# Establishment of cell lines expressing erythrocyte membrane protein 1 (PfEMP1) variants of choice to study *Plasmodium falciparum* cytoadherence associated functions

## -Dissertation-

with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Department of Biology University of Hamburg

submitted by

Jakob Johannes Cronshagen

Hamburg, 2024

Ich versichere, dass dieses gebundene Exemplar der Dissertation und das in elektronischer Form eingereichte Dissertationsexemplar (über den Docata-Upload) und das bei der Fakultät (zuständiges Studienbüro bzw. Promotionsbüro Physik) zur Archivierung eingereichte gedruckte gebundene Exemplar der Dissertationsschrift identisch sind.

I, the undersigned, declare that this bound copy of the dissertation and the dissertation submitted in electronic form (via the Docata upload) and the printed bound copy of the dissertation submitted to the faculty (responsible Academic Office or the Doctoral Office Physics) for archiving are identical.

Hamburg, 08.05.2024

Signature

City, Date

Day of oral defense: 03.05.2024

## 1. Dissertation reviewer: Dr. Tobias Spielmann

### 2. Dissertation reviewer: Prof. Dr. Tim Gilberger

### Member of the examination committee: Prof. Dr. Iris Bruchhaus

### Chair of the examination committee: Prof. Dr. Julia Kehr

## LANGUAGE CERTIFICATE

I am a native speaker, have read the present PhD thesis and hereby confirm that it complies with the rules of the English language.

Hamburg, 08.03.2024 City, Date

Isabelle Henshall Signature

## **DECLARATION ON OATH**

I hereby declare upon oath that I have written the present dissertation independently and have

| not used further resources and aids than those stated | l in the dissertation. |
|-------------------------------------------------------|------------------------|
| Hamburg, 08.03.2024                                   |                        |
| City, Date                                            | Signature              |

## **EIDESSTATTLICHE ERKLÄRUNG**

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hamburg, 08.03.2024 Ort, Datum

Unterschrift

## SUMMARY

Malaria, caused by a unicellular eukaryotic apicomplexan parasite of the genus Plasmodium, remains a leading cause of morbidity and mortality globally. The pathological most relevant species for humans is *Plasmodium falciparum* which is responsible for almost all of the malaria related deaths. The symptoms of the disease are exclusively caused by the asexual stages of the parasite's life cycle, during which the parasites multiply in erythrocytes of the host. Erythrocytes infected with P. falciparum can cytoadhere to various host receptors and ligands on the endothelium to evade the removal of the infected erythrocytes in the spleen. This can lead to blockage and inflammation of blood vessels, cutting off tissue from oxygen support, and resulting in severe forms of the disease, such as cerebral malaria. The interaction of infected erythrocytes with the host's endothelium is mediated by a large parasite encoded transmembrane protein presented on the erythrocyte surface termed Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants possess differing binding properties and are expressed by a multigene family, the var genes. The expression of var genes in the parasite is mutually exclusive so that a parasite expresses only a single var gene. Furthermore, the parasites can switch their *var* gene expression over time, enabling the parasites to persistently evade the host's immune system, facilitating long lasting infections. PfEMP1 is considered a key factor for the parasite's virulence and survival, rendering it as the main virulence factor of *P. falciparum* parasites. However, the study of specific PfEMP1 variants and var genes has been hampered by PfEMP1s large size and the fact that parasite in vitro cultures are a mix of parasites expressing different PfEMP1s, making them inaccessible to genetic manipulation and molecular analysis.

In this thesis, selection linked integration (SLI) was exploited to generate cell lines that express a single HA-tagged PfEMP1 of choice in the entire population of parasites in an *in vitro* culture. The predominant expression of targeted *var* genes were validated for transgenic 3D7 and IT4 (formerly FCR3) lab strains by bulk RNA sequencing. The trackability of the HA-tagged PfEMP1s in the cell was demonstrated with immunofluorescence assays. Trypsin cleavage assays confirmed the surface presentation of the targeted PfEMP1 variant in most cases. SLI modified 3D7 and IT4 parasites expressing VAR2CSA or a CD36-binding PfEMP1 variant on the erythrocyte surface were tested and compared for binding against corresponding ligands. This provided empirical evidence that the IT4 strain is superior for the study of PfEMP1mediated binding while 3D7 parasites only showed poor binding. To increase binding assay throughput and comparability, a semi-automated pipeline was developed for standardized evaluation of binding assays.

Furthermore, PfEMP1 variants were activated in IT4 parasites that showed specific binding against the major endothelial cell receptors CD36, ICAM-1 and EPCR, validating the feasibility of this approach. These cell lines are expected to facilitate the study of the binding properties of different PFEMP1 variants without the need to subject the parasites to elaborate receptor or antibody selection procedures. This will enable the comparison of binding capacities and to explore potentially novel interacting receptors of specific PfEMP1 variants.

The trackability of the HA-tagged PfEMP1 was further exploited to study PfEMP1 transport into the host cell in 3D7 parasites. In order to do this, an approach to conditionally block protein transport through PTEX, the translocon pumping exported proteins into the host cell, was chosen. When PTEX was blocked, PfEMP1 was no longer exported. The timing of this approach in the parasite blood cycle was chosen in a way to minimize the effect of accessory factors needed for PfEMP1 transport which would indirectly lead to a failure of PfEMP1 export. Overall, these experiments indicated that PfEMP1 is transported by PTEX into the host cell.

Next, BioID experiments were conducted to determine the proxiome of PfEMP1 in living parasites. For this the biotin ligase BirA\* was fused to three distinct positions of PfEMP1, resulting in three different cell lines. Testing of the cell lines expressing the PfEMP1-BirA\* fusions showed that the modified PfEMP1s were predominantly expressed in the parasite cultures and functionally presented on the host cells surface, exhibiting binding against the expected receptors. Large scale BioID experiments with subsequent mass spectrometry analysis of biotinylated proteins identified proteins shown to be important for PfEMP1s transport and function as well as previously characterized and uncharacterized proteins of the Maurer's clefts, erythrocyte membrane and other host cell structures. The proxiome of the three positions showed marginal differences to each other, indicating that PfEMP1 is not transported as an integral membrane protein. Furthermore, only partial overlap with a Maurer's clefts proxiome indicated the detected hits were PfEMP1-specific. Notably six exported proteins with unknown function previously not linked to cytoadherence were identified and termed PfEMP1-interacting candidate 1-6 (EMPIC1-6).

Subsequently, a modified version of SLI, SLI2, was utilized to introduce a second endogenous modification to the cell lines harboring a SLI-activated *var* gene. This was used to disrupt candidate proteins identified in the proxiome to evaluate their role in PfEMP1-mediated cytoadherence. The evaluation of PfEMP1 presentation and function with trypsin cleavage

assays and binding assays led to the discovery of two novel proteins that are needed for the efficient cytoadherence of *P. falciparum* parasites despite the fact that their disruption did not ablate PfEMP1 surface transport.

In summary, this thesis -by utilizing SLI techniques - successfully generated and validated cell lines expressing specific PfEMP1 variants, which is expected to substantially aid studies on the interaction between these proteins and host cell receptors, *var* gene switching mechanisms and transport of PfEMP1. This work not only advances our understanding of *P. falciparum's* main virulence factor but also opens new avenues to illuminate the cellular mechanisms that enable cytoadherence, leading to a better understanding of the parasite-host interactions.

## ZUSAMMENFASSUNG

Malaria wird durch einen einzelligen eukaryotischen Apicomplexa-Parasiten der Gattung Plasmodium verursacht und bleibt weltweit eine führende Ursache für Morbidität und Mortalität. Die für den Menschen pathologisch relevanteste Spezies ist Plasmodium falciparum, welche für fast alle Malaria-bedingten Todesfälle verantwortlich ist. Die Symptome der Krankheit werden ausschließlich durch die asexuellen Stadien des Lebenszyklus des Parasiten verursacht. Während dieser vermehrt sich der Parasiten in den Erythrozyten des Wirts. Erythrozyten, die mit P. falciparum infizierte sind, können an verschiedene Rezeptoren und Liganden des Wirts auf den Endothelzellen zytoadhärieren, wodurch diese der Zerstörung durch die Milz entgehen. Dies kann zu Entzündungen bis hin zum Verschluss der Blutgefäße führen, wodurch Gewebe von der Sauerstoffversorgung abgeschnitten wird. Dies führt zu schweren Formen wie zum Beispiel Malaria, einer der schwersten Komplikationen dieser Infektion. Die Interaktion infizierter Erythrozyten mit den Endothelzellen des Wirts wird durch ein großes auf der Oberfläche der Erythrozyten präsentiertes Parasite-Transmembranprotein hervorgerufen, bekannt als P. falciparum erythrocyte membrane protein 1 (PfEMP1). Verschiedene PfEMP1-Varianten besitzen unterschiedliche Bindungseigenschaften und werden von einer Multigenfamilie, den var-Genen, kodiert. Die Expression von var-Genen im Parasiten ist sich gegenseitig ausschließend, das heißt, dass ein Parasit jeweils nur ein einzelnes var-Gen exprimiert. Außerdem verändern die Parasiten ihre var-Gene expression über die Zeit. Dies ermöglicht es den Parasiten, dauerhaft dem Immunsystem des Wirts zu entgehen und langanhaltende Infektionen zu manifestieren. PfEMP1 wird deshalb als Schlüsselfaktoren für die Virulenz und das Überleben des Parasiten angesehen, weshalb dieser als Hauptvirulenzfaktor von P. falciparum-Parasiten bezeichnet werden. Die Untersuchung spezifischer PfEMP1-Varianten und var-Gene wird durch die große Größe von PfEMP1 sowie durch die Tatsache erschwert, dass Parasiten in In-vitro-Kulturen eine Mischung von var-Genen exprimieren. Dies macht sie für genetische Manipulationen und molekulare Analysen schwer zugänglich.

In dieser Dissertation wurde das Selection Linked Integration (SLI)-System genutzt, um Zelllinien zu generieren, die in der gesamten Parasitenpopulation einer *in-vitro*-Kultur ein einzelnes erwünschtes HA-markiertes PfEMP1 exprimieren. Die Expression der Ziel-*var*-Gene wurde für transgene SLI-Parasitenpopulationen durch Bulk-RNA-Sequenzierung validiert. Die HA-markierten PfEMP1s konnte in der Zelle mit Immunfluoreszenzexperimenten lokalisiert werden und der Oberflächenproteinverdau mit Trypsin bestätigte für die meisten Zelllinien die

Oberflächenpräsentation der modifizierten PfEMP1-Variante. Es wurden zwei *P. Falciparum* Laborstämme mit SLI-modifiziert, 3D7 und IT4 (ehemals FCR3), die VAR2CSA oder eine CD36-bindende PfEMP1-Variante auf der Oberfläche der Erythrozyten exprimierten, wurden auf ihre Bindungseigenschaften verglichen, indem ihre Bindung gegenüber entsprechenden Liganden getestet wurden. Dies lieferte empirische Hinweis dafür, dass der IT4-Parasitenstamm für die Untersuchung von PfEMP1-Bindungen geeigneter ist als der 3D7-Parasitentamm, welcher lediglich schwache Bindung zeigte. Um den Durchsatz und die Vergleichbarkeit von Bindungsexperimenten zu verbessern, wurde eine semi-automatisierte Pipeline für eine standardisierte Auswertung von Bindungsexperimenten entwickelt.

Darüber hinaus wurden in IT4-Parasiten PfEMP1-Varianten aktiviert, welche eine spezifische Bindung gegen die prominentesten interagierenden Zellrezeptoren, CD36, ICAM-1 und EPCR zeigten. Dies validierte die Zuverlässigkeit des SLI-Systems für diese Anwendungen. Es ist zu erwarten, dass diese Zelllinien die Erforschung der Bindungseigenschaften verschiedener PfEMP1-Varianten vereinfachen, da diese Parasiten ohne Rezeptor- oder Antikörperselektion generiert wurden. Dies ermöglicht den Vergleich der Bindungskapazitäten und die Erforschung potenzieller neuer interagierender Rezeptoren spezifischer PfEMP1-Varianten.

Des Weiteren wurde die Möglichkeit das HA-markierten PfEMP1 in der Zelle zu lokalisieren genutzt, um den Transport von PfEMP1 in die Wirtszelle bei 3D7-Parasiten zu untersuchen. Zu diesem Zweck wurde der Proteinexport durch das PTEX-Translocon, welches exportierte Proteine in die Wirtszelle transloziert, induzierbar blockiert. Bei einer Blockierung von PTEX, wurde PfEMP1 nicht mehr in die Wirtszelle exportiert. Der Zeitpunkt der Blockierung wurde im asexuellen Zyklus so induziert, dass früh exportierte Proteine, die potenziell für den PfEMP1-Transport benötigt werden, nicht beeinflusst wurden, da diese indirekt den Export von PfEMP1 beeinflussen könnten. Insgesamt deuten die Ergebnisse dieser Experimente darauf hin, dass PfEMP1 durch PTEX in die Wirtszelle transloziert wird.

Außerdem wurden BioID-Experimente durchgeführt, um Proteine in der Umgebung (Proxiom) von PfEMP1 in lebenden Parasiten zu identifizieren. Dafür wurde die Biotin-Ligase BirA\* an drei unterschiedliche Positionen von PfEMP1 fusioniert, wodurch drei verschiedenen Zelllinien hergestellt wurden. Für diese Zelllinien wurde gezeigt, dass die PfEMP1-Varianten mit dem fusionierten BirA\* prädominant in der Parasitenkulturen exprimiert und auf der Oberfläche der Wirtszellen präsentiert wurden. Des Weiteren wurden die Bindung der modifizierten PfEMP1 gegen die erwarteten Rezeptoren zeigten. BioID-Experimente im großen Maßstab mit anschließender Massenspektrometrie-Analyse der biotinylierten Proteine identifizierten

Proteine, die für den Transport und die Funktion von PfEMP1 relevant sind. Darüber hinaus wurden zuvor charakterisierte und nicht charakterisierte Proteine der Maurer'schen Spalten, der Erythrozytenmembran und anderer Strukturen der Wirtszelle detektiert. Das Proxiom der drei Positionen zeigte nur kleine Unterschiede zueinander, was darauf hinweist, dass PfEMP1 nicht als integrales Membranprotein transportiert wird. Darüber hinaus deutete eine nur teilweise Überlappung mit einem Proxiom der Maurer'schen Spalten darauf hin, dass die detektierten Proteine PfEMP1-spezifisch waren. Dadurch wurden sechs exportierte Proteine mit unbekannter Funktion, die zuvor nicht mit Zytoadhärenz in Verbindung gebracht wurden, identifiziert und als PfEMP1-Interacting Candidate 1-6 (EMPIC1-6) benannt.

Des Weiteren wurde eine modifizierte Version von SLI, SLI2, angewandt, um eine zweite endogene Modifikation in den Zelllinien einzubringen, die bereits ein SLI-aktiviertes *var*-Gene beherbergten. Dies wurde verwendet, um die Funktion von Kandidatenproteine, die im Proxiom identifiziert wurden, zu trunkieren und deren Rolle im Transport und Oberflächenpräsentation von PfEMP1 zu ermitteln. Dies führte zur Identifizierung von zwei neuen Proteinen, die in Oberflächenproteinverdau- und Bindungsexperimenten zeigten, dass diese Kandidaten relevant für die effiziente Zytoadhärenz von *P. falciparum*-Parasiten sind. Jedoch wurde der Transport von PfEMP1 an die Oberfläche durch die Disruption der Kandidatenproteine nicht beeinflusst.

Zusammenfassend hat diese Dissertation - durch die Nutzung von SLI-Techniken - erfolgreich Zelllinien generiert und validiert, die spezifische PfEMP1-Varianten exprimieren Es ist zu erwarten, dass dies die Studien über die Interaktion dieser Proteine mit Wirtszellrezeptoren, *var*-Gen-Expressionsmechanismen und den Transport von PfEMP1 erheblich vereinfachen wird. Diese Arbeit erweitert nicht nur unser Verständnis des Hauptvirulenzfaktors von *P. falciparum*, sondern eröffnet auch neue Wege, um die zellulären Mechanismen der Zytoadhärenz zu beleuchten, was dabei helfen wird, die Parasiten-Wirt-Interaktion besser zu verstehen.

## TABLE OF CONTENTS

| Language certificateii                                              |
|---------------------------------------------------------------------|
| Affidavitiii                                                        |
| Eidesstattliche Erklärungiv                                         |
| Summaryv                                                            |
| Zusammenfassungviii                                                 |
| Table of contents                                                   |
| Abbreviationsxvii                                                   |
| List of figuresxx                                                   |
| List of tablesxxii                                                  |
| 1 Introduction                                                      |
| 1.1 Malaria1                                                        |
| 1.2 Biology of the malaria parasite <i>P. falciparum</i>            |
| 1.2.1 Life cycle of <i>P. falciparum</i>                            |
| 1.2.1.1 Mosquito stages                                             |
| 1.2.1.2 Liver stages                                                |
| 1.2.1.3 Invasion                                                    |
| 1.2.1.4 Intracellular Blood stages                                  |
| 1.2.1.4.1 Ring stage                                                |
| 1.2.1.4.2 Trophozoite stage                                         |
| 1.2.1.4.3 Schizont stage                                            |
| 1.2.1.4.4 Sexual development                                        |
| 1.2.2 Cellular biology of <i>P. falciparum</i> parasites10          |
| 1.2.2.1 Organelles                                                  |
| 1.2.2.1.1 Apical complex, dense granules and inner membrane complex |
| 1.2.2.1.2 Apicoplast                                                |
| 1.2.2.1.3 Food vacuole                                              |

|   | 1.2.2.2                                                                                                                                                                                                                                                                                               | Parasitophorous vacuole                                                                                                                                                                                                                                                                                                                                                      | 13                                                             |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|   | 1.2.2.3                                                                                                                                                                                                                                                                                               | Export                                                                                                                                                                                                                                                                                                                                                                       | 14                                                             |
|   | 1.2.2.4                                                                                                                                                                                                                                                                                               | Host cell modification                                                                                                                                                                                                                                                                                                                                                       | 17                                                             |
|   | 1.2.2.                                                                                                                                                                                                                                                                                                | 4.1 Maurer's clefts                                                                                                                                                                                                                                                                                                                                                          | 18                                                             |
|   | 1.2.2.                                                                                                                                                                                                                                                                                                | 4.2 Plasmodial surface anion channel                                                                                                                                                                                                                                                                                                                                         | 19                                                             |
|   | 1.2.2.                                                                                                                                                                                                                                                                                                | 4.3 Knobs                                                                                                                                                                                                                                                                                                                                                                    | 20                                                             |
|   | 1.3 Cytoa                                                                                                                                                                                                                                                                                             | adherence                                                                                                                                                                                                                                                                                                                                                                    | 21                                                             |
|   | 1.3.1                                                                                                                                                                                                                                                                                                 | var genes                                                                                                                                                                                                                                                                                                                                                                    | 22                                                             |
|   | 1.3.2                                                                                                                                                                                                                                                                                                 | PfEMP1                                                                                                                                                                                                                                                                                                                                                                       | 25                                                             |
|   | 1.3.2.1                                                                                                                                                                                                                                                                                               | Structure                                                                                                                                                                                                                                                                                                                                                                    | 25                                                             |
|   | 1.3.2.2                                                                                                                                                                                                                                                                                               | Extracellular binding domains                                                                                                                                                                                                                                                                                                                                                | 25                                                             |
|   | 1.3.2.3                                                                                                                                                                                                                                                                                               | Cellular biology of PfEMP1                                                                                                                                                                                                                                                                                                                                                   | 29                                                             |
|   | 1.3.2.                                                                                                                                                                                                                                                                                                | 3.1 PfEMP1 transport                                                                                                                                                                                                                                                                                                                                                         | 29                                                             |
|   | 1.3.2.                                                                                                                                                                                                                                                                                                | 3.2 Proteins influencing cytoadherence                                                                                                                                                                                                                                                                                                                                       | 30                                                             |
|   | 1.3.2.4                                                                                                                                                                                                                                                                                               | Challenges to study PfEMP1                                                                                                                                                                                                                                                                                                                                                   | 31                                                             |
|   | 1.4 Aims                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                              | 31                                                             |
| 2 | Material a                                                                                                                                                                                                                                                                                            | nd Methods                                                                                                                                                                                                                                                                                                                                                                   | 33                                                             |
|   | 2.1 Mater                                                                                                                                                                                                                                                                                             | rial                                                                                                                                                                                                                                                                                                                                                                         | 33                                                             |
|   | 2.1.1                                                                                                                                                                                                                                                                                                 | Technical devices                                                                                                                                                                                                                                                                                                                                                            | 33                                                             |
|   | 2.1.2                                                                                                                                                                                                                                                                                                 | Chemicals                                                                                                                                                                                                                                                                                                                                                                    | 35                                                             |
|   | 2.1.3                                                                                                                                                                                                                                                                                                 | Labware and dispodables                                                                                                                                                                                                                                                                                                                                                      | 39                                                             |
|   | 214                                                                                                                                                                                                                                                                                                   | Kite                                                                                                                                                                                                                                                                                                                                                                         | 40                                                             |
|   | 2.1.7                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              | 40                                                             |
|   | 2.1.5                                                                                                                                                                                                                                                                                                 | DNA and protein ladders                                                                                                                                                                                                                                                                                                                                                      | 40<br>40                                                       |
|   | 2.1.5<br>2.1.6                                                                                                                                                                                                                                                                                        | DNA and protein ladders<br>Solutions, buffers and media                                                                                                                                                                                                                                                                                                                      | 40<br>40<br>41                                                 |
|   | 2.1.5<br>2.1.6<br>2.1.6.1                                                                                                                                                                                                                                                                             | DNA and protein ladders<br>Solutions, buffers and media<br>Media, solution and drugs                                                                                                                                                                                                                                                                                         | 40<br>40<br>41<br>41                                           |
|   | 2.1.5<br>2.1.6<br>2.1.6.1<br>2.1.6.1                                                                                                                                                                                                                                                                  | DNA and protein ladders<br>Solutions, buffers and media<br>Media, solution and drugs<br>1.1 Drugs                                                                                                                                                                                                                                                                            | 40<br>40<br>41<br>41<br>41                                     |
|   | 2.1.5<br>2.1.6<br>2.1.6.1<br>2.1.6.<br>2.1.6.<br>2.1.6.                                                                                                                                                                                                                                               | <ul> <li>DNA and protein ladders</li> <li>Solutions, buffers and media</li> <li>Media, solution and drugs</li> <li>1.1 Drugs</li> <li>1.2 Media and solution for cell culture and binding assays</li> </ul>                                                                                                                                                                  | 40<br>40<br>41<br>41<br>41<br>42                               |
|   | 2.1.5<br>2.1.6<br>2.1.6.1<br>2.1.6.<br>2.1.6.<br>2.1.6.<br>2.1.6.                                                                                                                                                                                                                                     | <ul> <li>DNA and protein ladders</li> <li>Solutions, buffers and media</li> <li>Media, solution and drugs</li> <li>1.1 Drugs</li> <li>1.2 Media and solution for cell culture and binding assays</li> <li>1.3 Bacterial culture</li> </ul>                                                                                                                                   | 40<br>40<br>41<br>41<br>41<br>42<br>46                         |
|   | 2.1.5<br>2.1.6<br>2.1.6.1<br>2.1.6.<br>2.1.6.<br>2.1.6.<br>2.1.6.<br>2.1.6.2                                                                                                                                                                                                                          | <ul> <li>DNA and protein ladders</li> <li>Solutions, buffers and media</li> <li>Media, solution and drugs</li> <li>1.1 Drugs</li> <li>1.2 Media and solution for cell culture and binding assays</li> <li>1.3 Bacterial culture</li> <li>Solutions and buffers for biochemical analysis</li> </ul>                                                                           | 40<br>40<br>41<br>41<br>41<br>42<br>46<br>47                   |
|   | 2.1.7 $2.1.6$ $2.1.6.1$ $2.1.6.$ $2.1.6.$ $2.1.6.$ $2.1.6.$ $2.1.6.$ $2.1.6.$ $2.1.6.$ $2.1.6.$                                                                                                                                                                                                       | <ul> <li>DNA and protein ladders.</li> <li>Solutions, buffers and media.</li> <li>Media, solution and drugs</li> <li>1.1 Drugs</li> <li>1.2 Media and solution for cell culture and binding assays</li> <li>1.3 Bacterial culture</li> <li>Solutions and buffers for biochemical analysis</li> <li>2.1 Gel electrophoresis</li> </ul>                                        | 40<br>40<br>41<br>41<br>41<br>42<br>46<br>47<br>47             |
|   | 2.1.4 $2.1.5$ $2.1.6.1$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ $2.1.6.2$ | <ul> <li>DNA and protein ladders</li> <li>Solutions, buffers and media</li> <li>Media, solution and drugs</li> <li>1.1 Drugs</li> <li>1.2 Media and solution for cell culture and binding assays</li> <li>1.3 Bacterial culture</li> <li>Solutions and buffers for biochemical analysis</li> <li>2.1 Gel electrophoresis</li> <li>2.2 Other buffers and solutions</li> </ul> | 40<br>40<br>41<br>41<br>41<br>42<br>42<br>46<br>47<br>47<br>48 |

| 2.1.7   | Mammalian cell, E. coli and P. falciparum strains     | 51 |
|---------|-------------------------------------------------------|----|
| 2.1.8   | Enzymes                                               | 52 |
| 2.1.9   | Antibodies                                            | 53 |
| 2.1.9.1 | Primary antibodies                                    | 53 |
| 2.1.9.2 | Secondary antibodies                                  | 54 |
| 2.1.10  | Primers                                               | 54 |
| 2.1.10. | 1 Standard primers for diagnostic PCRs                | 55 |
| 2.1.10. | 2 General Primers                                     | 55 |
| 2.1.11  | Plasmids                                              | 55 |
| 2.1.12  | Computer software, bioinformatic tools and data bases | 55 |
| 2.2 Met | hods                                                  | 57 |
| 2.2.1   | Molecular methods                                     | 57 |
| 2.2.1.1 | Polymerase chain reation (PCR)                        | 57 |
| 2.2.1.2 | Agarose gel electrophoresis                           | 57 |
| 2.2.1.3 | Purification of PCR products                          | 57 |
| 2.2.1.4 | Enzymatic DNA digestion                               | 58 |
| 2.2.1.5 | DNA ligation with T4 ligase or Gibson assembly        | 58 |
| 2.2.1.6 | Colony PCR screen                                     | 58 |
| 2.2.1.7 | Preparation plasmid DNA                               | 59 |
| 2.2.1.8 | Sanger sequencing                                     | 59 |
| 2.2.1.9 | DNA precipitation                                     | 59 |
| 2.2.2   | Microbiological methods                               | 60 |
| 2.2.2.1 | Transformation of compenent E.coli cells              | 60 |
| 2.2.2.2 | Freezing of transgenic <i>E. coli</i> cells           | 60 |
| 2.2.2.3 | Preparation of competent E. coli cells                | 60 |
| 2.2.3   | Cell culture methods                                  | 61 |
| 2.2.3.1 | Culturing of mammlian cells                           | 61 |
| 2.2.3.2 | <i>P. falciparum</i> cell culture                     | 61 |
| 2.2.3.3 | Blood smears                                          | 62 |
| 2.2.3.4 | Freezing and thawing of parasite cultures             | 62 |
| 2.2.3.5 | Synchronization of ring stage parasites               | 62 |
| 2.2.3.6 | Isolation of trophozoite and schizont stage parasites | 63 |

| 2.2.3.7                                                                                                                       | Transfection of P. falciparum schizont stage parasites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 2.2.3.8                                                                                                                       | Introducing genomic modifications via SLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64                                                                         |
| 2.2.3.9                                                                                                                       | Plaque assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64                                                                         |
| 2.2.3.1                                                                                                                       | 0 Enrichment of knobby parasites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65                                                                         |
| 2.2.3.1                                                                                                                       | 1 PTEX co-block assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65                                                                         |
| 2.2.4                                                                                                                         | Fluoresence Microscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65                                                                         |
| 2.2.4.1                                                                                                                       | Immunofluorescence and streptavidin-fluorescence assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66                                                                         |
| 2.2.5                                                                                                                         | Binding assays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66                                                                         |
| 2.2.5.1                                                                                                                       | Static binding assays against mammalian cells or decorin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66                                                                         |
| 2.2.5.2                                                                                                                       | Automated scoring of binding assays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68                                                                         |
| 2.2.6                                                                                                                         | RNA sequencing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68                                                                         |
| 2.2.7                                                                                                                         | BioID and mass spectrometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69                                                                         |
| 2.2.8                                                                                                                         | Biochemical methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                                                                         |
| 2.2.8.1                                                                                                                       | Trypsin cleavage assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70                                                                         |
| 2.2.8.2                                                                                                                       | Western blot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                                                                         |
| 2.2.9                                                                                                                         | Quantification statistical analysis and figure construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71                                                                         |
| ,                                                                                                                             | Quantification, statistical analysis and figure construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |
| Results                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72                                                                         |
| Results<br>3.1 Exp                                                                                                            | loiting SLI-generated var gene cell lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72<br>72                                                                   |
| Results<br>3.1 Exp<br>3.1.1                                                                                                   | loiting SLI-generated <i>var</i> gene cell lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72<br>72<br>72                                                             |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2                                                                                          | loiting SLI-generated <i>var</i> gene cell lines<br>SLI strategy<br>SLI-modified <i>var</i> genes are predominantly expressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72<br>72<br>72<br>73                                                       |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2<br>3.1.3                                                                                 | loiting SLI-generated <i>var</i> gene cell lines<br>SLI strategy<br>SLI-modified <i>var</i> genes are predominantly expressed<br>Copenhagen 3D7 cell line shows defect in mutually exclusive expression .                                                                                                                                                                                                                                                                                                                                                                                                            | 72<br>72<br>72<br>73<br>75                                                 |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4                                                                        | loiting SLI-generated <i>var</i> gene cell lines<br>SLI strategy<br>SLI-modified <i>var</i> genes are predominantly expressed<br>Copenhagen 3D7 cell line shows defect in mutually exclusive expression.<br>Evidence that PfEMP1 is exported through the PTEX channel                                                                                                                                                                                                                                                                                                                                                | 72<br>72<br>72<br>73<br>75<br>77                                           |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5                                                               | loiting SLI-generated <i>var</i> gene cell lines<br>SLI strategy<br>SLI-modified <i>var</i> genes are predominantly expressed<br>Copenhagen 3D7 cell line shows defect in mutually exclusive expression.<br>Evidence that PfEMP1 is exported through the PTEX channel<br>Establishment of a pipeline for automated evaluation of binding assays                                                                                                                                                                                                                                                                      | 72<br>72<br>72<br>73<br>75<br>77<br>79                                     |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6                                                      | loiting SLI-generated <i>var</i> gene cell lines<br>SLI strategy<br>SLI-modified <i>var</i> genes are predominantly expressed<br>Copenhagen 3D7 cell line shows defect in mutually exclusive expression .<br>Evidence that PfEMP1 is exported through the PTEX channel<br>Establishment of a pipeline for automated evaluation of binding assays<br>3D7 show poor binding phenotypes                                                                                                                                                                                                                                 | 72<br>72<br>72<br>73<br>75<br>77<br>79<br>83                               |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7                                             | loiting SLI-generated <i>var</i> gene cell lines<br>SLI strategy<br>SLI-modified <i>var</i> genes are predominantly expressed<br>Copenhagen 3D7 cell line shows defect in mutually exclusive expression.<br>Evidence that PfEMP1 is exported through the PTEX channel<br>Establishment of a pipeline for automated evaluation of binding assays<br>3D7 show poor binding phenotypes<br>Generation of a collection of IT4 lines with different activated <i>var</i> genes                                                                                                                                             | 72<br>72<br>72<br>73<br>75<br>77<br>79<br>83<br>87                         |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7<br>3.1.7.1                                  | loiting SLI-generated <i>var</i> gene cell lines<br>SLI strategy<br>SLI-modified <i>var</i> genes are predominantly expressed<br>Copenhagen 3D7 cell line shows defect in mutually exclusive expression.<br>Evidence that PfEMP1 is exported through the PTEX channel<br>Establishment of a pipeline for automated evaluation of binding assays<br>3D7 show poor binding phenotypes<br>Generation of a collection of IT4 lines with different activated <i>var</i> genes<br><i>IT4var02</i>                                                                                                                          | 72<br>72<br>72<br>73<br>73<br>75<br>77<br>79<br>83<br>87<br>89             |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7<br>3.1.7.1<br>3.1.7.2                       | loiting SLI-generated <i>var</i> gene cell lines<br>SLI strategy<br>SLI-modified <i>var</i> genes are predominantly expressed<br>Copenhagen 3D7 cell line shows defect in mutually exclusive expression.<br>Evidence that PfEMP1 is exported through the PTEX channel<br>Establishment of a pipeline for automated evaluation of binding assays<br>3D7 show poor binding phenotypes<br>Generation of a collection of IT4 lines with different activated <i>var</i> genes<br><i>IT4var02</i><br><i>IT4var03</i>                                                                                                       | 72<br>72<br>72<br>73<br>73<br>75<br>77<br>79<br>83<br>87<br>89<br>90       |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7<br>3.1.7.1<br>3.1.7.2<br>3.1.7.3            | loiting SLI-generated <i>var</i> gene cell lines<br>SLI strategy<br>SLI-modified <i>var</i> genes are predominantly expressed<br>Copenhagen 3D7 cell line shows defect in mutually exclusive expression .<br>Evidence that PfEMP1 is exported through the PTEX channel<br>Establishment of a pipeline for automated evaluation of binding assays<br>3D7 show poor binding phenotypes<br>Generation of a collection of IT4 lines with different activated <i>var</i> genes<br><i>IT4var02</i><br><i>IT4var03</i><br><i>IT4var08</i>                                                                                   | 72<br>72<br>72<br>73<br>75<br>77<br>79<br>83<br>87<br>89<br>90<br>92       |
| Results<br>3.1 Exp<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.1.7<br>3.1.7.1<br>3.1.7.2<br>3.1.7.3<br>3.1.7.4 | Quantifiedtion, statistical analysis and right construction.         Ioiting SLI-generated var gene cell lines.         SLI strategy         SLI-modified var genes are predominantly expressed.         Copenhagen 3D7 cell line shows defect in mutually exclusive expression.         Evidence that PfEMP1 is exported through the PTEX channel.         Establishment of a pipeline for automated evaluation of binding assays.         3D7 show poor binding phenotypes.         Generation of a collection of IT4 lines with different activated var genes.         IT4var03         IT4var04         IT4var16 | 72<br>72<br>72<br>73<br>75<br>77<br>79<br>83<br>87<br>89<br>90<br>92<br>92 |

3

| 3.1.7.     | 6 <i>IT4var20</i> and <i>IT4var22</i>                                                        |
|------------|----------------------------------------------------------------------------------------------|
| 3.1.8      | DBL <sub>β12</sub> in IT4var19 shows similarities to ICAM-1-binding DBL <sub>β5</sub> domain |
|            |                                                                                              |
| 3.2 Ide    | ntification and characterization of proxiome of a functional PfEMP1102                       |
| 3.2.1      | Fusion of BirA* to endogenous PfEMP1 in three positions 102                                  |
| 3.2.1.     | 1 Characterization of the BioID cell lines                                                   |
| 3.2.1.     | 2 Fusion of miniTurbo and FKBP to PfEMP1108                                                  |
| 3.2.2      | Identification of biotinylated proteins proximal to PfEMP1111                                |
| 3.2.3      | SLI2 enables characterization of PfEMP1 interactors                                          |
| 3.2.4      | Characterization of interacting candidates of PfEMP1 119                                     |
| 3.2.4.     | 1 TryThrA                                                                                    |
| 3.2.4.     | 2 PTEF                                                                                       |
| 3.2.4.     | 3 EMPIC3                                                                                     |
| 3.2.4.     | 4 PeMP2                                                                                      |
| 3.2.4.     | 5 EMPIC5                                                                                     |
| 3.2.4.     | 6 PTP7                                                                                       |
| 3.2.4.     | 7 TryThrA and EMPIC3 are relevant for efficient cytoadherence of <i>P</i> .                  |
| falcip     | parum parasites                                                                              |
| 4 Discussi | ion                                                                                          |
| 4.1 Ac     | tivation of <i>var</i> genes with SLI                                                        |
| 4.1.1      | Expression of targeted var genes                                                             |
| 4.1.2      | Improving binding assays140                                                                  |
| 4.1.3      | 3D7 is not suitable for binding studies142                                                   |
| 4.1.4      | Surface presentation and binding of HA-tagged PfEMP1 variants144                             |
| 4.1.5      | IT4var19 contains an ICAM-1 binding domain146                                                |
| 4.1.6      | PfEMP1 is likely translocated via PTEX                                                       |
| 4.2 Pro    | oxiome of PfEMP1150                                                                          |
| 4.2.1      | Is the proxiome of PfEMP1 its global interactome?                                            |
| 4.2.2      | Identification of PfEMP1 interactors relevant for cytoadherence153                           |

| 4.3       | Conclusion |     |
|-----------|------------|-----|
| Referenc  | es         |     |
| Appendi   | x          |     |
| Publicati | ons        |     |
| Danksag   | ung        | 210 |

## **ABBREVIATIONS**

| α            | Anti                                                           |
|--------------|----------------------------------------------------------------|
| 2A/T2A       | Peptides derived from the 2A region in the genome of virus     |
| 4D           | Four-dimensional                                               |
| aa           | Amino acids                                                    |
| ACT          | Artemisinin combination therapy                                |
| AMA-1        | Apical membrane antigen 1                                      |
| AP2-G        | Transcription factor                                           |
| ATS          | Acidic terminal segment                                        |
| BioID        | Proximity-dependent biotin identification                      |
| Biotinylizer | BirA*-containing constructs inducible recruited to FKBP        |
| BirA*        | E. coli promiscuous biotin ligase                              |
| bp           | Base pair                                                      |
| BSD          | Blasticidin S                                                  |
| BSD-R        | Blasticidin S resistance conferring gene                       |
| CD           | Cluster of differentiation                                     |
| CHO          | Chinese hamster ovary                                          |
| CIDR         | Cysteine-rich interdomain region                               |
| CLAG         | Cytoadherence linked asexual gene                              |
| COVID10      | Coronavirus SARS-CoV-2                                         |
| CRISPR       | Clustered regularly interspaced short palindromic repeats      |
| CSA          | Chondroitin sulfate                                            |
|              | Al 6 diamidina 2 nhanvlindala                                  |
| DAPI         | 4,0-diamamo-2-phenyindole                                      |
| DBL          | Duily binding-like                                             |
| DC           | Domain cassette                                                |
| DDI          | Dichlordiphenyltrichlorethan                                   |
| DHE          | Dihydroethidium                                                |
| DHFR         | Dihydrofolate reductase                                        |
| DHODH        | Dihydroorotate dehydrogenase                                   |
| DIC          | Differential interference contrast                             |
| DiQ-BioID    | Dimerization-induced quantitative BioID                        |
| DMSO         | Dimethyl sulfoxide                                             |
| DNA          | Deoxyribonuclease acid                                         |
| dNTP         | Desoxynucleotide                                               |
| DPBS         | Dulbecco's Phosphate-Buffered Saline                           |
| DSM1         | 5-Methyl-N-(2-naphthyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine |
| DTT          | 1,4-dithiothreitol                                             |
| E. coli      | Escherichia coli                                               |
| EBL          | Erythrocyte binding-like                                       |
| ECL          | Enhanced chemiluminescence                                     |
| EDTA         | Ethylenediaminetetraacetic Acid                                |
| EMPIC        | EMP1 interacting candidate                                     |
| EPCR         | Endothelial protein C receptor                                 |
| EPIC         | Exported protein-interacting Complex                           |
| ER           | Endoplasmic reticulum                                          |
| et al.       | et alii/et aliae                                               |
| ETRAMP       | Early transcribed membrane protein                             |
| EXP          | Exported protein                                               |
| FACS         | Fluorescence-Activated Cell Sorting                            |
| FIKK         | Serine/threenine kinase family                                 |
| FKBP         | FK 506 binding protein                                         |
| FRR          | FKBP12 ranamycin hinding domain                                |
| FV           | Food vacuale                                                   |
| 1 V<br>fru   | Forward                                                        |
| 1W<br>C 419  | Forward<br>Constisin 419                                       |
| CDD          | Chronehanin hinding met-in                                     |
| UBP          | Glycophorin binding protein                                    |
| gUIqK        | Giobular C1q receptor                                          |
| GDVI         | Gametocyte development 1                                       |
| GEXP         | Gametocyte exported protein                                    |

| GFP           | Green fluorescence protein                                       |
|---------------|------------------------------------------------------------------|
| h             | hours                                                            |
| НА            | Hemagglutinin                                                    |
| HBEC-5i       | Primary brain cells                                              |
| HEPES         | 4-(2-Hydoxyethyl)-1-niperazineethanesulfonicacid                 |
| HP1           | Heterochromatin protein 1                                        |
| hni           | Hours post invasion                                              |
| прі           | Homeless masion                                                  |
|               |                                                                  |
| HRP           | Horseradish peroxidase                                           |
| HSP           | Heat shock protein                                               |
| ICAM-I        | Intercellular adhesion molecule l                                |
| ICC           | Intraclass correlation coefficient                               |
| iE            | Infected erythrocyte                                             |
| IFA           | Immunofluorescence assay                                         |
| IgG           | Immunglobulin G                                                  |
| IMC           | Inner membrane complex                                           |
| J-Dot         | Mobile structures in the P. falciparum-infected erythrocyte      |
| KAHRP         | Knob-associated histidine-rich protein                           |
| kDa           | Kilodalton                                                       |
| LB            | Lysogeny broth                                                   |
| LC-MS         | I abel free quantitative liquid chromatography-mass spectrometry |
| Log           | Logarithmic                                                      |
| LUS           | Lusine rich membrane associated PHISTh                           |
|               | Lysine-field memorane-associated 1 111510                        |
| lysore        |                                                                  |
| m<br>MAUDD    |                                                                  |
| MAHRP         | Membrane associated histidine-rich protein                       |
| MC            | Maurer's clefts                                                  |
| mCherry       | Red fluorescent protein of the mFruits family                    |
| mScarlet      | Red fluorescent protein                                          |
| MEED          | Mutually exclusive expression defect                             |
| MFS           | Malaria freezing solution                                        |
| MSP           | Merozoite surface protein                                        |
| MSRP6         | MSP-7 related protein 6                                          |
| MTS           | Malaria thawing solution                                         |
| Mw            | Molecular weight                                                 |
| NCBI          | National Center for Biotechnology Information                    |
| Neo R         | Neomycin resistance conferring gene                              |
| NPP           | New permeability pathways                                        |
| NTS           | N_terminal segment                                               |
| ori           | Original locus                                                   |
| D falcinamum  | Diagmodium facinamum                                             |
| T. juicipurum | Dhasmbata huffer solution                                        |
| PDS<br>DCD    | Phosphate buller solution                                        |
| PCK           | Polymerase chain reaction $\mathbf{P}$                           |
| PECAM-I       | Platelet endothelial cell adhesion molecule 1                    |
| PeMP          | Peripheral Maurer's clefts protein                               |
| PEXEL         | Plasmodium export element                                        |
| Pf332         | <i>P. falciparum</i> protein 332                                 |
| PfEMP1        | <i>P</i> . falciparum erythrocyte membrane protein 1             |
| pН            | Potential of hydrogen                                            |
| PHIST         | Plasmodium helical interspersed subtelomeric                     |
| pI            | Isoelectric point                                                |
| PlasmoDB      | Plasmodium database                                              |
| PNEP          | PEXEL negative exported protein                                  |
| PPM           | Parasite plasma membrane                                         |
| Proxiome      | Proximal proteome                                                |
| PSAC          | Plasmodium surface anion channel                                 |
| PTEF          | <i>P</i> falcinarum translation enhancing factor                 |
| PTEX          | Plasmodium translocon of exported proteins                       |
| PTP           | PfFMP1 transport protein                                         |
| PV            | Parasitonhorous vacuole                                          |
|               | La ashophorous vacuole membrane                                  |
| L A IAI       | r arashophorous vacuole memorane                                 |

| RBLReticulocyte binding-likeREX1Ring exported proteinRFPRed fluorescence proteinRhopHHigh molecular weight rhoptry proteinRMSDRoot-mean-square deviation |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| REX1Ring exported proteinRFPRed fluorescence proteinRhopHHigh molecular weight rhoptry proteinRMSDRoot-mean-square deviation                             |  |
| RFPRed fluorescence proteinRhopHHigh molecular weight rhoptry proteinRMSDRoot-mean-square deviation                                                      |  |
| RhopHHigh molecular weight rhoptry proteinRMSDRoot-mean-square deviation                                                                                 |  |
| RMSD Root-mean-square deviation                                                                                                                          |  |
|                                                                                                                                                          |  |
| RNA Ribonucleic Acid                                                                                                                                     |  |
| RON3 Rhoptry neck protein 3                                                                                                                              |  |
| Rpm Rounds per minute                                                                                                                                    |  |
| RPMI Roswell Park Memorial Institute (medium)                                                                                                            |  |
| RT Room temperature                                                                                                                                      |  |
| rv Reverse                                                                                                                                               |  |
| SBP1 Skeleton binding protein 1                                                                                                                          |  |
| SD Standard deviation                                                                                                                                    |  |
| SDS Sodium dodecyl sulfate                                                                                                                               |  |
| SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis                                                                                       |  |
| SEMP Small exported proteins                                                                                                                             |  |
| SERA Serine repeat antigen                                                                                                                               |  |
| SLI Selection linked integration                                                                                                                         |  |
| SP Signal peptide                                                                                                                                        |  |
| STARP Sporozoite threonine and asparagine-rich protein                                                                                                   |  |
| SUB1 Subtilisin-like protease 1                                                                                                                          |  |
| SURFIN Protein transcribed by surface-associated interspersed gene                                                                                       |  |
| TAE TRIS-acetat-EDTA-Puffer                                                                                                                              |  |
| TE Tris-EDTA                                                                                                                                             |  |
| TGD Targeted gene disruption                                                                                                                             |  |
| TM Transmembrane domain                                                                                                                                  |  |
| TPCK L-1-Tosylamido-2-Phenylethylchloromethylketon                                                                                                       |  |
| TPM Transcripts per million                                                                                                                              |  |
| TRX Thioredoxin-2 enzyme                                                                                                                                 |  |
| TryThrA Tryptophan-threonine-rich antigen                                                                                                                |  |
| TVN Tubovesicular network                                                                                                                                |  |
| UIS2 Unregulated infected sporozoite 2                                                                                                                   |  |
| UPS 5' upstream                                                                                                                                          |  |
| VSA Variant surface antigens                                                                                                                             |  |
| WHO World health organization                                                                                                                            |  |

## **LIST OF FIGURES**

| Figure 1: Countries with indigenous malaria cases in 2000 and their status in 2021                   | 1   |
|------------------------------------------------------------------------------------------------------|-----|
| Figure 2: Life cycle of <i>P. falciparum</i>                                                         | 4   |
| Figure 3: Invasion and formation of the parasitophorous vacuole.                                     | 6   |
| Figure 4: Asexual blood stages.                                                                      | 8   |
| Figure 5: Gametocyte stages.                                                                         | 9   |
| Figure 6: Organelles of <i>P. falciparum</i> parasites                                               | 11  |
| Figure 7: Export and nutrient uptake from the host cell cytosol across the PV.                       | 16  |
| Figure 8: Host cell modifications.                                                                   | 18  |
| Figure 9: Cytoadherence of infected erythrocytes                                                     | 22  |
| Figure 10: var gene groups location on the chromosomes                                               | 23  |
| Figure 11: PfEMP1 structure, binding domains and interacting receptors                               | 27  |
| Figure 12: Integration strategy for the activation of a specific var gene.                           | 73  |
| Figure 13: Confirmation of predominant expression of specific var genes modified with SLI in 3D7     | 74  |
| Figure 14: 3D7 <sup>MEED</sup> shows a defect in mutually exclusive expression.                      | 76  |
| Figure 15: Export of PfEMP1 is prevented by blocking PTEX at the onset of the trophozoite stage      | 78  |
| Figure 16: Establishment of an automated pipeline for the evaluation of binding assay images         | 80  |
| Figure 17: Confirmation of SLI-activation of two var genes in IT4.                                   | 84  |
| Figure 18: Comparison of the cytoadherence properties of 3D7 and IT4 parasites.                      | 86  |
| Figure 19: Characterization of the activation of <i>var02</i> in IT4 parasites                       | 90  |
| Figure 20: Characterization of the activation of <i>var03</i> in IT4 parasites                       | 91  |
| Figure 21: Characterization of the activation of <i>var08</i> in IT4 parasites                       | 92  |
| Figure 22: Characterization of the activation of <i>var16</i> in IT4 parasites                       | 94  |
| Figure 23: Characterization of the activation of <i>var19</i> in IT4 parasites                       | 96  |
| Figure 24: Attempted activation of <i>var20</i> and <i>var22</i>                                     | 98  |
| Figure 25: DBLβ12 shows structural similarities to ICAM-1-binding DBLβ5                              | 100 |
| Figure 26: SLI-strategy for fusion of BirA* to <i>var01</i> in IT4.                                  | 102 |
| Figure 27: BirA*-fused PfEMP1s are functional and able to biotinylate                                | 105 |
| Figure 28: Generation of PfEMP1-miniTurbo cell lines                                                 | 108 |
| Figure 29: Attempt to establish DiQ-BioID for PfEMP1                                                 | 109 |
| Figure 30: MS analysis of biotinylated proteins enriched in the BioID cell lines                     | 113 |
| Figure 31: Comparison of the PfEMP1 proxiomes with each other and a general Mauer's celfts proxiome. | 115 |
| Figure 32: Second endogenous modification in cell line with a SLI-activated var gene.                | 118 |
| Figure 33: Characterization of TryThrA.                                                              | 121 |
| Figure 34: Characterization of PTEF                                                                  | 124 |
| Figure 35: Characterization of EMPIC3.                                                               | 126 |
| Figure 36: Characterization of PeMP2                                                                 | 129 |
| Figure 37: Characterization of EMPIC5.                                                               | 131 |
| Figure 38: Characterization of PTP7                                                                  | 132 |
| Figure 39: TryThrA and EMPIC3 are relevant for cytoadherence                                         | 134 |

| <b>E' 10 E 1 ' 1</b>  |                     | 11                        | TT / / 1                  | 11 1.          | 1 6 7 |
|-----------------------|---------------------|---------------------------|---------------------------|----------------|-------|
| Elaure //// Evaloring | Vev nrocesses in c  | wtoodherence liging V     | L Lactivated var as       | ana call linas | 157   |
|                       | AUV DIQUUSSUS III U | violautici cite usiti g o | $L_1$ -activated vul $20$ |                |       |
|                       |                     | J                         |                           |                |       |

## LIST OF TABLES

| Table 1: List of technical devices.                                     | 33 |
|-------------------------------------------------------------------------|----|
| Table 2: List of chemicals                                              | 35 |
| Table 3: List of labware and disposables                                | 39 |
| Table 4: List of kits                                                   | 40 |
| Fable 5: List of DNA and protein ladders                                | 40 |
| Table 6: List of drugs for parasite culture                             | 41 |
| Table 7: List of media and solutions for parasite culture               | 42 |
| Table 8: List of solutions for bacterial culture                        | 46 |
| Table 9: List of solutions for gel electrophoresis                      | 47 |
| Table 10: List other buffers and solutions                              | 48 |
| Table 12: List of mammalian, E. coli and P.falciparum strains           | 51 |
| Table 13: List of enzymes                                               | 52 |
| Table 14: List of primary antibodies                                    | 53 |
| Table 15: List of secondary antibodies                                  | 54 |
| Table 16: List of standard primers                                      | 55 |
| Table 17: List of general primers                                       | 55 |
| Table 18: List of var genes chosen for the activation in IT4 parasites. | 87 |

## **1** INTRODUCTION

## 1.1 MALARIA

It is likely that malaria has accompanied humanity since its origin. Historical records tracing as far back as the 2700 BC, including those from ancient civilizations in China, Egypt, Mesopotamia, and Greece, already described symptoms of the disease (Cox, 2010). There is evidence that numerous historical figures, including Julius Caesar (Ridley, 2000), several members of the Medici dynasty (Maixner et al., 2023; Sommi Picenardi, 1888), and the Egyptian pharaoh Tutankhamun (Hawass et al., 2010) were plagued by malaria, illustrating the long-standing impact on humanity.



Figure 1: Countries with indigenous malaria cases in 2000 and their status in 2021. Red indicates countries with indigenous cases of malaria in 2021; Orange, green, pink, blue and white indicate malaria free countries that previously registered malaria cases (figure from WHO, 2020).

For centuries the disease was attributed to bad air in the swamps and in medieval Italy was termed "mala aria" (bad air). The paradigm shifted with Louis Pasteur's germ theory of disease in the 1860s, laying the groundwork for the microbial origin of diseases. However, only in 1880 Alphonse Laveran, a young military doctor in Algeria, observed malaria parasites in the blood of patients for the first time. He proposed that a protozoan parasite was responsible for the disease, a postulate that was broadly accepted a decade later. Laveran already hypothesized about the role of mosquitoes in the transmission of these parasites. This was later confirmed by

Sir Ronald Ross in 1897 on avian malaria and by Giovanni Battista Grassi in 1898 on human malaria parasites. Only Ross and Laveran were honored with the Nobel prize, Ross in 1902 and Laveran in 1907 (reviewed in Cox, 2010).

Malaria's clinical symptoms vary from asymptomatic to severe, including nausea, fever, anemia, and neurological complications (Marsh et al., 1995). The World Health Organization (WHO) reported over 200 million malaria infections and 600,000 fatalities in 2021, with an increase from the previous year attributed to the exacerbation of the disease burden due to the COVID-19 pandemic disrupting malaria control services. The vast majority of malaria cases occur in sub-Saharan Africa, often affecting the poorest and youngest individuals (Figure 1) (WHO, 2023).

The WHO has the goal to reduce malaria cases by 90 % by 2030 (WHO, 2023). However, these aims are hampered by increased resistances of the parasites to the currently available antimalarials. Antimalarial medication like quinine were already used in the 16<sup>th</sup> hundreds (Achan et al., 2011). Today, the frontline antimalarial drug is artemisinin and derivatives used in combination with other antimalarials, so called ACTs (artemisinin combination therapies). However, reduced susceptibility of parasites to artemisinins are now widespread in Southeast Asia (Dondorp et al., 2009; Noedl et al., 2008) and was also reported for Africa (Stokes et al., 2021; Uwimana et al., 2021, 2020) South America (Mathieu et al., 2020) and Papua New Guinea (Miotto et al., 2020).

Preventive strategies implemented by the WHO focus on vector control, with insecticide-treated bed nets and the elimination of mosquito breeding grounds are among the most effective in preventing malaria transmission (WHO, 2023). Furthermore, DDT was used in large scale eradication programs to diminish mosquito populations (Sadasivaiah et al., 2007). In Sri Lanke for example, malaria cases were reduced from one million per year to 18 in 1963 before numbers rose again when the program was stopped (Karunaweera et al., 2014). The appreciation of the effect of DDT on the environment drastically reduced the use of DDT. Currently only small quantities are used for indoor spraying.

Malaria continues to be a major global health challenge, remaining one of the top causes of mortality in low-income countries (WHO, 2020). This disease not only poses a significant threat to public health but also imparts a substantial economic burden. Its persistence highlights the critical need for enhanced preventive strategies and stronger healthcare interventions.

### **1.2 BIOLOGY OF THE MALARIA PARASITE** *P. FALCIPARUM*

Malaria is caused by unicellular eucaryotic parasites of the genus *Plasmodium* which belong to the *Apicomplexa* phylum in the *Alveolata* clade. Other well-known representatives of the *Apicomplexans* are *Toxoplasma* and *Cryptosporidium*, the causative agents of toxoplasmosis and cryptosporidiosis. The genus *Plasmodium* comprises around 200 species that can infect a wide range of mammals, birds, and reptiles (Martinsen and Perkins, 2013). Only five of these species are known to regularly infect the human as a host, *P. falciparum*, *P. vivax*, *P. knowlesi*, *P. ovale* and *P. malariae* (Lalremruata et al., 2017). While *P. vivax* is the most prevalent outside African countries, *P. falciparum* is by far the deadliest of the human malaria species that is responsible for nearly all of the malaria related death (WHO, 2023).

*P. falciparu*m is the only human infecting malaria parasite that belongs to the subgroup of *Laverania* (Bray, 1958). The *Laverania* subgenus comprises *Plasmodium* species that infect gorillas and chimpanzees and most likely derived from bird infecting malaria parasites. *P. falciparum* probably arose from an ancestral *Laverian* parasite that used gorillas as their hosts, *P. praefalciparum*. *P. falciparum* therefore differs from the other human malaria parasites like *P. vivax* and is a rather distant relative of these (reviewed in Escalante et al., 2022) with higher virulence and unique properties such as the capacity to bind to the host endothelium (section 1.3).

The second host of all the *Plasmodium* species are mosquitoes of the genus *Anopheles* in which the parasites mate and migrate between vertebrate hosts (Figure 2). Of the 140 Anopheles species only 20 are known to transmit malaria (Hay et al., 2000; Sinka et al., 2012, 2010).



**Figure 2: Life cycle of** *P. falciparum*. (Left) Life cycle in the mosquito which includes sexual stages. (Right) Life cycle in the human host (1) Injection of sporotzoites into the human host during a blood meal of the mosquito; (2) infection of a hepatocyte by the sporozoites with liver stage development; (3) asexual blood stage cycle during which the parasites proliferate to generate merozoites and gametocytes; (4) sexual stages in the mosquito after the uptake of gametocytes during a blood meal, showing female (Macrogamete) and male (Microgamete) (Figure modified from (figure from Boddey and Cowman, 2013).

### **1.2.1** LIFE CYCLE OF *P. FALCIPARUM*

With only around 5500 genes (Gardner et al., 2002), *P. falciparum* goes through a rather complex life cycle characterized by significant morphological and biochemical transformations (Figure 2). This adaptability enables it to survive in a variety of cells in different organisms, while simultaneously evading the persistent defense mechanisms of the immune system.

### **1.2.1.1 MOSQUITO STAGES**

In the mosquito, the parasites arrive as male and female gametocytes in the midgut after their uptake during a blood meal of the mosquito (Figure 2). Immediately after, the gametocytes go through gametogenesis during which they convert into viable gametes (Figure 2). This process is induced by changes in temperature, pH, calcium concentrations and xanthurenic acid, a mosquito-derived metabolic intermediate (Billker et al., 2004). The male gametocytes go

through very rapid DNA replication, the fastest DNA replications in any eucaryotic organism (Matthews et al., 2018), to produce eight microgametes (1n) within 15 min (Janse et al., 1986; Kawamoto et al., 1991). The female gametocytes develop into a single larger macrogamete (1n) (Guttery et al., 2012). The haploid micro- and macrogametes then lyse the erythrocytes and are released into the midgut. Microgametes undergo exflagellation (Billker et al., 2004; Laveran, 1880) and subsequently fertilize the macrogametes to form a diploid zygote (2n). The zygote undergoes DNA replication and meiosis to transform into a motile ookinete (4n) that migrates through the midgut epithelium into the basal lamina where it transforms into an ookinete. The developmental transition from initial ingestion to ookinete formation within the mosquito's midgut takes approximately 19 to 36 hours. In the next 10-12 days the ookinete develops into an oocyst in which sporozoites are formed by sporogenic replication (reviewed in Aly et al., 2009). The motile sporozoites are then released into the body cavity of the mosquito and reach the salivary glands where they are ready to infect the following human host during another bite of the mosquito (Figure 2).

#### **1.2.1.2** LIVER STAGES

Once injected into the human host the sporozoites migrate to reach the bloodstream from the injection side in the dermis. Only 70 % of the sporozoites make it to the blood stream, the rest ends up in the lymphatic system where they are degraded (Amino et al., 2006). Once in the bloodstream the sporozoites are transported to the liver (Dobrowolski and Sibley, 1996). In the liver the sporozoites adhere to the endothelial cells (Kori et al., 2018) and proceed to reach hepatocytes via multiple routes, including direct penetration through endothelial cells, migration through interstitial gaps between discontinuous endothelial cells (Ishino et al., 2004) or traversal through Kupffer cells (Pradel and Frevert, 2001). The sporozoites then transmigrate several hepatocytes before settling in a single hepatocyte (Rankin et al., 2010). In the next 5-7 days the parasite goes through hepatic schizogony to multiply and form thousands of merozoites (Bartoloni and Zammarchi, 2012). The merozoites are released into the bloodstream by budding off merozoite filled merosomes from the infected hepatocyte (Sturm et al., 2007) (Figure 2).



**Figure 3: Invasion and formation of the parasitophorous vacuole.** Illustration showing simplified scheme of the invasion process. EBA: Erythrocyte binding antigen; Rh: reticulocyte binding-like protein; RON: Rhoptry Neck Proteins; light blue background; erythrocyte; white background extracellular space (figure from Koch and Baum, 2016).

### **1.2.1.3 INVASION**

Despite some evasion mechanisms, merozoites in the bloodstream are exposed and vulnerable to the immune system as they are the only free-living form of the blood stages (Hill et al., 2013). Therefore, merozoites swiftly invade red blood cells (within 30 seconds) to avoid prolonged exposure to the serum (Gilson and Crabb, 2009). The invasion process can be classified into multiple steps: attachment, strong binding, reorientation, entry and sealing (different steps are sometimes used in the literature) (Cowman et al., 2017; Dvorak et al., 1975; Gilson and Crabb, 2009). Initially, the merozoite binds to the erythrocyte, likely through a weak interaction involving the merozoite surface proteins (MSPs) and the erythrocyte surface (attachment) (Sanders et al., 2005). This interaction triggers members of the erythrocyte binding-like (EBL), reticulocyte binding-like (RBL) families, and apical membrane antigen 1 (AMA-1) that mediate strong attachment (strong binding) (Besteiro et al., 2011; Cowman et al., 2017; Lopaticki et al., 2011). Guided by these proteins, the merozoite then repositions its apical end toward the erthrocyte (reorientation) and establishes a tight junction. Subsequently the merozoite enters the erythrocyte by causing the host cell membrane to invaginate (entry). The invasion process

is finalized by the sealing of the invaginated erythrocyte membrane, followed by echinocytosis and subsequent restoration of the erythrocyte's shape (sealing) (Figure 3; reviewed in Cowman et al., 2017). During this process the erythrocyte membrane forms a second membrane around the parasite, the parasitophorous vacuole membrane (PVM), creating the parasitophorous vacuole (PV), separating the parasite from the host cell cytosol (section 1.2.2.2).

### **1.2.1.4 INTRACELLULAR BLOOD STAGES**

Erythrocytes present a unique ecological niche for the malaria parasites with specific advantages and disadvantages. To overcome these disadvantages the parasite has developed sophisticated strategies which are linked to great expenses for the parasite (section 1.2.2.4). During the intraerythrocytic stages, the parasite's primary functions are proliferation and transitioning to its sexual stage, and subsequent uptake by *Anopheles* mosquitoes, thereby ensuring propagation and survival (Figure 2).

#### 1.2.1.4.1 RING STAGE

The first stage after invasion into an erythrocyte is termed the ring stage which comprises the first 18 hours after invasion (Grüring et al., 2011) (Figure 4). During this stage, the parasite can be observed in a circular form or adopt an amoeboid shape. On the molecular level, ring stage parasites modify their host cell by exporting a large number of proteins into the host cell (section 1.2.2.3 and 1.2.2.4). The ring stage is superseded by the trophozoite stage, distinguishable morphologically by the formation of a hemozoin containing food vacuole.

#### **1.2.1.4.2** TROPHOZOITE STAGE

The trophozoite stage is characterized by the uptake of hemoglobin from the host cell and nutrients from the bloodstream (section 1.2.2.4.2) by the parasite and takes until ~32 hour after invasion (Grüring et al., 2011) (Figure 4). Hemoglobin is digested and the by-product heme is transformed to hemozoin and stored in the food vacuole (section 1.2.2.1.3) which is visible and a distinctive feature of the malaria parasite (Figure 4). Concurrently, the parasite dramatically increases in size. Trophozoites have a more spherical shape with a fixed position in the host cell than ring stages (Sachanonta et al., 2011). To achieve this the parasite heavily relies on the foundational host cell modifications instigated during the preceding ring stage.



**Figure 4:** Asexual blood stages. Top Panel: Schematic illustration of the *P. falciparum* asexual erythrocytic cycle, depicting the progression through the key blood stages: ring, trophozoite and schizont with the generation of merozoites. Bottom Panel: A detailed single differential interference contrast (DIC) z-section from a series constituting four-dimensional (4D) confocal microscopy imaging, capturing the dynamic development of a *P. falciparum* parasite during the erythrocytic stage. Selected time-lapse frames, captured at 20-minute intervals and artificially colored for contrast enhancement, are presented. The elapsed time since the onset of imaging is indicated for each frame. Initial imaging (time point 0) reveals a parasite in the late ring stage, with subsequent times therefore not aligned with the typical post-invasion timeline. White Arrow (at time point 31h20m): Denotes a newly invaded ring stage parasite; red: erythrocyte membrane; blue: *Plasmodium* parasite body; black: hemozoin (pigment) in the parasite's food vacuole; h: Hours post-initiation of imaging; m: Minutes post-initiation of imaging; Scale bar, 2 µm. (Modified from De Niz et al., 2017).

### 1.2.1.4.3 SCHIZONT STAGE

After the increased energy and nutrient consumption, the parasite prepares to enter the schizont stage heralded by the first nuclear division, approximately 32 hpi. The nuclear division during schizogony is asynchronous (endodyogeny) without the formation of plasma membranes around the newly formed nuclei (Klaus et al., 2022; Read et al., 1993). Only after the nuclear division is completed new cells are formed within the parent through the invagination of plasma membrane and give rise to 16-32 daughter cells (Figure 4). In this stage the schizonts are often referred to as segmenters. Furthermore, the inner membrane complex (IMC) and apical complexes (section 1.2.2.1.1) form which are essential for invasion of merozoites into new erythrocytes (Voß et al., 2023). The release of daughter cells occurs 48 hpi in a rapid and highly orchestrated egress process (Abkarian et al., 2011). Egress is initiated when subtilisin-like protease 1 (SUB1) is secreted into the PV activating egress effectors (Suarez et al., 2013; Tawk et al., 2013) of the merozoite surface protein-1 (MSP-1) (Koussis et al., 2009; Yeoh et al., 2007) and serine repeat antigen (SERA) families (Collins et al., 2017; Ruecker et al., 2012; Stallmach et al., 2015; Thomas et al., 2018). This activates the breakdown of the PVM and erythrocyte

membrane (Blackman and Carruthers, 2013) and enables the escape of merozoites into the bloodstream. This coordinated sequence of events ends one round of the continuous asexual life cycle of *P. falciparum* parasites (Figure 2).

#### **1.2.1.4.4** SEXUAL DEVELOPMENT

During asexual reproduction in the blood, a small population of *Plasmodium* parasites undergoes sexual commitment, giving rise to gametocyte progeny and initiating the sexual stage of the life cycle. This pivotal process is initiated by gametocyte development 1 (GDV1) which activates heterochromatin protein 1 (HP1) (Filarsky et al., 2018) followed by de-repression of the transcription factor AP2-G (Kafsack et al., 2014; Sinha et al., 2014). This process is controlled by the exogenous host serum lipid lysophosphatidylcholine (lysoPC). Depletion of lysoPC leads to increased sexual commitment of the parasites (Brancucci et al., 2017). The conversion rates in clinical isolates range from 3.3% to 12.2% of the parasites. Notably, conversion rates *in vitro* can drop to 0% in parasites lacking the *gdv1* gene, with non-sense mutations in the *ap2g* gene or lost chromosome ends (Eksi et al., 2012; Kafsack et al., 2014; Stewart et al., 2022; Tibúrcio et al., 2021). In controlled *in vitro* conditions, the induction of this conversion is attainable through the conditional depletion of *hp1* (Brancucci et al., 2014) and conditional overexpression of *gdv1* (Boltryk et al., 2021; Usui et al., 2019) or *ap2-g* (Kent et al., 2018; Llorà-Batlle et al., 2020).



**Figure 5: Gametocyte stages.** Simplified illustration of the morphology of the gametocyte stages I–V. Stages I-III are categorized as early stages. Stages III-V categorized as late stages. The banana-like shape characteristic for gametocytes appears in stage V. Stage V shows sex specific differences (male and female gametocytes). (Figure modified from (from Delves et al., 2016).

Once a schizont is sexually committed, all merozoites of that parasite develop into either male or female gametocytes after they invaded a new erythrocyte (Silvestrini et al., 2000). The maturation of gametocytes spans a period of 10-12 days in *P. falciparum* and is categorized into five stages (Stages I-V; Figure 5) (Josling and Llinás, 2015). Stage I gametocytes lack morphological distinctions to asexual trophozoites. Only in stage II the gametocytes take on a form unique to sexually committed parasites. Stage V gametocytes assume a distinctive bananashaped morphology and occupy most of the host erythrocyte (Figure 5). Early- and late-stage as well as male and female gametocytes can be reliably distinguished from one another and from asexual stages using molecular markers (Alano, 2007; Russell et al., 2023). In the peripheral blood of patients only stage I and stage V gametocytes are detectable. Stages II - IV are sequestered within the bone marrow and spleen to evade splenic clearance (De Niz et al., 2016; Joice et al., 2014; Lee et al., 2018; Obaldia et al., 2018). Mature stage V gametocytes are ingested by *Anopheles* mosquitoes and enter gametogenesis (Figure 2).

It is noteworthy that gametocytes display limited susceptibility to antimalarial treatments (Bradley et al., 2019; Delves et al., 2016) and thereby can persist in the patient after otherwise successful antimalarial therapy.

### **1.2.2** CELLULAR BIOLOGY OF *P. FALCIPARUM* PARASITES

### **1.2.2.1 ORGANELLES**

*P. falciparum* parasites possess the typical eukaryotic organelles such as the ER, nucleus, Golgi apparatus, lysosome-like organelle and mitochondria. Additionally, malaria parasites possess highly specialized organelles to invade the erythrocytes (apical complex; section 1.2.2.1.1), digest hemoglobin in a lysosome-like organelle (food vacuole; section 1.2.2.1.3) and produce essential precursors for biochemical pathways in a plastid (apicoplast; section 1.2.2.1.2) (Figure 6). Parasite-induced compartments in the host cell are summarized in 1.2.2.4.1 (Maurer's clefts) and the compartment the parasite is residing in the host cell in 1.2.2.2 (Figure 6).



**Figure 6: Organelles of** *P. falciparum* **parasites.** (A) Illustration of the organelles in a *P. falciparum* merozoite. Red: Host cell cytosol; Yellow: PV lumen; Darker green: Parasite cytosol. (B) Illustration of the organelles in a *P. falciparum* trophozoite stage parasite. IMC: inner membrane complex; ER: Endoplasmic reticulum; MC: Maurer's cleft; FV: Food vacuole; PPM: Parasite plasma membrane; PVM: Parasitophorous vacuole membrane; RBCM: red blood cell membrane; TVN: tubovesicular network. (Figure modified from Flammersfeld et al., 2018).

#### **1.2.2.1.1** APICAL COMPLEX, DENSE GRANULES AND INNER MEMBRANE COMPLEX

*P. falciparum* merozoites possess three specialized secretory organelles orchestrating secretion of proteins for the invasion of erythrocyte and formation of the PVM. Two of these organelles are in the apical complex, which is situated at the parasite's apex. The third secretory organelle, the dense granules are scattered throughout the cytosol (Bannister et al., 2003) (Figure 6, left). The apical complex consists of the apical ring, micronemes, and rhoptries (Martinez et al., 2022). The rhoptries are prominent, bulbous, electron-dense structures that taper towards the apex and are accompanied by the slender, filamentous micronemes (Figure 6, left). The invasion mechanism (section 1.2.1.3) is orchestrated through a finely regulated spatial and temporal interplay between these organelles. The exocytosis of micronemes, largely driven by calcium signaling, initiates prior to merozoite egress from the host cell (Bisio et al., 2019; Farrell et al., 2012). However, *in vitro* studies suggest that microneme exocytosis may be dispensable for egress (Farrell et al., 2012). Micronemes are pivotal for the parasite's gliding motility in *P. berghei* sporozoites (Frénal et al., 2017). The parasite's gliding motility is a movement process important for invasion and sporozoite migration (Beyer et al., 2021; Yahata et al., 2021).

The interaction between the merozoite and the erythrocyte, facilitated by microneme exocytosis, likely instigates the release of rhoptries. Proteins from the rhoptries are then discharged, contributing to the establishment of a moving junction (Guérin et al., 2017) between

merozoite and host cell. A second wave of exocytosis of rhoptry proteins occurs during the formation of the PVM (Håkansson et al., 2001).

The electron-dense dense granules, which are also involved in the secretion during invasion, release their contents only after the parasite is inside the erythrocyte, contributing proteins to the PVM and the erythrocyte surface. Notably, proteins such as exported protein 2 (EXP2) and the RhopH complex are stored within these granules during the schizont stage (section 1.2.2.3 and 1.2.2.4.2) (Bullen et al., 2012; Maier et al., 2008) to facilitate protein export and nutrient import right after invasion.

During schizogony a new membrane, termed the inner membrane complex (IMC), is formed *de novo* beneath the plasma membrane of newly forming merozoites. This membrane likely derived from Golgi material (Bannister et al., 2000) and eventually underlies the plasma membrane of the merozoite, leading to flat membranous cisternae underneath the plasma membrane of the merozoites (Figure 6, left). The IMC, which is a discontinuous structure (Hanssen et al., 2013; Riglar et al., 2013), is thought to provide a structural framework for gametocytes (Dearnley et al., 2012; Parkyn Schneider et al., 2017; Sinden, 1982) and during merozoite formation (Kono et al., 2012). Furthermore, it is integral to gliding motility by anchoring the actin-myosin machinery of the glideosome (Gaskins et al., 2004; Jones et al., 2006; Keeley and Soldati, 2004). Post-invasion, the IMC is swiftly dismantled within approximately 15-60 minutes (Riglar et al., 2013). The composition and function in invasion of the IMC is a field of active research (Ferreira et al., 2021; Qian et al., 2022; Wichers et al., 2021).

#### 1.2.2.1.2 APICOPLAST

The apicoplast, a non-photosynthetic plastid, is ubiquitous among the *Apicomplexa* phylum with the notable exception of *Cryptosporidium ssp.* (Zhu et al., 2000) and *Gregarina niphandrodes* (Toso and Omoto, 2007). This remarkable organelle originated from a secondary endosymbiotic process, probably involving a red algae, which intrinsically contained a prokaryotic symbiont, leading to an organelle encased by four distinct membranes (Fast et al., 2001; Köhler et al., 1997). Despite containing different kinds of approximately 500 proteins, the apicoplast's genome just encodes a mere 10% of these, with the majority transcribed in the nucleus and transported to the apicoplast via a specialized targeting sequence (McFadden and Yeh, 2017).
Given its prokaryotic heritage and critical metabolic functions, the apicoplast has been identified as a pivotal vulnerability - the "Achilles' heel" - of *Plasmodium ssp.* (Soldati, 1999). Experiments utilizing specific antibiotics (e.g., Chloramphenicol, Doxycycline, etc.) resulted in the eradication of the apicoplast (Dahl et al., 2006), leading to the parasite's demise during the subsequent asexual proliferation cycle, a phenomenon described as a "delayed death phenotype". However, the exogenous supply of a single precursor involved in isoprenoid biosynthesis, isopentenyl pyrophosphate, can rescue blood stage parasites lacking an apicoplast (Yeh and DeRisi, 2011). This underscores the apicoplast's essential role for the parasite in the isoprenoid synthesis pathway during its blood stages.

### 1.2.2.1.3 FOOD VACUOLE

An essential part of the parasite's survival is the degradation of hemoglobin. The parasite degrades around 80% of the hemoglobin of the host cell within an intraerythrocytic cycle. The host cell cytosol is taken up in bulk without the need for receptors to discriminate what is internalized (Spielmann et al., 2020). The internalized cytosol is transported to an acidic lysosomal-like compartment, the food vacuole. Several proteases in the food vacuole help to break down hemoglobin (Banerjee et al., 2002; Francis et al., 1997). One of the key products of this digestion is free radical producing ferriprotoporphyrin IX ( $\alpha$ -hematin) which is toxic for the parasite (Goldberg et al., 1991, 1990). The  $\alpha$ -hematin is polymerized in the food vacuole which results in the accumulation of non-toxic crystallized hemozoin, also known as the "malaria pigment". This pigment builds up in the parasite's food vacuole and becomes a noticeable feature of parasites that conducted endocytosis (Ehlgen et al., 2012).

### **1.2.2.2 PARASITOPHOROUS VACUOLE**

The PV and PVM are formed during the invasion process by invagination of the host cells membrane and lipids from the rhoptries (section 1.2.1.3). Host proteins are excluded (Aikawa et al., 1981; Atkinson et al., 1988; Dluzewski et al., 1989; McLaren et al., 1977), and parasite proteins and lipids are integrated into the newly formed PVM (Bannister and Dluzewski, 1990; Dluzewski et al., 1992; Joiner, 1991; Lauer et al., 2000; Mikkelsen et al., 1988; Murphy et al., 2006). It is poorly understood how the *Plasmodium* parasites contribute to the PVM formation (Goldberg and Zimmerberg, 2020; Lingelbach and Joiner, 1998; Spielmann et al., 2012). However, in *Toxoplasma gondii* the formation of the PVM is supported by the secretion of the rhoptries and dense granules (Mercier et al., 2005) (section 1.2.2.1.1).

The PVM separates the host cells cytosol from the parasite and must be crossed for nutrient influx, waste disposal and export of parasite proteins. An important mediator for this is EXP2, a channel forming integral membrane protein. Depending also on exported protein 1 (EXP1), a nutrient channel is formed for molecules up to 1.4 kDa (Desai et al., 1993; Desai and Rosenberg, 1997; Garten et al., 2018) to promote nutrient influx (Figure 7.4). Additionally, EXP2 together with other proteins can form a complex that functions as a translocon in the PVM for protein export (Figure 7.2; section 1.2.2.3). Furthermore, rhoptry neck protein 3 (RON3) seems to be important for the formation of the nutrient channel and protein export (Low et al., 2019). For the intake of larger molecules (especially hemoglobin), the parasite forms a cytostome at the PVM to accomplish endocytosis, involving invagination of both, the PVM and PPM (Aikawa et al., 1966; Lazarus et al., 2008; Spielmann et al., 2020). It was discovered only recently that the Kelch 13 complex is located at the sites of cytostome formation where it functions in endocytosis and plays a major role in artemisinin resistance (Birnbaum et al., 2020).

Other proteins of the PVM worth mentioning are members of the early transcribed membrane protein (ETRAMP) family (Spielmann et al., 2003). The functions of ETRAMPs are still unknown (Cronshagen, 2020; Spielmann et al., 2012) even though these proteins are found in the PVM in extremely high quantities (Spielmann et al., 2006a). Knockouts of several *etramps* did not show an effect on the parasite's growth *in vitro* (Cronshagen, 2020).

