing forest individuals (n=7), grey boxplots urban individuals (n=13); we found no 

difference in the energy amount consumed from hazelnuts (b), insects (c), apples (d), peanuts (e), fat balls (g) and 

carrot (h); spruce seed (a) and butter biscuit consumption (f) was significantly higher in urban individuals (t -tests 

with p ≤ 0.05); note the differences in scales; each box represents 50 % of the sample data around the median 
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(indicated by the black bar); the whiskers show the 5 % and 95 % percentiles for each sample; outliers are 

represented by circles and significant differences between the groups by asterisks (*p ≤ 0.05)  

Supplementary table 2 Daily consumption (g or kJ per g of body mass) per study group (mean ± SD) and 

percentage of fat, protein, sugar and the different food items; statistical test results refer to the total daily 

consumption in kJ per g of body mass  

Habitat / test Forest Urban park t-test Welch-test 

Wilcoxon 

rank sum test 

n 7 13    

g / day 0.064 ± 0.020 0.078 ± 0.027 
t = - 1.25, df = 18, p 

> 0.05 

- - 

kJ / day 1.162 ± 0.156 1.505 ± 0.390 - 
t = - 2.78, df = 

17.17, p < 0.05 

- 

thereof: 

„natural“ food 1.115 ± 0.144 1.207 ± 0.380 - 
t = - 0.77, df = 

16.84, p > 0.05 
- 

„urban“ food  0.046 ± 0.043 0.298 ± 0.233 - - 
W = 6,  

p < 0.001 

% of the daily kJ consumption: 

fat 58.8 52.4 
t = - 1.19, df = 18,   

p > 0.05 

- - 

protein 4.4 3.7 - - 
W = 42.5, 

p > 0.05 

sugar 6.8 8.2 
t = - 4.40, df = 18,   

p < 0.001 

- - 

spruce < 0.01 2.5 - - 
W = 17,  

 p < 0.05 

hazelnuts 92.7 76.3 
t = - 0.49, df = 18,   

p > 0.05 

- - 

peanuts 0.9 5.8 - - 
W = 25.5,  

p > 0.05 

butter biscuits 1.5 10.2 - 
t= -2.98, df= 

13.08, p < 0.05 

- 

insects 0.04 0.05 - - 
W = 41, 

p > 0.05 
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fat ball < 0.01 1.9 - - 
W = 40,  

p > 0.05 

apple 3.3 1.2 - - 
W = 54,                

p > 0.05 

carrot 1.5 2.0 
t = - 1.55, df = 18,   

p > 0.05 

- - 

% of the daily consumption in g: 

spruce 0.01 2.8    

hazelnuts 61.5 49.1    

peanuts 0.6 3.7    

butter biscuits 1.4 11.0    

insects 0.04 0.04    

fat ball < 0.01 1.7    

apple 21.6 10.3    

carrot 14.9 21.5    
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Abstract  

The ecophysiological responses of species to urbanisation reveal important information 

regarding the processes of successful urban colonization and biodiversity patterns in urban 

landscapes. Investigating these responses will also help uncover whether synurban species 

are indeed urban ‘winners’. Yet we still lack basic knowledge about the physiological costs and 

overall energy budgets of most species living in urban habitats, especially for mammals. Within 

this context, we compared the energetic demands of Eurasian red squirrels (Sciurus vulgaris) 

from the core of an urban environment with those from a nearby forest. We measured oxygen 

consumption as a proxy for resting metabolic rate (RMR) of 20 wild individuals (13 urban, 7 

forest), at naturally varying ambient temperature (Ta) in an outdoor-enclosure experiment. We 

found that the variation in RMR was best explained by the interaction between Ta and habitat, 

with a significant difference between populations. Urban squirrels showed a shallower 

response of metabolic rate to decreasing Ta than woodland squirrels. We suggest that this is 

likely a consequence of urban heat island effects, as well as widespread supplemental food 

abundance. Our results indicate energy savings for urban squirrels at cooler temperatures, yet 

with possible increased costs at higher temperatures compared to their woodland conspecifics. 

Thus, the changed patterns of metabolic regulation in urban individuals might not necessarily 

represent an overall advantage for urban squirrels, especially in view of increasing 

temperatures globally.  

 

Keywords 

Sciurus vulgaris, Eurasian red squirrels, RMR, metabolism, ecophysiology, urbanisation 
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Introduction 

Animals have to carefully balance their energy budgets in response to environmental 

conditions, such as fluctuations in ambient temperature (Ta) or food availability [1]. The 

energetic demands of an animal in a certain environment are reflected by the metabolic rate 

(MR), which determines resource requirements and limits their allocation to body components, 

therefore directly influencing fitness [2, 3]. Studying drivers of variation in MR is fundamental 

for understanding ecological patterns [2]. In general, MR shows high variability and phenotypic 

plasticity, both among and within species. Even among populations from different locations, 

which is assumed to reflect an adaptation to the particular habitat conditions [4-6]. 

Urbanisation is a major driver of environmental change, and alongside the rapid loss of 

natural habitats poses a growing threat to biodiversity [7, 8]. Urban areas have more than 

doubled from 1992 to 2015 with an even larger increase forecast for 2030, where 60 % of the 

world’s population is projected to live in urban settlements [7, 9]. Urban wildlife experiences 

pronounced differences in environmental conditions compared to geographically close rural 

populations, even though they are located at similar altitudes and latitudes [10-12]. Cities in 

particular are challenging habitats for wildlife due to immense human induced alterations and 

disturbances, such as noise, pollution or impervious surfaces [13, 14]. However, some species, 

classified as synurban, seem to thrive in urban conditions displaying higher densities than in 

their natural habitats [15, 16]. Urban populations often exhibit changes in biology and ecology 

[8, 11, 17]. For example, they show shifted and / or extended breeding seasons [16, 18], 

differences in body mass or condition [18-20], and altered foraging and / or overall activity 

patterns [16, 18, 20, 21]. It is likely that these changes are associated with altered physiological 

processes. 

However, despite the central role of physiology, our understanding of its contribution to the 

adaptability of wildlife to urban conditions is still limited. Urban heat islands, characterized by 

higher Ta, higher precipitation and altered wind velocity [22-24] are assumed to alter or 

negatively affect the metabolism of urban wildlife [11, 12, 25, 26]. Access to human-derived 
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foods in urban habitats offer a more stable year-round food availability compared to rural or 

undisturbed natural environments [8]. As a consequence, animals in urban environments often 

differ in their seasonal fluctuations in body mass from their rural counterparts [20]. 

Furthermore, a diet that is supplemented by human foods and / or waste results in altered 

nutritional proportions, which can have knock-on effects on physiological and health-relevant 

traits [27-30]. Another factor that can influence MR are shifts in behaviour [1]. For example, 

exploratory behaviour is often elevated in urban settings [18]. Indeed, metabolism showed 

phenotypic correlation among populations of common voles (Microtus arvalis) [5]. 

Here, we explored the role of physiological plasticity in enabling Eurasian red squirrels 

(Sciurus vulgaris, henceforth “squirrels”) to cope with urbanisation. Squirrels naturally occur in 

coniferous or mixed and deciduous forests, but are also highly abundant in urban habitat 

patches [16, 31, 32]. Their ability to successfully colonize urban environments makes them a 

valuable study system to disentangle drivers of synurbanisation with regard to metabolism. 

Despite being a small endotherm, this species does not use physiological energy saving 

strategies like torpor and remains homeothermic throughout the year [33, 34]. This is 

remarkable, since small endothermic mammals are under strong pressure to maintain a careful 

balance between the costs of elevated body temperature and energy intake due to 

unfavourable surface area to volume ratios [35]. Previous work has demonstrated that squirrels 

from semi-urban environments show little seasonal variation in MR [34] and instead, appear 

to rely mainly on behavioural adjustments like reduced activity during the winter [33, 36-38]. 

As a food generalist and opportunist with a diverse diet, squirrels seem to benefit from urban 

food availability [32, 39]. They mainly feed on seeds and nuts, but use a large variety of other 

food items when these are unavailable [37, 40]. In urban areas, squirrels also feed on food 

sources provided by humans and exploit left-overs [39, 41, 42]. Akin with findings from other 

urban species [28, 43], the diet composition of urban squirrels can differ from their rural 

counterparts and they may feed on nutrient poor food items [44]. Furthermore, urban 

populations can be exposed to higher levels of intra- and interspecific contact rates, parasite 
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transfer, stress, and exposure to environmental pollutants that might impact metabolism [11, 

25, 45]. 

To gain a better understanding of the physiological mechanisms driving synurbanisation, 

we compared resting metabolic rates (RMR) between wild-caught squirrels from the core area 

of a major city and squirrels inhabiting a nearby forest. We used a common garden approach, 

housing both populations in semi-natural outdoor enclosures, measuring MR with nest boxes 

as metabolic chambers to enable exposure to the same natural climatic fluctuations and to 

minimize experimental disturbances. We explored mass-specific RMR with regard to ambient 

temperature, habitat of origin and inter-individual variability. Additionally, to explore the 

influence of diel cycle, we compared RMR of squirrels during their active (day-time) and non-

active (night-time) phases. The results of our study will advance the knowledge on 

physiological plasticity in the Eurasian red squirrel. Moreover, our work on urban 

ecophysiology contributes to the understanding of physiological demands and possible 

constraints or benefits for wildlife in highly urbanised habitats in general.  

 

Results 

We captured 20 individuals (13 urban, 7 forest). Overall, we obtained a total of 57 

measurement days (range of 1 – 5 per individual; nf orest = 22; nurban = 35, Supplementary Table 

S2). Respirometry data and camera trap pictures showed that all squirrels left their nest box 

close to civil twilight to forage. The time spent outside the nesting boxes did not differ between 

urban and forest squirrels (Tab. 1, t-test: t = -1.48, df = 18, P = 0.157). Forest squirrels were 

heavier than urban squirrels and had higher body condition indices (body mass (g) / nose-anus 

length (cm)), at the beginning (t-test, body mass: t = 3.60, df = 18, P = 0.002; BCI: t = 3.85, df 

= 18, P = 0.001) as well as after the experimental period (t-test, body mass: t = 3.37, df = 18, 

P = 0.003; BCI: t = 2.99, df = 18, P = 0.008). However, urban squirrels showed significant 

weight gain over the course of the experiment (paired t-test, t = -2.53, df = 12, P = 0.027), 
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whereas woodland individuals did not (see Tab. 1 and [44] for further details). Urban individuals 

consumed on average 0.44 ± 0.13 ml O2 h-1 g-1 (0.33 – 0.52 ml O2 h-1 g-1) whereas RMR of 

forest squirrels was 0.48 ± 0.18 ml O2 h-1 g-1 (0.24 – 0.64 ml O2 h-1 g-1) over the measured 

temperature range of 8 – 29° C. See Tab. 1 for a full overview of total and mass-dependent 

RMR results per group.  

