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Zusammenfassung

Trotz signifikanter Anstrengungen der Kollaborationen am LHC und darüber hinaus nach Physik jen-
seits des Standardmodells zu suchen, konnten bisher keine Beweise für deren Existenz gefunden wer-
den. Modellunabhängige Suchen ergänzen aktuelle Anstrengungen, da sie den Nachweis potenzieller
neuer Physik-Anomalien erlauben, ohne auf ein spezifisches Signalmodell abzuzielen.

Diese Arbeit diskutiert die Entwicklung und Anwendung neuartiger, datengetriebener Methoden
für modellunabhängige Erkennung von Anomalien. Insbesondere wird eine neue Methode – genannt
Cathode – auf Basis von neuronaler Dichteabschätzung und schwacher Klassifikation entwickelt,
welche die bisher beste Leistung auf einem häufig genutzten Benchmark-Datensatz erreicht. Die er-
ste Anwendung von Cathode sowie anderen auf maschinellem Lernen basierenden Methoden auf
Proton-Proton Kollisionsdaten vom CMS experiment, welche von 2016 bis 2018 bei einer Schwer-
punktsenergie von √𝑠 = 13 TeV gemessen wurden, wird diskutiert. Insbesondere wird nach hardo-
nischen Resonanzen im Endzustand mit zwei Jets gesucht. Eine generische Suche für neue Physik
im invarianten Massenspektrum des Zwei-Jet-Systems zeigte keinen signifikanten Überschuss an Er-
eignissen. In Bezug auf den Grenzwert des Wirkungsquerschnitts erreicht Cathode die sensitivsten
Ergebnisse für mehrere der gesteten Massehypothesen eines 𝑋 → 𝑌𝑌 ′ → 4𝑞 Signalmodells, wobei
die optimale Verbesserung gegenüber einer inklusiven Suche den Faktor 1.9 betrug.

Mehrere Verbesserungen des ursprünglichen Cathode-Algorithmus werden vorgeschlagen. La-
tent Cathode ermöglicht die Extraktion des Signals auch im Falle von starken Korrelationen zwi-
schen den Eingabemerkmalen und der Masse, indem die schwache Klassifikation im latenten Raum
durchgeführt wird. Es wird gezeigt, dass die Nutzung von Gradient-Boosting-Klassifikatoren anstel-
le von auf Deep Learning basierenden Methoden in der schwachen Klassifikation deutlich robuster
gegenüber nicht informativen Merkmalen ist, was modellunabhängige Suchen ohne deren vorherige
Auswahl ermöglicht.





Abstract

Despite significant efforts to search for new beyond the Standard Model phenomena at the LHC
physics program and beyond, no evidence has been found so far. Model-agnostic searches com-
plement current search efforts, allowing for the detection of potential new physics anomalies without
targeting a particular signal model.

This thesis discusses the development and application of novel data-driven methods for model-
agnostic anomaly detection. In particular, a new method based on neural density estimation and
weak classification – named Cathode – is developed, achieving state-of-the-art performance on a
commonly used benchmark data set. The first application of Cathode and other Machine Learning-
based methods on proton-proton collision data taken at the CMS experiment from 2016 to 2018 at a
centre-of-mass energy of √𝑠 = 13 TeV is discussed. Specifically, hadronic resonances in the two-jet
final state are targeted. A generic search for new physics in the invariant mass spectrum of the two jets
revealed no significant excess. In terms of cross-section limits, Cathode achieves the most sensitive
results for several of the tested mass hypotheses of an 𝑋 → 𝑌𝑌 ′ → 4𝑞 signal model, with an optimal
improvement over an inclusive search of factor 1.9.

Several improvements to the original Cathode algorithm are proposed. Latent Cathode allows
for signal extraction in the case of strong correlations between input features and mass by conducting
the weak classification in latent space. Using Gradient Boosting classifiers instead of Deep Learning-
based methods in weak classification is shown to be considerably more robust against uninformative
features, allowing for model-agnostic searches without prior feature selection.
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Chapter 1

Introduction

The Standard Model (SM) of Particle Physics is the most successful model describing all the funda-
mental particles known to date as well as their interactions through the electromagnetic, weak and
strong nuclear forces. Furthermore, it describes how fermions acquire mass through the Higgs mech-
anism and the experimental discovery of the Higgs boson by the CMS and ATLAS collaborations in
2012 [1, 2] was a major breakthrough in high energy physics research. Since then, the SM has been
verified time and again with unprecedented precision.

Despite its success the SM is not complete, since it does not describe gravity, another fundamental
interaction of matter. Additionally, a variety of physics phenomena exist that cannot be explained by
the SM in its current form. Among other things, these include the baryon asymmetry, the existence
of Dark Matter and Dark Energy as well as neutrino masses. Due to these shortcomings, significant
effort by the high energy physics community was put into extending the SM or devise entirely new
theories that describe said phenomena and observe the novel particles emerging from them. To this
date, however, no evidence for physics beyond the standard model (BSM) has been found.

In principle, there are three possible reasons for this result: First, it could be that there simply
is no new physics at the scale which is achieved by current collider technology. Second, the rarity
of the new physics processes does not allow for a discovery given the currently available amount of
collected data. Third, the BSM physics model that is realized in nature has not yet been found and/or
searched for in the correct region of phase space. The first two reasons can only be mitigated through
novel technologies or patience for more data being collected. The third point, however, can be solved
through different means. One method is to probe the existence of signal models which emerge from
contemporary BSM theories and which were not previously searched for in yet unexplored regions of
phase space. This is the de facto default search method employed at most experiments at the Large
Hadron Collider (LHC) and beyond. These “model-specific” searches should certainly be continued
given their past success in discovering all the known fundamental particles of the SM.

However, given the long period since the discovery of the Higgs boson without any evidence for
new physics despite significant research efforts, new methods should also be considered. The key
problem with traditional search methods is two-fold. First, they require the realization of the BSM
theory underlying the targeted signal model in nature and it is unclear whether this is the case for
any of the contemporary BSM theories. Second, the regions of yet unexplored phase space at the
LHC are vast and the number of possible signal model hypotheses is large. Therefore, conducting a
dedicated search for all of these models in the entirety of the phase space is not feasible due to limited
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CHAPTER 1. INTRODUCTION

computational and human resources.
This work discusses the application of model-agnostic methods, which are able to search for

anomalous signals in a large region of phase space without targeting specific signal models. While in
this approach the sensitivity to a particular signal model is significantly reduced, it enables the search
for multiple signal model hypotheses and a model-independent scan for anomalous events in a single
analysis. Therefore, it constitutes a trade-off that complements current search efforts effectively.

Model-independent searches have been conducted in collider experiments for a long time already.
However, many of them are based on Monte Carlo (MC) simulations of the known SM background
model and look for deviations between the expected background and the data in bins of different
final states [3–8]. Naturally, this results in these methods to be entirely reliant on the accuracy of
the simulations. Therefore, it is difficult to assess whether a significant excess seen by such a method
originates from an actual new physics signal or a mismodeling of the SM background. The emergence
of novel Machine Learning (ML) algorithms, in particular in the realm of probabilistic generative
models, enables an entirely new approach to model-agnostic searches that removes the need of MC
simulations. These models can learn the SM background directly from data and use this information
to scan for anomalies that could hint at the existence of new physics.

While entirely model-independent methods that can be applied in any scenario and topology
would be desired, no such methods exist yet. Therefore, minor assumptions regarding the kind of
anomaly to target have to be made. This work in particular focuses on the search for hadronic reso-
nances with two large-radius jets in the final state that contain anomalous jet substructure. While this
certainly adds some model-dependence, there are many theories predicting particles that would result
in the emergence of hadronic resonances [9]. Therefore, this analysis is still model-agnostic within
a large family of theory models not yet covered by a dedicated search and the model-dependence
introduced is deemed acceptable.

This work discusses the development and application of state-of-the-art, data-driven ML algo-
rithms in model-agnostic searches for new physics in the two-jet final state. In particular, their foun-
dations as well as their validation and estimated sensitivity are considered based on synthetic data
sets, followed by their application in a first-of-its-kind analysis on proton-proton collision data taken
at the CMS experiment during Run 2 (years 2016 to 2018) at a centre-of-mass energy of √𝑠 = 13 TeV.
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Chapter 2

The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is among the most successful physics models to date,
describing all fundamental particles known to date as well as their interactions with high precision.
While a full description of the SM and all its aspects is beyond the scope of this work, a general
outline is provided in this chapter, in particular regarding the Lagrangian formalism. This outline is
based mainly on the content and discussions in Refs. [10–12].

The SM incorporates three of the four fundamental forces, namely the strong interaction, the weak
interaction and the electromagnetic interaction. Particles represent the fundamental constituents of
matter and are distinguished based on several physics properties. Bosons are particles with integer
spin and the gauge bosons in particular mediate the interactions between particles, being carriers of
the forces. The Higgs boson is the only spin 0 particle and through its interaction, the particles acquire
their mass. Particles with non-integer spin are fermions, which are divided into leptons that interact
only through the electromagnetic and weak interactions and quarks, that additionally interact through
the strong force due to their colour charge. An overview of the known fundamental particles and their
key physics properties is shown in Table 2.1.

In this work, a notation based on four-vectors in Minkowski space (space-time coordinates) is
used for the mathematical formulation of the SM:

𝑥𝜇 = (𝑡, 𝑥, 𝑦, 𝑧), (2.1)

where 𝑡 denotes the time and (𝑥, 𝑦, 𝑧) are the coordinates in three dimensional space. Note that the
time component is actually 𝑐𝑡 such that all elements in 𝑥𝜇 corresponds to a length unit, but natural
units are assumed, where 𝑐 = 1. The corresponding covariant vector is given by:

𝑥𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑡
−𝑥
−𝑦
−𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.2)

The translation from a contravariant to a covariant four-vector (and vice-versa) can then be performed

3



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

Fe
rm

io
ns

Quarks
Name up down charm strange top bottom

Mass [MeV] 2.2 4.7 1.27 ⋅ 103 93 173 ⋅ 103 4.18 ⋅ 103

Electric
charge [𝑒] +2

3 −1
3 +2

3 −1
3 +2

3 −1
3

Spin 1
2

1
2

1
2

1
2

1
2

1
2

Weak isospin 1
2 -1

2
1
2 -1

2
1
2 -1

2

Coloured yes yes yes yes yes yes
Leptons

Name electron 𝜈e muon 𝜈𝜇 tau 𝜈𝜏

Mass [MeV] 0.511 < 10−6 105.7 < 10−6 1.777 ⋅ 103 < 10−6

Electric
charge [𝑒] −1 0 −1 0 −1 0

Spin 1
2

1
2

1
2

1
2

1
2

1
2

Weak isospin -1
2

1
2 -1

2
1
2 -1

2
1
2

Coloured no no no no no no

Bo
so

ns

Gauge Bosons Higgs
Name photon W Z gluon 𝐻0

Mass [GeV] 0 80.4 91.2 0 125.25

Electric
charge [𝑒] 0 ± 1 0 0 0

Spin 1 1 1 1 0

Interaction electric
charge

weak
isospin

weak
isospin

colour
charge mass

Table 2.1: Overview of the currently known elementary particles of the Standard Model and their
physical properties [13].
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2.1. QUANTUM ELECTRODYNAMICS

as:

𝑥𝜇 = 𝑔𝜇𝜈𝑥𝜈 (2.3)

𝑥𝜇 = 𝑔𝜇𝜈𝑥𝜈, (2.4)

with

𝑔𝜇𝜈 = 𝑔𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.5)

The four-momentum vectors are given in this notation by:

𝑝𝜇 = (𝐸, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) (2.6)

and the four-vector derivatives by:

𝜕𝜇 = 𝜕
𝜕𝑥𝜇 = ⎛⎜⎜

⎝

𝜕
𝜕𝑡
∇⃗

⎞⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑡

𝜕𝑥

𝜕𝑦

𝜕𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.7)

The overarching theoretical framework for the SM is provided by quantum field theory, using a
Lagrangian approach to describe the kinematics and dynamics. Within this framework, each particle
is described as a field in space-time. The Standard Model is built by initially proposing a set of
symmetries for the system and subsequently constructing the most general renormalizable Lagrangian
based on its particle (field) content while at the same time adhering to these symmetries. The SM
Lagrangian consists of several parts describing the different force interactions between particles. The
different parts are discussed in the following sections.

2.1 Quantum Electrodynamics

Quantum electrodynamics (QED) is the theory of electromagnetic interactions between elementary
particles that carry electric charge. The theoretical motivation behind QED is the generalization of
a global to a local gauge symmetry. Local gauge invariance requires the existence of vector fields,
namely the gauge bosons, as well as interactions between these fields and the charged particles. In
particular, the local gauge invariance for a 𝑈(1) phase transformation is discussed. 𝑈(1) is the unitary
group of degree 1, i.e. the group of 1 × 1 matrices that are unitary (𝑈†𝑈 = 1). For a spin-1/2 particle,
the Lagrange density for the Dirac equation is given by:

ℒ = �̄�𝑖𝛾𝜇𝜕𝜇𝜓 − 𝑚�̄�𝜓, (2.8)
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CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

where the wave function 𝜓 is a four-spinor and the 𝛾𝜇 are the 𝛾-matrices:

𝛾0 = ⎛⎜⎜
⎝

0 𝐼
𝐼 0

⎞⎟⎟
⎠

, 𝛾𝑖 = ⎛⎜⎜
⎝

0 𝜎𝑖

−𝜎𝑖 0
⎞⎟⎟
⎠

, 𝛾5 = ⎛⎜⎜
⎝

−𝐼 0
0 𝐼

⎞⎟⎟
⎠

. (2.9)

Here, 𝐼 are the 2 × 2 identity matrices and the 𝜎𝑖 are the Pauli matrices.

Laws of physics should generally not be associated with global transformations, as these transfor-
mations act simultaneously everywhere, thereby contradicting the fundamental principle of causality.
Instead, a local 𝑈(1) gauge symmetry is postulated, such that 𝛼 can be a continuous function of space-
time. The local gauge transformation under which the Dirac spinors 𝜓 and �̄� should be invariant can
be written as:

𝜓(𝑥) → 𝜓′(𝑥) = 𝑒𝑖𝑞𝛼(𝑥)𝜓(𝑥)

�̄�(𝑥) → �̄�′(𝑥) = 𝑒𝑖𝑞𝛼(𝑥)�̄�(𝑥).
(2.10)

In these transformations, space-time coordinates were used (𝑥 = (𝑡, 𝑥, 𝑦, 𝑧)), which will be the case
for the remainder of this chapter. 𝑞 is a real-valued constant and 𝛼 a real phase. For gauge invariance,
it has to be shown that:

ℒ′ = �̄�′𝑖𝛾𝜇𝜕𝜇𝜓′ − 𝑚�̄�′𝜓′ = ℒ. (2.11)

Applying the transformation (Equation 2.10) yields:

ℒ′ = �̄�′𝑖𝛾𝜇𝜕𝜇𝜓′ − 𝑚�̄�′𝜓′

= 𝑒−𝑖𝑞𝛼(𝑥)�̄�𝑖𝛾𝜇𝑒𝑖𝑞𝛼(𝑥)(𝜕𝜇𝜓 + 𝑖𝑞𝜓𝜕𝜇𝛼(𝑥)) − 𝑚�̄�𝜓

= �̄�𝑖𝛾𝜇𝜕𝜇𝜓 − 𝑚�̄�𝜓 − 𝑞�̄�𝛾𝜇𝜓𝜕𝜇𝛼(𝑥)

= ℒ − 𝑞�̄�𝛾𝜇𝜓𝜕𝜇𝛼(𝑥). (2.12)

Due to the non-invariance of the 𝜕𝜇𝜓 derivative term, the Lagrange density is not invariant under a
local 𝑈(1) symmetry. However, the gauge invariance can be recovered by replacing the derivative
with a covariant derivative:

𝐷𝜇 ≡ 𝜕𝜇 + 𝑖𝑞𝐴𝜇(𝑥), (2.13)

with a new vector field 𝐴𝜇(𝑥), which transforms as:

𝐴𝜇 → 𝐴′
𝜇(𝑥) = 𝐴𝜇(𝑥) − 𝜕𝜇𝛼(𝑥). (2.14)

Using this covariant derivative, one can show that the first term of Equation 2.8, �̄�𝑖𝛾𝜇𝐷𝜇𝜓, is now
gauge invariant:

𝐷′
𝜇𝜓′ = (𝜕𝜇 + 𝑖𝑞𝐴′

𝜇)𝜓′

= 𝜕𝜇 (𝑒𝑖𝑞𝛼𝜓) + 𝑖𝑞(𝐴𝜇 − 𝜕𝜇𝛼)𝑒𝑖𝑞𝛼𝜓

= 𝑒𝑖𝑞𝛼(𝜕𝜇𝜓 + 𝑖𝑞𝜓𝜕𝜇𝛼 + 𝑖𝑞𝐴𝜇𝜓 − 𝑖𝑞𝜓𝜕𝜇𝛼)

= 𝑒𝑖𝑞𝛼𝐷𝜇𝜓 (2.15)
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2.2. QUANTUM CHROMODYNAMICS

and therefore:
�̄�′𝑖𝛾𝜇𝐷′

𝜇𝜓′ = 𝑒−𝑖𝑞𝛼�̄�𝑖𝛾𝜇𝑒𝑖𝑞𝛼𝐷𝜇𝜓 = �̄�𝑖𝛾𝜇𝐷𝜇𝜓. (2.16)

Thus, using the covariant derivative, ℒ′ = ℒ. Writing out the Lagrangian yields:

ℒ = �̄�𝑖𝛾𝜇𝐷𝜇𝜓 − 𝑚�̄�𝜓

= �̄�𝑖𝛾𝜇𝜕𝜇𝜓 − 𝑚�̄�𝜓 − 𝑞�̄�𝛾𝜇𝜓𝐴𝜇. (2.17)

Therefore, the requirement of a local 𝑈(1) gauge invariance postulates a new vector field 𝐴𝜇 as well
as its interaction with the fermions, which is described by the last term in Equation 2.17, whereas the
first term is the kinetic term and the second one is the mass term. The vector field can be identified as
the photon, the 𝜓 spinors are the fermions and the constant 𝑞 describes the coupling strength, given
by the elementary charge (𝑞 = −𝑒), which is related to the fine structure constant:

𝛼em = 𝑒2

4𝜋 ≈ 1
137. (2.18)

Since the new vector field 𝐴𝜇(𝑥) constitutes a new degree of freedom it could have a mass and
kinetic term. However, the mass term would break the gauge symmetry for non-zero mass:

𝑚2
𝐴𝐴′𝜇𝐴′

𝜇 = 𝑚2
𝐴 (𝐴𝜇𝐴𝜇 − 2𝐴𝜇𝜕𝜇𝛼 + 1

𝑞2 𝜕𝜇𝛼𝜕𝜇𝛼) (2.19)

and therefore, 𝑚𝐴 = 0. Also the kinetic term for 𝐴𝜇, containing derivatives 𝜕𝜇𝐴𝜈 would not be gauge
invariant, which is why the field strength tensor is used:

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇. (2.20)

One can show that this is gauge invariant:

𝐹′
𝜇𝜈 = 𝜕𝜇𝐴′

𝜈 − 𝜕𝜈𝐴′
𝜈

= 𝜕𝜇(𝐴𝜈 − 𝜕𝜈𝛼) − 𝜕𝜈(𝐴𝜇 − 𝜕𝜇𝛼)

= 𝐹𝜇𝜈 (2.21)

The gauge invariant Lagrange density for the kinetic term of the vector field is then given by:

ℒ𝐴 = −1
4𝐹𝜇𝜈𝐹𝜇𝜈 (2.22)

In total, the QED Lagrangian is:

ℒQED = �̄�𝑖𝛾𝜇𝜕𝜇𝜓 − 𝑚�̄�𝜓 − 𝑞�̄�𝛾𝜇𝜓𝐴𝜇 − 1
4𝐹𝜇𝜈𝐹𝜇𝜈. (2.23)

2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) describes the interactions between particles that carry colour
charge, which are quarks and gluons, the gauge bosons of QCD. Similar to QED, where the pho-
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CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

ton emerged from postulating a local 𝑈(1) gauge invariance, quantum chromodynamics (QCD) can
be derived assuming an invariance under 𝑆𝑈(3) transformations. 𝑆𝑈(3) describes the group of 3 × 3
unitary matrices that have a determinant of 1. Consider the Lagrange density of three spinors with
identical mass 𝑚, one of each colour (𝑟 =red, 𝑔 =green, 𝑏 =blue):

ℒ = �̄�𝑟(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓𝑟 + �̄�𝑔(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓𝑔 + �̄�𝑏(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓𝑏. (2.24)

This can be written in a simpler form by introducing colour triplets as a generalization of the Dirac
field:

𝜓 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜓𝑟

𝜓𝑏

𝜓𝑔

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝜓𝑟 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝜓𝑏 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
1
0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝜓𝑔 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
0
1

⎞⎟⎟⎟⎟⎟⎟
⎠

. (2.25)

Including the summation over the colour indices implicitly, the Lagrangian is then given by:

ℒ = �̄�(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓. (2.26)

Similar to QED, a local gauge invariance is postulated, this time to 𝑆𝑈(3) transformations. Such
transformations can be written using the generators of 𝑆𝑈(3) as:

𝜓 → 𝜓′ = 𝑒𝑖𝑔𝑠𝛼𝑎(𝑥)𝑇𝑎𝜓, (2.27)

where the 𝑇𝑎 are the 8 linear independent hermitian 3 × 3 matrices in colour space, the Gell-Mann
matrices, 𝛼𝑎(𝑥) are real functions of space-time and 𝑔𝑠 is a constant. Similar to the derivation for
QED, the Lagrangian is not invariant under 𝑆𝑈(3) transformations due to the derivative term:

𝜕𝜇𝛼𝑎(𝑥)𝜓 ≠ 𝛼𝑎(𝑥)𝜕𝜇𝜓. (2.28)

Therefore, again the derivative 𝜕𝜇 is replaced by the covariant derivative:

𝜕𝜇 → 𝐷𝜇 ≡ 𝜕𝜇 + 𝑖𝑔𝑠𝑇𝑎𝐺𝑎
𝜇. (2.29)

The new vector fields 𝐺𝑎
𝜇 transform as:

𝐺𝑎
𝜇 → 𝐺′𝑎

𝜇 − 𝜕𝜇𝛼𝑎(𝑥) − 𝑔𝑠𝑓 𝑎𝑏𝑐𝛼𝑏(𝑥)𝐺𝑐
𝜇. (2.30)

This is very similar to the transformation of the photon field (compare to Equation 2.14), except for
the final term. This is necessary to include due to the non-commutative generators 𝑇𝑎. The 𝑓 𝑎𝑏𝑐 are
the 𝑆𝑈(3) structure constants. Using the covariant derivative yields the gauge invariant Lagrange
density:

ℒ = �̄�(𝑖𝛾𝜇𝐷𝜇 − 𝑚)𝜓

= �̄�(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 − 𝑔𝑠�̄�(𝛾𝜇𝑇𝑎𝐺𝑎
𝜇)𝜓. (2.31)

Similar to QED where the photon field emerged as a new vector field, for QCD eight new vector
fields (𝐺𝑎

𝜇) are introduced, which describe the interaction of coloured particles and correspond to the
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gluons. One can observe from the last term in Equation 2.31 that the generators are defining which
gluon can interact with a given quark colour state. Similar to the photon field, the gluons require a
kinetic term, which, similarly to Equation 2.22, is given by:

ℒ𝐺 = −1
4𝐺𝑎

𝜇𝜈𝐺𝑎𝜇𝜈, (2.32)

where
𝐺𝑎

𝜇𝜈 = 𝜕𝜇𝐺𝑎
𝜈 − 𝜕𝜈𝐺𝑎

𝜇 − 𝑔𝑠𝑓 𝑎𝑏𝑐𝐺𝑏
𝜇𝐺𝑐

𝜈. (2.33)

It can be seen that one tensor exists for each gluon and the summation in the kinetic term runs over all
tensors. Just as in QED, ℒ𝐺 contains quadratic derivatives that describe the kinetic energy of the field.
However, it also contains higher order terms that are proportional to 𝑔𝑠(𝐺𝑎

𝜇)3 and 𝑔2
𝑠 (𝐺𝑎

𝜇)4, which
account for the gluon self-interaction. This is a key difference between QED and QCD: since photons
do not carry electromagnetic charge, self-interaction is not possible. Gluons on the other hand also
carry colour charge, which enables self-interaction. The mathematical reason for this phenomenon
lies in the non-commutative tensors (𝑓 𝑎𝑏𝑐 ≠ 0) and is responsible for the increase of couplings at
large distances, also known as the confinement of the quarks and gluons. This confinement is the
reason why they cannot exist as free particles and only are found in bound states. Finally, the QCD
Lagrangian can be written as:

ℒQCD = �̄�(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 − 𝑔𝑠�̄�(𝛾𝜇𝑇𝑎𝐺𝑎
𝜇)𝜓 − 1

4𝐺𝑎
𝜇𝜈𝐺𝑎𝜇𝜈, (2.34)

where the first term describes the kinematics and masses of the quarks, the second term the quark-
gluon coupling and the third term the kinematics and self-interaction between gluons.

2.3 The Weak Interaction and Electroweak Unification

In the mathematical description of the weak interaction, the fermions are arranged based on their chi-
rality. The chirality determines whether a particle is considered “left-handed” or “right-handed”. For
massless particles, it is equal to the helicity, i.e. it is right-handed when spin points towards the direc-
tion of motion and left-handed when spin and motion point in opposite directions. For particles with
mass the mathematical construct is more complex and depends on whether they transform in a left-
or right-handed representation of the Poincaré group, which is the group of isometries in Minkowski
space. The charge of the weak interaction is the weak isospin and both the quarks and leptons each
are organized in three left-handed isospin doublets:

⎛⎜⎜
⎝

𝜈𝑒

𝑒
⎞⎟⎟
⎠𝐿

, ⎛⎜⎜
⎝

𝜈𝜇

𝜇
⎞⎟⎟
⎠𝐿

, ⎛⎜⎜
⎝

𝜈𝜏

𝜏
⎞⎟⎟
⎠𝐿

(2.35)

⎛⎜⎜
⎝

𝑢
𝑑′

⎞⎟⎟
⎠𝐿

, ⎛⎜⎜
⎝

𝑐
𝑠′

⎞⎟⎟
⎠𝐿

, ⎛⎜⎜
⎝

𝑡
𝑏′

⎞⎟⎟
⎠𝐿

, (2.36)
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where 𝑑′, 𝑠′ and 𝑏′ are mass eigenstates that relate to the physical quark states by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix:

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑑′

𝑠′

𝑏′

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏

𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏

𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑑
𝑠
𝑏

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.37)

The transition between the isospin states is possible though 𝑊 boson exchange. For example, a quark
in the 𝑢 state is transformed in the 𝑑′ state by the emission of a 𝑊+ boson, which corresponds to a
rotation in 𝑆𝑈(2) space, the group of 2 × 2 unitary matrices with determinant 1. While the gauge
transformation in 𝑆𝑈(3) that was discussed for QCD is described as a rotation in colour space, the
gauge transformation for the weak interaction is a rotation in the isospin space for left-handed parti-
cles, denoted as 𝑆𝑈(2)𝐿. The right-handed fermion states 𝜓𝑅 are arranged in singlets for which no
isospin transitions are possible. Similar as for QCD and QED, the local gauge invariance in isospin
space has to be shown with respect to the following transformation:

𝜓𝐿 → 𝜓′
𝐿 = 𝑒𝑖𝑔𝛼𝑎(𝑥)𝑇𝑎𝜓𝐿, (2.38)

where 𝑔 is a coupling constant, 𝛼𝑎(𝑥) are functions of space-time 𝑥 and the 𝑇𝑎 are the generators of
the 𝑆𝑈(2)𝐿 group, which can be defined using the Pauli matrices:

𝑇𝑎 = 𝜎𝑎

2 . (2.39)

Just as in the QCD and QED cases, the derivatives acting on the function 𝛼𝑎(𝑥) are not gauge invariant:

𝜕𝜇𝑒𝑖𝑔𝛼𝑎(𝑥)𝑇𝑎𝜓 ≠ 𝑒𝑖𝑔𝛼𝑎(𝑥)𝑇𝑎𝜕𝜇𝜓 (2.40)

and therefore the derivative is again replaced by the covariant derivative:

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝑇𝑎𝑊𝑎
𝜇. (2.41)

Therefore, three new vector fields 𝑊𝑎
𝜇 are introduced and the Lagrange density becomes:

ℒ = �̄�(𝑖𝛾𝜇𝐷𝜇)𝜓

= �̄�(𝑖𝛾𝜇𝜕𝜇)𝜓 − 𝑔�̄�(𝛾𝜇𝑇𝑎𝑊𝑎
𝜇)𝜓, (2.42)

which is invariant under gauge transformations if the new vector fields transform as:

𝑊𝑎
𝜇 → 𝑊 ′𝑎

𝜇 = 𝑊𝑎
𝜇 − 𝜕𝜇𝛼𝑎(𝑥) − 𝑔𝑓 𝑎𝑏𝑐𝛼𝑏(𝑥)𝑊𝑐

𝜇. (2.43)

Here, 𝑓 𝑎𝑏𝑐 are again the structure constants of the group, which for 𝑆𝑈(2) are given by the totally
anti-symmetric Levi-Civita tensor:

𝑓 𝑎𝑏𝑐 = 𝜖𝑎𝑏𝑐. (2.44)
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Finally, the kinetic term for the new vector field is added in the same way it was done for the photon
and gluon fields:

ℒ𝑊,kin. = −1
4𝑊𝑎𝜇𝜈𝑊𝑎

𝜇𝜈, (2.45)

where the 𝑊𝑎
𝜇𝜈 are the field strength tensors:

𝑊𝑎
𝜇𝜈 = 𝜕𝜇𝑊𝑎

𝜈 − 𝜕𝜈𝑊𝑎
𝜇 − 𝑔𝑓 𝑎𝑏𝑐𝑊𝑏

𝜇𝑊𝑐
𝜈. (2.46)

The kinetic term ℒ𝑊,kin. therefore contains not only the kinetic energy of the gauge bosons (quadratic
terms) but, analogous to the gluons, terms proportional to 𝑔(𝑊𝑎

𝜇)3 and 𝑔(𝑊𝑎
𝜇)4, which represent the

self-coupling of the 𝑊 boson at three and four-boson vertices. The full weak interaction Lagrangian
is then given by:

ℒweak = �̄�(𝑖𝛾𝜇𝜕𝜇)𝜓 − 𝑔�̄�(𝛾𝜇𝑇𝑎𝑊𝑎
𝜇)𝜓 − 1

4𝑊𝑎𝜇𝜈𝑊𝑎
𝜇𝜈, (2.47)

with the three terms describing the kinematics of the fermions, the coupling of the isospin doublet
to the 𝑊 and the kinematics of the 𝑊 boson and its self-interaction, respectively. While this theory
correctly predicts the transitions of particles within the isospin doublets, there are still two problems
that have to be adressed. First, it is known that the 𝑊 boson is not massless. However, adding a mass
term to the Lagrangian would break the local gauge invariance. Second, there are only two 𝑊 bosons
and a 𝑍 boson with different couplings, while the postulation of local gauge invariance with respect
to 𝑆𝑈(2) results in three 𝑊 bosons that all share the same coupling 𝑔.

The latter problem can be solved by electroweak unification. In a first step, a new local gauge
symmetry with respect to 𝑈(1) transformations is postulated. The interactions originating from this
symmetry are due to a new kind of charge, which is the weak hypercharge that is defined as:

𝑌 = 2(𝑄 − 𝑇3), (2.48)

where 𝑄 is the electric charge and 𝑇3 is the third component of the weak isospin. The derivation of
the gauge-invariant Lagrangian is now analogous to QED, with only minor differences. The covariant
derivative is defined as:

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔′ 𝑌
2𝐵𝜇(𝑥), (2.49)

where 𝑔′ is a coupling constant and 𝐵𝜇 is a new vector field emerging from the symmetry. The full
Lagrange density for the interactions due to the weak hypercharge, including the kinetic term, is given
by:

ℒ𝑌 = �̄�(𝑖𝛾𝜇𝐷𝜇)𝜓 − 1
4𝐵𝜇𝜈𝐵𝜇𝜈

= �̄�(𝑖𝛾𝜇𝜕𝜇)𝜓 − 𝑔′ 𝑌
2 �̄�(𝛾𝜇𝐵𝜇)𝜓 − 1

4𝐵𝜇𝜈𝐵𝜇𝜈, (2.50)

with the field strength tensors:
𝐵𝜇𝜈 = 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇. (2.51)

Since the right-handed singlets do not carry weak isospin, 𝑌 is different for left- and right-handed
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particles, such that the Lagrangian can be split up as:

ℒ𝑌 = �̄�(𝑖𝛾𝜇𝐷𝜇)𝜓 − (𝑔′ 𝑌𝑅
2 �̄�𝑅(𝛾𝜇𝐵𝜇)𝜓𝑅 + 𝑔′ 𝑌𝐿

2 �̄�𝐿(𝛾𝜇𝐵𝜇)𝜓𝐿) − 1
4𝐵𝜇𝜈𝐵𝜇𝜈, (2.52)

which shows that the interactions of left- and right-handed components are different under 𝑈(1)𝑌.

The Lagrange density for the electroweak unification is then the sum of the discussed 𝑆𝑈(2)𝐿 and
𝑈(1)𝑌 interactions:

ℒEW = −1
4𝑊𝑎𝜇𝜈𝑊𝑎

𝜇𝜈 − 1
4𝐵𝜇𝜈𝐵𝜇𝜈 + ∑ �̄�𝐿𝑖𝛾𝜇𝐷𝜇𝜓𝐿 + ∑ �̄�𝑅𝑖𝛾𝜇𝐷𝜇𝜓𝑅. (2.53)

The sums in the last two terms run over all left-handed doublet states and right-handed singlet states,
respectively. The covariant derivative is given by:

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝑇𝑎𝑊𝑎
𝜇 + 𝑖𝑔′ 𝑌

2𝐵𝜇. (2.54)

Next, a new basis for the gauge boson fields is introduced:

𝑊± = 1
√2

(𝑊1 ∓ 𝑖𝑊2) (2.55)

𝑇± = 1
√2

(𝑇1 ± 𝑖𝑇2). (2.56)

After some calculation, one can show that 𝐷𝜇 can be written in this new basis as:

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔(𝑇+𝑊+ + 𝑇−𝑊−)𝜇 + (𝑖𝑔𝑇3𝑊3 + 𝑖𝑔′ 𝑌
2𝐵)

𝜇

= 𝜕𝜇 + 𝐷𝑊
𝜇 + 𝐷𝛾𝑍

𝜇 . (2.57)

In this case, the components with off-diagonal elements 𝐷𝑊
𝜇 , which are the flavour-changing currents

caused by the 𝑊 bosons, were separated from the flavour-conserving components 𝐷𝛾𝑍
𝜇 with only

diagonal elements. The new definition of the covariant derivative results in three distinct terms in
the Lagrange density ℒ = �̄�𝑖𝛾𝜇𝐷𝜇𝜓. The first term, �̄�𝑖𝛾𝜇𝜕𝜇𝜓 describes the kinetic energy of
the fermions. The second term, �̄�𝑖𝛾𝜇𝐷𝑊

𝜇 𝜓 is the interaction term of the 𝑊± with the fermions and
finally, the term �̄�𝑖𝛾𝜇𝐷𝛾𝑍

𝜇 𝜓 describes the interaction of the photon and 𝑍 boson with the fermions.

To obtain the photon and 𝑍 boson fields, the last term is again considered:

ℒ𝛾,𝑍 = ∑ �̄�𝑖𝛾𝜇𝑖 (𝑔𝑇3𝑊3
𝜇 + 𝑔′ 𝑌

2𝐵𝜇) 𝜓, (2.58)

where the sum runs over both left- and right-handed spinors. Similar as before, a new basis is chosen
such that 𝑊3

𝜇 and 𝐵 are expressed in terms of two other bosons:

⎛⎜⎜
⎝

𝑊3
𝜇

𝐵𝜇

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

cos(𝜃𝑊) sin(𝜃𝑊)
− sin(𝜃𝑊) cos(𝜃𝑊)

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑍𝜇

𝐴𝜇

⎞⎟⎟
⎠

, (2.59)

which describes a rotation by the Weinberg angle 𝜃𝑊. Inserting the new definition of 𝑊3
𝜇 and 𝐵𝜇 into
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2.4. THE HIGGS MECHANISM

the Lagrangian yields:

ℒ𝛾,𝑍 = ∑ 𝑖�̄�𝑖𝛾𝜇 (𝑔 sin(𝜃𝑊)𝑇3 + 𝑔′ cos(𝜃𝑊)𝑌
2) 𝐴𝜇𝜓

+ 𝑖�̄�𝑖𝛾𝜇 (𝑔 cos(𝜃𝑊)𝑇3 − 𝑔′ sin(𝜃𝑊)𝑌
2) 𝑍𝜇𝜓.

(2.60)

The first term describes the photon-fermion coupling and the second term the Z boson-fermion cou-
pling. When requiring that the 𝐴𝜇 is the photon field discussed for QED, then the electrical charge 𝑄
of a particle in units of the elementary charge 𝑒 is given by:

𝑒𝑄 = 𝑔 sin(𝜃𝑊)𝑇3 + 𝑔′ cos(𝜃𝑊)𝑌
2 = 𝑒𝑇3 + 𝑒𝑌

2 , (2.61)

which yields:
𝑄 = 𝑇3 + 𝑌

2 and 𝑒 = 𝑔 sin(𝜃𝑊) = 𝑔′ cos(𝜃𝑊) (2.62)

From Equation 2.60, the 𝑍 boson coupling is given by:

𝑔𝑍 = 𝑔 cos(𝜃𝑊)𝑇3 − 𝑔′ sin(𝜃𝑊)𝑌
2 (2.63)

which can be written using Equation 2.62 as:

ℒ = ∑ 𝑖�̄�𝑖𝛾𝜇(𝑒𝑄𝐴𝜇 + 𝑔𝑍𝑍𝜇)𝜓. (2.64)

While the electroweak unification explains the 𝑊± bosons, the 𝑍 boson as well as their different
couplings, it is still unable to solve the problem that the gauge invariance is violated when mass terms
are added to the Lagrangian. This can be achieved using the Brout-Englert-Higgs (BEH) mechanism,
which is described in the following section.

2.4 The Higgs Mechanism

The Higgs mechanism, or more correctly, the Brout-Englert-Higgs (BEH) mechanism [14–18] allows
the fermions and gauge bosons to acquire mass. The key problem is that the Lagrange density of
fermions contains mass terms ℒ𝑚 = −𝑚�̄�𝜓 that are not invariant under gauge transformations.
Considering the example of the mass term in the Lagrange density of electrons and electron-neutrinos
one obtains:

ℒ𝑚 = −𝑚𝜈�̄�𝜈 − 𝑚𝑒 ̄𝑒𝑒 = −𝑚𝜈�̄�𝑅𝜈𝐿 − 𝑚𝜈�̄�𝐿𝜈𝑅 − 𝑚𝑒 ̄𝑒𝑅𝑒𝐿 − 𝑚𝑒 ̄𝑒𝐿𝑒𝑅, (2.65)

where 𝑒 and 𝜈 are written as superpositions of left- and right-handed components (𝑒 = 𝑒𝐿 + 𝑒𝑅) and
̄𝑒𝑅𝑒𝑅 = 0, ̄𝑒𝐿𝑒𝐿 = 0 was used. When writing ℒ𝑚 in matrix notation and applying an 𝑆𝑈(2)𝐿 gauge

transformation, this becomes:

ℒ′
𝑚 = −(�̄�𝑅, ̄𝑒𝑅) ⎛⎜⎜

⎝

𝑚𝜈 0
0 𝑚𝑒

⎞⎟⎟
⎠

𝑈 ⎛⎜⎜
⎝

𝜈𝐿

𝑒𝐿

⎞⎟⎟
⎠

− (�̄�𝐿, ̄𝑒𝐿)𝑈† ⎛⎜⎜
⎝

𝑚𝜈 0
0 𝑚𝑒

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝜈𝑅

𝑒𝑅

⎞⎟⎟
⎠

. (2.66)
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Figure 2.1: The Higgs potential 𝑉(𝜙) as a function of 𝜙

This term is only invariant if the left and right-handed components transformed in the same way and
if the electron and neutrino masses were identical, both of which is not found experimentally.

This problem is solved using the BEH mechanism. At first, a new complex scalar field 𝜙 is
postulated, which is a 𝑆𝑈(2)𝐿 doublet with hypercharge 𝑌 = 1 and spin 0:

𝜙 = ⎛⎜⎜
⎝

𝜙+

𝜙0
⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝜙1 + 𝑖𝜙2

𝜙3 + 𝑖𝜙4

⎞⎟⎟
⎠

, (2.67)

where the 𝜙0 component is chosen to not carry electromagnetic charge such that the vacuum state is
neutral. Since the postulated field has spin zero, it follows the Klein-Gordon-Equation, which can be
written in the Lagrangian formalism as:

ℒ𝜙 = (𝐷𝜇𝜙)†(𝐷𝜇𝜙) − 𝑉(𝜙) = |𝐷𝜇𝜙|2 − 𝑉(𝜙), (2.68)

where the covariant derivative of 𝑆𝑈(2)𝐿 ⊗ 𝑈(1)𝑌 from Equation 2.57 is used. 𝑉(𝜙) describes a
potential (also referred to as the Higgs potential) that is postulated and is designed in a way that it is
invariant under gauge transformations, i.e. rotations of 𝜙+ and 𝜙0 and changes of the complex phase:

𝑉(𝜙) = 𝜇2|𝜙|2 + 𝜆|𝜙|4 (2.69)

where 𝜇2 and 𝜆 are new natural constants that emerge from the theory. If 𝜇2 > 0, the ground state
|𝜙| = 0. However, if 𝜇2 > 0, a spontaneously broken symmetry is obtained, since the resulting shape
of 𝑉 has no minimum at |𝜙| = 0. Instead, the minimum is located at |𝜙| = 𝑣, where 𝑣 is the vacuum
expectation value:

𝑣 = √−𝜇2

𝜆 . (2.70)

The Higgs potential has a shape similar to the characteristic form of a Mexican Sombrero hat, which
is why it is also referred to as “Mexican Hat Potential”. An illustration of the potential is shown in
Figure 2.1. In the four dimensions of the Higgs field, 𝑣 is not a single minimum, but a continuum of
minima. Therefore, a particular choice of the ground state can be made. Often a state is chosen where
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only one real component is kept and the other components are zero, e.g.:

𝜙vac = 1
√2

⎛⎜⎜
⎝

0
𝑣
⎞⎟⎟
⎠

, (2.71)

where 𝜙3 is the only non-zero component. The physical Higgs particle is then interpreted as the
excited states of the Higgs field, which are obtained by developing the field around its minimum:

𝜙 = 1
√2

⎛⎜⎜
⎝

0
𝑣 + 𝐻(𝑥)

⎞⎟⎟
⎠

. (2.72)

Inserting this into Equation 2.69 yields:

𝑉(𝜙) = 1
2𝜇2(𝑣 + 𝐻)2 + 1

4𝜆(𝑣 + 𝐻)4

= (𝜇2 + 𝜆𝑣2)𝑣𝐻 + 1
2(𝜇2 + 3𝜆𝑣2)𝐻2 + 𝜆𝑣𝐻3 + 1

4𝜆𝐻4 (2.73)

which simplifies when inserting 𝑣 = √−𝜇2/𝜆 to:

𝑉(𝜙) = −𝜇2𝐻2 + 𝜆𝑣𝐻3 + 1
4𝜆𝐻4. (2.74)

The first term can be interpreted as the mass of the Higgs boson and the second and third terms
describe the Higgs self-interaction, which means that three- and four-Higgs vertices should exist.

Finally, the interactions of the gauge bosons and the fermions with the Higgs have to be considered.
For the former, the terms in the Lagrange density where both the Higgs and the gauge bosons occur.
In particular, the following Lagrangian is considered:

ℒ𝜙 = (𝐷𝜇𝜙)†(𝐷𝜇𝜙) − 𝑉(𝜙) = |𝐷𝜇𝜙|2 − 𝑉(𝜙) = ∣∣∣∣
(𝜕𝜇 + 𝑖𝑔𝑇𝑎𝑊𝑎

𝜇 + 𝑖𝑔′ 𝑌
2𝐵𝜇) 𝜙∣∣∣∣

2

− 𝑉(𝜙) (2.75)

which after some calculations can be shown to be written as:

ℒ𝜙 = 1
2(𝜕𝜇𝐻)(𝜕𝜇𝐻) + 1

4𝑔2(𝑣 + 𝐻)2𝑊+𝜇𝑊−
𝜇 + 1

2(𝑔2 + 𝑔′2)(𝑣 + 𝐻)2𝑍𝜇𝑍𝜇 − 𝑉(𝜙). (2.76)

The different terms in the Lagrangian can be interpreted as follows:

1
2(𝜕𝜇𝐻)(𝜕𝜇𝐻) (2.77)

describes the kinetic energy of a scalar field 𝐻. Its excitation is the Higgs particle.

1
4𝑔2𝑣2𝑊+𝜇𝑊−

𝜇 + 1
2(𝑔2 + 𝑔′2)𝑣2𝑍𝜇𝑍𝜇 (2.78)

shows that the 𝑊 and 𝑍 boson masses are determined by the weak coupling constants and the Higgs
potential:

𝑚𝑊 = 1
2𝑔𝑣, 𝑚𝑍 = 1

2𝑣√𝑔2 + 𝑔′2. (2.79)
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The interactions between the Higgs and the 𝑊 and 𝑍 bosons are described by the term:

1
4𝑔2𝑊+𝜇𝑊−

𝜇𝐻 + 1
2(𝑔2 + 𝑔′2)𝑍𝜇𝑍𝜇𝐻 (2.80)

It can also be seen that the coupling is proportional to the 𝑊 and 𝑍 masses derived above. The four-
vertices between the 𝑊 and 𝑍 bosons are described by the term:

1
4𝑔2𝑊+𝜇𝑊−

𝜇𝐻𝐻 + 1
2(𝑔2 + 𝑔′2)𝑍𝜇𝑍𝜇𝐻𝐻 (2.81)

and finally, 𝑉(𝜙) describes the mass of the Higgs as well as its self-coupling, as previously discussed.
For the interactions with the fermions, consider the example of electron and electron-neutrino

from Equation 2.65 and Equation 2.66, with the notation:

𝜓𝐿 = ⎛⎜⎜
⎝

𝜈𝑒,𝐿

𝑒𝐿

⎞⎟⎟
⎠

. (2.82)

The terms containing 𝜙, 𝜓𝐿 and 𝑒 in the Lagrange density can be written as:

−𝑔𝑒(�̄�)𝐿𝜙𝑒𝑅 + ̄𝑒𝑅𝜙†𝜓𝐿), (2.83)

where 𝑔𝑒 describes the coupling strength between the Higgs and fermion fields. Inserting the Higgs
field from Equation 2.72, the Lagrange density becomes:

ℒ = −𝑔𝑒
1

√2
( ̄𝑒𝐿(𝑣 + 𝐻)𝑒𝑅 + ̄𝑒𝑅(𝑣 + 𝐻)𝑒𝐿)

= −𝑔𝑒
𝑣

√2
( ̄𝑒𝐿𝑒𝑅 + ̄𝑒𝑅𝑒𝐿) − 𝑔𝑒

1
√2

𝐻( ̄𝑒𝐿𝑒𝑅 + ̄𝑒𝑅𝑒𝐿), (2.84)

which can be written as:
ℒ = −𝑚𝑒 ̄𝑒𝑒 − 𝑚𝑒

𝑣 𝐻𝑒 ̄𝑒, (2.85)

which includes the mass term of the form 𝑚�̄�𝜓 and the mass term of the electron can be interpreted
as:

𝑚𝑒 = 𝑔𝑒
𝑣

√2
. (2.86)

This derivation shows that the fermions acquire their mass due to the interaction with the Higgs field
and the coupling is stronger the higher the mass. Opposite to the 𝑊 and 𝑍 mass terms which are
computed from the coupling constants 𝑔 and 𝑔′, the fermion masses depend on a free parameter (in
the above case, 𝑔𝑒), that is not predicted by the theory.

In summary, the Standard Model predicts all known fundamental particles as well as their in-
teractions. The interactions through colour charge are modelled by QCD, whereas the weak and
electromagnetic forces are described by electroweak unification of QED and the weak sectors. The
bosons and fermions acquire their mass by interacting with the Higgs field.

While the development and experimental verification of the SM constitutes a significant milestone
in our understanding of the known universe, there are still phenomena not described by it. These are
based on physics beyond the Standard Model (BSM), which is discussed in the following chapter.
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Chapter 3

Physics Beyond the Standard Model

Even though the Standard Model is the best model to date describing the known fundamental particles
and interactions in our universe, it is not complete. Several theoretical and experimental aspects exist
that suggest the existence of physics beyond the Standard Model (BSM). However, despite numerous
efforts, no such phenomena have been observed so far. In the following, hints for BSM physics as
well as the foundations of the theoretical models aiming to describe them are discussed.

3.1 Theoretical Aspects

One key problem in the theoretical description of the SM is referred to as the hierarchy problem. Very
different energy scales exist in high energy physics, such as the QCD scale ΛQCD ≈ 250 MeV, the
electroweak scale 𝑣 ≈ 246 GeV, the scale at which the electromagnetic, weak and strong forces unify
ΛGUT ≈ 1016 GeV and the Planck scale 𝑀𝑃 ≈ 1019 GeV, which occurs at energies corresponding
in magnitude to the universal constants used in Planck units i.e. 𝐸𝑃 = √ℏ𝑐5/𝐺 = 1.9561 ⋅ 109 J ≈
1019 GeV and where the fundamental laws of physics break down. The large differences between the
scales are also referred to as “hierarchies”. It is expected that, due to these differences, large radiative
corrections are needed to extrapolate between them. These quantum corrections are added to the
true “bare” parameter contained in the Lagrangian to obtain the experimentally measured value. A
particular problem occurs in the SM for the Higgs sector, since the Higgs mass corrections have a
quadratic dependence on the scale. Assuming that the SM is valid up to the Planck scale, this leads
to very large correction terms. Therefore, in order to keep the Higgs mass around the electroweak
scale, the bare parameter must be fine-tuned to almost completely cancel the corrections. This level
of fine-tuning, however, is considered to be not very natural or elegant.

Another problem related to the theory itself is its large number of parameters, which is 19. The
parameters can be measured in experiments, but their origin is unknown. It is also often argued that
a theory with such a large number of parameters is not a very elegant description of nature.

The SM also does not explain the problem referred to as “strong CP problem”. The problem
is rooted in the fact that the weak interaction violates 𝐶𝑃-symmetry. A central feature of the weak
interaction is that quarks are mixed states which makes flavour changes, cross-generational changes
between quarks, possible (see Equation 2.37). This causes an interesting phenomenon referred to
as “𝐶𝑃 violation”, which was first observed in the kaon system. 𝐶 and 𝑃 are operators that act on
a quantum mechanical state. While 𝐶 changes the charge of a particle, i.e. transforms it into its
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antiparticle, the parity operator 𝑃 inverts its spatial coordinates, turning it into its “mirror” particle.
Originally, it was believed that physics processes are invariant under the combined application of both
the 𝐶 and 𝑃 operator. Experimentally, however, it was observed that the weak interaction violates this
symmetry in neutral kaon decays [19–21]. The mathematical formulation of the SM describes this
violation for the weak interaction, but also allows it in the strong interaction. Experimentally, no 𝐶𝑃-
violating processes of the strong interaction have been observed so far. Therefore, this apparent 𝐶𝑃
symmetry in QCD processes is another unexplained phenomenon in the SM.

3.2 Beyond the Standard Model Phenomena

A key problem of the SM is that it does not explain gravitation. Gravitation is described by the theory
of general relativity, which cannot be explained in terms of quantum field theory because it breaks
down before reaching the Planck scale 𝑀𝑃 = 1019 GeV [22,23]. Postulating another symmetry in the
SM that results in the emergence of a graviton, a boson describing the interaction between particles
due to gravity, does not yield the results that are experimentally observed.

The SM also does not predict neutrino masses. Neutrinos do not acquire mass because the terms
in Equation 2.84 contain right-handed neutrino (and left-handed antineutrino) singlets, which carry
neither weak isospin nor electromagnetic charge. Therefore, they cannot interact with other SM par-
ticles and it is unknown whether they exist. However, the discovery of neutrino oscillations [24, 25]
can only be explained by massive neutrinos, which are not contained in the SM.