### **1.2.2.3 EXPORT**

Parasite proteins, unlike those from intracellular organisms without a PV/PVM, must traverse an additional membrane to enter the host cell. Initially, all exported proteins undergo secretion into the PV before they are exported (Figure 7.1). *Plasmodium's* secretion mechanism parallels that of other organisms (Beck and Ho, 2021). Proteins targeted for secretion contain a signal peptide sequence (SP) in their N-terminal region that mediates insertion into the ER and directs them to the secretory system. After a processing step cleaving off the SP, the mature exported proteins are transported from the ER to the Golgi apparatus from where they get transported to the PV. The PV is believed to be the default destination and no extra sorting information is needed for a protein to reach that compartment (Adisa et al., 2003; Waller et al., 2000). In the PV resident proteins remain whereas proteins destined for the host cell are translocated beyond the PVM (Figure 7.2).

Most known proteins destined for export contain a *Plasmodium* export element (PEXEL) (a pentameric motif (RxLxE/Q/D)) usually found ~20 residues after a frequently recessed signal

peptide for ER entry (Hiller et al., 2004; Marti et al., 2004). In the ER, the PEXEL motif is recognized and cleaved after the leucin prior to N-terminal acetylation by the aspartic protease plasmepsin V (Boddey et al., 2013; Chang et al., 2008; Russo et al., 2010). However, some exported proteins do not contain a PEXEL motif and are termed PEXEL-negative exported proteins (PNEPs) (Heiber et al., 2013; Spielmann et al., 2006b). The majority of the PNEPs contain a transmembrane domain at the N-terminus and some even lack a SP, presumably using the transmembrane domain as an ER entry signal. Initially, the number of PNEP proteins was predicted to be rather small and only an exception to the more common PEXEL proteins (Spielmann and Gilberger, 2010). But more and more proteins are discovered that are exported and do not contain a PEXEL motif (Heiber et al., 2013). Furthermore, proteins were identified that contain a PEXEL motif but are not exported like unregulated infected sporozoite 2 (UIS2) (Fierro et al., 2023; Fréville et al., 2024; Khosh-Naucke et al., 2018; Schnider et al., 2018; van Ooij et al., 2008). How PEXEL and PNEP proteins are recognized and sorted within the secretion pathway is not clear, but there may be differences to other proteins already during ER entry (Marapana et al., 2018) while otherwise brefeldin A sensitive (Wickham et al., 2001) default transport to the PV may be used.

Exported proteins within the PV are unfolded prior to translocation to the host cell (Figure 7.2). Reporter proteins, that were fused to the mouse dihydrofolate reductase (mDHFR), a domain that upon addition or a ligand (WR) prevents its unfolding (Eilers and Schatz, 1986), were blocked in transport and not exported to the host cell (Gehde et al., 2009; Grüring et al., 2012; Heiber et al., 2013; Mesén-Ramírez et al., 2016). After unfolding, exported proteins are translocated to the host cell via the *Plasmodium* translocon of exported proteins (PTEX) (Beck et al., 2014; de Koning-Ward et al., 2009; Elsworth et al., 2014; Ho et al., 2018) and subsequently folded in the host cell (Figure 7.3).

The synthesis of PTEX components primarily happens in the trophozoite and schizont stage and are stored in the secretory organelles. Right after or during invasion PTEX is deposited into the PVM by the discharge of dense granules (Bullen et al., 2012). Hence, the parasite is capable of exporting proteins immediately after invasion, at the beginning of the ring stage.

15



**Figure 7: Export and nutrient uptake from the host cell cytosol across the PV.** (1-3) Illustration of the export of a PEXEL protein. (1) Exported proteins reach the PV in vesicle via the secretory pathway. (2) The mature N-terminus of a PEXEL protein is recognized and fed to the PTEX channel and translocated to the host cells cytosol. Proteins are unfolded for the translocation and (3) refolded in the host cell cytosol. PTEX complex formed by HSP101, PTEX150 and EXP2. (4) Nutrient import from the host cells cytosol to the PV through the nutrient channel formed by EXP2. PEXEL: *Plasmodium* export element; PV: parasitophorous vacuole; HSP101: Heat shock protein 101; PTEX150: *Plasmodium* translocon of exported proteins 150; EXP2: Exported protein 2. (Figure modified from (figure from Beck and Ho, 2021).

A key component of the PTEX translocon is the pore forming single pass transmembrane protein EXP2 (de Koning-Ward et al., 2009). The C-terminus of EXP2 projects into the cytosol of the infected erythrocyte and the N-terminus into the PV lumen (Ho et al., 2018; Sanders et al., 2019). Another structurally important component for PTEX is PTEX150 which forms a stable complex with EXP2 and interacts with HSP101, the third important component (Bullen et al., 2012). HSP101 is a ClpB-like AAA+ ATPase that probably unfolds the exported protein before passage through the pore and feeds it to the EXP2-PTEX150 funnel. The three components form the PTEX complex in a 6:7:7 ratio (HSP101:EXP2:PTEX150) (Ho et al., 2018). Recent work suggests that the subcomplex formation of EXP2 and PTEX150 is HSP101-

independent and that HSP101 has a dual localization in the PV and the ER, possibly recruiting the cargo for export already in the ER (Elsworth et al., 2016; Gabriela et al., 2022). Furthermore, the PTEX complex contains the accessory proteins TRX2, a thiroredoxin that could help in unfolding of the proteins and PTEX88, a novel protein with no homologies outside of the *Plasmodium* genus (de Koning-Ward et al., 2009). TRX2 and PTEX88 are not essential for protein export but might contribute to virulence and cytoadherence (Chisholm et al., 2016; Matz et al., 2015). Proteins destined for export are funneled into the PTEX channel, subsequently being translocated into the cytosol of the host cell to effectuate or facilitate remodeling processes. A further complex termed Exported Protein-Interacting Complex (EPIC) was recently identified in the PV (Batinovic et al., 2017) and postulated to be important for the transport of PfEMP1 (section 1.3.2.3.1).

### **1.2.2.4 HOST CELL MODIFICATION**

The erythrocyte is a unique habitat for an intracellular parasitic organism. It lacks the organelles with the accompanying molecular machinery for protein and lipid synthesis and transport (Moras et al., 2017) that could be hijacked for the parasite's use. Also, the erythrocyte membrane has suboptimal permeability properties to permit the import of the nutrients the parasite needs for its proliferation (Dhangadamajhi et al., 2010). For this reason, the parasites must spend a significant amount of their energy and proteome into remodeling the erythrocyte. Around 10% of the proteins encoded in the genome of *P. falciparum* is exported and contributes to the modification of the host cell (Spielmann and Gilberger, 2015). Exported proteins orchestrate the generation of the Maurer's clefts (section 1.2.2.4.1), membranous structures believed to organize proteins to then form the knobs at the host cell membrane (section 1.2.2.4.2). For the latter, proteins are organized for the parasite's increased erythrocyte's membrane permeability by the generation of a new permeability pathway to promote the influx of nutrients from the host blood plasma (section 1.2.2.4.2).



**Figure 8: Host cell modifications.** Illustration shows a trophozoite parasite with host cell modifications. Exported proteins during the ring stage modify the erythtrocyte cytoskeleton, generate Maurer's clefts, the PSAC channel and knob. Variant surface antigens are presented at the knobs. Black arrows outwards: Protein secretion and export; Black arrows towards the digestive vacuole: Endocytosis pathway; ER: Endoplasmatic reticulum; PV: Parasitophoruos vacuole; TVN: Tubovesicular network; NPP: New permeability pathways; PSAC: Plasmodial surface anion channel. (Figure modified from Beck and Ho, 2021).

### 1.2.2.4.1 MAURER'S CLEFTS

Maurer's clefts were already described in 1902 by Georg Maurer (Maurer, 1902) since these can be detected in Giemsa stained infected erythrocytes in thin blood smears. Maurer's clefts are comparably large membranous structures in the host cells cytosol often proximal to the erythrocyte membrane (Figure 8; Figure 6) (Hanssen et al., 2008). More than a century after their discovery, the exact function of the Maurer's clefts and the proteins localized to them are still unresolved. Most likely Maurer's clefts are sorting centers for exported proteins to direct them to their final destination in the host cell and possibly they may serve to pre-assemble functional complexes (Mundwiler-Pachlatko and Beck, 2013).

Maurer's clefts are formed early in the ring stage surrounded by a single membrane (Grüring et al., 2011; Hanssen et al., 2008). In thin sections, they appear as slender flattened or circular structures with an electron dense coat that in three dimensions were revealed as flattened circular disks (Henrich et al., 2009; Langreth et al., 1978). The Maurer's clefts may originate from the PVM (Aikawa et al., 1975; Atkinson et al., 1987; Kara et al., 1988). Morphology and

number of Maurer's clefts differ in different parasite strains: 3D7 mostly shows long and slender Maurer's clefts while in D10, Dd2, HB3, NF54, and FCQ-27 strains multiple stacked lamellae can be observed (Mundwiler-Pachlatko and Beck, 2013). Connections of the Maurer's clefts to other Maurer's clefts, PVM and erythrocyte membrane have been observed, named tethers, (Hanssen et al., 2008; Pachlatko et al., 2010; Wickert et al., 2004, 2003) which tether the Maurer's clefts to the erythrocyte membrane (Pachlatko et al., 2010). Other work suggested a connection of the Maurer's clefts to host cell actin (Cyrklaff et al., 2011; Rug et al., 2014). The Maurer's clefts remain constant in number from the point they can be detected with markers (1.5 hpi) and are highly mobile until they become fixed in position during the transition to the trophozoite stage (Grüring et al., 2011). This fixed position coincides with the presentation of PfEMP1 and cytoadherence of the infected erythrocytes (section 1.3) (Kriek et al., 2003; McMillan et al., 2013).

Many exported proteins are localized to or pass through the Maurer's clefts. Ring exported protein 1 (REX1) is exported and localized to the host cell shortly after invasion (~2 hpi), followed by the skeleton binding protein 1 (SBP1) and membrane associated histidine rich protein 1 (MAHRP1) shortly after (Grüring et al., 2011; McMillan et al., 2013). REX1 is relevant for the structural integrity of the Maurer's clefts (Dixon et al., 2008). Examples of proteins that do not directly localize to the Maurer's clefts are membrane associated histidine rich protein 2 (MARHP2) (Pachlatko et al., 2010) which is localized proximal to the Maurer's clefts at the tethers, HSP40 and HSP70x which is located in foci termed J-dots (Petersen et al., 2016) and the soluble ring exported protein 3 (REX3) in the host cells cytosol (Spielmann et al., 2006b). Proteins such as the knob resident knob-associated histidine-rich protein (KAHRP) and the VSAs transiently localize to the Maurer's clefts before further transport to the host cell membrane (Wickham et al., 2001).

#### **1.2.2.4.2 PLASMODIAL SURFACE ANION CHANNEL**

Around 14 hours after infection the erythrocytes membrane increases the permeability for nutrients (Beck and Ho, 2021; Desai, 2014; Desai et al., 2000; Elford et al., 1985; Ginsburg et al., 1985; Homewood and Neame, 1974). Thereby, the parasites obtain increased access to nutrients in the extracellular space of the infected erythrocytes (*in vitro*: medium; *in vivo*: blood plasma). While permeability for anions and antimalarials are increased, the cation (Ca<sup>2+</sup>, Na<sup>+</sup>) permeability is not altered to prevent osmotic lysis (Cohn et al., 2003; Henshall and Spielmann, 2023). The plasmodial surface anion channel (PSAC) was identified as an important component for this increased permeability of the host cells membrane (Desai, 2014; Desai et al., 2000).

However, as it is unclear whether PSAC is the only parasite derived channel in the host cells membrane or not, the increased permeability is sometimes more generally referred to as the new permeability pathway (NPP).

One contributor to PSAC activity is CLAG3 which is mutually exclusively expressed from two copies in the genome (clag3.1 and clag3.2) and is integrated into the host cell membrane (Nguitragool et al., 2011). The proteins RhopH2 and RhopH3 form a complex with CLAG3 and participate in PSAC activity (Counihan et al., 2017; Ito et al., 2017; Sherling et al., 2017). It was shown that these three proteins are trafficked in a soluble complex (termed RhopH complex), with RHopH2 and RhopH3 (Ho et al., 2021; Schureck et al., 2021) (Beck and Ho, 2021). However, none of these proteins individually or taken together seem to have the typical characteristics to form functional ion-channels (Alkhalil et al., 2004; Gupta et al., 2020; Henshall and Spielmann, 2023). Nevertheless, the export and function of these proteins is to be essential for the parasite's nutrient acquisition. Interestingly, knockout of the clag3 genes did not lead to the parasite's death *in vitro*, possibly due to the high concentrations of nutrients in the culture medium (Gupta et al., 2020). While the amino acid uptake of erythrocytes is negligible (Kirk and Saliba, 2007), the glucose permeability of infected erythrocytes is primary through the human glucose transporter 1 (hGLUT1) (Kirk et al., 1996; Roth, 1987). How the active PSAC channel is constituted and organized in the erythrocyte membrane remains unsolved.

### 1.2.2.4.3 KNOBS

Early ultrastructural investigations of *P. falciparum* parasites, small protrusions on the surface of infected erythrocytes were discovered and termed knobs (Trager et al., 1966). The knobs are cup-shaped structures with a diameter of 50 to 120 nm and a height of 2 to 20 nm (Gruenberg et al., 1983; Quadt et al., 2012) and evenly distributed on the membrane of the infected erythrocytes (Rug et al., 2006) (Figure 6 and Figure 8). The knobs are formed around 24 hpi (Looker et al., 2019). A significant portion of the proteins exported by *P. falciparum* parasites appears to be primarily dedicated to enable the transport and presentation of the main virulence factor PfEMP1 (section 1.3.2) on these knobs. This specialized property may explain the larger repertoire of exported proteins in *P. falciparum* compared to other *Plasmodium* species, which show no or lower levels of cytoadherence (Craig et al., 2012) (section 1.3).

The PEXEL-positive knob-associated histidine-rich protein (KAHRP) is present in high concentrations in the knobs (Kilejian, 1979) and is responsible for the physical knob structure and essential for their formation (Rug et al., 2006). Furthermore, KAHRP alters the rigidity of

the erythrocytes (Glenister et al., 2002). Parasites that lack KAHRP do not form knobs and cannot cytoadhere under flow conditions (Crabb et al., 1997; Rug et al., 2006). An electron dense spiral scaffold that underlies the knobs that connects to the cytoskeleton of the erythrocyte was discovered using electron microscopy (Watermeyer et al., 2016) but KAHRP does not seem to constitute this spiral scaffold but rather coats it (Looker et al., 2019). It was suggested that KAHRP is anchored to the host cell protein as interactions have been shown to actin, spectrin and ankyrin (Kilejian et al., 1991; Magowan et al., 2000; Pei et al., 2005; Weng et al., 2014).

Two additional proteins have been shown to contribute to the knob formation, a PHIST domain protein (PF3D7\_0424600) and Hsp40-like DNAJ Type IV protein (Maier et al., 2008). Furthermore, the PHIST domain proteins PF3D7\_0532400 (Oberli *et al.*, 2014) and PF3D7\_0936800 (Mayer et al., 2012), knob-associated Hsp40 (KAHSP40) (Acharya et al., 2012), Pf332 (Hinterberg et al., 1994), a SURFIN (Winter et al., 2005) and PfEMP3 (Waterkeyn et al., 2000) were shown to localize to the knobs. The PHIST protein PF3D7\_0532400 is important for cytoadherence but not for the formation of the knobs (Proellocks et al., 2014). Recently the proxiome of KAHRP was identified using PerTurboID (Davies et al., 2023) and supported the interaction with most of these proteins including PF3D7\_0532400, PF3D7\_0532400, KAHSP40, Pf332 and PfEMP3.

There remains a gap in knowledge both in terms of completely identifying the protein constituents of these knobs and in fully elucidating the precise functional roles of the proteins that have been identified. This area represents a significant opportunity for further research to unravel the molecular mechanisms underlying knob formation and function.

### **1.3 CYTOADHERENCE**

Erythrocytes infected by *P. falciparum* exhibit cytoadherent properties mediated by binding to various receptors on endothelial cells (Figure 9). This is believed to be the cause of binding of infected erythrocytes to the wall of blood vessels, a property of post-ring stage blood stage parasites and a diagnostic feature of *P. falciparum* infections that show only ring stages in peripheral circulation (Bachmann et al., 2009). Cytoadherence avoids the splenic clearance of the more rigid post ring stage infected erythrocytes, as erythrocytes normally undergo filtering in the spleen's narrow passages (Bachmann et al., 2009; Cranston et al., 1984; Hommel et al., 1983). An increase in rigidity which happens to infected erythrocytes would lead to their removal and destruction (Langreth and Peterson, 1985; Miller et al., 1994). The sequestration

of infected erythrocytes in the microvasculature can precipitate severe consequences for the host, including localized inflammation and deprived tissue-oxygen supply. In cases where this occurs in venules in the brain, it can lead to cerebral malaria, the most severe form of the disease (Newton et al., 2000).

Additionally, the phenomenon that infected erythrocytes adhere to infected and non-infected erythrocytes (Figure 9) has been documented and is known as autoagglutination and rosetting (Rowe et al., 1997). However, the actual occurrence and biological significance of autoagglutination and rosetting remain topics of dispute (Goel et al., 2015; Wang and Hviid, 2015).

The adherence to endothelial cell receptors is attributed to a large transmembrane protein, *P. falciparum* erythrocyte membrane protein 1 (PfEMP1) (section 1.3.2), displayed at the knobs on the host cell's (Baruch et al., 1995; Leech et al., 1984; Smith et al., 1995; Su et al., 1995) which is encoded by a multigene family, the *var* genes (section 1.3.1).



**Figure 9:** Cytoadherence of infected erythrocytes. Illustration of infected erythrocytes cytoadhering to receptors and CSA of endothelial cells. (Left) Binding of VAR2CSA presented on the surface of trophozoite and schizont infected erythrocytes to CSA in the placenta. (Right) Binding of PfEMP1 variants presented on the surface of trophozoite and schizont infected erythrocytes to EPCR, PECAM1, CD36 and ICAM-1 presented on endothelial cells in the brain, lungs, spleen and bone marrow and to other infected erythrocytes and erythrocytes, leading to blockage of the microvasculature. CD36: cluster of differentiation 36; ICAM-1: Intercellular Adhesion Molecule 1; EPCR: Endothelial Protein C Receptor; PECAM-1: platelet endothelial cell adhesion molecule, CSA: chondroitin sulfate A (figure from Venugopal et al., 2020).

### 1.3.1 VAR GENES

The *var* genes are the most important family of VSAs in *P. falciparum*. While there are other VSAs such as *rifs* and *stevors*, their roles are less clear but are speculated to also be associated with binding of infected erythrocytes to the endothelium or other erythrocytes, but this is more

uncertain than for *vars* (Wahlgren et al., 2017). Each *P. falciparum* isolate contains around 60 *var* genes in their genome, which are highly susceptible to recombination during the sexual stages (Freitas-Junior et al., 2000), resulting in a vast number of *var* genes observed in natural populations (Otto et al., 2019). The *var* genes contain two exons separated by an intron, while exon 1 is highly variable, exon 2 is more conserved between different *var* genes.



**Figure 10:** *var* **gene groups location on the chromosomes.** *var* genes in subtelomeric region transcribed towards the centromere of the chromosome are upsB. var genes in the subtelomeric region transcribed towards the telomere are upsA and upsE. *var* genes located at centromeric region of the chromosome are upsB and upsC (Figure modified from Andradi-Brown et al., 2024).

To categorize the countless vars they can be classified based on their upstream region (homology in DNA sequence), direction of transcription and chromosomal location into four major types of var genes: upsA (group A), upsB (group B), upsC (group C), and upsE (group E) (Figure 10), the latter encompassing only a single var gene (var2csa). Furthermore, some var genes show intermediate characteristics and are grouped into group A/B and group B/C (Gardner et al., 2002; Lavstsen et al., 2003; Mercereau-Puijalon et al., 2002; Voss et al., 2000). Group E, A and B var genes can be found in subtelomeric regions transcribed in opposite directions. The central chromosome regions contain upsB and upsC var genes. varlcsa (also sometimes termed var1), var2csa and var3 are the only var gene conserved across strains (Dimonte et al., 2020; Rowe et al., 2002; Salanti et al., 2003, 2002; Sander et al., 2009; Trimnell et al., 2006) of which only var2csa was shown to be functionally expressed. It is expressed in female patients with pregnancy malaria, mediating binding of infected erythrocytes to CSA, abundant in the placenta (Duffy et al., 2005; Elliott et al., 2005; Gamain et al., 2005; Salanti et al., 2004, 2003; Viebig et al., 2007). var1csa is often conserved as a pseudogene (e.g. IT4 strain: premature stop codon; disrupted ATS domain) which does not reach the erythrocyte's surface (Kyes et al., 2003). var3, classified into group A, is a very short and unusual var gene with unknown binding properties (Zhang et al., 2014).

The expression of *vars* is mutually exclusive, meaning that at a given time an individual parasite expresses only a single *var* gene while the rest of the *var* genes are transcriptionally silenced (Kyes et al., 2007; Voss et al., 2006). How the mutually exclusive expression of *var* genes is regulated appears to be a complex, multi-layered mechanism that is still subject to research. It

is suspected that cis-acting DNA elements and non-coding RNA transcripts as well as epigenetic modifications and subnuclear organization play a role in the orchestration of mutually exclusive expression (Deitsch and Dzikowski, 2017). It was shown that active *var* genes are found in less electron dense regions of the nucleus, while the other *vars* stay in the periphery of the nucleus with electron-dense heterochromatin (Kyes et al., 2007). Furthermore, in patients there is a predominant expression of a single *var* gene in the parasite population due to selective pressure of the immune system (Bachmann et al., 2019, 2016; Barry et al., 2007; Bull et al., 1998; Bull and Marsh, 2002; Wang et al., 2009; Warimwe et al., 2009).

This intricate expression mechanism utilized by the parasite is an evolutionary strategic response to the vulnerability created by presenting its protein, PfEMP1, on the surface of the erythrocyte. This exposure necessitates the parasite's ability to express a range of antigenically distinct PfEMP1 variants from its *var* gene repertoire. When the host immune system identifies and begins targeting a specific PfEMP1 variant, the parasite shifts to expressing a different PfEMP1 variant from its *var* gene repertoire. In theory, this strategy allows continuous evasion of the host's antibody-mediated immune defenses although the *in vivo* situation is often more complex and classical waves of single antigenic types such as those originally thought to occur in *Trypanosoma* (but now have turned out to also be more complex) (McCulloch et al., 2017), are even less obvious in natural malaria parasites infections (Bachmann et al., 2019). To prevent premature exhaustion of the *var* gene repertoire switching of *var* genes happens with a rather low rate (Horrocks et al., 2004; Roberts et al., 1992; Ye et al., 2015). Thereby, long lasting infections of a single parasite isolate can be maintained (Ashley and White, 2014). Interestingly, *var* gene switching was shown to follow a lose hierarchy rather than a strict sequence of *var* genes (Bachmann et al., 2011; Recker et al., 2011).

Initial infection with *P. falciparum* in malaria-naive individuals shows broad expression of *var* genes, primarily group B, but shifts toward group A or A/B in severe disease (Bachmann et al., 2019). In individuals with recurrent exposures to the disease *var* gene expression seems to shift towards group C. This expression pattern, influenced by host immunity, affects disease severity and parasite transmission, with changes in expression types and adherence properties occurring over the course of infection. In instances of severe malaria, particularly among individuals with no previous exposure to the disease, there is a notable prevalence of group A *var* genes (reviewed in Bachmann et al., 2022). *In vitro* nevertheless, *var* gene expression is more heterogenous as there is no selection for specific antigenic phenotypes and group A *var* genes are rarely transcribed due to higher switching rates (Fastman et al., 2012; Janes et al., 2011).

## 1.3.2 PFEMP1

### **1.3.2.1 STRUCTURE**

PfEMP1 is a rather large protein with a molecular mass ranging between 200 to 350 kDa, depending on the variant (Baruch et al., 1995). Its considerable size contributes to the complexity of studying this molecule. The protein features a highly conserved Acidic Terminal Segment (ATS) domain located at the C-terminus, which is encoded by exon 2 of the *var* gene (Kraemer and Smith, 2006) (Figure 11). While the precise function of the ATS domain remains elusive, it is hypothesized to play a critical role in anchoring PfEMP1 to the knobs (Crabb et al., 1997; Mayer et al., 2012). Although PfEMP1 and KAHRP both localize within these knobs, leading to the initial speculation of their interaction (Crabb et al., 1997). It is possible that KAHRP, which is essential for proper knob formation (Looker et al., 2019; Rug et al., 2006; Wickham et al., 2001), may be needed for generating the knob but that PfEMP1 is anchored to different proteins within the overall knob structure.

Exon 1 of *var* genes encodes a transmembrane domain that extends across the erythrocyte membrane, a semi-conserved N-terminal segment (NTS) and a succession of highly variable extracellular domains, which are referred to as binding domains (Figure 11). Notably, the NTS domain does not feature a SP but includes a PEXEL-like sequence (RNVLE) and appears to be structurally significant for the protein's most N-terminal binding domain (Juillerat et al., 2011). In line with that idea, it was shown that the PEXEL-like motif is not processed by plasmepsin V and PfEMP1 were therefore re-classified as PNEPs (Boddey et al., 2013). The diverse extracellular domains of PfEMP1 exhibit distinct binding affinities, which enable the protein to attach to endothelial receptors within the host's vascular system.

### **1.3.2.2 EXTRACELLULAR BINDING DOMAINS**

While the scientific literature contains reports of a broad range of receptors as potential interaction partners for PfEMP1, concrete evidence of binding is limited to a relatively small number. These experimentally well-established PfEMP1 interacting receptors, include cluster of differentiation 36 (CD36) (Robinson et al., 2003), intercellular adhesion molecule 1 (ICAM-1) (Bengtsson et al., 2013; Smith et al., 2000), endothelial protein C receptor (EPCR) (Turner et al., 2013), platelet endothelial cell adhesion molecule 1 (PECAM-1) (Joergensen et al., 2010), and the globular C1q receptor (gC1qR) (Biswas et al., 2007). Below only the first three of these

receptors are addressed as well as the glycoprotein CSA that only VAR2CSA binds to (Figure 9), as their interaction with PfEMP1 is the best studied.

Due to the high recombination rates of *var* genes, PfEMP1's extracellular regions display a large repertoire of domain structures and combinations (Otto et al., 2019; Rask et al., 2010). These domains are composed of Duffy binding-like (DBL) domains and cysteine-rich interdomain region (CIDR) domains (Kraemer *et al.*, 2006). DBL domains are divided into seven main categories:  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\varepsilon$ ,  $\zeta$  and PAM. Similarly, CIDR domains are classified into five major types:  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ , and PAM (Gardner et al., 2002; Rask et al., 2010; Smith et al., 2000). These domains were subcategorized further in the past decades, distinguished by numbers (e.g.  $\alpha$ 1.1). In smaller PfEMP1 variants, DBL and CIDR domains appear exclusively in tandems, while in larger variants, multiple tandem pairs are accompanied by an additional DBL domain (Rask et al., 2010; Smith, 2014) (Figure 11A).

Certain extracellular domains are recurringly found together in different PfEMP1 variants (Rask et al., 2010). The organization of these binding domains in PfEMP1 can be grouped into specific configurations known as domain cassettes that seem to stay together during recombination events and could act as breaking points for these. To this day, 22 domain cassettes have been identified (Bengtsson et al., 2013; Rask et al., 2010). Notable examples include DC8 and DC13, which are commonly observed in patients suffering from severe malaria and were experimentally shown to bind to EPCR (Avril et al., 2016; Turner et al., 2013).



**Figure 11: PfEMP1 structure, binding domains and interacting receptors.** (A) Structure of PfEMP1. Exon 1: Position 1: NTS domain; Position 2-3: Domains in the head structure; Position 4-9: Domains after the head structure (number varies); TM: Transmembrane domain. Exon 2: Intracellular ATS domain. (B) Table shows binding phenotypes of "regular" and conserved *var* genes with the concurrent domains in position 1-9. NTS: N-terminal segment; TM: Transmembrane domain; ATS: Intracellular c-terminal domain; DBL: Duffy Binding-Like; CIDR: cysteine-rich interdomain region. (Figure modified from Andradi-Brown et al., 2024).

Shortly after the discovery of PfEMP1, it was observed that erythrocytes infected by the malaria parasite in pregnant women specifically bind to CSA in the placenta (Buffet et al., 1999; Fried and Duffy, 1996; Salanti et al., 2004). *In vitro* studies, where parasites were selected for binding to CSA, consistently showed an upregulated expression of a single *var* gene, *var2csa* (Scherf et al., 1998). This gene is unique in its conservation across different *P. falciparum* strains and contains distinct binding domains, named DBLpam and CIDRpam, which exclusively bind to CSA (Figure 11B). This selective binding reflects a particular adaptation of the malaria parasite to the placental environment in pregnant women.

The common binding target for CIDR domains, specifically those in group B and C PfEMP1s, is CD36 which makes up the majority of PfEMP1 variants. Between 75-80% of PfEMP1 variants contain a CIDR $\alpha$ 2–6 domain that promotes CD36 binding and typically appear in

tandem with a DBLα0 domain (Figure 11B). Group B and C PfEMP1s that bind to CD36 are more present in patients with mild malaria. The large number of CD36-binding PfEMP1 variants could be due to a potential benefit for binding this receptor for both the parasite and host. These variants enable the parasite to bind effectively to host cells and avoid immune detection, while also regulating the host's immune response and cytokine production, leading to a balance that allows parasite survival and transmission without severely harming the host (reviewed in Bachmann et al., 2022).

Only in the last decade it was discovered that there are PfEMP1 variants that can bind to EPCR. The domains identified to bind EPCR are CIDR $\alpha$ 1.1/1.4-.8 (Bachmann et al., 2022; Turner et al., 2013). These domains can be found in group A and B PfEMP1s and appear in tandem with DBL $\alpha$  domains in the head structure of the PfEMP1 (Figure 11B), found among others in DC8 and DC13 domain cassettes. Other members of group A PfEMP1s accommodate CIDR $\beta$ / $\gamma$ / $\delta$  domains with unknown binding interactors (Figure 11B) but also are present in patients with severe cases of malaria (Jensen et al., 2004).

CD36 binding domains in group B and C and EPCR binding domains in group A can co-occur with ICAM-1 binding domains resulting in dual binding properties (Figure 11B). Especially dual binding of EPCR and ICAM-1 seems to increase the binding under shear stress (Bernabeu et al., 2019; Lennartz et al., 2017). ICAM-1 binding is predominantly facilitated by DBLβ domains located after the tandem head structure, primarily by DBLβ5 in group B and C PfEMP1s and DBLβ3 in group A PfEMP1s (Bengtsson et al., 2013; Howell et al., 2008; Lennartz et al., 2017; Oleinikov et al., 2009; Smith et al., 2000). The position of the ICAM-1 binding domains further away from the head structure can be explained by the relatively large size of ICAM-1. ICAM-1 reaches further out of the glycocalyx than, e.g. CD36 and therefore may be more accessible to the domains in position 4 and 5 (Figure 11A, B). The binding of PfEMP1 variants to EPCR and ICAM-1 has been associated with the severest manifestations of malaria, including cerebral malaria.

In summary, while the diverse domain structures and combinations in PfEMP1 variants illustrate the complex molecular mechanism underlying malaria pathogenesis, the precise binding properties, and the roles of the associated domains, remain elusive. This complexity underscores the intricate and still not fully understood interactions between the malaria parasite and its human host. A key problem, besides the difficulties in obtaining insights into the *in vivo* situation, is the fact that it is difficult to obtain parasites expressing only one particular PfEMP1 to study its exact binding properties. Furthermore, parasites expressing different PfEMP1 and

regular switching prevent targeted modification of the genome to generate modified PfEMP1 to pinpoint binding properties to specific domain.

### **1.3.2.3 CELLULAR BIOLOGY OF PFEMP1**

The activation of var gene transcription occurs in the ring stage, reaching maximum transcript levels approximately 12 hours post invasion (Kyes et al., 2000). Approximately 16 hours after invasion, PfEMP1 is detectable at the Maurer's clefts, where it appears alongside REX1 and SBP1 that are already present in these structures before PfEMP1 (Gardner et al., 1996; Grüring et al., 2011; McMillan et al., 2013). The small disparity in timing between the peak of var gene transcript levels and the surface appearance of PfEMP1 on infected erythrocytes suggests a gradual process for the expression and transport of PfEMP1 to the erythrocyte. However, the delay in protein synthesis after the peak of RNA expression was shown for numerous P. falciparum proteins and is relatively small for PfEMP1 compared to other proteins (Foth et al., 2011). Interestingly, the amount of PfEMP1 on the surface increases drastically between 16-20 hours post invasion and stagnates afterwards, without being replenished if digested off from the surface (Kriek et al., 2003). A significant PfEMP1 population stays at the Maurer's clefts and only a very small proportion of the total protein population is presented on the surface of the erythrocyte. It was calculated that only approximate three PfEMP1 molecules are presented per knob (Sanchez et al., 2019). Solubilization of the erythrocyte membrane followed by trypsin treatment resulted in the digestion of the C-terminus of PfEMP1, whereas the N-terminus remained unaffected. This pattern suggests that prior to its localization in the knob structures of the infected erythrocyte, PfEMP1 is integrated into the membrane in such a way that the Nterminus is shielded from enzymatic degradation (Kriek et al., 2003).

#### 1.3.2.3.1 PFEMP1 TRANSPORT

The transport and mechanisms of surface display of PfEMP1 are still unclear. The pathway of PfEMP1's transport into the host cell, its subsequent transport to the Maurer's clefts within the host cell's cytosol, and its eventual conveyance to the knob structures followed by display on the host cell surface, remain mostly elusive. A fundamental question revolves around the integration of PfEMP1 into the cellular membrane: is it transported as an integral membrane protein or is it inserted into a membrane later during its transport, possibly only once it arrives at the knobs, i.e. embedded directly at its destination?

It is also unclear if PfEMP1 is exported via the PTEX pathway, paralleling the translocation mechanism observed for other known exported proteins. Inactivation of PTEX components prevents PfEMP1 trafficking, which could indicate that this is the case (Beck et al., 2014; Elsworth et al., 2014). However, as this also blocks transport of many proteins needed for PfEMP1 transport, such as SBP1 and REX1 (Mesén-Ramírez et al., 2016), this could also be a secondary effect. It was also observed that PfEMP1 resides in regions of the PVM that do not overlap with PTEX (Riglar et al., 2013) and a complex termed EPIC was proposed to be involved in PfEMP1 transport in the PV (Batinovic et al., 2017). It is therefore at present unclear whether PfEMP1 is transported via PTEX or not and underscores the need for further investigation into the molecular logistics governing PfEMP1's journey and functional deployment within the host cell.

It has been proposed that PfEMP1 is transported not as an integral membrane protein but in a soluble form, being inserted into the membrane only upon reaching its final destination (Batinovic et al., 2017; Marti and Spielmann, 2013; Papakrivos et al., 2005; Petersen et al., 2016). J-Dots, mobile structures within the host cell, are implicated in this transport process, potentially serving as intermediate transporters that facilitate the transport of PfEMP1 to Maurer's clefts and/or erythrocyte membrane (Petersen et al., 2016). Proteins residing in these structures have been identified to influence cytoadherence, underscoring their significance in the efficient surface transport of PfEMP1(Charnaud et al., 2017; Külzer et al., 2012).

Some work on the transport of PfEMP1 was done with episomally expressed chimeric mini-PfEMP1s (Batinovic et al., 2017; McMillan et al., 2013; Melcher et al., 2010) 7). This was a valuable approach at that time but likely does not fully reflect the properties of the much larger endogenous PfEMP1. The overexpression and chimeric product can lead to incorrect localization patterns, e.g. a necklace-bead-like localization of the mini-PfEMP1 was observed in the PV which was not detected by other publications (McMillan et al., 2013).

### **1.3.2.3.2 PROTEINS INFLUENCING CYTOADHERENCE**

Some exported proteins have been detected that are essential for the transport of PfEMP1 to the erythrocyte surface and/or PfEMP1-mediated binding. The knockout of the prominent Maurer's clefts resident SBP1 ablated PfEMP1 surface presentation and cytoadherence (Cooke et al., 2006; Maier et al., 2007). Knockout of REX1 leads to severe defects in Maurer's cleft morphology with stacked cisternae (Hawthorne et al., 2004). Furthermore, PfEMP1 surface presentation and binding was reduced in  $\Delta$ REX1 parasites (McHugh et al., 2015). Also MAHRP1 knockout parasites showed a defect in PfEMP1 surface transport and CD36-binding

(Spycher et al., 2008). Furthermore, an extensive study by Maier *et al.* (2008) identified a PHIST protein (PF3D7\_0424600) and six exported proteins that upon disruption reduced PfEMP1-mediated binding and hence were termed PfEMP1 transport proteins 1-6 (PTP1-6). Additionally, the knockout of these proteins influenced PfEMP1 surface presentation and the rigidity of the host cell. The best characterized of these proteins is PTP1. Its knockout led to full depletion of PfEMP1 from the surface, changed Maurer's clefts morphology and had an effect on actin remodeling (Rug et al., 2014). Recently, PTP7 has been identified as a further Maurer's clefts resident that is essential for PfEMP1 presentation (Carmo et al., 2022). The disruption of PTP7 ablates PfEMP1 surface presentation and leads to vesicle-like structures proximal to the Maurer's clefts that contain PfEMP1.

Additionally, it was shown that cytoadherence of infected erythrocytes is influenced by the PHIST protein LyMP (PF3D7\_0532400) (Oberli et al., 2016; Proellocks et al., 2014), the J-Dot proteins HSP70x (PF3D7\_0831700) and HSP40s (PF3D7\_0113700) which might form a complex with PfEMP1 during transport (Charnaud et al., 2017; Diehl et al., 2021; Külzer et al., 2012) and PfEMP3 (Waterkeyn et al., 2000).

### **1.3.2.4** CHALLENGES TO STUDY PFEMP1

Studying *var* genes and PfEMP1, is challenging due to their complex genetic regulation, high variability, and antigenic variation. *In vitro* research is especially complicated by mixed *var* gene expression or *in vitro* parasite populations, obscuring functional insights and trackability of individual PfEMP1s. Additionally, the large size of PfEMP1 and the poorly understood function and organization of other exported proteins influencing PfEMP1 function present major obstacles in understanding the intracellular transport and surface presentation of PfEMP1.

# **1.4 AIMS**

This thesis aims to address challenges associated with studying *var* genes and PfEMP1 by employing selection linked integration (SLI) (Birnbaum et al., 2017) to generate culture parasites all expressing a PfEMP1 of choice that can be tracked using a small epitope tag. This will then be exploited to assess the binding properties of particular PfEMP1s and to generate modified PfEMP1 expressed in all parasites to study its transport.

The second part of this thesis aims to identify the interactome of functional, endogenously expressed PfEMP1 within living cells. By testing various biotinylation techniques such as BioID, miniTurbo, and DiQ-BioID, PfEMP1 proximal proteins will be biotinylated and identified via mass spectrometry. The resultant analysis of proximal proteins is expected to reveal new PfEMP1 interactors needed for its function. These newly identified interactors will then be subjected to functional disruption using a second version of SLI, termed SLI2, which allows for additional endogenous modifications in the parasite lines expressing a specific PfEMP1 variant and characterization of the interacting candidate.

This thesis is expected to generate tools facilitating PfEMP1 research, providing novel tools and insights into the most important virulence factor of the parasite.

# 2 MATERIAL AND METHODS

# 2.1 MATERIAL

## **2.1.1** TECHNICAL DEVICES

Table 1: List of technical devices

| Device                  | Specification               | Brand                            |
|-------------------------|-----------------------------|----------------------------------|
| Agarose gel chamber     | Sub Cell GT basic           | Bio-Rad, München                 |
| Analytical Balance      | 870                         | Kern                             |
| Bacterial incubator     | Thermo function line        | Heraeus, Hannover                |
| Bioanalyser             | Agilent 2100                | Agilent Technologies             |
| Cell culture incubator  | Binder Incubator BD 400     | Binder GmbH, Tuttlingen          |
|                         | Heratherm IGS400            | Thermo Scientific, Langelselbold |
|                         | Function Line               | Heraeus, Hannover                |
| Centrifuges             | Megafuge 1.0R               | Heraues, Hannover                |
|                         | J2- HS Ultracentrifuge      |                                  |
|                         | JA-12                       |                                  |
|                         | Avanti J-26S XP Rotor       | Beckman Coulter, Krefeld         |
|                         | JA-14                       |                                  |
|                         | 5415D                       | Eppendorf, Hamburg               |
|                         | Butterfly                   | Thermo Scientific, Schwerte      |
| Counting chamber        | Neubauer Imp. 0,1mm         | Roth                             |
| Fluorescence Microscope | Axioscope M1, M2            | Zeiss, Jena                      |
| Gel imaging system      | ChemiDoc XRS imaging system | Bio-Rad, München                 |

| Device                               | Specification                      | Brand                                |
|--------------------------------------|------------------------------------|--------------------------------------|
| Ice machine                          | EF 156 easy fit                    | Scotsmann, Vernon Hills/USA          |
| Inversed microscope                  | EVOS XL                            | Thermo Fisher Scientific             |
| Laboratory scale                     | Atilon                             | Acculab Sartorius, Göttingen         |
| Light Microscope                     | Axio Lab A1                        | Zeiss, Jena                          |
| Mass spectrometer                    | Orbitrap Fusion                    | Thermo Fisher Scientific             |
| Microscope digital camera            | Orca C4742-95                      | Hamamatsu Phototonics K.K.,<br>Japan |
| Microwave                            | Micro 750W                         | Whirlpool, China                     |
| Nano-flow                            | Easy-nLC 1000                      | Thermo Fisher Scientific             |
| PCR Mastercycler                     | EP gradient                        | Eppendorf, Hamburg                   |
| pH-meter                             | SevenEasy                          | Mettler-Toledo, Gießen               |
| Photometer                           | NanoDrop 2000                      | Thermo Scientific                    |
| Pipettes                             | 1-10/200/1000 µl                   | Gilson, Middleton, USA               |
| Pipettor                             | Pipetboy acu                       | IBS                                  |
| Power supply                         | EV31 Power Source 300<br>V         | VWR, Taiwan                          |
| Roller mixer                         | STR6                               | Stuart                               |
| SDS-PAGE and Western blot equipment: | Mini Protean Tetra Cell<br>System: | Bio-Rad, München                     |
|                                      | 12-well comb                       |                                      |
|                                      | Blot device                        |                                      |
|                                      | Casting frames                     |                                      |
|                                      | Casting gel stuff                  |                                      |
|                                      | Casting plates                     |                                      |

| Device                     | Specification           | Brand                                    |
|----------------------------|-------------------------|------------------------------------------|
|                            | Casting stand           |                                          |
|                            | Cooling unit            |                                          |
|                            | Foam pads               |                                          |
|                            | Electrode assembly      |                                          |
|                            | Gel holder cassettes    |                                          |
|                            |                         |                                          |
| Sequencer                  | NextSeq 550 system      | Illumina, USA                            |
| Shaking incubator          | Max Q4000               | Barnstead, Iowa/ USA                     |
|                            | Innova 40               | New Brunswick scientific,<br>Edison, USA |
| Sterile laminar flow bench | Steril Gard III Advance | Baker, Stanford USA                      |
| Table centrifuge           | Eppendorf 5415 D        | Eppendorf, Hamburg                       |
|                            | Nucleofector II         | Bio-Rad, München                         |
|                            | AAD-1001N               |                                          |
| Thermoblock                | Thermomixer compact     | Eppendorf, Hamburg                       |
| Vacuum pump                | BVC Control             | Vacuubrand, Sigma-Aldrich,               |
|                            |                         | Deutschland                              |
| Vortex                     | Genie 2                 | Scientific Industries, USA               |
| Water bath                 | 1083                    | GFL, Burgwedel                           |
| Water purification system  | Milli-Q                 | Merck, Darmstadt                         |

# 2.1.2 CHEMICALS

Table 2: List of chemicals

| Chemical                                                  | Brand/ Distributor |
|-----------------------------------------------------------|--------------------|
| (4-(2-Hydroxyethyl)-1-piperazineethanesulfonicacid) HEPES | Roche, Mannheim    |

| Chemical                                 | Brand/ Distributor            |
|------------------------------------------|-------------------------------|
| 1,4,-dithiothreitol (DTT)                | Biomol, Hamburg               |
| 4',6-diamidino-2-phenylindole (DAPI)     | Roche, Mannheim               |
| Acrylamide/Bisacrylamide solution (40 %) | Roth, Karlsruhe               |
| Agar LB (Lennox)                         | Roth, Karlsruhe               |
| Agarose                                  | Invitrogen, USA               |
| AlbumaxII                                | Gibco, Life Technologies, USA |
| Albumin bovine Fraction V (BSA)          | Biomol, Hamburg               |
| Ammonium persulfate (APS)                | Applichem, Darmstadt          |
| Ampicillin                               | Roche, Mannheim               |
| Biotin                                   | Sigma Aldrich, Steinheim      |
| Blasticidin S                            | Invitrogen, USA               |
| Bromophenol blue                         | Roth, Karlsruhe               |
| Chloroform                               | Roth, Karlsruhe               |
| CV-Mount                                 | Leica, Wetzlar                |
| Dako                                     | Sigma Aldrich, Steinheim      |
| ddH2O (Ampuwa)                           | Fresenius Kabi, Bad Homburg   |
| Desoxynucleotides (dNTPs)                | Thermo Scientific, Lithuania  |
| D-Glucose                                | Merck, Darmstadt              |
| Dimethyl sulfoxide (DMSO)                | Sigma Aldrich, Steinheim      |
| Dipotassium phosphate                    | Merck, Darmstadt              |

| Chemical                                       | Brand/ Distributor       |
|------------------------------------------------|--------------------------|
| Disodium phosphate                             | Roth, Karlsruhe          |
| Dulbecco's Phosphate Buffered Saline (DPBS)    | PAN, Biotech, Aidenbach  |
| Ethanol                                        | Roth, Karlsruhe          |
| Ethidium bromide                               | Sigma Aldrich, Steinheim |
| Ethylenediaminetetraacetic acid (EDTA)         | Biomol, Hamburg          |
| Gentamicin (40 mg/ml)                          | Ratiopharm, Ulm          |
| Giemsa's azure, eosin, methylene blue solution | Merck, Darmstadt         |
| Glucose (water-free)                           | Roth, Karlsruhe          |
| Glutaraldehyde (25%)                           | Merck, Darmstadt         |
| Glycerol                                       | Merck, Darmstadt         |
| Hoechst 33342                                  | Chemodox, Switzerland    |
| Hydrochloric acid (HCl)                        | Merck, Darmstadt         |
| Hypoxanthine                                   | Sigma Aldrich, Steinheim |
| Hypoxanthine (9636)                            | Sigma Aldrich, Steinheim |
| Isopropanol                                    | Roth, Karlsruhe          |
| Magnesium chloride                             | Merck, Darmstadt         |
| Methanol                                       | Roth, Karlsruhe          |
| Milk powder                                    | Roth, Karlsruhe          |
| N, N, N, N-Tetramethylethylenediamin (TEMED)   | Merck, Darmstadt         |
| Percoll                                        | GE Healthcare, Sweden    |

| Chemical                                      | Brand/ Distributor       |
|-----------------------------------------------|--------------------------|
| Phenylmethylsulfonylfluorid (PMSF)            | Sigma Aldrich, Steinheim |
| Potassium chloride                            | Merck, Darmstadt         |
| Protease inhibitor cocktail (Complete Mini)   | Roche, Mannheim          |
| RPMI (Roswell Park Memorial Institute)-Medium | Applichem, Darmstadt     |
| Saponin                                       | Sigma Aldrich, Steinheim |
| Sodium acetate                                | Merck, Darmstadt         |
| Sodium bicarbonate                            | Sigma Aldrich, Steinheim |
| Sodium chloride                               | Gerbu, Gaiberg           |
| Sodium dihydrogen phosphate                   | Roth, Karlsruhe          |
| Sodium dodecyl sulfate (SDS)                  | Applichem, Darmstadt     |
| Sodium hydroxide                              | Merck, Darmstadt         |
| Sorbitol                                      | Sigma Aldrich, Steinheim |
| Soybean trypsin inhibitor (STI)               | Sigma Aldrich, Steinheim |
| Streptavidin Sepharose                        | GE Healthcare, Germany   |
| TEMED                                         | Merck, Darmstadt         |
| Trichloroacetic acid                          | Roth, Karlsruhe          |
| Tris base                                     | Roth, Karlsruhe          |
| Triton X-100                                  | Biomol, Hamburg          |
| Trizol                                        | Life Technologies, USA   |
| Tween20                                       | Roth, Karlsruhe          |

# 2.1.3 LABWARE AND DISPODABLES

Table 3: List of labware and disposables

| Labware and disposables                  | Specification                | Manufacturer           |
|------------------------------------------|------------------------------|------------------------|
| Blotting membrane                        | Nitrocellulose Amersham 0,45 | GE Healthcare, Germany |
|                                          | μm                           |                        |
| Conical Falcon tubes                     | 50 / 15 ml Material          | Sarstedt, Nümbrecht    |
| Conical falcon tubes                     | 15 ml, 50 ml                 | Sarstedt, Nümbrecht    |
| Coverslips                               | 13 mm                        | Sarstedt, Nümbrecht    |
| Cryo tubes                               | 1.6 ml                       | Sarstedt, Nümbrecht    |
| Culture flask                            | T75 (250 ml), T25 (50 ml)    | Sarstedt, Nümbrecht    |
| Culture plates                           | 24-well, flat bottom         | Sarstedt, Nümbrecht    |
| Diagnostic microscope<br>slides for IFAs | 10-wells 6.7 mm              | Thermo Scientific, USA |
| Disposable pipette tips                  | 1-10/ 20-200/ 100-1000 µl    | Sarstedt, Nümbrecht    |
| Electroporation Cuvettes                 | 0.2 cm-gap sterile           | Bio-Rad, München       |
|                                          | electroporation cuvette      |                        |
| Eppendorf Reaction Tubes                 | 1.5 ml / 2 ml                | Sarstedt, Nümbrecht    |
| Filter tips                              | 1-10/ 20-200/ 100-1000 µl    | Sarstedt, Nümbrecht    |
| Glass cover slips                        | 24 X 65 mm Thickness 0.13-   | R. Langenbrinck,       |
|                                          | 0.16                         | Emmendingen            |
| Glass slides                             |                              | Engelbrecht, Edermünde |
| Parafilm                                 | Amersham 0.45 µm             | GE Healthcare, Germany |
| Parafilm                                 |                              | Bemis, USA             |
| Pasteur pipette                          |                              |                        |
| PCR Reaction tubes                       | Multiply-µStrip Pro 8- Strip | Sarstedt, Nümbrecht    |
| PCR reaction tubes                       | multiply-µStrip per 8-Strip  | Sarstedt, Nümbrecht    |
| Petri dishes                             | 5 ml/ 10 ml                  | Sarstedt, Nümbrecht    |

| Labware and disposables | Specification      | Manufacturer        |
|-------------------------|--------------------|---------------------|
| Plastic pipettes        | 5/ 10/ 25 ml       | Sarstedt, Nümbrecht |
| Protran® Nitrocellulose |                    | Whatman             |
| Membranes               |                    |                     |
| Reaction tubes          | 1.5/2 ml           | Bio-Rad, München    |
| Sterile filter          | 0.22 μm            | Sarstedt, Nümbrecht |
| Transfection cuvettes   | 0.2 cm             | Bio-Rad, München    |
| Vacuum Filter           | Millipore Stericup | Merck, Darmstadt    |

# 2.1.4 KITS

### Table 4: List of kits

| Name                                           | Manufacturer                |
|------------------------------------------------|-----------------------------|
| Monarch Genomic DNA Purification Kit           | NEB, Ipswich, USA           |
| NextSeq 500/550 Mid Output Kit v2.5            | Illumina, USA               |
| NucleoSpin, Gel and PCR clean-up               | Macherey-Nagel, Düren       |
| NucleoSpin, Plasmid                            | Macherey-Nagel, Düren       |
| PureYield <sup>™</sup> Plasmid Midiprep System | Promega, Walldorfm Germany  |
| QIAamp DNA Mini Kit                            | Qiagen, Hilden              |
| QIAGEN Plasmid Midi Kit                        | Thermo Scientific, Schwerte |
| QIAseq FastSelect RNA Removal Kit              | Qiagen, Hilden              |
| QIASeq Stranded mRNA Library Kit               | Qiagen, Hilden              |
| Western Blot ECL-Clarity Detection Kit         | Bio-Rad, USA                |

# 2.1.5 DNA AND PROTEIN LADDERS

Table 5: List of DNA and protein ladders

| Name | Manufacturer |
|------|--------------|
|      |              |

GeneRuler™1000 bp ladderThermo Scientific, SchwertePageRuler™ prestained protein ladder 26619Thermo Scientific, Schwerte

# 2.1.6 SOLUTIONS, BUFFERS AND MEDIA

## 2.1.6.1 MEDIA, SOLUTION AND DRUGS

### 2.1.6.1.1 DRUGS

Table 6: List of drugs for parasite culture

| Name                                 | Composition                               |
|--------------------------------------|-------------------------------------------|
| DSM1 stock solution                  | 187.5 mM DSM1                             |
|                                      | in DMSO                                   |
|                                      |                                           |
| DSM1 working solution                | 100 µl DSM1 stock solution                |
|                                      | ad 5 ml 95% DMSO/5% 1x PBS                |
|                                      |                                           |
| WR99210 (WR) working solution        | 20 µM WR99210 (in DMSO)                   |
|                                      | in RPMI complete medium, sterile filtered |
|                                      |                                           |
| Blasticidin S (BSD) working solution | 5 mg/ml BSD                               |
|                                      | in RPMI complete medium, sterile filtered |
|                                      |                                           |
| G418 working solution                | 50 mg/ml G418                             |
|                                      | in RPMI complete medium, sterile filtered |
| Zeocin solution                      | 100mg/ml in solution (InvivoGen )         |
|                                      |                                           |

## 2.1.6.1.2 MEDIA AND SOLUTION FOR CELL CULTURE AND BINDING ASSAYS

| Name                     | Composition/Provider                   |
|--------------------------|----------------------------------------|
| 10x PBS                  | 1,37 M NaCl                            |
|                          | 28,6 mM KCl                            |
|                          | 80,6 mM Na2HPO4 (water-free)           |
|                          | 14,7 mM KH2PO4                         |
|                          | In .ddH2O; pH 7,4                      |
|                          |                                        |
| 1x PBS                   | 10% 10x PBS                            |
|                          | 90% ddH20                              |
|                          |                                        |
| RPMI complete medium     | 1.587% (w/v) RMPI 1640                 |
|                          | 12 mM NaHCO <sub>3</sub>               |
|                          | 6 mM D-Glucose                         |
|                          | 0.5% (v/v) Albumax II                  |
|                          | 0.2 mM Hypoxanthine                    |
|                          | 0.4 mM Gentamycin                      |
|                          | рН 7.2                                 |
|                          | in dH <sub>2</sub> O, sterile filtered |
|                          |                                        |
| 10% Giemsa solution      | 10 ml Giemsa's Azure, Eosin,           |
|                          | Methylene blue solution                |
|                          | 90 ml dH <sub>2</sub> O                |
|                          |                                        |
| Synchronization solution | 5% D-Sorbitol (w/v)                    |
|                          |                                        |

| Name                            | <b>Composition/Provider</b>                                            |
|---------------------------------|------------------------------------------------------------------------|
|                                 | in dH <sub>2</sub> O, sterile filtered                                 |
|                                 |                                                                        |
| Amaxa transfection buffer       | 90 mM NaPO <sub>4</sub>                                                |
|                                 | 5 mM KCl                                                               |
|                                 | 0.15 mM CaCl <sub>2</sub>                                              |
|                                 | 50 mM HEPES                                                            |
|                                 | рН 7.3                                                                 |
|                                 | in dH <sub>2</sub> O, sterile filtered                                 |
|                                 |                                                                        |
| Cytomix transfection buffer     | 120 mM KCl                                                             |
|                                 | 150 μM CaCl <sub>2</sub>                                               |
|                                 | 2 mM EGTA                                                              |
|                                 | 5 mM MgCL <sub>2</sub>                                                 |
|                                 | 10 mM K <sub>2</sub> HPO <sub>4</sub> /KH <sub>2</sub> PO <sub>4</sub> |
|                                 | 25 mM HEPES                                                            |
|                                 | pH 7.6                                                                 |
|                                 | sterile filtered                                                       |
|                                 |                                                                        |
| Malaria freezing solution (MFS) | 4.2% D-Sorbitol                                                        |
|                                 | 0.9% NaCl                                                              |
|                                 | 28% Glycerol                                                           |
|                                 | in dH <sub>2</sub> O, sterile filtered                                 |
|                                 |                                                                        |
| Malaria thawing solution (MTS)  | 3.5% NaCl                                                              |
|                                 |                                                                        |

| Name                   | <b>Composition/Provider</b>            |
|------------------------|----------------------------------------|
|                        | in dH <sub>2</sub> O, sterile filtered |
|                        |                                        |
| Human erythrocytes     | sterile concentrate                    |
|                        | bloodtype 0+                           |
|                        | Blood bank of Universitätsklinikum     |
|                        | Eppendorf (UKE), Hamburg               |
|                        |                                        |
| Parasite lysis buffer  | 4% SDS                                 |
|                        | 0.5% Triton X-100                      |
|                        | 0.5x PBS                               |
|                        | in dH <sub>2</sub> O                   |
|                        |                                        |
| Percoll stock solution | 90% Percoll (v/v)                      |
|                        | 10% 10x PBS (v/v)                      |
|                        |                                        |
| 80% Percoll solution   | 8.9 ml 90% Percoll stock solution      |
|                        | 1.1 ml RPMI complete medium            |
|                        | 0.8 g Sorbitol                         |
|                        | sterile filtered                       |
|                        |                                        |
| 60% Percoll solution   | 6.7 ml 90% Percoll stock solution      |
|                        | 3.3 ml RPMI complete medium            |
|                        | 0.8 g Sorbitol                         |
|                        | sterile filtered                       |

| Name                                | <b>Composition/Provider</b>       |
|-------------------------------------|-----------------------------------|
|                                     |                                   |
| 64% Percoll solution                | 12 ml 80% Percoll solution        |
|                                     | 8 ml 40% Percoll solution         |
|                                     |                                   |
| 40% Percoll solution                | 4.4 ml 90% Percoll stock solution |
|                                     | 5.6 ml RPMI complete medium       |
|                                     | 0.8 g Sorbitol                    |
|                                     | sterile filtered                  |
|                                     |                                   |
| Saponin solution                    | 0.03% Saponin (w/v)               |
|                                     | in dPBS                           |
|                                     |                                   |
| DHE stock solution (10x)            | 5 mg DHE                          |
|                                     | in 1 ml DMSO                      |
|                                     |                                   |
| DHE working solution (1x)           | 0.5 mg DHE                        |
|                                     | in 1 ml DMSO                      |
|                                     |                                   |
| Hoechst 33342 stock solution (10x)  | 4.5 mg Hoechst 33342              |
|                                     | in 1 ml DMSO                      |
|                                     |                                   |
| Hoechst 33342 working solution (1x) | 0.45 ml Hoechst 33342             |
|                                     | in 1 ml DMSO                      |

| Name                                                | Composition/Provider                   |
|-----------------------------------------------------|----------------------------------------|
| Binding medium                                      | 16,4 g/l RPMI-HEPES 1640               |
|                                                     | 20 g/l Glucose (wasserfrei)            |
|                                                     | in 1 liter dest. H2O; pH 7,2           |
|                                                     |                                        |
| RPMI glucose-free medium                            | 16,4 g/l RPMI-HEPES 1640               |
|                                                     | 0,05 g/l hypoxanthine                  |
|                                                     | 30 ml /l NaHCO3 (7,5 %)                |
|                                                     | 250 μl/l gentamycin                    |
|                                                     | in 1 liter dest. H2O; pH 7,2           |
|                                                     |                                        |
| Gelatin solution for knob enrichment                | 1% gelatin in RPMI glucose-free medium |
| Ham's F12 Medium mit L-Glutamin und 25 mM HEPES     | PAN-Biotech                            |
| Than 5 T 12 Wooldin Int E Gluanni and 25 mill HE ES |                                        |
| Inactivated fetal bovine serum                      | Capricorn                              |
|                                                     | - upito m                              |
| Dulbecco's Modified Eagle Medium                    | Gibco/Thermo Fisher.                   |
| 2 aloute 5 filoannoa Euglo moanann                  |                                        |

## 2.1.6.1.3 BACTERIAL CULTURE

Table 8: List of solutions for bacterial culture

| Name                                 | Composition          |
|--------------------------------------|----------------------|
| 10x Lysogeny broth (LB) medium stock | 10% NaCl             |
| solution                             | 5% Peptone           |
|                                      | 10% Yeast extract    |
|                                      | in dH <sub>2</sub> O |

| LB medium working solution (1x)  | 1% NaCl (w/v)                        |
|----------------------------------|--------------------------------------|
|                                  | 0.5% Peptone (w/v)                   |
|                                  | 1% Yeast extract (w/v)               |
|                                  | in dH <sub>2</sub> O                 |
|                                  |                                      |
| Ampicillin stock solution LB-Amp | 100 mg/ml in 70% ethanol             |
|                                  |                                      |
| LB-Amp working solution          | 0.1% ampicillin in LB medium working |
|                                  | solution (1x)                        |
|                                  |                                      |
| LB Agar plate solution           | 1.5% Agar-Agar                       |
|                                  | 1x LB medium                         |
|                                  |                                      |
| Glycerol freezing solution       | 50% Glycerol (v/v) in 1x LB medium   |

# 2.1.6.2 Solutions and buffers for biochemical analysis

### 2.1.6.2.1 GEL ELECTROPHORESIS

Table 9: List of solutions for gel electrophoresis

| Name           | Composition          |
|----------------|----------------------|
| 50x TAE buffer | 2 M Tris base        |
|                | 1 M pure Acetic acid |
|                | 50 mM EDTA           |
|                | pH 8.5               |
|                | in dH <sub>2</sub> O |

| 6x Loading buffer | 40% Glycerol (v/v)       |
|-------------------|--------------------------|
|                   | 2.5% Xylene cyanol (w/v) |
|                   | 2.5% Bromophenol blue    |
|                   | in dH <sub>2</sub> O     |
|                   |                          |

## 2.1.6.2.2 OTHER BUFFERS AND SOLUTIONS

Table 10: List other buffers and solutions

| Name                            | Composition/Provider           |
|---------------------------------|--------------------------------|
| 10x Running buffer              | 250 mM Tris base               |
|                                 | 1.92 M Glycine                 |
|                                 | 1% SDS                         |
|                                 |                                |
| Ammonium persulfate (APS)       | 10% in dH <sub>2</sub> O (w/v) |
| Separating gel buffer           | 1.5 M Tris-HCl                 |
|                                 | pH 8.8                         |
|                                 | in dH <sub>2</sub> O           |
|                                 |                                |
| Stacking gel buffer             | 1 M Tris-HCl                   |
|                                 | pH 6.8                         |
|                                 | in dH <sub>2</sub> O           |
|                                 |                                |
| Stacking gel (for two gels, 5%) | 0.75 ml stacking gel buffer    |
|                                 | 4.35 ml dH <sub>2</sub> O      |
|                                 | 0.75 ml Acryl amide (40%)      |
|                                 | 60 µl SDS (10%)                |
|                                 | 60 µl APS (10%)                |
| Name                               | Composition/Provider                 |
|------------------------------------|--------------------------------------|
|                                    | 6 μl TEMED                           |
|                                    |                                      |
| Separating gel (for two gels, 12%) | 2.5 ml running gel buffer            |
|                                    | 4.2 ml dH <sub>2</sub> O             |
|                                    | 3 ml Acryl amide (40%)               |
|                                    | 100 µl SDS (10%)                     |
|                                    | 100 µl APS (10%)                     |
|                                    | 4 μl TEMED                           |
|                                    |                                      |
| 6x SDS sample buffer               | 375 mM Tris-HCl, pH 6.8              |
|                                    | 12% SDS (w/v)                        |
|                                    | 60% Glycerol (v/v)                   |
|                                    | 0.6 M DTT                            |
|                                    | 0.06% Bromophenol blue (w/v)         |
|                                    |                                      |
| 10x Western Blot transfer buffer   | 250 mM Tris base                     |
|                                    | 1.92 M Glycerol                      |
|                                    | 0.1% SDS (w/v)                       |
|                                    | in dH <sub>2</sub> O                 |
|                                    |                                      |
| 1x Western Blot transfer buffer    | 10% 10x Western blot transfer buffer |
|                                    | 20% Methanol                         |
|                                    | in dH <sub>2</sub> O                 |

| Name                            | Composition/Provider            |
|---------------------------------|---------------------------------|
| Blocking solution               | 5% milk powder (w/v)            |
|                                 | in 1x TBS                       |
|                                 |                                 |
| 10x T4 – Ligasebuffer           | ThermoFisher                    |
|                                 |                                 |
| Gibson buffer                   | 5x isothermaler Reaktionspuffer |
|                                 | T5 exonuclease (10U/ $\mu$ l)   |
|                                 | Phusion DNA Polymerase (2 U/µl) |
|                                 | Taq DNA ligase (40 U/µl)        |
|                                 |                                 |
| 5x isothermaler Reaktionspuffer | 1M TrisHCl in H2O, pH 7,5       |
|                                 | 2M MgCl2 in H2O                 |
|                                 | 400mM dNTP in H2O               |
|                                 | 1M DTT in H2O                   |
|                                 | 100mM NAD in H2O                |
|                                 | PEG-8000                        |
|                                 |                                 |
| 5x Phusion HF reaction buffer   | NEB, Ipswich, USA               |
| BioID lysis buffer              | 50 nM Tris-HCL pH7.5            |
|                                 | 500 mM NaCl                     |
|                                 | 1 % Triton-X-100                |
|                                 | 1mM DTT                         |
|                                 | 1 mM PMSF                       |
|                                 | 1x protein inhibitor cocktail   |

| Name                                | Composition/Provider     |
|-------------------------------------|--------------------------|
|                                     | in ddH2O                 |
|                                     |                          |
| Triethylammonium bicarbonate buffer | Sigma Aldrich, Steinheim |
|                                     |                          |
| ECL solutions                       | Solution A:              |
|                                     | Tris-HCl in dest. H2O    |
|                                     | Luminol                  |
|                                     | рН 8,6                   |
|                                     | 0,1 M                    |
|                                     | 0,025 %                  |
|                                     | Solution B:              |
|                                     | p-Coumarinsäure          |
|                                     | in DMSO                  |
|                                     | 6,7 mM                   |
|                                     | Solution C:              |
|                                     | $H_2O_2$                 |
|                                     |                          |
| ECL working solution                | 5 ml Solution A          |
|                                     | 500 µl Solution B        |
|                                     | 1,5 µl Solution C        |

## 2.1.7 MAMMALIAN CELL, E. COLI AND P. FALCIPARUM STRAINS

Table 11: List of mammalian, E. coli and P.falciparum strains

| Name | Provider |
|------|----------|
|      |          |
|      |          |
|      |          |

| Chinese hamster ovary cells (CHO-745)<br>expressing GFP, CD36 or ICAM-1 | Metwally et al., 2017                                                                                       |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Chinese hamster ovary cells (CHO-K1) expressing EPCR                    | Kindly provided by Thomas Lavstsen                                                                          |
| E. coli XL-10 Gold                                                      | NEB, Ipswich/USA                                                                                            |
| HBEC-5i primary brain cells                                             | Wassmer et al., 2006                                                                                        |
| P. falciparum strain 3D7                                                | Clone of NF54 isolated from an airport malaria<br>patient, near Schiphol Airport, Amsterdam,<br>Netherlands |
| P. falciparum strain IT4                                                | Jensen and Trager, 1978                                                                                     |

## 2.1.8 ENZYMES

Table 12: List of enzymes

| Туре        | Enzyme                                              | Provider                      |
|-------------|-----------------------------------------------------|-------------------------------|
| Ligases     | T4 DNA-Ligase [3 U/µl]                              | NEB, Ipswich, USA             |
|             | Taq DNA ligase (40.000U/ml)                         | NEB, Ipswich, USA             |
| Polymerases | FirePol DNA Polymerase [5 U/µl]                     | Solis Biodyne, Taipei, Taiwan |
|             | Phusion High-Fidelity DNA Polymerase [2 U/ $\mu$ l] | NEB, Ipswich, USA             |
|             | KAPA HiFi HotStart DNA Polymerase                   | Roche, Mannheim, Germany      |
| Restriction | Avrll                                               | NEB, Ipswich, USA             |
| enzymes     | Mlul                                                |                               |
|             | Notl                                                |                               |
|             | Sall                                                |                               |
|             | Spel                                                |                               |
|             | Xhol                                                |                               |

Xmal

Exonuclease T5 exonuclease (10.000 U/ml)

NEB, Ipswich, USA

## 2.1.9 ANTIBODIES

## **2.1.9.1 PRIMARY ANTIBODIES**

Table 13: List of primary antibodies

| Antigen               | Organism | Dilution |         | Source                        |
|-----------------------|----------|----------|---------|-------------------------------|
|                       | -        | WB       | IFA     |                               |
| GFP                   | Mouse    |          | 1:500   | Roche, Mannheim               |
|                       | Rabbit   |          | 1:500   | Thermo Fisher                 |
| RFP                   | Rat      |          | 1:1000  | Chromotek                     |
| Hemagglutinin<br>(HA) | Rat      | 1:1000   | 1:2000  | Roche, Mannheim               |
|                       | Rabbit   |          | 1:1000  | Cell Signaling<br>Technology  |
| SBP1-N                | Rabbit   | 1:4000   |         | Struck et al., 2010           |
| SBP1-C                | Rabbit   |          | 1:2500  | Mesén-Ramírez et al.,<br>2016 |
| REX1                  | Rabbit   |          | 1:10000 | Mesén-Ramírez et al.,<br>2016 |

| Aldolase | Rabbit | 1:4000 |         | Mesén-Ramírez et al.,<br>2016     |
|----------|--------|--------|---------|-----------------------------------|
| KAHRP    | Rabbit |        | 1:500   | Kind gift of Prof. Brian<br>Cooke |
| Ty1-tag  | Mouse  |        | 1:20000 | Sigma Aldrich                     |

## 2.1.9.2 SECONDARY ANTIBODIES

| Antigen | Organism | Conjugate | Dilution | Application  | Source                 |
|---------|----------|-----------|----------|--------------|------------------------|
| Mouse   | Goat     | Alexa-488 | 1:2000   | IFA          | Life Technologies, USA |
| Rabbit  | Donkey   | HRP       | 1:2500   | Western blot | Dianova, Hamburg       |
|         |          | Alexa-488 | 1:2000   | IFA          | Invitrogen, Molecular  |
|         |          |           |          |              | Probes Leiden          |
|         |          | Alexa-594 | 1:2000   | IFA          | Life Technologies, USA |
|         | Goat     | Alexa-647 | 1:2000   | IFA          | Invitrogen, Molecular  |
|         |          |           |          |              | Probes Leiden          |
| Rat     | Goat     | HRP       | 1:3000   | Western blot | Dianova, Hamburg       |
|         |          | Alexa-488 | 1:2000   | IFA          | Invitrogen, Molecular  |
|         |          |           |          |              | Probes Leiden          |
|         |          | Alexa-594 | 1:2000   | IFA          | Invitrogen, Molecular  |
|         |          |           |          |              | Probes Leiden          |

Table 14: List of secondary antibodies

## 2.1.10PRIMERS

All primers were synthesized by Sigma-Aldrich (Steinheim) (0.025  $\mu$ mol, desalt, in TE, 100  $\mu$ M). The stock solution was diluted 1:10 in Ampuwa H<sub>2</sub>O before being used for PCRs. Primer sequences are in Appendix A1, 2.

| 2.1.10.1 STANDARD PRIMERS FOR DIAGNOSTIC PC | CRS |
|---------------------------------------------|-----|
|---------------------------------------------|-----|

| Name       | Indication | Sequence                         |
|------------|------------|----------------------------------|
| GFP 85 rv  | P8         | ACCTTCACCCTCTCCACTGAC            |
| pARL 55 fw | P3/P7      | GGAATTGTGAGCGGATAACAATTTCACACAGG |
| Neo 40 rv  | P2         | CGAATAGCCTCTCCACCCAAG            |
| Ty1 rv     | P8         | GTGGATCTTGATTTGTATGC             |

## 2.1.10.2 GENERAL PRIMERS

Table 16: List of general primers

| Name          | Sequence                         |
|---------------|----------------------------------|
| FKBP 276 fw   | CAGGCCATCCTGGCATCATC             |
| FRB 42 rv     | AAACGAGATGCCTCTTCCAG             |
| FRB 76 rv     | TCAAACATGCCTTTCACGTTCC           |
| GFP 85 rv     | ACCTTCACCCTCTCCACTGAC            |
| Neo 40 rv     | CGAATAGCCTCTCCACCCAAG            |
| pARL minus    | CAGTTATAAATACAATCAATTGG          |
| pARL sense 55 | GGAATTGTGAGCGGATAACAATTTCACACAGG |

## 2.1.11 PLASMIDS

pSLI-TGD (Birnbaum et al., 2017)

pSLI2-DHOD (Birnbaum et al., 2017)

pARL-mal7-SBP1-mDHFR-GFP-2A-KAHRP-mScarlet (Mesén-Ramírez et al., 2016)

## 2.1.12 COMPUTER SOFTWARE, BIOINFORMATIC TOOLS AND DATA BASES

ApE - A plasmid Editor (http://biologylabs.utah.edu/jorgensen/wayned/ape)

Axio Vision 40 V 4.7.0.0, Zeiss, Jena

bioinfokit (version 2.1.2)

BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

CellProfiler (version 4.2.1) (Stirling et al., 2021)

ColabFold v1.5.5: AlphaFold2 using MMseqs2 (https://colab.research.google.com/github/

sokrypton/ColabFold/blob/main/AlphaFold2.ipynb#scrollTo=G4yBrceuFbf3)

Compute pI/Mw (http://web.expasy.org/compute\_pi/)

CorelDraw Graphics Suite (version 2021)

featureCounts (version 2.0.4)

Fiji - ImageJ (version 2.15.0) (Schindelin et al., 2012)

GOR4 (https://npsa-prabi.ibcp.fr/cgi-bin/npsa\_automat.pl?page=/NPSA/npsa\_gor4.html)

GraphPad Prism (version 9), GraphPad Software, La Jolla, USA

hisat2 (version 2.2.1)

Ilastik (version 1.3.3post3) (Berg et al., 2019)

ImageLab (version 5.2)

IUPRED2A (https://iupred2a.elte.hu/)

matplotlib (version 3.7.2)

Perseus software (Tyanova et al., 2016)

PlasmoDB (http://plasmodb.org/plasmo/)

PubMed (http://www.ncbi.nlm.nih.gov/pubmed)

Pymol (version 2)

Python3 (version 3.11.4)

samtools (version 1.17)

Translate tool (http://web.expasy.org/translate/)

TMHMMv2.0 (https://services.healthtech.dtu.dk/services/TMHMM-2.0/)

VarDom 1.0 (https://services.healthtech.dtu.dk/services/VarDom-1.0/)

## 2.2 METHODS

## 2.2.1 MOLECULAR METHODS

## **2.2.1.1** POLYMERASE CHAIN REATION (PCR)

DNA sequences were amplified from *P. falciparum* 3D7 or IT4 genomic DNA, plasmid DNA, or synthesized genes obtained from GenScript Biotech (USA), utilizing the Phusion High Fidelity DNA polymerase or KAPA HiFi HotStart for PCRs that need proofreading capabilities. For diagnostic PCRs testing the correct integration of the SLI or SLI2 plasmid into the genome (Birnbaum et al., 2017), colony-PCR screening (section 2.2.1.6) and hard to obtain DNA amplifications, the FIREPol DNA polymerase was employed. The primers utilized were acquired from Sigma Aldrich (Steinheim, Germany) and are detailed in Appendix A1 and A2. Analysis of the PCR products was carried out using agarose gel electrophoresis as described in section 2.2.1.2.

## **2.2.1.2** AGAROSE GEL ELECTROPHORESIS

To separate DNA fragments by size the charged backbone of DNA is exploited to separate in an electric field applied to a gel containing DNA (Garoff and Ansorge, 1981). To perform this, a 1% agarose gel was prepared by dissolving agarose powder in 1x TAE buffer, heating the mixture in a microwave, occasionally shaking, until fully dissolved. Ethidium bromide was added to a final concentration of 1 µg/ml after the solution cooled down and the solution was poured into a gel casting tray. Combs were used to create the pockets where the DNA is loaded into. Once set, the gel was fully emerged in an electrophoresis tank filled with 1x TAE buffer. PCR-products were mixed with 6x DNA loading dye corresponding to the volume, and 5 µl of the mixture was loaded into the wells of the gel. The "GeneRulerTM 1 kb" (Thermo Scientific) served as a DNA ladder. Electrophoresis was conducted at 130V or 80V, depending on the chamber used, for 25-35 minutes. The gel was then imaged using the ChemiDocTM XRS+ molecular imager. Resulting images were processed in ImageLab 5.2 software.

## **2.2.1.3 PURIFICATION OF PCR PRODUCTS**

PCR products that were successfully amplified and intended for ligation, plasmid DNA that had been digested with restriction enzymes (section 2.1.8) or PCR products separated with agarose gel electrophoresis (section 2.2.1.2) were purified using the "NucleoSpin Gel and PCR Clean-up" Kit (Macherey-Nagel), as described in the protocol of the kit. The purified DNA was then eluted from the column in 10-30 µl elution buffer supplied with the kit.

## 2.2.1.4 ENZYMATIC DNA DIGESTION

Purified PCR products used for T4-ligation and plasmid vectors underwent digestion with various restriction enzymes (section 2.1.8), facilitating subsequent ligation processes. In scenarios where T4 DNA ligase was utilized for ligation (section 2.2.1.5), both the PCR amplicons and the target vectors were subjected to restriction enzyme digestion. Conversely, for ligation using the Gibson DNA assembly method (section 2.2.1.5), only the target vectors were digested with restriction enzymes and the PCR amplicons remained undigested. The digestion reactions were incubated at 37°C for approximately 1-3 hours or overnight.

## 2.2.1.5 DNA LIGATION WITH T4 LIGASE OR GIBSON ASSEMBLY

PCR-products were either ligated into target vectors using T4 DNA ligase or Gibson DNA assembly (Gibson et al., 2009). For ligations utilizing T4 DNA ligase, digested plasmid vector and digested PCR product was mixed in a molar ratio of 1:5 in 1X T4 DNA-Ligase-Puffer and H<sub>2</sub>O. Subsequently, the mixture was incubated at room temperature for 1 hour or overnight.