Table 1 Mean values (± SD) for body mass (before/after the housing period) and time spent outside the 

nesting box as well as mean values (± SD) and ranges (in square brackets) for mass -dependent and 

total RMR of forest (Nf orest = 7, nf orest = 22) versus urban squirrels (Nurban = 13, nurban = 35). Given are 

daily RMR averages (in ml O2 and in kJ), as well as diurnal and nocturnal values. 

 Forest Urban park 

Body mass (g), before / after                          

the experiment 
371.4 ± 27.0 / 376.3 ± 19.5 334.2 ± 19.0 / 343.8 ± 21.1 

Time spent outside the nesting box 

(h/measurement day) 

3.1 ± 2.5 4.7 ± 2.1 

RMR (ml O2 h
-1 g-1) 

0.48 (± 0.18) 

[0.24 - 0.64] 

0.44 (± 0.13) 

[0.33 - 0.52] 

RMR (ml O2 h
-1) 

173.52 (± 67.85) 

[84.50 – 232.09] 

149.84 (± 44.40) 

[109.35 – 202.99] 

RMR (kJ h-1 g-1) 

0.0097 (± 0.0038) 

[0.005 – 0.013] 

0.0091 (± 0.0027) 

[0.007 – 0.011] 

RMR (kJ h-1) 
3.54 (± 1.38) 

[1.72 – 4.73] 

3.05 (± 0.90) 

[2.23 – 4.14] 

Diurnal RMR (ml O2 h
-1 g-1) 

0.45 (± 0.18) 

[0.22 - 0.63] 

0.42 (± 0.13) 

[0.30 – 0.50] 

Diurnal RMR (ml O2 h
-1) 

164.34 (± 67.65) 

[79.83 – 229.36] 

140.32 (± 41.72) 

[99.73 – 193.25] 

Nocturnal RMR (ml O2 h
-1 g-1) 

0.53 (± 0.17) 

[0.26 - 0.68] 

0.49 (± 0.13) 

[0.37 - 0.61] 

Nocturnal RMR (ml O2 h
-1) 

194.67 (± 65.35) 

[95.33 – 278.72] 

166.60 (± 44.05) 

[125.48 – 213.71] 
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We found statistical support for the interaction between nest box temperature (Tnest) and 

habitat (ΔAICc = 4.79, Cohens f2= 0.28, Tab. 2 and 3), whereby RMR increased with 

decreasing Tnest in both groups (Fig. 1), but with a steeper slope in forest squirrels (Fig. 1). 

Furthermore, we found support for an effect of the phase in the diel cycle (ΔAICc = 5.79, 

Cohens f2= 0.16, Tab. 2 and 3). An effect of sampling period on RMR was marginally supported 

(ΔAICc = 2.02, Cohens f2= -0.27 – 0.13, Tab. 2 and 3). Average RMR was higher during the 

night compared to daytime estimates (Fig. 1). We found no statistical support for an influence 

of the phase of the housing period (first/second half) nor the interaction of habitat and sampling 

period (Tab. 2 and 3). RMR was highly variable across individuals (ICC 0.42, Tab. 3). The 

marginal R2 or conditional R2 respectively for the top ranked model was 0.304 / 0.597 (Tab. 3).  

Table 2 The top ranked candidate linear mixed models evaluating the relationship between habitat type 

and covariates on RMR of Eurasian red squirrels. The models M1 to M6 sum up to a cumulative Akaike 

weight of 0.95 (= 95% confidence set). Parameters included in the model are indicated by “+”. AICc= 

Akaike’s information criterion, corrected for multiple parameters and small sample size (AICc), ΔAICc= 

differences in AICc; W i(M)= Akaike weights per model, variate weights (W i(V)) for all predictors were 

calculated by summing up Akaike weights of the models containing the respective predictor ; ER= 

evidence ratio, Tnest: nest box temperature; habitat: habitat of origin; D/N: time of the day (day or night);  

run: sampling period (1 – 4), first/second: first or second half of the housing period 

Model 

no. 
Intercept Tnest Habitat D/N Run 

First/ 

second 

Habitat: 

run 

Habitat: 

Tnest 
AICc ∆ AICc W i(M) ER 

M1 0.610 -0.0094 + + +     + -2941.849 0.000 0.488   

M2 0.612 -0.0095 + + + +   + -2939.834 2.015 0.178 2.738 

M3 0.622 -0.0095 + +       + -2939.112 2.736 0.124 3.928 

M4 0.570 -0.0094 + + +   + + -2937.938 3.911 0.069 7.068 

M5 0.622 -0.0096 + +   +   + -2937.060 4.789 0.045 10.964 

M6 0.550 -0.0069  + +    -2936.062 5.787 0.027 18.054 

M7 0.571 -0.0094 + + + + + + -2936.036 5.812 0.027 18.287 

W i(V)  0.932 0.905 0.932 0.763 0.223 0.069 0.905     
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Table 3 Coefficients for the predictors in the top ranked model (model no. 1, Tab. 2) complemented by 

standard errors (SE), confidence intervals (CI), degrees of freedom (df), standardized effect sizes 

(Cohen’s f2) as well as the intraclass correlation coefficient (ICC) and the marginal / conditional R2. Bold 

predictors indicate statistical significance with CÌ s not overlapping zero.  

Predictors Estimates SE CI df Cohen’s f2 

(Intercept) 0.612 0.050 0.510;0.714 26 0.000 

Habitat (urban park) -0.103 0.048 -0.202; -0.005 32 -0.326 

Tnest -0.010 0.001 -0.012; -0.007 1679 -0.320 

D/N (night) 0.051 0.006 0.040;0.062 1737 0.157 

Run (2) 0.050 0.051 -0.058;0.159 15 0.127 

Run (3) 0.075 0.052 -0.034;0.185 16 0.223 

Run (4) -0.091 0.055 -0.208;0.026 15 -0.267 

first_sec (first) -0.003 0.020 -0.046; 0.039 17 -0.011 

Habitat(urban park):Tnest 0.005 0.002 0.002;0.008 1643 0.279 

ICC 0.422     

Marginal R2 / conditional R2 0.304 / 0.597     

 

 

Figure 1 Fitted lines of model predictions and 95 % CI band generated from the top ranked 
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model as well as data points for diurnal (left panel) and nocturnal (right panel) mass specific 

resting metabolic rate (VO2 ml h-1 g-1) at measured ambient temperatures (diurnal range 8 – 

29°C, nocturnal range 8 – 25°C) for forest (solid line, green band and green dots, N = 7) versus 

urban (dashed line, grey band and grey triangles, N = 13) squirrels (see Supplementary Figure 

S5 for graphs per individual). 

 

Discussion  

We used a common garden style experiment with semi-natural conditions to evaluate the 

energetic demands of Eurasian red squirrels from two contrasting habitats: an urban area and 

a nearby forest. Variations in energy expenditure were associated with Tnest, however, the 

strength of this relationship was different depending on the habitat of origin of individuals. 

Among endothermic species, Ta represents one of the main factors influencing metabolism 

[46-49] and several studies document physiological acclimatization to Ta over different 

seasons, latitudes or altitudes [4, 50]. Generally, urban populations experience higher Ta (on 

average 0.5 – 3.0°C) than their rural counterparts, especially at night [12, 23]. This is also the 

case for the core areas of Hamburg where temperatures are on average up to 1.1° C warmer 

than the surrounding areas, increasing up to 3° C in summer [51]. As expected, energy 

expenditure in both of our experimental groups increased as Tnest decreased below the thermal 

neutral zone [34, 52-54]. However, we did not find an overall lower RMR in urban individuals. 

Instead, we found that the magnitude of the effect of Tnest, i.e. the increase in RMR per 1°C 

change, was habitat-dependent.  

We found that forest individuals showed a steeper slope of metabolic regulation, indicating 

a higher thermal sensitivity of RMR compared to urban squirrels. This supports previous 

findings of cold adaptation or temperature compensation in populations from colder climates, 

expressed by a higher RMR or a steeper relationship of RMR to Ta [55]. Conversely, the 

apparently lower responsiveness of the urban squirrels indicates metabolic acclimatization to 
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the warmer, local urban microclimate. Besides warmer Ta, urban habitats display smaller 

diurnal urban Ta ranges [56, 57], which might have further contributed to the lower 

responsiveness in urban squirrel. Changes in MR driven by the thermal environment are 

usually closely linked to changes in thermal conductance, i.e., differences in insulation [58]. 

We assume that the urban squirrels differed in insulation-effective body components, e.g., in 

fur density or body fat compared to their forest counterparts. Seasonal changes in fur density 

have been documented in semi-urban squirrels [34]. Higher Ta combined with more stable 

resource availability leads to a buffering of seasonality in urban habitats [8] and this might lead 

to different fur densities in urban vs forest squirrels. Interestingly, urban and rural bird nestlings 

differ in their number of feathers [59] and similar insulation effective differences might occur in 

mammals. 