Another phenomenon not currently explained is the asymmetry of matter and antimatter found in
the universe. This is also referred to as baryon asymmetry. The SM does not provide an explanation for
this phenomenon and assumes that the universe is neutrally charged with all charges being conserved.
Since in theory the Big Bang should have produced matter and antimatter in the same quantities,
there must be physics processes that act differently on matter compared to antimatter. However, no
such processes have been observed experimentally and no consistent theory exists describing this
phenomenon. While 𝐶𝑃 violation of weak processes does partly explain baryon asymmetry, the
amount is by far not sufficient to describe it entirely.

The fundamental particles that the SM describes are foundational building blocks of ordinary
matter. However, only about 5 % of all the matter in the universe is of this type, whereas Dark Mat-
ter (DM) accounts for 26 % and Dark Energy (DE) for 69 %, respectively. The existence of DM is
motivated by experimental evidence for gravitational effects that require more mass than ordinary
matter. One example of such an effect is based on the rotation curves of galaxies, which describe the
rotational velocity of a star as a function of the distance from the centre of the galaxy. In a first order
approximation, the expectation from Newtonian mechanics can be obtained by setting the centripetal
and gravitational forces equal:

𝑚𝑟𝜔2 = 𝐺𝑚𝑀
𝑟2 (3.1)

𝜔2 = 𝐺𝑀
𝑟3 , (3.2)

where 𝑚 would be the mass of the star, 𝑀 the mass at the centre of the galaxy, 𝑟 the radial distance
of the star, 𝜔 the angular velocity and 𝐺 is the gravitational constant. Since 𝜔2 ∝ 1/𝑟3, the angular
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velocity should decrease for increasing distance from the centre. However, the observed rotation
curves are largely flat in 𝜔 for increasing 𝑟 contrary to the expectation. This phenomenon can only
be accounted for by an additional halo surrounding the galaxy, consisting of matter that is not visible.
Therefore, this kind of matter referred to as “Dark Matter”. Furthermore, also experimental evidence
from galaxy clusters, gravitational lensing and other phenomena exist that require more mass than
what the visible mass is accounting for [26]. In the SM, no DM particles are described, which is why
it constitutes another BSM phenomenon.

Similar to DM, dark energy is a phenomenon not explained by the SM. Experimental evidence
for DE comes from the redshift observations of Type Ia supernovae, which provide a measure of how
fast the respective star is moving further away from the solar system. Using this method, experiments
have shown that the expansion of the universe is not constant, but accelerating [27,28]. The fact that
the vacuum energy of the SM is significantly smaller than the energy needed to drive this accelerated
expansion therefore constitutes another example of a BSM phenomenon.

3.3 Extensions of the Standard Model

Due to the many apparent BSM phenomena, a variety of theories have been developed to explain them
and also provide a more elegant theoretical description of nature. Some of the major BSM theories
are discussed in the following.

3.3.1 Grand Unified Theories

Grand Unified Theories (GUTs) suggest that the three forces described in the SM merge into a single
force at high energies, which is also referred to as the GUT scale and lies at energies of ΛGUT =
1016 GeV. The main theoretical motivation behind this assumption is the connection between the
electric charge of leptons and quarks. Since all known particles are electromagnetically charged by
multiples of one third of the elementary charge (“charge quantization”), a common representation
should exist. Thus, also interactions due to the weak and strong forces could be embedded in a single
symmetry group that contains the SM. For example, the simplest symmetry group that the SM could
be embedded in is 𝑆𝑈(5), the group of 5 × 5 unitary matrices with a determinant of one. A new
theory based on a single group would yield a much more elegant description of nature compared to
the highly fine-tuned SM and could also solve the baryon asymmetry. Also, the couplings of the SM
indeed are very close at the GUT scale, suggesting that such a unification could exist.

Since the new particles emerging in GUT models are produced at energies around ΛGUT, which
is far out of reach of the current collider technology, they cannot be discovered directly. However,
indirect measurement methods are possible. Other than the doublets in the electroweak theory, quarks
and leptons are combined in the same multiplets in the GUTs. The transition between the states is
induced by new heavy gauge bosons 𝑋. In these processes the lepton and baryon numbers are not
conserved, which is a desired property in order to describe the matter-antimatter-asymmetry observed
in the universe. A consequence of these transitions is the decay of the proton that should be observable
experimentally, but so far, no evidence for such a decay has been found.
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3.3.2 Supersymmetry

Another theory that belongs to one of the most studied at collider experiments is Supersymmetry
(SUSY). It results in an elegant description of the fundamental interactions and also predicts several
of the BSM phenomena.

A key motivation of this theory is that the SM does not include a description of gravity. It can
be shown that a potential graviton, the hypothetical gauge boson of the gravitational force, must have
a spin of 2, since otherwise a renormalizable quantum field theory of gravity cannot be achieved.
Therefore, the graviton makes it difficult to unify all forces, since the it belongs to a different repre-
sentation of the Poincaré algebra. SUSY solves this by introducing a new supersymmetric algebra
that describes a symmetry between fermions and bosons. It introduces generators 𝑄 that change the
spin of a particle and therefore changes fermions into bosons and vice-versa. Therefore, each fermion
in SUSY has an associated boson and each boson has an associated fermion, which are called the
“superpartners”. Since the superpartners should be equal in all quantum numbers except for the spin,
their couplings and interactions should be identical to the ones in the SM. Since no such superpartners
have been observed to date, this new symmetry has to be broken.

Another advantage of SUSY models is that the large radiative corrections that constitute the hier-
archy problem would be significantly reduced, because corrections cancel between the partners and
superpartners. Additionally, SUSY models alter the running gauge couplings of the electromagnetic,
weak and strong forces such that they match almost exactly at the GUT scale, allowing for great
unification [29].

3.3.3 Extra-Dimensional Theories

A key question in the hierarchy problem is why the forces described in the SM are much stronger than
the gravitational force. One set of theories solves this problem by assuming that additional dimensions
to the four space-time dimensions exist [30]. While the known gauge bosons and fermions exist only
in the four dimensions, gravity propagates both in space-time and the other dimensions. The gravi-
tational force is therefore spread out across multiple dimensions and thus acts much more weakly in
space-time. Therefore, the Planck scale is only large in 4 dimensions, whereas the actual fundamen-
tal scale can be significantly smaller, which effectively solves the hierarchy problem. Searches in the
invariant dijet mass spectrum are a key strategy for the discovery of a massive graviton interacting
through quark-quark scattering [31].

3.4 Theoretical Motivation for Two-Body Resonance Searches

Resonance searches are a fundamental strategy for finding new particles at collider experiments and
have been applied successfully at numerous occasions, such as the discovery of the Higgs boson [1,2],
the direct observation of the 𝑍 boson [32,33], the discovery of the Υ [34], the 𝐽/𝜓 [35,36] and many
more. These successes alone constitute a strong motivation for searches of two-body resonances in
the vast phase space of the LHC, independent of a target theory.

In addition, many contemporary theory models also predict a variety of two-body resonances.
Composite theories assume that the current fundamental particles are consisting of additional sub-
components, called preons [37]. One type of evidence to support these theories would be the discovery
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of excited fermion states, which could de-excite back into the SM ground state by emitting other
particles, such as an additional vector boson (e.g. 𝑄∗ → 𝑞𝑊 ′) [38]. There exist also composite
Higgs models that target the fine-tuning or naturalness problem discussed previously [39]. Some
of these models contain new bosons that can decay into vector-like quarks, which can result in fully
hadronic resonances (e.g. 𝑊 ′ → 𝑡𝐵′ → 𝑡𝑏𝑍 →hadronic) [40]. Extra-dimensional theories also predict
(hadronic) two-body decays. For example, Kaluza-Klein excitations of gauge bosons can relax back
into the SM state, emitting new particles such as a radion (an excitation of the gravitational field that
emerges from the theory and constitutes a scalar in four-dimensional space-time), which then again
can decay into SM particles (e.g. 𝑊𝑘𝑘 → 𝑅𝑊 → 𝑊𝑊𝑊) [41,42]. Warped extra-dimensional theories
also predict new heavy Higgs-like scalars that can decay into pairs of two lighter Higgs-like scalars
(𝐻) [43].

In summary, there exist several BSM models that predict new particles which produce (hadronic)
resonances. Thus, apart from the previous experimental successes of resonance searches, there is also
significant motivation on theory level to conduct searches in this topology. An overview of different
resonant topologies and searches targeting them is provided in refs. [9] and [44].
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Chapter 4

The CMS Experiment at the LHC

4.1 The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) is, at the time of writing, the largest and most powerful particle
accelerator and collider of the world, with a design centre-of-mass energy for proton-proton colli-
sions of √𝑠 = 14 TeV [45, 46]. It consists of two rings with counter-rotating beams of either protons
or lead ions that are intersecting at four interaction points, where different experiments have been
constructed to both probe SM processes and search for evidence for new physics phenomena. The
rings of the LHC are about 27 km in diameter and they contain the vacuum tubes for the beam lines,
the 1232 superconducting dipole magnets for keeping the beam in circular motion as well as about
4800 orbit and multipole correction magnets. The superconducting dipoles are cooled down to a
temperature below 2 K using superfluid helium and operate at magnetic fields above 8 T. To reach
the high centre-of-mass energies the LHC was designed for, several pre-acceleration steps are neces-
sary. First, protons are supplied from the linear accelerator Linac2 at an energy of 50 MeV, which are
then further accelerated by the Proton Synchroton Booster (PSB), the Proton Synchrotron (PS) and
finally the Super Proton Synchrotron (SPS) to per-beam energies of 1.4 GeV, 25 GeV and 450 GeV,
respectively. Accelerated particles are travelling through the beam pipes in “bunches”, containing
several protons or lead ions. Each proton beam consists of up to 2808 such bunches, with a nominal
bunch spacing of 25 ns, leading to a peak collision rate of 40 MHz. However, several bigger gaps are
introduced between the bunches for example to allow the kicker magnets that dump the beam enough
time to get their magnetic field up. Therefore, the crossing rate is reduced to:

𝑟cross. = 𝑛𝑏 ⋅ 𝑓rev = 2808 ⋅ 11 245 s−1 = 31.6 MHz, (4.1)

where 𝑛𝑏 is the number of bunches per beam and 𝑓rev is the revolution frequency.
The actual number of collision events occurring in the LHC additionally depends on several beam

parameters and is given by:
𝑁event = 𝐿int. ⋅ 𝜎event, (4.2)

where 𝐿int. is the integrated luminosity and 𝜎event is the cross section of the respective physics process.
The integrated luminosity is defined as the integral of the instantaneous luminosity over time:

𝐿int. = ∫ 𝐿instant.𝑑𝑡. (4.3)
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Figure 4.1: The CERN accelerator complex, including the locations of the four major experiments
described in the text [48].

The instantaneous luminosity 𝐿instant. is a key machine parameter that quantifies the number of colli-
sion events per time and is given by:

𝐿instant. =
𝑁2

𝑏 𝑛𝑏𝑓rev𝛾𝑟
4𝜋𝜖𝑛𝛽∗ 𝐹, (4.4)

where 𝑁𝑏 is the number of particles in a bunch, 𝑛𝑏 and 𝑓rev are defined as in Equation 4.1, 𝛾𝑟 is the
relativistic gamma factor, 𝜖𝑛 the normalized transverse beam emittance, 𝛽∗ describes the beta function
at the collision point and 𝐹 is a geometric luminosity reduction factor due to the crossing angle at the
interaction point. The peak luminosity for proton-proton-collisions at the LHC is 𝐿instant. = 2.1 ⋅
1034 cm−2 s−1, which are used by the two high-luminosity experiments ATLAS and CMS. The other
two experiments use lower luminosities: LHCb is designed for an average running luminosity of
𝐿instant. = 2 ⋅ 1032 cm−2 s−1 while for the ALICE experiment it is about 𝐿instant. = 5 ⋅ 1026 cm−2 s−1

for Pb-Pb collisions [47].
Each of the four major experiments at the LHC have a different design, focusing on various physics

aspects to look for phenomena beyond the Standard Model. The LHCb experiment [49] focuses on
flavour physics, specifically targeting decays of 𝑏 quarks. Since 𝑏 and �̄� hadrons are produced at small
angles with the beam pipe at high energies, the detector design is based on a single-arm spectrometer
with a high forward angular coverage [50, 51]. ALICE (A Large Ion Collider Experiment) [52, 53]
is the only detector specialized in heavy-ion collisions and focuses on studying QCD phenomena,
probing the strong interaction in the Standard Model. Its purpose is to study the physics of the strong
interactions, including highly exotic states of matter such as the quark-gluon plasma that occurs at
high energy densities and temperatures in collisions of heavy nuclei. It has a cylindrical design,
containing a general-purpose detector in the “barrel region” for particles having a large angle with
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the beam pipe as well as “muon arm” in the forward region covering smaller angles, in particular to
measure heavy-quark resonances [54].

The CMS (Compact Muon Solenoid) [55, 56] and ATLAS (A Toroidal LHC Apparatus) [57–
59] experiments are general-purpose detectors and focus on the analysis of proton-proton collisions.
The key objective of these experiments is to obtain high precision measurements of the SM and to
search for BSM phenomena. One distinctive detector component in the ATLAS detector is its air-core
toroid system for muon spectrometry, which is about 20 m in diameter. The inner part of ATLAS
consists of a tracking system using both silicon and gas-based detectors. For precise identification
and measurement of electrons and photons, a highly granular electromagnetic calorimeter based on
liquid argon technology is used, whereas the hadronic calorimeter uses steel as absorbing material
and plastic scintillators for sampling. To create curvature in the trajectories of charged particles for
measuring the momentum, solenoidal magnetic fields are used for the inner part and toroidal fields
for the outer part of the detector, which are generated by two dedicated magnet systems. While the
CMS and ATLAS detectors study similar phenomena and share key physics objectives, they differ
significantly in the employed detector technologies and design. Therefore, they complement each
other to be sensitive to a larger variety of different phenomena and to confirm and validate each
other’s findings. Since this work focuses on the analysis of data from the CMS experiment, its detector
components are discussed in more detail in the following sections.

An overview of the LHC complex, including the four discussed experiments and the different
pre-acceleration stages can be seen in Figure 4.1.

4.2 CMS Detector Components

The CMS detector [55,56] is a general-purpose detector, designed to probe several aspects of both SM
and BSM physics. A key achievement of the CMS collaboration was the discovery of the Higgs boson
in 2012, together with the ATLAS collaboration [1,2,60], as well as the subsequent measurement of
several of its properties. Since in this work, CMS data of the “Run 2” era (2016 to 2018) will be used,
the detector parameters described in this chapter are related to the state after the Phase-1 upgrade,
which took place in the extended year-end technical stop of the LHC in 2016/2017. The length of the
detector is 22 m, it has a diameter of 15 m and weighs 14 000 t. It is designed to identify electrons,
muons, photons as well as both charged and neural hadrons. One of the main features of CMS is its
eponymous superconducting solenoid, with a 6 m internal diameter and a length of 12.5 m, providing
a magnetic field of 3.8 T. The silicon-based tracking detectors as well as the electromagnetic and
hadronic calorimeters (ECAL and HCAL) are located within this magnetic field. The outermost
detector component are the muon chambers, which is embedded a steel return yoke situated outside
of the solenoid magnet.

The typical convention regarding the detector coordinates, which is also followed in this work,
is that the longitudinal direction along the beam line is defined as the 𝑧 axis, whereas the 𝑥𝑦-plane
is perpendicular to the beam. The 𝑦 axis is pointing upward and the 𝑥 axis pointing inward towards
the centre of the LHC. The azimuthal angle with respect to the 𝑥-axis in the 𝑥𝑦-plane is defined as
𝜙 and the polar angle, measured from the 𝑧-axis, is defined as 𝜃. Instead of 𝜃, the pseudorapidity 𝜂
is often preferred in hadron collider experiments, since differences in 𝜂 are invariant under Lorentz
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Figure 4.2: Coordinate system of the CMS experiment, shown for a particle with momentum vector
⃗𝑝 [61].

transformations along the longitudinal axis. This is a beneficial feature of the pseudorapidity, since
the partons that interact in a collision carry different momentum fractions of their respective hadrons
and therefore, the rest frames of the parton-parton systems will have different boosts along 𝑧. The
pseudorapidity is related to the polar angle by:

𝜂 = − ln(tan(𝜃/2)). (4.5)

The transverse momentum and energy are denoted by 𝑝𝑇 and 𝐸𝑇. An imbalance of energy in the
transverse plane, which can for example be caused by neutrinos in the final state of a decay, is defined
as 𝐸miss

𝑇 . It is also referred to as missing transverse energy. A schematic of the described coordinate
system at the example of a particle with momentum vector ⃗𝑝 can be seen in Figure 4.2. In order to
cover a large pseudorapidity range, each detector layer separated in different sub-detectors, covering
different ranges in 𝜂. The barrel region covers (depending on the subsystem) a range of about |𝜂| <
1.4, whereas the endcaps cover values of 1.3 < |𝜂| < 3.0. Finally, the forward region covers the
3.0 < |𝜂| < 5.2 range.

The individual components of the CMS detector are described in more detail in the following
sections. A schematic showing a detector “slice” can be seen in Figure 4.3.

4.2.1 Tracking System

The CMS tracking system measures the trajectories of charged particles that were generated in the
parton interaction [63]. The solenoid magnetic field inside the detector causes these trajectories to
be curved due to the Lorentz force, which makes it possible to identify the charge of a particle and
measure its momentum. The tracker is silicon-based, using the fundamental principle of the p-n diode
operated in reverse mode for the detection of particle hits. When a charged particle is crossing the
silicon, it ionizes the material, creating electron-hole pairs that travel to the respective poles of the
diode. Thus, a current can be measured that indicates a particle has hit the detector.

The innermost layer of the tracking system is the pixel tracker. It is located close to the detector
centre and provides points in three-dimensional space, which enable tracking and reconstruction of
vertices at high precision. It is composed of four layers in the barrel region and three disks of silicon
sensors that are positioned on either side of the interaction point. In total, it has 124 million readout
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Figure 4.3: A slice of the CMS detector, showing its different components as well as the signatures
of each detectable particle [62].

channels with a readout rate at 400 MB/s. The pixel tracker is cooled using a two-phase CO2 cooling
system. The barrel layers are located at radii of 29, 68, 109 and 160 mm and three disks at each end
are located at distances of 291, 396 and 516 mm from the detector centre. The foundational building
block is a silicon sensor module containing 160 × 416 pixels, each of which is 100 × 150 µm2 in
size. The pitch (distance between the centres of two pixels) is 100 µm [63]. 1856 such modules are
contained in the pixel tracker. The spatial resolution – a key performance metric for a tracking detector
– depends on various factors, such as the Lorentz angle and whether the particle hits multiple sensors
in a layer, such that the measured charge is distributed across neighbouring cells. In the ideal case
where only one sensor in a layer is hit, the probability for a particle hitting is 𝑝(𝑥) = 1/𝑑, a uniform
distribution over a sensor with pitch 𝑑. The expected value is then given by:

⟨𝑥⟩ = ∫
𝑑/2

−𝑑/2
𝑥 ⋅ 𝑝(𝑥) 𝑑𝑥 = 1

𝑑 ∫
𝑑/2

−𝑑/2
𝑥 𝑑𝑥 = 0 (4.6)

and therefore, the resolution can be computed as:

𝜎2 = ⟨𝑥 − ⟨𝑥⟩⟩2 = ⟨𝑥⟩2 = ∫
𝑑/2

−𝑑/2
𝑥2 ⋅ 𝑝(𝑥) 𝑑𝑥 = 𝑑2

12 (4.7)

𝜎 = 𝑑
√12

. (4.8)

Therefore, in this case the resolution of the pixel tracker is 𝜎 ≈ 28.9 µm.

The outer part of the tracking system is the silicon strip tracker (SST). It consists of 9.3 million
silicon strips distributed over 15 148 modules. It is 5 m long and has a diameter of 2.5 m. In the
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barrel region, there are ten layers of strip modules, whereas the endcaps contain up to seven rings.
The thickness of the silicon sensors varies, being 320 µm and 500 µm for the inner and outer layers,
respectively. The distance between the strips (pitch) varies from 80 µm to 205 µm, corresponding to
spatial resolutions between 23.1 µm and 59.2 µm. The ratio of the pitch with the strip width is always
kept constant at 0.25 [64]. The barrel layer modules measure the coordinates 𝑟 and 𝜙, while the layers
in the endcaps measure 𝜙 and the longitudinal coordinate 𝑧. The signals from the strips are processed
by an analogue chip that has 128 readout channels for 128 strips.

The transverse momentum resolution of the tracking system for high momentum tracks at around
100 GeV is 1-2 % up to a pseudorapidity of |𝜂| ≈ 1.6. The transverse impact parameter resolution is
10 µm for high 𝑝𝑇 tracks.

4.2.2 Electromagnetic and Hadronic Calorimeters

The CMS detector has two calorimeters, an electromagnetic calorimeter (ECAL) for measuring the
energy of photons and electrons and a hadronic calorimeter (HCAL) for the energy measurement of
both charged and neutral hadrons. The ECAL is a homogeneous calorimeter, which means that the
deposition of energy and the sampling occur in the same active medium [65]. This is different from a
sampling calorimeter, which is made of alternating layers of high 𝑍 material, where the electromag-
netic showers are induced, and active media such as scintillators where the energy of the showered
particles is then measured. Because some energy dissipates through ionization in the absorbing mate-
rial, sampling calorimeters typically have a worse energy resolution than homogeneous calorimeters.
Since the Higgs decay into two photons was a promising candidate for its discovery, a good energy
resolution in the ECAL was of primary importance, which lead to the choice of a homogeneous
calorimeter over a sampling calorimeter.

The primary way of measuring photon and electron energies in electromagnetic calorimeters is
through electromagnetic showering and subsequent ionization of a scintillating material. An incident
high energy photon creates an electron-positron-pair in the field of the high 𝑍 nuclei in the material.
These again get deflected by the electric fields of the nuclei, emitting high energy photons through
Bremsstrahlung. Subsequently, electron-positron pairs are again produced. This showering continues
until the energy of the electrons and positrons is too low to sustain the continued pair production
process. In this case, they deposit their energy in the form of ionization. In a scintillator, this ionization
causes electrons in the material to be excited to a higher energy state and the de-excitation back to
the ground state results in the emission of a photon, typically in the visible spectrum. This light can
then be measured by photodetectors, which results in an implicit measurement of the energy of the
incident particle.

In the case of the CMS ECAL, the homogeneous medium is made of 61 200 lead tungstate
(PbWO4) crystals in the barrel region and 7324 crystals in each of the endcaps. The photodetec-
tors used to detect the scintillation light are avalanche photodiodes (APDs) in the barrel and vacuum
phototriodes (VPTs) in the endcaps. The main advantages of the lead tungstate material is its high
density of 8.28 g/cm3 and its short radiation length (i.e. the mean distance in the material at which
the energy of an electron is reduced by a factor 1/𝑒 ≈ 36.8 %) 𝑋0 = 0.89 cm, which allows for the
design of a compact and highly granular calorimeter. The crystals are 230 mm in length, which cor-
responds to 25.8 𝑋0. At the front face, they have a cross-section area of 22 × 22 mm2 and an area of
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26 × 26 mm2 at the rear face. The front faces of the crystals are located at a radius of 1.29 m from the
detector centre. In total, the crystal volume in the barrel is 8.14 m3 with a weight of 67.4 t.

A key performance metric of calorimeters is their energy resolution, which can be parameterized
by:
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where 𝑆 is a stochastic term, 𝑁 a noise term and 𝐶 a constant term. The main contributors to the 𝑆
term are the event-to-event fluctuations in lateral shower containment as well as the photostatistics.
The noise term quantifies the impact of electronics, digitization and pileup noise. The constant term
describes the contribution of intercalibration errors, non-uniformity of the light collection and energy
leakage from the back of the crystals. Using measurements in a dedicated test beam, the energy
resolution for a barrel module has been found to be:
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The energy resolution in Run 2 has been found to be comparable to Run 1 [66]. Concerning
different physics objects, the resolution for electrons with transverse energy 𝐸𝑇 ≈ 45 GeV from 𝑍
boson decays was found to be better than 2 % in the central part of the barrel region (|𝜂| < 0.8) and
between 2 % and 5 % elsewhere. The energy resolution for photons from Higgs boson decays with
𝐸𝑇 ≈ 60 GeV varies in the barrel region between 1.1 % to 2.6 % and from 2.2 % to 5 % in the endcaps.

The CMS hadron calorimeter (HCAL) [67] is used to measure the energies of charged and neutral
hadrons, as well as neutrinos and other exotic particles resulting in missing transverse energy 𝐸miss

𝑇 .
Therefore, the HCAL is also playing a crucial role in jet identification and measurement. In general,
the showering processes in hadron showers are significantly more complex compared to electromag-
netic showers due to the additional nuclear interactions that take place. The main interaction processes
are the creation of new hadrons through hadronization, nuclear spallation and nuclear de-excitation
causing the evaporation of soft nucleons. In hadronic showers, there is a significant “invisible frac-
tion” of energy from interactions where the energy gets absorbed as nuclear binding energy or recoil
in the material. Additionally, neutral pions (𝜋0) can be created, which decay exclusively to photons
that then create an electromagnetic shower. Therefore, these pions deposit all their energy via elec-
tromagnetic processes. Assessing the fraction of electromagnetically deposited energy 𝑓EM as well as
the components of the different nuclear interactions is challenging and makes complex Monte Carlo
simulations necessary for proper calibration.

The innermost part of the HCAL barrel is located at a distance of 1.77 m and reaches up to 2.95 m
from the centre of the detector. In order to entirely absorb incident hadrons with a high probability,
an additional hadron calorimeter is placed outside of the solenoid to measure hadrons which passed
through the inner HCAL. Contrary to the CMS ECAL, the HCAL is a sampling calorimeter, using
alternating layers of brass absorber plates and plastic scintillators. The brass absorbers are composed
of 70 % Cu and 30 % Zn and have a density of 8.53 g/cm3. This results in a radiation length of 1.49 cm
and a nuclear interaction length of 16.42 cm. The latter describes the mean distance that a hadronic
particle can travel until an inelastic nuclear interaction takes place.
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The HCAL energy resolution obtained in dedicated test beams for single pions is [68]:

𝜎
𝐸 = 52.9 %

√𝐸
+ 5.7 %. (4.11)

Considering measurements of particle jets, the jet energy resolution that is typically achieved is 15 %
at 10 GeV, 8 % at 100 GeV and 1 % at 1 TeV when both tracking and calorimeter information is
used [69].

4.2.3 Muon System

The CMS muon system is designed to identify and trigger on muons produced in the proton collisions
as well as measure their momentum. A good momentum resolution is achieved by the strong magnetic
field created by the solenoid magnet. In total, three different types of gaseous detectors are used to
identify muons [70]. The muon system consists of a barrel section and two endcaps. In the barrel
region, drift tube (DT) chambers are used as detectors, organized in 4 stations that form concentric
cylinders. The 3 innermost cylinders contain 60 chambers each, while the outer cylinder contains
70. In total, they contain about 172 000 wires, each with a length of around 2.4 m. The gas mixture
used is about 85 % Ar and 15 % CO2. In order to increase detection efficiency, the drift cells in
each chamber are arranged in an overlapping way, where each cell is shifted by half a cell width with
respect to its neighbour. Each chamber is made of 2 or 3 “superlayers” (SLs), consisting of 4 layers of
rectangular drift cells. In the outer 2 SLs, the wires are arranged parallel to the 𝑧 direction to provide
a measurement in the 𝑟 − 𝜙 plane, while in the inner SLs the wires are orthogonal to the beam line
and measure the 𝑧 coordinate.

For the endcaps, which detect muons with a pseudorapidity of 0.9 < |𝜂| < 2.4, cathode strip
chambers (CSC) are used. 4 stations are contained in each endcap, containing 468 CSCs in total. The
chambers are arranged perpendicular to the beam line, measuring the 𝑟 − 𝜙 plane and are based on
multiwire proportional chambers, containing 6 anode wire planes and 7 cathode panels. The CSCs
provide both muon measurement and triggering capabilities.

Finally, resistive plate chambers (RPCs) provide an additional, independent trigger system parallel
to the DTs and CSCs for improved background rejection and beam crossing time measurements. The
RPCs are gaseous parallel-plate detectors operated in avalanche mode and have a good time resolution,
while the position resolution is more coarse compared to the DTs and CSCs. In particular an RPC
can tag the time of an ionising event in a significantly shorter time than the 25 ns between two bunch
crossings. In the barrel region, 6 layers of RPCs are included, 2 in each of the first 2 stations and 1
in each of the last 2 stations. In the endcap region, 1 layer of RPCs is contained in each of the first 3
stations. To further improve the muon momentum resolution, a dedicated alignment system measures
the positions of the muon detectors with each other and with respect to the inner tracker. Using this
design, a very high reconstruction efficiency of 95-99 % is reached throughout a large angular region
of 10° < 𝜃 < 170°. The momentum resolution of highly energetic muons is between 1 % and 8.25 %
in the barrel region and between 2 % and 13.1 % in the endcaps for 𝑝𝑇 up to 2000 GeV using combined
tracker and muon system information. This resolution also depends on the alignment of tracker and
muon system [71]. Due to its high efficiency and performance, the muon system is an integral part
of the CMS detector and allows for a good identification of processes that involve decays into muons,
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one of which is the 𝐻 → 𝑍𝑍∗ → 4𝜇 decay channel of the Higgs boson, which was one of the major
channels considered in its discovery.

4.3 Trigger and Event Reconstruction

4.3.1 The CMS Trigger System

At the LHC, bunch crossings occur about every 25 ns, leading to a collision rate of approximately
40 MHz. The reconstruction and subsequent storage of each of these collision events, however, is
not feasible due to computational and hardware storage limitations. Therefore, the rate of events to
analyze further has to be reduced significantly, which is achieved in CMS using a two-tier trigger
system [72,73]. First, the hardware-based Level-1 Trigger (L1T) [74] reduces the event rate down to
100 kHz. Second, the software-based High-Level Trigger (HLT) further reduces this rate, which was
around 1 kHz during the Run 2 data taking period.

The L1T decision is based on a coarse subset of the read out data. Every event is analyzed by the
muon and calorimeter triggers. The energy deposits of all three muon system components, namely
CSCs, DTs and RPCs are processed by a pattern comparator or a system of segment- and track-finders
and the subsequent information is combined in the global muon trigger (GMT). The calorimeter in-
formation of the HCAL and ECAL are first regionally processed by the Regional Calorimeter Trigger
(RCT) and then by the Global Calorimeter Trigger (GCT). The global trigger (GT) then combines the
information of the various objects provided by the RCT and GCT. Around 400 rules are evaluated for
the trigger objects, applying a logical “OR” for all of them, which constitutes the L1 trigger menu.

The HLT is a server farm that contained around 26 000 CPU cores during Run 2, running the CMS
analysis software which decides based on the entire detector information whether an event should be
stored for offline analysis [75]. The software is applying optimized reconstruction algorithms, which
run around 100 times faster compared to their offline counterparts. It consists of hundreds of HLT
paths that target a variety of event topologies.

4.3.2 Particle Flow

The fundamental unit in CMS data analysis is a collision event, containing the measured detector in-
formation of all the particles that have been created in the corresponding bunch crossing. The detector
measures these indirectly, using tracks for momentum and trajectory measurements and calorimeter
clusters for measurements of their energy. To reconstruct the particles in an event, complex recon-
struction algorithms are necessary. In CMS in particular, this is done with the Particle Flow (PF)
algorithm [76, 77], which uses global information from all the subdetectors to provide a comprehen-
sive list of all final-state particles in an event, also referred to as “PF candidates”.

The approach of the PF algorithm is based on a global event description, correlating the fundamen-
tal detector signals (tracks and clusters) from the respective subdetector components. The algorithm
starts with the tracks and vertices from charged particles. A key challenge in track reconstruction
is the high combinatorics involved in assigning the tracker hits to a track. Therefore, an approach
based on Kalman Filtering (KF) [78] is used for a three-stage track reconstruction: initially, seeds
are generated with a few hits that are compatible with the trajectory of a charged particle. Second,
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the trajectory is built to gather hits from all tracker layers along its path. Finally, a fit is done to de-
termine the key properties of the charged particle, namely its point of origin, transverse momentum
and direction. To further increase the tracking efficiency while at the same time achieving a similar
misidentification rate, an iterative tracking approach was chosen, where the described track finding
algorithm was applied in several iterations, progressively adding to the total efficiency. Overall, 10
iterations are used by the algorithm.

After the track reconstruction is done, the calorimeter clusters are built. The clustering algo-
rithm obtains the energy and direction of stable neutral particles, such as photons and neutral hadrons
and separates them from the energy deposits of charged hadrons. It also identifies and reconstructs
electrons and the corresponding photons caused by bremsstrahlung and improves the energy measure-
ments of charged hadrons with low-quality but high-𝑝𝑇 tracks, for which the track parameters could
not be accurately determined [77]. The clustering algorithm is applied to each subdetector separately.
As a first step, cluster seeds are assigned to cells with an energy larger than a pre-defined threshold
and with higher energy than their neighbouring cells. The second step is the growth of topological
clusters from the seeds by aggregation of cells with at least one corner shared with a cell already in
the cluster and with an energy of at least twice the noise level. Finally, to reconstruct the clusters
within a topological cluster, an algorithm based on a Gaussian mixture model is used. It is based on
the assumption that the 𝑀 individual cells in the topological cluster originate from 𝑁 Gaussian energy
deposits, where 𝑁 is the number of seeds. The algorithm is an iterative maximum likelihood fit, which
is repeated until convergence, after which the positions and energies of the obtained Gaussians are
assigned as the cluster parameters.

Since a particle is expected to create several PF elements in the different subdetectors of CMS,
the reconstruction continues with a link algorithm, connecting this subdetector information. The
link algorithm compares the pairs of elements that are closest in the (𝜂, 𝜙) plane, obtained with a
𝑘-dimensional tree. If two elements are linked by the algorithm, it defines a distance between them
which quantifies the quality of the link. The algorithm then builds PF blocks of elements that are either
associated by a direct link or by an indirect link through common elements. The specific conditions
on the basis of which a link is created depend on the nature of the linked elements. A link between a
track in the tracking system and a calorimeter cluster is created by first extrapolating the track from
the last measured tracker hit to the point in the ECAL corresponding to the expected maximum of a
longitudinal electron shower profile and to the HCAL corresponding to one interaction length. The
track is linked to a cluster when its extrapolated position is within the cluster area, which is defined
as the areas of all its cells in the (𝜂, 𝜙) plane for the barrel region and the (𝑥, 𝑦) plane for the endcaps.
To mitigate gaps in the cluster, the cluster area is enlarged by up to one cell in each direction. The link
distance that is assigned by the algorithm is defined between the extrapolated position and the cluster
position in (𝜂, 𝜙).

To compute the energy of bremsstrahlung photons emitted by electrons, tangents to the tracks are
extrapolated from their intersection with each of the tracker layers to the ECAL. Clusters are linked to
the track if the extrapolated position is within the cluster, as defined above. Furthermore, a dedicated
conversion finder was developed that links tracks from additional electron-positron pairs that might
have been created by pair production of the bremsstrahlung photon to the original track [79]. Links
between ECAL and HCAL are created when the cluster position in the ECAL is within the cluster
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envelope of the HCAL. The link distance is here defined as the cluster positions in the (𝜂, 𝜙) plane.
Finally, a link between tracks in the central tracker and hits in the muon system is established. Muon
tracking is based on three different types, depending on various criteria: For standalone muons, DT
and CSC hits are clustered forming track segments, which are used as seeds for subsequent pattern
recognition in the muon spectrometer to gather all DT, CSC and RPC hits along the trajectory. A
final fit yields a standalone-muon track. Each standalone-muon track is matched to a track in the
inner tracker and the two are combined in a fit to form a global muon track. Additionally, inner tracks
with 𝑝𝑇 > 0.5 GeV and 𝑝 > 2.5 GeV are extrapolated to the muon system. If at least one segment in
the muon system matches the extrapolated track within a certain distance in (𝑥, 𝑦), they are assigned
as tracker muon.

After the link algorithm created the PF blocks, the particle candidates are identified in each
block. At first, the muon cnadidates are identified and reconstructed and all corresponding tracks
and clusters are removed from the block. Then, electrons are reconstructed, including the collection
of bremsstrahlung photons. Again, the corresponding tracks and ECAL clusters are removed from the
PF block. The remaining elements are reconstructed using a cross-identification approach of charged
hadrons, neutral hadrons and photons that originate from parton fragmentation, hadronization and de-
cays within jets. When all blocks have been processed and all particles identified, the algorithm stops
after a final processing step to further reduce misidentification and misreconstruction of particles.
The output of the algorithm is a list of reconstructed particles, which are the previously mentioned
PF candidates.

4.3.3 Jet Clustering

A key object in the analysis of particle physics collision events is the jet. Jets are collimated sprays of
particles that originate from hadronization processes of quarks or gluons. At the CMS experiment,
jets are clustered from the PF candidates using the anti-𝑘𝑇 algorithm [80]. A desirable feature of any
jet clustering algorithm is infrared and collinear (IRC) safety. A clustering algorithm is infrared safe
when the resulting jet is not changed by the radiation of soft particles from its constituents. Collinear
safety relates to the robustness of the clustered jets with respect to collinear splittings of the input
particles. IRC safety is an important feature, since a jet should convey information of the initiating
particle, which decays in a hadronic showering process that can contain several collinear splittings
before the start of the hadronization. If such a splitting would cause the algorithm to produce a second
jet, the information of the initial particle would be distorted. Additionally, the clustering should not
be affected by small perturbations, for example caused by detector effects.

The anti-𝑘𝑇 algorithm is an IRC safe, soft-resilient clustering algorithm, which means that the
resulting jet shapes are not influenced by soft radiation. The algorithm is based on the distances 𝑑𝑖𝑗

between entities 𝑖 and 𝑗, where an entity is either a particle or an intermediate clustering result called
pseudo-jet. This distance is defined as:

𝑑𝑖𝑗 = min(𝑘2𝑝
𝑡𝑖 , 𝑘2𝑝

𝑡𝑖 )
Δ2

𝑖𝑗

𝑅2 , (4.12)

𝑑𝑖𝐵 = 𝑘2𝑝
𝑡𝑖 , (4.13)

where Δ2
𝑖𝑗 = (𝑦𝑖 − 𝑦𝑗)2 + (𝜙𝑖 − 𝜙𝑗)2, 𝑑𝑖𝐵 describes the distance between entity 𝑖 and the beam 𝐵
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and 𝑘𝑡𝑖, 𝑦𝑖 and 𝜙𝑖 correspond to the transverse momentum, rapidity and azimuthal angle of entity 𝑖,
respectively. The radius parameter is defined as 𝑅 and the parameter 𝑝 describes the relative power
between the energy and geometrical (Δ𝑖𝑗) scales. The algorithm starts by computing 𝑑𝑖𝑗 between all
pairs of entities and combines those entities 𝑖 and 𝑗 where 𝑑𝑖𝑗 is minimal into a pseudo jet. If the
minimal distance is 𝑑𝑖𝐵, however, it defines 𝑖 as a jet and removes it from the list of entities. Then, the
distances are recomputed and the procedure is repeated until no entities are left. The parameter 𝑝 is
chosen prior to the clustering and for the anti-𝑘𝑡 algorithm it is set to 𝑝 = −1, hence its name. The 𝑅
parameter defines the radius of the resulting jet cone and can also be chosen prior to the clustering.
In CMS data analysis, typically two values are used. Regular jets use a value of 𝑅 = 0.4, also referred
to as “AK4 jets”, whereas large-radius jets are also used with a value of 𝑅 = 0.8, also referred to as
“AK8 jets”. The clustered jets and their corresponding kinematic information can then be used for
further analysis.
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Chapter 5

Foundations of Machine Learning

5.1 Classical Algorithms

Machine learning is the field of extracting intricate patterns from data using a variety of algorithms.
Given a set of previously obtained data 𝑋, the main objective of most of these methods is to learn a
function 𝑓 (𝑋) that maps the input data to a target variable of interest, 𝑌. Once the function is learned,
it can be applied to new, previously unseen samples of data originating from the same distribution

̃𝑋 ∼ 𝑋 to predict the corresponding targets ̃𝑌. Typically, the function 𝑓 also depends on a set of
parameters 𝜽, such that the desired mapping becomes:

𝑓𝜽(𝑋) → 𝑌 (5.1)

Three major learning paradigms exist, depending on the task to optimize and the prior knowl-
edge of the target variable: In supervised learning, for each data point 𝑥𝑖 ∈ 𝑋, the exact value of
the corresponding target 𝑦𝑖 ∈ 𝑌 is known. In unsupervised learning, the target values 𝑦𝑖 are entirely
unknown and truth-level information is inaccessible throughout the entire learning process. Finally,
in reinforcement learning, the task is to optimize the actions of an agent in a dynamic environment by
maximizing the cumulative reward. Furthermore, several other paradigms exist that combine char-
acteristics of both supervised and unsupervised learning. In semi-supervised learning, there exists
truth-level information for a typically small set of data points, while for most other samples in the
data set they are unknown. Semi-supervised learning then combines the information of both kinds of
datapoints to gain performance with respect to a classifier that was trained either on the truth-valued
samples or on the samples with unknown truth information only. In self-supervised learning, the truth
value information is not available, but can be obtained from the data directly. This can be done for
example by using domain knowledge, or by exploiting known correlations between input variables
and the target variable.

Machine learning algorithms are suited to solve a plethora of complex tasks in a variety of fields,
such as computer vision or natural language processing. Two major categories of tasks exist that ma-
chine learning is frequently used for: classification and regression. In regression, the target variable
of interest, 𝑌, is a continuous variable and the task is to predict the values of each datapoint 𝑦𝑖 for
each corresponding input variable 𝑥𝑖. For example, one could try to predict the amount of energy
deposited in a detector cell from input variables such as particle type, particle energy, angle of inci-
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dence, depth of material etc. In classification, each datapoint belongs to a certain class of objects,
which are represented numerically by integer numbers, typically starting from 0. I.e. if there are 𝑁
classes, then the target variable of the individual datapoints are represented as 𝑦𝑖 ∈ 0, ..., 𝑁 − 1. Thus,
a classification algorithm learns to predict the class of each datapoint 𝑦𝑖 from input variables 𝑥𝑖. One
example in a particle physics scenario is quark-gluon-tagging, where the task is to distinguish particle
jets that originate from gluons and jets which were initialized by a quark [81]. Here, the algorithm
would learn the assignment of correct class label 𝑦𝑖 (0 or 1) based on a set of input variables 𝑥𝑖, which
could for example be the transverse momentum 𝑝𝑇 , the pseudorapidity 𝜂 and the mass of a jet etc.

Various algorithms exist to solve regression and classification tasks and their choice depends on
several factors, in particular the structure of the input data. For example, there are machine learning
algorithms that are specifically designed to solve problems in computer vision, such as convolutional
neural networks [82], while others are designed for natural language processing tasks, such as trans-
formers [83]. In many cases, however, the objective is to run a classification or regression on a set of
entities, e.g. particle jets or entire particle collision events, for which different variables or ”features”
have been recorded. In this case, the input data can be thought of as a table, where each entity repre-
sents a row and each feature a column. Data in this format is also referred to as ”tabular data”. The
key difference between tabular data and data represented in other ways, such as images, point clouds
or sentences, is that there is typically no inherent structure in the data that could be exploited by a
specific algorithm. In images for example, neighbouring pixels are highly correlated while pixels far
away are usually uncorrelated. In a data table on the other hand, no such correlation between table
cells can be assumed a priori, and operations such as switching feature columns should not affect the
classification result, which is not the case for pixel columns in an image. Surprisingly, tabular data is
often referred to as ”structured data” in machine learning literature, while other data representations
are referred to as ”unstructured data”.

5.1.1 Linear Models

For solving machine learning tasks based on tabular data, several algorithms could be used, from sim-
ple models to complex deep learning architectures. Algorithms that precede the era of deep learning
are often referred to as ”classical machine learning” and they still enjoy a high popularity, in partic-
ular for tabular data problems [84]. The least complex class of models are linear models [85]. For
regression, these models simply fit a linear equation to the data, which can then be used to obtain the
corresponding value for the variable of interest. In particular, for a data point 𝐱 containing 𝐾 input
features, the equation becomes:

𝑓 (𝐱) = 𝜃0 +
𝐾

∑
𝑘=1

𝜃𝑘𝑥𝑘 (5.2)

where the 𝜃𝑘 are the coefficients corresponding to the 𝑘-th input feature and 𝜃0 describes the
intercept of the linear equation. The function is learned by optimizing the coefficients such that the
residuals between the fitted curve and the variable of interest of the datapoints 𝑦𝑖 are minimized:

𝜽opt = arg min
𝜽

‖𝑋𝜽 − 𝑌‖2
2 (5.3)

In addition to linear regression, linear models can also be used for classification. This is called
logistic regression and essentially works the same as the linear regression model in logit space [86].
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For simplicity, the focus of this section will be on the binary classification case, but the problem
naturally extends to a multi-class classification problem. Classification models typically do not output
the predicted class assignment of a datapoint directly, but a probability referring to the datapoint
belonging to a particular class. In logistic regression, the probability can be obtained from fitting
a line in logit space and then using the logistic function to map back into probability space. The
probability of a data point 𝐱 given the weights 𝜽 can be computed as:

𝑝𝜽(𝐱) = 1

1 + 𝑒−(𝜃0+∑𝐾
𝑘=1 𝜃𝑘𝑥𝑘)

(5.4)

To find the optimal model for a given data set, the coefficients are optimized such that the negative
logarithmic likelihood over the entire data set is minimal:

𝜽opt = arg min
𝜽

−
𝑁

∑
𝑖=1

(1 − 𝑦𝑖) ln(1 − 𝑝𝜽(𝐱𝑖)) + 𝑦𝑖 ln(𝑝𝜽(𝐱𝑖)) (5.5)

Equation 5.5 is also referred to as binary cross entropy and is frequently used in binary classifi-
cation problems.

5.1.2 Decision Trees

While linear models are suited to solve both classification and regression tasks in a simple way, their
main shortcoming is the inability to model non-linear functions. An alternative algorithm in classi-
cal machine learning that can also learn non-linear functions is a decision tree and similar to linear
models, they can be used to solve both classification and regression problems [87,88]. Decision trees
consist of two kinds of nodes: First, there are internal nodes, which are nodes that have connections
– so-called branches – to nodes further down the tree. In decision tree learning, binary trees are typ-
ically used, which means that each internal node is connected to exactly two nodes in the next level
of the tree. Second, there are leaf nodes, which are ”end” nodes that do not connect to any other
nodes. When training a decision tree, the input samples are split on learned decision boundaries at
each internal node and eventually end up at a leave, which determines the output of the model. The
way the decision boundaries are chosen depends on the task that should be solved. In a regression
task, the following algorithm is executed at each internal node:

1. Take the 𝑝-th input feature of the data set and sort all values such that 𝑥𝑖,𝑝 ≤ 𝑥𝑖+1,𝑝.

2. For each pair of consecutive unique values, compute the mean value. These means (𝑡𝑗) constitute
the possible thresholds to split the data.

3. For 𝑗 = 0 compute the average values for datapoints below and above the threshold:

̄𝑥low,𝑗=0,𝑝 = 1
𝑁low

∑
𝑙

𝑥𝑙,𝑝∀𝑥𝑖,𝑝 < 𝑡0

̄𝑥high,𝑗=0,𝑝 = 1
𝑁high

∑
𝑚

𝑥𝑚,𝑝∀𝑥𝑖,𝑝 > 𝑡0
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4. Compute the sum of squared residuals between the values and the corresponding mean:

SSR𝑗=0,𝑝 =
𝑁low

∑
𝑙=1

(𝑥𝑙,𝑝 − ̄𝑥low,𝑝)2 +
𝑁high

∑
𝑚=1

(𝑥𝑚,𝑝 − ̄𝑥high,𝑝)2

5. Repeat steps 3 and 4 for all other 𝑗 > 0

6. The threshold value that yields the lowest SSR is defined as the optimal threshold for the 𝑝-th
feature:

SSR𝑝 = min
𝑗

SSR𝑗,𝑝

7. When multiple features are present, all steps above have to be repeated for all available features
𝑘 ≠ 𝑝 and the feature yielding the lowest SSR overall is chosen for the split:

𝑝opt = arg min
𝑝

𝑆𝑆𝑅𝑝

When the optimal feature and threshold has been chosen, the data set is split up: all datapoints
that have lower values in said feature go in one branch (typically left) to the next tree level, while
datapoints with higher values go in the other (typically right) branch. Each branch leads to another
node, which can be an internal node where the procedure outlined above will be repeated for the
remaining datapoints, or a leaf node where the average of the datapoints is defined as the final output.
The point at which the further splitting of samples is stopped and a node is declared a leaf depends
on several factors and is often considered a hyperparameter that has to be optimized. The simplest
stopping criterion is the situation when a tree is pure, i.e. when all leaves yield residuals of zero.
However, this scenario is often not desirable since such trees tend to overfit quickly on the data they
were trained on. Typically either a maximum depth, a maximum number of leaf nodes or a minimum
number of samples per leaf is defined as a stopping criterion.

For classification, the tree is built in a similar fashion as in the regression task: Samples are split
at each internal node and for each feature, all possible thresholds are used to determine the optimal
feature and threshold values. However, instead of minimizing the SSR, a different value is typically
used in classification, namely the Gini impurity. Given a threshold 𝑡, the number of samples below
the threshold that have class 𝑦𝑙 = 0 are denoted as 𝑁low,0 and those with class 𝑦𝑙 = 1 as 𝑁low,1. The
Gini impurity for samples below the threshold is then given by:

𝐼𝐺,low = 1 − (
𝑁low,0

𝑁low,0 + 𝑁low,1
)

2

− (
𝑁low,1

𝑁low,0 + 𝑁low,1
)

2

= 1 − 𝑞2
low,0 − 𝑞2

low,1 (5.6)

where 𝑞low,𝑐 describes the relative frequency of class 𝑐 amongst samples below the threshold. The
same calculation is repeated for samples above the threshold:

𝐼𝐺,high = 1 − 𝑞2
high,0 − 𝑞2

high,1 (5.7)

and finally, the Gini impurity of the split is calculated as the weighted sum of the impurities for
samples above and below the threshold:
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𝐼𝐺 = 𝑁low
𝑁 𝐼𝐺,low +

𝑁high
𝑁 𝐼𝐺,high (5.8)

As for the regression, all possible thresholds for all available features 𝑝 are scanned, and the split with
the lowest Gini impurity is finally chosen for the current split. The splitting at internal nodes continues
until either all leaf nodes are pure, meaning they only contain samples from a single class, or until
one of the previously discussed stopping criteria is met. Finally, the output of a leaf is determined by
the majority class of the samples that ended up in it.

While decision trees are suited to solve nonlinear problems, they also have weaknesses that need
to be taken into account: Decision trees often suffer from poor generalization performance. This
means that, while a good performance is achieved on the samples that the tree was trained on, the
performance on an independent sample from the same source is significantly lower. This phenomenon
is also referred to as overfitting. Also, decision trees are often sensitive to small changes in the training
data, since these may cause different data splittings to occur, which in turn could result in a different
tree. Also, even though a decision tree can deal with nonlinear problems, it is still piece-wise constant
and therefore is also limited when capturing highly complex non-linear relationships. To overcome
these problems, an entire class of models exist that combine multiple individual trees into a single,
large model. These models are referred to as ensemble methods and will be discussed in the following
chapter.

5.2 Ensemble Methods

5.2.1 Introduction

In the previous chapter, decision trees and their advantages and disadvantages for solving complex
problems were outlined. Another class of algorithms exists that improves on the difficulties of individ-
ual decision trees by combining multiple trees into a single, large ensemble model. Methods based on
ensembles of trees are also referred to as ensemble models and two major classes of ensemble models
will be discussed in this chapter: bagging models and (gradient) boosting models.

5.2.2 Bagging

As previously discussed, a key problem with individual decision tree models is their high variance,
which often leads to significant overfitting. The general idea of ensemble models is to create a large
variety of different decision tree models, which individually might tend to overfit, but then take the
average of these predictions such that individual errors cancel out. Since decision trees as discussed in
the previous chapter are built in a deterministic way, the randomness needs to be artificially introduced
by the algorithm. This is often done using a method called ”bagging” [89], which is a combination of
”bootstrapping” and ”aggregating”. The bootstrapping is done by drawing a sample of datapoints with
replacement from the training set, and training an individual tree from the bootstrapped sample. This
procedure is repeated for each tree in the ensemble, which leads to a variety of different trees in the
final model. Additionally, another source of randomness is often introduced: when constructing the
tree, only a random subset of all available features is considered to determine the splittings at internal
nodes. This method is often referred to as the random subspace method [90]. The aggregating is
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done when all individual trees in the ensemble have been trained: the output of the final model is the
average of all the individual tree outputs. For classification tasks, the output class is typically chosen
by majority vote of the ensemble. For regression tasks, the output values of each of the trees are
averaged.