For Gibson DNA assembly method, digested plasmid vector was mixed with one or multiple undigested PCR-products which contained overhangs overlapping the ligation sites. The digested plasmid and inserts were added in a 2-3 fold molar excess of each insert to  $8\mu$ l of Gibson assembly buffer. The reaction was then incubated at 50°C for 1 hour. The ligated plasmids were subsequently transformed into XL10 Gold *E. coli* (section 2.2.2.1).

## 2.2.1.6 COLONY PCR SCREEN

Following the transformation of competent *E. coli* cells with plasmid DNA, a colony-PCR screen was conducted on the bacterial clones to pinpoint clones harboring plasmids with the correct insert. This was achieved by picking clones from the LB-agar plate using a small pipette tip and transferring them individually into PCR reaction tubes filled with 10-20 µl of FIREpol PCR solution. Prior to adding the clones to the PCR reaction, bacterial clones selected for the screening were transferred to a master plate which was incubated at 37 °C overnight, for subsequent use of positive clones. The utilized primers bound to the insert and proximal to the insert on the plasmid. Occasionally primers were used that flanked the insert and the integration of the insert was validated by size. The PCR products from these screenings were then subjected to analysis via agarose gel electrophoresis (section 2.2.1.2). Clones tested positive in the colony PCR screenings underwent mini plasmid preparation (section 2.2.1.7) for sequencing 2.2.1.8.

## 2.2.1.7 PREPARATION PLASMID DNA

Clones validated by colony PCR (section 2.2.1.6) or sequencing (section 2.2.1.8) were selected and either inoculated in 5 ml LB-Medium for a mini preparation (mini) or 150 ml LB-Medium for a midi preparation (midi). The culture was subsequently incubated shaking at 37 °C for ~16 hours (mini) or ~20 hours (midi). The bacteria were pelleted by centrifugation at 2000 rpm for 5 min at RT (mini) or 6000 rpm for 15 min at 4 °C (midi). The plasmid DNA was extracted from the bacteria using the NucleoSpinPlasmid Kit (mini), QIAGEN Plasmid Midi Kit (midi), or PureYield<sup>TM</sup> Plasmid Midiprep (midi) following the instructions provided by the manufacturer. Plasmid DNA was dissolved in 50 µl (mini) or 600 µl (midi) TE-buffer provided in the kits. The plasmids obtained by mini preparation were usually used sequencing (section 2.2.1.8) or subsequent cloning. The plasmids obtained by midi preparation were used for transfections of the *P. falciparum* parasites (section 2.2.3.7).

## **2.2.1.8 SANGER SEQUENCING**

To sequence plasmids and rule out mutations in relevant regions sanger sequencing was employed. For that, 100-200  $\mu$ g of plasmid DNA from a clone that was verified via colony PCR screen (section 2.2.1.6) was mixed with  $3\mu$ l of an appropriate sequencing primer, ideally binding 30-60 bp upstream or downstream of the targeted sequence depending on primer direction and was filled up with H<sub>2</sub>0 to a final volume of 15  $\mu$ l. The solutions were sent to Seqlab (Göttingen, Germany) for overnight sequencing. Obtained sequence were analyzed with ApE – A plasmid Editor.

## 2.2.1.9 DNA PRECIPITATION

Plasmid DNA eluates that were obtained with a plasmid midi preparation (section 2.2.1.7) and subject to transfection in *P. falciparum* parasite was analyzed with a NanoDrop to determine DNA concentration. Following a volume corresponding to  $50-100 \mu g$  of DNA was mixed with 3x volume 100 % ethanol and 1/10 volume of 3 M sodium acetate. The precipitated DNA was centrifuged for a minimum of 5 minutes at maximum speed, washed with 70% ethanol and centrifugating for 10 min at max speed at 4°C. The pellet was then air dried in steril conditions and resuspended in 10  $\mu$ l of sterile TE-buffer.

## 2.2.2 MICROBIOLOGICAL METHODS

#### **2.2.2.1** TRANSFORMATION OF COMPENENT E.COLI CELLS

An aliquot of 100  $\mu$ l competent *E. coli* cells was thawed on ice, 10  $\mu$ l of plasmid was added, incubated on ice for 10 min and subjected to heat shock at 42°C for 40 seconds Immediately after heat shock, the mixture was incubated on ice for 1 min, washed with LB-medium and then spread onto an LB-agar plate supplemented with 0.1 mg/ml ampicillin. This plate was then incubated at 37°C overnight.

## 2.2.2.2 FREEZING OF TRANSGENIC E. COLI CELLS

To ensure the long-term preservation of bacterial clones harboring the desired plasmid, a small sample of a bacteria clone verified through sequencing was transferred from a master plate into 2 ml of LB-Amp medium using a pipette tip. This culture was incubated shaking overnight at 37°C. Alternatively, 2ml from a plasmid DNA midi preparation (section 2.2.1.7) culture was transferred to a 2ml reaction tube. Following, the bacterial cells were pelleted by centrifugation, then resuspended in 1 ml of glycerol freezing suspension, and stored at -80°C for future use.

## 2.2.2.3 PREPARATION OF COMPETENT E. COLI CELLS

Competent *E. coli* cells of the XL10 Gold strain were prepared as described (Inoue et al., 1990) and used for transformation (section 2.2.2.1). Bacteria from glycerol stocks stored at -80°C were inoculated into 10 ml of SOB-medium supplemented with 34  $\mu$ g/ml of chloramphenicol and incubated shaking overnight at 37°C. Following, 200 ml of SOB-medium was inoculated with 5 ml of the culture, and two additional 200 ml batches of SOB-medium were each inoculated with 2.5 ml of the overnight culture as backups. These cultures were then incubated shaking overnight at 18°C. After 20-24 hours, optical density at 600 nm (OD600) was monitored until it reached 0.45-0.6, signaling the appropriate time for harvesting.

The culture was divided into four 50 ml falcon tubes and chilled on ice for 10 minutes, followed by centrifugation at 4000 rpm for 15 minutes at 4 °C. The supernatant was removed, and each cell pellet was gently resuspended in 20 ml of ice-cold transformation buffer. After another 10 minutes on ice, the cells were centrifuged again under the same conditions. The supernatant was discarded, and each pellet was resuspended in 4 ml of ice-cold transformation buffer. These resuspended pellets were combined, gently mixed with 1.2 ml of DMSO, and aliquoted into 100  $\mu$ l volumes. These aliquots were immediately frozen in a mixture of dry ice and 100% ethanol before stored at -80°C.

#### 2.2.3 Cell culture methods

#### 2.2.3.1 CULTURING OF MAMMLIAN CELLS

Chinese Hamster Ovary (CHO) cells engineered to express specific receptors such as CD36, ICAM-1, GFP (in CHO-745) (Metwally et al., 2017), or EPCR (in CHO-K1) (kindly provided by Thomas Lavstsen) and human brain endothelial cells (HBEC-5i) (Wassmer et al., 2006) were grown in Ham's F-12 medium (CHO cells) or Dulbecco's Modified Eagle's Limiting Medium (HBEC-5i), both supplemented with 10% fetal calf serum (PAA) and penicillin-streptomycin in a 5% CO<sub>2</sub> atmosphere at 37°C. Additionally, endothelium cell growth supplement was added to the HBEC-5i growth medium to a final concentration of 30 µg/ml. For selection of the receptor expressing CHO cells, 700 µg/ml G418 (CHO-745) or 100 µg/ml (CHO-K1) was added to the culture medium. If a cell confluency of 90-100% was reached and the cell were not used for seeding on coverslips (section 2.2.5.1), the culture was diluted and put back into culture.

Aliquots of cryo-preserved mammalian cells (kindly provided by Johanned Allweier and Jana Brehmer) were thawed prior to every binding assay (section 2.2.5.1). Therefore, cryo-stabilate tubes with the desired mammalian cells were thawed in a water bath at 37 °C for 1 min, the cell suspension was transferred to a 15 ml falcon tube and washed with pre-warmed culture medium. The cells were pelleted at 1200 rpm for 2 min, the supernatant was discarded, and the pellet was resuspended in prewarmed culture medium. For the CHO cells the corresponding selection drug was added and the cells were transferred to a T25 flask for further cultivation. For HBEC-5i cells the T25 flask was coated with 1 ml of 0.1 % gelatin in 1x PBS at 37 °C for 5-10 min before the thawed cells were transferred to the flask.

#### 2.2.3.2 *P. FALCIPARUM* CELL CULTURE

*P. falciparum* parasites 3D7 and IT4 (Jensen and Trager, 1978; there called FCR3S1.2) were cultured using standard procedures (Trager and Jensen, 1976). In brief, the parasites cultures were maintained in petri dishes with volumes of 2 ml, 5 ml, or 10 ml, or 250 ml bottle at a temperature of  $37^{\circ}$ C in a low-oxygen atmosphere (5% CO2, 1% O2, and 94% N2). Parasites were kept in RPMI complete medium supplemented with human erythrocytes of blood group O+ at a 5% hematocrit. For the selection of transgenic parasites 4 nM WR99210, 2 µg/ml Blasticidin S, 400 µg/ml G418, and/or 0.9 µM DSM1 was added to the culture corresponding to the expressed resistance genes. The parasitemia was always kept below a parasitemia of 10%,

with cultures being diluted every 1-3 days depending on parasitemia. If higher parasitemia's were needed the medium was changed twice per day. For parasites that were transfected or thawed the medium was changed every day for the first 2 (thawing) or 4-5 (transfection) days.

#### 2.2.3.3 BLOOD SMEARS

To manage the growth of parasites, parasitemia levels were assessed using Giemsa-stained thin blood smears. Erythrocytes were scratched from the bottom of the petri dish using a pipette and a drop was placed on a glass slide and subsequently spread out with another glass slide to achieve a monolayer of the erythrocytes. The smear was then air-dried and fixed in methanol for 10-30 s. Subsequently, the cells were stained with Giemsa's solution, for 10-20 min. The slide was rinsed with water and gently dried using a tissue. The stained blood smears were then evaluated under an optical light microscope (Axio Lab A1).

#### 2.2.3.4 FREEZING AND THAWING OF PARASITE CULTURES

To ensure the long-term preservation of parasite cell lines, cryo-stabilates were prepared and stored at -80°C. Between 5 to 10 ml of a parasite culture with predominant ring-stage parasites and a parasitemia of 1-10% was pelleted at 2,000 rpm for 5 minutes. Following centrifugation, the supernatant was discarded, and the resulting pellet was gently resuspended in 1 ml of malaria freezing solution (MFS). This suspension was then transferred into a 1.6 ml cryo-tube and immediately stored at -80°C.

For thawing of the frozen parasite cryo-stabilates, the tubes were thawed in water bath at 37 °C. The suspension was then transferred to a 15 ml falcon and centrifuged at 3000 rpm for 2 minutes. The supernatant was removed, and the pellet was gently resuspended in 1.5 ml of malaria thawing solution (MTS) by slowly pipetting the MTS on the pellet and careful mixing. The suspension was centrifuged at 2000 rpm for 5 min. The supernatant was removed, and 10 ml RPMI complete medium was slowly pipetted on the pellet and gently mixed. The parasites were spun down once more, resuspended in RPMI complete medium, added to a 5 ml petry dish and supplemented with 2-4 drops (depending on pellet size) of fresh erythrocytes. Drugs for selection of the parasites were added the following day. The reappearance of parasites was then tracked with Giemsa-stained blood smears (section 2.2.3.3) starting 2 days after thawing.

#### 2.2.3.5 SYNCHRONIZATION OF RING STAGE PARASITES

To synchronize a parasite culture for ring stage parasites sorbitol was used as described (Lambros and Vanderberg, 1979). In short, the parasite culture was pelleted at 2000 rpm for 5

min. The supernatant was discarded, and the pellet was resuspended in 5 times the pellet volume of 5% D-sorbitol solution, pre-warmed at 37°C. The suspension was then incubated at 37°C for 10 minutes. The suspension was centrifuged at 3,000 rpm for 3 minutes, and the pellet was washed once with RPMI complete medium. The pellet was then resuspended in RPMI complete medium and was transferred to a new petri dish. To assess the successful lysis of non-ring stage parasites Giemsa-stained blood smears (section 2.2.3.3) were conducted after the synchronization.

#### **2.2.3.6** ISOLATION OF TROPHOZOITE AND SCHIZONT STAGE PARASITES

To isolate trophozoite and schizont stage parasites Percoll was used as described (Heiber and Spielmann, 2014; Rivadeneira et al., 1983). In brief, for trophozoite stage isolation a parasite culture containing preferable high proportion of trophozoites was pelleted at 2,000 rpm for 5 minutes. Meanwhile, a 15 ml falcon tube was prepared with a layered Percoll gradient:first, 2 ml of 80% Percoll, followed by 2 ml of 60% Percoll (for 3D7 parasites) or 64% Percoll (for IT4 parasites), and topped with 2 ml of 40% Percoll. The parasite pellet was mixed with 8 ml of RPMI complete medium and carefully layered on top of the Percoll gradient. The falcon tube was then centrifuged at 2000 rpm for 10 min. Following, the falcon tube was carefully removed from the centrifuge, the top layers were discarded and the trophozoite fraction (see Heiber and Spielmann, 2014) was taken up with a stripette and transferred to a new falcon tube. The trophozoites were washed with 1x PBS at 4000 rpm for 5 min. The Pellet was then subject to a trypsin assay (section 2.2.8.1)

For the isolation of schizont stage parasites a culture of 5-10 % parasitemia with preferable schizonts was pelleted and resuspended in 10 ml of RPMI complete medium. A falcon tube with 4 ml of 60 % Percoll (3D7 parasites) or 64 % Percoll (IT4 parasites) was prepared. The parasites suspension was carefully layered on top of the Perrcoll and centrifuged at 2000 rpm for 8 min. The medium was removed until 1 ml above the schizont fraction and the schizont fraction was transferred to a new falcon. The schizonts were washed with 10-14 ml RPMI complete medium, the pellet was resuspended in RPMI complete medium and transferred to a new to for subsequent culuring or used for transfection (section 2.2.3.7).

#### 2.2.3.7 TRANSFECTION OF P. FALCIPARUM SCHIZONT STAGE PARASITES

To transfect *P. falciparum* schizont parasites, schizonts stage parasites were isolated (section 2.2.3.6) from a culture with 5-10% parasites preferable with a high proportion of schizonts. 50-100  $\mu$ g of DNA dissolved in 10  $\mu$ l steril TE-buffer (section 2.2.1.9) was mixed with 90  $\mu$ l

Amaxa transfection buffer and 15µl of schizont pellet. This mixture was transferred to an electroporation cuvette (Bio-Rad) and the parasites were electroporated with the "Nucleofector II AAD-1001N" (Bio-Rad). The mixture was then transferred to a previous prepared 2 ml reaction tube which contained 500 µl of RPMI complete medium and 200µl of erythrocytes, prewarmed. The suspension was then incubated shaking at 800 rpm for 30 min at 37 °C. Following, the suspension was transferred to a petri dish, 5ml of RPMI complete medium was added and the petri dish was incubated overnight at 37 °C. The following day medium was changed, and the appropriate selection drugs were added. Medium and drugs were changed the following 4-5 days and every 7 days a drop of blood was added to the culture. Reappearance of the parasites was controlled with Giemsa-stained blood smears (section 2.2.3.3) every other day.

#### 2.2.3.8 INTRODUCING GENOMIC MODIFICATIONS VIA SLI

Selection-Linked Integration (SLI) was conducted as described (Birnbaum et al., 2017) with minor modifications. In brief, parasites harboring non-integrated SLI or SLI2 plasmids and exhibiting good proliferation rates were grown in a 10 ml dishes to a parasitemia of 10-15 %. Medium was discarded and 20 ml of fresh medium containing 400 $\mu$ g/ml G418 (for SLI) or 0.9  $\mu$ M DSM1 (for SLI2) was added to the culture. The medium (20 ml) and drugs were changed every day for 5 days. Afterwards, medium was changed every 2-3 days and only 10 ml of selection drug containing medium was added. The reappearance of parasites was controlled every 3-5 days using Giemsa-stained blood smears (section 2.2.3.3). The parasite cultures were kept for a maximum of 3 month until the culture was discarded as a failed integration attempt.

#### 2.2.3.9 PLAQUE ASSAY

Plaque assays to subclone parasite cell lines was conducted as described (Thomas et al., 2016). In short, parasitemia of the parasite culture was determined using Giemsa smears and a parasite suspension with 1 % parasitemia and 0.75% hematocrit in RPMI complete medium was prepared. The parasites were diluted 1:10 with 0.75 % hematocrit RPMI complete medium and added to the top row of a 96-well plate. This dilution process was continued for ever row resulting in a dilution of 10<sup>-1</sup> in the top row and 10<sup>-8</sup> in the bottom row. The 96-well plate was then incubated under culture atmosphere at 37 °C for 11 day without moving or shaking the plate. The wells were then evaluated for plaques with the EVOS xl microscope. Parasite culture from wells containing only a single plaque were transferred to a 5 ml petri dish and cultured as

described (section 2.2.3.2). The reappearance of parasites was controlled with Giemsa-stained blood smears (section 2.2.3.3) every 2-3 days.

#### **2.2.3.10** ENRICHMENT OF KNOBBY PARASITES

To enrich for parasites that contain knobs on the surface of the infected erythrocytes, a 1% gelatin solution was employed as described (Goodyer et al., 1994). Therefore, 10 ml of parasite culture with 5-10% parasitemia and preferably containing trophozoite stage parasites was centrifuged at 2000 rpm for 5 min, resuspended in RPMI glucose-free medium and pelleted once more. The pellet was resuspended in 500  $\mu$ l RPMI glucose-free medium and 2 ml of 1% gelatin solution in a 15 ml falcon tube avoiding formation of bubbles, both solutions were prewarmed to 37 °C. The falcon tube was incubated standing up in the water bath for 20 min at 37 °C. Knobby parasites float in the upper fraction while the knob-less parasites fall into the pellet. 1-1.5 ml of the top fraction was transferred to a new 15 ml falcon tube and washed with either binding medium (if parasites were subject to binding assays) or RPMI complete medium (if further cultured).

#### 2.2.3.11 PTEX CO-BLOCK ASSAY

The effect of co-blocking the PTEX channel with a mDHFR-fusion construct was conducted following the principles previously described (Eilers and Schatz, 1986; Grüring et al., 2012). For the late block of the PTEX channel, the pARL2-SBP1-mDHFR-GFP-2A-KAHRP-mScarlet (Mesén-Ramírez et al., 2016) plasmid containing a *crt* promotor instead of the *mal7* promotor (kindly generated by Paolo Mesén-Ramírez), was transfected into the 3D7-varUPSB6-HA<sup>endo</sup> cell line. Schizonts were isolated (section 2.2.3.6) from the 3D7varUPSB6-HA<sup>endo</sup> parasite culture containing preferably schizont-stage parasites, washed and grown in a 2 ml preti dish for 2 hours. The culture was then incubated for 24 hours either in the presence or absence of 4 nM WR99210, after which the export of proteins was analyzed through live cell imaging and IFAs (section 2.2.4 and 2.2.4.1).

#### 2.2.4 FLUORESENCE MICROSCOPY

Live or fixed parasites were imaged and assessed using the Zeiss AxioImager M1 or M2 microscopes, equipped with a Hamamatsu Orca C4742-95 camera. Imaging was conducted using lenses with either a  $100\times/1.4$  or a  $63\times/1.4$  numerical aperture. Field of views were captured with the AxioVision software (version 4.7). The imaging of live parasites that express fluorescent proteins was performed as described (Grüring and Spielmann, 2012). The parasite

DNA was stained using 1  $\mu$ g/ $\mu$ l DAPI or 50 ng/ml Hoechst 33342 in RPMI complete medium for 10 minutes at a temperature of 37°C. Subsequently, the parasites were washed, applied between a glass slide and glass cover slip and consequently imaged. Subsequent image processing was carried out in Corel Photo-Paint (version 2021), and processed images were organized using Corel Draw (version 2021).

#### 2.2.4.1 Immunofluorescence and streptavidin-fluorescence assay

Immunofluorescence assays (IFAs) were conducted as described (Spielmann et al., 2003). In brief, pelleted parasites were obtained by centrifugation at 2000 rpm for 5 minutes, followed by a wash in 1x PBS or RPMI glucose-free medium. The washed parasites were then adjusted to a hematocrit of 1-2.5% and applied to 10-well glass slides in a thin layer, where they were allowed to air-dry before being fixed in acetone for 30 minutes. Slides were stored at room temperature until needed (but never longer than 14 days). The fixed samples on slides were rehydrated with 1x PBS for 15-30 min and subsequently washed five times with 1x PBS.

The first antibodies were applied on the wells in 3% BSA in 1x PBS and incubated at 4°C overnight. Subsequently, the antibody solution was discarded, the wells were washed 5 times with 1x PBS, the second antibodies with 1  $\mu$ g/ $\mu$ l DAPI or 50 ng/ml Hoechst 33342 in 3% BSA in 1xPBS were applied and slides were incubated for 1 h at room temperature. For the Streptavidin-fluorescence assay, streptavidin coupled to Alexa Fluor 594 was added to the second antibody solution to a final concentration of 1:2000. After incubation the antibody solution was removed, wells were washed 5 times with 1x PBS before the wells were air-dried and a cover slip was mounted using Dako. Following the samples were analyzed (section 2.2.4) or stored wrapped in aluminum foil at 4 °C.

#### 2.2.5 BINDING ASSAYS

#### 2.2.5.1 STATIC BINDING ASSAYS AGAINST MAMMALIAN CELLS OR DECORIN

Receptor-expressing CHO cell or HBEC-5i (section 2.1.7) cells were prepared by seeding them on coverslips in 24-well plates containing coverslips in the wells. Therefore, the cells were treated with 500µl trypsin for 5 min at 37 °C to remove them from the culture bottle and subsequently resuspended in corresponding culture medium. The suspension was adjusted to  $2x10^5$  cells/ml two days before the assay, or  $1x10^5$  cells/ml three days before the binding assay, selection drugs were added and 500µl of the suspension was added to the wells (three wells per *P.falciparum* cell lines and receptor). For the HBEC-5i cells the coverslips were coated with 0.1% gelatine for 10 min at 37 °C (section 2.2.3.1) prior to seeding the cells. The medium and drugs were replenished one day before the binding assay.

For binding assays targeting the interaction of VAR2CSA to immobilized CSA, cover slips were coated with decorin (chondroitin sulfate proteoglycan from bovine articular cartilage) (Dahlbäck et al., 2011). Therefore, the coverslips were incubated with 500  $\mu$ l of decorin in 1x PBS (5  $\mu$ g/ml) solution or BSA in 1x PBS (5  $\mu$ g/ $\mu$ l) (control) in a 24-well plate overnight at 4 °C. Following the solutions were removed, the wells were washed with 1x PBS and blocked with 1% BSA in 1x PBS for 2 h. Subsequently the wells were washed two times with 1x PBS (Renn et al., 2021).

Knob-enriched parasites (section 2.2.3.10) of the tested *P. falciparum* cell lines were washed with binding medium and resuspending in 3ml of binding medium. The erythrocytes per ml (Neubauer counting chamber) and percentage of infected erythrocytes in the suspension (Giemsa-stained blood smears) was determined. Following, the suspension was adjusted to  $2x10^6$  infected erythrocytes/ml in binding medium. The receptor expressing CHO or HBEC-5i cells adhering to the coverslips in 24-well plates were incubated with binding medium for 30 minutes before the parasite suspension was added to the wells.

In experiments involving decorin or HBEC-5i cells, the adjusted parasite suspension was split and incubated either with soluble CSA in binding medium (100  $\mu$ g/ml) or soluble BSA in binding medium (100  $\mu$ g/ml; control) for 30 minutes at 37 °C prior to adding the parasite suspension to the wells.

Subsequently, the binding medium was removed from the wells and  $500\mu$ l of adjusted parasite suspension was added to the wells ( $1x10^6$  infected erythrocytes per well). The binding reaction was incubated for 60 minutes at 37°C, with gentle shaking every 15 minutes. Following incubation, the coverslips were washed by gently dunking them in binding medium 6 times (excess medium was blotted onto paper after 3 dunks) before placing them face-down in a 24-well plate that was angled at 45° (face-side hanging downwards free in the binding medium) for 30 min, so that the unbound parasites can fall off from the coverslips. The coverslips were then fixed in 1% glutaraldehyde in 1x PBS for 30 min and subsequently stained with filtered 10% Giemsa (Merck) in 1x PBS for 15 min. The stained coverslips were washed with water, air-dried and glued face-down onto glass slides with CV-Mount. Five images per coverslip (per

experiment 15 images per parasite line and condition or 5 images per coverslip) were captured with a Thermo Fisher EVOS XL (75% light intensity at 40x magnification).

#### 2.2.5.2 AUTOMATED SCORING OF BINDING ASSAYS

The evaluation of images of binding assays was automated using Ilastik v1.3.3post3 (Berg et al., 2019) and CellProfiler v4.2.1 (Stirling et al., 2021) (Figure 16). First the images of the binding assays were processed with a trained Ilastik model for the segmentation of the foreground (infected erythrocytes) and background (CHO/HBEC-5i cells and plastic). For the training, the pixel classification module was manually trained with 20 microscopy images representing different shapes of infected erythrocytes, backgrounds, and artefacts. All the color/intensity, edge and texture features were enabled for training. The resulting processed images were exported as probability images with pixel intensities from 0.0-1.0 for the probability of a foreground pixel (regression values; 1.0 = 100 % probability for foreground pixel). Ilastik pre-processed images were then fed to a CellProfiler pipeline (Figure 16B) using the "IdentifyPrimaryObjects" module to identify and count roundish objects with a diameter of 15-35 pixel units. Robust background thresholding and de-clumping by shape was selected. Number of counted infected erythrocytes scored per image was given out as a spreadsheet. To show the reliability of the automated pipeline in comparison to the manual scoring statistical tests between the two methods were conducted as shown in Figure 16C-E.

#### 2.2.6 RNA SEQUENCING

For RNA isolation synchronous ring-stage *P. falciparum* parasites exhibiting a parasitemia of 3-5% were centrifuged at 2000 rpm for 5 min and resuspended in five volumes of prewarmed Trizol, thoroughly mixed, and subsequently stored at -80°C. Upon thawing the Trizol sample, chloroform (1/5 volume of the Trizol used) was added, mixed thoroughly, and then centrifuged at 16,000g for 30 minutes at 4°C to separate the phases. The clear supernatant was carefully transferred to a new tube and processed using the Qiagen miRNeasy Mini Kit following the instructions provided by the manufacturer.

The integrity of the isolated RNA was verified using the Agilent 2100 Bioanalyzer System with the RNA 6000 Pico Kit, selecting only samples with a RNA integrity number greater than 8 for analysis. Ribosomal RNA was depleted from the samples using the QIAseq FastSelect RNA Removal Kit, followed by library preparation with the QIASeq Stranded mRNA Library Kit. Sequencing was performed on an Illumina NextSeq 550 system utilizing the NextSeq 500/550 Mid Output Kit v2.5 for 150 cycles.

The raw sequencing reads were aligned to the reference genomes from PlasmoDB using hisat2 (version 2.2.1). The aligned reads were then sorted and indexed using samtools (version 1.17). Gene feature counts were obtained with featureCounts (version 2.0.4) and only transcript from exon 1 of the *var* genes considered. The reads were normalized to Transcripts Per Million (TPM) and coverplots were generated, using Python3 (version 3.11.4) with the bioinfokit (version 2.1.2) and matplotlib (version 3.7.2) for data visualization.

#### 2.2.7 BIOID AND MASS SPECTROMETRY

For proximity biotinylation, biotin (50  $\mu$ M final) was added to asynchronous parasites expressing the BirA\*-PfEMP1 fusion constructs as well as to IT4 parent parasites (5% parasitemia, 150 ml per condition and experiment) and cultured for 24 h with one exchange of medium with fresh biotin after 12 h. Subsequent, the parasites were washed twice with Dulbecco's Phosphate-Buffered Saline (DPBS) and then subjected to saponin lysis (0.03% saponin solution in DPBS) on ice for 10 minutes. This was followed by five DPBS washes before lysing the samples in 2 ml of a BioID lysis buffer. The lysates were then stored at -80°C.

For the isolation of proteins, the frozen samples were thawed and subjected to a freeze-thaw cycle twice before centrifugation at 16,000 g for 10 minutes. The supernatant (Triton-extract) was saved, the pellet was frozen and thawed once more and underwent a second extraction process using a 4% SDS containing BioID lysis buffer (SDS-extract). The SDS-extract was cleared by centrifugation at 16,000g for 10 minutes. Both extracts were diluted 2:1 in 50 nM Tris-HCl and incubated with 50  $\mu$ l Streptavidin Sepharose rotating overnight at 4 °.

The Sepharose beads were washed twice in BioID lysis buffer, once in H<sub>2</sub>O, twice in Tris-HCl pH 7.5 and three times in 100 nM Triethylammonium bicarbonate buffer. Subsequently steps were kindly conducted by the Bartfai lab. The proteins were digested on the beads as described (Hubner et al., 2015).

The samples were analysed on an Easy-nLC 1000 (Thermo Fisher Scientific) with a 30 cm C18reverse phase column coupled on-line to an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific). Data was acquired in data-dependent top speed mode. The mass spectrometry data were processed with MaxQuant software (Cox and Mann, 2008). Default settings were used with the following exceptions: Deamidation (NQ) was specified as a variable modification, in addition to oxidation (M) and acetyl (N-term). The 'match-between-runs' and 're-quantify' features were enabled with default configurations, and iBAQ values were subsequently calculated. Mass spectral data were matched against peptide masses derived from the annotated proteome of *P. falciparum* IT4 (PlasmoDB v64). Analysis of the "proteinGroups" file generated by MaxQuant was conducted using Perseus software (Tyanova et al., 2016) (version 1.4.0.20). Data were refined by excluding peptides identified as "only identified by site", "reverse", and "potential contaminant" in the datasets. IBAQ values underwent logarithmic transformation to log<sub>2</sub>, and missing values were imputed based on a normal distribution. Samples from the Triton-extraction and SDS-extraction were analyzed separately. Significant outliers at each position were determined using a two-sided Benjamini-Hochberg test, applying a false discovery rate (FDR) threshold of 0.05.

#### **2.2.8 BIOCHEMICAL METHODS**

#### **2.2.8.1** TRYPSIN CLEAVAGE ASSAY

Parasite cultures exhibiting a parasitemia level of 5-10% were synchronized for ring stage parasites (section 2.2.3.5), washed in RPMI complete medium and grown for 12 hours at 37°C to achieve a culture with parasites with maximum age of 30 hours post invasion. Following, trophozoite stage parasites were isolated (section 2.2.3.6), washed in 1x PBS, split into two 1.5 ml reaction tubes and washed once more with 1x PBS. The pelelte of one sample was resuspended in 100µl of TPCK-treated Trypsin (50 µg/ml) in 1x PBS at 37°C for 30 minutes, while the other sample (control) was incubated in 1x PBS at the same conditions. Subsequently, trypsin inhibitor from soybean was added to both samples to a final concentration of 1 mg/ml and samples were incubated on ice for 15 minutes. The samples were spun down and washed with 1x PBS before adding 50-100 µl (depending on pellet size) lysis buffer supplemented with 1 mg/ml trypsin inhibitor, 1 mM PMFS, and 1x protein inhibitor cocktail to the pellets. Following the extracts were either immediately analyzed by SDS-PAGE (section 2.2.8.2) or stored at -20°C for future use.

#### 2.2.8.2 WESTERN BLOT

Western blot analysis was performed following the protocol as described (Heiber and Spielmann, 2014). Initially, extracts from BioID experiments (section 2.2.7) or trypsin cleavage assays (section 2.2.8.1) were centrifuged at 16,000g, and the supernatant was mixed with 4x

Laemmli sample buffer. This mixture was then incubated at 90°C for 10 minutes prior to electrophoresis on 10% sodium dodecyl sulfate polyacrylamide polyacrylamide gels (SDS-PAGE). Following separation by SDS-PAGE, the proteins on the gels were transferred onto nitrocellulose membranes using transfer buffer.

For antibody-based protein detection, the membranes were first blocked with 5% skim milk in 1x TBS for 2 hours at room temperature. After blocking, membranes were washed thrice for 15 min with 1x TBS containing 1% Tween and then incubated overnight at 4°C with the primary antibody in 1x TBS with 3% skim milk. Following the membranes were washed three times with 1x TBS with 1% Tween for 15 min each wash. Secondary antibodies in 1x TBS with 3% skim milk were applied and incubated with the membrane for 2 hours at room temperature.

For the specific detection of biotinylated proteins, HRP-conjugated streptavidin (1:2000) in 5% BSA in 1x TBS was utilized and incubated with the membrane overnight at 4°C as described (Cui and Ma, 2018). Following the incubation with secondary antibodies or HRP-conjugated streptavidin, the membrane was washed three times in 1x TBS with 1% Tween. The membrane was then treated with ECL working solution or the ECL-Clarity Detection Kit prior to the detection of the ECL signal with the ChemiDoc XRS imaging system.

#### 2.2.9 QUANTIFICATION, STATISTICAL ANALYSIS AND FIGURE CONSTRUCTION

P values are presented within the figures, with a threshold of P<0.05 set as statistical significance. All error bars represent Standard deviations are represented. The unpaired t-test was utilized to test statistical significance. Comparisons between individual images from the binding assays, assessed both manually and through an automated pipeline, employed a ratio-paired t-test. GraphPad Prism (version 9) was used for statistical analyses. The Intraclass correlation coefficient (ICC) was determined using Microsoft Excel; a two-factor ANOVA without replication was conducted, and ICC values were derived from the variance components of the ANOVA using the formula: ICC = (MSRow - MSError) / (MSRow + (dfColumn x MSError) + ((dfColumn + 1) x (MSColumn - MSError) / (dfRow + 1)). Graphs were created in GraphPad (version 9) and subsequently refined in CorelDraw (version 2021) for stylistic enhancements, ensuring no modifications to the original data. CorelDraw (version 2021) was also utilized for the final figure preparation.

## **3 RESULTS**

## 3.1 EXPLOITING SLI-GENERATED VAR GENE CELL LINES

In this study, the SLI-system (Birnbaum et al., 2017) was employed to generate *P. falciparum* parasite cell lines expressing a single *var* gene of choice in the entire population. In this section these cell lines are used to study *var* gene expression (section3.1.2, 3.1.3 and 3.1.7), PfEMP1 transport (section 3.1.4) and PfEMP1-mediated binding (section 3.1.6 and 3.1.7).

## 3.1.1 SLI STRATEGY

The rationale behind this is to link expression of a particular *var* gene with the expression of a resistance conferring gene, thereby selecting only those parasites expressing that *var* gene. Given the mutually exclusive expression pattern of *var* genes, the entire parasite population should exclusively express that specific *var* gene. To do this the following steps are needed for each targeted *var* gene: first a pSLI plasmid containing a homology region corresponding to the C-terminal stretch encoding the ATS domain of the targeted *var* gene is generated and transfected into *P. falciparum* parasites (Figure 12) (Appendix A2 for primers). Selection of transfectants harboring this plasmid is then achieved using the drug WR99210. Due to homologous recombination parasites can integrate the plasmid into the gene locus at the targeted *var* gene, now fused to a 3xHA tag, followed by a skip peptide (T2A) and a neomycin resistance gene (Neo R, conferring resistance to G418), all under the control of the same endogenous *var* gene promoter (Figure 12). Subsequent cultivation with G418 ensures that only those parasites expressing the targeted modified *var* gene and conferring neomycin resistance



survive. The resultant modified PfEMP1 variant proteins can be detected and tracked using the 3xHA tag.

**Figure 12: Integration strategy for the activation of a specific** *var* **gene.** Illustration shows strategy and process for the modification of *var* gene loci via SLI. Selection of the parasite culture on WR99210 selects for the parasites harboring the plasmid in the entire parasite population. Selection of the parasite culture on G418 selects for parasites that integrated the pSLI-varX-3xHA plasmid into the targeted *var* gene locus. ATS: acidic terminal segment; NTS: NTS domain; 2A: T2A skip peptide; Neo-R: G418-resistance (conferring resistance to G418); hDHFR: human dihydrofolate reductase (conferring WR99210 resistance); asterisk: stop codon; arrows P1-4: primers for PCR to confirm correct integration; X: desired *var* gene. P1 + P4: original locus; P1 + P2: 5' integration junction; P3 + P4: 3' integration junction.

#### 3.1.2 SLI-MODIFIED VAR GENES ARE PREDOMINANTLY EXPRESSED

The functionality of the approach was evaluated using two *var* genes from 3D7 parasites. The first gene, PF3D7\_0809100 (3D7varUPSB6-HA<sup>endo</sup>), is the predominant *var* gene expressed in the employed 3D7 cell line (Vaaben, 2018) and encodes a CD36-binding PfEMP1 variant (Figure 13A; cell line kindly generated by Paolo Mesén-Ramírez). The second *var* gene, *var2csa* (PF3D7\_1200600, 3D7var2csa-HA<sup>endo</sup>) (Figure 13B; cell line kindly generated by Paolo Mesén-Ramírez), encodes the PfEMP1 binding to CSA. Diagnostic PCRs (kindly performed by Paolo Mesén-Ramírez) confirmed successful integration of the plasmid into the genome in all parasites following G418 selection (Figure 13A, B). PCR products were detected for the 5' and 3' integration junctions while no products were detected for the original locus, contrasting the IT4 wildtype parasites. Immunofluorescence assays (IFAs) (kindly performed by Paolo Mesén-Ramírez) revealed a signal for the HA-tagged PfEMP1 in both cell lines, colocalizing with the Maurer's clefts marker SBP1 (Figure 13A, B), corresponding to the usual location PfEMP1 is detected in with antibodies. Typically, PfEMP1 on the erythrocyte

membrane remains undetected by standard IFA with antibodies against the C-terminus (Dixon et al., 2011; Maier et al., 2008). Notably, in the 3D7var2csa-HA<sup>endo</sup> cell line, additional signals not co-localizing with SBP1 were observed (Figure 13B, arrows/enlargement), potentially representing PfEMP1 molecules at the erythrocyte membrane or in transport structures.



**Figure 13: Confirmation of predominant expression of specific** *var* **genes modified with SLI in 3D7. (A, B)** Confirmation of the activation of PF3D7\_0809100 and PF3D7\_1200600 in 3D7 parasites. Schemes show domain organization and HA-tagging of the modified *var* gene. Agarose gels show PCR products confirming correct integration of the SLI plasmid. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12A for primer positions and Appendix A2 for sequences; 3D7: parent; Int: integrant cell line. Expected bands: 3D7var2csa-HA<sup>endo</sup> (5': 2884 bp; ori 2790 bp; 3': 1269 bp);

3D7varUPSB6-HA<sup>endo</sup> (5': 2640 bp; ori: 2631 bp; 3': 1354 bp). Fluorescence microscopy images show IFAs with acetone fixed parasites using anti-HA antibodies (detection of PfEMP1) and anti-SBP1 (detection of Maurer's clefts marker SBP1). Nuclei: DAPI; DIC: differential interference contrast; size bars 5  $\mu$ m. Enlargement showing PfEMP1 signal not co-localizing with SBP1-signal. Arrow shows non-co-localization of PfEMP1 and SBP1 example. (C) Western blot of trypsin cleavage assays with indicated parasites. Arrows show protected PfEMP1 fragment indicative of surface exposure.  $\alpha$ -SBP1-N: control for integrity of host cell (breach of ERYTHROCYTE would result in a smaller SBP1 fragment). Marker in kDa. Replicates and full blots in Appendix B. (D) Pie charts show proportions of *var* gene transcripts of the indicated cell lines determined by RNAseq, normalized to TPM.

To further investigate the surface presentation of the "activated" PfEMP1, trypsin cleavage assays were performed (Figure 13C). Isolated trophozoites (18 – 30 hours post-infection) were treated with trypsin or mock treated as a control. Western blot analysis of the extracts detected a shorter PfEMP1 fragment in trypsin-treated parasites which was not present in the control, indicative of surface-exposed PfEMP1. For 3D7varUPSB6-HA<sup>endo</sup> a protected fragment was detected at ~90 kDa and for 3D7var2csa-HA<sup>endo</sup> the protected fragment showed a size of ~110kDa (Figure 13C). The integrity of the host erythrocyte was assessed using anti-SBP1-N antibodies against the N-terminus of SBP1. This control confirmed that trypsin did not breach the host cells membrane, as only full length SBP1 was detected (Figure 13C). If the erythrocyte membrane had been breached, intracellular SBP1 would have been digested, resulting in a detectable ~35 kDa band in the trypsin-treated samples which corresponds to the Maurer's clefts internal part and the TM of SBP1.

To validate the exclusive expression of the targeted *var* gene, RNA sequencing (RNAseq) analysis was conducted (performed by Johannes Allweier). Reads corresponding to exon 1 of the *var* genes were normalized to transcripts per million (TPM) for quantitative analysis. These results showed that a majority of the expressed *var* gene transcripts were from the targeted *var* gene: 97.60% in the 3D7varUPSB6-HA<sup>endo</sup> cell line and 99.18% in the 3D7var2csa-HA<sup>endo</sup> cell line (Figure 13D). These findings demonstrate that the SLI-system permits the effective generation of parasites with predominant expression of the targeted *var* gene.

# **3.1.3** COPENHAGEN **3D7** CELL LINE SHOWS DEFECT IN MUTUALLY EXCLUSIVE EXPRESSION

Joergensen et al. (2010) provided evidence of multiple PfEMP1 variants being expressed within a single parasite in a 3D7 cell line from the Lavstsen lab (University of Copenhagen). Building on this, the *var* gene PF3D7\_0425800 was SLI-activated in both a "healthy" 3D7 cell line (3D7 strain from Hamburg (Spielmann lab), Figure 14A; 3D7varUPSA1-HA<sup>endo</sup>; cell line kindly

generated by Jan Stäcker) and the "sick" 3D7 cell line (3D7 strain from Copenhagen; Lavstsen lab), Figure 14B; 3D7<sup>MEED</sup>varUPSA1-HA<sup>endo</sup>; MEED: mutually exclusive expression defect; cell lines kindly generated by Jan Stäcker) (Vaaben, 2018).



**Figure 14: 3D7**<sup>MEED</sup> **shows a defect in mutually exclusive expression.** (A) Pie charts show proportions of *var* gene transcripts of the indicated cell lines determined by RNAseq and normalized to TPM. (B) SuperPlot (Lord et al., 2020) showing percentage (log scale) of total var gene transcripts for non-activated *var* genes of the indicated cell line determined by RNAseq (normalized to TPM; small grey dots: individual *var* genes; large colored dots: average of each replicate; bars: mean of averages of replicates with SD; n = 3 biological replicates; unpaired t-test; p-values indicated).

RNA sequencing (kindly performed by Johannes Allweier) indicated that 96.87% of total *var* gene transcripts in the 3D7varUPSA1-HA<sup>endo</sup> line, and only 58.52% in the 3D7<sup>MEED</sup>varUPSA1-HA<sup>endo</sup> line, originated from the activated *var* gene PF3D7\_0425800 (Figure 14C). These results are in agreement with previous performed qPCR results (Vaaben, 2018). To further investigate, experiments were repeated and the transcript proportions of total *var* gene transcripts for non-activated *var* genes within both cell lines were compared for three biological replicates. The results revealed a significant increase in transcripts from non-activated *var* genes in the 3D7<sup>MEED</sup> parasites, further confirming a defect in the mechanism of mutually exclusive expression in that cell line (Figure 14D).

#### **3.1.4** EVIDENCE THAT PFEMP1 IS EXPORTED THROUGH THE PTEX CHANNEL

Next, the SLI cell line 3D7varUPSA1-HA<sup>endo</sup> was employed to investigate the export mechanisms of PfEMP1 to reach the host cell cytosol. It is unclear whether PfEMP1 is translocated through the PTEX channel or uses a different pathway to cross the PVM. The mDHFR domain was utilized, a domain that is known to increase its structural stability upon ligand binding, a property that was first used to study protein translocation into mitochondria (Eilers and Schatz 1986). In malaria parasites the ligand used to stabilize mDHFR is WR, a folate analogue. If an exported protein is fused to mDHFR, addition of WR prevents the passage of that protein through the PTEX translocon and in specific cases also blocks the translocon, preventing the passage of other proteins (termed "co-block") (Grüring et al., 2012). Previous research (Naranjo Prado, 2020) suggested that PfEMP1 export is hindered when the PTEX channel is obstructed using a SBP1-mDHFR-GFP construct to block the PTEX channel after WR addition. However, in that study, the construct was either episomally expressed under an episomal mal7 promoter or under the endogenous SBP1 promoter, both of which mediate expression very early after invasion (Grüring et al., 2011). This early induction potentially blocks exported proteins crucial for PfEMP1 transport and parasite survival, indirectly affecting PfEMP1 transport.

To address this, a co-block construct and a block-reporter (to show that PTEX was indeed blocked) was used, expressed under the same late-expressing *crt* promoter (Grüring et al., 2011) (Figure 15A, B). The construct to achieve this contained the blocking component SBP1-mDHFR-GFP linked to a skip peptide and KAHRP-mScarlet which served as the reporter for a successful PTEX channel blockage (Figure 15A, B).

Following WR treatment, live imaging confirmed the successful retention of both SBP1mDHFR-GFP and KAHRP-mScarlet in the parasite periphery, consistent with an arrest in export in the parasitophorous vacuole (Figure 15D). IFAs using antibodies against the HA-tag indicated that PfEMP1-HA is also arrested in the PV when KAHRP-mScarlet is retained after WR treatment (+WR). In contrast, in the control (-WR), PfEMP1 and KAHRP-mScarlet were both exported to the host cell (Figure 15D).



Figure 15: Export of PfEMP1 is prevented by blocking PTEX at the onset of the trophozoite stage. (A) Illustration shows the experimental strategy and timing to jam PTEX with a late expressed (*crt* promotor) episomal co-blocking construct (Mesén-Ramírez et al., 2016) in 3D7varUPSA1-HA<sup>endo</sup>. (B) Scheme of domain organization of the expressed PfEMP1 and early (*crt* promotor) expressed co-block construct. (C) Live cell images of the coblocking cell line – and + WR. White arrow: KAHRP-mScarlet arrested in the parasite's periphery; nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (D, E) Fluorescence microscopy images show IFAs with acetone fixed parasites with the indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (F) Graph: quantification of parasites with a PfEMP1 or REX1 export phenotype + and - WR from 3 biological replicates (-WR, PfEMP1: n = 34, 76, 60; +WR, PfEMP1: n = 18, 48, 30; -WR, REX1: n = 18, 27, 35; +WR, REX1: n = 12, 31, 25; +WR only parasites with an KAHRP-mScarlet (PTEX block reporter) export phenotype were scored; bars: mean of replicates with SD; unpaired t-test; p-values indicated. (G) Legend showing meaning of the pictograms below. Scheme shows the effect of WR-dependent clogging of PTEX (right)

or control (left) on the tested proteins.

Further investigations in these parasites focused on the export of the early exported protein REX1 (McMillan et al., 2013) as these could influence the export of PfEMP1. IFAs revealed that REX1 was fully exported in WR-treated parasites, despite the retention of KAHRP-mScarlet in the PV, showing that the block of PTEX occurred only after most exported proteins already reached the host cell (Figure 15E). In the control condition, both KAHRP-mScarlet and REX1 were exported to the host cell (Figure 15E). Quantitative analysis of PfEMP1 and REX1 export in WR-treated parasites demonstrated a significant difference between the export of REX1 and PfEMP1 after WR treatment compared to the control (Figure 15F). This indicates that the ablation in the export of PfEMP1 is not attributed to the absence of earlier exported proteins in the host cell but that PfEMP1's export itself is directly reliant on the PTEX channel (Figure 15G).

# **3.1.5** ESTABLISHMENT OF A PIPELINE FOR AUTOMATED EVALUATION OF BINDING ASSAYS

One of the challenges in the study of PfEMP1 is the testing of the functionality of PfEMP1 molecules on the surface, i.e. its capacity to bind to receptors and mediate cytoadherence. Even though FACS analysis (Avril et al., 2006) or trypsin cleavage assays (Waterkeyn et al., 2000) can determine the surface presentation of PfEMP1 this does not let one conclude that the PfEMP1 molecules presented are in a functional state. Therefore, binding assays to supports or cells carrying receptor(s) under static and flow conditions or in tissue models have been employed as functional assays for the clarification of the binding capacity of the PfEMP1 molecules in a parasite population (Bernabeu et al., 2019; Fried and Duffy, 1996; Gray et al., 2003).

However, binding assays against receptor-expressing cells face the challenge of high variability due to the non-uniform confluency of receptor-expressing cells and by the heterogeneous expression levels of receptors between individual cells. This necessitates the evaluation of larger areas of the used cell culture to obtain accurate results. However, manual scoring of binding of large areas is time intensive. Preliminary experiments indicated that evaluating 225 images required 11.25 hours manual scoring time, averaging 180 seconds per image. This volume of data corresponds to the assessment of five parasite cell lines against three receptors,

with 15 fields of view per receptor and cell line imaged (number of images analyzed was increased compared to previous standard protocols (3 images per coverslip) to account for the observed variation). To complete three replicates, an additional 22.5 hours would be needed. It is noteworthy that the time required is directly proportional to the number of bound infected erythrocytes per image; a greater number would extend the duration of the evaluation.



Figure 16: Establishment of an automated pipeline for the evaluation of binding assay images. (A) Images of binding assays with binding or non-binding (control) of infected erythrocytes to receptor expressing cells evaluated by a generated CellProfiler (*Stirling et al., 2021*; version 4.2.1) pipeline. Table shows CellProfiler pipeline 1. Large images show native captured input image. Smaller pictures show processing by the pipeline (from top to bottom). (Top) Images after processing by "EnhanceOrSupressFeatures" that was fed to the next module. (Middle) Images with accepted and rejected outlines of objects determined by shape and "robust background" thresholding in the "IdentifyPrimaryObjects" module. Green outlines: accepted objects; purple outlines: rejected objects. (Bottom) Objects that were counted with colors representing different accepted objects. (B) Illustration of the pipeline for automated scoring of the number of bound infected erythrocytes in images captured from binding assays. Left: representative image of a binding assay showing binding (top) or no binding

(bottom) of infected erythrocytes. Ilastik *(Berg et al., 2019*; version 1.3.3post3) model (trained on 20 images) separates fore- and background of native captured images (left, input images; middle, output images). Foreground: infected erythrocytes; background: CHO/HBEC-5i cells and plastic. Gray box: CellProfiler pipeline 2 to score presegmented images (middle, input images; right, output images). (C) Results of binding assays for five parasite lines tested against three different receptor expressing CHO-cells evaluated by manual scoring and the automated pipeline (15 fields of views were analysed per cell line and receptor, total: 225; bars: mean and SD). ICC: intraclass correlation coefficient. (D) Comparison of all images from (C) evaluated by manual scoring against scoring by the automated pipeline. Red dots: bound infected erythrocytes (iE) in individual images from manual scoring (blue dots) or scoring by the automated pipeline. Man: manual scoring; auto: automated pipeline (n = 225; bars: mean and SD; paired t-test; p-value is indicated). (E) Bland-Altman plot comparing evaluation of images of binding assays from (B) by manual scoring and scoring by the automated pipeline. Green lines, limits of agreement.

In an attempt to automate the evaluation of images of binding assays CellProfiler (Stirling et al., 2021), a widely recognized cell image analysis software was tested for its capacity to count the number of bound infected erythrocytes. To precisely identify infected erythrocytes in captured images, various CellProfiler (version 4.2.1) pipelines were designed for testing. It is noteworthy that CellProfiler is commonly employed for analyzing images with fluorescent signals (such as nuclei stained with DAPI), histological images stained with various dyes, or brightfield microscopy images with distinct backgrounds. The images in this analysis, however, presented a unique challenge due to the substantial amount of background signal (CHO/HBEC-5i cells) with color and shape characteristics similar to the infected erythrocytes, a scenario not typically encountered in standard applications of CellProfiler. Therefore, a crucial aspect of this automation was thresholding, which discriminates between the foreground (the signal of interest: infected erythrocytes) and the background (unwanted signals: plastic artefacts and receptor-expressing cells).

After testing several CellProfiler pipelines differing in models used and settings in the modules, one pipeline was further evaluated as it was able to reliably score infected erythrocytes comparable to the manual scoring. The central module in most CellProfiler pipelines is the "IdentifyPrimaryObjects" module for the identification and counting of objects. This module alone was not able to segment the fore- and background in the images correctly regardless of the tested settings. For that reason, the "EnhanceOrSupressFeatures" module was employed to enhance "speckles" (Feature type: speckles) with a feature size of 25 pixels (diameter; pictures were captured in 400x magnification). This enabled a successful pre-segmentation for the following processing. After evaluating several thresholding techniques such as 'robust background', 'minimum cross-entropy' and 'otsu', the 'robust background' thresholding method in the "IdentifyPrimaryObjects" module was chosen due to its effectiveness in separation of fore- and background, for identifying infected erythrocytes with minimal false positives or negatives (Figure 16A). However, challenges arose when applying this pipeline to images with

few or no bound infected erythrocytes. In these cases, the pipeline incorrectly scored receptorexpressing cells as foreground objects (high number of false positives) (Figure 16A). Adjustments to the settings intended to rectify this issue inadvertently led to a large number of false negatives in images with a high number of infected erythrocytes. Hence, adjustments in the pipeline can render the pipeline functional for both cases individually, however this would not lead to a satisfactory automation and comparable results of the evaluation.

To solve this issue a second computer software, Ilastik (Berg et al., 2019; version 1.3.3post3), was used that employs a neural network based on a pre-trained model. This "pixel classification" model uses a simple but robust random forest machine learning algorithm that must be manually trained to classify pixels of a given image. Its output are values for each pixel of the image in either regression values (0.0 to 1.0) or classification (0 or 1) of the input image. This enables a pre-segmentation of background and infected erythrocytes. The model was trained for the separation of fore- and background across 20 images, obtained from the previous experiments. It was trained with all available features selected for more precise processing with a trade-off in processing time. The selected images were chosen to represent a wide range of artifacts and morphologies of infected erythrocytes and receptor-expressing mammalian cells. After processing the native captured images of binding assays with the trained Ilastik model the output images were shown in regression values (0.0 = black = 0% certainty for foreground; 1.0 = white = 100% certainty for infected erythrocytes) for the individual pixels (Figure 16B).

A new more simplified and robust CellProfiler pipeline was constructed customized to the Ilastik-processed images (Figure 16B). The 225 images evaluated by manual scoring were used to test the reliability of the pipeline and the outcome was compared to the manual scoring. The results showed no significant difference between the evaluation of the images with the manual scoring and with the automated pipeline (Figure 16C) (Intraclass correlation coefficient of 0,9992 (excellent reliability); averages compared). A comparison of the total analyzed individual pictures evaluated by both methods did not show a significant difference (t-test: p-value = 0.3029) (Figure 16D). A Bland-Altman plot comparison showed that > 95 % of the differences in evaluation are within the limits of agreement (Figure 16E). These statistical tests indicated that the difference between the automated pipeline and manual scoring is statistically insignificant. Therefore, this pipeline for the evaluation of binding assays can be considered highly reliable and will be applied throughout this work.

#### **3.1.6 3D7** SHOW POOR BINDING PHENOTYPES

Anecdotal evidence suggests that the most used laboratory *P. falciparum* strain, 3D7, shows poor cytoadherence levels. Contrastingly, previous studies have shown that the IT4 laboratory strain (Jensen and Trager, 1978; there called FCR3S1.2) retains high levels of cytoadherence. Initial experiments using parasites with a SLI-activated *IT4var01* gene in IT4 parasites were capable of binding to the expected receptors (CD36 and ICAM-1) expressed on CHO cells (Blancke-Soares et al., 2021; Stäcker, 2021).

To further explore the usefulness of IT4 for binding studies compared to 3D7, two PfEMP1 variants were selected for activation with SLI in IT4 that have comparable binding domains to those activated in 3D7 (Figure 13). The first was the only CSA-binding PfEMP1 variant VAR2CSA (PfIT 120006100, IT4var4, IT4var2csa-HA<sup>endo</sup>) which is conserved across parasite isolates (Figure 17A). The second was a CD36-binding PfEMP1 variant (PfIT 040025500, IT4var66, IT4var66-HA<sup>endo</sup>), the predominant var gene in the IT4 parental cell line and containing similar binding domains to the PfEMP1 expressed in 3D7varUPSB6-HA<sup>endo</sup> parasites (Figure 17B). Diagnostic PCR confirmed correct integration of the SLI-plasmids into the genome for both parasite populations (Figure 17A, B). PCRs showed products for the 5' and 3' integration junctions while no products were detected for the original locus, contrasting the IT4 wildtype parasites. IFAs revealed expression of the HA-tagged PfEMP1s and their colocalization with SBP1 in both cell lines (Figure 17A, B). RNA sequencing (performed by Johannes Allweier) showed predominant expression of the targeted var genes: 97.81% in IT4var66-HA<sup>endo</sup> and 80.04% in IT4var2csa-HA<sup>endo</sup> (Figure 17D) of the total var gene transcripts. Interestingly, in the IT4var2csa-HA<sup>endo</sup> cell line, exhibited a notable expression of var66 (4.92%), the predominantly expressed var gene in the parental cell line (Appendix D), and varlcsa (12.93%). Previous research indicated that while varlcsa is frequently expressed in IT4, it does not produce a functional protein due to the lack of an ATS domain (premature stop codon) and might have regulatory purposes (Kyes et al., 2003; Winter et al., 2003).



**Figure 17: Confirmation of SLI-activation of two** *var* genes in IT4. (A, B) Activation of PfIT\_12006100 and PfIT\_040025500 in IT4 parasites via SLI. Schemes show domain organization and HA-tagging of the modified *var* gene. Agarose gels show PCR products confirming correct integration of the SLI plasmid. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12A for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line. Expected bands: IT4var2csa-HA<sup>endo</sup> (5': 1346 bp; ori 1158 bp; 3': 1175 bp); IT4var66-HA<sup>endo</sup> (5': 1064 bp; ori: 884 bp; 3': 901 bp). Fluorescence microscopy images show IFAs with acetone fixed parasites with  $\alpha$ -HA(detection of PfEMP1) and  $\alpha$ -SBP1(detection of Maurer's clefts marker SBP1). Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 µm. (C) Western blot of trypsin cleavage assays with indicated parasites. Arrows show protected
PfEMP1 fragment indicative of surface exposure.  $\alpha$ -SBP1-N: control for integrity of host cell (breach of ERYTHROCYTE would result in a smaller SBP1 fragment). Marker in kDa. Replicates and full blots in Appendix B. (**D**) Pie charts show proportions of *var* gene transcripts of the indicated cell lines determined by RNAseq and normalized to TPM.

To assess the surface presentation of the HA-tagged PfEMP1s, trypsin cleavage assays were conducted with intact infected erythrocytes. These experiments showed a band at approximately 110 kDa for both cell lines in the trypsin-treated samples, corresponding to a C-terminal protected fragment of PfEMP1 (Figure 17E). No such bands were detected in the control samples that were not treated with trypsin. Only bands corresponding to full-length SBP1 were detected with an antibody against the N-terminus of SBP1, thus there was no evidence of trypsin breaching the host cell membrane. Taken together these findings confirm the successful activation of the targeted PfEMP1 variants in IT4, along with their typical localization in the Maurer's clefts and presentation on the host cell surface, similar to the results with the activated PfEMP1s in the 3D7 cell line (Figure 13)..

In order to compare the binding properties of IT4 and 3D7 parasites, binding assays were conducted. Initially, the *var2csa*-expressing 3D7 and IT4 SLI-lines were tested against the primary brain cell line HBEC-5i, known to express CSA on its surface (Wassmer et al., 2006). The results demonstrated that erythrocytes infected with IT4var2csa-HA<sup>endo</sup> parasites exhibited binding to HBEC-5i cells while erythrocytes infected with 3D7var2csa-HA<sup>endo</sup> parasites showed very low, non-significant binding compared to the wildtype (Figure 18A, B). The binding of IT4var2csa-HA<sup>endo</sup> parasites was significantly inhibited by the addition of soluble CSA (sCSA) to the binding reaction, indicating specific binding to CSA. Erythrocytes infected with parasites from either the 3D7 or IT4 wildtype cell lines (the parents without a specifically activated *var* gene) did not show binding to the HBEC-5i cells (Figure 18A, B).

To further delineate these binding phenotypes and rule out non-specific interactions with other proteins or proteoglycans expressed on the HBEC-5i cells, binding assays against decorin (leucine repeats coupled to CSA) immobilized on coverslips were performed. Here again, only the erythrocytes infected with IT4var2csa-HA<sup>endo</sup> parasites demonstrated binding, and this interaction was also inhibited by addition of sCSA to the binding reaction (Figure 18C, D). No binding to decorin was observed for erythrocytes infected with 3D7, IT4, or 3D7var2csa-HA<sup>endo</sup> parasites (Figure 18C, D). These findings suggest that the binding observed for IT4var2csa-HA<sup>endo</sup> parasites is specifically attributable to the activation of *var2csa* and directed against CSA, not other components of the HBEC-5i cell line.



**Figure 18: Comparison of the cytoadherence properties of 3D7 and IT4 parasites**. Results of binding assays of the indicated cell lines. (**A**, **C**, **E**) Image panels show representative sections of microscopy images captured of binding assays with the indicated cell line against CSA- expressing HBEC-5i, immobilized decorin or CHO cell expressing the indicated receptor, respectively; arrows show examples of bound infected erythrocyte; birghtness of images adjusted with CorelDraw 2021 with intensity command. (**B**, **D**, **F**) SuperPlots show results from three biological replicates of binding assays against HBEC-5i, immobilized decorin or CHO cells expressing the indicated receptor, respectively (15 field of views were counted per experiment and condition; SD; unpaired t-test; p-values are indicated). Small grey dots show number of bound iE for every field of view captured, extrapolated to mm<sup>2</sup>. In (B) and (D) larger colored dots show average bound iE/mm2 for each experiment. Each color represents an individual experiment. In (F) Small grey dots show bound iE for every field of view captured, extrapolated to mm2. Larger colored dots show average number bound iE/mm2 for each experiment. Green circle: CHO-GFP; blue triangle: CHO-CD36; yellow rhombus: CHO-ICAM-1.

Next, the binding properties of CD36-binding PfEMP1 variants activated in 3D7 and IT4 parasites were compared. For this, the binding of erythrocytes infected with IT4var66-HA<sup>endo</sup> or 3D7varUPSB6-HA<sup>endo</sup> parasites against CHO cells expressing GFP, CD36, and ICAM-1 was

evaluated. The results indicated that erythrocytes infected with parasites from both cell lines exhibited binding to CD36-expressing CHO cells, but not to those expressing GFP or ICAM-1 (Figure 18E, F). However, comparing the binding efficacy to CD36, IT4var66-HA<sup>endo</sup> parasites showed significant binding compared to the GFP control (p-value = 0.0102) while 3D7varUPSB6-HA<sup>endo</sup> binding to CD36 was not significant when compared to the GFP control (p-value = 0.1141). While this can be taken as evidence to further underscore the different ability in binding of 3D7 and IT4 parasites it is important to note that in contrast to VAR2CSA, these two PfEMP1 variants are less conserved and not truly comparable.

In conclusion, these results established a clear difference in the binding capabilities between the two parasite strains: the IT4 strain demonstrates robust binding efficiency while the 3D7 strain exhibited a diminished binding capacity. This contrast underlines the usefulness of the IT4 strain as a model for investigating PfEMP1-mediated *in vitro* cytoadherence.

# **3.1.7** GENERATION OF A COLLECTION OF IT4 LINES WITH DIFFERENT ACTIVATED *VAR* GENES

The previous findings established that the SLI-system can effectively activate and modify functional PfEMP1 variants in the IT4 strain. This advancement presents an opportunity to establish parasite cell lines expressing a defined PfEMP1 binding to each of the known major receptors. It also enables to investigate the binding properties of PfEMP1 variants with unidentified binding partners or comparison of the binding capacities of two different PfEMP1s to a specific receptor.

| var gene | Accession number | Group | Predicted binding partners | obtained<br>on G418 | integration confirmed |
|----------|------------------|-------|----------------------------|---------------------|-----------------------|
| IT4var02 | PfIT_090005100   | А     | unknown                    | $\checkmark$        | $\checkmark$          |
| IT4var03 | PfIT_140006400   | A     | unknown                    | $\checkmark$        | $\checkmark$          |
| IT4var07 | PfIT_060036700   | A     | EPCR, ICAM-1               | -                   | -                     |
| IT4var08 | PfIT_070005900   | A     | unknown                    | $\checkmark$        | $\checkmark$          |
| IT4var09 | PfIT_130005300   | A     | unknown                    | $\checkmark$        | -                     |
| IT4var18 | PfIT_030029700   | A     | EPCR                       | -                   | -                     |
| IT4var22 | PfIT_100044000   | A     | EPCR                       | $\checkmark$        | X                     |
| IT4var35 | PfIT_050037800   | A     | None/pseudogene            | $\checkmark$        | -                     |
|          |                  |       |                            |                     |                       |

Table 17: List of var genes chosen for the activation in IT4 parasites.

| (varlcsa)            |                |     |              |              |          |
|----------------------|----------------|-----|--------------|--------------|----------|
| IT4var64             | PfIT_070017100 | А   | unknown      | -            | -        |
| IT4var06             | PfIT_020027600 | В   | EPCR         | -            | -        |
| IT4var16             | PfIT_120024500 | В   | CD36, ICAM-1 | $\checkmark$ | ✓        |
| IT4var19             | PfIT_010005000 | В   | EPCR         | $\checkmark$ | ✓        |
| IT4var20             | PfIT_070017000 | В   | EPCR         | √            | √/hybrid |
| IT4var66             | PfIT_040025500 | С   | CD36         | ✓            | ✓        |
| IT4var4<br>(var2csa) | PfIT_120006100 | PAM | CSA          | ~            | ✓        |

Therefore, 13 further *var* genes from the IT4 strain, in addition to the two previously activated *var* genes, were targeted for activation by SLI (Table 17). This selection now comprised 9 *var* genes belonging to group A, 4 of group B, one of group C and *var2csa* from group E. The group A *var* genes were selected as this group is associated with severe malaria manifestations (Rottmann et al., 2006). Among these, two *var* genes feature domains that are predicted to bind to EPCR, one contains domains predicted for EPCR-ICAM-1 dual-binding, and the remaining four encompass domains whose binding properties are yet to be identified. The group B *var* genes were chosen for their confirmed EPCR-binding domains (Nunes-Silva et al., 2015; Turner et al., 2013) which are associated with the pathology of malaria (Mosnier and Lavstsen, 2016), along with one *var* gene possessing confirmed binding group C *var* gene, *IT4ar66* and CSA-binding group E *var* gene *var2csa* were chosen for the comparison to the *var* genes activated in 3D7 (Figure 18).

For the SLI-activation, homology regions had to comprise the C-terminus of the ATS domains of each *var* gene. The chosen homology regions were approximately 1000 base pairs in length. As the region encoding the ATS is often rather conserved, the targeting regions were extended further into the N-terminal region to increase the length of sequence specific for the desired *var* gene. This strategy was employed across all the *var* genes under investigation.

For 11 of the 15 *var* genes SLI cell lines were obtained after the selection on G418 (Table 17), including the parasites expressing *IT4var2csa* and *IT4var66* (section 3.1.6). In most cases parasites were obtained after 3 integration attempts and for those this was not successful, at least 5 attempts were made before abandoning further attempts. For 8 of the 11 cell lines correct

integration of the SLI plasmid into the targeted *var* gene was confirmed (Table 17) and are described in the following sections.

## 3.1.7.1 IT4var02

The IT4var02 gene encodes binding domains of unknown binding properties which renders this a var gene of interest. The SLI-generated cell line was termed IT4var02-HA<sup>endo</sup>. Diagnostic PCRs confirmed the correct 5' integration with a detected band at ~1450 bp (Figure 19A). The PCR targeting the original locus showed a band for the IT4 wild type at  $\sim$ 1400 bp which was absent in the integrant cell line, suggesting successful integration. Although a band for the 3' integration was not observed, the collective PCR evidence supports the likelihood of correct integration in the parasite population. IFAs demonstrated expression of the HA-tagged PfEMP1 and co-localization with SBP1 at the Maurer's clefts (Figure 19A). RNA sequencing data further verified the correct integration of the plasmid and predominant expression of IT4var2 with 95.95% of total var gene transcripts (Figure 19B) (kindly conducted by Johannes Allweier). This dataset also identified low-level expression of var1csa and IT4var66. Trypsin cleavage assays indicated the surface presentation of the corresponding PfEMP1 with a faint detectable band at ~110 kDa (Figure 19C) corresponding to a protected PfEMP1 fragment after trypsin treatment. No such band was observed in the control samples. Integrity of the erythrocyte was confirmed by an absence of a protected fragment for SBP1 when probed with α-SBP1-N antibodies (Figure 19C).



**Figure 19: Characterization of the activation of** *var02* **in IT4 parasites.** (A) Confirmation of the activation of PfIT\_090005100 in IT4 parasites. Scheme shows domain organization and HA-tagging of the targeted PfEMP1. Agarose gel shows PCR products confirming correct integration of the SLI plasmid into the genome. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12A for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line. Expected bands: 5': 1470 bp; ori 1409 bp; 3': 1401 bp. Fluorescence microscopy images show IFAs with acetone fixed parasites probed with  $\alpha$ -HA(detection of PfEMP1) and  $\alpha$ -SBP1(detection of Maurer's clefts marker SBP1) antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 µm. (B) Pie chart shows proportions of var gene transcripts determined by RNAseq and normalized to TPM. (C) Western blot of trypsin cleavage assay (n = 2). Arrow shows protected PfEMP1 fragment indicative of surface exposure.  $\alpha$ -SBP1-N: control for integrity of host cell (breach of ERYTHROCYTE would result in a smaller SBP1 fragment). Marker in kDa. Full blot in Appendix B.

## 3.1.7.2 IT4var03

The *IT4var03* gene in IT4 encodes a PfEMP1 variant containing only two extracellular binding domains which is rather unusual for PfEMP1s. The SLI-generated cell line was termed IT4var03-HA<sup>endo</sup>. Diagnostic PCR results confirmed the correct integration of the plasmid into the gene locus of *var3* (Figure 20A). PCR products were detected for the 5' and 3' integration junctions while no product was detected for the original locus, which was in contrast to the IT4 wildtype parasites. IFAs showed the co-localization of the HA-tagged PfEMP1 with SBP1 in

the Maurer's clefts, indicating the appropriate cellular location of the modified PfEMP1 (Figure 20A). RNA sequencing analysis (conducted by Johannes Allweier) showed a predominant expression of *IT4var3* with 94.84 % of all detected *var* gene transcripts in the IT4var3-HA<sup>endo</sup> parasites (Figure 20B). Again, low levels of *var1csa* (2.48 %) and *IT4ar66* (1.12 %) transcripts were detected. Trypsin cleavage assays, however, did not yield a protected fragment in the trypsin-treated sample, indicating a lack or low level of surface presentation of this PfEMP1 variant (Figure 20C). It is possible that the small size of the expressed PfEMP1 resulted in a loss of critical regions needed for surface exposure or that these parasites lost a genomic region needed for cytoadherence function during the procedures to establish this cell line.



**Figure 20:** Characterization of the activation of *var03* in IT4 parasites. (A) Confirmation of the activation of PFIT\_140006400 in IT4 parasites. Scheme shows domain organization and HA-tagging of the targeted PfEMP1. Agarose gel shows PCR products confirming correct integration of the SLI plasmid. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12A for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line. Expected bands: 5': 1542 bp; ori 1370 bp; 3': 1412 bp. Fluorescence microscopy images show IFAs with acetone fixed parasites probed with  $\alpha$ -HA(detection of PfEMP1) and  $\alpha$ -SBP1(detection of Maurer's clefts marker SBP1) antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (B) Pie charts show proportions of *var* gene transcripts determined by RNAseq and normalized to TPM. (C) Western blot of trypsin cleavage assays (n =1). Arrows show protected PfEMP1 fragment indicative of surface exposure.  $\alpha$ -SBP1-N: control for integrity of host cell (breach of ERYTHROCYTE would result in a smaller SBP1 fragment). Marker in kDa. Full blot in Appendix B.

# 3.1.7.3 IT4VAR08

The *IT4var08* gene of IT4 transcribes binding domains of unknown binding properties, rendering it of interest. The SLI-generated cell line was termed IT4var08-HA<sup>endo</sup>. Diagnostic PCR analysis confirmed successful integration of the plasmid into the *var08* gene locus (Figure 21A). PCR products were detected for the 5' and 3' integration junctions while no product was detected for the original locus which was in contrast to the IT4 wildtype parasites. IFAs showed the co-localization of the HA-tagged PfEMP1 with SBP1, affirming the correct localization at the Maurer's clefts (Figure 21A). RNA sequencing (kindly conducted by Johannes Allweier) identified *IT4var08* as the predominantly expressed *var* gene with 96.41 % of all *var* gene transcripts, confirming its specific activation in the parasite population (Figure 21B). Also in this cell line, low-level expression of *var1csa* (1.88%) and *IT4var66* (0.95 %) was detected.



**Figure 21:** Characterization of the activation of *var08* in IT4 parasites. (A) Confirmation of the activation of PFIT\_070005900 in IT4 parasites. Scheme shows domain organization and HA-tagging of the targeted PfEMP1. Agarose gel shows PCR products confirming correct integration of the SLI plasmid. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12A for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line. Expected bands: 5': 1251 bp; ori 1129 bp; 3': 1156 bp. Fluorescence microscopy images show IFAs with acetone fixed parasites probed with  $\alpha$ -HA(detection of PfEMP1) and  $\alpha$ -SBP1(detection of Maurer's clefts marker SBP1) antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (B) Pie charts show proportions of *var* gene transcripts determined by RNAseq and normalized to TPM.

# 3.1.7.4 IT4var16

The *IT4var16* gene in IT4 encodes a PfEMP1 variant with domains that are predicted to bind to CD36 and ICAM-1 (Figure 22A), with experimentally demonstrated binding to ICAM-1 in

the literature (Howell et al., 2008; Metwally et al., 2017). The SLI-engineered cell line to express this *var* gene was termed IT4var16-HA<sup>endo</sup>. Diagnostic PCRs confirmed the correct integration of the plasmid into the *IT4var16* locus (Figure 22A). PCR products for the 5' and 3' integration junctions were detected in the integrant cell line that were absent in PCRs with the IT4 wildtype parasites. PCR products were detected for the original locus in IT4 wildtype parasites but were absent in the integrant cell line, indicative of an absence of unmodified locus (Figure 22A). IFAs showed co-localization of the HA-tagged PfEMP1 with the Maurer's cleft marker SBP1 (Figure 22A). RNA sequencing (performed by Johannes Allweier) indicated that *IT4ar16* transcripts accounted for 95.11% of all detected *var* gene transcripts in the IT4var16-HA<sup>endo</sup> parasite population (Figure 22B). Surface exposure of the PfEMP1 variant was verified by a trypsin cleavage assay, which displayed a band at ~ 100 kDa only present in the trypsin-treated sample corresponding to a protected fragment of digested HA-tagged PfEMP1 on the surface of the erythrocyte (Figure 22C). Whereas no digested fragment was observed for SBP1 using anti-SBP1-N antibodies confirming that no trypsin was able to pass the erythrocyte membrane.

Functional analysis through binding assays was conducted against CHO cells expressing GFP, CD36 and ICAM-1. These assays were compared to the binding profile of IT4var01-HA<sup>endo</sup> (Blancke-Soares et al., 2021; Stäcker, 2021; SLI-activated *IT4var01* in IT4 parasites) a confirmed CD36-ICAM-1 dual binder (Blancke-Soares et al., 2021; Stäcker, 2021). The assays demonstrated that both IT4var16-HA<sup>endo</sup> and IT4var01-HA<sup>endo</sup> cell lines bound to CD36 and ICAM-1, but not to GFP-expressing cells (Figure 22D, E) (experiments performed by Johannes Allweier and Florian Kieferle). Quantitative comparison showed that IT4var16-HA<sup>endo</sup>-infected erythrocytes exhibited reduced binding to CD36 but significantly enhanced binding to ICAM-1 compared to IT4var01-HA<sup>endo</sup>-infected erythrocytes (Figure 22E), with no binding to GFP detected for either cell line. These results highlight that despite both *var* genes encoding PfEMP1 variants capable of CD36-ICAM-1 dual receptor binding, there are marked differences in their affinity towards CD36 and ICAM-1.



Figure 22: Characterization of the activation of var16 in IT4 parasites. (A) Confirmation of the activation of PFIT 070005900 in IT4 parasites. Scheme shows domain organization and HA-tagging of the targeted PfEMP1. Agarose gel shows PCR products confirming correct integration of the SLI plasmid. Asterisks indicating unspecific PCR products; hash sign indicate PCR product of another var gene due to high sequence similarities in the ATS regions. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12A for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line. Expected bands: 5': 1426 bp; ori 1200 bp; 3': 1258 bp. Fluorescence microscopy images show IFAs with acetone fixed parasites probed with α-HA (detection of PfEMP1) and α-SBP1(detection of Maurer's clefts marker SBP1) antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 µm. (B) Pie charts show proportions of var gene transcripts determined by RNAseq and normalized to TPM. (C) Western blot of trypsin cleavage assays with indicated parasites. Arrows show protected PfEMP1 fragment indicative of surface exposure. α-SBP1-N: control for integrity of host cell (breach of ERYTHROCYTE would result in a smaller SBP1 fragment). Marker in kDa. Replicates and full blots in Appendix B. (D) Images show representative sections of a captured images of binding assays for the indicated cell line against CHO cell line expressing the indicated receptors quantified in (E). Red arrows show examples of bound infected erythrocytes. (E) SuperPlot shows results from three biological replicates of binding assays (15 field of views were analyzed per experiment and condition; SD; unpaired t-test; p-values are indicated). Small grey dots show bound iE for every field of view captured, extrapolated to mm<sup>2</sup>. Larger colored dots show average bound iE/mm2 for each experiment. Larger colored dots show average bound iE/mm2 for each experiment. Green circle: CHO-GFP; blue triangle: CHO-CD36; yellow rhombus: CHO-ICAM-1.

## 3.1.7.5 IT4var19

The *IT4var19* gene of IT4 encodes a PfEMP1 variant that binds to EPCR (Turner et al., 2013). This *var* gene is of significant interest in the field, as evident from numerous studies (Avril et

al., 2012; Bernabeu et al., 2019; Gillrie et al., 2015; Nunes-Silva et al., 2015; Sampath et al., 2015). The cell line developed in this study through SLI was termed IT4var19-HA<sup>endo</sup>.

