
an der Universität Hamburg eingereichte

kumulative Dissertation

Domain Operations for Multimodal

Autonomous Systems

zur Erlangung des Doktorgrades

der Naturwissenschaften (Dr. rer. nat.)

dem Fachbereich Informatik

der Fakultät Mathematik, Informatik und Naturwissenschaften

der Universität Hamburg

vorgelegt von

Bernd Kast

2022

Day of oral defense: 12.06.2023

The following evaluators recommend the admission of the dissertation:

Prof. Dr. Jianwei Zhang

Department of Informatics

Universität Hamburg, Germany

Prof. Dr.-Ing. Matthias Riebisch

Department of Informatics

Universität Hamburg, Germany

Dr. Sebastian Albrecht

Siemens AG

Munich, Germany

Prof. Dr. Janick Edinger

Department of Informatics

Universität Hamburg, Germany

Prof. Dr. Tilo Böhmann

Department of Informatics

Universität Hamburg, Germany

Contents i

Contents

I Hierarchical Approach to Domain Operations for Multimodal Autonomous

Systems 15

1 Introduction 17

1.1 Motivation and Objectives . 17

1.2 Research Questions . 19

1.3 Contributions and Outline . 22

2 Set-Based Hierarchical Modeling Approach 25

2.1 Declarative Knowledge . 25

2.1.1 Motivation . 25

2.1.2 Theoretic Grounding . 27

2.2 Procedural Knowledge . 30

2.2.1 Motivation and Requirements . 31

2.2.2 Theoretic Grounding . 33

3 Hierarchical Planner 41

3.1 Motivation . 41

3.2 Planning Algorithm . 43

3.2.1 Hierarchical Factorization Algorithm 43

3.2.2 Planning Algorithm . 51

3.3 Domains, Explainability and Introspection . 56

4 Domain Optimizations 65

4.1 Motivation . 65

4.2 Alignment of the Domain to the Task . 68

4.3 Reasoning for Data Fusion . 72

4.4 Model Harvesting from Unstructured Sources 78

4.5 Automatic Refinement and Abstraction of Operators 79

4.6 Detection of Model Inconsistencies . 80

4.7 Data Driven Optimizations . 81

4.8 Postprocessing for Parallel Execution . 83

5 Conclusions 87

i

ii Contents

II Cumulative Part 91

6 Bridging the Gap Between Semantics and

Control for Industry 4.0 and Autonomous Production 93

7 A hierarchical planner based on set-theoretic models:

Towards automating the automation for autonomous systems 103

8 Domain Optimization for Hierarchical Planning Based on Set-Theory 117

9 Hierarchical Planner with Composable Action Models for Asynchronous Paral-

lelization of Tasks and Motions 127

10 Automatic Domain Extension and Optimization based on Set-Theory 135

11 Configuration of Perception Systems via Planning Over Factor Graphs 163

12 Automatic Configuration of Perception Pipelines 173

13 Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning 183

Bibliography 193

Contents 1

Abstract

The robotics market has increasingly gained momentum in recent years. Growing numbers of

robots are leading to ever-lower hardware prices, which enable economical automation in addi-

tional fields of application. A limiting factor of today’s automation systems is the setup time,

integration, and programming costs, including developing and adapting control sequences to the

respective task. In the past, industrial robots only relied on very few sensors, reducing the com-

plexity and probability of failure and facilitating the implementation of control themes. However,

due to their lack of self-adaptability, specialists must manually adjust those sensorless systems

to new conditions each time the product or robotic cell changes. These automated systems are

thus only economically viable compared to manual processes if high production volumes are tar-

geted. Advances in lightweight robots, combined with increased use of force sensor technology,

make new programming methods possible, reducing the time and cost for setup. For example,

the complex calibration of poses can be performed by manually guiding the robot to the desired

position instead of numerically specifying the positions. As a result, even trained employees who

are not experts in robotics can adapt the system to the product as long as only minor changes are

necessary. This ease of use shifted the limit for economical automation to a certain degree, but

manual programming is still required for each product variant that should be manufactured. Thus,

a paradigm change from programming to planning is necessary for more far-reaching improve-

ments, allowing a batch size of one. The scientific community provides algorithms for flexible

automation, which derives the required actions based on descriptions of the environment, ma-

chinery, and the desired goal without explicit programming. In contrast to automation, these

autonomous systems can handle new tasks flexibly and are more robust against environmental

changes due to the use of sensory information. Therefore, unlike classical approaches, which use

expensive, specialized hardware and devices to reduce positioning uncertainty, these systems can

handle unexpected events by utilizing cheap multimodal sensors, such as 2D and 3D cameras or

the force sensors inherent to cooperative robots. Thus, the focus is on the software for autonomous

decision-making, which is algorithmically more complex than predefined, programmed processes

and requires additional modules for perception, data fusion, sensitive interactions, and motion

generation. Different research lines deal with sub-problems of such an autonomous system and

have already delivered several sophisticated algorithms that each come with their strengths and

weaknesses, requirements, and parameterizations. So far, the core of robotics, integrating suitable

components into a functioning system, has yet to be formalized and automated, especially if the

system involves multiple sensory modes or modes of action.

In this dissertation, we propose a formal model based on set theory to describe all relevant com-

ponents of autonomous systems. While the approach is primarily discussed based on industrially

2 Contents

relevant use cases, the methods can also be applied to arbitrary domains, such as households or

agriculture. Our model combines declarative knowledge, which describes information and physi-

cal objects, and procedural knowledge, which deals with actions and modifications of declarative

knowledge. Only with this combination, and based on the formal foundation, can we formulate

specialized operations in these fields that autonomize robotics. These operations also include

planning algorithms that perform actions in simulation or the real world and help us find a path to

the specified goal. Our newly developed algorithms bring special features like compactness, loop

detection, and completeness detection. Furthermore, these operators can also include approaches

to calculate a hierarchical ordering within the model, which helps to factorize the specified plan-

ning task and structure the search space during planning. Combined, all those properties allow

us to automatically compute a recursive decomposition of the planning problem, which is cru-

cial to managing large, real-world problems that cover discrete and continuous properties. Since

our primary goal is to reduce cost by broadly applying flexible, autonomous systems, we need a

systematic approach to reuse components from different sources. Therefore, we have developed

algorithms that detect and correct common errors in domains composed from multiple sources. By

that, our automatic domain optimization algorithms allow for multimodal systems, which combine

perception and sensor fusion steps of various modes with multimodal execution processes that

include multiple tools and respective tool changes. In addition, our system is model-driven at its

core, enabling easy engineering and debugging. For example, we can trace the processes involved,

and due to the recursive factorization, we can help isolate and pinpoint errors quickly, facilitating

troubleshooting. The automatic extension of formalized knowledge provides additional assistance

to the engineer. Besides, we present operations that analyze and process existing information

from known systems to extract additional knowledge for our planning algorithms, which includes

harvesting non-formalized sources, such as program code or documentation, to generate usable,

formalized models. The harvesting process involves data-driven approaches, which enable us to

extract and learn models from recorded data. We can easily integrate these techniques, which have

gained momentum in recent years, due to our set-based foundation, that shares principles with

data-driven models. In both cases, instances or examples describe a more abstract symbol or ob-

ject. The model-driven approach eases processing not only for engineers but also for algorithms.

Parallel execution is an essential requirement for many industries that involve multiple machines

for a single task. Since we aim at a general formalization of any industrial task, we have developed

a novel approach to adapt the planning task, which is typically tailored to sequential processes, so

that it can be combined with parallel execution and achieve optimal results.

Contents 3

Zusammenfassung

Der Robotikmarkt hat in den letzten Jahren zunehmend an Dynamik gewonnen. Die wachsende

Zahl an Robotern führt zu immer niedrigeren Hardwarepreisen, die eine wirtschaftliche Automa-

tisierung von neuen Aufgaben ermöglicht. Ein limitierender Faktor heutiger Automatisierungssy-

steme sind die Rüst-, Integrations- und Programmierkosten, welche die Entwicklung und Anpas-

sung der Steuerungsabläufe an die jeweilige Aufgabe beinhalten. In der Vergangenheit wurden bei

Industrierobotern kaum Sensoren wie Kameras, Kraft- oder Momentensensoren verwendet. Auf

der einen Seite verringert dies die Komplexität und Ausfallwahrscheinlichkeit und erleichtert die

Implementierung von Algorithmen. Auf der anderen Seite müssen Spezialisten das System jedes

Mal, wenn sich das Produkt oder die Roboterzelle ändert, an neue Bedingungen anpassen. Diese

zeitaufwendige und dadurch teure Aufgabe führt zu einer hohen minimalen Stückzahl, ab der die

automatisierte Anlage im Vergleich zum manuellen Prozess erstmals wirtschaftlich rentabel ist.

Fortschritte bei Leichtbaurobotern, kombiniert mit vermehrter Anwendung von Kraftsensorik, er-

möglichen neue Programmierprozesse, die den Einrichtungsaufwand reduzieren. Die aufwändige

Kalibrierung von Posen kann zum Beispiel durch manuelles Führen des Roboters an die gewünsch-

te Position durchgeführt werden. Dadurch können auch geschulte Mitarbeiter, die keine Experten

der Robotik sind, die Anlage zumindest bei geringfügigen Änderungen an das Produkt anpassen.

Auf diese Weise können mehr Prozesse mit kürzerer Amortisationszeit wirtschaftlich automati-

siert werden. Für weiterreichende Verbesserungen, die auch eine Losgröße von 1 zulassen, ist

jedoch ein Pradigmenwechsel von der Programmierung zur Planung nötig. Die wissenschaftliche

Gemeinschaft stellt Algorithmen für eine flexible Automatisierung zur Verfügung, die sich auf

Sensordaten stützt und keine explizite Programmierung erfordert. Stattdessen wird nur das Ziel

vorgegeben und die Planungsalgorithmen berechnen eine zielführende Handlungssequenz. Diese

autonomen Systeme können im Gegensatz zur Automatisierung sehr flexibel mit neuen Aufga-

ben umgehen und sind robuster gegenüber Veränderungen in ihrer Umgebung. Daher kann auf

teure, spezialisierte Hardware und Vorrichtungen verzichtet werden, die bei der klassischen Her-

angehensweise notwendig sind, um die Positionierungsunsicherheit zu reduzieren. Nur mit diesen

teuren Speziallösungen sind unerwartete Ereignisse, die zu einem Ausfall führen würden, ohne

weitreichenden Einsatz von Sensorik und Planung vermeidbar. Die autonome Entscheidungsfin-

dung ist jedoch algorithmisch komplexer gegenüber vorgegebenen, programmierten Abläufen und

erfordert zusätzliche Module für Wahrnehmung, Datenfusion, sensitive Interaktionen und Bewe-

gungserzeugung. Verschiedene Forschungsstränge befassen sich mit Teilproblemen und brachten

mehrere, ausgefeilte Algorithmen hervor, die ihre individuellen Stärken, Anforderungen, Parame-

trisierungen und Nachteile haben. Bisher war der Kern der Robotik, die Integration geeigneter

Komponenten zu einem funktionierenden System, jedoch nicht formalisiert und automatisiert.

4 Contents

In dieser Dissertation wird ein formal fundiertes, auf der Mengenlehre basierendes Modell zur

Beschreibung aller relevanten Komponenten autonomer Systeme vorgestellt. Während der Ansatz

in erster Linie anhand industriell relevanter Anwendungsfälle diskutiert wird, kann er mit belie-

bigen Domänen umgehen und die Methoden auch zum Beispiel im Haushalt oder der Landwirt-

schaft anwenden. Das vorgestellte Modell vereint sowohl deklaratives Wissen, das Informationen

und physikalische Objekte beschreibt, als auch prozedurales Wissen, bei dem es um Aktionen und

Modifikationen des deklarativen Wissens geht. Nur mit dieser Kombination und aufgrund der for-

malen Fundierung können spezialisierte Operationen auf diesen Gebieten formuliert werden, die

die Robotik autonomisieren. Diese Operationen umfassen zum einen Planungsalgorithmen, die

Aktionen in der Simulation oder in der realen Welt ausführen, um einen Weg zum spezifizierten

Ziel zu finden. Die in dieser Arbeit neu entwickelten Algorithmen bringen spezielle Eigenschaften

wie Kompaktheit, Schleifen- und Vollständigkeitserkennung mit. Zum anderen können diese Ope-

ratoren auch Ansätze zur Berechnung einer Ordnung innerhalb des Modells umfassen, die helfen

die spezifizierte Planungsaufgabe zu faktorisieren. Dies ermöglicht die automatische Berechnung

einer rekursiven Zerteilung des Planungsproblems, das den Schlüssel zur Behandlung großer, rea-

ler Probleme darstellt, die sowohl diskrete als auch kontinuierliche Eigenschaften abdecken. Da

das Hauptziel die Kostenreduzierung durch eine breite Anwendung flexibler, autonomer Systeme

ist, wird ein systematischer Ansatz zur Wiederverwendung von Komponenten aus verschiedenen

Quellen benötigt. Daher wurden in dieser Arbeit Algorithmen entwickelt, die häufige Fehler in sol-

chen zusammengesetzten Domänen erkennen und korrigieren können. Hiermit werden auch die

komplexeren Algorithmen und Handlungsabläufe multimodaler Systeme ermöglicht, bei denen

die Stärken unterschiedlicher Sensorentypen, deren Datenfusion zu einem gemeinsamen Weltmo-

dell, sowie die mutlimodale Ausführung durch verschiedenes Werkzeug oder Greifern und ihrem

Zusammenspiel zu tragen kommen. Zudem ist dieses System im Kern modellgetrieben und die

Abläufe damit nachvollziehbar, wodurch die Fehlersuche erleichtert wird. Erleichterned kommt

noch hinzu, dass mit der rekursiven Faktorisierung Fehler leicht auf ein Teilsystem eingegrenzt

werden können.

Eine weitere Hilfestellung für den Ingenieur ergibt sich durch die automatische Erweiterung

des formalisierten Wissens. Es werden Operationen vorgestellt, die vorhandene Informationen aus

bestehenden Systemen analysieren und aufbereiten, um zusätzliches Wissen für die Planungsalgo-

rithmen dieser Arbeit zu extrahieren. Dazu gehört das Sammeln aus nicht-formalisierter Quellen,

wie Programmcode oder Dokumentation, um brauchbare, formalisierte Modelle zu generieren. Zu-

sätzlich damit verbunden sind auch datengetriebene Ansätze, die es ermöglichen, aus aufgezeich-

neten Daten Modelle zu extrahieren und zu lernen. Diese in letzten Jahren an Fahrt aufnehmenden

Techniken können aufgrund der mengenbasierten Grundlage, die auch als datengetriebenes Mo-

dell betrachtet werden kann, leicht integriert werden. Für viele industrielle Aufgaben, bei deren

Bearbeitung meist mehrere Maschinen beteiligt sind, ist zudem eine parallele Ausführung eine

Grundvoraussetzung. Da in dieser Arbeit eine allgemeine Formalisierung beliebiger industrieller

Aufgaben angestrebt wird, wurde ein neuartiger systematischer Ansatz entwickelt, um Planung,

die auf sequenzielle Prozesse ausgelegt ist, mit paralleler Ausführung zu kombinieren.

Contents 5

Acknowledgements

I want to express my gratitude and appreciation to all who have played a significant role in com-

pleting this dissertation.

My sincere thanks go to my supervisors, Prof. Dr. Jianwei Zhang and Dr. Georg von Wichert.

Your support and provision of resources have been instrumental in enabling me to conduct this re-

search. Your invaluable advice, insights into different conferences, and connections with partners

and startups have enriched my understanding and opened doors to new opportunities.

I am also profoundly grateful to my advisor, Dr. Sebastian Albrecht, for his exceptional guid-

ance, motivation, and insightful discussions throughout the entire research process. Your expertise

and dedication have greatly influenced the quality and direction of this work, and I am truly fortu-

nate to have had you as my advisor.

Sincere thanks go to Dr. Wendelin Feiten for his extraordinary vision, inspiration, discussions,

and out-of-the-box thinking that have greatly enriched my research journey.

I would like to acknowledge colleagues of my research group whose presence has made the

journey of pursuing this degree all the more fulfilling. The exchange of ideas, discussions, and

support within our group have been invaluable, and I am grateful for the intellectual stimulation

and encouragement that each of you provided.

I am sincerely grateful for the invaluable contributions of my fellow Ph.D. candidates, Philipp,

Florian, and Vincent, with whom I collaborated on creating research demonstrators, attending

fairs, and sharing memorable moments playing table soccer, making our journey even more en-

joyable and fostering a strong bond of friendship.

A heartfelt appreciation is extended to the Siemens AG for the exceptional work environment,

abundant resources, and access to state-of-the-art robotic laboratories, which have played a vital

role in the success of this research.

Lastly, I extend my deepest gratitude to my family, especially my girlfriend Stephanie. Your

unwavering support, understanding, and love have been my pillar of strength throughout this chal-

lenging journey. Your constant encouragement and belief in me have fueled my determination to

overcome obstacles and pursue excellence.

To all those mentioned and the countless others who have contributed to my academic and

personal development, I am indebted to you. Your support, encouragement, and belief in my

abilities have been essential to completing this dissertation.

6 Contents

Contents 7

List of Publications

• A hierarchical planner based on set-theoretic models: Towards automating the au-

tomation for autonomous systems

B. Kast, V. Dietrich, S. Albrecht, W. Feiten, and J. Zhang

2019 International Conference on Informatics in Control, Automation, and Robotics

© SciTePress 2019

• Bridging the Gap Between Semantics and Control for Industry 4.0 and Autonomous

Production

B. Kast, S. Albrecht, W. Feiten, and J. Zhang

2019 IEEE/RSJ International Conference on Automation Science and Engineering

© IEEE 2019

• Der digitale Zwilling in der autonomen Robotik

B. Kast, S. Albrecht, V. Dietrich, F. Wirnshofer, W. Feiten, and G. von Wichert

atp magazin

© Vulkan Verlag 2019

• Domain Optimization for Hierarchical Planning Based on Set-Theory

B. Kast, V. Dietrich, S. Albrecht, W. Feiten, and J. Zhang

2020 International Conference on Informatics in Control, Automation, and Robotics

© SciTePress 2020

• Hierarchical Planner with Composable Action Models for Asynchronous Paralleliza-

tion of Tasks and Motions

B. Kast, P. S. Schmitt, S. Albrecht, W. Feiten, and J. Zhang

2020 IEEE International Conference on Robotic Computing

© IEEE 2020

• Automatic Domain Extension and Optimization based on Set-Theory

B. Kast, V. Dietrich, S. Albrecht, G. von Wichert, W. Feiten, and J. Zhang

Lecture Notes in Electrical Engineering

© Springer 2020

8 Contents

• Configuration of Perception Systems via Planning Over Factor Graphs

V. Dietrich, B. Kast, P. S. Schmitt, S. Albrecht, M. Fiegert, W. Feiten, and M. Beetz

2018 International Conference on Robotics and Automation

© IEEE 2018

• Automatic Configuration of the Structure and Parameterization of Perception Pipelines

V. Dietrich, B. Kast, M. Fiegert, S. Albrecht, and M. Beetz

2019 IEEE/RSJ International Conference on Advanced Robotics

© IEEE 2019

• Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning

V. Dietrich, B. Kast, S. Albrecht, and M. Beetz

2020 International Conference on Robotics in Alpe-Adria-Danube Region

© Springer 2020

• RTFM: Towards Understanding Source Code using Natural Language Processing

M. Galanis, V. Dietrich, B. Kast, and M. Fiegert

2020 International Conference on Informatics in Control, Automation, and Robotics

© SciTePress 2020

List of Figures 9

List of Figures

1.1 Our approach can handle various domains, ranging from planning for complete

plants over assembly planning to cell layout optimization [1]. 23

2.1 The differently colored areas depict the base BΓ (yellow rectangle) and concepts

that have different intersections depending on their properties. 28

2.2 For autonomous systems, there are three dimensions to consider. Idealized ap-

proaches are covered by planning and control, while sophisticated and possibly

non-deterministic simulations blend with real-world execution. Similarly, control

behaves like planning once more and more alternative scenarios are considered for

simulated future points in time. 31

2.3 Graph structure of an abstract pick operator (left) and a more detailed version

(right) that has additional outputs to handle exceptions, as well as more detailed

inputs and outputs. 34

2.4 The high-level operator may either be refined by a single operator or a set of oper-

ators that can form a network. In either case, the leaf nodes must be more detailed

and have similar instances to the outputs of the coarse operator. Additionally, root

nodes should be in the more detailed level for each input of the abstract operator [2]. 39

3.1 The left robot approaches the box to grasp it. In parallel, the other robot grasps

the screwdriver. During execution, both entities are handled in the same spatial

proximity and can influence each other, while other robots in the factory are not

considered. 44

9

10 List of Figures

3.2 Depiction of the hierarchical planning scheme. The spheres visualize different

planning states, and the edges depict temporal relations for all non-vertical edges.

The vertical edges are refinements to that state. The differently colored horizontal

chains are successful plans on that level of abstraction. The topmost chain is

the most abstract solution, successively refined by the rows below it. The white

spheres are visited states that did not contribute to the solution, and the yellow

spheres are lately added states. 47

3.3 Operator hierarchy within a domain. DOIT is the placeholder operator to config-

ure the properties of the most abstract planning task. Successors of operators are

available in the subdomain that refines this operator. Leaf nodes are operators used

in the most refined domain, which executes the task in the real world. Operators

can be used in multiple subdomains. The number of refinements is not the same

for all operators in a domain such that no strictly hierarchical levels emerge. Those

levels only emerge during planning based on the applied operations. The coloring

is purely user-defined. 48

3.4 The upper, more abstract level defines the intermediate goals for the more re-

fined level, which is depicted by matching colors. The red pair is the goal and

the instance fulfilling this goal for the first step. The second step has two goals

and respective goal instances. There, the refined level acts on the goal instance

with additional detail instead of the instances of the coarse level and, therefore,

forwards the detail calculated in that level. Further discussion can be found in

chapter 7. 49

3.5 This illustration of [2] distinguishes different hierarchical levels by their color.

No plan was found in the orange subdomain (hence the large number of planning

states visited). Therefore, a new rough plan was searched in the black domain,

which led to the new refinements of the green and dark blue nodes. 49

3.6 Each piece of information of an instance is depicted by a fragment with a color

specific for its type in the rectangles. The more fractured instances hold more

detail, which is reduced in this abstract domain as soon as the oval operators act

on them. 51

3.7 The right planning state is a successor of the left planning state. The instances

with green frames are available instances; the yellow framed instance is the goal,

and the nodes marked in gray are the operator and instances touched in the last

step that calculated the current state. We can see that the newly applied operator

consumed instances that are no longer available to calculate the new instances. . . 52

List of Figures 11

3.8 Factories with multiple logistics and assembly robots require coordination of dis-

crete and continuous actions, which are partly independent and thus factorizable.

Therefore, this is a good field of application for our hierarchical planning approach. 53

3.9 This excerpt of the hierarchical planning state shows the abstract plan in the top

row. Our planner is currently redefining the first step of this plan. However, the

refined layer has no solution to this planning task. Therefore, we can observe the

characteristic structure with multiple diamonds, each with its dead end. 54

3.10 Sada is an EU-funded project for which we applied the ideas of the set-based

approach in the field of perception [3]. 56

3.11 This architecture of [1] allows our planner to handle domains with uncertainty to

solve cell and perception configuration problems. Our model holds concepts about

sensors and operators that implement perception and fusion algorithms. The goal

state is represented by a maximal allowed variance. Our planner finds a sequence

of data acquisition, extraction, and fusion algorithms to reach this goal. 57

3.12 This calibration, presented in [4], calibrates abstraction layers for a given task at

hand such that our planner can rely on efficient and meaningful factorizations. . . 58

3.13 Even for a task with only two discrete steps, state-of-the-art planners tend to visit

thousands of nodes, which prevents debugging and results in poor scalability. . . 59

3.14 With abstracted information, a more compact representation for interaction be-

tween humans and machines is available, which not only helps during debugging

but also for cooperative or collaborative tasks. We can present the current progress,

task, and relevant objects to a user, who is then prepared for the next actions of the

autonomous system. 60

3.15 With our hierarchical approach, we can localize potential errors easily. For each

required backtracking, we dump the planning state. We can then analyze the sub-

task that was not refinable (top picture). In this sub-task, only the leaf nodes of

the diamonds are of interest (bottom left picture). We can check which operations

have already been applied, check the desired goals, and dump available instances

to call operators that we expect to work but failed (bottom right picture). This

process is supported by a graphical tool, which eases navigation, introspection,

and debugging. 61

12 List of Figures

3.16 Our planning algorithm provides introspection capabilities to localize errors. To

further investigate problems, we can replace hard-to-debug solvers, such as sampling-

based planners, with algorithms that provide feedback even in case of failures. In

this sequence of pictures, we can see an error case for a constraint-based motion

generation. The robot tries to grasp the screwdriver but fails due to a poorly chosen

start configuration. With this feedback, an engineer can adapt the planning task so

that solutions exist. 62

4.1 For mobile robots, several components are integrated into an overall system, such

as the mobile platform, lasers, manipulators, cameras, and grippers. The same

applies to the software for localization and mapping or manipulation. 66

4.2 Different experts describe the same situation either in an object-centric manner or

with a plant-centric view. In the left picture, the box is the focus of attention, and

the gripper and robot are the only side characters. This perspective is suitable to

describe abstract tasks. On the right side, the robot is in the center of attention and

manipulates an object, which happens to be our box [5]. This view is appropriate

for low-level task and motion planning and component development. 69

4.3 The solutions for the original and optimized domain for the assembly of the box

and fixture with four screws start with the same initial steps (first row). After the

box is localized and picked, and the lid is refined, we conduct the assembly, re-

localize, and pick up the assembled objects. The difference starts after the first

screw is picked up and inserted into the box-lid assembly. The original domain

has to place the screwdriver to hand over the assembly, as the screws would be

facing down otherwise, and place it on the table to reach the intermediate goal.

In the optimized solution, we can pick up the next screws right away. Therefore,

we can skip the additional handover and pick-up of the screwdriver. Additionally

to these described steps, prior to any pick, screw, and assembly, the parts must

be localized. The robots must move above the object and take a picture with the

wrist-mounted camera [5]. 70

List of Figures 13

4.4 The object-centric a) and plant-focused representation b) describe the same phys-

ical phenomenon (relation between box and robot), which is represented by the

green sphere in a higher dimension. All instances but some corner cases can be

represented in both variants. These exceptions are empty lists, such as a robot

with an empty gripper, for which all grasped objects are represented with a list, as

depicted in c). If we project this empty robot onto the object plane, we need a no

object instance in which the robot can be additional detail. Therefore, we extend

the less expressive formulation as in d) and can then project the physical world to

each of those representations and thus use them interchangeably to represent our

intermediate planning goals [5]. 71

4.5 Concepts of an Object with different units . 73

4.6 Operator to convert between g and kg . 73

4.7 Operator to convert between an object with g and kg 74

4.8 We can decompose the concept so that the concepts on their roles float freely. . . 75

4.9 The conversion operator can be applied to the extracted information of the concept. 75

4.10 With knowledge about the original roles, we can compose all available information

to the new object with the converted units. 75

4.11 For both scenarios, each operator is assumed to take one time unit execution time.

The baseline calculation (top) for the cost of a planning node ignores the later

parallelization during execution and just sums up the execution times of all ap-

plied operators. Our heterogeneous state allows us to implement a dedicated per-

instance cost calculation scheme (bottom), which reflects a later parallelization

chapter 9. There, we calculate the earliest time we can generate a specific in-

stance. The cost of a planning state is then determined by the latest generated

instance instead of the sum of all applied operators. 84

14 List of Figures

15

I
Hierarchical Approach to Domain

Operations for Multimodal

Autonomous Systems

17

1
Introduction

1.1. Motivation and Objectives

In recent years, automation has become increasingly important. The number of industrial robots

sold is a good indicator of the trend towards automation in industry, climbing with double-digit

percentages. Especially Asian low-cost countries show a high growth rate of installed robots.

However, automation has also reached its limits in some cases. Western countries already lean

towards high-tech production due to their labor costs to the point that some companies suffer from

the excessive use of automation. Particularly in the case of small-scale production, the investment

required to purchase and set up the plant often exceeds the advantages of a traditional production

facility with a larger workforce. Let us assume that we want to produce bicycles. This market

may be significant, but it is also fragmented. Therefore, we can only produce a small number of

entirely identical vehicles until we have to change the type, size, or accessories. Automating this

process requires the machines to be adjusted correctly for each lot. Every time the product or the

environment changes, the entire system must be validated and possibly reprogrammed in a time-

consuming manner. This adaptation requires qualified, trained, and experienced specialists, who

are expensive and rare. In contrast, the less automated plant is very flexible due to its employees’

intuition and abstract thinking, which allow them to derive all the necessary measures for produc-

tion from the specifications provided. Current robot systems are programmed for a specific task

with little variability in the sequence or parametrization of actions. Therefore, they work best in

a controlled environment, providing speed, precision, and endurance. This specialization is why

we only see small tasks automated at home, which even then require environmental adaptations,

such as cleaning, so that the vacuum cleaning robot does not get stuck on obstacles of the wrong

size. These restructurings and transformations into a controlled environment are cumbersome and

prevent further application possibilities of automation. Nevertheless, the limiting factor is not nec-

essarily the hardware. For example, surgical robots solve the most difficult tasks with incredible

precision. However, manual control leaves all the decision-making and even motion generation

18 Chapter 1. Introduction

to humans. So, to expand automation’s applicability and tackle new tasks, we must push the

limits of today’s decision-making and control algorithms. Traditional approaches to automation,

such as linear programs, state machines, or behavior trees, tend to define the sequence of actions

rather than describe the desired goal. For each action and all possible outcomes, the appropriate

next operation to reach the goal has to be determined manually. This manual design requirement

prevents a generalization of the control sequence or simple reuse of the modules involved in the

system. We want autonomous systems that plan their actions on their own, based on an internal

representation of the environment. Once the planning algorithm identifies a promising sequence

of actions in simulation, we can apply this plan to the real system, compare the execution to the

simulated process, and react to any deviations. In this way, we only need to specify the actions and

their simulations once, while the system solves the tedious decision-making and parametrization

processes automatically based on the goal specification and sensor inputs.

For the example of the bicycle factory, this means that not all robot movements must be pro-

grammed manually. When we automate this process, our system gets a model of the manufacturing

plant, which describes all machines, materials, and bicycles in production. This model aggregates

the declarative information relevant to the decision-making process for manufacturing. The bicy-

cle’s type, size, and accessories are examples of such characteristics, as they define the geometry

required to calculate collision-free robot arm movements. This information is updated during

execution by sensors of different modalities, such as cameras or force-torque sensors, consider-

ing their characteristics, such as noise and update rate. In addition, the decision-making process

must include all possible actions and processes described by procedural knowledge. Based on this

knowledge, a planning algorithm calculates possible solutions and executes them on the real plant.

On the one hand, systems in laboratories already implement such sophisticated algorithms, and

even some of today’s production systems would have been considered futuristic decades ago. On

the other hand, there is still a large gap between experimental demonstrators and real industrial

applications. The focus is now primarily on components and individual aspects of such a system

rather than on a unifying theory for the integration and decision-making process, ranging from

high-level planning to sub-symbolic motion generation. Therefore, the basis for the development

of algorithms that target such far-reaching problems, which are both complex in the discrete world

and complicated for parametrization in the continuous world, was missing. We already have algo-

rithms for collision-free motions for complex kinematics in high-dimensional continuous spaces.

We even have task and motion control algorithms that can handle some objects and their manipula-

tion. However, their computational complexity generally scales exponentially with the size of the

domain. Therefore, such algorithms cannot plan all the actions required to build our bike, while

our approach specifically targets such large-scale hybrid planning problems.

Integrating different hardware and software components, the reasoning and planning to wire

these components together, and implementing a process of decision-making and motion genera-

tion are the core of robotics. Computer scientists are developing great search or planning algo-

rithms, the computer vision community has made a significant leap forward with neural networks,

and even extremely sensitive tasks can be solved using the latest control theory. Nevertheless,

1.2. Research Questions 19

the integration of all these components is a highly manual task, which limits the applicability of

advanced algorithms outside the labs and their demonstrators. Our goal is to adaptively apply dif-

ferent actions based on the catalog of possible operations defined by the current domain. Such a

system can react flexibly to new scenarios, environments, or tasks. Moreover, the system is more

likely to handle unforeseen situations successfully because it is more flexible and does not require

the manual specification of responses for each exception. Imagine that our robot drops the wheel

of our bicycle during assembly. In a conventional robotic cell, the position of each part is precisely

defined and is ensured by mechanical means such as jigs and fixtures. If something falls, there is

no sensor and therefore no way to correct the error. In a system that reacts flexibly to the environ-

ment and picks up parts from any position, a fallen wheel may be able to be fixed autonomously

nevertheless.

The difficulty of planning for such a system lies in the hybrid and high-dimensional nature of

the processes and the number of steps required to achieve the desired goals. Nevertheless, we need

an automated decision-making process not only for a partial problem like motion planning or a few

steps like task and motion planning but for the overall task, which may also include the logistics

of delivering the parts to the assembly station and storing the finished wheel in a warehouse.

Since the number of possibilities grows exponentially with the number of possible actions and

length of the task, we need ways to counteract the so-called curse of dimensionality. When we as

humans use natural language to describe the assembly of a bicycle, we explain it in a factorized

and hierarchical way. We do not tell the other person to grab a screw and a screwdriver and insert

it into the fifth hole but to mount the cup holder on the frame. It is also much easier to identify

the root of a problem on the abstract level. Fewer alternatives must be checked, making it easy

to see if and which details need additional checking. We need a similar ability to systematically

troubleshoot and introspect for the factorized task, as more components introduce additional errors

and problems into the domain.

Such a powerful system can then solve different problems in various domains. It is wider than

the industrial context we use for the examples in this thesis. However, it offers very different

challenges for our approach, ranging from discrete manufacturing, such as product assembly, to

process industries, such as food processing, to the configuration of perceptual systems, which is a

subproblem of optimizing cell configurations.

1.2. Research Questions

Autonomy is about decision-making in order to achieve a declaratively defined goal. We can do

trivial tasks with a handbook that manually enumerates reactions to certain situations or events.

Examples of such architectures are state machines and behavior trees. However, the manual defi-

nition of all possibilities is not feasible for problems with high variability, especially if continuous

properties like geometries and collisions in three-dimensional space are involved. Reinforcement

Learning tries to automatically derive an approximate mapping between situations and correspond-

ing goal-directed actions from given or simulated data. However, it is not feasible to program such

20 Chapter 1. Introduction

a mapping manually, while the data-driven approach requires many test or simulation runs for

generalization. A good simulation is rarely available for small lot sizes and unusual scenarios,

and a good approximation based on previous test runs is impossible. Especially if the different

tasks result in only a few similar runs, it is an excellent approach to try out actions in simulation

and find a sequence that is likely to be successful in the real world. This execution of actions in

simulation is our definition of planning. It can determine solutions for complex and challenging

problems where pure heuristics fail. Additionally, we can bring it together with data-driven ap-

proaches once we collected enough data. Planning has already been studied in detail for various

problems and sub-areas. Our research questions aim to analyze the difficulties these algorithms

face in generalizing and dealing with the problems of real scenarios.

The combinatorial complexity of the discrete action space increases to unmanageable problem

sizes even with a small number of parts and possible actions. Humans can, nevertheless, solve

these problems quickly and efficiently. Even small children manage to assemble a dozen pieces

to solve a puzzle. They locate and analyze the objects, pick them up, test, manipulate, and finally

use them. If a successful plan for this puzzle consists of three steps per piece (locate, pick up, and

insert) for a 36 piece puzzle, a naive approach would test 336 combinations. If each combination

were processed within one cycle of a 3 GHz processor, this approach would result in 579 days of

computation time. This computation time is much longer than any three-year-old child would need

for this type of task. They do not try to optimize for the whole task at once but identify sub-tasks to

focus on. This factorization of the problem makes it possible to act on a single object, manipulate

and localize it, without running into the curse of dimensionality. The downside of this approach is

that we can neither guarantee nor target the optimality of the solution. However, this can be over-

compensated because the problem would be unsolvable without this divide-and-conquer strategy.

In [6] this problem-solving scheme was identified and mimicked for path planning algorithms that

exploit spatial hierarchization. However, can we identify loops and dependent and independent

sub-tasks as well as abstractions that simplify a domain, e.g., in temporal space? While this might

lead to oversimplifications and biases, this scheme would enable us to solve significant problems

in the real-world, which leads to the question:

Research Question 1: Can we provide an automatic and flexible online decomposition of plan-

ning tasks to solve large planning problems?

Combinatorial complexity is only one of many challenges in our example. We ignored the geo-

metric constraints and physical properties by now. Even if we find a plan that is a feasible solution

at the discrete level, its execution in the real-world will probably fail. Collisions, reachability

problems, or deviations from the abstractly modeled properties can invalidate solutions that work

on the abstract level. Since some actions can trigger irreversible events, such as broken parts,

colliding robots, or dropped objects, the algorithms should be able to utilize simulations to sort

out dead ends before testing them in the real-world. Moreover, even the best simulation is only an

abstraction of the processes in the real world. Therefore, a system must contain a scheme to detect

1.2. Research Questions 21

and handle deviations during execution and adjust the plan accordingly. This behavior is similar

to model predictive control (MPC) schemes, which calculate the control that optimizes some cri-

terion for continuous problems based on a given model. In robotics, problems are hybrid and thus

contain both discrete as well as continuous data. People can manage complex and complicated

tasks, consider the effects of their actions, and react to external feedback. This raises the question:

Research Question 2: Can we integrate an MPC-like behavior into our planning algorithm so

that deviations during planning or execution are detected by different sensors and handled auto-

matically, such that hybrid problems are solved for real environments?

We try to imitate the divide-and-conquer strategy for arbitrary tasks so that autonomous sys-

tems can solve previously impossible hybrid problems like humans. This includes factorizing

large problems into smaller sub-tasks that can be further divided recursively. For this, we need

advanced planning algorithms to handle the complexity with such an approach. We do not want to

write such a planner from scratch whenever we apply it to a new problem domain. Therefore, the

task must be declaratively configurable by a domain and a problem description. This formaliza-

tion of the process leads to models of the planning task that allow the development of generic and

flexible planning algorithms. Profound literature about modeling languages and corresponding

planning algorithms for discrete planning tasks exists. However:

Research Question 3: Can we define a modeling language that covers arbitrary discrete and

continuous properties as well as actions, simulations, or executions from the discrete level to real-

world execution for our generic planning algorithm?

Another critical point for the use and broad applicability is an easy setup and a high degree

of explainability. Usually, apart from research demonstrators, systems are not set up by the de-

velopers themselves but by trained personnel. This means that several people and groups bring

in components that are then integrated to form an autonomous system. As a result, the various

parts are less perfectly matched than in systems designed by a single researcher. The composition

of different modules during integration can lead to a loss of performance or even non-functional

systems. Accordingly, introspection capabilities are essential for a complex system so that errors

can be detected and solved quickly. Additionally, automatic domain optimization can reduce the

time needed to set up the system and facilitate configuration. This is not only true for the devel-

opment and commissioning phase but also during operation. Explainability is also crucial to an

efficient operation for cases where even the robust MPC-like behavior reaches its limits or when a

human-robot collaborative setup enhances the system’s flexibility. Especially then, workers bene-

fit from predictable actions that follow principles like human thinking [7]. This raises the question:

Research Question 4: Can we design a system that enables automatic optimization of the models

and explainability for the developers?

22 Chapter 1. Introduction

1.3. Contributions and Outline

This dissertation proposes a hierarchical planning algorithm based on set-based models to solve

significant hybrid planning problems with natively integrated execution and exception handling.

Every planner needs an appropriate description of the task and the environment in which it

operates. These models and the respective planners can be tailored to the domain, enabling a higher

degree of specialization with better performance but a smaller field of applicability. Examples of

such combinations are motion planners that often need a geometric model, a kinematic description,

and geometric start and goal positions. The implementation is optimized for robot systems without

configurable sampling routines or validators of state transitions. If the model would allow for a

generic description of these operations, these planners could also address areas similar in their

problem structure, such as optimizing electrical networks, controlling chemical reactions, or task

and motion control.

We designed a very generic model to cover a wide range of different domains and problems. In

contrast to other description languages like OWL, we include not only declarative (descriptions

and things) but also procedural knowledge (actions and modifications) as we follow the basic con-

cept that anything that is not used is useless. Since only operations can use things and operations

can only be defined with declarative knowledge, we necessarily need both types of knowledge

in our model. This is also an essential requirement for automatic factorization and hierarchiza-

tion during the planning phase and for all domain optimization algorithms proposed in this thesis.

Another key feature that sets our approach apart from the PDDL family [8, 9, 10, 11] and the

respective planners [12, 13, 14, 15] is the integration of arbitrary code. This not only allows us

to integrate sophisticated simulations during the planning phase but also to handle deviations or

exceptions natively during execution. This is due to the structural similarity between a refine-

ment that leads to a different solution than its higher abstraction in the simulation, and a deviation

between the simulated plan and the execution in the real-world.

We discuss our set-based model for procedural and declarative knowledge introduced with chap-

ter 6 and the implications of the set-theoretical foundation and automatic hierarchizations in more

detail in chapter 2.

Based on this model, we developed a planner that is discussed in detail in chapter 7. The

key idea of this algorithm is to use an abstract representation of the domain to solve the given

planning problem on a rough level and to refine it step by step later. Consider, for example, a

logistics problem for which various packaged products must be shipped from A to B. Each crate

has specific dimensions, mass, and handling requirements. We could start the planning with all

the details and check every combination of crates packed with the means of transport, route, and

schedule. It is easy to see that even handling the combinatorics between a dozen crates is not

feasible.

In contrast, we look for a rough plan to factorize the overall task and then recursively refine

and solve the resulting sub-tasks. We automatically abstract available instances to reduce the

branching factor during the search. In this way, we can aggregate several of them and merge them

into a single entity with a counter as soon as they no longer differ at the current abstraction level.

1.3. Contributions and Outline 23

Figure 1.1.: Our approach can handle various domains, ranging from planning for complete plants
over assembly planning to cell layout optimization [1].

By doing so, we can easily avoid symmetrical paths and thus eliminate unnecessary complexity

in the planning phase. In addition, we consider fewer properties on the first planning levels and

omit others, such as geometries, whose verification is computationally complex. Each of these

optimization steps is made possible by the set-theoretical nature of our modeling approach.

For our logistics example, we can neglect the crates’ mass and dimensions and consider their

handling properties only on the abstract level. As a result, we still handle refrigerated goods dif-

ferently and, for example, only use transport methods that ensure temperature control. However,

crates of different sizes and weights can be handled similarly, and the number of crates can ap-

proximate the loading capacity of the truck or train since weight and volume average out over

all packages. This way, the complex Tetris game during loading is abstracted in a computation-

ally favorable way to achieve a rough approximation for this level of simulation. We validate

this solution only with a more detailed planning domain, considering the exact dimensions in the

next refinement step. As we already decided which packages to put in the truck, the subproblem

became much smaller. By that, we fight the curse of dimensionality, as fewer steps to reach the

desired goal and fewer actions and options to consider on this abstracted level are needed. This

simplification accelerates the application of actions and, thus, the search space exploration. Once

we have found a feasible solution at the abstract level, we can refine it recursively. As we con-

sider more and more properties and evaluate more detailed simulations, the approximations are

validated recursively.

In the example of logistics, transport by truck would be refined with several sub-operations. To

refine the first step, we would plan the packing of the boxes in the truck, which would validate the

compliance with the loading capacity.

With this hierarchical factorization approach, we lose optimality. However, only these approxi-

mations make it possible to calculate any solution in a reasonable time. The hierarchical planning

approach is discussed in more detail in chapter 3.