Bagging can be used with a variety of classification or regression algorithms and is a general
technique to reduce variance in the results of individual models. A commonly used method based on
ensembles of trees that uses bagging is the random forest [91]. Using random forests instead of indi-
vidual trees not only improves the generalization performance of the model, but also often turns out
to improve the performance overall. One reason for this is that ensembles are more complex models
that as a whole can capture non-linear effects in the data better than an individual tree. Additionally,
since each tree is built separately, the training of the ensemble can be parallelized for efficient com-
putation. While random forests are superior to individual trees in many regards, still challenges do
exist that leave room for further improvements: Random forests are typically made of deep trees that
would overfit individually. Since building deep trees is computationally expensive, random forests
can take a long time to fit, even when using parallel computing. Another problem is that trees are fit
individually, without the possibly useful information that other trees in the ensemble have learned.
This means that often a large amount of trees is needed to achieve a satisfactory performance. To fur-
ther improve ensemble methods with respect to said problems, another family of algorithms, called
(gradient) boosting, was developed. These models are amongst the most popular in modern machine
learning applications [84] and thus will be discussed in detail in the following chapter.

5.2.3 Boosting

Similar to the previously discussed ensemble models, boosting methods are based on an ensemble of
different individual models. However, the fundamental idea behind boosting is to use an ensemble
of many ”weak” models and training them in an iterative fashion, such that errors made by a pre-
vious model can be corrected by the following models. This stands in contrast to bagging models
such as random forests, since these models are trained individually, without knowledge of the errors
other models make. Additionally, bagging models train an ensemble of ”strong” models (e.g. deep
trees) that individually overfit the training data, while boosting trains a combined ensemble of ”weak”
models (e.g. shallow trees or ”stumps”) that individually underfit. Several variants of boosting al-
gorithms exist and in this chapter, three of the mainly used variants are discussed: AdaBoost [92],
XGBoost [93] and LightGBM [94]. Since the studies following this chapter mainly relate to clas-
sification problems, only the case of classification will be discussed in detail. However, all of the
mentioned boosting methods are also suitable to solve regression problems in a similar fashion.

AdaBoost

The AdaBoost algorithm [92], which is shorthand for ”adaptive boosting”, combines weak learners
in a way such that they can adapt to samples that are difficult to classify in the training process and thus
improve in predictive performance. In AdaBoost, the individual learners that are used are typically
very weak, often achieving only slightly better than random performance. The learners are based on
so-called decision stumps, which are trees with a single internal node split and two leafs. During
training, the individual samples are assigned weights that signify which of them were difficult to
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classify by the previous model. At the beginning of the training (i.e. at the iteration indexed by
𝑗 = 0), all samples 𝑥𝑖 are assigned equal weights, 𝑤𝑗=0,𝑖:

𝑤𝑗=0,𝑖 = 1
𝑁 ∀ 𝑖 (5.9)

where 𝑁 denotes the total number of samples in the training set. Just as described in subsection 5.1.2,
the stump is now built using a criterion such as the Gini impurity to split the samples into two leaf
nodes. Now, the total error of the stump is computed as the sum of weights of all misclassified
samples. Let 𝑦𝑖 be the class label of the datapoint 𝑥𝑖 and ̂𝑦𝑖 the class label that is predicted by the
stump. The total error for the current stump with index 𝑗 = 0 is then given by:

𝜀tot.,𝑗=0 = ∑
𝑖

𝑤0,𝑖 ∀ 𝑖 , where 𝑦𝑖 ≠ ̂𝑦𝑖 (5.10)

Then, a weight 𝛾𝑗=0 is computed for the current stump, which will be used to calculate the entire
model output later:

𝛾𝑗=0 = 1
2 log ⎛⎜

⎝

1 − 𝜀tot.,𝑗=0
𝜀tot.,𝑗=0

⎞⎟
⎠

(5.11)

the 𝛾𝑗 weight is designed such that stumps with a small error get a higher contribution to the final
output compared to stumps with a larger error.

Next, the sample weights will be adjusted such that they are decreased for correctly classified
samples and increased for incorrectly classified samples:

�̃�𝑗+1,𝑖 = 𝑤𝑗,𝑖 𝑒𝛾𝑗 ∀ 𝑖 , where 𝑦𝑖 ≠ ̂𝑦𝑖 (5.12)

�̃�𝑗+1,𝑖 = 𝑤𝑗,𝑖 𝑒−𝛾𝑗 ∀ 𝑖 , where 𝑦𝑖 = ̂𝑦𝑖 (5.13)

Finally, the computed weights are normalized:

𝑤𝑗+1,𝑖 = 1
∑𝑁

𝑖=1 �̃�𝑗+1,𝑖
�̃�𝑗+1,𝑖 (5.14)

Now, there are two possibilities to use the updated weights in the next training iteration: One
option is to resample the set of training datapoints X according to the computed weights. This will
create a data set where duplicates of previously misclassified samples will occur more frequently
relative to those that were correctly classified. Therefore, the misclassified samples have a higher
impact on the classifier training and will force the next decision stump to focus on classifying them
correctly. A second option is to use a weighted Gini impurity by taking into account the sample
weights in the computation of the relative frequencies. Let 𝑐 be the class to consider and 𝑁𝑐 the
number of samples with class 𝑐 in the current node and 𝑁node the number of total samples in the
current node, then the weighted relative frequency 𝑞𝑤,𝑐 of class 𝑐 becomes:

𝑞𝑤,𝑐 = ⎛⎜⎜
⎝

∑𝑁𝑐
𝑖=1 𝑤𝑗+1,𝑖

∑𝑁node
𝑖=1 𝑤𝑗+1,𝑖

⎞⎟⎟
⎠

(5.15)

By plugging the weighted relative frequency into Equation 5.6 and Equation 5.7 for the child
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nodes below and above the current threshold, respectively, the weighted Gini impurity for each node
can be computed as

𝐼𝐺,𝑤,high = 1 − 𝑞2
high,𝑤,0 − 𝑞2

high,𝑤,1 (5.16)

𝐼𝐺,𝑤,low = 1 − 𝑞2
low,𝑤,0 − 𝑞2

low,𝑤,1 (5.17)

and then the combined weighted Gini impurity for the entire split becomes

𝐼𝐺,𝑤 =
𝑁low

∑
𝑖=1

𝑤𝑗+1,𝑖 𝐼𝐺,𝑤,low +
𝑁high

∑
𝑘=1

𝑤𝑗+1,𝑘 𝐼𝐺,𝑤,high (5.18)

This criterion is then used to build a new stump and the procedure outlined previously is repeated.
The training can again end based on different conditions, such as reaching a predefined maximum
number of stumps. Finally, the model outputs need to be computed. This is done using weighted
majority vote over all stumps based on the error weight that was assigned during the training in Equa-
tion 5.11. Let 𝛾𝑠 be the weight of stumps 𝑠 that predict the class label ̂𝑦 = 0 for a new datapoint
𝑥 and 𝛾𝑡 the corresponding weight of stumps 𝑡 that predicts label ̂𝑦 = 1. The decision of the entire
AdaBoost model is then given by:

̂𝑦 = Θ (∑
𝑡

𝛾𝑡 − ∑
𝑠

𝛾𝑠) (5.19)

where Θ is the Heaviside function.

Gradient Boosting

AdaBoost constitutes a powerful model for classification and regression tasks that iteratively im-
proves on a given problem by adjusting weights of samples that are difficult to classify. However, one
feature that is often desired in practice is to be able to minimize arbitrary loss functions when training
a model. This is a capability that AdaBoost lacks and a new family of models was developed to
include this feature in boosted ensemble learning: gradient boosting algorithms. Before outlining the
specific implementations of modern gradient boosting methods, the foundational algorithm [95] will
be discussed. The algorithm is described as follows:

The default implementation of the gradient boosting algorithm can be used with any loss function
and can be applied to any task. For binary classification problems, which are the main focus of this
work, the binary cross-entropy described in Equation 5.5 is typically used. The algorithm starts out
with defining a constant value that minimizes the loss function for the initial model of the ensemble,
𝑓0(𝑥). For the BCE loss, the optimal constant value minimizing it is the logit of the observed class
probabilities in our data:

𝑓0(𝑥) = logit(𝑝) = ln ( 𝑝
1 − 𝑝) (5.20)

where 𝑝 is the class probability of class 𝑦 = 1. In general, gradient boosted trees for classification
operate in logit rather than probability space. Next, the individual tree learners are constructed. This
is done by computing the residuals as the negative gradient of the loss with respect to the output of
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Algorithm 1: Gradient Boosting
Input: Data (𝑥𝑖, 𝑦𝑖)𝑛

𝑖=1 and a differentiable loss function ℒ(𝑦𝑖, 𝑓 (𝑥))
Output: The fitted gradient boosting model.

/* Initialize model with constant value a */
1 𝑓0(𝑥) = arg min𝑎 ∑𝑛

𝑖=1 ℒ(𝑦𝑖, 𝑎)

/* Iterate over all 𝑀 learners in the model */
2 for 𝑚 ← 1 to 𝑀 do
3 Calculate residuals 𝑟𝑖𝑚 = − [𝜕ℒ(𝑦𝑖,𝑓𝑚−1(𝑥𝑖))

𝜕𝑓𝑚−1(𝑥𝑖)
] for 𝑖 = 1, … , 𝑛

4 Fit regression tree to the residuals 𝑟𝑖𝑚 using the typical procedure for regression trees.
Refer to the leafs of the tree as 𝑅𝑗𝑚 for 𝑗 = 1, … , 𝐽𝑚

/* Iterate over all leafs and compute a scaling factor 𝛾𝑗𝑚 that
minimizes the loss for each of them. */

5 for 𝑗 ← 1 to 𝐽𝑚 do
6 Calculate 𝛾𝑗𝑚 = arg min𝛾 ∑𝑥𝑖∈𝑅𝑗𝑚

ℒ(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + 𝛾)

7 Update the model: 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝜂 𝛾𝑗(𝑥,𝑚) 𝑚 ,where 𝑗(𝑥, 𝑚) describes the index of
the leaf node that sample 𝑥 ends up in.

𝑗(𝑥, 𝑚) = arg max
𝑗

𝐼(𝑥 ∈ 𝑅𝑗𝑚)

8 return 𝑓𝑀(𝑥);

the previous model. Similar to logistic regression, gradient boosting for binary classification works
by doing regression in the logit space. The output of the model is then not the predicted probability
but the logit of it:

𝑓 (𝑥𝑖) = logit( ̂𝑦𝑖) (5.21)

and to get ̂𝑦, the output has to be mapped back into a probability by using the logistic function:

̂𝑦 = 1
(1 + 𝑒−logit( ̂𝑦))

= 1
(1 + 𝑒−𝑓 (𝑥))

(5.22)

Since the individual trees operate in logit space, it is helpful to denote the binary cross entropy loss
defined in Equation 5.5 as a function of logit( ̂𝑦) instead of ̂𝑦:

ℒBCE(𝑦𝑖, 𝑓 (𝑥𝑖)) = −𝑦 logit( ̂𝑦𝑖) + ln(1 + 𝑒logit( ̂𝑦𝑖)) = −𝑦 𝑓 (𝑥𝑖) + ln(1 + 𝑒𝑓 (𝑥𝑖)) (5.23)

The residuals based on the previous model with index 𝑚 − 1 in the ensemble can now be easily
computed using the derivative of Equation 5.23 with respect to 𝑓 (𝑥𝑖) and:

𝑟𝑖𝑚 = 𝑦𝑖 − 𝑒𝑓𝑚−1(𝑥𝑖)

1 + 𝑒𝑓𝑚−1(𝑥𝑖)
(5.24)

Once the residuals are obtained, the next tree in the ensemble is obtained by fitting it to the resid-
uals 𝑟𝑖𝑚 as discussed in subsection 5.1.2. Then, for all leafs in the new tree, the optimal value for the
scaling value 𝛾𝑗𝑚 is computed. For the loss function Equation 5.23, the optimal value for 𝛾 can be
computed with a Taylor approximation:
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ℒ(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + 𝛾) ≈ ℒ(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖)) + 𝑑
𝑑𝑓(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖))𝛾 + 1

2
𝑑2

𝑑𝑓 2 (𝑦𝑖, 𝑓𝑚−1(𝑥𝑖))𝛾2 (5.25)

Using the derivative with respect to 𝛾, one obtains:

𝑑
𝑑𝛾ℒ(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + 𝛾) ≈ 𝑑

𝑑𝑓(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖)) + 𝑑2

𝑑𝑓 2 (𝑦𝑖, 𝑓𝑚−1(𝑥𝑖))𝛾2 = 0 (5.26)

After some calculation, the solution for 𝛾𝑗𝑚 is given by:

𝛾𝑗𝑚 =
∑𝑥𝑖∈𝑅𝑗𝑚

𝑟𝑖𝑚

∑𝑥𝑖∈𝑅𝑗𝑚
𝑒−𝑓𝑚−1(𝑥𝑖) (1 + 𝑒−𝑓𝑚−1(𝑥𝑖))−2

(5.27)

Finally, model at the current iteration, 𝑚, is updated:

𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝜂 𝛾𝑙𝑚 (5.28)

where 𝑙 is the index of the leaf that 𝑥 ends up in and 𝜂 is the learning rate, which is set before the
training. In summary, the fundamental gradient boosting algorithm works by iteratively training de-
cision tree models that do a regression on the residuals of the previous models. By doing this, the
loss function is continuously improved at each iteration.

XGBoost

XGBoost [93] is a popular gradient boosting algorithm, in particular for tabular data sets. It is
based on the gradient boosting algorithm discussed in the previous chapter, but employs important
improvements for better performance and faster training.

One difference of XGBoost compared to the default gradient boosting algorithm is that it employs
specific regularization techniques. In particular, the loss function for XGBoost is given by:

ℒXGBoost(𝑦𝑖, 𝑓𝑚(𝑥𝑖)) = ℒ(𝑦𝑖, 𝑓𝑚(𝑥𝑖)) + 𝜔 𝑇 + 1
2 𝜆 𝛾2

𝑗(𝑥𝑖,𝑚)𝑚 (5.29)

where again 𝑗(𝑥, 𝑚) describes the index of the leaf node that sample 𝑥 ends up in and 𝑇 is the total
number of leafs in the current tree. In Equation 5.29, two regularization terms are added. 𝜔 is a term
that controls how trees are “pruned”, which describes a regularization technique where, after a tree
is fitted, leaf nodes are deleted from the tree to reduce overfitting. Finally, the term 𝜆 penalizes the
values of the individual leaf weights, 𝛾𝑗𝑚.

Another difference is that XGBoost works with any differentiable function for the loss. This
is because instead of computing gradient descent in function space, XGBoost uses the Newton-
Raphson method, which allows to compute a generic loss function based on a second order Taylor
approximation. First, the gradients and hessians are calculated at each iteration 𝑚:
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𝑔𝑖 = 𝜕ℒ(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖))
𝜕𝑓𝑚−1(𝑥𝑖)

(5.30)

ℎ𝑖 = 𝜕2ℒ(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖))
𝜕𝑓𝑚−1(𝑥𝑖)2 (5.31)

The Taylor approximation can then be written as:

ℒ ≈
𝑁

∑
𝑖=1

(𝑔𝑖 ⋅ 𝑓𝑚(𝑥𝑖) + 1
2 ⋅ ℎ𝑖𝑓 2

𝑚(𝑥𝑖)) + 𝜔 𝑇 + 1
2𝜆𝛾2

𝑗(𝑥𝑖,𝑚),𝑚 (5.32)

Since the individual functions 𝑓𝑚(𝑥) are tree-based learners with leaf weights 𝛾𝑗(𝑥,𝑚),𝑚, Equation 5.32
can be simplified to:

ℒ ≈
𝑁

∑
𝑖=1

(𝑔𝑖 ⋅ 𝛾𝑗(𝑥𝑖,𝑚),𝑚 + 1
2 ⋅ (ℎ𝑖 + 𝜆)𝛾2

𝑗(𝑥𝑖,𝑚)𝑚) + 𝜔 𝑇 (5.33)

Setting Equation 5.33 to zero and solving for the value of 𝛾𝑗𝑚 yields:

𝛾𝑗𝑚 = −
∑𝑥𝑖∈𝑅𝑗𝑚

𝑔𝑖

∑𝑥𝑖∈𝑅𝑗𝑚
ℎ𝑖 + 𝜆 (5.34)

Finally, the value of 𝛾𝑗𝑚 can be substituted in the loss function:

ℒ ≈ −1
2

𝑇
∑
𝑗=1

(∑𝑥𝑖∈𝑅𝑗𝑚
𝑔𝑖)2

∑𝑥𝑖∈𝑅𝑗𝑚
ℎ𝑖 + 𝜆 + 𝜔𝑇 (5.35)

Using the Newton-Raphson method outlined above allows to disconnect the XGBoost implementa-
tion from the desired loss function. As long as the function is differentiable, any function can be set
as the cost function by the user.

Another important difference between XGBoost and classic gradient boosting is the way the trees
are built. Instead of using the Gini impurity to choose the optimal split value, a score is computed
that is based on the loss outlined in Equation 5.35:

𝐼XGBoost,𝑗 = 1
2

(∑𝑥𝑖∈𝑅𝑗𝑚
𝑔𝑖)2

∑𝑥𝑖∈𝑅𝑗𝑚
ℎ𝑖 + 𝜆 (5.36)

When splitting samples, 𝐼XGBoost,𝑗 is computed for the root node, as well as the leafs for samples below
and above the current candidate threshold. Then, the gain 𝐺 is computed to decide which feature and
split value is optimal:

𝐺 = 𝐼XGBoost,low + 𝐼XGBoost,high − 𝐼XGBoost,root (5.37)

Using a loss-based score for splitting the samples has the major advantage that the optimization of
the gradient is done at each split and not only at the end of the tree-building process as in classical
gradient boosting.

Additionally, several performance optimizations are employed in XGBoost that significantly de-
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crease training time, in particular for larger data sets. Classic gradient boosting builds trees as dis-
cussed previously in subsection 5.1.2: When splitting the sample, each possible threshold value for
each feature in the data set is tested as a split candidate. This “greedy” algorithm is computation-
ally expensive, in particular when the training set consists of many samples. Therefore, XGBoost
implements an approximate greedy algorithm that is based on weighted quantiles instead of unique
values for threshold candidates. First, using sketching algorithms and parallel computing, the entire
data set is split up across processors, histogrammed and approximate quantiles are computed. The
used weights are based on the hessians, ℎ𝑖 that were discussed previously. The quantiles are computed
such that their sum of weights is equal and the quantile values are then defined as possible threshold
candidates. In total, approximately 33 of them are typically used in XGBoost per feature, leading to
a significant speed-up compared to the classic greedy algorithm.

Furthermore, XGBoost implements improved handling of missing or frequent zero values. It
defines a default branch where all missing values go by using the optimal gain for both branch op-
tions at each split. This groups samples with missing values together and learns to deal with them in
an optimal way. Finally, XGBoost uses several hardware optimizations to be more computationally
efficient compared to classical algorithms. One feature is cache-aware access, where gradients and
hessians are stored in the CPU cache for fast computation of splitting scores and output values. An-
other important feature is that XGBoost uses blocks for out-of-core computation: If the data set is
too large to fit the cache or RAM of the machine, data has to be read from or written to the hard drive
memory, which is slow. XGBoost uses block compression to save disk space and time writing the
data to disk. When the data is accessed, it is uncrompressed on the fly by the CPU. When multiple
disks are available, XGBoost uses sharding to distribute data across multiple disks, such that they
can be read in parallel and the throughput is increased.

LightGBM

LightGBM [94] is an improved gradient boosting algorithm, which was implemented after the emer-
gence of XGBoost. Therefore, it contains most of the improvements mentioned in the previous sec-
tions and further optimizes gradient boosting in terms of performance and computational costs. One
key difference between XGBoost and LightGBM is the way that trees are constructed: XGBoost
and the classical gradient boosting algorithms use level-wise tree growth, whereas LightGBM uses
leaf-wise tree growth. In level-wise tree growth, each leaf node at the current level of the tree is split,
leading to a balanced tree with a similar amount of branches left and right of the root node. In leaf-
wise tree growth, however, the leaf that reduces the loss most is identified and only this leaf is split.
This means that it is possible that only leafs in a certain branch can be split further, while other leafs
on higher levels in the trees are ignored. This leads to an asymmetrical tree, where one side of the tree
contains more branches then the other. Leaf-wise tree growth leads to lower achieved loss values but
also to more complex trees, which increases overfitting. Therefore, leaf-wise tree growth is especially
suited when dealing with large data sets, whereas smaller data sets are quickly overfitted.

Similar to XGBoost, LightGBM reduces the amount of candidate thresholds to consider when
splitting. However, it does so using histogrammed gradient boosting techniques. This means that the
features are histogrammed in a predefined number of bins and each bin edge is used as a candidate
threshold. This significantly reduces the amount of thresholds to be scanned and is also a more simple
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and resource-efficient implementation compared to the weighted quantile sketch used in XGBoost.
LightGBM also speeds up the training by using a technique called gradient-based one-side sampling
(GOSS). Using only a sub-sample of the entire training data to fit a tree is a common technique to
introduce variance in an ensemble. At the same time, this can be thought of as a form of regularization,
since the model cannot overfit on the entire training data any more. LightGBM uses an efficient
downsampling technique, which is based on the fact that the contribution of samples depends on their
gradients. Therefore, samples that contribute most due to having a high gradient should be kept such
that the tree building process is a s efficient as possible. However, simply discarding all samples with
low gradient values would lead to a distortion of the actual feature distributions, which will reduce
the model performance. Therefore, LightGBM implements the above mentioned GOSS algorithm,
which allows subsampling the samples with the highest gradients, while at the same time making
sure the original distributions are not being distorted. It does so by first selecting the samples with
large gradients and then performing random sampling on those with small gradients. Finally, when
computing the gain to split the samples at an internal node, a weight 𝑤 is applied to the low-gradient
samples:

𝑤 =
1 − 𝜖high

𝜖low
(5.38)

where 𝜖high and 𝜖low are the fractions of selected high gradient and subsampled low gradient data
points with respect to the full data, respectively. This factor ensures that the original distribution
is retained while at the same time being able to focus more on samples with high gradient values.
Lastly, LightGBM uses a feature called Exclusive Feature Bundling (EFB) to deal with sparsity in
the data. This relates to the fact that in many real-world applications features are sparse, such as one-
hot encoded categorical features. One characteristic of such features is that they are often exclusive
in a sense that they rarely take on non-zero values simultaneously. Therefore, these features can be
bundled effectively, which is done using the complex graph-based EFB algorithm in LightGBM.

5.3 Deep Learning

While the classical machine learning algorithms described in section 5.2 have been shown to achieve
state-of-the-art performance on tabular data tasks, they lack the ability to model complex, high-
dimensional nonlinear problems. In particular, machine learning tasks like Natural Language Process-
ing (NLP) or computer vision are difficult to solve for these models. One class of machine learning
algorithms that is specifically suited for such tasks is deep learning. These algorithms use highly com-
plex nonlinear functions with a large number – often millions – of parameters to model the problem
at hand. According to the universal approximation theorem [96], this allows for an approximation of
any arbitrarily complex function, given an appropriate neural network architecture. Due to the advent
of novel algorithms as well as dedicated, highly parallel computing infrastructure such as Graphics
Processing Units (GPUs), deep learning has received significant interest in research and application in
the last decade. In the subsequent sections, the fundamental principles of this field will be discussed.

47



CHAPTER 5. FOUNDATIONS OF MACHINE LEARNING

...

x1
x2
x3
x4

xn

w1

w2

w3
w4

wn

ykφ

Figure 5.1: Diagram of an artificial neuron.

5.3.1 Artificial Neurons

Deep learning algorithms are based on layers of units that are called artificial neurons [97] or nodes.
An algorithm that uses multiple of such layers that are interconnected is also referred to as Deep
Neural Network (DNN) [98]. The artificial neurons are the foundational building blocks for any kind
of DNN and they define a function 𝑓 : ℝ𝑛 → ℝ, which is given by:

𝑓 (𝐱) = 𝜙 ⎛⎜
⎝

𝑁
∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏⎞⎟
⎠

(5.39)

From Equation 5.39 it can be seen that the structure of an artificial neuron is rather simple: There are
𝑁 inputs, denoted as (𝑥1, … , 𝑥𝑛) and each input 𝑥𝑖 is assigned a weight 𝑤𝑖 that it gets multiplied with.
A bias term, 𝑏, is also included, which acts as an additional parameter. A function 𝜙, also referred to
as the “activation function”, is then applied to the sum of weighted inputs plus the bias term, which
yields the output of the neuron, 𝑓 (𝐱). A diagram of an artificial neuron is shown in Figure 5.1.

If 𝜙 were a linear function, artificial neurons would only be able to model linear problems. There-
fore, nonlinear functions are typically used as activation functions. Several activation functions exist
and the particular choice depends on a variety of different factors, since each of them comes with
advantages and disadvantages. Neural networks – similar to gradient boosting – are trained using the
gradients of a loss function with respect to the weights of their nodes. For simplicity, consider the
optimization of a weight in a neural network consisting only of the neuron described in Equation 5.39.
Since weights are typically optimized in an iterative manner, the formula to update a weight at time
step 𝑡 − 1 to the value at the current step 𝑡 is given by:

𝑤(𝑡) = 𝑤(𝑡 − 1) − 𝜂 𝜕ℒ(𝑓 (𝐱), 𝑦)
𝜕𝑤(𝑡 − 1) , (5.40)

where 𝜂 is a pre-defined learning rate, ℒ is the loss function to be optimized and 𝑦 is the truth label that
the neuron should predict. As the optimization depends on the gradient of ℒ, which itself depends
on the node output 𝑓 (𝐱), the activation function 𝜙 benefits from being continuously differentiable.
However, activations exist that do not exhibit this property for some points or ranges within their
domain. A selection of frequently used activation functions is shown in Figure 5.2.

The sigmoid function is defined between zero and one and therefore keeps the values within a
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Figure 5.2: Different commonly used activation functions.

well-defined range. It allows to turn the output of a model into predictions of class probabilities,
which is used in classification tasks. It is also a continuously differentiable function, which allows
to compute the gradient at any point. One problem with the sigmoid function is that the gradient
gets small for large positive and negative values. Once this happens, the values of the gradients in
Equation 5.40 are too small to cause an actual update of the weight and the training stalls out. This
phenomenon is also referred to as the vanishing gradient problem. One way to mitigate this problem
is to use an activation that has a constant gradient value throughout most of its domain.

Such a function is the rectified linear unit (ReLU), which is given by:

𝑓 (𝑥) = max(0, 𝑥) . (5.41)

This function has a non-vanishing gradient for large values, while it is zero for negative values. This
helps the network to learn for a large range of node input values, while also being able to shut down a
node, allowing the network to learn sparse representations and making the training more efficient. The
ReLU activation is not continuously differentiable, since the derivative cannot be computed for 𝑥 = 0.
However, this is not relevant in practice, since the gradient can simply be set to zero at this point. One
problem that can occur is a phenomenon called “dying ReLU”: When a node with a ReLU activation
function gets in a state where it is never getting activated since its output value (and therefore its
gradient) is always zero. If many nodes in a network get pushed into such a dead state, the learning
capacity is reduced significantly, since their gradient-based information is no longer available. To
remedy the occurrence of dead nodes, variations of ReLU exist that also have non-zero gradients for
negative values. One such variation is the Exponential Linear Unit (ELU) function, which is given
by:

𝑓 (𝑥) =
⎧{{
⎨{{⎩

𝑥 if 𝑥 ≥ 0 ,

𝛼 ⋅ (𝑒𝑥 − 1) if 𝑥 < 0 .
(5.42)

5.3.2 Deep Neural Networks

Artificial neurons are the foundational building blocks of deep learning algorithms. In DNNs, many
interconnected layers of neurons are typically used to create a model that is able to extract intricate
nonlinear patterns from the input data [98]. Due to this ability, DNNs have shown to achieve state-
of-the-art results in complex tasks. In NLP, a DNN architecture named transformer [99] has been
shown to yield the best results in translation [84,100] and also language generation tasks [101], which
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Input layer Hidden layers Output layer

Figure 5.3: A diagram of a generic deep neural network (DNN).

culminated in the creation of the generative pre-trained transformer (GPT) models and their use in
popular applications such as ChatGPT [102]. But also for other tasks such as computer vision [103] or
speech recognition [104], dedicated DNN architectures exist that show state-of-the-art performance.
In particle physics, deep learning – based approaches have successfully been used to improve on
various tasks, from jet tagging to tracking to fast event simulation and beyond [105].

The most fundamental architecture of a DNN is referred to as a fully connected network and it
consists of three kinds of layers: An input layer, one or more intermediate hidden layers and finally an
output layer. A diagram of such a network can be seen in Figure 5.3. In this example, two input features
𝑥1 and 𝑥2 are used and the “fully connected” approach means that each node in a layer is connected
to each node in the next layer. Also, a single output ̂𝑦 is produced by the depicted DNN, which can
be the case in a regression task, where a continuous variable is predicted or for a binary classification
task, where the output is the predicted probability that the current sample belongs to the “positive”
class with index 1. However, the output layer might have any number of nodes, depending on the task
at hand. Mathematically, one layer in a DNN can be expressed as a collection of 𝑁 nodes. Since it
allows for a more compact description, the vector/matrix notation will be used in the following, where
boldfaced lowercase letters correspond to vectors and boldfaced uppercase letters to matrices. In this
notation, a signle DNN layer can be denoted as:

𝐨 = 𝜙(𝐖𝐱 + 𝐛), (5.43)

where 𝐨 is the 𝑁-dimensional output vector of the layer containing 𝑁 neurons, 𝐱 is the input vector to
the layer, 𝐖 is a 𝑁 × 𝐷 matrix where 𝐷 is the dimension of the input vector and 𝐛 is the bias vector.

In a fully connected DNN, the inputs of the hidden layers and the output layer are the outputs of
the previous layers. Therefore, the output of an entire network, which is the prediction �̂� for the input
𝐱, can be written as a combination of the output functions of 𝐿 layers:

�̂� = 𝜙𝐿(𝐖𝐿𝐨𝐿−1 + 𝐛𝐿)

= 𝜙𝐿(𝐖𝐿𝜙𝐿−1(𝐖𝐿−1𝐨𝐿−2 + 𝐛𝐿−1) + 𝐛𝐿)

= 𝜙𝐿(𝐖𝐿𝜙𝐿−1(𝐖𝐿−1𝜙𝐿−2(𝐖𝐿−2 … 𝜙1(𝐖1𝐱 + 𝐛1) … + 𝐛𝐿−2) + 𝐛𝐿−1) + 𝐛𝐿).

(5.44)
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This equation intuitively shows a key characteristic of neural networks: While the fundamental build-
ing blocks, the artificial neurons, are relatively simple entities, the combination of neurons into lay-
ers and multiple layers into large networks give rise to a highly complex construct that is capable
of extracting intricate patterns from data. Due to their complex structure, neural networks also of-
ten contain a large number of parameters that need to be optimized for a given problem, which is a
non-trivial task that requires dedicated algorithms for accurate and efficient computation. Thus, the
foundations of selected state-of-the-art methods for training and optimizing deep learning algorithms
are discussed in the following chapter.

5.3.3 Training of Deep Learning Algorithms

Gradient Descent and Optimization

Similar to classical machine learning methods, DNNs learn complex functions by minimization of a
loss term. During training, the weights and biases of all layers are changed to minimize the loss using
a gradient descent-based approach. Each weight 𝑤 in the network is updated as:

𝑤(𝑡) = 𝑤(𝑡 − 1) − 𝜂 𝜕ℒ(�̂�, 𝐲)
𝜕𝑤(𝑡 − 1) , (5.45)

where 𝜂 is again a pre-defined learning rate, ℒ is the loss function, �̂� is the model output and 𝐲 is the
truth value to be predicted. 𝑡 defines the index of the optimization step.

Gradient descent is based on the fact that, given the loss function and the currently assumed values
of the weights and biases, the fastest decrease of the loss is in the direction of the negative gradient
with respect to these weights. Therefore, using Equation 5.45 iteratively means to take steps towards
lower loss values until a minimum is finally reached. In order to make sure that this can be achieved,
the learning rate has to be carefully chosen: If the value is set too low, the training will stagnate and
the minimum will not be reached. If it is chosen too high, the weight updates will be too large and
the algorithm will step over or out of the valid minimum.

Another challenge in classical gradient descent is that for the gradient computation, the entirety of
input-output-pairs present in the data set is considered. Therefore Equation 5.45 could also be written
explicitly as:

𝑤(𝑡) = 𝑤(𝑡 − 1) − 𝜂
𝑛

𝑛
∑
𝑖=1

𝜕ℒ(�̂�(𝐱𝑖), 𝐲𝑖)
𝜕𝑤(𝑡 − 1) . (5.46)

Evaluating the gradient term for all datapoints can be computationally expensive. Additionally, in
particular for large data sets, fitting the entire data at once is unfeasible given the memory limitations
of the hardware. Therefore, stochastic optimisation methods were developed, which compute the
weight updates based on a sub-sample of the data. In Stochastic Gradient Descent (SGD) [106],
the data set is first randomly shuffled and then a weight update is done for each individual datapoint.
Naturally, using a single point results in a poor estimate of the gradient, which introduces a lot of noise
to the optimization process. Thus, SGD converges only slowly, since the variance of the achieved loss
value for each update is large. In order to achieve a better trade-off between computational complexity
and gradient estimation, mini-batch gradient descent was introduced, which uses small sub-samples,
so-called “batches” of data instead of individual data points for each weight update. Not only does
this enhance the accuracy of the gradient estimate, but it also enables the application of vectorization

51



CHAPTER 5. FOUNDATIONS OF MACHINE LEARNING

methods for efficient calculations on highly parallel processing devices like GPUs.

Another caveat in classical gradient descent is that the individual optimization steps only take into
account the gradient at the current position in loss space. However, this space often contains shallow
local minima, saddle points or local curvatures that lead to suboptimal steps during minimization.
This behaviour can result in slow convergence or in the algorithm ending up in an incorrect local
minimum. Therefore, an approach using a term called “momentum” was developed to mitigate the
mentioned effects. The main idea behind momentum is to not only take into account the local gradient,
but also the general trend of the loss space based on the gradients from previous updates. For a weight
update using momentum, a new change term 𝛽(𝑡), where 𝑡 is the index of the current optimization
step, is introduced:

𝛽(𝑡) = 𝜕ℒ
𝜕𝑤(𝑡) + 𝜇 𝛽(𝑡 − 1) , (5.47)

where 𝜇 is the momentum parameter and 𝑤 is the weight to be updated. It can be seen that the first
part of the sum is simply the gradient of the loss with respect to the weight. The second term of the
sum introduces the momentum 𝜇 and defines a recursion depending on the 𝛽(𝑡 − 1) value from the
previous iteration. This adds “short term memory” based on the optimization history to the equation
and 𝜇, which is a real-valued parameter that assumes values between zero and one, determines the
weight of this history in the update. The update of the weight 𝑤(𝑡) using momentum is then given by:

𝑤(𝑡) = 𝑤(𝑡 − 1) − 𝜂 𝛽(𝑡) , (5.48)

where 𝜂 is again the learning rate. Plugging in the definition of 𝛽(𝑡), one can see that for a momentum
value 𝜇 = 0, the original gradient descent formula (Equation 5.45) is recovered. For higher values of
𝜇, however, the historic optimization term is increased, leading to fewer oscillations caused by local
curvatures and additional inertia to overcome shallow minima.

Another extension of gradient descent-based optimization is Root Mean Squared Propagation
(RMSProp). The fundamental idea is, instead of keeping the learning rate 𝜂 fixed, to compute an
adaptive learning rate for each parameter. This is achieved by normalizing the intial learning rate by
the square root of the sum of squared gradients:

�̃�(𝑡) = 𝜂
√𝑉(𝑡 − 1)

, where 𝑉(𝑡) =
𝑡

∑
𝜏=1

𝑔(𝜏)2 =
𝑡

∑
𝜏=1

( 𝜕ℒ
𝜕𝑤(𝜏))

2

. (5.49)

This equation describes the AdaGrad approach [107]. While this adaptation of the learning rate can
improve the convergence, it also often yields too small learning rates, leading to a stagnation of the
optimization procedure. RMSProp mitigates this effect by using a decaying moving average of the
past and current gradients instead of the squared sum:

𝐺(𝑡) = 𝜌 𝐺(𝑡 − 1) + (1 − 𝜌) ( 𝜕ℒ
𝜕𝑤(𝑡))

2

, (5.50)

where 𝜌 is another hyperparameter. 𝜌 can be understood as a momentum parameter in this equation,
assigning a higher weight to past gradient values at the expense of a lower weight for current values.
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The adapted learning rate is then given by:

�̃�(𝑡) = 𝜂
√𝐺(𝑡 − 1)

(5.51)

and the weight update is computed as usual by simply replacing the fixed learning rate with the adapted
one.

𝑤(𝑡) = 𝑤(𝑡 − 1) − �̃�(𝑡) 𝜕ℒ
𝜕𝑤(𝑡 − 1) . (5.52)

Both AdaGrad and RMSProp lead to significant improvements for many optimization tasks. Since
AdaGrad decreases the learning rate over time based on the sum of squares of past gradients, param-
eters that receive infrequent updates are assigned a higher learning rate compared to those with more
frequent updates. This makes AdaGrad perform well on problems with sparse data, such as natural
language processing or computer vision. RMSProp on the other hand adapts the learning rate based
on the average of recent gradient values, which leads to an efficient scaling for quickly changing gra-
dients. Therefore, RMSProp is recommended for problems which are noisy or non-stationary (i.e.
when optimal parameters change over time).

To combine the strength of both approaches, another optimization algorithm, named Adam, was
developed [108]. It uses both the average first moment (the mean) as in RMSProp and the non-
centered second moment of the gradients as in AdaGrad to adjust the learning rate. In particular,
Adam computes an exponential moving average for both the gradients and squared gradients and the
respective parameters 𝛽1 and 𝛽2 control their decay rate. At first, two new variables, 𝑚(𝑡) and 𝑣(𝑡)
are introduced for the moving averages:

𝑚(𝑡) = 𝛽1 𝑚(𝑡 − 1) + (1 − 𝛽1) 𝜕ℒ
𝜕𝑤(𝑡 − 1) , (5.53)

𝑣(𝑡) = 𝛽2 𝑣(𝑡 − 1) + (1 − 𝛽2) ( 𝜕ℒ
𝜕𝑤(𝑡 − 1))

2

. (5.54)

Because the initial values, 𝑚(0) and 𝑣(0) are set to zero, there is an initial bias in the update of the
weights that causes the large update steps in the first iterations. To mitigate this a bias correction is
applied:

�̂�(𝑡) = 𝑚(𝑡)
1 − 𝛽𝑡

1
, (5.55)

̂𝑣(𝑡) = 𝑣(𝑡)
1 − 𝛽𝑡

2
. (5.56)

Finally, the weight update at iteration 𝑡 is computed as:

𝑤(𝑡) = 𝑤(𝑡 − 1) − 𝜂 ⎛⎜⎜
⎝

�̂�(𝑡)
√ ̂𝑣(𝑡) + 𝜖

⎞⎟⎟
⎠

, (5.57)

where 𝜂 is the learning rate and 𝜖 is a small real number that gets added to the denominator such that
the value at the initial step is not infinite.

Adam is implemented in many modern machine learning frameworks and the default values for
the respective hyperparameters are very similar. Table 5.1 shows the respective default values in the
PyTorch [109] framework. Since Adam has been shown to achieve accurate results fast for many
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Parameter Default value

𝜂 10−3

𝛽1 0.9

𝛽2 0.999

𝜖 10−8

Table 5.1: Default parameter values of the Adam optimizer, as implemented in the PyTorch frame-
work [109].

problems, in particular in deep learning applications, it is a widely used optimizer. Also in this work,
it will be used throughout many of the studies that are discussed.

Layer-Wise Backpropagation

As discussed previously, deep neural networks contain a vast amount – often millions – of train-
able parameters. Updating each weight as in Equation 5.45 efficiently for a highly complex neural
network, as defined in Equation 5.44 is computationally challenging. Therefore, modern machine
learning frameworks use a method called layer-wise backpropagation [110, 111] to compute the gra-
dients. In the following description of this algorithm, some approaches are employed to simplify the
notation: As in the beginning of this section, the vector/matrix notation is used. Additionally, the bias
parameters of the network are not considered, as they simply constitute another set of parameters that
are updated in a very similar way as the weight parameters.

The general idea behind backpropagation is that computing the gradients in a neural network can
be simplified by acknowledging that each weight in the weight matrix 𝐖𝑙 of layer 𝑙 can affect the loss
only in the following layers and only in a linear way. Consider the gradient of the loss function with
respect to the weights 𝐖𝑙:

𝜕ℒ
𝜕𝐖𝑙 = 𝜕ℒ

𝜕𝐳𝑙
𝜕𝐳𝑙

𝜕𝐖𝑙 , (5.58)

where 𝐳 describes the weighted inputs to layer 𝑙:

𝐳𝑙 = 𝐖𝑙𝐨𝑙−1 . (5.59)

To further simplify the algebra, the error term 𝜹𝑙 is introduced:

𝜹𝑙 = 𝜕ℒ
𝜕𝐳𝑙 . (5.60)

Finally, plugging in Equation 5.59 and Equation 5.60 into Equation 5.58 yields:

𝜕ℒ
𝜕𝐖𝑙 = 𝛿𝑙𝐨𝑙−1 . (5.61)

The 𝐨𝑙−1 is the output of the previous layer, which can simply be cached when the data is passed
through each layer in the network, which is also referred to as “forward pass”. Next, an expression
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for 𝛿𝑙 needs to be derived which is only depending on the subsequent layers.

𝛿𝑙 = 𝜕ℒ
𝜕𝐳𝑙 = 𝜕ℒ

𝜕𝐳𝑙+1
𝜕𝐳𝑙+1

𝜕𝐳𝑙 = 𝛿𝑙+1𝐖𝑙+1(𝜙𝑙)′(𝐳𝑙) (5.62)

Now, once the error for the final layer, 𝐿, is obtained, the errors of all previous layers can be
computed using Equation 5.62. This is also the reason for the name of the backpropagation method,
since it is possible to efficiently compute the gradient with respect to the weights by starting with the
error term on the final layer and then iterate back over all layers in the network up to the input layer.
The needed term for the error in the final layer can be computed from the respective loss:

ℒ(𝐲, �̂�) = ℒ(𝐲, 𝐨𝐿) , (5.63)

and the error is then given by:

𝛿𝐿 = 𝜕ℒ
𝜕𝐳𝐿 = 𝜕ℒ

𝜕𝐨𝐿
𝜕𝐨𝐿

𝜕𝐳𝐿 = 𝜕ℒ
𝜕𝐨𝐿 (𝜙𝐿)′(𝐳𝐿) . (5.64)

These are all the ingredients needed to efficiently compute the gradient of the loss with respect to
the weights for any layer 𝑙. As previously discussed, vector and matrix notations have been used in the
description of the layer-wise backpropagation method for simplicity. However, it naturally extends
to individual indices for each weight. For example, the weight in layer 𝑙 of the neural network that
multiplies the output node 𝑘 of the previous layer and connects to the node 𝑗 of the current layer can
be written analogously to Equation 5.61:

𝜕ℒ
𝜕𝑤𝑙

𝑗𝑘
= 𝛿𝑙

𝑗𝑜𝑙−1
𝑘 . (5.65)

In the above derivation of the backpropagation algorithm, a single input-output-pair (𝐱, 𝐲) was
assumed. However, mini-batch gradient descent is often used in practice, as discussed in the previous
subsection. Therefore, the weight update is done using the average gradient of all samples within the
mini-batch:

𝑤(𝑡) = 𝑤(𝑡 − 1) − 𝜂
𝑛

𝑛
∑
𝑖=1

𝜕ℒ( ̂𝑦(𝑥𝑖), 𝑦𝑖)
𝜕𝑤(𝑡 − 1) . (5.66)

There are two main reasons why using batched gradient descent is favoured over computing the weight
updates for the entire data set: Firstly, there is evidence that using very large batch sizes, or even the
entire data set, at once might lead to convergence towards sharp minima in the loss space that show
worse generalization to unseen data [112, 113]. Secondly, using batches has several advantages in
terms of computational cost. Large data sets often do not fit into the memory of a GPU entirely.
Using smaller batches of samples reduces the required memory significantly and allows for training
on data sets of almost any size. Additionally, many modern machine learning frameworks make use
of vectorization such that the gradients for the samples in a batch can be computed in parallel, which
considerably speeds up the training. In practice, the number of samples per batch – the batch size – is
chosen before the training depending on various parameters, such as the available hardware, memory
and data set size. The data set is then split into batches of the chosen size and for each batch, the
weights are updated. Once all batches have been used, which is referred to as epoch, the batches are
typically reshuffled and further epochs are trained until either a pre-defined limit is reached or the loss
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Figure 5.4: Loss curves for the cases of underfitting (left panel), overfitting (center panel) and a good
fit (right panel).

does not improve within a certain number of epochs.

5.3.4 Model Selection and Regularization

As discussed previously, the optimization of a machine learning model is typically done in an iterative
way. At each step, the parameters of the model are adjusted based on the gradient to further minimize
the loss. A key question in machine learning tasks is at which iteration to stop the training and select
the current model state for further analysis. This problem is often dealt with by investigating the
learning curves, also referred to as loss curves, which show the value of the loss as a function of the
iterations. One factor to consider in the training and evaluation of machine learning models is that
they are trained on a specific set of data points, also referred to as the training set. Naturally, evaluating
and selecting the model solely based on the performance on this set leads to a significant bias, which
is mitigated by using a statistically independent sample of the data for validation. Thus, this sample
is referred to as the validation set and it allows to assess how well the performance achieved on the
training set generalizes to data that is yet unknown to the model. The loss curves of both the training
and the validation set can then be studied to optimize model selection to obtain the model with the best
generalization performance. Typically, variations of three main regimes can be distinguished from
these curves: the overfitting and underfitting regimes as well as the regime of a good fit. Conceptual
versions of these curves can be seen in Figure 5.4.

In the underfitting regime, both the validation and training loss only reduce marginally within the
first few iterations and then stagnate. Additionally, the loss values are high in comparison with the
other curves in the figure. This shows that the model is unable to learn the task, which is often the
case when the complexity of the model is not sufficient to capture the function underlying the prob-
lem. In the overfitting regime on the other hand, the training loss decreases continuously, whereas
the validation loss only decreases in the first few iterations and then stagnates, leading to an increas-
ing performance gap between the two data sets. In this case, the model does not learn information
meaningful to the task. Instead, it memorizes the noise in the training data set, which leads to the
poor generalization performance as shown in the stagnating validation loss. This regime is often ob-
served for models that have a high complexity, such as DNNs. Finally, a good fit is achieved when
both the training and the validation losses decrease to a valid minimum value and the difference in
performance between the two data sets is small.

There are different ways to mitigate underfitting and overfitting when training machine learning
models. Underfitting can often be remedied by increasing the complexity of the model or switching to
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a more complex algorithm. For overfitting on the other hand, the complexity of the algorithm should
be reduced. This can be achieved by reducing the amount of parameters of the model. For a DNN,
the number of nodes per layer or the overall number of layers in the network can be decreased. To
reduce overfitting in tree-based methods, leaves can be pruned or the maximum tree depth can be re-
duced. Another method to mitigate overfitting is to penalize large parameter values in the model using
regularization. Consider the example of a layer in a DNN, where several of the trained weights have
large values. Small changes to the inputs will have a large impact on the resulting output and thus the
network will likely show poor performance when used on new datapoints. Therefore, regularization
methods exist, which are designed to keep the weight values small and thus reduce overfitting.

One of these methods is to regularize the training based on the magnitude of the weight values,
which can be done by taking into account the absolute sum of the weights (L1 regularization) [114]
or the sum of squared values of the weights (L2 regularization) [114–117]. In practice, an additional
penalty term is added to the original loss function. For a L1 penalty, the regularized version of the
loss is given by:

ℒL1 = ℒ + 𝜆1

𝑊
∑
𝑖=1

|𝑤𝑖| (5.67)

and accordingly for a L2 penalty:

ℒL2 = ℒ + 𝜆2
2

𝑊
∑
𝑖=1

𝑤2
𝑖 , (5.68)

where 𝑊 is the total number of weights of the algorithm and the 𝜆𝑖 are penalty terms that are defined
before the training. The penalizing nature of the regularization can be seen when considering the
weight updates:

𝑤𝑖(𝑡) = 𝑤𝑖(𝑡 − 1) − 𝜂 𝜕ℒL1
𝜕𝑤𝑖(𝑡 − 1) = 𝑤𝑖(𝑡 − 1) − 𝜂 𝜕ℒ

𝜕𝑤𝑖(𝑡 − 1) − 𝜂 𝜆1 sign(𝑤𝑖(𝑡 − 1)) (5.69)

and respectively for the L2 regularization:

𝑤𝑖(𝑡) = 𝑤𝑖(𝑡 − 1) − 𝜂 𝜕ℒL1
𝜕𝑤𝑖(𝑡 − 1) = 𝑤𝑖(𝑡 − 1) − 𝜂 𝜕ℒ

𝜕𝑤𝑖(𝑡 − 1) − 𝜂 𝜆2 𝑤𝑖(𝑡 − 1) . (5.70)

Both equations show that the penalizing term works in the opposite direction of the weights mag-
nitude: If the previous weight had a large positive value, the penalty will decrease the weight. If
the previous weight was negative, the penalty will increase it. L1 and L2 regularization can be used
separately or in combination. L1 regularization encourages sparsity in the model, pushing weights
towards a value of zero, while L2 regularization assigns a higher penalty to large values due to the
quadratic term. L2 regularization also reduces large weights, but does not usually push them to zero.

As with L1 regularization, introducing sparsity to an algorithm reduces overfitting. This is be-
cause a sparse model has fewer parameters and therefore corresponds to a less complex model, which
makes it more difficult to memorize the noise in the training data set and improves generalization. For
DNNs, another regularization technique exists that introduces sparsity to reduce overfitting which is
called dropout [118, 119]. Dropout randomly sets outputs of a given neural network layer to zero
during each training update. A hyperparameter called the dropout rate is introduced that defines the
probability that a node will be dropped out. On the one hand, this reduces the model complexity,
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Figure 5.5: Schematic of 𝑘-fold cross-validation, using a value of 𝑘 = 5.

since the effective number of weights per training iteration is reduced. On the other hand, it adds
stochasticity to the training. Since the nodes to be dropped out are chosen randomly, the actual model
architecture changes at each iteration. This has the effect that a model trained using dropout can be
thought of as a single-model-representation of an ensemble of various neural networks. As discussed
in section 5.2, training an ensemble of individually overfitting classifier models – such as a random
forest – can significantly reduce the overfitting that is present in individual learners. For large models
such as DNNs however, this is computationally expensive. Therefore, dropout offers a computation-
ally effective method to train an approximation of a DNN ensemble using a single model.

Regularization and model selection can be viewed as two sides of the same coin, since the learning
curves typically switch regimes during training. In the first iterations, both validation and training loss
decrease, showing the desired behaviour of the “good fit” regime. At some point, the model stops
to learn information regarding the task at hand and starts to focus on optimizing the individual data
points of the training set. At this point, the validation loss stalls out or increases, which describes
the transition to an overfitting regime. An effective method to reduce computation and make sure the
selected model state is still in the good fit regime is to detect this transition point. This is done using a
technique called early stopping. In early stopping, the validation loss is tracked at each iteration during
training and if it does not decrease by a given amount within a pre-defined number of iterations, the
training is stopped. Finally, the model state at the iteration where the minimum validation loss was
achieved is selected for further analysis.

Another aspect of model selection is how to split the data set into training and validation sets to
get a realistic estimate of the generalization performance of the model. Two main options exist for
this cross-validation scheme: using a fixed training/validation split or using 𝑘-folding. For the former,
fixed percentages are chosen and the training and validation data sets are randomly split according
to these values. Commonly used values are approximately 80 % for the training and 20 % for the
validation data set. 𝑘-folding on the other hand randomly splits the data into a number of 𝑘 different
sub-sets and then reruns the entire training 𝑘 times, where each fold is assigned the validation set
exactly once while the remaining 𝑘 − 1 folds are used for training. An illustration of the 𝑘-folding is
shown in Figure 5.5. Using 𝑘-folding is computationally more expensive, since 𝑘 trainings are needed
for the cross-validation scheme. However, it is possible to compute the generalization performance
and other parameters of interest based on the average of the validation folds of each run, which yields
a better estimate of the values and their variance.