Analysis by diagnostic PCRs confirmed the successful integration of the SLI-plasmid into the *IT4var19* locus (Figure 23A). No PCR products were detected that derived from the original unmodified locus while products were detected for the 5' and 3' integration junction, while the opposite was the case with the IT4 wildtype parasites. IFAs showed signals in puncta in the host cell for the HA-tagged PfEMP1, matching the typical localization pattern seen with other PfEMP1s and hence likely corresponding to the Maurer's clefts (Figure 23A). RNA sequencing (performed by Johannes Allweier) demonstrated that *IT4var19* comprised 90.97% of total *var* gene transcripts in the IT4var19-HA<sup>endo</sup> parasites (Figure 23B). Again, transcripts at low proportional levels were detected for *IT4var66* (4.55 %) and *var1csa* (2.86 %). Despite the effective activation of *IT4var19*, trypsin cleavage assays revealed no band corresponding a protected fragments in the trypsin-treated samples (Figure 23C), suggesting that the HA-tagged PfEMP1 was not in detectable quantities on the erythrocyte surface.

Subsequent binding assays, using CHO cells expressing GFP, CD36, ICAM-1 or EPCR, did not show significant binding to any of the tested receptors (Murk, unpublished). In an attempt to induce PfEMP1 presentation and cytoadherence, IT4var19-HA<sup>endo</sup>-infected erythrocytes underwent five rounds of selection on EPCR-expressing CHO cells (kindly performed by Johannes Allweier). Post-selection, trypsin cleavage assays revealed two bands at ~ 110 kDa and  $\sim 60$  kDa in the trypsin-treated samples that had not been present in the non-selected IT4var19-HA<sup>endo</sup> parasites (Figure 23E), and that were absent in the control. This suggested surface exposure of the HA-tagged PfEMP1. The reason for the two protected fragments is unclear but may derive from two subpopulations of this PfEMP1 that exhibits different conformations exposing divergent trypsinization sites or the smaller band may represent degraded protein. Subsequent, RNA sequencing with the panned IT4var19-HA<sup>endo</sup> parasites confirmed sustained predominant IT4var19 expression with 94.56 % of total var gene transcripts (Figure 23E). Remarkably, the selected IT4var19-HA<sup>endo</sup> parasites displayed significant EPCR binding and unanticipated binding to ICAM-1 (Figure 23F), with no detectable binding to CD36 or GFP (binding assays kindly performed by Johannes Allweier and Florian Kieferle). This discovery implies that factors beyond var gene expression modulate presentation in this cell line. Additionally, the detection of ICAM-1 binding might indicate that the PfEMP1 variant encoded by IT4var19 may be an EPCR-ICAM-1 dual binder.



**Figure 23: Characterization of the activation of** *var19* **in IT4 parasites.** (A) Confirmation of the activation of PfIT\_010005000 in IT4 parasites. The scheme shows domain organization and HA-tagging of the targeted PfEMP1.

Agarose gel shows PCR products confirming correct integration of the SLI plasmid. Asterisks indicating unspecific PCR products. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12A for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line. Expected bands: 5': 1186 bp; ori 960 bp; 3': 985 bp. Fluorescence microscopy images show IFAs with acetone fixed parasites probed with  $\alpha$ -HA (detection of PfEMP1) and  $\alpha$ -SBP1(detection of Maurer's clefts marker SBP1) antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 µm. (B) Pie chart shows proportions of var gene transcripts determined by RNAseq and normalized to TPM. (C) Western blot of trypsin cleavage assays with indicated parasites. a-SBP1-N: control for integrity of host cell (breach of ERYTHROCYTE would result in a smaller SBP1 fragment). Marker in kDa. Replicates and full blots in Appendix B. (D, F) Pictures show representative sections of captured images of binding assays for the indicated cell line against CHO cell line expressing the indicated receptors. SuperPlot shows results from three biological replicates (15 field of views were analyzed per experiment and condition; SD; unpaired t-test; p-values are indicated). Small grey dots show bound iE for every field of view captured, extrapolated to mm<sup>2</sup>. Larger colorful dots show average bound iE/mm<sup>2</sup> for each experiment. Larger colorful dots show average bound iE/mm<sup>2</sup> for each experiment. Green circle: CHO-GFP; blue triangle: CHO-CD36; yellow rhombus: CHO-ICAM-1; purple triangle: CHO-K1-EPCR. (E) Western blot of trypsin cleavage assays with indicated parasites.  $\alpha$ -SBP1-N: control for integrity of host cell (breach of ERYTHROCYTE would result in a smaller SBP1 fragment). Marker in kDa. Replicates and full blots in Appendix B. Pie chart shows proportions of var gene transcripts determined by RNAseq and normalized to TPM.

## 3.1.7.6 *IT4var20* AND *IT4var22*

The *IT4var20* and *IT4var22* genes encode PfEMP1 variants with domains shown to bind to EPCR (Turner et al., 2013, Barber et al., 2021). The cell lines obtained after G418 selection were termed IT4var20-HA<sup>endo</sup> and IT4var22-HA<sup>endo</sup>. Diagnostic PCRs were conducted to assess correct integration of the SLI-plasmids into the *IT4var20* or *IT4*var22 gene locus in the corresponding cell lines. The results showed populations with mixed integration phenotypes indicated by detected PCR products for both, the integration junctions and the original locus for IT4var20-HA<sup>endo</sup> and IT4var22-HA<sup>endo</sup> (Figure 24A). This suggested integration into both target and non-target gene loci within these parasite populations, likely due to sequence similarities in the ATS domains (which is targeted by the SLI-plasmid) of different *var* genes.

To achieve a parasite population with exclusive integration into the target *var* gene, a plaque assay (Thomas et al., 2016) was utilized for subcloning. Two clones reappeared after the subcloning for IT4var22-HA<sup>endo</sup> and one for IT4var20-HA<sup>endo</sup> (Figure 24A). PCRs targeting the 5' integration junction and original locus again detected products for both PCRs in all clones (Figure 24A). Given the selection of single-plaque wells, the simultaneous appearance of both bands in the results is an unexpected outcome, as all parasites in the population should derive from a single parasite with a single defined genotype. The PCR products for the original locus in these clones might derive from binding of the primers to multiple genomic locations, potentially due to sequence similarities among *var* genes.



**Figure 24:** Attempted activation of var20 and var22. (A) Evaluation of the activation of PfIT\_070017000 (var20) and PfIT\_100044000 (var22) in IT4 parasites. Scheme shows domain organization and HA-tagging of the targeted PfEMP1. Agarose gels (left) show PCR products for the testing of the correct integration of the SLI plasmid with first primer pairs for the indicated cell lines. Agarose gels (right) show PCR products testing correct integration for subclones of the indicated cell lines generated by plaque assays. Product over 5' integration junction

(5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12A for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line. Expected bands IT4var20-HA<sup>endo</sup>: 5': 1464 bp; ori 1298 bp; 3': 1331 bp. Expected bands IT4var22-HA<sup>endo</sup>: 5': 1278 bp; ori 1092 bp; 3': 1120 bp. (C) Agarose gels show PCR products for testing of the correct integration of the SLI plasmid with second primer pairs for the indicated cell lines. Expected bands: IT4var20-HA<sup>endo</sup>: 5': 1447 bp; ori 1325 bp; 3': 1377 bp; IT4var22-HA<sup>endo</sup>: 5': 1435 bp; ori 1541 bp; 3': 1412 bp. (C) Pie charts show proportions of *var* gene transcripts of the indicated cell lines determined by RNAseq and normalized to TPM. (D) Coverage plots showing reads mapped to *var20* (PfIT\_070017000; top) and *var27* (bottom; PfIT\_070016700) determined by RNAseq with IT4var20-HA<sup>endo</sup> parasites. Both genes are located on chromosome 7. Gene annotation from PlasmoDB genome browser (PlasmoDB.org) with reads mapped using Artemis (Carver et al., 2012). Red: *var* genes. (E) Western blot of trypsin cleavage assays with indicated parasites.  $\alpha$ -SBP1-N: control for integrity of host cell (breach of ERYTHROCYTE would result in a smaller SBP1 fragment). Marker in kDa. Full blot in Appendix B.

Consequently, new primers were designed to enhance specificity. Diagnostic PCRs with the new primer pair confirmed correct integration of the SLI-plasmid only into the targeted gene locus in the IT4var20-HA<sup>endo</sup> cell line (Figure 24B). However, for IT4var22-HA<sup>endo</sup>, the results indicated integration into a non-targeted gene locus showing only a PCR product for the original locus corresponding to the size detected in the IT4 parasites (Figure 24B). These results were confirmed by RNA sequencing (kindly performed by Johannes Allweier) which showed predominant expression of IT4var66 with 98.28 % of the total var gene transcripts in IT4var22-HA<sup>endo</sup> (Figure 24C), indicating the integration of the SLI-plasmid into the *IT4var66* gene locus. Interestingly, IT4var20-HA<sup>endo</sup> parasites did not show an exclusive expression of *IT4var20*, only 51.24 % of the total var gene transcripts derived from IT4var20 and 29.73 % from IT4var27, a var gene previously not detected with RNA sequencing experiments with SLI var gene cell lines (Figure 24D). Upon closer inspection of the mapped reads (coverage plots kindly provided by Johannes Allweier) for the IT4var20-HA<sup>endo</sup>, it was observed that the reads only mapped to the C-terminal part of the extracellular domains of var20 and to the N-terminal part of the extracellular domains of IT4var27, indicating a chimeric var gene in that cell line (Figure 24E). This suggests that the parasites experienced a recombination event between var genes during mitosis, not during their meiosis where ectopic recombination usually takes place (Freitas-Junior et al., 2000).

Trypsin cleavage assay confirmed the presentation of the chimeric *IT4var20/var27* PfEMP1 in IT4var20-HA<sup>endo</sup> parasites (Figure 24D). In the trypsin-treated samples a ~90 kDa band was detected that was absent in the control samples, indicative of surface trypsinization of the HA-tagged PfEMP1 from the surface. No band corresponding to digested SBP1 were detected when probed with anti-SBP1-N antibodies indicating the integrity of the host cell during trypsin treatment (Figure 24D).

# 3.1.8 DBLb12 in IT4var19 shows similarities to ICAM-1-binding DBLb5 domain

The observed binding of IT4var19-HA<sup>endo</sup> to ICAM-1 prompted an evaluation of the possibilities for such an interaction, given that the expressed PfEMP1 variant of *IT4var19* was previously published as a non-ICAM-1-binder (Adams et al., 2021; Azasi et al., 2018; Bernabeu et al., 2019; Nunes-Silva et al., 2015). In PfEMP1 variants known to bind both EPCR and ICAM-1, the EPCR-binding CIDR $\alpha$  domain is typically succeeded by a DBL $\beta$  domain responsible for ICAM-1 interaction. Contrary to this pattern, the DBL $\beta$ 12 domain following *var19*'s EPCR-binding CIDR $\alpha$ 1.1 domain was reported to not interact with ICAM-1 (Lennartz et al., 2017), but instead with qC1qR (Bakri et al., 2021; Magallón-Tejada et al., 2016).



**Figure 25:** DBL $\beta$ 12 shows structural similarities to ICAM-1-binding DBL $\beta$ 5. (A) Alignment of the AlphaFold predicted structure of the DBL $\beta$ 12 domain from IT4var19 (green) and the published structure of the DBL $\beta$ 5 domain form IT4var13 (red) *(Lennartz et al., 2019)*. RMSD: root-mean-square deviation Å: Ångström. (B) Alignment of the AlphaFold predicted structure of the DBL $\beta$ 12 domain from IT4var19 (green) and the published structure of the DBL $\beta$ 5 domain form IT4var13 (red) bound to ICAM-1 (yellow) (Lennartz et al., 2019). Magnifications: (bottom left) shows the  $\beta$ -sheet of DBL $\beta$  supporting ICAM-1 interaction; (bottom right) shows hydrogene bonds predicted *in silico* (Pymol) between the chains of DBL $\beta$ 12 and ICAM-1, if in the same spatial orientation like DBL $\beta$ 5 corresponding to ICAM-1; (top right) shows hydrophobic regions and side chains (blue) of DBL $\beta$ 12 (transparent green), DBL $\beta$ 5 (red) and ICAM-1 (yellow).

To reconcile these discrepancies, a closer investigation of the IT4var19's binding domains was undertaken. Prior studies identified an ICAM-1 binding motif in group A DBL $\beta$  domains

(Lennartz et al., 2017). This motif was absent in the amino acid sequence of the *IT4var19*'s PfEMP1 variant (group B). Subsequent research by Lennartz et al. (2019) discovered that ICAM-1-binding group B DBL $\beta$  domains showed a more heterogenous amino acid sequence in the binding region distinct from group A's binding motif. Comparative analyses between group A and group B ICAM-1-binding DBL $\beta$  domains revealed overall structural similarities with some significant variations in regions critical for binding (Lennartz et al., 2019). However, both DBL $\beta$  domains evolved independently and confer binding to ICAM-1, underscoring a potential structural adaptability or the presence of alternate binding mechanisms within these domains.

In light of this, the protein structure of group B IT4var19's DBL \$12 domain was predicted using AlphaFold (Jumper et al., 2021). This predicted structure was then aligned with the protein structure of group B ITvar13's DBL65 domain (Lennartz et al., 2019), revealing notable structural similarities in the backbone, with a RMSD of 1.3 Å across 468 amino acids (Figure 25A). Further alignment with the published ICAM-1 bound DBLβ3 domain (Lennartz et al., 2019) (Figure 25B) highlighted structural resemblances in the ICAM-1 binding region, despite some distinct differences. Notably, a hydrophobic  $\alpha$ -barrel segment in the DBL $\beta$ 5 domain, previously implicated in aiding the ICAM-1 interaction, did not exhibit hydrophobic properties in the DBLβ12 domain (Figure 25B). Moreover, a β-sheet in the DBLβ5 domain antiparallel to a corresponding β-sheet in the ICAM-1 structure, was absent in the DBLβ12 domain (Figure 25B). Nevertheless, this structural element was also missing in the unbound relaxed DBLβ5 domain (Figure 25A) and the ICAM-1-bound group A DBL<sup>β</sup> domain (Lennartz et al., 2017). Despite these discrepancies, hydrogen bonds were predicted between DBL<sub>\$12</sub> and ICAM-1, assuming a spatial orientation of DBL\$12 in relation to ICAM similar to that of DBL\$5 (Figure 25B). These observations suggests that despite structural dissimilarities in the binding region, inherent or induced adaptability in the DBLB12 domain may allow for effective ICAM-1 binding.

# **3.2 IDENTIFICATION AND CHARACTERIZATION OF PROXIOME OF A** FUNCTIONAL PFEMP1

In this part, efforts were undertaken to identify the proximal proteome (proxiome) of a functional PfEMP1 in living *P. falciparum* parasites. The interactors of PfEMP1 remain largely unexplored on a systematic scale. While certain proteins have been pinpointed as vital for PfEMP1's transport and function (section 1.3.2.3.2), this does not necessarily indicate direct interaction with PfEMP1. Therefore, BioID was applied on PfEMP1 in IT4 parasites using SLI (section 3.2.1 and 3.2.2). A selection of the identified proximal candidates was localized and the effect of their disruption on PfEMP1s function and Maurer's clefts morphology was evaluated (section 3.2.4).



## 3.2.1 FUSION OF BIRA\* TO ENDOGENOUS PFEMP1 IN THREE POSITIONS

**Figure 26: SLI-strategy for fusion of BirA\* to** *var01* **in IT4.** (A) Illustration showing the strategy and locations for the fusion of BirA\* and HA-tag to PfEMP1 in three positions after integration of PfEMP1 into the erythrocyte membrane at the knobs. Position 1: Insertion of BirA\* C-terminal of the ATS domain; Position 2: BirA\* flanked by the ATS domain and the transmembrane domain; Position 3: BirA\* in the extracellular space flanked by the transmembrane domain and the extracellular binding domains. (B) Graph (top) shows values for probabilities of

intrinsically disordered protein regions predicted by IUPRED2 with implementation of ANCHOR2 predicting disordered potential binding regions of globular protein partners or environmental factors for amino acid 2330 to 2465 of *IT4var01*; higher score indicates higher probability of disorder or bidning. Graph (bottom) shows secondary structure for amino acid 2369 to 2428 of *IT4var01* predicted by GOR4; c, random-coiled; e: extended strand  $\beta$ -sheet conformation; h:  $\alpha$ -helix. Green: position 2 insertion-site; yellow: position 3 insertion-site; blue: transmembrane domain predicted by TMHMMv2.0 (https://services.healthtech.dtu.dk/services/TMHMM-2.0/). (C) Schematics of plasmid constructs for SLI modification of the *IT4var01* gene locus to insert the sequence encoding BirA\* in different positions. NTS: N-terminal segment; TM: transmembrane domain; ATS: acidic terminal segment, the region of PfEMP1 reaching into the host cell cytoplasm; UTR: untranslated region; HR: homology region 2A: T2A skip peptide; NEO-R: G418-resistance conferring gene; hDHFR: human dihydrofolate reductase (conferring WR resistance); asterisks: stop codon.

In order to obtain the proxiome of PfEMP1, the BioID method (Roux et al., 2012) was chosen. BioID uses enzymatic biotinylation to label proteins in close proximity to a target protein. To achieve this, a modified version of biotin holoenzyme synthetase from *Escherichia coli*, known as BirA\*, is fused to a protein of choice. This BirA\* - a version of BirA engineered for promiscuous biotinylation activity - biotinylates neighboring proteins in the presence of biotin, and thereby the proxiome of the target protein. These biotin-labeled proteins are then isolated using streptavidin beads, which forms a strong bond with biotin, allowing subsequent mass spectrometry analysis to identify the bound proteins.

SLI was used for the modification of a single PfEMP1 variant, now incorporating an additional fusion of the BirA\* enzyme to the targeted *var* gene (Figure 26A) and ensuring that the *var* gene carrying the modification is expressed. For this purpose, the *IT4var01* gene was selected as the target, owing to its robust binding to CD36 and ICAM-1 receptors in binding assays and the previously successful integration of the SLI plasmid into this gene locus (Blancke-Soares et al., 2021; Stäcker, 2021).

However, tagging PfEMP1 with a BirA\* domain presents two significant challenges. Firstly, the integration of such a large domain into PfEMP1 might impede its membrane incorporation, transport, or functional presentation. Secondly, due PfEMP1's large size, and the presence of domains on both sides of the membrane, the interaction sites to other proteins are potentially physically too far apart or in a different compartment. Depending on the insertion site of BirA\*, this could result in the biotinylation sites of potential interactors being too distant from BirA\* or in the incorrect compartment. To address these issues, BirA\* was fused to PfEMP1 in three different positions, for each of which a separate cell line was generated (Figure 26A). Two fusion sites were selected for the domain within the host cell, positioned at maximal distance from each other: Position 1 at the C-terminus of the ATS domain, and Position 2 between the ATS and the transmembrane domain. Additionally, Position 3 was chosen in the extracellular

region, between the transmembrane domain and the extracellular binding domains, reasoning that this posed the least danger of disrupting the binding domain. Linkers were added to increase the tolerability of the folded BirA\* domain for PfEMP1 function (Figure 26C).

SLI plasmids were designed to enable the fusion of BirA\* to the predetermined positions (Figure 26C). While for Position 1 the addition of BirA\* was at the extreme C-terminus, Positions 2 and 3 gave some flexibility to the exact insertion site (Figure 26A). For this reason, the secondary structure of the protein was predicted with GOR4, and with IUPRED2 in conjunction with ANCHOR2, intrinsically disordered protein regions were predicted in an attempt to avoid insertions of BirA\* into a functional folded region (Figure 26B). In the case of Position 1, a flexible linker consisting of a 7xGGGGs sequences (Birnbaum et al., 2020) was inserted between the BirA\* and the C-terminus of PfEMP1. This design aims to distance the BirA\* from the ATS domain of PfEMP1, minimizing potential interference in PfEMP1's correct folding and allowing BirA\* greater mobility to interact with a broader range of proximal proteins (Figure 26C). For position 2 and 3 insertions into random coil regions (predicted using GOR4) just outside of the transmembrane helix boundary region was chosen, where it was unlikely that there was a folded domain (Figure 26B). Addition of linkers flanking the BirA\* domain further minimized the danger of impacting neighboring folded domains. Corresponding recodonized C-terminal sequences of IT4var01 were synthesized and cloned into the plasmids for Positions 2 and 3, following the BirA\* fusion sites to render the expressed PfEMP1s complete and functional (Figure 26C). Notably, the intron of IT4var01 was excluded for Positions 3 due to the difficulties in synthesizing long adenine- and thymine-rich stretches. It is important to acknowledge that these selections are, at best, educated guesses. Given the limited knowledge and the constraints in selection that were chosen, these are the approaches that were taken.

#### **3.2.1.1 CHARACTERIZATION OF THE BIOID CELL LINES**

The newly established cell lines, designated as IT4var01-BirA\*Pos1<sup>endo</sup> (Position 1), IT4var01-BirA\*Pos2<sup>endo</sup> (Position 2), and IT4var01-BirA\*Pos3<sup>endo</sup> (Position 3), were characterized for the correct integration of the plasmid following G418 selection. PCR analyses of the 5' and 3' integration junctions using corresponding primers showed products of the expected lengths for the three cell lines (Figure 27A-C). PCRs targeting the original locus in IT4var01-BirA\*Pos2<sup>endo</sup> and IT4var01-BirA\*Pos3<sup>endo</sup> cell lines did not amplify a product, in contrast to the IT4 wildtype (Figure 27B, C). In IT4var01-BirA\*Pos1<sup>endo</sup>, a very faint band was observed,

alongside a more intense PCR product for the IT4 wildtype (Figure 27A). This faint band in IT4var01-BirA\*Pos1<sup>endo</sup> is likely negligible, potentially arising from residual genomic DNA of unselected parasites in the culture.



Figure 27: BirA\*-fused PfEMP1s are functional and able to biotinylate. (A, B, C) Confirmation of the

activation and modification of the indicated IT4var01-BirA\* fusions. Schematics show domain organization of the modified PfEMP1. Agarose gels show PCR products confirming correct integration of the SLI plasmid. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12 for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line; expected bands: IT4var01-BirA\*Pos1<sup>endo</sup>: 5': 2337 bp; ori: 1536 bp; 3': 971 bp; IT4var01-BirA\*Pos2<sup>endo</sup>: 5': 4275 bp; ori: 3059 bp; 3': 2721 bp; IT4var01-BirA\*Pos3<sup>endo</sup>: 5': 3760 bp; ori: 1990 bp; 3': 1886 bp. Fluorescence microscopy images show IFAs with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 μm. (**D**) Pie charts show proportions of total *var* gene transcripts of the indicated cell lines determined by RNAseq (normalized to TPM). (E) Fluorescence microscopy images show IFAs with indicated antibodies and streptavidin after biotin treatment. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 µm. (F) Western blot of extracts of the indicated cell lines after incubation with biotin for 24 hours. Streptavidin probes biotinylated proteins;  $\alpha$ -aldolase is the loading control. (G) Western blot of trypsin cleavage assays with indicated parasites. Arrows show protected PfEMP1 fragment. α-SBP1-N: control for integrity of host cell. Marker in kDa. Replicates and full blots in Appendix B. (H) Images show representative sections of captured images for binding assays for the indicated parasite cell lines against CHO cell lines expressing the indicated receptors. Red arrows show examples of bound infected erythrocytes. Size bars 100 µm. (I) SuperPlot of binding assays of indicated cell lines against CHO cells expressing GFP, CD36 or ICAM-1 (3 biological replicates with 15 fields of view/experiment and condition; bars: mean of averages of replicates with SD; unpaired t-test; p-values are indicated). Small grey dots: bound iE/field of view, extrapolated to mm<sup>2</sup>. Larger colored dots: average of bound iE/mm<sup>2</sup>/replicate. iE: infected erythrocytes.

IFAs revealed a signal for the HA-tagged PfEMP1, which colocalized with the Maurer's clefts marker SBP1 in all three cell lines (Figure 27A-B). This confirmed the expression, correct localization, and detectability of the modified PfEMP1. Furthermore, RNA sequencing analysis (performed by Johannes Allweier) confirmed the predominant expression of the targeted *IT4var01* gene (Figure 27D). In the three cell lines, *IT4var01* transcripts accounted for over 90% of the total *var* gene transcripts: 96.55% in IT4var01-BirA\*Pos1<sup>endo</sup>, 94.92% in IT4var01-BirA\*Pos2<sup>endo</sup>, and 90.71% in IT4var01-BirA\*Pos3<sup>endo</sup>. Similar to other SLI activated *var* gene cell lines, low but significant levels of *IT4var66* and *var1csa* transcripts were also detected.

Next, the functionality of BirA\* in the three BioID cell lines were assessed. This was done using streptavidin fluorescence assays, where streptavidin linked to a fluorophore was used to detect biotinylated proteins in biotin-treated parasites by fluorescence microscopy. Additionally,  $\alpha$ -HA-tag antibodies were employed to detect PfEMP1. The assays detected a streptavidin signal colocalizing with PfEMP1 in the three BioID cell lines (Figure 27E). In contrast, the IT4 wildtype showed no signal for the HA-tagged PfEMP1 and only minimal streptavidin signals within the parasites. This signal could potentially be attributed to background of the IFA, as no streptavidin signal was detected with IT4 parasites in streptavidin blots (see below).

To further evaluate the biotinylation capability of the BioID cell lines, streptavidin blots were performed. In these blots, streptavidin conjugated to horseradish peroxidase (HRP) was used to identify biotinylated proteins in extracts from biotin-treated erythrocytes infected with parasites

of the BioID cell lines or IT4 wildtype. The IT4 wildtype parasites served as a control to rule out non-specific biotinylation. The results displayed distinct bands when probed with streptavidin from protein extracts of IT4var01-BirA\*Pos1<sup>endo</sup>, IT4var01-BirA\*Pos2<sup>endo</sup>, and IT4var01-BirA\*Pos3<sup>endo</sup> parasites, but not for extracts of IT4 wildtype parasites (Figure 27F). To confirm the presence of parasite proteins on the blots, they were probed with  $\alpha$ -aldolase antibodies as a loading control which showed the expected ~35 kDa bands for all samples (Figure 27F).

The aim was to identify the global proxiome of a functional PfEMP1, both at the erythrocyte periphery (from surface exposed PfEMP1) and during the transport process (from the pool of PfEMP1 found internally). Therefore, the presentation and binding capabilities of the BirA\*-fused PfEMP1s in the three BioID cell lines were assessed. Initially, the surface presentation of the modified PfEMP1 was evaluated using trypsin cleavage assays. These assays revealed a distinct band in all three BioID cell lines after trypsin-treatment, which was absent in the control sample (Figure 27G). For IT4var01-BirA\*Pos1<sup>endo</sup> and IT4var01-BirA\*Pos2<sup>endo</sup>, this protected fragment of ~ 110 kDa, aligned with the expected size of the IT4var01-HA<sup>endo</sup> fragment (Figure 27G) which included the BirA\* domain (~35 kDa), linker (Position 1: ~2 kDa; Position 2: ~1kDa), 3xHA-tag (~4 kDa), and skip peptide (~2 kDa). For IT4var01-BirAPos3<sup>endo</sup>, the detected band of ~ 70 kDa, corresponded to the expected size of IT4var01-HA<sup>endo</sup> protected fragment which in this construct did not include BirA\* (Figure 27G). These findings suggest that the BirA\*-fused PfEMP1 is presented on the erythrocyte membrane surface in all three BioID cell lines with the BirA\* on the intended side of the membrane.

Subsequently, the functionality of the modified PfEMP1s was evaluated through binding assays. In these assays, erythrocytes infected with parasites of the BioID cell lines were tested against CHO cells expressing either GFP, CD36, or ICAM-1, and compared to erythrocytes infected with IT4var01-HA<sup>endo</sup> parasites. The results indicated that erythrocytes infected with parasites of each BioID cell line and IT4var01-HA<sup>endo</sup> showed interaction with CD36 and ICAM-1, but not with the GFP control (Figure 27H). Quantitative analysis revealed that the binding capacities of IT4var01-BirA\*Pos1<sup>endo</sup> and IT4var01-BirA\*Pos2<sup>endo</sup> parasites were comparable to the IT4var01-HA<sup>endo</sup> control (Figure 27I). However, IT4var01-BirA\*Pos3<sup>endo</sup> parasites exhibited insignificantly binding against CD36 and ICAM-1 compared to the GFP control (Figure 27H).

## **3.2.1.2** FUSION OF MINITURBO AND FKBP TO PFEMP1

To increase the versatility of BioID experiments with PfEMP1 cell lines with two further types of fusion constructs for BioID were generated. For the first approach, constructs were engineered to fuse the miniTurbo (Branon et al., 2018) to identical positions of PfEMP1 as the BirA\* in the BioID cell lines (Figure 3). miniTurbo possesses significantly faster labeling kinetics (minutes compared to hours) (Branon et al., 2018), presenting an opportunity for stage-specific labeling of PfEMP1 interactors. In addition, this enzyme is about 20% smaller than BirA\*, which may reduce the risk of a negative impact on the fusion target.





B IT4var01-mTurboPos2<sup>endo</sup> (SLI\_PfIT\_060021400-mTurboPos2-3xHA) NTS DBLα0.18 CIDRα6 DBLβ5 DBLv10 DBLδ2 CIDRv6 TM L mTur LL ATS H



**Figure 28: Generation of PfEMP1-miniTurbo cell lines.** (**A**, **B**) Confirmation of the activation and modification of the indicated IT4var01-miniTurbo fusions. Schematics show domain organization of the modified PfEMP1. Agarose gel shows PCR products confirming correct integration of the SLI plasmid. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12. for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line; expected bands: IT4var01-miniTurboPos1<sup>endo</sup>: 5': 2145 bp; ori: 1536 bp; 3': 971 bp; IT4var01-miniTurboPos2<sup>endo</sup>: 5': 4083 bp; ori: 3059 bp; 3': 2721 bp. Fluorescence microscopy images show IFAs with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m.

Following the plasmid transfection and subsequent parasite selection for plasmid integration, cell lines with the miniTurbo domain at Position 1 and Position 2 were obtained, named

IT4var01-mTurboPos1<sup>endo</sup> and IT4var01-mTurboPos2<sup>endo</sup> respectively (Figure 28A, B). Diagnostic PCR confirmed the correct integration at the target locus (Figure 28A, B).

Subsequent IFAs detected the modified PfEMP1, showing co-localization with the Maurer's cleft marker SBP1 in both miniTurbo cell lines (Figure 28A, B). Given that the BioID cell lines demonstrated satisfactory performance in terms of PfEMP1 function and biotin labeling, and mass spectrometry data was obtained for the BioID cell lines (section 3.2.1.1 and 3.2.2) further explorations with the miniTurbo cell lines were not done.



**Figure 29:** Attempt to establish DiQ-BioID for PfEMP1. (A, B) Confirmation of the activation and modification of the indicated IT4var01-FKBP fusions. Schematics show domain organization of the modified PfEMP1. Agarose gel shows PCR products confirming correct integration of the SLI plasmid. Product over 5' integration junction (5'): P1 + P2; 3' integration junction (3'): P3 + P4; original locus (ori); P1 + P4; see Figure 12 for primer positions and Appendix A2 for sequence; IT4: parent; Int: integrant cell line. Expected bands: IT4var01-FKBP-Pos1<sup>endo</sup>: 5': 1701 bp; ori: 1536 bp; 3': 971 bp; IT4var01-FKBP-Pos2<sup>endo</sup>: 5': 3639 bp; ori: 3059 bp; 3': 2721 bp. Fluorescence microscopy images show IFAs with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (C) C- and N-terminal biotinylizer constructs transfected into IT4var01-FKBP-Pos1<sup>endo</sup> or IT4var01-FKBP-Pos2<sup>endo</sup>. GBP<sup>1-108</sup>: N-terminus of GBP130 (PF3D7\_1016300; exported); L: linker; LL: long linker; DHODH: conferring resistance to DSMI resistance; FRB: recruits to FKBP upon rapalog addition. (**D**, **E**) Fluorescence microscopy images show live parasites of the indicated cell line + and – rapalog treatment for 3 hours.

For the second approach, constructs were designed to fuse FKBP to Position 1 and Position 2 of the target PfEMP1 to conduct DiQ-BioID (Birnbaum et al., 2020), a strategy by which BirA\* is expressed separately and conditionally recruited to the target using the FKBP-FRB heterodimerization system. The strength of this approach lies in the ability to subtract the background labelling from a highly matched parasite population (Birnbaum et al., 2020; Kimmel et al., 2022). In addition, only one FKBP domain was used which is considerably smaller than BirA\* or miniTurbo (12 kDa vs 35 or 27 kDa). For both positions cell lines were obtained after selection on G418 and designated IT4var01-FKBP-Pos1<sup>endo</sup> and IT4var01-FKBP-Pos2<sup>endo</sup> (Figure 29A, B). Diagnostic PCRs confirmed the correct integration of the plasmids in IT4var01-FKBP-Pos1<sup>endo</sup> and IT4var01-FKBP-Pos2<sup>endo</sup> (Figure 29A, B). IFAs detected the modified PfEMP1 in the host cell where it co-localized with the Maurer's clefts marker SBP1 (Figure 29A, B).

Thereafter, constructs were designed for "biotinylizers" that are exported to the host cell cytosol (Figure 29C). These biotinylizers, expressed under the *nmd3* promoter, comprised a BirA\* domain for biotinylation, an mCherry domain for visualization, and an FRB domain for recruiting the biotinylizer to the FKBP-fused PfEMP1. The N-terminal region of the biotinylizer included the N-terminus of GBP130 (PF3D7\_1016300, amino acid 1–108), featuring a signal peptide for secretion into the PV and a PEXEL motif for translocation across the PVM into the host cell. Upon addition of rapalog to the parasites, the biotinylizer in the host cell cytosol is then expected to be recruited to the FKBP-fused PfEMP1. In the past, a Biotinylizer-Ct, with BirA\* at the N-terminus and mCherry at the C-terminal to the FRB, and Biotinylizer-Nt, where the positions of BirA\* and mCherry were reversed were used to maximize the area reached for biotinylation around the target (Birnbaum et al., 2020) and this was here done as well (Figure 29C).

For Position 1, only a cell line expressing Biotinylizer-Nt in IT4var01-FKBP-Pos1<sup>endo</sup> was successfully obtained. Live cell imaging revealed mCherry signal dispersed throughout the cytosol with some foci (potentially indicating some aggregation) as well as a prominent signal in the food vacuole (expected due to internalization of host cell cytosol), demonstrating successful expression of the biotinylizer in the host cell cytosol (Figure 29D). However, after rapalog addition a similar localization pattern of the biotinylizer was observed without apparent recruitment to the Maurer's clefts where PfEMP1 is mostly localized, indicating that the system did not work as intended.

For the IT4var01-FKBP-Pos2<sup>endo</sup> two cell lines were generated, expressing either Biotinylizer-Ct or Biotinylizer-Nt. Both constructs exhibited localization within the food vacuole and in the host cell with concentrated puncta and dispersed throughout the cytosol, comparable to the result with Biotinylizer-Nt in IT4var01-FKBP-Pos1<sup>endo</sup> (Figure 29E). Addition of rapalog did not alter the localization pattern, and no recruitment of the biotinylizers to Maurer's clefts was observed, again indicating that FKBP-FRB mediated conditional recruitment, in contrast to the parasite cytosol (Birnbaum et al., 2020; Kimmel et al., 2022) or the PV (Khosh-Naucke et al., 2018), did not work.

Because the BioID cell lines IT4var01-BirA\*Pos1<sup>endo</sup>, IT4var01-BirA\*Pos2<sup>endo</sup>, and IT4var01-BirA\*Pos3<sup>endo</sup> showed already promising results (section 3.2.1.1 and 3.2.2), the DiQ-BioID approach was not further pursued. But it can be concluded that for unknown reasons, the system does not appear to function in the host cell and further optimization would be needed to use the DiQ-BioID approach in the host cell.

### **3.2.2** Identification of biotinylated proteins proximal to PFEMP1

To identify specific interactors of PfEMP1, the BioID cell lines (IT4var01-BirA\*Pos1<sup>endo</sup>, IT4var01-BirA\*Pos2<sup>endo</sup> and IT4var01-BirA\*Pos3<sup>endo</sup>) and IT4 (control) were cultured in largescale asynchronous cultures. Biotin was added for 24 h with one replacement with a medium change after 12 hours as done previously (Birnbaum et al., 2020; Khosh-Naucke et al., 2018). Three independent experiments were carried out, and each time the biotinylated proteins were extracted and purified. Initially, protein extraction from the pelleted parasites was performed using a mild Triton-X-100 containing lysis buffer. Subsequently, a buffer containing 4% SDS was used in a subsequent extraction from the same pellets for a secondary extraction under denaturing conditions, ensuring a comprehensive retrieval of proteins. The two extraction methods had the rationale to separate non-structurally bound membrane proteins from those strongly associated with the cytoskeleton, a property known to apply to PfEMP1 (Baruch et al., 1995; Kriek et al., 2003; Papakrivos et al., 2005).

Following purification, the proteins were subject to label free quantitative liquid chromatography-mass spectrometry (LC-MS) analysis (performed by Pascal WTC Jansen and Richárd Bártfai, Radbaoud University, Nijmegen, Netherlands). Thereafter, a comparative analysis was conducted where the biotinylated proteins obtained from either the Triton or SDS extractions of each BioID cell line were compared with those from the IT4 cell line (performed

by Pascal WTC Jansen and Gala Ramón-Zamorano). For the comparative analysis the detected peptides were identified by comparison to the IT4 proteome (Figure 30).

The results from the Triton-extracted samples revealed only a modest number of proteins significantly enriched in the BioID cell lines relative to the IT4 control (Figure 30A). In the IT4var01-BirA\*Pos1<sup>endo</sup> samples, PfEMP1 was notably the most significantly enriched protein, affirming the self-biotinylation of the BirA\*-fused PfEMP1 bait (Figure 30A) typical in BirA\* fusions (e.g. Kimmel et al., 2023). Among the proteins enriched over the IT4 control (enrichment threshold:  $\log_2(Position 1, 2 \text{ or } 3/IT4) = 2$ ), four were exported proteins. Notably, SBP1, REX1, and PTP1 were among these proteins and are known to play a role in the cytoadherence of the parasite (Cooke et al., 2006; Maier et al., 2008, 2007; McHugh et al., 2015; Rug et al., 2014). The fourth protein, Tryptophan-threonine-rich antigen (TryThrA), a known PNEP (Heiber et al., 2013), was previously identified in the proxiome of the Maurer's clefts (Blancke-Soares et al., 2021) and in an interactome of SBP1, where it was shown to be non-essential for cytoadherence (Takano et al., 2019). Additionally, under the FDR threshold two exported proteins with unknown function were detected, here termed PfEMP1-interacting candidate (EMPIC) (relevant as they reappear in the SDS-samples highly enriched; numbered based on the enrichment in SDS-samples of Position 1) as well as peripheral Maurer's clefts protein 1 (PeMP1) (Blancke-Soares et al., 2021) and PTP6.

In the IT4var01-BirA\*Pos2<sup>endo</sup> samples, PfEMP1 again emerged as the most enriched protein, validating the specificity and efficacy of the biotinylation (Figure 30A). Above the threshold, only two additional exported proteins, TryThrA and SBP1, were detected. Notably, proteins enriched just below the threshold included REX1, PTP5, and PTP6, all of which are essential for cytoadherence (Maier et al., 2008; McHugh et al., 2015), alongside EMPIC2, EMPIC3, and PfJ23 (Cabral et al., 2017; Kaur et al., 2018).

For the IT4var01-BirA\*Pos3<sup>endo</sup> samples, PfEMP1 continued to dominate as the most enriched protein (Figure 30A). Additionally, TryThrA and a PHIST protein (here termed P8; PfIT\_040006400; all PHISTs were abbreviated by a P based on the SDS-samples for position 1), were identified above the threshold. Marginally below the threshold, PTP5 and the *P*. *falciparum* translation enhancing factor (PTEF), a PNEP at the erythrocte membrane (Birnbaum et al., 2017) previously associated with VAR2CSA translation (Chan et al., 2017), were found to be enriched. Furthermore, PeMP1 was detected above enrichment threshold but far under the FDR threshold.



Figure 30: MS analysis of biotinylated proteins enriched in the BioID cell lines. (A, B) Volcano plots show enrichment of biotinylated proteins extracted with Triton (A) or SDS (B) from the lysates of the indicated cell lines compared to IT4 wildtype parasites (average of 3 independent replicates). Confidence above  $-\log_{10}$  FDR of 0.05 and  $\log_2$  enrichment of 2 are indicated by dotted lines. Tables with abbreviations and accession numbers for exported proteins with unknown function (green) and PHISTs (beige) in Appendix F.

Interestingly, the SDS-samples exhibited a far greater number of enriched proteins for all of the BioID cell lines compared to the Triton-samples (Figure 30B). This indicates that most of the biotinylated proteins, and therefore the proxiome of PfEMP1, is tightly associated with structural proteins in the cell.

In the IT4var01-BirA\*Pos1<sup>endo</sup> samples, PfEMP1 was identified as highly enriched, exhibiting a higher level of enrichment compared to the Triton-extracted sample (Figure 30B). This observation suggests that a significant proportion of PfEMP1 molecules are not extracted by the Triton buffer, in agreement with previous findings (Baruch et al., 1996; Papakrivos et al., 2005; Waterkeyn et al., 2000). In addition to the proteins identified in the Triton samples, other proteins relevant to cytoadherence, specifically MAHRP1 (Spycher et al., 2008), PTP7 (Carmo et al., 2022), PTP2 (Maier et al., 2008), PTP1 (Maier et al., 2008; Rug et al., 2014), and just below FDR threshold PTP4 (Maier et al., 2008), were highly enriched.

Moreover, several known Maurer's clefts residents exhibited enrichment, including PfJ23, parasite-infected erythrocyte specific protein 2 (PIESP2) (Florens et al., 2004), *P. falciparum* protein 332 (Pf332) (Issar et al., 2008), small exported membrane protein 1 (SEMP1) (Dietz et al., 2014; Heiber et al., 2013), TryThrA (Heiber et al., 2013), MSP-7 related protein 6 (MSRP6) (Blancke-Soares et al., 2021) and just below the FDR threshold, PTEF (Chan et al., 2017),. Additionally, recently identified MSRP6 interactors, PeMP1-4 (Blancke-Soares et al., 2021), showed enrichment. Furthermore, the analysis revealed enrichment for MAHRP2 (Pachlatko et al., 2010), EMPIC1-5, seven PHIST proteins (P1-7), gametocyte exported protein 10 (GEXP10) (localized in the erythrocyte membrane of asexual parasites) (Dantzler et al., 2019), GEXP18 proteins (localizing to J-Dots) (Zhang et al., 2007; Ward et al., 2004) and the ring stage expressed sporozoite threonine and asparagine-rich protein (STARP) (Fidock et al., 1994).



**Figure 31: Comparison of the PfEMP1 proxiomes with each other and a general Mauer's celfts proxiome.** (A, B) Volcano plots of SDS extracts from Figure 30 shown with color coding according to similarity between positions (A) or with a general Maurer's cleft BioID (Blancke-Soares et al., 2021) (B). Hits were considered similar in all positions (yellow) when they were in a similar relative position to other hits (A). Hits were in (B) marked as present in general Maurer's clefts proteome (light blue) if significantly enriched in BioID experiments of a general Maurer's clefts marker over a protein soluble in the host cell or in the Maurer's clefts attachment domain of MSRP6 over the control protein soluble in the host cell (Blancke-Soares et al., 2021).

For the IT4var01-BirA\*Pos2<sup>endo</sup> samples, the pattern of enriched proteins was similar to that observed in the IT4var01-BirA\*Pos1<sup>endo</sup> samples. Notably, PfEMP1 was again highly enriched. However, the overall count of proteins enriched above the threshold was lower in comparison to IT4var01-BirA\*Pos1<sup>endo</sup>, which could potentially be due to less efficient biotinylation in the proximal position of the BirA\* relative to the membrane. Proteins that were not enriched above threshold in the Position 2 samples but were significantly enriched in the Position 1 samples were PTP2, PTP7, five PHISTs (P3-7), FIKK9.4, PeMP1 and EMPIC4. In contrast, in the IT4var01-BirA\*Pos2<sup>endo</sup> samples, FIKK5 and, marginally below the FDR threshold, EMPIC6 was enriched which were not significantly enriched in the IT4var01-BirA\*Pos1<sup>endo</sup> samples (Figure 30B).

In the SDS-extracted samples from the IT4var01-BirA\*Pos3<sup>endo</sup> samples, the BirA\* fused PfEMP1 was significantly enriched compared to the control. The pattern of proteins enriched that are relevant for cytoadherence mirrored that of the IT4var01-BirA\*Pos1<sup>endo</sup> and IT4var01-BirA\*Pos2<sup>endo</sup> samples, exhibiting comparable fold changes in enrichment. However, certain proteins enriched in Position 1 or 2, including GEXP10, GEXP18, P2-7, EMPIC4, EMPIC6, and FIKK5, were not enriched in Position 3. Additionally, no exported proteins, not enriched in the other two BioID cell lines, were significantly enriched in the IT4var01-BirA\*Pos3<sup>endo</sup> samples. PTEF, PTP4 and EMPIC5 were significantly enriched but below the FDR threshold.

Interestingly, the biotinylated proxiomes of the three BioID cell lines showed only minor differences (Figure 31A), indicating that IT4var01-BirAPos3<sup>endo</sup>, with the BirA\* positioned on the extracellular side of the erythrocyte membrane, did not yield a distinct set of proteins compared to IT4var01-BirA\*Pos1<sup>endo</sup> and IT4var01-BirA\*Pos2<sup>endo</sup>. It is noteworthy that the differences were PHIST proteins that were predominantly enriched in IT4var01-BirA\*Pos1<sup>endo</sup> (but not in Position 2) and GEXP10 and 18 which were not enriched in IT4var01-BirA\*Pos3<sup>endo</sup>. Interestingly, KAHRP was not enriched in any of the three BioID cell lines.

Subsequently, the proteomes obtained were compared with the comprehensive Maurer's clefts proteomes previously delineated by Blancke-Soares et al. (2021) that also used BioID. The general Maurer's clefts proteome exhibited considerable overlap with the PfEMP1 interacting proteome, albeit with notable distinctions (Figure 31B). Proteins enriched in any of the PfEMP1 BioID cell lines compared to the control and not detected in the general Maurer's clefts BioID were identified. These included eight PHIST proteins (P1-8), four EMPICs (EMPIC1, 3, 4, 6), PfJ23, PeMP4, two FIKKs (FIKK5 and 9.4), three PTPs (PTP1, 2, 4), MAHRP2, SEMP1,

HSP70, STARP, and PTEF. These particular proteins emerge as interactors potentially engaging in interactions with PfEMP1 outside of the Maurer's clefts, during the transport process, or within the knobs. Overall, the PfEMP1 BioIDs provide a plausible proxiome of PfEMP1 in living parasites although many of the hits indicate they are in proximity of PfEMP1 during transport or at the Maurer's clefts rather than at the surface of the erythrocytes.

#### 3.2.3 SLI2 ENABLES CHARACTERIZATION OF PFEMP1 INTERACTORS

To elucidate the potential PfEMP1 connected functions of the proteins identified in the BioID experiments, a method was necessary to disrupt the interactors of PfEMP1. For this purpose, Selection Linked Integration 2 (SLI2) was employed (Blancke-Soares et al., 2021; Naranjo Prado, 2020; Stäcker, 2021). Operating on similar principles as its predecessor (SLI), SLI2 uses two distinct selection markers: BSD-R (conferring BSD resistance) for selection of parasites carrying the plasmid and yeast DHODH (conferring DSMI resistance) for genomic integration of the plasmid (Figure 32A). To validate the efficacy of this system, specifically within cell lines with a SLI-activated var gene, the IT4var01-HA<sup>endo</sup> cell line was selected. PTP1, a protein established as crucial for cytoadherence (Maier et al., 2008; Rug et al., 2014), was targeted for gene disruption using SLI2. The plasmid, initially crafted for targeted gene disruption of PTP1 in the 3D7 strain (Naranjo Prado, 2020), was transfected, given the near-identical homology regions (only one base pair mismatch) in IT4. The generated cell line was designated as IT4var01-HA<sup>endo</sup>+PTP1-TGD-GFP. Diagnostic PCR showed the correct plasmid integration into the targeted gene locus and the absence of parasites retaining an unmodified target gene locus (Figure 32B). Additionally, the sustained presence of the first SLI modification was validated through diagnostic PCR (Figure 7B, diagnostic PCR confirming SLI integration performed by Jan Stäcker).



**Figure 32:** Second endogenous modification in cell line with a SLI-activated *var* gene. (A) Schematic for SLI2 strategy for second genome modification in SLI cell line with activated *var* gene. HR: homology region; ATS: acidic terminal segment; NTS: N-terminal sequence domain; 2A: T2A skip peptide; NEO-R: neomycin-resistance gene (conferring G418 resistance); yDHODH: yeast dihydroorotate dehydrogenase (conferring DSMI resistance); BSD-R: BSD-resistance gene (conferring BSD resistance), arrows P1-8 primers for diagnostic PCR for SLI; X: desired *var* gene; PTP1: PfEMP1 transport protein 1. (B) Agarose gel shows PCR products confirming correct integration of the SLI2 plasmid and perpetuation of the SLI plasmid integration. SLI2 integration: product over 5' integration junction (5'): P5 + P8; over 3' integration junction (3'): P7 + P6; original locus (ori): P5 + P6; SLI integration PCRs as described in Figure 12 and (A); primers in Appendix A2; IT4: parent; Int: integrant cell line; expected bands: SLI: 5': 1698 bp; ori: 1536 bp; 3': 1040 bp; SLI2: 5': 1164 bp; ori: 1227 bp; 3': 913 bp. (C) Fluorescence microscopy images of live IT4var01-HA<sup>endo+</sup>PTP1TGD-GFP parasites. (D) Western blot of trypsin cleavage assays with IT4var01-HA<sup>endo+</sup>PTP1-TGD-GFP parasites. (C) Western blot of trypsin cleavage assays and full blots in Appendix A2. (E) Images show representative sections of captured

images of binding assays with the indicated cell line against CHO cell lines expressing the indicated receptors. Red arrows show examples of bound infected erythrocytes. Size bars 100  $\mu$ m. (F) SuperPlot of binding assays of indicated cell lines against CHO cells expressing GFP, CD36 or ICAM-1 (3 biological replicates with 15 fields of view/experiment and condition; bars: mean of averages of replicates with SD; unpaired t-test; p-values are indicated). Small grey dots: bound iE/field of view, extrapolated to mm<sup>2</sup>. Larger colored dots: average of bound iE/mm<sup>2</sup>/replicate. iE: infected erythrocytes.

Live cell imaging revealed a cytosolic GFP signal in the host cell in the PTP1-TGD-GFP parasites (Figure 32D), suggesting successful ablation of PTP1 as the truncated GFP-tagged form differed in location from intact PTP1 which is located at the Maurer's clefts (Rug et al., 2014).

Subsequently, the surface presentation of PfEMP1 and cytoadherent properties of IT4var01-HA<sup>endo</sup>+PTP1-TGD-GFP were tested. Trypsin cleavage assays revealed the presence of only full-length PfEMP1 in the trypsin-treated sample and control, indicating a defect in PfEMP1 surface presentation (Figure 32E), in agreement with previous work on PTP1 (Maier et al., 2008, Rug et al., 2014). Binding assays were performed against CHO cells expressing CD36, ICAM or GFP, to assess the cytoadherence properties of the IT4var01-HA<sup>endo</sup>+PTP1-TGD-GFP parasites. No binding to GFP, CD36 or ICAM-1 was observed (Figure 32F). In contrast, the parent cell line, IT4var01-HA<sup>endo</sup>, exhibited significant binding to these receptors but no interaction with the GFP control.

These findings validate the SLI2 approach to obtain a second endogenous modification in parasites harboring a SLI-activated PfEMP1.

### 3.2.4 CHARACTERIZATION OF INTERACTING CANDIDATES OF PFEMP1

To investigate the proximity to PfEMP1 and influence of the identified interactors on the transport and function of PfEMP1, candidates were selected with a focus on PNEPs and proteins previously validated to be exported in our laboratory and covering different levels of enrichment. The selected candidates were disrupted using SLI2 and the impact on PfEMP1 function and location was assessed as in parts described for PTP1 (section 3.2.3). In addition, additional cell lines were generated wherein the candidates were tagged with Ty1 to identify their localization in relation to PfEMP1 within the cell. Both the tagging and disruption were executed in the IT4var01-BirAPos1<sup>endo</sup> cell line. The underlying rationale for the use of the BioID cell line was that identifying a protein which influences PfEMP1 transport will pave the way for subsequent BioID experiments of the PfEMP1 arrested in a step during transport. These

experiments might detect the proxiome of transport-impeded PfEMP1 and juxtapose it with the proxiome of the functional PfEMP1, thereby shedding light on the mechanics of PfEMP1 transport.

For the Ty1 tagging, SLI2 constructs with a homology region comprising the C-terminus of the target gene was cloned into pSLI2a-Ty1 (Stäcker, 2021), for the TGD constructs, homology regions were selected in the N-terminal area of the targeted gene and cloned into the pSLI2a-TGD plasmid (Naranjo Prado, 2020) (section 3.2.3), upon integration resulting in a GFP-tagged, truncated product.

## **3.2.4.1 TRYTHRA**

TryThrA emerged as a prominently enriched protein in mass spectrometry analysis of the PfEMP1 BioID cell lines in the Triton- and SDS-samples. It features a tryptophan-threonine rich segment in its central region. It was identified in the sporozoite and liver stages of the parasite (Jaijyan et al., 2015), other research identified TryThrA as a PNEP, localizing to the Maurer's clefts during the blood stages (Heiber et al., 2013). Furthermore, TryThrA was identified as an interactor of SBP1, and it was shown that TryThrA knockout did not impede cytoadherence in 3D7 parasites (Takano et al., 2019).

After successfully tagging TryThrA with a Ty1-tag via SLI2 demonstrated by diagnostic PCRs (Figure 33A), IFAs revealed two distinct TryThrA localizations at the Maurer's clefts: a peripheral donut-shaped Ty1-signal surrounding the HA-signal of PfEMP1 (Figure 33B, top IFA panel) present in 18.4% of parasites (n=4 independent experiment with 38 cells in total) and a dot-shaped Ty1-signal overlapping with the PfEMP1's HA-signal (Figure 33B, bottom IFA panel) in 81.6% of parasites. Additionally, a signal for TryThrA was observed in smaller foci in the host cell mostly not co-localizing with the HA-signal (Figure 33B, bottom IFA panel)

The SLI2 plasmid to disrupt TryThrA in the IT4var01-BirA\*Pos1<sup>endo</sup> cell line was designed to disrupt the tryptophan-threonine stretch, with the expectation to thereby deactivating its function. PCRs confirmed correct integration of the SLI2 plasmid and maintenance of the initial SLI integration (cell line: TryThrA-TGD-GFP) (Figure 33C). Live imaging of truncated GFP-tagged TryThrA displayed signal concentrated in puncta in the host cell, potentially associated with Maurer's clefts but exhibiting elongated shapes and unusual foci distribution (Figure 33C).


**Figure 33: Characterization of TryThrA. (A)** Schematic shows domain organization of the expressed products. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid. PCR over 5' integration

junction (5'): P5 + P8 in Figure 12; PCR over 3' integration junction (3'): P7 + P6 in Figure 12; original locus (ori): P5 + P6 in Figure 12; IT4 parent; Int: integrant cell line; primers in Appendix A2; Expected bands: 5': 1243 bp; ori: 1317 bp; 3': 1274 bp. (**B**) Fluorescence microscopy images show IFAs with acetone fixed parasites with the indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (**C**) Schematic shows domain organization of the expressed products. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid and perpetuation of SLI plasmid integration. PCR over 5' integration junction (5'): P1 + P2 in Figure 12 or P5 + P8 in Figure 32A; PCR over 3' integration junction (3'): P3 + P4 in Figure 12 or P7 + P6 in Figure 32A; original locus (ori): P1 + P4 in Figure 12 or P5 + P6 in Figure 32A; primers in Appendix A2; IT4 parent; Int: integrant cell line. Expected bands: SLI: 5': 2337 bp; ori: 1536 bp; 3': 971 bp; SLI2: 5': 1441 bp; ori: 1384 bp; 3': 1149 bp. Fluorescence microscopy images show live TryThrA-TGD-GFP parasites. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (**D**) Western blot of trypsin cleavage assay with TryThrA-TGD-GFP parasites. Arrow shows protected PfEMP1 fragment.  $\alpha$ -SBP1-N: control for integrity of host cell. Marker in kDa. Replicate and full blots in Appendix B. (**E**, F) IFAs (bottom rows) with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m.

Trypsin cleavage assays with erythrocytes infected with TryThrA-TGD-GFP parasites showed a faint  $\sim$ 110 kDa band for the trypsin-treated sample corresponding to the protected fragment of the modified PfEMP1 (Figure 33D). This suggests that TryThrA disruption does not ablate PfEMP1 surface display, although the weak signal implies possible display impairments. Only full-length SBP1 was detected probing with  $\alpha$ -SBP1-N antibodies, showing that the integrity of the host cell was not impaired.

Next, the effect of TryThrA's truncation on Maurer's clefts structure, PfEMP1 location and KAHRP location was evaluated with IFAs (Figure 33E). First, SBP1 and HA-tagged PfEMP1 were co-localized to evaluate the Maurer's cleft morphology and PfEMP1 location in relation to SBP1 (Figure 33E). This showed that the SBP1 signal showed unusual location 66 % of the infected erythrocytes showed a phenotype (n=106 parasites across three independent IFAs evaluating SBP1 signal; phenotype: parasites with large elongated, more than 30 or unidentifiable number Maurer's clefts; diffuse SBP1 signal) suggesting an effect on Maurer's clefts morphology. Furthermore, PfEMP1 also showed a more scattered localization in the host cell overlapping with the SBP1 signal. PfEMP1 foci in proximity to SBP1 foci showed only partial overlap in most cases. Subsequently, Maurer's clefts morphology was further interrogated by co-localizing REX1 and SBP1 (Figure 33E). The REX1 signal presented an atypical localization pattern, characterized by a dispersed signal within the host cell, deviating from the distinct Maurer's clefts-associated puncta typically seen with REX1. Some REX1 foci

showed overlapped with SBP1 signal but especially smaller foci did not overlap with the SBP1 signal.

Next, the truncated TryThrA was co-localized with KAHRP, REX1 and PfEMP1 (Figure 33F). KAHRP signal exhibited normal localization in the erythrocyte membrane (Figure 33F) with some concentrated KAHRP signal overlapping the truncated TryThrA signal, implying that a subpopulation of truncated TryThrA localizes to the erythrocyte membrane. Co-localization of REX1 with GFP showed partial overlap, especially notable in foci where the signals are concentrated in larger puncta. PfEMP1 localization in relation to the truncated TryThrA showed partial overlap (Figure 33F). It is noteworthy, that the GFP signal observed in IFAs differentiated from the GFP signal in live imaging (Figure 33C, F). This could be due to incorrect folding of the GFP fused to the truncated TryThrA for a subpopulation of the protein or that IFAs are more sensitive showing signal for small amounts of proteins that might not be detected with live imaging.

Collectively, these findings suggest that TryThrA plays a crucial role in maintaining Maurer's clefts integrity, with its disruption leading to alteration in the structural integrity and typical localization of proteins within Maurer's clefts but not to the ablation of the surface display of PfEMP1.

#### 3.2.4.2 PTEF

PTEF was previously localized to the host cell membrane and the nucleus (Birnbaum et al., 2017; Blancke-Soares et al., 2021; Chan et al., 2017). Furthermore, it was postulated that it functions as a translation enhancement factor that plays a role in the de-repression of VAR2CSA translation (Chan et al., 2017). It was consistently identified below the FDR threshold yet was significantly enriched across all mass spectrometry analyses of the BioID cell lines (Figure 30). As it was detected at the host cell membrane of infected erythrocytes in 3D7 parasites, it was chosen for analysis by disrupting it using the SLI2-TGD approach.

To confirm the location of PTEF in IT4 parasites, it was first endogenously tagged with Ty1. The correct integration of the SLI2 plasmid fusing the Ty1-tag to PTEF was corroborated through diagnostic PCRs (kindly performed by Joelle Hornebeck) (Figure 34A). No co-localization was observed between Ty1-tagged PTEF and PfEMP1 in IFAs, with the former exhibiting a distribution pattern akin to KAHRP at the erythrocyte membrane and no noticeable nuclear co-localization (Figure 34B), agreeing with the previous observations of endogenously GFP-tagged PTEF in 3D7 (Birnbaum et al., 2017).



**Figure 34: Characterization of PTEF.** (A) Schematic shows domain organization of the expressed products. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid. PCR over 5' integration junction (5'): P5 + P8 in Figure 32A; PCR over 3' integration junction (3'): P7 + P6 in Figure 32A; original locus (ori): P5 + P6 in Figure 32A; IT4 parent; Int: integrant cell line; primers in Appendix A2; expected bands: 5': 1409 bp; ori: 1462 bp; 3': 1516 bp. (**B**) Fluorescence microscopy images show IFAs with acetone fixed PTEF-Ty1<sup>endo</sup> parasites with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (**C**) Schematic shows domain organization of the expressed products. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid and perpetuation of SLI plasmid integration. PCR over 5' integration

junction (5'): P1 + P2 in Figure 12 or P5 + P8 in Figure 32A; PCR over 3' integration junction (3'): P3 + P4 in Figure 12 or P7 + P6 in Figure 32A; original locus (ori): P1 + P4 in Figure 12 or P5 + P6 in Figure 32A; primers in Appendix A2; IT4 parent; Int: integrant cell line; expected bands: SLI: 5': 2337 bp; ori: 1536 bp; 3': 971 bp; SLI2: 5': 874 bp; ori: 846 bp; 3': 676 bp. Fluorescence microscopy images show live parasites. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (**D**) Western blot of trypsin cleavage assays with PTEF-TGD-GFP parasites. Arrow shows protected PfEMP1 fragment.  $\alpha$ -SBP1-N: control for integrity of host cell. Marker in kDa. Replicate and full blots in Appendix B. (**E**) Fluorescence microscopy images show IFAs with acetone fixed PTEF-TGD-GFP parasites PTEF-TGD-GFP parasites Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m.

The disruption of PTEF through SLI2 integration was validated by diagnostic PCRs (SLI2 integration confirmation kindly performed by Joelle Hornebeck) (Figure 34B). Live imaging of the parasites showed signal for GFP-tagged disrupted PTEF dispersed throughout the host cell with several concentrated puncta differing from the location of the full length PTEF, indicating a successful disruption of PTEF (Figure 34C). The surface presentation of PfEMP1 was assessed using a trypsin cleavage assay, showing a ~110 kDa band, consistent with the protected fragment of the modified PfEMP1, in the trypsin-treated sample (Figure 34D). Notably, no protected fragments were detected during SBP1 probing with  $\alpha$ -SBP1-N antibodies, ensuring erythrocyte integrity during the assay. This suggests that PTEF disruption does not impede PfEMP1's surface display.

IFAs showed that both, SBP1 and PfEMP1, still overlapped in puncta reminiscent of Maurer's clefts in the PTEF-TGD-GFP parasites, indicating no effect on Maurer's cleft localization or PfEMP1 location (Figure 34E). Typical localizations were observed for probing KAHRP and PfEMP1 (Figure 34E). However, while co-localization of the disrupted PTEF and KAHRP displayed a KAHRP-like localization for both signals, only insignificant overlapping was observed (Figure 34E).

In essence, PTEF disruption did not result in a defect in PfEMP1 surface display nor influenced the localization or distribution of SBP1, PfEMP1, or KAHRP, suggesting a non-essential role for PTEF in these processes.

## 3.2.4.3 EMPIC3

EMPIC3 (PfIT\_070007400), consistently enriched in the mass spectrometry analyses of the BioID cell lines in the Triton- and SDS-samples, is a PNEP (Heiber et al., 2013) with unknown function. Furthermore, EMPIC3 was identified as a proximal protein of PTP4, KAHRP, and

FIKK4.1 (Davies et al., 2023), adding to its profile as a protein in proximity to proteins relevant for cytoadherence.



**Figure 35: Characterization of EMPIC3.** (A) Schematic shows domain organization of the expressed products. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid. PCR over 5' integration

junction (5'): P5 + P8 in Figure 32A; PCR over 3' integration junction (3'): P7 + P6 in Figure 32A; original locus (ori): P5 + P6 in Figure 32A; IT4 parent; Int: integrant cell line; primers in Appendix A2; expected bands: 5': 1308 bp; ori: 1351 bp; 3': 1241 bp. (B) Fluorescence microscopy images show IFAs with acetone fixed EMPIC3-Ty1<sup>endo</sup> parasites with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 µm. (C) Schematic shows domain organization of the expressed products. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid and perpetuation of SLI plasmid integration. PCR over 5'integration junction (5'): P1 + P2 in Figure 12 or P5 + P8 in Figure 32A; PCR over 3' integration junction (3'): P3 + P4 in Figure 12 or P7 + P6 in Figure 32A; original locus (ori): P1 + P4 in Figure 12 or P5 + P6 in Figure 32A; primers in Appendix A2; IT4 parent; Int: integrant cell line; expected bands: SLI: 5': 2337 bp; ori: 1536 bp; 3': 971 bp; SLI2: 5': 899 bp; ori: 1351 bp; 3': 1241 bp. Fluorescence microscopy images show live parasites. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (D) Timelapse of fluorescence microscopy images of live EMPIC3-TGD-GFP parasites. GFP signal was captures. 0s indicated the start of capture; ms: milliseconds; size bars 5 µm. (E) Western blot of trypsin cleavage assay with EMPIC3-TGD-GFP parasites. Arrow shows protected PfEMP1 fragment. α-SBP1-N: control for integrity of host cell. Marker in kDa. Replicate and full blots in Appendix B. (F, G) Fluorescence microscopy images show IFAs with acetone fixed EMPIC3-TGD-GFP parasites with indicated antibodies for the evaluation of Maurer's cleft mophology and localization of the truncated EMPIC3 in relation to other relevant exported proteins. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 µm.

Successful tagging of EMPIC3 with a Ty1-tag via SLI2 was confirmed with diagnostic PCRs (Figure 35A). IFAs investigating the co-localization of EMPIC3 with PfEMP1 showed two distinct patterns: EMPIC3 co-localized with PfEMP1 in punctate structures present in 40.6% of parasites (n=3 independent experiment with 32 cells in total), and 59.4% of parasites displayed EMPIC3 in a donut-shape surrounding the PfEMP1 signal, both with additional smaller puncta signals in the host cell cytosol (Figure 35B), reminiscent of the localization of TryThrA (section 3.2.4.1 and Figure 33B).

The integration of the SLI2 plasmid for a TGD of EMPIC3 was confirmed by diagnostic PCR (Figure 35C). Live cell imaging of GFP-tagged truncated EMPIC3 showed a localization within the host cell with concentrated puncta (Figure 35C). The foci changed position between time points suggesting that Maurer's clefts anchoring was impaired, or the foci are EMPIC5 aggregates that move freely in the host cell (Figure 35D).

To assess surface display of PfEMP1 of erythrocytes infected with EMPIC3-TGD-GFP, trypsin cleavage assays were conducted. A band corresponding to the protected fragment of the modified PfEMP1 was identified in the trypsin-treated sample but absent in the control (Figure 35E). No protected fragment of SBP1 was observed following probing of the same extracts

with an antibody against the N-terminus of SBP1, indicating an intact erythrocyte membrane integrity. These results suggest that EMPIC3 does not ablate PfEMP1's surface display on the surface of infected erythrocytes. Notably, a reduction of PfEMP1 surface display would not be reliably detected with this method (relevant for 3.2.4.7).

Subsequent IFAs probed various relevant exported proteins to elucidate the truncated EMPIC3's localization and its impact on these proteins (Figure 35F, G). PfEMP1, SBP1 and REX1 maintained a Maurer's clefts typical localization and indicated that Maurer's clefts morphology was not visibly altered in the parasites with a truncated EMPIC3. Furthermore, KAHRP showed usual localization in the erythrocyte membrane (Figure 35F). Next the localization in relation to PfEMP1, KAHRP and REX1 was evaluated. This showed partial colocalization with PfEMP1; larger foci overlapped with PfEMP1, while numerous smaller foci were distributed within the host cell, not colocalizing with PfEMP1. Additionally, co-localization of the truncated EMPIC3 also partially overlapped with REX1, mirroring the observed colocalization with PfEMP1. Notably, smaller foci observed in IFAs were not detectable in live imaging, hinting at potential GFP folding issues in these locations (for example aggregates) or small amount of truncated TryThrA which are only detected with IFAs. In summary, the disruption of EMPIC3 did not visibly affect the localization of PfEMP1 and Maurer's clefts morphology nor ablate the surface display of the HA-tagged PfEMP1.

#### 3.2.4.4 PEMP2

PeMP2, previously detected in the proteome of Maurer's clefts and part of the MSRP6 complex, was shown to subtly influence the Maurer's clefts' morphology and significantly affect their anchoring mechanisms (Blancke-Soares et al., 2021). To elucidate PeMP2's spatial relationship with PfEMP1, PeMP2 was modified with a Ty1-tag using SLI2. PCR validations confirmed the integration of the SLI2 plasmid (Figure 36A). IFAs targeting the Ty1-tag and HA-tagged PfEMP1 revealed partial co-localization of PeMP2 and PfEMP1 at the Maurer's clefts, in agreement with previously documented PeMP2 localizations (Blancke-Soares et al., 2021). Notably, PeMP2 also exhibited distinct foci in the host cell that did not co-localize with PfEMP1 (Figure 36B).

To assess PeMP2's role in cytoadherence, a SLI2 constructs was engineered to disrupt PeMP2. The successful integration of the SLI2 plasmid and perpetuation of the SLI modification for *IT4var01* were confirmed by PCR (Figure 36C). Live cell imaging detected a signal for the

truncated PeMP2 dispersed in the host cell cytosol and the food vacuole, indicating successful inactivation (Figure 36C).



**Figure 36: Characterization of PeMP2.** (**A**) Schematic shows domain organization of the expressed products. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid. PCR over 5' integration junction (5'): P5 + P8 in Figure 32A; PCR over 3' integration junction (3'): P7 + P6 in Figure 32A; original locus (ori): P5 + P6 in Figure 32A; IT4 parent; Int: integrant cell line; primers in Appendix A2; expected bands: 5': 1544 bp; ori: 1831 bp; 3': 1475 bp. (**B**) Fluorescence microscopy images show IFAs with acetone fixed PeMP2-Ty1<sup>endo</sup>

parasites with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (**C**) Schematic shows domain organization of the expressed products. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid and perpetuation of SLI plasmid integration. PCR over 5'integration junction (5'): P1 + P2 in Figure 12 or P5 + P8 in Figure 32A; PCR over 3' integration junction (3'): P3 + P4 in Figure 12 or P7 + P6 in Figure 32A; original locus (ori): P1 + P4 in Figure 12 or P5 + P6 in Figure 32A; primers in Appendix A2; IT4 parent; Int: integrant cell line; expected bands: SLI: 5': 2337 bp; ori: 1536 bp; 3': 971 bp; SLI2: 5': 1036 bp; ori: 994 bp; 3': 638 bp. Fluorescence microscopy images show live parasites with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m. (**D**) Western blot of trypsin cleavage assay with PeMP2-TGD-GFP parasites. Arrow shows protected PfEMP1 fragment.  $\alpha$ -SBP1-N: control for integrity of host cell. Marker in kDa. Replicate and full blots in Appendix B. (E) Fluorescence microscopy images show IFAs with acetone fixed PeMP2-TGD-GFP parasites with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; Size bars 5  $\mu$ m.

Trypsin cleavage assays confirmed presentation of PfEMP1 on the erythrocyte's surface: a band of ~110 kDa, was detected in the trypsin-treated sample, matching the expected size for surface-trypsinized PfEMP1 whereas no such band was detected in the control sample (Figure 36D). Furthermore, only full-length SBP1 was detected using SBP1-N antibodies, indicating the integrity of the host cell was not impaired. This indicates that PeMP2 disruption does not influence the surface presentation of PfEMP1.

Further IFAs were conducted to examine PfEMP1's localization in relation to SBP1 and KAHRP in the parasites with the PeMP2 disruption. These assays indicated usual colocalization of PfEMP1 with SBP1 and typical localization for KAHRP in relation to PfEMP1.

In summary, these findings suggest that PeMP2 disruption neither affects the surface display of PfEMP1 nor induces significant abnormalities in the morphology of Maurer's clefts.

#### 3.2.4.5 EMPIC5

EMPIC5 (PfIT\_010016300) was identified as a protein of interest due to the consistent enrichment in the SDS-samples of the BioID cell lines. It was classified as a potentially exported protein (Sargeant et al., 2006), featuring a PEXEL motif, and later shown to partially co-localize with REX1 in the host cell (Jonsdottir et al., 2021). Integration of the SLI2 plasmid to endogenously tag EMPIC5 with a Ty1-tag in the IT4var01-BirA\*Pos1<sup>endo</sup> cell line was confirmed by PCR (Figure 37). Co-localization analysis with PfEMP1 and SBP1 demonstrated partially overlap of these with EMPIC5 while and other EMPIC5 foci show localization outside of the Maurer's clefts (Figure 37). This is in agreement with the previous observations but there, more of the foci were overlapping with the Maurer's clefts marker REX1 (Jonsdottir et al.,

2021). This suggests that EMPIC5 predominantly resides in distinct foci within the host cell, that are not Maurer's clefts.

Attempts to disrupt EMPIC5 in IT4var01-BirA\*Pos1<sup>endo</sup> parasites had not been successful in the course of the work for this thesis.



**Figure 37: Characterization of EMPIC5.** (A) Schematic shows domain organization of the modified expressed products. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid. PCR over 5' integration junction (5'): P5 + P8 in Figure 6A; PCR over 3' integration junction (3'): P7 + P6 in Figure 6A; original locus (ori): P5 + P6 in Figure 6A; IT4 parent; Int: integrant cell line; primers in Appendix A2; expected bands: 5': 1310 bp; ori: 1285 bp; 3': 1278 bp. (B) Fluorescence microscopy images show IFAs with acetone fixed EMPIC5-Ty1<sup>endo</sup> parasites with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m.

#### 3.2.4.6 PTP7

PTP7 was enriched in the IT4var01-BirA\*Pos1<sup>endo</sup> and IT4var01-BirA\*Pos3<sup>endo</sup> SDS-samples (Figure 30). Its influence on PfEMP1 surface display and cytoadherence had previously been comprehensively assessed (Carmo et al., 2022). Parasites with PTP7 deletion exhibited structural anomalies in both knobs and Maurer's clefts, characterized by reduced numbers and increased size. Additionally, PfEMP1 presentation was entirely abolished, resulting in the absence of cytoadherence. Therefore, PTP7 disruption was here used as another control in verifying the reliability of the experimental systems and methodologies employed for the chosen candidates.



**Figure 38: Characterization of PTP7.** (A) Schematic shows domain organization of the modified gene loci and full-length PTP7. Agarose gels show PCR products confirming correct integration of the SLI2 plasmid and

perpetuation of SLI plasmid integration. PCR over 5' integration junction (5'): P1 + P2 in Figure 12 or P5 + P8 in Figure 32A; PCR over 3' integration junction (3'): P3 + P4 in Figure 12 or P7 + P6 in Figure 32A; original locus (ori): P1 + P4 in Figure 12 or P5 + P6 in Figure 32A; primers in Appendix A2; IT4 parent; Int: integrant cell line; expected bands: SLI: 5': 2337 bp; ori: 1536 bp; 3': 971 bp; SLI2: 5': 1184 bp; ori: 1215 bp; 3': 962 bp. Fluorescence microscopy images show live PTP7-TGD-GFP parasites with indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 µm. (B) Western blot of trypsin cleavage assays with PTP7-TGD-GFP parasites. Arrow shows protected PfEMP1 fragment. α-SBP1-N: control for integrity of host cell. Marker in kDa. Replicate and full blots in Appendix B. (C) Fluorescence microscopy images show IFAs with acetone fixed PTP7-TGD-GFP parasites with indicated antibodies. White arrow; Mauerer's cleft phenotype; pink arrow: concentrated puncta of KAHRP signal; nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5 µm. (D) Quantification of the area of Maurer's clefts determined by images of IFAs probed with antibodies against SBP1. IT4var01-HA<sup>endo</sup>: 215 cell Maurer's clefts scored across 10 parasites from two independent IFAs; PTP7-TGD-GFP: 178 Maurer's clefts scored across 12 parasites from two independent IFAs. (E) Quantification of the number of Maurer's clefts determined by images of IFAs probed with antibodies against SBP1. IT4var01-HAendo: 10 parasites scored; two independent IFAs; PTP7-TGD-GFP: 12 parasites scored from two independent IFAs.

SLI2 plasmids were generated to disrupt PTP7. Therefore, a short homology region was selected, to ensure functional disruption of the protein (Figure 38). A cell line was obtained under G418 selection (cell lines PTP7-TGD-GFP; cell line kindly generated by Joelle Hornebeck) and PCR validations confirmed the correct integration of the SLI2 plasmid and the perpetuation of the SLI integration (Figure 38A). Live cell imaging corroborated PTP7 disruption, revealing a dispersed signal within the host cell with only partial localization of truncated PTP7 at the Maurer's clefts (Figure 38A). Trypsin cleavage assays showed no bands indicative of surface-exposed, trypsinized PfEMP1 in the trypsin-treated samples (Figure 38B). Moreover, the absence of a protected fragment upon probing with an  $\alpha$ -SBP1-N antibody affirmed the integrity of the host cell, confirming that PTP7 disruption via SLI2 effectively prevented PfEMP1's presentation on the host cell.

IFAs were performed to detect PTP7-TGD-GFP, PfEMP1, SBP1, and KAHRP (Figure 38C). While SBP1 and PfEMP1 co-localized with signals matching typical Maurer's cleft patterns, the parasites exhibited slightly enlarged clefts (not significant) with atypical morphology in lower numbers (Figure 38C, D, E; white arrows). Co-localization of PfEMP1 and KAHRP revealed concentrated KAHRP puncta in 66% of the infected erythrocytes (n=15 cell scored from two independent experiments), potentially indicative of knob enlargement (Figure 38C). Moreover, co-localization of truncated PTP7 with KAHRP did not overlap.

In conclusion, the SLI2-mediated disruption of PTP7 aligns with previously documented effects of PTP7 disruption on PfEMP1 presentation, Maurer's cleft morphology, and knob structure (Carmo et al., 2022). Furthermore, as this is done in a cell line with a tagged and expressed PfEMP1, tracking of PfEMP1 is substantially more convenient.

#### **3.2.4.7 TRYTHRA AND EMPIC3 ARE RELEVANT FOR EFFICIENT** CYTOADHERENCE OF *P. FALCIPARUM* PARASITES

Finally, a series of binding assays was conducted to assess the cytoadherence properties of the TGD cell lines, specifically investigating the functionality of PfEMP1. As the disruption was executed in the IT4var01-BirA\*Pos1<sup>endo</sup>, binding assays were conducted against CHO cells expressing CD36, ICAM-1, or GFP.