Alterations in activity as found in several urban species including squirrels [18, 60-62] as 

well as changes in the diet could also lead to modifications in body composition, such as an 

increase in body fat and / or a decrease in muscle mass [63], which may help explain our 

findings of different conductance between the groups. In urban areas, the scarcity of natural 

food items is often compensated by supplemental feeding [31, 32, 39]. We observed massive 

year-round supplementation in the urban habitat, but none in the forest (Wist et al., unpublished 

data). Surprisingly, body mass and condition were lower in the urban squirrels though. Despite 

higher food availability, urban wildlife often experiences low-quality diets, a shift in nutrient 

composition, or the ingestion of toxins and pollutants [20, 28, 30, 43]. This can entail decreased 

digestibility of foods or lower processing efficiency, as well as other functional alterations, 

relevant for body mass and MR, such as changes in organ size (e.g., of the gut or liver), fat 

deposits or muscle mass [63-65]. Metabolic processes, such as efficiency in food digestion or 

in ATP generation, directly influence or even limit energy expenditure [1, 66]. Moreover, diet 

quality and digestive efficiency together affect MR [67]. For instance, yellow bellied marmots 

(Marmota flaviventris), exhibit higher MR when fed a diet deficient in essential fatty acids [68]. 

The Talas tuco-tuco (Ctenomys talarum) was found to have lower MR when on a low-quality 
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diet, in combination with a lower digestibility and higher gut transit [67]. South American foxes 

(Pseudalopex cupaeus) displayed increased MR when fed a mixed diet containing rats and 

fruits compared to a diet of only rats [69]. We found that urban squirrels chose food items 

higher in sugar content and more non-natural food items [44]. In combination with high 

supplementation, this could also have contributed to an increased insulation-effective fat layer 

in urban individuals and / or a different distribution of fat deposits between urban and forest 

squirrels, influencing conductance [63].  

Interestingly, as a result of the lower thermal sensitivity of RMR to changes in Tnest, urban 

individuals spent less energy at the colder end of the Tnest range, whereas this pattern was 

reversed at higher Tnest (below/above ~19°C during the day and ~ 18°C at night). These 

findings contradict assumptions that higher urban temperatures are linked to a general 

increase in MR, e.g. by pollution induced metabolic costs [11]. However, this effect was mostly 

found in ectotherms and eco-physiological studies on urban mammals remain scarce. Notably, 

striped field mice (Apodemus agrarius) showed a reduced oxygen-carrying capacity in urban 

habitats, which was assumed to be caused by higher pollutant levels [70]. As the oxygen-

carrying capacity limits the scope of MR [1], this would also imply a decreased, rather than an 

increased MR in urban habitats. The comparably higher MR of urban squirrels at higher Tnest 

was an unexpected outcome. Endothermic mammals are not only challenged by the need for 

heat production at low Ta, but by heat dissipation at high Ta [52, 71, 72]. Despite possible shifts 

in thermal tolerance of urban wildlife [12, 73], urban mammals might be pushed towards their 

upper critical limits, suffering from over-heating and water loss, especially in the light of global 

warming. This could be further exacerbated by additional negative stressors such as urban 

noise or pollution [11, 74, 75]. Temperatures exceeding the above-mentioned threshold of 

~18°C for at least one hour occurred on 40 % of the days in 2018 – a comparably hot year and 

on 32 % of the days in 2019 (Meteorological Institute, Universität Hamburg, Germany). 

However, urban squirrels might be less limited by heat dissipation, as they are less active and 

humans frequently provide year-round drinking water for birds and squirrels in surrounding 



CHA PTER 4: METABOLIC RESPONSE  

 

122 
 

gardens and on balconies (citizen survey data, Wist et al., unpublished). In addition, as urban 

squirrels respond less strongly to fluctuations in Ta, the more stable rate of metabolism might 

be advantageous at the cellular level, as the body does not have to cope with pronounced, 

recurrent changes in homeostasis, which could possibly lead to e.g. cell stress, as is known 

from torpor-arousal-cycles [76].  

Independent of habitat of origin, phase in diel cycle was a relevant predictor of RMR in our 

model. As diurnal endotherms, squirrels usually display slightly lower body temperatures 

during the night [33, 77] and this is usually accompanied by a lower MR in an animal’s inactive 

phase [4]. Surprisingly, nocturnal RMR in our study was consistently higher in both urban and 

forest individuals than diurnal RMR at the same Tnest. The drivers of this unexpected finding 

remain unclear. We assume that squirrels have to be able to elevate their metabolism radically 

as a prerequisite for quickly and suddenly climbing trees or jumping, e.g., in order to escape 

from predators. Diurnal periods of activity bursts might be followed by compensatory periods 

of extremely low RMR when resting. As we were only able to obtain MR data while the squirrels 

were in the nest boxes comparably low RMR values probably contributed disproportionately to 

the dataset although we statistically accounted for imbalances in the data. Moreover, the stress 

response in vertebrates seems to be highest during their inactive phase [78], which might have 

contributed to elevated metabolism during the night in this study. 

Besides the habitat-related differences, mass-specific RMR was highly variable across 

individuals. This is a well-known phenomenon, likely explained by diverse extrinsic and intrinsic 

factors, such as developmental conditions or genotype [45, 79, 80]. Historically, squirrels from 

both of our study sites had to adapt to similar environmental conditions due to their close 

geographic location. It is also plausible that gene flow occurred between them since an urban 

matrix does not always represent a barrier [81-83]. Nevertheless, there was still a clear effect 

of habitat on the thermoregulatory response of our two study groups. We are aware of the 

small sample size, particularly within the forest group and acknowledge that our results should 

be viewed with some caution. Our study also differs from many other studies in that we used 
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a semi-natural set-up. Natural variability in environmental factors is often deliberately removed 

in physiological studies to reduce the effect of confounding variables. However, we aimed to 

expose the squirrels to as natural conditions as possible to express natural behaviour, using 

freshly caught individuals and largely undisturbed nest boxes with natural fluctuations in Ta 

and other climatic parameters to obtain biologically relevant results applicable to the field 

situation [84]. 

Conclusions 

Our study gives valuable first insight into energetic demands of urban versus forest squirrels 

and thereby contributes to the understanding of ecophysiological consequences of urban heat 

islands on mammalian wildlife. This is particularly important in the light of rapid global 

urbanisation and climate change. Since resting metabolism sets limitations for resource intake 

and allocation to fitness components, physiological plasticity can be a key trait making squirrels 

successful colonizers in urban environments. However, we did not find an overall lower or 

higher RMR in the urban population, but more stable response to Ta-fluctuations. The higher 

energy expenditures at higher Ta might indicate increased costs at temperatures that are 

expected to occur more frequently with the ongoing climate change [85]. There is an urgent 

need for studies exploring the interrelation of additional factors such as intrinsic processes 

related to diet or pollution with metabolism of urban mammals to provide a more 

comprehensive picture of the physiological consequences of urbanisation. Urban populations 

might be composed by “many losers and few winners” [86, 87] and we still do not know if 

synurban species thrive or rather persevere, even when occurring in high densities.  

 

Methods  

Trapping and handling 

We trapped squirrels in a small park (Wohlerspark, 4.6 ha) located in the core city area of 

Hamburg, Germany (N53° 33' 29.646" E9° 57' 11.459") and in a forested site (Hahnheide, 
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1.450 ha) located approximately 30 km from the city centre (N53° 37' 14.146" E10° 27' 1.667"). 

The park is characterized by a dense urban matrix of a city with 1.8 million inhabitants, resulting 

in very high human disturbance and various supplemental foods. The forest site is a nature 

reserve of mixed forest stands with many conifers and old trees. The mean year-round squirrel 

density in the park was much higher than in the forest site, (park= 5.1 squirrels/ha; forest = 0.1 

squirrels/ha, minimum number alive, Wist et al., unpublished data). We used live traps (20 x 

20 x 50 cm; Tomahawk Live Trap, Hazelhurst, Wisconsin, USA) with a seed and nut mix for 

bait. We opened the traps at 07:30 and checked them regularly until closing after 6 – 8 h. We 

used a cloth handling cone [88] and individually marked captured animals using PIT-tags (ID-

100B; Trovan Ltd., East Yorkshire, UK). We recorded body mass (spring-balance ± 5 g, KERN 

& SOHN GmbH, Balingen-Frommern, Germany), body length (nose-anus-length ± 0.5 cm, 

tape measure), sex, reproductive status and age (juvenile, subadult or adult, classified via body 

mass and reproductive status, following [89]). To minimize confounding effects on metabolism, 

such as sex or growth, we only selected adult males with no signs for disease. We transported 

squirrels to the Institute of Cell and Systems Biology of Animals, Universität Hamburg 

(53°34'02.2"N 9°58'45.6"E).  

Housing conditions 

We held squirrels individually in large outdoor enclosures (average floor area 5 m2), under 

natural photoperiod, Ta and humidity. Housing facilities allowed us to house a maximum of six 

individuals at one time, resulting in four sampling periods (i.e. runs) that took place between 

the end of March and end of May during two consecutive years (2018/2019). We equipped 

each enclosure with branches to enable natural climbing behaviour and a nest box (Elmato 

10064 Großsittichkobel, Elmato GmbH, Holzheim, Germany, 30 x 22 x 20 cm, ~12 L), insulated 

with organic material (Pavatex, Pavaflex, Soprema GmbH, Germany). Individuals were housed 

between 13 and 18 days. Food (mix of foods usually encountered in their habitats) and water 

were offered ad libitum and changed every day at 2 p.m. (see [44] for further details and 

Supplementary Figure S1 for a schematic sketch of the experimental set-up). We weighed all 
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individuals again after the experiment to record possible changes in mass and released them 

back into their habitats at their capture sites.  

Ethical approval 

All applicable institutional and national guidelines for the care and use of animals were 

followed. The authors complied with the ARRIVE guidelines. All procedures and animal 

handling were according to the German animal protection law and approved and authorized 

by the authorities of Hamburg and Schleswig-Holstein (general and housing permission by 

“Hamburger Behörde für Gesundheit und Verbraucherschutz”, permit no. 87/16, 17 November 

2016 and permit no. 1/2018, 7 February 2018; exemption for the keeping of wild animals by 

the “Hamburger Behörde für Energie und Umwelt” and extension of the permits to Schleswig-

Holstein by the “Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume 

des Landes Schleswig-Holstein” (permit of 28 December 2016).  