So far, model selection was only discussed regarding the training set and the validation set. By
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choosing the model with the lowest validation loss iteration, a bias is introduced, since this choice
is based on the optimal generalization performance on the particular validation data set. Therefore,
the subsequent performance evaluation has to be done on yet another statistically independent data
set. This data set is referred to as “test data set” and it can also simply be split off the full data. The
final metrics to compare the performance of different methods should typically be computed based
on the test set as it represents a data set that is independent of both the training and model selection
procedures. Similar to the training and validation sets, the test set can either be split off based on a
percentage of a fixed training/validation/test-split or embedded in a 𝑘 − 𝑙-folding scheme, for example
by first 𝑘-folding for the test set and then introducing an additional training/validation 𝑙 folding level
for the remaining datapoints.

5.4 Normalizing Flows

In the previous section, deep neural networks (DNNs) were introduced using the example of a fully
connected neural network, where the nodes of each layer are connected to all nodes of the subsequent
layer. As mentioned before, many other neural network architectures exist that are tailored to solve a
specific problem, such as convolutional neural networks for computer vision problems. Another task
where deep learning methods excel at is generative modeling [120,121]. These models have received
increased research interest recently, as they have been shown to be able to generate high-quality arti-
ficial images [122], video [123, 124] or text [125] but also complex particle physics structures such
as jet images [126] or point clouds of calorimeter hits [127].

From a machine learning perspective, two main approaches exist: the discrimiative approach and
the generative approach. The difference between the two families of methods is what probability they
try to approximate. Discriminative models try to learn the probability of a target variable Y, given a
datapoint 𝑥 ∈ 𝑋, which is the conditional probability 𝑃(𝑌|𝑋). Generative models on the other hand
aim to approximate the full joint distribution 𝑃(𝑋, 𝑌) and are often used to then generate new samples
from the learned distribution that are similar to the input data.

Several generative methods exist to achieve this: Generative Adversarial Networks (GANs) con-
sist of two neural networks, a generator and a discriminator that are trained at the same time. The
objective of the generator is to generate datapoints that are similar to the input data samples, while
the discriminator is trained to distinguish actual samples from generated ones. Using this adversarial
training scheme, GANs can effectively generate highly accurate artificial data samples. The second
class of generative models is autoencoder-based methods. Autoencoders encode the input data using
an ”information bottleneck” to map the input to a lower-dimensional space, which is also referred
to as “latent space”. A decoder then maps back from the latent space to the output space, which is
trained to resemble the original input as closely as possible, typically by minimizing the difference
between input and output. Another family of methods are probabilistic models. These algorithms try
to model the probability distribution directly, which is often done by mapping the (typically complex)
input distribution to a more simple distribution, such as a standard normal distribution. Examples of
probabilistic models are variational autoencoders (VAEs), which – similar to standard autoencoders
– encode and then decode the input using a lower dimensional latent space. However, different from
autoencoders, VAEs model the latent space with a probability distribution, which allows an assess-
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ment of the likelihood of input datapoints up to a lower bound. Another example for a probabilistic
model is a normalizing flow, which learns to map the complex input distribution to a simple distri-
bution using a chain of invertible transformations. Different from VAEs, they provide access to the
full likelihood of a sample and are therefore able to estimate the probability densities of datapoints
directly. Flow-based models will be used extensively in this work and therefore are discussed in detail
in the following.

5.4.1 General Principle

Normalizing flows [128] are probabilistic generative models that learn a function mapping an input
sample 𝑥𝑖 ∈ 𝑋 to its respective probability density 𝑝𝑍(𝑥𝑖) under the latent space distribution. It does
so using a bijective function from the typically complex input distribution to a simpler distribution
where the probability can be easily computed.

At the heart of normalizing flows lies the general change of random variables formula. Consider
a function 𝑓 that maps a random variable 𝑋 to the transformed random variable 𝑍. The probability
density of a transformed data point is then given by:

𝑝𝑍(𝑧) = 𝑝𝑋(𝑥) ∣𝑑𝑓 (𝑥)
𝑑𝑥 ∣

−1
. (5.71)

Essentially, the probability of the sample under the new distribution is given by the probability under
the original distribution, normalized by the absolute value of its derivative. The normalization is
necessary such that the integral over the new probability density yields a value of one. Equation 5.71
describes the transformation in a univariate case. In a multivariate case, the equation becomes:

𝑝𝑍(𝐳) = 𝑝𝑋(𝐱) ∣∣∣∣
det ( 𝜕𝑓

𝜕𝐱)∣∣∣∣

−1

= 𝑝𝑋(𝐱) ∣det 𝐉𝑓∣
−1

. (5.72)

In this case, the Jacobian determinant (det 𝐉𝑓) needs to be computed instead of the single derivative.
Equation 5.72 describes a map between two probability distributions. Using a function 𝑓 to map from
the input distribution to a simple distribution, such as a standard Gaussian, the likelihood of a sample
can be easily computed.

However, using only this map does not allow for the generation of new samples. To enable nor-
malizing flows for generation, the equality between the inverse of the Jacobian determinant and the
Jacobian determinant of the inverse function is used:

∣det 𝐉𝑓∣
−1

= ∣∣∣∣
det ( 𝜕𝑓

𝜕𝐱)∣∣∣∣

−1

=
∣∣∣∣
det ⎛⎜

⎝
𝜕𝑓 −1

𝜕𝐳
⎞⎟
⎠

∣∣∣∣
= ∣det 𝐉𝑓 −1 ∣ (5.73)

Therefore, Equation 5.73 can also be written as:

𝑝𝑋(𝑓 −1(𝐳)) = 𝑝𝑋(𝐱) = 𝑝𝑍(𝐳) ∣det 𝐉𝑓 −1 ∣
−1

= 𝑝𝑍(𝐳) ∣det 𝐉𝑓∣ (5.74)

Using this formula, the normalizing flow can generate a sample from the simple distribution 𝑝𝑍(𝐳)
and use the inverse map 𝑓 −1 to produce samples that resemble the original input distribution 𝑝𝑋(𝐱).

In practice, 𝑓 is implemented as a neural network with parameters 𝜃. Since it is difficult to trans-
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Figure 5.6: A diagram showing the working principle of normalizing flows.

form a complex distribution to a simple one using only a single function, normalizing flows use multi-
ple functions 𝑓𝑖, implemented as subsequent layers in the neural network. Using a chain of 𝑀 transfor-
mations instead of a single one, the Jacobian determinants of each function can simply be multiplied
to get to the latent space:

𝑝𝑍𝑀
(𝐳𝑀) = 𝑝𝑋(𝐱)

𝑀
∏
𝑖=1

∣det 𝐉𝑓𝑖 ∣
−1

, where 𝐉𝑓𝑘 = 𝜕𝑓𝑘
𝜕𝐳𝑘−1

and 𝐳0 = 𝐱 . (5.75)

Here, 𝐳𝑀 describes the variable of the final latent space. Similarly, new samples can be generated
using the inverse functions 𝑓 −1

𝑖 :

𝑝𝑋(𝐱) = 𝑝𝑍𝑀
(𝐳𝑀)

𝑀
∏
𝑖=1

∣det 𝐉𝑓 −1
𝑖

∣
−1

(5.76)

The general working principle of a normalizing flow is shown as a simplified diagram in Figure 5.6.
Using a series of bijective functions 𝑓𝑖, the data can be mapped from the input distribution to the
latent space distribution and back. For each subsequent transformation, the input distributions get
more similar to the Gaussian latent space. Thus, the data set can “flow” through the transformations,
while staying normalized by division of the Jacobian determinant for each of the transformations,
hence the name.

A normalizing flow can simply be trained using a negative logarithmic likelihood minimiza-
tion approach. In particular, the weights of the network are updated to minimize the negative log-
likelihood of the transformed datapoints under the latent space distribution, which is equivalent to
learning a function that maximizes the likelihood of our data:

ℒ(𝐱) = − log(𝑝𝑋(𝐱)) = − log(𝑝𝑍𝑀
(𝐳𝑀)) −

𝑀
∑
𝑖=1

log ∣det 𝐉𝑓𝑖 ∣ (5.77)
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5.4.2 Masked Autoregressive Flow (MAF)

In order to compute the loss efficiently, the functions 𝑓𝑖, which correspond to the different layers in a
normalizing flow network, have to be specifically designed. Naturally, the 𝑓𝑖 have to be invertible and
have a tractable Jacobian that can be computed easily. In this work, masked autoregressive flows [129]
will be used and are discussed in detail in this section. The fundamental idea behind autoregressive
flows is to make use of the chain rule of probability that allows to write the density 𝑝𝑋(𝐱) as a product
of conditional densities based on the previous components of a variable 𝑥𝑖:

𝑝𝑋(𝐱) =
𝑛

∏
𝑖=1

𝑝𝑋(𝑥𝑖|𝐱1:𝑖−1) (5.78)

Therefore, in a MAF, the 𝑓𝑖 are designed in a way such that in their output, one component of the input
𝑥𝑖 only depends on the previous components 𝐱1:𝑖−1. The output of each layer are the parameters 𝜇𝑖

and 𝛼𝑖 of a normal distribution, and the 𝑖-th component of 𝐱 is modeled as:

𝑝𝑋(𝑥𝑖|𝐱1:𝑖−1) ∼ 𝒩(𝜇𝑖, (exp 𝛼𝑖)2) , where 𝜇𝑖 = 𝑓𝜇𝑖
(𝐱1:𝑖−1) and 𝛼𝑖 = 𝑓𝛼𝑖

(𝐱1:𝑖−1) (5.79)

Therefore, the transformation of the 𝑖-th component of 𝐱 to the latent space can be written as:

𝑧𝑖 = 𝑓 (𝑥𝑖) = 𝑥𝑖 − 𝜇𝑖(𝑥1, … , 𝑥𝑖−1)
exp(𝛼𝑖(𝑥1, … , 𝑥𝑖−1)) (5.80)

This transformation 𝑓 (𝐱) can be easily inverted:

𝑥𝑖 = 𝑓 −1(𝑧𝑖) = 𝑧𝑖 exp(𝛼𝑖(𝑥1, … , 𝑥𝑖−1)) + 𝜇𝑖(𝑥1, … , 𝑥𝑖−1) (5.81)

Since 𝑓 was defined in an autoregressive way, the Jacobian of Equation 5.80 is a lower triangular matrix
such that the determinant can simply be computed by multiplying the diagonal elements, which yields:

∣det 𝐉𝑓∣ = ∣∣∣∣
det ( 𝜕𝑓

𝜕𝐱)∣∣∣∣
= exp ⎛⎜

⎝
− ∑

𝑖
𝛼𝑖

⎞⎟
⎠

(5.82)

Since 𝑓 was constructed to be both invertible and having a tractable Jacobian, it is an ideal candi-
date for the implementation of a flow. The remaining challenge is to implement a neural network
that ensures the autoregressive property of the 𝜇𝑖 and 𝛼𝑖 defined in Equation 5.79. In a MAF,
this is achieved using an architecture referred to as Masked Autoencoder for Distribution Estimation
(MADE) [130].

A diagram showing the conceptual design of the MADE architecture can be seen in Figure 5.7.
In principle, MADE is a fully connected network where connections are dropped in such a way that
the outputs only depend on the inputs of the previous components of 𝐱. First, each component is
assigned an index 𝑙𝑖 between 1 and 𝐷, where 𝐷 is the dimension of 𝐱. Each node in the input layer is
then assigned the corresponding index. For the hidden layers, numbers 𝑚𝑗 that range between 1 and
𝐷 − 1 are randomly assigned to each of the nodes, with each number occurring at least once. Then,
connections are dropped for all nodes where 𝑙𝑖 > 𝑚𝑗. This procedure is repeated for all hidden layers
in the network. Finally, the output layer nodes are assigned numbers 𝑛𝑘 from 0 to 𝐷 − 1. This is
done twice to get values for both the 𝛼𝑖 and 𝜇𝑖. Again connections are dropped between nodes where
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0 0

Figure 5.7: Diagram showing the conceptual design of a MADE neural network layer, as it is used in
the MAF architecture. A detailed description of the shown components as well as the relation of the
node values and the connectivity is provided in the text.

𝑚𝑗 > 𝑛𝑘, where 𝑚𝑗 denotes the index of the 𝑗-th node in the last hidden layer. This procedure yields a
network architecture where the 𝑖-th output only depends on the input components 1: 𝑖 − 1. It can also
be seen from Figure 5.7 that the input component with the highest index, here 𝑥3, is not connected to
any nodes, since it is the final component and should not occur as a conditional in the autoregressive
probabilities. Additionally, the output components with the lowest index – 𝛼1 and 𝜇1 – also have no
connections with any other node, since no lower-indexed components exist that they should depend
on. In a MAF, multiple such MADE layers can be stacked to implement the 𝑓𝑖 of a normalizing flow
as described in Equation 5.75 and Equation 5.76.

In summary, normalizing flows are neural-network-based generative algorithms that allow for a
direct estimation of the density 𝑝(𝐱). Therefore, they provide direct access to the likelihood of an
input data point 𝐱 and also allow for the generation of new data points under the approximated input
distribution. MAFs in particular are flow models that use stacked autoregressive models implemented
as MADE layers to efficiently compute the map between the input and latent space distributions. In
this work, MAFs are used as the central components of density estimators that yield state-of-the-art
performance in anomaly detection tasks, as will be further discussed in the following chapters.
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Chapter 6

Resonant Anomaly Detection

Since the discovery of the Higgs boson by the CMS and ATLAS collaborations [1,2], significant effort
was put into searches for new phenomena beyond the Standard Model (BSM) by the LHC physics
program. Despite said efforts, no evidence for BSM physics has been found so far. A key problem
with most searches for new physics is that they rely on specific signal and background models.

When designing a new search, analysts focus on two major aspects: First, the sensitivity to the
signal of interest should be maximized and second, an accurate estimation of the Standard Model
background in the region of phase space that is analyzed should be obtained. To achieve the first
objective, analysts look for a region in phase space where the ratio of the expected number of signal
events and the expected number of background events is high. This region is referred to as “analysis
region” and its definition requires significant knowledge about the physics behaviour of the signal,
which is why most searches have a high signal model dependence. In practice, this behaviour is
modelled using complex Monte Carlo simulations and the simulated events are then used to optimize
the definition of the analysis region for maximum signal yield.

For the background estimation, different methods are employed that differ in magnitude of the
background model dependence. Similar to the signal case, Monte Carlo simulations are often used to
model the background processes corresponding to the investigated signal. For searches that have well-
understood background processes, such as electroweak phenomena, the background estimation can be
based on the simulation directly, which is the method with the highest dependence on the background
model. This method is also often used in the case of rare processes where only few background events
are present in the experimental data. In most searches, however, the background estimation is done
based on a control region, which is a region in phase space that is orthogonal to the signal region
and therefore expected to mainly consist of background events, with the signal contamination being
as low as possible. In order to define such a signal-free region, knowledge of the model to search for
is required. Inside the control region, data and simulation can be compared and it can be assessed
whether the background simulation is modelling the data properly. If this is not the case, calibration
factors can be derived to improve its accuracy. The control region method still has a high degree of
background model dependence. However, since the background in the analysis region is constrained
by the control region, it is more independent compared to the direct estimation approach.

While more data-driven background estimation methods exist, most searches rely on simulation-
based approaches. Therefore, Monte Carlo simulation of the physics of both signal and background
processes is a key element in these model-dependent analyses. In the past, the model-dependent
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approach was highly successful in finding particles and physics processes such as the Higgs boson,
which lead to the experimental verification and completion of the Standard Model. For describing
new physics beyond the SM, a plethora of theoretical approaches exist, from minimal extensions of
the SM to entirely new models. Additionally, many regions in the vast phase space of the LHC are
yet unexplored by any search. However, conducting a dedicated search for each theory model in each
possible analysis region is not feasible given limited computational and human resources. Therefore,
new model-independent methods need to be developed to complement existing search efforts. While
model-agnostic searches will be less sensitive to a particular signal model compared to a model-
specific search, they enable analysts to search for any kind of anomaly throughout a large region of
phase space in a data-driven way.

Several methods have been proposed, some of which were already applied successfully to searches
on particle physics data. This work in particular focuses on methods for detecting resonant signals
using weakly supervised classification techniques, which will be discussed in the following sections.

6.1 Hadronic Resonances

Many theoretical models that describe BSM phenomena predict the emergence of new particles with
non-zero mass that show up as resonances in the respective mass spectrum. A particle with decay rate
Γ, resonance mass 𝑚0 and invariant mass 𝑚 can be modelled as a relativistic Breit-Wigner distribution
in the centre-of-mass frame:

𝑓 (𝑚; 𝑚0, Γ) = 2
𝜋

𝑚0Γ
(𝑚2 − 𝑚2

0)2 + 𝑚2
0Γ2 . (6.1)

This shape is frequently used in Particle Physics to describe decays of unstable particles. The Heisen-
berg uncertainty principle (Δ𝐸 ⋅ Δ𝑡 ≥ ℏ

2 ) relates uncertainty in energy to uncertainty in time. In the
case of an unstable particle, the uncertainty in time, Δ𝑡, corresponds to the lifetime of the particle,
which is inversely proportional to the decay rate:

Γ = ℏ
𝜏. (6.2)

Combining this with the uncertainty principle yields:

Δ𝐸 ≥ Γ
2 . (6.3)

Since the energy is equal to the invariant mass 𝑚 in the centre-of-mass frame, unstable particles can
be produced at a mass that differs from its pole mass 𝑚0 by an amount of the order of its decay width.
Thus, instead of a delta function at 𝑚0, a resonance is produced with a width characterized by Γ. It
is the objective of resonant anomaly detection methods to detect these localized resonances within
distributions of their respective background.

A key point to note when discussing resonant anomaly detection within the scope of model-
agnostic searches is that requiring a localized resonance is already increasing the model-dependence
significantly. For example, new physics phenomena could result in broad resonances, extending
throughout almost the entirety of the mass spectrum or they could result in low-mass/massless parti-
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cles, in which case no resonance would appear. Additionally, the mass spectrum that is used depends
on the final state of the decay of the hypothesized particle: For particles with entirely hadronic decays,
the resonance will appear in the invariant mass of 𝑛-jets system in the final state, while for leptonic
decays the invariant mass of 𝑛-leptons has to be considered. Additionally, one could also consider
highly exotic decays with a variety of different jets, leptons and missing transverse energy (MET)
in the final state. Therefore, a selection of how the new particle is decaying has to be made for an
analysis based on resonant anomaly detection. However, choosing decays into final states that are
predicted by a substantial number of theory models allows their analysis throughout large regions of
phase space in a single analysis and therefore, the advantage over model-specific searches is retained.

This work focuses specifically on signal models with fully hadronic decays, where final states
contain a multiplicity of jets. The major background process to consider for hadronic decays consists
of quantum chromodynamics (QCD) events with multiple jets in the final state. The multi-jet QCD
background 𝑝𝑝 → two jets is difficult to model due to the many contributing parton-level processes as
well as the higher order corrections that would need to be taken into account for an accurate descrip-
tion. However, a simplified assertion can be made, considering the proportionality of the differential
cross section:

𝑑𝜎
𝑑𝑄2 ∝ 𝑓1(𝑥1)𝑓2(𝑥2)

𝑄4 = 𝑓1(𝑥1)𝑓2(𝑥2)
(𝑠𝑥1𝑥2)2 , (6.4)

where the 𝑥𝑖 are the momentum fractions of the interacting partons, the 𝑓𝑖 are their respective parton
distribution functions (PDFs), 𝑄 is the four momentum transfer and 𝑠 is the square of the centre-of-
mass energy of the colliding protons. Since the invariant mass of the two-jet system must be equal
to the parton-level centre-of-mass energy (√𝑥1𝑥2𝑠), this approximation can be written in terms of the
invariant mass as:

𝑑𝜎
𝑑𝑚𝑗𝑗

∝ 𝑓1(𝑥1)𝑓2(𝑥2)
𝑚4

𝑗𝑗
, (6.5)

which shows that the background distribution for this process approximately follows a power law be-
haviour. Since QCD processes have a high cross section whereas the expected cross section for a
potential new physics process is low, the overall distribution in case of the existence of signal is a
resonance that is “buried” under a vast amount of background. This behaviour can be seen conceptu-
ally in Figure 6.1. Naturally, a key objective in searches for new physics is to identify this resonance
in data. One method to achieve this is the so-called “Bump Hunt” which will be discussed in the
following subsection.

6.2 The “Bump Hunt”

Before discussing the bump hunt as a method to assess the presence of a new physics resonance from
the data, another method, the counting experiment, is considered. In such an experiment, the first step
is to compute the expected number of background events, 𝑁bg.,exp., which is then subtracted from the
number of events actually observed from the data, 𝑁data,obs., to obtain the excess number of events
that are defined as the number of signal events:

𝑁sig. = 𝑁data,obs. − 𝑁bg.,exp.. (6.6)
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Figure 6.1: Conceptual depiction of a resonant anomaly detection problem. A resonance correspond-
ing to a new particle (blue) is located within a large bulk of (QCD) background events (red).

Ignoring systematic effects for now, the statistical significance of the signal can then simply be ob-
tained by:

𝑍 =
𝑁sig.

√𝑁bg.,exp.

(6.7)

This definition of the significance uses the Poisson error and is a based on a counting experiment in
the limit of infinite events (𝑁 → ∞), which is often a valid approximation in the case of high energy
physics experiments. Throughout this work, this definition of the significance will be referred to as
“statistical significance”. The number 𝑁bg.,exp. has to be estimated from data. This is often done by
fitting a suitable power law function to the invariant mass spectrum, which is motivated by the physics
considerations that led to Equation 6.5. After the fit, the function is then integrated to obtain 𝑁bg.,exp..
Conducting the counting experiment using this integral over the entire range of the invariant mass will
rarely result in a high significance, since the amount of QCD background is so large that the signal
contribution is likely considerably smaller than the statistical error on 𝑁bg., exp..

Therefore, the phase space is typically divided in two regions, namely a signal region (SR), which
is a window that covers a large part of the centre of the resonance and a sideband (SB) region, which
is defined either as the entire phase space outside of the SR or also as windows spanning the regions
adjacent to it. The background function is then fitted either to the SB region and interpolated into
the SR or it is fitted on the entirety of the invariant mass spectrum. To obtain the significance, the
resulting function is now only integrated within the SR and the statistical significance can be again
obtained using Equation 6.7. In a data-driven search, it is unknown where a new physics resonance is
located in phase space. Therefore, to conduct a search on the entire mass range, the SR window has
to be scanned through it, repeating the counting experiment at different points in invariant mass.

One advantage of the counting experiment is that it is simple and entirely agnostic to the actual
shape of the signal. As long as the SR window is covering the largest part of the signal contribution,
it is irrelevant whether it actually follows a Breit-Wigner distribution or a different, for example more
heavy-tailed distribution. On the other hand, using the shape information of the resonance will likely
yield a more powerful statistical test. This is what is done in a “Bump Hunt”, where a signal-plus-
background-fit is employed, that fits the background function with a signal resonance component
added. The combined fit can then be compared to the background-only fit and the respective p-value
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and significance can be extracted based on their likelihood ratio [131]. This approach allows for the
usage of the shape information to achieve a better description of the signal and also the incorporation
of systematic uncertainties.

For hadronic resonances, the sensitivity of the bump hunt is limited by the overwhelmingly large
QCD background. Anomaly detection methods overcome this limitation by learning to tag anomalous
events, increasing the signal-to-noise ratio.

6.3 Weak Supervision

In order to find new physics, it has to be decided for each event whether it originates from known SM
phenomena or from a yet unknown process that is not described by the SM. This can be formulated as
a hypothesis test, where the null hypothesis, 𝐻0 is defined as the event being a SM event, whereas the
alternative hypothesis 𝐻1 states that the event is caused by BSM phenomena, such as a new hadronic
resonance. A key metric of a test that tries to distinguish between the two hypotheses is the statistical
power, which is defined as 1−𝛽. The power of a test is the probability that the 𝐻0 is correctly rejected
when 𝐻1 is true. This is also referred to as the chance to detect a “true positive”. 𝛽 then describes the
chance of failing to reject 𝐻0, even though it is false, which is also referred to as type II error. From
a particle physics perspective, the power of a hypothesis test is crucial to detect new phenomena and
reject the SM null hypothesis when a different model is actually true. Therefore, obtaining a test with
optimal power is desired.

According to the Neyman-Pearson Lemma, one possibility to construct a test with optimal power
to distinguish the signal resonance from the background is based on the likelihood ratio:

𝑅optimal(𝐱, 𝑚) =
𝑝sig.(𝐱, 𝑚)
𝑝bg.(𝐱, 𝑚) , (6.8)

where 𝐱 is a vector of physics variables. In the case of resonant anomaly detection, it is usually not
possible to estimate 𝑝sig. directly from the data, since the signal only contributes marginally to the
background-dominated distribution. Therefore, the most viable alternative approach is to estimate
the combined probability densities of signal and background (i.e. the density of the entire data) and
use the ratio with the background-only density instead:

𝑅(𝐱, 𝑚) =
𝑝sig.+bg.(𝐱, 𝑚)

𝑝𝑏𝑔(𝐱, 𝑚) = 𝑝data(𝐱, 𝑚)
𝑝𝑏𝑔(𝐱, 𝑚) (6.9)

The density 𝑝data can be obtained directly from the data, while the background density is typically
estimated from a signal-free region of phase space. Once the likelihoods have been obtained, 𝑅 can be
used as a measure to identify signal events. If a datapoint is signal-like, i.e. its background probability
is low, then 𝑅 ≫ 1. Otherwise, if the signal probability is low, then 𝑝data ≈ 𝑝bg. and therefore 𝑅 ≈ 1.

Most methods for resonant anomaly detection approximate the likelihood ratio 𝑅 as defined in
Equation 6.9. Since the development of new methods is an active area of particle physics research, a
plethora of different approaches exist and an extensive discussion on each of them is out of the scope
of this work (see [132] for an overview). Instead, one family of methods, namely anomaly detection
based on weakly supervised classification, is discussed in depth.

Weak supervision is a classification scheme where, instead of distinguishing signal and back-
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Figure 6.2: Illustration of a weakly supervised classifier training. The classifier distinguishes a signal-
enriched from a signal-depleted sample. Signal events are depicted in red while background events
are shown in black.

ground directly, the model is trained to discern the origin of a data point from one of two distinct
mixtures of signal and background samples. This situation is illustrated in Figure 6.2. Originally, this
method was proposed in Ref. [133] where it was named “Classification Without Labels” (CWoLa).
There, it was shown that the optimal classifier for this weakly supervised task is also optimal for
distinguishing signal and background, as long as the signal fraction in one of the mixed samples is
higher than in the other. In particular, given two mixed samples 𝑀1 and 𝑀2 in terms of pure signal
and background samples 𝑆 and 𝐵 and signal fractions 𝑓1 > 𝑓2, the optimal classifier to distinguish
the two mixtures is 𝑅𝑀1/𝑀2

(𝐱) = 𝑝𝑀1
(𝐱)/𝑝𝑀2

(𝐱). The optimal classifier to distinguish 𝑆 and 𝐵 is
𝑅𝑆/𝐵(𝐱) = 𝑝𝑆(𝐱)/𝑝𝐵(𝐱). The two optimal likelihood rations can be related as:

𝑅𝑀1/𝑀2
=

𝑝𝑀1

𝑝𝑀2

= 𝑓1𝑝𝑆 + (1 − 𝑓1)𝑝𝐵
𝑓2𝑝𝑆 + (1 − 𝑓2)𝑝𝐵

=
𝑓1𝑅𝑆/𝐵 + (1 − 𝑓1)
𝑓2𝑅𝑆/𝐵 + (1 − 𝑓2) . (6.10)

Considering the derivative of 𝑅𝑀1/𝑀2
with respect to 𝑅𝑆/𝐵 yields:

𝜕𝑅𝑀1/𝑀2

𝜕𝑅𝑆/𝐵
= 𝑓1 − 𝑓2

(𝑓2𝑅𝑆/𝐵 − 𝑓2 + 1)2 . (6.11)

Since 𝜕𝑅𝑀1/𝑀2
/𝜕𝑅𝑆/𝐵 > 0 if 𝑓1 > 𝑓2, the classifier 𝑅𝑀1/𝑀2

is a monotonically increasing rescaling of
𝑅𝑆/𝐵. On the other hand, if 𝑓2 > 𝑓1, the reverse classifier is obtained and therefore 𝑅𝑆/𝐵 and 𝑅𝑀1/𝑀2

describe the same classifier.
This feature of weak classification is also used in a variety of methods for resonant anomaly

detection. In practice, the mixtures with different signal fractions are obtained by separating the mass
spectrum in different regions: A signal region (SR) is defined around the signal mass hypothesis.
For mass values below and above the signal region, sidebands (SB) are defined. Depending on the
particular method, these can extend through the entirety of the remaining phase space or be defined
as smaller regions. Since the signal region events have a higher signal fraction when new physics is
present, they can be used as a signal-enriched sample to be classified against a signal-depleted sample
from the sidebands to get an approximation of 𝑅(𝐱|𝑚).
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This approach, also referred to as CWoLa hunting [134] uses the data in the signal region and
sidebands as a direct estimate of 𝑝data and 𝑝bg., respectively. The estimation of the optimal unsuper-
vised likelihood ratio 𝑅 from the data is a key feature of weakly supervised anomaly detection and
marks a clear distinction from purely outlier-based anomaly detection methods such as autoencoders.
Weak supervision allows the identification of groups of events that share specific patterns in 𝐱, while
outlier-based methods only estimate 𝑝bg. and tag any data points that significantly deviate from this
estimate as anomalous, ignoring commonalities between them. While utilizing patterns in 𝐱 for de-
tecting groups of signal events is a clear advantage of weakly supervised methods, it comes with the
disadvantage of being more model-specific, since it is required that the signal must be localized.

While CWoLa hunting represents the foundation of weak supervision, it assumes that the distri-
butions of features 𝐱 are similar in the SR and SB regions. If this is not the case, the classifier will
not learn an approximation of the likelihood ratio 𝑅, but instead detect the thresholds defining these
different regions based on 𝑚, which significantly decreases performance.

To mitigate this problem, methods based on conditional density estimation were developed using
the probabilistic generative models described in section 5.4. In this approach, the conditional likeli-
hood 𝑝bg.(𝐱|𝑚 ∈ SB) and for some methods also 𝑝data(𝐱|𝑚 ∈ SR) are learned from the signal regions
and sidebands, respectively. Then the background density is interpolated into the signal region by
providing the respective network with values of 𝑚 ∈ 𝑆𝑅 for the conditional. Finally the likelihood
ratio 𝑅(𝐱|𝑚 ∈ SR) can be estimated by either training a classifier or taking the ratio of estimated
likelihoods directly. The interpolation ensures that the model does not learn to identify the thresh-
olds in 𝑚, even for large mass correlations between signal regions and sidebands. The foundational
method for this density estimation-based approach was developed in Ref. [135] and named “Anomaly
Detection with Density Estimation” (Anode). Additionally, several other such approaches have been
proposed, some of which achieve state-of-the-art performance on major benchmarks in the field of
anomaly detection. Anode as well as one other approach called Cathode are used in this work and
will be discussed in detail later.

Once an anomaly score is obtained from a weakly supervised method, it can be used to identify
signal-like events in the data. If a considerable amount of signal events is present, selecting data points
with a high anomaly score will result in the signal resonance peak to emerge from the smoothly falling
background distribution. This situation is depicted conceptually in figure Figure 6.3. The higher the
anomaly score value for selecting events becomes, the more background-like events are rejected,
whereas a high number signal-like events is retained. Thus, the peak becomes more prominent for
tighter cuts on the score. The significance of the emerging signal peak can then be quantified by con-
ducting the “bump hunt” discussed in section 6.2, using a combined fit of a signal and a background
shape.

For the functional form of the background, heuristic functions that have been shown to describe
the respective background well are often used in particle physics analyses [136–138]. These originate
from the theoretical considerations of the 𝑝𝑝 → jets cross section, as described in the discussion of
Equation 6.5. While this approach typically results in a decent description of the background, it has
two major caveats. First, the background mass spectrum must be smooth for the fit to succeed. That
is, if there are strong correlations between the mass and the anomaly score, additional features will
be sculpted into the background, which might cause the emergence of additional “fake bumps” that
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Figure 6.3: Conceptual depiction of the distributions after different cuts on the 𝑅 anomaly score in
the presence of signal.

can be falsely identified as signal or yield an unreliable background estimate. Second, this method
adds significant background model dependence to the analysis, since a specific parametric model is
considered for the background at hand. Other methods to model the background that do not rely on
pre-defined functions exist, such as Gaussian processes [139, 140], but are not yet widely adopted in
particle physics searches.

For the signal shape, different resonance parameterizations can be used. A commonly used func-
tional form is a double Crystal Ball function, described by a Gaussian core and power-law tails on
both sides. This shape is very flexible as it can also describe resonances that are more heavy-tailed
to either side of the distribution. As mentioned in section 6.2, the bump hunting procedure is often
repeated and several mass hypotheses are scanned for excesses. Due to the large phase space the
number of tested invariant mass points is also large, which can lead to the occurrence of significant
results simply by chance. This is also known as the “look-elsewhere-effect”, which should be taken
into account in analysis.

In summary, the bump hunt is a commonly employed method when looking for new physics
resonances in a data-driven way. However, some model-dependence still exists due to the requirement
of a localized resonance and the assumption of a particular background parameterization. The bump
hunt can be significantly enhanced by employing anomaly detection methods that increase the signal-
to-background ratio and ideally lead to the emergence of a resonance bump on top of a smoothly falling
background distribution. One family of such methods are weakly supervised methods that distinguish
a signal-enriched from an almost pure background sample to tag anomalous events. Using the bump
hunting procedure, the significance of the emerged excess can then be computed from a combined fit
of a suitable signal resonance shape and the background function.
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6.4 Benchmarks and Metrics

6.4.1 The LHC Olympics 2020 Challenge R&D data set

A commonly used data set in high energy physics that is used to benchmark different methods for res-
onant anomaly detection is the R&D data set of the 2020 LHC Olympics community challenge [132].
The original challenge consisted of three “black box” data sets with unknown signal content that had
to be analyzed, as well as the mentioned R&D data set for validation and benchmarking. The latter is
a data set for dijet anomaly detection based on simulated proton-proton collisions at a centre-of-mass
energy at √𝑠 = 13 TeV. It consists of one million QCD dijet events and 100 000 signal events. The sig-
nal model is the fully hadronic decay of a heavy 𝑍 boson, denoted as 𝑍′ [9], with 𝑍′ → 𝑋𝑌 and 𝑋 → 𝑞 ̄𝑞,
𝑌 → 𝑞 ̄𝑞. The masses of the new particles are set to 𝑚𝑍′ = 3.5 TeV, 𝑚𝑋 = 500 GeV and 𝑚𝑌 = 100 GeV.
The events were produced with Pythia 8.219 [141,142] and Delphes 3.4.1 [143–145], using the de-
fault settings without pileup mitigation or multiparton interactions. Event selection was based on a
trigger requirement of a single large-radius jet (𝑅 = 1), clustered with the anti-𝑘𝑇 algorithm and a
respective 𝑝𝑇 threshold of 1.2 TeV.

The data is provided in form of the detector coordinates (𝑝𝑇, 𝜂, 𝜙) for the particles reconstructed by
Delphes, which are assumed to be massless [146]. For each event, up to 700 particles are considered.
If fewer particles are reconstructed, remaining values are zero-padded to ensure a consistent array
size. Finally, the truth bit which is zero for background and one for signal events is added as a feature,
leading to a total of 2101 features per event. In addition to the previously described 𝑍′ signal, a
second signal with a three-prong substructure was also added for benchmarking, using 100 000 events
of a heavy 𝑊 ′ boson decaying again hadronically as 𝑊 ′ → 𝑋𝑌, with 𝑋 → 𝑞𝑞𝑞 and 𝑌 → 𝑞𝑞𝑞.
Particle masses, trigger requirements, Pythia and Delphes configurations were kept the same as
previously mentioned. Furthermore, a data set with high-level features of the anti-𝑘𝑇-clustered jets
was also provided, which contains the momentum coordinates 𝑝𝑥, 𝑝𝑦, 𝑝𝑧, the mass 𝑚jet as well as the
𝑛-subjettinesses 𝜏1, 𝜏2 and 𝜏3 for each of the two jets.

While the jet momenta are commonly used features in many analyses, the meaning and importance
of the 𝑛-subjettiness merits further discussion. The sub-jet information of the jets is often a key feature
for distinguishing new physics signals from the large QCD background in fully hadronic final states.
Therefore, it is often used in model-agnostic methods that are applied in such a scenario. In many
BSM theories, new physics particles are predicted to have a high mass, such as the 𝑋 and 𝑌 particles
in the LHCO R&D data set. Since these particles are decaying into significantly lighter SM quarks,
they will produce highly boosted jets, that are very close in 𝜂 and 𝜙 coordinates. The resulting quark
jets can therefore be clustered inside a single, large radius jet, containing two “sub-jets”, which is
shown conceptually in Figure 6.4. A commonly used variable for describing the subjet structure of a
given jet is the 𝑛-subjettiness [147], which is defined as:

𝜏𝑛 = 1
𝑑0

∑
𝑘

𝑝𝑇,𝑘 min{Δ𝑅1,𝑘, Δ𝑅2,𝑘, … , Δ𝑅𝑛,𝑘}, (6.12)

where 𝑘 is the index of the constituent particles in a given jet and Δ𝑅𝐽,𝑘 is the distance in (𝜂, 𝜙)-

coordinates between a candidate subjet 𝐽 and the constituent with index 𝑘: Δ𝑅𝐽,𝑘 = √(Δ𝜂)2 + (Δ𝜙)2.
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Figure 6.4: Conceptual depiction of the hypothetical 𝑍′ particle decaying into particles 𝑋 and 𝑌, which
then decay hadronically. Due to their large masses, the SM quark jets are clustered as sub-jets within
a single, large-radius jet.

𝑑0 is a normalization factor, given by:

𝑑0 = ∑
𝑘

𝑝𝑇,𝑘𝑅0, (6.13)

with 𝑅0 being the jet radius used in the original jet clustering algorithm. The candidate subjets 𝐽 are
determined by using a exclusive 𝑘𝑇 algorithm that is forced to yield exactly 𝑁 jets [148, 149].

It can be seen that Equation 6.12 constitutes a variable that quantifies to what extent a jet can be
regarded to be composed of 𝑛 subjets. In high energy physics jargon, this can be referred to as the
degree of how “𝑛-subjetty” or “𝑛-pronged” a jet is. The main part of Equation 6.12 is the minimum
distance in 𝑅 between each candidate subjet and the respective constituent 𝑘. If a jet contains more
than 𝑛 subjets, the actual clusters of constituents will be distributed further away from the candidate
subjets and 𝜏𝑛 is large. If the jet contains exactly 𝑛 or fewer subjets, the minimum Δ𝑅𝑗,𝑘 will be small
and so will 𝜏𝑛. Therefore, 𝜏𝑛 can be interpreted as the degree that a jet contains 𝑛+1 or more subjets.
However, it is often desired to obtain a variable that directly quantifies how 𝑛-pronged a jet is, which
is not possible with the 𝜏𝑛 alone. Instead, the subjettiness ratio is often preferred:

𝜏𝑛,𝑛−1 = 𝜏𝑛
𝜏𝑛−1

. (6.14)

If the jet has fewer than both 𝑛 and 𝑛−1 subjets, both the numerator and denominator in this equation
will be small and 𝜏𝑛,𝑛−1 should be a number ≫ 0. If the jet has more than 𝑛 subjets, both 𝜏𝑛 and
𝜏𝑛−1 will be large and the subjettiness ratio should again be a number ≫ 0. In the case where the
jet has exactly 𝑛 subjets, however, 𝜏𝑛 is small while 𝜏𝑛−1 is a large value. Therefore, a small 𝜏𝑛,𝑛−1

indicates an 𝑛-pronged jet. Furthermore, jets that do not contain subjets and are initiated by a single
quark or gluon have a smooth radiation pattern and therefore assume small 𝜏𝑛 for almost any value
of 𝑛. This leads to subjettiness ratios 𝜏𝑛,𝑛−1 ≫ 0 for these jets. Thus 𝜏𝑛,𝑛−1 is a good candidate to
distinguish between 𝑛-pronged jets from boosted particle decays and QCD jets.

Since in this work, the focus is mainly on methods using high-level observables, some of their
distributions are shown in figure Figure 6.5 for the LHCO R&D data set. Distributions are shown
for the background events and the 𝑍′ signal model separately. The masses of the individual particles
can clearly be seen from the plots: Considering the invariant dijet mass distribution, the 𝑍′ peak at
3.5 TeV is observed. Similarly, the particles 𝑋 and 𝑌 produce sharp peaks in the invariant jet masses
of jet 1 and jet 2 at 500 GeV and 100 GeV, respectively. Both in case of the dijet and individual jet
masses, the typical QCD pattern of an steeply falling mass distributions can be observed. However,
this is modulated by a turn-on, caused by the trigger requirement in low-mass regions. In other words,
the trigger requirement of at least one large-radius jet with a 𝑝𝑇 of 1.2 TeV or higher is not achieved
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(a) Subjettiness ratio 𝜏21 of jet 1.
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(b) Subjettiness ratio 𝜏21 of jet 2.
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(c) Invariant mass distribution of jet 1.
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(d) Invariant mass distribution of jet 2.
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(e) Invariant mass distribution the two-jet system.

Figure 6.5: Several distributions of high-level kinematic variables of the two most massive jets of each
event in the LHCO R&D data set. Distributions are shown for the QCD background events (blue) and
for the 𝑍′ signal events described in the text (orange).
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for many of the low-mass events and therefore the efficiency of the trigger is lower than 100 % in that
region, as can be seen from the background mass distributions. Finally, the subjettiness ratio 𝜏21 of
the jets shows the shape that would be expected from the previous discussion of the 𝑛-subjettiness.
Since the QCD jets have a smooth radiation pattern, both 𝜏2 and 𝜏1 are two similarly small numbers,
leading to a smooth distribution that leans towards higher values of 𝜏21. For the 𝑍′ signal, which is
2-pronged, 𝜏2 is small while 𝜏1 is still rather large, leading the distributions to be shifted significantly
towards lower values.

In summary, the LHCO R&D data set is a commonly used benchmark for model-agnostic searches
looking for anomalous resonances. The fully hadronic final state represents a common scenario,
where the objective is to tag a resonance “bump” within an exponentially falling (QCD) background
distribution. Therefore, the data set can be used as is often done in model-agnostic searches, where –
after a cut on an anomaly score – bump hunting procedures are employed to extract the significance
of the signal. Additionally, since truth label information is available, the performance can be easily
compared between different algorithms, which makes this data set a cornerstone for benchmarking
model-agnostic methods.

6.4.2 The Significance Improvement Characteristic (SIC) Metric

A common measure of interest when searching for new physics is the sensitivity of the employed
method. The sensitivity describes the degree to which a method is able to tag signal. Several methods
exist to quantify the sensitivity, one of which is the achieved significance. When only taking into
account statistical errors (i.e. considering a counting experiment), the significance is simply given
by:

𝑍 =
𝑁sig.

√𝑁bg.

, (6.15)

where 𝑁sig. describes the number of signal events and 𝑁bg. the number of background events, re-
spectively. A difficulty in a model-agnostic search making use of unsupervised machine learning
methods is that the sensitivity depends on the amount of signal events present in the analyzed data.
One measure of sensitivity is the significance improvement, which relates the achieved significance 𝑍
at a specific cut on the classifier score with the value of 𝑍 that would be obtained without any cut:

SIC =
𝑍∣cut

𝑍∣no cut
= sig.

√𝜖bg.
, (6.16)

where 𝜖sig. denotes the signal efficiency (also referred to as true positive rate) and 𝜖bg. the background
efficiency (also referred to as the false positive rate). Thus, a model with a higher SIC is able to tag
more signal events given a specified amount of signal injected in a data set.

Similar to the Receiver Operating Characteristic (ROC), the SIC can be computed for different
thresholds on the anomaly score to achieve a curve that can be used to compare different models. In
contrast to the ROC curve, the SIC does not only contain information about how much signal was
selected at a given threshold, but also factors in the background rejection. Since for most anomaly
detection scenarios in particle physics the primary objective is to reduce the overwhelmingly large
background of SM processes, the SIC curve is the preferred measure for the sensitivity.

It should be noted that the computation of the SIC requires truth-level information to be present,
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which is not the case in a model-agnostic, data-driven search. However, for the validation of new
methods, data sets based on MC simulations are frequently used such that the expected performance
on a certain family of signal models can be assessed. In the case of resonant anomaly detection, a
data set such as the previously described LHCO R&D data set can be used for this purpose.

6.4.3 The Idealized Anomaly Detector (IAD)

When comparing different methods for model-agnostic anomaly detection using a benchmark, the
construction of an absolute “optimal” or ideal method that these methods can be compared to is often
desired. Naturally, one such upper limit for unsupervised methods is to use a supervised classifier
with access to the full truth-level information. Using this model as a benchmark, however, leads to
an unfair comparison, since no model-agnostic method can be expected to yield similar performance
compared to a model with perfect information. In order to find a more suitable upper limit in an
unsupervised scenario, it is important to consider the foundational principles of resonant anomaly
detection.

As discussed in section 6.1, methods for resonant anomaly detection try to approximate the like-
lihood ratio 𝑅 defined in Equation 6.9. Most methods do so using a signal region and sidebands ap-
proach: While the signal region should contain the majority of events in the new physics resonance,
the sidebands contain almost exclusively background events. The background density 𝑝bg. is then es-
timated from the sidebands and interpolated, such that 𝑅 can be computed within the signal region of
interest. Several methods have been proposed for the estimation and interpolation of the background
density [135, 150–154], some of which will also be discussed in detail in this work. However, an
optimal anomaly detection method should exhibit both perfect density estimation of 𝑝bg.(𝐱|𝑚 ∈ SB)
in the sidebands, as well as perfect interpolation into the signal region to achieve the optimal estimate
of 𝑝bg.(𝐱|𝑚 ∈ SR). A simple way to define such an “Idealized Anomaly Detector” (IAD) in a data
set that is based on MC simulations is to simply generate more background events inside the signal
region using the same simulation parameters. This will create another background-only data set that
originates from the exact same distribution as the background distribution of the initial data set and
therefore constitutes a perfect estimate of 𝑝bg.(𝐱|𝑚 ∈ SR). A classifier trained to estimate 𝑅 on a data
set where the background events in the data sample and in the background sample are realizations of
the same distribution can therefore be defined as an IAD. It constitutes an idealized benchmark in the
limit of both perfect density estimation and interpolation, which is therefore an upper limit for any
unsupervised anomaly detection method. Thus, in the studies discussed in this work, the idealized
anomaly detector (often abbreviated as IAD), is used for this purpose.

6.5 Anomaly Detection With Density Estimation (Anode)

Anode is an algorithm for model-agnostic anomaly detection using direct density estimation. It is one
of the first density-estimation-based algorithms in the field and was introduced in [135]. In the original
work, it was also applied to the LHCO R&D data set discussed in subsection 6.4.1 and achieved state-
of-the-art performance.
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Figure 6.6: A flowchart describing the Anode algorithm.

6.5.1 The Algorithm

The working principle of Anode can be seen in Figure 6.6. Similar to other methods for resonant
anomaly detection, the mass spectrum of the hypothesized new particle is split up into signal region
(SR) and sidebands (SB). The sidebands are defined as the entirety of the mass space that is outside
the signal region. Anode then trains two density estimators: one on the SR, which is also referred to
as the “inner model” and one on the SB, being referred to as the “outer model”. In the original Anode
paper, a MAF (see subsection 5.4.2) was used for the density estimation, but other flow models or
density estimation techniques could also be considered. The inner model learns the density of the
data in the SR, 𝑝data(𝐱|𝑚 ∈ SR), while the outer model learns the background density in the SB
𝑝bg.(𝐱|𝑚 ∈ SB). As previously discussed, one advantage of the MAF is that it can model conditional
distributions, such as the probability densities conditioned on the mass variable. Additionally, they
can be easily interpolated into other regions of the mass space by simply providing the respective
values as a conditional. Therefore, by using the 𝐱 and 𝑚 values of events in the SR and simply
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evaluating the outer model on them, the background density is effectively interpolated from the SB
into the SR. The events in the SR are then evaluated on the inner model as well, yielding the data
likelihood in the SR. Finally, the ratio of the two values is taken as an estimate of the anomaly score
(𝑅 = 𝑝data/𝑝bg.) to find signal events. While in the discussion of the likelihood ratio (in particular
Equation 6.10 and Equation 6.11) the argument regarding the Neyman-Pearson optimality was made
using the joint distributions 𝑝data(𝐱, 𝑚)/𝑝bg.(𝐱, 𝑚), it should be noted that this argument naturally
extends to the conditional distributions:

𝑅(𝐱, 𝑚) = 𝑝data(𝐱, 𝑚)
𝑝bg.(𝐱, 𝑚) = 𝑝data(𝐱|𝑚)

𝑝bg.(𝐱|𝑚) ⋅ 𝑝data(𝑚)
𝑝bg.(𝑚) = 𝑝data(𝐱|𝑚)

𝑝bg.(𝐱|𝑚) = 𝑅(𝐱|𝑚). (6.17)

In the penultimate step, it was used that 𝑝data(𝑚)/𝑝bg.(𝑚) = 1 since both the inner and outer density
estimators are evaluated on the same SR events using their invariant mass values for the conditional
and therefore 𝑝data(𝑚) = 𝑝bg.(𝑚).

6.5.2 Benchmark Performance

In the original Anode paper [135], the LHCO R&D data set was used for benchmarking perfor-
mance. The SR was defined around the resonance mass of the 𝑍′ with the invariant dijet mass
𝑚𝑗𝑗 ∈ [3.3, 3.7] TeV. For Anode, the SB are defined as the entire space in 𝑚𝑗𝑗 above and below
the SR. Features were chosen that capture the substructure information of the two jets. In particular
𝐱 contained the mass of the second most massive jet in the event, 𝑚𝑗1, the mass difference of the two
most massive jets in the event, Δ𝑚𝑗 = 𝑚𝑗2 − 𝑚𝑗1 and the subjettiness ratios 𝜏21,𝑗1, 𝜏21,𝑗2 of the two
jets. For the training, 1000 events of the 𝑍′ signal model were injected into the full background and
the entire sample was split into two equal sets for training and testing. In the SR, this corresponds
to about 60 000 background and about 400 signal events in the training and test sets and a signal-
to-background ratio of 0.6 %. Additionally, in this paper the performance of Anode was compared
against one of the state-of-the-art algorithms at the time of publication, CWoLa. For CWoLa, the
SB was defined using bins of 200 GeV and the events were weighted such that the contribution of
events in the upper and lower sidebands are the same and their combined weight is the same as the SR
contribution. Other than that, the same number of injected signal events and the same input features
were chosen. The classifier used for the CWoLa algorithm was implemented as a fully connected
neural network with four hidden layers of 64 nodes each, with a dropout of 10 % being used for each
intermediate layer.

The comparison of Anode and CWoLa alongside a fully supervised classifier and the random
performance is shown in Figure 6.7. The figure shows the SIC curves as a function of the signal
efficiency. From the figure, it can clearly be seen that the supervised classifier outperforms the more
model-agnostic methods by far, which is expected. Anode and CWoLa perform similarly through-
out a wide range of signal efficiencies. For very low signal efficiencies (i.e. very tight cuts on the
anomaly score), the SIC values get more affected by the limited statistics of the selected events and
therefore have a high variance, at least for the supervised and CWoLa curves. Nevertheless, while
the performance of Anode and CWoLa are similar, still CWoLa at least slightly outperforms Anode
for most signal efficiencies. One reason mentioned in [135] is that CWoLa is training to learn the
likelihood ratio 𝑅 directly, while Anode only learns the numerator and denominator of 𝑅 separately.
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Figure 6.7: SIC curve comparison between Anode and CWoLa. The supervised performance and
the random performance is indicated on the plot for reference. Taken from [135].

Another disadvantage of the Anode method is that existing generative models often struggle to learn
patterns of minority classes inside their training data. Since there are typically only few signal events
inside the SR in a particle physics scenario, it is difficult for the MAF to learn the signal contribution
within the overwhelmingly large amount of background. This leads to a poor estimate of 𝑝𝑑𝑎𝑡𝑎 in
the SR and therefore to a worse approximation of 𝑅, compared to taking data from the SR directly as
CWoLa does.