A critical factor for any autonomous system is still the human being. We implement the al-

gorithms, models, and simulations and inevitably make mistakes. Introspection capabilities are

required to isolate errors and check whether the system behaves according to our expectations. As

the models for planning grow and integration from different sources becomes an issue, comprehen-

sible algorithms during operation help to debug unexpected behavior. In section 3.3, we discuss

how our procedural knowledge’s introspection capabilities and arbitrary code allow us to target

24 Chapter 1. Introduction

very different domains. The field of application ranges, as depicted in Figure 1.1, from factory

automation, over assembly planning, to cell optimization. To ensure efficient re-usability, we en-

sure easy modularization and, even more importantly, composition by the automatic optimizations

proposed in chapter 4 that are based on the set-theoretic principles of chapter 2. These optimiza-

tions further facilitate modeling and address various challenges in the setup of the domain. The

first optimization algorithm presented in chapter 8 aligns the planning domain to compute abstract

plans that are less restrictive for refinements to find better solutions faster. The basic idea of this

approach is to detect and use homologies of intermediate goals so that the goals can be reached

more efficiently with fewer steps. Let us consider the intermediate goal of a box with a lid. A

robot holding a box with a lid in its grippers does not fulfill this goal since it is a robot, not a box.

Still, it includes the desired instance. Relaxing the intermediate goal can, therefore, eliminate the

extraction step for this instance, which involves placing the box on the table. The source of the au-

tomatically exploitable optimization potentials in the model is humans who designed the domains

sub-optimally. This becomes even more relevant if the domain comprises models from different

sources.

Automatic data fusion is another optimization scheme presented in this thesis that facilitates

integration. Especially when sensors of different modalities measure an object, the information

must be fused from the different sources into a single data point in the environmental model. Let

us consider some information embedded in a different data structure, for example, dimensions in

mm. We need to convert this information if a function takes over the data structure but needs

other units, e.g., dimensions in m. The data fusion algorithm verifies that we can extract, convert,

and merge the information with the first unit into the original instance without invalidating other

information in the data structure.

A third optimization scheme published in chapter 9 is the parallelization of formerly sequen-

tial plans. These algorithms firstly extend the scheduler to optimize for later parallelization and,

secondly, add an execution engine for the refinement process that identifies independent parallel

strands and executes the actions as asynchronously as possible until the next synchronization lock

is reached.

25

2
Set-Based Hierarchical Modeling Approach

In this chapter, we discuss the theoretical foundations of our models, which, as proposed in [16],

include both declarative and procedural knowledge. As stated in the introduction, these represen-

tations form the basis for all algorithmic actions in the autonomous system. Both the planner in

chapter 3 and the optimization methods of chapter 4 use the properties presented in this chapter.

We will first discuss declarative knowledge and motivate the use of set-theory as its foundation.

Then, we will discuss the closely related procedural knowledge and its representation, properties,

and connection to declarative knowledge.

2.1. Declarative Knowledge

Declarative knowledge describes both abstract knowledge and concrete facts of the world, such

as sensor measurements or a processed representation of objects derived from multimodal sensor

data. Structuring them is especially useful because the actions discussed in section 2.2 are based

on them. In this section, we explain our approach and its set-theoretic grounding and discuss the

representations that enable the automated processing presented in the following chapters.

2.1.1. Motivation

When people speak, they exchange declarative knowledge. We can communicate facts and lessons

in a way that others who have not had the same experiences can learn from them. We can also or-

ganize our activities, delegate tasks very compactly, and validate the results of our efforts, which is

a decisive factor for human progress. However, if we want to leverage the potential of autonomous

machines, we must also find ways to command robots. That said, the languages we speak and write

represent a form of communication that is hardly standardized. There are attempts to analyze the

information of spoken or written words and make it interpretable for computers. However, even if

this should one day work perfectly, natural language is not a suitable and optimized format for the

internal representation of declarative knowledge within autonomous machines. For this, we need

26 Chapter 2. Set-Based Hierarchical Modeling Approach

a model that can contain information similar to that of a language but in a structure that algorithms

can quickly process. We need the link or a common form between the representation for humans

and the formalized form for machines because the essential part of autonomy is the declarative

definition of the task by humans, which is then solved by the machine.

Therefore, we aim to develop a formal definition of the information so that the autonomous ma-

chine can efficiently work on it while humans can read and write it. Only then can the autonomous

machine benefit from human domain-specific experience and knowledge. In addition, the results

can then be checked and adjusted since such an internal representation allows straightforward

human interpretation. Another critical point is that nowadays, problem classes relevant to many

fields of application in industry and private life can be solved by humans but not autonomously by

robots. With a formalized representation, we can introduce problem-specific knowledge manually

for automated solutions or develop algorithms that solve that problem class autonomously. We

need a formalized representation of our knowledge with which the autonomous machine can work

for all these advantages. It should be mathematically sound so that we can implement algorithms

and validate operations based on it.

People generate knowledge by generalizing observations and experiences, which not only makes

the world more accessible to us but also enables the simulation of actions and, thus, planning and

weighing different options against each other.

Example 1:

Let us talk about a specific car, for example, Bob’s car. We do not know anything concrete about

this vehicle yet. However, we have an abstract understanding of the properties and abilities of

this object and can answer some questions. We rely on assumptions gained from generalized

experiences with our world. For example, we can tell whether we can use this vehicle, as we

know that we can drive cars generally and therefore can also operate that specific instance. For

some questions, the information given is too abstract and, therefore, not precise enough, so we

need additional information. For example, to answer further questions, we might need to know

whether the car has a trailer hitch or the weight of the car.

Our set-based models have the same objectives as spoken language, namely, to allow for ab-

straction and planning. However, knowledge and processes are described in a machine-readable

and formalized form. Based on these models, we can develop novel hierarchical planning algo-

rithms and domain optimizations while maintaining the ability to engage in introspection. Since

our declarative model is based on abstracted information or data points, data-driven approaches

can further fine-tune and optimize the models. Algorithms from the big-data domain can analyze

given information and compile synthesized knowledge into our models. With them, the informa-

tion can be reused and applied meaningfully to solve given tasks.

2.1. Declarative Knowledge 27

2.1.2. Theoretic Grounding

We call pieces of compiled information in our model concepts. They define the structures within

our knowledge representation. Concepts allow us to define a partial ordering between instances

that are the actual pieces of information of the physical or simulated system during execution or

planning. We use these concepts at various points in this thesis. The definition of procedural

knowledge that we discuss in section 2.2 is based on them, as well as the ordering and hierarchiza-

tion of the domain and the validation of the planning results for the hierarchical planner presented

in chapter 3. The concepts cover both discrete and continuous properties. They can contain con-

crete information about physical objects as well as abstract properties such as parameterizations,

costs, or probabilities. The definition of our concepts is related to the formal concept analysis [17],

which allows broad applicability in various domains. In section 3.3, we discuss several example

problems, such as task and motion planning, root cause analysis, and optimization of cell setups.

Moreover, our formalism can describe and derive different levels of abstraction and automatically

infer relationships between these levels, which is essential for our hierarchical planning presented

in chapter 3 and a difference from state-of-the-art modeling and planning algorithms. These repre-

sentations belong to the same concept class Γ. Each concept class has a concept base BΓ, defined

by a set of instances. Concept bases are not necessarily finite, such as the set of all real numbers,

set of locations, or set of masses. Other concept bases can be large but finite, such as the set of all

instances of cars, people, or boxes. We, therefore, define the C concept as a subset of the concept

base so that we can formally specify additional properties on it. These properties are named by

roles r, which define further subsets on the concept base. These subsets are formed by intersec-

tions with other sets, which are also described by concepts. We represent these composite concepts

by directed trees. The root node of these graphs defines the concept base BΓ. Leaf nodes contain

concepts that are defined by their concept base alone. Intermediate nodes represent a recursive

application of composite concepts to define this role. Each concept on a new role forms a new

intersection on the concept base set. These restrictions narrow down the volume for an instance

of that concept. Therefore, with the additional information, which specifies a larger number of

properties and thereby reduces ambiguities due to non-specified characteristics we get a more de-

tailed instance, as highlighted in example 2. With this definition of declarative knowledge, we can

formulate domain operations that modify and operate on our model algorithmically. For example,

we can compute a partial order between two concepts that we call more detailed than. With the

definition of concepts, we can algorithmically identify which concept is a subset of, and therefore,

is more detailed than, another concept. We can calculate this relative order by recursively check-

ing the following nodes’ roles and (composite) concepts in the graph representation. If Ca has all

the roles of Cb and the same concept base BΓ, and the subsequent nodes are equal or more detailed

than the concept on the respective nodes of Cb, then Ca is more detailed than Cb.

28 Chapter 2. Set-Based Hierarchical Modeling Approach

Example 2:

Figure 2.1.: The differently colored areas depict the base BΓ (yellow rectangle) and concepts
that have different intersections depending on their properties.

Consider the example of the pose of an object in Figure 2.1. The concept base BΓ would

be the set of all possible poses with different levels of abstractions (yellow rectangular). On

an abstract level, this can be a discrete quantity such as on the table (green ellipse) or in the

gripper (red ellipse). Of course, these sets can overlap, and we can use this information to

evaluate prerequisites for actions and their simulations. We may already discard an assembly or

drop if the object is not in the gripper, or a pick may not be feasible if the object is not on the

table. For more detailed validations, such as collision checking, we need additional geometric

information instead of just the semantic pose. In our example, we know the position within

a tolerance of 5 cm (blue ellipse), which is entirely covered by the semantic position on the

table. With a continuous pose, which defines the relative transformation and rotation between

two frames, and a geometrical representation of the objects involved, we can compute distances

and check for collisions. The discrete position describes several continuous poses; thus, both

pieces of information can be valid simultaneously.

Our domain is composed of all knowledge that is necessary and available to solve a particular

task. We can sort the concepts into a directed graph based on their partial ordering in such a

domain. For each node of this subgraph, the descendants hold the more detailed concepts, and

the ancestors hold the more abstract concepts. Each directed subgraph must have a single root

node and a single leaf node. We can easily construct the root node that denotes the most abstract

concept of that subgraph by eliminating all roles, which leaves the concept that contains all the

elements of the concept base of the concepts of that particular subgraph. Since additional roles can

only eliminate instances, all concepts in this subtree must be more detailed than this concept. We

can calculate the most detailed concept when we merge all the concepts of this tree, which adds

the missing roles to a newly created concept until each concept in the subgraph is a sub-tree of

that concept. The properties of directed graphs in our hierarchical domain, such as the existence

of these root and leaf nodes, are described and discussed in a mathematical context in [17]. We

define base types as concepts with neither successors nor predecessors in the entire hierarchical

2.1. Declarative Knowledge 29

domain, which can only hold if they have no roles at all. Examples of such base types can be

real numbers, bool, or color. This property, however, is domain-specific and can change with the

context set by other concepts. We will briefly discuss how each of these concepts can be ordinary

concepts in a different domain, which, for example, has successors in remark 1.

Since we use trees to represent our declarative knowledge, as opposed to graphs as in OWL

[18], it can be represented as structs or classes in most programming languages. From this point

of view, the directed graph, which has emerged from the partial order, is an inheritance hierarchy.

All more detailed classes inherit from their ancestors. This hierarchy is automatically and dynam-

ically updated as new concepts are added or modified, which is relevant when we solve a new task

requiring newly modeled declarative knowledge or a composition of different domains. An essen-

tial part of our hierarchical factorization is checking whether an instance fulfills the requirements

imposed by a second goal instance. The goal must be a goal region for continuous properties,

as a planner cannot reach it with non-zero probability otherwise. Just consider goals, which are

imposed on the real-world execution by a simulation phase. The real world will never exactly

behave as the simulation predicted. So, the goal will never be reached to the last digit, despite

the state being close enough to the simulation results for the given task. We must incorporate this

close enough to our models. Thus, a concept not only defines which instances it represents and

the minimal set of details it holds but also provides a relaxation for comparing those instances.

By that, an instance describes a region rather than a point during comparison, which goes hand in

hand with remark 1.

Remark 1:

A duality between concepts and instances is only resolved by the context of a specific domain.

Each instance can define a concept and represent an instance in a different domain based on its

limits of relevance in the given scenario.

As soon as an instance is an abstraction for which we have defined actions, as introduced in

section 2.2, that instance defines a new concept based on dependent typing.

On the other hand, a concept is only a graph, which is declarative data. This data can be

handled in a so-called meta-domain, where the set of all concepts defines a concept, which

makes the concept of the common domain an instance in this meta-domain.

Let us look at an illustrative example: The concept that describes boxes in the assembly

domain is an instance of the meta-planning domain. There, we have operators that can, for

example, calculate the ordering relative to a second concept-instance.

Based on our declarative model, we can check algorithmically if an instance describes an area

that overlaps with the region specified by a second goal instance. The first prerequisite we verify

is that the instance belongs to a more detailed concept than the goal’s concept. Then, we can check

if the value on each leaf node of the instance is a subset of the respective leaf node value of the

goal. We need this subset comparison at the leaf nodes to relax the goal area to the extent that a

planner can reach it with a non-zero probability.

To illustrate this concept, we discuss example 2 in more detail. The concept of a double is a

30 Chapter 2. Set-Based Hierarchical Modeling Approach

basic type in our example domain. It represents arbitrary floating-point numbers. At some point,

we must decide whether an instance is close enough when we use it in a composite concept that

can be a goal, such as our pose. We know that in our domain, we can only perform calculations

with machine precision, which is even more precise than necessary for real-world processes. So,

we add a particular environment for which the instances also fulfill the goal defined by the concept.

For example, the double concept has a smaller region for which instances compare equal to floats.

The goal of a planning task is defined by an instance, as described in the upcoming chapter 3.

During the process, checking whether a given instance satisfies the goal instance is necessary. We

call this instance similar to the goal instance. The definition of this property is comparable to the

definition of more-detailed than on concepts. While the concept is more detailed iff all of the

instances this set describes resides within the more abstract concept, an instance is similar iff any

intersection between the two sets exists.

With this perspective, the new, data-driven generation of concepts is straightforward: Once a

superset of instances can be identified, we can declare a new concept on that set. In this section,

we have focused on models that can be relied upon because humans created them. Therefore, we

had a top-down view, from abstract structures to more detailed ones. Instances can potentially

be any data point with no apparent relationship to one or more concepts. This classification is

similar to the exciting question of whether two concepts are the same despite differing concept

bases or roles, which can happen for composed domains, for example. An algorithm that detects

and reformulates such cases is discussed in chapter 4.

As mentioned above, we compile our models into classes in various generic programming lan-

guages. There, we represent the concept hierarchy and generate so-called compare functions that

check whether one instance is similar to another. For our example 2, we must deal with sym-

metries of quaternions representing our orientation and epsilon environments in Cartesian space,

which requires manually written arbitrary code for our compare functions, which is also part of

our model. In our examples 1 and 2, the concepts are defined not only by the properties and their

roles but also by values and relationships between different pieces of information. For instance,

the box sits at a specific semantic position, like on the table for values in specific intervals of the x,

y, and z coordinates. Therefore, our model implements dependent types that can be automatically

composed and hierarchized to facilitate planning.

2.2. Procedural Knowledge

Our formal models include not only declarative knowledge, as discussed in the previous section,

but also procedural knowledge that describes actions and operations that can be performed during

planning or execution in the real-world. This section discusses our view of procedural knowledge,

the characteristics of our model, and the differences compared to other representations.

2.2. Procedural Knowledge 31

2.2.1. Motivation and Requirements

In the last section, we learned how to use declarative knowledge to describe our system’s task and

environment. Additionally, the autonomous system must be able to influence its environment to

be relevant. All our declarative knowledge would be useless without operations that can influence

and modify it. Therefore, this section discusses procedural knowledge, which describes how the

systems and the environment described by our declarative knowledge interact, are used or pro-

cessed. Only with those two parts of knowledge we can discuss the planning algorithms that solve

any tasks flexibly and autonomously, in the next section.

Remark 2:

Often, execution, planning, and process control are considered different approaches that work

together but are still distinctive. For us, these terms only describe a spectrum featuring different

views on the same algorithmic basis for which some transitions are more intuitive than others.

Figure 2.2.: For autonomous systems, there are three dimensions to consider. Idealized ap-
proaches are covered by planning and control, while sophisticated and possibly
non-deterministic simulations blend with real-world execution. Similarly, control
behaves like planning once more and more alternative scenarios are considered for
simulated future points in time.

As stated in remark 3 and depicted in Figure 2.2, there is no hard border between planning and

control. The same is valid for planning and execution as described in remark 4; thus, the three

terms describe a continuity.

Ontologies, such as OWL, have a powerful type system. Nevertheless, they can only implicitly

model actions, limiting their use as they require additional techniques and models to allow for

planning, which requires a description of actions and their outcomes to calculate new states. This

application of actions must be done both in simulation during the search phase as we want to find a

path to a goal state as well as in the real world to validate the simulated plan and actually complete

the task.

As mentioned in the introduction and in remark 2, planning and execution go hand in hand.

There are always slight deviations between the simulated and the real-world due to sensor noise,

32 Chapter 2. Set-Based Hierarchical Modeling Approach

model inaccuracies, or simplified simulations. We have mechanisms to deal with this noise, as our

declarative model specifies the allowed deviation for the given domain. Related to this is the sim-

ilarity between instances, as described in the previous section. However, mismatches can quickly

amount to more than just noise and require additional handling, which leads to an instance that is

not similar to the expectation and, therefore, requires a different sequence or parameterization of

actions to reach a goal state. To accommodate this, we implement an MPC-like behavior in our

planning system, which blurs the line between planning and control as stated in remark 4. For

procedural knowledge, this means that not only simulated effects but also real-world operations

must be incorporated, such as the movement of an arm, the measurement of forces and distances,

or the validation with optical sensors.

Remark 3:

For us, there is no difference between planning and control. Process control algorithms calculate

controlled variables so that the difference between process variables and setpoints for a contin-

uous system is minimized. Planners, conversely, search for a discrete sequence of actions such

that a specified goal state is reached from some start state. During planning, actions are applied

to the state in simulation to obtain new states that can be checked for goal achievement, in con-

trast to explicit formulas that determine the control variables for the process control. However,

model predictive control (MPC) has blurred that line, as even for this control theoretic approach,

the action induced by the control variables is simulated [19]. Any difference vanishes with the

MPC algorithms for hybrid systems, which even consider discrete properties and discretized

control variables. With that, control variables is just another term for actions or operators, and

state and process variable become synonyms as well. The communities still focus on different

aspects in their discussions, like the proof of maximal calculation times (real-time capability)

or convergence rates to optimal solutions. Additionally, they commonly calculate commands or

take feedback into account at different rates, but the boundary becomes blurred.

Our planning system is based on hierarchical abstractions to counteract the exponential increase

of combinatorial complexity that comes with additional alternative actions, objects, or length of

a successful plan, also known as the curse of dimensionality. This divide-and-conquer strategy is

inspired by humans’ natural approach to large problems. When we get a task, like moving the box

of our example 2 to a different position, we consider actions on an abstract level first, like picking

it up by hand or kicking it with our feet, and sorting out infeasible options immediately. That

means we already know we do not need a bulldozer, a shovel, or a telephone to move this box. We

can then consider the most promising candidates in more detail and estimate the required effort,

damage to the goods, and other KPIs. In the end, we execute the planned sequence of actions,

monitor any deviations, and replan if required. We follow the same algorithmic approach with our

hierarchical planning and factorization scheme.

The previous section described the hierarchical order of our declarative knowledge, which is

based on the physical instances and their abstractions. For procedural knowledge, we need a

similar construct, which can then be used by the planner to automatically factorize the planning

2.2. Procedural Knowledge 33

problems and get rid of domain-specific factorization strategies such as [20]. Our actions are

ultimately based on the operations required for execution in the real-world. All other operations

are simplified versions, or in other words simulations, of these actions. These simulations can

be synthesized by neglecting details, generalizing, and combining several steps into a single one.

Our model must describe the partial ordering between actions on different levels of abstraction.

Depending on the domain, there can be no real-world execution, but only a most detailed level of

simulation for certain steps. We discuss examples of these domains, such as root cause analysis or

cell optimization in section 3.3.

The need for real-world execution and arbitrarily detailed simulations requires embedding black-

box code in the model of procedural knowledge. If we would only describe pre- and post-

conditions with discrete variables, such as object in gripper, object on the table, we would never

be able to cover the complexity of robotics with reachability issues, collisions, time optimality,

acceleration limits, sensor noise, and other challenges. We must integrate multiple complex sub-

systems to fulfill a given task. Due to the curse of dimensionality, the interaction with the real

world can neither be fully covered by discrete properties nor discretized without the combinato-

rial explosion. We can use model-free, data-driven algorithms such as reinforcement learning for

some sub-tasks. However, the system itself will never be model-free. There will always be some

manually coded verification of the actions to prevent damage to the hardware through collisions,

such as value ranges, continuities, or validated and enforced protocols. So, while the motion gen-

eration may be model-free, the overall system is not. Our model can be the melting pot of these

upcoming data-driven algorithms and classical approaches to implement a powerful autonomous

system.

We have only one requirement for the code to be included in one of our procedural models: The

actions of the abstract layers must be stateless. Otherwise, we would not be able to use them during

planning. Nevertheless, the real-world will never be stateless, and we can still handle it. However,

there can be no stateless action that is more detailed than a stateful operation, which leads to the

necessity to model all information needed to calculate the outputs. For the system, any missing

input, such as communication with external components, would resemble an unobservable state

and violate this essential requirement. As an example, we must model the seed for pseudo-random

operators such that the internal state of the pseudo-random-number-generator is exposed to the

planner. Additionally, we cannot refine the real-world manipulation of an object, as the internal

state cannot be exposed to the planner.

2.2.2. Theoretic Grounding

We call the procedural knowledge of our model operators. They act on our declarative knowledge

and functionally describe the changes we expect in our real or simulated world utilizing mappings

between input and output instances. Since this mapping can take any form, it cannot be written as

a reduced set of instructions. Therefore, we allow the implementation in a black box code as long

as it has no internal states. Alternatives are mathematical formulas or modeled structures, such as

data flow graphs. The sole purpose of our models is to automatically process the specified domain

34 Chapter 2. Set-Based Hierarchical Modeling Approach

Object

Pickobject

Manipulator
manipulator

Manipulatormanipulator
Object

Pick

manipulator

object Object

manipulator

object

Manipulator
Manipulator

Figure 2.3.: Graph structure of an abstract pick operator (left) and a more detailed version (right)
that has additional outputs to handle exceptions, as well as more detailed inputs and
outputs.

knowledge to facilitate or solve tasks. Our key algorithm is the factorization by the hierarchical

planning discussed in chapter 3. This planner needs additional information about the actions it

can perform for planning and execution, which are handled similarly in our approach as remark 4

describes.

Remark 4:

Our hierarchical approach is based on different levels of abstraction that represent differently

detailed simulations. With every introduced piece of detail, the task can be unsolvable despite

valid plans on the more abstract level. Those abstractions can range from the purely symbolic

information of the existence of an abstract object, such as a box and its processing, over a geo-

metric level, which includes dimensions, grasp locations, and transportation paths, to physical

simulation, including gravity and forces, to real-world execution. For us, the real world is just

another refinement of our most advanced simulations. As with every refinement, something can

go wrong and require replanning. Thus, in our planning scheme, error handling and replan-

ning are natively incorporated, and we can include arbitrary constraints to the possible actions,

even gravitational restrictions like [21], as long as we can simulate the outcome of the possible

actions.

Operator Structure

The most important information about an operator for our planner is the data required to call

it. In addition, the potential outputs are valuable information in case a backward search is to

be performed. Therefore, we modeled our operators as directed, bipartite graphs. The first of

the bipartite sets is used for the inputs and outputs described by our concepts, which form the

declarative knowledge. The second set of the bipartite graph’s node types are the function blocks

that describe the mapping between the inputs and outputs.

Example 3:

Our example operator pick takes an object and a manipulator to attach the object to. The directed

graph of this operator is depicted on the left-hand side of Figure 2.3. The more detailed version

for real-world execution operates on more detailed instances and returns the object in case of a

failed grasp attempt, as depicted on the right-hand side of Figure 2.3.

For a pick and place, the operator on the abstract level would receive an object and a manipulator

as input and return a manipulator as shown in Figure 2.3. An operator can receive several instances

2.2. Procedural Knowledge 35

of the same type. Therefore, a distinctive role is required for each input and output. Note that we

describe the operator with concepts as inputs and outputs. During planning, however, it is called

with instances that fulfill these concepts.

Remark 5:

Operators are described with the help of concepts. However, according to our definition, con-

cepts could also be defined by their impact on an operator.

It would not make sense to model the operator with an instance since this instance is unique,

and the operator could be called with no other value. At this point, the duality of remark 1

comes into play again. The single and, therefore, static value could be incorporated into the

operator without being exposed as an input. However, if the operator can handle other values

on this input, all these inputs would form a set of valid inputs for this operator.

This automatic abstraction complies with our definition of concepts with the dependent type

applicable to the pick operator. Indeed, we cannot tell whether an instance belongs to this

set until we have seen it before or called the operator with that instance, but boxes with all

sides shorted than 5cm might give a good guess and therefore result in the concept of probably

graspable boxes. Nevertheless, we could find a superset to all these potentially applicable in-

stances, for example all objects lighter than 100 kg, which is an upper bound for the hardware,

and model this relaxation as our new concept, which we then use as an input type. When we

choose the concept for our operator inputs, we thus model a superset of instances that provide

the necessary information for output computation and hold feasible values.

In section 4.7, we discuss the data-driven generation of new concepts based on recorded data.

As remark 5 suggests, there is a circular relationship between concepts and operators, which high-

lights that the model must describe both interdependent parts of knowledge to be self-contained.

Our model for procedural knowledge holds a set of important information for the planner, which

we describe in the following:

Consumed Inputs

Our operators not only generate new information but may also have to modify their input. For our

pick example, the instance of the robot arm will not be the same after moving it. The positions

have changed, and when the pick is done, even a discrete property changes as the box is attached

to the arm. To model cases in which changes are applied to an input instance without violating

our model’s requirement for functional operators, changes are not applied to the inputs themselves.

Instead, operators return a modified copy of the unmodified inputs. However, during planning, this

would lead to two conflicting instances describing the same real-world robot, which is infeasible.

To maintain consistency, we must tell the planner that this specific input instance is invalidated as

soon as the operator acts on it. We, therefore, mark that input as consumed in our model, which is

depicted by the red arrow for the input in Figure 2.3. This way, the old instance can be removed

from the state once the operator is successfully applied.

36 Chapter 2. Set-Based Hierarchical Modeling Approach

Outputs and Exceptions

All modeled outputs of our operators are optional, meaning that the maximum level of information

that this operator can potentially calculate is modeled. During execution, only those instances

that can be calculated with the given inputs are returned. If the operator is not applicable, even

though the instances on the inputs match the correct concepts, the operator will not return anything.

Some optional outputs will only contain information in case of an undesired event. These outputs,

which would be exceptions in other programming languages, are treated the same way as all other

outputs. Look at the example of the pick of example 3, which is executed in the real-world. Let us

assume that closing the gripper fails for some reason. Typically, the operator "pick" only returns

the robot, which internally holds the object. In case of a failure to grasp the object, which can

easily happen during real-world execution, returning the original robot without any modification

would result in a loss of information. We moved the arm for the pick and modified the robot

instance. Additionally, the box would be gone because it is neither grasped and described by the

robot nor exists as a standalone instance, as it had been consumed. We know that the box is still

there and not in the robot’s gripper. Therefore, the box’s modeled output, which is usually not

used, is filled with information about the box’s state for this failed pick attempt, which allows the

planner to deal with unexpected conditions and continue planning.

Wildcard Inputs

Our declarative knowledge is defined in a purely constructive manner. We can only model based

on existing objects or information that defines our sets. We need to lift this restriction for operator

inputs. Consider the pick task of example 3. We want to move the robot arm close to it to pick up

the box without collision, which is usually computed by a motion planner that tests configurations

or actions of the arm and checks if they can be connected and executed without collision. We

cannot specify all the available empty space in which the robot arm can move freely. The only

information we have is the position of all the objects in our scene that are known to us. Therefore,

we can only tell that the movement is collision-free if we assume a closed world and rely on the

completeness of our knowledge about the current situation. To model operators that rely on the

assumption of a closed world, we can describe that any instance of the current domain that matches

the specified concept should be used as input for that operator. Only with this non-constructive

approach can we handle tasks such as path planning.

The next question related to the closed world assumption is the relevant size of the current

domain. The basic idea is to factorize the problem so that we can handle it despite the curse of

dimensionality. Consider the planning of an entire factory. If we check for collisions within a

single cell in that scenario, the input asking for any object would include all the screws, cutters,

and boxes in the factory, which is obviously neither feasible nor necessary. Therefore, we can

specify the domain’s extent relevant to the operator, such that the closed world assumption holds.

In chapter 3, we discuss how to specify the different domains based on our model automatically.

2.2. Procedural Knowledge 37

Operator Entropy

During planning, our operators are applied on a set of instances. We assume that our operators are

purely functional. Thus, if we provide the same inputs, the result of these executions is always the

same. This is especially important because the plan we create on an abstract level will eventually

be refined, resulting in a real-world execution. If success and failure are random and do not depend

solely on the inputs, we cannot be sure we have found a feasible plan for this refinement. As a

result, no hidden states are allowed within the operator’s algorithm. With access to the implemen-

tation, internal states can easily be made explicit by additional inputs and outputs. This technique

allows, for example, to implement a state machine that transparently loops back the resulting out-

put state as a new input. Pseudo-random motion planners can be formulated deterministically by

providing the seed as an explicit input. Our model facilitates the definition of operators that return

different outputs on the same inputs only a few times. An example of a function that uses this is a

grasp planner for a box that returns the four most practical grasps on an object. For this purpose,

we model the operator’s so-called entropy. During planning, we can apply this operator with an

additional parameter that tells the implementation of the current number of calls. Since the entropy

can also be infinite, e.g., for the random motion or state sampler in motion planning, the planner

can decide how many attempts the operator should make with the same input.

Irreversible Operators

Another challenge is operators with internal states for which we have no access to the implementa-

tion. The most prominent example is an operator that interacts with the real-world. It has "internal

states" and can fail, even though it worked with the same inputs just a few moments ago. Since

we do not have access to this internal state, we cannot reset and try again in case of failure. As

noted in remark 4, planning and execution follow the same mechanisms in our approach. The only

differences are the level of detail in the "simulation" and the irreversibility of executions in the

real-world. Our planner must respect that we cannot reapply operators with internal states, as their

internal state cannot be reset. Thus, changes in the input, such as the consumption of inputs, are

persistent. Therefore, our model has the property "irreversible" for every operator with an internal

state, which our planner then uses to prevent inconsistent forks during our search. To allow for

an MPC-like behavior of our planner, even in the case anything unexpected happens during the

execution of an irreversible operator, the design rule to return all consumed inputs must be met,

which means, for example, that a pick operation, which consumes the robot and a box, must return

the robot and box even in case of some failure during execution. For sure, the returned state must

represent the most recent modified state. In our example, in the case of an unsuccessful grasp, we

would return both box and robot instead of the robot with the attached box, update the position

of the robot and gripper to our knowledge, and possibly increase the uncertainty of the box posi-

tion. That would allow us to restart the planning and, therefore, find a more suitable and updated

solution to the current situation in an MPC-like fashion.

38 Chapter 2. Set-Based Hierarchical Modeling Approach

Operator Hierarchy

For our concepts, we have already discussed the hierarchical order that is immanently important

for our planner in chapter 3. This concept hierarchy is a prerequisite for partially ordering the

procedural knowledge modeled by the operators. Let us consider the pick scenario. On an abstract

level, the coarse operator would solve the task of assembling two parts, such as a box and a lid,

in just a single step. Like example 2 for declarative knowledge, we can find a refinement for this

abstract process that also considers continuous properties. In the abstract version of this example,

we only indicate whether an object is sitting on the table or is currently grasped. Depending on this

state, we can then apply different operators. Objects lying on the table can be grasped, an object in

the gripper can be assembled with another one on the table, and we can place objects in the gripper

on the table again. It is easy to see that this abstract action can be refined with several operators.

So, the partial ordering of operators is not a one-to-one relationship between two operators but a

one-to-n for a single operator and a set of operators. We rely on their properties, inputs, outputs,

and the declarative hierarchy to check whether a given set of operators is a feasible refinement.

For a valid refinement of an operator, we need a network whose leaf nodes provide a subset so that

a more detailed concept can be found for each output node of the coarse operator, as depicted in

Figure 2.4. Remember that our outputs to operators must cover the most detailed instances that

this operator can generate. This becomes important when verifying the valid hierarchical ordering

of operators. Moreover, this is a necessary but insufficient requirement for the partial ordering of

operators.

We observed a hierarchy between operators with the same inputs and outputs. The difference

between these operators is the precision of the simulation they implement. It can vary, e.g., in

different discretizations of time or space in the simulation or the relaxation and simplification of

some physical processes. Most importantly, however, they differ in their computational complex-

ity, which affects the runtime and the quality of the results. Therefore, it may be advisable to check

the cheaper operator first, although the model does not differ in input or output types. To consider

this in our model, we introduce so-called key performance indicators (KPIs). They describe the

expected runtime of the operator once it is called with specific inputs. We also model the expected

cost of the application and complete refinement of a particular operator, which becomes important

for domains with several alternative paths that all lead to the same goal but differ in cost after

execution on real hardware.

A good design of the hierarchical domain considers all possible decisions that can take place in

the given domain. For all those decisions we need separate concepts with the respective instances.

Our operators take those concepts so the planner can transparently decide what to do. For each

refinement of the operators, a new dimension of a possible decision should be spanned so that we

ultimately cover the whole decision space. We would start with the decision that rules out the

largest chunk of the decision space on the highest level and proceed to more subtle decisions later.

Apart from the modeled input and output hierarchy and the ordering of the KPIs, an addi-

2.2. Procedural Knowledge 39

Assemble

obj_a

obj_b

result

More detailed Assemble

obj_b

obj_a
result

result_b

Figure 2.4.: The high-level operator may either be refined by a single operator or a set of operators
that can form a network. In either case, the leaf nodes must be more detailed and have
similar instances to the outputs of the coarse operator. Additionally, root nodes should
be in the more detailed level for each input of the abstract operator [2].

tional requirement is a relaxation of the conditions in the coarser layers, which means that for any

sequence in the more detailed layer, an appropriate solution on the coarser layer must exist, as

otherwise possible solutions might be discarded based on too strict assumptions in more abstract

layers. In particular, the result of the more detailed layer must be similar to the coarse layers

outputs as shown in Figure 2.4. This requirement is a natural extension of our first prerequisite:

finding more detailed output concepts on the more detailed layer. We cannot guarantee that this

property will be fulfilled, but we can rely on proper modeling or validate it with test run data.

However, we can check if the property is at least fulfilled on the meta-level, such that a valid path

based on the input and output types exists, neglecting the implementation of the operators similar

to approaches in discrete domains [22, 23, 24, 25].

Computation time and expected results of the operators may be domain-dependent. Therefore,

the operator hierarchy, as opposed to the concept hierarchy, may not always be automatically

computed from the models. We also allow humans to explicitly define the operator hierarchy for a

specific domain to overcome this issue. For example, certain operators, such as additional lighting

to take pictures, are not applicable in hazardous or explosive environments.

40 Chapter 2. Set-Based Hierarchical Modeling Approach

Remark 6:

We already stated that a concept can be defined by the behavior of the operators that act on

them (cf. remark 5). Additionally, we discussed that the hierarchy of operators depends on the

domain. The conclusion is that even between structurally similar concepts, a partial order can

be determined only by the operators that use them. Therefore, the ordering of the concepts can

depend on the domain and the operators available there.

Any operator with more detailed operators can span a new planning domain in our hierarchical

factorization. These domains have specific characteristics that make different planning strategies

advantageous. The operator in our model also defines this parameterization for the later planning

process, such as search heuristics or scheduling. Furthermore, in the case of coarse operators that

cannot be called only once, such as samplers for motion generation, the refined layer must preserve

the decisions made on the more abstract layer. Therefore, we can specify which operators should

be called with the same call count as the operators in the more abstract layer during refinement.

Remark 7:

Operators are graphs with relevant planning properties and a defined dataflow or blackbox that

implements the behavior. This format is purely declarative and thus compliant with our con-

cepts. Thus, we can implement operators that act on other operators described by concepts. We

plan, schedule, or optimize the models with these meta-operators. Therefore, we can describe

the whole system with its own structures and can let it plan and optimize itself after a bootstrap-

ping step. An obvious point where we apply this functionality, in addition to the hierarchical

planning discussed in chapter 3, is the automatic refinement of the operators with a modeled

implementation discussed in section 4.5 or the automatic data fusion in section 4.3.

We use a bipartite graph structure to model the data flow, which describes which sub-operator

inputs or outputs are fed to which input of a sub-operator in so-called plan-templates. For these

operators, a connector node of the same bipartite type as the operator nodes connects each output

to an input. This way, we can model sequences or loops of operators and introspect and ma-

nipulate them algorithmically. For example, this structure can model a scripted pick operation

that simulates the arm’s movement over the object before fine-localizing and grasping it. We can

then automatically refine this so-called plan-template as described in section 4.5 and execute the

same logic but replace the simulating operators with their executing pendants. This will reduce

modeling effort for sub-problems that a fixed set of rules can solve without planning.

Similarly, we can automatically generate abstractions from a very detailed plan-template by re-

placing detailed sub-operators with abstracted versions, which are easier and cheaper to calculate.

41

3
Hierarchical Planner

Planning is about trying out actions until a given start state is transformed into the desired goal

state. It is evident that an exhaustive brute-force search is very inefficient and time-consuming.

This search type is only possible in some small scenarios due to time, cost, or technical reasons.

Therefore, we usually rely on some heuristics for domains we have structural knowledge about,

such as logistic use cases, manufacturing, or process industry. We must only apply brute force

to less structured domains or new and unknown tasks. Our goal is to write a planner that can

solve generic problems efficiently. In the previous chapter, we learned about the model, which

is the prerequisite for an automatic operation on arbitrary domains. Here, we discuss the main

features of the planner, cf. chapter 7. Additionally, we will analyze different ways to classify our

algorithms relative to existing approaches, illustrate their introspection capabilities, and present

examples of domains to which we have applied them so far.

3.1. Motivation

In the long term, we want systems that independently solve the tasks we define. Instead of a fine-

grained, tedious, and time-consuming specification of every step the machine should do, we want

to declaratively define tasks at a high level. If we compare the current situation in automation

with the level of detail required for the task specification for differently experienced employees,

we come to sobering assessments. In automation, we must specify tasks in great detail, similar to

or even worse than working with trainees on their first day, as humans can at least bring in some

common knowledge that they transfer from other domains. Only application-specific peculiarities,

such as manufacturing steps or details in metal processing, must be explicitly mentioned. On the

other hand, today’s machines could even destroy themselves without detailed specifications for

the operations. They are far from being able to transfer knowledge from previous tasks to newly

specified ones. They cannot perform a task independently and derive all the necessary sub-steps on

their own if it is only specified at a high level. This puts a higher burden on the humans that need

42 Chapter 3. Hierarchical Planner

to specify every detail of the execution. Additionally, the program depends on the production plant

and the task at hand. If we could only specify a high-level description of the task, any change to

the product or plant would be decoupled from the other, and changes would be possible at a much

faster pace than with today’s interlinked systems. This is the only way to handle smaller lot sizes

and automate other domains, such as housekeeping, car maintenance, and operations in remote

and hazardous environments.

To achieve this, we need a system that can calculate and apply solutions to complex tasks

where only the domain, the initial state, and the objectives are specified. To accommodate these

requirements, we rely on model-based algorithms, which allow us to easily define different sub-

domains with models, which can then be solved with arbitrary algorithms, which not only makes

it easier to detect errors but also improves the theoretical scalability to larger problems compared

to one or two-level planners for similar domains such as [26, 27]. Furthermore, our models are

meaningful enough to describe themselves and our hierarchical planner.

This bootstrapping allows self-optimization and is only logical for approaches describing ar-

bitrary autonomous systems since they are autonomous systems themselves. For model-free ap-

proaches, we have seen AutoML techniques incapable of describing themselves. In addition, we

may not have enough data for the specific task because the simulation is not available to generate

new data, and there is too little recorded data for rarely performed tasks. From this perspective,

model-free approaches can only be part of the solution. Once we have collected enough data,

we may switch to data-driven approaches for some sub-problems, thereby improving planning

performance. This can be done seamlessly with heuristics that guide the planning process.

As soon as we deploy the algorithm to an actual system, it will naturally fail at some point due

to unexpected events. The strengths of model-based algorithms come into play when we want to

know the cause of the errors. We can determine which transitions should have worked but did not

and which were allowed in the simulation but failed in the real world. We can combine differ-

ent simulation levels for various sub-tasks to handle even difficult-to-model physical phenomena,

such as contacts or fluids. The challenge with planning is the curse of dimensionality. Especially

for multimodal systems, which have access to a variety of sensory options and multiple modes of

interaction with the environment, the combination of discrete and continuous properties results in

an exponential growth of computation time relative to the number of actions possible, the number

of actuated or passive states, and thus the number of objects involved. Heuristics are not a generic

solution either since they are very domain-specific. Therefore, we have developed a hierarchi-

cal planning algorithm that solves the problem on an abstract level and recursively decomposes

it based on this solution. This plan on the coarse level can be seen as a kind of heuristic. How-

ever, it is very flexible and expressive due to the underlying planning to calculate it. In addition,

this approach imitates the human way of solving such a task, allowing for explainability during

debugging. Through our hierarchization and refinements, we can easily switch between the dis-

crete and the continuous world, which are separated and handled with different algorithms in other

approaches.

3.2. Planning Algorithm 43

3.2. Planning Algorithm

Our planning algorithm is based on the formal models discussed in chapter 2. Because of their

expressiveness, we can handle a variety of domains with different algorithms that operate on them.

For this thesis, we solved problems related to task and motion planning, perceptual system config-

uration, root cause analysis in food production, and sensor data fusion. The hierarchical planning

approach is divided into two different sub-algorithms. The main contribution is the hierarchical

decomposition based on the set-theoretical foundation of chapter 2. The second contribution deals

with the search algorithm and its data structures, which are optimized by the properties of our

model. The basic idea behind all our algorithms is to reduce the number of states that must be

visited to reach the given goal. There are two parameters to accomplish this. First, one can re-

duce the mantissa of the exponential function. For this purpose, we could introduce intermediate

targets, which allow for reducing the number of states from nl to m ∗ nl/m in the ideal case. The

other option is to reduce the base of the exponential function, which is determined by the num-

ber of combinations that the available actions can affect the currently available information. Our

proposed method targets both options. It reduces the number of possible actions and the num-

ber of available instances by abstracting and factorizing while considering the current domain to

minimize negative impacts on the solution.

3.2.1. Hierarchical Factorization Algorithm

The basic idea behind our planning algorithm is similar to that of hierarchical task networks (HTN)

[28, 29, 30, 31], which operate on discrete state only. Extensions to these approaches already in-

clude geometric constraints [32, 33, 34, 35, 36]. Similar to this work, we first find a solution in a

reduced domain and refine that plan until we consider enough detail to ensure its successful appli-

cation in the real world. However, a significant difference between these well-known approaches

is our strong type-system based on a set-theory for declarative knowledge. Based on this defini-

tion, we can automatically calculate refined derivations of the specified goals and flexibly factorize

the complex overall task. Therefore, we have generic algorithms to flexibly factorize the task at

hand and apply the planning algorithms recursively. Furthermore, our approach applies not only

to discrete or specific continuous variables but also to a wide variety of heterogeneous data types

and black-box operators that act on them. The task for our planner is specified by the domain

containing the hierarchically ordered concepts and operators as described in chapter 2, a set of

instances describing the state at the beginning, and desired goal instances. In this context, domain

defines the limits of consideration as highlighted in remark 8.