Measurements of energy expenditure and temperature 

We quantified RMR via oxygen consumption as ml O2 h-1 using open flow respirometry. Air 

from each animal was drawn directly from the nest boxes through airtight tubing (Tygon, Saint-

Gobain, Paris, France). Oxygen content was quantified using portable oxygen analysers 

(OxBox 1 - 4, designed and constructed by T. Ruf & T. Paumann, FIWI, University of Veterinary 

Medicine Vienna, Austria), powered by a standard 12 V car battery [34, 90-92]. By placing the 

measurement devices in a storage room next to the enclosures and using the nest boxes as 

respirometry chambers, disturbances to the animals were avoided since only the air tube 

already connected to the particular nest box had to be plugged into the oxygen analyser. We 

used a non-toxic modelling clay for sealing crevices and connections to minimise outflow 

contamination. Airflow was monitored by the flowmeter integrated in the set-up and set to 80 

l/h. Oxygen content of the sample air was determined every ten seconds. As a reference, an 

hourly zero check was performed, i.e. oxygen content of the ambient air was analysed in the 

same interval for five minutes. We used silica gel to dry the air before entering the 

measurement devices. Calibration of the oxygen sensors was performed for each sampling 
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period with calibration gas mixed by a gas mixing pump (Wösthoff Messtechnik GmbH, 

Bochum, Germany). 

We measured RMR of the individuals after ~3 days of acclimation to the enclosures. We 

took measurements for periods of 24 h, starting in the early afternoon directly after food 

change, to enable recording of the complete inactive period at night as well as diurnal resting 

phases. Individuals were measured for a second 24 h period at the end of the housing period 

(day 12 – 17). Therefore, we obtained at least two measurement days for 16 out of 20 

individuals to account for potential variation in MR throughout their time in captivity. Four 

individuals refused to use their nest box in the beginning, therefore, impeding the initial 

measurement. We measured a subset of individuals also in the middle of the housing period 

(see Supplementary Table S2). Ambient temperatures in the nest boxes (Tnest) as well as Ta 

and humidity in the enclosures were measured in intervals of 10 minutes with loggers 

(Thermochron iButtons DS 1922 / Hygrochron iButtons, DS1923L, resolution ± 0.5°C, Maxim 

Integrated Products, San Jose, CA, USA). We also monitored some of the squirrels (n=7) with 

camera traps (Snapshot Mini 5.0MP, DÖRR GmbH, Germany) to validate periods in which the 

individuals were outside and inside the nest box with the respirometry data. 

Data processing and statistics 

We processed data-files from the oxygen analyser with Clampfit 10.3.1.4 (Molecular 

Devices, Sunnyvale, USA) to account for zero checks and exclusion of periods where the 

individuals were outside of the nest boxes (Supplementary Figure S6). We corrected measured 

values to standard temperatures and pressure and calculated the rate of oxygen consumption 

with the following equation [93], which is applicable for our set-up [52, 94]: 𝑉′𝑂2 =

𝐹𝑅𝑒
(𝐹𝑖𝑂2−𝐹′𝑒𝑂2)

[1−𝐹𝑖 𝑂2(1−𝑅𝑄)]
. FRe represents the excurrent flow rate and FiO2–F′eO2 accounts for the 

difference in fractional O2 concentration when entering and leaving the nest box. We assumed 

a substrate utilization composed by 50 % fat and 50 % carbohydrates and thus used a 

respiratory quotient (RQ, ratio of CO2-production to O2-consumption) of 0.85 [1, 91, 92, 95]. 
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We used the energy equivalence of 20.37 J/ml O2 to convert oxygen consumption into energy 

units [1, 91].  

We included only the lowest 30 % of RMR values per hour for analyses (RMR) to ensure 

excluding activity peaks [90]. Additionally, we categorized the data as day-time or night-time 

using civil twilight times. We then excluded the hour before and after official sunrise/sunset, 

since they represent potential transition periods from diurnal to nocturnal metabolism. To 

control for pseudo-replication, we then calculated RMR means per individual and hour of 

measurement day for Tnest rounded to the nearest integer. Clear upper outliers in Tnest (>3° C 

above Ta), indicating an animal sitting close to or on the temperature logger were discarded. 

In those cases, we used the median of Tnest of the other nest boxes at the same time for the 

analysis. Due to the natural fluctuations of Ta, and thus Tnest, not all temperature integers were 

represented sufficiently frequently for robust analyses and were thus excluded. Therefore, we 

focused on RMR values for a temperature range between 8°C and 29°C. To obtain mass-

specific RMR, we divided the values by individual body mass in g. We assumed a steady mass 

change from the start to the end of the experiment and used the estimated body mass for the 

particular day of measurement. 

Data processing and statistics were performed in Excel (MS Office 2016) and R 4.1.2 (R 

Core Team 2021), respectively. We used the “RStudio” environment (RStudio Team 2021) and 

the packages “lubridate’ [96], “dplyr” [97], “zoo” [98] and “lattice” [99] for initial data processing. 

We used linear mixed-effects models (LME) (lmer function within the package “lme4” [100]) 

and the package “lmertest” [101] with RMR (ml oxygen consumption per hour and g of body 

mass; ml O2 h-1 g-1) as response variable. We tested all predictors for pair-wise correlations to 

avoid multicollinearity. We modelled Tnest, habitat, phase in diel cycle (day/night), sampling 

period and time of housing period (first or second half of the housing period) as fixed factors 

in the full model. Graphical exploration (“ggplot2” [102], “effects” [103]) revealed an interaction 

of habitat and Tnest, as well as habitat and sampling period on RMR, therefore interactions were 

included in our model. Differences in sampling success per individual were corrected by using 
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a standardized weight in the global model with weighting individuals according to the number 

of data points. We further allowed different intercepts and slopes per individual by including 

individual nested in phase of housing period as random factor to account for individual 

differences, repeated measurements across the individuals and the effect of the length of 

housing. See Supplementary Methods, Supplementary Table S3 and Supplementary Figure 

S4 for detailed information of the full model. 

We used an information theoretic approach for our data analysis and performed model 

selection based on Akaike information criterion for small sample size (AICc) and Akaike weights 

[104-106]. We further used the dredge function from the MuMIn package [107] and model 

comparison with maximum likelihood. Normality and homoscedasticity were assessed by 

visual inspection of residual plots [108]. Since we included interactions in our models, model 

averaging was not feasible. Thus, we present the 95 % confidence set of all possible models, 

i.e., models with sum of AIC weights ≤ 0.95 [105, 106]. To further obtain a measure of relative 

importance for each predictor, we summed up the AIC weights from all models of the 

confidence set containing the respective predictor [109, 110]. Finally, we refitted the top ranked 

model with REML and report predictor estimates, confidence intervals (CIs) and local effect 

sizes (standardized coefficients or Cohen’s f2) for the predictors retained in the model [111, 

112] as well as the marginal and conditional R2 (table created via “sjPlot” [113]). We interpreted 

estimates with CIs that do not overlap zero as evidence of model support and statistical 

significance [106]. Furthermore, we estimated the intra-class correlation coefficient (ICC) for 

the top ranked model as a measure of differences in RMR among individuals [114-116]. Unless 

otherwise stated, we present the data as mean ±1 SD, N reports the number of individuals and 

n the number of measurement days.  
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S1 

 

Supplementary Figure S1 Overview of experimental design: live trapping (left panel), housing conditions and 

length (middle panel) and respiromentry set-up (right panel) 
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S2 

Supplementary Table S2: Overview of sampling effort per sampling period 

 

Supplementary Methods (statistical details) 

Our full model was fitted with restricted maximum likelihood (REML) and described by the 

following structure (Supplementary Tab. 2): 

ml O2 h-1 g-1 ~ habitat + Tnest + D/N + run + first_sec + habitat:run + habitat:Tnest + 

(1+first_sec | individual), data = eich, REML = T  

  

Run Year Month Individual no. Habitat
Measurements 

(24 h) 

1 forest 2

2 forest 1

3 urban 2

4 urban 2

5 urban 2

6 urban 2

7 forest 2

8 urban 2

9 urban 2

10 urban 3

11 urban 3

12 forest 5

13 forest 3

14 urban 1

15 urban 4

16 urban 3

17 forest 5

18 forest 4

19 urban 4

20 urban 5

Total 20 57

3 2019 April

4 2019 May

1 2018 April

2 2018 May
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S3 

Supplementary Table S3: Overview of predictors included in the full model 

Variable Type of predictor Abbreviation 

Nest box temperature fixed effect, continuous Tnest 

Habitat of origin (forest/urban park) fixed effect, factor with 2 levels  habitat 

Phase in diel cycle (day/night) fixed effect, factor with 2 levels  D/N 

Time of housing period (first/second half) fixed effect, factor with 2 levels first_sec 

Sampling period fixed effect, factor with 4 levels  run 

Habitat and sampling period fixed effect, interaction habitat:run 

Habitat and nest box temperature fixed effect, interaction habitat:Tnest 

Individual nested in first/second half of the 

housing period 
random effect, nested first_sec|individual 

 

S4 

 

Supplementary Figure S4 Diagnostic plot with fitted values versus residuals created from the full model. 
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S5 

 

Supplementary Figure S5 Data points from all measurement days per individual for diurnal (green dots) and 

nocturnal (grey dots) mass specific metabolic rate (VO2 ml h-1 g-1) at measured ambient temperatures (diurnal range 

8 – 29°C, nocturnal range 8 – 25°C).  
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S6 

 

Supplementary Figure S6 Two examples of the raw data output from the urban individuals Sam (A) and Kim (B). 

Difference in oxygen content of the animal air/reference air in mV are plotted over time. The measurement curve 

includes hourly reference air checks as well as periods where the animals left their nest boxes (usually around 

sunrise to forage). In these cases, the data points generated from the animal rapidly dropped to the level of 

reference air checks (ambient air). These timespans were discarded prior to analysis. Day and night are shown by 

the white or black bars and correspond to local civil twilight data. Higher nocturnal values were already detectable 

within these raw data outputs (indicated by an average higher distance to the reference air checks). Double 

checking these outputs was part of our steps to validate the data and the unexpected outcome of a higher 

nocturnal RMR.  
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The urgent need to study urban wildlife species 

Urbanisation, a major part of the ongoing human induced global change, significantly drives 

biodiversity loss and species homogenisation (McKinney 2006, Grimm et al. 2008, Li et al. 