CWoLa has, however, a significant disadvantage compared to Anode, which is that its perfor-
mance is significantly impacted by correlations between input variables 𝐱 and 𝑚. If such correlations
exist, a classifier will not learn to distinguish the data from the background likelihoods, but instead
simply learn the previously defined thresholds of the SR in 𝑚. The key benefit of Anode is the con-
ditional density estimation and interpolation, which makes it possible to directly learn an estimate of
the background density in the SR itself. Since both the inner and outer model are evaluated in the
SR exclusively, the thresholds in 𝑚 cannot be reflected in the learned 𝑅 score. To further investigate
this behaviour, another study has been conducted, where a strong correlation between some the input
features 𝐱 and 𝑚𝑗𝑗 was artificially introduced. In particular, the following transformation was applied
to the jet masses:

𝑚𝑗1,𝑗2 → 𝑚𝑗1,𝑗2 + 0.1 ⋅ 𝑚𝑗𝑗 (6.18)

The data set with the shifted features was then used to re-train all of the algorithms in the previous
study and again the performance was compared using the respective SIC curves. The result of this
study is shown in Figure 6.8. From the figure, the major advantage of Anode in the presence of
correlations can be seen: While all algorithms except for the supervised classifier show a drop in
performance, the SIC curve of CWoLa breaks down entirely towards the random line. Anode on
the other hand still achieves SIC values around 4, which is a significant fraction of the performance
without correlated features.

Anode constituted a significant milestone for resonant anomaly detection, being the first appli-
cation of density estimation techniques for this task and also showing robustness with respect to the
presence of correlated features.
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Figure 6.8: SIC curve comparison between Anode, CWoLa and a fully supervised algorithm in the
case of the “shifted” data set, where a correlation between the jet masses and the dijet invariant mass
was introduced on purpose. Taken from [135].

6.6 Recent Efforts in Experimental High Energy Physics

Model-independent searches have a long history in experimental particle physics. However, most of
them are based on the principle of comparing SM simulations with data to look for differences between
them. Examples of these simulation-based searches are found throughout various particle physics
experiments, such as DØ [155–157], H1 [158, 159], CDF [160, 161], CMS [3–5] and ATLAS [6–8].
This kind of searches has to be clearly distinguished from the approach that is applied in this work.
In principle, these searches are employing counting experiments in various bins, corresponding to
different final states. Both the data and the corresponding Monte Carlo (MC) simulated events are
counted and compared in each of these bins. The MC events serve as the SM background estimate
and it is tested whether a significant excess in the number of data events can be seen. Therefore, this
method is entirely dependent on the accuracy of the SM background model that is implemented in
the MC simulations.

The enhanced bump hunt on the other hand is entirely data driven and does not rely on MC
simulations at all. The weakly supervised methods learn the anomaly score directly from data and
the shape of the background estimate – even though requiring a parametric model – is also acquired
from a fit to data. Therefore, the classic model-agnostic searches by high energy physics experiments
are in contrast with the data-driven approach applied in this work. Other data-driven searches that do
not rely on simulations are still rare. However, two analyses conducted by the ATLAS collaboration
are the first to use these techniques on measured physics data.

In [162], a resonance search in the invariant mass spectrum of a two-jet system (also referred to
as “dijet” system) was done. This search used weak supervision, in particular the CWoLa hunting
method described in [133], to search for dijet resonances in the form of a generic, fully hadronic de-
cay of particle 𝐴 into particles 𝐵 and 𝐶 (denoted as 𝐴 → 𝐵𝐶). For these particles, different mass
hypotheses for 𝑚𝐴, 𝑚𝐵 and 𝑚𝐶 were scanned and for each combination, exclusion limits were com-
puted. Mass variations used were 𝑚𝐴 ∈ {3 TeV, 5 TeV} and 𝑚𝐵, 𝑚𝐶 ∈ {80 GeV, 200 GeV, 400 GeV}.
Depending on the mass combinations, several achieved exclusion limits have improved significantly
compared to an inclusive dijet search, in some cases up to a factor 10. However, no evidence of new
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physics was observed.

In [163], another search for new resonances was performed by the ATLAS collaboration. In this
analysis, however, a particle decaying into a jet + 𝑌 system was investigated, where the particle 𝑌
could be an electron, muon, photon, 𝑏-jet or a light jet. Instead of a weakly supervised approach,
an autoencoder-based model was used to tag anomalous events. The autoencoder was trained on
a sub-sample of 1 % of pre-selected collision events and then evaluated on the remaining 99 % to
find anomalies in data. The input features were based on the rapidity-mass matrix (RMM) proposed
in [164], which contains a set of variables that is often used for BSM searches, such as missing trans-
verse energy, transverse energies and masses, Lorentz factors, two-particle invariant masses and two-
particle rapidity differences. For the anomaly score, the logarithm of the reconstruction loss was used,
which is defined as the mean squared error between the input and output of the autoencoder. Using
this strategy, the sensitivity is improved significantly, which was illustrated using several benchmark
BSM models. However, also in this search no evidence for new physics was found.

Previous to the dijet resonance search [165] that will be discussed in detail later, no model-agnostic
search applying unsupervised machine learning methods to experimental data had been conducted
by the CMS collaboration. However, a rather similar approach was used in [166], where a three-
dimensional maximum likelihood fit in the space of the invariant dijet mass and the individual jet
masses (𝑚𝑗𝑗, 𝑚jet1, 𝑚jet2) was used to search for (hadronically decaying) di-boson resonances. Com-
pared to previous analyses in this space, this allowed the incorporation of correlations between the
individual jet masses and the invariant dijet mass of the SM background processes. For the signal, a
double crystal ball shape was fitted to a set of simulated events at different mass hypotheses and then
interpolated to intermediate mass values to allow for a more granular scan. With this method, the
sensitivity was improved up to 30 % compared to previous searches and the exclusion limits set were
the best to date in the dijet final state.

Apart from actual analyses on experimental data, several new methods have been proposed that
can be used to search for new physics in a model-agnostic way. While an in-depth discussion on each
of them is beyond the scope of this thesis, they will be shortly summarized in the following. Three
main categories of methods can be distinguished in principle: Out-of-distribution (OoD) detection
methods learn an estimate of the background and tag any event that significantly deviates from it
as anomalous. In particular, these are often implemented using autoencoder-based methods, which
have also been proposed for model-agnostic searches in high energy physics [167–172]. As discussed
previously, weakly supervised methods are another class of model-agnostic search methods, that learn
the likelihood ratio 𝑅 between the data and the background-only hypothesis [133,135,150–152,173–
175]. In this field, approaches with and without using probabilistic modeling to estimate 𝑅 exist.
Finally, the third category is based on semi-supervised methods that are more model-specific but make
use of signal “priors” to encode the latent space of a probabilistic model [176]. While this approach
needs MC simulations for at least some signal models, it has the advantage of being sensitive to new
signals that share different anomalous features from the ones that the algorithm was trained on.

While the first analyses using model-agnostic anomaly detection to experimental data achieved
promising results, there is still significant potential for new searches. The discussed analyses made
use only of a single method. In a model-agnostic scenario, however, the method to yield the optimal
sensitivity cannot be defined, since the signal model is entirely unknown. Therefore, it is expected
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that different algorithmic concepts are complementary to each other with respect to different kinds
of anomalies and should therefore be analyzed. Furthermore, the input features used for training the
unsupervised models have been rather limited so far, typically resorting to the dijet and individual jet
invariant masses. However, as many features as possible should be used in the analysis of a model-
agnostic setting, since an anomalous pattern could emerge from any of them, or from complex non-
linear correlations between them. Therefore, the main focus of this work is a new model-agnostic
search performed by the CMS collaboration, considering a large variety of methods – one from each
of the discussed categories – as well as a plethora of different signal models and mass hypotheses.
This is done using different input features for each method. Some methods are entirely based on low-
level particle information, others depend on high-level features computed for each event or jet, while
others combine the two kinds of features. This broad search scheme is unique in the field of high
energy physics so far, and enables significant potential for new discoveries directly from data. The
respective analysis is discussed in the following chapter.
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Chapter 7

Applying Anomaly Detection to CMS
Experimental Data

In this chapter, the development and application of Cathode, a novel method combining density
estimation and weak supervision for data-driven anomaly detection is discussed. First, the method is
introduced based on simulated data from the LHCO R&D data set. Then, Cathode is applied to a
resonance search in the dijet final state with anomalous jet substructure using proton-proton collision
data measured by the CMS experiment during run 2 in the years 2016 to 2018 at a centre-of-mass
energy of √𝑠 = 13 TeV. This constitutes a first-of-its-kind search, comparing not only Cathode,
but several state-of-the-art methods regarding expected sensitivity and achieved exclusion limits on
the production cross-section of different signal models. Additionally, results for a generic, largely
model-agnostic search through the invariant dijet mass spectrum are discussed.

7.1 Classification Through Outer Density Estimation
(Cathode)

The work presented in this section has been previously published in [150], in collaboration with Anna
Hallin, Joshua Isaacson, Gregor Kasieczka, Claudius Krause, Benjamin Nachman, Matthias Schlaffer,
David Shih and Manuel Sommerhalder. The figures and the written content closely resemble or match
the information found in this article. My contribution to the publication consists of contributing to the
analysis code of the method, conducting and documenting the background sculpting and bias studies,
general paper writing and proof-reading and the assessment and discussion of key research questions
and hypotheses during the development of the method with the mentioned collaborators.

In the following, the method “Classification THrough Outer Density Estimation” (Cathode) is
discussed. Similar to Anode, Cathode is a method for model-agnostic anomaly detection using neu-
ral density estimation. Additionally, Cathode combines this approach with the weakly supervised
approach employed in the CWoLa algorithm. As discussed in section 6.5, CWoLa shows poor per-
formance in the case where correlations between input features 𝐱 and the resonant variable 𝑚 exist.
While Anode overcomes this problem through the use of conditional density estimation and inter-
polation, it shows a slight decrease in performance compared to CWoLa, since it does not learn
the Neyman-Pearson optimal likelihood ratio, 𝑅, directly. Additionally, it is difficult for the inner
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density estimator in Anode to learn the signal component within the large number of background
events. Cathode aims to combine weak supervision and density estimation to achieve the “best of
both worlds”: Being able to learn 𝑅 directly while still being robust against correlations between 𝐱
and 𝑚.

7.1.1 The Algorithm

The working principle of Cathode is shown as a flow chart in Figure 7.1. Similar to Anode, a signal
region (SR) window is defined in the mass spectrum, where the hypothesized resonance is located.
The remainder of the mass phase space is defined as sidebands (SB). The algorithm then proceeds
to train a conditional density estimator on the events in the SB. In the original Cathode paper, a
MAF is again used for this purpose [150]. Since it is assumed that the SB contain almost exclusively
background events, this “outer” density estimator learns the density 𝑝bg.(𝐱|𝑚 ∈ SB). Again similar to
the Anode algorithm, this density is interpolated into the signal region. However, instead of simply
evaluating the data events in the SR using the MAF model, its generative capabilities are used. A
sample of the learned density is created, using 𝑚 values from within the signal region as a conditional
in the process. This sample is also referred to as “background template”. To get an approximation of
the mass distribution in the SR, a kernel density estimator (KDE) is trained on the mass values of the
SR events and from this KDE, the mass values for conditioning the outer MAF are sampled. Sampling
from the MAF in this way results in a data set that should approximate the background distribution
in the SR, 𝑝bg.(𝐱|𝑚 ∈ SR). Then, similar to the CWoLa algorithm, an actual data sample is drawn
from the SR and then a weakly supervised classifier is trained to distinguish this data sample from the
background template. This classifier learns an approximation of the likelihood ratio 𝑅, based solely
on the approximation of densities in the SR.

7.1.2 Benchmark Performance

The Cathode algorithm was benchmarked using the LHCO R&D data set. In a dedicated study, the
performance of Cathode was compared to other state-of-the-art algorithms as well as fully supervised
classification and the idealized anomaly detection scheme described in subsection 6.4.3. The used
input features were again the invariant mass of the lighter of the two jets, 𝑚𝑗1, the difference in invariant
mass between the jets, Δ𝑚𝑗 = 𝑚𝑗2 − 𝑚𝑗1 as well as the subjettiness ratios 𝜏21,𝑗1 and 𝜏21,𝑗2 for each of
the jets. As the conditional feature of the MAF, the invariant dijet mass, 𝑚𝑗𝑗 was used. Before training
the density estimator, the input features were preprocessed by first scaling them to the range (0, 1),
then logit transforming them and finally standardizing them by subtracting the mean and dividing by
the standard deviation. For the signal model, the hadronically decaying 𝑍′ was investigated and the
signal region window was defined as before with 𝑚𝑗𝑗 ∈ [3.3, 3.7] TeV, while the remainder of 𝑚𝑗𝑗

was defined as the sidebands. The entirety of the 1 000 000 QCD background samples is used in this
study, with 1000 signal events being injected. The resulting data set contains approximately 120 000
background and 772 signal events in the SR and 880 000 background and 228 signal events in the SB.
For the SR, this again corresponds to a signal-to-background ratio of about 0.6 %. For the training
of the outer density estimator, the data in the SB region is divided into a training set that consists of
500 000 events and a validation set that contains the remainder of 378 876 events. The MAF density
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Figure 7.1: A flowchart describing the Cathode algorithm.

87



CHAPTER 7. APPLYING ANOMALY DETECTION TO CMS EXPERIMENTAL DATA

Hyperparameter name Hyperparameter value

No. of epochs 100

Optimizer Adam [108]

Batch size 256

Learning rate 10−4

Momentum for batch normalization 1.0

Number of MADE blocks 15

Hidden layers per MADE block 1

Nodes per hidden layer 128

Table 7.1: Hyperparameters of the MAF density estimator model used in Cathode.

estimator is implemented using the PyTorch framework [109] and the hyperparameters used in the
training are shown in Table 7.1.

For model selection, not only the single best validation loss epoch was used, but instead, the
model states at the ten lowest validation loss epochs were selected for further analysis. This allowed for
ensembling different model states and increased the robustness of the overall result. Prior to sampling,
the KDE was trained to fit the 𝑚𝑗𝑗 values of the training set of the SR data. It was implemented using
the scikit-learn library [177], with a Gaussian kernel and a bandwidth of 0.01. For each of the ten
selected MAF model states, new events were now sampled, using 𝑚𝑗𝑗 values produced by the KDE as
a conditional. However, instead of sampling the same number of events in the SR, it has been shown
that oversampling background template events had a positive impact on the weak classification result.
Therefore, from each of the ten selected model states, 40 000 events were sampled, leading to 400 000
background template events in total. For the weakly supervised training, these were split equally into
200 000 events each for training and validation sets.

A comparison of the data distribution in the SR and the background template distribution is shown
in Figure 7.2. For these plots, the preprocessing of the features was reversed such that their distribution
is assessed in the physical input space. As can be seen, the artificially generated samples of the
background template describe the input distributions of the background in the actual data well and
there are only marginal mismodellings. Considering the 𝑚𝑗𝑗 distribution, it can also be seen that the
KDE samples follow a similar distribution as the background in the SR. At the same time, the KDE
does not overfit on the exact background distribution and still retains some variance.

Since the density estimation and subsequent interpolation yield a proper description of the back-
ground density in the SR, the weakly supervised classifier can be trained to estimate the likelihood
ratio 𝑅. The classifier model is also implemented as a PyTorch model, with the hyperparameters
chosen as in Table 7.2. For the training, the approximately 120 000 data events in the SR are split
into 60 000 events each for the training and validation sets. Therefore, the objective in the weak
classification task is to distinguish the 60 000 training set events from the signal region, from the
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Figure 7.2: A comparison of normalized feature distributions of the background events from the data
and events from the background template in the signal region.
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Figure 7.3: SIC curve comparison of Cathode with various other algorithms. Solid lines indicate
to the median performance of 10 independent re-trainings of the respective algorithm, while shaded
areas show to the inner 68 % of this distribution over SIC curves.

200 000 training set events of the background template. Since the oversampling of density estimators
causes the two classes to be imbalanced, a class weight is computed to re-balance events both for
the training and validation sets such that their contribution is equal. Additionally, the preprocessing
used for classification is different from the one used in density estimation: The datapoints are simply
re-standardized to have a mean of zero and a standard deviation of one. Applying a scaling followed
by a logit transformation consistently caused sub-optimal performance in classification, which is why
these steps were omitted. Similar as before, the training and validation losses of the weak classifier
are recorded. For the model selection, again the 10 lowest validation loss epochs are chosen and an
ensemble prediction is constructed in the final evaluation by averaging their individual predictions.
This ensemble prediction again has proven to yield a more robust result, significantly reducing the
variance of this noisy, weakly supervised classification task.

For the final performance comparison, the fully trained Cathode model is evaluated on the test
set. For the training and validation sets, the labels only contained the information whether an event was
from the SR data or from the background template. The final evaluation, however, is done on the full
truth-level signal vs. background information. While this information would not be readily available
in an actual, data-driven search for new physics, it is useful in the synthetic scenario of the LHCO
R&D data set to benchmark the performance of Cathode and compare it against other methods. The
result of this comparison can be seen in Figure 7.3. In this figure, Cathode is compared to four other
methods.

First, a fully supervised classifier, having access to the full truth-level information about an event
being signal or background, was also trained and evaluated for comparison. This classifier consti-
tutes an overall upper bound on the performance. The classifier model was implemented as a fully
connected neural network, with the exact same hyperparameter settings as for the weak classifier of
the Cathode model, summarized in Table 7.2. The concept of the idealized anomaly detector (IAD)
was already introduced in subsection 6.4.3: it is a weakly supervised classifier, trained in the limit
of perfect density estimation. Therefore, it constitutes an upper performance limit for any weakly
supervised method. The perfect density estimation is implemented using additional events from the
true 𝑝bg. by simply generating more MC events with the exact same settings as in the original LHCO
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Hyperparameter name Hyperparameter value

No. of hidden layers 3

No. of nodes per hidden layer 64

Batch size 128

No. of epochs 100

Optimizer Adam [108]

Learning rate 10−3

Momentum 0.9

Table 7.2: Hyperparameters of the DNN classifier model and its training.

R&D data set. In total, a sample of additional 612 000 QCD events in the SR were generated this way.
From those, 272 000 events are taken as the idealized version of the background template and split
into half for the training and validation set, respectively. The task of the IAD is then to distinguish
these events from the data of the original LHCO R&D data set in the SR.

Furthermore, Cathode is compared with two other state-of-the-art anomaly detection algorithms,
Anode and CWoLa. For Anode, the same MAF architecture and training settings were used as for
Cathode. An outer model was trained on the SB region and another, inner, model on the SR. Then,
the 𝑅 score was built – as described in the previous section – by evaluating both the inner and outer
models on the SR and computing the respective likelihood ratio. For the CWoLa model, a classifier
was trained using the exact same hyperparameter settings as the Cathode classifier. For the SR,
the same 𝑚𝑗𝑗 window was used as before. The SB region, however, was reduced to 200 GeV wide
strips adjacent to the SR. The CWoLa SB region contained a total number of 130 232 background-
like events that are split equally into training and validation sets. Events are also reweighted for the
training, such that the upper and lower SB events contribute equally and in total have the same weight
as the SR events. For all of the described methods, 10 independent re-trainings were conducted in
order to assess the variance of the results. In the figure, the solid lines correspond to the median of
the 10 SIC curves, while shaded areas correspond to the inner 68 % of this distribution.

From the plot it can again be seen that a fully supervised classifier outperforms all other methods,
including the idealized anomaly detector, throughout the entire range of signal efficiencies. It also has
by far the lowest variance of results. The IAD shows the next best performance, being closely followed
by Cathode. Only marginal differences can be seen between the two methods, the largest being in the
lower signal efficiency region. The variance of results is also similar comparing IAD and Cathode
models. This is a significant result and shows that Cathode almost saturates the optimal performance.
It also underlines the findings of Figure 7.2, that the density estimation and interpolation is close to
the actual background distribution in the SR, since even perfect density estimation does not improve
the final performance significantly. Cathode also considerably outperforms other state-of-the-art
models, with the performance of CWoLa and Anode being worse for all signal efficiencies. Similar
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Figure 7.4: SIC curve comparison of Cathode with various other algorithms on a shifted data set,
where correlations between input features 𝐱 and 𝑚𝑗𝑗 were artificially introduced. Solid lines corre-
spond to the median performance of 10 independent re-trainings of the respective algorithm, while
shaded areas correspond to the inner 68 % of this distribution over SIC curves.

to the previously discussed studies from the Anode paper, CWoLa outperforms Anode significantly.
This is probably due to the chosen input features not being highly correlated, such that CWoLa can
learn the likelihood ratio well. Anode on the other hand suffers again from the caveat that it does not
directly optimize 𝑅, but instead learns only its individual components, which – similar to the results
in the original paper – seems to result in a worse estimate of 𝑅 compared to the weakly supervised
methods.

Another advantage of Cathode is its ability to interpolate the learned background density from
the SB region into the SR, using conditional density estimation. Similar to Anode, this should lead to
increased robustness with respect to correlations between input features 𝐱 and the invariant dijet mass,
𝑚𝑗𝑗. This was tested by artificially introducing such correlations using the following transformations:

𝑚𝑗1 → 𝑚𝑗1 + 0.1𝑚𝑗𝑗

Δ𝑚𝑗 → Δ𝑚𝑗 + 0.1𝑚𝑗𝑗
(7.1)

Then, the same performance comparison study as in Figure 7.3 was repeated using the shifted fea-
tures. The results can be seen in Figure 7.4. All algorithms show reduced performance compared to
the non-transformed features. A probable reason for this is that the original input features, 𝑚𝑗1 and
Δ𝑚𝑗, get distorted by the transformation and the original signal patterns are more difficult to extract,
even when full truth-level information is available. In other words, the contribution of 𝑚𝑗𝑗 adds sig-
nificant noise to the original features, leading to a performance decrease. Considering the relative
performance between algorithms, the overall situation is very similar to the original study. The su-
pervised classifier still outperforms all other algorithms and the IAD is the second best performing
algorithm, while showing only marginally better performance than Cathode. Cathode again satu-
rating the idealized limit, even in the presence of strongly correlated features, is a remarkable finding.
It shows again that density estimation and interpolation indeed leads to increased robustness against
correlations, retaining much of the original significance improvement. This is also shown consider-
ing the performance of Anode, which also only saw a marginal performance decrease compared to
the non-correlated scenario. Another notable difference can be seen considering the SIC curve of the
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Figure 7.5: It shows the maximum achieved significance, which is the product of the SIC achieved
at the anomaly score cut and the uncut significance, as a function of the signal-to-background-ratio
(S/B) and the statistical significance 𝑆/√𝐵. Again the solid lines correspond to the median and shaded
areas to the inner 68 % of the SIC distribution based on 10 independent retrainings. Different from
previous studies, not only the classifiers were re-trained, but also different random realizations of the
injected 1000 signal events were used. Dotted lines indicate significance value corresponding to 3 𝜎
and 5 𝜎.

CWoLa algorithm. In the presence of highl correlations between input and conditional features, it
breaks down entirely to random performance, which again shows this key weakness of this algorithm.
In an actual, model-agnostic search, as many features as possible should be used, since it cannot be
known which of them contain patterns that a new physics signal could emerge from. Therefore, having
to select non-correlated features by hand prior to analysis is a major caveat for any model-agnostic
method. This shows the significance of the Anode and Cathode methods in the field, being able
to also find anomalies in highly correlated scenarios. Cathode in particular also shows exceptional
performance, saturating the theoretical upper limit of any weakly supervised method.

As discussed previously, the performance of weakly supervised methods depends significantly on
the amount of signal present within the SR. Therefore, another important matter to study is how the
performance of the investigated algorithms behaves for different numbers of signal events injected
into the QCD background. Thus, another study was done investigating the sensitivity of the methods
with respect to different injections. The result is shown in Figure 7.5. The same settings as in the pre-
vious study were used for the training of the different algorithms. However, one key difference of this
study is that not only the classifiers were re-trained for assessing the variance of the results, but also
the 1000 injected signal events were chosen randomly each time, as were the training and validation
sets. Starting from the original injection of 𝑆/𝐵 = 0.6 % in the SR, corresponding to a significance
of 𝑆/√𝐵 = 2.14, the signal injections are subsequently reduced down to 𝑆/𝐵 = 0.05 %. In total, six
different injections are investigated. From the plot, it can be seen that up to injections of 𝑆/𝐵 = 0.2 %
none of the weakly supervised methods shows a considerable significance improvement. For higher
injections, however, the different methods start to diverge in performance. At 𝑆/𝐵 = 0.3 %, the IAD
and Cathode have already achieved a significance larger than 5 𝜎, which in high energy physics is
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Figure 7.6: Results shown are based on trainings on background events only. Left panel: The plot
shows the 𝑚𝑗𝑗 distribution without any selection applied (dashed histogram) as well as after selecting
the 20 % and 5 % most anomalous events according to the learned anomaly score. The SR is indicated
in light grey. Right panel: Ratio of selected template and selected data background events in the SR
after different cuts on the anomaly score, as a function of the number of actual background events after
the respective cut. Shaded areas correspond to the statistical uncertainty on the number of template
and actual background events, propagated to the ratio. Dashed lines describe the values for a 10 %,
dotted lines for a 20 % deviation from the optimal value of 1.

considered the threshold for discovery. At the same point, Anode achieves a significance larger that
3 𝜎, which is corresponds to evidence of a new particle. CWoLa, however, achieves a median per-
formance just below that value. In general, the IAD and Cathode are the methods where the median
performance crosses the 3 𝜎 and 5 𝜎 lines first, except for the fully supervised line. Two caveats of
weakly supervised methods in general can also be seen in this plot. First, due to the noisy nature of the
weak classification task, the variances of the results are large and overlap throughout almost the entire
plotting range. This makes it difficult to assess whether one method is significantly better than another
and makes ensembling or several re-trainings necessary, which increases the computational costs of
studying these methods. Second, weakly supervised methods in general are a trade-off to increase
model agnosticity at the price of lower sensitivity compared to dedicated searches. This can clearly
be seen from this study, where a supervised classifier already reaches the threshold of evidence at the
lowest injection, whereas even the idealized weak classifier is reaching this value at an injection that
is approximately five times as high. While this trade-off is known for model-agnostic methods and
has been previously discussed, the study shows that improving the sensitivity for weakly supervised
approaches should be a key objective of future research efforts.

When searching for new physics resonances in a model-independent way, a key factor is the extrac-
tion of the signal. In many cases, the approach of “bump-hunting” which was discussed in section 6.2
is used for this purpose. Therefore, one important feature of any model-agnostic approach is that it
must not sculpt artificial bumps or features into the invariant mass spectrum. In other words, after
selecting the most anomalous events based on the respective anomaly score, it must be possible to
apply a smooth fit to 𝑚𝑗𝑗. To investigate the sculpting of Cathode, the algorithm was trained only
on background events and the invariant dijet mass distributions at different selection efficiencies were
then compared to the uncut distribution. The result of this study can be seen in the left panel of
Figure 7.6. The plot shows that Cathode does not sculpt artificial features into the invariant dijet
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mass spectrum, neither within nor outside the SR window, even for percent-level cuts that are usually
applied for analyses in high energy physics.

Another approach to study possible sculpting issues with the Cathode approach is to investigate
the bias of the learned estimate of 𝑝bg.. The main idea behind this investigation is that if this estimate
is unbiased, the same number of events should be selected from the data and the template events in the
SR. Therefore, as many template events were generated within the SR as background test set events
exist. Then, both template and actual background events were evaluated on the Cathode model and
the ratio of the number of events being selected after a cut on the anomaly score was computed. The
results of this study are shown in the right panel of Figure 7.6. From the figure, it becomes clear
that there is no significant bias present in the SR background estimate, since the ratio is close to 1
and stays within a fluctuation of 10 % throughout a large part of the domain. Deviations increase
only in the region of low statistics, which is expected. Therefore, based on these studies it can be
assessed that Cathode does not sculpt the background and produces a largely unbiased estimate of
the background density, 𝑝bg. in the SR. Signal extraction methods typically applied to model-agnostic
approaches such as bump hunting can thus be used for signal extraction.

In summary, Cathode marks a significant contribution in the development of methods for reso-
nant anomaly detection. It constitutes a method that is not only performing similar to the theoretical
upper limit of any weakly supervised approach, but also is highly robust against correlations between
input features 𝐱 and the conditional 𝑚. This enables the use of Cathode in model-agnostic searches
without the need of manual selection of uncorrelated features. Additionally, it does not introduce
significant sculpting, which allows for the use of standard signal extraction techniques in an actual
search. Due to these advantages, Cathode was applied to a first-of-its-kind search for new physics
resonances by the CMS collaboration [165], which is discussed in the following sections.

7.2 Analysis Strategy

The work presented in this and the following sections of this chapter are mainly based on the analysis
EXO-22-026 [165], a recent effort of the CMS collaboration. The main collaborators of this analysis
are Thea Aarrestad, Oz Amram, Aritra Bal, Samuel Bright-Thonney, Nadya Chernyavskaya, Phil Har-
ris, Gregor Kasieczka, Benedikt Maier, Petar Maksimovic, Patrick McCormack, Louis Moureaux,
Jennifer Ngadiuba, Sang Eon Park, Maurizio Pierini, David Shih, Manuel Sommerhalder, Kinga
Wozniak and Irene Zoi. The application of Cathode specifically was done by collaborators from
the University of Hamburg, namely Gregor Kasieczka, Louis Moureaux, Manuel Sommerhalder and
myself. Several figures and written content closely resemble or match the information contained in
the collaboratively developed documentation of this analysis. My contributions to this analysis are:

• Initial studies for the application of Anode algorithm to analysis, including studies of density
estimator performance (background estimation and interpolation), hyperparameter optimiza-
tion, testing on preliminary Monte Carlo data set (background-only and for various signals)
and studies of background sculpting.

• Significant contributions to the implementation, testing and continuous development of the
“bump hunting” framework, in particular testing various parametric fit functions and assessing
the quality of the background estimation as well as signal extraction. Implementation of the
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template fit using a double crystal ball function for signal templates as well as the interpolation
of parameters.

• Studies regarding possible scultping of the signal shape for the Cathode method.

• Extensive studies regarding significance/p-value scans across mass points, both in the back-
ground-only case and the case including signal. Investigation and optimization of results for
Monte Carlo samples in analysis region and data in the validation region. Detailed studies
about possible fit bias considering the distribution of p-values for repeated experiments and for
different selection efficiencies.

• Preparation and provisioning of all used background Monte Carlo and data samples using
CERN infrastructure, as well as production of the respective data/MC comparison plots.

• Contribution to the analysis framework used for the application of Cathode. In particular,
implementing the normalizing flow for Cathode based on the pyro [178] software package,
as well as several studies regarding its hyperparameters, training stability and performance.
Implementation of the sample preprocessing for training, including k-fold cross-validation.

• Several studies regarding feature selection for broad sensitivity across all investigated signal
models for Cathode.

• Implementation and generation of analysis plots for assessment of background fit on selected
events in each SR as well as ΔNLL plots.

As discussed in chapter 6, model-agnostic searches are a promising way forward to search for BSM
physics phenomena at the Large Hadron Collider and beyond. In an entirely data-driven way, large re-
gions of phase space can be scanned for any anomaly in a single analysis. While model-agnostic search
efforts have been conducted by many high energy physics experiments, most of them were based on
identifying deviations between measured data and Monte Carlo simulation, introducing dependence
on the background model. However, at the time of writing, two analyses by the ATLAS collaboration
exist, using state-of-the-art unsupervised machine learning techniques for model-agnostic anomaly
detection [162,163].

The analysis described in this chapter is the first such effort in the CMS collaboration and uses
a unique approach, testing a large variety of different anomaly detection methods for many signal
models. Using not only a single, but several models significantly enhances any model-agnostic search,
since each method has different strengths and weaknesses and it cannot be known which method is
optimal to find an entirely unknown anomaly a priori. Additionally, testing a variety of signal models
– many of which have not been targeted with a dedicated search – allows to acquire exclusion limits
for all of them in one analysis. It also yields important insights into which models perform better in
what kind of new physics scenarios.

Being a first-of-its-kind analysis, it does therefore not only mark a significant milestone for the
CMS collaboration, but also for high energy physics in general.

When searching for physics phenomena beyond the Standard Model, the majority of current search
efforts use specific signal models that target one or more aspects of the experimental or theoretical
motivations for BSM physics. In these analyses, the search strategy is developed using a combination
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Figure 7.7: Overview of analysis strategy depicted as a flow chart of individual steps.

of signal events generated with Monte Carlo (MC) simulations and SM background MC events. Once
the strategy is successfully applied and validated on MC, it is ultimately applied to data. Due to their
reliance on MC simulations, these searches are strongly dependent on both the signal and the SM
background models. Since the discovery of the Higgs boson by the CMS and ATLAS collaborations
in 2012, many of BSM searches have been conducted at the LHC physics programme and so far, no
evidence for new physics was found. Therefore, it is likely that there exists a BSM scenario in nature
which is not amongst the typically tested models. Additionally, there are vast regions of phase space at
the LHC as well as various signal models that are yet unexplored [44,179]. As discussed in section 6.5,
efforts to employ model-agnostic searches were done by many High Energy Physics collaborations,
such as D0 [155–157], H1 [158, 159], ALEPH [180], CDF [160, 161], CMS [4, 5] and ATLAS [6–
8]. These searches look for deviations between data and SM simulations in many “bins” of final
states. This approach is signal-model independent, but is entirely dependent on the correctness of the
simulated SM background model. Additionally, looking for deviations in such a large number of bins
introduces a significant look-elsewhere-effect, which considerably reduces the sensitivity and devising
systematic uncertainties for several hundred final states and multiple kinematic distributions [3] often
constitutes a challenge.

In the analysis described in this work, state-of-the-art machine learning methods are used for con-
ducting a purely data-driven search that is agnostic to specific signal models. The target is to detect
new resonances in the dijet final states using several such methods, which have been previously applied
to DELPHES simulated data by the same collaborators in [150, 172, 175, 176]. The search methods
employed are based on either of three paradigms: weak supervision, out-of-distribution detection or
semi-supervised learning, and therefore represent different conceptual approaches to anomaly detec-
tion. As mentioned previously, using different methods instead of a single one ensures sensitivity for
a broader range of possible signal anomalies.

Similar to the LHCO R&D data set described in subsection 6.4.1, the target of this analysis is
the dijet final state of a narrow resonance A with mass 𝑂(TeV) decaying to particles B and C that
can be SM or BSM particles that decay hadronically. The mass of B and C are chosen to be much
smaller than 𝑚𝐴, such that their decay products can be merged in a single, large-radius jet. In this sce-
nario, jet substructure variables can be used to look for anomalous events and reduce the background
significantly.

The individual steps of this strategy are shown in the diagram in Figure 7.7. First, a common
preselection is applied to the data and the two most massive large-radius jets are considered for fur-
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ther analysis. Addtionally, the data is split into an analysis region and a validation region based on
kinematic criteria. Data in the validation region is used to assess whether the employed machine
learning methods are well calibrated and do not learn spurious information from data. It should also
be noted that, even though the search itself is data-driven, Monte Carlo simulations are still used for
initial validation studies as well as setting limits for specific signal models. After the preselection
is applied, the respective machine learning methods are trained on data and a cut on the resulting
anomaly metric is applied based on a pre-defined working point. This results in the most signal-like
events being selected and considered for the final step, which is the bump hunt that was described
in section 6.2. In this analysis, a parametric background function is chosen for estimating the back-
ground, while the signal is modelled using a generic double crystal ball template. By conducting a
combined background and template fit, a p-value is extracted at several mass points in the invariant
dijet mass and limits are set on the benchmark signal models. The p-values for each of the methods
as well as the achieved limits for all the signal models are therefore the main outputs of this analysis.

7.3 Machine Learning Methods

A central part of the strategy of this analysis is that several machine learning-based methods are
employed in order to have a high sensitivity for a large family of different potential anomalies. While
a detailed description of all these methods and their results is beyond the scope of this work, a general
summary is provided in this section. Furthermore, this work specifically focuses on the results of
applying the Cathode method to CMS data, which will be discussed thoroughly in the following
sections, while comparisons with other analysis methods are also provided for some key studies.

All employed methods belong to one of three overarching anomaly detection principles:

• Weak supervision: In weak supervision, instead of using the actual signal/background infor-
mation, noisy labels are used that are derived from the data directly. Therefore, a weak classifier
learns to distinguish two mixtures of samples with different signal fractions. The topic of weak
supervision for model-agnostic anomaly detection is also discussed extensively in chapter 6.

• Out-of-distribution detection: These models learn to encode the background distribution and
use the likelihood of an event under this learned distribution as a tagger. Events that have a low
background likelihood are therefore tagged as anomalous. Probabilistic generative models such
as variational autoencoders [181] or normalizing flows (see section 5.4) are specific methods
that are frequently used for this task.

• Semi-supervised learning: These methods are in between fully supervised and unsupervised
learning. They learn to encode a complex space containing both the background distribution
as well as one or more signal distributions. To do this, MC simulations of both signal and
background models are typically used. The signal models are chosen to cover a broad range of
different BSM characteristics that are combined into a single probability density. This results
in a model which generalizes the main features of the BSM theories and thus is able to find
signal models it was not directly trained on. In practice, probabilistic generative models are
again used to encode background and individual signal model likelihoods.
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A central point in model-agnostic searches is that an optimal algorithm cannot be defined, since the
characteristics of the potential signal and the sensitivity of any method to detect it are not known. The
use of anomaly detection paradigms that are conceptually different ensures that a set of complemen-
tary methods is used that yields a broader coverage of possible signal models compared to using only
a single method.

In total, six methods are employed in this analysis, four of which are weakly supervised and one
for each of out-of-distributions detection and semi-supervised learning. Each analysis method used
is discussed in the following sections.

7.3.1 Weakly Supervised Methods

All of the weakly supervised methods employed in this search assume a narrow, localized resonance
and make use of a signal region (SR) and sidebands (SB) in the dijet invariant mass, 𝑚𝑗𝑗, to obtain
signal-enriched and signal-depleted samples for classification (see chapter 6). In particular, if a signal
resonance is present in the SR, the weak classifier will distinguish between an SR sample with a high
signal fraction and the QCD background sample from the sideband. Conversely, if no signal is present,
the classifier tries to distinguish QCD events from other QCD events and the tagging performance is
close to random. To define these regions, a specific mass hypothesis must be chosen. In order to not
restrict the analysis to a single SR in the large invariant mass phase space, 8 different 𝑚𝑗𝑗 windows
are chosen and the analysis procedure is repeated for each of them. The width of the windows is
chosen to be larger than the mass resolution in order to make sure that the majority of the resonance
is contained within them. A second set of bins is defined that is shifted by approximately half the
bin size with respect to the original set in order to mitigate cases where the resonance is close to the
boundaries of the SR window. The two sets of windows are being referred to as mass windows A and
B respectively and are summarized in Table 7.3. The table shows the mass ranges of each SR bin as
well as the number of data events contained within them. The scanned mass points refer to the values
where a combined fit of a signal resonance shape and a parametric background function is used to
extract the corresponding p-value, which is further discussed in a later section. Bins A0, A7 as well as
B0 and B7 are not used as signal regions for weakly supervised analysis, since the respective methods
require both an upper and lower sideband. Therefore, 12 signal regions are studied in total. While
the settings regarding the SR windows is kept the same for all anomaly detection methods based on
weak supervision, several aspects vary. Therefore, each of the methods is shortly described in the
following.

CWoLa Hunting

CWoLa is a weakly supervised method that was already described extensively in section 6.3. It can
be seen as the most foundational weak supervision method, since events from the SR are directly
trained against events from the SB region to learn the likelihood ratio 𝑅 = 𝑝data(𝐱)/𝑝bg.(𝐱). For
CWoLa, the SB region is defined by the bins adjacent to the considered SR. Due to the exponentially
falling shape of the invariant dijet mass distribution, there are significantly fewer events in the upper
SB compared to the lower SB, hence upper SB events are reweighted in the training to match the total
weight of the lower SB events. In this search, CWoLa is applied using two per-jet classifiers, one
for first jet and one for the second jet in terms of jet mass. This allows an additional reweighting of
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Bin name Range [GeV] Eff. cut Scanned masses [GeV] Num. data events
A0 1350 − 1650 - - 5.6M
A1 1650 − 2017 1 % 1700, 1800, 1900 3.8M
A2 2017 − 2465 1 % 2200, 2300 1.2M
A3 2465 − 3013 1 % 2600, 2700, 2800 340k
A4 3013 − 3682 1 % 3200, 3300, 3400, 3500 90k
A5 3682 − 4500 1 % 3900, 4000, 4100, 4200 20k
A6 4500 − 5500 1 % 4800, 4900, 5000, 5100, 5200 3.5k
A7 5500 − 8000 - - 479

B0 1492 − 1824 - - 6.6M
B1 1824 − 2230 1 % 2000, 2100 2.1M
B2 2230 − 2725 1 % 2400, 2500 630k
B3 2725 − 3331 1 % 2900, 3000, 3100 170k
B4 3331 − 4071 1 % 3600, 3700, 3800 42k
B5 4071 − 4975 1 % 4300, 4400, 4500, 4600, 4700 8.7k
B6 4975 − 6081 1 % 5300, 5400, 5500, 5600, 5700, 5800 1.3k
B7 6081 − 8000 - - 144

Table 7.3: Signal region windows used by the weakly supervised methods for analysis, including
ranges, selection efficiencies (used by Cathode-based methods), mass points scanned and number of
events.

jets in the SB region to match the 𝑝T distribution of the jets in the SR, which reduces the correlation
between the resulting anomaly score and 𝑚𝑗𝑗. The input features used are the soft drop mass of the
jet 𝑚SD [182], the 𝑛-subjettiness ratios 𝜏21, 𝜏32 and 𝜏43, the number of PF candidates in the jet, 𝑛PF,
the lepton subjet fraction LSF3 (see subsection 7.6.4) and the maximum b-tagging score of the two
leading subjets of the large-radius jet, based on the DeepCSV algorithm. The final anomaly score of
the two classifiers is obtained by first computing the percentiles of the anomaly score distributions
for each classifier separately. Then, the maximum of these anomaly-percentile scores are taken as the
final event-level score.

Tag’N’Train (TNT)

Tag’N’Train (TNT) is a method based on CWoLa hunting [174], that additionally uses low-level
information to enhance anomalous events in the SR sample. In particular, an autoencoder based on
an image representation of the jet is trained [167, 168], representing the energy density in the (𝜂, 𝜙)
plane. The use of jet images can enhance the anomaly detection scheme, since the images use the
low-level PF candidate information which complements the high-level information used in the weak
classification.

The image-based autoencoder (AE) takes the images and encodes them using a six-dimensional
latent space. The difference between the decoded images and the input images (also referred to as
reconstruction loss) is taken as an anomaly score. This score is computed for each of the two jets in
the event separately.

The signal-enriched samples are now obtained not only using the SR thresholds in 𝑚𝑗𝑗, but also
using the AE score. First, jets in each event are randomly assigned into groups J1 and J2, such that
the “first” and “second” jet assignment is no longer mass-ordered, but randomly ordered. Due to this
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randomization, all jets have the same underlying distribution and a single AE is trained on the entirety
of the jets for events from the SB region. Then, the jets in all events both in the SR and SB regions are
evaluated and the reconstruction loss is computed for each jet in the event individually. The signal-
enriched sample for the J2 group is then created by taking the J2 jet of SR events where the J1 jet is
in the top 20% in terms of AE score. The background-like sample on the other hand is created for the
J2 group by taking all J2 jets of events in the SB region as well as all J2 jets of events in the SR where
the J1 jet is in the lower 40% in terms of AE score. That is, the SR and SB region definitions in 𝑚𝑗𝑗

as well as the J1 reconstruction loss of the AE define the signal/background-enriched samples for the
jets in group J2. The same procedure is applied vice-versa, with jets in group J2 defining signal and
background-enriched samples of jets in group J1. Thus, the selection of signal-enriched samples is
based on the assumption that both jets are anomalous.

Finally, the two background-enriched samples as well as the two singal-enriched samples are
merged and a weakly supervised classifier is trained to distinguish the two. The event-level anomaly
scores are then obtained by multiplying the final classifier scores of the two jets in each event. A key
benefit of TNT is that the AE-based tagging can significantly increase the signal fraction in the signal-
enriched sample for the weak classification task. The major caveat of this method is that since the
anomalous behaviour of one jet in the event is used to define the other jet as also being anomalous, it
is only suited for cases where both jets in the event are anomalous. For signal models where only one
of the jets contains anomalous substructure while the other is a quark/gluon jet, the AE assignment
will lead to non-anomalous jets being contained in the signal-enriched sample, which will reduce the
sensitivity significantly.

The input features for the final weakly supervised classifier are the same as in the previously
discussed CWoLa approach. The images for the AE input are based on the 𝑝T, 𝜂 and 𝜙 values of the
PF candidates and the same processing steps as in [183] are applied.

Cathode and Cathode-b

Another weakly supervised method employed in this analysis is Cathode and its application to ex-
perimental data will be discussed in detail. Cathode uses density estimation techniques based on
normalizing flows to first learn the background density 𝑝bg.(𝐱) from the SB region. Then it inter-
polates this density into the SR and trains a weak classifier between samples from the interpolated
background density and data samples in the SR. Therefore, the weak classifier approximates the most
powerful classifier possible for any weakly supervised search, given by 𝑅 = 𝑝data(𝐱)/𝑝bg.(𝐱).

In this analysis, the input features used for Cathode are the most massive jet in the event, 𝑚𝑗1,
the mass difference between the most and second most massive jets Δ𝑚𝑗 = 𝑚𝑗1 − 𝑚𝑗2, as well as
the subjettiness ratios 𝜏41,𝑗1 and 𝜏41,𝑗2 of the two jets. During experimentation it was also observed
that adding the b-tagging score significantly increased the performance on signal models containing b
jets, while it acted as an additional noise feature for signal models without one, causing a decrease in
performance. Therefore, two versions of Cathode are used in this analysis, one with the mentioned
input features referred to as Cathode and one with the DeepCSV b-tagging scores DeepB𝑗1

and
DeepB𝑗2

of the two jets added, referred to as Cathode-b.
The Cathode method has been described in section 7.1. The training parameters and study results

for Cathode and Cathode-b on experimental data will be discussed in the following sections.
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7.3.2 Out-of-Distribution Detection

Variational Autoencoder with quantile regression (VAE-QR)

For the out-of-distribution detection method employed in this analysis, a variational autoencoder
(VAE) is used. Similar to an autoencoder, a VAE learns to encode an higher-dimensional input space
in a latent space with significantly fewer dimensions. A decoder network then learns to reconstruct the
original input using the information encoded in the latent space. In order train a neural network to do
this, the loss is often defined as the mean squared difference between the reconstructed output and the
original input. So far, the procedure corresponds to that of a standard autoencoder network. However,
the variational autoencoder is different in terms of the latent space. In particular, the encoder learns
to compress the input space into a distribution over the latent space, typically modelled by a standard
normal distribution. Therefore, the loss of a VAE has two components: the reconstruction loss and a
loss term that maximizes the likelihood of the encoded distribution under a standard Gaussian. For
the latter, the Kullback-Leibler divergence (KL-divergence) between the encoded distribution and the
standard normal distribution is typically used.

As inputs, the VAE uses the 𝑥, 𝑦 and 𝑧 components of the momentum 𝑝 of each of the PF candidates
of a jet. Specifically, the 100 highest-𝑝T candidates are used for the training. The VAE is trained in
a Δ𝜂 control region where no significant signal contribution is expected. After the training, it is
evaluated on events in the analysis region and the minimum reconstruction loss of the two jets in each
event is used as an anomaly score, meaning that the scenario of both jets being anomalous is targeted.
Since it has been observed that there are significant correlations between 𝑚𝑗𝑗 and the resulting VAE
score, a quantile regression (QR) is performed. The QR model learns a cut as a function of the
invariant mass corresponding to a fixed selection efficiency in the signal region. For the model-
independent search, a cut corresponding to the 10 % most anomalous data events is used.

7.3.3 Semi-Supervised Learning

QUAK

The semi-supervised method used in this analysis is referred to as QUAK [176]. In this method,
density estimators based on normalizing flows are used to encode a signal prior that is based on
Monte Carlo samples of several considered signal models. Additionally, a similar prior is learned
for the background, again using a density estimator trained on simulated QCD samples. The input
features used are 𝜌𝑗1 = 𝑚𝑗1/𝑝T,𝑗1 and 𝜌𝑗2, as well as the subjettiness ratios 𝜏21, 𝜏32, 𝜏43 and a
modified 𝑛-subjettiness metric 𝜏𝑠 = √𝜏21/𝜏1. Furthermore, the DeepB score and the number of PF
constituents are used.

To be sensitive to many hypothetical signal models, six signal flows are trained on combinations
of different signal masses that are grouped with respect to the B and C particle masses. A signed L5
norm is then used as an anomaly score which is computed from the six flow outputs. Additionally, a
single flow is trained for the background events. Events that are likely anomalous are expected to be
located in the region of a high signal score and a low background score. To select events, a template fit
is conducted, which is implemented as a binned 2D histogram of the QUAK space, using pre-defined
signal regions and sidebands. The events located within the bins with an excess of events in the signal
region are then selected and a bump hunt in 𝑚𝑗𝑗 is performed on them.
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Figure 7.8: Diagram showing the 𝑘-𝑙-folding procedure used for Cathode(-b) and other weakly su-
pervised methods

QUAK is used in two modes in this analysis: A “model-agnostic” mode, where all the benchmark
signal samples are used for the prior and a “model-specific” mode, where the prior is purely based on
the targeted signal. The former is used to generally look for anomalies in data, whereas the latter is
used for the model-specific limit setting.

7.4 Cross-Validation & Training Procedure

7.4.1 k-l-folding

For the weakly supervised methods, a two-stage 𝑘-folding strategy is employed. The first stage in-
volves a standard 𝑘-folding technique that allows for separate, independent test folds in each retraining.
By combining the results of these folds, it is possible to obtain anomaly scores for the entire data. Due
to the noisy nature of weak supervision and the rare occurrence of anomalies, small changes in the
training can have a large impact in the final results. In particular, the outcome of weakly supervised
methods can be impacted considerably by the stochasticity of the model initialization and training
processes. In order to control this, 𝑙-folds are defined in the second stage of the folding strategy for
the CWoLa Hunting, TNT and Cathode(-b) methods. The cross-validation is almost the same be-
tween those methods and differs only in nuances. In this section, the procedure used for Cathode(-b)
will be described.

To better illustrate the procedure, it is depicted as a diagram in Figure 7.8. The data samples are
randomly split into 5 𝑘-folds. Then, one of them is assigned as test fold and the remaining 4 are used
for training and validation. In particular, one of the 4 remaining folds (which will be referred to as
𝑙-folds) is used for validation, while the other 3 𝑙-folds are used for training. The 𝑙-fold training is
repeated four times, such that all possible 𝑙-fold assignments are realized once. This results in four
models, each of which is evaluated on the test 𝑘-fold that was assigned in the beginning. The entire
procedure is then repeated for each possible value of 𝑘, which leads to a total of 5 × 4 = 20 models.

This 𝑘-𝑙-folding procedure is applied both to the density estimator and weak classification parts of
the Cathode(-b) algorithm. The density estimator models of each 𝑘-𝑙-fold setting produce samples
for the respective classifier models to train on. The full evaluation of the weak classifiers is then based
on an ensemble of the four models trained for each 𝑘-fold, using the average prediction on each test set
event as the final score. Since each fold is assigned as test fold exactly once, the average predictions
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Hyperparameter Value
Number of MADE blocks 15

Number of hidden layers 1

Number of nodes per hidden layer 128

Activation function ReLU

Batch normalization After each MADE block

Batch normalization momentum 0.1

Log(loss) clipping Between −3 and 3

Optimizer Adam [108]

Learning rate 10−4

Weight decay 10−6

Number of epochs 100

Batch size 256

Table 7.4: Hyperparameter settings used for the Cathode(-b) density estimator models.

of all test folds can be combined to obtain anomaly scores for the entirety of the data set. These scores
are then used to tag anomalies based on a previously defined selection efficiency.

7.4.2 Training Procedure for Cathode(-b)

Independent of what data set Cathode(-b) is trained on, the same training procedure is used through-
out this analysis. Starting from the data after the common preselections have been applied, it gets
split into SR and SB region samples. Each of these is then again split into five distinct 𝑘-folds. In the
next step, the density estimator models are trained using the full 𝑘-𝑙-folding procedure described in
the previous section. For each of these trainings, the data is preprocessed based on the values of the
samples in the training set: First, the input features are transformed to be forced in a range between 0
and 1 by subtracting the minimum and dividing by the difference between maximum and minimum
values. Second, a logit transformation is applied to the features. This is done in order to move the
data away from the edges of the phase space and mitigate poor density estimation of distributions that
are peaked at either boundary. Finally, the features are standardized to have a mean of zero and a
standard deviation of one by subtracting the mean and dividing by the standard deviation. The same
transformations are then also applied to the validation set and the density estimators are trained on
the samples from the SB region, using the invariant dijet mass, 𝑚𝑗𝑗, as a conditional. The models that
are used for density estimation are based on normalizing flows, implemented using the pyro [178]
software package. In particular, MAFs are used (see subsection 5.4.2 for details) and the specific
hyperparameters are described in Table 7.4.