Remark 8:

For us, a domain not only describes the setup for the planning task with all available information

and actions. It also defines the horizon in various dimensions of consideration. Those aspects

range from the level of detail over spatial boundaries to limits in the temporal dimension and its

resolution. Especially the temporal and spacial boundaries are essential for operations that rely

on the closed world assumption as they must assume knowledge about all relevant objects. The

44 Chapter 3. Hierarchical Planner

domain also tells us the point beyond which we accept any more detailed effect as negligible

noise that we treat online with backtracking and rescheduling once it is significant enough to

affect our process.

As we can only consider a limited number of objects, the spatial dimensions of the domain, in

which all relevant properties and objects are described, should be as small as possible to cover

the current process. Additionally, some techniques require a closed world assumption, such as the

collision checking of example 4, and therefore defined boundaries.

Example 4:

Figure 3.1.: The left robot approaches the box to grasp it. In parallel, the other robot grasps
the screwdriver. During execution, both entities are handled in the same spatial
proximity and can influence each other, while other robots in the factory are not
considered.

In the case of a robotic cell, for example, a rigidly mounted dual arm setup with grippers and

cameras for each manipulator as depicted in Figure 3.1 above, the temporal horizon starts at the

current point in time and ends immediately after reaching the target.

For a less dynamic robot or a process with long time constants, even the time after reaching

the target for the first time can be considered until the system reaches a standstill. The spatial

boundaries are, in this example, necessary for collision avoidance. This domain of a robotic

cell can be a sub-domain of a larger planning task, which conducts factory-wide scheduling and

planning. This task, by itself, can be a sub-task of optimization across multiple factories and re-

lated logistics. A well-known example of such a setup is the manufacturing of cars. Production

must be scheduled between various sites in various countries with specific demands, production

capacity, transportation capabilities, and import tariffs. Each factory has multiple production

lines for which maintenance, working shifts, and capabilities must be considered. Each line

comprises several robotic cells that calculate purposeful actions, considering geometric and

dynamic constraints.

3.2. Planning Algorithm 45

As the domain is a declarative property, we can express it as an instance of a concept and calcu-

late the partial ordering between several of them. As in the example 4, there may be more general

domains that cover larger spaces and allow factory-wide planning or more detailed domains that

only cover excerpts of the plant. A domain that considers only a single assembly cell is a sub-

domain of our entire facility, which makes it a subset of the concept that describes the whole plant

so that we can apply the more-general-than relationship from section 2.1. Theoretically, there is

no obstacle to refining an area further and further and eventually reaching the quantum mechanical

level, which is the most precise physical model we currently have for our world. However, if we

look at the example 4 with the operation of a robot arm, there is a level of detail at which we can

reasonably stop modeling further details. We could model the robot actuation as a single opera-

tor that performs point-to-point motion between different configurations and assume that there is

linear interpolation with constant velocity between these configurations. A more refined version

could also consider velocity, acceleration, or even inertial and Coriolis forces, motor currents, and

gear ratios. From this example, we can see that at a certain point, we can simply assume that

the underlying controller has a negligible deviation from the specified goal, which makes further

modeled details unnecessary. This limit is domain-specific and thus defined by our domain model.

After the production in example 4, the goods must be delivered to the customer. This logistics

use case of example 5 is a tangible example of the human-like approach of our hierarchical planner,

which covers both discrete and continuous properties.

Example 5:

In our hierarchical logistics domain, we have operators on the most abstract level that can

change the semantic location of the crate, which is encoded by the country and postal code of

the current position. Different operators implement several modes of logistics, such as transport

by ship, train, truck, plane, and van. Each operator calculates the outcomes and if the action is

applicable given the provided inputs. The delivery van can only move within neighboring postal

codes, while ships and airplanes can only travel to very few selected locations with the required

infrastructure. However, the crate changes its positions similarly and only on a discrete level

for all these different operators until we refine the process further.

Loading the truck and the van is quite similar on the middle level. We can do it by hand,

using a forklift, or completing it with an advanced mobile robot. Only on the more detailed

continuous level do we notice that the forklift is too tall to fit into the van. When we consider

more detailed continuous and timing information, we might notice differences in the grasp and

drop positions for the autonomous guided vehicle (AGV) that result in varying execution times

because of differing trajectories for the arm and platform. As we calculate them, we might

notice that those paths are significantly faster or slower than expected by the more abstract

levels; thus, the truck might be loaded by the AGV while the van is packed manually.

At the most abstract level, our logistics domain covers long-distance transport. With several

planners integrated into our hierarchical planning approach, we can calculate a feasible, quick, or

cheap solution to this problem. If specific criteria are met, such as no continuous properties in the

46 Chapter 3. Hierarchical Planner

current subproblem, and an introspective implementation of all operators in a specific formulation

is satisfied, we can transform the task into a PDDL [8] domain and problem. We can then apply

a planner from the rich set of well-tested and optimized solvers for such domains. Similarly, we

have connected the hierarchical CHIMP planner [37], which is very efficient for some hierarchical

forms of discrete planning. If the conversion is impossible or the domain does not benefit from one

of these planners, we use our algorithm, described in subsection 3.2.2. This planner is optimized

for models based on set theory and applicable to generic domains, making it less efficient than

tailored algorithms for specific problems. Each sub-task is defined by an operator that we cur-

rently refine. The solution’s successful application to the more abstract domain gives us hints, like

heuristics, on which information and actions we should concentrate during our current search to

reach some intermediate goals. The model of this operator holds information about which planner

and parametrization of the planning algorithm are optimal for the current sub-domain. The domain

contains all these properties for the most abstract layer, such as activated scheduling, which plan-

ning algorithm to use, and which operators to apply. In either case, the result of these algorithms

is a plan that consists of a sequence of actions that operate on defined instances and return new

instances. This plan is the basis for our factorization algorithm. Let us assume that the high-level

plan of our example 5 is to transport the crate by truck and then by van. We can now factorize

the overall task into two sub-problems, defined by the applied operators in the plan, their inputs,

and outputs. These tasks can only be solved successively as we operate on the detailed outcomes

of previous steps that are at least as refined as our current sub-task. For example, we need the ex-

pected location and time of arrival of the crate for the subsequent continuous actions. We cannot

operate on the same inputs the more abstract operator used. Nevertheless, the two steps are com-

binatorically independent according to our set-based model, which assumes that the same abstract

behavior for any action that operates on detailed instances can be expected if they are similar to the

intermediate goals in the sense of our instance definition Figure 2.4. Thus, an example coarse plan

for our example 5 can tell us that the crate may be moved to the goal from any detailed position

that complies with the more abstract location description. At the same time, the arrival time does

not influence subsequent steps as long as they are within the defined region or set of acceptance

defined by the more abstract instance.

Each applied operator in the abstract plan defines the properties for the planning task in the

subdomain. The input and output instances are used to calculate the available facts and goals for

the sub-task, while the operator describes the configuration of the planning algorithm. For the first

step of our example, we already decided which crate to use. There might be several of them on the

shelf, and without the abstract layer, we would try to apply the following steps to each of them. We

can limit the degree of combinatorics because we hold on to decisions made at the more abstract

level. The algorithm that calculates the new planning domain based on the current sub-task is

explained in detail in chapter 7. The rough idea of this algorithm is to provide only a subset of all

available instances for the refined planning domain. We blacklist all instances that belong to any

concept that is input to the operator that defines the current subdomain, except for instances that

are similar to those actually used in the abstract layer. The goal of the sub-task is defined by the

3.2. Planning Algorithm 47

Figure 3.2.: Depiction of the hierarchical planning scheme. The spheres visualize different plan-
ning states, and the edges depict temporal relations for all non-vertical edges. The
vertical edges are refinements to that state. The differently colored horizontal chains
are successful plans on that level of abstraction. The topmost chain is the most ab-
stract solution, successively refined by the rows below it. The white spheres are visited
states that did not contribute to the solution, and the yellow spheres are lately added
states.

outputs of the operator at the coarser level. With this approach, we define a new sub-task and can

proceed wholly recursively as depicted in Figure 3.2. The recursion stops when no operator with

more detailed sub-operators is applicable in the current plan. This is the case for our domains as

soon as we apply the real-world execution operators, which move the robots, transport the goods,

and manipulate the objects in the real world, ultimately solving the task. For simpler domains, the

limit of detail can be at a simulation level, for example, because the factory layout optimization

just provides a plan a human later refines and executes.

Since the refinements are defined purely by the domain’s (semi-)automatic hierarchization, we

can easily combine models from different sources into a single domain. The hierarchical order re-

sults automatically from the information provided by the models. We have not defined strict layers

in the sense that we could enumerate the number of levels and assign operators and concepts to

those abstractions. The number of recursive refinements is determined only by the operators used

during planning and their available refinements as depicted in Figure 3.3. During our planning

process, we re-evaluate the operators with the new, possibly more detailed instances so that the

current data is forwarded. In our example 5, we consider the calculation of approach positions

for grasping based on the position of the objects. Therefore, this algorithm is relatively simple

and has already been evaluated at the most abstract level in a rather coarse simulation. However,

the object position input to this algorithm will change with more refined simulations or real-world

48 Chapter 3. Hierarchical Planner

AssembleCoarse

PPick

PAssemble

PPickL

PLocalizeL

PAssembleL

ConstructController

ContructScene

HomeSim

PickSim

LocalizeSim

AssembleSim

HomeExec

PickExec

LocalizeExec

AssembleExec

ScrewCoarse
PPickDual

PScrewOut

PScrewIn

PPlaceDual

PPlace

PPickDualL

PScrewOutL

PScrewInL

PPlaceDualL

PPlaceL

PickDualSim

ScrewOutSim

ScrewInSim

PlaceDualSim

PlaceSim

PickDualExec

ScrewOutExec

ScrewInExec

PlaceDualExec

PlaceExec

SplitUpStateFull

GetStartState

DOIT

Figure 3.3.: Operator hierarchy within a domain. DOIT is the placeholder operator to configure
the properties of the most abstract planning task. Successors of operators are available
in the subdomain that refines this operator. Leaf nodes are operators used in the most
refined domain, which executes the task in the real world. Operators can be used in
multiple subdomains. The number of refinements is not the same for all operators in
a domain such that no strictly hierarchical levels emerge. Those levels only emerge
during planning based on the applied operations. The coloring is purely user-defined.

executions. Therefore, we must re-evaluate the operator on the updated instances to synchronize

the output information as depicted in Figure 3.4.

When we abstracted our operators, we left out details, which affected not only our model’s

declarative inputs and outputs but especially the procedural calculation. This can, therefore, lead

to different conclusions or solutions. As mentioned above, we need to ensure that the abstracted

operators provide a mapping between inputs and outputs that is a superset of the mapping in the

refined layers. If we fail to honor this characteristic, the quality of our solution will deteriorate.

Despite conducting a comprehensive search, we may not be able to find existing solutions or only

provide a more expensive plan than necessary. The problem is similar to the construction of good

heuristics. If they are imprecise, their usefulness is reduced. On the other hand, a strong heuristic

can only handle a limited and smaller number of domains and is more challenging to construct.

The abstract levels with their intermediate targets can be considered heuristics in our hierarchical

approach. However, they are calculated with our planner, which is domain-independent and only

influenced by the model. The domain-specific part is modular and thus as reusable as possible,

easy to formulate, and so expressive that the heuristic may already include the evaluation of sim-

ulations. The approach, where the abstraction level is considered a heuristic, also suggests that

these levels may be wrong in their estimation and thus may even fail and lead to dead ends. We

can detect when an intermediate goal cannot be reached and look for another way. In other words,

we update our heuristics during planning based on the feedback from more detailed levels, includ-

ing the real-world execution. This backtracking is done by blacklisting the dead end in the abstract

layer and restarting the planning algorithm on this layer afterward as depicted in Figure 3.5. This

way, we find an alternative solution to the target, which may circumvent the problems not yet

3.2. Planning Algorithm 49

PScrewInrobot_box

robot

robot_box

PScrewOutrobot box

robot

PPick

box

robot

robot

PPick

robot

robot

PAssemble

robot

box

robot

box

box_fixed
robot

PPick robot

box

robot

box

Screw

assembly

magazine

Screw

magazine

assembly

magazine
assembly

magazine

assemblyAssemble

scene_object_type

assembly
assembly

screwdriver

screwdriver

Figure 3.4.: The upper, more abstract level defines the intermediate goals for the more refined
level, which is depicted by matching colors. The red pair is the goal and the instance
fulfilling this goal for the first step. The second step has two goals and respective goal
instances. There, the refined level acts on the goal instance with additional detail in-
stead of the instances of the coarse level and, therefore, forwards the detail calculated
in that level. Further discussion can be found in chapter 7.

Figure 3.5.: This illustration of [2] distinguishes different hierarchical levels by their color. No
plan was found in the orange subdomain (hence the large number of planning states
visited). Therefore, a new rough plan was searched in the black domain, which led to
the new refinements of the green and dark blue nodes.

50 Chapter 3. Hierarchical Planner

considered at this abstraction level. In order to learn from the problems solved by this reaction

in the long run, we need to extract knowledge from these situations, which can then be used in

an updated model as discussed in chapter 4. During our backtracking, we treat stateful operators

like real-world execution, with the same mechanism as purely simulated and stateless operators.

Since stateful operators cannot simply be reset and resumed from another state, we must continue

planning from the last state generated by such an irreversible operator. This approach obtains a

behavior similar to MPC algorithms for a real-world operator. Suppose the perceived operation

yields results that deviate from the expected outcome of our planning, for example, because the

content of a drawer was not observable before, and positions and objects were only guessed. In

that case, we backtrack and continue planning from the current state. We can solve problems like

[38] once we model the expected outcomes more abstractly. When backtracking an irreversible

operator, we not only limit the exploration of the current level to the state that resulted from the

application of this operator but also derive all temporally following planning states on the more

abstract levels from this state. Therefore, the backtracking could result in an unsolvable planning

state, as the more abstract levels may not process the intermediate products of the more detailed

levels, which can be avoided with suitable, coordinated modeling of the levels, as we create them

automatically in section 4.2. When calculating new planning states, whether based on backtrack-

ing or the regular planning progress, the changes of the instances during planning, the automatic

abstractions that take place, and the relationships between the instances and the concepts to which

they belong become relevant. The initial state is the reference for the abstract level with which

we start our hierarchical planning and the basis for the finest level we see during planning. Thus,

the instances that live in this state belong to concepts that are detailed enough for the operators

of execution. The abstract operators do not need this level of detail and, therefore, neglect most

of the information of these instances. Nevertheless, our declarative knowledge also ensures that

they can extract the relevant information from the more detailed instances. However, the output

will lose all details because the abstract operator cannot make any statement about this specific

information as depicted in Figure 3.6.

Therefore, the specified goal for our hierarchical planning must be an instance of an abstract

concept so that it can be calculated and achieved by the highest-level operators, which means for

our example 5 that the goal only tells that there must be a box in this house. Neither the geometric

location, accuracy to the centimeter, nor the exact arrival time will be specified for the overall

task as they are irrelevant to begin with. Alternatively, even the first level would have to consider

this additional information. It would have to achieve it precisely, eliminating every chance of a

hierarchization and factorization of the task. As the planning with refined levels progresses, the

previous, more abstract levels define the objectives. As a result, the goals also become more and

more detailed. The operators also take additional information into account and calculate more

details for subsequent processes during planning, which means that less information from the

instances of the initial state is ignored. We use two orthogonal measures to ensure that our planning

fulfills the task in the real world as desired. First, we define the requirements for the target state

with a set of target instances. The final state must be a subset of the target these instances describe,

3.2. Planning Algorithm 51

Screw

assembly

magazine

Screw

magazine

assembly
magazine

assembly

magazine

assemblyAssemble

objecttype

assembly
assembly

screwdriver

screwdriver

Figure 3.6.: Each piece of information of an instance is depicted by a fragment with a color specific
for its type in the rectangles. The more fractured instances hold more detail, which is
reduced in this abstract domain as soon as the oval operators act on them.

which is to ensure that we do not stop planning on a simulated level but execute it in the real world.

We refine each operator on the detail dimension orthogonal to the target specification with the most

detailed operations available in the domain.

3.2.2. Planning Algorithm

In the previous section, we discussed factorization based on hierarchical abstractions and set-based

models. To solve this approach’s emerging sub-problems, we can apply existing and dedicated

search or planning algorithms, which we select based on domain properties such as PDDL, HTN-

like, or task and motion planners. These algorithms perform well in some domains but have

limitations that prevent a general application. For example, the task and motion planning algorithm

can handle continuous problems well but struggles with many discrete states fragmenting the

state space. A motion planner cannot deal with discrete states, while PDDL planners are weaker

on continuous dimensions and usually only accept time to be a continuous variable. A further

difficulty with cascaded planning algorithms, such as our hierarchical factorization approach, is

the detection of dead ends and early terminations for the integrated planner. Therefore, we have

developed an algorithm that takes advantage of our set-based model to cover general domains and

acts as a fallback when other algorithms cannot leverage their strengths. It is a forward-state space

planning approach, which can be configured for breadth-first or depth-first exploration. A detailed

discussion of this planning approach, the integration with hierarchical factorization, and the data

structures used can be found in [2].

Planning Process

In our planning approach, we iterate over all open states that have not been identified as dead ends.

We apply all available operators on those states, with all combinations of available instances that

meet the minimum input requirements specified by the modeled concepts on the operators’ inputs.

At this point, the model is also used to determine the instances relevant to the special inputs. These

inputs include, as briefly mentioned in chapter 2, all instances available of a given type used for

non-constructive operations such as path planning or negative inputs that mark instances that are

prohibited for active use because the more abstract layers have not considered them, but must be

52 Chapter 3. Hierarchical Planner

Figure 3.7.: The right planning state is a successor of the left planning state. The instances with
green frames are available instances; the yellow framed instance is the goal, and the
nodes marked in gray are the operator and instances touched in the last step that calcu-
lated the current state. We can see that the newly applied operator consumed instances
that are no longer available to calculate the new instances.

at least considered passively in the refined layer. The resulting state is calculated for each of the

successfully applied operators. In this state, the available facts are updated with respect to the

modeled properties such as "consumed", and the operator’s output is merged with the previously

available facts as depicted in Figure 3.7. With this basic algorithm, the planning state graph,

which contains the progress of this state space planning, would look like a tree, similar to other

state space planning algorithms like RRT or EST. However, with a treelike structure, we cannot

tell whether the new state has already been examined so that we could end up in loops. Motion

planning algorithms have special strategies that are not applicable to our generalized models to

explore unseen space and prevent those loops. They retain this tree structure but calculate distance

measures to either take samples from the unexplored space and connect them to the nearest already

visited nodes (RRT) or to take starting nodes that live in poorly explored regions and start the

forward step from there (EST). For us, none of these approaches solves the problem of identifying

and preventing dead ends since the calculation of distance measures is made difficult or even

impossible by our heterogeneous state, which is composed of the accumulation of all existing

instances at some point in time as shown in Figure 3.7.

Compact Planning Domains

We, therefore, use our set-based model to detect similar states as described in remark 9. If we

encounter a new state already in our planning state, we will not explore it again. With this loop

detection, we can also identify dead ends, at least for domains with a limited number of possible

states. We can also achieve this by discretizing the value ranges for continuous properties. This

approach is similar to the buckets used by probabilistic planners to ensure good search space

coverage. The instances in a bucket are assumed to behave similarly for the next steps. In our

framework, we would model these buckets as concepts. These concepts describe the similarity

of their instances. When we plan on an abstract domain, in which no operator uses the level of

3.2. Planning Algorithm 53

Figure 3.8.: Factories with multiple logistics and assembly robots require coordination of discrete
and continuous actions, which are partly independent and thus factorizable. Therefore,
this is a good field of application for our hierarchical planning approach.

detail of the instances provided, which is commonly the case for the coarse levels of planning,

we automatically abstract the instances to the specific level of the current planning task. For our

example 5, when we store boxes in the truck, all information about their contents and identity will

be ignored, and they are only distinguished by their external measures.

An interesting problem that arises with the compactness of our planning state, as stated in

remark 9, are instances that are identical on the current level but will be separate instances on

a refined level. Take, for example, screws that have a position and are therefore identifiable on

the refined level but group together on the more abstract level to form indistinguishable instances.

This grouping happens as soon as we only consider properties that the operators of the abstract

level take into account, such as size and material, and abstract all other properties away, which

means that these instances are viewed through the glasses of a more abstract concept, making

them identical to the tolerances defined in it. As mentioned above, our primary goal is to reduce

the branching factor. If we have several similar instances, we expect operators to behave the same

for each of them during the planning process. Otherwise, they would already contain additional

information at this level, which the operators then explicitly use to adapt their behavior. Therefore,

when we consider them individually, we expect redundant paths in our planning graph for each

instance. So, for n similar instances and m uses in a successful plan, we get n!
m!

redundant paths.

Because of our modeling approach, we can avoid this unnecessary combinatorial complexity by

combining them into a single instance with a counter, which significantly reduces the associated

effects at the abstract planning levels, especially for logistics and assembly scenarios with many

similar instances as shown in Figure 3.8, such as screws, AGVs, boxes, raw materials, or modules.

With this automatic abstraction, we extend the power of our hierarchy to yet another dimension,

in addition to abstracted and cheaper operators and fewer steps to the goal.

54 Chapter 3. Hierarchical Planner

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 0

ConstructRobotController: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

-7711138367615427443

HomeSimulation optimized: 0

ConstructRobotController: 0

7423663638819804171 8608209378645711329

PPickL optimized: 0

-5632126445051400234 -9222352847728889472 6715566893154417265

PLocalizeL optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

ConstructRobotController: 0

ConstructSceneGraph: 0

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 0

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

-9222352847728889479

ConstructRobotController: 0

ConstructSceneGraph: 0

ConstructRobotController: 0

ConstructSceneGraph: 0

3781024677022027216

PAssembleL optimized: 0

-9222352847728889471

PLocalizeL optimized: 0

HomeSimulation optimized: 0

ConstructRobotController: 0

HomeSimulation optimized: 1

HomeSimulation optimized: 0

ConstructRobotController: 0

Figure 3.9.: This excerpt of the hierarchical planning state shows the abstract plan in the top row.
Our planner is currently redefining the first step of this plan. However, the refined
layer has no solution to this planning task. Therefore, we can observe the characteris-
tic structure with multiple diamonds, each with its dead end.

Remark 9:

We modeled the planning process in a meta-domain. There, the planning state is a concept on

which meta-operators act, which apply operators of the given planning domain. Therefore, the

planning states during planning are instances of our meta-concept, for which we can calculate

similarity as described in section 2.1. We assume that the succeeding planning states are the

same in the given domain for similar concepts. Therefore, we can define a compact planning

domain in which a single node represents similar states in the planning state graph. This reduces

the number of planning states, improves the computational complexity of the planning process,

and eases debugging and introspection. To calculate the similarity of two states, we consider

the domain and the similarity, number, and creation times of the instances in this state. The

available instances are automatically abstracted to the most detailed level the current operators

work on, allowing for effective state compression in a coarse domain. That results in more

similar instances, resulting in more similar states and reducing combinatorial complexity on

abstract levels.

In compact planning domains, the planning state is no longer a tree but a graph, with possibly

several parallel paths leading to a single state. Characteristic diamond-like structures, as depicted

in Figure 3.9, emerge if dead ends arise, which can be investigated and described with category

theory [17, 39]. Each diamond is generated by an operator that has consuming inputs. The suc-

ceeding part is formed by states that emerged from operators without consuming inputs. The state

at the diamond’s tip has executed all operator input combinations, representing the maximum num-

ber of possible facts available for a node that is an ancestor to the state generating this diamond.

The difference between the possibly nested diamonds is the missing instances determined by the

operators with consuming inputs.

3.2. Planning Algorithm 55

Termination of Planning

We abort the search depending on the properties of the current domain. For "sufficient planning",

we abort at the first state that meets all goals. We can have several goals that all have to be fulfilled

as the operator defining the current task can have several outputs, or it has been specified that,

for example, several packages must be delivered or the assembly must be completed, which is

described by multiple goal instances. For each of these outputs, we need a separate instance that

fulfills it and is therefore similar to this goal instance as described in section 2.1. Another reason

for termination is the lack of open planning nodes, which can be further explored, meaning we

are at a dead end and must backtrack and investigate another coarse plan. This cannot be detected

with ordinary forward planners such as EST [40] since they would only sample the given space in

more detail.

If we are working in a domain that requires an optimal solution, we continue planning until

there are no more open planning nodes for expansion. In this case, we use the cost of an already

found solution as an upper bound to reduce the unnecessarily explored space.

The cost of a state can be calculated in two ways, which in turn is defined by the properties of

the current domain as discussed in remark 10.

Remark 10:

The cost of a planning state is equivalent to the expected execution cost (mostly time) on the

most detailed layer. Therefore, each operator holds the expected execution cost of the most

detailed planning task defined in his KPIs (key performance indicators). For a domain with

"serial execution cost", we determine the cost of planning with the sum of all operators applied

in the current state.

For domains with "parallel execution cost", they do not add up for parallel strings of opera-

tors. For those domains, we switch from an operator-centric approach to a calculation that tracks

the expected cost incurred for creating each available instance. The most expensive instance in

the current state then determines the total cost of that state.

The fingerprint of a planning state depends not only on the values of the instances but also on

their expected creation times. Therefore, planning states with the same instances are still not fused

to a single node in our compact planning domain because of different timestamps as described in

remark 9. With this advanced calculation scheme, depicted in Figure 4.11, we can optimize our

planning for a later parallelized execution.

Plan State Planning

Another view on our planning approach, which would allow for future extensions, is that of plan-

space planning instead of state-space planning. In this case, we do not revise decisions on an ab-

stract level and backtrack if a dead end for a subproblem is identified. Instead, for each planning

step, we decide when to generate a new subproblem, for which step we generate this new sub-

problem, in which state we continue working, and which operator-input combination we simulate,

which allows a heuristically controlled and probably domain-dependent search across all hierar-

56 Chapter 3. Hierarchical Planner

Figure 3.10.: Sada is an EU-funded project for which we applied the ideas of the set-based ap-
proach in the field of perception [3].

chical levels. The heuristics are then based on data from previous runs. We already generated

distance functions for our concepts, which can be used to select the state that comes closest to the

given goal. With the approach described in the previous sections, motion planning in labyrinths

is problematic because it is tricky to detect dead-ends. With the heuristic approach, dead-end

detection can be done before we run out of open planning states. However, the data structures,

algorithms, and troubleshooting become more complex and challenging for a plan-space planning

approach. From our point of view, the previously described hierarchical planning is a particular

form of plan-space planning, where defined rules, which operations are performed on the current

planning state, allow for the explanation and debugging functions discussed in the next section,

which are powerful tools for setting up a new domain.

3.3. Domains, Explainability and Introspection

Today, building an autonomous system is a huge engineering task, which is frequently more time-

consuming than designing multiple, more specialized, and less advanced systems that solve the

same task. This dissertation’s modeling and planning framework aims to reduce and eliminate the

engineering time required to set up new autonomous systems. With reusable models and advanced

planning algorithms, we exploit the potential of automation and push the limits of applicability.

Planning Perception Pipelines

The classical architecture of autonomous systems is based on perceive->think->act loops. We tar-

geted each point of this structure and algorithmically solved engineering problems in each step.

We started by automating environmental awareness, which is fundamental for every reactive sys-

tem. Especially for multimodal systems, integrating various detection algorithms and data fusion

is a cumbersome engineering process. Several publications that emerged from this work target this

issue and automate the design of perception pipelines and sensor-data fusion with the planning al-

gorithms proposed in this work [1, 41].

The use-case for this approach was initially set by the EU-funded project called SADA and later

3.3. Domains, Explainability and Introspection 57

Figure 3.11.: This architecture of [1] allows our planner to handle domains with uncertainty to
solve cell and perception configuration problems. Our model holds concepts about
sensors and operators that implement perception and fusion algorithms. The goal
state is represented by a maximal allowed variance. Our planner finds a sequence of
data acquisition, extraction, and fusion algorithms to reach this goal.

on by the industrial assembly scenarios. SADA aims to create an intelligent infrastructure en-

abling autonomous vehicles to navigate urban areas. The system provides aggregated and relevant

information from third-party, multimodal sensors that reduce the blind spots of cars as they are

not necessarily mounted on the vehicle Figure 3.10. Examples include roadside radar or lidar

units, sensors of other vehicles, or pedestrians’ smartphones. Decisions about the information that

should be incorporated into the sensor fusion must be made based on the relevance of the data

and limiting factors such as bandwidth and computing power. With our modeling approach and

a simplified, non-hierarchical version of the planner described in chapter 3, we could identify the

relevant data and solve this problem.

With the advanced approach proposed in chapter 11, which uses a factor graph to take uncer-

tainty into account, we can handle a similar multimodal domain for robot cell and perception

configuration pipelines in industrial environments. The implementation is based on the model

described in chapter 2, which holds the information for the state estimation and its probabilistic

geometric uncertainty. Our current belief state is defined by all currently available information at

a given state, which is then compiled into a factor graph that provides the probabilistic representa-

tion of the geometric uncertainties as depicted in Figure 3.11. The actions the robot must conduct

during manipulation and assembly define the minimum requirements the uncertainty must fulfill.

Our planner searches for a perception result, represented by the variance of the geometric state in

our factor graph, that meets preconditions encoded in concepts. The operators are modeled based

on the scheme presented in chapter 2 so that they can be used by a single-level planner similar to

the one described in subsection 3.2.2. They implement processes for capturing new sensor inputs

58 Chapter 3. Hierarchical Planner

Figure 3.12.: This calibration, presented in [4], calibrates abstraction layers for a given task at
hand such that our planner can rely on efficient and meaningful factorizations.

using active perception measures, statically mounted cameras, data processing that combines and

converts between different measurements, and inference operators.

Processing, planning, and optimizing visual data is complex and requires a lot of computing

power. A hierarchization of those domains would reduce this problem. However, as stated in

[42], finding meaningful abstractions in perception is complex and challenging. Therefore, our

first hierarchical approach of chapter 12 uses a specialized refinement algorithm to circumvent

problems with hierarchical planning approaches that rely on declarative knowledge to identify the

intermediate goals. The procedural and declarative knowledge is still based on the model presented

in chapter 2. However, the search space is reduced by defining a template that abstractly describes

all possible solutions of the planning phase. As stated in subsection 3.2.1, our approach makes

using specialized planners for specific domains easy. In this case, we use this to apply an approach

like plan-space-planning [43, 44]. Since the perception operators rely heavily on parameters, the

refinement phase includes an optimization based on the structure found by the planning algorithm,

which allows us to configure and optimize perception pipelines automatically.

The artificial restriction of the structure to the manually defined templates is relaxed by our ap-

proach presented in chapter 13. Again, this algorithm is based on the set-based models but uses the

hierarchical planner described in section 3.2, which allows the solutions to react more flexibly to

the given tasks and to cover a larger search space with reasonable planning times. For our hierar-

chical planning approach, however, we need suitable declarative abstractions. After circumventing

this problem in the previous paper using templates, we now present an automatic calibration of

the abstract layers to the refinements as depicted in Figure 3.12. By doing this, our planner can

operate on the abstractions efficiently, and less manual work is required to model them. The solu-

tions found with this approach showed a promising performance, even compared to an exhaustive

search in the entire configuration space.

3.3. Domains, Explainability and Introspection 59

Figure 3.13.: Even for a task with only two discrete steps, state-of-the-art planners tend to visit
thousands of nodes, which prevents debugging and results in poor scalability.

The industrial assembly domain

For the think-part of perceive->think->act loop, we applied the hierarchical planning and set-based

modeling approach of this thesis to industrial assembly problems. Processes in this domain are

highly hybrid, with numerous discrete properties modified by successive actions and complex

continuous problems such as collision avoidance with arbitrary geometries or motion planning

with different kinematics and reachabilities. Solutions in this area must master the combinatorics

of discrete properties, even for several successive assembly and handling steps, while integrating

geometric and continuous properties and their computationally intensive simulation. State-of-the-

art task and motion planners fail even with a few involved objects or steps necessary to fulfill the

task. In contrast, discrete planners are only loosely coupled with sophisticated simulators and real-

world execution. Recent approaches such as [45, 46, 47] try to combine both worlds but restrict

themselves to exactly two layers or planning phases. Others implement problem-specific solutions

with more but still a fixed number of abstractions, such as [48, 49]. This domain is the perfect

example for discussing our hierarchical planning and modeling approach, as we can learn from the

way humans approach this task. We can even recognize the solution’s hierarchical structuring in

different user roles on the shop floor, highlighting the need for more than one level of abstraction.

This industrial assembly domain is the primary example in our fundamental publications , cf.

chapter 6 and chapter 7, as well as in papers that further extend this system, cf. chapter 8 and

chapter 9.

Explainability

A valuable feature of the hierarchical approach is the easy traceability and isolation of problems.

Unlike other types of planners, which easily have thousands of states that are structurally only

loosely coupled, our primary goal is to limit the branching factor, the plan lengths, and thus the

number of states as depicted in Figure 3.13. For this reason, debugging is feasible even for com-

plex domains as we can visualize what the algorithm currently thinks. As discussed above, our

hierarchical approach can be seen as a dynamic, modeled heuristic. With this perspective, we can

60 Chapter 3. Hierarchical Planner

further direct attention to situations in which we expect to succeed and fix the model or implemen-

tation accordingly. This works for both the planning algorithms and when a person is investigating

errors, bringing in intuition, or interacting for cooperation as depicted in Figure 3.14.

Human Robot Interaction

In [7], we discuss how the human workforce can be incorporated into our planning and execution

process using expressive communication similar to tailored solutions such as [50, 51]. The only

requirement is to formalize actions necessary for all human-robot cooperation [52]. Both means

of execution have their respective strength and cost, reflected in their KPIs. In [53], a scheme for

task assignment to a collaborative cell is discussed, which could be integrated into our planning al-

gorithm using the KPIs of the respective operators. As discussed in [54], communication between

the partners of a collaborative team is vital. Due to our expressive and intuitive representation

based on the various levels of abstraction, we can facilitate this communication between human

and machine as depicted in fig. 3.14. In this mode, the system not only executes parts of the plan

by the robotic system, with actuators and tools that bring in different modes of interaction, such as

screwing, grasping, or suction gripping, but also the human, which is directed to fulfill the overall

planning task. In this sense, we have a multimodal system regarding execution abilities.

Figure 3.14.: With abstracted information, a more compact representation for interaction between
humans and machines is available, which not only helps during debugging but also
for cooperative or collaborative tasks. We can present the current progress, task, and
relevant objects to a user, who is then prepared for the next actions of the autonomous
system.

Root-Cause Analysis

Since the expected behavior is modeled, any backtracking is an anomaly for which we can store

the planning status for retrospective analysis, debugging, and model improvements. In addition,

we can detail which sub-task failed and thus narrow down the error region to a few planning states

and applied or failed operators as depicted in Figure 3.15. In some cases, such as manipulation

3.3. Domains, Explainability and Introspection 61

Figure 3.15.: With our hierarchical approach, we can localize potential errors easily. For each
required backtracking, we dump the planning state. We can then analyze the sub-
task that was not refinable (top picture). In this sub-task, only the leaf nodes of the
diamonds are of interest (bottom left picture). We can check which operations have
already been applied, check the desired goals, and dump available instances to call
operators that we expect to work but failed (bottom right picture). This process is
supported by a graphical tool, which eases navigation, introspection, and debugging.

62 Chapter 3. Hierarchical Planner

Figure 3.16.: Our planning algorithm provides introspection capabilities to localize errors. To fur-
ther investigate problems, we can replace hard-to-debug solvers, such as sampling-
based planners, with algorithms that provide feedback even in case of failures. In
this sequence of pictures, we can see an error case for a constraint-based motion
generation. The robot tries to grasp the screwdriver but fails due to a poorly chosen
start configuration. With this feedback, an engineer can adapt the planning task so
that solutions exist.

planning, where the chosen grasp transformation can affect the success of the subsequent assem-

bly, several sub-tasks may lie between the failed action and the decision that led to this failure.

However, even in these cases, we can quickly identify the root cause by stepping through the dif-

ferent planning states while backtracking and analyzing the failed actions. Once we identified the

sub-planning task that did not find a solution, we need to find the operator that was expected to

generate this solution but failed. Some operators are more difficult to debug because they con-

tain a complex algorithm that only provides information for successful executions. Examples are

motion generators based on probabilistic sampling, such as [55, 56, 57]. In case of an error, it

is desirable to replace them with alternative approaches, which perform manipulations that are

as goal-oriented as possible and from which the source of the error can then be derived, even if

they fail. By that, we can provide a better approximation of the think part of the algorithm to the

human. An alternative for sampling-based algorithms are, for example, constraint-based optimiz-

ers like [58, 59], as they generate a movement even if they cannot completely fulfill the specified

goal. From this motion, its direction and premature end, the cause of failure, for example, an

overlooked collision, the end of the working area, or axis limits, can be derived because the end

configuration of the robot will be close to the reason for failure. Both motion-generating operators

are interchangeable for some domains, although they have slightly different properties. Our pro-

posed approach to improve the investigation in case of failure and to enable an explainable AI is

to replace non-inspectable algorithms with their debuggable counterparts in case of failure so that

the root cause can be further narrowed down quickly as shown in Figure 3.16.

We can further improve the explicitly modeled heuristics with statistical data for known do-

mains. This way, we would know whether the failure in a sub-task is exceptional or relatively

frequent. With this knowledge, which can also be stored in our model, we can control our plan-

3.3. Domains, Explainability and Introspection 63

ner’s search algorithm and guide the engineer during troubleshooting. Since we have already

implemented distance functions for declarative knowledge, states could be ranked by distance to

the specified goal. Therefore, we could also rank planning states based on their most distant state

during backtracking.

Further Tested Domains

We applied our algorithms to an extended version of the manipulation domain, which also con-

siders material transport. Only because of its scalability can the planner deal with the problems

of this large domain, with its dozen machines and several goal products, which was already dis-

cussed in Figure 3.8. The resulting plans consist of several hundred steps, and the planning times

are still in the two-digit second range due to the significant acceleration through our hierarchical

factorization.

Another domain we applied our algorithm to is the process industry, as it is vital for some use

cases to introspect the algorithm and analyze what it thinks. Due to their static piping, these facto-

ries are not flexible and cannot benefit from the smaller batch sizes that our planner would make

possible. However, we can help when a fault occurs, such as impurities detected during the final

inspection, and identify the possible defect. We can formulate this root cause analysis problem

similarly to our production tasks with small lot sizes. In this case, the goal is to create a contam-

inated product. The domain consists of nominal operators, which process the ingredients without

unintended modifications, and fault-injecting operators, which cause impurities. Once our planner

finds a solution that leads to the faulty state we defined as our goal, we can analyze the plan and

identify the instances and operators that caused the problem.

For each of the real-world assembly use cases, we also have to consider the act of the

perceive->think->act loop. Our system natively considers deviations between the real-world ex-

ecution and the simulated planning and can react accordingly if necessary. Due to the set-based

model, we can detect interdependencies of operations during acting and, therefore, reduce the

impact of any parallel execution strands. In chapter 9, we proposed an asynchronous parallel

execution on two independent robotic arms, for which the planner optimizes for maximal paral-

lelization. During the act-phase, the set-based model separates the task-relevant resources from

environmental information, which poses no constraints on the temporal ordering.

These different domains, from perception tasks over discrete manufacturing, process industry,

and root-cause analyses, as well as the explainability and introspection capabilities, demonstrate

our approach’s versatility, flexibility, and expressiveness, which eases engineering and thus re-

duces the effort needed to implement new tasks. In the next chapter, we leverage our formal

model’s possibilities to improve models’ reusability by automatically adapting them to new do-

mains. By that, even less manual coding effort is required to solve new tasks.

64 Chapter 3. Hierarchical Planner

65

4
Domain Optimizations

This chapter was published in a slightly modified version in the journal of chapter 10. Only rare

and expensive specialists can set up and maintain autonomous systems. We need possibilities

to facilitate and accelerate this process for broad applicability. This chapter discusses approaches

supporting the engineer, automating some tasks, and enabling advanced modularization, especially

during the application phase. We hope that in the future, more workers will be able to set up and

operate autonomous machines and that the rare specialists will be able to do their work more

efficiently and quickly, thus having a more significant positive impact on productivity. Together

with the explainability discussed in the previous chapter, this can reduce or even eliminate the

barriers to the widespread application of autonomous systems.

4.1. Motivation

Our goal is to provide autonomous systems for the masses. Autonomously manipulating house-

hold robots is a long way to go due to safety issues and hardware costs. However, current solutions

are too expensive even for the industrial sector, although there is scope for more significant invest-

ment, operator training, and more controlled conditions. Flexible and autonomous systems are

usually complex, especially regarding software and parametrization, and therefore, they are com-

plicated and expensive to set up and use. There are few areas outside the scientific community

for which the applicability of these advanced systems with a high degree of autonomy is feasible.

Although those systems cover a wide range of tasks and can handle changes in the environment,

potentially increasing their reliability and allowing automation of formerly unknown tasks, the

cost of their installation and adaption often still does not pay off.

To overcome this issue, we can improve the reusability of solutions for similar problems, re-

ducing the cost per installation. Since resilience to changes is one of the key features of flexible,

autonomous systems, only minor modifications are required to apply them to new domains if a

similar task was already targeted. We can further increase the number of reusable models by mod-

66 Chapter 4. Domain Optimizations

ularizing our domains and separating specific from generic code. Solutions for new tasks can then

be merged from different sources without major additional implementations, which allows trained

people who are not necessarily software engineers and experts in writing models to use our sys-

tem. With current approaches, optimizing the domain for a specific task requires a lot of effort,

time, and expertise, even if existing models are reused. Optimization prior to the planning steps is

vital, especially for a domain composed of different origins.

We want to automate both the automation process and the domain’s validation and optimization.

Existing methods, such as skill-based architectures [60, 61, 62] or model-based descriptions of

systems [63, 18] focus on the semantic description of either declarative or procedural knowledge.

If the model neglects simulated abstractions of actions, it is impossible to validate the planned

behavior of the system regarding the given task. Static analysis of non-functional properties, such

as latencies, would still be possible [64, 65], but becomes irrelevant if the task itself fails due to

erroneous parametrization. On the other hand, we could define resource allocation, for example,

as a part of the task itself, such that non-functional properties are checked and fulfilled during our

planning.

Consider the example 6 in which an AGV must navigate reliably without collision. As soon as

we can tell if the system is safe and works based on its model, we can automatically plan valid

compositions and optimize for secondary targets such as price tags. With this information and the

provided model, we can calculate a maximum latency that our system must ensure, as it will fail to

react adequately otherwise. We can check for this latency and validate the system’s non-functional

prerequisites. However, this will not tell us if the AGV will react in time to anything in its way.

We do not know if the sensor can detect an assumed obstacle, which can depend on its material,

nor can we tell if the signal is in time for a proper reaction, which depends on the range of the

sensor.

Example 6:

Figure 4.1.: For mobile robots, several components are integrated into an overall system, such as
the mobile platform, lasers, manipulators, cameras, and grippers. The same applies
to the software for localization and mapping or manipulation.

4.1. Motivation 67

A mobile robot comprises different software and hardware modules described by independent

models. For example, the robot of Figure 4.1 has a robotic manipulator with a wrist-mounted

depth camera and gripper, which itself sits on a mobile platform equipped with laser scanners.

Our model describes those components, the information they can provide, and algorithms to

compute a representation of the environment based on the sensor input.

We look for a system that effectively prevents collisions and can localize and navigate a

given environment to manipulate objects. The goal of the domain tells us the known speed and

acceleration limits of the task. With this information and the provided model, we can calculate

the maximum latency our system must ensure, as it will undoubtedly fail to react adequately

otherwise.