2022). Unlike other forms of land conversion, urbanisation is usually a non-reversible 

transformation with lasting impacts on wildlife (Gibbs et al. 2019, Gao and O’Neill 2020). Future 

land conversion to urban habitats is predicted to further decrease local within-site species 

richness of amphibians, birds and mammals by around one third and their within-site 

abundance by more than 50 % (Li et al. 2022). Yet, animals’ sensitivity to environmental 

change varies, and a couple of usually generalist species apparently successfully colonises 

urban habitats (Alberti et al. 2017). However, being a successful urban adapter or even 

exploiter is not without costs (Birnie-Gauvin et al. 2016). Although our knowledge of the 

consequences of urbanisation for wildlife has increased in recent decades (Collins et al. 2021), 

we still lack basic information about mechanisms and consequences, particularly in taxa such 

as mammals (Ouyang et al. 2018, Zuñiga-Palacios et al. 2021). Greater insight into species 

response to urbanisation is crucial though for informed urban planning and nature conservation 

to mitigate effects of urban stressors in already existing and rapidly emerging urban systems 

around the world. 

Human activities in urban habitats change the availability and quality of food as well as an 

animals’ thermal environment, all of which are fundamental to various aspects of animal 

biology and fitness (Birnie-Gauvin et al. 2017). In my dissertation, I therefore investigated three 

research topics, important for a better understanding of the presence, long-term survival and 

fitness of urban wildlife populations (Birnie-Gauvin et al. 2017, Ouyang et al. 2018). First, I 

investigated natural and human provided food resources as well as population parameters of 

the common urban mammal Sciurus vulgaris in three small parks in a city core area in 

comparison to a rural forest. Second, I aimed to get a deeper understanding of its nutrient 

ecology and associated consequences by examining whether and how squirrels respond to an 

urbanised food availability in terms of their food choice behaviour and nutrient intake. Third, I 
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investigated the metabolism of squirrels to assess whether and to which degree they adjust 

their energetic expenses to the urban habitat. Here, I summarise and discuss the findings of 

my project and conclude with conservation implications and future research questions.  

Urban environmental variability influences local wildlife populations 

Cities consist of a great variety of different habitat patches. Built-up areas are generally 

interspersed with urban green spaces. These are, in turn, divided into subcategories and green 

spaces can comprise remnant vegetation, urban wasteland, private gardens, managed parks, 

green roofs, etc. (Aronson et al. 2017, Lepczyk et al. 2017). The resulting habitat mosaic leads 

to a strong heterogeneity of environmental factors in space and / or time that asymmetrically 

affects urban wildlife (Faeth et al. 2005, Alberti et al. 2020, Szulkin et al. 2020). Modified 

vegetation cover and structure, extended growing seasons or changes in nutritional quality of 

plant material, as well as abundant supplemental food sources significantly alter the food 

supply of urban populations (Birnie-Gauvin et al. 2017, Anders et al. 2021), yet the magnitude 

of this modification likely varies across scales (Blumstein et al. 2023). Deeper knowledge of 

the variability of natural and supplemental food availability within the same urban matrix, i.e. 

at small spatial scale, and its consequences for the spatial ecology of wildlife populations is 

still poor though (Alberti et al. 2020). 

The findings from the first part of this project (Chapter 2) demonstrate that pronounced 

heterogeneity in factors, such as food availability and animal population densities, can not only 

occur between urban and rural habitats or different types of urban habitat patches, but also 

between nearby urban fragments of the same type, in this case small parks in the urban centre. 

As confirmed here, tree diversity is often increased at urban sites resulting from management 

activities and active planting of many different species, whereas managed forests are usually 

characterised by comparably few tree species relevant for timber production (Wiersum 1997, 

Grimm et al. 2008, Zhao et al. 2023). At the park scale, local vegetation varies with historical 

and current management plans since cities usually do not have an overarching plan for their 



CHA PTER 5: GENERAL DISCUSSION & CONCLUSIONS  

148 
 

green areas. Local decision makers can be influenced by individual preferences and optical 

appearance of plants. Moreover, they have to balance between several factors and consider 

local financial and human needs while nature conservation is usually not a priority (Aronson et 

al. 2017). Consequently, urban wildlife encounters a novel environment with an artificial 

vegetation assembly that can vary substantially in composition and nutrient suitability at small 

scale across the urban matrix. Accordingly, tree numbers and diversity differed between the 

parks in this project. These variables as well as share of conifers naturally represent food and 

shelter availability for squirrels (Koprowski 2005a, Flaherty et al. 2012, Krauze-Gryz and Gryz 

2015). Thus, they influence survival, reproduction or dispersal and finally squirrel population 

parameters (McCleery 2010, Hubert et al. 2011, Selonen et al. 2018). Strong dominance of 

one tree species as found in Wohlerspark or low conifer numbers in all three parks indicate 

limitations in natural food supply or quality for squirrels. 

Supplemental food sources that were absent in the forest, but available at all urban sites in 

this study, might compensate for natural food limitations, yet they also differed in abundance 

and composition between parks. I did not collect data on human visitors, but observations 

during field work indicated differences in recreational use, littering and wildlife feeding by 

humans that likely contributed to this finding. Particularly, Wohlerspark was visited by high 

numbers of younger people and intensively used for picnics and parties. Visitors frequently left 

refuse on the lawns or in the shrubbery and waste bins were overfilled in the summer season. 

Some people visited the park on a daily basis and provided hand-feeding or bird food in the 

park shrubbery. Accordingly, observations as well as data collection documented a great 

variety of human-related food items and we observed urban squirrels to forage on diverse 

supplemental foods, from watermelon to even processed foods, such as cupcakes or biscuits 

(Fig. 5.1). 
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Figure 5.1: Examples of supplemental food sources available and / or foraged by squirrels in 

Wohlerspark: fat balls (A, B), scattered bakery products (C), refuse (D), picnic leftovers: e.g., grapes 

(E), watermelon (F, G), banana (H), apple (I) and walnuts provided by hand feeding (F). Photo credits: 

L. Thomas (A), B. Wist (photos C, D, E), B. Probst (photo F), R. Schädlich (photos B, G, H, I, J) 
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These differences in food supply are an environmental factor that acts on the individual as 

well as on the population, affecting species abundance and population dynamics (Rodewald 

and Gehrt 2014, Ouyang et al. 2018). Supplemental foods generally drive high population 

densities in some species since they decrease food limitations and increase resource 

predictability (Luniak 2004, Anderies et al. 2007, Evans and Gawlik 2020). They occur 

unevenly clumped across the urban matrix and can act as environmental cue that shortens 

dispersal, decreases home ranges or attracts individuals (Rodewald and Shustack 2008, 

McCleery 2010). Thereby, supplemental feeding accumulates individuals around feeding spots 

(Alvey 2006, Rodewald and Gehrt 2014). Consequently, wildlife population density estimates 

might rarely apply to a whole city (Rodewald and Gehrt 2014, Ouyang et al. 2018). Density 

estimates from different patches within a city thus represent a fundamental basis for a better 

understanding of the mechanisms of synurbanisation. Particularly the ratio of urban to rural 

densities is considered a crucial metric for assessment of species responses (Evans et al. 

2011). My findings from Chapter 2 confirmed increased population densities of a common 

urban mammal, but showed that density ratios in comparison to a rural forest can considerably 

vary between nearby parks. Variability in densities across urban sites was also found in other 

urban species, such as raccoons (Graser III et al. 2012). However, these differences are often 

detected when comparing different types of urban habit patches, such as parks versus 

surrounding matrix or sites with increasing distance from the city core. 

Interestingly, the smallest park in this project had the lowest tree diversity among the parks, 

but highest tree numbers, highest supplemental food abundance and an unexpectedly high 

squirrel density. In rural areas, tree squirrels can maintain high densities in small forest 

fragments, but this only applies to S. vulgaris when supplemental feeding and connectivity to 

other fragments are high (Koprowski 2005b). The former was confirmed here, but the latter 

remains questionable since all parks in this project were surrounded by a dense urban matrix 

and had main roads and railway lines in short distance to the park limits. My findings 

highlighted the relevance of food supply for local wildlife population parameters. They further 
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emphasise that choosing an appropriate spatial scale for urban wildlife studies is fundamental 

for informed decision about urban species persistence and conservation actions since the 

range and composition of available foods change in space or time and population parameters 

from one spot might not tell the full story (Shochat et al. 2006, Birnie-Gauvin et al. 2017, Alberti 

et al. 2020). My field study enabled a more comprehensive understanding of local conditions 

in highly urbanised sites and represented an important prerequisite for the following 

experiments. 

The relevance of nutrient ecology in urban research 

The type of available non-natural food items documented in Chapter 2 questioned how they 

influence squirrels’ diet composition and whether the supplemental foods meet their nutritional 

requirements, particularly in light of the comparably lower body condition in the park with 

highest food supplementation (Chapter 2 / Supplementary material, Chapter 3). Furthermore, 

increased population densities and associated resource competition can have subsequent 

effects on behaviour and this likely applies to park populations (Parker and Nilon 2012). Hence, 

studying not only the urban food availability in the field, but also exploring how species respond 

behaviourally, i.e., how they compose their diet with regard to energy intake and 

macronutrients, contributes to the understanding of urban wildlife patterns and appropriate in-

situ conservation, since energy and a well-balanced nutrient intake are fundamental for whole 

body functioning, reproduction and fitness (Raubenheimer et al. 2012, Simpson et al. 2015, 

Birnie-Gauvin et al. 2017, Coogan et al. 2018). 

With that in mind, I conducted a food choice experiment under semi-natural conditions with 

male squirrels from the park with highest food supplementation (Chapter 3). Urban squirrels 

resembled forest individuals in their fat prioritisation and protein intake, but showed a wider 

dietary range with higher consumption of non-natural foods and thereby sugar. In principle, 

plasticity in foraging behaviour allows animals to exploit urban resources and is a prerequisite 

for the high individual numbers of synurban species (Luniak 2004, Lowry et al. 2013). Thus, it 
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is likely one of the key tools that enable squirrels to inhibit small urban parks with apparently 

limited natural food supply. A broadening or shift of the dietary niche was also found in other 

urban species (Murray et al. 2015, Anders et al. 2021, Dasgupta et al. 2021). This response is 

likely supported by higher ‘boldness’ of urban individuals that enables exploitation of novel 

resources and faster acclimation to the housing conditions of the experiment (Uchida et al. 