Once the density estimators have been trained, they are used to generate the background template
samples for the weak classification task. In order to increase the stability of the classifier trainings,
it has been shown to be beneficial to produce a template sample based on an ensemble of multiple
density estimator models. Therefore, the model states at the five lowest validation loss epochs are
used for each model. The number of template events to be sampled is set to be four times the number
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Hyperparameter Value
Number of hidden layers 3

Number of nodes per hidden layer 64

Optimizer Adam

Learning rate 10−3

Number of epochs 100

Batch size 128

Table 7.5: Hyperparameters used for the weak classifier models in Cathode(-b)

of events in the SR training samples. This “oversampling” was also used in the original Cathode
work [150] and has been shown to improve performance compared to a template sample of the same
size. The ensembling is realized by simply generating one fifth of the needed template samples with
each model.

In order to interpolate the learned density from the SB region into the SR, the flow models need to
be conditioned on the SR 𝑚𝑗𝑗 values. To make sure that no exact values are re-used during oversam-
pling, a kernel density estimator (KDE) is trained on the 𝑚𝑗𝑗 of SR events in the training set. Then,
a sample of the needed size is drawn from the KDE to use as an input for the conditional feature of
the flows. Since the density estimators are trained on the preprocessed features, the template sam-
ples drawn from them will also be in this space. Once the interpolated template samples have been
obtained, the preprocessing is reverted and the template samples are merged with the training set
samples from the SR. As a preprocessing for the classifier training, the features are again normalized
by subtracting the mean of the training set events and dividing by the standard deviation. The same
preprocessing is also applied to the validation set.

Finally, the weak classifiers are trained, distinguishing actual SR events (which are given the
label 1) and the background template events (which are given the label 0). The classifiers used are
implemented as fully connected neural networks using the PyTorch [109] software package. The cor-
responding hyperparameters are described in Table 7.5. Once the weak classifiers have been trained,
they can be evaluated on their respective test 𝑘-fold. Again to reduce the impact of the stochasticity on
the final result, each classifier model is defined as an ensemble based on the 10 lowest validation loss
epochs. After applying the same normalization preprocessing step, the test set both in the SR and the
SB region is evaluated using each of the 10 model states and the predictions are averaged to obtain an
ensemble prediction. This is done for each 𝑙-fold, such that four such ensemble predictions exist for
each test 𝑘-fold. For the final prediction, the four 𝑙-fold model predictions are again averaged. Finally,
the predictions of all 𝑘-folds are merged, yielding anomaly scores for all events in the data set.

7.5 Data and Simulated Samples

7.5.1 Data Samples

The data samples used in this analysis are based on proton-proton interactions collected with the
CMS detector at a center-of-mass energy of √𝑠 = 13 TeV during the data-taking years 2016, 2017
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Year Golden JSON file name Integrated luminosity [fb−1]
2016 Cert_271036-284044_13TeV_Legacy2016 Collisions16_JSON.txt 36.4

2017 Cert_294927-306462_13TeV_UL2017_Collisions17 GoldenJSON.txt 41.5

2018 Cert_314472-325175_13TeV_Legacy2018 Collisions18_JSON.txt 59.8

Total 137.6

Table 7.6: Golden JSON files used in analysis for each year as well as the respective integrated lumi-
nosity.

and 2018 (full Run 2). These samples correspond to an integrated luminosity of 137.6 fb−1, which is
measured based on the “golden JSON” files listed in Table 7.6 for the mentioned years. The JSON
files list the sections in luminosity that passed the CMS “golden” certification, meaning that all of
the sub-detectors were flagged to operate within normal parameters and thus the collected data can
be used in any kind of physics analysis [184, 185]. The data set used is based on the JetHT physics
data set, where data was collected with a combination of PFHT and PFJet hadronic triggers applied.
These trigger on the sum of the transverse momenta of the PF candidates (see subsection 4.3.2) in the
event, denoted as 𝐻𝑇 and on the tranverse momenta, 𝑝𝑇, of the jets clustered from these candidates,
respectively. The data was preprocessed starting from samples of the ultra legacy (UL) campaign in
MiniAOD format, from which NanoAOD files were produced using the JetMET PFNano producer.
The full list of used samples can be seen in Appendix B. These files contain the same information as
in the official CMS campaign, but additionally include information of the individual jet constituents
that are used as input to some of the above-mentioned machine learning methods. The production of
samples using PFNano started from MiniAODv1 for the 2016 data set, whereas for the 2017 and 2018
data sets MiniAODv2 was used. For all eras, the processing is based on the CMS software version
CMSSW_10_6_20 using the 106X_dataRun2_v32 global tag.

7.5.2 Simulated Samples

Background

For the generic hadronic dijet resonance A→BC, the main background process consists of QCD mul-
tijet events. Minor backgrounds include 𝑊 and 𝑍 bosons produced in association with additional jets
as well as top-antitop quark pairs and single top quarks.

The QCD background events are simulated and showered using pythia8 [142,186]. Top-antitop
and single top quark backgrounds are modelled with powheg [187, 188] at next-to-leading-order
(NLO) and also showered using pythia. The vector boson production in association with jets is gen-
erated at leading-order (LO) using MadGraph5_amc@-nlo [189, 190] matched with pythia. The
generated samples are then processed by a simulation of the CMS detector based on Geant4 [191].
Additional proton-proton collisions in the same or adjacent bunch crossings (pileup events) are sim-
ulated by adding more inelastic events that are generated using pythia and superimposed on hard
scattering events. The entirety of the background samples from the UL campaign used in this anal-
ysis is summarized in Appendix B for the three data-taking years, including the respective cross
sections, which are based on [192] for the 𝑝𝑇-binned QCD and 𝑉+jets samples. For single top quarks
produced in the 𝑡𝑊-channel, cross-sections are taken from [193] and for the t-channel from the cross-
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Process 𝐦A [TeV] 𝐦B [GeV] 𝐧 subjets B 𝐦C [GeV] 𝐧 subjets C
𝑄∗ → 𝑞𝑊 ′ [2, 3, 5] ≈ 0 1 [25, 80, 170, 400] 2

𝑋 → 𝑌𝑌 ′ [2, 3, 5] [25, 80, 170, 400] 2 [25, 80, 170, 400] 2

𝑊𝑘𝑘 → 𝑅𝑊 → 𝑊𝑊𝑊 [2, 3, 5] [170, 400] 4 𝑚𝑊 2

𝑊 ′ → 𝑡𝐵′ → 𝑡𝑏𝑍 [2, 3, 5] 𝑚𝑡 3 [25, 80, 170, 400] 3

𝑍′ → 𝑇 ′𝑇 ′ → 𝑡𝑍𝑡𝑍 [2, 3, 5] [400] 5 [400] 5

𝑌 → 𝐻𝐻 → 𝑡𝑡𝑡𝑡 [2, 3, 5] [400] 6 [400] 6

Table 7.7: Specific signal models of generic decay A→BC used in this analysis, including particle
masses and subjets expected within single large-radius jets.

section database XSDB. Similarly to the data file processing, MiniAOD files are initially used for
the simulated samples from which NanoAOD samples are produced using PFNano, including the
information of individual PF candidates. This processing is done using the CMS software release
CMSSW_10_6_20 and the global tags 106X_mcRun2_asymptotic_preVFP_v11 (2016 preVFP era),
106X_mcRun2_asympto-tic_v17 (2016 postVFP era), 106X_mc2017_realistic_v9 (2017 era)
and 106X_upgrade2018_realistic_L1v1 (2018 era). For all of these eras, the initial data format
was MiniAODv2.

In most analyses, Monte Carlo samples are weighted to match the respective cross section of
the process. In this search, however, using MC weights in the trainings of complex ML methods has
proven impractical. Therefore, an unweighted sample is constructed from event samples of each back-
ground process. The number of events sampled corresponds to the expected number corresponding
to the cross section. This data set is constructed to simulate the Poisson statistics of a real data set
and is therefore referred to as “mockup MC data set”. It is based on the lowest effective luminosity
of any process in the MC UL data set for each era, ℒmin.,era, which is given by the lowest 𝑝T bin of
the QCD background process. The corresponding luminosities are 6.8 fb−1 for the 2016 pre-VFP era,
5.6 fb−1 for the 2016 post-VFP era, 7.1 fb−1 for the 2017 and 7.4 fb−1 for the 2018 era. The number
of events sampled for each process is then given by 𝑁sampled = ℒmin.,era ⋅ 𝜖pre. ⋅ 𝜎, where 𝜖pre. is the
efficiency of applied preselections and 𝜎 is the cross section of the physics process. Such a mockup
data set is then constructed for each of the four data taking periods, resulting in a data set with a total
effective luminosity of 26.9 fb−1 for all eras combined.

Signal

For the signal samples of the new physics particles A decaying to particles B and C, a variety of
different mass combinations for the three particles and number of hadrons that particles B and C are
decaying to is used. This is done to cover a large kinematic and jet substructure space in the search.
In terms of jet substructure, decays from 2 to 6 final-state quarks are considered for B and C, as well
as single quark or gluon decays. The specific models that are considered, including the mass values
scanned for each particle, are shown in Table 7.7. For particle A, mass values between 2 and 5 TeV are
scanned, while for the daughter paricles B and C, values between 25 and 400 GeV are used. When one
of the final state particle is a SM particle, only the mass of the new physics particle is scanned. Similar
to the background samples, all signal samples are based on the ultra legacy (UL) campaign and are
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produced for the same respective eras. The resonance is generated with a narrow width in all cases.
The invariant dijet mass spectra of all investigated signals can be seen in Appendix C. Any resonant
signal model and subjet scenario can be investigated using all methods employed in this analysis since
they are generic. However, the focus of this analysis are the shown models, which represent a wide
range of possible mass and subjet realisations.

The simulated signal events are generated at LO in QCD with MadGraph5_amc@nlo [189],
using the NNPDF 3.1 parton distribution functions [194–196] and being interfaced to pythia8 [142]
with the CP5 tune [197] to simulate parton showers and hadronization. Similar as for the background
samples, the starting point of the processing was the MiniAOD data format of the UL samples, which
were enhanced with particle candidate information for the production of the extended NanoAOD sam-
ples. In particular, the initial data format was MiniAODv2 for all data-taking years. The production
was performed with the CMS software release CMSSW_10_6_20 and the following global tags:

• 106X_mcRun2_asymptotic_preVFP_v9 (2016 preVFP)

• 106X_mcRun2_asymptotic_v15 (2016 postVFP)

• 106X_mc2017_realistic_v8 (2017)

• 106X_upgrade2018_realistic_v15_L1v1 (2018).

7.6 Physics Objects and Event Selection

7.6.1 Noise Filters and Primary Vertex Selection

A key aspect for a thorough analysis of experimental data is to remove events that are misreconstructed
or affected by instrumental defects. In particular for the data used in this analysis, the missing trans-
verse energy, MET, can be mis-reconstructed due to anomalous signals in the hadronic calorimeter
(HCAL) and anomalous energy deposits in the electromagnetic calorimeter (ECAL). Therefore, the
MET physics object group (POG) recommends the use of several noise filters to be applied prior to
analysis, which is also done in this work. Specifically, the following filters were applied for all eras,
if not otherwise specified:

• goodVertices

• globalSuperTightHalo2016Filter

• HBHENoiseFilter

• HBHENoiseIsoFilter

• EcalDeadCellTriggerPrimitiveFilter

• BadPFMuonFilter

• BadPFMuonDzFilter

• eeBadScFilter

• CSCTightHaloFilter (only applied for 2016 era)

• ecalBadCalibFilter (not applied for 2016 era)
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Criterion Threshold
Neutral Hadron Fraction < 0.90

Neutral EM Fraction < 0.90

Number of Constituents > 1

Charged Hadron Fraction > 0

Charged Multiplicity > 0

Table 7.8: Jet identification criteria applied to AK8 PUPPI jets with ∣𝜂∣ < 2.5

Furthermore, another selection criterion is that in each event, at least one primary vertex must be
reconstructed within a 24 cm window along the beam axis, having a transverse distance from the
nominal pp interaction region of less that 2 cm [198]. If there are multiple vertices passing these
requirements, the vertex with the highest total 𝑝2

T summed over all associated tracks is designated as
the primary-event vertex.

One particular aspect is taken into account for the 2018 data taking era, where several HCAL
module failures were negatively impacting the measurements of the jet energy in the affected region.
Since this search is a generic anomaly search, it is important to remove anomalies that arise from such
detector malfunctions. Therefore, a veto is applied for all events from this era for which one of the
two highest 𝑝T jets lies in the affected region (−1.57 < 𝜙 < −0.87 and −2.5 < 𝜂 < −1.3), which
results in a marginal ≈ 1 % signal efficiency loss for the 2018 era.

7.6.2 Preselection

Events are reconstructed using the particle flow (PF) algorithm [199], combining information from
various CMS detector parts to identify individual particle candidates. From these candidates, jets
are clustered using the anti-𝑘T [200] jet clustering algorithm with a distance parameter of 𝑅 = 0.8,
also referred to as AK8 jets, as implemented in the FastJet software package [201]. To mitigate
the impact of pileup on the anomaly search, especially to the jet substructure, the pileup per particle
identification (PUPPI) is employed [202]. PUPPI combines information of the local shape of charged
pileup, event pileup properties and tracking information to compute a weight describing the likelihood
of a particle originating from a pileup interaction. Then, the four-momentum for each neutral and
charged PF candidate is scaled with this weight. Specifically, charged candidates not originating in the
primary vertex are assigned a weight of 0. Furthermore, several quality criteria for jet identification
are defined by the JetMET POG for the UL samples used in this analysis. In particular, the tight jet
identification requirements [203] are applied, which are summarized in Table 7.8. Jet corrections
are applied for nonlinearities in 𝑝T and rapidity, using the standard jet energy corrections at CMS,
summarized in [204]. Since the latest recommended corrections are already implemented in the UL
samples used in this work, no further corrections had to be applied in the analysis workflow.

After the jet reconstruction and application of the discussed corrections, events are selected based
on kinematic criteria. In particular, at least two jets with a transverse momentum 𝑝T > 300 GeV pass-
ing the tight jet ID criteria and ∣𝜂∣ < 2.5 are required. The two jets with the highest 𝑝T passing these
criteria are selected as the candidates of the dijet system. The analysis region is defined by requiring
a separation of ∣Δ𝜂∣ < 1.3 in order to further reduce the QCD multijet background. Additionally, an
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invariant dijet mass of 𝑚𝑗𝑗 > 1455 GeV is required in order to be above the trigger efficiency plateau,
where the applied triggers are > 99 % efficient for all eras. The region of higher separation between
the jets, ∣Δ𝜂∣, is used to validate the analysis methods and will be described in more detail later. If the
two jets to not pass the ∣Δ𝜂∣ and 𝑚𝑗𝑗 criteria of the analysis or validation region, the event is discarded.
In summary, the preselection criteria for the analysis region are as follows:

• Two jets:

– Passing PF jet tight ID criteria

– Jet 𝜂 < 2.5

– Jet 𝑝T > 300 GeV

• ∣Δ𝜂∣ < 1.3

• 𝑚𝑗𝑗 > 1455 GeV
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Data-taking era 𝐇T trigger Jet 𝐩T trigger
2016 runs B-G HLT_PFHT800 HLT_PFJet450

2016 run H HLT_PFHT900 HLT_PFJet450
HLT_AK8PFJet450

2017 runs B-F HLT_PFHT1050 HLT_AK8PFJet500

2018 runs A-D HLT_PFHT1050 HLT_AK8PFJet500

Table 7.9: Jet-based triggers used for online data collection during the data-taking periods considered
in this analysis.
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Figure 7.9: Trigger efficiency as a function of the dijet invariant mass for each year of data taking, as
well as for all years combined.

7.6.3 Triggers

The event selection is based on single-jet-𝑝T- and 𝐻T-based triggers, which are summarized in Ta-
ble 7.9. Similar to other studies focusing on hadronic dijet resonances, the background estimation is
done using a smooth parametric function fitted to the dijet invariant mass spectrum, as will be dis-
cussed in detail in the next section. In order to conduct such a smooth fit, significant trigger turn-ons,
i.e. inefficiencies in the low 𝑚𝑗𝑗 region that significantly change the shape of the spectrum, should be
mitigated. Therefore, the invariant mass threshold that is applied is chosen such that the logical OR
of all the triggers is > 99 % efficient for each of the data-taking years. The specific threshold used is a
result of a dedicated study, performed for each year separately. This was done using a data set disjoint
from the one used in the analysis, namely the single muon data set. The reference trigger paths to be
passed in this case are HLT_IsoMu27 or HLT_Mu50. The trigger efficiency as a function of the dijet
invariant mass can be seen in Figure 7.9. From this plot, it can be seen that for the 2016 eras, the
trigger plateau is reached for invariant dijet mass values 𝑚𝑗𝑗 > 1181 GeV, while for 2017 and 2018 it
is reached for 𝑚𝑗𝑗 > 1455 GeV. Since the latter value is the highest point in invariant mass at which
the desired efficiency is achieved for any of the eras, it is chosen as a threshold for the analysis.
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7.6.4 Jet Features

The various anomaly detection methods used in the analysis use different jet features as input. In
particular, these features are:

• The softdrop mass of the jet.

• The 100 highest 𝑝T 4-vectors of the particle flow constituents of the jet, as well as the number
of jet constituents (which might be larger than 100, in which case the remaining constituents
are dropped).

• The 𝑛-subjettiness features [147] 𝜏1 to 𝜏4.

• A b-tagging score, referred to as DeepB. This is defined as the maximum DeepCSV [205] b-
tagging score of the two subjets of the large-radius AK8 jet. If only a single subjet exists within
an AK8 jet, its b-tagging score is used. If no subjet exists, it is set to 0.

• LSF3, the lepton subjet fraction of the jet, which describes the fraction of the total jet momen-
tum carried by its highest-𝑝T lepton.

7.6.5 Data and MC Comparison

Since in this analysis MC simulations are purely used for validation purposes and the actual methods
are directly applied to data, a dedicated MC-based analysis including precise data-to-MC comparisons
and studies of systematic effects is not necessary. However, for the validation studies to produce
valid results, a good agreement between the mockup MC data set and the measured data is still of
high importance. Therefore, dedicated data-MC comparison studies were performed, the results of
which can be seen in Figs. 7.10 to 7.14 below. The plots show several kinematics and jet substructure
distributions after the application of the previously described preselections. The collected data shown
is the sum of all data-taking years. Since the luminosity of the mockup MC data set is not the same as
for the data, events are reweighted to match the expected luminosity of the corresponding data-taking
period. Additionally, the distributions of the events from the simulated 𝑄∗ signal are also shown.

In general, a good agreement between data and the mockup MC data set can be observed. Most
larger deviations are confined to the low-statistics regions in the tails of the distributions. For many
variables, there is a constant ≈ 20 % difference that can be seen from the ratios shown in the lower
panel of each plot. While the reason for this deviation is unknown, it is also not particularly concerning
for the analysis, as it is simply a change of a constant factor and the overall shapes of the distributions
show a good agreement.

7.7 Statistical Methods

7.7.1 Background Estimation and Signal Extraction

The central statistical method applied in this analysis is the “bump hunting” procedure, which was
already outlined in section 6.2. The bump hunt consists of a combined fit of a parametric function
that describes the exponentially falling background of the QCD multijet events and a narrow signal
resonance template. For the weakly supervised methods in particular, the bump hunt is applied to the
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Figure 7.10: Transverse momentum 𝑝T of the jets with the highest (left) and the second highest soft-
drop mass (right).
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Figure 7.11: Pseudorapidity 𝜂 of the jets with the highest (left) and the second highest softdrop mass
(right).
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Figure 7.12: 𝜙 of the jets with the highest (left) and the second highest softdrop mass (right).
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Figure 7.13: Softdrop mass distribution of the jets with the highest (left) and the second highest
softdrop mass (right).
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Figure 7.14: Subjettiness ratio 𝜏21 of the jets with the highest (left) and the second highest softdrop
mass (right).
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Figure 7.15: Distributions of Δ𝜂 (left) and Δ𝜙 (right) between the jet with the highest (jet 1) and the
second highest softdrop mass (jet 2).
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Figure 7.16: Distributions of ∣Δ𝜂∣ (left) and invariant dijet mass 𝑚𝑗𝑗 (right) of the jet with the highest
(jet 1) and the second highest softdrop mass (jet 2).
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most anomalous events according to a pre-defined selection efficiency, which is based on the statistics
of the considered SR bin (see Table 7.3). The output of the fit is a p-value at the investigated mass
point. The procedure is scanned through all the SR bins and several mass points per bin such that
many signal mass hypotheses are probed for an excess.

The same background function as in previous CMS analyses that look for excesses in the dijet
mass spectrum is used [136,137], which is defined as:

𝑑𝑁
𝑑𝑚𝑗𝑗

=
Ω0(1 − 𝑚𝑗𝑗/√𝑠)𝑃1

(𝑚𝑗𝑗/√𝑠)𝑃2+𝑃3×log(𝑚𝑗𝑗/√𝑠)+𝑃4×log(𝑚𝑗𝑗/√𝑠)2 , (7.2)

where √𝑠 is the centre-of-mass energy, Ω0 is a normalization parameter and 𝑃1, … , 𝑃4 are the param-
eters describing the shape of the function. However, not all shape parameters are always considered
in a fit. Instead, the optimal number of parameters is assessed using Fisher’s F-test. Starting with
parameters 𝑃1 and 𝑃2, the fit is performed and the goodness of fit is computed based on the 𝜒2/𝑛DOF

value, where 𝑛DOF is the corresponding number of degrees of freedom. Then, 𝑃3 is added and the fit
as well as the goodness of fit is computed again. This procedure is repeated for 𝑃4 so that all possible
parameterizations are fitted once. The optimal number of parameters is then computed using Fishers
test statistic, which is comparing two models, indexed by 1 and 2 and is given by:

𝐹12 =
𝜒2

1 − 𝜒2
2

𝜒2
2

×
𝑛data − 𝑛𝑝2

𝑛𝑝2
− 𝑛𝑝1

, (7.3)

where 𝜒2
𝑖 is the 𝜒2 value of model 𝑖, 𝑛𝑝𝑖

is the number of parameters of model 𝑖 and 𝑛data corresponds
to the number of datapoints. Due to the iterative procedure of the fits, 𝑛𝑝2

> 𝑛𝑝1
for all comparisons.

While a more complex model will at least fit the data as well as the model with one less parameter, the
F-test asserts whether a higher number of parameters results in a significantly better fit. This is quan-
tified by a confidence level that the simpler model already represents the correct parameterization. In
this analysis, if a confidence level lower than 10 % is obtained, one parameter is added to the function
and the F-statistic comparison is repeated, now comparing the models with the next higher number
of parameters. This is done until the maximum number of four parameters (𝑃1 to 𝑃4) is reached.

For the weakly supervised methods, the background fitting and parameter selection procedure is
repeated for each of the SR bins in Table 7.3. This is caused by the fact that the models trained in the
different regions will likely select different events and their distributions – even though it is required
to be smooth in all cases – will have different shapes.

The fit range starts at the point where the trigger efficiency is above the plateau, wich is at
1455 GeV and ends at the maximum of either 5 GeV above the highest 𝑚𝑗𝑗 value or 20 % above the res-
onance mass hypothesis. The fit is performed on a fine binning, using a bin width of 4 GeV in 𝑚𝑗𝑗. This
is done to obtain a good approximation of an unbinned likelihood fit and reduce the computational
complexity that fitting the large number of events individually would introduce. For visualizations
of the fit results as well as for the 𝜒2 computation, however, the more coarse “dijet binning” is used
that was also employed in [136, 137] and approximately follows the detector resolution. When the
fit range is smaller than the full range of dijet bins due to the above mentioned criteria, the dijet bins
outside of the fit range are removed. Additionally, in order to reduce the impact of low statistics bins
on the 𝜒2 value, these bins are merged such that all bins contain at least 5 events. Since these criteria
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are re-defined for each SR bin for the weakly supervised methods, the binning is slightly different for
each of them.

In addition to the background parameterization, a signal resonance shape is needed to conduct
the bump hunt. In this analysis, the signal shape is chosen to be a double Crystal Ball function, which
describes a distribution with a Gaussian core and power law tails. This function is given as:

𝑓 (𝑥) = 𝑁

⎧{{{
⎨{{{⎩

𝐴1 × (𝐵1 − 𝑥−𝜇
𝜎 )

𝑛1 if 𝑥−𝜇
𝜎 ≤ 𝛼1

exp ( (𝑥−𝜇)2

𝜎2 ) if 𝛼1 < 𝑥−𝜇
𝜎 < 𝛼2

𝐴2 × (𝐵2 − 𝑥−𝜇
𝜎 )

𝑛2 if 𝑥−𝜇
𝜎 ≥ 𝛼2

, (7.4)

where

𝐴𝑖 = ( 𝑛𝑖
|𝛼𝑖|

)
𝑛𝑖

exp ⎛⎜
⎝

−
𝛼2

𝑖
2

⎞⎟
⎠

, 𝐵𝑖 = 𝑛𝑖
|𝛼𝑖|

− |𝛼𝑖|,

𝑁 is a normalization constant, and 𝜇, 𝜎 and 𝛼𝑖 are parameters describing the shape of the resonance.
The procedure regarding the signal shape is different when looking for anomalies in data in a

model-agnostic way compared to when a limit for a specific signal model should be computed. For
the limit setting, the shape defined in Equation 7.4 is fitted to the entirety of the MC samples available
for the signal model in question. For the model-agnostic search, a generic signal shape is used. In
particular, the MC samples of the signal 𝑋 → 𝑌𝑌 ′ with 𝑀𝑌 = 80 GeV and 𝑀𝑌 ′ = 170 GeV is used, as
it produces jets at a reasonable mass that are still light enough to ensure they are fully merged within
the large-radius AK8 jets. Therefore, the fit results in a reasonable resonance shape without unwanted
features such as large tails. The fit is done on the MC samples of all available mass points for the
decaying particle 𝑋 (𝑀𝑋 = 2 TeV, 𝑀𝑋 = 3 TeV and 𝑀𝑋 = 5 TeV). In order to be able to scan a large
range of different mass hypotheses also in-between those values where MC samples are available,
an interpolation-based approach is chosen. A similar procedure was also used in the CMS diboson
resonance search [166]. In particular, the double crystal ball parameters are interpolated between the
three available mass point fit values. This is done using a cubic spline for the parameters 𝜇 and 𝜎 and
a linear interpolation for all other parameters. With these interpolations, signal shapes for mass points
from 1800 GeV to 5800 GeV are generated in steps of 100 GeV. The parametric shape uncertainties
caused by jet energy scale and resolution systematics are accounted for by varying the Gaussian peak
position (1.2 %) and width (8 %). The resulting signal shapes are shown in Figure 7.17. It can be
seen that the double crystal ball fits and the interpolations result in well-defined resonance shapes. In
order to validate the interpolation, a test study was done where only the MC-simulated events of the
2 TeV and 5 TeV mass points were fitted and the interpolation was done based only on the parameters
of the two fits. Then, the double crystal ball was interpolated to 3 TeV and compared to the signal
shape that would have been obtained by actually fitting the signal MC at that point. The result of this
study can be seen in Figure 7.18. The plot shows a good agreement between the interpolated signal
shape and the one directly fitted on MC and it can therefore be assessed that the interpolation method
produces valid resonance shapes.

As discussed previously, the entirety of the simulated signal samples of the particular signal
model and mass point is used to fit the resonance shape in the limit setting. For the weakly su-
pervised methods, special caution must be taken that the weak classification model does not distort
the signal distribution. Otherwise, the fitted resonance shape does not correctly describe the signal

117



CHAPTER 7. APPLYING ANOMALY DETECTION TO CMS EXPERIMENTAL DATA

Figure 7.17: All signal shapes resulting from the fits of the 𝑋 → 𝑌𝑌 ′ model at 2, 3 and 5 TeV as well
and the interpolation procedure described in the text.

Figure 7.18: Signal shape comparison of the double Crystal Ball function at 3 TeV. The interpolated
shape is obtained using fitted parameters from the 2 TeV and 5 TeV mass points. The original shape
is based on a fit of the actual signal MC at the 3 TeV mass point.

118



7.7. STATISTICAL METHODS

Figure 7.19: Comparison of signal shapes fitted on the entire 𝑋 → 𝑌𝑌 ′, 𝑚𝑌 = 80 GeV, 𝑚𝑌 ′ =
170 GeV signal MC (no selection) as well as on the signal MC events after evaluation and selec-
tion based on the anomaly score from a Cathode model. For training this model, an amount of signal
events was injected into the MC background that corresponds to the cross section limit obtained from
the inclusive fit at each mass point. Three different selection efficiency cuts are investigated: 10%,
5% and 1%. Results are shown for the 2 TeV (left panel), 3 TeV (center panel) and 5 TeV mass points.

distribution after selection, which will result in inaccurate limits. To assess whether the Cathode-
based methods shape the signal distribution significantly, another comparison was made between the
shape obtained from a fit of the full signal MC events (using the same signal model as before, i.e.
𝑋 → 𝑌𝑌 ′, 𝑚𝑌 = 80 GeV, 𝑚𝑌 ′ = 170 GeV) and from Cathode-selected events. Here, the Cathode
models were trained on background MC samples where signal was injected corresponding to the
cross section limit obtained from an inclusive fit at the respective mass point. For the resonance at
2 TeV, Cathode was trained on the SR bin [1.824 TeV, 2.23 TeV], for the resonance at 3 TeV on the
SR bin [2.725 TeV, 3.331 TeV] and for the resonance at 5 TeV on the SR bin [4.5 TeV, 5.5 TeV]. Then
events are selected at efficiency cuts of 10 %, 5 % and 1 % and the double Crystal Ball shape is fitted.
The resulting resonance shapes are shown in Figure 7.19. From these figures, it can be seen that the
Cathode selection only introduces minor changes in the resonance shape for the 2 TeV and almost no
change for the higher mass points. Therefore, using the entirety of the signal MC yields a resonance
shape that also describes the selected signal events well. Therefore using the full signal MC for fitting
the shape in the limit setting is legitimate in the chosen range of selection efficiencies.

Once a signal shape is obtained, the combined signal and background fit is conducted, using the
events selected by the respective anomaly detection method. It should be noted that this is a template
fit, where the (interpolated) signal shape parameters are fixed and only the parameters of the dijet
background function are floating. The fitting procedure is based on a binned likelihood fit, following
the considerations in [131], which is shortly outlined in the following. The binned likelihood is defined
as:

ℒ(𝜇, 𝜽) =
𝑁

∏
𝑗=1

(𝜇𝑠𝑗 + 𝑏𝑗)
𝑛𝑗

𝑛𝑗!
𝑒−(𝜇𝑠𝑗+𝑏𝑗)

𝑀
∏
𝑘=1

𝑝𝑘(𝑢𝑘) (7.5)

Here, 𝜇 is the signal strength parameter, such that 𝜇 = 0 corresponds to the background-only hypoth-
esis whereas 𝜇 = 1 corresponds to the signal hypothesis. The indices 𝑗 correspond to the bin indices
of the invariant dijet mass histogram, for which the search for the signal is performed. The 𝑠𝑖 and 𝑏𝑖

correspond to the signal and background events in bin 𝑖 and are given by:

𝑠𝑖 = 𝑠tot ∫
bin 𝑖

𝑓𝑠(𝑥; 𝜽𝑠)𝑑𝑥 (7.6)

𝑏𝑖 = 𝑏tot ∫
bin 𝑖

𝑓𝑏(𝑥; 𝜽𝑏)𝑑𝑥, (7.7)
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where 𝑓𝑠 and 𝑓𝑏 are the probability density functions (PDFs) for signal and background (i.e. the double
crystal ball shape and the parametric background function), respectively and 𝑠tot, 𝑏tot are the total
number of signal and background events. The integral runs over 𝑥, which in the case of this analysis
is the invariant dijet mass, 𝑚𝑗𝑗. The parameters 𝜽𝑠 and 𝜽𝑏 are shape parameters of the respective
PDFs. The 𝑢𝑖 in Equation 7.5 are functions of the nuisance parameters 𝜽 = (𝜽𝑠, 𝜽𝑏, 𝑏𝑡𝑜𝑡) and run
over 𝑀 bins of a histogram created from subsidiary measurements that help constrain them. The
density 𝑝𝑘 is pre-determined, typically using a log-normal distribution around the nominal parameter
value. In case of this analysis, three of the used nuisances are constrained this way, namely the jet
energy scale and resolution (JES and JER) as well as the uncertainty in the selection efficiency 𝜖
needed for the limit setting (see discussion in section 7.9 for details). The remaining nuisances are
left freely floating in the fit. For a hypothesized value of 𝜇, the profile likelihood ratio is considered:

𝜆(𝜇) = ℒ(𝜇, ̂�̂�)
ℒ(�̂�, �̂�)

. (7.8)

The ̂�̂� describes the value of 𝜽 that maximizes ℒ for the hypothesis 𝜇, whereas �̂� and ̂𝜃 are the
maximum likelihood estimators of ℒ. For the extraction of the p-value, the following test statistic is
used:

𝑡𝜇 = −2 ln(𝜆(𝜇)). (7.9)

In the large sample limit, an asymptotic approximation can be made based on Wilk’s theorem, which
states that 𝑡𝜇 approaches a chi-square distribution with a number of degrees of freedom corresponding
to the difference in parameters between the signal-plus-background and background-only hypotheses.
Based on this distribution, the p-value and significance can be extracted from the 𝑡𝜇 obtained from the
fit. A plot of the profile likelihood, i.e. 𝑡𝜇 as a function of the signal strength can be seen for Cathode
using both only background events and an injection of the 𝑋 → 𝑌𝑌 ′ signal model in Figure 7.20.
Smooth likelihood contours are observed, following parabolic shapes. When injecting signal, the
contour is asymmetric with larger errors on the signal strength in positive direction compared to the
negative direction. This effect is caused by the normalization uncertainty, which describes a fractional
uncertainty on the signal yield. Therefore, a larger contribution to the uncertainty at high signal
strengths is observed.

In order to test many possible signal mass hypotheses, the weakly supervised methods need to be
retrained on various SR bins, which have been summarized in Table 7.3. In particular, 12 overlapping
signal region windows are considered, in order to cover the vast majority of the phase space. As
mentioned previously, the signal mass hypotheses for the model-agnostic part of the search are starting
from 1800 GeV to 5800 GeV in steps of 100 GeV. For each signal mass point, the corresponding SR
window is chosen where the distance from this point to the SR center is lowest. For Cathode(-b), the
SB regions are defined as the entirety of the invariant dijet mass outside of the SR window. The lowest
and highest bins of each of the two sets of bins, A and B are not used as signal regions, since sidebands
must always be present on both sides of the SR window for the weakly supervised methods to work.
Since each SR training will yield different sets of selected events, the described fitting procedure is
performed separately at each of the SR bins.
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Figure 7.20: −2 ln(𝜆) (denoted as −2Δ ln L) as a function of the signal strength parameter (denoted
as 𝑟) for Cathode trained on the background-only mock MC sample (left) and the same sample with
an amount of 𝑋 → 𝑌𝑌 ′ signal events injected that leads to an excess of about 5𝜎 significance (right).

7.7.2 Limit Setting Procedure

One challenge for setting limits in this search is that the performance – and therefore the tagging
efficiency – of the weakly supervised methods depends on the amount of signal present in the SR
window. If there is a high number of signal events in the data, the resulting weak classifiers will
yield a high signal efficiency, whereas when no signal is present, only random noise is learned and
the classifiers will not be sensitive to any signal. In turn, the limit setting cannot be performed using
the classifier models trained directly on data. Instead, a different method is proposed for limit setting
in this scenario: Signal events corresponding to varying cross sections are injected into the data,
the weakly supervised training is re-run and finally the evaluation of the training results in a signal
efficiency for each of those injections.

The limit on the number of excess events, 𝑁exc. at a given dijet invariant mass is fixed based on the
actual observed value on data. To be able to translate this quantity into a final cross-section limit of
a specific signal model, 𝜎exc., the selection efficiency of the weak classifier for this signal, 𝜖NN, must
be known. It is this quantity that is obtained by the re-trainings of varying injections outlined above.
The excluded cross section which, in such a scenario, depends on the injected cross section can then
be computed as:

𝜎exc.(𝜎inj.) = 𝑁exc.
ℒ × 𝜖pre. × 𝜖NN(𝜎inj.)

, (7.10)

where ℒ is the integrated luminosity and 𝜖pre. denotes the preselection efficiency. For any signal
injection, the valid limit is given by the maximum of 𝜎exc. and 𝜎inj..

To further illustrate this procedure, Figure 7.21 is considered. In this illustration, several scenarios
exist. First, consider a very high injected cross section. A weakly supervised tagger trained on a high
number of signal events will typically yield a good performance and therefore, the limit will be low.
This situation corresponds to the point in the lower right of the plot. However, this obtained limit
would be invalid, since if there had been only so few events, the classifier performance would have
been significantly worse and the signal efficiency would therefore be lower. In such a scenario, the
only statement that can be made is that the obtained limit is too optimistic and a conservative estimate
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Figure 7.21: Simplified depiction of the limit setting procedure employed for the weakly supervised
methods. A detailed discussion is provided in the text.

of the actual limit is acquired by setting it to the injected value.
On the other hand, when the injected cross section is low, the classifier resulting from the respec-

tive training will likely have a rather poor performance, since only few signal events were present. In
this case, the signal efficiency is low, resulting in a large exclusion limit on the cross section. In par-
ticular, the excluded cross section is significantly larger than the injected one. This situation occurs
in the upper left of the plot. This time the limit is valid, since a classifier trained on an injected sig-
nal amount corresponding to the excluded cross section will likely not be worse than the one trained
on the low injection. However, since the injected and excluded cross sections differ by such a large
margin, it might be possible to obtain a better limit by using a higher injection, which would improve
the classifier. Thus, it is possible to conduct a scan of different injections and repeatedly evaluate the
limit until a point is reached where 𝜎inj. = 𝜎exc., which is considered the optimal case.

To set limits for specific signal models, the procedure outlined above is used, conducting a binary
scan to find the optimal value where injected and excluded cross sections are similar. For each injec-
tion point, 5 retrainings are done with different realizations of the injected signal events. While this
procedure increases the computational cost of the methods due to frequent retrainings, it allows for
the limit setting for weakly supervised methods.

7.8 Method Validation

In order to ensure that the employed anomaly detection methods yield valid results, it has to be studied
whether they produce smooth invariant mass spectra after selection. On the other hand, if the methods
significantly sculpted the dijet mass distribution and produced spurious features such as artificial
bumps, these would be falsely identified as anomalies by the fit. Additionally, a good fit quality with
the used parametric background model has to be ensured for each signal region. To investigate this, all
methods were tested on dedicated validation data sets and the results of these studies, in particular for
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Cathode(-b), are discussed in this section. Two data sets are used for the validation procedure: The
“mock MC data set” described in subsection 7.5.2 and a data set based on experimentally measured
data from a validation region orthogonal to the analysis region.

7.8.1 Validation on simulated samples

The MC data set contains the major and minor backgrounds of the investigated topology and has
shown a good agreement with the data sample in the analysis region. The only difference between
this data set and the measured data is that it contains fewer events due to the limited availability
of QCD MC samples. In particular, it corresponds to 26.8 fb−1 and is therefore about a factor 5
smaller than the full data set. After applying the preselections for the analysis region, the MC data
set contains approximately 2.6 million events. Cathode(-b) is then trained on this data set, using the
inputs described in subsection 7.3.1 and the full cross-validation and training procedure described in
section 7.4.

The entire procedure is repeated for each SR bin considered in the final analysis. For each of them,
events are selected based on a 1 % selection efficiency cut computed from the events in the considered
SR and then applied to the SR and SB alike. The 𝑚𝑗𝑗 spectra of the selected events are then fitted using
the combined fit of the generic signal template and the parametric background function, as discussed
in section 7.7. The fits are repeated using the interpolated signal shapes every 100 GeV. For each of
the scanned points, the fits are based on the trainings of the SR bin with the shortest distance between
its centre and the current mass point. The assignments of mass points to the respective SR windows
can also be seen in Table 7.3.

The quality of the fits is assessed for each of the SR bins, which is shown for the Cathode method
in Figure 7.22, as well as for the Cathode-b method in Appendix D. The plots show a good agreement
between the parametric fit functions and the selected events, with the vast majority having a 𝜒2/DoF
close to one. This is also reflected in the fit probabilities being around 30 % or higher for most of the
plots. In cases where the fit probability is small, this is often due to discrepancies in the low-statistics
tails of the distribution.

In one case (bottom centre plot) there is also some sculpting seen in the low mass regions. This
behaviour is occasionally observed and can be attributed to the fact that this training was done on a
high mass SR window. Since the weak classifier has seen only the features of high mass events, it
can tag low-mass events as less anomalous, resulting in a lower selection efficiency in this region.
However, the 3-parameter background function successfully accommodates for this shaping and in
particular, the distribution in the SR window of interest (in this case between 3331 GeV − 4071 GeV)
is smoothly falling and therefore allows for proper signal extraction.

The obtained p-values and local significances of the combined fits are then recorded and plotted
against the respective mass values. For Cathode, this can be seen in Figure 7.23. The same plot for
Cathode-b is shown in the appendix in Figure D.1. From both plots it can be seen that no significant
excess is observed when training the Cathode-based methods on the background-only mock MC data
set. For Cathode, all except one mass point are below a local significance of 2𝜎 and the single high
point is still below 3𝜎. A very similar situation is also seen for Cathode-b.
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Figure 7.22: Background-only fits of the Cathode-selected events from the mock MC data set for
each considered SR window. Events were selected based on a selection efficiency of 1 %. The plots
are sorted by the center SR window mass from lowest to highest in a top left to bottom right order.
The lower panel of each plot shows the pull distributions of the fit.
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Figure 7.23: Cathode p-value scan for the mock MC data set. Shown is the p-value obtained from
the combined signal template and background fit of the Cathode-selected events against the dijet
invariant mass, 𝑚𝑗𝑗. The results are shown for the two selection efficiencies of 10 % (left panel) and
1 % (right panel).

7.8.2 Validation on Data Control Region

The validation using MC samples in the analysis region is an important cross-check to ensure that
signal extraction can be done using experimentally measured data. However, purely relying on sim-
ulations for the validation procedure is not optimal, since additional effects might be present in data
that are not or poorly modelled in MC. Therefore, an additional study was performed, testing the
sculpting of Cathode-based and other weakly supervised methods on measured data. This is done in
a specifically designed region that is orthogonal to the final analysis region. The results of this study
are discussed in this section.

In order to define a proper control region (CR), two main properties have to be fulfilled: First, the
CR must be orthogonal to the analysis region and second, no significant signal contamination must be
present in the CR. If these criteria are met, the CR can be used to assess the validity of a method in a
background-only case that is statistically independent from the final search. One particular challenge
in model-agnostic searches is to define a CR without significant signal presence, since one could
probably construct highly exotic signal scenarios that peak in any region of the phase space. Therefore,
the CR was designed to suppress a family of signal models that represent the large variety of potential
anomalies targeted in the analysis. These signal models are summarized in the appendix in Table D.1
and the corresponding samples in Table D.2. The CR definition is then based on the ratio between
the statistical significance 𝜎stat. = 𝑆/√𝐵 of a signal model in the CR and in the analysis region. In
particular, the requirement for a suitable CR is defined as suppressing all of the signal models (for all
possible mass combinations) such that a ratio of 10 % or lower is achieved.

To define an orthogonal CR, a Δ𝜂 region different from the analysis region could simply be cho-
sen. However, several problems exist by only requiring |Δ𝜂| > 1.3. First, the observed suppression
of signal is not strong enough for many of the considered models. Second, it results in an 𝑚𝑗𝑗 dis-
tribution that has a significantly different shape than the one in the analysis region. To ensure both
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signal suppression and a comparable invariant dijet mass distribution, a different region in Δ𝜂 was
found. In particular, the CR is defined between 2.0 < |Δ𝜂| < 2.5. This selection alone reduces many
of the signal models to significance values below the desired threshold. However, for the 𝑏∗ and 𝑊𝑘𝑘

models, the achieved suppression is still not sufficient. One feature these signals have in common
is that their decay involves the production of particles that are heavier than a W or Z boson, i.e. a
top quark for the 𝑏∗ and the radion for the 𝑊𝑘𝑘 for large values of 𝑅0. In many cases, these are not
sufficiently boosted and are therefore resolved into separate jets such that Δ𝜂 is not as discriminant
as for the signal models resulting in fully merged jets. In order to control this effect, events with a
third resolved jet with 𝑝T > 300 GeV are rejected. This cut significantly reduces all but the lightest
𝑏∗ models and the 𝑊𝑘𝑘 models with 𝑅0 > 0.1 while still being approximately 90 % efficient in Run II
data.

When 𝑅0 ≤ 0.1, the radion of the 𝑊𝑘𝑘 is sufficiently boosted such that it can be merged in a
single, large-radius jets. In these decays, the resulting jets are better balanced in the transverse plane
compared to the data, which is why an additional 𝑝T asymmetry cut is employed:

∣∣∣∣

𝑝T,𝑗1 − 𝑝T,𝑗2
𝑝T,𝑗1 + 𝑝T,𝑗2

∣∣∣∣
> 0.1. (7.11)

This cut results in the desired reduction below the significance fraction of 0.1 for all 𝑊𝑘𝑘 samples with
𝑅0 ≤ 0.1. Since the additional cut results in a data efficiency of only 37 %, an additional kinematics-
based cut is employed and events passing either of them are selected. The additional cut is given
by:

2
𝑝T,𝑗1𝑝T,𝑗2

𝑚2
𝑗𝑗

(cosh(Δ𝜂) − cos(Δ𝜙)) ∉ [0.95, 1] (7.12)

For highly relativistic particles (i.e. if 𝐸 ≫ 𝑚), the above expression evaluates to 1. When slightly
heavier particles are produced, however, this value gets shifted to values just below 1. Cutting away
the region between 0.95 and 1 therefore allows to suppress 𝑊𝑘𝑘 signals with small 𝑅0 values, while
models with larger 𝑅0 stay almost unaffected. Adding this cut and accepting events to pass it or the 𝑝T

asymmetry cut increases the efficiency of all cuts to 57 %. The entirety of the cuts can be summarized
as:

AND

⎧{{{{{
⎨{{{{{⎩

2.0 < Δ𝜂 < 2.5

No third jet with 𝑝T > 300 GeV

OR

⎧{{
⎨{{⎩

∣
𝑝T,𝑗1−𝑝T,𝑗2
𝑝T,𝑗1+𝑝T,𝑗2

∣ > 0.1

2
𝑝T,𝑗1𝑝T,𝑗2

𝑚2
𝑗𝑗

(cosh(Δ𝜂) − cos(Δ𝜙)) ∉ [0.95, 1]

(7.13)

After the definition of the CR, the exact same study as for the mock MC data set was done. Both
Cathode and Cathode-b were trained on the data from the CR using the same settings for the training
as before. To assess the goodness of fit, the individual background-only fits and 𝜒2 values of each SR
window are plotted. For the CR data set, the fit range is reduced and starts at 2 TeV in order to mitigate
the later 𝑚𝑗𝑗 turn-on compared to the analysis region. Due to this reason, the two lowest SR windows
used in the analysis region are also skipped and the mass scan starts at 2.3 TeV. The fit results can be
seen in Figure 7.24 for Cathode and in the appendix in Figure D.3 for Cathode-b. The plots again
show a good overall agreement between the selected event distributions and the background-only fits,
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Figure 7.24: Background-only fits of the Cathode-selected events from the control region data set in
each considered SR window. Events were selected based on a selection efficiency of 1 %. The plots
are sorted by the centre SR window mass from lowest to highest in a top left to bottom right order.
The lower panel of each plot shows the pull distributions of the fit.
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Figure 7.25: p-value scan for the data set from the CR, using a selection efficiency of 1 %. The
plots show the p-value obtained from the combined signal template and background fit of the selected
events against the dijet invariant mass, 𝑚𝑗𝑗. The results are shown for the Cathode (left panel) and
Cathode-b methods (right panel), respectively.

including satisfactory 𝜒2 values for most of them. In particular, no significant sculpting of spurious
features is observed within the considered SR windows.

The resulting p-value scans can be seen in Figure 7.25 for both Cathode and Cathode-b at a 1 %
selection efficiency. Similar to the mock MC data set, no significant excess is observed for Cathode
or Cathode-b using the data in the CR. In particular, all points show a significance lower than 2 𝜎. To
summarize, it can be concluded that the Cathode-based methods do not learn spurious information
from background-like samples and produce smooth distributions after selection that allow for proper
signal extraction in both simulation and data.

7.8.3 Signal Injection Tests

While the previous section focused on the validation of Cathode-based methods in background-only
scenarios, the performance in the presence of signal remains to be studied. Therefore, signal injection
tests were performed on the simulated samples of the mock MC data set to assess the expected signifi-
cance extracted from the fitting procedure. In particular, the signal model 𝑋 → 𝑌𝑌 ′ with 𝑚𝑋 = 3 TeV,
𝑚𝑌 = 170 GeV and 𝑚𝑌 ′ = 80 GeV is used as a benchmark. The injection tests are done by scanning
over injected cross sections, using steps of 5 fb. As in the final analysis on data, a selection efficiency
of 1 % is used. To reduce the computational cost of this study, not all SR windows are being scanned
for each cross section, but only the three SR windows around the mass value of the benchmark signal.
This corresponds to scanned mass hypotheses between 2.6 TeV and 3.5 TeV. The significance plots
for this study are shown in Figure 7.26 for Cathode and in the appendix in Figure D.4 for Cathode-b.
In these plots, the values at the scanned mass points between 2.6 TeV and 3.5 TeV are based on the
signal-injected trainings of the considered SR regions, while points outside that region are showing
the background-only results and thus do not change. The Cathode plots show that the significance
around the mass value of 3 TeV starts to increase at an injection of 15 fb, already achieving the thresh-
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old of 3 𝜎. For even higher injections, the significance increases significantly, achieving almost 20 𝜎
for the highest injection. In the latter case, there is so much signal that for some SR window fits, the
background only fit does not converge, which is shown by the red stars in the plot. This, however is not
problematic, since such a large signal is not expected in data and if it was present, the large resonance
shape can clearly be seen by eye. For Cathode-b the situation is very similar. Starting from the 15 fb
injection, the resonance becomes clearly visible and steadily increases up to a value of 14 𝜎 for the
highest injection. In addition to the significance plots, the individual signal plus background fits at
the injected mass of 3 TeV are shown in the appendix in Figure D.5 and Figure D.6 for Cathode and
Cathode-b, respectively, again showing a good agreement for the combination of the background
and the injected signal events.

7.9 Systematic Uncertainties

Since this analysis is based on entirely data-driven approaches, no systematic uncertainties regarding
the background have to be taken into account. The model-agnostic significance scan using the generic
signal shape, however, is affected by systematic uncertainties regarding the simulated signal events.
These uncertainties have an impact on the resulting resonance shape used in the combined fit and
therefore have to be considered. For the limit setting procedure, the weakly supervised methods
in particular are affected, which is connected to the specific limit setting approach that has been
discussed.

7.9.1 Shape Uncertainties

The uncertainties regarding the signal shape are based on the jet energy scale (JES) and the jet energy
resolution (JER). The uncertainties were estimated by varying the four-vectors of the two AK8 jets
according to the respective corrections and then re-fitting the double Crystal Ball shapes. This causes
the 𝜇 and 𝜎 parameters to shift up and down and these variations are taken as their uncertainties. In the
combined signal-plus-background shape fit, the parameters are allowed to float but have a Gaussian
constraint based on the obtained uncertainty from the up-/down-variations. For the generic template
which is based on the 𝑋 → 𝑌𝑌 ′ model this procedure was applied to the 2 TeV, 3 TeV and 5 TeV mass
points and for each of them, similar fractional uncertainties were obtained. In particular the resulting
uncertainty was 1 % for 𝜇 and 3.5 % on 𝜎. Since the uncertainties showed a good agreement between
shapes of different mass points, the obtained values are used for all interpolated templates in the
significance scan. For the signal-specific limit setting, the described procedure is repeated for the
derivation of uncertainties for the particular model in question. However, values similar to the ones
obtained from the generic model are seen also in general.