Additionally, the models for the sensors, such as laser scanners, tof-cameras, 2d-cameras,

and ultrasonic sensors, tell us which materials they can detect at which distances and accuracies.

Together with the environment model and the properties of internal sensors such as odometry

or the IMU, we can then tell if and how accurately the AGV can localize itself in the provided

environment and choose the hardware accordingly.

Therefore, the non-functional properties, such as timing, allow us to check whether necessary

conditions of the infrastructure are met in a composition. However, we cannot tell if the selected

components will work as intended until the functional implementation has been validated success-

fully. To answer this question, we need a simulation of the domain’s functional aspects, which runs

the components in interaction with each other and, as a by-product, also checks for non-functional

properties. This method, which is focused on the functional aspects, is also our approach for the

hierarchical planner. Non-functional properties are not considered on the coarse layers but are

integrated as soon as they become relevant for the success of the operations in the refined levels.

When we compose models from different sources, we can, therefore, check for both functional

and relevant non-functional properties in one go.

There is also no option to rely only on procedural knowledge and ignore the declarative types.

We want to plan or manually define the concatenation of goal-oriented actions. To reduce the num-

ber of possibilities, we must pre-select the candidates for inputs and outputs based on our model,

which encodes the domain-specific knowledge, before we start brute-forcing possible combina-

tions. Furthermore, goal specification is not possible without a model of declarative knowledge,

which completely prevents the use of planning algorithms and, therefore, hinders the implemen-

tation of intelligent and autonomous systems. Our hierarchical decomposition is based on declar-

atively defined intermediate goals, which require particular attention during fusion of domains to

ensure good performance.

Our model of chapter 2 brings together declarative and procedural knowledge and expressive-

ness for functional and non-functional properties and is thus the ideal basis for the automatic

composition from different sources into a meaningful domain. In this chapter, we discuss algo-

rithms that facilitate the engineering process through automatic checks, optimizations, and even

allow post-processing of successful plans to improve execution times further.

68 Chapter 4. Domain Optimizations

4.2. Alignment of the Domain to the Task

For most industrial applications, integration and software development are the decisive cost factor

[66, 67]. If we bring autonomous systems into widespread use, we can reduce the cost per system

by leveraging their scalability and distributing the development expenses to many installations.

This only works if the software becomes reusable, which is not the case for current automation

systems. As described in example 7, different parties would then contribute their expertise about

a specific domain or task and develop components for the overall composed system.

Example 7:

In an ecosystem with semantically described modules, a camera supplier not only sells its sen-

sors but also provides a library of software components with corresponding models. These

models can then calibrate intrinsic and extrinsic parameters or determine the optimal exposure

for a particular task. Other parties implement algorithms for data-driven object recognition

or classification, robot manufacturers model different operating modes with various precision,

speed, and dexterity levels, and integrators sell high-level models for task specification. All

semantically described components can then be composed online, for example, with our hierar-

chical planner, to form a meaningful sequence of actions and solve a given task.

For example, we want to perform the assembly process of a control cabinet. For this, we

must localize modules in a box. The perception algorithm must, therefore, handle a cluttered

background and multiple instances of the desired object in a single picture. Possibly, no algo-

rithm can provide this resilience to noise in conjunction with the required precision for the later

assembly step. We must, therefore, combine a less precise localization with components that

actively reduce the uncertainty later. In our example, the clutter-resistant algorithm operates on

point clouds and is, therefore, inaccurate. We can then combine it either with a 2d based visual-

servoing algorithm during insertion such as [68, 69, 70], an additional perception step with an

edge-based algorithm [71, 72, 73], or a less rigid mode of the robotic arm, in combination with

a trajectory, which considers the higher uncertainty [74, 75].

Experts in their fields typically provide different options to reduce uncertainty. For example,

perception specialists develop visual-servoing and 2d localization algorithms while the control

community proposes compliant motions with appropriate path generation to maximize success

rates. Our approach can integrate these algorithms to solve each problem with the appropriate

algorithm.

Splitting the task into manageable sub-tasks allows for the components for composition to be

implemented by the experts of a single domain with their specific approaches and ways of thinking.

Our system will then automate the costly manual integration step. During the planning process,

we compose the modules using the hierarchical model and the respective algorithms, eliminating

most of the manual integration effort. The operator only needs to define the task and list the

sub-domains that might be relevant such that a quick and cost-effective setup ensures maximal

flexibility. Nevertheless, there is still potential for optimization during this integration phase.

4.2. Alignment of the Domain to the Task 69

Figure 4.2.: Different experts describe the same situation either in an object-centric manner or
with a plant-centric view. In the left picture, the box is the focus of attention, and the
gripper and robot are the only side characters. This perspective is suitable to describe
abstract tasks. On the right side, the robot is in the center of attention and manipulates
an object, which happens to be our box [5]. This view is appropriate for low-level task
and motion planning and component development.

The proposed planning algorithm of chapter 3 has its strength in solving complex and, therefore,

practically relevant tasks. However, the results may be sub-optimal because of the intermediate

goals calculated by the abstract levels if the abstractions do not fit each other as described in

remark 11. The model, which describes the problem, strongly influences performance even if the

same planning algorithms are used, which is highlighted by the task and motion planning domain,

for which many different approaches exist, which sometimes only differ in detail, like a goal

reference relative to an object instead of absolute coordinates, which allows for higher flexibility

and robustness of the applicable motion generating algorithms [76, 77, 78]

We, therefore, propose domain optimization algorithms in this chapter so that different views

and, thus, implementations of the same problem result in an optimized formulation.

Remark 11:

NP-hard problems prevent algorithms from determining the optimum solution within a limited

timeframe. Since our primary goal is to offer sufficient, but not perfect, solutions within the

limited computing time, our planner is designed to seek a promising but potentially sub-optimal

solution within a time limit. The chosen abstraction, which determines the overall task’s fac-

torization, significantly impacts the scale of the additional cost added compared to the optimal

solution. A good model with coordinated abstractions reduces the price we must pay for sub-

optimality.

Hierarchical planning is a strong and flexible heuristic. Nevertheless, it can even lead to auto-

matically composed domains that seemingly cannot be solved. This problem becomes even more

relevant for industrial applications where the domains are designed by several independent teams

70 Chapter 4. Domain Optimizations

Figure 4.3.: The solutions for the original and optimized domain for the assembly of the box and
fixture with four screws start with the same initial steps (first row). After the box is
localized and picked, and the lid is refined, we conduct the assembly, re-localize, and
pick up the assembled objects. The difference starts after the first screw is picked up
and inserted into the box-lid assembly. The original domain has to place the screw-
driver to hand over the assembly, as the screws would be facing down otherwise, and
place it on the table to reach the intermediate goal. In the optimized solution, we can
pick up the next screws right away. Therefore, we can skip the additional handover
and pick-up of the screwdriver. Additionally to these described steps, prior to any
pick, screw, and assembly, the parts must be localized. The robots must move above
the object and take a picture with the wrist-mounted camera [5].

rather than a single person or a small group that knows the bigger picture of the overall structure.

In a scientific setup, even if the problem formulation is sub-optimal, the expert who sets it up can

correct it immediately. Moreover, in an academic environment, only a few problem classes with

low reusability are targeted. Scenarios are often designed to primarily demonstrate the advantages

of the specific planning approach, as opposed to the problem-oriented specification in the indus-

trial environment. To eliminate the driving cost factor, no expert can re-adjust the models for each

system. The only solution is to solve inconsistencies algorithmically. The algorithms proposed

in chapter 8 address this problem and provide automatic domain optimization to shorten planning

times and improve the solutions found by the planner. The main problem of composition within a

hierarchical framework is the different views on the described process, which misaligns the levels

of abstraction. As a result, intermediate goals cannot be achieved at all or only by an unnecessarily

complex and long plan.

Example 8:

The sub-optimality of an unaligned hierarchical factorization becomes evident for an assem-

bly of multiple parts modeled by a system integrator and a component supplier. We want to

assemble a lid on a box and fixate it with four screws. On the abstract level, the system integra-

tor describes the actions in an object-oriented manner. It explains how parts are manipulated,

which is the intuitive way to talk about high-level tasks, such as picking the box, drilling four

holes in the box, attaching the lid to the box, and fixing it with four screws. However, at the

more refined level, component suppliers have a machine-centered view and formulate the ac-

tions only as changes to the machine state. In our example, these would be absolute or relative

movements of the robot arm, actuation of the gripper, or drill activation. After a grasping step,

the object is thus located in the gripper of the robot arm and thus no longer exists separately

in the refined domain but only as part of the machine. While the abstract domain describes

4.2. Alignment of the Domain to the Task 71

a box and no robot arm, the operators on the refined level only speak of robots with attached

objects, such as boxes, as depicted in Figure 4.2. Suppose intermediate targets are defined on

the abstract level by the box’s properties. In that case, the finer level cannot reach them directly,

but only if the box is separated from the robot again, which results in additional steps that must

be planned and executed, which increases both the complexity and computation time and the

hardware’s execution time. We address this problem by optimizing an isomorphic transforma-

tion grounded in our set-theoretic model. This reformulation, explained in Figure 4.4, allows

us to reach the intermediate goals wrapped in another instance. In Figure 4.3, the compari-

son between the solutions of our hierarchical planner for the original and optimized domains is

highlighted.

a) b) c)

e) f)d)

Figure 4.4.: The object-centric a) and plant-focused representation b) describe the same physi-
cal phenomenon (relation between box and robot), which is represented by the green
sphere in a higher dimension. All instances but some corner cases can be represented
in both variants. These exceptions are empty lists, such as a robot with an empty grip-
per, for which all grasped objects are represented with a list, as depicted in c). If we
project this empty robot onto the object plane, we need a no object instance in which
the robot can be additional detail. Therefore, we extend the less expressive formula-
tion as in d) and can then project the physical world to each of those representations
and thus use them interchangeably to represent our intermediate planning goals [5].

In example 8, we want to eliminate the misalignment, as it makes hierarchical planning more

difficult, can prevent achieving intermediate goals, and leads to sub-optimal solutions. Our algo-

rithm to accomplish this relies on the formal model of declarative and procedural knowledge and

the hierarchical structuring of our domain. The fundamental problem of the misalignment is that

72 Chapter 4. Domain Optimizations

instances of concepts with different concept bases cannot be similar. Therefore, the instance at the

refined level cannot directly fulfill the goal imposed by the abstract level, although they describe

the same physical phenomenon. To avoid additional processing or conversion, we search for iso-

morphisms in the concepts of our domain and apply model-to-model conversion so that automatic

hierarchization can place concepts of different conceptual bases into a common hierarchical order

based on these isomorphisms as depicted in Figure 4.4.

The formal algorithm is discussed in detail with an in-depth analysis of the resulting planning

times and plan lengths in chapter 8. The primary step of this alignment starts from the goal set

on the abstract planning level. This goal defines the concept base against which all isomorphic

concepts are aligned. Let us call this concept base BΓ. Then, we search the domain and identify

all concepts that use any concept with the concept base BΓ. In our example 8, the goal on the

abstract level was a box with a lid and four screws. The concept base of the respective concept is

box. We can now search the entire domain for any concept that uses a box to impose restrictions

on the concept base. For these concepts, like a robot using boxes in the list of attached objects,

the isomorphic mapping is recursively computed and stored in the domain model so that any

concept using a box anywhere in the graph is aligned with that concept base and thus, with the

goal specified by the user. The set-based formal models allow this conversion without violating the

correctness of the domain, thus enabling the automatic merging of models from different sources.

4.3. Reasoning for Data Fusion

The previous chapter discussed the challenges of composing domains from models created with

different views on the same task due to varying user roles. We proposed an operator-centric al-

gorithm for domain optimization using declarative knowledge of the concepts. This subsection

discusses a similar problem for composed domains from different sources. We start with algo-

rithms that solve minor inconsistencies within the declarative knowledge, such as different units

for physical parameters. We then continue with approaches that perform a general data fusion and

generate new operators. For this purpose, we analyze procedural and declarative knowledge in a

combined manner.

Unit Conversion

We can observe the mixed success of standardization attempts, which, despite significant efforts,

have not yet led to a unification in many domains. Even if we reinvent engineering and spend time,

brains, and money formally defining every process and data element that needs to be considered

during the engineering, automation, and task specification process, we will probably still be unable

to establish common standards everyone adheres to. Let us take the system of units as an example.

Even though SI units have become widely accepted, the implementation could use mm instead of

m for lengths. On a larger scale, we must apply our algorithms to more complex data structures

in misaligned domains and "brownfield" environments with differing implementations of various

problems. Standards such as OPC-UA [79], SYSML [80], Automation ML [81], or the compos-

4.3. Reasoning for Data Fusion 73

able models of RobMoSys [82, 83] have common goals, with overlapping fields of application

but differing implementations. This is particularly relevant to our planning approach because of

the vast possible field of applications, which consequently touch various fields of standardization.

For this purpose, we want to reuse a new plant’s existing tools and algorithms, utilizing the al-

ready standardized knowledge of other applications while keeping the integration effort as low as

possible. Even though the sets of instances described by values of different units in our models

are isomorphic, the planner cannot directly execute operators with concepts that do not use the

specified unit. Therefore, we must convert to another representation before executing the given

operator. Classically, engineers program these interfaces manually for each integration, which is

a time-consuming and costly process. We would like to automate these conversions based on the

models of the domains that are involved.

Example 9:

Consider the example of an operator that needs a box with its specified mass in g and an instance

that comes from another abstraction layer and uses kg as depicted in Figure 4.5.

Figure 4.5.: Concepts of an Object with different units

Additionally, we have the conversion operator of Figure 4.6 that calculates g from kg for

arbitrary masses.

Figure 4.6.: Operator to convert between g and kg

However, when we have an instance of a concept that has a mass defined by one of the two

units, we cannot directly apply this generic conversion operator since only a concept that is a

mass can be converted. The concept base is wrong for the conversion, preventing the operator’s

application. Therefore, we need the special operator depicted in Figure 4.7 that converts the

ObjectG to and ObjectKG.

74 Chapter 4. Domain Optimizations

Figure 4.7.: Operator to convert between an object with g and kg

Implementing this operator would apply the conversion operator on the sub-role and keep all

other information untouched.

A naive approach for the automatic unit conversion of example 9 would be to use the same

isomorphic transition we described in section 4.2. This way, we can change the basis of the

concept and thus apply the conversion operator to the mass with a box. However, this will cause

all information of this instance, except for the mass, to be lost. In contrast to the alignment

between different levels of hierarchy, which only had to apply the similarity operation between

two instances, in the case of conversion, we will not cross any boundary between abstractions.

Therefore, we must not lose any information. Otherwise, we might get stuck in our planning

process.

For manually modeled and implemented operations, the engineer ensures that every detail of

the output instance is filled. We could define an operator that performs the conversion process

manually, taking boxes with the mass of one unit and returning boxes with the mass of the other

unit, preserving all details. In our modeling scheme, defining only the required data as inputs

and outputs to the operator is good practice, which allows for broader applicability, use within

the planner, and precise description, which is the ultimate goal of the model. In the case of the

conversion operator, however, detailed inputs and outputs are required in the model, as we make

the statement that even if the rest of the information about the box, apart from the mass, remains

untouched, we have ensured consistency at this level of detail. In this way, we also declared that

redundant information in our model, such as mass, volume, and density, is consistent. With the

specialized approach, we need a conversion operator for each concept in the domain’s concept

hierarchy. We cannot take advantage of inheritance but must resort to manual coding. Considering

domain-specific redundancies that depend on declarative and procedural knowledge, this tedious

integration task can be automated using our set-based models.

In example 9, we discuss the conversion between different units for the mass of an object. Once

we implemented a conversion operator between the different units, we have all the information

needed to generate conversions between instances that have a mass with an arbitrary unit, such as

boxes with g and kg with the algorithm described in remark 12.

Remark 12:

Our algorithmic approach to implementing the automatic conversion operator between concepts

that use different units consists of three steps, which are highlighted based on example 9:

1) The information within the instance is decomposed so that individual instances are avail-

able for each role as depicted in Figure 4.8

4.3. Reasoning for Data Fusion 75

Figure 4.8.: We can decompose the concept so that the concepts on their roles float freely.

2) Figure 4.9 shows that the conversion operator can be applied to a subset of the instances once

the required information has been extracted.

Figure 4.9.: The conversion operator can be applied to the extracted information of the concept.

3) The separate pieces of information are merged back into a single instance as depicted in

Figure 4.10.

Figure 4.10.: With knowledge about the original roles, we can compose all available informa-
tion to the new object with the converted units.

This way, we create a formally usable instance for our original operator. Challenges arise in the

second and third steps as we must consider inconsistencies and assignment problems. We can

address this with heuristics based on the roles and concept types. As a fallback, an engineer can

choose from alternatives interactively.

76 Chapter 4. Domain Optimizations

For the fusion of step 3 in remark 12, we must decide which information should be placed in

which role of the merged instance. To answer this question, we can set up a semi-automatic process

where the assignments are pre-filled but can be corrected manually. We also know that the roles

will probably remain the same for the unused information. So, we can concentrate on the newly

computed information from our conversion operator. At this point, we can define another heuristic

that analyzes an operator’s inputs and outputs and identifies information that was probably only

processed but not newly generated. For each consumed input, we, therefore, look for an output of

the same concept and, if there is none, an output with the same concept base. These pairs will likely

describe the same information; thus, we assign the former role to the newly computed instance.

For the other outputs that do not yet have a candidate for their role, we can compare the structure

of the newly created concept that neglects pieces of sub-information without assigned roles and

compare that to more detailed concepts of the current domain. We can then find candidates with

a structure that matches this prototype concept and use the same roles for additional information

that complies with the concept or the concept base of unmatched roles.

In our example of the box with mass, which is also used in remark 12, the conversion operator

would consume a mass in kg and return it in g with concepts that have the same concept base. We

merge all available information extracted from the initial box concept to a new instance. In that

case, we cannot assign the recalculated mass in kg and are missing the information for the mass in

g. Thus, we search for other concepts of boxes in the current domain, which allows us to consume

all available information with the role hint we gathered during the decomposition process. This

concept must have a matching structure to our box without the mass but additionally use mass in g

as a sub-concept. Once we have found a candidate concept, we can fill an instance of this concept

with the pieces of information extracted and calculated from our box with mass instance based

on their original roles. This solution is not without doubt error-free, but with this set of rules, we

can find a reasonable estimate for plausible fusion operators, which only need to be suggested to

the user for validation. This domain-specific conversion process, represented as a plan template,

can then be stored as a new operator in our composed domain and is thus available to the planner.

By that, further links between otherwise separate operators are possible during planning without

requiring manual coding to bring together previously incompatible parts of a domain.

Arbitrary Operation on Sub-Information of an Instance

The conversion problem between different units is only a simplified special case of a more gen-

eral meta-problem. We want to apply operators on a subset of the information within a concept.

Multiple operators may exist; they do not necessarily consume all inputs, and we still must vali-

date integrity when fusing the new pieces of information. As highlighted in example 10, the core

challenge is redundant information within our composed concept, for which consistency must be

ensured.

4.3. Reasoning for Data Fusion 77

Example 10:

The challenges of domain-specific redundancies that prevent an automatic data fusion become

evident in the intuitive example of a box with mass, volume, and density. We can calculate

the mass even if we only have volume and density. Let us assume that the color is defined as

an additional piece of information for our box in the example. According to our algorithm of

remark 12, we decompose the box concept into three concepts with concept bases for volume,

density, and color. In those concepts, we can apply the operator to calculate the mass, which

consumes nothing. As we have no other operator in this domain to calculate the mass given

color, density, and volume, the validity check succeeds, and we can proceed with the fusion.

We can analyze the existing concepts, determine that the mass role is the correct one for the

additional value we are calculating, and create a template to model our additional operator. In

our second domain, we have an additional operator that classifies objects based on their color

and calculates a mass based on that class. If we apply our algorithm to the same problem in this

domain, we find that there is a redundant path to calculate the mass with the given information.

Therefore, we cannot generate the fusion algorithm in this domain because we would generate

redundant data and do not know whether the mass affects the color or vice versa.

This data fusion is commonly discussed in the field of sensor data fusion, where several sensor

readings are combined to obtain a better estimate of the current state. These bits of information

may be redundant because the same scene is recorded but with different sensors, modalities, and

at different times. In this case, we need probabilistic models that extract the redundant part of the

information from the noise of different measurements and reconcile possibly conflicting readings.

This process is not possible without detailed probabilistic sensor and process models. For our data

fusion problem, we cannot expect these probabilistic models to be generally available because they

must be normalized for each domain. However, our operators are generally defined in different

modules, and the domain can be automatically composed. Therefore, it is unlikely that we can rely

on robust probabilistic models of the relationships between the operators. Nevertheless, from the

operators in the domain, we can deduce which information within a concept is entirely independent

of the other specified data. To check whether all outputs of an operator we want to apply to a subset

of the information within a concept are independent of the other pieces of information, we specify a

planning task in the meta-domain as highlighted in remark 13. In case there is a redundancy for the

newly calculated outputs, a probabilistic sensor fusion with appropriate probabilistic information

in our models would be necessary, which is targeted based on our models in chapter 13 but not the

focus of this chapter.

Remark 13:

As mentioned in chapter 2, all operators and concepts we define in a domain can be declaratively

described in a so-called meta-domain. In this domain, the concepts of an ordinary domain

represent instances. The similarity property of these instances reflects the hierarchy of concepts

within the ordinary domain. Additionally, we can implement operators in the meta-domain and

define and solve planning problems. These operators can have meta-models of concepts as well

78 Chapter 4. Domain Optimizations

as meta-models of operators as inputs. Using a meta-operator that simulates the operators of

our usual domain solely based on its input and outputs, we can then specify an initial state

and goals that consist of instances that describe concepts. This setup allows us to check for

independent information within our concept, making data fusion possible. For this purpose, we

specify a planning task for each output of our conversion operator, with the goal of computing

this output from all non-consumed inputs that are available as initial facts. In addition to these

instances, the meta-concepts of all operators of this domain apart from the conversion operator

are available as start instances. Since our planning algorithm can detect loops and thus aborts

planning if no plan exists, we can use it to detect non-redundant data within the concept in

a non-constructive manner. If we can find a plan that solves the task, there is an alternative

way to compute the same information as our conversion operator has calculated, and thus, our

concept contains redundant information. If this is not the case and we make the closed-world

assumption for our domain, we can conclude that the checked information is not redundant and

can, therefore, be merged without losing consistency.

Identification of Meaningful Networks to Process Sub-Information

We proposed an approach to solve the assignment problem in many cases and to switch to the semi-

automatic process in case of ambiguous roles. Additionally, we discussed an algorithm to validate

the consistency of the merged concept. However, we always considered a single, given operator,

which we now check for applicability to sub-concepts. The even more exciting task is to identify

meaningful applications of operators that can be applied to sub-concepts in our domain. This can

be done offline, followed by the verification process described above, and ends in the generation

of plan templates. These operators are then available during the planning process and envelop

the manually implemented operators but work on other types of input and output concepts. The

operator may be a sequence or network of operators that transform the initial facts provided by the

sub-information of a concept into the set of information that is then merged into the new concept.

This process can be formulated as a planning task in the meta-domain again. We can decompose

any concept in the domain and specify any second concept within our domain as a goal. Each

plan defines a feasible network that can be stored as a plan template. Only existing concepts make

sense as goals since newly generated concepts are not used as input and are, therefore, useless to

the planner. All conversion operators are only valid for the specific domain because additional

operators can make sub-information within a concept redundant as example 10 shows.

4.4. Model Harvesting from Unstructured Sources

We can apply our modeling and hierarchical planning scheme to various domains with existing

partial solutions and components. However, the implementation of these algorithms is rarely de-

scribed with a formal, machine-readable model, so a direct application within our planning scheme

is not possible. However, developers of modules provide an API with accompanying documenta-

tion for developers. With the help of natural language processing (NLP) such as [84] combined

4.5. Automatic Refinement and Abstraction of Operators 79

with heuristics, we can automatically analyze and harvest the information and extract the for-

malized models we need for our planner from the API documentation. In [85], we applied this

approach to various perception libraries. Valuable information for our models is the set of avail-

able functions for which we can generate operators. We must extract the inputs and outputs with

their respective types for a minimal model of these operators.

For each of these types, we generate a new concept. The inheritance between these concepts is

mapped to the concept hierarchy in our domain. Libraries that focus on object-oriented schemata

are reformulated in a functional way so that they can be used in our planner. Since libraries are

usually implemented in non-functional programming languages, we must separate input from out-

put and treat them separately for the function call. Strong typing is also beneficial because it

allows us to extract more information from the library, reducing the branching factor during plan-

ning. Despite implementing example libraries in the typed languages C and C++, each analyzed

library implements generic types that cover various information types. For example, the generic

class image has internal sub-types such as gray-scale, RGB, and edge images, which are not ex-

plicitly represented by different classes but are checked dynamically at runtime when the function

is called. Invoking functions with the wrong type will always lead to failure, which would be

valuable prior knowledge in our model. Engineers consult the documentation written in natural

language and derive its correct usage. There are descriptions of the required types and parameter-

izations, as well as the preparation of the inputs and outputs. Our harvesting approach includes a

Natural language processing (NLP) module that allows us to parse the function call and the asso-

ciated documentation. This gives us an estimate for the classification between inputs and outputs,

which can be stored in the model and verified with further planning steps.

4.5. Automatic Refinement and Abstraction of Operators

Even in an autonomous system, some processes are not planned or reasoned automatically but are

defined and programmed manually. For example, we want to validate the feasible value ranges

for some actions before we execute them on the actual hardware, or we want to define the exact

interface data to be sent to the machine rather than mindlessly testing and hoping for valuable

feedback. These processes are usually neglected in the discussion of autonomous systems but must

be implemented for any system. Checks are necessary to avoid the destruction of real hardware by

non-permitted commands, especially for probabilistic and data-driven approaches, which tend to

find errors and shortcuts even in simulation. With our set-based, model-driven approach, we can

also formally describe these validation processes so that we use them not only during simulation

but also for the execution. There are two ways to represent this procedural knowledge within

our framework. Either we program it in an arbitrary language and integrate it into our model

as a black box, or we model the data flow, for example, in a behavior tree. The latter form is

advantageous because it allows both advanced introspection and automatic refinement. We call

them plan templates because they have the same graph structure as plans. Contrary to plans,

concepts are used for declarative knowledge instead of instances, making them templates for other

80 Chapter 4. Domain Optimizations

instantiations during simulation or execution. We can either define these operators manually or

extract and learn them as described in section 4.7.

The manual modeling process of a domain can either start from the most detailed level so that

more and more abstract levels are defined during modeling or from top to bottom. In both cases, we

can automatically generate proposals for plan templates. We only need to abstract or refine the plan

template; the desired input and output concepts define the abstraction level. Other operators with

defined inputs and outputs are used within the plan template’s graph, which defines its behavior.

To adjust the level of abstraction for our plan template, we select an operator for which all inputs

are either manually defined or outputs of already checked operators. We then verify that for all

inputs to that operator, the provided input concepts are more detailed than the modeled inputs and

that there is no more abstract operator to which this property also applies. Otherwise, we replace

it with the more abstract or refined operator and continue the process until all operators in the plan

template are replaced or verified.

This way, we have automatically generated new abstractions or refinements for existing opera-

tors based on our set-based model. With this algorithm, we can only abstract or refine operators

used when a one-to-one mapping exists with an operator at another level. This approach will fail if

the refinement consists of several chained operators or the abstraction accumulates multiple opera-

tors in our plan template. However, we can extend the algorithm and apply meta-level planning to

find valid sequences for refining an operator. The goals and facts in this meta-domain are defined

by the inputs and outputs of the operator that needs to be replaced, and the operator instances are

defined by the operator hierarchy described in section 2.2. For abstractions, we can search for op-

erators that use the current operator as a refinement and try to accumulate neighboring operators

that are in the same domain. These extensions are ambiguous and can only be suggestions for

refinements or abstractions to an engineer.

4.6. Detection of Model Inconsistencies

The more complex the domains become, the more bugs and problems they can contain. Therefore,

we need algorithms that support the engineer and verify the implemented models. This is not

only relevant when assembling models from different sources but also during the implementation

of sub-domains. For broad applicability, non-experts who are not familiar with modeling to the

same extent as scientists will also have to contribute to the system. Especially for them, tools that

detect inconsistencies in the model are beneficial. Examples of such verification algorithms can

check the alignment of the formal model with the implemented black box code, consistency in the

operator hierarchy, and inconsistencies between operators.

To check the consistency between the implementation and the formal model, we start by record-

ing the operators used during planning. For the output instances, we can check if they match the

output concepts of the model and if we have seen at least one instance for each output modeled.

We can play back a modified version of the recorded input instances to verify the inputs and check

if the outputs change. Suppose this is not the case for a configurable portion of the samples. In

4.7. Data Driven Optimizations 81

that case, these input instances or sub-details of the input instances are likely irrelevant to the op-

erator. Thus they should be eliminated to meet the requirement for minimally defined inputs to an

operator.

We can verify the feasibility of the hierarchy of operators by setting up a meta-planning problem

in which we try to compute the output instances of the more abstract operator by using the more

detailed operators and inputs to the operator to define the domain. If we cannot find a solution

without the additional constraints resulting from executing the code, there can be no successful

refinement during planning. If individual operators are not used during this meta-planning, they

are also irrelevant to the actual planning process. Additionally, an input consumed on the course

operator should be consumed at the refined level. All those findings are valuable for the engineer,

who can then guide his attention and examine the specific implementations and models.

The last example of a possible verification is similar to the approach presented in the previous

subsection. We can analyze each output instance for feasibility by looking for redundant informa-

tion using the same meta-planning problem definition we used in the previous section. This time,

however, we can check whether the resulting newly calculated sub-information is similar to the

information available in the recorded output instance, according to our definition of an instance.

If this is not the case, we must assume that at least two of the operators we use in this domain

calculate contradictory results and must be checked accordingly.

4.7. Data Driven Optimizations

Robotics is the art of integrating different strands of science and technology into a powerful system

that manipulates the environment. In chapter 2, we have discussed how our approach can handle

arbitrary code with only a few preconditions and thus contribute to the automatic integration of

algorithms. We also discussed the application of different planning algorithms within our frame-

work in chapter 3, which can be considered operators in the meta-domain. So far, we have mainly

focused on model-based algorithms and manually specified declarative knowledge. However, our

system’s set-based foundations also allow us to seamlessly integrate data-driven approaches for

various challenges within a robot system. A simple use case for optimizations based on recorded

data is the KPIs of operators discussed in section 2.2. With their estimate of the cost, in our case,

the execution time of the most refined level, they guide our optimization during planning to find

the cheapest or fastest solution. Even with manually calculated KPIs, we consider the inputs to the

operator for which we want to estimate the cost, which could be utilized by data-driven algorithms.

A significant problem with data-driven approaches is to collect enough data to start learning.

The modeled classical solution can provide the running system needed to record data for a good

starting point, which already covers a large portion of the possible scenarios. From this point on,

subsequent optimization and exploration can be conducted in a data-driven manner. Indeed, this

initialization can also manifest modeled local minima. However, data-driven approaches might

not be possible without them, especially for domains with poor simulations and, therefore, tedious

data acquisition such as example 11.

82 Chapter 4. Domain Optimizations

Example 11:

In a logistics application case, the abstract transport process has a reference map or a distance

measure to calculate the expected time needed for this job. Generic classical algorithms effi-

ciently find routes such as [86, 87, 88] without needing any recorded data. However, these al-

gorithms will only consider modeled circumstances and not learn from the deviations between

the plan and actual execution. With an installed and running system, we eventually conduct

enough experiments to gather data not only for simple statistical analysis of the resulting execu-

tion times but also to train a deep neural network. These data-driven estimators can potentially

avoid unmodeled bottlenecks and detect complex relations between the provided start and goal

locations, time of day, weather, and the expected cost.

Similar heuristics as the KPIs of operators can be used to control the hierarchical search, where

the most promising sub-planning tasks, planning states, and input/operator combinations must be

selected. This is similar to the work of [89], however, extended to multiple layers of abstraction

and with the additional benefit of our set-based definition of the declarative knowledge, which

allows further specification of the domain. With our model-based approach, we can mark the

recorded scenarios and train domain-specific heuristics. The generated distance functions are

parameterized by the expected value ranges for each domain and, therefore, need to be calibrated

with recorded data. They can serve as an additional source of information for these heuristics.

With stronger heuristics, we can seamlessly move from a model-based planning scheme to a data-

driven reinforcement learning approach. Since this setting is defined per domain, we can construct

a hybrid system with data-driven approaches for problems for which we already have enough data.

Of course, we have less experience with very detailed domains where every run differs. However,

on the more abstract levels, we can start training earlier since the density of the recorded samples

is higher the less detail the subdomain contains. In this way, our hierarchical approach helps

us to apply data-driven algorithms based on modeled abstractions that automatically aggregate

information from a given domain.

Another exciting field is the extraction of semantic knowledge from the recorded data. With

data analytical approaches that detect clusters within the instances of a concept, we can define

more detailed concepts that correspond to our set-based definition of declarative knowledge. For

meaningful new concepts, clustering, which can be facilitated with our distance measures, must

be based on the behavior of an operator. We can then combine all inputs for an operator into a

single concept and determine whether the function call will likely fail or return a particular result.

Since we are likely to omit some information there but gain computing time, this clustering with

the following result estimate represents a new abstraction layer on this operator.

Semantic knowledge extraction from deep networks is another interesting strand of literature

we could integrate into our system. We learned about the advantages of modeled operations in

section 3.3, while data-driven approaches are generally black boxes. With algorithms like rule

extractions from neural networks [90, 91, 92], we can extract an approximation to the functions

described by the data in a model-based way and then regain the explainability during planning. In

4.8. Postprocessing for Parallel Execution 83

contrast to skill extractions such as [93, 94, 95], we additionally have the foundation for a multi-

level abstraction and typing, which allows reasoning about the aggregation of primitive skills and

thus allows us to scale to larger problems.

In some domains, it would be very beneficial to plan backward. The idea is to start from the

goals and apply the inverse of the available operators to these instances until all leaf nodes are

within the initially provided instances. Since there are generally fewer goals than initial facts, the

branching factor at the beginning of the backward search is smaller than that at the beginning of

the forward search. Applying a few backward steps depletes this advantage, and we must alternate

forward and backward searches based on the volume of the currently available facts. However,

an operator’s inverse is generally unavailable, which would be a good use case for data-driven

algorithms. We modeled all input and output instances and can quickly calculate value ranges

based on recorded data and the model. Based on this information, we can generate arbitrary data

sets for purely functional operators and thus train their inversion.

4.8. Postprocessing for Parallel Execution

Our hierarchical planning approach can handle even large-scale problems, such as the complete

assembly process, including the geometric assembly and the logistics problems that handle trans-

porting goods within the factory. Especially in such a large domain, the actions can be geometri-

cally or logically independent. This allows us to carry them out in parallel, reducing waiting times

and improving the factory’s performance. This capability may even be a prerequisite for some ap-

plications in an industrial context. In general, specialized schedulers only consider parallel tasks

in discrete domains. Often, they need a feasible initial solution, which they optimize for reduced

execution times, leading to a higher degree of parallelization. However, they only consider prop-

erties on a single discrete level. As discussed above, this is insufficient for robotic applications,

as autonomous systems require more detailed simulations or even feedback from actual execu-

tion. Our hierarchical and model-based planning approach combines the search for a successful

plan with the optimization for expected execution times and recursive validation of all steps. We

can use the explicit information in our model about the resources of each task and can explicitly

define that a particular domain can be parallelized. This is in contrast with solutions using deep

learning or optimization such as [96], which neglect this resource information and fail to optimize

the overall sequence prior to the parallelization during the post-processing or only parallelize a

single motion of the overall task and motion problem [97, 98, 99, 100]. For us, parallelization

directly impacts the cost estimate for the planning states, which influences our planner’s behavior.

This optimizes the effectiveness of parallelization, which is only applied during execution. This

behavior differs from the approach of [101] by its optimization on all (three) levels, which could

support parallelization in an offline process.

We can further improve the performance of our solution in the case of operators, which spend

a significant amount of time in a preparation phase during which shared resources are not yet

manipulated. For those scenarios similar to [102], we can allow our algorithm to automatically find

84 Chapter 4. Domain Optimizations

Figure 4.11.: For both scenarios, each operator is assumed to take one time unit execution time.
The baseline calculation (top) for the cost of a planning node ignores the later paral-
lelization during execution and just sums up the execution times of all applied oper-
ators. Our heterogeneous state allows us to implement a dedicated per-instance cost
calculation scheme (bottom), which reflects a later parallelization chapter 9. There,
we calculate the earliest time we can generate a specific instance. The cost of a plan-
ning state is then determined by the latest generated instance instead of the sum of
all applied operators.

parallelized solutions by splitting up those operators into several smaller actions that occupy their

acquired resources most of the time such that algorithmic access to this information is reflected

in the model. An additional application of this parallelization scheme is a logistics task in which

a dozen machines are handled in parallel. On the more abstract levels, we apply the actions in

simulation in a strictly sequential order. However, we calculate the cost of the planning state not

by the sum of the expected costs of all applied operators leading to this state but by the maximum

of a per-instance cost.

This per-instance cost is calculated for the outputs of an operator by the sum of the most expen-

sive input instance and the expected cost of the operator as depicted in Figure 4.11. Therefore, if

the cost in an example domain is time, we add the expected execution time to the time when all

input facts are available.

In this way, the costs we considered in planning reflect a parallel execution scheme that opti-

mizes the sequential plan for subsequent parallelization as mentioned in subsection 3.2.2. Thus,

even for parallel execution, we can consider continuous characteristics such as collisions or devi-

4.8. Postprocessing for Parallel Execution 85

ations during execution since we use the same structures as for the sequential plan. An algorithm

handles the parallel execution of the most refined level. It processes the sequential plan, extracts

the preconditions for each step, and periodically checks whether new sub-tasks can be started.

Two features of our model-based approach make this parallelization possible. First, our operators

only use and manipulate a subset of the information of any state. State-of-the-art task and motion

planning algorithms are opaque regarding the objects that are considered and manipulated for a

given action that modifies the state. Therefore, dependencies cannot be recognized and considered

during planning, similar to a resource-based parallelization [103]. We extend this scheme with our

model that distinguishes between active and passive inputs. Active inputs only model the current

environment during execution and are used for non-constructive operators such as collision avoid-

ance. Instances for active inputs define the relative order between the operators and, therefore,

represent a lock during parallelization. However, our parallelization algorithm composes passive

inputs based on the current state defined by all available instances at a given time. The approach

is discussed in more detail in chapter 9. There, we handled a robot cell with two independent

arms and solved an assembly task with parallel strands of execution, for example. The robots re-

ceive tasks asynchronously, while a controller similar to low-level motion generation of [104, 105]

ensures collision-free movements.

86 Chapter 4. Domain Optimizations

87

5
Conclusions

Previously, we proposed a formalism to describe declarative and arbitrary procedural knowledge

within a single set-based model. Combined with the hierarchical planner, the means to introspect

the planning results, and the pre- and post-processing algorithms this thesis describes a possi-

bly game-changing framework for industrial automation that eases the application of multimodal

systems to different domains.

For an autonomous, multimodal robotic system, experts from all engineering disciplines must

come together to integrate their hardware and algorithms to create a meaningful system. This

integration, in combination with a robust handling of disturbances during execution, is the core of

robotics.

We observed that the engineering effort to compose the components for new use-cases is a

bottleneck in the industry. Especially for systems with a higher degree of autonomy and thus

greater resilience to external disturbances, programmed rule-based designs interweave modules

with each other, reducing reusability and increasing complexity.

This results in labor-intensive integration for systems, which should eliminate time-consuming

manual tasks. Hence, automation frequently shifts efforts from physical to cognitive work without

any increase in efficiency.

We can now automate the work of engineers who previously automated the physical process,

pushing the boundaries of automation and opening new fields of application with composable au-

tonomous systems. We solve two problems simultaneously: Firstly, the system gets more flexible

and robust compared to rule-based approaches through online planning, which can react to exter-

nal disturbances without explicitly handling every corner case. When the system state deviates

from the expected, planned situation, we can simply re-plan from the then valid state. Due to the

hierarchical structure of the planned solution, only partial recalculations are necessary for minor

deviations.

Secondly, modularization allows for a high degree of reusability, such that the experts of each

domain can concentrate on their focus area rather than the later integration process, even for mul-

88 Chapter 5. Conclusions

timodal systems. By that, we address both cornerstones of robotics, the robustness of execution

and the integration from various sources.

The core enabler for this kind of system is the hierarchical planner. By factorizing the planning

problem, even large-scale domains can be solved efficiently. Additionally, the hierarchization

allows for easier debugging and interaction with a user.

The critical requirement for a universal planner is an expressive model that holds all required

information, ranging from the most abstract semantic levels to continuous real-world execution.

Without such a model, no generalized planner is possible. We presented such a model based

on formal set theory. These models are flexible enough to describe every party’s modules that

contribute to a robotic system. We even incorporate different simulations in our models to validate

the results of our operators. That way, we can handle completely different domains with the same

algorithmic implementation of the solver and the same description language.

The formalization not only allows for online composition of the modules but also for an offline

optimization to align the dialects of experts in different fields. This by-product of the formal

models, which are inputs to the hierarchical planner, pushes the automation of the integration

process to the next level. We cannot only adapt for different units but also adjust the structure of

how information is stored to incorporate information from various sensor modalities.

A further benefit of the formal model is the possibility of asynchronous parallelization. For each

component, we can differentiate between task-relevant and environmental information. By doing

so, we do not add unnecessary temporal constraints during execution. Still, we can parallelize

more tasks on close resources, such as collaborative robots, which can optimize their waiting

times by solving tasks independently whenever possible.

With these results, we can answer the research questions stated in the introduction:

Research Question 1: Can we provide an automatic and flexible online decomposition of plan-

ning tasks to solve large planning problems?

Answer: Yes, our hierarchical planner can factorize arbitrary domains described by our models.

We observed linear scaling in planning times for large assembly problems, for which the solution

consisted of hundreds of steps.

Research Question 2: Can we integrate an MPC-like behavior into our planning algorithm so

that deviations during planning or execution are detected by different sensors and handled auto-

matically, such that hybrid problems are solved for real environments?

Answer: Yes, our planner natively incorporates an MPC-like behavior, which we applied to

handle deviations of the real-world for a dual robot arm. We extended this concept and handled

the two interfering robotic arms independently, so deviations occurred even without external un-

certainty. The system could still operate reliably based on sensor information from force sensors,

rotary encoders, and camera feedback.

89

Research Question 3: Can we define a modeling language that covers arbitrary discrete and

continuous properties as well as actions, simulations, or executions from the discrete level to real-

world execution for our generic planning algorithm?

Answer: Yes, our set-based modeling language can handle arbitrary black-box actions. We can

automatically compute partial orderings between the pieces of declarative knowledge for our plan-

ning algorithm and annotate the required information on operations.

Research Question 4: Can we design a system that enables automatic optimization of the mod-

els and explainability for the developers?

Answer: Yes, we can reformulate the declarative and procedural knowledge based on our models.

The factorization eases debugging and allows for a high degree of introspection and explainability.

A key advantage of our approach compared to upcoming, data-driven algorithms is computa-

tional frugality. Model-free approaches rely on pure luck to reach a goal at the beginning of the

training. If there is no hint, such as a distance measure to the goal, but only a binary result about

whether the goal is reached, the initial search phase might be too computationally expensive and

prevent the application of such algorithms. We could integrate such algorithms and provide a hot-

start in such cases, which, on the one hand, biases our solution. On the other hand, it could allow

us to apply the system to a broader set of tasks. Compared to purely hierarchical planning, we

could benefit from faster and better solutions due to the learning and optimization from previous

runs.