2019). Moreover, urban species loss and homogenisation towards more generalist species in 

high abundance can ease interspecific competition while intraspecific competition is increased. 

This might result in intraspecific niche partitioning or further increase in the generalising of food 

consumption (Manlick and Newsome 2021). Thus, the higher readiness of the urban 

individuals in the experiment to make full use of the offered food range fits the picture and 

matched the field observations. 

Having said that, the results are worrying since the individuals were free to choose in a 

cafeteria experiment without current competitive forces or food limitations. In theory, animals 

should aim for a nutritionally balanced diet and adjust their foraging behaviour to their 

physiological demands and environmental conditions (Raubenheimer et al. 2012, Simpson and 

Raubenheimer 2012, Simpson et al. 2015). Dietary shifts towards human-provisioned 

resources might yet entail nutritional imbalance and are related to diverse health- and fitness-

relevant aspects depending on food composition and quality (Simpson and Raubenheimer 

2012, Murray et al. 2016, Birnie-Gauvin et al. 2017, Pollock et al. 2017, Dasgupta et al. 2021, 

Gillman et al. 2021). Urban animals show alterations in gut microbiome community (Anders et 

al. 2021), protein deficits (Murray et al. 2015) elevated blood glucose levels (Schulte-Hostedde 

et al. 2018, Schmidt et al. 2019, Anders et al. 2021), poor dental health (Hungerford et al. 

1999) and higher immune responsiveness (Peneaux et al. 2021) or lower breeding success 

(Pollock et al. 2017). Some of these effects, such as higher blood glucose levels or dental 

health issues are linked to higher sugar consumption. Similar to our knowledge from human 

diets (Johnson et al. 2007), sugar can have strong addictive and detrimental effects on 

animals, even without body weight change (Kendig 2014, DiNicolantonio et al. 2018). In lab 



 CHAPTER 5: GENERAL DISCUSSION & CONCLUSIONS 

153 
 

studies, rats favoured sugar even over cocaine (DiNicolantonio et al. 2018) and consequently 

one might not be surprised that urban individuals with access to sugary or processed foods, 

as found in Chapter 2, developed a higher preference for sugar. However, in Chapter 3, I 

discussed the potential negative effects of sugar consumption. Sugar can impair spatial 

learning and memory and might thereby reduce the ability to find hoarded foods (Kendig 2014). 

I frequently observed hoarding behaviour in the park, but items were often not well hidden and 

partly removed by other species or by gardening activities. An impairment in memory abilities 

that additionally reduces the retrieval of hoarded food items might be detrimental. On the other 

hand, year-round supplemental foods might generally lower the relevance of hoarded foods 

for urban squirrels (Brzeziński and Zalewski 2023). 

The lower body condition of park squirrels in the experiment confirmed indications gained 

in in the field (Chapter 2, Supplementary material) and suggest the presence of influences that 

counteract high supplemental abundance. Possibly, the confined availability of natural food 

sources in combination with low quality supplemental foods and high intra- and / or interspecific 

competition might cause food or nutritional limitations despite high supplementation. My results 

indicated the potential for high resource competition in the parks since I observed additional 

species, such as crows (Corvus corone), jays (Garrulus glandarius), domestic pigeons 

(Columba livia forma domestica), great tits (Parus major), rats (Rattus norvegicus) and yellow-

necked mice (Apodemus flavicollis) feeding on supplemental sources and these also 

frequently interacted with squirrels at feeding spots. Urban related food limitations were 

assumed to explain foraging behaviour of urban grey squirrels which found provided food pans 

and removed sunflower seeds at higher rate and number than rural conspecifics (Bowers and 

Breland 1996). Possibly, urban squirrels developed an “eat as much as you can from whatever 

you can get” behaviour which might explain their higher kJ intake and weight gain over the 

course of this experiment, though in the end, their body condition was still below the forest 

individuals. 
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Shifts in diet composition and exploitation of novel resources require flexibility in digestive 

traits, such as the production of digestive enzymes (Manlick and Newsome 2021). It is 

unknown if the digestive adaptations of synurban species can keep up pace with their plasticity 

in foraging behaviour. To my knowledge there are no studies on digestive capacity of urban 

squirrels, but the gut physiology of this seed and nut favouring species might simply not be 

adapted to digest high amounts of processed or sugary foods. Besides this, urban species 

likely ingest health-relevant amounts of chemical pollutants, heavy metals or toxins that can 

impact the digestive physiology and a broad range of other biological traits (Birnie-Gauvin et 

al. 2017, Isaksson 2018, Samuel et al. 2023). 

Otherwise, stable urban food availability and buffered conditions might lower the need for 

fat reserves (Shochat 2004) and I did not find differences in body condition across seasons in 

the highly supplemented Wohlerspark (Chapter 2, Supplementary material). The very high 

population densities or the survival of more subdominant individuals might be further 

explanatory factors for the observed lower body condition here (Prange et al. 2003, Shochat 

2004, Anderies et al. 2007, Beliniak et al. 2022). Other factors, such as genetic depletion, 

higher stress levels or parasite load are rather unlikely in view of previous findings (Shimamoto 

et al. 2020, Werner and Nunn 2020, Fusco et al. 2021, Santicchia et al. 2022, Tranquillo et al. 

2022). I did not investigate stress hormones in this project, but have no indication for 

differences in parasite load between sites (Wodtke et al., unpublished data). However, results 

about the influence of urbanisation on body mass or condition are generally ambiguous 

(Bókony et al. 2010, Meillère et al. 2017, Jiménez-Peñuela, 2019, Beliniak et al. 2022, 

Tranquillo et al. 2023). I strongly assume that local differences in food availability and / or 

quality in combination with changes in foraging behaviour are one of the main reasons for this. 

However, details of the underlying processes remain unclear and further research is necessary 

to explore the influence and interaction of factors such as digestive constraints or the ingestion 

of pollutants. 
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Ecophysiological aspects of an urbanised world 

My findings from Chapters 2 and 3 show that urban-related changes in resource availability 

and foraging behaviour influence the energy and nutrient intake in urban dwelling species. This 

likely has physiological consequences for endothermic animals, which must energetically 

costly generate their own heat to maintain a stable body temperature. As a prerequisite for all 

biological processes and ultimately fitness, they need to carefully balance their energy 

expenditure in relation to environmental conditions, particularly to Ta and resource availability 

(Brown et al. 2004). Ambient temperature is increased in cities due to urban heat island effects, 

and importantly, these occur within evolutionarily short timescales and in relatively short spatial 

distances from surrounding colder environments (Diamond and Martin 2021). Beyond this, 

higher Ta as well as year-round supplemental food availability act as a buffer against seasonal 

resource fluctuations or periods of scarcity (Shochat et al. 2006). Urban conditions therefore 

have the potential to relax energetic constraints by reducing the need of endogenic heat 

production and / or reducing natural resource limitations and thereby in energy availability to 

cover energy needs (Sumasgutner et al. 2023).  

For those reasons, studying the ecophysiology of a species inhibiting urban and 

geographically proximate rural habitats represents an important framework for a deeper 

understanding of its physiological flexibility or adaptations to an urbanised life, as well as the 

associated metabolic costs or benefits. Species with physiological flexibility might be better 

prepared to take full advantage of beneficial urban conditions. This may be an important 

mechanism contributing to higher winter survival or reproduction rates observed in some urban 

populations (Prange et al. 2003, Luniak 2004, McCleery 2010, Bateman and Fleming 2012). 

Urban stressors, such as altered nutrition as described in Chapters 2 and 3, yet have the 

potential to increase physiological costs (Birnie-Gauvin et al. 2016, Isaksson 2020, Samuel et 

al. 2023). However, studying intraspecific variations in the physiological response of 

endothermic taxa to urbanisation has been neglected to date. 
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In this context, I examined energy expenditure of Eurasian red squirrels from an urban and 

a nearby rural habitat (Chapter 4). The species is widespread throughout the Palearctic from 

Europe to Asia and occurs at altitudes from 0 to 3,100 m (Lurz et al. 2005, Gazzard 2023), 

therefore inhibits and physiologically copes with a wide range of climatic conditions. It is not 

known to use hibernation or torpor to overcome adverse periods and likely relies on 

behavioural or subtle physiological adaptations (Dausmann et al. 2013, Turner et al. 2017). My 

project demonstrated intraspecific physiological differences in squirrels from urban versus rural 

populations, which are likely primarily explained by acclimatisation to the warmer urban 

temperatures, as well as the dietary differences described in Chapters 2 and 3. Urban squirrels 

showed a weaker thermoregulatory response to a decrease in Ta in comparison to forest 

squirrels. Remarkably, urban ants also showed reduced acute plasticity in their metabolic rate, 

i.e. they were less sensitive to a change in temperature than rural ants (Chick et al. 2021). This 

lower responsiveness could be related to reduced daily Ta variance in urban habitats (Gallo et 

al. 1996, Wang et al. 2012, Chick et al. 2021). It is possible that use of well-insulated dreys as 

well as hoarding behaviour decouple squirrels’ energy expenditure from environmental 

conditions to some extent (Menzies et al. 2020). This effect could be enhanced by the urban 

heat island, a more stable food supply or better insulated urban nesting sites. Higher availability 

of shelter is likely one of the benefits for some urban animals (Bateman and Fleming 2012, 

Andersson et al. 2015). I observed and was reported drey building, e.g. on house walls or 

balconies (Fig. 5.2). In these cases, individuals might benefit from thermal radiation or wind 

protection, although this is speculative as I have no information about drey sites of the park 

squirrels in the experiment.  
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Figure 5.2: Urban squirrel in a drey, located in a protected window area in the streets of Hamburg 

Altona (Photo credit: B. Wist) 