**Figure 39: TryThrA and EMPIC3 are relevant for cytoadherence.** (A) Images show representative sections of captured images of binding assays for the indicated cell line against CHO cell line expressing the indicated receptors. (B) SuperPlot of binding assays of the indicated cell lines against CHO cells expressing GFP, CD36 or ICAM-1 (3 or 4 (control and PTEF-TGD-GFP biological replicates with 15 fields of view/experiment and condition; bars: mean of averages of replicates with SD; unpaired t-test; p-values are indicated). Small grey dots: bound iE/field of view, extrapolated to mm<sup>2</sup>. Larger coloured dots: average of bound iE/mm<sup>2</sup>/replicate. iE: infected

erythrocytes. (C) Illustration showing locations of characterized interactors and effect on cytoadherence. Red background: host cell cytosol; yellow background: extracellular space.

The binding assays showed that erythrocytes infected with PTEF-TGD-GFP and PeMP2-TGD-GFP showed binding capacities comparable to the IT4var01-BirA\*Pos1<sup>endo</sup> parent cell line, indicating that the disruptions did not compromise the function of PfEMP1 (Figure 39A, B). In contrast, PTP7-TGD-GFP, as expected from prior characterizations (Carmo et al., 2022), showed an absolute lack of binding (Figure 39A, B). None of the cell lines showed interaction with the GFP control, reinforcing the specificity of the binding interactions observed. Interestingly, TryThrA-TGD-GFP and EMPIC3-TGD-GFP showed a significantly reduced binding to CD36 and ICAM-1 compared to the IT4var01-BirA\*Pos1<sup>endo</sup> parent cell line, indicating that these proteins are needed for PfEMP1-based cytoadherence of infected erythrocytes (Figure 39A, B). Trypsin cleavage assays with erythrocytes infected with TryThrA-TGD-GFP and EMPIC-TGD-GFP PfEMP1 previously showed that PfEMP1 is displayed on the surface. However, trypsin cleavage assays are not quantitative so that it can not be concluded whether these cell lines show reduced binding due reduced surface display of PfEMP1 or a defect in functional presentation of PfEMP1.

In summary, these findings indicate that PTP7, TryThrA and EMPIC3 are proteins needed for effective cytoadherence of infected erythrocytes whereas PTEF and PeMP2 have no such role (Figure 39C).

# **4 DISCUSSION**

#### 4.1 ACTIVATION OF VAR GENES WITH SLI

Utilizing the SLI-system, this study established cell lines that predominantly express a single targeted *var* gene in 3D7 or IT4 *P. falciparum* parasites. The targeted activation and predominant expression were confirmed for three *var* genes in 3D7 (cell line generated and experiments conducted by Paolo Mesén-Ramírez and Jan Stäcker) and eight *var* genes in IT4. These cell line facilitate the study of *var* gene expression (section 4.1.1), PfEMP1 binding (section 4.1.4), PfEMP1 export (section 4.1.6), helped to identify a potentially new ICAM-1 binding domain (section 4.1.5) and established IT4 as the superior cell line for studying binding (section 4.1.3). This work therefore presents an important resource for studying *var* genes and PfEMP1 variants in a more controlled environment than formerly possible, expanding the options to study PfEMP1.

#### 4.1.1 EXPRESSION OF TARGETED VAR GENES

Previously specific var genes and especially PfEMP1 variants were studied in cell lines obtained by selecting P. falciparum parasites on receptor expressing mammalian cells (panning), receptors immobilized on supports (panning) or with antibodies against the targeted var gene or extracellular var gene domains (Avril et al., 2012; Claessens et al., 2012; Cooke et al., 1996; Nunes-Silva et al., 2015; Turner et al., 2013). These approaches harbor certain limitations: first, these cell lines are potentially selected for attributes, changing the phenotype of the parasites and secondly separation of PfEMP1 variants that bind to the same receptor with similar affinities or contain the same binding-domains is difficult. Moreover, cell lines generated by selection must kept under perpetual selection to express the desired var gene as they continuously experience switching. However, the CS2 cell lines obtained by selection on CSA expresses var2csa relatively stable (Maier et al., 2008; Salanti et al., 2004). In addition, cell lines with predominant expression of var2csa were achieved by treating the parasites with a histone methyltransferase inhibitor (chaetocin) or overexpressing a truncated form of its target PfSET (dominant negative effect) over an extended period of time (Ukaegbu et al., 2015). Furthermore, var gene switching towards var2csa was achieved by altering the parasites access to choline, serine or methionine, or overexpressing the parasites S-adenosylmethionine synthetase (PfSAMS) (Schneider et al., 2023). However, these approaches are limited to var2csa while SLI can target every var gene.

The data in this thesis showed that the SLI var gene cell lines express transcripts of the targeted var genes with over 90 % of the total var gene transcripts for most cell lines, sometimes going as high as 99.18 % (3D7var2csa-HA<sup>endo</sup>). The var genes frequently transcribed besides the targeted var genes in the IT4 SLI-parasites were varlcsa and var66. The varlcsa pseudogene was previously shown to possess impaired silencing and an unusual expression pattern throughout the parasite asexual stages (Kyes et al., 2003; Winter et al., 2003), suggesting that this var gene is continuously transcribed in the parasites. As it is not assumed to be functional, its expression is not expected to be of relevance in these parasite lines. var1csa might influence switching and silencing of var genes as shown for var2csa (Zhang et al., 2022). Why frequently also transcripts of var66 are expressed poses some questions. The IT4var66 gene is the predominantly expressed var gene in the IT4 parental strain with over 50 % of the total var gene transcripts (Appendix E). It is possible that the samples taken for RNA sequencing of the SLI cell lines contained parasites that just switched from the activated var gene to the var66. These parasites would die because they are no longer G418 resistant but might be present at all times and hence are present whenever RNA samples are taken. Another possibility is that some parasites express multiple var genes like in the 3D7<sup>MEED</sup> cell line. Nevertheless, these small proportions of untargeted var gene transcripts are neglectable for most experiments and panned cell lines typically show even higher proportions of undesired var transcripts (Avril et al., 2012; Claessens et al., 2012).

Yet limitation in the activation of *var* genes with SLI exist. The generated integrant cell lines also go through bottlenecks during selection after the transfection and selection for plasmid integration. However, the cell lines experience these bottlenecks only twice which probably has less effect on the parasites than continuous panning, especially in respect to comparability of PfEMP1 binding between individually generated parasite lines. Furthermore, cell lines were not obtained for every targeted *var* gene. One obstacle was the incorrect integration of the plasmid into a non-targeted *var* gene as observed for IT4var22-HA<sup>endo</sup> (section 3.1.7.6) due to similarities of the region encoding the ATS region. This problem could be circumvented by moving the HR further towards the N-terminus as done for the BioID cell lines. Additionally, some cell lines were not obtained on G418 which could be due non-expression of the targeted *var* gene or expression by a very low number of the parasites in the population although previous work indicated that SLI can work even if expression is undetectable (Birnbaum et al., 2017; Kimmel et al., 2023). For SLI to function with *var* genes, two low probability events must occur at the same time in the parasite culture. The plasmid must integrate into the targeted

*var* gene via homologous recombination and at the time of drug selection these parasites also have to express the targeted *var* gene. This likely is not problematic for *var* genes such as *IT4var66* that are highly expressed in the parent cell line (Appendix E) but could be problematic for other *var* genes, especially group A *var* genes that are lowly expressed in culture (Peters et al., 2007; Zhang et al., 2011).

Using RNASeq, the 3D7<sup>MEED</sup> cell lines was shown to express non-activated var genes to a higher proportion than the "healthy" 3D7 cell lines were the same var gene was activated. These results were previously confirmed by qPCR (Vaaben, 2018). This renders this cell line of potentially interest to study switching and silencing mechanisms of variant surface antigens. Previous work showed that the 3D7<sup>MEED</sup> parasites present multiple PfEMP1s on a single parasite (Joergensen et al., 2010). The presentation of multiple PfEMP1 variants on a single parasite was not demonstrated in this work. But, given the stringent selection on G418 parasites and the results of the other SLI var gene cell lines, parasites that do not express the targeted var gene should not be able to survive, indicating the expression of multiple var genes in most of the parasites. It is however unclear whether every parasite expresses the SLI-activated PfEMP1 and one or a few further PfEMP1 variants or if there is a general relaxation and all parasites show some expression of all or most other PfEMP1. Parasite populations expressing multiple var genes per parasite were also observed in other work, where it was not clear whether mutually exclusive expression is defect (Schneider et al., 2023). This could be tested using single-cell RNASeq technology or by using antibodies available to select PfEMP1s such as IT4var19 (Nunes-Silva et al., 2015) and IT4VAR2CSA (Amulic et al., 2009). These findings highlight the 3D7<sup>MEED</sup> parasites as a potentially useful tool for studying the genetic and epigenetic controls of var gene expression. A critical question arises as to what factors or defects result in the simultaneous expression of multiple var genes in these parasites. Genome, transcriptome, proteome and epigenomic mark comparisons between 3D7 and the 3D7<sup>MEED</sup> parasites might provide leads to find the relevant factors.

In the future cell lines with disrupted mutually exclusive expression of *var* genes could maybe be generated artificially to complement findings of the 3D7<sup>MEED</sup> cell line. For instance, selecting a SLI cell line against a receptor that does not bind the targeted PfEMP1 under drug selection might force the parasite to activate multiple *var* genes simultaneously. If only a small proportion of the parasites harbor the defect in mutually exclusive expression, subcloning could lead to parasite line that completely lacks silencing of non-activated *var* genes and could aid in the understanding of the underlying mechanisms. Comparing such cell lines with ones retaining the

mutually exclusive expression could shed light on the regulatory circuits controlling *var* gene silencing.

Interestingly, *IT4var20* was successfully HA-tagged in IT4 parasites but RNA sequencing showed that this gene had recombined with *IT4var27*, resulting in a chimeric *var* gene. Initially ectopic recombination events were shown during meiosis and only suggested during mitosis (Freitas-Junior et al., 2000) but later evidence demonstrated ectopic recombination, especially in subtelomeric regions where the VSAs are situated, during mitosis (Bopp et al., 2013; Claessens et al., 2014). Here another example of mitotic recombination of *var* genes is presented which in this case hinders the insights into the binding properties of the PfEMP1 variant encoded by this *var* gene. Initially the IT4var20-HA<sup>endo</sup> parasites were intended as a tool to study EPCR binding. As the N-terminal EPCR-binding domains of *IT4var20* were substituted by the N-terminal CD36-binding domains of *IT4var27*, the IT4var20-HA<sup>endo</sup> cell line cannot be used to study EPCR.

Future research utilizing SLI-activated *var* gene cell lines offer a promising avenue for unraveling the genetic mechanisms underlying the parasites immune evasion strategies. Intact gene switching was observed in these cell lines (Vaaben, 2018) by cultivating the cell lines under G418 selection and subsequently lifting the drug pressure. This approach facilitates the monitoring of *var* gene expression dynamics over time, aiming to discern whether *P. falciparum* parasites undergo a predetermined sequence of *var* gene activation or if the switching pattern is inherently stochastic, potentially with variable activation and silencing rates for specific *var* genes. However, the data collected are not sufficient as more replicates are needed to corroborate on this.

In summary, this study utilized the SLI-system to create *P. falciparum* cell lines with targeted expression of specific *var* genes, which is expected to provide versatile methodology with benefits over previous selection-based methods. Despite facing challenges such as potential bottlenecks during selection and the necessity for simultaneous low-probability events for activation, this approach successfully produced cell lines with relatively high specificity for targeted *var* genes. This approach not only provides more controlled type of PfEMP1-expressing parasites for studying *var* genes and PfEMP1 variants but also highlight new avenues for exploring the genetic and epigenetic mechanisms of *var* gene expression control. While the occurrence of ectopic recombination can introduce complexity into understanding *var* gene functions, shifting the targeting region into the variable domain solves this issue.

Notably, *var* genes have been activated in 3D7 and IT4 using SLI before, in part for the work leading up this thesis, but these cell lines were not characterized to the extent presented here (Blancke-Soares et al., 2021; Omelianczyk et al., 2020; Stäcker, 2021).

#### 4.1.2 IMPROVING BINDING ASSAYS

In this study, a semi-automated pipeline was developed and validated for scoring images of binding assays, achieving outcomes statistically similar to those obtained through human manual scoring. This innovation represents a significant improvement, facilitating a high-throughput and more time-efficient evaluation process compared to traditional manual scoring. Binding assays remain the gold standard for assessing the functionality of surface presented PfEMP1 molecules, underscoring their indispensable part to study the cytoadherence of PfEMP1 (e.g. Adams et al., 2021; Bernabeu et al., 2019; Carmo et al., 2022; Maier et al., 2008). The data for the 3D7 (section 3.1.6), SLI2 TGD cell lines (section 3.2.4) or from previous publications (Maier et al., 2008; Proellocks et al., 2014) demonstrated that the mere surface presentation of PfEMP1 does not guarantee its functional integrity, highlighting the necessity for functional validation.

Moreover, this work illuminates the complex landscape of PfEMP1 binding properties, which is currently obscured by a multitude of variables and complexities, such as cultures with mixed populations regarding PfEMP1 expression, specific PfEMP1s binding multiple receptors and the type of receptor binding assay used (section 1.3) (Andradi-Brown et al., 2024; Bachmann et al., 2022). Given this intricacy, there is an urgent need to refine binding assay methodologies, aiming for simplification and standardization to enhance reproducibility and comparability across studies.

Static binding assays, involving receptor-presenting mammalian cells, suffer from high variability due to fluctuations in receptor expression and cell confluency, leading to inconsistent parasite binding results which can be countered by increasing the replicates (images captured per experiment and experiments conducted) (Altman and Krzywinski, 2015). While binding assays under flow conditions (Gray et al., 2003) or in cell tissue models (Bernabeu et al., 2019) mimic more physiological environments, they introduce increased complexity and costs. These factors not only limit experimental throughput but also introduce additional variables that can reduce the coherence of results. Conversely, binding to immobilized receptors on plastic slips

(Janes et al., 2011) presents a more controlled experimental setup. However, this approach is hindered by the high cost and the limited availability for some recombinant proteins.

Effective management of human resources within research projects can significantly influence the overall costs incurred. Additionally, tasks characterized by repetition and monotony are particularly susceptible to human error (Liang et al., 2010) and can adversely affect the motivation of research teams (Staaby et al., 2021). In this context, the establishment of the automated pipeline revealed an average manual scoring time of 180 seconds per image (section 3.1.5). Consequently, the evaluation of the 3060 images required for this study would necessitate approximately 153 hours of human labor, amounting to close to 4 weeks work time assuming standard hours. Considering the salary for scientists in Germany under the TV-L E13 scale, which ranges from ~25 to 36€ per hour the costs for manually scoring the images alone would amount to between ~3500and 5500€ (depending on experience or researcher and whether PhD or postdoc). This underscores the economic and operational advantages of implementing automated processes in scientific research.

The advent of machine learning and its exponential integration into research methodologies have recently unlocked unprecedented opportunities for automation, particularly within the realm of bioimaging analysis. This field, though relatively nascent, has witnessed rapid expansion, fueled by the proliferation of advanced analytical tools now at our disposal (Meijering, 2020). In malaria research, numerous evaluation methods, from assessing drug effects to exploring the effect of genetic manipulations of the parasites, rely heavily on microscopic imaging to analyze organelle or parasites size, location and abundance of fluorescence-tagged proteins, morphology, and parasite stage (Birnbaum et al., 2020; Carmo et al., 2022; Elsworth et al., 2014; Kimmel et al., 2023; Klaus et al., 2022; Looker et al., 2019; Sabitzki et al., 2023). The automation of these evaluative processes offers a multitude of benefits. Firstly, automation can significantly mitigate biases inherent in manual assessments, streamline the time required for analysis, and reduce the financial burden associated with labor costs. Secondly, the consistency and accuracy of experimental evaluations are poised to improve, enhancing both the comparability and reproducibility of research outcomes. This is particularly true when automated analysis pipelines are made publicly accessible, allowing for standardized methodologies across the scientific community. In case of binding assays, the next step would be to eliminate manual imaging and capture a greater number of field of views per coverslip. Thereby the bias in capturing would be eliminated and additional human resources could be saved. However, the use of computer assisted evaluation of images possess some

dangers. Poor image quality or parasites health can affect the outcome. Hence, quality control steps should be in place, to ensure meaningful data is inputted and the pipeline performs as expected.

This study introduces a semi-automated pipeline for scoring PfEMP1 binding assays, enhancing the efficiency and accuracy of such analyses. It emphasizes the benefit of advocating for a simplification and standardization in binding assays, contributing to more precise and reproducible studies of malaria pathogenesis.

#### 4.1.3 3D7 IS NOT SUITABLE FOR BINDING STUDIES

Comparing the binding capacities of 3D7 and IT4 parasite strains revealed strain-specific differences in PfEMP1-mediated cytoadherence, validating the IT4 strain as a superior model for studying PfEMP1 functions. This was shown in the comparison of two PfEMP1 variants that were activated in 3D7 or IT4 which should have comparable binding properties in both cell lines as they contain, in case of *var2csa* identical and in the case of *IT4var66* and *3D7varUPSB6* very similar binding domains (Rask et al., 2010).

Yet, the only PfEMP1 variant fully suitable for comparison of the binding properties between parasite strains is VAR2CSA, as this is highly conserved across parasite isolates and is considered to specifically bind to CSA. However, there are reports about differences in the VAR2CSA of IT4 and 3D7 which can complicate the comparability (Sander et al., 2009). The binding assays against HBEC-5i and decorin showed significant binding of IT4var2csa-HA<sup>endo</sup> but only very low levels of binding for 3D7var2csa-HA<sup>endo</sup>. Even though the binding was specifically inhibited by the addition of sCSA in the assay, it is unclear what the HBEC-5i cell express on their surface. The interaction could, even though it is very unlikely, be due to unknown proteins or glycoproteins presented on the surface of the HBEC-5i cell. But considering the results of the binding assays against decorin, the interaction of the IT4var2csa-HA<sup>endo</sup> parasites can be considered as specific for CSA. The interaction to CSA was only present after selection of VAR2CSA expression through SLI and absent in the IT4 parent strain which corroborates the specificity of the interaction between the HA-tagged PfEMP1 and CSA.

The comparison of the CD36-binding PfEMP1s in 3D7 and IT4 are not as meaningful as the VAR2CSA binding, as the difference in binding efficacy could also be due to differences in sequences of the extracellular domains. *IT4var66* possesses a DBL $\alpha$ 0.19-CIDR $\alpha$ 2.1 head structure while *varUPSB6* harbors a DBL $\alpha$ 0.12-CIDR $\alpha$ 2.2 head structure (Rask et al., 2010).

Nevertheless, the significantly stronger interaction of IT4var66-HA<sup>endo</sup> with CD36 compared to 3D7varUPSB6-HA<sup>endo</sup> further supports the superior binding of IT4 parasites.

The trypsin assays revealed the presentation of the HA-tagged PfEMP1 on the erythrocytes surface for 3D7var2csa-HA<sup>endo</sup> and 3D7varUPSB6-HA<sup>endo</sup> (Figure 13D; Appendix B). Even though no conclusion can be made about the quantities of PfEMP1 molecules expressed on the erythrocyte surface from the trypsin assay, the intense bands for the protected fragment in the 3D7 samples indicate a considerable amount of PfEMP1 molecules on the surface. These results suggest that the mere presentation of PfEMP1 on the erythrocyte surface is insufficient for binding as for instance also observed in parasites carrying a disruption of the PHIST protein LyMP (Proellocks et al., 2014). Hence, additional factors, such as loss of expression or mutation of other proteins needed for functional PfEMP1 surface display, likely contribute to the inefficient cytoadherence observed in 3D7 parasites. This is reinforced by the significantly decrease in binding of the TryThrA-TGD-GFP and EMPIC3-TGD-GFP cell lines where the disruption did not abolish the presentation of PfEMP1, although it should be noted that in these cases it is unclear how much PfEMP1 is still on the surface and it might as well be a binding phenotype due to reduced transport of PfEMP1 to the erythrocyte surface (Figure 33D, Figure 35E, Appendix B) (section 4.2.2).

While the 3D7varUPSB6-HA<sup>endo</sup> parasites showed low but significant levels of binding, the binding of 3D7var2csa-HA<sup>endo</sup> parasites was barely detectable. Even though the binding assays are not comparable, a reason for the stronger binding of this cell lines compared to the 3D7var2csa-HA<sup>endo</sup> cell line could be that VAR2CSA (7 extracellular domains) is a relatively large PfEMP1 that might be more dependent on co-factors for correct folding or transport for efficient binding compared to the smaller *varUPSB6*-encoded PfEMP1 (4 extracellular domains) (section 4.1.4 and 4.1.5).

This evidence suggests that the 3D7 strain of *P. falciparum*, at least the version used in our lab, is unsuitable for assessing the binding properties of PfEMP1 variants and the impact of genetic knockouts on the parasite's cytoadherence capabilities. Many publications nevertheless were able to detect binding using 3D7 parasites (e.g. Batinovic et al., 2017; Takano et al., 2019). It is important to acknowledge, however, that the observed deficiencies in binding associated with the 3D7 strain in this study may not universally apply to all 3D7 strains utilized in different laboratories. Nevertheless, limitations of the 3D7 strain for studying cytoadherence have been previously speculated on, leading researchers to preferentially employ the IT4 or other strains

known for their cytoadherent properties (e.g. Bernabeu et al., 2019; Turner et al., 2013) or CS2 (e.g. Maier et al., 2008; Salanti et al., 2004) which up to now was the cell line most commonly used for PfEMP1 trafficking studies. The findings presented herein offer empirical evidence for using alternative strains to 3D7 to study PfEMP1-mediated cytoadherence.

## 4.1.4 SURFACE PRESENTATION AND BINDING OF HA-TAGGED PFEMP1 VARIANTS

The IT4 cell lines generated expressing PfEMP1 variants, possessing known domains for CD36, CD36-ICAM-1 or CSA binding (encoded by *IT4var01* (Blancke-Soares et al., 2021; Stäcker, 2021), *IT4var16*, *IT4var66*, *IT4var2csa* and chimeric *IT4var20/var27*) showed presentation and interaction with these receptors (chimeric *IT4var20/var27* not tested) immediately after the corresponding parasite cell lines were obtained . This shows that these cell lines can be valuable tools for the investigation of binding of PfEMP1 variants, especially of different PfEMP1 variants with identical binding partners. For the first time, these properties can be compared in un-panned cell lines, potentially revealing diverging affinities among PfEMP1 variants. However, it should also be noted that direct comparisons between different parasite cell lines might differ and the distribution of parasite stages between lines might not be fully comparable. One way to reduce variation could be to use similarly synchronized parasites and label cells coming from different PfEMP1 expressors with different fluorescent dyes (either using fluorescent agents or by additional genetic modification) and assess the binding together in the same binding assay.

However, the SLI cell lines IT4var02-HA<sup>endo</sup>, IT4var03-HA<sup>endo</sup>, IT4var08-HA<sup>endo</sup> and IT4var19-HA<sup>endo</sup> showed no or insignificant presentation of the HA-tagged PfEMP1 variants on the surface of the erythrocyte membrane. Furthermore, binding to the expected receptor was not detected for IT4var19-HA<sup>endo</sup>. Preliminary results also showed no binding of IT4var02-HA<sup>endo</sup>, IT4var03-HA<sup>endo</sup> and IT4var08-HA<sup>endo</sup> to an array of receptors although the binding partners for these PfEMP1s are unclear, and it is possible that these were not included in the testing (Brehmer, 2021). However, *IT4var02* was enriched on CD9 and P-selectin (Metwally et al., 2017) and did not show interaction to these receptors even though a very faint band corresponding to a protected fragment was detected in the trypsin assay. It is at present therefore

unclear whether these PfEMP1 were not sufficiently surface exposed, the correct receptor was not available or whether these PfEMP1 do not bind host cell receptors.

Upon initial examination, a difference between PfEMP1 variants that underwent activation and immediate surface presentation and those that failed to show surface presentation post-activation was observed in the number of extracellular domains and the *var* gene groups to which they belong. *IT4var02*, *IT4var08* and *IT4var19* possess 7 extracellular domains and belong to *var* gene group A or A/B while *IT4var01*, *IT4var16*, *IT4var66* and chimeric *IT4var20/var27* possess four or six extracellular domains and belong to group B or C. Exceptions were group A *var03*, which has two extracellular domains and group E *var2csa*, which contains 7 extracellular domains (Rask et al., 2010). Due to its unique binding property and conservation, *var2csa* may not be informative for this comparison of binding and non-binding PfEMP1s. Equally, this might also apply to *var3*, which is also semi-conserved across parasite strains and might encode a non-functional PfEMP1 variant.

Future research could elucidate the differential binding properties and the characteristics of dual binders, such as CD36-ICAM-1-binding of IT4var01-HA<sup>endo</sup> and IT4var16-HA<sup>endo</sup>, in depth. Preliminary results indicated that the PfEMP1 protein encoded by *var16* exhibits a higher affinity for ICAM-1, whereas PfEMP1 encoded by *IT4var01* demonstrates a greater affinity for CD36 (section 3.1.7.4) (Kieferle, 2023). The novel opportunity to systematically study these differences could be used to understand the molecular basis of receptor specificity and its implications for malaria pathogenesis. Moreover, domain cassettes can now be examined in their entirety, functionally presented on the surface of the erythrocyte membrane. Point mutations can be introduced either directly using the SLI-plasmid or through CRISPR, enabling identification of binding relevant protein regions.

Moreover, exploring the binding interactions of IT4var02-HA<sup>endo</sup>, IT4var03-HA<sup>endo</sup>, and IT4var08-HA<sup>endo</sup> could reveal previously unidentified ligands for PfEMP1, thereby expanding our understanding of the parasite-host interaction landscape. However, this could be problematic, as these cell lines might have to be panned to obtain surface presentation, which is impractical if the interacting receptor is unknown. This exploration could be further extended by developing new cell lines to investigate additional PfEMP1 variants with yet-to-be-determined binding partners. Such studies would not only advance our knowledge of PfEMP1's role in malaria's clinical manifestations.

## 4.1.5 IT4var19 contains an ICAM-1 binding domain

Intriguingly, after selection on G418, the IT4var19-HA<sup>endo</sup> did not demonstrate surface presentation of the HA-tagged PfEMP1 on erythrocytes, nor did it bind to CD36, ICAM-1, or its anticipated binding partner, EPCR (Murk, unpublished) even though predominant IT4var19 expression was confirmed. The successful presentation of IT4var19-encoded PfEMP1 on the surface following panning suggests that even in the unpanned parasite population, PfEMP1 was present on the surface in very small quantities. It remains to be elucidated whether this presentation was due to the majority of parasites presenting very low quantities of PfEMP1 or a minority displaying a significant number of molecules on the surface. This observation indicates that additional factors within the parasite may play a crucial role in the functional presentation of specific PfEMP1 variants, beyond the mere expression of the encoding var gene. Before and after panning IT4var19-HA<sup>endo</sup> parasites predominantly expressed IT4var19. However, not enough replicates were conducted to conclude whether IT4var19 is expressed in higher quantities in the panned cell line than in the unpanned one which might be a simple explanation for the surface presentation after panning although it seems unlikely that this could be the sole reason as IT4var19 expression and in both cases full length HA-tagged PfEMP1 was detected by Western blot. Another explanation could be that the PfEMP1 variant encoded by IT4var19 is a relatively large PfEMP1 with 7 extracellular domains, rather than 4-6 seen with most (Rask et al., 2010). Therefore, this variant could be more dependent on co-factors for its presentation than smaller PfEMP1s, which could be a reason for the insufficient presentation as discussed before (section 4.1.4). It is also possible that the need for panning is associated with particular binding property, for instance if EPCR-binding PfEMP1s require specific cofactors to reach the host cell surface.

The *IT4var19* gene has garnered significant attention in the field (e.g. Adams et al., 2021; Bernabeu et al., 2019; Gillrie et al., 2015; Sampath et al., 2015) as generation of cell lines with predominant *IT4var19* expression was achieved by selecting parasites on EPCR-expressing mammalian cells (Avril et al., 2012; Claessens et al., 2012) or antibodies targeting *IT4var19* (Nunes-Silva et al., 2015). However, it is unclear whether the *IT4var19* cell lines produced through these techniques possess additional, unidentified characteristics or atypical features potentially introduced during selection for binding or the subcloning process. Moreover, these cell lines do not solely express *IT4var19* and *var* gene expression is altered by switching over time (section 4.1.1). Interestingly, IT4var19-HA<sup>endo</sup> parasites showed binding to ICAM-1, in contrast to previous observations. However, it was shown that EPCR is likely not the only interaction of this PfEMP1 variant as inhibition of EPCR did not fully ablate IT4var19 binding (Adams et al., 2021; Avril et al., 2012; Nunes-Silva et al., 2015). AlphaFold predictions for the structure of *IT4var19*'s DBLβ12 domain revealed high similarities to the group B ICAM-1-binding DBLβ5 domains, particularly in the backbone structure, while the outward-facing exposed binding regions showed some differences. Given the polymorphism in these regions across ICAM-1binding domains from different var gene groups (Lennartz et al., 2019), these differences might be an evolutionary strategy of the parasites to evade the immune system and the DBL $\beta$ 12 domain displaying divergent ICAM-1 binding mechanisms. The parasites are under constant selective pressure from the human immune system, which could explain the necessity for diversity in exposed binding regions. Despite structural differences in regions critical for ICAM-1 binding, there might be compensatory mechanisms within the DBLB12 domain that allow for effective binding, highlighting the complexity of parasite-host interactions. The question of why the recombinant DBL\beta12 domain did not bind to immobilized ICAM-1 in experiments, and why previous IT4var19 cell lines did not show ICAM-1 binding, remains unclear. A reason for the non-binding of the recombinant DBL $\beta$ 12 domain could be that this domain is not correctly folded if expressed in bacteria as this is a common problem (Gasser et al., 2008). The non-binding of IT4var19-expressing cell lines obtained by panning could be due to non-comparability of binding assays with cell lines presenting receptors differently. In the future, the research could be narrowed down on the DBLB12 domain by introducing mutations in potential binding-sites and testing whether these affect the binding to ICAM-1.

In conclusion, the intricate interplay between PfEMP1 presentation, specifically the *IT4var19*encoded variant, and its binding capabilities underscores the complexity of malaria parasite biology and host interaction. The differences in PfEMP1 variant binding function, influenced by gene expression and potential other factors such as accessory proteins, highlight the critical need for further research to unravel the mechanisms governing these processes. Understanding these mechanisms will not only shed light on the malaria parasite's evasion strategies but also opens avenues for the development of targeted interventions (McLean et al., 2021; Reyes et al., 2024). Future studies focusing on the structural and functional aspects of PfEMP1, particularly through the exploration of the DBL $\beta$ 12 domain, promise to provide valuable insights into the parasite's adaptability and the potential for therapeutic targeting.

#### 4.1.6 **PFEMP1** IS LIKELY TRANSLOCATED VIA **PTEX**

Here it was demonstrated that obstructing the PTEX channel with a co-blocking construct, expressed late in the ring stage, resulted in the retention of HA-tagged PfEMP1 within the PV, alongside a reporter for the successful blocking of PTEX (section 3.1.4; Figure 15). Notably, the full export of REX1 in these parasites indicated that the block does not affect early exported proteins (Figure 15E). These findings suggest that PfEMP1 translocation to the host cell is mediated through the PTEX channel, suggesting there is no need for alternative pathways for PfEMP1 export and that such pathways most likely do not exist. Notably, it cannot be excluded that for PfEMP1 export additional structures like the potential EPIC complex are needed as well (Batinovic et al., 2017). Additionally, the use of SLI-activated PfEMP1 emerges as an effective approach to investigate the transport mechanisms of PfEMP1.

Previous studies showed the accumulation of PfEMP1 within the PV following the knockdown of essential PTEX components such as HSP101 or PTEX150 (Beck et al., 2014; Elsworth et al., 2014). Moreover, previous work in our lab showed that the retention of a HA-tagged PfEMP1 was observed when the PTEX channel was blocked with a SBP1-mDHFR-GFP constructs under the control of the early-expressed *mal7* promoter or the early endogenous SBP1 promotor (Naranjo Prado, 2020). Although these findings collectively support the hypothesis that PfEMP1 export relies on PTEX functionality, they do not definitively exclude the possibility that the export of other proteins, potentially crucial for PfEMP1 translocation, is unaffected. Furthermore, fusing PfEMP1 directly to mDHFR, did not prevent its export when the folding of the mDHFR domain was stabilized, which would speak against transport through PTEX. The approach employed here aimed to resolve these discrepancies. In order to address the limitation of also blocking PfEMP1 trafficking proteins, the crt promoter was used, which drives protein expression towards the end of the ring stage, directly after the beginning of PfEMP1 transcription. This timing leads to minimal PfEMP1 export prior to the activation of the PTEX-blocking construct, excluding the inhibition of proteins that are potentially essential for PfEMP1 translocation to the host cell. The partial block of PfEMP1, observed in numerous cells where the KAHRP-mScarlet block-reporter was retained (Appendix C), indicates that PfEMP1 is indeed capable of being translocated and that only the obstruction of the PTEX channel is preventing the export of PfEMP1.

Other studies on the export of PfEMP1 opted for episomal mini-PfEMP1 constructs (Batinovic et al., 2017; McMillan et al., 2013; Melcher et al., 2010). While this approach is comparably simple to implement, the mini-PfEMP1 is not expressed under its endogenous promotor

(potentially leading to differences in the phenotype due to unusual expression timing) and the mini-PfEMP1 is reduced to the NTS-, TM- and ATS-domain, sometimes additionally containing two extracellular binding domains, which has unknown consequences for its trafficking and functionality. For example, a significant amount of signal from the mini-PfEMP1s in IFAs were detected in the PV (McMillan et al., 2013) probably due to unnatural expression timing, failure of transport or degradation or processing of the GFP mini-PfEMP1 fusion protein. Despite these challenges, pull-down experiments with mini-PfEMP1 have identified all five components of the PTEX complex (Batinovic et al., 2017), reinforcing the role of the PTEX channel in PfEMP1 export.

Future experiments could focus on capturing BirA\*-tagged PfEMP1 within the PTEX channel and employing BioID to elucidate its translocation mechanism conclusively. The accumulated evidence, coupled with the findings presented here, indicate that PfEMP1 translocation occurs via the PTEX channel, without evidence of an alternative export mechanism.

This study demonstrates that the obstruction of the PTEX channel after the ring stage impedes the export of HA-tagged PfEMP1, while not affecting early-exported proteins such as REX1. The accumulated evidence, enhanced by the effective use of SLI-activated PfEMP1 and corroborated by previous studies, provides evidence for the PTEX channel as the pathway for PfEMP1 export. This conclusion might provide directions for future research to further elucidate the molecular mechanisms governing PfEMP1 transport.

# 4.2 PROXIOME OF PFEMP1

In this study, the proximal proteome of functional PfEMP1s within living *P. falciparum* parasites was captured (section 3.2.2). This achievement led to the identification of two proteins critical for PfEMP1's functionality on the host cell surface (section 4.2.2), rendering these cell lines valuable tools for future in-depth studies on PfEMP1 transport and surface presentation.

# 4.2.1 IS THE PROXIOME OF PFEMP1 ITS GLOBAL INTERACTOME?

The experiments in this thesis demonstrated that fusing the large BirA\* domain at three distinct positions of a PfEMP1 did not ablate the PfEMP1-mediated binding, indicating that PfEMP1 can accommodate larger tags, at least the *IT4var01*-encoded variant. This insight is particularly beneficial for tagging PfEMP1 at internal positions with other functional domains, enhancing the toolkit for future research. Notably, linkers as used in this work should be included as they potentially enable the successful tagging of functional PfEMP1s. The fusion of BirA\* at position 3 reduced the binding capacity to CD36 and ICAM-1, likely due to its placement in the extracellular domains, which can interfere with the integration or functional presentation of PfEMP1 in the erythrocyte membrane. Conversely, tags at position 1 and 2 were well tolerated, maintaining similar binding levels as IT4var01-HA<sup>endo</sup>, suggesting minimal impact on PfEMP1 functionality.

Previous approaches carried out pull downs to identify interactors of the above-mentioned mini-PfEMP1 (Batinovic et al., 2017). This revealed exported proteins such as SBP1, REX1, MAHRP1, MAHRP2 and PTP5 as well as PTEX components. The detection of the PTEX components could indicate a retention of a significant number of mini-PfEMP1 molecules in the PV as discussed before (section 4.1.6). Furthermore, the number of detected proteins was lower than in this thesis.

The mass spectrometry results of the PfEMP1 BioID experiments in this thesis yielded a high number of enriched proteins in the SDS-samples. In contrast, the triton-samples yielded only a sparse number of significantly enriched proteins compared to the SDS-samples, indicating that the majority of PfEMP1s interactors are tightly associated with poorly soluble structures or protein complexes. Noteworthy, the bait-PfEMP1 was detected in the triton-samples which could be due to high self biotinylation but also an indicator that PfEMP1 is not at all times in a strong association with Triton X-100 insoluble structures as shown before (Baruch et al., 1995; Kriek et al., 2003; Papakrivos et al., 2005).

An unresolved question pertains to whether the proteins biotinylated in the BioID cell lines truly represent the global interactome of PfEMP1, including the knobs and transport process. The small amounts of PfEMP1 molecules in the knobs (Sanchez et al., 2019) and the status of BirA\* function within the knobs could exclude the detection of interactors in that location. Additionally, the functional status of the fused BirA\* during transport remains unclear. It can not be categorically excluded that the conformation of PfEMP1 in the knobs or during transport hinders the functionality of BirA\*, potentially impacting the biotinylation process and, consequently, the identification of interacting knob or transport proteins.

Multiple aspects indicate the identification of proteins physiologically relevant for PfEMP1 in the obtained proteomes. Most importantly the significant difference of the proxiome detected here to the general Maurer's clefts proxiome (Blancke-Soares et al., 2021) (Figure 31B). For example, MAHRP2 was detected with all three PfEMP1 positions but was not detected in the general Maurer's clefts proteome (Blancke-Soares et al., 2021) nor in the interactome of SBP1 (Takano et al., 2019). MAHRP2 localizes to the tethers (Pachlatko et al., 2010), indicating that PfEMP1-BirA\* may have interacted with it during the transport to the erythrocyte membrane. The PfEMP1 containing vesicle-like have been reported to associate with the tethers (Carmo et al., 2022; Cyrklaff et al., 2012). Furthermore, the detection of PTEF, GEXP10 and multiple PHISTs (PfIT 120058000, PfIT 040006400; PfIT 130076100) that were shown to localize to the erythrocyte membrane suggests the biotinylation of PfEMP1s interactome, at least during transport to the knobs but maybe also at the erythrocyte surface (Figure 30B) (Birnbaum et al., 2017; Chan et al., 2017; Dantzler et al., 2019; Davies et al., 2016; Kilili et al., 2019; Tarr et al., 2014). If interactors at the knob were captured, then PfEMP1 does not directly interact with KAHRP as this was not enriched in any of the PfEMP1-BirA\* samples. This finding is reinforced by the stronger affinity of the ATS domain to PHIST proteins (Mayer et al., 2012) and the enrichment of more PHIST proteins in position 1 compared to position 2 or 3 (see below). However, other studies indicated that the ATS domain interacts with KAHRP (Crabb et al., 1997). Additionally, previous studies detected PfEMP1 as an proximal protein of PTP4 while it was enriched significantly less in the proxiome of KAHRP (Davies et al., 2023). Notably, the cytoadherent relevant PHIST protein LyMP (Oberli et al., 2016; Proellocks et al., 2014) and PF3D7 0424600 (Maier et al., 2008) were not significantly enriched indicating that these do not directly interact with PfEMP1 or that the PHIST interaction is variant-specific as hypothesized (Warncke et al., 2016). These findings suggest a mediator between KAHRP and PfEMP1, likely PHISTs, anchoring PfEMP1 in the knobs.

The detection of multiple PTPs and exported proteins with unknown function in the proxiome presented here that were absent in the general Maurer's clefts proteomes indicate that PfEMP1-specific hits with a role in PfEMP1 transport were captured. Notably, GEXP18 and HSP70x were enriched that previously were identified as proteins of the J-Dots of which HSP70x was associated with PfEMP1 transport (Külzer et al., 2012, 2010; Petersen et al., 2016; Zhang et al., 2017). Additionally, EMPIC5-Ty1's localization in puncta in the host cell resembling J-Dot or K-Dots (Kats et al., 2014; Külzer et al., 2010) proteins only sporadically overlapping with the Maurer's clefts (Figure 37B) which was also reported in other work for this protein (Jonsdottir et al., 2021) suggest J-Dot or K-Dot localization of this interactor. Furthermore, this pattern of localization was reported for other exported proteins (Schulze et al., 2015). Therefore, the PfEMP1 BirA\*-fusion constructs likely biotinylated proteins during its transport process.

Comparing the enriched proteins of the three BioID cell lines shows many similarities, with most proteins detected in all three positions with comparable enrichment values. The major difference is the enrichment of PHIST proteins in position 1 (not enriched position 2 or 3) (see above). This similarity indicates that PfEMP1 is not transported as an integral membrane protein as in that case - due to its location on the other side of the membrane - position 3 would yield a more differing proxiome to position 1 and 2. This agrees with the idea of non-membrane embedded transport of PfEMP1, which was hypothesized before (Batinovic et al., 2017; Grüring et al., 2012; Külzer et al., 2012; Marti and Spielmann, 2013; Papakrivos et al., 2005; Petersen et al., 2016).

Further investigation is required to elucidate these aspects, potentially involving targeted approaches to selectively enhance the biotinylation within the knobs or to subtract the interactome of a PfEMP1 retained in the Maurer's clefts achieved by the knockout of proteins important for the transport to the knobs, e.g. PTP7 (Carmo et al., 2022). Nevertheless, the data strongly indicate the detection of a global PfEMP1 interactome.

Additionally, cell lines for two alternative systems for profiling the PfEMP1 proxiome were generated, with FKBP or miniTurbo domains fused to PfEMP1 in positions 1 and 2. However, the functionality and presentation of these tagged-PfEMP1s remain to be assessed. No recruitment of biotinylizers in the DiQ-BioID cell lines was detectable, as evidenced by microscopy (Figure 29). One possibility is that the observed foci represent a proportion of aggregated protein which perhaps could result from mis-folding of the biotinylizer within the host cell cytosol, although FKBP-FRB based dimerization has previously been demonstrated

in that compartment (Oberli et al., 2016)In contrast, the miniTurbo-tagged cell lines could be promising tools for capturing time-resolved proxiomes of PfEMP1 - due significantly faster labelling time compare to BirA\* - such as before and after its surface presentation or export to the host cell.

The here provided PfEMP1 proxiomes pave the way for future research into the transport and presentation mechanisms of PfEMP1. Future studies could focus on elucidating the interactome of PfEMP1-BirA\* variants with impeded transport, aiming to delineate the precise sequential steps required for the effective presentation of PfEMP1 and identifying the proteins needed for each of these steps. Moreover, it is essential to validate and refine the use of miniTurbo cell lines as a research tool, given their potential for rapid biotinylation, which could significantly enhance our understanding of the temporal dynamics involved in PfEMP1 transport and presentation processes.

# 4.2.2 IDENTIFICATION OF PFEMP1 INTERACTORS RELEVANT FOR CYTOADHERENCE

Here two new proteins were discovered that show an effect on PfEMP1-mediated cytoadherence. Their disruption in IT4var01-BirA\*Pos1<sup>endo</sup> led to significantly reduced binding to CD36 and ICAM-1. Additionally, PTP1 and PTP7 were disrupted and showed similar PfEMP1 presentation and cytoadherence phenotypes to previous reports (Carmo et al., 2022; Maier et al., 2008; Rug et al., 2014). These findings show that SLI2 is a robust method to introduce a second endogenous modification to a SLI-modified cell line, indicating its feasibility for these kinds of investigations as shown before in work from our lab that led up to this thesis (Blancke-Soares et al., 2021; Naranjo Prado, 2020; Stäcker, 2021).

SLI2 also aided in the localization of five proteins from the PfEMP1 interactome. The localization of PTEF and PeMP2 was concurrent with the previous observed localization (Birnbaum et al., 2017; Blancke-Soares et al., 2021; Chan et al., 2017) but PTEFs localization in the nucleus (Chan et al., 2017) was not observed. TryThrA and EMPIC3 showed localization in the Maurer's cleft with additional localization in foci in the host cell suggesting two different locations. In previous studies episomal GFP-tagged TryThrA and EMPIC3 was only detected at the Maurer's clefts (Heiber et al., 2013). Furthermore, both candidates showed a donut-shape localization surrounding the HA-tagged PfEMP1 in some cells (Figure 33B and Figure 35B), this might indicate attaching of these proteins to the periphery of the clefts. How this influences

transport is unclear. For one thing, it could affect the state of the clefts if they are gone, thereby indirectly affecting PfEMP1 transport. Alternatively, they could work as tethering factor or are needed to bind PfEMP1 at the periphery to traffic it further. Previous, work in 3D7 only showed localization of the episomal TryThrA-GFP at the Maurer's clefts with low intensity (Heiber et al., 2013) and a retention of it the parasite periphery in ring stages while trophozoites showed export (Blancke-Soares et al., 2021; Stäcker, 2021). This could be explained by the higher sensitivity of immunofluorescence assays and the compromised folding of the GFP-tag in the host cell, impairment of transport due to the GFP tag or due to overexpression (Heiber et al., 2013) or the different parasite strain used.

EMPIC5 showed an interesting localization in the host cell with only very limited overlap with the Maurer's clefts, potentially indicative of J-Dots or K-Dots (see above) (Kats et al., 2014; Külzer et al., 2010). Given the interaction with PfEMP1, EMPIC5 might be important for the transport of PfEMP1 and other exported proteins to the Maurer's clefts or the erythrocyte membrane. However, as a TGD cell line was not successfully generated, this at present remains speculative. One reason for the failure to obtain this parasite line could be that EMPIC5 is essential for the parasite's survival. However, this would be unlikely if EMPIC5 is needed for PfEMP1 transport only. Rather this were the case if its disruptions influenced the transport of PSAC components. Further work is needed to clarify the function of EMPIC5 and to validate it as a hit in the PfEMP1 proxiome that is of relevance for cytoadherence.

For the evaluation of the effect of interaction candidates on the surface presentation and function of PfEMP1, five candidates were disrupted using SLI2. The disruption of PeMP2 and PTEF did not affect surface presentation or cytoadherence. It was previously postulated that PTEF has an effect on VAR2CSA translation (Chan et al., 2017). Even though the data shown here does not contrast this, its disruption did not seem to noticeably influence the translation of the *IT4var01* encoded PfEMP1 variant. It is possible that the previously postulated effect on translation is specific for VAR2CSA. Interestingly, PeMP2 which is in a complex that is involved in anchoring the Maurer's clefts does not influence the PfEMP1 function, similarly to other components of that complex such as PIESP2, Pf332 or MSRP6 (Blancke-Soares et al., 2021; Stäcker, 2021). It is possible that these proteins influence PfEMP1 variants that show a more problematic surface presentation like the variant that is encoded by *IT4var19* (section 3.1.7.5).

TryThrA's knockout was previously shown to have no effect on cytoadherence or Maurer's clefts structure (Takano et al., 2019) which contradicts the findings in this thesis. The data here showed that while surface presentation of PfEMP1 was not ablated (at least not fully), the disruption led to a significant reduction in PfEMP1-mediated binding to CD36 and ICAM-1. These contradicting findings might be due to the use of the 3D7 cell line (section 3.1.6) or the method used to generate the knockout cell line in Takano et al. (2019). It can at present also not be excluded that the TryThrA-TGD-GFP line in this work did not accumulate a different defect. Hence, a complementation to restore binding is a key experiment for the future. Interestingly, recent findings showed that the knockout of IPIS3, the ortholog of TryThrA in the rodent malaria parasite *P. berghei*, reduces their cytoadherent properties (Gabelich et al., 2022). Even though *P. berghei* does not confer PfEMP1-mediated cytoadherence, the inherent mechanism for the transport of virulence factors seems to be conserved across *Plasmodium* species (De Niz et al., 2016). This suggests that TryThrA may be an important protein for Maurer's clefts structure and functional PfEMP1 presentation in different malaria species.

The disruption of EMPIC3 did not ablate HA-tagged PfEMP1 presentation but significantly reduced the parasites cytoadherent capacities. It is possible that only few PfEMP1 molecules reach the host cells surface in the TryThrA-TGD-GFP and EMPIC3-TGD-GFP that confer the low binding observed in binding assays (Figure 39A, B), as the trypsin assay is not a quantitative method. Notably, EMPIC3-TGD-GFP parasites did not show a phenotype in SBP1 and HA-tagged PfEMP1 localization like the TryThrA-TGD-GFP parasites. This is reminiscent of many MC resident PfEMP1 trafficking proteins that do not alter Maurer's clefts structure upon ablation but still affect PfEMP1 trafficking (Cooke et al., 2006; Maier et al., 2008, 2007). Furthermore, EMPIC3 was detected in PerTurboID experiments with KAHRP, PTP4 and FIKK4.1 Furthermore, while KAHRP does not influence static cytoadherence (Crabb et al., 1997; Rug et al., 2006) (section 4.2.1), PTP4 and FIKK4.1 (with FIKK4.2 the only FIKK kinase known to do so), influence cytoadherence (Davies et al., 2023, 2020; Kats et al., 2014; Maier et al., 2008). These findings underscore EMPIC3 interaction with proteins relevant for cytoadherence. However, this could also indicate that EMPIC3 is abundant in the host cell in high quantities and therefore enriched in these studies. The results indicate that EMPIC3 is relevant for PfEMP1-mediated cytoadherence. However, same possibilities as for the TryThrA-TGD-GFP line apply for the EMPIC3-TGD-GFP line, therefore a complementation is mandatory to corroborate that EMPIC3 is truly relevant for cytoadherence.

In summary, the results further corroborated the versatility of SLI to study PfEMP1 and unveiled that PTEF and PeMP2 are not needed in PfEMP1 transport and function. More intriguingly, the assays have brought the roles of TryThrA and EMPIC3 in cytoadherence into focus. While TryThrA and EMPIC3 were already identified as Maurer's clefts proteins and TryThrA as an interactor of Maurer's clefts proteins (Blancke-Soares et al., 2021; Heiber et al., 2013; Takano et al., 2019), EMPIC3 was never connected to cytoadherence before. These proteins have now emerged as further elements in the complex cytoadherence mechanism. Further work will be needed to understand their specific function in PfEMP1 transport and surface display.

# 4.3 CONCLUSION

Despite PfEMP1 and *var* genes being in the limelight of malaria research for over two decades, progress the illumination of PfEMP1 transport and host cell receptor interactions has been limited. The challenges posed by the fact that PfEMP1s are encoded by a diverse, rapidly switching multi-gene family, along with its large size, have significantly impeded its study. The methodologies established in this study improves our ability to investigate the cell biology of these proteins (Figure 40).

Here it was shown that cell lines can be generated with SLI that predominantly express a targeted *var* gene, enabling detailed studies on *var* gene expression, silencing mechanisms, and switching patterns (Figure 40A). For the first time, it is now possible to compare PfEMP1 variants with similar binding characteristics in cell lines not selected for binding, which will aid our understanding of their potential impact on virulence (Figure 40E). Additionally, the development of a semi-automated pipeline for binding assay evaluation offers a less biased and more efficient approach to analyzing binding properties of specific PfEMP1 variants.

These cell lines have also proven valuable for tracking the transport of PfEMP1, supporting the hypothesis that PfEMP1 translocation is mediated via the PTEX channel - a conclusion that aligns with previous research findings (Figure 40B).


**Figure 40: Exploring key processes in cytoadherence using SLI-activated** *var* **gene cell lines.** Illustration showing the applications for cell lines with SLI-activated *var* genes. (A) Variant surface antigen expression and silencing. (B) PfEMP1 export. (C) Identification of the proxiome of PfEMP1. (D) Characterization of proteins influencing PfEMP1 presentation. (E) PfEMP1 binding. VSA: variant surface antigen; N: nucleus; P: parasite; PV: paraitophorous vacuole; iE: infected erythrocyte; MC: Maurer's clefts; S: human serum; EC: endothelial cells.

The discovery of PfEMP1's interactome marks a significant breakthrough, which will aid in understanding the complex processes occurring within the host cell that facilitate PfEMP1 transport and surface presentation which so far is only poorly understood (Figure 40C). Among these findings is the identification of previously uncharacterized proteins now linked to cytoadherence, which was aided by SLI2 (Figure 40D) opening up new avenues for research Furthermore, this validates the feasibility of SLI2 for introducing a second endogenous modification in cell lines already harboring a SLI modification.

## REFERENCES

- Abkarian, M., Massiera, G., Berry, L., Roques, M., Braun-Breton, C., 2011. A novel mechanism for egress of malarial parasites from red blood cells. Blood 117, 4118–4124. https://doi.org/10.1182/blood-2010-08-299883
- Achan, J., Talisuna, A.O., Erhart, A., Yeka, A., Tibenderana, J.K., Baliraine, F.N., Rosenthal, P.J., D'Alessandro, U., 2011. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J. 10, 144. https://doi.org/10.1186/1475-2875-10-144
- Acharya, P., Chaubey, S., Grover, M., Tatu, U., 2012. An Exported Heat Shock Protein 40 Associates with Pathogenesis-Related Knobs in Plasmodium falciparum Infected Erythrocytes. PLoS ONE 7, e44605. https://doi.org/10.1371/journal.pone.0044605
- Adams, Y., Olsen, R.W., Bengtsson, A., Dalgaard, N., Zdioruk, M., Satpathi, S., Behera, P.K., Sahu, P.K., Lawler, S.E., Qvortrup, K., Wassmer, S.C., Jensen, A.T.R., 2021.
  Plasmodium falciparum erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood-brain barrier in cerebral malaria. J. Exp. Med. 218, e20201266. https://doi.org/10.1084/jem.20201266
- Adisa, A., Rug, M., Klonis, N., Foley, M., Cowman, A.F., Tilley, L., 2003. The signal sequence of exported protein-1 directs the green fluorescent protein to the parasitophorous vacuole of transfected malaria parasites. J. Biol. Chem. 278, 6532–6542. https://doi.org/10.1074/jbc.M207039200
- Aikawa, M., Hepler, P.K., Huff, C.G., Sprinz, H., 1966. The feeding mechanism of avian malarial parasites. J. Cell Biol. 28, 355–373. https://doi.org/10.1083/jcb.28.2.355
- Aikawa, M., Miller, L.H., Rabbege, J., 1975. Caveola--vesicle complexes in the plasmalemma of erythrocytes infected by Plasmodium vivax and P cynomolgi. Unique structures related to Schüffner's dots. Am. J. Pathol. 79, 285–300.
- Aikawa, M., Miller, L.H., Rabbege, J.R., Epstein, N., 1981. Freeze-fracture study on the erythrocyte membrane during malarial parasite invasion. J. Cell Biol. 91, 55–62. https://doi.org/10.1083/jcb.91.1.55
- Alano, P., 2007. Plasmodium falciparum gametocytes: still many secrets of a hidden life. Mol. Microbiol. 66, 291–302. https://doi.org/10.1111/j.1365-2958.2007.05904.x
- Alkhalil, A., Cohn, J.V., Wagner, M.A., Cabrera, J.S., Rajapandi, T., Desai, S.A., 2004. Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. Blood 104, 4279–4286. https://doi.org/10.1182/blood-2004-05-2047
- Altman, N., Krzywinski, M., 2015. Points of significance: Sources of variation. Nat. Methods 12, 5–6. https://doi.org/10.1038/nmeth.3224
- Aly, A.S.I., Vaughan, A.M., Kappe, S.H.I., 2009. Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol. 63, 195–221. https://doi.org/10.1146/annurev.micro.091208.073403
- Amino, R., Thiberge, S., Shorte, S., Frischknecht, F., Ménard, R., 2006. Quantitative imaging of Plasmodium sporozoites in the mammalian host. C. R. Biol. 329, 858–862. https://doi.org/10.1016/j.crvi.2006.04.003
- Amulic, B., Salanti, A., Lavstsen, T., Nielsen, M.A., Deitsch, K.W., 2009. An Upstream Open Reading Frame Controls Translation of var2csa, a Gene Implicated in Placental Malaria. PLoS Pathog. 5. https://doi.org/10.1371/journal.ppat.1000256
- Andradi-Brown, C., Wichers-Misterek, J.S., von Thien, H., Höppner, Y.D., Scholz, J.A.M., Hansson, H., Filtenborg Hocke, E., Gilberger, T.W., Duffy, M.F., Lavstsen, T., Baum, J., Otto, T.D., Cunnington, A.J., Bachmann, A., 2024. A novel computational pipeline for var gene expression augments the discovery of changes in the Plasmodium

falciparum transcriptome during transition from in vivo to short-term in vitro culture. eLife 12, RP87726. https://doi.org/10.7554/eLife.87726

- Ashley, E.A., White, N.J., 2014. The duration of Plasmodium falciparum infections. Malar. J. 13, 500. https://doi.org/10.1186/1475-2875-13-500
- Atkinson, C.T., Aikawa, M., Perry, G., Fujino, T., Bennett, V., Davidson, E.A., Howard, R.J., 1988. Ultrastructural localization of erythrocyte cytoskeletal and integral membrane proteins in Plasmodium falciparum-infected erythrocytes. Eur. J. Cell Biol. 45, 192– 199.
- Atkinson, C.T., Aikawa, M., Rock, E.P., Marsh, K., Andrysiak, P.M., Campbell, G.H., Collins, W.E., Howard, R.J., 1987. Ultrastructure of the erythrocytic stages of Plasmodium malariae. J. Protozool. 34, 267–274. https://doi.org/10.1111/j.1550-7408.1987.tb03173.x
- Avril, M., Bernabeu, M., Benjamin, M., Brazier, A.J., Smith, J.D., 2016. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells. mBio 7, e00615-16. https://doi.org/10.1128/mBio.00615-16
- Avril, M., Gamain, B., Lépolard, C., Viaud, N., Scherf, A., Gysin, J., 2006. Characterization of anti-var2CSA-PfEMP1 cytoadhesion inhibitory mouse monoclonal antibodies. Microbes Infect. 8, 2863–2871. https://doi.org/10.1016/j.micinf.2006.09.005
- Avril, M., Tripathi, A.K., Brazier, A.J., Andisi, C., Janes, J.H., Soma, V.L., Sullivan, D.J., Bull, P.C., Stins, M.F., Smith, J.D., 2012. A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 109, E1782-1790. https://doi.org/10.1073/pnas.1120534109
- Azasi, Y., Lindergard, G., Ghumra, A., Mu, J., Miller, L.H., Rowe, J.A., 2018. Infected erythrocytes expressing DC13 PfEMP1 differ from recombinant proteins in EPCRbinding function. Proc. Natl. Acad. Sci. 115, 1063–1068. https://doi.org/10.1073/pnas.1712879115
- Bachmann, A., Bruske, E., Krumkamp, R., Turner, L., Wichers, J.S., Petter, M., Held, J., Duffy, M.F., Sim, B.K.L., Hoffman, S.L., Kremsner, P.G., Lell, B., Lavstsen, T., Frank, M., Mordmüller, B., Tannich, E., 2019. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog. 15, e1007906. https://doi.org/10.1371/journal.ppat.1007906
- Bachmann, A., Esser, C., Petter, M., Predehl, S., von Kalckreuth, V., Schmiedel, S., Bruchhaus, I., Tannich, E., 2009. Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient. PloS One 4, e7459. https://doi.org/10.1371/journal.pone.0007459
- Bachmann, A., Metwally, N.G., Allweier, J., Cronshagen, J., Del Pilar Martinez Tauler, M., Murk, A., Roth, L.K., Torabi, H., Wu, Y., Gutsmann, T., Bruchhaus, I., 2022. CD36-A Host Receptor Necessary for Malaria Parasites to Establish and Maintain Infection. Microorganisms 10, 2356. https://doi.org/10.3390/microorganisms10122356
- Bachmann, A., Petter, M., Krumkamp, R., Esen, M., Held, J., Scholz, J.A.M., Li, T., Sim, B.K.L., Hoffman, S.L., Kremsner, P.G., Mordmüller, B., Duffy, M.F., Tannich, E., 2016. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections. PLoS Pathog. 12, e1005538. https://doi.org/10.1371/journal.ppat.1005538
- Bachmann, A., Predehl, S., May, J., Harder, S., Burchard, G.D., Gilberger, T.-W., Tannich, E., Bruchhaus, I., 2011. Highly co-ordinated var gene expression and switching in clinical Plasmodium falciparum isolates from non-immune malaria patients. Cell. Microbiol. 13, 1397–1409. https://doi.org/10.1111/j.1462-5822.2011.01629.x

- Baer, K., Klotz, C., Kappe, S.H.I., Schnieder, T., Frevert, U., 2007. Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathog. 3, e171. https://doi.org/10.1371/journal.ppat.0030171
- Bakri, R., Rehan, M., Shamshad, H., Hafiz, A., 2021. Computational Insights into the Interaction between Cytoadherence Receptor gC1qR and the DBLβ12 Domain of a Plasmodium falciparum PfEMP1 Ligand. Life Basel Switz. 11, 993. https://doi.org/10.3390/life11090993
- Banerjee, R., Liu, J., Beatty, W., Pelosof, L., Klemba, M., Goldberg, D.E., 2002. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc. Natl. Acad. Sci. U. S. A. 99, 990–995. https://doi.org/10.1073/pnas.022630099
- Bannister, L.H., Dluzewski, A.R., 1990. The ultrastructure of red cell invasion in malaria infections: a review. Blood Cells 16, 257–292; discussion 293-297.
- Bannister, L.H., Hopkins, J.M., Dluzewski, A.R., Margos, G., Williams, I.T., Blackman, M.J., Kocken, C.H., Thomas, A.W., Mitchell, G.H., 2003. Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J. Cell Sci. 116, 3825–3834. https://doi.org/10.1242/jcs.00665
- Bannister, L.H., Hopkins, J.M., Fowler, R.E., Krishna, S., Mitchell, G.H., 2000. Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic schizonts. Parasitology 121 (Pt 3), 273–287. https://doi.org/10.1017/s0031182099006320
- Barry, A.E., Leliwa-Sytek, A., Tavul, L., Imrie, H., Migot-Nabias, F., Brown, S.M., McVean, G.A.V., Day, K.P., 2007. Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum. PLoS Pathog. 3, e34. https://doi.org/10.1371/journal.ppat.0030034
- Bartoloni, A., Zammarchi, L., 2012. Clinical Aspects of Uncomplicated and Severe Malaria. Mediterr. J. Hematol. Infect. Dis. 4, e2012026. https://doi.org/10.4084/MJHID.2012.026
- Baruch, D.I., Gormely, J.A., Ma, C., Howard, R.J., Pasloske, B.L., 1996. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. U. S. A. 93, 3497–3502. https://doi.org/10.1073/pnas.93.8.3497
- Baruch, D.I., Pasloske, B.L., Singh, H.B., Bi, X., Ma, X.C., Feldman, M., Taraschi, T.F., Howard, R.J., 1995. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 77–87. https://doi.org/10.1016/0092-8674(95)90054-3
- Batinovic, S., McHugh, E., Chisholm, S.A., Matthews, K., Liu, B., Dumont, L., Charnaud, S.C., Schneider, M.P., Gilson, P.R., de Koning-Ward, T.F., Dixon, M.W.A., Tilley, L., 2017. An exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes. Nat. Commun. 8, 16044. https://doi.org/10.1038/ncomms16044
- Beck, J.R., Ho, C.-M., 2021. Transport mechanisms at the malaria parasite-host cell interface. PLOS Pathog. 17, e1009394. https://doi.org/10.1371/journal.ppat.1009394
- Beck, J.R., Muralidharan, V., Oksman, A., Goldberg, D.E., 2014. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 511, 592– 595. https://doi.org/10.1038/nature13574
- Bengtsson, A., Joergensen, L., Rask, T.S., Olsen, R.W., Andersen, M.A., Turner, L., Theander, T.G., Hviid, L., Higgins, M.K., Craig, A., Brown, A., Jensen, A.T.R., 2013. A Novel Domain Cassette Identifies Plasmodium falciparum PfEMP1 Proteins Binding ICAM-

1 and Is a Target of Cross-Reactive, Adhesion-Inhibitory Antibodies. J. Immunol. Author Choice 190, 240–249. https://doi.org/10.4049/jimmunol.1202578

- Berg, S., Kutra, D., Kroeger, T., Straehle, C.N., Kausler, B.X., Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K., Cervantes, J.I., Xu, B., Beuttenmueller, F., Wolny, A., Zhang, C., Koethe, U., Hamprecht, F.A., Kreshuk, A., 2019. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232. https://doi.org/10.1038/s41592-019-0582-9
- Bernabeu, M., Gunnarsson, C., Vishnyakova, M., Howard, C.C., Nagao, R.J., Avril, M., Taylor, T.E., Seydel, K.B., Zheng, Y., Smith, J.D., 2019. Binding Heterogeneity of Plasmodium falciparum to Engineered 3D Brain Microvessels Is Mediated by EPCR and ICAM-1. mBio 10, e00420-19. https://doi.org/10.1128/mBio.00420-19
- Besteiro, S., Dubremetz, J.-F., Lebrun, M., 2011. The moving junction of apicomplexan parasites: a key structure for invasion. Cell. Microbiol. 13, 797–805. https://doi.org/10.1111/j.1462-5822.2011.01597.x
- Beyer, K., Kracht, S., Kehrer, J., Singer, M., Klug, D., Frischknecht, F., 2021. Limited Plasmodium sporozoite gliding motility in the absence of TRAP family adhesins. Malar. J. 20, 430. https://doi.org/10.1186/s12936-021-03960-3
- Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B., Brinkmann, V., 2004. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117, 503–514. https://doi.org/10.1016/s0092-8674(04)00449-0
- Birnbaum, J., Flemming, S., Reichard, N., Soares, A.B., Mesén-Ramírez, P., Jonscher, E., Bergmann, B., Spielmann, T., 2017. A genetic system to study Plasmodium falciparum protein function. Nat. Methods 14, 450–456. https://doi.org/10.1038/nmeth.4223
- Birnbaum, J., Scharf, S., Schmidt, S., Jonscher, E., Hoeijmakers, W.A.M., Flemming, S., Toenhake, C.G., Schmitt, M., Sabitzki, R., Bergmann, B., Fröhlke, U., Mesén-Ramírez, P., Blancke Soares, A., Herrmann, H., Bártfai, R., Spielmann, T., 2020. A Kelch13defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 367, 51–59. https://doi.org/10.1126/science.aax4735
- Bisio, H., Lunghi, M., Brochet, M., Soldati-Favre, D., 2019. Phosphatidic acid governs natural egress in Toxoplasma gondii via a guanylate cyclase receptor platform. Nat. Microbiol. 4, 420–428. https://doi.org/10.1038/s41564-018-0339-8
- Biswas, A.K., Hafiz, A., Banerjee, B., Kim, K.S., Datta, K., Chitnis, C.E., 2007. Plasmodium falciparum Uses gC1qR/HABP1/p32 as a Receptor to Bind to Vascular Endothelium and for Platelet-Mediated Clumping. PLOS Pathog. 3, e130. https://doi.org/10.1371/journal.ppat.0030130
- Blackman, M.J., Carruthers, V.B., 2013. Recent insights into apicomplexan parasite egress provide new views to a kill. Curr. Opin. Microbiol. 16, 459–464. https://doi.org/10.1016/j.mib.2013.04.008
- Blancke-Soares, A., Stäcker, J., Schwald, S., Hoijmakers, W., Metwally, N.G., Schoeler, H., Flemming, S., Höhn, K., Fröhlke, U., Mesén-Ramírez, P., Bergmann, B., Khosh-Naucke, M., Bruchhaus, I., Bártfai, R., Spielmann, T., 2021. An unusual trafficking domain in MSRP6 defines a complex needed for Maurer's clefts anchoring and maintenance in P. falciparum infected red blood cells. https://doi.org/10.1101/2021.12.03.471078
- Boddey, J.A., Carvalho, T.G., Hodder, A.N., Sargeant, T.J., Sleebs, B.E., Marapana, D., Lopaticki, S., Nebl, T., Cowman, A.F., 2013. Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome. Traffic Cph. Den. 14, 532–550. https://doi.org/10.1111/tra.12053

- Boddey, J.A., Cowman, A.F., 2013. Plasmodium nesting: remaking the erythrocyte from the inside out. Annu. Rev. Microbiol. 67, 243–269. https://doi.org/10.1146/annurev-micro-092412-155730
- Boltryk, S.D., Passecker, A., Alder, A., Carrington, E., van de Vegte-Bolmer, M., van Gemert, G.-J., van der Starre, A., Beck, H.-P., Sauerwein, R.W., Kooij, T.W.A., Brancucci, N.M.B., Proellochs, N.I., Gilberger, T.-W., Voss, T.S., 2021. CRISPR/Cas9-engineered inducible gametocyte producer lines as a valuable tool for Plasmodium falciparum malaria transmission research. Nat. Commun. 12, 4806. https://doi.org/10.1038/s41467-021-24954-4
- Bopp, S.E.R., Manary, M.J., Bright, A.T., Johnston, G.L., Dharia, N.V., Luna, F.L., McCormack, S., Plouffe, D., McNamara, C.W., Walker, J.R., Fidock, D.A., Denchi, E.L., Winzeler, E.A., 2013. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 9, e1003293. https://doi.org/10.1371/journal.pgen.1003293
- Bradley, J., Soumaré, H.M., Mahamar, A., Diawara, H., Roh, M., Delves, M., Drakeley, C., Churcher, T.S., Dicko, A., Gosling, R., Bousema, T., 2019. Transmission-blocking Effects of Primaquine and Methylene Blue Suggest Plasmodium falciparum Gametocyte Sterilization Rather Than Effects on Sex Ratio. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 69, 1436–1439. https://doi.org/10.1093/cid/ciz134
- Brancucci, N.M.B., Bertschi, N.L., Zhu, L., Niederwieser, I., Chin, W.H., Wampfler, R., Freymond, C., Rottmann, M., Felger, I., Bozdech, Z., Voss, T.S., 2014. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16, 165–176. https://doi.org/10.1016/j.chom.2014.07.004
- Brancucci, N.M.B., Gerdt, J.P., Wang, C., De Niz, M., Philip, N., Adapa, S.R., Zhang, M., Hitz, E., Niederwieser, I., Boltryk, S.D., Laffitte, M.-C., Clark, M.A., Grüring, C., Ravel, D., Blancke Soares, A., Demas, A., Bopp, S., Rubio-Ruiz, B., Conejo-Garcia, A., Wirth, D.F., Gendaszewska-Darmach, E., Duraisingh, M.T., Adams, J.H., Voss, T.S., Waters, A.P., Jiang, R.H.Y., Clardy, J., Marti, M., 2017. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum. Cell 171, 1532-1544.e15. https://doi.org/10.1016/j.cell.2017.10.020
- Branon, T.C., Bosch, J.A., Sanchez, A.D., Udeshi, N.D., Svinkina, T., Carr, S.A., Feldman, J.L., Perrimon, N., Ting, A.Y., 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887. https://doi.org/10.1038/nbt.4201
- Bray, R.S., 1958. Studies on malaria in chimpanzees. VI. Laverania falciparum. Am. J. Trop. Med. Hyg. 7, 20–24. https://doi.org/10.4269/ajtmh.1958.7.20
- Brehmer, J., 2021. Analyse der Bindungseigenschaften zwischen P. falciparum infizierten Erythrozyten und verschiedenen Endothelrezeptoren (Dissertation). University of Hamburg.
- Buffet, P.A., Gamain, B., Scheidig, C., Baruch, D., Smith, J.D., Hernandez-Rivas, R., Pouvelle, B., Oishi, S., Fujii, N., Fusai, T., Parzy, D., Miller, L.H., Gysin, J., Scherf, A., 1999.
  Plasmodium falciparum domain mediating adhesion to chondroitin sulfate A: a receptor for human placental infection. Proc. Natl. Acad. Sci. U. S. A. 96, 12743–12748. https://doi.org/10.1073/pnas.96.22.12743
- Bull, P.C., Lowe, B.S., Kortok, M., Molyneux, C.S., Newbold, C.I., Marsh, K., 1998. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat. Med. 4, 358–360. https://doi.org/10.1038/nm0398-358
- Bull, P.C., Marsh, K., 2002. The role of antibodies to Plasmodium falciparum-infectederythrocyte surface antigens in naturally acquired immunity to malaria. Trends Microbiol. 10, 55–58. https://doi.org/10.1016/s0966-842x(01)02278-8

- Bullen, H.E., Charnaud, S.C., Kalanon, M., Riglar, D.T., Dekiwadia, C., Kangwanrangsan, N., Torii, M., Tsuboi, T., Baum, J., Ralph, S.A., Cowman, A.F., de Koning-Ward, T.F., Crabb, B.S., Gilson, P.R., 2012. Biosynthesis, localization, and macromolecular arrangement of the Plasmodium falciparum translocon of exported proteins (PTEX). J. Biol. Chem. 287, 7871–7884. https://doi.org/10.1074/jbc.M111.328591
- Cabral, F.J., Vianna, L.G., Medeiros, M.M., Carlos, B.C., Martha, R.D., Silva, N.M., da Silva, L.H.P., Stabeli, R.G., Wunderlich, G., 2017. Immunoproteomics of Plasmodium falciparum-infected red blood cell membrane fractions. Mem. Inst. Oswaldo Cruz 112, 850–856. https://doi.org/10.1590/0074-02760170041
- Carmo, O.M.S., Shami, G.J., Cox, D., Liu, B., Blanch, A.J., Tiash, S., Tilley, L., Dixon, M.W.A., 2022. Deletion of the Plasmodium falciparum exported protein PTP7 leads to Maurer's clefts vesiculation, host cell remodeling defects, and loss of surface presentation of EMP1. PLOS Pathog. 18, e1009882. https://doi.org/10.1371/journal.ppat.1009882
- Chan, S., Frasch, A., Mandava, C.S., Ch'ng, J.-H., Quintana, M.D.P., Vesterlund, M., Ghorbal, M., Joannin, N., Franzén, O., Lopez-Rubio, J.-J., Barbieri, S., Lanzavecchia, A., Sanyal, S., Wahlgren, M., 2017. Regulation of PfEMP1-VAR2CSA translation by a Plasmodium translation-enhancing factor. Nat. Microbiol. 2, 17068. https://doi.org/10.1038/nmicrobiol.2017.68
- Chang, H.H., Falick, A.M., Carlton, P.M., Sedat, J.W., DeRisi, J.L., Marletta, M.A., 2008. Nterminal processing of proteins exported by malaria parasites. Mol. Biochem. Parasitol. 160, 107–115. https://doi.org/10.1016/j.molbiopara.2008.04.011
- Charnaud, S.C., Dixon, M.W.A., Nie, C.Q., Chappell, L., Sanders, P.R., Nebl, T., Hanssen, E., Berriman, M., Chan, J.-A., Blanch, A.J., Beeson, J.G., Rayner, J.C., Przyborski, J.M., Tilley, L., Crabb, B.S., Gilson, P.R., 2017. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites. PLoS ONE 12, e0181656. https://doi.org/10.1371/journal.pone.0181656
- Chisholm, S.A., McHugh, E., Lundie, R., Dixon, M.W.A., Ghosh, S., O'Keefe, M., Tilley, L., Kalanon, M., de Koning-Ward, T.F., 2016. Contrasting Inducible Knockdown of the Auxiliary PTEX Component PTEX88 in P. falciparum and P. berghei Unmasks a Role in Parasite Virulence. PloS One 11, e0149296. https://doi.org/10.1371/journal.pone.0149296
- Claessens, A., Adams, Y., Ghumra, A., Lindergard, G., Buchan, C.C., Andisi, C., Bull, P.C., Mok, S., Gupta, A.P., Wang, C.W., Turner, L., Arman, M., Raza, A., Bozdech, Z., Rowe, J.A., 2012. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 109, E1772–E1781. https://doi.org/10.1073/pnas.1120461109
- Claessens, A., Hamilton, W.L., Kekre, M., Otto, T.D., Faizullabhoy, A., Rayner, J.C., Kwiatkowski, D., 2014. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLoS Genet. 10, e1004812. https://doi.org/10.1371/journal.pgen.1004812
- Cohn, J.V., Alkhalil, A., Wagner, M.A., Rajapandi, T., Desai, S.A., 2003. Extracellular lysines on the plasmodial surface anion channel involved in Na+ exclusion. Mol. Biochem. Parasitol. 132, 27–34. https://doi.org/10.1016/j.molbiopara.2003.08.001
- Collins, C.R., Hackett, F., Atid, J., Tan, M.S.Y., Blackman, M.J., 2017. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLOS Pathog. 13, e1006453. https://doi.org/10.1371/journal.ppat.1006453
- Cooke, B.M., Buckingham, D.W., Glenister, F.K., Fernandez, K.M., Bannister, L.H., Marti, M., Mohandas, N., Coppel, R.L., 2006. A Maurer's cleft–associated protein is essential

for expression of the major malaria virulence antigen on the surface of infected red blood cells. J. Cell Biol. 172, 899–908. https://doi.org/10.1083/jcb.200509122