90 Chapter 5. Conclusions

91

II
Cumulative Part

93

6
Bridging the Gap Between Semantics and

Control for Industry 4.0 and Autonomous

Production

Title Bridging the Gap Between Semantics and Control for Industry 4.0 and

Autonomous Production

Authors Bernd Kast, Sebastian Albrecht, Wendelin Feiten, and Jianwei Zhang

ISBN/ISSN 978-1-7281-0356-3/2161-8089

DOI 10.1109/COASE.2019.8843174

Status published

Publisher IEEE

Contribution of

Bernd Kast

I developed the theory based on and refined by the discussions with

the co-authors. I implemented the concepts described in this paper and

carried out the experiments. The paper benefited from the discourse

with the co-authors.

https://doi.org/10.1109/COASE.2019.8843174

94
Chapter 6. Bridging the Gap Between Semantics and

Control for Industry 4.0 and Autonomous Production

Summary Challenges in Industry 4.0, and for autonomous systems in general, are

hybrid problems for which discrete and continuous properties come to-

gether. The first step towards automated planning systems, which enable

autonomy and flexibility, is the modeling language to describe the prob-

lem at hand. Classical planning, with their respective PDDL-related

modeling languages, describes discrete problems and allows us to solve

them with various algorithms. The motion planning community tradi-

tionally targets continuous problems with probabilistic planning algo-

rithms independently of the discrete properties. While progress towards

a merger of both worlds has been made in recent years in task and mo-

tion planning, these approaches lack formal models for a generic prob-

lem description. We provide a formal model based on set-theory that can

represent both discrete and continuous properties and embed arbitrary

code so that collision checking is possible, for example. We motivate

the modeling of both, declarative as well as procedural knowledge, the

isomorphism between planning and execution, and the hierarchization

and factorization of the planning problem for scalable planning. An ex-

ample of an autonomous assembly task that uses a hierarchical planner,

proposed in a second paper, concludes the paper.

Bridging the Gap Between Semantics and Control

for Industry 4.0 and Autonomous Production

Bernd Kast1, Sebastian Albrecht1, Wendelin Feiten1 and Jianwei Zhang2

Abstract— Small lot size production requires decoupled spec-
ification of the product and the production system to allow for
flexible manufacturing, which leads to autonomous systems.
Their key are algorithms, that are able to sequence and
parametrize skills in a meaningful way such that a given task is
fulfilled. This planning process requires suitable models of all
relevant aspects of the production which includes the system’s
state and estimates of its behavior.

In this paper we propose formal models for declarative
and procedural knowledge, which unify the symbolic and sub-
symbolic representations. Currently, the curse of dimensionality
prevents state of the art techniques to solve non-trivial real-
world tasks that pose mixed discrete and continuous states. Our
models are designed hierarchically from the very beginning and
thus allow an automatic decomposition of planning problems.
This allows us to compute solutions online for complex tasks
that are only defined by the goal configuration of the product.

We validate our approach with an assembly use-case that
illustrates end-to-end autonomous robotic production in a real-
world setting. The separate definition of product and hardware,
as well as the number of steps required to fulfill this task
demands a multilayered planning and execution for online
control.

I. INTRODUCTION

Today’s production lines are specifically designed for a

limited and known set of tasks. The design processes of the

parts to be produced and the production systems interleave

to ensure feasibility and ideally robustness as well as per-

formance [9]. Engineering efforts are enormous and often

even small changes in the product or the production hardware

require re-engineering of the overall process. For economic

reasons, this prohibits production systems for small lot sizes,

which come with a high variance in tasks, product properties

or hardware setups [7], [14], [24]. A possible solution to

that are autonomous systems, that increase flexibility by an

automatic calculation of an effective action sequence. This

would require only little or even no engineering effort for

new tasks due to the increased autonomy.

However, in order to keep engineering efforts manageable,

those algorithms require suitable models for their computa-

tions, that describe each task and component of the pro-

duction system independently. These pieces of information

should then be brought together by planners, that calculate

a meaningful sequence of actions online. Key to such a suc-

cessful planning system are expressive models that describe

1Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich,
Germany. bernd.kast@siemens.com

2University of Hamburg, Faculty of Mathematics, Informatics and Natural
Sciences, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany.

The presented research is financed by the TransFit project which is funded
by the German Federal Ministry of Economics and Technology (BMWi),
grant no. 50RA1701, 50RA1702, and 50RA1703.

Levels

of

planning

hierarchical

Goal product

Hierarchical models

Fig. 1: The goal product and hierarchical models are the

basis hierarchical planning. Symbolic plans can be refined

to sub-symbolic properties and executed on real hardware.

the available pieces of information (concepts) and possible

actions (operators). A deep digitalization of the production

process and its components is the corner stone of Industry

4.0 and indispensable for autonomy.

The models must cover the overall system with all its

components even those that interface with the real-world.

This includes simulations, the actual hardware, as well as

algorithms and databases. As the modeling and planning

algorithms are part of that system, the models must provide

the expressiveness to describe themselves and algorithms that

work on them.

Throughout this paper we consider an assembly task, that

uses a robot to click a module on a top-hat rail, as an

example. On the symbolic level a plan might be the sequence

of the actions: grasp, move and click. This determines the

objects that are manipulated and the operations on them.

However, this plan is not executable on the real hardware if

there is no collision-free grasp for the object, that also allows

for a collision-free assembling on the rail. Collisions can

hardly be represented on this symbolic level, though. This

example illustrates, that, in general, collisions and motion

trajectories for the robot cannot be determined on that level

of abstraction. We need models that can handle sub-symbolic

95

information and suitable planning algorithms that make use

of them.

Planning tasks that involve symbolic and sub-symbolic

properties pose a huge complexity. This prevents the direct

calculation of the problem’s solution within the strict time

requirements of online control. A common approach is to

simplify the task by a factorization of the problem. Our

contribution are models that allow an autonomous reasoning

about this factorization based on the solutions of abstracted

levels. The specific number of abstractions, their content and

the respective transitions are calculated automatically, as pre-

defining these levels would generate undesirable interdepen-

dencies between models. This would prevent an automatic

composition to domains and therefore limit the flexibility

and application scenarios. The models have to provide all

information to allow for this reasoning.

However, this can only be achieved if the same principles

are used to describe information and actions, as they are

strongly interconnected and define the levels of abstraction

only when considered together.

In this paper we propose new formal and intrinsically

hierarchical models that unify the declarative and procedural

knowledge for both, the symbolic and sub-symbolic world.

They are expressive enough to describe arbitrary calculations

like simulations, algorithms, that make use of them or

directly control real hardware.

We leverage the strengths of different modeling and plan-

ning techniques rather than to replace them. Our models

allow to interface these well-established methods and enable

the needed information exchanges. Despite the undeniable

linkage between models and planning algorithms, we only

focus on the models in this paper. To demonstrate their

benefits, we use them in an assembly scenario. and breadth

first forward searches.

II. RELATED WORK

Due to its unifying character, this paper touches numerous

strands within the scientific community of robotics and

autonomous systems. In the following, we present a small

selection of those approaches. In subsection II-A we describe

concepts, that introduce manually designed abstractions of

arbitrary components of production plants. They ease adap-

tations to changing tasks but require a manual sequencing as

they neither allow for planning nor reasoning of hierarchies.

However, they lift the continuous properties to a symbolic

level, that enables an enrichment with models discussed in

subsection II-B such that they can be used with planners

presented in subsection II-C. The first flaw of this setup is the

manually defined hierarchy, with the fixed number of layers

and the gap between the symbolic and sub-symbolic level.

This is discussed in subsection II-D along with the second

problem which is the coupling of the models to a specific

problem class. In subsection II-E approaches are presented

that tackle the end-to-end problem while pertaining the

separation of task and plant descriptions. Those approaches,

however, don’t offer a hierarchical decomposition of the

problem and therefore can’t scale to larger problems.

A. Industry 4.0, Model-predictive Control and Skills

Industry 4.0, the next step of automation, provides the so-

called digital twin. It offers high-fidelity models that describe

properties, states, processes as well as the system’s dynamics

[19], [36], [46].

Advanced robotics is not viable without such reliable and

desirably probabilistic models as algorithms, that account

for deviations in measurement and actuation, rely them

[44]. Those algorithms are required to tackle the inevitable

difference between simulation and real-world, as they react

appropriately on small deviations during execution [10], [41].

Given those robust algorithms, hand-crafted hierarchy lev-

els for the capabilities of machines can be designed, that lead

to the term skill [6], [22]. Such skills encapsulate certain

aspects of the hardware and therefore enable engineers to

easily combine and compose components for new tasks [25].

Concepts that make use of such skills range from behavior

trees [30] to advanced hierarchically compositions [8].

However, they still rely on manual work, as they lack the

information, like a simulated outcome, needed for planning.

B. Models for Reasoning and Planning

The plan generation of autonomous systems is based

on suitable models that, describe a calculated estimate of

all task-relevant aspects. Therefore, a formalization of the

required knowledge [21], [37] is necessary, which combines

the declarative and procedural information [1], [3], [18].

A special focus has to be put on procedural models of

different abstractions, which can provide calculated estimates

of real-world processes with various accuracy. The respective

declarative representations of their in- and output can range

from pure symbolic to (mixed) sub-symbolic information. On

the most detailed level, skills, discussed in subsection II-A,

can be used.

A lot of research has been done regarding ontologies and

taxonomies (such as RDF and OWL). However, only few

papers are proposed for a common description of declar-

ative and procedural knowledge [35], [38]. Autonomous

production poses further requirements. This includes flexible

expandability as well as evaluation of black-box code in

order to make use of high-fidelity simulations. Additionally,

hierarchies for both, declarative and procedural knowledge,

are required to overcome the curse of dimensionality. To the

best of our knowledge there exists no approach in the context

of robotics, that covers all those aspects.

C. (Hierarchical) Symbolic Planning

Many modeling languages formalize planning problems

on a symbolic level, e.g. PDDL and its variants [16], [31].

They focus on procedural knowledge of a domain which

is complementary to most ontologies that mainly describe

the declarative structures. Note that composite objects with

complex structures modeled in an ontology cannot easily

be expressed in PDDL. Several planners for suitable sub-

classes of PDDL problems have been proposed, e.g. [12],

[23], [34]. However, somewhat realistic setups require to

handle a lot of sub-symbolic quantities with nonlinear effects.

96
Chapter 6. Bridging the Gap Between Semantics and

Control for Industry 4.0 and Autonomous Production

The resulting problem complexity renders online application

of these planners for robotic control impossible.

Hierarchies are a widely used technique to increase scala-

bility. For instance, partial-order planning (POP) [48] handles

partially specified action decompositions, in which the plan-

ner fills in the missing pieces. Another example is the huge

class of hierarchical task networks (HTN) which refine each

abstract method by a network of sub-methods, e.g. [13], [20],

[33]. An overview of different HTN methods can be found in

[5]. Both methods require some prior knowledge of the task

to model the domain, and don’t allow for an arbitrary number

of black-box calculations or simulations which hugely limits

the flexibility.

Closely related to that problem is, that many planners

rely on the downward refinement property: it guarantees

that an abstract solution can be refined to a primitive one

[2]. An example of such an algorithm is presented in [29]

where even abstract tasks possess preconditions and effects.

Their underlying semantics ensures that an abstract plan can

be refined to a primitive solution. Several variants of HTN

planning and hybrid planning [4], [13], [32], [40] have been

proposed. In general, the performance gain of HTN methods

comes at the cost of flexibility. In most cases the later

application has to be actively considered during engineering

of HTN actions as the (purely symbolic) calculations on the

abstract level have to provide a definite and correct answer

to the outcome of the real-world.

D. Combined Task and Motion Planning in Robotics

In recent years the combination of task planning and

motion planning has gained a lot of interest in the robotics

community. By combining existing task planners with motion

planners [11], [42] collision-free paths and some geometric

constraints can be handled. Others lift the sub-symbolic

world to the symbolic planning [17], [28] by extending the

heuristics of the symbolic planners or considering unbound

variables. Disadvantages of those approaches include scaling

issues and a discretization that has to be specified in advance.

On the other hand, the symbolic properties can also be added

to the sub-symbolic path planning problem that determines

the best intermediate and final states [45].

Most of the former approaches consider almost exclusively

manipulation problems and neglect robot dynamics and/or

temporal constraints. The ScottyActivity planner [15] con-

siders problems, that include such properties. It uses methods

of convex optimization in combination with relaxed plan

graphs and suitable heuristics for searching. However, the

applicability is limited by fundamental assumptions, like the

absence of obstacles and linear dynamics for the robots.

Both, nonlinear dynamics and collisions are considered

by [39] proposing an asymptotically optimal manipulation

planner. Their approach extends sampling-based roadmap

planners to efficiently explore configuration spaces.

E. Autonomous Production Systems

The total problem of autonomous robotics in production

is to find and execute a sequence of actions based only on a

description of the hardware and a CAD model of the desired

product. All tasks, such as perception, arm movements or

gripper actuations need to be planned for multiple pieces

avoiding the curse of dimensionality.

The pioneering system [27] is one of the few who tried to

solve this hard problem. Due to the technological limitations

at that time, the user has to provide substantial input, for

example recommended sub-assemblies or assembly paths.

The approach just generates a nominal control code, not

considering sensors and is tested only in simulation.

In [43] a more evolved version is presented that, among

other models, uses CAD data and the desired goal config-

uration as an input. After computing assembly sequences,

the optimal plan is selected and mapped to the robot’s skills

which are then executed on the hardware. However, as there

is no reasoned hierarchy, this approach suffers from the curse

of dimensionality.

III. HIERARCHICAL KNOWLEDGE MODELING

The focus of this paper are formal models that enable

hierarchical planning. In this section, we introduce the formal

structures for concepts, i.e., the declarative models, that

describe pieces of information, and for operators, i.e., the

procedural knowledge models which characterize actions.

These models fulfill the two basic requirements of hierar-

chical planning and bridge the symbolic and sub-symbolic

worlds:

First, our approach allows to use the same structures for all

concepts, independently of whether they are fully symbolic,

fully sub-symbolic or hybrid. This solves the hardest part,

which is the transition between the different worlds.

Second, the operators can be defined as black boxes

which are evaluated online during planning. This enables

for example the integration of collision checks, advanced

simulations and a seamless transition to the real-world. By

that, our formal models standardize the interfaces for all

aspects of autonomous systems.

A. Concepts

A concept captures the declarative knowledge about an

object. It has inherently a specific level of abstraction when

compared to another concept. For example, consider the

working surface of an assembly unit. On an abstract level,

it suffices to have a unique identifier for each surface in the

workspace to answer whether or not a placement is possible.

On more detailed levels, other properties like dimension,

poses or even friction coefficients become relevant. Each

combination of those properties specifies a specific concept

C and the set of all concepts for working surfaces results in

a concept class Γ.

These ideas can be grounded on set-theoretic definitions

which are also depicted in Figure 2.

Definition 1:

• A concept base BΓ is the set of instances, which is not

necessary finite.

97

• A concept C is a subset of BΓ, i.e. C ⊆ BΓ.

• A concept class Γ is the set of concepts Ci that have a

common concept base BΓ, i.e. for all Ci ∈ Γ, b ∈ Ci :
b ∈ BΓ.

• A partial order M, that describes more detailed than,

can be defined on Γ: (Ci, Cj) ∈ M iff Ci ⊂ Cj .

C1

C2
C3

C4

B′
Γ

BΓ

Fig. 2: Illustration of set-theoretic definitions of concepts.

The three concepts C1, C2, C3 are subsets of a common

concept base BΓ and thus form a concept class Γ. Concept

C4 has another concept base and concept class. Concept C3

is more detailed than C2. For the other concept pairs, no

such relation is true.

In this sense all concepts are sets. However, they some-

times have more structure than these non-composite con-

cepts. Especially when humans construct and use them. In

many cases it is reasonable to denote the meaning of each

value of an instance. Therefore, we introduce roles r and

composite concepts in the following:

Definition 2:

• A role r ∈ R is a unique identifier, e.g. a string or

integer, where R contains all possible roles.

• The set of all roles is assumed to be ordered, thus for

each subset Ri ⊆ R with nRi
:= |Ri| a bijective map-

ping I to NnRi
:= {1, . . . , nRi

}, i.e. both mappings

I(r) ∈ NnRi
∀r ∈ Ri and I−1(n) ∈ Ri ∀n ∈ NnRi

exist.

• A composite concept C = Πr∈RC
Cr with RC is the

specific set of roles for this composite concept.

Note that this composition structure of a concept defines

a (directed) graph, see figure 3. Each node corresponds to

a concept structure. Edges contain the role and point from

the composite concept to a sub-concept. The composite

concept structure from above can easily be extended to both,

ordered, finite lists and unordered finite sets, by enhancing

the roles by semantic information: r[] or r{ }.

For the non-composite concepts, we already introduced a

partial order, that describes which concept is more detailed.

This notion can directly be generalized to composite con-

cepts:

Corollary 2.1: Given two composite concepts of one con-

cept class C, C̄ ∈ Γ. Then the partial order M can be defined

recursively by:

(C, C̄) ∈ M iff (Cr, C̄r) ∈ M ∀r ∈ RC̄ .

Thereby C is isomorph to a subset of C̄.

Connection

String

String

CollisionObject

Boolean

SolidPrimitiveArray (ShapeMsgsSolitPrimitive[])

PoseArray (GeometryMsgsPose[])

String

String

Pose (GeometryMsgsPose)

SceneObject

touch_links[]

link_name

rel_pose

primitives

primitive_poses

connection

type

id

collision_object

localized

Fig. 3: Example of a composite concept with composite sub-

concepts. An individual color is randomly picked for each

concept. The images illustrate the tree-structures which are

used for composite concepts.

Proof: The definition of the partial order requires that

C has all the roles of C̄. Rearranging the indices of the roles,

an isomorph concept is obtained:

C ∼= Πr∈RC∩RC̄
Cr ×Πr∈RC\RC̄

Cr := C ′.

The recursive definition of M then yields:

Πr∈RC∩RC̄
Cr ⊆ C̄.

Therefore:

C ′ ⊆ C̄ ×Πr∈RC\RC̄
BΓ(r)

∼= C̄.

An interesting aspect is the similarity of instances, i.e.

when do two instances of the same concept represent the

same thing. This is especially important due to measurement

noise, numeric accuracies and symmetries. For example, each

sensor measurement varies slightly and each number in a

computer comes with a rounding error.

We suppose that each instance represents a set, i.e. all

bi ∈ BΓ correspond to sets. Then a relation, that describes

the similarity, can be based on the intersection bi∩bj . If this

intersection is non-empty, the instances are assumed to be

similar.

Note that in this way similarity is symmetric, but not nec-

essarily transitive. If transitivity is mandatory, the instances

xi have to represent equivalence classes, i.e. a partition

of BΓ is needed. Depending on the use case, transitivity

is in some cases strictly required and in others not even

possible. Therefore, for each concept C a relation, the so-

called compare function, is introduced: FC : C × C → B.

For a composite concept the definition of a valid compare

function is straight forward due to the product structure: Two

composite concepts can be defined to be similar if all their

corresponding leaves are similar.

98
Chapter 6. Bridging the Gap Between Semantics and

Control for Industry 4.0 and Autonomous Production

B. Operators

Declarative knowledge is only useful if elements of the

procedural knowledge, so-called operators, use them. An

example is depicted in Figure 4. The following definition

introduces models for operators and subsequently additional

assumptions are stated:

Definition 3:

• An operator π describes changes in the declarative

knowledge. Therefore, it is a mapping of given input

concepts Iri to output concepts Orj with input roles

ri ∈ Rπ,I and output roles rj ∈ Rπ,O, i.e., π :
Πri∈Rπ,I

Iri → Πrj∈Rπ,O
Orj .

• Certain operators describe modifications of instances,

opposed to just generating new instances. This means

that pieces of knowledge are invalidated as soon as

such an operator is executed. Those inputs are called

consumed. The set of roles corresponding to inputs that

are consumed by the operator is denoted by Rc

π ⊆ Rπ,I .

SceneObject

SceneObject

Join

SceneObject
scene_object_a

scene_object_b

scene_object_out

Fig. 4: Example of an operator with multiple inputs and

outputs. Consumed inputs are depicted with red arrows.

Inputs and outputs may be instances of the same set and

are thus depicted by the same concept.

Assumption 3.1:

• There is no limitation on how output instances are

computed, given the input instances. This can be spec-

ified explicitly by symbolically representable mappings

(mathematical formulas) or implicitly as the result of

some experiment in simulation or real-world. Therefore,

even sampling-based planners or random processes are

possible.

• Operators are fully functional: they do not have an

internal state and they cannot return any input, only

a copy of it.

Naturally, operators are elements of a functional space.

Thus, they can also be modeled as instances of an operator-

concept on a higher level of abstraction that is often called

meta level. In addition to the information described above,

the operator-concept can contain meta information, such as

performance indicators (KPI) and entropy characteristics.

The available structures for the operator allow to deduce

hierarchies of operators from the hierarchical structures of

concepts. These hierarchies represent different abstractions

of simulators. The most detailed operator is the execution in

real-world. These abstractions allow for a usage in planning

algorithms.

Corollary 3.1: An operator π1 is more detailed than an-

other π2 if the following conditions hold true:

• all input and output roles of operator π2 are elements

of the role set of operator π1, i.e. Rπ2,I ⊂ Rπ1,I and

Rπ2,O ⊂ Rπ1,O,

• all (common) inputs Ir,1 and outputs Or,1 of operator

π1 are more detailed than those of operator π2, i.e.

(Ir,1, Ir,2) ∈ M for all input roles r ∈ Rπ2,I and

(Or,1, Or,2) ∈ M for all output roles r ∈ Rπ2,O,

• the key performance indicators and the entropy charac-

teristics of operator π1 are more detailed than those of

operator π2.

Summing up, we now introduced formal models for

declarative and procedural knowledge based on set theory.

These models are designed to capture different abstraction

levels, which allow easy algorithmic generation of hierar-

chies. In particular, these models are able to bridge the gap

between the symbolic and sub-symbolic world. However,

they are only useful for an autonomous production unit if a

planner can use them to automatically generate valid action

plans. Therefore, we will now sketch how we represent and

find plans while we avoid combinatorial explosion in many

cases.

IV. CONCEPTS FOR PLANNING

The model hierarchies for concepts and operators were

introduced to enable hierarchical planning. The goal of

the following sections is to show that these structures can

actually be used to plan and control an autonomous assembly

system. We only sketch the general hierarchical planning

approach, as the in-depth discussion is beyond the scope of

this paper and can be found in [26].

Planning is an evaluation of operators on the set of

currently available instances in order to reach one or multiple

goal instances. In our approach, execution is no different

from any other calculation, but just a very good simulation

of the consequence of actions. The operators can use or

consume available instances and generate new instances.

Consuming instances happens frequently when manipulating

real-world objects: A box that is moved to another place can

no longer be picked at the previous location. On the other

hand, some information, like the size of the object, can be

used multiple times and is therefore used but not consumed.

To discuss the relevant elements during planning, we first

introduce the concepts of a planning task, a plan family and

a plan, which are all concepts in the meta domain:

1) Planning Task: A planning task PT (Xinit, Xgoal, Xop)
specifies the combination of three sets: a set of initial

instances Xinit := {bi, i = 1, . . . , ninit}, a set of goal

instances Xgoal = {bj , j = 1, . . . , ngoal} and a set of

available operators Xop := {πk, k = 1, . . . , nop} with

ninit ∈ N0 and ngoal, nop ∈ N.

2) Plan Family: We introduce the concept of a plan family

GPF , that contains the initial facts and connects operators

with their input and output instances. Consequently, the plan

family GPF is an extended bi-partite graph (V,E,EC) where

the first node set VB contains nodes representing instances

only and the second set Vπ consists solely of operators. The

extension of the graph means that there exists a special subset

99

of edges: the set of edges EC ⊆ E which denotes edges

corresponding to consumed operator inputs.

3) Plan: A plan is a special plan family in which each

fact can only be consumed once. Additionally, a plan has to

contain a (non-consumed) node representing an instance that

is more detailed than an element of the goal set Xgoal. This

means ∃v ∈ VB , vg ∈ Xgoal : (v, vg) ∈ M.

V. PLANNING FOR AUTONOMOUS SYSTEMS

Planning considers sets of instances Xi, i ∈ N. Each

set of instances Xi is obtained by the execution of one

operator πk ∈ Xop on a selection of instances (b1, . . . , bnπk
)

with length nπk
:= |Rπk

|. Those instances are elements of

a previous set of instances Xj , j ∈ {0, . . . , j − 1} (with

X0 := Xinit):

Xi = (Xj ∪ πk(b1, . . . , bnπk
)) \ {bn̂ | I−1(n̂) ∈ Rc

πk
},

in which the instances must be an element of the correct

concept bI(rl) ∈ Crl ∩Xj .

The set of currently available instances Xi is the rep-

resentation of our state. Since the information regarding

input and output instances is stored in the plan family, the

sets Xi correspond to a subset of nodes V . Considering a

set of instances Xi that contains a all goal instances, i.e.

∀bg ∈ Xgoal : ∃b ∈ Xi with (b, bg) ∈ M, the corresponding

plan is the sub-graph of the plan family that has the following

properties:

• all leaf nodes correspond to instances in Xi,

• all root nodes correspond to instances in Xinit or are a

node from Vπ ,

• each node can have at most one outgoing edge that is

within the consumed set.

Hierarchical planning deals with the curse of dimension-

ality in a divide and conquer fashion. This means, a plan is

determined on an abstract level of the hierarchy first and then

this plan is refined step by step to the most detailed level,

which is the execution on the real hardware (cf. figure 1).

Thus, the hierarchical planning is a meta-planning approach,

in which for each step individual algorithms are called. As

mentioned above, two of those planning types are classical

planning and task and motion planning. While they cannot

handle the total problem on their own, they are still suitable

to solve sub-tasks. Opposed to previous approaches, we are

not limited to exactly two layers and can handle multiple

layers with hybrid states. Additionally, we and allow back-

tracking and therefore don’t rely on the downward refinement

property. Nevertheless, our performance only benefits if it

holds often.

In general, the reasoning of suitable hierarchy levels and

sub-planning domains for a given planning task and the

search of according refinement strategies are hard optimiza-

tion problems on their own and therefore topics for future

research. However, for specific application examples, the

automatic computation of relevant hierarchies is straight

forward and already implemented (see for example next

section).

The basic idea of the hierarchical planning is, that each

step of a course plan defines a new planning task, that recur-

sively be solved until the real hardware is actuated. Due to

our models, this refinement can be determined automatically

and online. In more detail, the execution of a given operator

π : Πri∈Rπ,I
Iri → Πrj∈Rπ,O

Orj , which is a single step in

the plan, leads to the following mapping of instances:

{br | r ∈ Rπ,I} 7→ {b̄r | r ∈ Rπ,O}.

The refinement of this planning step defines the goal set of

new planning task PT (X ′
init
, X ′

goal
, X ′

op
), as the set of operator

outputs X ′
goal

:= {b̄r | r ∈ Rπ,O}. The operator set X ′
op

results

from the automatically calculated hierarchy level and the

initial facts X ′
init

are determined by a subset of the available

facts of the most refined previous plan step. This means, all

instances of the input concepts, but the ones actually used

in the coarse step, are removed from that set to restrict the

search space. The principle idea of this algorithm is depicted

in Figure 5.

Object Localized

Object Localized

Join

Object Localized
scene_object_a

scene_object_b

scene_object_out

scene_object_out
More detailed Join

scene_object_b

scene_object_a
Object Localized Conn

Fig. 5: Basic planning idea: An easier planning task can

be obtained by abstracting the original instances and goals

(arrows pointing upwards). Each step in the coarse plan

defines a new task in the refined level. Either a refined

operator exists (white ellipse) or a plan has to be found

(gray ellipses). Facts and goals are determined using the

compare function as their abstractions need to comply with

the instances of the course plan.

Multiple realizations of this general hierarchical planning

idea are possible. We use a planner that supports backtrack-

ing and uses breadth first search. Therefore, we don’t rely

on the downward refinement property, while it helps to fight

the curse of dimensionality. As the downward refinement

property holds often, we observe a linear scaling of the

planning times in the number of modules for this example.

Note that this hierarchical planning method finally closes

the former gap between the symbolic planning and the sub-

symbolic planning.

100
Chapter 6. Bridging the Gap Between Semantics and

Control for Industry 4.0 and Autonomous Production

VI. APPLICATION EXAMPLE: AN AUTONOMOUS

MANUFACTURING SYSTEM

An assembly task is chosen as an example to demonstrate

the capabilities of the proposed hierarchical modeling and

planning framework: four modules (one type of such a

module is shown in figure 6) must be assembled onto a

top-hat rail which is a common part in control cabinets.

The product specification uses fully-symbolic concepts of

these modules which are completely hardware-independent.

The precise poses of all components are unknown in the

beginning and have to be determined by suitable perception

steps.

Fig. 6: CAD model and image of one of the modules to be

assembled on a top-hat rail.

The autonomous system is a two-arm-robot setup shown in

the bottom picture of figure 1. Both arms are equipped with

a parallel gripper and a wrist-mounted camera to manipulate

and localize parts.

Depending on the actual pose of a component, the part

can either be picked and mounted by a single arm or a

handover to the other manipulator is necessary. This may

happen when all grasping positions would result in mounting

motions which are not collision-free. Confer [39] for details

on low-level task and motion planning, which selects grasps

and calculates collision free robot arm motions in order to

fulfill the overall task. The actual joining movement of the

component onto the top-hat rail is a difficult process because

of the presence of measurement uncertainties. It is solved by

actively considering these uncertainties and using suitable

planning techniques [47].

The provided operators on the most detailed level include:

• perceive: given a coarse initial guess, a precise 6D pose

of the object is computed.

• mount: given the precise 6D pose of a component and

the rail, the autonomous system grasps this object and

clicks it on the hat-rail.

• push: the precise 6D pose of the rail with more than

one mounted component provided, the parts are pushed

together to connect them.

The hierarchical structure of the domain is directly vis-

ible in the concept hierarchy of objects. Figure 7 shows

5 concepts that specify an object on different abstraction

levels. All of them include an object id. The more detailed

concepts that are still purely discrete additionally describe

the manipulation and localization state. The most detailed

concepts include geometry and position information. The

overall task input is modeled with instances that correspond

to the lower left concept. The task goal is an element of

the concept in the top row. In our domain, however, there

Object Localized ConnObject Localized

Object Localized Verified

Object

initial facts

goal

Level 1
Level 2

Level 3

Fig. 7: The concept hierarchy of manipulation objects. To-

gether with concepts of the initial and goal instances it

defines the planning hierarchy in this example.

exists no operator or sequence of operators such that an

instance of the goal concept is obtained. Since an instance

of a more-detailed concept is in particular an instance of

the more-abstract one, the goal of hierarchical planning

framework is to obtain an instance of the more-detailed

concept that fulfills all properties of the initially-specified

goal. The domain properties allow to algorithmically select

one additional planning level between the initial input level

and the goal level: a level corresponding to the lower right

concept. The operators for each level are determined using

backward chaining.

In our example, the different levels of hierarchical plan-

ning correspond to the following abstractions: The planner

on the first planning level checks only if sampled start

and goal poses exist, such that no collisions occur. On the

second planning level, coarse trajectories that are throughout

collision-free are computed. The final level combines de-

tailed planning with the actual execution: the trajectories are

further optimized, and the hardware is controlled actuated.

In Figure 1 these different levels of the planning process are

depicted. Actions, which result from a combination of the

cell and the task, like handover procedures, are automatically

computed online. Confer [47], [39] for more details. Note

that those layers are automatically determined by the opera-

tors available for this task and are not defined in advance.

Note that the formal knowledge models and the hierar-

chical planning approach allowed to specify the goal on an

abstract symbolic level independent of the actual production

hardware. Additionally, the operators of the production sys-

tem and their sequences are not tailored to the application

- opposed to current automation strategies. Furthermore,

we are able to calculate solutions online with linear time

dependency in the number of assembled modules, without

any task specific modeling. Thus, the autonomous production

system combined with hierarchical planning allowed for an

end-to-end control with decoupled descriptions for task and

hardware.

VII. CONCLUSION

The proposed formal models for concepts and operators

allow a seamless transition between the symbolic and sub-

symbolic levels. This enables new applications for relevant

tasks in Industry 4.0, like the proposed assembly of top-

101

hat rails with multiple components. Building up on the

hierarchical structures of the formal models, we sketched

a hierarchical planning strategy that avoids the curse of

dimensionality for reasonably modeled domains. At the same

time, the separation of plant and model description avoids

manual work for changing tasks and ensures flexibility.

All proposed elements are already structured such that

a direct extension to other research fields like self-X and

co-simulation is possible. Analyzing the interplay of these

approaches is planned for future research.

REFERENCES

[1] K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative
knowledge. In Foundations of Deductive Databases and Logic

Programming, pages 89–148. Elsevier, 1988.
[2] F. Bacchus and Q. Yang. Downward refinement and the efficiency

of hierarchical problem solving. Artificial Intelligence, 71(1):43–100,
1994.

[3] C. Baral. Knowledge representation, reasoning and declarative prob-

lem solving. Cambridge University Press, 2003.
[4] P. Bechon, M. Barbier, G. Infantes, C. Lesire, and V. Vidal. Hipop:

Hierarchical partial-order planning. In STAIRS, pages 51–60, 2014.
[5] P. Bercher, D. Höller, G. Behnke, and S. Biundo. More than a name?

on implications of preconditions and effects of compound htn planning
tasks. In ECAI, pages 225–233, 2016.

[6] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot program-
ming by demonstration. In Springer Handbook of Robotics, pages
1371–1394. Springer, 2008.

[7] E.K. Bish, A. Muriel, and S. Biller. Managing flexible capacity in
a make-to-order environment. Management Science, 51(2):167–180,
2005.

[8] S.G. Brunner, F. Steinmetz, R. Belder, and A. Dömel. Rafcon: A
graphical tool for engineering complex, robotic tasks. In IROS, pages
3283–3290. IEEE, 2016.

[9] A.M. Bryan, J. Ko, S.J. Hu, and Y. Koren. Co-evolution of product
families and assembly systems. CIRP Annals, 56(1):41–44, 2007.

[10] E.F. Camacho and C.B. Alba. Model predictive control. Springer,
2013.

[11] S. Cambon, R. Alami, and F. Gravot. A hybrid approach to in-
tricate motion, manipulation and task planning. Robotics Research,
28(1):104–126, 2009.

[12] M. Cashmore, M. Fox, D. Long, and D. Magazzeni. A compilation
of the full pddl+ language into smt. In AAAI Workshop: Planning for

Hybrid Systems, 2016.
[13] L.A. Castillo, J. Fernández-Olivares, O. Garcia-Perez, and F. Palao.

Efficiently handling temporal knowledge in an htn planner. In ICAPS,
pages 63–72, 2006.

[14] N.F. Edmondson and A.H. Redford. Generic flexible assembly system
design. Assembly Automation, 22(2):139–152, 2002.

[15] E. Fernandez-Gonzalez, B. Williams, and E. Karpas. Scottyactivity:
Mixed discrete-continuous planning with convex optimization. Artifi-

cial Intelligence Research, 62:579–664, 2018.
[16] M. Fox and D. Long. Pddl+: Modeling continuous time dependent

effects. In Int. NASA Workshop on Planning and Scheduling for Space,
volume 4, page 34, 2002.

[17] C.R. Garrett, T. Lozano-Pérez, and L.P. Kaelbling. Ffrob: An efficient
heuristic for task and motion planning. In Algorithmic Foundations of

Robotics XI, pages 179–195. Springer, 2015.
[18] M.P. Georgeff and A.L. Lansky. Procedural knowledge. Proc. of the

IEEE, Special Issue on Knowledge Representation, 74(10):1383–1398,
1986.

[19] E. Glaessgen and D. Stargel. The digital twin paradigm for future
nasa and us air force vehicles. In AIAA Structures, page 1818, 2012.

[20] R.P. Goldman. Durative planning in htns. In ICAPS, pages 382–385,
2006.

[21] N. Guarino. Formal ontology, conceptual analysis and knowledge
representation. Human-Computer Studies, 43(5-6):625–640, 1995.

[22] T. Hasegawa, T. Suehiro, and K. Takase. A model-based manipulation
system with skill-based execution. Transactions on Robotics and

Automation, 8(5):535–544, 1992.
[23] M. Helmert. The fast downward planning system. Artificial Intelli-

gence Research, 26:191–246, 2006.

[24] K. Hitomi. Manufacturing Systems Engineering: A Unified Approach

to Manufacturing Technology, Production Management and Industrial

Economics. Routledge, 2017.
[25] S.J. Hu, J. Ko, L. Weyand, H.A. ElMaraghy, T.K. Lien, Y. Koren,

H. Bley, G. Chryssolouris, N. Nasr, and M. Shpitalni. Assembly
system design and operations for product variety. CIRP Annals,
60(2):715–733, 2011.

[26] B. Kast, V. Dietrich, S. Albrecht, W. Feiten, and J. Zhang. A hierar-
chical planner based on set-theoretic models: Towards automating the
automation for autonomous systems. In ICINCO 2019. SCITEPRESS
Digital Library.

[27] S.G. Kaufman, R.H. Wilson, R.E. Jones, T.L. Calton, and A.L. Ames.
The archimedes 2 mechanical assembly planning system. In ICRA,
volume 4, pages 3361–3368. IEEE, 1996.

[28] T. Lozano-Pérez and L.P. Kaelbling. A constraint-based method for
solving sequential manipulation planning problems. In IROS, pages
3684–3691. IEEE, 2014.

[29] B. Marthi, S.J. Russell, and J.A. Wolfe. Angelic hierarchical planning:
Optimal and online algorithms. In ICAPS, pages 222–231, 2008.

[30] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren. Towards
a unified behavior trees framework for robot control. In ICRA, pages
5420–5427. IEEE, 2014.

[31] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins. Pddl - the planning domain
definition language. The AIPS-98 Planning Competition Comitee,
1998.

[32] M. Molineaux, M. Klenk, and D.W. Aha. Planning in dynamic
environments: extending htns with nonlinear continuous effects. In
Conf. on Artificial Intelligence, pages 1115–1120. AAAI Press, 2010.

[33] D.S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu,
and F. Yaman. Shop2: An htn planning system. Artificial Intelligence

Research, 20:379–404, 2003.
[34] W. Piotrowski, M. Fox, D. Long, D. Magazzeni, and F. Mercorio.

Heuristic planning for hybrid systems. In Conf. on Artificial Intelli-

gence, pages 4254–4255. AAAI Press, 2016.
[35] E. Prestes, J.L. Carbonera, S.R. Fiorini, V.A.M. Jorge, M. Abel,

R. Madhavan, A. Locoro, P. Goncalves, M.E. Barreto, and M. Habib.
Towards a core ontology for robotics and automation. Robotics and

Autonomous Systems, 61(11):1193–1204, 2013.
[36] R. Rosen, G. v. Wichert, G. Lo, and K.D. Bettenhausen. About

the importance of autonomy and digital twins for the future of
manufacturing. IFAC-PapersOnLine, 48(3):567–572, 2015.

[37] S.J. Rosenschein. Formal theories of knowledge in ai and robotics.
New generation computing, 3(4):345–357, 1985.

[38] C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Bal-
akirsky, T. Kramer, and E. Miguelanez. An ieee standard ontology for
robotics and automation. In IROS, pages 1337–1342. IEEE, 2012.

[39] P.S Schmitt, W. Neubauer, W. Feiten, K.M. Wurm, G. v. Wichert,
and W. Burgard. Optimal, sampling-based manipulation planning. In
ICRA, pages 3426–3432. IEEE, 2017.

[40] V. Shivashankar, R. Alford, U. Kuter, and D.S. Nau. The godel
planning system: A more perfect union of domain-independent and
hierarchical planning. In IJCAI, pages 2380–2386, 2013.

[41] B. Siciliano and O. Khatib. Springer handbook of robotics. Springer,
2016.

[42] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel.
Combined task and motion planning through an extensible planner-
independent interface layer. In ICRA, pages 639–646. IEEE, 2014.

[43] U. Thomas and F.M. Wahl. Assembly planning and task planningtwo
prerequisites for automated robot programming. In Robotic Systems

for Handling and Assembly, pages 333–354. Springer, 2010.
[44] S. Thrun. Robotic mapping: A survey. Exploring artificial intelligence

in the new millennium, 1(1-35):1, 2002.
[45] M. Toussaint. Logic-geometric programming: An optimization-based

approach to combined task and motion planning. In IJCAI, pages
1930–1936, 2015.

[46] T.H.-J. Uhlemann, C. Lehmann, and R. Steinhilper. The digital
twin: Realizing the cyber-physical production system for industry 4.0.
Procedia Cirp, 61:335–340, 2017.

[47] F. Wirnshofer, P.S. Schmitt, W. Feiten, G. v. Wichert, and W. Burgard.
Robust, compliant assembly via optimal belief space planning. In
ICRA. IEEE, 2018.

[48] R. M. Young, M.E. Pollack, and J.D. Moore. Decomposition and
causality in partial-order planning. In AIPS, pages 188–194, 1994.

102
Chapter 6. Bridging the Gap Between Semantics and

Control for Industry 4.0 and Autonomous Production

103

7
A hierarchical planner based on set-theoretic

models:

Towards automating the automation for

autonomous systems

Title A hierarchical planner based on set-theoretic models: Towards automat-

ing the automation for autonomous systems

Authors Bernd Kast, Vincent Dietrich, Sebastian Albrecht, Wendelin Feiten,

and Jianwei Zhang

ISBN/ISSN 978-989-758-380-3/2184-2809

DOI 10.5220/0007840702490260

Status published

Publisher Scitepress

Contribution of

Bernd Kast

The hierarchical planning scheme, with the construction of new sub-

planning tasks, was developed and implemented by me. The details

of the planning scheme, as well as the manuscript benefited from the

discussions with the co-authors. Vincent Dietrich helped me to conduct

the experiments on the real hardware.

https://doi.org/10.5220/0007840702490260

104
Chapter 7. A hierarchical planner based on set-theoretic models:

Towards automating the automation for autonomous systems

Summary Real-world planning problems comprise discrete as well as continuous

properties in general. Established planning algorithms can either not

cope with such a hybrid domain or suffer from the curse of dimension-

ality and are, therefore, limited to small examples relevant to research

only. In this paper, we propose a hierarchical planning scheme that

factorizes the domain using the formal models from our previous pa-

per. The generic model, which incorporates declarative and procedural

knowledge, allows us to automatically calculate a partial ordering that

defines the refinements of each step in a course plan. By a recursive def-

inition of new sub-planning problems, we can limit the branching factor

and reduce the effective plan lengths to the next goal. Therefore, we can,

in theory, scale nearly linearly with the length of the overall successful

plan at the cost of non-optimality. We discuss our set-based forward

state-space planner, which works on a graph rather than a tree. By that,

we can detect the closure of a domain with its characteristic structure

in the planning states. We apply our algorithm to two different assem-

bly scenarios and discuss how execution is integrated into the planning

process, the internal data structures, and the properties of our approach.

A Hierarchical Planner Based on Set-Theoretic Models:
Towards Automating the Automation for Autonomous Systems

Bernd Kast1 a, Vincent Dietrich1 b, Sebastian Albrecht1 c, Wendelin Feiten1 d,

and Jianwei Zhang2

1Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany
2 University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Vogt-Kölln-Str. 30, 22527 Hamburg,

Germany
bernd.kast@siemens.com

Keywords: Hierarchy, Planning, Autonomy

Abstract: The complexity of today’s autonomous systems renders the manual engineering of control strategies or be-

haviors for all possible system states infeasible. Therefore, planning algorithms are required that match the

capabilities of the system to the tasks at hand. Solutions to typical problems with robotic systems combine

aspects of symbolic action planning with sub-symbolic motion planning and control. The problem complexity

of this combination currently prohibits online planning without task specific, manually defined heuristics. To

counter that we use a set-theoretic approach to model declarative and procedural knowledge which allows for

flexible hierarchies of planning tasks. The coordination of the planning tasks on different levels, the classifi-

cation of information and various views on data are the core functions of hierarchical planning. We propose

suitable graph structures to capture all relevant information and discuss the elements of our hierarchical plan-

ning algorithm in this paper. Furthermore, we present two use-cases of an autonomous manufacturing system

to highlight the capabilities of our system.