Dietary changes such as those documented in in this project have the potential to alter an 

animals’ physiology, e.g., by changing the amount and location of fat layers or general 

metabolic and digestive processes (Perissinotti et al. 2009, Birnie-Gauvin et al. 2017, Jarman 

et al. 2020). Food supplementation has been shown to alter physiological traits such as body 

temperature and heart rate in squirrels (Menzies et al. 2020). In particular, the nutrient 

composition of the food available in cities seems to be relevant factor for metabolic changes: 

white-footed mice (Peromyscus leucopus) in New York City showed genetic patterns that 

indicate local adaptation of metabolic processes to the novel urban resources high in fat, 

carbohydrates and sugar (Harris and Munshi-South 2017). An anthropogenic diet and 

exposure to pollutants or oxidative stress have also been assumed to trigger epigenetic 

changes and differences in abundance of fatty acids involved in metabolic and immune 

response pathways in urban versus rural great tit populations (Andersson et al. 2015, Watson 

et al. 2017, Watson et al. 2020). Pollutants and toxins can reduce appetite or digestive 

efficiency, but can also interact with other urban features while influencing metabolic rate and 

further physiological mechanisms (Birnie-Gauvin et al. 2016, Birnie-Gauvin et al. 2017, Watson 

et al. 2017, Watson et al. 2020, Samuel et al. 2023, Sumasgutner et al. 2023).  
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Food supplementation can also alter activity patterns or space of urban dwelling species 

including squirrels and this may further contribute to metabolic changes (McNab 2002, Luniak 

2004, Careau et al. 2008, Lowry et al. 2013, Thomas et al. 2018, Oliveira et al. 2020, Beliniak 

et al. 2021). Scattered supplementary foods, which were highly available in Wohlerspark, can 

cause squirrels to spend more time on the ground (Thomas et al. 2018, Krauze-Gryz et al. 

2021). Additionally, we have indication for very small squirrel home ranges in this park (~ 1.5 

ha based on telemetry estimates, Probst et al., unpublished data) and urban squirrels have 

shorter flight initiation distances (Uchida et al. 2016, Uchida et al. 2019). Therefore, I speculate 

that urban squirrels move less, perform less vertical climbing and thereby accumulate less 

muscle mass or more fat in certain parts of their bodies or have smaller organ size, all of which 

would be relevant to their metabolism (Burton et al. 2011).  

Interestingly, a study on semi-urban squirrels in a controlled climate chamber determined 

mean RMR of 0.75 ml O2 h-1 g-1 within the measured thermal neutral zone, a range of Ta which 

started at 31.7°C and in which heat of basal body functions is sufficient to maintain body 

temperature (Speakman and Król 2010, Kobbe et al. 2014, Turner et al. 2017). The 

temperatures during our experiment did not reach this level. Nevertheless, RMR for both 

groups (0.47 / 0.45 ml O2 h-1 g-1 for forest/urban squirrels), even at the lowest measured Ta 

(0.66 / 0.57 ml O2 h-1 g-1 for forest / urban squirrels at 8°C) remained well below this value. 

Possibly, this is due to the different set-ups of our studies. Metabolic measurements are often 

conducted under controlled conditions, i.e. by using a climate chamber and a controlled 

temperature regime. However, insights gained from this method might differ from species 

response in the wild (Auer et al. 2016, Morash et al. 2018). Here, I aimed to study energy 

expenditure of the individuals without further disturbance and under semi-natural conditions.  

Regardless of the reasons for observed metabolic differences, the results from Chapter 4 

suggest intraspecific physiological plasticity and energetic advantages for urban squirrels in 

temperate regions with limited occurrence of hot days. However, the comparatively higher 

costs at warmer Ta are alarming given the assumption that heat dissipation is a major challenge 
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for urban endotherms in the face of climate change (Speakman and Król 2010, Tattersall et al. 

2012, Ohrnberger et al. 2020, Bateman et al. 2023, Sumasgutner et al. 2023). Mammals in city 

centres may be more constrained by the need to lose heat and closer to their thermal limits, 

as temperature increases due to climate change will be higher in urban habitats and especially 

in urban core areas (Sumasgutner et al. 2023). Notably, climate change and urban heat islands 

have the potential to affect body condition and fitness of urban rodents, triggered by heat stress 

or seed desiccation (Bateman et al. 2023). On the other hand, lower fat reserves or condition 

of urban individuals, as found in some studies including mine, yet might be beneficial for heat 

loss. Additionally, higher urban water availability or fewer movements as described above 

might counteract overheating to a certain extent (Sumasgutner et al. 2023).  

Interestingly, urban nestlings of Parus major were less affected by heat events in terms of 

body mass and survival than rural conspecifics, presumably due to adaptations that increase 

heat dissipation or a smaller impact of heat on resource availability in cities (Pipoly et al. 2022). 

Urban greater white-toothed shrews (Crocidura russula) showed lower resting metabolism 

than rural individuals, a finding that I would have expected in the urban squirrels in this project. 

However, contrary to our study, the shrews were only measured at one single Ta within their 

thermoneutral zone. Notably, and similar to the urban individuals in my experiment, they also 

gained more body mass during the housing period (Oliveira et al. 2020). Further physiological 

studies of urban versus rural populations have been carried out primarily on ectotherms and 

demonstrate thermal adaptations, i.e., a higher heat tolerance, not also to the higher urban 

temperatures, but also to the occurrence of stronger heat-waves (Angilletta et al. 2007, Brans 

et al. 2017, Miles et al. 2020, Diamond and Martin 2021b).  

A possibly maladaptive response has been shown for urban acorn-dwelling ants 

(Temnothorax curvispinosus). They had elevated metabolic rates at a Ta of 25°C compared to 

rural ants, possibly influenced by urban effects such as pollution, yet the increase was less 

pronounced under acute heat stress (Chick et al. 2021). However, the generally low number 

of studies investigating the physiology of urban endotherms hampers a broad comparison of 
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their responses to urban conditions across species. It remains unclear how a comparably 

higher heat production at high Ta is compensated for in urban squirrels and whether their 

response might be maladaptive, as I am not aware of any studies examining their heat 

tolerance and associated fitness effects. We are just beginning to understand the subtle 

interplay of metabolism with urban heat islands, climate change, diet and behaviour in urban 

dwelling species. 

Are synurban squirrels urban ‘winners’? 

The intraspecific variations in foraging behaviour and physiology shown in this project are 

likely prerequisites for the success of squirrels in contrasting and evolutionarily new habitat 

types (Beliniak et al. 2021, Cordeschi et al. 2021, Beliniak et al. 2022). From a broader 

perspective, the ability to respond plastically, e.g., to novel resources, gives a species the time 

to adapt genetically to a changing environment (Diamond and Martin 2021a). It is assumed 

that several urban species are still in the process of adaptation to the new environment and 

this could also apply to squirrels (Diamond et al. 2022). However, plastic trait variation is not 

always beneficial or neutral (Lambert and Donihue 2020) and being a generalist that is able to 

successfully colonise urban habitats and exploit any available food is not without risks and 

costs, as shown in this project. 

At first glance, high population densities of synurban species suggest positive effects for 

reproduction and / or survival in the urban habitat and accordingly, populations densities of 

urban squirrels in this project were many times higher than in the forest. Yet, the different 

squirrel densities in nearby urban parks suggest that effects vary greatly within a city, likely 

dependent on local factors, such as food availability and quality. There might be thresholds 

above which negative side effects from urbanisation, such as high competition and / or nutrient 

deficiency counteract the benefits of high supplemental food abundance (Anderies et al. 2007, 

Parker and Nilon 2012, Alberti et al. 2020). For example, it has been assumed that density 

thresholds above which a population can be considered synurban can subsequently lead to, 
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e.g., synurbic-related behavioural changes (Parker and Nilon 2012). In view of the very high 

population density and the differences in foraging behaviour, I consider the Wohlerspark 

population to be a truly synurban. 

My results though showed that urbanisation and low-quality food supply may have negative 

effects on body condition, foraging behaviour, nutrition and energy expenditure of squirrels 

from this park with highest supplementary feeding. Their lower body condition, higher sugar 

consumption and higher energy expenditure at higher Ta indicate maladaptive responses. 

Body mass and condition are highly relevant for survival and reproduction in squirrels, for 

example (Wauters and Dhondt 1995, Wauters et al. 1995). Notably, reduced body condition 

can even occur in successful urban species, but increases vulnerability to unexpected changes 

in their environment (Anderies et al. 2007). In addition to climate change or recurring urban 

planning-related changes to the urban habitat, the predicted spread of the grey squirrel 

(Sciurus carolinensis) from northern Italy across the Alpes in the coming decades could 

represent a new stress factor for urban S. vulgaris, as urban sites are highly likely to serve as 

source habitat for this invasive species (Bertolino et al. 2008, Wauters et al. 2023).  

The results on the genetic diversity of squirrel populations at the different sites are still 

pending, but will help to answer the question of whether urban green habitat patches act more 

as isolated islands or refugees for squirrels. Initial data exploration indicated population 

structuring between urban parks, as known from some other species (Björklund et al. 2009, 

Munshi-South et al. 2016, Hurtado and Mabry 2019). Genetic structuring is not necessarily 

synonymous with adaptation to the urban habitat and could also be due to other effects, such 

as genetic bottlenecks or impediments in gene flow through the urban matrix (Donihue and 

Lambert 2015, Lambert and Donihue 2020). Notably, maladaptive behaviours such as a high 

sugar consumption as found in park squirrels, may serve as drivers of urban adaptation by 

promoting the evolution of genes that counteract negative effects (Caspi et al. 2022). However, 

small green spaces can only serve as suitable habitats for squirrels if gene flow is preserved 

and increased in future. Although squirrels can easily climb built structures, arboreal mammals 
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are generally more isolated by fragmentation than terrestrial ones, and species movement 

seems to be impaired by the urban matrix (Danneck et al. 2023). 