- Cooke, B.M., Rogerson, S.J., Brown, G.V., Coppel, R.L., 1996. Adhesion of Malaria-Infected Red Blood Cells to Chondroitin Sulfate A Under Flow Conditions. Blood 88, 4040– 4044. https://doi.org/10.1182/blood.V88.10.4040.bloodjournal88104040
- Counihan, N.A., Chisholm, S.A., Bullen, H.E., Srivastava, A., Sanders, P.R., Jonsdottir, T.K., Weiss, G.E., Ghosh, S., Crabb, B.S., Creek, D.J., Gilson, P.R., de Koning-Ward, T.F., 2017. Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. eLife 6, e23217. https://doi.org/10.7554/eLife.23217
- Cowman, A.F., Tonkin, C.J., Tham, W.-H., Duraisingh, M.T., 2017. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe 22, 232–245. https://doi.org/10.1016/j.chom.2017.07.003
- Cox, F.E., 2010. History of the discovery of the malaria parasites and their vectors. Parasit. Vectors 3, 5. https://doi.org/10.1186/1756-3305-3-5
- Cox, J., Mann, M., 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. https://doi.org/10.1038/nbt.1511
- Crabb, B.S., Cooke, B.M., Reeder, J.C., Waller, R.F., Caruana, S.R., Davern, K.M., Wickham, M.E., Brown, G.V., Coppel, R.L., Cowman, A.F., 1997. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89, 287–296. https://doi.org/10.1016/s0092-8674(00)80207-x
- Craig, A.G., Grau, G.E., Janse, C., Kazura, J.W., Milner, D., Barnwell, J.W., Turner, G., Langhorne, J., Malaria", on behalf of the participants of the H.R. meeting on "Animal M. for R. on S., 2012. The Role of Animal Models for Research on Severe Malaria. PLOS Pathog. 8, e1002401. https://doi.org/10.1371/journal.ppat.1002401
- Cranston, H.A., Boylan, C.W., Carroll, G.L., Sutera, S.P., Williamson, J.R., Gluzman, I.Y., Krogstad, D.J., 1984. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223, 400–403. https://doi.org/10.1126/science.6362007
- Cronshagen, J., 2020. Screening and characterization of the main integral membrane proteins in the parasitophorous vacuole membrane of Plasmodium falciparum (Master thesis). University of Hamburg.
- Cui, Y., Ma, L., 2018. Sequential use of milk and bovine serum albumin for streptavidin-probed western blot. BioTechniques 65, 125–126. https://doi.org/10.2144/btn-2018-0006
- Cyrklaff, M., Sanchez, C.P., Frischknecht, F., Lanzer, M., 2012. Host actin remodeling and protection from malaria by hemoglobinopathies. Trends Parasitol. 28, 479–485. https://doi.org/10.1016/j.pt.2012.08.003
- Cyrklaff, M., Sanchez, C.P., Kilian, N., Bisseye, C., Simpore, J., Frischknecht, F., Lanzer, M., 2011. Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparuminfected erythrocytes. Science 334, 1283–1286. https://doi.org/10.1126/science.1213775
- Dahl, E.L., Shock, J.L., Shenai, B.R., Gut, J., DeRisi, J.L., Rosenthal, P.J., 2006. Tetracyclines Specifically Target the Apicoplast of the Malaria Parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 50, 3124–3131. https://doi.org/10.1128/AAC.00394-06
- Dahlbäck, M., Jørgensen, L.M., Nielsen, M.A., Clausen, T.M., Ditlev, S.B., Resende, M., Pinto, V.V., Arnot, D.E., Theander, T.G., Salanti, A., 2011. The Chondroitin Sulfate Abinding Site of the VAR2CSA Protein Involves Multiple N-terminal Domains. J. Biol. Chem. 286, 15908–15917. https://doi.org/10.1074/jbc.M110.191510

- Dantzler, K.W., Ma, S., Ngotho, P., Stone, W.J.R., Tao, D., Rijpma, S., De Niz, M., Nilsson Bark, S.K., Jore, M.M., Raaijmakers, T.K., Early, A.M., Ubaida-Mohien, C., Lemgruber, L., Campo, J.J., Teng, A.A., Le, T.Q., Walker, C.L., Hermand, P., Deterre, P., Davies, D.H., Felgner, P., Morlais, I., Wirth, D.F., Neafsey, D.E., Dinglasan, R.R., Laufer, M., Huttenhower, C., Seydel, K., Taylor, T., Bousema, T., Marti, M., 2019. Naturally acquired immunity against immature Plasmodium falciparum gametocytes. Sci. Transl. Med. 11, eaav3963. https://doi.org/10.1126/scitranslmed.aav3963
- Davies, H., Belda, H., Broncel, M., Dalimot, J., Treeck, M., 2023. PerTurboID, a targeted in situ method reveals the impact of kinase deletion on its local protein environment in the cytoadhesion complex of malaria-causing parasites. eLife 12, e86367. https://doi.org/10.7554/eLife.86367
- Davies, H., Belda, H., Broncel, M., Ye, X., Bisson, C., Introini, V., Dorin-Semblat, D., Semblat, J.-P., Tibúrcio, M., Gamain, B., Kaforou, M., Treeck, M., 2020. An Exported Kinase Family Mediates Species-Specific Erythrocyte Remodelling and Virulence in Human Malaria. Nat. Microbiol. 5, 848–863. https://doi.org/10.1038/s41564-020-0702-4
- Davies, H.M., Thalassinos, K., Osborne, A.R., 2016. Expansion of Lysine-rich Repeats in Plasmodium Proteins Generates Novel Localization Sequences That Target the Periphery of the Host Erythrocyte. J. Biol. Chem. 291, 26188–26207. https://doi.org/10.1074/jbc.M116.761213
- de Koning-Ward, T.F., Gilson, P.R., Boddey, J.A., Rug, M., Smith, B.J., Papenfuss, A.T., Sanders, P.R., Lundie, R.J., Maier, A.G., Cowman, A.F., Crabb, B.S., 2009. A newly discovered protein export machine in malaria parasites. Nature 459, 945–949. https://doi.org/10.1038/nature08104
- De Niz, M., Burda, P.-C., Kaiser, G., Del Portillo, H.A., Spielmann, T., Frischknecht, F., Heussler, V.T., 2017. Progress in imaging methods: insights gained into Plasmodium biology. Nat. Rev. Microbiol. 15, 37–54. https://doi.org/10.1038/nrmicro.2016.158
- De Niz, M., Ullrich, A.-K., Heiber, A., Blancke Soares, A., Pick, C., Lyck, R., Keller, D., Kaiser, G., Prado, M., Flemming, S., Del Portillo, H., Janse, C.J., Heussler, V., Spielmann, T., 2016. The machinery underlying malaria parasite virulence is conserved between rodent and human malaria parasites. Nat. Commun. 7, 11659. https://doi.org/10.1038/ncomms11659
- Dearnley, M.K., Yeoman, J.A., Hanssen, E., Kenny, S., Turnbull, L., Whitchurch, C.B., Tilley, L., Dixon, M.W.A., 2012. Origin, composition, organization and function of the inner membrane complex of Plasmodium falciparum gametocytes. J. Cell Sci. 125, 2053– 2063. https://doi.org/10.1242/jcs.099002
- Deitsch, K.W., Dzikowski, R., 2017. Variant Gene Expression and Antigenic Variation by Malaria Parasites. Annu. Rev. Microbiol. 71, 625–641. https://doi.org/10.1146/annurev-micro-090816-093841
- Delves, M.J., Straschil, U., Ruecker, A., Miguel-Blanco, C., Marques, S., Dufour, A.C., Baum, J., Sinden, R.E., 2016. Routine in vitro culture of P. falciparum gametocytes to evaluate novel transmission-blocking interventions. Nat. Protoc. 11, 1668–1680. https://doi.org/10.1038/nprot.2016.096
- Desai, S.A., 2014. Why do malaria parasites increase host erythrocyte permeability? Trends Parasitol. 30, 151–159. https://doi.org/10.1016/j.pt.2014.01.003
- Desai, S.A., Bezrukov, S.M., Zimmerberg, J., 2000. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 406, 1001–1005. https://doi.org/10.1038/35023000
- Desai, S.A., Krogstad, D.J., McCleskey, E.W., 1993. A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature 362, 643–646. https://doi.org/10.1038/362643a0

- Desai, S.A., Rosenberg, R.L., 1997. Pore size of the malaria parasite's nutrient channel. Proc. Natl. Acad. Sci. U. S. A. 94, 2045–2049.
- Dhangadamajhi, G., Kar, S.K., Ranjit, M., 2010. The Survival Strategies of Malaria Parasite in the Red Blood Cell and Host Cell Polymorphisms. Malar. Res. Treat. 2010, 973094. https://doi.org/10.4061/2010/973094
- Diehl, M., Roling, L., Rohland, L., Weber, S., Cyrklaff, M., Sanchez, C.P., Beretta, C.A., Simon, C.S., Guizetti, J., Hahn, J., Schulz, N., Mayer, M.P., Przyborski, J.M., 2021. Cochaperone involvement in knob biogenesis implicates host-derived chaperones in malaria virulence. PLoS Pathog. 17, e1009969. https://doi.org/10.1371/journal.ppat.1009969
- Dietz, O., Rusch, S., Brand, F., Mundwiler-Pachlatko, E., Gaida, A., Voss, T., Beck, H.-P., 2014. Characterization of the Small Exported Plasmodium falciparum Membrane Protein SEMP1. PLoS ONE 9, e103272. https://doi.org/10.1371/journal.pone.0103272
- Dimonte, S., Bruske, E.I., Enderes, C., Otto, T.D., Turner, L., Kremsner, P., Frank, M., 2020. Identification of a conserved var gene in different Plasmodium falciparum strains. Malar. J. 19, 194. https://doi.org/10.1186/s12936-020-03257-x
- Dixon, M.W.A., Hawthorne, P.L., Spielmann, T., Anderson, K.L., Trenholme, K.R., Gardiner, D.L., 2008. Targeting of the ring exported protein 1 to the Maurer's clefts is mediated by a two-phase process. Traffic Cph. Den. 9, 1316–1326. https://doi.org/10.1111/j.1600-0854.2008.00768.x
- Dixon, M.W.A., Kenny, S., McMillan, P.J., Hanssen, E., Trenholme, K.R., Gardiner, D.L., Tilley, L., 2011. Genetic ablation of a Maurer's cleft protein prevents assembly of the Plasmodium falciparum virulence complex. Mol. Microbiol. 81, 982–993. https://doi.org/10.1111/j.1365-2958.2011.07740.x
- Dluzewski, A.R., Fryer, P.R., Griffiths, S., Wilson, R.J., Gratzer, W.B., 1989. Red cell membrane protein distribution during malarial invasion. J. Cell Sci. 92 (Pt 4), 691–699. https://doi.org/10.1242/jcs.92.4.691
- Dluzewski, A.R., Mitchell, G.H., Fryer, P.R., Griffiths, S., Wilson, R.J., Gratzer, W.B., 1992. Origins of the parasitophorous vacuole membrane of the malaria parasite, Plasmodium falciparum, in human red blood cells. J. Cell Sci. 102 (Pt 3), 527–532. https://doi.org/10.1242/jcs.102.3.527
- Dobrowolski, J.M., Sibley, L.D., 1996. Toxoplasma Invasion of Mammalian Cells Is Powered by the Actin Cytoskeleton of the Parasite. Cell 84, 933–939. https://doi.org/10.1016/S0092-8674(00)81071-5
- Dondorp, A.M., Nosten, F., Yi, P., Das, D., Phyo, A.P., Tarning, J., Lwin, K.M., Ariey, F., Hanpithakpong, W., Lee, S.J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S.S., Yeung, S., Singhasivanon, P., Day, N.P.J., Lindegardh, N., Socheat, D., White, N.J., 2009. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467. https://doi.org/10.1056/NEJMoa0808859
- Duffy, M.F., Byrne, T.J., Elliott, S.R., Wilson, D.W., Rogerson, S.J., Beeson, J.G., Noviyanti, R., Brown, G.V., 2005. Broad analysis reveals a consistent pattern of var gene transcription in Plasmodium falciparum repeatedly selected for a defined adhesion phenotype. Mol. Microbiol. 56, 774–788. https://doi.org/10.1111/j.1365-2958.2005.04577.x
- Dvorak, J.A., Miller, L.H., Whitehouse, W.C., Shiroishi, T., 1975. Invasion of erythrocytes by malaria merozoites. Science 187, 748–750. https://doi.org/10.1126/science.803712
- Ehlgen, F., Pham, J.S., Koning-Ward, T. de, Cowman, A.F., Ralph, S.A., 2012. Investigation of the Plasmodium falciparum Food Vacuole through Inducible Expression of the Chloroquine Resistance Transporter (PfCRT). PLOS ONE 7, e38781. https://doi.org/10.1371/journal.pone.0038781

- Eilers, M., Schatz, G., 1986. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322, 228–232. https://doi.org/10.1038/322228a0
- Eksi, S., Morahan, B.J., Haile, Y., Furuya, T., Jiang, H., Ali, O., Xu, H., Kiattibutr, K., Suri, A., Czesny, B., Adeyemo, A., Myers, T.G., Sattabongkot, J., Su, X., Williamson, K.C., 2012. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS Pathog. 8, e1002964. https://doi.org/10.1371/journal.ppat.1002964
- Elford, B.C., Haynes, J.D., Chulay, J.D., Wilson, R.J., 1985. Selective stage-specific changes in the permeability to small hydrophilic solutes of human erythrocytes infected with Plasmodium falciparum. Mol. Biochem. Parasitol. 16, 43–60. https://doi.org/10.1016/0166-6851(85)90048-9
- Elliott, S.R., Duffy, M.F., Byrne, T.J., Beeson, J.G., Mann, E.J., Wilson, D.W., Rogerson, S.J., Brown, G.V., 2005. Cross-reactive surface epitopes on chondroitin sulfate A-adherent Plasmodium falciparum-infected erythrocytes are associated with transcription of var2csa. Infect. Immun. 73, 2848–2856. https://doi.org/10.1128/IAI.73.5.2848-2856.2005
- Elsworth, B., Matthews, K., Nie, C.Q., Kalanon, M., Charnaud, S.C., Sanders, P.R., Chisholm, S.A., Counihan, N.A., Shaw, P.J., Pino, P., Chan, J.-A., Azevedo, M.F., Rogerson, S.J., Beeson, J.G., Crabb, B.S., Gilson, P.R., de Koning-Ward, T.F., 2014. PTEX is an essential nexus for protein export in malaria parasites. Nature 511, 587–591. https://doi.org/10.1038/nature13555
- Elsworth, B., Sanders, P.R., Nebl, T., Batinovic, S., Kalanon, M., Nie, C.Q., Charnaud, S.C., Bullen, H.E., de Koning Ward, T.F., Tilley, L., Crabb, B.S., Gilson, P.R., 2016. Proteomic analysis reveals novel proteins associated with the Plasmodium protein exporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150. Cell. Microbiol. 18, 1551–1569. https://doi.org/10.1111/cmi.12596
- Escalante, A.A., Cepeda, A.S., Pacheco, M.A., 2022. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar. J. 21, 139. https://doi.org/10.1186/s12936-022-04130-9
- Farrell, A., Thirugnanam, S., Lorestani, A., Dvorin, J.D., Eidell, K.P., Ferguson, D.J.P., Anderson-White, B.R., Duraisingh, M.T., Marth, G.T., Gubbels, M.-J., 2012. A DOC2 protein identified by mutational profiling is essential for apicomplexan parasite exocytosis. Science 335, 218–221. https://doi.org/10.1126/science.1210829
- Fast, N.M., Kissinger, J.C., Roos, D.S., Keeling, P.J., 2001. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18, 418–426. https://doi.org/10.1093/oxfordjournals.molbev.a003818
- Fastman, Y., Noble, R., Recker, M., Dzikowski, R., 2012. Erasing the epigenetic memory and beginning to switch--the onset of antigenic switching of var genes in Plasmodium falciparum. PloS One 7, e34168. https://doi.org/10.1371/journal.pone.0034168
- Ferreira, J.L., Heincke, D., Wichers, J.S., Liffner, B., Wilson, D.W., Gilberger, T.-W., 2021. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front. Cell. Infect. Microbiol. 10, 611801. https://doi.org/10.3389/fcimb.2020.611801
- Fidock, D.A., Bottius, E., Brahimi, K., Moelans, I.I., Aikawa, M., Konings, R.N., Certa, U., Olafsson, P., Kaidoh, T., Asavanich, A., 1994. Cloning and characterization of a novel Plasmodium falciparum sporozoite surface antigen, STARP. Mol. Biochem. Parasitol. 64, 219–232. https://doi.org/10.1016/0166-6851(94)00012-3
- Fierro, M.A., Muheljic, A., Sha, J., Wohlschlegel, J.A., Beck, J.R., 2023. PEXEL is a proteolytic maturation site for both exported and non-exported Plasmodium proteins.

BioRxiv Prepr. Serv. Biol. 2023.07.12.548774. https://doi.org/10.1101/2023.07.12.548774

- Filarsky, M., Fraschka, S.A., Niederwieser, I., Brancucci, N.M.B., Carrington, E., Carrió, E., Moes, S., Jenoe, P., Bártfai, R., Voss, T.S., 2018. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science 359, 1259– 1263. https://doi.org/10.1126/science.aan6042
- Flammersfeld, A., Lang, C., Flieger, A., Pradel, G., 2018. Phospholipases during membrane dynamics in malaria parasites. Int. J. Med. Microbiol. IJMM 308, 129–141. https://doi.org/10.1016/j.ijmm.2017.09.015
- Florens, L., Liu, X., Wang, Y., Yang, S., Schwartz, O., Peglar, M., Carucci, D.J., Yates, J.R., Wu, Y., 2004. Proteomics approach reveals novel proteins on the surface of malariainfected erythrocytes. Mol. Biochem. Parasitol. 135, 1–11. https://doi.org/10.1016/j.molbiopara.2003.12.007
- Foth, B.J., Zhang, N., Chaal, B.K., Sze, S.K., Preiser, P.R., Bozdech, Z., 2011. Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics MCP 10, M110.006411. https://doi.org/10.1074/mcp.M110.006411
- Francis, S.E., Banerjee, R., Goldberg, D.E., 1997. Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II. J. Biol. Chem. 272, 14961–14968. https://doi.org/10.1074/jbc.272.23.14961
- Freitas-Junior, L.H., Bottius, E., Pirrit, L.A., Deitsch, K.W., Scheidig, C., Guinet, F., Nehrbass, U., Wellems, T.E., Scherf, A., 2000. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407, 1018–1022. https://doi.org/10.1038/35039531
- Frénal, K., Dubremetz, J.-F., Lebrun, M., Soldati-Favre, D., 2017. Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol. 15, 645–660. https://doi.org/10.1038/nrmicro.2017.86
- Fréville, A., Ressurreição, M., van Ooij, C., 2024. Identification of a non-exported Plasmepsin V substrate that functions in the parasitophorous vacuole of malaria parasites. mBio 15, e0122323. https://doi.org/10.1128/mbio.01223-23
- Fried, M., Duffy, P.E., 1996. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272, 1502–1504. https://doi.org/10.1126/science.272.5267.1502
- Gabelich, J.-A., Grützke, J., Kirscht, F., Popp, O., Matz, J.M., Dittmar, G., Rug, M., Ingmundson, A., 2022. A member of the tryptophan-rich protein family is required for efficient sequestration of Plasmodium berghei schizonts. PLoS Pathog. 18, e1010846. https://doi.org/10.1371/journal.ppat.1010846
- Gabriela, M., Matthews, K.M., Boshoven, C., Kouskousis, B., Jonsdottir, T.K., Bullen, H.E., Modak, J., Steer, D.L., Sleebs, B.E., Crabb, B.S., Koning-Ward, T.F. de, Gilson, P.R., 2022. A revised mechanism for how Plasmodium falciparum recruits and exports proteins into its erythrocytic host cell. PLOS Pathog. 18, e1009977. https://doi.org/10.1371/journal.ppat.1009977
- Gamain, B., Trimnell, A.R., Scheidig, C., Scherf, A., Miller, L.H., Smith, J.D., 2005. Identification of multiple chondroitin sulfate A (CSA)-binding domains in the var2CSA gene transcribed in CSA-binding parasites. J. Infect. Dis. 191, 1010–1013. https://doi.org/10.1086/428137
- Gardner, J.P., Pinches, R.A., Roberts, D.J., Newbold, C.I., 1996. Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A. 93, 3503–3508. https://doi.org/10.1073/pnas.93.8.3503

- Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., Carlton, J.M., Pain, A., Nelson, K.E., Bowman, S., Paulsen, I.T., James, K., Eisen, J.A., Rutherford, K., Salzberg, S.L., Craig, A., Kyes, S., Chan, M.-S., Nene, V., Shallom, S.J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M.W., Vaidya, A.B., Martin, D.M.A., Fairlamb, A.H., Fraunholz, M.J., Roos, D.S., Ralph, S.A., McFadden, G.I., Cummings, L.M., Subramanian, G.M., Mungall, C., Venter, J.C., Carucci, D.J., Hoffman, S.L., Newbold, C., Davis, R.W., Fraser, C.M., Barrell, B., 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511. https://doi.org/10.1038/nature01097
- Garoff, H., Ansorge, W., 1981. Improvements of DNA sequencing gels. Anal. Biochem. 115, 450–457. https://doi.org/10.1016/0003-2697(81)90031-2
- Garten, M., Nasamu, A.S., Niles, J.C., Zimmerberg, J., Goldberg, D.E., Beck, J.R., 2018. EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX. Nat. Microbiol. 3, 1090–1098. https://doi.org/10.1038/s41564-018-0222-7
- Gaskins, E., Gilk, S., DeVore, N., Mann, T., Ward, G., Beckers, C., 2004. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J. Cell Biol. 165, 383– 393. https://doi.org/10.1083/jcb.200311137
- Gasser, B., Saloheimo, M., Rinas, U., Dragosits, M., Rodríguez-Carmona, E., Baumann, K., Giuliani, M., Parrilli, E., Branduardi, P., Lang, C., Porro, D., Ferrer, P., Tutino, M.L., Mattanovich, D., Villaverde, A., 2008. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb. Cell Factories 7, 11. https://doi.org/10.1186/1475-2859-7-11
- Gehde, N., Hinrichs, C., Montilla, I., Charpian, S., Lingelbach, K., Przyborski, J.M., 2009. Protein unfolding is an essential requirement for transport across the parasitophorous vacuolar membrane of Plasmodium falciparum. Mol. Microbiol. 71, 613–628. https://doi.org/10.1111/j.1365-2958.2008.06552.x
- Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Hutchison, C.A., Smith, H.O., 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345. https://doi.org/10.1038/nmeth.1318
- Gillrie, M.R., Avril, M., Brazier, A.J., Davis, S.P., Stins, M.F., Smith, J.D., Ho, M., 2015. Diverse functional outcomes of Plasmodium falciparum ligation of EPCR: potential implications for malarial pathogenesis. Cell. Microbiol. 17, 1883–1899. https://doi.org/10.1111/cmi.12479
- Gilson, P.R., Crabb, B.S., 2009. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int. J. Parasitol. 39, 91–96. https://doi.org/10.1016/j.ijpara.2008.09.007
- Ginsburg, H., Kutner, S., Krugliak, M., Cabantchik, Z.I., 1985. Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Mol. Biochem. Parasitol. 14, 313–322. https://doi.org/10.1016/0166-6851(85)90059-3
- Glenister, F.K., Coppel, R.L., Cowman, A.F., Mohandas, N., Cooke, B.M., 2002. Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 99, 1060–1063. https://doi.org/10.1182/blood.v99.3.1060
- Goel, S., Palmkvist, M., Moll, K., Joannin, N., Lara, P., Akhouri, R.R., Moradi, N., Öjemalm, K., Westman, M., Angeletti, D., Kjellin, H., Lehtiö, J., Blixt, O., Ideström, L., Gahmberg, C.G., Storry, J.R., Hult, A.K., Olsson, M.L., von Heijne, G., Nilsson, I., Wahlgren, M., 2015. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat. Med. 21, 314–317. https://doi.org/10.1038/nm.3812

- Goldberg, D.E., Slater, A.F., Beavis, R., Chait, B., Cerami, A., Henderson, G.B., 1991. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. J. Exp. Med. 173, 961–969. https://doi.org/10.1084/jem.173.4.961
- Goldberg, D.E., Slater, A.F., Cerami, A., Henderson, G.B., 1990. Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. Proc. Natl. Acad. Sci. U. S. A. 87, 2931–2935. https://doi.org/10.1073/pnas.87.8.2931
- Goldberg, D.E., Zimmerberg, J., 2020. Hardly Vacuous: The Parasitophorous Vacuolar Membrane of Malaria Parasites. Trends Parasitol. 36, 138–146. https://doi.org/10.1016/j.pt.2019.11.006
- Goodyer, I.D., Johnson, J., Eisenthal, R., Hayes, D.J., 1994. Purification of mature-stage Plasmodium falciparum by gelatine flotation. Ann. Trop. Med. Parasitol. 88, 209–211. https://doi.org/10.1080/00034983.1994.11812859
- Gray, C., McCormick, C., Turner, G., Craig, A., 2003. ICAM-1 can play a major role in mediating P. falciparum adhesion to endothelium under flow. Mol. Biochem. Parasitol. 128, 187–193. https://doi.org/10.1016/s0166-6851(03)00075-6
- Gruenberg, J., Allred, D.R., Sherman, I.W., 1983. Scanning electron microscope-analysis of the protrusions (knobs) present on the surface of Plasmodium falciparum-infected erythrocytes. J. Cell Biol. 97, 795–802. https://doi.org/10.1083/jcb.97.3.795
- Grüring, C., Heiber, A., Kruse, F., Flemming, S., Franci, G., Colombo, S.F., Fasana, E., Schoeler, H., Borgese, N., Stunnenberg, H.G., Przyborski, J.M., Gilberger, T.-W., Spielmann, T., 2012. Uncovering Common Principles in Protein Export of Malaria Parasites. Cell Host Microbe 12, 717–729. https://doi.org/10.1016/j.chom.2012.09.010
- Grüring, C., Heiber, A., Kruse, F., Ungefehr, J., Gilberger, T.-W., Spielmann, T., 2011. Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat. Commun. 2, 165. https://doi.org/10.1038/ncomms1169
- Grüring, C., Spielmann, T., 2012. Imaging of live malaria blood stage parasites. Methods Enzymol. 506, 81–92. https://doi.org/10.1016/B978-0-12-391856-7.00029-9
- Guérin, A., Corrales, R.M., Parker, M.L., Lamarque, M.H., Jacot, D., El Hajj, H., Soldati-Favre, D., Boulanger, M.J., Lebrun, M., 2017. Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nat. Microbiol. 2, 1358–1366. https://doi.org/10.1038/s41564-017-0018-1
- Gupta, A., Bokhari, A.A.B., Pillai, A.D., Crater, A.K., Gezelle, J., Saggu, G., Nasamu, A.S., Ganesan, S.M., Niles, J.C., Desai, S.A., 2020. Complex nutrient channel phenotypes despite Mendelian inheritance in a Plasmodium falciparum genetic cross. PLOS Pathog. 16, e1008363. https://doi.org/10.1371/journal.ppat.1008363
- Guttery, D.S., Poulin, B., Ferguson, D.J.P., Szöőr, B., Wickstead, B., Carroll, P.L., Ramakrishnan, C., Brady, D., Patzewitz, E.-M., Straschil, U., Solyakov, L., Green, J.L., Sinden, R.E., Tobin, A.B., Holder, A.A., Tewari, R., 2012. A Unique Protein Phosphatase with Kelch-Like Domains (PPKL) in Plasmodium Modulates Ookinete Differentiation, Motility and Invasion. PLOS Pathog. 8, e1002948. https://doi.org/10.1371/journal.ppat.1002948
- Håkansson, S., Charron, A.J., Sibley, L.D., 2001. Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J. 20, 3132–3144. https://doi.org/10.1093/emboj/20.12.3132
- Hanssen, E., Dekiwadia, C., Riglar, D.T., Rug, M., Lemgruber, L., Cowman, A.F., Cyrklaff, M., Kudryashev, M., Frischknecht, F., Baum, J., Ralph, S.A., 2013. Electron tomography of Plasmodium falciparum merozoites reveals core cellular events that underpin erythrocyte invasion. Cell. Microbiol. 15, 1457–1472. https://doi.org/10.1111/cmi.12132

- Hanssen, E., Sougrat, R., Frankland, S., Deed, S., Klonis, N., Lippincott-Schwartz, J., Tilley, L., 2008. Electron tomography of the Maurer's cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features. Mol. Microbiol. 67, 703–718. https://doi.org/10.1111/j.1365-2958.2007.06063.x
- Hawass, Z., Gad, Y.Z., Ismail, S., Khairat, R., Fathalla, D., Hasan, N., Ahmed, A., Elleithy, H., Ball, M., Gaballah, F., Wasef, S., Fateen, M., Amer, H., Gostner, P., Selim, A., Zink, A., Pusch, C.M., 2010. Ancestry and pathology in King Tutankhamun's family. JAMA 303, 638–647. https://doi.org/10.1001/jama.2010.121
- Hawthorne, P.L., Trenholme, K.R., Skinner-Adams, T.S., Spielmann, T., Fischer, K., Dixon, M.W.A., Ortega, M.R., Anderson, K.L., Kemp, D.J., Gardiner, D.L., 2004. A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer's clefts. Mol. Biochem. Parasitol. 136, 181–189. https://doi.org/10.1016/j.molbiopara.2004.03.013
- Hay, S.I., Omumbo, J.A., Craig, M.H., Snow, R.W., 2000. Earth Observation, Geographic Information Systems and Plasmodium falciparum Malaria in Sub-Saharan Africa. Adv. Parasitol. 47, 173–215.
- Heiber, A., Kruse, F., Pick, C., Grüring, C., Flemming, S., Oberli, A., Schoeler, H., Retzlaff, S., Mesén-Ramírez, P., Hiss, J.A., Kadekoppala, M., Hecht, L., Holder, A.A., Gilberger, T.-W., Spielmann, T., 2013. Identification of New PNEPs Indicates a Substantial Non-PEXEL Exportome and Underpins Common Features in Plasmodium falciparum Protein Export. PLOS Pathog. 9, e1003546. https://doi.org/10.1371/journal.ppat.1003546
- Heiber, A., Spielmann, T., 2014. Preparation of Parasite Protein Extracts and Western Blot Analysis. BIO-Protoc. 4. https://doi.org/10.21769/BioProtoc.1136
- Henrich, P., Kilian, N., Lanzer, M., Cyrklaff, M., 2009. 3-D analysis of the Plasmodium falciparum Maurer's clefts using different electron tomographic approaches. Biotechnol. J. 4, 888–894. https://doi.org/10.1002/biot.200900058
- Henshall, I.G., Spielmann, T., 2023. Critical interdependencies between Plasmodium nutrient flux and drugs. Trends Parasitol. 39, 936–944. https://doi.org/10.1016/j.pt.2023.08.008
- Hill, D.L., Eriksson, E.M., Li Wai Suen, C.S.N., Chiu, C.Y., Ryg-Cornejo, V., Robinson, L.J., Siba, P.M., Mueller, I., Hansen, D.S., Schofield, L., 2013. Opsonising Antibodies to P. falciparum Merozoites Associated with Immunity to Clinical Malaria. PLoS ONE 8, e74627. https://doi.org/10.1371/journal.pone.0074627
- Hiller, N.L., Bhattacharjee, S., van Ooij, C., Liolios, K., Harrison, T., Lopez-Estraño, C., Haldar, K., 2004. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306, 1934–1937. https://doi.org/10.1126/science.1102737
- Hinterberg, K., Scherf, A., Gysin, J., Toyoshima, T., Aikawa, M., Mazie, J.C., da Silva, L.P., Mattei, D., 1994. Plasmodium falciparum: the Pf332 antigen is secreted from the parasite by a brefeldin A-dependent pathway and is translocated to the erythrocyte membrane via the Maurer's clefts. Exp. Parasitol. 79, 279–291. https://doi.org/10.1006/expr.1994.1091
- Ho, C.-M., Beck, J.R., Lai, M., Cui, Y., Goldberg, D.E., Egea, P.F., Zhou, Z.H., 2018. Malaria parasite translocon structure and mechanism of effector export. Nature 561, 70–75. https://doi.org/10.1038/s41586-018-0469-4
- Ho, C.-M., Jih, J., Lai, M., Li, X., Goldberg, D.E., Beck, J.R., Zhou, Z.H., 2021. Native structure of the RhopH complex, a key determinant of malaria parasite nutrient acquisition. Proc. Natl. Acad. Sci. 118, e2100514118. https://doi.org/10.1073/pnas.2100514118
- Homewood, C.A., Neame, K.D., 1974. Malaria and the permeability of the host erythrocyte. Nature 252, 718–719. https://doi.org/10.1038/252718a0

- Hommel, M., David, P.H., Oligino, L.D., 1983. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J. Exp. Med. 157, 1137–1148. https://doi.org/10.1084/jem.157.4.1137
- Horrocks, P., Pinches, R., Christodoulou, Z., Kyes, S.A., Newbold, C.I., 2004. Variable var transition rates underlie antigenic variation in malaria. Proc. Natl. Acad. Sci. U. S. A. 101, 11129–11134. https://doi.org/10.1073/pnas.0402347101
- Howell, D.P.-G., Levin, E.A., Springer, A.L., Kraemer, S.M., Phippard, D.J., Schief, W.R., Smith, J.D., 2008. Mapping a common interaction site used by Plasmodium falciparum Duffy binding-like domains to bind diverse host receptors. Mol. Microbiol. 67, 78–87. https://doi.org/10.1111/j.1365-2958.2007.06019.x
- Hubner, N.C., Nguyen, L.N., Hornig, N.C., Stunnenberg, H.G., 2015. A quantitative proteomics tool to identify DNA-protein interactions in primary cells or blood. J. Proteome Res. 14, 1315–1329. https://doi.org/10.1021/pr5009515
- Inoue, H., Nojima, H., Okayama, H., 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28. https://doi.org/10.1016/0378-1119(90)90336-p
- Ishino, T., Yano, K., Chinzei, Y., Yuda, M., 2004. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol. 2, E4. https://doi.org/10.1371/journal.pbio.0020004
- Issar, N., Roux, E., Mattei, D., Scherf, A., 2008. Identification of a novel post-translational modification in Plasmodium falciparum: protein sumoylation in different cellular compartments. Cell. Microbiol. 10, 1999–2011. https://doi.org/10.1111/j.1462-5822.2008.01183.x
- Ito, D., Schureck, M.A., Desai, S.A., 2017. An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites. eLife 6, e23485. https://doi.org/10.7554/eLife.23485
- Jaijyan, D.K., Singh, H., Singh, A.P., 2015. A Sporozoite- and Liver Stage-expressed Tryptophan-rich Protein Plays an Auxiliary Role in Plasmodium Liver Stage Development and Is a Potential Vaccine Candidate \*. J. Biol. Chem. 290, 19496–19511. https://doi.org/10.1074/jbc.M114.588129
- Janes, J.H., Wang, C.P., Levin-Edens, E., Vigan-Womas, I., Guillotte, M., Melcher, M., Mercereau-Puijalon, O., Smith, J.D., 2011. Investigating the Host Binding Signature on the Plasmodium falciparum PfEMP1 Protein Family. PLoS Pathog. 7, e1002032. https://doi.org/10.1371/journal.ppat.1002032
- Janse, C.J., Van der Klooster, P.F., Van der Kaay, H.J., Van der Ploeg, M., Overdulve, J.P., 1986. Rapid repeated DNA replication during microgametogenesis and DNA synthesis in young zygotes of Plasmodium berghei. Trans. R. Soc. Trop. Med. Hyg. 80, 154–157. https://doi.org/10.1016/0035-9203(86)90219-1
- Jensen, A.T.R., Magistrado, P., Sharp, S., Joergensen, L., Lavstsen, T., Chiucchiuini, A., Salanti, A., Vestergaard, L.S., Lusingu, J.P., Hermsen, R., Sauerwein, R., Christensen, J., Nielsen, M.A., Hviid, L., Sutherland, C., Staalsoe, T., Theander, T.G., 2004. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J. Exp. Med. 199, 1179–1190. https://doi.org/10.1084/jem.20040274
- Jensen, J.B., Trager, W., 1978. Plasmodium falciparum in culture: establishment of additional strains. Am. J. Trop. Med. Hyg. 27, 743–746. https://doi.org/10.4269/ajtmh.1978.27.743
- Joergensen, L., Bengtsson, D.C., Bengtsson, A., Ronander, E., Berger, S.S., Turner, L., Dalgaard, M.B., Cham, G.K.K., Victor, M.E., Lavstsen, T., Theander, T.G., Arnot, D.E., Jensen, A.T.R., 2010. Surface Co-Expression of Two Different PfEMP1 Antigens on Single Plasmodium falciparum-Infected Erythrocytes Facilitates Binding to ICAM1

and PECAM1. PLoS Pathog. 6, e1001083. https://doi.org/10.1371/journal.ppat.1001083

- Joice, R., Nilsson, S.K., Montgomery, J., Dankwa, S., Egan, E., Morahan, B., Seydel, K.B., Bertuccini, L., Alano, P., Williamson, K.C., Duraisingh, M.T., Taylor, T.E., Milner, D.A., Marti, M., 2014. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl. Med. 6, 244re5. https://doi.org/10.1126/scitranslmed.3008882
- Joiner, K.A., 1991. Rhoptry lipids and parasitophorous vacuole formation: a slippery issue. Parasitol. Today Pers. Ed 7, 226–227. https://doi.org/10.1016/0169-4758(91)90232-d
- Jones, M.L., Kitson, E.L., Rayner, J.C., 2006. Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex. Mol. Biochem. Parasitol. 147, 74–84. https://doi.org/10.1016/j.molbiopara.2006.01.009
- Jonsdottir, T.K., Counihan, N.A., Modak, J.K., Kouskousis, B., Sanders, P.R., Gabriela, M., Bullen, H.E., Crabb, B.S., de Koning-Ward, T.F., Gilson, P.R., 2021. Characterisation of complexes formed by parasite proteins exported into the host cell compartment of Plasmodium falciparum infected red blood cells. Cell. Microbiol. 23, e13332. https://doi.org/10.1111/cmi.13332
- Josling, G.A., Llinás, M., 2015. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat. Rev. Microbiol. 13, 573–587. https://doi.org/10.1038/nrmicro3519
- Juillerat, A., Lewit-Bentley, A., Guillotte, M., Gangnard, S., Hessel, A., Baron, B., Vigan-Womas, I., England, P., Mercereau-Puijalon, O., Bentley, G.A., 2011. Structure of a Plasmodium falciparum PfEMP1 rosetting domain reveals a role for the N-terminal segment in heparin-mediated rosette inhibition. Proc. Natl. Acad. Sci. U. S. A. 108, 5243–5248. https://doi.org/10.1073/pnas.1018692108
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis, D., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2
- Kafsack, B.F.C., Rovira-Graells, N., Clark, T.G., Bancells, C., Crowley, V.M., Campino, S.G., Williams, A.E., Drought, L.G., Kwiatkowski, D.P., Baker, D.A., Cortés, A., Llinás, M., 2014. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252. https://doi.org/10.1038/nature12920
- Kara, U.A., Stenzel, D.J., Ingram, L.T., Kidson, C., 1988. The parasitophorous vacuole membrane of Plasmodium falciparum: demonstration of vesicle formation using an immunoprobe. Eur. J. Cell Biol. 46, 9–17.
- Karunaweera, N.D., Galappaththy, G.N., Wirth, D.F., 2014. On the road to eliminate malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge and research needs. Malar. J. 13, 59. https://doi.org/10.1186/1475-2875-13-59
- Kats, L.M., Fernandez, K.M., Glenister, F.K., Herrmann, S., Buckingham, D.W., Siddiqui, G., Sharma, L., Bamert, R., Lucet, I., Guillotte, M., Mercereau-Puijalon, O., Cooke, B.M., 2014. An exported kinase (FIKK4.2) that mediates virulence-associated changes in Plasmodium falciparum-infected red blood cells. Int. J. Parasitol. 44, 319–328. https://doi.org/10.1016/j.ijpara.2014.01.003
- Kaur, J., Kumar, V., Singh, A.P., Singh, V., Bisht, A., Dube, T., Panda, J.J., Behl, A., Mishra, P.C., Hora, R., 2018. Plasmodium falciparum protein "PfJ23" hosts distinct binding

sites for major virulence factor "PfEMP1" and Maurer's cleft marker "PfSBP1." Pathog. Dis. 76. https://doi.org/10.1093/femspd/fty090

- Kawamoto, F., Alejo-Blanco, R., Fleck, S.L., Sinden, R.E., 1991. Plasmodium berghei: ionic regulation and the induction of gametogenesis. Exp. Parasitol. 72, 33–42. https://doi.org/10.1016/0014-4894(91)90118-g
- Keeley, A., Soldati, D., 2004. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol. 14, 528–532. https://doi.org/10.1016/j.tcb.2004.08.002
- Kent, R.S., Modrzynska, K.K., Cameron, R., Philip, N., Billker, O., Waters, A.P., 2018. Inducible developmental reprogramming redefines commitment to sexual development in the malaria parasite Plasmodium berghei. Nat. Microbiol. 3, 1206–1213. https://doi.org/10.1038/s41564-018-0223-6
- Khosh-Naucke, M., Becker, J., Mesén-Ramírez, P., Kiani, P., Birnbaum, J., Fröhlke, U., Jonscher, E., Schlüter, H., Spielmann, T., 2018. Identification of novel parasitophorous vacuole proteins in P. falciparum parasites using BioID. Int. J. Med. Microbiol. IJMM 308, 13–24. https://doi.org/10.1016/j.ijmm.2017.07.007
- Kieferle, F., 2023. Charakterisierung eines Oberflächenproteins Plasmodium falciparum infizierter Erythrozyten (PfEMP1\_IT4\_var16), welches die Bindung an verschiedene Endothelrezeptoren vermittelt (Bachelor Thesis). Hochschule für Angewandte Wissenschaften Hamburg.
- Kilejian, A., 1979. Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A. 76, 4650–4653. https://doi.org/10.1073/pnas.76.9.4650
- Kilejian, A., Rashid, M.A., Aikawa, M., Aji, T., Yang, Y.-F., 1991. Selective association of a fragment of the knob protein with spectrin, actin and the red cell membrane. Mol. Biochem. Parasitol. 44, 175–181. https://doi.org/10.1016/0166-6851(91)90003-O
- Kilili, G.K., Shakya, B., Dolan, P.T., Wang, L., Husby, M.L., Stahelin, R.V., Nakayasu, E.S., LaCount, D.J., 2019. The *Plasmodium falciparum* MESA erythrocyte cytoskeletonbinding (MEC) motif binds to erythrocyte ankyrin. Mol. Biochem. Parasitol. 231, 111189. https://doi.org/10.1016/j.molbiopara.2019.111189
- Kimmel, J., Kehrer, J., Frischknecht, F., Spielmann, T., 2022. Proximity-dependent biotinylation approaches to study apicomplexan biology. Mol. Microbiol. 117, 553– 568. https://doi.org/10.1111/mmi.14815
- Kimmel, J., Schmitt, M., Sinner, A., Jansen, P.W.T.C., Mainye, S., Ramón-Zamorano, G., Toenhake, C.G., Wichers-Misterek, J.S., Cronshagen, J., Sabitzki, R., Mesén-Ramírez, P., Behrens, H.M., Bártfai, R., Spielmann, T., 2023. Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3. Cell Syst. 14, 9-23.e7. https://doi.org/10.1016/j.cels.2022.12.001
- Kirk, K., Horner, H.A., Kirk, J., 1996. Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol. Biochem. Parasitol. 82, 195– 205. https://doi.org/10.1016/0166-6851(96)02734-x
- Kirk, K., Saliba, K.J., 2007. Targeting nutrient uptake mechanisms in Plasmodium. Curr. Drug Targets 8, 75–88. https://doi.org/10.2174/138945007779315560
- Klaus, S., Binder, P., Kim, J., Machado, M., Funaya, C., Schaaf, V., Klaschka, D., Kudulyte, A., Cyrklaff, M., Laketa, V., Höfer, T., Guizetti, J., Becker, N.B., Frischknecht, F., Schwarz, U.S., Ganter, M., 2022. Asynchronous nuclear cycles in multinucleated Plasmodium falciparum facilitate rapid proliferation. Sci. Adv. 8, eabj5362. https://doi.org/10.1126/sciadv.abj5362

- Koch, M., Baum, J., 2016. The mechanics of malaria parasite invasion of the human erythrocyte – towards a reassessment of the host cell contribution. Cell. Microbiol. 18, 319–329. https://doi.org/10.1111/cmi.12557
- Köhler, S., Delwiche, C.F., Denny, P.W., Tilney, L.G., Webster, P., Wilson, R.J., Palmer, J.D., Roos, D.S., 1997. A plastid of probable green algal origin in Apicomplexan parasites. Science 275, 1485–1489. https://doi.org/10.1126/science.275.5305.1485
- Kono, M., Herrmann, S., Loughran, N.B., Cabrera, A., Engelberg, K., Lehmann, C., Sinha, D., Prinz, B., Ruch, U., Heussler, V., Spielmann, T., Parkinson, J., Gilberger, T.W., 2012. Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite. Mol. Biol. Evol. 29, 2113–2132. https://doi.org/10.1093/molbev/mss081
- Kori, L.D., Valecha, N., Anvikar, A.R., 2018. Insights into the early liver stage biology of Plasmodium. J. Vector Borne Dis. 55, 9–13. https://doi.org/10.4103/0972-9062.234631
- Koussis, K., Withers-Martinez, C., Yeoh, S., Child, M., Hackett, F., Knuepfer, E., Juliano, L., Woehlbier, U., Bujard, H., Blackman, M.J., 2009. A multifunctional serine protease primes the malaria parasite for red blood cell invasion. EMBO J. 28, 725–735. https://doi.org/10.1038/emboj.2009.22
- Kraemer, S.M., Smith, J.D., 2006. A family affair: var genes, PfEMP1 binding, and malaria disease. Curr. Opin. Microbiol. 9, 374–380. https://doi.org/10.1016/j.mib.2006.06.006
- Kriek, N., Tilley, L., Horrocks, P., Pinches, R., Elford, B.C., Ferguson, D.J.P., Lingelbach, K., Newbold, C.I., 2003. Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasiteinfected erythrocytes. Mol. Microbiol. 50, 1215–1227. https://doi.org/10.1046/j.1365-2958.2003.03784.x
- Külzer, S., Charnaud, S., Dagan, T., Riedel, J., Mandal, P., Pesce, E.R., Blatch, G.L., Crabb, B.S., Gilson, P.R., Przyborski, J.M., 2012. Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell. Microbiol. 14, 1784–1795. https://doi.org/10.1111/j.1462-5822.2012.01840.x
- Külzer, S., Rug, M., Brinkmann, K., Cannon, P., Cowman, A., Lingelbach, K., Blatch, G.L., Maier, A.G., Przyborski, J.M., 2010. Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell. Microbiol. 12, 1398–1420. https://doi.org/10.1111/j.1462-5822.2010.01477.x
- Kyes, S., Pinches, R., Newbold, C., 2000. A simple RNA analysis method shows var and rif multigene family expression patterns in Plasmodium falciparum. Mol. Biochem. Parasitol. 105, 311–315. https://doi.org/10.1016/s0166-6851(99)00193-0
- Kyes, S.A., Christodoulou, Z., Raza, A., Horrocks, P., Pinches, R., Rowe, J.A., Newbold, C.I., 2003. A well-conserved Plasmodium falciparum var gene shows an unusual stagespecific transcript pattern. Mol. Microbiol. 48, 1339–1348.
- Kyes, S.A., Kraemer, S.M., Smith, J.D., 2007. Antigenic Variation in Plasmodium falciparum: Gene Organization and Regulation of the var Multigene Family. Eukaryot. Cell 6, 1511– 1520. https://doi.org/10.1128/EC.00173-07
- Lalremruata, A., Jeyaraj, S., Engleitner, T., Joanny, F., Lang, A., Bélard, S., Mombo-Ngoma, G., Ramharter, M., Kremsner, P.G., Mordmüller, B., Held, J., 2017. Species and genotype diversity of Plasmodium in malaria patients from Gabon analysed by next generation sequencing. Malar. J. 16, 398. https://doi.org/10.1186/s12936-017-2044-0
- Lambros, C., Vanderberg, J.P., 1979. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol. 65, 418–420.
- Langreth, S.G., Jensen, J.B., Reese, R.T., Trager, W., 1978. Fine structure of human malaria in vitro. J. Protozool. 25, 443–452. https://doi.org/10.1111/j.1550-7408.1978.tb04167.x

- Langreth, S.G., Peterson, E., 1985. Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys. Infect. Immun. 47, 760– 766. https://doi.org/10.1128/iai.47.3.760-766.1985
- Lauer, S., VanWye, J., Harrison, T., McManus, H., Samuel, B.U., Hiller, N.L., Mohandas, N., Haldar, K., 2000. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19, 3556–3564. https://doi.org/10.1093/emboj/19.14.3556
- Laveran, A., 1880. Note sur un nouveau parasite trouvé dans le sang de plusieurs malades atteints de fièvre palustre. Bull Acad Med 9, 1235–6.
- Lavstsen, T., Salanti, A., Jensen, A.T., Arnot, D.E., Theander, T.G., 2003. Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and noncoding regions. Malar. J. 2, 27. https://doi.org/10.1186/1475-2875-2-27
- Lazarus, M.D., Schneider, T.G., Taraschi, T.F., 2008. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J. Cell Sci. 121, 1937–1949. https://doi.org/10.1242/jcs.023150
- Lee, R.S., Waters, A.P., Brewer, J.M., 2018. A cryptic cycle in haematopoietic niches promotes initiation of malaria transmission and evasion of chemotherapy. Nat. Commun. 9, 1689. https://doi.org/10.1038/s41467-018-04108-9
- Leech, J.H., Barnwell, J.W., Miller, L.H., Howard, R.J., 1984. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J. Exp. Med. 159, 1567–1575. https://doi.org/10.1084/jem.159.6.1567
- Lennartz, F., Adams, Y., Bengtsson, A., Olsen, R.W., Turner, L., Ndam, N.T., Ecklu-Mensah, G., Moussiliou, A., Ofori, M.F., Gamain, B., Lusingu, J.P., Petersen, J.E.V., Wang, C.W., Nunes-Silva, S., Jespersen, J.S., Lau, C.K.Y., Theander, T.G., Lavstsen, T., Hviid, L., Higgins, M.K., Jensen, A.T.R., 2017. Structure-Guided Identification of a Family of Dual Receptor-Binding PfEMP1 that Is Associated with Cerebral Malaria. Cell Host Microbe 21, 403–414. https://doi.org/10.1016/j.chom.2017.02.009
- Lennartz, F., Smith, C., Craig, A.G., Higgins, M.K., 2019. Structural insights into diverse modes of ICAM-1 binding by Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. 116, 20124–20134. https://doi.org/10.1073/pnas.1911900116
- Lingelbach, K., Joiner, K.A., 1998. The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: An unusual compartment in infected cells. J. Cell Sci. 111, 1467–1475. https://doi.org/10.1242/jcs.111.11.1467
- Llorà-Batlle, O., Michel-Todó, L., Witmer, K., Toda, H., Fernández-Becerra, C., Baum, J., Cortés, A., 2020. Conditional expression of PfAP2-G for controlled massive sexual conversion in Plasmodium falciparum. Sci. Adv. 6, eaaz5057. https://doi.org/10.1126/sciadv.aaz5057
- Looker, O., Blanch, A.J., Liu, B., Nunez-Iglesias, J., McMillan, P.J., Tilley, L., Dixon, M.W.A., 2019. The knob protein KAHRP assembles into a ring-shaped structure that underpins virulence complex assembly. PLoS Pathog. 15, e1007761. https://doi.org/10.1371/journal.ppat.1007761
- Lopaticki, S., Maier, A.G., Thompson, J., Wilson, D.W., Tham, W.-H., Triglia, T., Gout, A., Speed, T.P., Beeson, J.G., Healer, J., Cowman, A.F., 2011. Reticulocyte and Erythrocyte Binding-Like Proteins Function Cooperatively in Invasion of Human Erythrocytes by Malaria Parasites. Infect. Immun. 79, 1107–1117. https://doi.org/10.1128/IAI.01021-10
- Lord, S.J., Velle, K.B., Mullins, R.D., Fritz-Laylin, L.K., 2020. SuperPlots: Communicating reproducibility and variability in cell biology. J. Cell Biol. 219, e202001064. https://doi.org/10.1083/jcb.202001064

- Low, L.M., Azasi, Y., Sherling, E.S., Garten, M., Zimmerberg, J., Tsuboi, T., Brzostowski, J., Mu, J., Blackman, M.J., Miller, L.H., 2019. Deletion of Plasmodium falciparum Protein RON3 Affects the Functional Translocation of Exported Proteins and Glucose Uptake. mBio 10, e01460-19. https://doi.org/10.1128/mBio.01460-19
- Magallón-Tejada, A., Machevo, S., Cisteró, P., Lavstsen, T., Aide, P., Rubio, M., Jiménez, A., Turner, L., Valmaseda, A., Gupta, H., De Las Salas, B., Mandomando, I., Wang, C.W., Petersen, J.E.V., Muñoz, J., Gascón, J., Macete, E., Alonso, P.L., Chitnis, C.E., Bassat, Q., Mayor, A., 2016. Cytoadhesion to gC1qR through Plasmodium falciparum Erythrocyte Membrane Protein 1 in Severe Malaria. PLoS Pathog. 12, e1006011. https://doi.org/10.1371/journal.ppat.1006011
- Magowan, C., Nunomura, W., Waller, K.L., Yeung, J., Liang, J., Van Dort, H., Low, P.S., Coppel, R.L., Mohandas, N., 2000. Plasmodium falciparum histidine-rich protein 1 associates with the band 3 binding domain of ankyrin in the infected red cell membrane. Biochim. Biophys. Acta 1502, 461–470. https://doi.org/10.1016/s0925-4439(00)00069-7
- Maier, A.G., Rug, M., O'Neill, M.T., Beeson, J.G., Marti, M., Reeder, J., Cowman, A.F., 2007. Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum–infected erythrocyte surface. Blood 109, 1289– 1297. https://doi.org/10.1182/blood-2006-08-043364
- Maier, A.G., Rug, M., O'Neill, M.T., Brown, M., Chakravorty, S., Szestak, T., Chesson, J., Wu, Y., Hughes, K., Coppel, R.L., Newbold, C., Beeson, J.G., Craig, A., Crabb, B.S., Cowman, A.F., 2008. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134, 48–61. https://doi.org/10.1016/j.cell.2008.04.051
- Maixner, F., Drescher, D., Boccalini, G., Piombino-Mascali, D., Janko, M., Berens-Riha, N., Kim, B.J., Gamble, M., Schatterny, J., Morty, R.E., Ludwig, M., Krause-Kyora, B., Stark, R., An, H.J., Neumann, J., Cipollini, G., Grimm, R., Kilian, N., Zink, A., 2023. Microscopic Evidence of Malaria Infection in Visceral Tissue from Medici Family, Italy. Emerg. Infect. Dis. 29, 1280–1283. https://doi.org/10.3201/eid2906.230134
- Marapana, D.S., Dagley, L.F., Sandow, J.J., Nebl, T., Triglia, T., Pasternak, M., Dickerman, B.K., Crabb, B.S., Gilson, P.R., Webb, A.I., Boddey, J.A., Cowman, A.F., 2018.
  Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nat. Microbiol. 3, 1010–1022. https://doi.org/10.1038/s41564-018-0219-2
- Marsh, K., Forster, D., Waruiru, C., Mwangi, I., Winstanley, M., Marsh, V., Newton, C., Winstanley, P., Warn, P., Peshu, N., 1995. Indicators of life-threatening malaria in African children. N. Engl. J. Med. 332, 1399–1404. https://doi.org/10.1056/NEJM199505253322102
- Marti, M., Good, R.T., Rug, M., Knuepfer, E., Cowman, A.F., 2004. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306, 1930–1933. https://doi.org/10.1126/science.1102452
- Marti, M., Spielmann, T., 2013. Protein export in malaria parasites: many membranes to cross. Curr. Opin. Microbiol. 16, 445–451. https://doi.org/10.1016/j.mib.2013.04.010
- Martinez, M., Chen, W.D., Cova, M.M., Molnár, P., Mageswaran, S.K., Guérin, A., John, A.R.O., Lebrun, M., Chang, Y.-W., 2022. Rhoptry secretion system structure and priming in Plasmodium falciparum revealed using in situ cryo-electron tomography. Nat. Microbiol. 7, 1230–1238. https://doi.org/10.1038/s41564-022-01171-3
- Martinsen, E., Perkins, S., 2013. The diversity of Plasmodium and other haemosporidians: The intersection of taxonomy, phylogenetics and genomics. pp. 1–15.

- Mathieu, L.C., Cox, H., Early, A.M., Mok, S., Lazrek, Y., Paquet, J.-C., Ade, M.-P., Lucchi, N.W., Grant, Q., Udhayakumar, V., Alexandre, J.S., Demar, M., Ringwald, P., Neafsey, D.E., Fidock, D.A., Musset, L., 2020. Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance. eLife 9, e51015. https://doi.org/10.7554/eLife.51015
- Matthews, H., Duffy, C.W., Merrick, C.J., 2018. Checks and balances? DNA replication and the cell cycle in Plasmodium. Parasit. Vectors 11, 216. https://doi.org/10.1186/s13071-018-2800-1
- Matz, J.M., Goosmann, C., Brinkmann, V., Grützke, J., Ingmundson, A., Matuschewski, K., Kooij, T.W.A., 2015. The Plasmodium berghei translocon of exported proteins reveals spatiotemporal dynamics of tubular extensions. Sci. Rep. 5, 12532. https://doi.org/10.1038/srep12532
- Maurer, G., 1902. Die malaria perniciosa. Zentralbl Bakteriol Parasitenkd. 23, 695-719.
- Mayer, C., Slater, L., Erat, M.C., Konrat, R., Vakonakis, I., 2012. Structural Analysis of the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Intracellular Domain Reveals a Conserved Interaction Epitope. J. Biol. Chem. 287, 7182–7189. https://doi.org/10.1074/jbc.M111.330779
- McCulloch, R., Cobbold, C.A., Figueiredo, L., Jackson, A., Morrison, L.J., Mugnier, M.R., Papavasiliou, N., Schnaufer, A., Matthews, K., 2017. Emerging challenges in understanding trypanosome antigenic variation. Emerg. Top. Life Sci. 1, 585–592. https://doi.org/10.1042/ETLS20170104
- McFadden, G.I., Yeh, E., 2017. The apicoplast: now you see it, now you don't. Int. J. Parasitol. 47, 137–144. https://doi.org/10.1016/j.ijpara.2016.08.005
- McHugh, E., Batinovic, S., Hanssen, E., McMillan, P.J., Kenny, S., Griffin, M.D.W., Crawford, S., Trenholme, K.R., Gardiner, D.L., Dixon, M.W.A., Tilley, L., 2015. A repeat sequence domain of the ring-exported protein-1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking. Mol. Microbiol. 98, 1101–1114. https://doi.org/10.1111/mmi.13201
- McLaren, D.J., Bannister, L.H., Trigg, P.I., Butcher, G.A., 1977. A freeze—fracture study on the parasite—erythrocyte interrelationship in Plasmodium knowlesi infections. Bull. World Health Organ. 55, 199–203.
- McLean, A.R.D., Opi, D.H., Stanisic, D.I., Cutts, J.C., Feng, G., Ura, A., Mueller, I., Rogerson, S.J., Beeson, J.G., Fowkes, F.J.I., 2021. High Antibodies to VAR2CSA in Response to Malaria Infection Are Associated With Improved Birthweight in a Longitudinal Study of Pregnant Women. Front. Immunol. 12, 644563. https://doi.org/10.3389/fimmu.2021.644563
- McMillan, P.J., Millet, C., Batinovic, S., Maiorca, M., Hanssen, E., Kenny, S., Muhle, R.A., Melcher, M., Fidock, D.A., Smith, J.D., Dixon, M.W.A., Tilley, L., 2013. Spatial and temporal mapping of the PfEMP1 export pathway in Plasmodium falciparum. Cell. Microbiol. 15, 1401–1418. https://doi.org/10.1111/cmi.12125
- Meijering, E., 2020. A bird's-eye view of deep learning in bioimage analysis. Comput. Struct. Biotechnol. J. 18, 2312–2325. https://doi.org/10.1016/j.csbj.2020.08.003
- Melcher, M., Muhle, R.A., Henrich, P.P., Kraemer, S.M., Avril, M., Vigan-Womas, I., Mercereau-Puijalon, O., Smith, J.D., Fidock, D.A., 2010. Identification of a Role for the PfEMP1 Semi-Conserved Head Structure in Protein Trafficking to the Surface of Plasmodium falciparum Infected Red Blood Cells. Cell. Microbiol. 12, 1446–1462. https://doi.org/10.1111/j.1462-5822.2010.01481.x
- Mercereau-Puijalon, O., Barale, J.-C., Bischoff, E., 2002. Three multigene families in Plasmodium parasites: facts and questions. Int. J. Parasitol. 32, 1323–1344. https://doi.org/10.1016/s0020-7519(02)00111-x

- Mercier, C., Adjogble, K.D.Z., Däubener, W., Delauw, M.-F.-C., 2005. Dense granules: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? Int. J. Parasitol. 35, 829–849. https://doi.org/10.1016/j.ijpara.2005.03.011
- Mesén-Ramírez, P., Reinsch, F., Soares, A.B., Bergmann, B., Ullrich, A.-K., Tenzer, S., Spielmann, T., 2016. Stable Translocation Intermediates Jam Global Protein Export in Plasmodium falciparum Parasites and Link the PTEX Component EXP2 with Translocation Activity. PLOS Pathog. 12, e1005618. https://doi.org/10.1371/journal.ppat.1005618
- Metwally, N.G., Tilly, A.-K., Lubiana, P., Roth, L.K., Dörpinghaus, M., Lorenzen, S., Schuldt, K., Witt, S., Bachmann, A., Tidow, H., Gutsmann, T., Burmester, T., Roeder, T., Tannich, E., Bruchhaus, I., 2017. Characterisation of Plasmodium falciparum populations selected on the human endothelial receptors P-selectin, E-selectin, CD9 and CD151. Sci. Rep. 7, 4069. https://doi.org/10.1038/s41598-017-04241-3
- Mikkelsen, R.B., Kamber, M., Wadwa, K.S., Lin, P.S., Schmidt-Ullrich, R., 1988. The role of lipids in Plasmodium falciparum invasion of erythrocytes: a coordinated biochemical and microscopic analysis. Proc. Natl. Acad. Sci. U. S. A. 85, 5956–5960.
- Miller, L.H., Good, M.F., Milon, G., 1994. Malaria pathogenesis. Science 264, 1878–1883. https://doi.org/10.1126/science.8009217
- Miotto, O., Sekihara, M., Tachibana, S.-I., Yamauchi, M., Pearson, R.D., Amato, R., Gonçalves, S., Mehra, S., Noviyanti, R., Marfurt, J., Auburn, S., Price, R.N., Mueller, I., Ikeda, M., Mori, T., Hirai, M., Tavul, L., Hetzel, M.W., Laman, M., Barry, A.E., Ringwald, P., Ohashi, J., Hombhanje, F., Kwiatkowski, D.P., Mita, T., 2020. Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea. PLOS Pathog. 16, e1009133. https://doi.org/10.1371/journal.ppat.1009133
- Moras, M., Lefevre, S.D., Ostuni, M.A., 2017. From Erythroblasts to Mature Red Blood Cells: Organelle Clearance in Mammals. Front. Physiol. 8, 1076. https://doi.org/10.3389/fphys.2017.01076
- Mosnier, L.O., Lavstsen, T., 2016. The role of EPCR in the pathogenesis of severe malaria. Thromb. Res. 141, S46–S49. https://doi.org/10.1016/S0049-3848(16)30364-4
- Mundwiler-Pachlatko, E., Beck, H.-P., 2013. Maurer's clefts, the enigma of Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A. 110, 19987–19994. https://doi.org/10.1073/pnas.1309247110
- Murk, A., unpublished. Characterisation of the interaction of P. falciparum infected erythrocytes and Human Brain Endothelial Cells (Dissertation). Christian-Albrechts-University.
- Murphy, S.C., Hiller, N.L., Harrison, T., Lomasney, J.W., Mohandas, N., Haldar, K., 2006. Lipid rafts and malaria parasite infection of erythrocytes. Mol. Membr. Biol. 23, 81–88. https://doi.org/10.1080/09687860500473440
- Naranjo Prado, I.C., 2020. Quest for factors involved in the extraction of transmembrane proteins from the PPM to the PVM and the effect of jamming PTEX on PfEMP1 export in Plasmodium falciparum (Dissertation). University of Hamburg.
- Newton, C., Hien, T.T., White, N., 2000. Cerebral malaria. J. Neurol. Neurosurg. Psychiatry 69, 433–441. https://doi.org/10.1136/jnnp.69.4.433
- Nguitragool, W., Bokhari, A.A.B., Pillai, A.D., Rayavara, K., Sharma, P., Turpin, B., Aravind, L., Desai, S.A., 2011. Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell 145, 665–677. https://doi.org/10.1016/j.cell.2011.05.002
- Noedl, H., Se, Y., Schaecher, K., Smith, B.L., Socheat, D., Fukuda, M.M., Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium, 2008. Evidence of artemisinin-

resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620. https://doi.org/10.1056/NEJMc0805011

- Nunes, M.C., Goldring, J.P.D., Doerig, C., Scherf, A., 2007. A novel protein kinase family in Plasmodium falciparum is differentially transcribed and secreted to various cellular compartments of the host cell. Mol. Microbiol. 63, 391–403. https://doi.org/10.1111/j.1365-2958.2006.05521.x
- Nunes-Silva, S., Dechavanne, S., Moussiliou, A., Pstrąg, N., Semblat, J.-P., Gangnard, S., Tuikue-Ndam, N., Deloron, P., Chêne, A., Gamain, B., 2015. Beninese children with cerebral malaria do not develop humoral immunity against the IT4-VAR19-DC8 PfEMP1 variant linked to EPCR and brain endothelial binding. Malar. J. 14, 493. https://doi.org/10.1186/s12936-015-1008-5
- Obaldia, N., Meibalan, E., Sa, J.M., Ma, S., Clark, M.A., Mejia, P., Moraes Barros, R.R., Otero, W., Ferreira, M.U., Mitchell, J.R., Milner, D.A., Huttenhower, C., Wirth, D.F., Duraisingh, M.T., Wellems, T.E., Marti, M., 2018. Bone Marrow Is a Major Parasite Reservoir in Plasmodium vivax Infection. mBio 9, e00625-18. https://doi.org/10.1128/mBio.00625-18
- Oberli, A., Zurbrügg, L., Rusch, S., Brand, F., Butler, M.E., Day, J.L., Cutts, E.E., Lavstsen, T., Vakonakis, I., Beck, H.-P., 2016. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton. Cell. Microbiol. 18, 1415–1428. https://doi.org/10.1111/cmi.12583
- Oleinikov, A.V., Amos, E., Frye, I.T., Rossnagle, E., Mutabingwa, T.K., Fried, M., Duffy, P.E., 2009. High Throughput Functional Assays of the Variant Antigen PfEMP1 Reveal a Single Domain in the 3D7 Plasmodium falciparum Genome that Binds ICAM1 with High Affinity and Is Targeted by Naturally Acquired Neutralizing Antibodies. PLOS Pathog. 5, e1000386. https://doi.org/10.1371/journal.ppat.1000386
- Omelianczyk, R.I., Loh, H.P., Chew, M., Hoo, R., Baumgarten, S., Renia, L., Chen, J., Preiser, P.R., 2020. Rapid activation of distinct members of multigene families in Plasmodium spp. Commun. Biol. 3, 1–11. https://doi.org/10.1038/s42003-020-1081-3
- Otto, T.D., Assefa, S.A., Böhme, U., Sanders, M.J., Kwiatkowski, D., Berriman, M., Newbold, C., 2019. Evolutionary analysis of the most polymorphic gene family in falciparum malaria. Wellcome Open Res. 4, 193. https://doi.org/10.12688/wellcomeopenres.15590.1
- Pachlatko, E., Rusch, S., Müller, A., Hemphill, A., Tilley, L., Hanssen, E., Beck, H.-P., 2010. MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of Maurer's cleft tethers. Mol. Microbiol. 77, 1136–1152. https://doi.org/10.1111/j.1365-2958.2010.07278.x
- Papakrivos, J., Newbold, C.I., Lingelbach, K., 2005. A potential novel mechanism for the insertion of a membrane protein revealed by a biochemical analysis of the Plasmodium falciparum cytoadherence molecule PfEMP-1. Mol. Microbiol. 55, 1272–1284. https://doi.org/10.1111/j.1365-2958.2004.04468.x
- Parkyn Schneider, M.P., Liu, B., Glock, P., Suttie, A., McHugh, E., Andrew, D., Batinovic, S., Williamson, N., Hanssen, E., McMillan, P., Hliscs, M., Tilley, L., Dixon, M.W.A., 2017. Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development. PLOS Pathog. 13, e1006659. https://doi.org/10.1371/journal.ppat.1006659
- Pei, X., An, X., Guo, X., Tarnawski, M., Coppel, R., Mohandas, N., 2005. Structural and Functional Studies of Interaction between Plasmodium falciparum Knob-associated Histidine-rich Protein (KAHRP) and Erythrocyte Spectrin \*. J. Biol. Chem. 280, 31166–31171. https://doi.org/10.1074/jbc.M505298200

- Peters, J.M., Fowler, E.V., Krause, D.R., Cheng, Q., Gatton, M.L., 2007. Differential changes in Plasmodium falciparum var transcription during adaptation to culture. J. Infect. Dis. 195, 748–755. https://doi.org/10.1086/511436
- Petersen, W., Külzer, S., Engels, S., Zhang, Q., Ingmundson, A., Rug, M., Maier, A.G., Przyborski, J.M., 2016. J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes. Int. J. Parasitol. 46, 519–525. https://doi.org/10.1016/j.ijpara.2016.03.005
- Pradel, G., Frevert, U., 2001. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatol. Baltim. Md 33, 1154–1165. https://doi.org/10.1053/jhep.2001.24237
- Proellocks, N.I., Herrmann, S., Buckingham, D.W., Hanssen, E., Hodges, E.K., Elsworth, B., Morahan, B.J., Coppel, R.L., Cooke, B.M., 2014. A lysine-rich membrane-associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum-infected red blood cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 28, 3103–3113. https://doi.org/10.1096/fj.14-250399
- Qian, P., Wang, X., Zhong, C.-Q., Wang, J., Cai, M., Nguitragool, W., Li, J., Cui, H., Yuan, J., 2022. Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite. eLife 11, e77447. https://doi.org/10.7554/eLife.77447
- Quadt, K.A., Barfod, L., Andersen, D., Bruun, J., Gyan, B., Hassenkam, T., Ofori, M.F., Hviid, L., 2012. The Density of Knobs on Plasmodium falciparum-Infected Erythrocytes Depends on Developmental Age and Varies among Isolates. PLoS ONE 7, e45658. https://doi.org/10.1371/journal.pone.0045658
- Rankin, K.E., Graewe, S., Heussler, V.T., Stanway, R.R., 2010. Imaging liver-stage malaria parasites. Cell. Microbiol. 12, 569–579. https://doi.org/10.1111/j.1462-5822.2010.01454.x
- Rask, T.S., Hansen, D.A., Theander, T.G., Gorm Pedersen, A., Lavstsen, T., 2010. Plasmodium falciparum Erythrocyte Membrane Protein 1 Diversity in Seven Genomes – Divide and Conquer. PLoS Comput. Biol. 6, e1000933. https://doi.org/10.1371/journal.pcbi.1000933
- Read, M., Sherwin, T., Holloway, S.P., Gull, K., Hyde, J.E., 1993. Microtubular organization visualized by immunofluorescence microscopy during erythrocytic schizogony in Plasmodium falciparum and investigation of post-translational modifications of parasite tubulin. Parasitology 106 (Pt 3), 223–232. https://doi.org/10.1017/s0031182000075041
- Recker, M., Buckee, C.O., Serazin, A., Kyes, S., Pinches, R., Christodoulou, Z., Springer, A.L., Gupta, S., Newbold, C.I., 2011. Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern. PLoS Pathog. 7, e1001306. https://doi.org/10.1371/journal.ppat.1001306
- Renn, J.P., Doritchamou, J.Y.A., Tentokam, B.C.N., Morrison, R.D., Cowles, M.V., Burkhardt, M., Ma, R., Mahamar, A., Attaher, O., Diarra, B.S., Traore, M., Dicko, A., Tolia, N.H., Fried, M., Duffy, P.E., 2021. Allelic variants of full-length VAR2CSA, the placental malaria vaccine candidate, differ in antigenicity and receptor binding affinity. Commun. Biol. 4, 1–12. https://doi.org/10.1038/s42003-021-02787-7
- Reyes, R.A., Raghavan, S.S.R., Hurlburt, N.K., Introini, V., Kana, I.H., Jensen, R.W., Martinez-Scholze, E., Gestal-Mato, M., Bau, C.B., Fernández-Quintero, M.L., Loeffler, J.R., Ferguson, J.A., Lee, W.-H., Martin, G.M., Theander, T.G., Ssewanyana, I., Feeney, M.E., Greenhouse, B., Bol, S., Ward, A.B., Bernabeu, M., Pancera, M., Turner, L., Bunnik, E.M., Lavstsen, T., 2024. Broadly inhibitory antibodies against severe malaria virulence proteins. BioRxiv Prepr. Serv. Biol. 2024.01.25.577124. https://doi.org/10.1101/2024.01.25.577124

- Ridley, R.T., 2000. The Dictator's Mistake: Caesar's Escape from Sulla. Hist. Z. Für Alte Gesch. 49, 211–229.
- Riglar, D.T., Rogers, K.L., Hanssen, E., Turnbull, L., Bullen, H.E., Charnaud, S.C., Przyborski, J., Gilson, P.R., Whitchurch, C.B., Crabb, B.S., Baum, J., Cowman, A.F., 2013. Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes. Nat. Commun. 4, 1415. https://doi.org/10.1038/ncomms2449
- Rivadeneira, E.M., Wasserman, M., Espinal, C.T., 1983. Separation and concentration of schizonts of Plasmodium falciparum by Percoll gradients. J. Protozool. 30, 367–370. https://doi.org/10.1111/j.1550-7408.1983.tb02932.x
- Roberts, D.J., Craig, A.G., Berendt, A.R., Pinches, R., Nash, G., Marsh, K., Newbold, C.I., 1992. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689–692. https://doi.org/10.1038/357689a0
- Robinson, B.A., Welch, T.L., Smith, J.D., 2003. Widespread functional specialization of Plasmodium falciparum erythrocyte membrane protein 1 family members to bind CD36 analysed across a parasite genome. Mol. Microbiol. 47, 1265–1278. https://doi.org/10.1046/j.1365-2958.2003.03378.x
- Roth, E.F., 1987. Malarial parasite hexokinase and hexokinase-dependent glutathione reduction in the Plasmodium falciparum-infected human erythrocyte. J. Biol. Chem. 262, 15678– 15682.
- Rottmann, M., Lavstsen, T., Mugasa, J.P., Kaestli, M., Jensen, A.T.R., Müller, D., Theander, T., Beck, H.-P., 2006. Differential Expression of var Gene Groups Is Associated with Morbidity Caused by Plasmodium falciparum Infection in Tanzanian Children. Infect. Immun. 74, 3904–3911. https://doi.org/10.1128/IAI.02073-05
- Roux, K.J., Kim, D.I., Raida, M., Burke, B., 2012. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801– 810. https://doi.org/10.1083/jcb.201112098
- Rowe, J.A., Kyes, S.A., Rogerson, S.J., Babiker, H.A., Raza, A., 2002. Identification of a conserved Plasmodium falciparum var gene implicated in malaria in pregnancy. J. Infect. Dis. 185, 1207–1211. https://doi.org/10.1086/339684
- Rowe, J.A., Moulds, J.M., Newbold, C.I., Miller, L.H., 1997. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388, 292–295. https://doi.org/10.1038/40888
- Ruecker, A., Shea, M., Hackett, F., Suarez, C., Hirst, E.M.A., Milutinovic, K., Withers-Martinez, C., Blackman, M.J., 2012. Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte. J. Biol. Chem. 287, 37949–37963. https://doi.org/10.1074/jbc.M112.400820
- Rug, M., Cyrklaff, M., Mikkonen, A., Lemgruber, L., Kuelzer, S., Sanchez, C.P., Thompson, J., Hanssen, E., O'Neill, M., Langer, C., Lanzer, M., Frischknecht, F., Maier, A.G., Cowman, A.F., 2014. Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood 124, 3459–3468. https://doi.org/10.1182/blood-2014-06-583054
- Rug, M., Prescott, S.W., Fernandez, K.M., Cooke, B.M., Cowman, A.F., 2006. The role of KAHRP domains in knob formation and cytoadherence of P falciparum-infected human erythrocytes. Blood 108, 370–378. https://doi.org/10.1182/blood-2005-11-4624
- Russell, A.J.C., Sanderson, T., Bushell, E., Talman, A.M., Anar, B., Girling, G., Hunziker, M., Kent, R.S., Martin, J.S., Metcalf, T., Montandon, R., Pandey, V., Pardo, M., Roberts, A.B., Sayers, C., Schwach, F., Choudhary, J.S., Rayner, J.C., Voet, T., Modrzynska, K.K., Waters, A.P., Lawniczak, M.K.N., Billker, O., 2023. Regulators of male and

female sexual development are critical for the transmission of a malaria parasite. Cell Host Microbe 31, 305-319.e10. https://doi.org/10.1016/j.chom.2022.12.011

- Russo, I., Babbitt, S., Muralidharan, V., Butler, T., Oksman, A., Goldberg, D.E., 2010. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 463, 632–636. https://doi.org/10.1038/nature08726
- Sabitzki, R., Schmitt, M., Flemming, S., Jonscher, E., Höhn, K., Fröhlke, U., Spielmann, T., 2023. Identification of a Rabenosyn-5 like protein and Rab5b in host cell cytosol uptake reveals conservation of endosomal transport in malaria parasites. https://doi.org/10.1101/2023.04.05.535711
- Sachanonta, N., Chotivanich, K., Chaisri, U., Turner, G.D.H., Ferguson, D.J.P., Day, N.P.J., Pongponratn, E., 2011. Ultrastructural and Real-time Microscopic Changes in P. falciparum-infected Red Blood Cells Following Treatment with Antimalarial Drugs. Ultrastruct. Pathol. 35, 214–225. https://doi.org/10.3109/01913123.2011.601405
- Sadasivaiah, S., Tozan, Y., Breman, J.G., 2007. Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: how can it be used for malaria control? Am. J. Trop. Med. Hyg. 77, 249–263.
- Salanti, A., Dahlbäck, M., Turner, L., Nielsen, M.A., Barfod, L., Magistrado, P., Jensen, A.T.R., Lavstsen, T., Ofori, M.F., Marsh, K., Hviid, L., Theander, T.G., 2004. Evidence for the Involvement of VAR2CSA in Pregnancy-associated Malaria. J. Exp. Med. 200, 1197–1203. https://doi.org/10.1084/jem.20041579
- Salanti, A., Jensen, A.T.R., Zornig, H.D., Staalsoe, T., Joergensen, L., Nielsen, M.A., Khattab, A., Arnot, D.E., Klinkert, M.Q., Hviid, L., Theander, T.G., 2002. A sub-family of common and highly conserved Plasmodium falciparum var genes. Mol. Biochem. Parasitol. 122, 111–115. https://doi.org/10.1016/s0166-6851(02)00080-4
- Salanti, A., Staalsoe, T., Lavstsen, T., Jensen, A.T.R., Sowa, M.P.K., Arnot, D.E., Hviid, L., Theander, T.G., 2003. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancyassociated malaria. Mol. Microbiol. 49, 179–191. https://doi.org/10.1046/j.1365-2958.2003.03570.x
- Sampath, S., Brazier, A.J., Avril, M., Bernabeu, M., Vigdorovich, V., Mascarenhas, A., Gomes, E., Sather, D.N., Esmon, C.T., Smith, J.D., 2015. Plasmodium falciparum adhesion domains linked to severe malaria differ in blockade of endothelial protein C receptor. Cell. Microbiol. 17, 1868–1882. https://doi.org/10.1111/cmi.12478
- Sanchez, C.P., Karathanasis, C., Sanchez, R., Cyrklaff, M., Jäger, J., Buchholz, B., Schwarz, U.S., Heilemann, M., Lanzer, M., 2019. Single-molecule imaging and quantification of the immune-variant adhesin VAR2CSA on knobs of Plasmodium falciparum-infected erythrocytes. Commun. Biol. 2, 1–9. https://doi.org/10.1038/s42003-019-0429-z
- Sander, A.F., Salanti, A., Lavstsen, T., Nielsen, M.A., Magistrado, P., Lusingu, J., Ndam, N.T., Arnot, D.E., 2009. Multiple var2csa-type PfEMP1 genes located at different chromosomal loci occur in many Plasmodium falciparum isolates. PloS One 4, e6667. https://doi.org/10.1371/journal.pone.0006667
- Sanders, P.R., Dickerman, B.K., Charnaud, S.C., Ramsland, P.A., Crabb, B.S., Gilson, P.R., 2019. The N-terminus of EXP2 forms the membrane-associated pore of the protein exporting translocon PTEX in Plasmodium falciparum. J. Biochem. (Tokyo) 165, 239– 248. https://doi.org/10.1093/jb/mvy099
- Sanders, P.R., Gilson, P.R., Cantin, G.T., Greenbaum, D.C., Nebl, T., Carucci, D.J., McConville, M.J., Schofield, L., Hodder, A.N., Yates, J.R., Crabb, B.S., 2005. Distinct protein classes including novel merozoite surface antigens in Raft-like membranes of Plasmodium falciparum. J. Biol. Chem. 280, 40169–40176. https://doi.org/10.1074/jbc.M509631200

- Sargeant, T.J., Marti, M., Caler, E., Carlton, J.M., Simpson, K., Speed, T.P., Cowman, A.F., 2006. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol. 7, R12. https://doi.org/10.1186/gb-2006-7-2-r12
- Scherf, A., Hernandez-Rivas, R., Buffet, P., Bottius, E., Benatar, C., Pouvelle, B., Gysin, J., Lanzer, M., 1998. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 17, 5418–5426. https://doi.org/10.1093/emboj/17.18.5418
- Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019
- Schneider, V.M., Visone, J.E., Harris, C.T., Florini, F., Hadjimichael, E., Zhang, X., Gross, M.R., Rhee, K.Y., Ben Mamoun, C., Kafsack, B.F.C., Deitsch, K.W., 2023. The human malaria parasite Plasmodium falciparum can sense environmental changes and respond by antigenic switching. Proc. Natl. Acad. Sci. 120, e2302152120. https://doi.org/10.1073/pnas.2302152120
- Schnider, C.B., Bausch-Fluck, D., Brühlmann, F., Heussler, V.T., Burda, P.-C., 2018. BioID Reveals Novel Proteins of the Plasmodium Parasitophorous Vacuole Membrane. mSphere 3, 10.1128/msphere.00522-17. https://doi.org/10.1128/msphere.00522-17
- Schulze, J., Kwiatkowski, M., Borner, J., Schlüter, H., Bruchhaus, I., Burmester, T., Spielmann, T., Pick, C., 2015. The Plasmodium falciparum exportome contains non-canonical PEXEL/HT proteins. Mol. Microbiol. 97, 301–314. https://doi.org/10.1111/mmi.13024
- Schureck, M.A., Darling, J.E., Merk, A., Shao, J., Daggupati, G., Srinivasan, P., Olinares, P.D.B., Rout, M.P., Chait, B.T., Wollenberg, K., Subramaniam, S., Desai, S.A., 2021.
  Malaria parasites use a soluble RhopH complex for erythrocyte invasion and an integral form for nutrient uptake. eLife 10, e65282. https://doi.org/10.7554/eLife.65282
- Sherling, E.S., Knuepfer, E., Brzostowski, J.A., Miller, L.H., Blackman, M.J., van Ooij, C., 2017. The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake. eLife 6, e23239. https://doi.org/10.7554/eLife.23239
- Silvestrini, F., Alano, P., Williams, J.L., 2000. Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum. Parasitology 121 Pt 5, 465–471. https://doi.org/10.1017/s0031182099006691
- Sinden, R.E., 1982. Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology 84, 1–11. https://doi.org/10.1017/s003118200005160x
- Sinha, A., Hughes, K.R., Modrzynska, K.K., Otto, T.D., Pfander, C., Dickens, N.J., Religa, A.A., Bushell, E., Graham, A.L., Cameron, R., Kafsack, B.F.C., Williams, A.E., Llinas, M., Berriman, M., Billker, O., Waters, A.P., 2014. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507, 253–257. https://doi.org/10.1038/nature12970
- Sinka, M.E., Bangs, M.J., Manguin, S., Coetzee, M., Mbogo, C.M., Hemingway, J., Patil, A.P., Temperley, W.H., Gething, P.W., Kabaria, C.W., Okara, R.M., Van Boeckel, T., Godfray, H.C.J., Harbach, R.E., Hay, S.I., 2010. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit. Vectors 3, 117. https://doi.org/10.1186/1756-3305-3-117
- Sinka, M.E., Bangs, M.J., Manguin, S., Rubio-Palis, Y., Chareonviriyaphap, T., Coetzee, M., Mbogo, C.M., Hemingway, J., Patil, A.P., Temperley, W.H., Gething, P.W., Kabaria,

C.W., Burkot, T.R., Harbach, R.E., Hay, S.I., 2012. A global map of dominant malaria vectors. Parasit. Vectors 5, 69. https://doi.org/10.1186/1756-3305-5-69

- Smith, J.D., 2014. The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research. Mol. Biochem. Parasitol. 195, 82–87. https://doi.org/10.1016/j.molbiopara.2014.07.006
- Smith, J.D., Chitnis, C.E., Craig, A.G., Roberts, D.J., Hudson-Taylor, D.E., Peterson, D.S., Pinches, R., Newbold, C.I., Miller, L.H., 1995. Switches in Expression of Plasmodium falciparum var Genes Correlate with Changes in Antigenic and Cytoadherent Phenotypes of Infected Erythrocytes. Cell 82, 101–110.
- Smith, J.D., Craig, A.G., Kriek, N., Hudson-Taylor, D., Kyes, S., Fagan, T., Pinches, R., Baruch, D.I., Newbold, C.I., Miller, L.H., 2000. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc. Natl. Acad. Sci. U. S. A. 97, 1766–1771. https://doi.org/10.1073/pnas.040545897
- Soldati, D., 1999. The apicoplast as a potential therapeutic target in and other apicomplexan parasites. Parasitol. Today Pers. Ed 15, 5–7. https://doi.org/10.1016/s0169-4758(98)01363-5
- Sommi Picenardi, G., 1888. Esumazione e ricognizione delle ceneri dei principi Medicei fatta nell' anno 1857: processo verbale e note. Direzione dell' Archivio Storico Italiano.
- Spielmann, T., Fergusen, D.J.P., Beck, H.-P., 2003. etramps, a new Plasmodium falciparum gene family coding for developmentally regulated and highly charged membrane proteins located at the parasite-host cell interface. Mol. Biol. Cell 14, 1529–1544. https://doi.org/10.1091/mbc.e02-04-0240
- Spielmann, T., Gardiner, D.L., Beck, H.-P., Trenholme, K.R., Kemp, D.J., 2006a. Organization of ETRAMPs and EXP-1 at the parasite-host cell interface of malaria parasites. Mol. Microbiol. 59, 779–794. https://doi.org/10.1111/j.1365-2958.2005.04983.x
- Spielmann, T., Gilberger, T.-W., 2015. Critical Steps in Protein Export of Plasmodium falciparum Blood Stages. Trends Parasitol. 31, 514–525. https://doi.org/10.1016/j.pt.2015.06.010
- Spielmann, T., Gilberger, T.-W., 2010. Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends Parasitol. 26, 6–10. https://doi.org/10.1016/j.pt.2009.10.001
- Spielmann, T., Gras, S., Sabitzki, R., Meissner, M., 2020. Endocytosis in Plasmodium and Toxoplasma Parasites. Trends Parasitol. 36, 520–532. https://doi.org/10.1016/j.pt.2020.03.010
- Spielmann, T., Hawthorne, P.L., Dixon, M.W.A., Hannemann, M., Klotz, K., Kemp, D.J., Klonis, N., Tilley, L., Trenholme, K.R., Gardiner, D.L., 2006b. A cluster of ring stagespecific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol. Biol. Cell 17, 3613–3624. https://doi.org/10.1091/mbc.e06-04-0291
- Spielmann, T., Montagna, G.N., Hecht, L., Matuschewski, K., 2012. Molecular make-up of the Plasmodium parasitophorous vacuolar membrane. Int. J. Med. Microbiol. IJMM 302, 179–186. https://doi.org/10.1016/j.ijmm.2012.07.011
- Spycher, C., Rug, M., Pachlatko, E., Hanssen, E., Ferguson, D., Cowman, A.F., Tilley, L., Beck, H.-P., 2008. The Maurer's cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Mol. Microbiol. 68, 1300–1314. https://doi.org/10.1111/j.1365-2958.2008.06235.x
- Stäcker, J., 2021. Functional analysis of trophozoite- and schizont-exported proteins of the human malaria parasite Plasmodium falciparum (Welch 1897) (Dissertation). University of Hamburg.