1 INTRODUCTION

Setting up autonomous systems still requires huge

integration and engineering efforts. In order to make

them widely applicable, we need a holistic approach

that even considers aspects of component integration.

This is especially important in production, where a

higher degree of automation, notably for small lot

sizes, can account for changing customer demands.

A limiting factor of today’s automation strate-

gies is the interwoven product and production design

which requires costly manual effort even for small

changes of some component (Hitomi, 2017), (Bryan

et al., 2007). To reduce this effort, the design process

of the product and the production system have to be

decoupled (Hu et al., 2011) and then matched again

by an autonomous system. Thus, the autonomous sys-

tem has to solve on its own certain engineering tasks

a https://orcid.org/0000-0001-7838-3142
b https://orcid.org/0000-0003-0568-9727
c https://orcid.org/0000-0002-3647-4043
d https://orcid.org/0000-0002-7593-6298

Figure 1: Images of the robotic system (upper right) and
the hat-rail with components (left) and the box next to its
lid (lower right).

that these days are addressed manually when automat-

ing a production system, i.e. the automation of au-

tomation (Schmitz et al., 2009) is necessary for flexi-

ble autonomous systems.

This requires general models which character-

ize objects by their properties (declarative knowl-

edge) and describe actions modifying them (proce-

105

dural knowledge). These models define domains for

suitable planners. Real-world manufacturing domains

suffer from a huge computational complexity due to

their mixed continuous and discrete nature. Dis-

crete symbolic action planning and scheduling bring

in the problem of combinatorial explosion while sub-

symbolic tasks such as motion planning or control in-

troduce time, accuracy and stability constraints. A

common approach to address this curse of dimension-

ality is to use abstractions or hierarchies to decom-

pose the problem. This allows to extract smaller sub-

problems that are easier to handle. It is especially im-

portant to deduce those hierarchies for both, proce-

dural and declarative knowledge, automatically from

the models in order to keep the task and plant descrip-

tion separate. Additionally, assumptions that limit the

flexibility of the system have to be avoided. One ex-

ample is the downward refinement property which de-

mands that each coarse plan can be refined on all more

detailed levels. This is in general not viable for real-

world problems with decoupled models for the prob-

lem and the plant. This becomes obvious for task spe-

cific sub-symbolic properties, such as possible grasp

positions, which can for the general case not be mod-

eled on an abstract, purely symbolic level.

Throughout this paper, we illustrate our approach

with an industrial assembly use-case, cf. Figure 1,

which is modeled for maximal flexibility. This means

in particular, that not only the actions of the robot,

but even the interplay between software components

is planned, cf. section 8. We present a planner that

benefits from models that integrate declarative and

procedural knowledge and allow for an automatic cal-

culation of abstractions. This planner uses the graph

structures of our models on different abstraction lev-

els to factorize the problem, integrates special single-

level planners for individual subproblems but does not

depend on the downward refinement property.

The paper is structured as follows: In section 2

we present related work regarding hierarchical sym-

bolic planning, combined task and motion planning in

robotics and autonomous production systems. After

that, we discuss a set-theoretic approach for declara-

tive and procedural models that natively enables the

deduction of hierarchical structures in section 3. The

data structures for the single-level planning are de-

scribed in section 4 and the respective single-level

planner is discussed in section 5. In section 6 we

extend these concepts for the hierarchical planning

context. Finally, we present the hierarchical planning

method in section 7 and demonstrate its features on

two examples in section 8.

2 RELATED WORK

Planning algorithms are often tailored to modeling

languages and rely on their expressiveness. In this

section we discuss both symbolic and sub-symbolic

planning, as well as the application specific aspects

related to for autonomous production systems.

2.1 (Hierarchical) Action Planning

The key for flexible systems is a modeling language

that formalizes the description of the domain. On

the symbolic level, there are many languages such as

PDDL (McDermott et al., 1998) and its dialects that

focus on the procedural knowledge of a domain. A

long series of planning competitions have resulted in

a large set of fast planners for PDDL domains such

as (Helmert, 2006). Extensions to PDDL add sup-

port for certain sub-symbolic properties such as time.

An example is PDDL+ (Fox and Long, 2002) that

introduces events and processes to model exogenous

change and support domains with mixed discrete and

continuous dynamics. Corresponding solvers, such as

(Cashmore et al., 2016) or (Piotrowski et al., 2016),

make use of this representation and handle domains

with nonlinear continuous change. They approximate

the dynamics of the system and handle the result-

ing discretized model with uniform time steps and

step functions. Other PDDL dialects, e.g. (Dornhege

et al., 2009), extend the formalism by using seman-

tic attachments that allow for an evaluation of exter-

nally specified functions. Though, this requires mod-

ifying standard PDDL planners and to create domain-

specific PDDL action choosing the specific external

functions.

Another approach is partial-order planning (POP)

(Young et al., 1994) which involves partially spec-

ified action decompositions. In this approach, the

planner is only allowed to fill in missing pieces of a

fixed plan template which hugely reduces the search

space. However, it is difficult to ensure the separation

of hardware and task description with this approach,

which reduces the flexibility.

A large community addresses hierarchical task

networks (HTN) that refine each abstract skill by a

network of sub-methods, e.g. (Castillo et al., 2006),

(Goldman, 2006), (Nau et al., 2003). In their ba-

sic form they were state-oriented and could not deal

with time constraints or concurrent actions. Never-

theless, the formalism is more expressive than that of

first principle planners (Erol et al., 1994), HTN meth-

ods can improve planning times (Nau et al., 2003)

and even support plan reparation (Gateau et al., 2013).

In (Bercher et al., 2016) an overview of HTN meth-

106
Chapter 7. A hierarchical planner based on set-theoretic models:

Towards automating the automation for autonomous systems

ods is provided that discusses the expressiveness of

hierarchical planning formalisms as well as implica-

tions of preconditions and effects of abstract meth-

ods. A mandatory and limiting condition for HTNs

is the downward refinement property that enforces re-

finements to all abstract solutions (Bacchus and Yang,

1994). Yet, the generation of suitable abstract models

for a domain is a challenging or even impossible task

and often results in a coupling between task and hard-

ware description.

This becomes obvious in (Marthi et al., 2008).

They propose expressive models, which allow for the

definition of domains with the downward refinement

property. In this approach, an underlying semantic

that defines preconditions and effects even for abstract

tasks, ensures that abstract plans can always be re-

fined to a primitive solution. However, this demands

that all relevant effects and preconditions of the prim-

itives have to be considered even on the most abstract

level. This is only possible if all properties can be de-

scribed symbolically and hugely limits the benefits of

the hierarchical abstractions.

To overcome the limitations induced by the down-

ward refinement property, several variants of HTN

planning and hybrid planning (Kambhampati et al.,

1998), (Schattenberg, 2009) have been proposed. The

hierarchical partial-order planner, introduced in (Be-

chon et al., 2014), uses additional knowledge that de-

scribes sets of abstract actions with optional methods

to increase flexibility during refinement. Another ap-

proach to improve versatility is the combination of

HTN and POP in a domain-specific planner with a

strict separation between several hierarchical levels

(Castillo et al., 2003). In both approaches the effects

of the downward refinement property are mitigated at

the cost of models which are dependent on the hard-

ware and the task at the same time.

Temporal reasoning within an HTN planner is dis-

cussed in (Castillo et al., 2006) and an HTN ex-

tension for (nonlinear) continuous temporal environ-

ments can be found in (Molineaux et al., 2010),

in which the SHOP2 planner (Nau et al., 2003) is

matched to features from PDDL+ (Fox and Long,

2002). Those approaches offer a suitable perfor-

mance even in domains with sub-symbolic properties

but don’t support general geometric constraints such

as collisions. An overview of HTN planning can be

found in (Georgievski and Aiello, 2015).

Each of those approaches extends the application

area. Summarizing we state that manually drafted hi-

erarchies, the strict requirement of the downward re-

finement property or a limited support of continuous

properties prevents an application in our general man-

ufacturing domain.

2.2 Combined Task and Motion

Planning in Robotics

A challenging and widely discussed subproblem for

autonomous systems in production is task and mo-

tion planning. In (Srivastava et al., 2014) existing

task planners and motion planners are combined by

the introduction of new symbolic abstractions. Mo-

tion planning is used to refine the plans from symbolic

planning to a sub-symbolic level. The general idea

is to add further abstract poses to the symbolic plan-

ning problem every time the refinement failed because

no collision-free path could be found. This allows

to consider continuous properties on an abstract level

without manual prior modeling. However, the com-

putational complexity is shifted to the abstract level.

The advantages of the hierarchy are additionally re-

duced by the limited number of abstractions that are

possible with this approach.

Instead of combining of two separate planners

(Garrett et al., 2015) extends the symbolic planners

and their heuristics to motion planning and thus lifts

the sub-symbolic world to the symbolic planning. The

heuristic is based on domain-dependent literals that

represent reachability for example, which can be eval-

uated lazily on demand. The planner maintains a

corresponding reachability graph of sampled config-

urations. Geometric constraint-satisfaction problems

(CSP) determine plan templates with unbound vari-

ables like robot and object poses (Lozano-Pérez and

Kaelbling, 2014). The central disadvantages of these

approaches are that a discretization has to be specified

in advance and that they run into scalability issues if

a fine discretization is needed.

Another possibility is to add the symbolic prop-

erties to the sub-symbolic path planning problem. If

a simple symbolic planner is used to generate action

sequences, large optimization problems can be for-

mulated that determine optimal intermediate and fi-

nal states (Toussaint, 2015). They demonstrated the

strength of their approach for a stacking problem in

which towers of cylinders and plates have to be as-

sembled. However, it is computationally too demand-

ing for online planning and scales exponentially with

the number of involved objects.

The ScottyActivity planner (Fernandez-Gonzalez

et al., 2018) is one of the few approaches that con-

sider dynamics and/or temporal constraints along the

manipulation problem. It combines strong heuristics

with convex optimization and relaxed plan graphs.

However, the absence of obstacles and the limitation

to linear dynamics for the robots prohibits the appli-

cability for real-world problems.

In (Schmitt et al., 2017) an asymptotically optimal

107

manipulation planner is proposed that considers both,

nonlinear dynamics and collisions. Without any hier-

archical decomposition or heuristics, their approach,

which extends sampling-based roadmap planners to

explore configuration spaces, scales exponentially.

2.3 Autonomous Production Systems

There are three main challenges for autonomous

robotics in production: planning to generate a coarse,

symbolic plan, mapping the plan to the actual hard-

ware and controlling it accordingly. The pioneering

system (Kaufman et al., 1996) is one of the few who

proposed an integrating approach to target all three

challenges at a time. However, this approach relied

on substantial task specific manual modeling of sub-

assemblies, which limits flexibility. Additionally, the

approach is tested in simulation only and therefore it

neglects sensor input and generates a nominal control

code only. In (Thomas and Wahl, 2010) an improved

version is presented that uses CAD data and other

models to compute assembly sequences that comply

with the desired goal configuration. The optimal plan

is chosen, mapped to the robot’s skills and executed

on the hardware. Due to the lack of a hierarchical de-

composition, this approach, however, suffers from the

curse of dimensionality.

3 FORMAL MODELS

The planning process requires models for declar-

ative and procedural knowledge. For our hierarchi-

cal planning approach, it is especially important that

both types are naturally hierarchically structured and

that these hierarchies match each other. We accom-

plish that with the following set-theoretic definitions,

which have been introduced in more detail in (Kast

et al., 2019).

3.1 Concepts

In this work we use the term concepts for elements of

the declarative knowledge. An example of such a con-

cept is a simple box. Each specific box is an instance

of the abstract concept ”box”, but the properties of

boxes differ in detail. For example, the shape might

be different, as one box is cubic and the other cylin-

drical. Thus, we have an abstract concept of a box and

two specializations capturing subsets. This notion of

concepts can be formally grounded by following set-

theoretic definitions:

• A concept base BΓ is the set of instances, not nec-

essarily finite.

• A concept C is a subset of BΓ, i.e., C ⊆ BΓ.

• A concept class Γ is the set of concepts Ci that

have a common concept base BΓ, i.e.,

∀ Ci ∈ Γ,b ∈Ci : b ∈ BΓ.

• A partial order M , describing more detailed than,

can be defined on Γ: (Ci,C j) ∈ M iff Ci ⊂C j.

Extending the previous example: In most cases

you do not only want to know the shape of the box

but also the characteristics of the dimensions. Fur-

ther properties, like the weight or the current location,

might also be interesting. This directly leads to spe-

cial types of concepts, which we call composite con-

cepts.

The following definitions introduce composite

concepts formally:

• Given an ordered set R of identifiers, e.g. strings,

its elements r ∈ R are called roles. Thus, for each

subset R i ⊆ R with nR i
:= |R i| there exists a bi-

jective mapping J to NnR i
:= {1, . . . ,nR i

}, i.e.,

J (r)∈NnR i
∀r ∈ R i and J −1(n)∈ R i ∀n∈NnR i

.

• A composite, recursively defined concept C =
Πr∈R C

Cr with R C being the specific set of roles

for this composite concept

This definition of a composite concept corre-

sponds to a (directed) graph, cf. Figure 2: the nodes

correspond to (sub-)concepts and the edges point

from the composites to their sub-concepts.

std_msgs__String

SceneObject

std_msgs__Float64

Connection

Connection

std_msgs__String

AssemblyLight

AssemblyLight

AssemblyLight

AssemblyLight

std_msgs__String

AssemblyLightScrew

object_type

a

b

a

b

object_type

objects[]

length

available_connections[]

current_connections[]

object_id

Figure 2: Example of a composite concept that describes
objects in the later examples. Here, only the composite
structure of the first level of sub-concepts is additionally de-
picted. Note that the small images for each node visualize
the composite structures. A common color is used for each
concept class. The edges are attributed with roles.

Having two composite concepts of one concept

class C,C ∈ Γ, the partial order M can be deduced

recursively:

(C,C) ∈ M iff (Cr,Cr) ∈ M ∀r ∈ R C,

108
Chapter 7. A hierarchical planner based on set-theoretic models:

Towards automating the automation for autonomous systems

which requires that C has all the roles of C. This

means that (see Figure 3):

C ∼=Πr∈R C∩R C
Cr×Πr∈R C\R C

Cr ⊆C×Πr∈R C\R C
BΓ(r).

SceneObject

AssemblyLight

sie_msgs__SceneObject

Assembly

AssemblyLightBox

AssemblyLightScrew

AssemblyScrew

AssemblyBoxLight

AssemblyScrewLight

RobotAssemblyCoarse

AssemblyBox

Figure 3: Example hierarchy of the concept class for objects
in the later examples. The graph is directed and acyclic, but
not necessarily a tree.

By definition the leaves of a concept are consid-

ered to be atomic at the modeling detail of the pro-

vided concept. Each element of a concept is called an

instance. For composite concepts this results in the

necessity to specify values for each leaf concept of a

composite concept.

In order to answer the question whether two in-

stances of the same concept represent the same thing,

we assume that for each concept C a relation, the so-

called compare relation FC, is defined. This means

two instances bi, b j are similar with respect to a con-

cept C if (bi,b j) ∈ FC. The product representation al-

lows to derive similarity of two composite concepts

when all their corresponding leaves are similar. Note,

that similarity does not mean that the instances are

identical, but rather that the information provided by

the second instance does not add any additional infor-

mation on a given level of abstraction of a domain.

This compare relation will help to introduce compact

domains, in which different results are mapped to the

same graph node if the corresponding instances are

similar.

3.2 Operators

Declarative knowledge is hardly useful if elements of

the procedural knowledge, so-called operators, do not

use them. We define operators as follows (see Fig-

ure 4):

• An operator π ∈ P is a mapping of given input

concepts Iri
to output concepts Or j

with given in-

put roles ri ∈ R π,I and output roles r j ∈ R π,O, i.e.,

π : Πri∈R π,I
Iri

→ Πr j∈R π,O
Or j

.

• The output instances can be explicitly specified by

symbolically-representable mappings (mathemat-

ical formulas) or implicitly as the result of some

calculation or experiment in simulation or the real

world, operating on input instances

• Certain operators describe modifications of in-

stances, i.e., elements of knowledge are invali-

dated when such an operator is executed; such in-

puts are called consumed. The set of roles corre-

sponding to inputs that are consumed by the oper-

ator is denoted by R c
π ⊆ R π,I .

• Operators are fully functional, i.e., they do not

have an internal state.

AssemblyLightBox

RobotAssemblyCoarse

AssemblyLightBox

RobotAssemblyCoarse

Assemble

obj_a

obj_b

result

result_b

Figure 4: Example of an operator with multiple concepts
as in- and outputs. A consumed input is depicted by a red
edge.

Since operators are elements of a functional space,

they can also be modeled as instances of an operator

concept on a higher level of abstraction that is often

called meta level. In addition to the input and out-

put structures and a reference to the executable code,

an instance of this operator-concept can contain meta

information like key performance indicators (kpi).

A hierarchy of operators is obtained from the hi-

erarchical structures of concepts. An operator π1 is

more detailed than another π2 in case the following

conditions hold true (see Figure 7):

• all input and output roles of operator π2 are ele-

ments of the role set of operator π1: R π2,I ⊂R π1,I

and R π2,O ⊂ R π1,O,

• all (common) input concepts Ir,1 and outputs

Or,1 of operator π1 are more detailed than those

of operator π2: (Ir,1, Ir,2) ∈ M ∀r ∈ R π2,I and

(Or,1,Or,2) ∈ M ∀r ∈ R π2,O,

• the meta information, e.g. key performance indi-

cators, of operator π1 are more detailed than those

of operator π2.

109

4 CONCEPTS AND GRAPHS FOR

PLANNING

In our context planning is based on the evaluation

of operators, working on the set of currently available

instances, to reach one or multiple goal instances. The

operators can use or consume available instances and

generate new ones. Many application domains pose

problems combining symbolic and sub-symbolic in-

stances. However, standard approaches run into the

curse of dimensionality. The approach of hierarchi-

cal planning is based on the hierarchies of concepts

and operators. It tries to solve the planning task on an

abstract level and to refine the plan step by step and

abstraction level by abstraction level until a plan on

the most detailed level is obtained.

To formalize the structures obtained during plan-

ning we first introduce formal models for a planning

task, a planner and a plan.

4.1 Planning Task

A planning task PT (Xinit,Xgoal,Xop) specifies the com-

bination of three sets: the set of initial instances

Xinit := {bi, i = 1, . . . ,ninit}, the set of goal instances

Xgoal = {b j, j = 1, . . . ,ngoal} and the set of available

operators Xop := {πk, k = 1, . . . ,nop} with ninit ∈N0,

and ngoal ,nop ∈N. Consequently, a planning task is a

concept in the meta domain.

4.2 Plan Family

We introduce the concept (in the meta domain) of a

plan family that contains the following information:

the initial instances, the executed operators, the input

instances of executed operators with their roles, and

the output instances of executed operators.

To represent this plan family, we use an anno-

tated bi-partite graph GPF(V,E,E
con), in which all an-

notated edges in Econ ⊆ E correspond to consumed

operator inputs. The one node set VB only contains

nodes representing instances and the other Vπ consists

of operators only. The bi-partite property ensures that

V =VB∪Vπ, Vπ∩VB = /0 and ∀e∈E : e=(v1,v2) with

{v1,v2} 6⊆ Vπ and {v1,v2} 6⊆ VB. The representation

mapping fv : V → B∪P of nodes in GPF to instances

and operators is assumed to be bijective.

Adding an executed operator to a plan family For

every operator that is executed during planning, all

new nodes are added to the graph as long as the graph

does not already contain the information. The result

is the bi-partite graph (V ,E,E
con
) with V ⊆ V and

E ⊆ E. In more detail, this means that, with the given

operator π : Πri∈R π,I
Iri

→ Πr j∈R π,O
Or j

, the execution

results in the following mapping between instances:

{br | r ∈ R π,I} 7→ {br | r ∈ R π,O}.

The graph is only modified if the entropy (number of

different results for a given input set) of the operator,

is not yet exhausted by former executions. Thus, a

node vπ is added to Vπ and all inputs are connected via

a directed edge to this new node. Edges correspond-

ing to consumed inputs are marked by adding them

to Econ. Additionally, nodes for all output instances,

i.e., {v
f−1
v (br)

| r ∈ R π,O}, are added to VB and vπ is

connected to all these outputs via directed edges.

We introduce a so-called compact domain, in

which new nodes are only added for instances that

carry new information, i.e., node v ∈ V is added

if ∀vi ∈ VB with vi 6= v : (fv(vi), fv(v)) 6∈ M or

(fv(v), fv(vi)) 6∈ M . If the plan family already con-

tains a node related to an instance with the same infor-

mation as the output instance, the mapping fv points

to that node instead. Thus, compact domains have a

considerably smaller number of nodes enabling better

scaling. In particular, the number of considered oper-

ators during planning can exceed the number of nodes

in the corresponding plan family (see Table 1 for the

graph sizes in the robotic example). Note that in con-

sequence a plan family in a compact domain can have

cycles, since the operator outputs can be mapped to

ancestor nodes of the operator node vπ.

Thus, the following equations hold for the sets of

the plan family:

V π = Vπ ∪{vπ},

V B = VB ∪
{

v
f−1
v (br)

∣

∣

∣
r ∈ R π,O

}

,

E = E ∪
{(

v
f−1
v (br)

,vπ

) ∣

∣

∣
r ∈ R π,I

}

∪
{(

vπ,v f−1
v (br)

) ∣

∣

∣
r ∈ R π,O

}

,

E
con

= Econ ∪
{(

v
f−1
v (br)

,vπ

) ∣

∣

∣
r ∈ R c

π,I

}

.

4.3 Planner State Graph

Planning considers sets of instances Xi, i ∈ N. The

initial set is Xinit. A plan is available if, by applying

operators, a set Xm is generated that fulfills the goal

set Xgoal, i.e.,

∀bi ∈ Xgoal ∃b j ∈ Xm : (b j,bi) ∈ FCi
,

in which bi ∈Ci. Each set of instances Xi is obtained

by executing one operator πk ∈ Xop, k ∈ N, on one

selection of instances (b1, . . . ,bnπk
) with nπk

:= |R πk
|

110
Chapter 7. A hierarchical planner based on set-theoretic models:

Towards automating the automation for autonomous systems

from a previous set of instances X j, j ∈ {0, . . . , j−1}
(with X0 := Xinit):

Xi = (X j ∪πk(b1, . . . ,bnπk
))\{bn̂ | J −1

πk
(n̂) ∈ R c

πk
},

in which the instances have to be an element of the

correct concept type bJ (rl) ∈Crl
∩X j.

Figure 5: Part of the planner state graph for the later exam-
ple of a hat-rail assembly.

Therefore, we introduce a directed graph

GPS(V,E) to describe the planner state as shown in

Figure 5. Each node vi ∈ V corresponds to a set of

instances Xi (and a subgraph of the plan family).

There exists a directed edge e = (vi,v j)∈ E iff X j was

obtained from Xi by applying an operator. We assume

a compact graph structure similar to a compact

domain, i.e., ∀vi,v j ∈V,vi 6= v j : Xi \X j ∪X j \Xi 6= /0.

This property reduces the size of the planning space

considerably, because plan duplication is avoided for

similar paths leading to the same intermediate planner

state Xi. Additionally, this structure allows to detect

dead ends, which is later used by the backtracking

techniques for hierarchical planning.

5 SINGLE-LEVEL PLANNING

The classical planning problem is named single-

level planning (SLP) as it doesn’t consider hierar-

chies of concepts or operators. A planning task

PT (Xinit,Xgoal,Xop) is solved in a constructive manner

by applying operators from Xop to available instances.

A planning step is comprised by three actions:

1. choose the planning node vi with the correspond-

ing instances Xi to proceed from,

2. select an operator π j ∈ Xop with its input concepts

Ir for r ∈ R π j ,I ,

3. single out instances from Xi and map them to the

inputs of π j such that br ∈ Ir ∀r ∈ R π j ,I .

This general structure is valid for all kinds of

planners ranging from PDDL to motion planning.

Even classical graph algorithms like depth-first and

breadth-first search can be used to realize such a

single-level planner. In our implementation we let

the search algorithm determine the next node vi and

iterate over all operators and all possible combina-

tions of corresponding input instances for that state.

More evolved planners have either better heuristics

and sampling strategies or use suitable problem re-

formulations for specific sub-problems. Nevertheless,

the core elements of forward planners correspond to

the three steps described above.

Since each node vi corresponds both to a set of

instances Xi and a subgraph of the plan family, this

subgraph captures the respective plan if the goal in-

stances Xgoal are met by the instances of Xi.

6 GRAPHS FOR HIERARCHICAL

PLANNING

The computational complexity of the planning

problem, which results from the mixture of symbolic

and sub-symbolic properties, can be handled if hier-

archies of suitable concepts and operators are consid-

ered.

The core idea is to generate a plan on an abstract

level where only a few instances and operators exist.

Then each step of this plan has to be recursively re-

fined until the maximal level of detail is reached for

all operators. In case a plan step cannot be refined on

a more-detailed level, a back-tracking procedure is re-

quired that is described in subsection 7.2. This hierar-

chical divide and conquer approach ideally scales log-

arithmically with the number of required plan steps.

Nevertheless, it is only beneficial with the right num-

ber of layers, if abstract plans sort out steps that are

less promising on a more detailed level and if the

downward refinement property holds often, thus most

steps can be refined later on. In turn this requires the

models of the concepts and operators to be suitably

structured. Determining such models is a hard task

on its own. However, the set-theoretic approach of the

introduced formal models for concepts and operators

helps to manually or automatically define them.

6.1 Parent Child Mapping

A central aspect of hierarchical planning is to refine

an operator by posing a new planning task on a more-

111

detailed level. This mainly corresponds to a selec-

tion of suitable operators. Thus, we introduce the set-

valued parent child mapping FPC : P ⇒ P such that

FPC(πi) := FPC({πi}) = Xop.

Currently, we assume that such a mapping is pro-

vided and engineered during modeling of operators.

For some domains an algorithmic extraction of that

mapping just from the sets of concepts and operators

was successfully tested. For general domains, how-

ever, this is a problem to be addressed in future re-

search.

In the following we introduce two graphs for a

formal description of dependencies between plans on

different levels of abstraction: the layer graph GLG

addresses the hierarchical dependencies between plan

steps and planning tasks, and the extended planner

state graph GEPS represents temporal dependencies.

These two combined with the previously described

plan family, which captures the causal dependencies

between instances and operators, could be represented

in a single multi-layer graph. In this paper we stick to

a presentation with separate graphs though as it is eas-

ier to understand.

6.2 Layer Graph

Since our planning approach does not assume a fixed

number of hierarchy levels, each planning task PT de-

fines some layer. Note that consequently the number

of layers can vary during the planning process.

We introduce the (directed) bi-partite layer graph

GLG(V,E) to capture dependencies between planning

states and layers, cf. Figure 6. Each node within the

first set Vl corresponds to a planning task. As de-

scribed in subsection 4.3, several planner states re-

sult during (single-level) planning for a given plan-

ning task. Each of these states is represented in the

layer graph by a node in the set Vp. Note that the two

sets Vl and Vp are disjoint.

Figure 6: Part of the layer graph for the box-lid-example
(subsection 8.2). The node colors match the temporal order
during planning, compare Figure 8.

The set of vertices E represents dependencies of

two kinds, which are discriminated by the direction

relative to layer nodes. The first type connects plan-

ner state nodes obtained during planning with their re-

spective layer nodes which represent planning tasks,

i.e., ∀e = (v1,v2) ∈ E, v1 ∈Vl : v2 ∈Vp. The second

type connects a planner state to exactly one layer node

if the layer node specifies the planning task to refine

the operator that led to the planner state (cf. subsec-

tion 4.3), i.e., ∀e = (v1,v2) ∈ E, v1 ∈Vp : v2 ∈Vl and

∀v1 ∈Vp : |{e | e = (v1,v2) ∈ E}| ≤ 1.

Consequently, the layer graph GLG is tree-

structured and captures the hierarchical refinements

of plans. For later references, the mapping of each

planning state to its corresponding layer is given by:

FPS, L : Vp →Vl with FPS, L(p) := l such that (l, p)∈ E.

6.3 Blacklist

The planning task that refines a plan step, has a re-

duced set of instances for two reasons. First, the com-

putational complexity is reduced, as less combina-

tions are possible with fewer instances. Second, this

assures that the plan is in accordance with the higher-

level plan. This is particularly important for domains

that are persistent and thus can’t be set to an arbitrary

state (e.g. real-world execution).

For example, assume that one out of two boxes

has to be moved to a different working surface. In the

coarse plan the smaller box is picked and then trans-

ported. If this pick is refined, only the smaller box is

available. Otherwise, the more detailed planner could

choose the bigger box for this task and an inconsis-

tency between the plans on the different levels of ab-

straction would result.

The idea is to set all instances on a black list XBlack

that belong to a concept corresponding to an operator

input on the more abstract level. Let the coarse plan-

ning task PT (X c
init,X

c
goal,X

c
op) and a corresponding plan

be given as a plan family (V,E,Econ):

∀v1 ∈VB,v2 ∈Vπ,(v1,v2) ∈ E : v1 ∈ XBlack

and

∀v1 ∈VB,v2 ∈ XBlack,v1,v2 ∈C : v1 ∈ XBlack.

Let v2 ∈Vπ be one operator in the plan that has no

preceding operators, i.e., ∀v1 ∈ VB with (v1,v2) ∈ E

holds v1 ∈ X c
init, then the corresponding planning task

for refinement is:

PTv2
(X c

init \XBlack ∪{v1 | (v1,v2) ∈ E},

{v3 | (v2,v3) ∈ E},

FPC(πv2
)) .

If the operator has predecessors, the set of initial

instances has to be replaced by resulting instances of

the refinement of that preceding operator. In order

112
Chapter 7. A hierarchical planner based on set-theoretic models:

Towards automating the automation for autonomous systems

to formally capture these dependencies, we have to

extend the planner state graph GPS of the single-level

planning.

6.4 Extended Planner State Graph

Hierarchical planning requires encoding of temporal

relations between instances of different layers. There-

fore, we extend the planner state graph GPS and dis-

cuss the related blacklists.

A single-level plan that resulted from a refinement

step, is defined by the sequence of planning states in

the GPS and a blacklist X c
Black. The planning task corre-

sponds to the first planning state p0 in that sequence

as it maps to the layer node in the layer graph. Solv-

ing this task results again in a separate planner state

graph. However, the goal is to combine all planner

state graphs in one large graph, the extended planner

state graph GEPS, for unified data handling during hier-

archical planning. Thus, we extend the node informa-

tion of the (one-layer) planner state graphs by their

layer information given by FPS, L to avoid mixing of

layers.

Assuming that a refining plan for the planner state

pi is found, the definition of the planning task corre-

sponding to the layer li+1 = FPS, L(pi+1) has to use

the resulting instances of that plan. Therefore, we

add one additional node to GEPS(V,E) for each plan-

ner state that reached the goal set Xgoal. Let p j be

such a planning state and v be the corresponding addi-

tional node, then a matching edge is added (p j,v)∈E.

The set of instances corresponding to the node v con-

tains the union of instances from the preceding node

X(p j) and the blacklisted instances in the correspond-

ing layer XBlack(l): X(v) := X(p j)∪XBlack(l).
In order to refine the next planner state of the

coarse plan, one of the plans refining the preceding

node has to be selected, leading to the node with

blacklisted instances v. Let the planner state pi+1 cor-

respond to the operator π in the plan family GPF. Now,

the set of blacklisted instances for the next layer can

be specified:

XBlack(li+1) := (X(v)∩X c
Black)

\{vk | (vl ,π) ∈ EGPF
,(vk,vl) ∈ F}.

Then the set of initial instances for the next layer li+1

results: Xinit(li+1) := X(v)\XBlack(li+1).
This means that for each plan refining the previ-

ous planner state pi a new set of initial instances re-

sults and a corresponding new layer is generated. To

also keep track of these dependencies, we add fur-

ther edges to the extended planner state GEPS linking

the node v with the added blacklist elements to the

planner state p corresponding to the initial instances

Xinit(li+1).

7 HIERARCHICAL PLANNING

The goal of hierarchical planning is to find a se-

quence of planner states in GEPS such that no corre-

sponding operator has a further refinement. For this

task, the graphs of the plan family GPF, the extended

planner state GEPS and the layers GLG are used.

The basic idea to reduce the fanout and thus

counter the curse of dimensionality, is to use prior

knowledge that is encoded by abstractions, like visu-

alized in Figure 7. Once a plan was found on an ab-

stract level, each step in this plan defines a new plan-

ning task that can either be refined by a single, more

detailed operator or poses a new planning task on its

own.

However, there is freedom in choosing the order

of refining planning states on different levels of ab-

straction. The performance of such a refinement strat-

egy depends highly on the domain at hand. If, for in-

stance, the downward refinement property holds, one

can always refine all operators to the most detailed

level before proceeding to the next step. On the other

hand, if some refinements repeatedly fail even on a

rather coarse level, it is suboptimal to refine the first

steps to maximal detail before checking the refine-

ments of later steps on coarser levels.

If a refinement fails previous planning steps need

to be adapted accordingly. Such backtracking meth-

ods are the key to real-world scenarios in which the

coarser level cannot consider all details.

Assemble

obj_a

obj_b

result

More detailed Assemble

obj_b

obj_a
result

result_b

Figure 7: Visualization of the basic planning idea to reduce
the fanout. An abstracted planning task is obtained based on
the original instances and goals (arrows pointing upwards).
New tasks in the refined level are posed by each step in the
coarse plan. Either a primitive, single operator plan exists
(white ellipse) or a planner has to be used to find a suitable
plan (gray ellipses). The compare function is used to ensure
that the abstractions of available instances and goals comply
with the instances of the course plan.

113

7.1 Hierarchical Strategies

The two most basic strategies follow the spirit of

depth- and breadth-first search and define the ex-

trema of possible approaches. Naturally, interme-

diate strategies, possibly including heuristics, could

increase planning performance for specific domains,

however this is a topic for further research.

The breadth-first strategy refines all operators of

one level once.

7.2 Backtracking

Only the downward refinement property could assure

that all plan steps can be refined until the finest level is

reached. However, this property cannot be guaranteed

for all real-world problems. Therefore, the hierarchi-

cal strategies have to be complemented by backtrack-

ing procedures.

Such a backtracking method triggers re-planning

on former layers. Since the overall problem is as-

sumed to be solvable, there exists a set of layers and

some selection of corresponding plans such that all

operators are fully refined.

In most cases it is reasonable to choose the back-

tracking procedure that inverts the hierarchical (for-

ward) search strategy. In the case of a breath-first

search, tasks that are predecessors within the ex-

tended planner state GEPS of the failing step are con-

sidered first. Only, if there exist no alternative plans

in these layers that lead to a succeeding refinement,

the more abstract layer, i.e., an ancestor in GLG of the

node given by FPS, L, is addressed.

Re-planning means that the original goals are

blacklisted and the (single-level) planner continues its

search then.

8 EXAMPLE: AUTONOMOUS

ASSEMBLY CELL

Our example setup consists of two robot arms with

seven degrees of freedom each, cf. Figure 1. The

workspaces of the arms have considerable overlap

to enable cooperation and wrist-mounted cameras to

perceive the environment. To demonstrate the capa-

bilities of our approach, two different use-cases are

analyzed. The first one considers a setup for the as-

sembly of control cabinets: circuit breakers and other

components have to be automatically assembled on a

hat-rail. The focus of this example is the scalability

with an increasing number of necessary steps. The

second use-case is simpler, thus we can discuss the

backtracking algorithm on the real graph structures.

The difficulty for both scenarios is the combina-

tion of high dimensional continuous properties (14

degrees of freedom for the robotic arms and up to

five times three dimensions for the objects) and a

even higher number of discrete options. Those dis-

crete options not only result from the actions directly

visible on the robot, such as perception, grasping,

clicking, pushing or releasing, but also from differ-

ent sequences of varying operators that calculate pa-

rameterizations such as grasp configurations, view

poses or initialize the hardware. The operators in

our models are kept rather atomic, to ensure flexibil-

ity, easy extension and composability as demanded

for autonomous manufacturing systems. Addition-

ally, these requirements result in subsection 4.3 in the

definition of planner states being the combinations of

available instances. In consequence, inhomogeneous

planner states have to be considered during planning

in opposition to most motion planner that assume a

homogeneous state for performance reasons.

8.1 Hat-rail Assembly

For the hat-rail example four components and the hat-

rail are initially placed in the working area of the

robot arm. The precise configuration of the parts is

not known in the beginning, thus a perception step is

required. The goal of the task is specified on an ab-

stract level, which only states the final position of the

components on the rail.

To actually control the robotic system the se-

quence of the four assembly operations of the coars-

est plan have to be refined three times. The first re-

finement adds further symbolic properties to the first

domain. Then, the second refinement actually simu-

lates all necessary robot motions assuring collision-

free paths and reachability. Finally, the actual control

of the robotic hardware is the most-detailed layer.

In this experimental setup we use the breadth-first

strategy to hierarchically refine the coarse plan. Our

numerical result (cf. Table 1) shows that the hierar-

chical approach scales almost linearly in the number

of pieces to be assembled, which is the best we can

expect without (automatically generated) additional

abstraction levels for longer tasks. Note, that those

planning times include all execution times of called

operations. This includes computation and simula-

tion of controllers for both robot arms considering the

full nonlinear robot dynamics (∼ 0.3 [s] per motion

task). A considerable offset for the planning times is

caused by the loading and construction of the geomet-

ric scene (∼ 1.2 [s] once). For comparison we used a

simple breadth first search on the same problem. For

a single piece that is assembled, this algorithm is one

114
Chapter 7. A hierarchical planner based on set-theoretic models:

Towards automating the automation for autonomous systems

order of magnitude slower than our hierarchical ap-

proach. For two pieces it took at least three orders of

magnitude longer than the hierarchical algorithm and

did not find any solution before we ran out of mem-

ory. Arguably a faster algorithm can be found to solve

this problem, which will be faster at least for the sin-

gle piece assembly. However, the interesting point is

how the solution will scale with increasing numbers

of pieces. One can expect, that non hierarchical ap-

proaches run into the curse of dimensionality.

Table 1: Planning times t, and number of nodes in the plan
family and planner state over the number of pieces to as-
semble. The first block states the results of the hierarchical
planner and the second block a single-level approach which
highlights the complexity of the task.

1 pc. 2 pcs. 3 pcs. 4 pcs.

t [s] 3.7 5.5 7.9 10.5

|GEPS| 159 330 502 688

|GPF| 89 200 314 439

t [s] 79.2 > 7 ·103 * *

|GEPS| 32,203 > 2 ·106 * *

|GPF| 981 > 4 ·103 * *

|Plan| 16 36 56 76

These results demonstrate that the hierarchy suc-

cessfully handles the curse of dimensionality. Note

that the models for this example fulfill the downward

refinement property, thus no backtracking is needed,

which explains the almost perfect results.

8.2 Box Lid Assembly

In order to show the backtracking features of our plan-

ning approach, we consider a simple assembly pro-

cess, in which a lid has to be placed on top of a box.

The coarse level has to choose which robot arm

should pick the lid and assemble it on the box. How-

ever, the box is only reachable by one of the arms, as

it is placed outside of the workspace overlap of the

two robots. If the coarse level now chooses the wrong

arm to do this task, there exists no valid refinement

on the sub-symbolic level. Therefore, backtracking is

needed. Note that only the second step of the coarse

plan cannot be refined, since both arms can pick the

lid, but only one can put it on the box.

Consequently, the backtracking procedure tries to

find an alternative plan in the temporal preceding step

first and then chooses a new plan on the coarser layer.

See Figure 8 for a visualization of the planner state of

this example.

The orange area shows the part where no plan that

refines the second step in the coarse plan is found.

The backtracking approach then tries to find an alter-

native plan in the preceding layer (red area). How-

Figure 8: The planner state GPS with backtracking. No re-
fined plan is found (orange area), therefore backtracking
considers the preceding layer (red area) first. A second plan
on the coarser level (dark green area) can then be success-
fully refined (green and petrol area).

ever, there exists no plan to pick the lid in a way that

allows assembly, with the left arm, as the box is out

of reach. Thus, the backtracking goes to the more ab-

stract level (dark green area) and selects an alternative

plan that uses the right arm instead of the left one.

Here, the backtracking stops, and the breadth-first

search is restarted. In this second coarse plan both

actions, i.e., picking and assembling, can be refined

successfully (green and petrol area, respectively).

9 CONCLUSIONS

The approach to ground the declarative and pro-

cedural knowledge on set theory enables to flexi-

bly reason about hierarchies. Based on these struc-

tures we introduce a hierarchical planner that allows

to seamlessly traverse different abstraction levels and

obliterate the differences between symbolic and sub-

symbolic domains. This approach additionally al-

lows for modeling robot and task description indepen-

dently. This leads to highly flexible and composable

systems. We discussed examples of autonomous pro-

duction systems with real hardware that is controlled

with this hierarchical approach. Our examples show

that hierarchy can help to avoid the curse of dimen-

sionality and backtracking allows to handle cases that

do not have the downward refinement property.

REFERENCES

Bacchus, F. and Yang, Q. (1994). Downward refinement
and the efficiency of hierarchical problem solving. Ar-
tificial Intelligence, 71(1):43–100.

The presented research is financed by the TransFit
project which is funded by the German Federal Ministry of
Economics and Technology (BMWi), grant no. 50RA1701,
50RA1702, and 50RA1703.

115

Bechon, P., Barbier, M., Infantes, G., Lesire, C., and Vidal,
V. (2014). Hipop: Hierarchical partial-order planning.
In STAIRS, pages 51–60.

Bercher, P., Höller, D., Behnke, G., and Biundo, S. (2016).
More than a name? on implications of preconditions
and effects of compound htn planning tasks. In ECAI,
pages 225–233.

Bryan, A., Ko, J., Hu, S., and Koren, Y. (2007). Co-
evolution of product families and assembly systems.
CIRP Annals, 56(1):41–44.

Cashmore, M., Fox, M., Long, D., and Magazzeni, D.
(2016). A compilation of the full PDDL+ language
into SMT. In AAAI Workshop: Planning for Hybrid
Systems.

Castillo, L., Fernández-Olivares, J., Garcia-Perez, O., and
Palao, F. (2006). Efficiently handling temporal knowl-
edge in an htn planner. In ICAPS, pages 63–72.

Castillo, L., Fernández-Olivares, J., and Gonzalez, A.
(2003). Integrating hierarchical and conditional plan-
ning techniques into a software design process for au-
tomated manufacturing. In ICAPS.

Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner,
M., and Nebel, B. (2009). Semantic attachments for
domain-independent planning systems. In Conf. on
Automated Planning and Scheduling.

Erol, K., Hendler, J., and Nau, D. (1994). Htn planning:
Complexity and expressivity. In AAAI, volume 94,
pages 1123–1128.

Fernandez-Gonzalez, E., Williams, B., and Karpas, E.
(2018). Scottyactivity: Mixed discrete-continuous
planning with convex optimization. Artificial Intel-
ligence Research, 62:579–664.

Fox, M. and Long, D. (2002). Pddl+: Modeling continuous
time dependent effects. In Int. NASA Workshop on
Planning and Scheduling for Space, volume 4.

Garrett, C., Lozano-Pérez, T., and Kaelbling, L. (2015).
Ffrob: An efficient heuristic for task and motion plan-
ning. In Algorithmic Foundations of Robotics XI,
pages 179–195. Springer.

Gateau, T., Lesire, C., and Barbier, M. (2013). Hidden:
Cooperative plan execution and repair for heteroge-
neous robots in dynamic environments. In IROS,
pages 4790–4795. IEEE.