7.9.2 Normalization Uncertainties

The signal normalization uncertainties have to be considered in the limit setting, since they affect
the tagging efficiency of the methods. Since this work focuses on the weakly supervised methods
in particular, the application of systematic uncertainties in the limit setting procedure is discussed in
more detail in the following section.
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Figure 7.26: Significances obtained from Cathode when injecting an increasing amount of 𝑋 → 𝑌𝑌 ′

signal in the MC mock data set, with 𝑚𝑋 = 3 TeV, 𝑚𝑌 = 170 GeV, and 𝑚𝑌 ′ = 80 GeV. Note the dy-
namic 𝑦 range. The injected cross sections are starting at 5 fb in steps of 5 fb and the plots are ordered
by increasing injections from top left to bottom right. Black dots represent the significance obtained
from the combined signal shape and parametric background fits on Cathode-selected events, using a
selection efficiency in the signal region of 1 %. The red stars for the injection of 30 fb correspond to
failed fits. The dashed green lines represent the significance achieved using an “inclusive” fit, where
the combined fit is applied to the resonance mass of 3 TeV without any selection.
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The considered uncertainties are listed below and all of them are eventually added in quadrature,
resulting in a single nuisance on the signal normalization used in the fit.

1. Sub-structure modelling

A key feature of this analysis is that highly exotic signal models with a large number of sub-jets
are considered. Usually, when estimating uncertainties on the tagging efficiency for a specific
model, control regions in data and MC are used to derive a corresponding scale factor. However,
this approach is not possible in this work, since no Standard Model proxy exists that produces
more than three subjets in its decay. Instead, an entirely new procedure is employed using
per-prong substructure corrections, which can in principle be applied to any 𝑛-pronged signal
model [206]. A detailled discussion of this new procedure is beyond the scope of this work.
In short, a data/MC ratio of the Lund Plane of the subjet is derived, using a control region of
boosted 𝑊’s. This results in a central value and an uncertainty on a tagging scale factor for any
substructure-based selection. This uncertainty has been found to be dominant for Cathode-
based methods.

2. Variation in NN performance

The training, in particular of the weakly supervised methods, is subject to the stochasticity of
the model initialization and minimization procedures, which impacts the final tagging perfor-
mance. Therefore, multiple re-trainings are done based on the injection of different, random
samples of signal events. An uncertainty on the tagging efficiency is assigned reflecting this
performance variation. This is has been found to be the second largest uncertainty for Cathode-
based methods, with the injection uncertainty having a larger impact than the retraining. Except
for this uncertainty and the uncertainty due to sub-structure modelling, the remaining uncer-
tainties listed below have been found to only have a minor impact on the final result.

3. Jet energy/mass scale and resolution

The effect of the jet energy scale (JES), jet energy resolution (JER), jet mass scale (JMS) and
jet mass resolution (JMR) correction uncertainties on the signal normalization are assessed.
This done by producing samples where the four-vectors of both AK8 jets are shifted by the
provided uncertainty. For the JMS, a 5 % uncertainty is applied to both AK8 jets. For the JMR,
the default central values and corresponding uncertainties are used, which are derived from
W-tagging. These uncertainties are at 8 % for the considered years [207–209].

4. Pileup reweighting

This uncertainty is evaluated by shifting the minimum bias cross section up and down by a
value of 4.6 % [210]. A new weight is computed and applied for each shift in order to acquire
the up and down variation of the signal shape and yields.

5. Parton Distribution Function (PDF) uncertainties

The standard deviation of the 100 PDF variation weights is computed for each event. The up
and down variations are acquired as the nominal weight plus/minus the standard deviation.
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6. L1 prefiring

This uncertainty is related to a detector effect that impacted the CMS level 1 (L1) trigger during
the 2016 and 2017 data taking eras [211]. It caused the loss of a fraction of events, which
has to be compensated for in MC. Therefore, simulated events are reweighted based on the
recommendations of the CMS L1 detector performance group. From the probability of each
AK4 jet or photon to cause this effect, an event weight is calculated and the corresponding
uncertainty is obtained by up/down variation of said weight.

7. B-tagging

This uncertainty is relevant for methods using b-tagging scores as inputs, which is the case for
Cathode-b. Therefore, the effect of the corresponding uncertainties on the shape of the score
distribution has to be taken into account. As for the other uncertainties, the evaluation is based
on the central CMS recommendations [212]. In total, eleven sources of uncertainty are consid-
ered, depending on whether a jet is a b-jet, a c-jet or a light jet. To reduce the computational
cost of these uncertainties for the limit setting procedure, the variations of all the sources are
added up in quadrature to produce a single up and down weight per event. The resulting weights
are normalized such that they only affect the shape of the DeepCSV score distribution and the
normalization stays unchanged.

8. Luminosity

An uncertainty of 1.6 % is applied for the total Run-II luminosity [213].

9. Initial State Radiation (ISR)

The parton shower uncertainties for the initial state radiation are used based on Pythia8 [214]

10. Renormalization & factorization scales The scales are shifted up and down by a factor of
two. Three sets of scale variations are considered, one where each of the renomalization and
factorization scales are varied individually and one where both are varied in the same direction
simultaneously.

11. Top 𝑝𝑇 reweighting

Compared to MC simulations, it was found that the 𝑝𝑇 spectra of top quarks are significantly
softer in data. Therefore, a systematic uncertainty for this mismodeling is considered according
to CMS recommendations [215].

7.9.3 Systematic Uncertainties for Weakly Supervised Limit Setting

As discussed in subsection 7.7.2, a specific procedure must be followed to obtain valid limits for
weakly supervised methods. Another dimension of this problem that warrants further discussion is
how to incorporate systematic uncertainties in this scenario. Changes in the input feature distributions
of signal events due to systematics have an impact on the signal efficiency resulting from the training.
Therefore, this impact should be evaluated by retraining the classifiers using the shifted distributions
for each source of uncertainty.
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First, the optimal injected cross section according to the procedure outlined in subsection 7.7.2,
𝜎opt.

inj. is computed. Then, signal injections at this cross section are sampled using the shifted distribu-
tions and the classifiers are retrained. This procedure, however, is computationally expensive due to
the vast amounts of classifiers that are already trained for the 𝑘-𝑙-folding and for the quantification of
the NN performance variation. Adding another retraining for each considered systematic uncertainty
would make conducting this analysis unfeasible. Therefore, the number of systematics for which a
retraining is performed is reduced based on a specific criterion. This is done by considering the mag-
nitude of the distribution change due to the up and down variations and relating it to the statistical
uncertainty of the sample. Since only a limited number of signal events is injected, any deviation that
is considerably smaller than the statistical error is likely having only a marginal impact on the training
result. Using a histogram with a bin size of 10 for each input feature, a retraining is performed only
if the deviation due to systematics in any of the bins is larger than 20 % of its respective statistical
uncertainty.

To evaluate the uncertainty of the statistical fluctuations of the injected signal events, four addi-
tional sets of events are randomly drawn from the full available MC sample corresponding to a cross
section of 𝜎opt.

inj. . For each of these injected sets of events, a full retraining is performed, such that in
total a number of 5 signal efficiency estimates are obtained based on the 5 different realizations of the
signal sample. The average of these efficiencies, 𝜖′

NN is defined as the nominal value and the mini-
mum/maximum as the up/down variation for the uncertainty regarding the choice of signal events to
inject.

For any systematic uncertainty that does not require retraining, the five models are evaluated
with the distributions shifted up and down. The mean variation in each direction is than taken as
the estimated value for the respective uncertainty on the signal efficiency. For systematics where a
retraining is necessary, the uncertainty on the signal efficiency is defined as the change in efficiency
with respect to the model trained on the shifted sample. Finally, all sources of uncertainty on the
tagging efficiency are added in quadrature to obtain a single value as a systematic. This is then added
as a log-normal uncertainty on the signal yield and the limit setting procedure is repeated. The number
of excluded events including the systematics, 𝑁′

exc. is always strictly larger than the original value
obtained without incorporating these uncertainties, 𝑁exc.. Therefore the new exclusion limit, 𝜎′

exc. is
also generally larger by construction.

A comparison of the impact of systematic uncertainties on the signal efficiency is shown in Fig-
ure 7.27. The plots show the fractional uncertainty on the signal efficiency for reevaluation and retrain-
ing of the weak classifiers at the example of the 𝑋 → 𝑌𝑌 ′ signal model at 𝑚𝑋 = 3 TeV, 𝑚𝑌 = 80 GeV
and 𝑚′

𝑌 = 170 GeV. The uncertainties producing the largest deviations from the nominal distributions
and therefore required retraining are the jet energy corrections (JES, JER, JMS, JMR) as well as the
Lund plane-based systematic for substructure tagging and the injection systematic. The other plot
shows all the considered systematics for the reevaluated classifiers. For systematic effects shown in
both plots, the maximum deviation is taken as the final value. The reevaluated results again show
a large impact by the Lund Plane-based effects as well as the injection uncertainty, while other sys-
tematics are relatively small, with many deviations below percent level. While these results represent
only the case for the mentioned 𝑋 → 𝑌𝑌 ′ model as an example, the results for most other models
are similar in terms of which uncertainties had the largest impact overall. This illustrates both the

133



CHAPTER 7. APPLYING ANOMALY DETECTION TO CMS EXPERIMENTAL DATA

Up variations
Down variations

Lu
nd

 sy
s.

JM
R

In
jec

tio
n 

un
c.

JM
S

JE
R

JE
S

0.25

0.20

0.15

0.10

0.05

0.00

-0.05Fr
ac

tio
na

l C
ha

ng
e 

in
 si

g.
 e

ff.

Up variations
Down variations

Lu
nd

 sy
s.

Lu
nd

 m
atc

hi
ng

 u
nc

.
In

jec
tio

n 
un

c.
Lu

nd
 p T

 va
r.

JM
R

JE
S

PD
F

JM
S

Lu
nd

 st
at.

 va
r.

PS
 IS

R
JE

R
Pi

leu
p

Re
no

rm
. &

 F
ac

t. 
sc

.
Fa

ct.
 sc

.
Pr

efi
re

to
p 

p T
 re

we
ig

ht
in

g
Re

no
rm

. s
c.

Lu
nd

 b
 je

ts

Fr
ac

tio
na

l C
ha

ng
e 

in
 si

g.
 e

ff.

0.25
0.20
0.15
0.10
0.05
0.00

-0.05
-0.10

Figure 7.27: Fractional change in signal efficiency for each systematic in the limit setting of the
𝑋 → 𝑌𝑌 ′ signal model at 𝑚𝑋 = 3 TeV, 𝑚𝑌 = 80 GeV and 𝑚′

𝑌 = 170 GeV in data using Cathode.
Results are shown for up and down variations in blue and red, respectively. The upper plot shows
the systematics for which the weakly supervised classifiers had to be retrained whereas the lower plot
shows the variations for the reevaluated classifiers that were trained on the nominal distributions.
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sensitive dependence of weakly supervised methods on the specific signal events injected as well as
the challenge in tagging events with highly anomalous substructure, which cannot be constrained by
existing SM processes.

7.10 Results

Having established and validated the machine learning and statistical methods employed in this search,
this section mainly discusses the results on data measured by the CMS experiment in the analysis
region. In particular, the results of Cathode and Cathode-b as well as several comparisons of all
methods are being considered.

7.10.1 Performance Comparison

Before considering the results obtained on measured data, the expected sensitivity of the employed
methods is discussed in more detail. To test this, two signal models were chosen as a benchmark
and signal events corresponding to increasing cross sections were injected into the mock MC data
set. In particular, the 2/2-pronged signal model 𝑋 → 𝑌𝑌 ′ with 𝑚𝑋 = 3 TeV, 𝑚𝑌 = 170 GeV and
𝑚𝑌 ′ = 170 GeV as well as the 3/3-pronged signal model 𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 with 𝑚𝑊′ = 3 TeV and
𝑚𝐵′ = 400 GeV are used. For each of the injections, all the methods are trained and the corresponding
p-value is computed for each of them, using the previously discussed statistical methods. This study
therefore does not only yield a comparison of the method performance for the two benchmark signals,
but also assesses how the sensitivity behaves as a function of the injected amount of signal.

As an additional reference, several standard analysis methods are compared with the machine
learning-based ones. Specifically, the results of an inclusive search without applying any selection is
shown, as well as a model-specific selection for two-prong (𝜏21 < 0.4) and three-prong (𝜏32 < 0.65)
jets, with an additional requirement of 𝑚SD > 50 GeV. Finally, a result is also added for a fully model-
specific search, which is implemented using the QUAK method in a setting where it is trained on the
exact same signal model that is considered in the respective plot.

The results of this study are shown in Figure 7.28. From the plots it can be seen that Cathode-
based methods are promising candidates for an application in an actual search on experimental data,
as their performance is amongst the best of the unsupervised ones. Apart from QUAK, which is a
semi-supervised method, Cathode outperforms all other unsupervised methods on the 𝑋 → 𝑌𝑌 ′

signal model. In particular, among these methods Cathode is the one that achieves significances
of 3 𝜎 and 5 𝜎, the thresholds for scientific evidence and discovery, at the lowest injected cross sec-
tion. Cathode-b is also performing well on this signal model, with slightly lower performance than
Cathode. The performance decrease is expected, since no b-tagged jets are present in the decay.
Therefore, the b-tagging feature is expected to be largely uninformative and acts as an additional
source of noise in the weak classification task. In cases where b-tagging information is present, how-
ever, a significant performance increase of Cathode-b vs. Cathode can be observed.

Considering the results of the 𝑊 ′ signal model in the right panel of the plot, one can see that
Cathode is amongst the worst of all methods, while Cathode-b is amongst the best, only surpassed
in sensitivity by the TNT method. This underlines the value of incorporating different methods using
different features in a search, broadening the sensitivity to a larger range of different signal mod-
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Figure 7.28: Comparison of the p-value achieved as a function of the injected signal cross-section
for each method employed in this analysis. The plot shows the results for the 𝑋 → 𝑌𝑌 ′ (left panel)
and the 𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 (right panel) signal models. For reference, the results corresponding to an
inclusive search (no selection), two model-specific selections and a fully supervised search based on
the QUAK method are also shown.

els. This is also reflected in the fact that no single method is optimal in both cases. In general, it
can be seen that for both signal models, many of the employed methods significantly outperform
an inclusive search, as well as the model-specific cut-based approaches, often increasing the sensi-
tivity beyond discovery level. This emphasizes that unsupervised and semi-supervised methods are
promising candidates to conduct model-agnostic searches for anomalies in data.

7.10.2 Significance Scan

For the significance scan using a generic signal shape, the Cathode-based models were trained using
the training procedure outlined in section 7.4 and the statistical analysis was based on the combined
signal-plus-background fit described in subsection 7.7.1. Before the p-values/significances obtained
from the data are discussed, the background estimation in the analysis region is considered. Since the
bump hunting procedure is repeated for each SR window training, the 𝑚𝑗𝑗 spectra of events selected
by Cathode(-b) are plotted for each SR bin, together with the background-only fit result. This can be
seen in Figure 7.29, where the upper and lower rows contain the results for Cathode and Cathode-
b, respectively. The columns relate to the set of SR bins used, namely set “A” (left) and set “B”
(right). Since each SR window is based on a different training, the selected spectra differ in shape,
leading to the “stitched” discontinuous spectra for each bin. It can be observed that smooth spectra
are obtained for both methods and the background-only fits describe the overall shape of the invariant
mass distributions well. For reference, the full fits including the SB regions and goodness of fit
values are added to the appendix and can be seen in figure Figure E.1 for Cathode and Figure E.2
for Cathode-b. Also in these plots, the smooth spectra can be seen, both in the SR and SB regions.
The fit generally describes the data well, with satisfactory goodness-of-fit values and fit probabilities
being achieved.

The p-values and corresponding significances were again obtained using the combined signal
plus background fit using the generic signal shape template, interpolated to the mass point to be
scanned. The scan starts at 𝑚𝑗𝑗 = 1700 GeV and covers mass points in steps of 100 GeV up to a
value of 𝑚𝑗𝑗 = 5000 GeV. The resulting p-values of this scan on events selected by Cathode(-b) can
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Figure 7.29: Invariant mass distributions and parametric background fits of Cathode(-b) selected
events in the data analysis region for all considered SR bins. The plots are based on a 1 % selection
efficiency in the SR. The upper and lower rows show the results for Cathode and Cathode-b, re-
spectively. The left column corresponds to results for the set of SR bins labelled “A” while the right
column corresponds to the set of SR bins labelled “B” (see Table 7.3 for reference). The lower panel
of each plot shows the pull distribution of the fit in each invariant mass bin.
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Figure 7.30: P-values for different mass points obtained from the combined fit using a generic signal
template and the parametric background function. Red dashed lines are plotted for reference, showing
the corresponding values for different significance levels. Results are shown for Cathode (left panel)
and Cathode-b (right panel).

be seen in Figure 7.30. The plots show that no significant excess can be observed, with none of the
points reaching beyond evidence-level significances. The highest observed local significances were
2.2 𝜎 for Cathode and 3.0 𝜎 for Cathode-b, both for a signal with a mass of 2300 GeV. The other
employed methods did not find significance values above the evidence level as well, with the highest
local significances obtained being 2.6 𝜎 and 2.3 𝜎 for the QUAK and VAE-QR methods, respectively.
The CWoLa Hunting and TNT methods did not find any values higher than 1.5 𝜎. Therefore, it has to
be concluded that no evidence of new physics anomalies is observed in the data.

7.10.3 Limits

Since no evidence for new physics was found in the generic search, the expected sensitivities with
respect to specific signal models were compared for the employed anomaly detection methods. For
this study, a subset of considered signals was chosen as a common benchmark. In particular, the
𝑋 → 𝑌𝑌 ′, 𝑊 ′ → 𝐵′𝑡, 𝑊𝑘𝑘 → 𝑊𝑅 and 𝑌 → 𝐻𝐻 models were selected as a representative set of the
general 𝐴 → 𝐵𝐶 search, covering a broad range of expected sub-jets in the two jets of the final state
(2/2, 3/3, 2/4 and 6/6, respectively). The masses were chosen to be 𝑚𝐴 = 3 TeV for all benchmark
models and 𝑚𝑌 = 𝑚𝑌 ′ = 170 GeV as well as 𝑚𝐵′ = 𝑚𝑅 = 𝑚𝐻 = 400 GeV. Except for 𝑊𝑘𝑘, no
dedicated search was previously done to constrain these models.

For each considered benchmark model, all the anomaly detection methods were trained and the
respective selection efficiencies were evaluated. For the weakly supervised methods, this was done
using the efficiency scanning procedure discussed in subsection 7.7.2, including all systematics out-
lined in section 7.9. The sensitivity of each method is quantified by the cross section that would be
needed to achieve an excess of 3 𝜎 or 5 𝜎 expected significance. The sensitivity was also compared
to an inclusive search as well as a traditional cut-based approach that targets jets in the final state with
two or three subjets. The result of this study can be seen in Figure 7.31. Considering this plot it can
be observed that for all benchmark models, the anomaly detection methods show a notable improve-
ment in sensitivity compared to both the inclusive search and the cut-based approach. The largest
improvement can be seen for the 𝑌 → 𝐻𝐻 model, which can be attributed to the targeted substructure
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Figure 7.31: Sensitivity comparison of the employed anomaly detection methods for a representa-
tive set of considered signal models at 𝑚𝐴 = 3 TeV. For each method and signal model, the cross
section needed to achieve a significance of 3 𝜎 (cross markers) and 5 𝜎 (square markers) are shown.
For reference, the corresponding values of an inclusive search (black) as well as standard cut-based
approaches (brown and light brown) are shown. The lower panel of the plot shows the improvement
with respect to the inclusive value.
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Figure 7.32: Upper limit at 95 % confidence level for the chosen benchmark 𝐴 → 𝐵𝐶 models. The
limits are shown for masses 𝑚𝐴 = 3 TeV (left panel) and 𝑚𝐴 = 5 TeV (right panel). For reference,
the limits obtained for an inclusive search (black) as well as classic cut-based approach based on
substructure variables (brown and light brown) are shown. The observed limit from a previously
done model-specific analysis in CMS for the 𝑊𝑘𝑘 signal model is shown in grey.

anomalies being particularly present in this case.

Additionally, it can be noted that for each signal model there exists at least one method that
achieves an expected significance at the 5 𝜎 level for a cross section equal or lower than the upper
limit of the inclusive search. A comparison of this study with Figure 7.28 reveals different results
regarding the performance of Cathode-based methods. For the 𝑋 → 𝑌𝑌 ′ case, Cathode still shows
the optimal improvement of all the unsupervised methods and also Cathode-b does improve on the
inclusive search value. However, the good relative performance of Cathode-b on the 𝑊𝑘𝑘 model
could not be retained. This effect can be attributed to the inclusion of systematic uncertainties, which
significantly affect the resulting signal efficiencies. Cathode-b in particular has to additionally ac-
count for the b-tagging systematic. However, the Cathode-based methods still show a significant
improvement over the inclusive search for most of the signal models and for 𝑋 → 𝑌𝑌 ′ in particular.

Exclusion limits were computed for the benchmark signal models, again using the previously out-
lined limit setting procedure, including systematic uncertainties. The obtained limits are compared
amongst methods as well as to those of an inclusive search and a traditional cut-based approach.
Additionally, the exclusion limit of the model-specific 𝑊𝑘𝑘 search is compared for reference. In Fig-
ure 7.32, these limits are shown for resonance masses 𝑚𝐴 = 3 TeV and 𝑚𝐴 = 5 TeV. Similar to the
previous study it can be seen that the employed anomaly detection methods improve on the limits
obtained by an inclusive search as well as a traditional cut-based approach for all the signal models.
Generally, the improvement is higher for the 3 TeV mass point than for the 5 TeV mass point, as most
methods use tighter selections at lower masses that causes the QCD background to be suppressed
more effectively. It can also be seen that the dedicated search results in a significantly more stringent
limit than the more model-agnostic methods, which is expected. Cathode in particular shows signif-
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Signal Model
(𝐦𝐀 = 𝟑 TeV) 𝐦𝐁/𝐦𝐂 (GeV) Method Exp. (Obs.) Limit (fb) Improvement

w.r.t Inclusive
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/25 CWoLa 61.1 (30.1) 0.3
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/80 Cathode 50.0 (95.2) 0.4
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/170 VAE-QR 52.5 (37.5) 0.4
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/400 CWoLa 45.8 (24.3) 0.5

𝑋 → 𝑌𝑌 ′ 25/25 Cathode 8.0 (9.9) 0.9
𝑋 → 𝑌𝑌 ′ 25/80 Cathode 7.6 (13.2) 0.9
𝑋 → 𝑌𝑌 ′ 25/170 Cathode 10.3 (18.4) 0.7
𝑋 → 𝑌𝑌 ′ 25/400 VAE-QR 13.6 (12.5) 0.6
𝑋 → 𝑌𝑌 ′ 80/80 Cathode 4.2 (8.0) 1.6
𝑋 → 𝑌𝑌 ′ 80/170 Cathode 5.7 (11.4) 1.2
𝑋 → 𝑌𝑌 ′ 80/400 Cathode 6.0 (7.3) 1.2
𝑋 → 𝑌𝑌 ′ 170/170 Cathode 3.7 (6.8) 1.9
𝑋 → 𝑌𝑌 ′ 170/400 VAE-QR 4.4 (4.0) 1.7
𝑋 → 𝑌𝑌 ′ 400/400 VAE-QR 2.1 (1.9) 4.2

𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 25/𝑚𝑡 TNT 25.2 (17.4) 1.5
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 80/𝑚𝑡 TNT 22.3 (14.6) 1.5
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 170/𝑚𝑡 TNT 12.2 (7.3) 2.1
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 400/𝑚𝑡 VAE-QR 15.2 (11.4) 1.8

𝑊𝑘𝑘 → 𝑅𝑊 → 3𝑊 170/𝑚𝑊 TNT 25.1 (20.1) 1.4
𝑊𝑘𝑘 → 𝑅𝑊 → 3𝑊 400/𝑚𝑊 CWoLa 23.8 (25.0) 1.5

𝑍′ → 𝑇 ′𝑇 ′ → 𝑡𝑍𝑡𝑍 400/400 QUAK 28.3 (13.9) 2.7

𝑌 → 𝐻𝐻 → 4𝑡 400/400 QUAK 7.7 (3.7) 3.5

Table 7.10: Expected and observed 95 % CL upper limits for different signal models at a resonance
mass of 3 TeV on the respective cross section. Presented are only the results from the anomaly detec-
tion method yielding the best performance. For reference, the improvement related to the expected
limit of an inclusive search is also shown.

icant improvements with respect to the inclusive limit for the 𝑋 → 𝑌𝑌 ′ model, obtaining the overall
best improvement on the observed limit at the 5 TeV mass point. For other benchmark signal models,
however, other unsupervised methods generally yield better results.

In addition to the signal models chosen as benchmarks, tables containing the limits on the other
signal models and mass points can be found in Table 7.10 and Table 7.11 for resonance masses of 3 TeV
and 5 TeV, respectively. Shown are only the results of the model that yields the best improvement
compared to an inclusive search. The entire list of results only for Cathode and Cathode-b is shown
in Appendix E. From the tables it can be seen that for most of the signal models, the limits obtained
from the anomaly detection methods yield an improvement over the inclusive result. However, there
is still a significant number of signal models where no such improvement is achieved even by the best-
performing method. In many cases, this occurs when one of the two jets in the final state does not
contain substructure that an anomaly detection method can exploit. One example is the 𝑄∗ → 𝑞𝑊 ′

model, where one of the jets is a quark jet. Another case resulting in jets without substructure is when
one of the daughter particle masses is very low, leading to highly boosted jets where the substructure
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Signal Model
(𝐦𝐀 = 𝟓 TeV) 𝐦𝐁/𝐦𝐂 (GeV) Method Exp. (Obs.) Limit (fb) Improvement

w.r.t Inclusive
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/25 QUAK 3.5 (3.1) 0.7
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/80 QUAK 3.2 (2.8) 0.8
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/170 QUAK 3.3 (3.6) 0.8
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/400 QUAK 3.9 (9.9) 0.7

𝑋 → 𝑌𝑌 ′ 25/25 QUAK 1.7 (1.6) 0.5
𝑋 → 𝑌𝑌 ′ 25/80 QUAK 1.3 (1.3) 0.7
𝑋 → 𝑌𝑌 ′ 25/170 QUAK 1.1 (1.1) 0.8
𝑋 → 𝑌𝑌 ′ 25/400 VAE-QR 1.0 (3.4) 0.9
𝑋 → 𝑌𝑌 ′ 80/80 TNT 1.1 (1.2) 0.8
𝑋 → 𝑌𝑌 ′ 80/170 QUAK 0.9 (1.0) 0.9
𝑋 → 𝑌𝑌 ′ 80/400 VAE-QR 0.9 (3.0) 0.9
𝑋 → 𝑌𝑌 ′ 170/170 Cathode 0.7 (0.7) 1.2
𝑋 → 𝑌𝑌 ′ 170/400 VAE-QR 0.7 (2.3) 1.2
𝑋 → 𝑌𝑌 ′ 400/400 VAE-QR 0.4 (1.1) 2.3

𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 25/𝑚𝑡 TNT 4.4 (6.2) 1.3
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 80/𝑚𝑡 TNT 3.9 (5.7) 1.4
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 170/𝑚𝑡 TNT 2.8 (3.5) 1.6
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 400/𝑚𝑡 TNT 2.7 (3.8) 1.6

𝑊𝑘𝑘 → 𝑅𝑊 → 3𝑊 170/𝑚𝑊 TNT 6.1 (7.2) 0.8
𝑊𝑘𝑘 → 𝑅𝑊 → 3𝑊 400/𝑚𝑊 VAE-QR 5.4 (18.6) 0.9

𝑌 → 𝐻𝐻 → 4𝑡 400/400 TNT 1.5 (2.3) 2.5

Table 7.11: Expected and observed 95 % CL upper limits for different signal models at a resonance
mass of 5 TeV on the respective cross section. Presented are only the results from the anomaly detec-
tion method yielding the best performance. For reference, the improvement related to the expected
limit of an inclusive search is also shown.
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cannot be resolved. This can be seen from the tables in the 𝑋 → 𝑌𝑌 ′ signal model where 𝑚𝑌 masses
are small.

Cathode shows a high sensitivity for the 𝑋 → 𝑌𝑌 ′ signal model, yielding the best limits for most
of the mass combinations in the 3 TeV case. For the 5 TeV mass point, however, it results in the best
limit only once, namely in the case 𝑚𝑌 = 𝑚𝑌 ′ = 170 GeV. In general, the 5 TeV is challenging for
all methods, which is shown by only few of the limits being improved and if so, the improvement is
often marginal. As discussed previously, the reason for this phenomenon is probably again the less
tight selection efficiency used by many methods for this mass point. Cathode-b is not resulting in the
best limit for any of the considered models and mass points, apparently being outperformed by other
methods for signal models containing b jets. In general, being able to set limits on this large number
of different signal models in one analysis, covering decays resulting in jets with various substructure
patterns and mass combinations, is a powerful display of the capabilities of unsupervised methods for
anomaly detection. This first-of-its-kind analysis constitutes a significant milestone in the application
and development of data-driven searches for new physics. Leveraging the potential of novel machine
learning-based approaches, it was possible to scan vast regions of phase space for anomalies in data
in a largely model-agnostic way. Additionally, limits were set for several, previously unconstrained
signal models and different mass hypotheses at once, improving the inclusive limit significantly for
some of them. Anomaly detection methods based on density estimation such as Cathode played an
important role in this analysis, showing the highest sensitivity and yielding the best limits at most
mass hypotheses for the 𝑋 → 𝑌𝑌 ′ model at 3 TeV. However, several limitations still remain for
weakly supervised methods. Two key problems, namely the impact of uninformative features on
the performance as well as the sculpting in the presence of highly correlated features, have been
considered in more detail. This lead to significant enhancements and while the respective studies
were not finished in time to be applied to CMS experimental data, they have been studied using the
LHCO R&D data set. The respective results are discussed in the following chapter.
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Chapter 8

Improvements to the CATHODE
Algorithm

8.1 Using Tree-Based Algorithms for Weak Classification

The work presented in this chapter has been previously published in [216], in collaboration with Thor-
ben Finke, Marie Hein, Gregor Kasieczka, Michael Krämer, Alexander Mück, Parada Prangchaikul,
David Shih and Manuel Sommerhalder. The figures and the written content closely resemble or match
the information found in this article. My contribution to the publication consists of producing the anal-
ysis code for model comparison and rotational invariance studies, as well as using this code to assess
correct reproducibility of performance studies. Furthermore, paper writing and proof-reading and the
assessment and discussion of key research questions and hypotheses during the development of the
method with the mentioned collaborators. I also did major writing for a derivative submission, which
was accepted to the Machine Learning and the Physical Sciences workshop at the Thirty-seventh An-
nual Conference on Neural Information Processing Systems (NeurIPS) [217]. The model selection
studies are not part of the original publication and are my own work entirely.

It has been shown that Cathode does not only achieve state-of-the-art performance in resonant
anomaly detection, but also almost saturates the optimal limit of an unsupervised search defined by
the IAD. While the development of Cathode constitutes a significant advancement of data-driven
methods for anomaly detection, several challenges remain.

In section 7.1, the performance of Cathode was demonstrated on the LHCO R&D data set using
a single signal model with two two-pronged jets in the final state for the benchmark. However, in a
realistic search for new physics, a plethora of signal models with profoundly different signatures could
exist. Additionally, not only was the analysis limited to this specific model, but the Cathode input
features were chosen such that they contain significant information for the signal model in question.
Both the subjettiness-based as well as the mass-based features contain information about the jet sub-
structure and are therefore well suited for detecting the signal. In particular, the optimal subjettiness
ratio for distinguishing the two-pronged jets in the final state of the signal model from the one-pronged
QCD background jets, 𝜏21, was used.

Since the signal model is unknown in an entirely model-agnostic search, it is also unknown what
features would be informative to detect it. Therefore, it is crucial to use as many features as possible to
ensure sensitivity to any kind of anomaly. Furthermore, it can be expected in such a scenario that only
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Figure 8.1: The effect of uninformative features on the performance of a neural network (NN) – based
idealized anomaly detector. SIC curves are shown for the baseline feature set and for the feature set
with noise added, where 𝑛G refers to the addition of 𝑛 independently sampled Gaussian features.

a small fraction of these features will contain information to distinguish anomalous events from the
background. At the same time, the inclusion of a large number of uninformative features significantly
increases the complexity of the anomaly detection, since it introduces additional noise to the already
noisy weak classification task.

8.1.1 Impact of Uninformative Features

The impact of uninformative features on weak classification was studied by using the features in the
original LHCO R&D benchmark for Cathode and then adding features that were generated by sam-
pling randomly from a standard normal distribution. These Gaussian features constitute a proxy for
the inclusion of features without any information regarding the discrimination of signal and back-
ground events.

In order to eliminate the impact of imperfections in the density estimation, an idealized anomaly
detector (IAD), as described in subsection 6.4.3, was used for this study. In the IAD, the background
template is not estimated by a generative model, but instead events from the true background distribu-
tion inside the signal region are used in the classifier training. Thus, the IAD yields the performance
in the limit of perfect density estimation. Since the density estimation and interpolation of the back-
ground template into the signal region do not need to be considered in the idealized scenario, the
findings of this study extend to any weakly supervised anomaly detection method.

For the model, a fully connected neural network model was trained, using the exact same hyper-
parameters as in the original Cathode study [150] (see Table 7.2 for reference). Jets in the event are
sorted by mass, such that the heaviest jet is referred to as the first jet, the second heaviest jet as the
second jet and so on. Also, the “baseline” features used in this study are chosen the same as in the
original Cathode work, namely the mass value of the second jet, 𝑚𝐽1

, the mass difference between
the first and second jet, Δ𝑚𝐽, as well as the subjettiness ratios 𝜏21,𝐽1

and 𝜏21,𝐽2
of the first two jets.

For the training and validation sets, a 50%/50% split of approximately 272 000 background events and
120 000 data events in the signal region were used. The final performance is estimated on a separate
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Figure 8.2: The results of the same study as shown in Figure 8.1, but using a histogrammed gradient
boosted tree (BDT) – based classifier instead of a neural network. The solid lines of the SIC curves
correspond to the median performance of 50 independent classifier runs (with the exception of 30 and
50 Gaussian features, where 100 runs were used instead), while the shaded areas describe the inner
68% band of the SIC curve distributions based on these runs.

test set based on the truth-level signal and background labels, which contains 340 000 background
and 20 000 signal events from the signal region. Figure 8.1 shows the performance in terms of SIC
curves for this study. The “Baseline” refers to the previously mentioned features, while “𝑛G” refers
to 𝑛 Gaussian noise features added. It can clearly be seen that the addition of uninformative features
significantly impacts the performance of the DNN-based IAD: Adding only two noise features leads
to a decrease of more than a factor two in maximum SIC and adding even more noise makes the SIC
curve drop to the performance of a classifier choosing events randomly.

This behaviour constitutes a considerable problem for the use of weak supervision in model-
agnostic searches: In essence, it means that weakly supervised methods require specifically selected
features that are guaranteed to be informative for a particular signal model or at least for a family of
similar signal models. This, of course, strongly conflicts with the objective of being model-agnostic,
since the targeted signal model needs to be known for feature selection. One possible way of mitigating
this issue would be to test a random subset of all available features and redo the entire analysis for
each trial. This approach, however, requires significant computational resources and it is questionable
– given the vast amount of both high and low-level features available in a particle physics scenario –
that it would be feasible.

To overcome this shortcoming of weakly supervised methods, a classifier is needed that is both
performant and highly robust against uninformative features. Most of these methods use deep neural
networks (DNNs) for the weak classification task. While deep learning methods achieve state-of-
the-art performance in many machine-learning tasks such as computer vision, generative modelling
or natural language processing, their relatively poor performance on tabular data is an active area of
computer science research [114, 218, 219]. As described in section 5.1, classical machine learning
methods based on gradient boosted decision trees (BDTs) often outperform even complex deep learn-
ing algorithms such as transformers [99] significantly on tabular data [218]. Additionally, BDT-based
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methods were found to be robust against the inclusion of uninformative features in supervised classi-
fication. Since tabular data – in form of various high-level features per event – is also used in most
weakly supervised methods for anomaly detection, the application of BDTs instead of DNNs to the
weak classification task was studied.

To test BDT-based classifiers for weak supervision and investigate the impact of including unin-
formative features on their performance, the study described above was repeated, using the baseline
features and additional Gaussian noise features in an idealized setting was repeated. In particular, the
histogrammed gradient boosting (HGB) algorithm based on LightGBM [94] implemented as Hist-
GradientBoostingClassifier in the scikit-learn package [177] was used. The reason to em-
ploy this particular algorithm is two-fold: First, LightGBM typically ranks amongst the best perform-
ing algorithms in many tabular data competitions [84]. Second, histogramming the features allows
for considerably faster training. As described in chapter 5, decision trees decide at which threshold to
split the data into subsequent nodes or leaves by scanning all possible cuts between the unique values
for each feature. Since the considered features are based on floating point numbers, the number of
unique values in a feature is similar to the number of data points. Therefore, computing the optimal
cut based on all data points in each of the features is computationally intensive, especially when the
data sets are large, as is frequently the case in a particle physics scenario. Histogramming the fea-
tures reduces the possible cut values to a significantly smaller set of bin values, which substantially
improves the time to train the BDT.

The fast training of BDT-based classifiers also allows for the inclusion of ensembling: Instead of
a single training run, 10 classifiers are trained independently, and the mean prediction of all the clas-
sifier models is used for the performance evaluation. To further improve training time, early stopping
is employed: The binary cross-entropy loss is evaluated for a separate validation data set at each iter-
ation and the training is stopped if validation loss does not decrease within ten subsequent boosting
iterations. The final evaluation of the performance is done on another statistically independent test
data set, using the model state at the minimum validation loss iteration. The parameters used in the
training of the gradient boosted classifier are based on the scikit-learn default settings. Dedicated
hyperparameter optimization studies were conducted using the optuna [220] software package, but
revealed no significant performance increase with respect to the defaults. Since the weak classification
task is noisy, its outcome is expected to have a high variance, in particular when many Gaussian noise
features are included in the training. To study this variance, instead of training a single BDT ensem-
ble, 50 independent ensemble trainings were conducted for the case of up to 10 additional Gaussian
features, while for 30 and 50 Gaussian features 100 trainings were run.

The results of the study are summarized in Figure 8.2. Comparing the baseline SIC curves of the
BDT and the DNN in the corresponding plot in the left panel, it can be seen that the BDT slightly
outperforms the DNN when no entirely uninformative features are present. The maximum SIC that is
achieved in this case is around 16 for the BDT, while being 14 in the DNN case. This result confirms
the findings in literature regarding the superior performance of gradient boosted classifiers over deep
learning methods on tabular data and that they also apply to the weakly supervised regime. The
most significant difference between the DNN and BDT results can be observed when comparing the
curves when Gaussian noise features are included in the training: The performance of the BDT-based
classifiers is barely affected for up to ten noise features, regarding both the median SIC values and their
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Name # features Features

Baseline 4 {𝑚𝐽1
, Δ𝑚𝐽, 𝜏𝛽=1,𝐽1

21 , 𝜏𝛽=1,𝐽2
21 }

Extended 1 10
{𝑚𝐽1

, Δ𝑚𝐽, 𝜏𝛽=1,𝐽1
𝑁,𝑁−1 , 𝜏𝛽=1,𝐽2

𝑁,𝑁−1 }

for 2 ≤ 𝑁 ≤ 5

Extended 2 12
{𝑚𝐽1

, Δ𝑚𝐽, 𝜏𝛽=1,𝐽1
𝑁 , 𝜏𝛽=1,𝐽2

𝑁 }

for 𝑁 ≤ 5

Extended 3 56
{𝑚𝐽1

, Δ𝑚𝐽, 𝜏𝛽,𝐽1
𝑁 , 𝜏𝛽,𝐽2

𝑁 }

for 𝑁 ≤ 9 and 𝛽 ∈ {0.5, 1, 2}

Table 8.1: Content of the different feature sets considered for the respective comparison study.

variance, which is shown in the inner 68%-band as area of reduced opacity in the plot. Starting from
30 Gaussian features, the performance starts to decrease also for the BDT, in particular at higher signal
efficiencies, while the variance increases noticeably. However, considering the median performance,
much of the original significance improvement can still be retained even in the challenging 50G case,
where informative features represent only a small fraction of all features. This is vastly different from
the DNN classifier, whose performance reduces to almost no significance improvement with as few
as ten Gaussian features.

These results clearly show that using algorithms based on (histogrammed) gradient boosting al-
lows for model-agnostic searches without the need of feature selection, being performant even in
challenging scenarios where the majority of features does not contain information to discriminate be-
tween signal and background. Additionally, they are significantly faster to train then DNNs, reducing
the computational requirements of weakly supervised anomaly detection tasks considerably.

8.1.2 Using Different Physics Features

The study considering the addition of noise features employed a worst-case scenario, since the Gaus-
sian features constitute pure noise and do not contain any information. In a different study, a more
realistic approach was investigated: This time, different sets of physics features were tested and the
same comparison between DNN and BDT-based classifiers was done. The additional features are
divided in three different sets, labeled ”Extended Set 1” to ”Extended Set 3” and their content is de-
scribed in Table 8.1. The extended sets contain different features regarding the subjettiness of the
jets: For extended set one, additional subjettiness ratios (𝜏𝑁,𝑁−1) are included alongside the baseline
features. Extended sets two and three contain the plain subjettiness values (𝜏𝑁) instead of their ra-
tios. In extended set three, subjettinesses for different values of 𝛽 are also added, which is an angular
weight used in the computation of the subjettiness. It should be noted that each extended set contains
more information than the previous feature set. Therefore, even if the additional features were not
informative with respect to our signal model, the performance of a robust classifier trained on a larger
feature set should be at least as good as on the previous feature set.

The performance comparison of the BDT and DNN-based classifiers for the different feature
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Figure 8.3: The effect of different feature sets on the performance of weakly supervised classifiers.
The comparison is made for DNN-based classifiers (dashed lines) and BDT-based classifiers (solid
lines). Shown are SIC curves for different sets of input features as described in Table 8.1. For the
BDT-based classifiers, 50 independent classifier runs are used and the solid lines correspond to the
median performance while the areas of reduced opacity describe the inner 68% band of the SIC
curve distributions. For the DNN-based classifiers, only a single training run was used due to limited
computational resources.

sets can be seen in Figure 8.3. Except from changing the features used in the training, all training
parameters were kept the same as in the previous study. From this plot, it can clearly be observed
that DNNs are suboptimal classifiers for weakly supervised anomaly detection: Not only is their
overall performance slightly worse compared to the BDT classifiers, but it also depends on the specific
feature set used. This can be seen specifically by comparing the Baseline SIC curve of the DNN with
the corrseponding curve of extended feature set one: Even though the extended set contains more
information than the baseline set, its performance is significantly worse. The reason for this worsening
is that 𝜏21 already constitutes the optimal feature choice for our signal model, while higher-pronged
subjettiness ratios are expected to contain only marginal information for it and act mainly as noise.
Therefore, the finding of the previous study extends from pure noise features to actual physics features
and underlines that using DNNs in weakly supervised anomaly detection requires model-specific
selection of informative features to ensure sensitivity.

For BDT-based classifiers, the case is different: Increasing the information content of the features
also increases the model performance. The performance on extended set one also increases slightly
with respect to the baseline performance, showing that BDTs are also able to improve when only
a modest amount of information is added. This behavior shows that gradient boosted trees are an
optimal choice for weakly supervised anomaly detection, both when many informative features are
included and in the case where most features act as noise.

8.1.3 Causes of Increased Robustness against Noise

Given the markedly different results when comparing DNNs and BDTs, further studies assessing the
cause of this difference were conducted. Three main factors were identified that lead to a performance
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improvement of histogrammed gradient boosting algorithms compared to DNNs:

1. Due to the significantly faster training time of (histogrammed) BDTs, it is computationally
feasible to train an ensemble of many independent classifier models, which greatly improves
the performance in the presence of noise compared to individual models or ensembles based
on the model state at different epochs of a single model instance.

2. The use of histogramming reduces the noise of the “background-vs-background” part of the
weak classification task, since small event-by-event differences are averaged out over the more
coarse, binned structure of the feature histograms. This effect has not been studied in this work,
but it represents a viable explanation for the results attained when comparing the performance
of different tree-based algorithms.

3. DNNs are invariant under the rotation of features (e.g. by applying a random 𝑆𝑂(𝑁) matrix to
the feature vectors of each sample). Therefore, a DNN has to learn the optimal orientation of
the data in addition to the patterns separating signal and background events. This is a signifi-
cantly more difficult task than the classification alone and an addition of noisy features further
complicates this task, as it increases the dimensionality of the problem. This increased com-
plexity leads to a reduced performance of DNNs on tabular data, in particular in a noisy, weakly
supervised regime.

Each of these three factors and the corresponding studies will be discussed in further detail in this
section.

Ensembling

One key difference between the methodology used in the initial work describing Cathode [150] and
the BDT-based studies is the way ensembling was performed. Originally, ensembling for Cathode
was done by taking the average predictions of the models corresponding to the ten epochs that achieved
the lowest values of the validation loss. However, this ensemble is still based on the same model
initialization and thus carries the same inductive bias. While it has shown to reduce the variance of the
final result, the overall performance did not change significantly based on whether or not ensembling
was used. Given the short training time of BDTs, it is computationally feasible to create an ensemble
of entirely re-trained classifier models and average over their respective predictions. This kind of
ensembling was used in all of the previously described studies for BDT-based classifiers. The effect
of using the classifier ensembling can be seen in Figure 8.4.

From this figure, the advantages of an ensemble of individual classifier models can clearly be
seen: The ensemble outperforms all classifier models for the BDT and is almost as high as the best
model for the DNN. Additionally, the median performance shows a considerably smaller significance
improvement compared to the ensemble, which leads to the conclusion that ensembling the model
predictions improves the performance and not only the variance of the final result as is the case for
epoch ensembling. It is also again the case that the NN models perform significantly worse than the
BDT models, with only few models showing a significance improvement larger than one. Interest-
ingly, several BDT models with rather low significance improvement values can also be seen in the
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Figure 8.4: The effect of ensembling on the performance of weakly supervised classifiers, using
the baseline features and ten additional Gaussian noise features (note the different y-axis scales).
The comparison is done between DNN-based classifiers (left panel) and BDT-based classifiers (right
panel). Shown are SIC curves of individual classifier models in light grey, as well as the median of
these SIC curves in black. The green curves show the performance of the entire ensemble, i.e. the
average prediction over all models constituting the ensemble.

right panel plot, which shows that also BDT-based classifiers vary significantly in performance under
noisy conditions.

Given these results, the reason how the ensembling improves the individual model results remains
unanswered. To better understand this phenomenon, the distributions of the individual and ensemble
model predictions were compared, which can be seen in Figure 8.5. In this figure, an ensemble of
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Figure 8.5: Normalized prediction histograms for signal (left) and background events (right) for ten
independent BDT classifier runs. The comparison is done between the mean ensemble predictions
(blue) and the predictions for each individual model inside the ensemble (orange).

ten independent BDT models was trained and then two evaluations based on the test set events were
done: At first, each individual model was evaluated separately and the predicted values for all models
were histogrammed, which is shown in orange. Then, the ensemble mean was computed over the
predictions of the ten models and the mean predictions were also histogrammed, as shown in blue.
This was done separately for signal events (left panel) and background events (right panel). The figure
clearly shows the reason for the overall performance increase: For signal events, some models predict
anomaly scores lower than the random threshold of 0.5, but when considering the ensemble average,
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these events get a significantly higher score, leading to fewer events with random or lower than random
predictions and a more pronounced tail towards higher (i.e. more anomalous) values. Similarly, for
background events, individual models predict high scores for some events but the ensemble mean
reduces the high (and low) tails of predicted values considerably, leading to a distribution which is
more contained around the random prediction value. In summary, ensembling leads to both fewer
false negatives and fewer false positives, increasing the overall performance compared to individual
models.

Histogramming

A second factor explaining the improved robustness with respect to noise is that the HGB classifier
uses histograms of the features to define the split at each node. This is done to decrease the num-
ber of possible split values and significantly speed up the training. Additionally, this key difference
compared to the other investigated algorithms could also be a major cause for the improvement of
the robustness against adding noise. Since the signal fraction in the data is small, the largest part of
the weakly supervised classification lies in distinguishing the background template samples from the
background samples in the data. In an ideal case, their distributions align perfectly and the prediction
distribution is a sharp peak around the random prediction value of 0.5, with a small width due to the
statistical variance of the different samples.

When several Gaussian noise features are added randomly to these events, it is unlikely that similar
events from data and from the background template receive also similar noise values in all of the ad-
ditional dimensions. Therefore, adding noise causes the emergence of patterns that reflect differences
between background events from the two samples, which leads to more frequent misclassifications
and thus an increase in the width of the prediction distribution. In turn, the background rejection is
decreased which causes a decrease in performance. Naturally, this effect is largest if the noise of each
individual sample is considered in each feature for each node split, as it is typically done in tree-based
algorithms. However, when histogramming the features – and in particular the noise features – in-
dividual noise patterns get averaged over the bins. This can significantly reduce misclassifications
due to small noise effects while still being able to capture the larger-scale patterns that govern the
differences in signal and background. While these effects have not been studied in detail in the foun-
dational work of this chapter [216], their conceptual discussion represents a possible explanation of
the significant differences in noise robustness between tree-based algorithms.

Rotational Invariance

As previously discussed, the better performance of tree-based models compared to deep learning algo-
rithms on tabular data is an active area of computer science research [114,218,219]. One reason that
is frequently mentioned in literature is the robustness of tree-based algorithms against features that
are uninformative regarding the classification task. One hypothesis for this behaviour that has been
discussed in literature is that DNNs are invariant under rotation of the features [114] and therefore
have to learn the optimal orientation of the features in addition to extracting patterns that distinguish
the different classes. This of course is a significantly more difficult problem compared to the classi-
fication alone, in particular when many additional dimensions that carry no information are added.
Tabular data, however, is not rotationally invariant and the original orientation of the data is therefore
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Figure 8.6: Performance comparison of rotated and non-rotated data sets. SIC curves are shown
for an NN-based classifier (left panel) as well as for the histogrammed gradient boosting classifier
(right panel). The comparison is done for the baseline feature set (black) as well as the baseline
feature set with three Gaussian noise features added (turquoise). For both data sets a random rotation
was applied and the classifiers were retrained using the rotated features. The results for the rotated
features are shown by the dashed lines. In all plots, solid colours represent the median performance
of ten independent classifier retrainings, while shaded areas describe the inner 68% of the respective
SIC curve distributions.

already the optimal one. Thus, applying a deep learning classifier to a tabular data problem means ap-
plying a rotationally invariant learner to a non rotationally invariant data set. Tree-based algorithms
on the other hand are not rotationally invariant and therefore only operate on the optimal, original
orientation of the input data and focus only on extracting the relevant patterns to distinguish signal
from background.

The features from the LHC Olympics data set that were used in the previous studies are also in
a tabular data format: Each event that is classified into data and background can be considered a
row while the per-event features constitute the columns. Therefore, the aforementioned findings in
computer science literature should also extend to this data set. However, computer science research
regarding the robustness against uninformative features and the rotational invariance of classifiers
mainly focuses on the fully supervised scenario while the behaviour in a weakly supervised setting
has yet to be studied. Therefore, another study was performed using the baseline feature set as well
as the baseline feature set with three Gaussian noise features added. First, for each data set a DNN
classifier as well as an HGB classifier was trained. Then, the features of both data sets were rotated
by applying a random rotation matrix drawn from the Haar distribution (a uniform distribution on
𝑆𝑂(𝑁)) using the scipy software package [221]. New DNN and BDT-based classifiers were then
trained and evaluated on the rotated data sets. The results of this study can be seen in Figure 8.6.

The figure shows that the findings regarding the rotational invariance of classifiers in fully su-
pervised tasks largely extent to the weakly supervised setting: The performance of the non-rotated
baseline feature set is similar to the rotated feature set for the DNN-based classifier, while it is signif-
icantly worse for the tree-based algorithm, with about only half of the original performance retained.
Notably, the HGB classifier shows worse performance than the DNN in this case. When Gaussian
noise features are added, the rotation further distorts the information contained in the original features
and both the DNN and the HGB classifier break down entirely to random performance.
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To summarize, one reason for the low robustness of DNN-based classifiers to noise in tabular
data tasks is their rotational invariance, which was shown to extend to weakly supervised scenarios.
Tree-based algorithms, however, only work on the original, physically meaningful orientation of the
data and therefore retain more of the original performance when noise features are added.