- Stallmach, R., Kavishwar, M., Withers-Martinez, C., Hackett, F., Collins, C.R., Howell, S.A., Yeoh, S., Knuepfer, E., Atid, A.J., Holder, A.A., Blackman, M.J., 2015. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Mol. Microbiol. 96, 368–387. https://doi.org/10.1111/mmi.12941
- Stewart, L.B., Freville, A., Voss, T.S., Baker, D.A., Awandare, G.A., Conway, D.J., 2022. Plasmodium falciparum Sexual Commitment Rate Variation among Clinical Isolates and Diverse Laboratory-Adapted Lines. Microbiol. Spectr. 10, e02234-22. https://doi.org/10.1128/spectrum.02234-22
- Stirling, D.R., Swain-Bowden, M.J., Lucas, A.M., Carpenter, A.E., Cimini, B.A., Goodman, A., 2021. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433. https://doi.org/10.1186/s12859-021-04344-9
- Stokes, B.H., Dhingra, S.K., Rubiano, K., Mok, S., Straimer, J., Gnädig, N.F., Deni, I., Schindler, K.A., Bath, J.R., Ward, K.E., Striepen, J., Yeo, T., Ross, L.S., Legrand, E., Ariey, F., Cunningham, C.H., Souleymane, I.M., Gansané, A., Nzoumbou-Boko, R., Ndayikunda, C., Kabanywanyi, A.M., Uwimana, A., Smith, S.J., Kolley, O., Ndounga, M., Warsame, M., Leang, R., Nosten, F., Anderson, T.J., Rosenthal, P.J., Ménard, D., Fidock, D.A., 2021. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. eLife 10, e66277. https://doi.org/10.7554/eLife.66277
- Sturm, A., Amino, R., van de Sand, C., Regen, T., Retzlaff, S., Rennenberg, A., Krueger, A., Pollok, J.-M., Menard, R., Heussler, V.T., 2006. Manipulation of Host Hepatocytes by the Malaria Parasite for Delivery into Liver Sinusoids. Science 313, 1287–1290. https://doi.org/10.1126/science.1129720
- Su, X.Z., Heatwole, V.M., Wertheimer, S.P., Guinet, F., Herrfeldt, J.A., Peterson, D.S., Ravetch, J.A., Wellems, T.E., 1995. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100. https://doi.org/10.1016/0092-8674(95)90055-1
- Suarez, C., Volkmann, K., Gomes, A.R., Billker, O., Blackman, M.J., 2013. The Malarial Serine Protease SUB1 Plays an Essential Role in Parasite Liver Stage Development. PLOS Pathog. 9, e1003811. https://doi.org/10.1371/journal.ppat.1003811
- Takano, R., Kozuka-Hata, H., Kondoh, D., Bochimoto, H., Oyama, M., Kato, K., 2019. A High-Resolution Map of SBP1 Interactomes in Plasmodium falciparum-infected Erythrocytes. iScience 19, 703–714. https://doi.org/10.1016/j.isci.2019.07.035
- Tarr, S.J., Moon, R.W., Hardege, I., Osborne, A.R., 2014. A conserved domain targets exported PHISTb family proteins to the periphery of Plasmodium infected erythrocytes. Mol. Biochem. Parasitol. 196, 29–40. https://doi.org/10.1016/j.molbiopara.2014.07.011
- Tawk, L., Lacroix, C., Gueirard, P., Kent, R., Gorgette, O., Thiberge, S., Mercereau-Puijalon, O., Ménard, R., Barale, J.-C., 2013. A Key Role for Plasmodium Subtilisin-like SUB1 Protease in Egress of Malaria Parasites from Host Hepatocytes. J. Biol. Chem. 288, 33336–33346. https://doi.org/10.1074/jbc.M113.513234
- Thomas, J.A., Collins, C.R., Das, S., Hackett, F., Graindorge, A., Bell, D., Deu, E., Blackman, M.J., 2016. Development and Application of a Simple Plaque Assay for the Human Malaria Parasite Plasmodium falciparum. PLoS ONE 11, e0157873. https://doi.org/10.1371/journal.pone.0157873
- Thomas, J.A., Tan, M.S.Y., Bisson, C., Borg, A., Umrekar, T.R., Hackett, F., Hale, V.L., Vizcay-Barrena, G., Fleck, R.A., Snijders, A.P., Saibil, H.R., Blackman, M.J., 2018. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat. Microbiol. 3, 447–455. https://doi.org/10.1038/s41564-018-0111-0

- Tibúrcio, M., Hitz, E., Niederwieser, I., Kelly, G., Davies, H., Doerig, C., Billker, O., Voss, T.S., Treeck, M., 2021. A 39-Amino-Acid C-Terminal Truncation of GDV1 Disrupts Sexual Commitment in Plasmodium falciparum. mSphere 6, e01093-20. https://doi.org/10.1128/mSphere.01093-20
- Toso, M.A., Omoto, C.K., 2007. Gregarina niphandrodes may lack both a plastid genome and organelle. J. Eukaryot. Microbiol. 54, 66–72. https://doi.org/10.1111/j.1550-7408.2006.00229.x
- Trager, W., Jensen, J.B., 1976. Human malaria parasites in continuous culture. Science 193, 673–675. https://doi.org/10.1126/science.781840
- Trager, W., Rudzinska, M.A., Bradbury, P.C., 1966. The fine structure of Plasmodium falciparum and its host erythrocytes in natural malarial infections in man. Bull. World Health Organ. 35, 883–885.
- Trimnell, A.R., Kraemer, S.M., Mukherjee, S., Phippard, D.J., Janes, J.H., Flamoe, E., Su, X., Awadalla, P., Smith, J.D., 2006. Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol. Biochem. Parasitol. 148, 169–180. https://doi.org/10.1016/j.molbiopara.2006.03.012
- Turner, L., Lavstsen, T., Berger, S.S., Wang, C.W., Petersen, J.E.V., Avril, M., Brazier, A.J., Freeth, J., Jespersen, J.S., Nielsen, M.A., Magistrado, P., Lusingu, J., Smith, J.D., Higgins, M.K., Theander, T.G., 2013. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502–505. https://doi.org/10.1038/nature12216
- Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., Cox, J., 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901
- Ukaegbu, U.E., Zhang, X., Heinberg, A.R., Wele, M., Chen, Q., Deitsch, K.W., 2015. A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum. PLoS Genet. 11, e1005234. https://doi.org/10.1371/journal.pgen.1005234
- Usui, M., Prajapati, S.K., Ayanful-Torgby, R., Acquah, F.K., Cudjoe, E., Kakaney, C., Amponsah, J.A., Obboh, E.K., Reddy, D.K., Barbeau, M.C., Simons, L.M., Czesny, B., Raiciulescu, S., Olsen, C., Abuaku, B.K., Amoah, L.E., Williamson, K.C., 2019. Plasmodium falciparum sexual differentiation in malaria patients is associated with host factors and GDV1-dependent genes. Nat. Commun. 10, 2140. https://doi.org/10.1038/s41467-019-10172-6
- Uwimana, A., Legrand, E., Stokes, B.H., Ndikumana, J.-L.M., Warsame, M., Umulisa, N., Ngamije, D., Munyaneza, T., Mazarati, J.-B., Munguti, K., Campagne, P., Criscuolo, A., Ariey, F., Murindahabi, M., Ringwald, P., Fidock, D.A., Mbituyumuremyi, A., Menard, D., 2020. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med. 26, 1602–1608. https://doi.org/10.1038/s41591-020-1005-2
- Uwimana, A., Umulisa, N., Venkatesan, M., Svigel, S.S., Zhou, Z., Munyaneza, T., Habimana, R.M., Rucogoza, A., Moriarty, L.F., Sandford, R., Piercefield, E., Goldman, I., Ezema, B., Talundzic, E., Pacheco, M.A., Escalante, A.A., Ngamije, D., Mangala, J.-L.N., Kabera, M., Munguti, K., Murindahabi, M., Brieger, W., Musanabaganwa, C., Mutesa, L., Udhayakumar, V., Mbituyumuremyi, A., Halsey, E.S., Lucchi, N.W., 2021. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 21, 1120–1128. https://doi.org/10.1016/S1473-3099(21)00142-0
- Vaaben, A.V., 2018. Discovery and characterization of hostparasite interactions associated with severe malaria.

- van Ooij, C., Tamez, P., Bhattacharjee, S., Hiller, N.L., Harrison, T., Liolios, K., Kooij, T., Ramesar, J., Balu, B., Adams, J., Waters, A., Janse, C., Haldar, K., 2008. The Malaria Secretome: From Algorithms to Essential Function in Blood Stage Infection. PLoS Pathog. 4, e1000084. https://doi.org/10.1371/journal.ppat.1000084
- Venugopal, K., Hentzschel, F., Valkiūnas, G., Marti, M., 2020. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat. Rev. Microbiol. 18, 177–189. https://doi.org/10.1038/s41579-019-0306-2
- Viebig, N.K., Levin, E., Dechavanne, S., Rogerson, S.J., Gysin, J., Smith, J.D., Scherf, A., Gamain, B., 2007. Disruption of var2csa gene impairs placental malaria associated adhesion phenotype. PloS One 2, e910. https://doi.org/10.1371/journal.pone.0000910
- Voss, T.S., Healer, J., Marty, A.J., Duffy, M.F., Thompson, J.K., Beeson, J.G., Reeder, J.C., Crabb, B.S., Cowman, A.F., 2006. A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439, 1004–1008. https://doi.org/10.1038/nature04407
- Voss, T.S., Thompson, J.K., Waterkeyn, J., Felger, I., Weiss, N., Cowman, A.F., Beck, H.P., 2000. Genomic distribution and functional characterisation of two distinct and conserved Plasmodium falciparum var gene 5' flanking sequences. Mol. Biochem. Parasitol. 107, 103–115. https://doi.org/10.1016/s0166-6851(00)00176-6
- Voß, Y., Klaus, S., Guizetti, J., Ganter, M., 2023. Plasmodium schizogony, a chronology of the parasite's cell cycle in the blood stage. PLOS Pathog. 19, e1011157. https://doi.org/10.1371/journal.ppat.1011157
- Wahlgren, M., Goel, S., Akhouri, R.R., 2017. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat. Rev. Microbiol. 15, 479–491. https://doi.org/10.1038/nrmicro.2017.47
- Waller, R.F., Reed, M.B., Cowman, A.F., McFadden, G.I., 2000. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. 19, 1794– 1802. https://doi.org/10.1093/emboj/19.8.1794
- Wang, C.W., Hermsen, C.C., Sauerwein, R.W., Arnot, D.E., Theander, T.G., Lavstsen, T., 2009. The Plasmodium falciparum var gene transcription strategy at the onset of blood stage infection in a human volunteer. Parasitol. Int. 58, 478–480. https://doi.org/10.1016/j.parint.2009.07.004
- Wang, C.W., Hviid, L., 2015. Rifins, rosetting, and red blood cells. Trends Parasitol. 31, 285–286. https://doi.org/10.1016/j.pt.2015.04.009
- Ward, P., Equinet, L., Packer, J., Doerig, C., 2004. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5, 79. https://doi.org/10.1186/1471-2164-5-79
- Warimwe, G.M., Keane, T.M., Fegan, G., Musyoki, J.N., Newton, C.R.J.C., Pain, A., Berriman, M., Marsh, K., Bull, P.C., 2009. Plasmodium falciparum var gene expression is modified by host immunity. Proc. Natl. Acad. Sci. U. S. A. 106, 21801–21806. https://doi.org/10.1073/pnas.0907590106
- Warncke, J.D., Vakonakis, I., Beck, H.-P., 2016. Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling. Microbiol. Mol. Biol. Rev. MMBR 80, 905–927. https://doi.org/10.1128/MMBR.00014-16
- Wassmer, S.C., Combes, V., Candal, F.J., Juhan-Vague, I., Grau, G.E., 2006. Platelets Potentiate Brain Endothelial Alterations Induced by Plasmodium falciparum. Infect. Immun. 74, 645–653. https://doi.org/10.1128/IAI.74.1.645-653.2006
- Waterkeyn, J.G., Wickham, M.E., Davern, K.M., Cooke, B.M., Coppel, R.L., Reeder, J.C., Culvenor, J.G., Waller, R.F., Cowman, A.F., 2000. Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts

cytoadherence of malaria-infected red blood cells. EMBO J. 19, 2813–2823. https://doi.org/10.1093/emboj/19.12.2813

- Watermeyer, J.M., Hale, V.L., Hackett, F., Clare, D.K., Cutts, E.E., Vakonakis, I., Fleck, R.A., Blackman, M.J., Saibil, H.R., 2016. A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes. Blood 127, 343–351. https://doi.org/10.1182/blood-2015-10-674002
- Weng, H., Guo, X., Papoin, J., Wang, J., Coppel, R., Mohandas, N., An, X., 2014. Interaction of Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) with erythrocyte ankyrin R is required for its attachment to the erythrocyte membrane. Biochim. Biophys. Acta 1838, 185–192. https://doi.org/10.1016/j.bbamem.2013.09.014
- WHO, 2023. World malaria report 2023. URL https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (accessed 15.02.24).
- WHO, 2020. WHO methods and data sources for country-level causes of death 2000-2019. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed 15.02.2024)
- Wichers, J.S., Wunderlich, J., Heincke, D., Pazicky, S., Strauss, J., Schmitt, M., Kimmel, J., Wilcke, L., Scharf, S., von Thien, H., Burda, P.-C., Spielmann, T., Löw, C., Filarsky, M., Bachmann, A., Gilberger, T.W., 2021. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell. Microbiol. 23, e13341. https://doi.org/10.1111/cmi.13341
- Wickert, H., Göttler, W., Krohne, G., Lanzer, M., 2004. Maurer's cleft organization in the cytoplasm of plasmodium falciparum-infected erythrocytes: new insights from threedimensional reconstruction of serial ultrathin sections. Eur. J. Cell Biol. 83, 567–582. https://doi.org/10.1078/0171-9335-00432
- Wickert, H., Rohrbach, P., Scherer, S.J., Krohne, G., Lanzer, M., 2003. A putative Sec23 homologue of Plasmodium falciparum is located in Maurer's clefts. Mol. Biochem. Parasitol. 129, 209–213. https://doi.org/10.1016/s0166-6851(03)00117-8
- Wickham, M.E., Rug, M., Ralph, S.A., Klonis, N., McFadden, G.I., Tilley, L., Cowman, A.F., 2001. Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J. 20, 5636–5649. https://doi.org/10.1093/emboj/20.20.5636
- Winter, G., Chen, Q., Flick, K., Kremsner, P., Fernandez, V., Wahlgren, M., 2003. The 3D7var5.2 (var COMMON) type var gene family is commonly expressed in nonplacental Plasmodium falciparum malaria. Mol. Biochem. Parasitol. 127, 179–191. https://doi.org/10.1016/s0166-6851(03)00004-5
- Winter, G., Kawai, S., Haeggström, M., Kaneko, O., von Euler, A., Kawazu, S., Palm, D., Fernandez, V., Wahlgren, M., 2005. SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J. Exp. Med. 201, 1853– 1863. https://doi.org/10.1084/jem.20041392
- Yahata, K., Hart, M.N., Davies, H., Asada, M., Wassmer, S.C., Templeton, T.J., Treeck, M., Moon, R.W., Kaneko, O., 2021. Gliding motility of Plasmodium merozoites. Proc. Natl. Acad. Sci. U. S. A. 118, e2114442118. https://doi.org/10.1073/pnas.2114442118
- Ye, R., Zhang, D., Chen, B., Zhu, Y., Zhang, Y., Wang, S., Pan, W., 2015. Transcription of the var genes from a freshly-obtained field isolate of Plasmodium falciparum shows more variable switching patterns than long laboratory-adapted isolates. Malar. J. 14, 66. https://doi.org/10.1186/s12936-015-0565-y
- Yeh, E., DeRisi, J.L., 2011. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 9, e1001138. https://doi.org/10.1371/journal.pbio.1001138

- Yeoh, S., O'Donnell, R.A., Koussis, K., Dluzewski, A.R., Ansell, K.H., Osborne, S.A., Hackett, F., Withers-Martinez, C., Mitchell, G.H., Bannister, L.H., Bryans, J.S., Kettleborough, C.A., Blackman, M.J., 2007. Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131, 1072–1083. https://doi.org/10.1016/j.cell.2007.10.049
- Zhang, Q., Ma, C., Oberli, A., Zinz, A., Engels, S., Przyborski, J.M., 2017. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci. Rep. 7, 42188. https://doi.org/10.1038/srep42188
- Zhang, Q., Zhang, Y., Huang, Y., Xue, X., Yan, H., Sun, X., Wang, J., McCutchan, T.F., Pan, W., 2011. From in vivo to in vitro: dynamic analysis of Plasmodium falciparum var gene expression patterns of patient isolates during adaptation to culture. PloS One 6, e20591. https://doi.org/10.1371/journal.pone.0020591
- Zhang, X., Florini, F., Visone, J.E., Lionardi, I., Gross, M.R., Patel, V., Deitsch, K.W., 2022. A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites. eLife 11, e83840. https://doi.org/10.7554/eLife.83840
- Zhang, Y., Jiang, N., Chang, Z., Wang, H., Lu, H., Wahlgren, M., Chen, Q., 2014. The var3 genes of Plasmodium falciparum 3D7 strain are differentially expressed in infected erythrocytes. Parasite Paris Fr. 21, 19. https://doi.org/10.1051/parasite/2014019
- Zhu, G., Marchewka, M.J., Keithly, J.S., 2000. Cryptosporidium parvum appears to lack a plastid genome. Microbiol. Read. Engl. 146 (Pt 2), 315–321. https://doi.org/10.1099/00221287-146-2-315

## APPENDIX

Appendix A: Oligonucleotides

## Appendix A.1

Oligonucleotides for cloning

| Primer name                  | Direction | Sequence                                                               |
|------------------------------|-----------|------------------------------------------------------------------------|
| 3D7varUPSB6-HAendo           | fw        | AGCTgcggccgcTAA <u>ACCAGGTAGTCCTAAATATAAAACGTTG</u>                    |
|                              | rv        | GCTGGGTACCTATATTCCATATATCTGATATAGGATATTCC                              |
| 3D7var2csa-HAendo            | fw        | GACACTATAGAATACTCAAGCTgcggccgcTAACGATAAATATATTTGGGACT<br>TATCTTCC      |
|                              | rv        | GGAACATCGTATGGGTACATGGTGGTACCACAATTGTACGAATTTTCCAT<br>CTGATCG          |
| 3D7varUPSA1-HAendo           | fw        | CTCGgcggccgcTAAGGATGTACCACAATATGATGTATCAAC                             |
|                              | rv        | TCCTGGTACCTATATTCCATACATCCGATATAGG                                     |
| 3D7MEEDvarUPSA1-HAendo       | fw        | CTCGgcggccgcTAAGGATGTACCACAATATGATGTATCAAC                             |
|                              | rv        | TCCTGGTACCTATATTCCATACATCCGATATAGG                                     |
| 3D7rifA1-HAendo              | fw        | gacactatagaatactcgcggccgcTAAGTAAATACCCACAAAAAAACCACACACCAC<br>AGCACGTC |
|                              | ľV        | GGAACATCGTATGGGTACATGGTGGTACCTTCTTTTAATAATTTTATGTAT<br>TGTAATTTTTTGTTC |
| 3D7rifA2-HAendo              | fw        | ggtgacactatagaatactcgcggccgcTAAGTTTCCTCTAAAATTAAATATATTGgtaacattatgtg  |
|                              | ľV        | GGAACATCGTATGGGTACATGGTGGTACCTTCTTTTAATAATTTTATATAT<br>TGGAGTTTTTTC    |
| 3D7varUPSB6-mDHFR-<br>HAendo | fw        | AGCTgcggccgcTAA <u>ACCAGGTAGTCCTAAATATAAAAACGTTG</u>                   |
|                              | ľV        | GCTGCCCCGGGTATATTCCATATATCTGATATAGGATATTCC                             |
| 3D7var2csa-mDHFR-HAendo      | fw        | GACACTATAGAATACTCAAGCTgcggccgcTAACGATAAATATATTTGGGACT<br>TATCTTCC      |
|                              | ľV        | GGAACATCGTATGGGTACATGGTGGTACCGTCCTTTTTTCGTAAACCTCG<br>AAC              |

| Primer name       | Direction | Sequence                                                                                |
|-------------------|-----------|-----------------------------------------------------------------------------------------|
| IT4var66-HAendo   | fw        | gctatttaggtgacactatagaatactcaagctgcggccgctaaCACATTAAGTGGTAATGAACATA<br>TTG              |
|                   | ľV        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATTCCATATA<br>TCCGCTATAGGATATTGC               |
| IT4var2csa-HAendo | fw        | gctatttaggtgacactatagaatactcgcggccgcTAATAAATATATTTGCGACTTATCTT<br>CCTCTG                |
|                   | ľV        | GTAATCTGGAACATCGTATGGGTACATGGTGGTACCCAAATTGTACGAAT<br>TTTCCACCTGATCGTC                  |
| IT4var02-HAendo   | fw        | gctatttaggtgacactatagaatactcgcggccgcTAAAATACAGAGGAAAACGGTACATTTA<br>CCTTGAAG            |
|                   | rv        | GTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATTCCATACATC<br>CGATATAGGAAATTCTGG               |
| IT4var03-HAendo   | fw        | gctatttaggtgacactatagaatactcaagctgcggccgcTAAGCAAAACGTCAAGTAGATATGA<br>TACGG             |
|                   | ľV        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATTCCATAC<br>ATCCGATATAGGAAATTG                |
| IT4var06-HAendo   | fw        | gacactatagaatactcaagctgcggccgctaaCGTTGAATACTAATAATGTTGATATATATG                         |
|                   | ľV        | GTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATCCCATACATC<br>TGCTATAGGATATTTCTCTTTCACCAATTTGG |
| IT4var07-HAendo   | fw        | gctatttaggtgacactatagaatactcaagctgcggccgcTAAGGAATAAAACATCCAAAACATA<br>CTAATACACACA      |
|                   | ľV        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATTCCATAC<br>ATCCGATATAGGAAATTCTGGTTCCAAGG     |
| IT4var08-HAendo   | fw        | gctatttaggtgacactatagaatactcaagctgcggccgcTAAGGTAATGGTAACACACCAAGTA<br>AGGG              |
|                   | rv        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATTCCATAC<br>ATCCGATATGGGAAATTCTGG             |
| IT4var09-HAendo   | fw        | gctatttaggtgacactatagaatactcaagctgcggccgcTAAAATATAAATATGGTTAATAATG<br>ATATTCCAATGAGTG   |
|                   | rv        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATTCCATAC<br>ATCTGATATAGGAAATTCTGGTTCCAAGG     |
| IT4var16-HAendo   | fw        | CTCGgeggeegeTAATAGTGGTAAGAACACAACAGCTAGTGGTAAAAAC                                       |
| Primer name                             | Direction | Sequence                                                                                       |
|-----------------------------------------|-----------|------------------------------------------------------------------------------------------------|
|                                         | rv        | TCCTGGTACCTTTCTCTTTCGCCATTTCTCCGTTCTTCACACTC                                                   |
| IT4var18-HAendo                         | fw        | getatttaggtgacactatagaatactcaagetgeggeegeTAACAGATGAAGATAAATATGCATT TATGTC                      |
|                                         | ľV        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATTCCATAC<br>ATCTGATATAGGAAATTCTGG                    |
| IT4var19-HAendo                         | fw        | gctatttaggtgacactatagaatactcgcggccgcTAACTATGAATAAATTTACTGATGAGG<br>AATGG                       |
|                                         | ľV        | GTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATCCCATACATC<br>CGATATAGGATATTTCTC                      |
| IT4var20-HAendo                         | fw        | gctatttaggtgacactatagaatactcgcggccgcTAAGCAATCGTTATATCCCCTATGCTAGT<br>GATCG                     |
|                                         | ľV        | GTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATCCCATACATC<br>TGCTATAGGATATTTCTC                      |
| IT4var22-HAendo                         | fw        | gctatttaggtgacactatagaatactcaagctgcggccgctaaCGAAGTGGTACTAGAACCTAGTGGTAACAAC                    |
|                                         | ΓV        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATTCCATAC<br>ATCCGATATAGGAAATTCTGG                    |
| IT4var35-HAendo                         | fw        | getatttaggtgacactatagaatactcaagetgeggeegeTAAAAAAAATTCAAATCGTCTGTGGACTTGTTG                     |
|                                         | ľV        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTTTAATGACACT<br>GTTGTTTGATGTAC                           |
| IT4var64-HAendo                         | fw        | gctatttaggtgacactatagaatactcaagctgcggccgcTAACTAGTGGAGATGAAGATAAATA TGC                         |
|                                         | ľV        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTATATTCCATAC<br>ATCCGATATGGGAAATTCTGGTTCCAACGATCC        |
| PTP1-TGD-GFP                            | fw        | ctcgGCGGCCGCtaaGTGAATAAAGATAATAGG                                                              |
|                                         | rv        | tcctCGTACGCCTAGGGGTACCAAAGGAATCGTTATTTATC                                                      |
| IT4var01-BirA*Pos1endo                  | fw        | same HR as IT4var1-HAendo                                                                      |
|                                         | rv        | same HR as IT4var1-HAendo                                                                      |
| IT4var01-BirA*Pos1endo<br>7xGGGS linker | fw        | CTATCCAAATAGATATGAATTCTAAACCTATTGGTACCGGAGGTGGAGGT<br>AGTGGAGGCGGAGG                           |
|                                         | rv        | GATTACGCTACGATGTA <u>CCCGTACGACGTGCCGGACTACGCGACTATGTA</u><br><u>TCCATATGATGTTCCAGATTATGCT</u> |

| Primer name                                                 | Direction | Sequence                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | 0         |                                                                                                                                                                                                                                                              |
| BirA*                                                       | IW        | TGGAGGCGGAGGTAGCGGA                                                                                                                                                                                                                                          |
|                                                             | rv        | GATTACGCTACGATGTA <u>CCCGTACGACGTGCCGGACTACGCGACTATGTA</u><br><u>TCCATATGATGTTCCAGATTATGCT</u>                                                                                                                                                               |
| IT4var01-BirA*Pos2endo                                      | fw        | ggtgacactatagaatactcaagctgcggccgctaaTGTATACAGAATAGTGGAAATGAAA                                                                                                                                                                                                |
|                                                             | rv        | GCGTAATCTGGAACATCGTATGGGTACATGGTGGTACCTTTGGTTTTTTCt aaaaaaaacg                                                                                                                                                                                               |
| IT4var01-BirA*Pos2endo<br>BirA*                             | fw        | GAGTTATTTCGTACTAAAGAAAAAAACCAAAGGTACCGGTGGAGGTGGAT<br>CAGGTGGAGGTGGATCAATGAAAGATAATACAGTACC                                                                                                                                                                  |
|                                                             | rv        | ACGCGTACTTCCACTTCCACTTCCTTTTTCAGCTGATCTTAATGATATTTC                                                                                                                                                                                                          |
| IT4var01-BirA*Pos2endo<br>recodonized var01 rest position 2 | fw        | GAAAAAGGAAGTGGAAGTGGAAGTACGCGTAGCACAATAGACTTACTT                                                                                                                                                                                                             |
|                                                             | rv        | 1.CACGTCGTACGGGTACATCGTAGCGTAATCTGGAACATCGTATGGGTAC<br>ATGGTCCCGGGTATTGGCTTGCTGTTCATGTCAATCTGTATG<br>2.GTCGACAGCATAATCTGGAACATCATATGGATACATAGTCGCGTAGTCC<br>GGCACGTCGTACGGGTACATCGTAGCG<br>3.ACATGTTAATAAACTTCCTCTTCCTTCTCCGTCGACAGCATAATCTGGAA<br>CATCATATG |
| IT4var01-BirA*Pos3endo                                      | fw        | ggtgacactatagaatactcaagctgcggccgctaaGGAACATCTAAAAAACATCATCTAATC                                                                                                                                                                                              |
|                                                             | rv        | CCAGGACCAAAAGCACCAAAAAAACGAGGTACCACCATGTACCCATACG<br>ATGTTCCAGATTACGC                                                                                                                                                                                        |
| IT4var01-BirA*Pos3endo BirA*                                | fw        | CCAAAACCAGGACCAAAAGCACCAAAAAAACGAGGTACCGGAAGTGGAA<br>GTGGAAGTATGAAAGATAATACAGTACC                                                                                                                                                                            |
|                                                             | rv        | ACGCGTTGATCCACCTCCACCTGATCCACCTCCACCTTTTTCAGCTGATCT<br>TAATGATATTTC                                                                                                                                                                                          |
| IT4var01-BirA*Pos3endo<br>recodonized var01 rest position 3 | fw        | GGTGGAGGTGGATCAGGTGGAGGTGGATCAACCGGTCAGCCTAGAGAGG<br>TTACACACAG                                                                                                                                                                                              |
|                                                             | rv        | GCGTAATCTGGAACATCGTATGGGTACATGGTCCCGGGTATTGGCTTGCT<br>GTTCATGTCAATC                                                                                                                                                                                          |
| TryThrA-Ty1                                                 | fw        | aagctatttaggtgacactatagaatactcGCGGCCGCtaaGTTACTAGAGAAAAACTCGAAT<br>GGAAACATTG                                                                                                                                                                                |
|                                                             | rv        | GTCCAGGGGGTCCTGGTTGGTGTGCACCTCCCTAGGAACATTAATTTCATT<br>TCCGTCATCATCAACTG                                                                                                                                                                                     |
| TryThrA-TGD-GFP                                             | fw        | ccaagctatttaggtgacactatagaatactcGCGGCCGCtaaAATTTAGAGCAGTTTAAAAAT<br>ATAAACAAAG                                                                                                                                                                               |
|                                                             | rv        | TCCAGTGAAAAGTTCTTCTCCTTTACTCATCGTACGATTTTTACTTTACTA<br>TTTTTTTCTTTTAC                                                                                                                                                                                        |
| PTEF-Ty1                                                    | fw        | aagetatttaggtgacactatagaatactcGCGGCCGCtaaATTATTATCCACATAATATGACA                                                                                                                                                                                             |

| Primer name   | Direction | Sequence                                                                           |
|---------------|-----------|------------------------------------------------------------------------------------|
|               | ľV        | GTCCAGGGGGTCCTGGTTGGTGTGCACCTCCCTAGGTAATGCTTTGTTTG                                 |
| PTEF-TGD-GFP  | fw        | ccaagctatttaggtgacactatagaatactcGCGGCCGCtaaTTAAAGAAATATATTATATTA<br>ATATATATCGG    |
|               | rv        | TCCAGTGAAAAGTTCTTCTCCTTTACTCATCGTACGATAATTTAGTTGATC<br>TTCTAAATCATCACTAC           |
| C3-Ty1        | fw        | ccaagctatttaggtgacactatagaatactcGCGGCCGCtaaGCTTATCCTCTTTTAGAAGATG<br>ACTTAAGATC    |
|               | rV        | GTCCAGGGGGTCCTGGTTGGTGTGCACCTCCCTAGGTACATGAGCTTCATT<br>AGTGTTTAAACCAGATACGC        |
| C3-TGD-GFP    | fw        | ccaagctatttaggtgacactatagaatactcGCGGCCGCtaaGCTTATCCTCTTTTAGAAGATG<br>ACTTAAGATC    |
|               | rv        | TCCAGTGAAAAGTTCTTCTCCTTTACTCATCGTACGATTTCTTTTTCAATT<br>TCTTCAAATAATCC              |
| PeMP2-Ty1     | fw        | ccaagctatttaggtgacactatagaatactcGCGGCCGCtaaAATAAAAAATCAATGCAAACT<br>AAGAACTTTTTATC |
|               | ľV        | TCCAGTGAAAAGTTCTTCTCCTTTACTCATCGTACGTTTATTTTTATTATAT<br>ATCGATTTGGATGATACG         |
| PeMP2-TGD-GFP | fw        | ccaagctatttaggtgacactatagaatactcGCGGCCGCtaaAATAAAAAATCAATGCAAACT<br>AAGAACTTTTTATC |
|               | ľV        | TCCAGTGAAAAGTTCTTCTCCTTTACTCATCGTACGATTACAGATGTCAAG<br>GTCTCTATCAGGATAATTAG        |
| PTP7-TGD-GFP  | fw        | aagctatttaggtgacactatagaatactcGCGGCCGCtaaGCAAAAGATAGTCAAAAGAACT<br>TGAATGTTTC      |
|               | ľV        | TCCAGTGAAAAGTTCTTCTCCTTTACTCATCGTACGATAAGGGTCATAATT<br>TTCTTGAACTTCATC             |

## Appendix A.2

| Tested cell line             | Direction | Sequence                                  |
|------------------------------|-----------|-------------------------------------------|
| 3D7varUPSB6-HAendo           | fw        | CCCCCAGTTCCTGCTCCAGCTGGTG                 |
|                              | rV        | CCTAATGCATATTATGAAATATCCAC                |
| 3D7var2csa-HAendo            | fw        | GGTGGGACATGAATAAATATCACATATGGG            |
|                              | rv        | CTTTCCATATATTTTATGCATTGCATTTATTAG         |
| 3D7varUPSA1-HAendo           | fw        | GTAGATGAATGGATAAAGCTGAAAAAGG              |
|                              | rv        | CAAAAAATTATGAATCGAATATATTTAG              |
| 3D7MEEDvarUPSA1-HAendo       | fw        | GTAGATGAATGGATAAAGCTGAAAAAGG              |
|                              | ľV        | CAAAAAATTATGAATCGAATATATTTAG              |
| 3D7rifA1-HAendo              | fw        | <u>GTTTTATGTTAAACATATTTGATGTATTTATAAC</u> |
|                              | ľV        | GCGCAAAATAATTCATTCATTAAAATACCTG           |
| 3D7rifA2-HAendo              | fw        | GTTATAGTTTTTATCATAAAATAATATACGTATCAC      |
|                              | ľV        | CAGTACATGTACCAAACATCCTACCAACATCTAC        |
| 3D7varUPSB6-mDHFR-<br>HAendo | fw        | CCCCCAGTTCCTGCTCCAGCTGGTG                 |
|                              | rv        | <u>CCTAATGCATATTATGAAATATCCAC</u>         |
| 3D7var2csa-mDHFR-HAendo      | fw        | <u>GGTGGGACATGAATAAATATCACATATGGG</u>     |
|                              | rv        | CTTTCCATATATTTTATGCATTGCATTTATTAG         |
| IT4var66-HAendo              | fw        | TAATATGAGTACTAATAGTATGG                   |
|                              | rv        | aaactccacataaaaaaataaaaatcaaac            |
| IT4var2csa-HAendo            | fw        | TAGATATATCCCCTATGTGAGTGATAC               |
|                              | ľV        | ATATACACATATAAATCATCACC                   |
| IT4var02-HAendo              | fw        | ΑΑCTACATACATACATACATAAATATATAC            |
|                              | ľV        | aattatattaaattatgaac                      |
| IT4var03-HAendo              |           | CACAATATATACGTATAAATACGC                  |

### Oligonucleotides for diagnostic PCRs testing correct integration of SLI and SLI2 plasmids

| Tested cell line                                                           | Direction | Sequence                          |
|----------------------------------------------------------------------------|-----------|-----------------------------------|
|                                                                            |           | ΑΤΤΤΑΑΑΤΤΑΤΑCΑΑΑΤGΑΑΤΑΤΑC         |
| IT4var08-HAendo                                                            |           | TTAATGATATATATCCCTACACG           |
|                                                                            |           | AAATATTATTATACAAATATTG            |
| IT4var16-HAendo                                                            | fw        | AGTCCTAAATATAAAACATTGATAGAAGTGG   |
|                                                                            | rv        | aataaaaagaaataataatatatcg         |
| IT4var19-HAendo                                                            | fw        | ACATTGATAGAAGTGGTACTAGAACCATCG    |
|                                                                            | rv        | aaaaaattcaaacatatgtatatacatacg    |
| IT4var20-HAendo; first primer<br>pair                                      | r fw      | ΑΑΑΤΑΤΤΑΤΤΑΤΑCΑΑΑΤΑΤΤG            |
|                                                                            | rv        | ATACAAATAAAATCTAATATAATGC         |
| Second primer pair                                                         | fw        | ATACAAATAAAATCTAATATAATGC         |
|                                                                            | rv        | TTAATTAAAACAAAAAATACAACATATTCC    |
| IT4var22-HAendo first primer<br>pair                                       | r fw      | AAAGTGAGTATGAAGAATTGGATATTAATG    |
|                                                                            | rv        | aattatacaaatgaatatacaaataaaatg    |
| Second primer pair                                                         | fw        | ATCCACAAAGGAGATTATGGAATGCCTACG    |
|                                                                            | rv        | caaatttatatacaaataatcaaatgtgtc    |
| PTP1-TGD-GFP                                                               | fw        | TAGAATAACATATAAAAAATATGTATTCTG    |
|                                                                            | rv        | TTTAACTTTACAAATTCCTTTTAATTTACG    |
| IT4var01-BirA*Pos1endo,<br>IT4var01-mTurbPos1endo<br>IT4var01-FKBPPos1endo | fw        | CGACAACCACGTGAAGTGACGCATTCCATAGTC |
|                                                                            | ľV        | CTAATATAGTATCCATAGTAGAATTATCAGG   |
| IT4var01-BirA*Pos2endo<br>IT4var01-mTurbPos2endo<br>IT4var01-FKBPPos2endo  | fw        | TTAAGGATGATTGTCGTAGTGACACCCCAG    |
|                                                                            | rv        | CTAATATAGTATCCATAGTAGAATTATCAGG   |
| IT4var01-BirA*Pos3endo                                                     | fw        | TTAAGGATGATTGTCGTAGTGACACCCCAG    |

| Tested cell line | Direction | Sequence                               |
|------------------|-----------|----------------------------------------|
|                  | rv        | AGGTATTCCATAATCTCCTTTAGGTATATCAATAACAC |
| TryThrA-Ty1      | fw        | ttgtttttgtcgtataacagaaccaatgg          |
|                  | rv        | gtacataacaaaaatggtatattaaaaagc         |
| TryThrA-TGD-GFP  | fw        | ttgtttttgtcgtataacagaaccaatgg          |
|                  | rv        | CATTAGACATTCCAGAATTTTCATATTTTTCC       |
| PTEF-Ty1         | fw        | GAAAATGAAAGATGATGACTATGATGAAAG         |
|                  | rv        | acaaaaaaaaaaaaaaattttgattagg           |
| PTEF-TGD-GFP     | fw        | ggttctatttttatataagtaatcacatac         |
|                  | rv        | ATAATAATCTGTTTCATCAATATCATGTTC         |
| C3-Tyl           | fw        | aaaaagtatgaattatttggtgtgaacaag         |
|                  | rv        | tatctaattgcatataaaattttacaacag         |
| C3-TGD-GFP       | fw        | aaaaagtatgaattatttggtgtgaacaag         |
|                  | rv        | tatctaattgcatataaaattttacaacag         |
| PeMP2-Ty1        | fw        | Aattcaagaatataattcaattagttcttc         |
|                  | rv        | ttatttcatttacgaaaacaccattttcac         |
| PeMP2-TGD-GFP    | fw        | Aattcaagaatataattcaattagttcttc         |
|                  | rv        | GTTCCTTATGTATTGATCTTCTTGCTCTGC         |
| C5-Tyl           | fw        | ATCAAATAAAAGAAATCAAAGCATTAGTAG         |
|                  | rv        | Cacaaatttgtgtagaatgaaatatggtag         |
| C5-TGD-GFP       | fw        | ttttttaaatttccatttgggtgtacatg          |
|                  | rv        | CTTTATTATTATTATTATTATTACTAC            |
| PTP7-TGD-GFP     | fw        | Atggttttatttatttttcaatggaaaaag         |
|                  | rv        | CATAATTTTCCTCATCTTCACTATTCTCCG         |
|                  | rv        | tatctaattgcatataaaattttacaacag         |
| PeMP2-Ty1        | fw        | Aattcaagaatataattcaattagttcttc         |

| Tested cell line | Direction | Sequence                       |
|------------------|-----------|--------------------------------|
|                  | ľV        | ttatttcatttacgaaaacaccattttcac |

Appendix B – Full Western blots and replicates

Full Western blots and replicates of trypsin cleavage assays with parasites of the indicated cell lines (two independent experiments except for IT4var02-HA<sup>endo</sup>, IT4var20-HA<sup>endo</sup> and PTP7-TGD-GFP for which there is only one replicate). Asterisks show the protected PfEMP1 fragment indicative of surface exposure. Hash sign indicates signal from previous probing of the blot.  $\alpha$ -SBP1-N: control for integrity of host cell (breach of ERYTHROCYTE membrane would result in a smaller SBP1 fragment). Marker in kDa.



Appendix C – Partial co-block of HA-tagged PfEMP1

Fluorescence microscopy images show IFAs with acetone fixed 3D7varUPSB6-HA<sup>endo+</sup> crt-SBP1-mDHFR-GFP-2A-KAHRP-mScarlet<sup>epi</sup> parasites with the indicated antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m.



Appendix D - var gene expression pattern of a IT4 wildtype parasites population

Pie chart shows proportions of *var* gene transcripts determined by RNAseq and normalized to TPM of the utilized IT4 strain (RNAseq performed by Johannes Allweier).



# Appendix E – Detailed results of the BioID for the SDS-samples

|                                                 |                                                                                                                  | -Log<br>Student's T-         | Student's T-<br>test       | -Log<br>Student's T-         | Student's T-<br>test       | -Log<br>Student's T-         | Student's T-<br>test       |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|------------------------------|----------------------------|------------------------------|----------------------------|
| Majority protein IDs                            | Gene product                                                                                                     | test p-value<br>posl control | Difference<br>pos1 control | test p-value<br>pos2 control | Difference<br>pos2 control | test p-value<br>pos3 control | Difference<br>pos3 control |
| PfIT_110005700;PfIT_080005100                   | rifin                                                                                                            | 2,72207                      | 11,8572                    | 0,721468                     | 4,35419                    | 1,15553                      | 4,18287                    |
| PfIT_080005300<br>PfIT_130076400                | stevor<br>antigen 332, DBL-like protein                                                                          | 4,27988<br>4,01628           | 11,3009<br>11,2925         | 0,998502<br>2,97999          | 2,62541                    | 0,492964<br>3,39789          | -0,47193                   |
| PfIT_060021400                                  | erythrocyte membrane protein 1, PfEMP1                                                                           | 4,29439                      | 10,9193                    | 3,47746                      | 9,99964                    | 4,3084                       | 9,57984                    |
| PfIT_130058600<br>PfIT_130075600                | membrane associated histidine-rich protein<br>membrane associated histidine-rich protein                         | 2,1104 3,3941                | 9,89711                    | 2,30934                      | 8,98595                    | 3,05468                      | 9,1579<br>8,75564          |
| PfIT_090040600                                  | ring-exported protein 1                                                                                          | 2,76027                      | 9,51928                    | 2,1463                       | 8,68814                    | 2,57394                      | 8,04273                    |
| PfIT_050006600                                  | parasite-infected erythrocyte surface protein                                                                    | 3,8161                       | 9,42992 9,34866            | 2,5522                       | 7,54473                    | 3,23082                      | 7,39491                    |
| PfIT_010017100;PfIT_060035200<br>PfIT_050006700 | Pfmc-2TM Maurers cleft two transmembrane protein<br>skeleton-binding protein                                     | 4,80118                      | 9,06526                    | NaN<br>2 47615               | 7 63613                    | NaN<br>2 70028               | 8 00937                    |
| PfIT_080035300                                  | Plasmodium exported protein (PHISTc), unknown function                                                           | 4,01272                      | 8,55172                    | 3,56527                      | 7,61853                    | 2,96242                      | 7,84711                    |
| PfIT_100005600<br>PfIT_080037300                | alpha/beta hydrolase, putative                                                                                   | 3,10737                      | 8,36858                    | 3,94511<br>NaN               | 7,49142                    | 2,2769<br>NaN                | 6,66319                    |
| PfIT_040005500                                  | rifin                                                                                                            | 2,89704                      | 7,96811                    | 0,366518                     | 1,56311                    | 0,069481                     | 0,182953                   |
| PfIT_130076800<br>PfIT_070007300                | Plasmodium exported protein, unknown function<br>small exported membrane protein 1                               | 1,92403<br>2,789             | 7,7725                     | 1,58941<br>1.64212           | 7,86109                    | 1,74797<br>1,96541           | 4,94045 5,79244            |
| PfIT_070035300                                  | acyl-CoA synthetase                                                                                              | 1,40637                      | 7,56467                    | 1,17072                      | 6,3763                     | 1,12677                      | 5,8783                     |
| PfIT_100005800<br>PfIT_100006100                | alpha/beta hydrolase, putative<br>Plasmodium exported protein (hyp16), unknown function                          | 2,65276                      | 7,32195                    | 1,21396 2,23122              | 6,3019<br>6,99187          | 2,62208                      | 6,3153 6,50062             |
| PfIT_020007000                                  | EMP1-trafficking protein                                                                                         | 2,82747                      | 7,29186                    | 1,13838                      | 6,16186                    | 1,32192                      | 5,39491                    |
| PfIT_120006300                                  | acyl-CoA synthetase                                                                                              | 5,72103                      | 7,16762                    | 0,632853                     | 1,99255                    | 2,62535                      | 1,8954                     |
| PfIT_100006300<br>PfIT_060005700                | EMP1-trafficking protein                                                                                         | 2,78775                      | 7,05442                    | 2,14858                      | 6,60032<br>5,70546         | 2,59528                      | 5,78852                    |
| PfIT_100020500                                  | serine/threonine protein kinase, FIKK family                                                                     | 1,63239                      | 6,85818                    | 1,34139                      | 5,63409                    | 1,35437                      | 5,18276                    |
| PfIT_130058500<br>PfIT_080035200                | Plasmodium exported protein, unknown function<br>tryptophan/threenine-rich antigen                               | 2,07819                      | 6,84986<br>6,35775         | 1,70036                      | 6,07584<br>5,26704         | 1,85403<br>1,76119           | 5,87254                    |
| PfIT_070007200                                  | sporozoite threonine and asparagine-rich protein                                                                 | 3,20453                      | 6,28405                    | 1,54218                      | 4,09163                    | 1,31985                      | 2,30237                    |
| PfIT_090006600<br>PfIT_100006200                | Plasmodium exported protein, unknown function<br>Plasmodium exported protein (hyp2), unknown function            | 2,21047 3,9578               | 6,2807                     | 0,856456<br>3,03789          | 4,19125                    | 1,41409 3,70965              | 4,09122 6,11022            |
| PfIT_070007400                                  | Plasmodium exported protein, unknown function                                                                    | 1,55069                      | 6,13065                    | 1,38648                      | 5,94862                    | 1,42144                      | 5,56928                    |
| PfIT_140083600<br>PfIT_050006400                | Plasmodium exported protein (PHIS1b), unknown function<br>Plasmodium exported protein, unknown function          | 2,75638                      | 6,12446                    | 0,324334<br>1,59654          | -1,/9868<br>5,03564        | 2,27995                      | 4,93372                    |
| PfIT_120006700                                  | RESA-like protein with PHIST and DnaJ domains                                                                    | 1,63559                      | 6,08536                    | 1,30211                      | 5,23919                    | 1,13144                      | 3,98216                    |
| PfIT_010016900                                  | Plasmodium exported protein (hyp8), unknown function                                                             | 2,03301 2,10876              | 6,07598                    | 1,24957                      | 4,43821                    | 0,583115                     | 2,78791                    |
| PfIT_070034700                                  | Plasmodium exported protein, unknown function                                                                    | 2,48387                      | 6,07595                    | 0,380617                     | 2,91761                    | 2,05469                      | 5,21797                    |
| PfIT_140067700                                  | 40S ribosomal protein S28e, putative                                                                             | 1,25623                      | 6,04741                    | 0,481805                     | 3,66282                    | 1,32                         | 6,18874                    |
| PfIT_030006500<br>PfIT_110021000                | Plasmodium exported protein, unknown function<br>dipentidyl aminopentidase 1                                     | 2,0397                       | 5,81774                    | 0,764195                     | 3,49745<br>3,47806         | 2,9258<br>0 307442           | 5,21005                    |
| PfIT_120008500                                  | high mobility group protein B1                                                                                   | 0,711864                     | 5,33914                    | 0,715512                     | 5,72554                    | 0,762299                     | 5,67                       |
| PfIT_120058000<br>PfIT_040006800                | Plasmodium exported protein (PHISTb), unknown function<br>Plasmodium exported protein, unknown function          | 2,56732<br>2,00034           | 5,19142<br>5,10862         | 0,771479                     | 3,08441 4,58815            | 1,35028                      | 3,56039                    |
| PfIT_070010600                                  | 40S ribosomal protein S29, putative                                                                              | 0,576916                     | 5,02369                    | 0,483236                     | 4,33873                    | 0,456959                     | 4,07982                    |
| PfIT_120006500<br>PfIT_080036400                | Plasmodium exported protein (PHISTC), unknown function<br>heat shock protein 70                                  | 3,01181                      | 4,8885 4,81819             | 1,97964                      | 3,30568                    | 0,768464                     | 2,0202 3,29095             |
| PfIT_110024700                                  | alpha/beta hydrolase fold domain containing protein, putative                                                    | 1,52119                      | 4,71957                    | 0,994209                     | 3,41613                    | 1,31606                      | 3,96179                    |
| PfIT_020022000<br>PfIT_020006400                | PHISTb domain-containing RESA-like protein 1                                                                     | 0,991597                     | 4,62524 4,61108            | 0,766123                     | 4,4013                     | 0,996767                     | 4,/111                     |
| PfIT_030011700                                  | 40S ribosomal protein S23, putative                                                                              | 0,410284                     | 4,59282                    | 0,400836                     | 4,52972                    | 0,387711                     | 4,37957                    |
| PfIT_050023200                                  | conserved protein, unknown function                                                                              | 1,08003                      | 4,54814 4,53836            | 0,497186                     | 3,89236                    | 1,43234                      | 4,49055                    |
| PfIT_100037200<br>PfIT_120050000                | conserved Plasmodium protein, unknown function                                                                   | 1,24472                      | 4,52548                    | 1,0279                       | 4,75                       | 0,45435                      | 3,12659                    |
| PfIT_110039700                                  | protein phosphatase PPM8, putative                                                                               | 1,02981                      | 4,41429                    | 0,775983                     | 3,81115                    | 1,00817                      | 3,8173                     |
| PfIT_040029300<br>PfIT_140026400                | Plasmodium exported protein (PHISTa), unknown function<br>conserved Plasmodium protein, unknown function         | 1,2955                       | 4,39498                    | 0,334453                     | -1,4159                    | 1,28236                      | 4,26192                    |
| PfIT_050031400                                  | ADP-ribosylation factor GTPase-activating protein, putative                                                      | 2,05712                      | 4,3618                     | 0,859804                     | 3,72066                    | 2,0556                       | 4,27934                    |
| PfIT_130034400<br>PfIT_130013400                | myosin C<br>40S ribosomal protein S27                                                                            | 1,1233                       | 4,34926                    | 0,921292 0.654291            | 4,53252<br>4,89341         | 0,862206                     | 3,5285                     |
| PfIT_070020600                                  | conserved Plasmodium protein, unknown function                                                                   | 1,22809                      | 4,20592                    | 1,07325                      | 3,15593                    | 1,06535                      | 3,36885                    |
| PfIT_140049500<br>PfIT_010016300                | conserved Plasmodium protein, unknown function<br>Plasmodium exported protein, unknown function                  | 2,27677                      | 4,19827<br>4,16485         | 1,05565<br>0,923585          | 3,98342<br>3,29992         | 1,87865                      | 3,98585<br>3,12911         |
| PfIT_130057100                                  | conserved Plasmodium protein, unknown function                                                                   | 0,659881                     | 3,98624                    | 0,531503                     | 3,57626                    | 0,602335                     | 3,67452                    |
| PfIT_110036600                                  | ubiquitin-like protein, putative                                                                                 | 2,17086                      | 3,83608                    | 0,585774                     | 3,08502                    | 2,33964                      | 3,48425                    |
| PfIT_100018900                                  | conserved Plasmodium protein, unknown function                                                                   | 0,887362                     | 3,79532                    | 0,84716                      | 4,08361                    | 0,933177                     | 3,92475                    |
| PfIT_030010400                                  | putative                                                                                                         | 1,18906                      | 3,78639                    | 1,12865                      | 4,58284                    | 1,43499                      | 4,27552                    |
| PfIT_100028900<br>PfIT_110032700                | conserved Plasmodium protein, unknown function<br>multiprotein bridging factor type 1 putative                   | 0,876553                     | 3,76515                    | 0,482161                     | 2,25069                    | 0,491436                     | 2,27481                    |
| PfIT_120042400                                  | conserved Plasmodium protein, unknown function                                                                   | 1,36121                      | 3,76333                    | 0,655486                     | 2,86781                    | 0,966425                     | 2,68228                    |
| PfIT_100030000<br>PfIT_120050100                | conserved Plasmodium protein, unknown function<br>cytoplasmic translation machinery associated protein, putative | 0,673399                     | 3,70903<br>3,69749         | 0,636162                     | 3,86825                    | 0,637088                     | 3,50939<br>3,15952         |
| PfIT_100005900                                  | Plasmodium exported protein (PHISTc), unknown function                                                           | 0,853531                     | 3,69422                    | 0,574608                     | 3,20721                    | 0,845235                     | 3,62452                    |
| PfIT_020019200<br>PfIT_050014100                | conserved Plasmodium protein, unknown function<br>conserved Plasmodium protein, unknown function                 | 0,900906 0,982809            | 3,68793                    | 1,03144 0,846728             | 4,82031<br>3,93509         | 0,9958 0,807684              | 4,39263 3,17881            |
| PfIT_100030100                                  | conserved Plasmodium protein, unknown function                                                                   | 1,15896                      | 3,58158                    | 1,13205                      | 4,058                      | 1,11681                      | 3,48825                    |
| PfIT_130048600                                  | conserved Plasmodium protein, unknown function                                                                   | 2,39947                      | 3,52899                    | 0,714819<br>0,892798         | 2,71306                    | 2,16575                      | 3,46387                    |
| PfIT_050018700                                  | deoxyribodipyrimidine photo-lyase, putative                                                                      | 1,25011                      | 3,48927                    | 0,828659                     | 3,37413                    | 1,04902                      | 2,78877                    |
| PfIT_060015600                                  | conserved Plasmodium protein, unknown function                                                                   | 0,681304                     | 3,46358                    | 0,733802                     | 4,09805                    | 0,652033                     | 3,46226                    |
| PfIT_040015400<br>PfIT_140056400                | conserved Plasmodium protein, unknown function                                                                   | 1,24629                      | 3,45981                    | 0,761959                     | 3,41467                    | 1,05081                      | 3,11947                    |
| PfIT_120033700                                  | merozoite surface protein 9                                                                                      | 2,29797                      | 3,44804                    | 1,93992                      | 4,29076                    | 2,45935                      | 3,58264                    |
| PfIT_120012400<br>PfIT_120035800                | conserved Plasmodium protein, unknown function                                                                   | 1,15072                      | 3,42897<br>3,41946         | 0,665225                     | 3,19819                    | 0,974811                     | 3,06469                    |
| PfIT_120048900                                  | translation initiation factor SUI1, putative                                                                     | 0,884572                     | 3,41161                    | 0,702525                     | 3,82259                    | 0,990837                     | 3,83319                    |
| PfIT_060019700<br>PfIT_120056400                | RNA and export factor binding protein, putative<br>coronin                                                       | 0,736/91                     | 3,3901<br>3,38544          | 0,378212                     | 2,34388                    | 0,230155                     | 4,1132                     |
| PfIT_130074200                                  | conserved Plasmodium protein, unknown function                                                                   | 0,696895                     | 3,33455                    | 0,483894                     | 2,57048                    | 0,510603                     | 2,59619                    |
| PfIT_080026400                                  | conserved Plasmodium protein, unknown function                                                                   | 1,42491                      | 3,32351                    | 0,797123                     | 2,80158                    | 1,26024                      | 3,38378                    |
| PfIT_090014100<br>PfIT_130028400                | exoribonuclease, putative                                                                                        | 1,34882                      | 3,30505                    | 0,71042                      | 2,78374                    | 1,05493                      | 2,63844                    |
| PfIT_100014100                                  | conserved Plasmodium protein, unknown function                                                                   | 0,930188                     | 3,29163                    | 0,324427                     | 2,42435                    | 0,888352                     | 3,10191                    |
| PfIT_030010300<br>PfIT_080031800                | conserved Plasmodium protein, unknown function<br>conserved Plasmodium protein, unknown function                 | 0,850083                     | 3,28293                    | 0,724006                     | 3,76591                    | 0,7439                       | 2,94222                    |
| PfIT_100005200                                  | Plasmodium exported protein (hyp12), unknown function                                                            | 0,709004                     | 3,27287                    | 0,671167                     | 3,89692                    | 0,703375                     | 3,244                      |
| Pfi1_090024400<br>PfiT_010016400                | regulator of chromosome condensation, putative<br>Plasmodium exported protein (hyp1), unknown function           | 1,10411 1,15951              | 3,2524<br>3,24844          | 0,898357 0,420374            | 3,75325                    | 0,824229 0,461105            | 3,10751                    |
| PfIT_070009300                                  | phosphoinositide-binding protein, putative                                                                       | 0,690127                     | 3,23343                    | 0,672187                     | 3,20349                    | 0,579725                     | 2,87893                    |
| Pfi1_100022300<br>PfiT_120026400                | serine/inreonine protein phosphatase 8, putative<br>conserved Plasmodium protein, unknown function               | 0,677863                     | 3,23138                    | 0,435383 0,96799             | 2,79054 3,41072            | 0,609086 0,541865            | 3,01522 2,21213            |
| PfIT_070034900                                  | EMP1-trafficking protein                                                                                         | 1,91187                      | 3,22396                    | 0,530535                     | 2,92757                    | 1,54236                      | 3,12002                    |
| PfIT_110038400                                  | RNA (uracil-5-)methyltransferase, putative                                                                       | 0,991591                     | 3,20496                    | 0,968592                     | 3,52873                    | 1,17797                      | 3,54444                    |
| PfIT_060026900<br>PfIT_100032300                | nuclear polyadenylated RNA-binding protein NAB2, putative                                                        | 0,84089                      | 3,19143                    | 0,783933                     | 3,74961                    | 0,90685                      | 3,47193                    |
| PfIT_130046600                                  | 60S ribosomal protein L18-2, putative                                                                            | 1,11711                      | 3,16914                    | 0,815552                     | 2,751                      | 0,836519                     | 2,18132                    |

| PfIT_030009000                   | EH domain-containing protein                                                                        | 0,988497 | 3,16733 | 0,45902           | 3,0783   | 0,820815       | 3,00703  |
|----------------------------------|-----------------------------------------------------------------------------------------------------|----------|---------|-------------------|----------|----------------|----------|
| PfIT_130030700                   | conserved Plasmodium protein, unknown function                                                      | 0,984384 | 3,16442 | 0,766293          | 3,47649  | 0,791878       | 3,0289   |
| PfIT_030023500                   | inner membrane complex suture component, putative<br>trophozoite stage antigen                      | 0,/11156 | 3,14132 | 0,28335           | 2,14295  | 0,646099       | 2,8/918  |
| PfIT_100030800                   | 40S ribosomal protein S2                                                                            | 0,63727  | 3,09549 | 0,669386          | 3,77341  | 0,234671       | 1,57657  |
| PfIT_110020100                   | conserved Plasmodium protein, unknown function                                                      | 0,968371 | 3,08345 | 0,44771           | 1,99941  | 0,733291       | 2,42188  |
| PfIT_030015100<br>PfIT_130018200 | phosphoglycerate mutase, putative                                                                   | 1,36319  | 3,06345 | 1,04449           | 3,85105  | 1,92801        | 3,58704  |
| PfIT 030009200                   | 60S ribosomal protein L44                                                                           | 0,762402 | 3,0534  | 0,555965          | 2,61961  | 0,546514       | 2,39104  |
| PfIT_120043400                   | conserved Plasmodium protein, unknown function                                                      | 0,338904 | 3,05104 | 1,2367            | 5,61865  | 0,259254       | 1,72581  |
| PfIT_130014600<br>PfIT_110033400 | H/ACA ribonucleoprotein complex subunit 1, putative                                                 | 0,616671 | 3,0412  | 0,600063          | 3,03973  | 0,520205       | 2,74567  |
| PfIT 110047600                   | translation initiation factor eIF-1A, putative                                                      | 0,880016 | 3,01601 | 0,767238          | 3,92425  | 1,26622        | 4,46444  |
| PfIT_110045500                   | conserved Plasmodium protein, unknown function                                                      | 0,749264 | 3,00955 | 0,537418          | 3,04177  | 0,888627       | 3,57125  |
| PfIT_070018800                   | transcription elongation factor s-II, putative                                                      | 1,28127  | 3,00601 | 0,463874          | 2,40585  | 1,10898        | 3,08172  |
| PfIT_030026200<br>PfIT_070009200 | protein kinase, putative<br>conserved Plasmodium membrane protein unknown function                  | 0,792703 | 2,99663 | 0,223263          | 3 41085  | 0,813194       | 2,95594  |
| PfIT_110026800                   | conserved Plasmodium protein, unknown function                                                      | 1,29722  | 2,98448 | 0,454376          | 2,09869  | 0,728753       | 1,90491  |
| PfIT_100020000                   | conserved Plasmodium protein, unknown function                                                      | 0,537685 | 2,97869 | 0,586132          | 3,45099  | 0,649345       | 3,4506   |
| PfIT_130026000<br>PfIT_110024300 | conserved Plasmodium protein, unknown function                                                      | 0,689356 | 2,9603  | 0,36/184          | 2,46329  | 0,590322       | 2,57793  |
| PfIT_050012100                   | rhomboid protease ROM4                                                                              | 0,685198 | 2,93174 | 0,490126          | 2,84365  | 0,781376       | 3,38082  |
| PfIT_070009000                   | conserved Plasmodium membrane protein, unknown function                                             | 0,612808 | 2,91733 | 0,445062          | 2,70763  | 0,520535       | 2,5997   |
| PfIT_060010700<br>PfIT_100030700 | coatomer alpha subunit, putative                                                                    | 0,939587 | 2,91536 | 1,09439           | 3,76941  | 1,15419        | 3,06455  |
| PfIT 050034900                   | conserved Plasmodium protein, unknown function                                                      | 1,07068  | 2,90323 | 0,606758          | 3,04364  | 0,728421       | 2,44928  |
| PfIT_120032700                   | cyclin related protein, putative                                                                    | 0,604883 | 2,89583 | 0,303397          | 2,12244  | 0,618949       | 2,8534   |
| PfIT_130045000                   | conserved Plasmodium protein, unknown function                                                      | 1,50721  | 2,89224 | 1,11028           | 3,3241   | 1,21015        | 2,55012  |
| PfIT_140013900<br>PfIT_120026000 | heterochromatin protein 1                                                                           | 0.425264 | 2,87382 | 0,482261          | 2,4721   | 0,577075       | 2,43878  |
| PfIT_070034800                   | EMP1-trafficking protein                                                                            | 1,22004  | 2,86677 | 0,911404          | 3,12063  | 1,07573        | 2,62506  |
| PfIT_050029600                   | ribosome-interacting GTPase 1, putative                                                             | 0,61651  | 2,86655 | 0,382636          | 2,18722  | 0,562035       | 2,63821  |
| PfIT_130076100<br>PfIT_110049400 | Plasmodium exported protein (PHIS1c), unknown function<br>serine/threonine protein kinase, putative | 2,4/846  | 2,85393 | NaN<br>0 702587   | 2 49808  | NaN<br>1 31491 | 2 14049  |
| PfIT 050010100                   | conserved Plasmodium protein, unknown function                                                      | 1,02452  | 2,7612  | 0,820692          | 3,421    | 0,967858       | 2,18022  |
| PfIT_120034800                   | myosin D                                                                                            | 1,66586  | 2,70173 | 1,00537           | 3,73191  | 1,02975        | 2,42872  |
| PfIT_070010000                   | conserved Plasmodium protein, unknown function                                                      | 0,661006 | 2,69487 | 0,689799          | 3,2791   | 0,714503       | 2,88918  |
| PfIT 100023100                   | eukarvotic translation initiation factor subunit eIF2A, putative                                    | 0.873752 | 2,68949 | 0.469793          | 2,27551  | 0.86675        | 2,91948  |
| PfIT_140032500                   | basic transcription factor 3b, putative                                                             | 0,473275 | 2,68897 | 0,527064          | 3,26722  | 0,571473       | 3,16845  |
| PfIT_130038600                   | transmembrane protein Tmp21 homologue, putative                                                     | 0,396078 | 2,68365 | 0,040524          | 0,390118 | 0,357804       | 2,3883   |
| PfIT_0/0012800<br>PfIT_060006500 | ribosomal protein S8e, putative                                                                     | 0,398118 | 2,67957 | 0,362217          | 2,57958  | 0,280401       | 2 96308  |
| PfIT_080022900                   | high mobility group protein B2                                                                      | 1,65162  | 2,65203 | 0,965432          | 3,5113   | 2,10973        | 3,43424  |
| PfIT_020024600                   | DnaJ protein, putative                                                                              | 1,51719  | 2,64165 | 1,06631           | 1,89516  | 0,194425       | 0,334915 |
| PfIT_110046300<br>PfIT_040029000 | conserved Plasmodium protein, unknown function                                                      | 1,05372  | 2,64121 | 0,421992          | 2,34772  | 0,868021       | 2,27075  |
| PfIT 100031300                   | peroxiredoxin                                                                                       | 0,947378 | 2,5997  | 0,766634          | 2,40328  | 0,661034       | 1,78624  |
| PfIT_020007300                   | early transcribed membrane protein 2                                                                | 0,534046 | 2,57171 | 0,531876          | 2,71367  | 0,090405       | 0,741848 |
| PfIT_140065800                   | conserved Plasmodium protein, unknown function                                                      | 1,17906  | 2,56623 | 1,21411           | 3,56276  | 3,05216        | 5,43835  |
| PfIT_070026400                   | rhoptry-associated leucine zipper-like protein 1                                                    | 0.961878 | 2,54166 | 0.615536          | 2.94439  | 1.04152        | 2.86096  |
| PfIT_070023900                   | 40S ribosomal protein S10, putative                                                                 | 1,0003   | 2,53783 | 0,53496           | 1,91394  | 0,72991        | 1,71143  |
| PfIT_060021100                   | conserved Plasmodium protein, unknown function                                                      | 1,56215  | 2,53304 | 0,785457          | 2,64987  | 1,59253        | 2,70559  |
| PfIT_030029400<br>PfIT_080013100 | stevor<br>conserved Plasmodium protein unknown function                                             | 1,494//  | 2,51988 | 1,26823           | -2,59286 | 2,30684        | -4,449/1 |
| PfIT_140072700                   | transcription factor with AP2 domain(s)                                                             | 0,441337 | 2,5135  | 0,346134          | 2,21464  | 0,381926       | 2,26409  |
| PfIT_090017100                   | conserved Plasmodium protein, unknown function                                                      | 0,798036 | 2,51289 | 0,640078          | 2,3563   | 0,741746       | 2,27987  |
| PfIT_140075500<br>PfIT_110049600 | shewanella-like protein phosphatase 1, putative                                                     | 0,473108 | 2,50712 | 0,101259          | 0,885382 | 0,181001       | 1,391    |
| PfIT 080015200                   | protein phosphatase PPM5, putative                                                                  | 0,641    | 2,49483 | 0,231412          | 2,08653  | 0,872609       | 3,28231  |
| PfIT_130044000                   | conserved Plasmodium protein, unknown function                                                      | 0,990559 | 2,48692 | 0,255641          | 1,35819  | 1,67074        | 2,34537  |
| PfIT_110019700<br>PfIT_010005700 | cysteine proteinase falcipain 3                                                                     | 0,40915  | 2,45671 | 0,515866          | 3,33841  | 0,513453       | 2,96029  |
| PfIT 030017600                   | 60S ribosomal protein L26, putative                                                                 | 0,575843 | 2,44468 | 0,515672          | 2,09564  | 0,533699       | 2,08035  |
| PfIT_040012400                   | conserved Plasmodium protein, unknown function                                                      | 0,626496 | 2,44009 | 0,467339          | 2,36691  | 0,605866       | 2,41089  |
| PfIT_140024100                   | H/ACA ribonucleoprotein complex subunit 4, putative                                                 | 0,42943  | 2,43843 | 0,310164          | 2,03736  | 0,418393       | 2,38986  |
| PfIT_130028700<br>PfIT_050022600 | FACT complex subunit SPT16, putative                                                                | 0.658571 | 2,42008 | 0.629245          | 2,5546   | 0.36563        | 1,81209  |
| PfIT_070014600                   | lysophospholipase, putative                                                                         | 0,629428 | 2,40192 | 0,763986          | 3,38072  | 0,910775       | 3,35443  |
| PfIT_070012600                   | E3 ubiquitin-protein ligase, putative                                                               | 0,983726 | 2,40104 | 0,260953          | 1,29019  | 0,757128       | 1,83292  |
| PfIT_130037100<br>PfIT_100026000 | ous ribosomai protein L23, putative                                                                 | 1,04685  | 2,40089 | 0,571255          | 2 46882  | 1 62946        | 2 10997  |
| PfIT_030013500                   | conserved Plasmodium protein, unknown function                                                      | 0,52722  | 2,39748 | 0,534015          | 2,85124  | 0,62013        | 2,75299  |
| PfIT_060010600                   | conserved Plasmodium protein, unknown function                                                      | 0,786711 | 2,39525 | 0,393133          | 2,25417  | 0,80952        | 2,36937  |
| PHT_090032100<br>PfT_060007000   | conserved Plasmodium protein, unknown function                                                      | 0,606544 | 2,39236 | 0,636364          | 3,0105   | 0,257/59       | 4 11525  |
| PfIT 020022300                   | 40S ribosomal protein S26                                                                           | 0,682221 | 2,38145 | 0,549045          | 2,05626  | 0,582644       | 1,92052  |
| PfIT_060011600                   | spindle assembly abnormal protein 6, putative                                                       | 0,775431 | 2,37589 | 0,638516          | 2,68773  | 0,589185       | 2,07612  |
| PfIT_040026900<br>PfIT_060013750 | 40S ribosomal protein S19                                                                           | 1,12306  | 2,36858 | 0,687985          | 1,94548  | 1,07247        | 1,88738  |
| PfIT 130042500                   | 1-deoxy-D-xylulose 5-phosphate synthase                                                             | 1,75116  | 2,35072 | 0,776284          | 2,25194  | 2.31846        | 3,00593  |
| PfIT_130066400                   | protein transport protein Sec24A                                                                    | 0,441484 | 2,31562 | 0,596299          | 3,61379  | 0,44641        | 2,45577  |
| Pfi1_140055500<br>Pfi1_080010000 | conserved Plasmodium protein, unknown function                                                      | 0,855498 | 2,31406 | 0,577503          | 2,78291  | 1,01194        | 3,11846  |
| PfIT 140068700                   | conserved Plasmodium protein, unknown function                                                      | 1,19009  | 2,29721 | 0,606589          | 2,26559  | 1,81716        | 3,52771  |
| PfIT_010013900                   | transcription initiation factor TFIIB, putative                                                     | 0,366763 | 2,29376 | 0,120086          | 0,998534 | 1,36585        | 4,09559  |
| PfIT_050006300<br>PfIT_100025000 | serine/threonine protein kinase, FIKK family                                                        | 0,343555 | 2,2746  | 1,24073           | 4,98117  | 0,972308       | 3,6995   |
| PfIT_100025900<br>PfIT_050033900 | scnizont egress antigen-1<br>nucleolar preribosomal GTPase, putative                                | 1,08/28  | 2,27028 | 0,351102          | 1,99814  | 0.355958       | 1,01850  |
| PfIT_130072200                   | conserved Plasmodium protein, unknown function                                                      | 1,0532   | 2,26279 | 0,648881          | 2,14041  | 1,06731        | 2,25671  |
| PfIT_140042600                   | conserved Plasmodium protein, unknown function                                                      | 0,635991 | 2,26067 | 0,637059          | 2,65067  | 0,723004       | 2,41259  |
| PfIT_030012300<br>PfIT_110012600 | conserved protein, unknown function                                                                 | 1,13139  | 2,23918 | 0,201951          | 1,14347  | 0,589139       | 1,65212  |
| PfIT 120050000                   | conserved Plasmodium protein, unknown function                                                      | 0,425219 | 2,21756 | 0,550651          | 2,92865  | 0,580087       | 2,84089  |
| PfIT_020024100                   | replication factor C subunit 1, putative                                                            | 1,9473   | 2,21498 | 0,672748          | 2,21584  | 1,44742        | 2,03011  |
| PfIT_050032200<br>PfIT_100029100 | DNA replication licensing factor MCM3, putative                                                     | 1,79866  | 2,20652 | 0,758628          | 2,38825  | 1,53505        | 1,70223  |
| PfIT 140027850                   | 40S ribosomal protein S25, putative                                                                 | 0,703825 | 2,20003 | 0,382235          | 1,54331  | 0,586769       | 1,73456  |
| PfIT_060010000                   | conserved Plasmodium protein, unknown function                                                      | 1,54276  | 2,19581 | 0,340755          | 1,68622  | 1,03876        | 1,9583   |
| PHT_090035700<br>PHT_020014700   | elongation factor Tu, putative                                                                      | 1,74317  | 2,19498 | 0,39715           | 1,85129  | 0,554694       | 1,62082  |
| PfIT 070016400                   | regulator of chromosome condensation, putative                                                      | 1.27105  | 2,19369 | 0,013786          | 2,02463  | 1,60096        | 2,27398  |
| PfIT_120009300                   | nucleosome assembly protein                                                                         | 0,348835 | 2,17669 | 0,817392          | 4,22522  | 0,285408       | 2,17356  |
| PfIT_110022200                   | conserved Plasmodium protein, unknown function                                                      | 0,600023 | 2,17375 | 0,424283          | 2,42086  | 0,608238       | 2,25742  |
| PfIT 140020900                   | 60S ribosomal protein L10. putative                                                                 | 0,308565 | 2,17007 | 0,142744 0.347201 | 1,24632  | 0,334097       | 1,99469  |
| PfIT_110038300                   | conserved Plasmodium protein, unknown function                                                      | 1,14536  | 2,16359 | 0,787172          | 1,74159  | NaN            | 0        |
| PfIT_130037500                   | conserved Plasmodium protein, unknown function                                                      | 0,673242 | 2,16137 | 0,523958          | 2,34223  | 0,535468       | 1,74595  |
| PTI 1_140044900<br>PfT080006400  | metacaspase-like protein<br>Plasmodium exported protein (PHISTe), unknown function                  | 0,665789 | 2,14265 | 0,502528          | 2,30958  | 0,686509       | 2,13613  |
| PfIT_100020400                   | glycophorin binding protein                                                                         | 1,61106  | 2,14195 | 0,582645          | 1,485102 | 1,59132        | 2,1901   |
| PfIT_030021600                   | 40S ribosomal protein S15A, putative                                                                | 1,122    | 2,12806 | 0,681106          | 1,9076   | 0,997457       | 1,78256  |
| PHT_120050400<br>PfT_080010800   | kinesin-13, putative                                                                                | 0,685011 | 2,12785 | 0,558371          | 2,30792  | 0,498377       | 1,75642  |
| PfIT 090008600                   | 60S ribosomal protein L32                                                                           | 0,508754 | 2,12509 | 0,520500          | 1,72608  | 0,45427        | 1,35062  |
| PfIT_120033400                   | NIMA related kinase 1                                                                               | 0,858937 | 2,10641 | 0,231623          | 1,03376  | 0,053848       | -0,15158 |
| PfIT_040022700                   | conserved Plasmodium protein, unknown function                                                      | 0,819733 | 2,10115 | 0,144845          | 0,766712 | 0,134249       | 0,585991 |
| PfIT 120052000                   | clustered-asparagine-rich protein                                                                   | 1.37652  | 2,07362 | 0,436178          | 2,83625  | 1.51338        | 2,361    |
|                                  |                                                                                                     | ,        | ,       |                   | ,        |                | , . =    |