Georgievski, I. and Aiello, M. (2015). Htn planning:
Overview, comparison, and beyond. Artificial Intel-
ligence, 222:124–156.

Goldman, R. (2006). Durative planning in htns. In ICAPS,
pages 382–385.

Helmert, M. (2006). The fast downward planning system.
Artificial Intelligence Research, 26:191–246.

Hitomi, K. (2017). Manufacturing Systems Engineering:
A Unified Approach to Manufacturing Technology,
Production Management and Industrial Economics.
Routledge.

Hu, S., Ko, J., Weyand, L., ElMaraghy, H., Lien, T., Koren,
Y., Bley, H., Chryssolouris, G., Nasr, N., and Shpi-
talni, M. (2011). Assembly system design and oper-
ations for product variety. CIRP Annals, 60(2):715–
733.

Kambhampati, S., Mali, A., and Srivastava, B. (1998). Hy-
brid planning for partially hierarchical domains. In
AAAI/IAAI, pages 882–888.

Kast, B., Albrecht, S., Feiten, W., and Zhang, J. (2019).
Bridging the gap between semantics and control for
industry 4.0 and autonomous production. In CASE.
IEEE.

Kaufman, S., Wilson, R., Jones, R., Calton, T., and Ames,
A. (1996). The archimedes 2 mechanical assembly
planning system. In ICRA, volume 4, pages 3361–
3368. IEEE.

Lozano-Pérez, T. and Kaelbling, L. (2014). A constraint-
based method for solving sequential manipulation
planning problems. In IROS, pages 3684–3691. IEEE.

Marthi, B., Russell, S., and Wolfe, J. (2008). Angelic hier-
archical planning: Optimal and online algorithms. In
ICAPS, pages 222–231.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C.,
Ram, A., Veloso, M., Weld, D., and Wilkins, D.
(1998). Pddl - the planning domain definition lan-
guage. The AIPS-98 Planning Competition Comitee.

Molineaux, M., Klenk, M., and Aha, D. (2010). Planning in
dynamic environments: extending htns with nonlinear
continuous effects. In Conf. on Artificial Intelligence,
pages 1115–1120. AAAI Press.

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J., Wu,
D., and Yaman, F. (2003). Shop2: An htn planning
system. Artificial Intelligence Research, 20:379–404.

Piotrowski, W., Fox, M., Long, D., Magazzeni, D., and
Mercorio, F. (2016). Heuristic planning for hybrid
systems. In Conf. on Artificial Intelligence, pages
4254–4255. AAAI Press.

Schattenberg, B. (2009). Hybrid planning and scheduling.
PhD thesis, University of Ulm, Germany.

Schmitt, P., Neubauer, W., Feiten, W., Wurm, K.,
v. Wichert, G., and Burgard, W. (2017). Optimal,
sampling-based manipulation planning. In ICRA,
pages 3426–3432. IEEE.

Schmitz, S., Schluetter, M., and Epple, U. (2009). Automa-
tion of automation definition, components and chal-
lenges. In Conf. on Emerging Technologies & Factory
Automation. IEEE.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S.,
and Abbeel, P. (2014). Combined task and motion
planning through an extensible planner-independent
interface layer. In ICRA, pages 639–646. IEEE.

Thomas, U. and Wahl, F. (2010). Assembly planning and
task planningtwo prerequisites for automated robot
programming. In Robotic Systems for Handling and
Assembly, pages 333–354. Springer.

Toussaint, M. (2015). Logic-geometric programming: An
optimization-based approach to combined task and
motion planning. In IJCAI, pages 1930–1936.

Young, R. M., Pollack, M., and Moore, J. (1994). Decom-
position and causality in partial-order planning. In
AIPS, pages 188–194.

116
Chapter 7. A hierarchical planner based on set-theoretic models:

Towards automating the automation for autonomous systems

117

8
Domain Optimization for Hierarchical Planning

Based on Set-Theory

Title Domain Optimization for Hierarchical Planning Based on Set-Theory

Authors Bernd Kast, Vincent Dietrich, Sebastian Albrecht, Wendelin Feiten,

and Jianwei Zhang

ISBN/ISSN 978-989-758-442-8/2184-2809

DOI 10.5220/0009823007590766

Status published

Publisher SCITEPRESS

Contribution of

Bernd Kast

The idea, development, and implementation of the approach is my con-

tribution to this paper. The co-authors proofread the manuscript. They

also implemented example domains to detect common misalignments

and verify the relevance of the proposed approach. Vincent Dietrich

helped me with the experiment and figures.

https://doi.org/10.5220/0009823007590766

118 Chapter 8. Domain Optimization for Hierarchical Planning Based on Set-Theory

Summary A key factor for successfully disseminating autonomous machines is

reusable models. Creating the models that describe the domain, actions,

and all available information that specify the current task takes a lot of

time. Without intensive reuse and easy composability of the models in

our autonomous system, the effort is only shifted from programming to

modeling compared to a classical system. While trained persons can

specify tasks easily, composing new domains requires more knowledge,

experience, and time. This paper discusses an algorithm to ease that

process and allow for a greater reuse of models. The basis of the algo-

rithm is the set-based theory. Based on that, we identify possible opti-

mizations of the composed domain. We then reformulate the declarative

and procedural knowledge to find an isomorphic representation that is

more favorable for our hierarchical planning. The intermediate goals

are aligned across the different layers and thus require fewer additional

actions than the optimal solution. We evaluate our algorithm on tasks

in an optimized and non-optimized domain with up to 1000 steps. With

this algorithm, we can handle ten times the number of parts compared

to the original domain. Additionally, we can observe near-linear scaling

with the number of parts in our experiment, which was also conducted

on a real dual-arm cell.

Domain Optimization for Hierarchical Planning Based on Set-Theory

Bernd Kast1 a, Vincent Dietrich1 b, Sebastian Albrecht1 c, Wendelin Feiten1 d,

and Jianwei Zhang2

1Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany
2 University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Vogt-Kölln-Str. 30, 22527 Hamburg,

Germany
bernd.kast@siemens.com

Keywords: Hierarchy, Planning, Autonomy, Robotic Assembly

Abstract: The design of planning domains for autonomous systems is a hard task, especially when different parties are

involved. We present a domain optimization algorithm for hierarchical planners that uses a set-based formu-

lation. Due to an automatic alignment we can compose models from different sources to a larger domain for

efficient planning. The combination of domain optimization and hierarchical planning can handle large scale

domains very efficiently. Our algorithm reduces the effects of the non-optimality that comes with the hierar-

chical approach. We demonstrate the scalability with a task and motion planning problem. In the scenario of

a robotic assembly with up to 62 parts and plan lengths of over 1000 steps the planning times are kept within

15 minutes. We show the execution of our plans on a real-world dual-robot setup.

1 INTRODUCTION

Robotic systems bring together hardware and soft-

ware components from different sources to solve a

specific task. Only for recurring tasks it is viable for

an engineer to compose the components and write or

parametrize algorithms to manage the different pieces

in a meaningful way.

However, even in an industrial environment, the

cost of setting up the system can easily exceed the

savings by the automated process. This is especially

true for smaller lot sizes or even lot size one pro-

duction. In order to address the automation of such

a highly flexible production, we need algorithms for

the composition of such systems and decision making

during their runtime.

The algorithms for decision making have to han-

dle a mixed problem, which is depicted in Figure 1

with continuous geometric and discrete properties,

like attachment status or grasps. These planning prob-

lems become large for non-trivial tasks which results

in unreasonable computation times due to the curse of

dimensionality. This can be handled with a hierarchi-

cal approach, as presented in (Kast et al., 2019b).

a https://orcid.org/0000-0001-7838-3142
b https://orcid.org/0000-0003-0568-9727
c https://orcid.org/0000-0002-3647-4043
d https://orcid.org/0000-0002-7593-6298

Figure 1: The core operations of the process: assembly,
screw, handover, and place. Each action is planned and ex-
ecuted with the hierarchical planner.

In an industrial environment several different par-

ties. such as integrators or component suppliers, with

varying user roles are involved to define modules, ob-

jectives, and available resources. It must be possi-

ble to provide the planner with these different pieces

of information in a modular way while each module

might implement its own modeling scheme. These

different styles of expressing the declarative and pro-

cedural knowledge should not affect the performance

of the online planning.

In this paper we propose a domain optimization al-

119

gorithm that aligns the models for efficient planning.

We can either apply this algorithm on-demand, prior

to the planning, or as an offline step. We rely on our

set-theoretic foundation to reformulate the declarative

and procedural knowledge of the domain without in-

fringing their validity. We analyze the performance

of the optimization in a simulated setup with 800 test

runs and tasks of varying lengths. The final experi-

ment is conducted on a real two-arm robotic system.

2 RELATED WORK

There are two strands in the literature that target

domain optimization problems.

A recently very active branch are data-driven al-

gorithms, notably reinforcement learning approaches,

which optimize heuristics for a specific domain.

These methods show very good performances for

some easy to simulate problems, like board games

(Silver et al., 2016), (Silver et al., 2017) or com-

puter games (Mnih et al., 2013), (Vinyals et al., 2019).

However, application on real-world scenarios are still

difficult due to the limited data available. Attempts

to overcome this include large scale pick and place

setups with hundreds of robots (Kalashnikov et al.,

2018) and, due to the difficult nature of physics, hard

but rather short tasks (Xie et al., 2019).

In (Schmitt et al., 2019) reinforcement learning is

used in combination with an abstraction layer. This

layer allows eased simulation, ensures viability, like

collision-free movements, and provides an interface

for real-world execution that handles small devia-

tions. Still, training requires large datasets and pro-

cessing power. Additionally, the trained model is a

black box and thus hard to debug or transfer. In our

approach we rely on models and rules rather than sin-

gle data points that define the behavior of the resulting

system. The explicit representation enables introspec-

tion, which is a key feature during development and

for industrial environments. Additionally, less com-

putational power is needed for our approach. How-

ever, it lacks theoretical optimality and still requires

experts to program. In (Nägele et al., 2018) another

approach, which relies on domain specific heuristics

is proposed. In this case, however, the heuristics are

computed online by analyzing the desired goal. Ge-

ometric interdependencies are broken up and the re-

sulting plan is executed in simulation.

Another strand of related work covers optimiza-

tion of modeled domains. In (Kang and Nnaji, 1993)

a scheme for aligned and manually designed domains

is elaborated. This, however, covers a single domain

only and brings in its benefits only when strictly fol-

lowed. In a real-world scenario different parties bring

in their modules, which are used for completely dif-

ferent problems as well, to compose the overall do-

main. Therefore, it is very hard to align everyone to

a common scheme. In our approach each party ful-

fills their user-role with the representation they pre-

fer. Just before planning, we harmonize the represen-

tations automatically.

For this type of optimization many algorithms that

operate on discrete, mainly PDDL domains have been

proposed. Two strands can be identified for algo-

rithms which either transform the problem to suite the

planner, or pick a planner, which can cope with the

characteristics of the original problem.

Portfolio planners, such as (Seipp et al., 2012),

(Katz et al., 2018) apply different planners with dif-

ferent heuristics on the domain and try to switch to the

most appropriate combination for the current problem

formulation.

In (Haslum et al., 2007), (Vallati et al., 2015) au-

tomated optimization algorithms for PDDL-domains

are proposed, which allow even non-experts to ap-

ply generic planning algorithms on general PDDL-

domains. In (Areces et al., 2014) a formalization for

an optimization scheme was found, that was formerly

applied manually on the domains. This even allows

an engineer to inspect the optimized formulation to

validate and further optimize it easily. However, it

comes with the difficulties and limitations of PDDL

to handle continuous domains.

3 APPROACH

Before we discuss our new domain optimization

algorithm, we highlight the properties of its set-

theoretic foundation, which was introduced in (Kast

et al., 2019a).

Our new algorithm is effective in combination

with a hierarchical planner only. We point out the rel-

evant properties of an example hierarchical planning

algorithm, which was proposed in (Kast et al., 2019b).

3.1 Declarative Knowledge

Following the line of (Kast et al., 2019a), we call el-

ements of the declarative knowledge concepts. For

us, a concept C is a subset of some concept base BΓ

which is a set of instances that is not necessarily fi-

nite. Concepts with the same concept base BΓ belong

to the same concept class Γ. The partial order more-

detailed than MΓ between two concepts holds true if

each instance described by the first concept is also an

120 Chapter 8. Domain Optimization for Hierarchical Planning Based on Set-Theory

Figure 2: Either the Box is the main actor and the robot
only the supporting actor, thus every property is described
product-centric, or it is vice versa and the robot has proper-
ties that describe the objects in its grippers.

element of the second one. Properties that are com-

mon to a set of instances define composite concepts.

These properties in turn can be expressed by value

ranges or sets, which are concepts themselves:

C ∼= Πr∈RC
Cr,

where Cr with r ∈ RC are the sub-concepts and the

role set RC defines the composite structure.

Examples to this set-theoretic view, which we will

reconsider in subsection 3.4, are the concept bases of

Objects and Manipulators with exemplary concepts

of a box or a robotic arm.

The box with no property but an identifier can be

detailed by concepts that define dimensions or its po-

sition, like on the table, grasped by the robot with

even more-detailed concepts that specify continuous

positions relative to some coordinate system.

The concept of the robot is detailed by concepts

that specify it’s current position and state. Part of the

state is the content of the gripper, which can be and

object, like an instance of an box, or it is empty as

nothing is currently grasped.

This example shows that some phenomena can

equivalently be expressed by instances of concepts

with different basic types, e.g. a robot holding a box

or a box in a robot’s gripper as visualized in Figure 2.

3.2 Procedural Knowledge

Planning is all about actions, which are represented

by the procedural knowledge. Only the procedures

make the declarative knowledge useful. We call these

building blocks of planning and execution operators

π. They map between given instances of input con-

cepts to instances of output concepts:

π : Πri∈Rπ,in
Cri

→ Πr j∈Rπ,outCr j
,

where the sets Rπ,in and Rπ,out describe the roles of the

respective input and output concepts. The mapping

can either be specified explicitly by a formula or im-

plicitly by a black box of code, some library, or even

a simulated or real-world experiment.

A set of operators is more-detailed than another

operator π̃, when a sequence or network π̂ of these

operators exists with matching, more detailed outputs

compared to the original operator and inputs, which

are either a subset of the original inputs or orthogonal

to all of them, i.e. have a different concept bases and

are therefore independent to each other:

∀ri ∈ Rπ̃,in ∃r j ∈ Rπ̂,in : (Ĉri
,C̃r j

) ∈ M
Γ(C̃r j

),

∀ri ∈ Rπ̃,out ∃r j ∈ Rπ̂,out : (Ĉri
,C̃r j

) ∈ M
Γ(C̃r j

),

and for all ri ∈ Rπ̃,in holds:

|{r j ∈ Rπ̃,in | Γ(C̃r j
)⊆ Γ(C̃ri

)}|

= |{r j ∈ Rπ̂,in | Γ(Ĉr j
)⊆ Γ(C̃ri

)}|.

The more-detailed operators can consider addi-

tional information and are in general more costly to

be applied as they implement a more comprehensive

simulation or even real-world execution to tell the out-

come of the action.

This partial ordering is later used by the hierarchi-

cal planner to define new sub-planning problems.

3.3 Hierarchical planner

The hierarchical planner, which we proposed in (Kast

et al., 2019b), is a forward state space planner that can

handle domains with both, discrete and continuous

properties efficiently. The basic idea of the planner

is to divide the overall planning problem into small

subproblems repeatedly, such that the curse of dimen-

sionality can be alleviated. We do this by planning in

an abstract domain first. In this domain the goal can

be reached with a relatively small number of steps,

as the abstracted operators cover huge changes of the

state. Additionally, the branching factor is small due

to the smaller number of possible operators that can

be applied in that domain.

Once we found a solution on the coarse level, each

operator that was applied in this plan by itself de-

fines a new sub-planning problem with its inputs as

starting values and outputs as goals. The operators

that can be applied in this new, refined domain are

the more-detailed operators as described in subsec-

tion 3.2. We apply this process recursively to each

121

a) b) c) e) f)d)

Figure 3: Geometric representation of the connection between two sets. The dark blue plane segment depicts the concept base
for all objects (a) while the yellow plane represents the manipulators concept base all robots belong to (b). The intersection
is a sphere (green). The projection of the sphere to the box-segment would miss the light green volume (c). This is due
to a possibly empty list of grasped objects for the robot, which has no representation in the original box-set. Therefore,
our algorithm extends the box-plane with the light blue segment depicting the ”no object” set (d). After this extension, the
volume can either be projected on the combination of the two blue plane segments (e) or the robot plane (f). This enables a
reformulation of the planning domain.

of the newly generated planning problems until there

is no further refinement for the operators. As the ab-

stracted domains and their planned solutions can only

be approximations of the real behavior, there can be

errors and unsolvable subtasks on any level. Our solu-

tion to avoid dependency on the downward refinement

property is backtracking, which means that plans on

the abstract level are dismissed and new sequences

to the goal are recalculated if a refinement fails. In

our system, execution is the final refinement and er-

ror handling a case of backtracking. Therefore the

planning approach represents a model predictive con-

trol scheme. Both execution and error handling are

first class citizens with our planning approach. Under

optimal conditions, when the coarse level is a good

approximation to the behavior of the real-world, our

planning approach can scale linearly with the length

of the task. This, however, holds only true if the

downward refinement property is always guaranteed.

For a bad approximation the strategy still grows ex-

ponentially as the full problem is np-hard.

Additionally, our solutions are not necessarily op-

timal. It depends on the modeling of the coarse do-

mains to propose good intermediate goals for factor-

ization to have overall solutions close to the optimum.

This, however, can be a burden to the engineering, es-

pecially when different people model the levels of the

domain according to their respective user roles.

3.4 Optimization Algorithm

The key idea of our domain optimization algorithm

is to align the different levels of abstraction. This is

especially important, when engineers with differing

viewpoints on the problem, for example due to differ-

ent user roles, model different parts of the domain. As

described in subsection 3.3 the key to an efficient fac-

torization with our hierarchical planner are the inter-

mediate goals that arise from the abstract level plan.

Remember that we need a sequence of operators

on the refined level, which produces more detailed

instances than the coarser level. According to our

definition described in subsection 3.1, a concept, and

therefore an instance of that concept as well, cannot

be more-detailed than another, if their concept bases

differ.

Consider the example of the box and the robot

in subsection 3.1. Both can describe the same phe-

nomenon, but one from a product-centric view and the

other from an actor or tool-based angle. As they use

different concept bases, the robot with the box cannot

be a solution to the box in the gripper of the robot nor

of any of the abstractions of the box with the robot.

However, it is quite likely that the engineer model-

ing the coarse processing steps has a product-centric

view on the plant, while the person that designs the

cell with the robot or some other machining equip-

ment has a tool-based angle.

During planning the coarse level would define

intermediate goals, which are only reachable for

the refined domain, if box and robot are separated.

This causes additional steps to be planned and exe-

cuted, which results in solutions that are farther off

the optimal plan. To overcome this issue, we can

identify concepts C ∼= Πr∈RC
Cr having a sub-concept

C j, j ∈ RC with a concept base matching our overall

goal, i.e. BΓ(C j)⊆ BΓ(Cgoal). Then we reformulate

these concepts such that they have the same concept

base as the goal concept while the set that they rep-

resent is identical: Assume that C j
∼= Πr j∈RC j

Cr j
then

define the reformulated concept by

C′ := Πr j∈RCj
Cr j

×Πr∈RC\{ j}Cr.

This concept is isomorph to a subset of C j and thus

has the concept base BΓ(C j). This is the formal

description of the isomorphism described in subsec-

tion 3.1. With this transformation, which is depicted

in Figure 3, we can directly derive intermediate goals

122 Chapter 8. Domain Optimization for Hierarchical Planning Based on Set-Theory

Figure 4: Extension to Figure 1 of important actions. Picking of the assembled box, localization of objects, screw out from
the magazine and initial pick of the box.

and can successfully compare newly created instances

with our existing subset, as the concept bases match.

However, this is only possible if all elements of

the concept can be expressed in the other concept

base, which is not always true. Consider the example

where one concept is a composite concept having an

array of another concept type as a sub-concept. For

our robot-box-example, the composite concept with

an array is the robot and elements in this array are

of type box. Then not all composite concepts with

the array can be expressed equivalently by the sub-

concept, because the array might be empty, i.e. the

robot’s gripper is empty.

Therefore, we cannot express some instances di-

rectly in the form of the first concept base. To over-

come this, we expand the first concept base with a set

which contains the empty set, i.e.

B∗
Γ := BΓ(C j)∪{{ /0}}.

Afterwards corresponding sub-concepts of all el-

ements of that extended concept base can have addi-

tional attributes:

C′ := { /0}×Πr∈RC\{ j}Cr.

For example, a no-box-object can have the attribute

robot. This allows to cover empty arrays as well and

therefore include all relevant instances.

We then generated wrapping operators which re-

place the original ones that have optimizable input or

output concepts. They internally call the original op-

erators but change the type of the inputs and outputs,

such that the aligned and newly generated concepts

are returned. For a domain, which is optimized this

way, the intermediate goals defined by the abstract

layers for the refinement layers are relaxed, while the

specified overall goals remain firm. Therefore, the

overall result of the plan is the same for the original

and the optimized domain, while possibly less steps

are required for the optimized domain.

4 EXPERIMENT

In the real-world we conduct our experiment on

a dual arm robot with a total of 14 degrees of free-

dom. Each of the arms has a two-finger gripper and

a RGB-camera that is used to refine the object poses.

The workspace is observed with a stationary 3D cam-

era, which is used to estimate the objects starting lo-

cations. We use a cordless screwdriver which is re-

motely controlled.

The assembly scenario we use to analyze the per-

formance of our algorithm includes the mounting of

a lid to a box and the insertion of multiple screws to

join them. The relevant actions that need to take place

are depicted in Figure 1 and Figure 4. It is necessary

to refine the object positions with one of the wrist-

mounted cameras, before any interaction takes place,

which means prior to grasping or picking up screws.

Fastening the screws can only happen with the box

fixated in one gripper and the screwdriver actuated

with the other arm. The objects (screwdriver and box

with lid) can be placed on the table which can cre-

ate loops in the state space. The box can additionally

be handed over between the two arms to change the

relative orientation in the gripper.

We generate collision-free robot trajectories with

the constraint-based solver described in (Schmitt

et al., 2019). This allows for good reachability with

relatively few intermediate positions for motion plan-

ning.

The configuration of the perception system is

grounded on (Dietrich et al., 2018).

We can vary the number of screws that are inserted

to modify the difficulty of the task. The real box has

only four screw holes, which results in maximum of

six parts that can be assembled. In simulation we

added virtual screw holes such that we can examine

scalability of our approach for up to 62 pieces.

We analyze the performance of the optimization

algorithm on a domain that was first designed on an

abstract, discrete layer only and later extended with

the continuous layers. There are a total of 4 modeled

abstraction layers for the task at hand. They include

two completely abstract levels, with and without lo-

123

Pick
(Box)

Assemble
(Box, Lid)

Pick
(BoxLid)

Pick
(Screw

driver)

ScrewOut
(Magazine)

ScrewIn
(BoxLid)

Place
(Screw

driver)

Handover
(BoxLid)

Place
(BoxLid)

Pick
(BoxLid)

Handover
(BoxLid)

Figure 5: Nominal sequence of actions for the assembly process. Localizations, which must be executed prior to each pick,
screw, or assemble are omitted in this graph, but must be added to the plan as those actions fail otherwise. Additional screws
require the repetition of the last actions actions of this sequence. For the optimized domain only the small loop with two
actions (and additional localizations) must be repeated. The original domain requires the execution of actions in the larger
loop, as the intermediate goal is more restrictive. This includes the placement of the screwdriver such that the handovers of
the box can be performed.

3 4 5 6 7 8 9 10 11 22 32 42 52 62

of parts

200

400

600

800

1000

#
o
f
s
te

p
s

in
th

e
s
u
c
c
e
s
s
fu

l
p
la

n

original

optimized

3 4 5 6 7 8 9 10 11 22 32 42 52 62

of parts

0

20

40

60

80

100

120

140

160
#

o
f
b
a
c
k
tr

a
c
k
in

g
s
te

p
s

original

optimized

Figure 6: The number of steps in the successful solution for the task increases linearly. For the original domain more steps are
necessary per additional part. For the optimized domain the intermediate product is not placed and nevertheless recognized
as the interim step due to the reformulation. This is also reflected in the number of necessary backtracking steps shown on
the right figure. Both numbers go hand in hand, as shorter plans have less operations, that may fail during refinement. Please
notice the change in step size right of the dashed line.

calization of parts, simulated and real-world execu-

tion. Only the first layer is workpiece centric, while

the others are robotic centric. The robot can local-

ize each object in its workspace, pick the box, place

it on the lid, localize the merged pieces again to pick

both up together. The other arm can then pick the

screwdriver, pick up a screw from the magazine, and

insert it in the air to the box with lid as depicted in

Figure 4. In order to reach the intermediate goals in

the optimized domain, the arm with screwdriver can

localize the magazine right away and continue to pick

up screws from the magazine and fasten the lid with

them. For the original domain on the other hand, the

box must be separated from the robot after each in-

termediate step to fulfill the intermediate goals posed

by the coarse level. This means that the box must be

placed on the table. However, the box is grasped up-

side down to allow access for the screwdriver. There-

fore, no collision-free way to place the box upright

with a single arm exists. That means an additional

handover is needed, and the planner must find out that

the screwdriver must be placed to free the second arm

for that as highlighted in Figure 5. Afterwards the

box and the screwdriver must be localized again be-

fore the process can continue similar to the optimized

domain. In Figure 6 the resulting lengths of the suc-

cessful plans is depicted on the left hand side. We

can see that the plan lengths grow significantly faster

for the original domain due to the described process

of additional placements. We tested each domain 100

times with increasing number of screws and a noise

of 5 cm added to the initial object positions. The vari-

ance in plan lengths is a result of additional free-space

movements to reach the goal positions. On the right

124 Chapter 8. Domain Optimization for Hierarchical Planning Based on Set-Theory

3 4 5 6 7 8 9

of parts

0

500

1000

1500

2000

2500

3000

p
la

n
n
in

g
ti
m

e
[s

]

original

optimized

3 4 5 6 7 8 9 10 11 22 32 42 52 62

of parts

0

200

400

600

800

1000

1200

1400

p
la

n
n
in

g
ti
m

e
[s

]

original

optimized

Figure 7: Planning times for the original and optimized domain for a task with three to 8 parts that need to be assembled. We
can observe a near linear relationship between planning times and length of the task. However, the optimized domain scales
significantly better than the original domain. Please notice the change in step size right of the dashed line.

hand side the number of necessary backtracking steps

is depicted. This number grows for the original do-

main faster as well, as the additional steps that need

to take place compared to the optimized domain add

further points of possible failure during refinement.

Therefore, not only the final plan length is shorter for

the optimized domain, but also the planning process

examines less dead ends during the search. This is

also reflected in the planning times. Figure 7 shows

the them for each of the domains for different num-

ber of parts. We can observe that the optimized do-

main scales almost linearly even for a huge number

of parts. The original domain performs good as well,

however it has a significantly faster increase in plan-

ning times compared to the optimized domain. Note

that even the original domain scales near linear, de-

spite the very long plans of up to 300 steps. Non-

hierarchical planners would typically scale exponen-

tially with this plan length. The reason for this is that

the complexity is handled on the abstract levels of our

domain which results in very few calls to the very

expensive trajectory generation. The linear scaling

probably ends when the abstract planning problems

gains more weight on the overall planning times than

the problems on the refined levels which individually

stay constant in size.

The presented research is financed by the TransFit
project which is funded by the German Federal Ministry of
Economics and Technology (BMWi), grant no. 50RA1701,
50RA1702, and 50RA1703.

5 CONCLUSIONS

In this paper we presented a novel optimization al-

gorithm for planning domains, that are represented in

a set-based formulation. We use a hierarchical plan-

ner that makes use of this formulation and provides

near linear scalability for our problem at the cost of

non-optimal solutions. Poorly modeled domains nat-

urally result in costly and computationally expensive

solutions.

Our optimization approach reduces these effects

and therefore allows for an easy composition of dif-

ferent models to an overall planning domain. This

is an indispensable prerequisite for scalable industrial

autonomy and flexible manufacturing.

An alternative to this would be perfectly aligned

descriptions of each part of the overall domain. This,

however, can only be guaranteed in small demo sce-

narios, which are designed by a single person or a

small team. As soon as several groups or compa-

nies bring in modules which enable easy integration

and alignment of the models must be enabled by algo-

rithms. An important advantage of the explicit model

of the domain compared to learned heuristics is the

ease to debug and ability to explain the behavior of

the algorithm.

125

REFERENCES

Areces, C. E., Bustos, F., Dominguez, M., and Hoffmann,
J. (2014). Optimizing planning domains by auto-
matic action schema splitting. In Twenty-Fourth In-
ternational Conference on Automated Planning and
Scheduling.

Dietrich, V., Kast, B., Schmitt, P., Albrecht, S., Fiegert, M.,
Feiten, W., and Beetz, M. (2018). Configuration of
perception systems via planning over factor graphs. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–7. IEEE.

Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig,
S., et al. (2007). Domain-independent construction of
pattern database heuristics for cost-optimal planning.
In AAAI, volume 7, pages 1007–1012.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A.,
Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., et al. (2018). Qt-opt: Scalable deep
reinforcement learning for vision-based robotic ma-
nipulation. arXiv preprint arXiv:1806.10293.

Kang, T.-S. and Nnaji, B. O. (1993). Feature representation
and classification for automatic process planning sys-
tems. Journal of manufacturing systems, 12(2):133–
145.

Kast, B., Albrecht, S., Feiten, W., and Zhang, J. (2019a).
Bridging the gap between semantics and control for
industry 4.0 and autonomous production. In Int. Conf.
on Automation Science and Engineering. IEEE.

Kast, B., Dietrich, V., Albrecht, S., Feiten, W., and Zhang,
J. (2019b). A hierarchical planner based on set-
theoretic models: Towards automating the automation
for autonomous systems. In Int. Conf. on Informatics
in Control, Automation and Robotics. SCITEPRESS
Digital Library.

Katz, M., Sohrabi, S., Samulowitz, H., and Sievers, S.
(2018). Delfi: Online planner selection for cost-
optimal planning. IPC-9 planner abstracts, pages 57–
64.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602.

Nägele, L., Schierl, A., Hoffmann, A., and Reif, W. (2018).
Automatic planning of manufacturing processes us-
ing spatial construction plan analysis and extensible
heuristic search. In ICINCO (2), pages 586–593.

Schmitt, P. S., Wirnshofer, F., Wurm, K. M., Wichert, G. V.,
and Burgard, W. (2019). Planning reactive manipu-
lation in dynamic environments. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS).

Seipp, J., Braun, M., Garimort, J., and Helmert, M. (2012).
Learning portfolios of automatically tuned planners.
In Twenty-Second International Conference on Auto-
mated Planning and Scheduling.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. (2017). Mastering the game of go
without human knowledge. Nature, 550(7676):354–
359.

Vallati, M., Hutter, F., Chrpa, L., and McCluskey, T. L.
(2015). On the effective configuration of planning
domain models. In Twenty-Fourth International Joint
Conference on Artificial Intelligence.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu,
M., Dudzik, A., Chung, J., Choi, D. H., Powell, R.,
Ewalds, T., Georgiev, P., et al. (2019). Grandmas-
ter level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354.

Xie, A., Ebert, F., Levine, S., and Finn, C. (2019). Impro-
visation through physical understanding: Using novel
objects as tools with visual foresight. arXiv preprint

arXiv:1904.05538.

126 Chapter 8. Domain Optimization for Hierarchical Planning Based on Set-Theory

127

9
Hierarchical Planner with Composable Action

Models for Asynchronous Parallelization of

Tasks and Motions

Title Hierarchical Planner with Composable Action Models for Asyn-

chronous Parallelization of Tasks and Motions

Authors Bernd Kast, Philipp Schmitt, Sebastian Albrecht, Wendelin Feiten, and

Jianwei Zhang

ISBN/ISSN 978-1-7281-5237-0

DOI IRC.2020.00029

Status published

Publisher IEEE

Contribution of

Bernd Kast

Philipp Schmitt helped me to integrate his implementation of the con-

straint optimization algorithm, which is used in the operators for motion

generation in the experiment. I implemented the rest of the model. I

also developed and refined the theoretic foundations based on discus-

sions with the co-authors.

https://doi.org/10.1109/IRC.2020.00029

128
Chapter 9. Hierarchical Planner with Composable Action Models for Asynchronous

Parallelization of Tasks and Motions

Summary The separate approaches for discrete planning problems and continu-

ous tasks are especially significant for domains where actions happen in

parallel. While the scheduling community, which targets discrete opti-

mization and assignment problems, provides algorithms optimized for

various scenarios with parallel or asynchronous actions, no solutions ex-

ist for hybrid domains. A naive approach for those domains would be

a task and motion planner, for which the state-space and, in extension,

all actions that can operate in parallel are multiplied out. However, this

results in a yet higher branching factor and computation times that pre-

vent an application on relevant scenarios. Additionally, parallel actions

are synchronized to the slowest operation in the current batch. With our

approach, we can asynchronously parallelize our solutions and maintain

the branching factor, which allows for an application even in plant-wide

scenarios. The key to our algorithm is the heterogeneous state, for which

our model tells us the relevant information for each applied action. By

that, we can separate instances that define a partial sequence from infor-

mation about the state at the time of application, which can be dynami-

cally composed right before the call, and irrelevant parts of the current

state that are not used or considered by our current operator. Combined

with a scheduling scheme that considers this information for a later par-

allelization, we can apply the same hierarchical planning proposed in a

former paper on these problems and only parallelize the sequential plan

in a special refinement step for execution. Operators cannot use the same

instances in parallel. However, the same instance can be considered

by one and used by a second operator simultaneously. The operators

must handle this dynamic modification internally. A constraint-based

optimization algorithm ensured this integrity for our experiment, which

involved two 7-dof real-world robots mounted next to each other.

Hierarchical Planner with Composable Action Models for

Asynchronous Parallelization of Tasks and Motions

Bernd Kast1, Philipp S. Schmitt1, Sebastian Albrecht1, Wendelin Feiten1, and Jianwei Zhang2

Abstract— Task and motion planning is a relevant yet hard
to solve problem in robotic manipulation. Large number of
degrees of freedom with multiple manipulators and several
objects require specialized algorithms, which can deal with the
hybrid planning and optimization problem.

An additional challenge is the asynchronous parallelization
of single robot actions on interacting manipulators.

In this paper we propose a system with a hierarchical plan-
ner, which solves the task and motion problem and optimizes
for a subsequent parallelization. We use action models based
on a constraint formulation; thus, the execution engine can
parallelize the sequential plan without synchronization between
different tasks.

In the experiment, we solve a task and motion problem with
difficult geometric constraints and combinatorial complexity.
The asynchronously parallel execution of that plan is demon-
strated on a real world dual-arm robot.

I. INTRODUCTION

Many tasks in industrial domains require multiple collab-

orating robots. Traditionally, the synchronized movements

and actions of the manipulators involved are programmed

manually and triggered in a centralized manner. The setup

of such a system is very time consuming, error prone,

and therefore expensive. Additionally, these systems are

inflexible and require reprogramming for minor changes in

the product or the plant.

Our aim is to increase flexibility, such that small lot size

production becomes viable. In order to achieve this, the sys-

tem must compute all movements and actions autonomously.

Two major difficulties emerge from the requirement to

plan each action and movement of the system. Firstly, a

planner must be able to handle tasks with dozens of steps

even for small problems. However, the computation time

grows exponentially with the degrees of freedom involved

and the number of discrete actions that are required to fulfill

a given goal. To overcome this problem, strong heuristics

that integrate expert knowledge as well as introspection

capabilities for the planning algorithm are desirable for these

kinds of tasks.

Our second requirement is parallelization on different

agents. Most actions only require a single agent, such as a

single robot arm picking an object. However, other operations

like the dual arm screwing depicted in Figure 1 require

multiple manipulators. We want a planner which computes

motions for multiple agents. Furthermore, the system should

1 Siemens Corporate Technology, Munich, Germany
2 Faculty of Mathematics, Informatics and Natural Sciences, University

of Hamburg, Germany The presented research is partially financed by
the TransFit project which is funded by the German Federal Ministry of
Economics and Technology.

Fig. 1: Dual arm robot cooperating to fixate a lid on a box

with a screw.

leverage parallelization opportunities, consider resource con-

flicts, and manage collaborative tasks.

In this work, we propose a system, which allows a

parallelized execution of tasks with a constraint-based for-

mulation on different, interacting robots. Our hierarchical

planner orchestrates the actions even for long tasks, allows

introspection and considers different resources such that the

parallelization potential is considered during planning.

II. RELATED WORK

This work integrates and extends literature of two different

strands. The first strand covers task and motion planning

and discusses potential implementations and limitations for

a parallel execution with existing algorithms.

The second strand is about the constraint-based motion

formulation which eases asynchronous execution due to

its controller structure, which results in reactiveness and

composability.

A. Task and Motion Planning

Task and motion planning is a hybrid problem with dis-

crete and continuous properties, which can either be consid-

ered by a single or multiple composed planning algorithms.

Approaches that use specialized planners for the symbolic

and geometric sub-domains include [1] or [2]. They either

use a classic Strips planner [3] or HTN related planners

129

Fig. 2: Comparison between sequential (first row) and parallel execution. The coloring denotes different resources used for

some task (for example different robots which manipulate or localize). Note that the start of the tasks is not necessarily

synchronized. The block, spanning two rows, is a task, which requires both instances of some resource, for example during

handover both arms are blocked.

[4] on the task level. A very challenging requirement of

these approaches is the discretization of most properties, like

positions, which need to be considered on the task level. Real

world applications fall victim for the combinatorial growth

encountered in task planning problems. We use a hierarchical

approach to handle the combinatorial complexity but instead

of nested planners use a single planner, which can handle

discrete and continuous properties in combination with local

controllers for motion generation.

In [5] a kinodynamic task and motion planner is proposed,

which also handles both domains with a single planner.

The authors use a constraint-based local motion generation,

which eases planning and allows for a reactive execution of

the plan. Their actions operate on the complete task, which

works well for problems with a small number of objects and

a limited number of steps in the successful plan.

Asynchronous, parallel execution is difficult to handle with

both systems. For the approaches with separate planners,

both must consider time and parallelization. High level

planners like Shop2 [6] can handle continuous time domains,

however, the hierarchical decomposition prevents efficient

parallelization.

The combined task and motion planner’s actions operate

on the complete state space. Thus, independent strands of

actions cannot be identified, which prevents an asynchronous

parallelization.

B. Constraint-Based Task Definition

Constraint-based task definitions offer a compact and com-

posable form to specify robot motion [7]. Another distinct

advantage is their handling of runtime disturbances, which

were not or could not be considered during the planning

phase. In combination with a planner, as presented in [5],

even complex tasks can be solved very flexibly. However,

parallel actions are not possible with this concept, as each

task operates and possibly manipulates all resources of the

current state. Therefore, task irrelevant and thus unused

resources, like passive robots or objects, cannot be identified

and operated on in parallel.

As the constraint-based controllers are resilient to distur-

bances, loosely coupled constraints can be composed and

thus enable parallel execution of tasks. In [8] a scheduler

is proposed, which identifies composable constraints and

executes them in parallel. As this is a local optimization and

no planner is involved, it can only be part of a solution for a

flexible asynchronously executing task and motion system.

The approaches presented in [9], [10] target time optimal

manipulation. As a by-product the resulting solution is a

parallelized task and motion plan. Their approach performs

an offline trajectory optimization, which is not trivially

extensible to account for sensory feedback and execution on

real-world robots.

III. PROBLEM DESCRIPTION

In this paper, we target the generation of sequences of

asynchronously executable actions which solve a task and

motion problem. The three challenges therein are:

• task planning: handles resources, discrete properties and

actions

• motion generation: generate collision-free movements in

a high dimensional continuous space

• parallel execution on the real robots.

All parts are strongly interwoven and induce the requirement

to strongly integrate the algorithmic components of the

system.

For example, asynchronous parallel execution is only pos-

sible, if the motion generation can calculate paths or control

the robots in parallel for different high level tasks without

synchronizing start or end of the individual tasks as depicted

in Figure 2. The high-level planning must consider geometric

constraints, like reachability and graspability as well, which

can only be thoroughly be achieved by an integration to the

motion generation algorithm in simulation.

IV. HIERARCHICAL TASK PLANNER

For an asynchronously parallelizable system architecture,

the task planning level must resolve resource conflicts in

a fine-grained manner. We use a hierarchical planning ap-

proach for the orchestration and task and motion planning,

which was proposed in [11]. It uses a heterogeneous state

and strong typing, such that operations can act on a subset

of the information available at the current state. As the

actions define which subset of the current state they need and

manipulate, resource conflicts can be identified and avoided

during planning. This is a necessity to identify independent

and parallelizable operations during execution.

The basic building blocks of our hierarchical planning

approach are the description of the declarative knowledge

130
Chapter 9. Hierarchical Planner with Composable Action Models for Asynchronous

Parallelization of Tasks and Motions

(concepts) and procedural knowledge (operators), which are

then composed to a planning domain. We extract hierarchi-

cally ordered planning tasks from this model and solve and

execute them recursively. The hierarchy not only allows scal-

ing to long and complex tasks, but is essential for an efficient

recovery and backtracking, when the execution failed due to

non-foreseeable circumstances during execution.

A. Declarative Knowledge

We use a set-based model to describe the declarative

knowledge (concepts) of the domain with a strong typing

as described in [12]. From this formulation we can calculate

a partial ordering more general than whenever a concept

covers all instances of another concept. This partial ordering

allows an automatic hierarchization of the domain which is

used during planning to factorize the tasks.

A key element are the compare functions which are

automatically generated based on the computed hierarchy.

They calculate whether an instance is within the set described

by a second instance. We use these functions to check for

reached (intermediate) goals during planning.

B. Procedural Knowledge

All actions that can take place act on the previously

defined concepts. They operate on a defined set of input

instances and provide a set of output instances. The code

to calculate applicability and the output is a black-box, such

that arbitrary simulations and calculations can take place.

Our operators not only cover movements and their abstrac-

tions, but any arbitrary operation like hardware initialization,

localization, attachment of objects to the robot or execution

on real hardware like gripper operations or arm movements.

The operators have a partial ordering like our concepts.

In their case it represents a more detailed and therefore

computationally more expensive simulation. A single opera-

tor can be refined by multiple more detailed operators. For

example, the coarse operator ”Pick” may be refined by ”Sam-

pledMove”, ”Localize”, ”Approach” and ”CloseGripper”. In

this example the refinement is not a simple replacement,

but a planning task on its own, in which each operator

may be required multiple times or not at all. We apply our

hierarchical planning algorithm until each step is refined to

the execution level.

The partial ordering of the operators can be compiled

to a single operator-graph, in which the root nodes denote

the most abstract operators and the leaf nodes represent the

operators that are required during real world execution. In

between are operators of every abstraction from symbolic to

mixed discrete, continuous levels, with collision checking or

even physical simulation.

C. Planning Algorithm

The planner must find a sequence of operators which

transforms a given set of initial instances, which are pieces

of information or resources that represent our state during

planning, to instances that fulfill all the elements of the

required set of goal instances.

There are two sub-algorithms involved to find this solution

efficiently. The first defines the next sub-planning task based

on the current planning status and the second solves it with

a forward planner afterwards.

For the first sub-planning task, we allow only operators

that are root nodes of the ordered operator-graph and are

therefore the most abstract and computationally cheapest

operators of our domain. This high level of abstraction

ensures that we only need few computationally cheap steps

to reach the goal thus we can find this coarse solution very

fast.