Finally, information on population structures can provide valuable insights into population 

health in terms of sink or source dynamics. I almost always caught more males than females, 

and the ratio of juveniles to adults was higher at urban sites. The former may indicate a sink 

population, while the latter may also indicate a source population, as has been assumed for 

urban fox squirrels (McCleery 2009, Rodewald and Gehrt 2014). Unfortunately, the sometimes 

low trapping success made it difficult to reliably compare population structures between the 

sites. Therefore, I cannot rule out the possibility that urban core fragments serve more as sink 

habitats or ecological traps (Zuñiga-Palacios et al. 2021). As indicated in this thesis, the 

abundant supplemental food sources could simulate a more valuable habitat, although they 

are of poor-quality and have negative effects on health-relevant traits or reproduction (Shipley 

et al. 2013). Hence, current high population densities may not equate to ‘urban winners’ in the 

long term, and further research is needed to assess whether or not these populations can 

persist over time. Furthermore, given the results from Chapter 2, experiments with individuals 

from different parks would be needed to clarify whether their behavioural and physiological 

responses depend on population density as well as food availability and composition in their 

park. 

General conservation implications 

Studying the response of urban wildlife to urbanisation is vital to reduce biodiversity loss 

and species homogenisation by mitigating negative factors through appropriate urban 

planning. My findings highlight the importance of increasing natural food sources for urban 

wildlife. Although interacting socioeconomic and cultural factors have to be considered in 

management decisions (Aronson et al. 2017), increasing plant richness and cover, e.g. by 

protecting or newly creating green habitat patches with high connectivity, is a key factor for 

urban biodiversity (McKinney 2002, Berthon et al. 2021). These measures can also support 
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gene flow between park populations (Beninde et al. 2015, Lepczyk et al. 2017, Lambert and 

Donihue 2020). Moreover, urban planning should focus on planting diverse and preferably 

native species to ensure high quality food supply throughout the year (Alvey 2006, Berthon et 

al. 2021). A strong dominance of one tree species as found in one of the parks, may increase 

the vulnerability of the vegetation to plant pests, which in turn would also affect wildlife (Alvey 

2006). On top of this, common management or horticultural practices in urban green spaces, 

such as tree pruning or leaf litter removal, which were common in the parks, can hinder nature 

conservation (Aronson et al. 2017). They can be very disruptive and probably also interfere 

with squirrels finding and hoarding natural food sources. Thus, reducing these practices in 

urban parks would be beneficial. Informing the public about ‘wildlife-friendly’ gardening could 

be another helpful tool, as residential gardens can also provide a valuable habitat opportunity 

for small to medium-sized mammals (Van Helden et al. 2020). Such wildlife-friendly 

management measures not only improve urban ecosystems for wildlife, but also can help to 

fulfil the social and ecological needs of humans (Luniak 2004).  

Contact with and feeding of wildlife can even bring benefits to human health and well-being 

(Soulsbury and White 2016), but can also harbour risks (Dubois and Fraser 2013). Many 

people enjoy to offer supplemental food to wildlife, and it is probably not a realistic scenario to 

completely prevent human feeding (Dubois and Fraser 2013). However, my findings highlight 

the possible negative consequences for urban species and emphasise the importance of 

ecological education of human urban dwellers, e.g., through the use of information boards, so 

that they provide adequate food or limit their feeding (Cerri et al. 2020). In addition, a more 

widely dispersed food supply and the avoidance of clumped feedings sites, which increase 

intra- and interspecific contact rates, are likely recommendable. Besides this, my results stress 

the need for conservation-oriented waste management in cities to prevent people from littering 

and animals from having easy access to refuse (Cerri et al. 2020).  

Finally, urban parks and mixed tree stands in particular provide several ecosystem services 

relevant to health and nature conservation, such as carbon sequestration or air purification 
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(Mexia et al. 2018). As urbanisation and global warming likely interact, increased urban 

greening measures are of great importance with regard to rising temperatures, as they can 

entail cooling effects (Li and Bou-Zeid 2013, Saaroni et al. 2018, Leal Filho et al. 2021, 

Sumasgutner et al. 2023). Mitigating the effect of climate change and associated heat waves 

in cities is essential for human well-being (Li and Bou-Zeid 2013, Ward et al. 2016, Zhao et al. 

2018). My findings of a possibly maladaptive physiological response at high Ta in a synurban 

mammal highlight that this may be also crucial to reduce heat stress in urban wildlife species. 

This is particularly true my study region, since cities located in cooler climates of northern 

Europe are predicted to be more affected by heat waves than cities in southern Europe (Ward 

et al. 2016).  

Project limitations and future research 

This thesis provides insight into the responses of a common synurban mammal to living in 

the centre of a large city, although I acknowledge the limited sample size for some of the results 

and the fact that the influence of urbanisation on, for example, body condition can vary by sex, 

as I used only male individuals in my experiments (Auman et al. 2008, Lyons et al. 2017). 

However, my results are robust, fit with findings from other studies and add to the knowledge 

about urban mammal populations. The findings are only one piece of the puzzle though, as 

animals have to cope with multiple urban stressors simultaneously, which can lead to 

cumulative effects (Chen et al. 2023). Urbanisation and climate change are key challenges for 

global biodiversity, in particular the likelihood of their interactive effects and the importance of 

a conservation focus on both factors simultaneously have recently been highlighted (Haight et 

al. 2023, Sumasgutner et al. 2023). Importantly for this project, these two factors, together with 

other urban stressors, affect an animals’ food supply, foraging behaviour and (digestive) 

physiology, thereby influencing a broad range of subsequent biological traits (Fig. 5.3, modified 

from Birnie-Gauvin et al. 2017). Future research should therefore investigate urban mammal 

populations with a focus on the possible interaction of urbanisation and associated diet with 

other factors, such as sex, climate change, pollution or digestive constraints as well as resulting 
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fitness consequences to get a more comprehensive understanding of synurban species and 

their persistence over time. 

 

Figure 5.3: Graph modified from Birnie-Gauvin et al. 2017 (Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/)), showing the human induced effects on the components  

of animal nutrition, their interaction and consequences at different biological levels. Red circles mark the 

main variables and responses relevant to this thesis. To illustrate the whole project, energy expenditure 

has been added as additional relevant factor, which is likely to be affected by all environmental changes  

shown and is another important basis for all aspects of an animals’ biology. 

Beyond this, the trait variations observed in my project do not allow us to decide whether 

the intraspecific differences are related to developmental (irreversible) or (flexible) phenotypic 

plasticity or genetic adaptation. This question is not trivial and often remains unanswered 
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(Ouyang et al. 2018, Winchell et al. 2022). If individuals were housed over longer periods of 

time and in different Ta patterns, this could potentially show whether differences between 

groups persist or diminish over time, which would then indicate a flexible plastic response to 

habitat conditions rather than developmental plasticity or genetic adaptation. However, we 

would need translocation or ‘common garden style’ experiments to fully address this question 

(Lambert and Donihue 2020). 

In addition, it is important to recognise that the response of species can vary across cities 

(delBarco-Trillo and Putman 2023, Haight et al. 2023). Urban stressors exert selective 

pressures on urban wildlife that trigger plastic responses, with the magnitude of the effect likely 

to vary by location (Dunn et al. 2022). The results from Chapter 2 demonstrate that this can 

already be the case at the local level, but this might be even more true across different cities. 

So far, studies comparing the response from urban populations around the world and 

especially in different climate zones are lacking. Studies from high-income and temperate 

countries are heavily overrepresented (McDonald et al. 2019, Zuñiga-Palacios et al. 2021). 

Wildlife in tropic or desert areas, for example, where the effects of heat waves can be amplified, 

may be exposed to different thermal constraints. 

Cities are also shaped by geography, history, the age of the city, surrounding matrix, human 

population density as well as socio-politic, economic and cultural factors (Birnie-Gauvin et al. 

2016, Ouyang et al. 2018, Miles et al. 2020, Dunn et al. 2022). For example, some cities can 

invest more money into biologically relevant structures like green corridors, simply have more 

space available or a different attitude of people towards wildlife. Thus, there can be significant 

differences in environmental conditions, such as the type and amount of vegetation cover, 

accessible waste or the willingness to feed wildlife (Aronson et al. 2017, Miles et al. 2020). In 

addition, the type and amount of food that can be found in refuse likely varies depending on 

local diet or the level of littering accepted within a society (Szulkin et al. 2020). Finally, it should 

be noted that S. vulgaris is a rather iconic species in Germany. Therefore, the extent of dietary 
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changes may be different for a species that is less welcomed by humans and does not receive 

deliberately provided supplementary food (Perry et al. 2020, Egerer and Buchholz 2021). 

General Conclusions 

Global biodiversity is being severely impacted by rapidly increasing urbanisation. Studying 

the response of wildlife to a completely altered environment, distinct from the natural habitats 

in which they evolved, is of urgent importance for nature conservation. Despite living in high 

population densities that at first glance indicate suitable habitat, urban species respond to 

environmental conditions at different scales and experience multiple sublethal effects (Birnie-

Gauvin et al. 2016). This thesis highlights the small-scale heterogeneity of urban habitats as 

well as the influence of urbanised diets and the urban heat island on wildlife. My findings show 

that urban squirrels show clear responses in terms of their population density, body condition, 

food choice behaviour, nutrient intake and physiology (Fig. 5.4). Not all results can be 

interpreted as neutral or beneficial in the long term, so there is a risk that they are maladaptive. 

Yet, responses may depend on the extent of local habitat modifications. Furthermore, species 

may also have delayed responses to environmental changes and only long-term studies can 

fully elucidate their long-term resilience and determine whether populations follow sink or 

source dynamics (Tilman et al. 1994, Hanski 1998, Isaksson 2018). However, this project 

contributes to a better mechanistic understanding of synurbanisation and its various 

consequences, which may help to mitigate the effects for a broader range of species. Urban 

greening measures, preventing waste disposal in public spaces or restricting wildlife access to 

rubbish bins and the like, as well as advising the public on supplementary feeding are essential 

conservation measures for urban wildlife in terms of diet quality and climate change. 
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Figure 5.4: Infographic with the project’s key findings: Changes in urban habitat, e.g., in terms of 

food availability, affect urban wildlife populations and lead to changes in density, body condition, foraging 

behaviour and nutrient intake, as well as metabolism. However, local heterogeneity could influence the 

magnitude of changes at a given site and wildlife responses and / or their consequences might depend 

on whether or not a threshold is crossed. Further studies are needed to understand the long-term 

consequences on fitness and the interaction with covariates, such as climate change. 
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