| BGT 050024000                    |                                                                                          | 0.727445 | 2.05029  | 0 (10225 | 1.02226  | 0.000057    | 1 5 4 2 0 |
|----------------------------------|------------------------------------------------------------------------------------------|----------|----------|----------|----------|-------------|-----------|
| PH1_050024900<br>PHT_120051500   | conserved Plasmodium protein, unknown function                                           | 0,737445 | 2,05938  | 0,019555 | 1,92220  | 0,009057    | 1,5458    |
| PfIT_070028100                   | conserved Plasmodium protein, unknown function                                           | 0,932298 | 2,04495  | 0.134362 | 0.802258 | 0,502958    | 1,23099   |
| PfIT 100036000                   | mRNA-decapping enzyme subunit 1, putative                                                | 1.48584  | 2,03804  | 0.468731 | 1,76642  | 1.34918     | 1,71442   |
| PfIT 030007300                   | cytoadherence linked asexual protein 3.1                                                 | 0,411824 | 2,0371   | 0,346351 | 1,84007  | 0,345509    | 1,78549   |
| PfIT_090026600                   | ubiquitin-like protein, putative                                                         | 0,784322 | 2,0316   | 0,168831 | 0,959146 | 0,451444    | 1,31352   |
| PfIT_040021200                   | small GTP-binding protein sar1                                                           | 0,42379  | 2,02173  | 0,577048 | 3,02584  | 0,550183    | 2,48958   |
| PfIT_140066700                   | 60S ribosomal protein L29, putative                                                      | 1,62441  | 2,01249  | 0,827992 | 1,91997  | 1,10249     | 1,5056    |
| PfIT_140007700                   | Plasmodium exported protein, unknown function                                            | 0,542365 | 2,00142  | 0,274586 | -0,78894 | 0,367645    | 0,373104  |
| DOT 100020000                    | chromodomain-helicase-DNA-binding protein 1 homolog,                                     | 0.017277 | 2 00021  | 0.2721/0 | 1 (710)  | 0.574400    | 1 20727   |
| Pf11_100028000                   | putative                                                                                 | 0,81/3// | 2,00031  | 0,3/2168 | 1,6/123  | 0,574402    | 1,39/3/   |
| PHT_120020600                    | concerved Plasmodium protein unknown function                                            | 0,448019 | 1,99540  | 0,524058 | 2,64702  | 0,520401    | 2,51080   |
| PfT 120011600                    | eukarvotic translation initiation factor 3 subunit C nutative                            | 0.931542 | 1,9917   | 0,420447 | 1 38677  | 0,00844     | 2 49326   |
| PfIT_080020800                   | vacuolar protein sorting-associated protein 9 putative                                   | 0.938029 | 1,96539  | 0,228510 | 3 04333  | 0.891176    | 2,49520   |
| PfT_090028400                    | RNA-binding protein putative                                                             | 0,788659 | 1,96564  | 0.44975  | 1 70756  | 0.809536    | 1 88966   |
| PfIT_080022600                   | conserved Plasmodium protein, unknown function                                           | 0.475251 | 1,94745  | 0.577706 | 2.48428  | 0.536213    | 2.09751   |
| PfIT_070011300                   | 60S ribosomal protein L37                                                                | 0.732371 | 1,93538  | 0.580116 | 1.68846  | 0,484776    | 1,21309   |
| PfIT_110014800                   | asparagine-rich antigen                                                                  | 0,767151 | 1,93043  | 0,548044 | 1,7314   | 0,630576    | 1,58558   |
| PfIT_010007800                   | ubiquitin carboxyl-terminal hydrolase 1, putative                                        | 0,689345 | 1,92781  | 0,189311 | 1,0653   | 0,302848    | 1,09247   |
| PfIT_060008400                   | conserved Plasmodium protein, unknown function                                           | 1,15626  | 1,92194  | 0,528747 | 1,86354  | 1,09244     | 1,85095   |
| PfIT_110011900                   | polyadenylate-binding protein-interacting protein 1, putative                            | 1,30481  | 1,91621  | 0,450289 | 1,58202  | 1,12828     | 1,65436   |
| PfIT_110038900                   | conserved Plasmodium protein, unknown function                                           | 0,68957  | 1,9149   | 0,471066 | 1,77258  | 1,16657     | 2,22481   |
| PfIT_010011500                   | conserved Plasmodium protein, unknown function                                           | 1,24745  | 1,91023  | 0,51635  | 1,86152  | 1,13951     | 1,85367   |
| PfIT_060016200                   | leucine-rich repeat protein                                                              | 1,77007  | 1,9008   | 1,19541  | 2,78173  | 0,768834    | 1,86645   |
| Pf11_010010100<br>Pf1T_120042000 | ras-related protein Rab-5C                                                               | 0,276628 | 1,8/845  | 0,41/266 | 2,69821  | 0,382857    | 2,56812   |
| PHT_020018600                    | protein transport protein, putative                                                      | 0,451900 | 1,87526  | 0,007832 | 2,33427  | 0,519504    | 2 18000   |
| PfIT_060033300                   | amino acid transporter, putative                                                         | 0.41816  | 1,87469  | 0.404582 | 1,90389  | 0.261168    | 1 2306    |
| PfIT_070015500                   | 60S ribosomal protein L34                                                                | 0.890241 | 1,86358  | 0.810298 | 1,70888  | 0.753055    | 1,53193   |
| PfIT 130060300                   | conserved Plasmodium protein, unknown function                                           | 0.923152 | 1.85993  | 0.358842 | 1,75105  | 1.17864     | 2.3293    |
| PfIT_070025800                   | 40S ribosomal protein S5, putative                                                       | 0,883398 | 1,85033  | 0,630065 | 1,56488  | 0,799287    | 1,41863   |
| PfIT_090005300                   | rifin                                                                                    | 0,798595 | 1,82835  | 2,708    | 9,50058  | NaN         | 0         |
| PfIT_080019000                   | 60S ribosomal protein L13-2, putative                                                    | 0,665846 | 1,82654  | 0,663332 | 1,73333  | 0,522113    | 1,19577   |
| PfIT_110030700                   | 40S ribosomal protein S18, putative                                                      | 0,707854 | 1,82355  | 0,72378  | 1,97626  | 0,898472    | 2,11561   |
| PfIT_130013000                   | tripartite motif protein, putative                                                       | 0,50129  | 1,81901  | 0,449147 | 2,52881  | 0,019225    | -0,14127  |
| PfIT_080028200                   | RNA-binding protein, putative                                                            | 2,09069  | 1,81617  | 0,633194 | 1,78686  | 1,87658     | 1,88697   |
| PfIT_130020700                   | zinc finger (CCCH type) protein, putative                                                | 1,66881  | 1,81261  | 0,679002 | 2,09521  | 1,74938     | 2,24828   |
| Pf11_100007/00                   | 40S ribosomal protein S20e, putative                                                     | 0,735201 | 1,80509  | 0,563203 | 1,/143   | 0,767876    | 1,73004   |
| Pf11_10000/800                   | Inner membrane complex protein 1c, putative                                              | 0,242231 | 1,79424  | 0,344638 | 2,69072  | 0,34923     | 2,60547   |
| PH1_100010300<br>PHT_050037000   | DNA/KNA-binding protein Alba 5<br>Plasmodium exported protein (PHISTb), unknown function | 0,160901 | 1,75576  | 0,1/3194 | 1,8520   | 0,4809/     | 3,40938   |
| PHT_140081100                    | trailar bitah homolog, putatiya                                                          | 0.442026 | 1,75370  | 0,455952 | 1,24039  | 0,899558    | 1,30943   |
| PfT_020015500                    | conserved Plasmodium protein unknown function                                            | 1 00449  | 1,75361  | 0,450328 | 1,05094  | 0.742272    | 1,11625   |
| PfIT_040020300                   | 60S ribosomal protein L15, putative                                                      | 0.673477 | 1,75325  | 0.540661 | 1.4263   | 0.433921    | 1.0433    |
| PfIT 140032400                   | 60S ribosomal protein L21                                                                | 0.597507 | 1.74531  | 0.542519 | 1.63499  | 0.543191    | 1,44488   |
| PfIT_110014600                   | pre-mRNA-processing factor 6, putative                                                   | 1,31663  | 1,74441  | 1,1152   | 2,16337  | 0,530683    | 0,942488  |
| PfIT_120057300                   | rhoptry neck protein 3                                                                   | 0,465472 | 1,72793  | 0,445229 | 1,6766   | 0,489083    | 1,74338   |
| PfIT_050034500                   | conserved Plasmodium protein, unknown function                                           | 1,01281  | 1,7132   | 0,291942 | 1,44072  | 1,02869     | 1,79568   |
| PfIT_050020600                   | conserved Plasmodium protein, unknown function                                           | 0,88481  | 1,71302  | 0,356054 | 1,40095  | 1,8301      | 2,47268   |
| PfIT_140026100                   | conserved Plasmodium membrane protein, unknown function                                  | 0,954785 | 1,71115  | 0,327306 | 1,3961   | 0,669017    | 1,22667   |
| PfIT_080018900                   | 40S ribosomal protein S16, putative                                                      | 0,816597 | 1,70894  | 0,499903 | 1,29487  | 0,562463    | 1,12414   |
| Pfi1_100018100                   | conserved Plasmodium protein, unknown function                                           | 0,583061 | 1,69041  | 0,641866 | 2,/351/  | 0,88/486    | 2,44528   |
| PH1_080019200                    | 405 sibasanal anatain 52 A substitue                                                     | 1,19038  | 1,08592  | 0,60207  | 1,09267  | 0,70179     | 0,929198  |
| PHT_120018100                    | 405 ribosomai protein 55A, putative                                                      | 1 50052  | 1,00400  | 0,571509 | 1,73213  | 1 2 5 2 0 5 | 1,46505   |
| PfIT_050012900                   | nuclear protein localization protein 4 putative                                          | 0 474008 | 1,6673   | 0.100578 | 0.99374  | 2 16242     | 3 28719   |
| PfIT_080017400                   | karvonherin alpha                                                                        | 1.01609  | 1 65973  | 0 549999 | 1 70686  | 1 07132     | 1 69171   |
| PfIT 040027200                   | eukarvotic initiation factor 4A-III, putative                                            | 0.473234 | 1.65885  | 0.818479 | 2.80957  | 0.740537    | 2,50164   |
| PfIT_110046700                   | 60S ribosomal protein L28                                                                | 0,874378 | 1,64398  | 0,801629 | 1,63695  | 0,817795    | 1,48878   |
| PfIT_080025500                   | C-13 antigen                                                                             | 0,66169  | 1,64014  | 0,316243 | 1,46372  | 0,414052    | 1,2592    |
| PfIT_030007800                   | N-ethylmaleimide-sensitive fusion protein                                                | 0,86223  | 1,62918  | 0,554595 | 2,27144  | 0,768466    | 1,63699   |
| PfIT_130036100                   | conserved Plasmodium protein, unknown function                                           | 0,370677 | 1,61523  | 0,182005 | 0,952513 | 0,044869    | 0,245293  |
| PfIT_090026400                   | conserved Plasmodium protein, unknown function                                           | 0,848236 | 1,61237  | 0,005169 | -0,0408  | 0,23536     | 0,526438  |
| PfIT_110042500                   | conserved Plasmodium protein, unknown function                                           | 0,6298   | 1,6118   | 0,549882 | 2,00602  | 0,618857    | 2,0607    |
| PfIT_130039000                   | histone H3-like centromeric protein CSE4                                                 | 0,809116 | 1,59563  | 0,538835 | 1,97041  | 0,885355    | 1,8707    |
| PfIT_060018500                   | 60S ribosomal protein L19                                                                | 0,521292 | 1,59135  | 0,391568 | 1,05395  | 0,420063    | 0,882336  |
| PfIT_070013900                   | chloroquine resistance transporter                                                       | 0,241611 | 1,58964  | 0,038146 | 0,354243 | 0,217549    | -1,68399  |
| Pf11_060022100                   | 60S ribosomal protein L2/a, putative                                                     | 0,516108 | 1,58/92  | 0,483446 | 1,44324  | 0,319405    | 0,947721  |
| PH11_130023100                   | 405 ribosomai protein 519                                                                | 1,13133  | 1,58/9   | 0,782408 | 1,49905  | 0,015595    | 0,969116  |
| PfIT 140036200                   | contamer beta subunit putative                                                           | 0,501069 | 1,58551  | 0.194525 | 1,98108  | 0.47204     | 0.728924  |
| PfIT 120053900                   | conserved Plasmodium protein unknown function                                            | 0,660892 | 1,55798  | 0.258691 | 1 2497   | 0.463267    | 1 14259   |
| PfIT_130064200                   | 40S ribosomal protein S15                                                                | 1.11964  | 1,55091  | 0.763086 | 2.2475   | 1.85088     | 2.54083   |
| PfIT_110035000                   | 26S protease regulatory subunit 6A, putative                                             | 0.382935 | 1.54835  | 0.474452 | 2.26216  | 0.583886    | 2.20604   |
| PfIT_110029400                   | 60S ribosomal protein L35, putative                                                      | 1,28502  | 1,53767  | 0,50336  | 1,36844  | 1,39802     | 1,56103   |
| PfIT_110019600;PfIT_110020000    | cysteine proteinase falcipain 2a                                                         | 0,431088 | 1,53708  | 0,449861 | 2,46152  | 0,817461    | 2,7583    |
| PfIT_110040800                   | tudor staphylococcal nuclease                                                            | 0,652044 | 1,53008  | 0,595483 | 2,36688  | 1,08484     | 2,2953    |
| PfIT_130071100;PfIT_120017200    | ubiquitin-60S ribosomal protein L40                                                      | 2,68831  | 1,52312  | 1,94741  | 2,14418  | 2,31368     | 1,5957    |
| PtIT_030012900                   | conserved Plasmodium protein, unknown function                                           | 0,509245 | 1,52129  | 0,7667   | 2,39373  | 0,680144    | 1,70156   |
| PfIT_060011000                   | translation initiation factor IF-2, putative                                             | 1,11944  | 1,497/01 | 0,597541 | 2,11395  | 1,44263     | 1,99594   |
| PH1_110034000<br>PfTT_140032700  | conserved Plasmodium protein unknown function                                            | 0.706261 | 1,49229  | 0,710786 | 1,95052  | 0.144002    | 1,04545   |
| PfIT 140013700                   | rRNA 2-O-methyltransferase fibrillarin putative                                          | 1 45807  | 1,48095  | 0.537204 | 1 38886  | 1 24117     | 1 32602   |
| PfIT 140055900                   | transcription factor with AP2 domain(s), putative                                        | 0,675328 | 1,46898  | 0.014647 | -0.1105  | 0,366508    | 1.1569    |
| PfIT 070028000                   | conserved Plasmodium protein, unknown function                                           | 0,266953 | 1,46807  | 0,351427 | 2,2721   | 0,498273    | 2,33524   |
| PfIT_050025200                   | 40S ribosomal protein \$9, putative                                                      | 0,520934 | 1,45863  | 0,273236 | 0,927258 | 0,96462     | 1,3793    |
| PfIT_080018400                   | conserved Plasmodium protein, unknown function                                           | 1,06631  | 1,45639  | 0,498794 | 1,38662  | 1,02378     | 1,49378   |
| PfIT_050022100                   | 60S ribosomal protein L2                                                                 | 0,542415 | 1,45442  | 0,379048 | 1,1428   | 0,488775    | 1,21617   |
| PfIT_140030200                   | conserved Plasmodium protein, unknown function                                           | 0,822722 | 1,45333  | 0,448646 | 1,47412  | 0,687216    | 1,39052   |
| PffT_050020200                   | pre-mRNA-splicing factor CWC2, putative                                                  | 0,841314 | 1,45084  | 0,084975 | 0,698624 | 1,51593     | 2,12579   |
| PfI1_130014200                   | 60S ribosomal protein L24, putative                                                      | 0,696976 | 1,44324  | 0,477608 | 1,1/0/1  | 0,420587    | 1,11392   |
| Pfi1_090010100                   | nign molecular weight moptry protein 3                                                   | 0,448805 | 1,44128  | 0,303013 | 1,31025  | 0,223906    | 0,850505  |
| PfIT_050008700                   | serine/arginine-rich splicing factor 12                                                  | 0,011485 | 1,43722  | 0.323831 | 1,79987  | 0,58741     | 0.747527  |
| PfIT 030025600                   | ATP-dependent RNA helicase DDX6                                                          | 0.516009 | 1.4287   | 0,530999 | 1,20920  | 0.71836     | 1.50788   |
| PfIT 120035700                   | protein transport protein SEC13                                                          | 0.350088 | 1.42634  | 0,537995 | 2,40006  | 0.707414    | 2,55447   |
| PfIT 060015700                   | 60S ribosomal protein L39                                                                | 0,535027 | 1,42239  | 0,511016 | 1,56785  | 0,316843    | 1,14005   |
| PfIT 130067100                   | conserved Plasmodium protein, unknown function                                           | 0,470356 | 1,40731  | 0,58252  | 2,83286  | 1,32145     | 3,46999   |
| PfIT_100010900                   | RNA-binding protein, putative                                                            | 0,740843 | 1,4046   | 0,265119 | 0,703716 | 0,209948    | 0,399173  |
| PfIT_120022200                   | DNA-binding chaperone, putative                                                          | 0,860158 | 1,39155  | 0,234528 | 1,43894  | 0,650146    | 1,50986   |
| PfIT_060014900                   | transcription elongation factor SPT5, putative                                           | 0,834235 | 1,39056  | 0,313725 | 1,06397  | 1,05534     | 1,12085   |
| PHT_050037100                    | lysine-rich membrane-associated PHISTb protein                                           | 0,611233 | 1,38887  | 0,269662 | 0,880983 | 0,411846    | 0,797611  |
| Pf11_140084700                   | EMP1-trafficking protein                                                                 | 0,550378 | 1,37867  | 0,263818 | 1,87701  | 0,709439    | 2,28286   |
| PH1_140054300                    | muniarug resistance protein 2<br>605 ribaranal materia I 2                               | 0,554776 | 1,37508  | 0,081838 | 0,538353 | 0,142867    | 0,601951  |
| PH1_100031800<br>PfT_120007000   | 40S ribosomal protein L3                                                                 | 0,480288 | 1,37298  | 0,406832 | 1,17927  | 0,28536     | 0,731619  |
| PH1_13000/900<br>PHT_050012200   | 405 ribosomal protein 57, putative                                                       | 5,43374  | 1,3/021  | 0,004162 | 1,/1308  | 1,//428     | 1,92822   |
| PfT 100008200                    | 60S ribosomal protein L13 putative                                                       | 0,555549 | 1,30377  | 0,572007 | 1 50027  | 0,24744     | 1.26165   |
| PfIT_080036100                   | Plasmodium exported protein, upknown function                                            | 0.493036 | 1,34661  | 1,19577  | -4,15576 | 2,21385     | -6.82844  |
| PfIT 110021100                   | heat shock protein 101                                                                   | 0.311985 | 1,34535  | 0.133729 | 0.696573 | 0,969797    | 4,68387   |
| PfIT 070008400                   | erythrocyte membrane-associated antigen                                                  | 0,995191 | 1,33672  | 0,540131 | 1,39273  | 0,765572    | 1,22577   |
| PfIT_060028400                   | SNF2 helicase, putative                                                                  | 1,45133  | 1,32792  | 0,447418 | 1,28984  | 1,23577     | 1,10272   |
| PfIT_120036800                   | asparagine-rich protein, putative                                                        | 0,281401 | 1,32013  | 0,050582 | 0,379847 | 0,067827    | 0,383123  |
| PfIT_140061700                   | conserved Plasmodium protein, unknown function                                           | 0,370548 | 1,29762  | 0,427265 | 1,6002   | 0,47481     | 1,4538    |
| PHT_080030000                    | conserved Plasmodium protein, unknown function                                           | 0,478118 | 1,28956  | 0,14138  | 0,773946 | 0,38719     | 1,08507   |
| PHT_050012700                    | subtilisin-like protease 1                                                               | 0,350916 | 1,27488  | 0,591209 | 2,58009  | 0,76098     | 2,5119    |
| PH1_110049100<br>PHT_120042800   | ras-related protein Rab-6                                                                | 0,721912 | 1,27378  | 0,672254 | 1,2815   | 0,691246    | 1,26715   |
| PfT 110013300                    | heat shock protein Dna Lhomologue Pfi?                                                   | 0,499059 | 1,27243  | 0,35350/ | 0.782106 | 1,28037     | 2,60100   |
| 1111_110013300                   | near shock protein Dhas homologue F1j2                                                   | 0,525087 | 1,27022  | 0,2903/9 | 0,762100 | 1,01001     | 1,00839   |

| PHT 080027000                    | concerved Placmodium protein, unknown function                       | 0.246276 | 1 26015     | 0.570366 | 2 46061  | 0 275262  | 1 82265  |
|----------------------------------|----------------------------------------------------------------------|----------|-------------|----------|----------|-----------|----------|
| PfT_110014300                    | 60S ribosomal protein I 36                                           | 1 38121  | 1,20915     | 0,579300 | 1 94776  | 2 60932   | 1,82303  |
| PfIT 130047300                   | 40S ribosomal protein S6                                             | 1,30347  | 1.26047     | 1.31623  | 1,51419  | 0.647334  | 0.982111 |
| PfIT_110023600                   | splicing factor U2AF small subunit, putative                         | 0,41658  | 1,25269     | 0,106888 | 0,747628 | 1,01455   | 2,87273  |
| PfIT_100008600                   | RNA-binding protein, putative                                        | 0,641589 | 1,2492      | 0,105466 | 0,379555 | 0,304674  | 0,334997 |
| PfIT_140052100                   | conserved Plasmodium protein, unknown function                       | 0,634845 | 1,24782     | 0,287311 | 0,855528 | 0,416951  | 0,795622 |
| PfIT_070029600                   | conserved Plasmodium protein, unknown function                       | 3,57234  | 1,24292     | 0,137909 | 0,886284 | 0,417928  | -2,3022  |
| PfIT_070028800                   | protein kinase, putative                                             | 0,505074 | 1,22851     | 0,133564 | 0,665397 | 0,409117  | 0,964814 |
| Pfi1_140044400                   | eukaryotic translation initiation factor eIF2A, putative             | 0,923616 | 1,22192     | 0,3884/2 | 1,34523  | 0,828431  | 1,18533  |
| Pfi1_120034500<br>PfiT_050031000 | inner membrane complex protein 1g putative                           | 0,515/4  | 1,21989     | 0,0/1411 | 2,82818  | 0,790221  | 2,3339   |
| PfIT_060021800                   | conserved Plasmodium membrane protein, unknown function              | 0.485864 | 1,20139     | 0.33595  | 1,64736  | 0.588225  | 1,51449  |
| PfIT 060017300                   | rhoptry protein ROP14                                                | 0,447043 | 1,19645     | 0.389806 | 1.58206  | 0.533202  | 1,57967  |
| PfIT_130021900                   | choline-phosphate cytidylyltransferase                               | 0,314989 | 1,19415     | 0,070131 | 0,506481 | 0,211467  | 1,0994   |
| PfIT_110012400                   | transcription factor with AP2 domain(s)                              | 1,87489  | 1,19182     | 0,378871 | 1,12421  | 2,1463    | 1,35411  |
| PfIT_090033800                   | RNA-binding protein, putative                                        | 0,741757 | 1,18741     | 0,595259 | 1,6249   | 0,845731  | 1,51189  |
| PfIT_020006600                   | knob associated heat shock protein 40                                | 0,490266 | 1,18212     | 0,321904 | 1,15112  | 0,387341  | 0,984697 |
| PfIT_130061500                   | conserved Plasmodium protein, unknown function                       | 0,584302 | 1,17803     | 0,616102 | 2,58736  | 1,36029   | 3,40177  |
| PHT_050011100                    | small ubiquitin-related modifier                                     | 0,266185 | 1,17749     | 0,596207 | 2,42462  | 0,708405  | 1,68819  |
| Pfi1_140053400<br>Pfi1_000024000 | 405 ribosomai protein 55                                             | 0,4952   | 1,1/348     | 0,477357 | 2 14146  | 0,505484  | 0,778074 |
| PfT 100012400                    | 26S protease regulatory subunit 4 putative                           | 0 197855 | 1 1 5 3 7 1 | 0.744533 | 4 0835   | 0.889802  | 4 14562  |
| PfIT 130037000                   | glutaminetRNA ligase, putative                                       | 0,497608 | 1,14676     | 0.31932  | 1,29157  | 0.834633  | 1.62515  |
| PfIT_090008100                   | DEAD/DEAH box helicase, putative                                     | 0,218991 | 1,13496     | 0,536883 | 2,47594  | 0,189748  | 1,04173  |
| PfIT_140058400                   | rhoptry neck protein 2                                               | 0,404659 | 1,12224     | 0,542782 | 2,42156  | 0,584629  | 2,1072   |
| PfIT_050022500                   | serine/arginine-rich splicing factor 1                               | 0,785339 | 1,12111     | 0,663167 | 1,59511  | 0,353636  | 0,951011 |
| PHT_130057700                    | conserved Plasmodium protein, unknown function                       | 0,732854 | 1,11969     | 0,181011 | 0,64857  | 0,646113  | 1,00596  |
| Pfi1_110043200                   | conserved Plasmodium protein, unknown function                       | 0,396159 | 1,11/86     | 0,170522 | 0,891/06 | 0,511663  | 1,69811  |
| PfT_130051600                    | DNA/RNA-binding protein Alba 2                                       | 0,471089 | 1,11/2      | 0,043392 | 2 06503  | 1 55915   | 2 32183  |
| PfT 100006600                    | RNA-binding protein, putative                                        | 0.3764   | 1,10705     | 0.299296 | 1.09563  | 0.352354  | 0.965406 |
| PfIT_080018000                   | conserved Plasmodium protein, unknown function                       | 0,558908 | 1,10184     | 0,140558 | 0,65191  | 0,312055  | 0,635222 |
| PfIT_110026000                   | protein GCN20                                                        | 0,486713 | 1,09018     | 0,104742 | 0,767204 | 0,821992  | 1,72328  |
| PfIT_060031600                   | acetyl-CoA synthetase, putative                                      | 0,428136 | 1,0706      | 0,148753 | 1,03608  | 0,501973  | 1,84428  |
| PfIT_110009600                   | histone H2B                                                          | 0,601855 | 1,06985     | 0,488773 | 1,5457   | 0,670699  | 1,31081  |
| PfIT_050009100                   | 60S ribosomal protein L31                                            | 1,23393  | 1,05391     | 0,829911 | 1,68962  | 1,246     | 0,99608  |
| Pfi1_110013000                   | casein kinase 2, alpha subunit                                       | 0,/10053 | 1,05266     | 0,684155 | 1,74429  | 0,841936  | 1,58809  |
| PfT_050036000                    | formin 1                                                             | 0,497811 | 1,04245     | 0.639017 | 1,39491  | 0.602052  | 1,63265  |
| PfT_110008700                    | chromatin remodeling protein                                         | 0.343009 | 1 03107     | 0.489604 | 2 04906  | 1.06567   | 1 81442  |
| PfIT 030012000                   | 60S ribosomal protein L7, putative                                   | 0,524335 | 1,02849     | 0,569925 | 1,55108  | 0,943878  | 1,58704  |
| PfIT_130064800                   | CUGBP Elav-like family member 1                                      | 0,624741 | 1,02828     | 0,418804 | 1,59791  | 0,36799   | 0,773298 |
| PfIT_130053900                   | conserved Plasmodium protein, unknown function                       | 0,157097 | 1,02759     | 0,236702 | 1,51343  | 0,287419  | 1,80851  |
| PfIT_120027400                   | endoplasmin, putative                                                | 0,267565 | 1,02145     | 0,80955  | 2,30051  | 0,912015  | 2,57163  |
| PfIT_140074400                   | conserved Plasmodium protein, unknown function                       | 0,760928 | 1,01915     | 0,451338 | 1,11618  | 0,835192  | 0,794313 |
| PfIT_130056700                   | 60S ribosomal protein L17, putative                                  | 0,460963 | 1,0015      | 0,387329 | 0,927008 | 0,175855  | 0,358544 |
| Pfi1_030022100<br>PfiT_140015200 | 40S ribecomel protein SSe, putetive                                  | 0,54048/ | 0,97825     | 0.252760 | 4,04414  | 0,812/25  | 1,30333  |
| PfT 130046500                    | 60S ribosomal protein L18, putative                                  | 0,357234 | 0,976692    | 0,443176 | 1.05243  | 0.32185   | 0,992301 |
| PfT 110048800                    | transcription initiation factor IIF subunit beta, putative           | 0.19076  | 0.971244    | 0.087388 | 0.858364 | 0.980934  | 3.2898   |
| PfIT_020017000                   | conserved Plasmodium protein, unknown function                       | 0,524315 | 0,970162    | 0,627013 | 1,53541  | 1,13203   | 1,25229  |
| PfIT_080012700                   | conserved Plasmodium protein, unknown function                       | 0,70005  | 0,969265    | 0,245717 | 0,560041 | 0,349792  | 0,484757 |
| PfIT_060009100                   | RNA-binding protein, putative                                        | 0,348918 | 0,963039    | 0,318323 | 1,48641  | 0,538422  | 1,69132  |
| PfIT_140067800                   | conserved Plasmodium protein, unknown function                       | 0,556318 | 0,960097    | 1,22721  | 2,19004  | 0,68576   | 1,35314  |
| PfIT_130057000                   | inner membrane complex protein 1f, putative                          | 0,213031 | 0,954571    | 0,320085 | 1,46385  | 0,299415  | 1,26621  |
| Pfi1_040019900                   | nuclear cap-binding protein, putative                                | 2,74829  | 0,944949    | 0,41201  | 1,362/9  | 1,35168   | 1,11412  |
| PfT 120061400                    | conserved Placmodium protein unknown function                        | 0,340025 | 0,950115    | 0,088000 | 1 22124  | 0,302394  | 1 12102  |
| PfIT_140070200                   | conserved Plasmodium protein, unknown function                       | 0.514759 | 0.908329    | 0.526612 | 1.89664  | 0.701642  | 1.34811  |
| PfIT_020016800                   | peptide chain release factor subunit 1, putative                     | 0,191237 | 0,907468    | 0,123085 | 0,704025 | 0,123308  | 0,576701 |
| PfIT_070009700                   | conserved Plasmodium protein, unknown function                       | 0,210081 | 0,903639    | 0,212018 | 1,29215  | 0,312446  | 1,40209  |
| PfIT_130076500                   | Plasmodium exported protein, unknown function                        | 0,192889 | 0,861709    | 0,616092 | 2,71744  | 1,21121   | 2,29792  |
| PfIT_140022700                   | protein SEY1, putative                                               | 0,21527  | 0,860335    | 0,11837  | 0,696647 | 0,466919  | 1,67964  |
| PfIT_100034100                   | conserved Plasmodium protein, unknown function                       | 0,10908  | 0,852294    | 0,215475 | 1,73215  | 0,479681  | 2,96119  |
| Pfi1_130057800                   | thioredoxin-related protein, putative                                | 0,336/11 | 0,84673     | 0,443602 | 1,31495  | 0,830399  | 1,57623  |
| Pfi1_050017700<br>PfiT_110010000 | 40S ribosomal protain S4, putativa                                   | 0,309762 | 0,842/04    | 0,331844 | 0,915652 | 0,3883331 | 0.717073 |
| PfT 120024400                    | clathrin heavy chain putative                                        | 0,224204 | 0.828487    | 0.523465 | 1 80503  | 0.352202  | 1 27031  |
| PfIT 130073500                   | ABC transporter E family member 1, putative                          | 0,254537 | 0,816379    | 0,117373 | 0,781267 | 0,122054  | 0,652019 |
| PfIT_120023600                   | AP-2 complex subunit mu, putative                                    | 0,342793 | 0,811653    | 0,116145 | 0,415998 | 0,470661  | 1,00003  |
| PfIT_140030600                   | 60S ribosomal protein L5, putative                                   | 0,563794 | 0,810172    | 0,579784 | 1,47122  | 0,771329  | 1,11025  |
| PfIT_140077600                   | diacylglycerol kinase, putative                                      | 0,291379 | 0,809177    | 0,13234  | 0,564536 | 0,295003  | 0,821429 |
| PfIT_130066200                   | polyadenylate-binding protein, putative                              | 0,503637 | 0,793505    | 0,539895 | 1,32739  | 0,681621  | 1,14513  |
| Pfi1_100038800                   | methioninetKNA ligase                                                | 0,399257 | 0,786557    | 0,308304 | 1,18818  | 0,156284  | 0,5014/2 |
| PfT 120028500                    | nhospholinid-transporting ATPase putative                            | 0,700200 | 0,78319     | 0,279550 | 0,792402 | 0,970482  | 0,976034 |
| PfIT 120048000                   | 40S ribosomal protein S17, putative                                  | 0.527711 | 0.775483    | 0.480352 | 1,10272  | 0.897262  | 1,10609  |
| PfIT 070018500                   | conserved Plasmodium protein, unknown function                       | 0,242402 | 0,766808    | 0,319032 | 1,21062  | 0,276708  | 0,8575   |
| PfIT_140030900                   | 60S ribosomal protein L7-3, putative                                 | 0,779074 | 0,764072    | 0,504946 | 1,37426  | 0,778068  | 1,05218  |
| PfIT_110009500                   | histone H4                                                           | 0,440214 | 0,760967    | 0,501523 | 1,10232  | 0,746431  | 0,930098 |
| PfIT_100012000                   | eukaryotic translation initiation factor 3 subunit D, putative       | 0,700419 | 0,756856    | 0,342967 | 0,875943 | 0,548353  | 0,806787 |
| Pfi1_0/0033000                   | conserved Plasmodium protein, unknown function                       | 0,546646 | 0,754767    | 0,3/2349 | 1,058/6  | 0,522222  | 0,624894 |
| PfT 130014000                    | mRNA-decapping enzyme 2 putative                                     | 0,10/335 | 0,745795    | 0.040413 | 0,972598 | 0.086136  | 0.414807 |
| PfIT 120028200                   | cAMP-dependent protein kinase regulatory subunit                     | 0.242995 | 0.730196    | 0.385603 | 1,70276  | 0,549185  | 1.50211  |
| PfIT_030008000                   | HAD superfamily protein, putative                                    | 0,221913 | 0,728944    | 0,169447 | 1,05485  | 0,418262  | 1,32236  |
| PfIT_140023800                   | NOT family protein, putative                                         | 0,103041 | 0,721633    | 0,082624 | 0,710521 | 0,127617  | 0,871679 |
| PfIT_130031600                   | RNA-binding protein, putative                                        | 0,66413  | 0,712411    | 0,207682 | 0,587722 | 0,545943  | 0,641851 |
| Pf11_080012400                   | ras-related protein Rab-18                                           | 0,33485  | 0,710272    | 0,526372 | 1,09124  | 0,324401  | 0,762976 |
| Pfi1_130059700                   | large subunit rKNA methyltransferase, putative                       | 0,37038  | 0,706603    | 0,225772 | 0,890397 | 0,1241/3  | -0,66149 |
| PfT_020015200                    | conserved Plasmodium protein, unknown function                       | 0,124309 | 0,702011    | 0.46816  | 1 80304  | 0 298442  | 1 32663  |
| PfIT_140072200                   | 40S ribosomal protein S3                                             | 0.30797  | 0.695913    | 0.647665 | 1,41121  | 0.429736  | 0.711808 |
| PfIT 140019100                   | actin II                                                             | 0,131353 | 0,693698    | 0,146861 | 1,09452  | 0,044354  | 0,311767 |
| PfIT_020012200                   | serine repeat antigen 6                                              | 0,197463 | 0,686973    | 0,515615 | 1,99068  | 0,53989   | 1,59436  |
| PfIT_120044700                   | conserved Plasmodium protein, unknown function                       | 0,387312 | 0,68157     | 0,342242 | 1,0058   | 0,530789  | 1,00492  |
| PfIT_130065000                   | conserved Plasmodium protein, unknown function                       | 0,187204 | 0,677034    | 0,052742 | -0,27883 | 0,069026  | -0,25791 |
| PH1_090009800<br>PHT_000024000   | high molecular weight the star sector 2                              | 0,210123 | 0,672997    | 0,079172 | 0,323207 | 0,115842  | 0,377654 |
| PfT_080032800                    | ngn molecular weight moptry protein 2<br>protein disulfide isomerase | 0,147856 | 0,009/08    | 0,279775 | 1,37396  | 1.26217   | 2 21222  |
| PfIT 050023700                   | ATP-dependent RNA helicase DDX23, putative                           | 0.172954 | 0.65887     | 0,140577 | 0,683092 | 0,136945  | 0.441225 |
| PfIT 060021700                   | histone H3 variant, putative                                         | 0,322265 | 0,644587    | 0,448394 | 1,31166  | 0,542382  | 1.055    |
| PfIT_120032800                   | conserved Plasmodium protein, unknown function                       | 0,183974 | 0,63969     | 0,002752 | 0,025345 | 0,452896  | 1,5289   |
| PfIT_030022400                   | 40S ribosomal protein S11, putative                                  | 0,259759 | 0,636149    | 0,141937 | 0,353481 | 0,022499  | 0,056621 |
| PfIT_140021400                   | small nuclear ribonucleoprotein-associated protein B, putative       | 0,374591 | 0,634238    | 0,161098 | -0,93241 | 0,537441  | 0,722509 |
| Ptif_120010900                   | zinc finger protein, putative                                        | 0,243456 | 0,631698    | 0,426063 | 1,45768  | 0,661381  | 1,40647  |
| PTL1_030025700                   | histone H2A variant, putative                                        | 0,327057 | 0,625125    | 0,58031  | 1,27409  | 0,500736  | 0,865339 |
| PfT_080022700                    | rhontry neck protein 5                                               | 0,192678 | 0,024057    | 0,235018 | 2 14026  | 0,410302  | 2.09678  |
| PfIT 130011500                   | 26S protease regulatory subunit 10B. putative                        | 0.158842 | 0.606558    | 0.703265 | 2,32366  | 0,401413  | 1,67039  |
| PfIT_110021700                   | conserved Plasmodium protein, unknown function                       | 0,070301 | 0,60497     | 0,851491 | 4,50218  | 1,64438   | 6,03329  |
| PfIT_140038100                   | 60S ribosomal protein L14, putative                                  | 0,191267 | 0,604378    | 0,637035 | 1,96092  | 0,597587  | 1,5436   |
| PfIT_050021400                   | 40S ribosomal protein S11                                            | 0,238514 | 0,597808    | 0,371164 | 0,893725 | 0,366689  | 0,626962 |
| PfIT_090018700                   | conserved Plasmodium protein, unknown function                       | 0,314647 | 0,593743    | 0,566573 | 1,58723  | 1,12625   | 2,17003  |
| Pf11_050022200<br>Pf1T_100040500 | 608 ribosomal protein L12, putative                                  | 0,345689 | 0,57907     | 0,536096 | 1,40042  | 0,737004  | 1,19909  |
| PfT_020006800                    | knob-associated histidine-rich protein                               | 0,314625 | 0,569407    | 0,132343 | 0,465429 | 0 163502  | 0,203201 |
| PfIT 110033600                   | parasitophorous vacuolar protein 1                                   | 0,236543 | 0,566964    | 0,331321 | 0,973154 | 0,231226  | 0,563115 |
| PfIT_130062500;PfIT 130062400    | elongation factor 1-alpha                                            | 0,464741 | 0,562383    | 0,583284 | 1,35139  | 0,981062  | 1,22209  |
| PfIT_120040200                   | CCR4-NOT transcription complex subunit 4, putative                   | 0,393991 | 0,551517    | 0,516271 | 1,62235  | 1,19326   | 1,8588   |

| PfIT_120043700                   | acyl-CoA synthetase                                                          | 0,139473 | 0,54828              | 0,036687 | 0,330235 | 0,574732 | 1,99459  |
|----------------------------------|------------------------------------------------------------------------------|----------|----------------------|----------|----------|----------|----------|
| PHT_010016100<br>PHT_100012200   | glutamic acid-rich protein<br>conserved Plasmodium protein, unknown function | 0,182481 | 0,539528             | 0,072311 | 0,32163  | 0,033734 | -0,07911 |
| PfIT 080023200                   | 14-3-3 protein                                                               | 0.352946 | 0,52905              | 1.39339  | 2.23361  | 1.56779  | 2,41971  |
| PfIT_080023900                   | heat shock protein 70                                                        | 0,317776 | 0,524783             | 0,462336 | 1,16646  | 0,58599  | 1,30645  |
| PfIT_140022800                   | metacaspase-like protein                                                     | 0,18128  | 0,523999             | 0,252234 | 1,38488  | 0,406924 | 1,29696  |
| PfIT_140067100                   | 60S ribosomal protein L27                                                    | 0,52661  | 0,521915             | 0,464359 | 1,08073  | 0,875583 | 0,978377 |
| PH1_100018600<br>PfT_100014600   | eukaryotic translation initiation factor 2 beta subunit putative             | 0,105342 | 0,519604             | 0,120005 | 1 45744  | 0,096347 | 1 05349  |
| PfIT 140018900                   | nuclear transport factor 2, putative                                         | 0,063414 | 0,516485             | 0,052178 | -0,55872 | 0,137468 | 1,12484  |
| PfIT_070011400                   | conserved Plasmodium protein, unknown function                               | 0,287085 | 0,505809             | 0,040102 | 0,201798 | 0,426612 | 0,778985 |
| PfIT_020016600                   | conserved Plasmodium protein, unknown function                               | 0,075797 | 0,484203             | 0,007185 | 0,055435 | 0,014859 | 0,100433 |
| PH1_150045500<br>PfT_110010200   | translocon component PTEX88                                                  | 0,375325 | 0,485596             | 0,358400 | -1.45045 | 0,452692 | -0.5255  |
| PfIT 120029400                   | polyadenylate-binding protein, putative                                      | 0,354707 | 0,467704             | 0,373841 | 0,887047 | 0,468388 | 0,64545  |
| PfIT_140038500                   | voltage-dependent anion-selective channel protein, putative                  | 0,186233 | 0,463369             | 0,025117 | -0,0697  | 0,146665 | 0,287537 |
| PfIT_040006200                   | Plasmodium exported protein (PHISTb), unknown function                       | 0,129247 | 0,461547             | 0,054392 | 0,187658 | 0,111282 | 0,358548 |
| PH1_100015800                    | PRE-binding protein                                                          | 0,265/61 | 0,456795             | 0,399251 | 1,25634  | 0,451684 | 1,02/95  |
| PfIT 070023800                   | 60S ribosomal protein L11a, putative                                         | 0,162509 | 0.452702             | 0.283552 | 0.697639 | 0,214227 | 0,513941 |
| PfIT_020016300                   | asparaginetRNA ligase                                                        | 0,069535 | 0,448043             | 0,552498 | 2,72653  | 0,612459 | 2,51467  |
| PfIT_040009400                   | dipeptidyl aminopeptidase 3                                                  | 0,133924 | 0,44786              | 1,15187  | 3,04839  | 0,42093  | 1,78339  |
| PHT_130034800                    | conserved Plasmodium protein, unknown function                               | 0,202432 | 0,44743              | 0,281424 | -1,41683 | 0,398867 | -0,8148  |
| PfT 130017000                    | Ml-family alanyl aminopentidase                                              | 0,172027 | 0,430079             | 0,389099 | -0.40267 | 0,54817  | -0 6941  |
| PfIT_050033300                   | AP-1 complex subunit beta, putative                                          | 0,146062 | 0,413207             | 0,435713 | 1,7162   | 0,830226 | 1,65336  |
| PfIT_140014400                   | plasmepsin IV                                                                | 0,113157 | 0,410482             | 0,649808 | 1,21657  | 0,20946  | 0,449209 |
| PHT_1400/4200                    | rab GIPase activator, putative                                               | 0,136739 | 0,407507             | 0,264137 | 1,0847   | 0,600342 | 1,4603   |
| PfIT 100041000                   | ADP/ATP transporter on adenvlate translocase                                 | 0.065054 | 0.388922             | 0.114135 | 0,600128 | 0.080948 | 0,948400 |
| PfIT_050030300                   | acyl-CoA synthetase                                                          | 0,307643 | 0,381883             | 0,369735 | 1,37433  | 0,951102 | 1,34556  |
| PfIT_090007900                   | ras-related protein RAB7                                                     | 0,186063 | 0,369269             | 0,626706 | 0,984105 | 0,370413 | 0,739676 |
| PHT_090023500<br>PHT_140017000   | nucleosome assembly protein                                                  | 0,131849 | 0,366782             | 0,394268 | 1,24545  | 0,625216 | 1,66589  |
| PfT 100026500                    | serine/arginine-rich splicing factor 4                                       | 0.418481 | 0.362501             | 0.440422 | 1,29356  | 0.416902 | 1.00934  |
| PfIT_080016200                   | CCR4-associated factor 1                                                     | 0,099586 | 0,359441             | 0,120578 | 0,446433 | 0,065184 | 0,266747 |
| PfIT_100012800                   | nucleolar protein 5, putative                                                | 0,156896 | 0,349287             | 0,045363 | -0,37308 | 0,712778 | 1,24024  |
| PfIT_140050700                   | 1-acyl-sn-glycerol-3-phosphate acyltransferase, putative                     | 0,034707 | 0,348891             | 0,022103 | 0,232118 | 0,257934 | 1,84682  |
| PH1_150008600<br>PfT_020016900   | sodium/nydrogen exchanger, Na+, H+ antiporter                                | 0,09803  | 0,338291             | 0,067219 | 0,556025 | 0,251429 | -0.25092 |
| PfIT 050011400                   | 60S ribosomal subunit protein L24-2, putative                                | 0,215971 | 0,3204               | 0,195106 | 0,480484 | 0,745447 | -2,53178 |
| PfIT_080015500                   | RNA helicase, putative                                                       | 0,181305 | 0,31569              | 0,15123  | 0,404618 | 0,2541   | 0,394241 |
| PfIT_140075100                   | splicing factor U2AF large subunit, putative                                 | 0,223105 | 0,307752             | 0,19393  | 0,761768 | 0,303716 | 0,442712 |
| PHT_140063700<br>PHT_000030600   | conserved Plasmodium protein, unknown function                               | 0,056657 | 0,289642             | 0,156849 | 0,949758 | 0,418988 | 1,65036  |
| PfT_090021300                    | RNA-binding protein musashi putative                                         | 0,102557 | 0,280034             | 0,003174 | 1 35721  | 1 13649  | 1 26766  |
| PfIT_050024600                   | 40S ribosomal protein S24                                                    | 0,887088 | 0,272214             | 0,643532 | 0,454419 | 0,213688 | 0,105799 |
| PfIT_140014700                   | plasmepsin III                                                               | 0,043074 | 0,246964             | 0,700057 | 3,03729  | 0,488014 | 2,26802  |
| PfIT_070018300                   | histone H2B variant                                                          | 0,108999 | 0,244424             | 0,202468 | 0,422047 | 0,347449 | 0,415734 |
| PH1_060023200<br>PfT_030023000   | DNA-directed RNA polymerase II subunit RPB1                                  | 0,081415 | 0,239794             | 0,308044 | 2 51413  | 0,870327 | 1,010/2  |
| PfIT 110041000                   | casein kinase 1                                                              | 0,09912  | 0,207287             | 0,257423 | 0,788876 | 0,300008 | 0,711995 |
| PfIT_130062200                   | serine/threonine protein kinase, putative                                    | 0,060176 | 0,206587             | 0,593927 | 2,53253  | 0,701245 | 1,85252  |
| PfIT_140039700                   | chromatin assembly factor 1 P55 subunit, putative                            | 0,03444  | 0,191767             | 0,24335  | 1,02715  | 0,158236 | 0,974768 |
| PH1_050016600<br>PfT_110046800   | KNA pseudouridylate synthase, putative                                       | 0,080354 | 0,181238             | 0,051199 | 0,205953 | 0,234186 | -0,4443  |
| PfIT 110033500                   | spermidine synthase                                                          | 0,031226 | 0,133677             | 0,333887 | 1,17084  | 0,208946 | 0,822519 |
| PfIT_050026100                   | S-adenosyl-L-homocysteine hydrolase                                          | 0,045204 | 0,131476             | 0,415456 | 1,44422  | 0,326975 | 1,20518  |
| PfIT_010006700                   | nucleoside transporter 4                                                     | 0,033424 | 0,109615             | 0,177127 | -0,85227 | 0,019045 | -0,05746 |
| PH1_140072400<br>PfT_130015900   | Protein phosphatase containing keich-like domains                            | 0,038659 | 0,102342             | 0,164692 | -0,30818 | 0,038459 | -0,0906  |
| PfIT 130069400                   | 6-cysteine protein                                                           | 0,023641 | 0,094503             | 0,230892 | 0,756143 | 0,018488 | -0,07063 |
| PfIT_100011800                   | transcription factor with AP2 domain(s)                                      | 0,020723 | 0,082503             | 0,220445 | 0,67942  | 0,153184 | 0,322652 |
| PfIT_140076400                   | conserved Plasmodium protein, unknown function                               | 0,020952 | 0,076368             | 0,06154  | -0,20517 | 0,10135  | -0,26201 |
| PH1_140044300                    | HSP40, subfamily A, putative                                                 | 0,030517 | 0,073705             | 0,6855/4 | 1,54/23  | 0,272334 | 0,/55981 |
| PfIT 140069200                   | glyceraldehyde-3-phosphate dehydrogenase                                     | 0.01275  | 0.038041             | 0,456163 | 1.22176  | 0,281847 | 0.791044 |
| PfIT_090022500                   | heat shock protein 70                                                        | 0,000278 | 0,000881             | 0,186386 | 0,482733 | 0,211033 | 0,610998 |
| PfIT_140041200                   | mitochondrial acidic protein MAM33, putative                                 | 0,009444 | -0,02713             | 0,004677 | 0,013439 | 0,392499 | 0,75153  |
| PHT_100012700<br>PHT_050028200   | tubulin beta chain<br>multidrug maistance protein 1                          | 0,017849 | -0,05558             | 1,13619  | 2,83585  | 0,964697 | 2,27018  |
| PfIT 040023000                   | regulator of chromosome condensation, putative                               | 0,177873 | -0.08449             | 0.328253 | -0.54821 | 0.08127  | 0.057485 |
| PfIT_080026000                   | conserved Plasmodium protein, unknown function                               | 0,044115 | -0,1063              | 0,297623 | 0,749038 | 0,186913 | 0,443934 |
| PfIT_050007000                   | rhoptry-associated protein 2                                                 | 0,022341 | -0,12181             | 0,044597 | 0,243084 | 0,092589 | 0,466035 |
| PHT_140057500                    | elongation factor 2                                                          | 0,062457 | -0,13223             | 0,389475 | 1,05984  | 0,38275  | 0,851671 |
| PfIT 110040400                   | 3-oxo-5-alpha-steroid 4-dehvdrogenase, putative                              | 0.029414 | -0.14135             | 0,327602 | -1.36138 | 0.094824 | 0.433337 |
| PfIT_030019900                   | eukaryotic translation initiation factor 4E                                  | 0,100099 | -0,1438              | 0,069806 | 0,145369 | 0,12762  | 0,217544 |
| PfIT_090040500                   | cytoadherence linked asexual protein 9                                       | 0,048053 | -0,15716             | 0,12862  | 0,625216 | 0,182116 | 0,631285 |
| PHT_100041200                    | dynamin-like protein                                                         | 0,034332 | -0,16125             | 0,208553 | 1,40098  | 0,407505 | 1,7637   |
| PfIT 060012900                   | ornithine aminotransferase                                                   | 0.088857 | -0,1694              | 0.380792 | 1.42138  | 0,49783  | 1,30068  |
| PfIT_110022000                   | GTP-binding nuclear protein RAN/TC4                                          | 0,084514 | -0,17776             | 0,354666 | 0,772296 | 0,234485 | 0,58907  |
| PtfT_100025000                   | ADP-ribosylation factor                                                      | 0,042848 | -0,20268             | 0,473658 | 1,36678  | 0,334535 | 1,1855   |
| PfIT 060012800                   | T-complex protein 1 subunit zeta                                             | 0.061698 | -0,21022<br>-0.21537 | 0,397856 | 0,462784 | 0,167096 | 1.16693  |
| PfIT_030025900                   | conserved Plasmodium protein, unknown function                               | 0,183777 | -0,21829             | 0,335728 | 0,579822 | 0,530024 | -1,22019 |
| PfIT_090030600                   | protein kinase, putative                                                     | 0,053516 | -0,21883             | 0,407284 | -1,34633 | 0,545633 | -1,87265 |
| PfIT_020014500                   | ATP-dependent RNA helicase UAP56                                             | 0,08205  | -0,22049             | 0,025582 | 0,162286 | 0,304934 | 0,747911 |
| PH1_110039400<br>PfT_110041300   | coatomer subunit delta                                                       | 0,159342 | -0,236/8             | 0,394636 | 0,609/56 | 0,269429 | 0,749147 |
| PfIT 140067000                   | inner membrane complex sub-compartment protein 3                             | 0,033061 | -0,2415              | 0,607458 | 3,29003  | 0,837054 | 3,72544  |
| PfIT_100023500                   | 60S ribosomal protein L30e, putative                                         | 0,104718 | -0,2537              | 0,18491  | 0,516513 | 0,00318  | 0,010268 |
| PfIT_040010100                   | pre-mRNA-processing-splicing factor 8, putative                              | 0,234365 | -0,26513             | 0,260454 | 0,991598 | 0,17263  | 0,29024  |
| PfT 110024400                    | phosphoglycerate mutase putative                                             | 0,1359/1 | -0,205/9             | 0,411346 | 0,000338 | 0,2261/2 | 0.247802 |
| PfIT 140047600                   | 60S ribosomal protein L1, putative                                           | 0,118937 | -0,29524             | 0,282213 | 0,564007 | 0,043988 | 0,066026 |
| PfIT_130048300                   | phosphoethanolamine N-methyltransferase                                      | 0,218894 | -0,31279             | 0,455044 | 1,15395  | 0,273133 | 0,914226 |
| PfIT_090022600                   | glideosome-associated protein 50                                             | 0,074244 | -0,32923             | 0,12925  | 0,488846 | 0,306368 | 1,04763  |
| PTI 1_030023600<br>PfT_140054100 | triosephosphate isomerase, putative                                          | 0,148502 | -0,33862             | 0,106485 | 0,249727 | 0,304644 | -0,61471 |
| PfIT 060030600                   | pyruvate kinase                                                              | 0,058526 | -0,34887             | 0,209451 | 1,20067  | 0,378502 | 1,78857  |
| PfIT_120051400                   | actin I                                                                      | 0,200648 | -0,37095             | 0,152685 | 0,39275  | 0,128809 | 0,29623  |
| PfIT_090011300                   | zinc finger protein, putative                                                | 0,080924 | -0,37222             | 0,194279 | -0,95909 | 0,443103 | -1,92626 |
| PH1_120036100<br>PfT_090009300   | ras-related protein Rab-2<br>ubiquitin specific protease, putative           | 0,124495 | -0,38479             | 0,078213 | 0,260646 | 0,119715 | 0,360369 |
| PfIT 010009600                   | calcium-transporting ATPase                                                  | 0,300015 | -0,39204             | 0,132478 | 0,41511  | 0,498845 | 0,401385 |
| PfIT 140016000                   | conserved Plasmodium membrane protein, unknown function                      | 0,093451 | -0,41431             | 0,177504 | 0,608842 | 0,251754 | 0,887382 |
| PfIT_110020700                   | guanine nucleotide-exchange factor SEC12                                     | 0,219315 | -0,41452             | 0,137578 | 0,284562 | 0,164824 | 0,460987 |
| Pti I_070025600                  | conserved Plasmodium protein, unknown function                               | 0,049741 | -0,42674             | 0,080127 | 0,794463 | 0,129126 | 1,17008  |
| PfT_140051200                    | fructose-bisphosphate aldolase                                               | 0,175578 | -0,46089             | 0,209322 | 0,643343 | 0,201832 | -0.11562 |
| PfIT_090026700                   | S-adenosylmethionine synthetase                                              | 0,166427 | -0,49725             | 0,179178 | 0,707394 | 0,137635 | 0,546421 |
| PfIT_070013300                   | heat shock protein 90                                                        | 0,408658 | -0,52422             | 0,187662 | 0,525283 | 0,452598 | 0,769032 |
| PHT_140047800<br>PHT_110024700   | FACT complex subunit SSRP1, putative                                         | 0,190335 | -0,53231             | 0,160844 | 0,444302 | 0,137163 | 0,417334 |
| PfT 110013200                    | endoplasmic reticulum-resident calcium binding protein                       | 0,257763 | -0,53694             | 0,107435 | 0,418055 | 0,284515 | 0,783089 |
| PfIT_020020200                   | DNA-directed RNA polymerase II subunit RPB2, putative                        | 0,122842 | -0,56186             | 0,933675 | 2,2628   | 0,644314 | 2,12176  |
| PfIT_050006200                   | mature parasite-infected erythrocyte surface antigen                         | 0,282081 | -0,57897             | 0,343471 | -0,74688 | 0,497934 | -0,87841 |
| PfIT 020011200                   | conserved Plasmodium protein, unknown function                               | 0,205566 | -0,59243             | 0.613755 | -1.10955 | 0.361942 | -0.61814 |

| PfIT_140043600 | ribonucleoside-diphosphate reductase, large subunit, putative      | 0,109683 | -0,60078 | 0,631637 | 2,6835   | 0,092376 | 0,64453  |
|----------------|--------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|
| PfIT_130052800 | DNA/RNA-binding protein Alba 4                                     | 0,389737 | -0,61245 | 0,308406 | -0,50759 | 0,192382 | -0,32206 |
| PfIT_120011200 | high mobility group protein B3, putative                           | 0,420837 | -0,62236 | 0,120474 | -0,21581 | 0,167782 | -0,37875 |
| PfIT_130049000 | kelch protein K13                                                  | 0,290251 | -0,62709 | 0,084797 | 0,255354 | 0,094307 | 0,234292 |
| PfIT_100037300 | haloacid dehalogenase-like hydrolase                               | 0,082066 | -0,63154 | 0,121933 | 1,14273  | 0,505624 | 3,14626  |
| PfIT_130016700 | 26S protease regulatory subunit 7, putative                        | 0,170624 | -0,63707 | 0,570843 | 2,27691  | 0,431889 | 1,65094  |
| PfIT_090025300 | inosine-5-monophosphate dehydrogenase                              | 0,242407 | -0,71029 | 0,096381 | 0,355762 | 0,142639 | 0,508553 |
| PfIT_110010300 | tRNA-splicing ligase RtcB, putative                                | 0,155457 | -0,72084 | 0,217493 | 1,27819  | 0,410335 | 1,63506  |
| PfIT_090019000 | conserved Plasmodium protein, unknown function                     | 0,094882 | -0,73544 | 0,395409 | 2,76582  | 0,588447 | 2,59775  |
| PfIT_070021100 | eukaryotic translation initiation factor 3 subunit I, putative     | 0,376267 | -0,74875 | 0,12568  | -0,23234 | 0,094688 | -0,22416 |
| PfIT_140075000 | eukaryotic initiation factor 4A                                    | 0,337876 | -0,77512 | 0,068003 | 0,227475 | 0,021349 | 0,076253 |
| PfIT_130030200 | L-lactate dehydrogenase                                            | 0,211171 | -0,776   | 0,253218 | 1,00447  | 0,277623 | 1,04378  |
| PfIT_130043600 | elongation factor 1-gamma, putative                                | 0,478023 | -0,81616 | 0,265618 | 0,69091  | 0,133639 | 0,499461 |
| PfIT 060016900 | nucleolar GTP-binding protein 1, putative                          | 0,305615 | -0,83117 | 0,118757 | -0,60989 | 0,276978 | 0,309378 |
| PfIT 090017800 | elongation factor 1-beta                                           | 0,187206 | -0,83507 | 0,021641 | -0,16861 | 0,385519 | 1,04562  |
| PfIT 130006200 | Plasmodium exported protein (hyp12), unknown function              | 0,223085 | -0,84513 | 1,21466  | 5,45594  | 0,094515 | 0,568691 |
| PfIT_120016800 | heat shock protein DNAJ homologue Pfj4                             | 0,597962 | -0,84667 | 0,036195 | -0,06068 | 0,091643 | -0,228   |
| PfIT_010006400 | aspartatetRNA ligase                                               | 0,568663 | -0,91855 | 0,203095 | 0,750796 | 0,578376 | 0,94028  |
| PfIT 060013100 | conserved Plasmodium protein, unknown function                     | 0,400784 | -0,93449 | 0,405598 | 1,19712  | 0,447933 | -1,05012 |
| PfIT_030011000 | activator of Hsp90 ATPase                                          | 0,418137 | -0,94027 | 0,282566 | 0,840644 | 0,12847  | 0,486763 |
| PfIT_060033000 | DnaJ protein, putative                                             | 0,201117 | -0,94646 | 0,104167 | -0,51854 | 0,051991 | 0,304394 |
| PfIT 080007100 | mannose-6-phosphate isomerase, putative                            | 0,372992 | -0,9943  | 0,093352 | 0,341258 | 0,063559 | -0,20793 |
| PfIT 090027000 | phosphoglycerate kinase                                            | 0,451975 | -0,99858 | 0,13263  | 0,439732 | 0,054613 | 0,203178 |
| PfIT_140046300 | vesicle-associated membrane protein, putative                      | 0,863653 | -1,06127 | 0,225766 | -0,66085 | 0,025802 | -0,0824  |
| PfIT_130069500 | conserved Plasmodium protein, unknown function                     | 0,269959 | -1,0836  | 0,004811 | -0,02513 | 0,065107 | -0,27994 |
| PfIT_130054500 | glutamatetRNA ligase, putative                                     | 0,349578 | -1,08822 | 0,125389 | 0,778794 | 0,090306 | 0,40078  |
| PfIT_140017200 | eukaryotic translation initiation factor 2 gamma subunit, putative | 0,588528 | -1,13695 | 0,008788 | 0,033935 | 0,145249 | -0,45717 |
| PfIT_090009500 | replication protein A1, small                                      | 0,348229 | -1,28338 | 0,199833 | 0,797932 | 0,16992  | 0,682244 |
| PfIT_110031200 | autophagy-related protein 23, putative                             | 0,174391 | -1,31997 | 0,582849 | 4,66996  | 0,329183 | 2,31549  |
| PfIT_090008400 | alpha tubulin 2                                                    | 0,518713 | -1,33425 | 0,822257 | 2,0636   | 0,911396 | 2,3168   |
| PfIT_040006400 | Plasmodium exported protein (PHISTa), unknown function             | 0.71901  | -1.36483 | 1,76057  | 4.87226  | 2,3638   | 4,90077  |
| PfIT_110038600 | heat shock protein 70                                              | 0,348059 | -1,38817 | 0,020511 | -0,17191 | 0,250643 | 1,16565  |
| PfIT_060031300 | protein DJ-1                                                       | 0,416368 | -1,483   | 0,028777 | -0,17139 | 0,104111 | 0,406299 |
| PfIT_050025600 | conserved Plasmodium protein, unknown function                     | 0,384398 | -1,49726 | 0,090998 | -0,35979 | 0,200695 | -0,61949 |
| PfIT_120054100 | 26S protease regulatory subunit 8, putative                        | 1.2493   | -1.73995 | 0.316565 | 0,720402 | 0.010174 | -0.03761 |
| PfIT_070026600 | GTP-binding protein, putative                                      | 0.413609 | -1.7561  | 0.222581 | 0.85837  | 0.102746 | 0.578436 |
| PfT_080018300  | conserved Plasmodium protein, unknown function                     | 0.95715  | -1.82479 | 0.049555 | 0.203449 | 0.443391 | 1.13879  |
| PfIT_030025100 | T-complex protein 1 subunit ensilon                                | 0.604341 | -1.98066 | 0.023859 | 0.141189 | 0.048377 | -0.26442 |
| PfIT_020010700 | 26S proteasome regulatory subunit RPN1, putative                   | 0,596421 | -2.04876 | 0.311584 | 0.887602 | 0.00616  | 0.032151 |
| PfIT_050028300 | mitochondrial processing peptidase alpha subunit, putative         | 0.453904 | -2.16701 | 0.212724 | -0.91075 | 0.323498 | -1.60468 |
| PfIT_080020600 | eukaryotic translation initiation factor 3 subunit G. putative     | 0.563181 | -2.24269 | 0.310723 | 0.971717 | 0.209649 | -0.1906  |
| PfIT 060033200 | RNA-binding protein, putative                                      | 0.472405 | -2.2548  | 0.41224  | -2.26345 | 0.200828 | -0,70366 |
| PfIT_030013400 | pre-mRNA-processing factor 19. putative                            | 2,22209  | -5.00947 | 0.614668 | -2.06101 | 0.398839 | -2.07104 |
|                | pre mit i r processing metor 19, putative                          | 2,2220)  | 2,00747  | 0,014000 | 2,00101  | 0,570057 | 2,07104  |

#### Appendix F – Abbreviations of candidate from the proxiome of PfEMP1

abbreviations and accession numbers for exported proteins with unknown function (green) and PHISTs (beige)

| Uncharacterized<br>exported proteins                   | Accession number<br>IT4                                                                                                                             | Accession number<br>3D7                                                                                                    |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| EMPIC1                                                 | PfIT_130058500                                                                                                                                      | PF3D7_1353100                                                                                                              |
| EMPIC2                                                 | PfIT_100006200                                                                                                                                      | PF3D7_1002000                                                                                                              |
| EMPIC3                                                 | PfIT_070007400                                                                                                                                      | PF3D7_0702500                                                                                                              |
| EMPIC4                                                 | PfIT_070030000                                                                                                                                      | PF3D7_0726100                                                                                                              |
| EMPIC5                                                 | PfIT_010016300                                                                                                                                      | Pf3D7_0113200                                                                                                              |
| EMPIC6                                                 | PfIT_130006200                                                                                                                                      | PF3D7_1301400                                                                                                              |
| PHIST                                                  | Accession number                                                                                                                                    | Accession number                                                                                                           |
| abbreviation                                           | IT4                                                                                                                                                 | 3D7                                                                                                                        |
| abbreviation<br>P1                                     | IT4<br>PfIT_080035300                                                                                                                               | 3D7<br>PF3D7_0830600                                                                                                       |
| abbreviation P1 P2                                     | IT4<br>PfIT_080035300<br>PfIT_120006500                                                                                                             | 3D7<br>PF3D7_0830600<br>PF3D7_1200900                                                                                      |
| Abbreviation<br>P1<br>P2<br>P3                         | IT4<br>PfIT_080035300<br>PfIT_120006500<br>PfIT_120058000                                                                                           | 3D7<br>PF3D7_0830600<br>PF3D7_1200900<br>PF3D7_1252700                                                                     |
| abbreviation<br>P1<br>P2<br>P3<br>P4                   | IT4<br>PfIT_080035300<br>PfIT_120006500<br>PfIT_120058000<br>PfIT_120006700                                                                         | 3D7<br>PF3D7_0830600<br>PF3D7_1200900<br>PF3D7_1252700<br>PF3D7_1201100                                                    |
| abbreviation<br>P1<br>P2<br>P3<br>P4<br>P5             | IT4<br>PfIT_080035300<br>PfIT_120006500<br>PfIT_120058000<br>PfIT_120006700<br>PfIT_140083600                                                       | 3D7<br>PF3D7_0830600<br>PF3D7_1200900<br>PF3D7_1252700<br>PF3D7_1201100<br>PF3D7_1477500                                   |
| abbreviation<br>P1<br>P2<br>P3<br>P4<br>P5<br>P6       | IT4<br>PfIT_080035300<br>PfIT_120006500<br>PfIT_120058000<br>PfIT_120006700<br>PfIT_140083600<br>PfIT_040029200                                     | 3D7<br>PF3D7_0830600<br>PF3D7_1200900<br>PF3D7_1252700<br>PF3D7_1201100<br>PF3D7_1477500<br>PF3D7_0424800                  |
| abbreviation<br>P1<br>P2<br>P3<br>P4<br>P5<br>P6<br>P7 | IT4<br>PfIT_080035300<br>PfIT_120006500<br>PfIT_120058000<br>PfIT_120006700<br>PfIT_140083600<br>PfIT_040029200<br>PfIT_040029200<br>PfIT_130076100 | 3D7<br>PF3D7_0830600<br>PF3D7_1200900<br>PF3D7_1252700<br>PF3D7_1201100<br>PF3D7_1477500<br>PF3D7_0424800<br>PF3D7_1148700 |

Appendix G – TryThrA-TGD-GFP parasites exhibit a Maurer's cleft phenotype

IFA images of TryThrA-TGD-GFP showing Maurer's clefts structure defect. Fluorescence microscopy images show IFAs with acetone fixed parasites probed with  $\alpha$ -HA(detection of PfEMP1),  $\alpha$ -SBP1(detection of Maurer's clefts marker SBP1) and  $\alpha$ -REX1 (detection of another Maurer's cleft marker REX1) antibodies. Nuclei: Hoechst 33342; DIC: differential interference contrast; size bars 5  $\mu$ m.



## **PUBLICATIONS**

Kimmel, J., Schmitt, M., Sinner, A., Jansen, P. W. T. C., Mainye, S., Ramón-Zamorano, G., Toenhake, C. G., Wichers-Misterek, J. S., Cronshagen, J., Sabitzki, R., Mesén-Ramírez, P., Behrens, H. M., Bártfai, R., & Spielmann, T. (2023). Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3. Cell systems, 14(1), 9–23.e7. https://doi.org/10.1016/j.cels.2022.12.001

Bachmann, A., Metwally, N. G., Allweier, J., Cronshagen, J., Del Pilar Martinez Tauler, M., Murk, A., Roth, L. K., Torabi, H., Wu, Y., Gutsmann, T., & Bruchhaus, I. (2022). CD36-A Host Receptor Necessary for Malaria Parasites to Establish and Maintain Infection. Microorganisms, 10(12), 2356. https://doi.org/10.3390/microorganisms10122356

Cronshagen, J., Allweier, J., Mesén-Ramírez, P., Stäcker, J., Vaaben, A. V., Ramón-Zamorano, G., Naranjo, I., Ofori, S., Jansen, P. W. T. C., Hornebeck, J., Murk, A., Castro-Peña, C., Kieferle, F., Brehmer, J., Bártfai, R., Lavstsen, T., Bruchhaus, I., Spielmann, T. (unpublished). A system for functional studies of the major virulence factor of malaria parasites.

### DANKSAGUNG

An dieser Stelle möchte ich allen danken, die meine Doktorarbeit möglich gemacht haben, sei es durch fachliche oder anderweitige Unterstützung.

Ein besonderer Dank gilt Dr. Tobias Spielmann, der mir ermöglicht hat, sowohl meine Masterarbeit als auch meine Dissertation in seiner Arbeitsgruppe zu verfassen. Für die intensive Betreuung und Unterstützung, die ich als außergewöhnlich empfunden habe, bin ich sehr dankbar. Ich denke, dass ich eine Menge bei dir gelernt habe. Ebenso danke ich Prof. Dr. Iris Bruchhaus herzlich, die mich stets unterstützt, mir mit Rat zur Seite stand und in ihrer Arbeitsgruppe willkommen geheißen hat. Vielen Dank für nochmal Tobi und Iris.

Weiterhin Danke ich meinen Co-Betreuern Prof. Dr. Tim Gilberger und Dr. Maria Rosenthal. Ein Dank geht zudem an die Joachim Herz Stiftung, die diese Arbeit finanziell unterstützt hat.

Ich möchte auch allen Mitgliedern der Arbeitsgruppen Spielmann, Bruchhaus und Gilberger für teamorientierte, produktive und unterstützende Zusammenarbeit danken. Ein besonderer Dank gilt Carolina Castro, Jessica Kimmel, Ulrike Fröhlke, Susann Ofori, Jana Brehmer, Johannes Allweier, Paolo Mesén-Ramírez, Isabelle Henshall, Sheila Mainye, Gala Ramón Zamorano, Stephan Wichers-Misterek, Hannah Behrens, Andrés Guillén Samander, Lea Sophie Panitzsch, Joelle Hornebeck, Agnes Murk, Florian Kieferle und Jan Stäcker, für ihre Hilfe bei diesem Projekt sowie für die fachliche und moralische Unterstützung. Ohne eure Hilfe wäre diese Arbeit nicht möglich gewesen.

Meine Familie hat mich ständig unterstützt, wofür ich mich ganz herzlich bedanken möchte. Vielen Dank für alles was ihr für mich getan hab Udo, Elke, Merle, Melanie, Gunter und ganz besonders Caro, dafür, dass du mich immer in dieser schwierigen Zeit unterstützt und mich immer wieder aufgerichtet hast. Ebenso geht ein besonderer Dank an meine Freunde, die mir immer zur Seite standen und mir geholfen haben, diese Zeit zu erleichtern. Obwohl ich in den letzten Jahren kaum Zeit für euch hatte, wart ihr immer für mich da. Ein spezieller Dank gilt Jasper, Felix, Marci, Andrey, Manu, Malika, Stance, Marco und Heiner.