8.1.4 Performance Comparison of Different Tree-Based Algorithms

In the studies discussed so far, performance comparisons were exclusively done using DNNs and
the HGB algorithm. To assess whether the improved robustness against the presence of noise is a
general feature of tree-based classifiers or whether it is specific to the HGB classifier in particular,
another comparison study has been conducted: Three different tree-based algorithms were trained,
using the baseline feature set and the same feature set with ten Gaussian noise features added. The
algorithms were chosen to be representative of a broad range of tree-based classifier methods: A
random forest classifier, which is the simplest of the tree-based ensemble classifiers, not making use
of advanced gradient boosting techniques. An AdaBoost classifier [92], which employs a slightly
different boosting approach compared to modern gradient boosting methods (assigning higher weights
to misclassified events rather than minimizing a loss function by predicting residuals of the previous
iteration) and finally a ROOT TMVA BDT [222], which is frequently used in Particle Physics use-
cases and is also based on AdaBoost. For the ROOT BDT, the default hyperparameter settings of
the software version 6.28.4 were used and the HGB classifier parameters were kept the same as in the
previous studies. For the AdaBoost and random forest (RF) classifiers, an optimization study was
done using the optuna [220] software package and the baseline feature set. The achieved optimal
hyperparameters can be seen in Table A.2 for AdaBoost and Table A.1 for the RF. The variance of
the classifier results was assessed using 𝑁 = 10 independent retrainings as opposed to 𝑁 = 50 which
was used before. Some of models took significantly longer to train and therefore retrainings had to
be reduced to meet the computational resource constraints.

AdaBoost AdaBoost

Figure 8.7: SIC curve comparison for different tree-based classification algorithms. Performance is
compared for histogrammed gradient boosting (HGB), random forest (RF), AdaBoost and the ROOT
TMVA BDT algorithms. Results are shown for the baseline feature set (left panel) as well as the
baseline feature set with ten Gaussian noise features added (right panel). Solid lines correspond to the
median performance of ten independent classifier ensemble trainings while shaded areas correspond
to the inner 68% of the SIC curve distribution of said ensembles.

The comparison of the SIC curves of the discussed algorithms together with the SIC curve of
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the histogrammed gradient boosting classifier can be seen in Figure 8.7. Considering the baseline
feature set, it can be seen that the performance of the different tree-based classifiers is similar, in
particular for low signal efficiencies where the error bands of most algorithms overlap. The maximum
achieved significance improvement varies between 12.5 and 16. Interestingly, the simple random
forest classifier shows the best performance amongst tree-based models. For higher signal efficiencies,
however, the ROOT TMVA BDT as well as the HGB classifier outperform the other models.

When adding Gaussian noise features, the performance of the different algorithms changes sig-
nificantly: While the HGB classifier retains much of its original singificance improvement with a
median maximum SIC of about 13, the other algorithms see a considerable performance drop with
only half of the original performance at best. From the algorithms other than the HGB classifier, the
AdaBoost classifier shows the best median performance, but also the variance of the results increases
significantly compared to the baseline feature set. One possible hypothesis for this increase is based
on the hyperparameter choice: As mentioned in subsection 5.2.3, AdaBoost models consists of an
ensemble of many weak learners, which are often chosen to be single-node decision trees, so called
“decision stumps”. However, using the optuna package for hyperparameter optimization, a more
complex architecture was preferred for the individual decision trees. While this can lead to a better
performance, it also results in overfitting, as described by the bias-variance-tradeoff: Increasing the
complexity of a model generally reduces the bias, since more complex functions can be learned. On
the other hand, the increased complexity makes it easier for the noise of the training data to be mem-
orized by the algorithm, leading to poor and varying performance on an independent test set, which
is further amplified by the presence of Gaussian noise features. In this study, each retraining is based
on a different selection of training and validation set events, while the test set is kept constant. Due
to the high complexity of the AdaBoost model, the performance varies considerably for different
training/validation set assignments, as is expected.

Interestingly, the AdaBoost-based ROOT BDT does not show a similar increase in variance,
possibly due to the lower complexity of the model, which is limited to a maximum tree depth of
three, while the AdaBoost model is unbound in depth and is only limited by the maximum number
of leafs, which is set to 31. However, the ROOT BDT also has a significantly lower performance
compared to the AdaBoost model, with a maximum median significance improvement of a factor
of three. This comparison between the two AdaBoost-based models shows that AdaBoost can still
retain some performance in the presence of noise when the model is complex enough, but at the cost
of considerably increased variance.

The random forest classifier performance lies between the AdaBoost-based models in the pres-
ence of noise. The error bands also increase in size, but are still not as large as for the complex
AdaBoost model. Except for the lowest signal efficiencies and considering the error bands, the per-
formance of the AdaBoost and random forest models can be considered similar. Taking into account
how the algorithms work – as described in section 5.2 – this behavior is expected. In a random forest,
the classification decision is achieved by the majority vote of the individual trees in the forest. Due
to the weakly supervised nature of the task and the significant number of noise features added, most
events will be classifed as signal or background randomly. Some of the most anomalous signal events
as well as the least anomalous background events, however, might consistently receive a slight major-
ity vote to actually be signal and background respectively, which causes at least a critical amount of
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the events to be correctly classified and some of the original performance to be retained.
For AdaBoost-based classifiers, the situation is expected to be similar to the random forest in

a weakly supervised setting: AdaBoost typically assigns two sets of weights, one to increase the
importance of previously incorrectly classified samples (Equation 5.14) and one to increase the weight
of an individual learner if its classification error was low (Equation 5.11). In a noisy classification
task, most samples will randomly be classified as being either signal or background by the subsequent
individual learners, which means that their weights 𝑤𝑖 will also be similar. Therefore, the sample
weights will have only a marginal impact on the final classification result.

The same is true for the weight of the individual learners 𝛾𝑗: If one tree in the ensemble shows a
good performance, the weight assigned to it in the final weighted sum over the ensemble is high and
when it shows a poor performance, the respective weight will be low. Again, due to the noisy nature
of the classification tasks, most individual trees will select random regions of phase space, which
leads to similarly low weights for all the trees in the ensemble. Since both sample and individual
tree weights are therefore expected to have only a marginal impact on the final classification result.
Thus, AdaBoost-based classifiers are expected to behave like random forests in a weakly supervised
scenario and differences in performance can mainly be attributed to the hyperparameters of the indi-
vidual weak learners as well as implementational details such as the use of bootstrapping for samples
and/or features.

Given the results from the previous discussion, it seems that robustness with respect to noise in
weakly supervised classification tasks is not a feature of tree-based algorithms in general. However, as
shown before, the HGB algorithm consistently outperforms other algorithms even if the vast majority
of features is pure Gaussian noise. Compared to the other investigated tree-based models, two key
algorithmic differences exist with respect to the HGB classifier.

First, the HGB classifier uses gradient boosting instead of the adaptive boosting method that is
the namesake of the AdaBoost algorithm. Therefore, it directly optimizes the loss function, which
is the binary cross-entropy of the data versus background classification task. Since the loss is directly
related to the Neyman-Pearson optimal likelihood ratio, its iterative minimization should continuously
improve the performance of the model in the final signal vs background evaluation as long as the model
is not yet in the overfitting regime. Second, the HGB classifier uses a histogrammed version of the
features to determine splits when building the tree. As discussed in subsection 8.1.3, this leads to a
reduction of the individual event-by-event differences due to the noisy features and therefore improves
the overall classification result.

To summarize, in a weakly supervised scenario, the benefit of the adaptive boosting paradigm is
neutralized due to the significant noise in the classification task and the model is largely reduced to a
random forest–like model, while gradient boosting still iteratively improves on a loss that constitutes
a valid proxy for actually discriminating signal from background.

8.1.5 Sensitivity

In the previous studies, the fraction of signal events within the signal region window was fixed to
about 0.6 %, which corresponds to a statistical significance of 2.2 𝜎. While the behaviour under the
addition of noise strongly favours the use of tree-based classifiers compared to DNN-based classifiers,
it is also important to consider the difference in sensitivity, i.e. how the performance behaves with
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Figure 8.8: Maximum SIC values for different amounts of injected signal. The comparison is done
for both the baseline feature set (black) and the extended feature set 3 (blue). The dashed line shows
the performance of a DNN classifier on the baseline feature set for comparison.

varying amounts of signal. To study this, both DNN and BDT-based classifiers were trained using
different amounts of signal events, while the number of background events in the signal region was
kept constant at the previously used value of approximately 120 000. For the comparison between
DNN and BDT-based classifiers, the baseline feature set was used in order to focus on sensitivity in an
idealized scenario without additional noise features. To also test the impact of increased information
content on sensitivity, the HGB classifier was trained on the extended feature set three, again for
varying amounts of signal. The number of injected signal events has been varied using the following
values: The result can be seen in the left panel of Figure 8.8.

For both the HGB and the DNN classifiers, a significant increase in sensitivity can be observed
between 400 and 500 events, which corresponds to a significance in the signal region of 1.15 𝜎 and
1.44 𝜎, respectively. However, the tree-based classifier outperforms the DNN-based classifier for a
wide range of signal injections, except for the very lowest ones, where performance is similar. It can
also be observed that the sensitivity also depends on the information content present in the features:
For the extended feature set three, a sharp performance increase already takes place much earlier com-
pared to the baseline feature set, namely between 200 and 300 injected signal events (corresponding
to 0.58 𝜎 and 0.87 𝜎, respectively). In general, this feature set also achieves significantly higher SIC
values over the entire range of injections compared to the baseline.

Another key question regarding the sensitivity of the different classifier models is whether their
performance is mainly a function of the number of signal events present in the data, or whether it is
also depending on the overall amount of data available. To study this further, the HGB classifier was
trained not only for varying amounts of signal events, but also for different numbers of background
events in the signal region. The results of these study are summarized in the right panel plot of figure
Figure 8.9. The individual cells in this figure show the (colour-coded) maximum achieved SIC value
for an HGB classifier trained on the corresponding amount of signal and background events. Since
both numbers are varied, their change is reflected in the statistical significance (shown on the y-axis)
and the number of background events (shown on the x-axis). From this figure, it can be seen that

158



8.1. USING TREE-BASED ALGORITHMS FOR WEAK CLASSIFICATION

Figure 8.9: Maximum SIC values achieved when varying both the number of injected signal events as
well as the number of background events. Results are compared for different values of the statistical
significance (y-axis) and the number of background events in the signal region (x-axis).

the maximum achieved significance improvement is mainly a function of the significance of the input
data set. This is an important finding also for model-agnostic searches in future Particle Physics
experiments, since collecting more data will increase their sensitivity.

8.1.6 Model Selection

When training a weakly supervised classifier, one tries to optimize the ratio of the data and back-
ground densities 𝑝data(𝑥)/𝑝background(𝑥). These two likelihoods differ only with respect to the small
signal contribution and the approximation of their ratio by the classifier is imperfect due to the lim-
ited amounts of data and the likely presence of suboptimal features. Therefore, it is not a priori clear
whether selecting the model at the minimal loss function value of this data-vs-background task will
also yield the optimal classifier model in the signal-vs-background task that is ultimately of interest.
An accurate and robust model selection procedure, however, is important not only to select the best
performing model for a given architecture, but also for correctly optimizing the hyperparameters in a
weakly supervised setting.

To assess the correlation between the weakly supervised loss function with the final signal-to-
background performance, the maximum SIC value at each iteration was computed and compared
to the loss curves of an HGB classifier model. The loss curve comparison was done for the entire
data set, as well as for the signal and background components, in order to assess how they behave
in a weakly supervised setting. By comparing the maximum SIC and loss curves, it can be studied
whether the current strategy of picking models based on validation loss is a viable strategy to ensure a
high performance also on the actual task of interest, namely distinguishing an anomalous signal from
background events. For this study, the model was trained using the same parameters as in the first
study in subsection 8.1.1 and the baseline feature set. The number of signal events for the training
was also set to the same value as in the first study, corresponding to approximately 0.6% signal to
background ratio in the signal region. The results can be seen in Figure 8.10.

Considering the upper panel of the figure, it can clearly be seen that the signal loss of both the
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Figure 8.10: Training and Validation loss curves as well as maximum SIC values for each training
iteration of an HGB classifier model. Due to the large difference of values, loss curves are compared
separately for signal events (upper panel) and both background events and all events (lower panel).
The lower panel is zoomed in for better visibility of the validation loss curve of the full data set.
Training and validation loss curves were computed using the data and background labels, while the
maximum SIC values are based on the truth level information of the independent test set. The random
loss value is indicated for reference.

training and validation sets decreases quickly and continues to decrease even at the final iteration. In a
fully supervised setting, this behaviour would lead to the consideration of training for more iterations
to further improve on the signal events. Looking at the maximum SIC value, however, shows that there
is no strong correlation between the losses and achieved performance. The SIC does increase within
the first few iterations, but then drops to lower values and continues to stagnate throughout the training
while the signal validation loss continues to improve. In an actual search, it would not be possible to
select the optimal signal validation loss iteration as the truth-level information is not available. Given
these results, however, it is clear that this would also be a suboptimal strategy, which underlines the
relatively much higher importance of rejecting the vast amounts of background typically present in
particle physics use cases.

The lower panel of Figure 8.10 shows the results for the entire data set as well as the background
events only. The range of the loss axis has been reduced for the validation losses to be better visi-
ble. The training losses of both the background events and the full data set decrease sharply from
the beginning and continue to do so for all iterations. The background validation loss curve shows
that the classifier model is overfitting on background events from the start: The curve begins at the
random loss value and increases for all subsequent iterations. This behavior is expected, as it shows
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that only noise can be learned from distinguishing the background events in the data sample from the
background events in the template which originate from the exact same distributions. The main loss
curve of interest for model selection is the validation loss curve computed on the entire data set. This
curve shows a composite effect of the signal and background validation losses: Within the first few
iterations, where the signal loss decreases sharply while the background loss has yet increased only
marginally, the full validation loss decreases to a minimum and then increases until the final iteration.
This minimum can be used for model selection and in this training, it also corresponds to one of the
highest maximum SIC values achieved. This behaviour has been shown also in several re-runs of the
training, which shows that picking the minimum validation loss iteration is a viable strategy to select
an iteration amongst the best performing ones. However, it can be seen that the worsening of the
full validation loss does not affect the maximum SIC that is achieved, which assumes values around
ten for higher iterations. This shows that there is not a clear correlation between validation loss and
performance in general. To summarize, the results of this study show that, while the validation loss
yields a valid minimum that typically lies in a region of sufficiently high performance, it does not sig-
nificantly correlate with the maximum SIC and could potentially lead to the selection of suboptimal
iterations. Therefore, further study is needed to investigate alternative metrics that can be derived
from the weakly supervised labels and shows a better correlation with the signal-vs-background per-
formance.

When selecting the optimal model iteration, the algorithm and its respective hyperparameters are
already set. When conducting a model-agnostic search in an entirely new region of phase space, how-
ever, these parameters are unknown and need to be found using a dedicated optimization procedure.
In an actual search, where no truth level information is available, a model-agnostic metric that has
been shown to correlate with the final signal-vs-background performance must be used for this model
selection. Similarly to the previous study, it is yet unknown whether the typically used metric, namely
the loss on the validation set events, would exhibit such a correlation. To test this, hyperparameter
optimizations were performed for three of the previously investigated classification algorithms: the
HGB, DNN and AdaBoost models. Again, ensembling – this time based on five independent mod-
els – was used to reduce stochastic effects due to model initialization and training/validation sample
selection. Furthermore, the baseline feature set was used with the same amount of signal events as in
the previous study. The optimization was performed using the optuna software package, where the
number of trials was set to 10 000. The hyperparameters that were tuned as well as their respective
ranges for each of the models can be seen in Table A.3, Table A.4 and Table A.5. If an individual
iteration or epoch took longer than ten minutes to train, the trial was pruned and the corresponding
SIC value was set to zero.

The results of this study can be seen in Figure 8.11. Each subfigure corresponds to one particular
classification algorithm. Every point contributing to a bin in the 2D histograms, as well as every point
in the scatter plot corresponds to one specific hyperparameter setting. The correlation between the
maximum SIC value and the minimum validation loss achieved is also noted. When computing this
correlation, the trials that were pruned due to time restrictions were not taken into account. From the
plots it can be observed that, apart from the DNN-based classifier, none of the models show a strong
correlation between validation loss and maximum SIC value. Interestingly, the HGB classifier, which
has been shown to be both robust against noise and to yield good performance, only rarely reaches the
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(a) HGB classifier (b) DNN classifier

(c) AdaBoost classifier

Figure 8.11: 2D histograms and scatter plots for different hyperparameters of the investigated clas-
sifier models. Hyperparameters were set by the default optimization algorithm implemented in the
optuna [220] package. Shown is the average maximum SIC (computed on truth-level information
of the test set) as a function of the minimum validation loss. Each point in the scatter plots as well
as each entry in a 2D bin corresponds to the result of an ensemble of five independently retrained
classifiers using the same hyperparameter settings but different sample realizations for training and
validation sets. The loss value of a perfectly random classifier as well as the correlation between the
average maximum SIC value and the minimum validation loss are indicated for reference.
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previously stated maximum SIC value of around 15, with most parameter settings yielding classifiers
with a SIC around a value of four. This shows that thorough hyperparameter optimization is needed
for these models to ensure a high performance. While the HGB classifier does show a slight negative
correlation between maximum SIC and validation loss, it can be observed that the results have a high
variance. The AdaBoost classifier shows an entirely different behaviour: Its maximum SIC values
are uncorrelated with the validation loss and also the minimum validation loss that is achieved by
these models is just slightly below random at best. In particular, models with worse-than-random
validation loss still achieve state-of-the-art performance.
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Figure 8.12: The same figure as Figure 8.10, now for the AdaBoost algorighm. Again, results are
shown for signal events (upper panel) and background as well as all events (lower panel) separately.

The same plot as Figure 8.10 was repeated for the AdaBoost algorithm. It shows a comparison
of the loss curves for the entire data set, the signal events and the background events of both the
training and validation sets. For the full data set, the training loss starts out close to the random
value and then continuously decreases, while the validation loss starts at a worse-than-random value.
However, differently from the behaviour of the HGB classifier (see Figure 8.10) where the loss of
the validation set is increasing from the first iteration, this kind of overfitting does not occur for the
AdaBoost classifier. Instead, the validation loss continues to converge to the random loss value,
which is the optimal value in a weakly supervised setting, at least for the vast majority of events
which are background.

Therefore, similar to the loss curves of the HGB classifier, the loss curve of the full data set
is dominated by these events. For signal events, the training loss first slightly increases and then
stagnates around a similar loss value while the validation loss first decreases for about 20 iterations
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and then stagnates. The behaviour of the full validation loss curve leads to the worse-than-random
loss results that are shown in the scatterplot in Figure 8.11. However, it can be seen that there is a
visible correlation between validation loss and the maximum SIC value achieved, which could not be
seen as clearly for the HGB model. This means when using AdaBoost, optimal model states can be
selected using the minimum validation loss. For different hyperparameter settings on the other hand,
Figure 8.11 suggests that similar loss values can produce vastly different results, which makes the
validation loss a suboptimal metric for this task.

To summarize, the correlation between the typically used, model-agnostic metric of the minimum
validation loss and the maximum SIC based on truth-level information varies significantly between
algorithms and tasks. For complex algorithms that tend to overfit quickly, the minimum validation
loss produces correlated results for hyperparameter choices, but does not produce consistent results in
optimal iteration selection. For algorithms that are more robust to overfitting, optimal iterations can
be selected reliably based on minimum validation loss, but for hyperparameter optimization results
vary significantly. Thus, further research is needed for finding a model-agnostic metric that produces
consistent results for both iteration and algorithm selection.

8.2 Weak classification in the Latent Space:
Latent Cathode

The work presented in this chapter has been previously published in [223], in collaboration with
Anna Hallin, Gregor Kasieczka, David Shih and Manuel Sommerhalder. The figures and the writ-
ten content closely resemble or match the information found in this article. My contribution to the
publication consists of the design and description of the diagrams depicting the conceptual approach
of the algorithm, general paper writing and proof-reading as well as the assessment and discussion
of key research questions and hypotheses during the development of the method with the mentioned
collaborators.

When conducting model-agnostic searches for new physics, signal extraction using a bump hunt-
ing strategy requires that the employed anomaly detection algorithms do not sculpt the 𝑚𝑗𝑗 spectrum
significantly. For Cathode, no sculpting is visible for different cuts on the output anomaly score, as
was discussed in section 7.1. However, the studies regarding the sculpting were conducted entirely
based on the LHCO R&D data set, using the features 𝐱 = (𝑚𝑗1, Δ𝑚𝑗, 𝜏21,𝑗1, 𝜏21,𝑗2), none of which is
strongly correlated with the respective conditional feature, the dijet invariant mass 𝑚𝑗𝑗. In an actual
search, strongly correlated features will likely exist. This should also be considered in the training,
since it is unknown whether they contain patterns of a new physics signal. Therefore, a study has been
conducted that explores the sculpting of Cathode using features that are highly correlated with 𝑚𝑗𝑗.
As will be discussed below, it was shown that Cathode significantly sculpts the 𝑚𝑗𝑗 distribution, both
within and outside of the SR. Therefore, an improved method was developed to mitigate this problem,
which is referred to as “Latent Cathode”, or LaCathode [223].

8.2.1 The Algorithm

A key feature of this new method is that it actively decorrelates the used input features from the
conditional feature by moving the samples into the latent space of the density estimator and conducts
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Figure 8.13: A flowchart showing the individual steps of the LaCathode methods, which are de-
scribed in further detail in the text.

the weak supervision in this space. To understand this principle better, a flowchart of this new method
is shown in Figure 8.13. From this diagram, the individual steps of the LaCathode method can be
followed. The upper left corner of the flowchart shows the typical situation of a new physics resonance
within a signal region window inside a large bulk of background events, that follow an exponential
distribution. Below, two feature 𝑥0 and 𝑥1 are plotted against each other in the lower SB, the SR and
the upper SB regions, respectively. From the position and orientation in (𝑥0, 𝑥1) space, it can be seen
that these features are highly correlated with 𝑚.

Similar to methods like Anode and Cathode, LaCathode uses a density estimator trained on the
SB region to model the background distribution. This density estimator is implemented as a MAF,
which implements a function 𝑓 (𝐱; 𝑚) mapping from the input space 𝐱 to a latent space 𝐳 using 𝑚 as
a conditional variable. In a MAF, each input feature is mapped to exactly one corresponding latent
space feature. Therefore, the input 𝐱 = (𝑥0, 𝑥1) gets mapped to 𝐳 = (𝑧0, 𝑧1) in latent space. In step I in
the figure, LaCathode first uses the MAF to map the SR data to the latent space and then generates a
sample of the learned background distribution, which, in the latent space, approximately corresponds
to a standard normal distribution. Next, a classifier is trained to distinguish the SR events that have
been mapped to the latent space from the events drawn from a standard normal distribution.

The key feature of LaCathode is that, conducting the weakly supervised classification in latent
space instead of the data space, the learned anomaly score 𝑅(𝐳) is entirely independent of 𝑚. This
is because, while the invertible map that the MAF learns depends conditionally on 𝑚, the final latent
space features are independent of it. Therefore, the learned likelihood ratio becomes:

𝑅(𝐳) = 𝑝data(𝐳)
𝑝bg.(𝐳) (8.1)
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Figure 8.14: Comparison of performance and sculpting of the LaCathode algorithm with Cathode
and the IAD, using the default feature set described in the text. The left panel corresponds to the top
left panel of Figure 6 of the LaCathode paper [223] and shows the SIC curves of the investigated
algorithms, plotted against the background efficiency. The right panel corresponds to the lower panel
of Figure 6 in the original LaCathode paper and shows the normalized 𝑚𝑗𝑗 distributions of the 1 %
most anomalous events for each method as well as the uncut background distribution for reference.
While signal was injected for the performance comparison, the sculpting comparison was done based
on background-only trainings.

After the weak classifier is trained, the entire data of the test set (both in SR and SB regions) is mapped
into latent space. Then, it is evaluated on the classifier and events are selected based on a threshold
cut on 𝑅(𝐳), which is shown in the diagram as step IV. Finally, in step V, using the 𝑚 distribution of
the selected events and a suitable method for signal extraction (e.g. bump hunting), the significance
of a possible excess can be quantified.

8.2.2 Benchmark Performance

Several studies were performed to test the performance of this new method in different scenarios,
again using the LHCO R&D data set as a benchmark. In these studies, the exact same settings as in
the original Cathode paper [150], which are also described in detail in section 7.1, were used. In
particular, the hyperparameter settings of the classifier and MAF models were kept the same. First,
the training was done on the original feature set, 𝐱 = (𝑚𝑗1, Δ𝑚𝑗, 𝜏21,𝑗1, 𝜏21,𝑗2) and the respective
comparison can be seen in in Figure 8.14. The left panel of this figure shows a SIC curve comparison
between Cathode, LaCathode and an IAD. Again, 10 retrainings were conducted to show the me-
dian performance as well as the error band of the inner 68 % of the respective SIC curve distribution.
As was seen previously, the Cathode performance saturates the IAD performance on the original
feature set. The median performance of LaCathode, however, is below that of Cathode, especially
for low background efficiencies. However, the variance of LaCathode is also larger, overlapping
between methods. The reason for the performance decrease when doing the weak classification in
the latent space has yet to be studied in detail. One explanation of this behaviour is that, while corre-
lations between the input features and the invariant mass are not desired, they do contain significant
information about the signal. Considering that the mass distribution of the signal is a narrow reso-
nance shape while the background is described by an exponentially falling distribution, it becomes
clear that this feature would be well suited to discriminate between the two. The decorrelation with
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Figure 8.15: Comparison of performance and sculpting of the LaCathode algorithm with Cathode
and the IAD using the shifted feature set described in the text. The left panel shows the SIC curves
of the investigated algorithms, plotted against the background efficiency. The right panel shows the
normalized 𝑚𝑗𝑗 distributions of the 1 % most anomalous events for each method as well as the uncut
background distribution for reference. While signal was injected for the performance comparison, the
sculpting comparison was done based on background-only trainings.

the invariant mass by LaCathode leads to the loss of this information, resulting in a reduction of
the performance. However, this difference is not significant and only occurs at very low background
efficiencies.

The right panel of Figure 8.14 shows the 𝑚𝑗𝑗 (normalized) distributions of the investigated methods
after selecting the most anomalous 1 % of the test data set in comparison with the distribution of the
uncut background events. In this case, none of the methods show significant sculpting. However,
for Cathode some deviations in the tails can be observed. It should also be noted that an entirely
non-sculpted mass spectrum is not necessary to perform signal extraction. The main requirement is
that the mass spectrum is smooth such that the background parametric function can be fitted. The
most sensitive area is the signal region, where sculpting of the background could possibly lead to a
non-identification or a misidentification of a signal bump.

8.2.3 Behaviour in the Presence of Correlations

In the first study, none of the used input features is highly correlated with 𝑚𝑗𝑗. Therefore, another
study was performed using artificially correlated features. In particular, the same correlations as used
in the Cathode paper were introduced, as described in Equation 7.1. After correlating the features,
the previous comparison study was repeated and the respective results can be seen in Figure 8.15.
As discussed previously, the artificial introduction of a correlation between 𝐱 and 𝑚𝑗𝑗 reduces the
performance of all algorithms, which is also the case in this study. While LaCathode still shows
a significantly higher variance than other methods, its median performance is now similar to that of
Cathode, whereas the IAD has the best performance overall. Considering the right panel of Fig-
ure 8.15, it can be seen that both the IAD and Cathode sculpt the background spectrum significantly.
In fact, the sculpting is to the extent where conducting a smooth fit for signal extraction will be diffi-
cult. LaCathode, however, does not show significant sculpting, yielding a background spectrum that
is similarly smooth as in the original study. This shows the major advantage of this method: By effec-
tively decorrelating the inputs from the conditional variable, the final anomaly score is uncorrelated
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Figure 8.16: Comparison of performance and sculpting of the LaCathode algorithm with Cathode
and the IAD using the original feature set with the angular distance, Δ𝑅 added. The left panel shows
the SIC curves of the investigated algorithms, plotted against the background efficiency. The right
panel shows the normalized 𝑚𝑗𝑗 distributions of the 1 % most anomalous events for each method as
well as the uncut background distribution for reference. While signal was injected for the performance
comparison, the sculpting comparison was done based on background-only trainings.

with the mass and even when applying a rather tight cut on it, a smooth spectrum is retained.
One shortcoming of the previous study is that the features were artificially forced to be correlated

with the dijet invariant mass. Therefore, the sculpting behaviour of LaCathode when including
physics features that are actually correlated with 𝑚𝑗𝑗 still remains to be investigated. This was done in
a separate study, where the angular distance, Δ𝑅, which is strongly correlated with the invariant mass,
was added to the original feature set. Then the algorithms were re-trained on this new feature set and
the previous comparison studies were repeated. The result of this study can be seen in Figure 8.16. The
left panel of this figure again shows a decrease in performance when correlated features are present.
However, compared to the shifted data set, the performance drop is not as significant, in particular for
the IAD and Cathode algorithms. LaCathode, however, sees a similar performance drop, but the
variance of results is not as high as before. The achieved significance improvement is below that of
an IAD and Cathode throughout a large range of background efficiencies. However, considering the
sculpting study in the right panel, it can be seen that both the IAD and Cathode sculpt the background
distribution significantly, while LaCathode produces a smooth invariant mass spectrum. This shows
that there is a trade-off between performance and the non-sculpting of the background. Conducting
the weak classification in latent space leads to an almost entirely smooth spectrum while at the same
time retaining a significant fraction of the original performance. Therefore, LaCathode constitutes a
considerable improvement of weakly supervised methods for resonant anomaly detection, eliminating
the need of selecting non-correlated input features in a model-agnostic search.
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Chapter 9

Conclusion

In this work, the development and application of ML-based techniques for data-driven and largely
model-agnostic searches have been discussed with respect to the detection of hadronic resonances.
The Cathode method was introduced, which combines density estimation to learn an estimate of the
background with weak supervision in a signal region window. On the simulated LHC Olympics R&D
data set, it produced state-of-the-art results and saturated the performance of an idealized anomaly
detector operating at the limit of perfect density estimation and interpolation. Other than weakly
supervised methods such as CWoLa, its performance does not suffer when correlations between its
input features 𝐱 and the mass variable 𝑚 exist, which is achieved by interpolating the background
estimate from the sidebands into the signal region using conditional density estimation.

Cathode was also applied in a first-of-its kind analysis to CMS experimental data of the full Run
2 data-taking era (years 2016 to 2018) at a centre-of-mass energy of √𝑠 = 13 TeV. The target of the
analysis were generic resonances of the form 𝐴 → 𝐵𝐶, where 𝐵 and 𝐶 could be both SM or BSM
particles that decay hadronically. The search was conducted using large-radius jets in the final state to
be able to find anomalies using the jet substructure. Several signal models with different substructure
(2 to 6 prongs) and different mass hypotheses for 𝑚𝐴, 𝑚𝐵 and 𝑚𝐶 have been tested, most of which had
not yet been probed by CMS. Since it is unclear which model-agnostic algorithm is most sensitive
for any anomaly, several state-of-the-art methods were employed at once and their performance and
achieved limits on the production cross section were compared. The demonstration of the different
methods to both set limits on a variety of signal models and scan for generic excesses in large regions
of phase space within a single analysis constitutes a key advantage of data-driven approaches over
model-specific ones.

In the significance scan for generic anomalies at different mass points, neither Cathode nor any
of the other employed methods found evidence for a significant excess and it must be concluded that
no new physics could be found. However, significant improvements with respect to the limits of an
inclusive search were observed for most of the investigated signal models. Cathode in particular
yielded the best limits for the 𝑋 → 𝑌𝑌 ′ → 4𝑞 model at a mass 𝑚𝑋 = 3 TeV and several of the 𝑌 and
𝑌 ′ mass hypotheses, with the highest improvement over an inclusive search of factor 1.9. However,
it did not yield the best results for any of the considered models at 𝑚𝐴 = 5 TeV. Nevertheless, this
first-of-its-kind analysis applying different data-driven methods to search for a large variety of signal
models at once constitutes a strong foundation for future applications at the CMS experiment and
beyond.
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While Cathode has been shown to yield state-of-the-art results, several challenges still remain.
One key problem is that even though the performance of Cathode does not break down when cor-
relations between input features and the mass are present, it creates spurious features in the mass
spectrum, making standard signal extraction techniques such as the “bump hunt” impossible. A new
method was proposed called Latent Cathode or LaCathode, that conducts the weakly supervised
classification task in the latent space of the density estimator instead of the data space. This effectively
decorrelates the input and mass features and it was shown that LaCathode is able to successfully pro-
duce smooth background mass spectra even in the presence of strong correlations, with only a minor
impact in performance compared to Cathode.

Finally, a key problem for both Cathode and other weakly supervised methods is the significant
impact that features which do not carry discriminatory power between signal and background events
(referred to as uninformative features) have on the classification performance. Adding only a few
such features to a weakly supervised task results the performance to drop to almost random levels.
Therefore, informative features would have to be selected to retain optimal performance, which is
not possible in a model-agnostic scenario, where it is unknown which features are informative and
which are not. It was shown that using an ensemble of (histogrammed) gradient boosting classifiers
is significantly more robust to uninformative features compared to deep learning-based approaches,
retaining the majority of the original performance even when a small fraction of features contains
information while the remaining features consist of pure Gaussian noise.

The development of data-driven methods based on density estimation and weak supervision, such
as Cathode and its successful application on CMS experimental data constitute a significant mile-
stone for this approach. Additionally, several remaining problems with weakly supervised have been
successfully overcome using different modifications of the original algorithm. This warrants the use
of an updated version of Cathode on the next iteration of data analysis at the CMS experiment and
beyond using Run 3 data, as well as the application to other resonant final states. However, several
avenues for further research on weakly supervised anomaly detection also exist. Given that Cathode-
based methods saturate the limit of perfect density estimation and interpolation, the overall perfor-
mance in these methods is classifier-bound. Therefore, future research should target improving the
weakly supervised classification task itself, for example by developing model-agnostic methods for
optimal feature selection, including physics knowledge in the classifier architecture and/or training
procedure or improved techniques for signal refinement in the signal-enriched sample. Another in-
teresting direction for future research lies in models that do not require the signal to be localized and
therefore further reduce signal model dependence.
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Appendix A

Hyperparameter Settings for Tree-Based
Classifiers
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APPENDIX A. HYPERPARAMETER SETTINGS FOR TREE-BASED CLASSIFIERS

Hyperparameter description Hyperparameter value

Number of iterations 100

Maximum tree depth 23

Minimum number of samples
per leaf 20

Maximum number of features
to consider per split "log2"

Minimum number of samples
required to split a node 14

Maximum fraction of samples
to use in bootstrapping 0.543

Table A.1: Optimal hyperparameters for the random forest algorithm, acquired using the optuna
software package. Hyperparameters not mentioned were left at the default settings of the Random-
ForestClassifier in scikit-learn.

Hyperparameter description Hyperparameter value

Number of iterations 100

Maximum tree depth unconstrained

Minimum number of samples
per leaf 20

Maximum number of leaf
nodes 31

Learning rate 0.1

Table A.2: Optimal hyperparameters for the AdaBoost algorithm, acquired using the optuna soft-
ware package. Hyperparameters not mentioned were left at the default settings of the AdaBoost-
Classifier in scikit-learn (using DecisionTreeClassifier for the base learners).

Hyperparameter description Scanned values/range

Maximum tree depth None or integer value in (1, 20)

Maximum number of leaves None or integer value in (2, 1000)

Learning rate float value in (0.01, 0.2)

Maximum number of bins
in the histogram integer value in (10, 255)

L2 regularization float value in (0.0, 1.0)

Minimum number of samples
that constitute a leaf integer value in (1, 50)

Table A.3: Hyperparameter ranges scanned for the HGB classifiers in the model selection study.
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Hyperparameter description Scanned values/range

Batch size 2𝑖, {𝑖 ∈ ℕ | 5 ≤ 𝑖 ≤ 12}

Learning rate float value in (10−5, 10−2)

Weight decay float value in (0.0, 10−4)

Number of hidden layers integer value in (1, 10)

Number of nodes per hidden layer 2𝑖, {𝑖 ∈ ℕ | 3 ≤ 𝑖 ≤ 9}

Table A.4: Hyperparameter ranges scanned for the DNN classifiers in the model selection study.

Hyperparameter description Scanned values/range

Maximum tree depth None or integer value in (1, 20)

Minimum number of samples
required for a split integer value in (2, 200)

Minimum number of samples
per leaf integer value in (1, 20)

Maximum of features
considered per split

None (unconstrained), √𝑁𝑓 or log2(𝑁𝑓),
where 𝑁𝑓 is total number of features available

Number of trees integer value in (10, 1500)

Learning rate float value in (10−4, 10−1)

Maximum number of leaves integer value in (2, 1000)

Table A.5: Hyperparameter ranges scanned for the AdaBoost classifiers in the model selection study.
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Appendix B

Data and Simulated Sample Lists for
CMS analysis

Sample name Integrated luminosity [fb−1]
/JetHT/Run2016B-21Feb2020_ver1_UL2016_HIPM-v1/MINIAOD XX
/JetHT/Run2016B-21Feb2020_ver2_UL2016_HIPM-v1/MINIAOD 5.828
/JetHT/Run2016C-21Feb2020_UL2016_HIPM-v1/MINIAOD 2.621
/JetHT/Run2016D-21Feb2020_UL2016_HIPM-v1/MINIAOD 4.286
/JetHT/Run2016E-21Feb2020_UL2016_HIPM-v1/MINIAOD 4.065
/JetHT/Run2016F-21Feb2020_UL2016-v1/MINIAOD 0.418
/JetHT/Run2016F-21Feb2020_UL2016_HIPM-v1/MINIAOD 2.717
/JetHT/Run2016G-21Feb2020_UL2016-v1/MINIAOD 7.653
/JetHT/Run2016H-21Feb2020_UL2016-v1/MINIAOD 8.740

/JetHT/Run2017B-UL2017_MiniAODv2-v1/MINIAOD 4.803
/JetHT/Run2017C-UL2017_MiniAODv2-v1/MINIAOD 9.574
/JetHT/Run2017D-UL2017_MiniAODv2-v1/MINIAOD 4.248
/JetHT/Run2017E-UL2017_MiniAODv2-v1/MINIAOD 9.314
/JetHT/Run2017F-UL2017_MiniAODv2-v1/MINIAOD 13.53

/JetHT/Run2018A-UL2018_MiniAODv2-v1/MINIAOD 14.027
/JetHT/Run2018B-UL2018_MiniAODv2-v1/MINIAOD 7.061
/JetHT/Run2018C-UL2018_MiniAODv2-v1/MINIAOD 6.895
/JetHT/Run2018D-UL2018_MiniAODv2-v1/MINIAOD 31.803

Total integrated luminosity 137.6

Table B.1: Data samples together with the corresponding integrated luminosity.
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APPENDIX B. DATA AND SIMULATED SAMPLE LISTS FOR CMS ANALYSIS
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Appendix C

Signal Shapes used in CMS analysis

Figure C.1: Signal shapes for 𝑊𝐾𝐾 → 𝑊𝑅 → 𝑊𝑊𝑊, 𝑚𝑅 = 170 GeV at 2 (left), 3 (center), and 5 TeV
(right).
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Figure C.2: Signal shapes for 𝑊𝐾𝐾 → 𝑊𝑅 → 𝑊𝑊𝑊, 𝑚𝑅 = 400 GeV at 2 (left), 3 (center), and 5 TeV
(right).

Figure C.3: Signal shapes for 𝑊 ′ → 𝐵′𝑡, 𝑚𝐵′ = 25 GeV at 2 (left), 3 (center), and 5 TeV (right).

Figure C.4: Signal shapes for 𝑊 ′ → 𝐵′𝑡, 𝑚𝐵′ = 80 GeV at 2 (left), 3 (center), and 5 TeV (right).

Figure C.5: Signal shapes for 𝑊 ′ → 𝐵′𝑡, 𝑚𝐵′ = 170 GeV at 2 (left), 3 (center), and 5 TeV (right).
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Figure C.6: Signal shapes for 𝑊 ′ → 𝐵′𝑡, 𝑚𝐵′ = 400 GeV at 2 (left), 3 (center), and 5 TeV (right).

Figure C.7: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 25/25 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.8: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 25/80 GeV at 2 (left), 3 (center), and
5 TeV (right).
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Figure C.9: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 25/170 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.10: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 25/400 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.11: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 80/25 GeV at 2 (left), 3 (center), and
5 TeV (right).
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Figure C.12: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 80/80 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.13: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 80/170 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.14: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 80/400 GeV at 2 (left), 3 (center), and
5 TeV (right).
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Figure C.15: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 170/25 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.16: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 170/80 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.17: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 170/170 GeV at 2 (left), 3 (center), and
5 TeV (right).
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Figure C.18: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 170/400 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.19: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 400/25 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.20: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 400/80 GeV at 2 (left), 3 (center), and
5 TeV (right).
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Figure C.21: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 400/170 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.22: Signal shapes for 𝑋 → 𝑌𝑌 ′ → 4𝑞, 𝑚𝑋/𝑚𝑋′ = 400/400 GeV at 2 (left), 3 (center), and
5 TeV (right).

Figure C.23: Signal shapes for 𝑍 → 𝑇 ′𝑇 ′, 𝑇 ′ → 𝑡𝑍, 𝑚𝑇 ′ = 400 GeV at 2 (left), 3 (center), and 5 TeV
(right).
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Figure C.24: Signal shapes for 𝑌 → 𝐻𝐻 → 4𝑡, 𝑚𝐻 = 400 GeV at 2 (left), 3 (center), and 5 TeV
(right).
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Appendix D

Additional Figures and Tables for
Validation of Cathode(-b)

Process 𝐦A [TeV] 𝐦B [GeV] 𝐧 subjets B 𝐦C [GeV] 𝐧 subjets C
𝐺 → 𝑊𝑊 [2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6] 𝑚𝑊 2 𝑚𝑊 2

𝐺 → 𝑍𝑍 [2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6] 𝑚𝑍 2 𝑚𝑍 2

𝑊 ′ → 𝑊𝑍 [2, 2.5, 3, 3.5, 4, 4.5] 𝑚𝑊 2 𝑚𝑍 2

𝑍′ → 𝑊𝑊 [2, 2.5, 3, 3.5, 4, 4.5] 𝑚𝑊 2 𝑚𝑊 2

𝑏∗ → 𝑡𝑊 [2, 2.5, 3, 3.5, 4, 4.5] 𝑚𝑡 3 𝑚𝑊 2

𝑊𝑘𝑘 → 𝑅𝑊 → 𝑊𝑊𝑊 [2, 2.5, 3, 3.5, 4, 4.5] 𝑅0 = 𝑚𝑅
𝑚𝑊𝑘𝑘

∈ [0.06, 0.08, 0.1, 0.2, 0.3] 4 𝑚𝑊 2

Table D.1: Signal models considered for the control region definition, including the masses of the
resonance and the daughter particles as well as the number of subjets expected in the two large-radius
jets in the final state.
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/WkkToWRadionToWWW_M3500-R0-1_TuneCP5_13TeV-madgraph/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM
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Table D.2: Signal MC used for testing different validation CR definitions, grouped into the same types
of signals with varying masses.
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Figure D.1: Cathode-b p-value scan for the mock MC data set. Shown is the p-value obtained from
the combined signal template and background fit of the Cathode-b-selected events against the dijet
invariant mass, 𝑚𝑗𝑗. The results are shown for the two selection efficiencies of 10 % (left panel) and
1 % (right panel).
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Figure D.2: Background-only fits of the Cathode-b-selected events from the mock MC data set for
each considered SR window. Events were selected based on a selection efficiency of 1 %. The plots
are sorted by the center SR window mass from lowest to highest in a top left to bottom right order.
The lower panel of each plot shows the pull distributions of the fit.
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Figure D.3: Background-only fits of the Cathode-b-selected events from the control region data set
in each considered SR window. Events were selected based on a selection efficiency of 1 %. The plots
are sorted by the centre SR window mass from lowest to highest in a top left to bottom right order.
The lower panel of each plot shows the pull distributions of the fit.

190



2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10
Si

gn
ifi

ca
nc

e 
(

) CMSSimulation, Work in progress

Inclusive fit

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

Si
gn

ifi
ca

nc
e 

(
) CMSSimulation, Work in progress

Inclusive fit

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

Si
gn

ifi
ca

nc
e 

(
) CMSSimulation, Work in progress

Inclusive fit

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

Si
gn

ifi
ca

nc
e 

(
) CMSSimulation, Work in progress

Inclusive fit

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

Si
gn

ifi
ca

nc
e 

(
) CMSSimulation, Work in progress

Inclusive fit

2000 2500 3000 3500 4000 4500 5000
mjj (GeV)

0

2

4

6

8

10

12

14

Si
gn

ifi
ca

nc
e 

(
) CMSSimulation, Work in progress

Inclusive fit

Figure D.4: Significances obtained from Cathode-b when injecting an increasing amount of 𝑋 →
𝑌𝑌 ′ signal in the MC mock data set, with 𝑚𝑋 = 3 TeV, 𝑚𝑌 = 170 GeV, and 𝑚𝑌 ′ = 80 GeV. The
injected cross sections are starting at 5 fb in steps of 5 fb and the plots are ordered by increasing
injections from top left to bottom right. Black dots represent the significance obtained from the
combined signal shape and parametric background fits on Cathode-selected events, using a selection
efficiency in the signal region of 1 %. The dashed green lines represent the significance achieved
using an “inclusive” fit, where the combined fit is applied to the resonance mass of 3 TeV without any
selection.
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Figure D.5: Invariant dijet mass distribution of Cathode-selected events and the combined signal
plus background shape fit, using an increasing amount of injected signal events. The plots are based
on the mock MC data set with events of the sigmal model 𝑋 → 𝑌𝑌 ′, 𝑚𝑋 = 3 TeV, 𝑚𝑌 = 170 GeV,
𝑚𝑌 ′ = 80 GeV injected. The plots are ordered by increasing injected cross section in a top left to
bottom right manner, starting from 5 fb in steps of 5 fb. The selection efficiency used was 1 %.
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Figure D.6: Invariant dijet mass distribution of Cathode-b-selected events and the combined signal
plus background shape fit, using an increasing amount of injected signal events. The plots are based
on the mock MC data set with events of the sigmal model 𝑋 → 𝑌𝑌 ′, 𝑚𝑋 = 3 TeV, 𝑚𝑌 = 170 GeV,
𝑚𝑌 ′ = 80 GeV injected. The plots are ordered by increasing injected cross section in a top left to
bottom right manner, starting from 5 fb in steps of 5 fb. The selection efficiency used was 1 %.
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Appendix E

Additional Cathode(-b) results
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Figure E.1: The background only fit in every signal region of the Cathode search. The plots for the
signal region bins are ordered by the mass of their centre value in a top left to bottom right manner.The
lower panel of each plot shows the pull distribution of the fit in each invariant mass bin.

195
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Figure E.2: The background only fit in every signal region of the Cathode-b search. The plots for the
signal region bins are ordered by the mass of their centre value in a top left to bottom right manner.The
lower panel of each plot shows the pull distribution of the fit in each invariant mass bin.
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Signal Model
(𝐦𝐀 = 𝟑 TeV) 𝐦𝐁/𝐦𝐂 (GeV)

Exp. (Obs.)
Limit (fb)
Cathode

Improvement
w.r.t Inclusive
Cathode

Exp. (Obs.)
Limit (fb)
Cathode-b

Improvement
w.r.t Inclusive
Cathode-b

𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/25 68.9 (753.5) 0.3 95.8 (167.9) 0.2
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/80 50.0 (95.2) 0.4 85.0 (128.3) 0.3
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/170 60.1 (105.5) 0.4 74.3 (113.1) 0.3
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/400 60.0 (92.0) 0.4 75.2 (112.6) 0.3

𝑋 → 𝑌𝑌 ′ 25/25 8.0 (9.9) 0.9 17.0 (27.3) 0.4
𝑋 → 𝑌𝑌 ′ 25/80 7.6 (13.2) 0.9 16.0 (18.0) 0.5
𝑋 → 𝑌𝑌 ′ 25/170 10.3 (18.4) 0.7 16.9 (22.7) 0.4
𝑋 → 𝑌𝑌 ′ 25/400 18.1 (22.4) 0.4 21.6 (31.1) 0.4
𝑋 → 𝑌𝑌 ′ 80/80 4.2 (8.0) 1.6 8.5 (12.5) 0.8
𝑋 → 𝑌𝑌 ′ 80/170 5.7 (11.4) 1.2 9.1 (13.9) 0.8
𝑋 → 𝑌𝑌 ′ 80/400 6.0 (7.3) 1.2 9.6 (15.6) 0.8
𝑋 → 𝑌𝑌 ′ 170/170 3.7 (6.8) 1.9 5.4 (7.7) 1.3
𝑋 → 𝑌𝑌 ′ 170/400 5.7 (7.7) 1.4 7.1 (11.5) 1.1
𝑋 → 𝑌𝑌 ′ 400/400 5.4 (6.2) 1.7 5.5 (7.5) 1.6

𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 25 106.8 (295.8) 0.4 69.0 (81.1) 0.6
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 80 110.6 (280.2) 0.4 64.9 (79.7) 0.6
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 170 65.7 (76.6) 0.5 34.8 (45.9) 0.9
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 400 50.3 (123.8) 0.6 33.9 (43.3) 0.9

𝑊𝑘𝑘 → 𝑅𝑊 → 3𝑊 170 37.0 (55.0) 1.1 66.0 (119.6) 0.6
𝑊𝑘𝑘 → 𝑅𝑊 → 3𝑊 400 33.3 (47.0) 1.2 55.0 (93.3) 0.7

𝑌 → 𝐻𝐻 → 4𝑡 400 27.0 (75.5) 1.0 17.8 (17.8) 1.6

Table E.1: Expected and observed 95 % CL upper limits for different signal models at a resonance
mass of 3 TeV on the respective cross section. Presented are only the results from Cathode and
Cathode-b only. For reference, the improvement related to the expected limit of an inclusive search
is also shown.
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Signal Model
(𝐦𝐀 = 𝟓 TeV) 𝐦𝐁/𝐦𝐂 (GeV)

Exp. (Obs.)
Limit (fb)
Cathode

Improvement
w.r.t Inclusive
Cathode

Exp. (Obs.)
Limit (fb)
Cathode-b

Improvement
w.r.t Inclusive
Cathode-b

𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/25 21.5 (22.6) 0.1 24.1 (24.7) 0.1
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/80 16.0 (17.0) 0.2 22.0 (22.7) 0.1
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/170 7.8 (8.1) 0.4 14.2 (14.6) 0.2
𝑄∗ → 𝑞𝑊 ′ 𝑚𝑞/400 5.7 (5.7) 0.5 7.1 (7.4) 0.4

𝑋 → 𝑌𝑌 ′ 25/25 4.7 (4.5) 0.2 4.7 (4.6) 0.2
𝑋 → 𝑌𝑌 ′ 25/80 4.8 (4.5) 0.2 5.6 (5.5) 0.2
𝑋 → 𝑌𝑌 ′ 25/170 2.0 (1.9) 0.5 4.6 (4.5) 0.2
𝑋 → 𝑌𝑌 ′ 25/400 1.1 (1.0) 0.8 1.7 (1.7) 0.5
𝑋 → 𝑌𝑌 ′ 80/80 1.8 (1.7) 0.5 2.6 (2.6) 0.4
𝑋 → 𝑌𝑌 ′ 80/170 1.5 (1.4) 0.6 2.4 (2.4) 0.4
𝑋 → 𝑌𝑌 ′ 80/400 1.8 (1.7) 0.5 2.4 (2.3) 0.4
𝑋 → 𝑌𝑌 ′ 170/170 0.7 (0.7) 1.2 1.3 (1.3) 0.7
𝑋 → 𝑌𝑌 ′ 170/400 0.9 (0.8) 1.1 1.7 (1.6) 0.6
𝑋 → 𝑌𝑌 ′ 400/400 0.5 (0.4) 2.1 0.9 (0.9) 1.1

𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 25 23.6 (17.4) 0.3 9.2 (13.6) 0.7
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 80 19.5 (14.4) 0.3 8.8 (12.4) 0.7
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 170 10.6 (7.7) 0.5 6.9 (9.3) 0.8
𝑊 ′ → 𝐵′𝑡 → 𝑏𝑍𝑡 400 10.8 (7.9) 0.5 5.4 (7.3) 1.0

𝑊𝑘𝑘 → 𝑅𝑊 → 3𝑊 170 18.1 (16.9) 0.3 23.9 (28.3) 0.3
𝑊𝑘𝑘 → 𝑅𝑊 → 3𝑊 400 58.5 (53.0) 0.1 13.0 (13.0) 0.4

𝑌 → 𝐻𝐻 → 4𝑡 400 3.5 (3.0) 1.2 1.9 (3.4) 2.2

Table E.2: Expected and observed 95 % CL upper limits for different signal models at a resonance
mass of 5 TeV on the respective cross section. Presented are only the results from Cathode and
Cathode-b only. For reference, the improvement related to the expected limit of an inclusive search
is also shown.
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