After the planner returns a solution, we define a new

planning task for each operator in the successful plan, which

has children in the operator-graph. The goals of the new

planning tasks are the outputs of the operator in the coarse

plan and the operators that can be applied are the successors

of this operator in the operator-graph. Important for the later

parallelization is the selection of the initial facts for the sub-

planning problem. We divide the pieces of information and

resources of the current planning state in two groups, based

on the inputs of the operator in the coarse plan. Available

facts can be used, consumed, and manipulated by the op-

erators of the subsequent planning task. Blacklisted facts,

however, may only influence the outcome while operators

can neither consume nor actively manipulate them. During

planning, instances from the blacklisted facts are fed to the

operator only in specially marked inputs. As an example,

the refinement of a ”Pick”-operation, which was applied in

the coarse plan on a specific box, results in a sub-planning

task with this specific box as an available fact and all

other objects only as blacklisted facts. This way decisions

made on the coarse level are enforced in the refined level,

which limits the branching factor with the downside of sub-

optimality. The objects represented by blacklisted instances

can be considered by the operator which checks for collisions

and therefore it can verify feasibility in the complete state.

However, they are passive only and cannot be manipulated.

This comes into play again during parallel execution, when

the passive instances of one task can be manipulated by a

simultaneously active task. Details about the calculation of

blacklisted and available facts can be found in [11].

The second sub-algorithm involved in planning is the

forward chaining. In this phase we identify inputs from the

current planning state and apply operators on them which

generates new instances and therefore a new state. Important

for the parallelization and new compared to our former

algorithm is the optimization for the expected execution

duration that we introduce as a cost. Each operator holds an

approximation of the expected real-world execution duration.

For every resource and piece of information we note the

expected time it becomes available. When we apply a new

operation on instances the output’s timestamps are the sum of

the expected execution duration and the last time stamp of all

inputs (blacklisted facts are ignored as they are passive). The

virtual timestamp for each state is the maximum timestamp

of all instances in this state. With that, we can pick the

cheapest goal state later.

131

Fig. 3: The active left robot picks the box. The right arm

must move to avoid collisions, even though it is passive at

that moment.

V. ACTION MODELS FOR PLANNING AND PARALLEL,

ASYNCHRONOUS EXECUTION

A core problem of planning and then executing parallel

manipulation tasks for a robot lies in the complexity of

modeling parallel motions. Let us review the requirements

for such a model:

• Complex Motions: Motions for manipulation are inher-

ently complex to model. Consider the exemplary screw

driver task of Figure 1. This task involves two robots

with a total of 14 axes but only five degrees of freedom

are required to position the screwdriver. Yet, the two

robots form a closed kinematic chain while inserting

the screw and must not cause self-collisions or violate

their dynamic limits.

• Reactiveness: If the system behaves deterministically

all motions could be pre-computed and then simply

executed as a trajectory-following task. However, some

operations, for example the operation of the screwdriver,

have a non-deterministic runtime. For the asynchronous

execution of multiple parallel tasks this means that it is

not viable to pre-compute trajectories. Instead, we need

a reactive action model, which can evade the other

manipulator as depicted in Figure 3.

• Composability: It must be possible to compose multiple

motion tasks sequentially, in parallel, and with partial

overlap in time.

To address these requirements, we utilize a constraint-

based task specification as an action model within our

planner and during execution. This model is introduced in the

next subsection followed by an instantaneous control-scheme

that is used to translate the action model to acceleration

commands for the robot.

A. Constraint-Based Task Specification

For our task specification, we call the current configuration

of the system q, which is composed of object poses and

positions of the robot axes. We describe positioning motions

using a constraint function f (q). This vector-valued function

is used as a non-linear inequality constraint on the configu-

ration q

f (q)≤ 0. (1)

Examples for these constraints include position-limits for the

robot axes or collision avoidance formulated as a minimal

distance between primitive shapes.

Naturally, two of such constraints with different signs can

be combined to formulate equality constraints. Examples for

equality constraints include a target position and orientation

of the screwdriver relative to another object or the state of

attachment of an object (for example grasped or placed).

Constraints can also be defined based on velocities via the

constraint function v(q).

d
dt

v(q)≤ 0 (2)

A typical example for this is an axis velocity limit.

Finally, we limit the acceleration of our system with

− q̈max ≤ q̈ ≤ q̈max. (3)

We can now describe two types of motion tasks as pairs

of constraint functions: (f ,v). The first type of task is called

default task (fd ,vd) and comprises constraints that ensure

safety and physical plausibility of motions. This includes

collision avoidance, axis limits, and the fact that objects only

move when attached to a gripper.

Additional tasks are the k ∈ N positioning tasks syn-

thesized by operators in our planner. The i-th task, with

i ∈ {1 . . .k} has the constraint functions (fi,vi). Note that

each task may have a different number of constraints, which

means a different dimensionality of fi and vi.

When multiple positioning tasks are executed in parallel

a motion controller tries to reach a state (q, q̇), where all

constraints of the positioning tasks are fulfilled. As soon

as all constraints of one task are fulfilled, this task was

successfully executed, and the execution engine may disable

and replace them by constraints of another task. At no time

may the constraints of the default task be violated.

B. Asynchronous Execution

We extended the control-scheme, which is based on [7],

to operate on accelerations as proposed in [5]. This allows

switching of constraints during motions while preserving

continuity of the velocities.

We would like to guarantee the constraint dynamics

f̈ ≤−Kp f −Kd ḟ ,

with diagonal matrices Kp and Kd that ensure a stable, at

least critically damped system. The constraint function fp

is composed of all constraints imposed by the currently

active tasks f⊤p =
[

f⊤1 , ..., f⊤k

]

. This is not always possible as

positioning tasks may interfere with each other or the default

task. Therefore we introduce a slack variable which relaxes

the optimization problem:

132
Chapter 9. Hierarchical Planner with Composable Action Models for Asynchronous

Parallelization of Tasks and Motions

Fig. 4: Depiction of the single-robot actions locate, pick and screw out and the dual-robot action handover.

f̈d(0)+
∂ f̈d

∂ q̈
q̈ ≤−K fd

p fd −K
fd

d ḟd ,

f̈p(0)+
∂ f̈p

∂ q̈
q̈ ≤−K

fp
p fp −K

fp

d ḟp + ε.

(4)

With these boundary conditions we solve the quadratic

program:

minimize
x

x⊤Hx

subject to LA ≤ Ax ≤UA

L ≤ x ≤U,

(5)

with the optimization variable x = [q̈,ε]⊤. It is composed

of the slack variable ε and the control q̈, which we then use

to move the robots in simulation for planning or the real-

world during actual execution.

VI. PARALLELIZATION AND INTEGRATION OF

EXECUTION AND PLANNING

The result of our hierarchical planner is a strict sequence

of states, with operators that are applied on a subset of the

available facts. In contrast to common state-space planners,

it is transparent to our algorithm which instances an operator

actively used. Therefore, we can relax the temporal ordering

which was imposed by the planner and parallelize based on

the data-flow.

Our execution engine algorithm iterates over the data-flow

graph and starts every operator, for which all required inputs

exist, in a new thread. Inputs can be available for three

reasons:

• The instances were present right from the start as they

are part of the start state.

• The preceding operator in the data-flow graph was

successfully executed and returned the instance on the

respective output to the data-flow graph.

• The input receives blacklisted instances and is fed with

any unused instance of the defined type, which is unique

to our design.

As described in subsection IV-C blacklisted instances are

provided as an additional input to provide a complete rep-

resentation of the current state. Therefore, our execution

engine keeps track of the current state, which is composed

of the available information and resources like manipulators

or objects. It then separates the instances of this state

into available facts and blacklisted facts. We compare the

structure of the data-flow graph of the current state with the

graph that was calculated during planning. Outputs that end

as ”normal” inputs in the current operator are handled like

available facts, all others in the current state belong to the

blacklisted facts.

By that, actions that don’t share any common resource

are executed in parallel. Resources that influenced the result

during planning, like additional objects or a second manip-

ulator which was not directly involved in the current action

are considered, but do not introduce a lock which prevents

a parallel action. Combined with the optimization during

planning, the execution engine algorithm allows parallel

execution of independent strands effectively.

As the parallel execution changes the time different actions

take place compared to the simulation when planning, some

actions that interfere with each other may fail. We notice

this deviation easily, as the result from the execution does

not fulfill the intermediate goal of the coarser simulated

level when we apply the compare function described in

subsection IV-A. In this case, re-planning is necessary from

the currently valid state, which is composed of the available

instances after all running actions are finished, possibly

returning an error state. We need to backtrack from this state

then as described in [11].

In order to prevent repeated failures due to the ignored

crosstalk of the tasks during planning, parallelization must be

disabled for the next run. Our approach, with the hierarchical

plan result allows to disable the parallelization for a small

number of steps, until the next intermediate goal on the

coarser level is reached. By that, parallelization can be used

again even if it failed previously.

VII. IMPLEMENTATION AND EXPERIMENTS

We conduct our experiments on a dual-arm robot setup

with 14 degrees of freedom. The goal of the task is to

produce a box sitting on the table with a lid fastened on

it by a screw. Each manipulator is equipped with a parallel

gripper and a wrist mounted camera. The screwdriver used

for this task is remotely controlled and can be picked by the

manipulators.

To fulfill the task two 3D-printed parts, the box and the

lid, must be localized and assembled. Then the screwdriver

must be localized and picked up to fetch a screw from the

magazine. After that, one arm needs to pick up the box-lid

assembly and hold it in the air for the second manipulator to

133

insert and fasten the screw. The last step is to place the box

on the table. As this is not possible with the screws facing

down, a handover must be performed. For that the second

arm must be freed by placing the screwdriver after which

the handover and placement can be executed.

Box, lid, magazine and screwdriver are placed on the table

without any fixation. Therefore, before every interaction,

the current position must be updated with a localization

procedure. For this refinement one arm is positioned above

the estimated location of the object such that this position

is in the view of the wrist mounted camera. After that an

edge-based algorithm on the 2D-image updates the objects

position.

The operators on the simulation and on the execution level,

which are partially depicted in Figure 4 include:

• pick of an object with different grasp positions

• pick with both arms, which includes a handover and

therefore results in another orientation of the object in

the gripper compared to the normal pick

• assembly of the box on the lid

• placement of an object on the table

• placement with both arms, which performs a handover

and puts the object on the table upside down

• arm movement, which is a necessary element of the suc-

cessful plan, to prevent local minima of the controllers

• localization to update the current object position

• pick-up of a screw, which receives a screw from the

magazine while rotating the screwdriver anticlockwise

• insertion of a screw into an object while rotating the

screwdriver clockwise to fasten the screw

Additionally, operators to initialize the robots exist. The

planner must calculate a successful plan with these operators

without a predefined sequence. Physical feasibility of the

actions, for examples if a grasp is possible without collisions,

is ensured by testing convergence of the controllers in

simulation.

From this list of operators, insert screw and pick-and-place

with two arms require both arms. All other actions need only

a single robot and can be executed in parallel, if they operate

on different objects.

The execution engine runs the current set of constraints

for 0.1 seconds, after which we check for convergence and

achieved subtasks and update the set of active constraints

accordingly. This high rate for the update of constraints

ensures that new tasks can start any time the necessary inputs

for the operator are available. The axes positions based on

the accelerations of the constraint controller is commanded

with 200 Hz.

In our example task, we can parallelize the first steps,

until the screw is inserted. One arm can localize, pick and

assemble the box on the lid, while the other robot localizes

and picks the screwdriver to localize the magazine and pick

a screw.

In our experiments, the possible parallelization is success-

fully exploited. An interesting observation is the crosstalk

between the arms when tasks change. The manipulator with

the longer running constraints is repelled by the second arm

with the new constraints to a degree, where it moves further

away from its target, until it starts converging again which

highlights the robustness of the controllers and our general

approach.

VIII. CONCLUSION

In this paper we presented an architecture, for asyn-

chronous task execution combined with a hierarchical plan-

ner for task and motion planning. Despite the sequential

nature of the resulting plans, they are optimized with a

subsequent parallelization in mind. The action model relies

on a constraint-based formulation for the controllers which

are robust to the deviations. Therefore, the synthesized

controllers can be executed successfully even if the world

state deviates slightly between execution and planning. This

allows to parallelize the previously sequential plan and

reorder independent strands of the plan. During execution,

tasks are activated and finished independent of specific states

of other tasks or the environment at a high rate of 10 Hz.

In future we would like to verify the success of the

parallelized plan in simulation before executing it on the

real hardware. This is not trivially possible, as timing must

be simulated precisely even for non-manipulating actions like

perception, opening/closing of the gripper, screwing, etc.

REFERENCES

[1] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in IEEE Int. Conf. on Robotics and

Automation. IEEE, 2014, pp. 639–646.
[2] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion

planning in the now,” in IEEE Int. Conf. on Robotics and Automation.
IEEE, 2011, pp. 1470–1477.

[3] M. Helmert, “The fast downward planning system,” Artificial Intelli-

gence Research, vol. 26, pp. 191–246, 2006.
[4] F. Bacchus and Q. Yang, “Downward refinement and the efficiency

of hierarchical problem solving,” Artificial Intelligence, vol. 71, no. 1,
pp. 43–100, 1994.

[5] P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G. v. Wichert, and
W. Burgard, “Modeling and planning manipulation in dynamic en-
vironments,” in Int. Conf. on Robotics and Automation. IEEE, 2019.

[6] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu, and
F. Yaman, “Shop2: An htn planning system,” Artificial Intelligence

Research, vol. 20, pp. 379–404, 2003.
[7] E. Aertbeliën and J. De Schutter, “eTaSL/eTC: A constraint-based task

specification language and robot controller using expression graphs,”
in Int. Conf. on Intelligent Robots and Systems. IEEE, 2014, pp.
1540–1546.

[8] E. Scioni, G. Borghesan, H. Bruyninckx, and M. Bonfè, “Bridging the
gap between discrete symbolic planning and optimization-based robot
control,” in Int. Conf. on Robotics and Automation. IEEE, 2015, pp.
5075–5081.

[9] M. Toussaint, K. Allen, K. A. Smith, and J. B. Tenenbaum, “Dif-
ferentiable physics and stable modes for tool-use and manipulation
planning.” in Robotics: Science and Systems, 2018.

[10] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning.” in IJCAI, 2015, pp.
1930–1936.

[11] B. Kast, V. Dietrich, S. Albrecht, W. Feiten, and J. Zhang, “A hierar-
chical planner based on set-theoretic models: Towards automating the
automation for autonomous systems,” in Int. Conf. on Informatics in

Control, Automation and Robotics. SCITEPRESS Digital Library.
[12] B. Kast, S. Albrecht, W. Feiten, and J. Zhang, “Bridging the gap

between semantics and control for industry 4.0 and autonomous
production,” in Int. Conf. on Automation Science and Engineering.
IEEE, 2019.

134
Chapter 9. Hierarchical Planner with Composable Action Models for Asynchronous

Parallelization of Tasks and Motions

135

10
Automatic Domain Extension and Optimization

based on Set-Theory

Title Automatic Domain Extension and Optimization based on Set-Theory

Authors Bernd Kast, Vincent Dietrich, Sebastian Albrecht, Georg von Wichert,

Wendelin Feiten, and Jianwei Zhang

ISBN/ISSN 978-3-030-92442-3

DOI 10.1007/978-3-030-92442-3

Status published

Publisher Springer

Copyright Springer

Contribution of

Bernd Kast

I conducted the algorithms, primary theoretic considerations, and ex-

periments. During implementation, I had discussions with Sebastian

Albrecht, Wendelin Feiten, and Vincent Dietrich. Additionally, Vin-

cent helped with the implementation of the experiments. All co-authors

brought in their experience for different use-cases and their specific

challenges.

https://doi.org/10.1007/978-3-030-92442-3

136 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Summary Setting up models for new tasks and domains is a challenging engineer-

ing task, which has the potential to only shift effort from programming

to modeling. In the context of scalable and flexible setups, we address

the challenge of setting up models for new tasks and domains, which

often leads to the common error of misaligned models. This error is

particularly prevalent in domains composed of different sources, posing

a significant obstacle for reusable systems. To mitigate this, we present

an algorithm that algorithmically facilitates the modeling task. Based on

our set-theoretical foundations, we transform the representations such

that the planning task is eased and the solutions optimized without man-

ual interference necessary. We present the algorithm, the discussion of

its validity, and an experiment on a real-world robot. We analyze the

improvement in planning time as well as execution time and discuss the

reasons for those reductions and changed behaviors.

Automatic Domain Extension and Optimization based

on Set-Theory⋆

Bernd Kast1[0000−0001−7838−3142], Vincent Dietrich1[0000−0003−0568−9727],

Sebastian Albrecht1[0000−0002−3647−4043], Georg von Wichert1,

Wendelin Feiten1[0000−0002−7593−6298], and Jianwei Zhang2

1 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany

bernd.kast@siemens.com

2 University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract. Autonomous machines promise more flexibility and robustness changes

in their environment compared to manually programmed solutions in industrial

applications. However, the autonomous planning of actions involves discrete as

well as continuous properties, which results in a np-hard planning problem. Es-

pecially for multiple machines and long planning horizons the design of domains

requires a lot of fine tuning and thus manual effort. Modularization and reuse of

existing domain knowledge with formalized models is one solution to this issue.

However, the models of different projects tend to be misaligned, in particular

when several parties contributed to the project, which deteriorates the perfor-

mance.

In this paper, we present two domain optimization and extension algorithms,

which adapt the models to facilitate planning. The first algorithm handles incon-

sistent units, or even misaligned pieces of sub-information. It automatically gen-

erates conversions and allows to call operations with a wider range of input types.

The second algorithm aligns models from different sources with varying model-

ing views. After this reformulation, we can compose models more efficiently to a

larger domain.

For both optimizations, we rely on the formal set-based models that we also use

in our previously presented hierarchical planning algorithm. Our hierarchical ap-

proach allows an almost linear scalability with the length of the plan. However, it

comes with non-optimality effects due to the imposed intermediate goals that de-

pend on the quality of the model. The optimization algorithms of this paper allow

to adapt and extend the model so that valid shortcuts reduce these suboptimalities.

We conduct experiments on a task and motion assembly problem, demonstrating

scalability for up to 62 parts and plans with over 1000 steps, which either result

in discrete state or high-level position changes, with planning times of less than

15 minutes. Our experiments also include the successful plan execution on a real-

world dual arm setup.

Keywords: Domain Optimization · Automatic Data Fusion · Hierarchical Plan-

ning · Robotic Assembly

⋆ The presented research is financed by the TransFit project which is funded by the German

Federal Ministry of Economics and Technology (BMWi), grant no. 50RA1701, 50RA1702,

and 50RA1703.

137

2 B. Kast et al.

1 Introduction

Robotics is the melting pot for various engineering disciplines. From the mechanical

design over control theory, and perception to decision-making algorithms, components

from different sources have to be composed to obtain a seamlessly working system.

At the moment engineers bring together the hardware and software manually. They

must select, adapt, and configure the right components to solve the task at hand. This

process is both time-consuming and expensive, so that automation is currently only

considered for recurring tasks in industry. In addition, the systems have limited flexibil-

ity so that they can react to disturbances but not to changes in the setup, environment,

or task. Then again, qualified and expensive engineers are required to reconfigure the

system even if the hardware would still be able to solve the task.

Fig. 1: In our experiment we conduct a task and motion planning problem on a dual

arm robot, for which we conduct the assembly, screw, handover, and place operations.

Originally published in [11].

These costs counteract the benefits of the automation and prevent a broad applica-

tion of robots. The trend towards highly individualized products, shorter product life

cycles, and expensive workforces increases the desire for automated small lot sizes,

or lot size one production. Such a highly flexible production requires general purpose

manipulators equipped with multi-modal sensors and algorithms for decision-making,

perception of the environment, and reaction on errors.

138 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 3

The software components of such a system are becoming increasingly complex. To

reduce the effort of setting up or adapting to new problems, we must reuse as many

components as possible, develop multi-purpose algorithms that can replace specialized

solutions, and allow modularization so that several parties can contribute reusable mod-

ules.

In this paper we build on algorithmic decision-making algorithms, which use mod-

els that standardize domain knowledge. These planning algorithms allow for a modular-

ization of the domain and consider sensory input to control the hardware and perform

the task at hand solely based on the provided models.

The algorithms for decision-making must handle hybrid problems like the manipu-

lation scenario shown in Figure 1, which has continuous geometric and discrete proper-

ties, such as attachment states or grasping positions. These planning problems become

large for non-trivial tasks, which leads to unreasonable computation times due to the

curse of dimensionality. We counter that with the hierarchical approach presented in

[10].

Theoretically, recursive hierarchization allows for a near linear scalability with the

length of the task. Nevertheless, the performance of the planning algorithm depends

strongly on the quality of the models. However, manual model optimization is exactly

what we want to avoid. The advantage we have are the formal models, which can be

automatically optimized with different algorithms presented in the following.

In this paper we focus on the automatic and facilitated integration of components

from different parties. We discuss two algorithms that optimize a domain composed

from mismatching modules. Both rely on our formal models and their set-theoretic

foundation to modify declarative and procedural knowledge while preserving their in-

tegrity.

Especially in an industrial environment integrators, component suppliers, and man-

ufacturers define objectives or contribute modules and resources with varying perspec-

tives depending on their user role. Each of them implements a slightly different model-

ing scheme that represents the individual approach to the problem.

The first domain optimization algorithm we discuss in this paper is a generalized

form of an automatic unit transformation. If two modules use different units, functions

from one unit cannot be called with data from the other module. They are incompati-

ble and, despite formalized information to reach a given goal might exist, there is no

possible path that can be calculated by the planning algorithm.

This algorithm that was first proposed in [11] prevents performance degradation

during online planning. Our algorithm automatically adapts the different declarative

models by transforming them according to the task at hand. In this way, we avoid un-

necessary intermediate steps, which are an artifact of the hierarchical approach that

allowed us to handle these large domains.

In this paper, we also propose a second algorithm, which was not previously pub-

lished and thus and extension to our previous work of [11]. It analyzes the domain and

reformulates the existing declarative knowledge by decomposing it, applying general

conversion operations to a subset of the pieces of information and recombining them

again. We automatically generate conversion operators, which are checked for validity

based on the formal models. In this way, we can merge subdomains with so far incom-

139

4 B. Kast et al.

patible formulations for example, due to different units used in the declarative knowl-

edge. We algorithmically extend the domain such that conversion operators ensure the

compatibility.

In the following we discuss the related work and theoretic foundation of our algo-

rithms. Based on this we introduce our optimization algorithms, the extended conver-

sion approach, and the automatic alignment. Afterwards we analyze the effectiveness

of our algorithms in a dual-arm manipulation scenario. We simulate 800 assembly tasks

with increasing complexity and conduct the final experiment on a real two-arm robotic

system. Finally, we conclude our work and discuss possible future extensions.

2 Related Work

The three strands of literature related to the algorithms presented in this paper are data

fusion, data-driven optimizations, and model-based domain optimizations.

The crucial step of our conversion algorithm is the recombination of the different

pieces of information without infringing the validity of the model. This problem is like

the (sensor) data-fusion task, which is a well-studied domain. In fact, Dasarathy et.

al. formulated the sensor-data-fusion as the inverse of data fission in [3]. Fusion and

fission of data are two of the three important steps we conduct in one of our domain

optimization algorithms. The difference to most sensor-data-fusion approaches is, how-

ever, that they mostly focus on the fusion of redundant information, according to the

classification of algorithms presented in [5], to increase the confidence of the state es-

timate. This requires a good sensor model to weigh the different pieces of information,

that possibly contradict each other. This model is not available in general, such that

we must make sure, that we only fuse completely complementary pieces of informa-

tion, which cannot conflict as they do not overlap. Another relevant field of research is

data analysis for the internet of things [2]. The difference to their data-fusion scheme,

which can be similarly model-driven than our approach, is the absence of procedural

knowledge. With this additional information, we can make statements about the con-

sistency of the fusion given a specific domain and provide operators that combine the

fission-conversion-fusion-process.

An overall different approach to our model-driven domain optimization algorithms

are data-driven approaches. Among this recently quite active domain, reinforcement

learning, which provides an optimized heuristic for a given domain, is the branch with

the most similar target. Their strength lies in domains with lots of training data or easy to

simulate problems like board [17], [18] or computer games [13], [20]. In these scenarios

they can outperform humans or even tailored algorithms.

A limiting factor is the training data, which prevents application on real-world sce-

narios or any domain, which is hard or impossible to simulate. In [7] the great effort and

cost to gather enough training data in real-world becomes evident. Hundreds of robots

performed pick and drop tasks for weeks in parallel and shared the experience, until

the task was completed successfully for this specific setup. In our system, we aim to

reuse the knowledge compiled in the model. With the abstractions and implementations

made, we target a more flexible solution without training runs before operation. This,

however, comes at the cost of possible suboptimality. Another impressive demonstra-

140 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 5

tion of the capabilities of data-driven approaches can be found in [21], which is a very

hard but rather short task. With our hierarchical approach, we can factorize the prob-

lem, such that we can scale near linearly with the length of the solution and calculate

plans with hundreds of steps, possibly integrating data-driven approaches for specific

sub-problems.

As soon as we abstract the low-level machine control, the relative amount of data

increases which eases data-driven approaches. In [15] this was exploited by combining

reinforcement learning with an constraint-based motion-generation. With this layer, not

only simulation and therefore data-generation is eased. It also reduces the dimension-

ality of the problem and avoids any collision. This expands the valid value range of

the control parameters, which in turn accelerates the training. Another benefit of this

abstraction is the identical interface for the training and the execution in the real-world,

which additionally handles small deviations during the runtime.

A downside of this approach is still the high demand of processing power to gener-

ate the data and conduct the training. Especially for tasks with a high number of required

steps, the time until a first successful path is found by chance, without any prior knowl-

edge, can consume a lot of computation time. Opposed to our model-driven approach,

the decision-making process is performed by a black box network, which is trained on

specific data. It is therefore harder to debug and introspect. Additionally, a retraining is

required as soon as changes in the setup or environment occur that were not included in

the original training set.

In our approach, on the other hand, the hierarchization allows to solve large scale

problems online without prior training. However, the introduced intermediate goals,

which factorize the planning problem and enable this performance, possibly result in

sub-optimal solutions. Opposed to this, reinforcement learning approaches are theo-

retically optimal given infinite computational power. With our explicit models, rules,

and the factorization, the planning algorithm is introspectable and thus easy to debug,

opposed to data driven approaches. This not only eases development but is a key re-

quirement for many industrial applications.

The third strand of related work, apart from data-fusion and data-driven approaches,

targets the design and optimization of modeled domains.

A best-practices scheme for manually constructed domains is presented in [8]. It

targets the representation of the declarative knowledge and offers consistent models.

It requires a strict adherence of the implementation to the defined rules, which is not

always possible, due to different parties contributing to the overall system, or existing

modules, that should be reused and incorporated. In those cases, manual effort to wrap,

adapt, and integrate the non-conformant modules is required.

We accommodate this problem with the automatic alignment algorithm discussed

in this paper. It allows each party to use the preferred representation and automatically

integrates the modules based on the task at hand, without additional manual effort. By

that, we facilitate collaboration as each party can fulfill their user-roles.

Several approaches target the problem of matching task and planning algorithm,

primarily for discrete, PDDL domains. As planners differ in their search strategy and

applied heuristics, their performance depends on the structure of the domain they are

applied on and the parameters used. Therefore, portfolio planners, such as [16], [12],

141

6 B. Kast et al.

wrap around existing algorithms and apply different configurations on the given do-

main, analyze the behavior for a limited time and try to pick the best planner, without

modification of the original domain. In competitions, portfolio planners have shown a

very good performance. Our architecture is similar to the portfolio planners in the sense,

that we have a planning algorithm that wraps, parametrizes and calls another planner.

While different planners are possible in principle, we did not focus on the parametriza-

tion or the choice of the planning scheme at the moment.

Another approach to match planner and domain is to reformulate the domain to

work efficiently with a given planner. The construction of efficient PDDL-domains re-

quires experienced experts. With the optimization algorithms proposed in [6], [19] the

hurdle is lowered, such that non-experts can automatically reformulate a domain for

efficient planning with generic algorithms.

A benefit of offline optimization schemes, such as [1], which automatically applied

common optimization schemes on a given domain, is the possibility to inspect the re-

sulting domain. By that, validation, and further manual optimization, as well as a com-

bination with portfolio planners, becomes viable.

The downside of the domain optimization schemes, and portfolio planners is related

to the difficulties PDDL and PDDL planners have with hybrid domains, that also con-

tain continuous properties, and the application of arbitrary code to control real-world

hardware. In our approach, we handle the scalability issues of hybrid domains with the

factorization and allow to call arbitrary operations.

3 Theoretical and Algorithmic Foundation

In this section, we discuss the foundations of our domain optimization algorithms,

namely the definitions and representations we use for the declarative and procedural

knowledge, as well as the hierarchical planning approach we optimize for.

3.1 Declarative Knowledge

We base the definitions of our declarative knowledge on the set-theory as proposed in

[9] section III A. This is not only an intuitive approach, related to the human language

and way of thinking, but also a way for machine-interpretable and thus algorithmically

modifiable models.

Our definitions can describe physical objects as well as non-tangible pieces of in-

formation. We call these pieces of information instances. In our declarative knowledge,

we aggregate instances to sets, which we call concepts. They are the building blocks

of our declarative knowledge. All concepts have a specific concept base BΓ which is a

not necessarily finite set of instances that defines to which concept class Γ the concept

belongs.

For concepts of the same concept class, we can define a partial order more-detailed

than MΓ, which tells us, if the first concept is a subset of the second concept.

We can define sub-concepts in the set of a concept to aggregate instances with com-

mon properties. This recursive approach leads to so-called composite concepts, which

142 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 7

(a) (b)

Fig. 2: The face of a concept is composed of the colors and recursive structure of its

sub-concepts. In the hierarchical domain, the directed edges denote the more-detailed

than property.

are a intersection between multiple concepts, that specify the value ranges or sets of a

specific property or role:

C ∼= Πr∈RC
Cr,

where RC defines the composite structure and Cr with r ∈ RC are the intersecting sub-

concepts and their role. The more roles the composite concept has the more detailed

it is, as it represents a region of instances and is thus more precise. The same is true,

if the intersecting sub-concepts are more detailed themselves. Based on that, we can

calculate the partial ordering more-detailed than MΓ for composite concepts as well.

Confer section III A of [9] for more information.

We present our concepts as directed graphs to the user. The root node holds the

concept base and the descendants are the sub-concepts with the roles on the edges. The

different sets are denoted by colors, which results in a recursively splitting face for

composed concepts as depicted in Figure 2a.

When we bring together the partial ordering with the compact representation of our

concepts, we can visualize the declarative knowledge in a hierarchical domain, which

is a forest of directed subgraphs as depicted in Figure 2b. We use this ordering, in

combination with automatically generated compare functions based on this model, to

check for the fulfillment of intermediate goals during planning, and to compile the sub-

planning tasks during factorization.

3.2 Procedural Knowledge

The declarative knowledge on its own would be completely useless, as no one could use

it without the procedural knowledge. During planning, we apply actions to a subset of

the information in the current state until we reach the desired goals. The aggregation of

instances to different concepts is motivated by similar expected outcomes of the actions

and the procedural knowledge is defined by its effect on the declarative knowledge.

Thus, procedural and declarative knowledge go hand in hand and modeling only one in

isolation would make no sense.

143

8 B. Kast et al.

We call the building blocks of our procedural knowledge operators. They describe

the mapping between input instances of specific concepts and the possible instances of

defined output concepts as described in [9] section III B and depicted in Figure 3. Thus,

an operator π with Rπ,in describing the set of input roles and Rπ,out the set of output roles

with the according concepts has the following structure:

π : Πri∈Rπ,in
Cri

→ Πr j∈Rπ,out
Cr j

.

We have little restrictions on the way the mapping between input and output instances

is implemented.

Fig. 3: The model of an operator defines one or multiple inputs and outputs, their types,

as well as additional properties. For further reading consult section III B of [9].

We only impose that inputs cannot be modified, unless explicitly stated, no internal

state is allowed, unless explicitly stated, and the types of all possible outcomes must be

defined. This allows us to support explicit formulas, implicit black box implementations

of arbitrary libraries, simulations, and real-world executions.

Similar to the partial ordering of concepts, we define the more-detailed-than rela-

tionship for operators. For the declarative knowledge, however, it is not necessarily a

one to one, but a one to n relationship. We call a set of operators π̃ more detailed than

an operator, as soon as a network π̂, which can also be a sequence, exists, for which we

can find a more detailed concept on the leaf nodes for each output of our operator. Ad-

ditionally, the concepts on the root nodes of the network must either be more detailed

than a input of the operator, or it must be orthogonal to all input concepts, i.e. it must

have a concept base, which was not used in any of the inputs. According to section III

B in [9] this requirement can be formalized in the following way:

∀ri ∈ Rπ̃,in ∃r j ∈ Rπ̂,in : (Ĉri
,C̃r j

) ∈ M
Γ(C̃r j

),

144 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 9

∀ri ∈ Rπ̃,out
∃r j ∈ Rπ̂,out

: (Ĉri
,C̃r j

) ∈ M
Γ(C̃r j

),

and for all ri ∈ Rπ̃,in holds:

|{r j ∈ Rπ̃,in | Γ(C̃r j
)⊆ Γ(C̃ri

)}|

= |{r j ∈ Rπ̂,in | Γ(Ĉr j
)⊆ Γ(C̃ri

)}|.

The goal of the partial ordering of operators is the representation of a stepwise

increase in simulation detail, complexity, and hence cost, which can be computational

time or usage of the real hardware without the need to introspect the operators. We can

additionally specify a partial ordering between operators, which does not interfere with

this condition, manually.

We use this partial ordering for the factorization of the planning problem in the next

section.

3.3 Hierarchical Planning Algorithm

The basic strategy of our hierarchical planning scheme, first proposed in [10], is a re-

cursive divide-and-conquer approach to alleviate the curse of dimensionality. It consists

of two distinct algorithms. The first is a single-level state-space forward planner, which

takes a set of operators and initial instances to reach defined goals. We could replace

this strategy with existing PDDL-planners, reinforcement learning algorithms, or task

and motion planners.

The second algorithm configures those planning algorithms and conducts the fac-

torization of the planning problem. There are three factors, which determine the com-

putational requirements for a planning task: The number of possibilities per step, the

number of steps required to reach the goal, and the cost per step. While the cost per step

contributes only linearly to this calculation, the length of the plan and the branching

factor are exponential facets. Hence, our primary goal is the minimization of the latter

two aspects with the help of our factorization.

We start with the most abstract domain for a given problem, as it should be relatively

simple to solve. It has only a small set of available operators, which have a small number

of inputs and therefore few input combinations. Additionally, they cover huge steps

towards the goal. This results in a relatively small branching factor and possibly small

successful plan lengths.

We then pick one of the solutions and refine each of the steps in that plan recursively.

We construct the new planning task with the more-detailed operators of the applied

action in that step, reduce the set of usable instances based on the input instances,

and define the former outputs as the new goals. We continue this recursion, until no

more-detailed operators exist. In our model, the real-world execution is a more-detailed

operation of the most detailed simulation. Therefore, we seamlessly integrate real-world

execution in our hierarchical refinement scheme.

With our recursive factorization, we reduce the branching factor and the effective

plan length, which allows us to calculate solutions of an idealized domain in linear time.

This, however, only holds true, if the intermediate goals imposed by the abstract lay-

ers are on the direct path even in the most detailed level. As we stick to the decisions

145

10 B. Kast et al.

made on the more abstract level during our refinements, and the abstractions might not

cover all possible outcomes or problems, the plan in the refined level might be subop-

timal or not even exist. Opposed to HTN planners such as [14], we do not rely on the

downward refinement property, which would require the consideration of all aspects of

the most detailed level on all abstractions to avoid non-refinable steps. However, this

breaks nearly all benefits of the hierarchization in realistic setups. To avoid this prob-

lem, we implement a backtracking strategy, such that another abstract plan is picked, if

the former choice was not refinable. For more information confer section 7.2 of [10].

During execution, this results in a naturally emerging model-predictive-control scheme

as soon as deviations between execution and planning occur. However, we cannot avoid

performance degradation for misaligned abstract planning levels, which provide poor

intermediate goals and therefore misleading hints for the more detailed levels. Since

the problem without the downward-refinement property is np-hard, we can observe ex-

ponential scaling in some misaligned domains.

To accommodate this issue and ease the engineering, we discuss the automatic

alignment algorithm in subsection 4.1, which improves the models coming from differ-

ent sources and thereby minimizes the sub-optimality effects of the intermediate goals

and simultaneously improves the planning times.

4 Algorithmic Domain Optimization For Hierarchical Planning

In this section we discuss our domain optimization algorithms, which facilitate the en-

gineering of planning domains for hierarchical planning. We focus on the alignment of

models that were implemented with different views on the same physical aspects. This

is a common issue when we reuse models or compose a domain from different sources.

The first algorithm aligns a given domain to the task at hand. It reformulates the

declarative knowledge and wraps the operators, such that the outputs and therefore in-

termediate goals have the same concept-base as the final goal. This prevents unneces-

sary steps, facilitates planning, and improves the quality of the results. We proposed

this algorithm first in [11].

The second algorithm addresses differing units or sub-concepts within two con-

cepts, which prevent the application of operators, despite conversions between this

pieces of sub-information exist. After this optimization, the planning algorithm can

apply a larger set of actions, and thus solve additional problems, or find shorter paths to

the goal.

4.1 Automatic Alignment of a Domain

The basic concept of our alignment algorithm is strongly interlinked with the princi-

ples of our hierarchic planning algorithm. The outputs of the operators on the more

abstract level are the new goals for the refined level. During planning, we constantly

check, whether the available instances fulfill this specified goals with the automatically

generated compare function of the goals. This compare function checks, if one instance

has a non-empty intersection with the goal instance, which can only be detected, if both

instances have the same concept base.

146 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 11

Fig. 4: For the relation between robot and box, the same situation can either be ex-

pressed hardware, or object centric. E.g. either the box has a robot attached, or the

robot holds the box. Originally published in [11].

The issue in misaligned domains is, however, that for the same physical phenomenon,

different modeling solutions might exist. Especially when we describe the relation be-

tween two objects, one of them is the primary, which defines the concept base, and one

object is the secondary, which adds detail as a sub-concept. We need this distinction and

cannot work with triples, for example, for performance reasons, as the hierarchization

would be impossible to calculate with that representation. We can, however, automati-

cally convert one representation to the other, for example if we reuse modules or receive

models from a third party, which had a different view on the same problem due to the

differing user-roles.

Let’s consider the example of a box, which is currently fixed to a robot’s gripper.

When we model this situation, we define a box-concept, possibly with an id and addi-

tional properties. As soon as it is grasped, we add the robot to this concept, such that we

know, which robot it is attached to. Another approach would be to start from the robot,

which initially has an empty gripper. As soon as it grasps the box, the list of attached

objects would hold the box.

Both representations are perfectly valid. The first is possibly preferred by an engi-

neer, who constructs the high-level task and ignores the specific hardware involved. The

later will be the chosen representation for lower-level motion planning and control al-

gorithms, which are commonly hardware centered. This duality of expressing the same

instance with different base types is depicted in Figure 4.

During our hierarchical planning, we now have the abstract layer, which specifies

the sequence in which different parts are assembled with instances of the base type box.

The operators, that implement the task and motion control, however, take and return

boxes only when the objects are picked, placed, or refined. But not when they are ma-

nipulated in the grippers. Therefore, the robot must place the box every step to reach

the intermediate goal.

We could prevent this unnecessary step by reformulating the robot with attached

box to a box with robot. The formal process to achieve this algorithmically and show

the validity is based on the set-theoretic foundation of our model.

The algorithmic solution for the misalignment of different levels reformulates all

concepts in a given domain, which have a sub-concept with the same concept base

147

12 B. Kast et al.

a) b) c)

e) f)d)

Fig. 5: Three-dimensional representation of our optimization approach. Originally pub-

lished in [11]. Each depicted plane stands for a concept base (dark blue: all objects (a),

yellow: all robots (b)). Instances with a connection between those planes are within the

green sphere (c). As we cannot represent this volume with our concepts, we need to

project it to either plane, which is possible for the yellow, but not for the original blue

plane in (c). Therefore, we extend the blue plane with the empty set, according to our

algorithm (d) and can now represent instances of the sphere with either concept base

(e), (f).

as the goal concept, to be a concept with this concept base. Thus, we search for con-

cepts C ∼= Πr∈RC
Cr that have a sub-concept C j, j ∈ RC with the same concept base as

our overall goal, i.e. BΓ(C j)⊆ BΓ(Cgoal). In the next step, we transform each of those

concepts, preserving the set they describe, to be of the concept base of the specified

goal:

With C j
∼= Πr j∈RC j

Cr j
the transformed concept is defined by:

C′ := Πr j∈RC j
Cr j

×Πr∈RC\{ j}Cr.

With this definition we constructed a concept C′ that is isomorph to a subset of C j,

which adheres to the definition of a concept with concept base BΓ(C j) according to

subsection 3.1.

As depicted in Figure 5, this transformation is only true if all elements of the orig-

inal concept are covered by the new concept base. However, this is not trivially true

in all cases. Consider our example of the box and robot again. The composite robot-

concept has an array of attached objects as a sub-concept, which can be empty. In this

148 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 13

empty case, we cannot find a no-box-instance in the box-concept set, as it does not exist

naturally unless we extend the original concept base of boxes with the empty set:

B∗
Γ := BΓ(C j)∪{{ /0}}.

With this extended concept base, we can now construct the robot with empty gripper

as an element of the concept base box, starting from the empty set element:

C′ := { /0}×Πr∈RC\{ j}Cr.

This corresponds to an no-box-object with all attributes of the original robot as a com-

posed sub-concept.

The graphical representation of this process is depicted in Figure 5. With this formal

transformation, we can now align all concepts in our domain algorithmically such that

we can reach intermediate goals more directly, which in turn reduces planning times

and increases the quality of the planning results.

As the optimization is dependent on the specified goal, we perform it online prior

to the planning. We algorithmically analyze the domain, identify the concepts for the

optimization and search for operators, that use these concepts as inputs or outputs. We

then automatically generate conversions between either form of representation and wrap

the original operators to accept and return the aligned representations of the concepts.

We extend the original domain with the new operators, such that the planner naturally

uses them to construct the new solutions. By that, the intermediate goals have a new

type, as they are defined by the outputs of the aligned operators. These goals are easier

to reach and thus relaxed, which results in different plans, while the overall goal keeps

the original type such that the overall result is the same as without our optimization.

4.2 Extended Unit Conversion and Reasoning for Data Fusion

In this subsection, we start with the discussion of algorithms that solve small inconsis-

tencies within the declarative knowledge, such as different units for physical parame-

ters. We then continue with approaches that perform a general data fusion as well as the

generation of new operators and for this purpose analyze the procedural knowledge in

combination with the declarative knowledge.

Unit Conversion Even in the event that we reinvent engineering, spend time, brains,

and money to define every process and data element that needs to be considered during

the engineering, automation, and task specification process, we will probably still not

be able to establish a standard that everyone adheres to. The more realistic scenario is

that we must apply our algorithms in a ”brown field” environment with existing im-

plementations to various domains, from the private sector to health care and industrial

applications. For this purpose, we want to reuse the existing tools and algorithms of

a new plant with the already standardized knowledge of other use-cases while keeping

the integration effort as low as possible. Naturally, inconsistencies will occur during this

integration such as different units for the same physical quantity. Despite the fact that in

149

14 B. Kast et al.

Fig. 6: Our concepts represent sets, which we can visualize by volumes in the 3d-space.

In this depiction, the blue cuboid represents the abstract concept box. When we define

additional properties with roles and respective sub-concepts, we intersect this volume

with the volumes of the sub-concepts. This results in a smaller set of instances. In this

example, we intersect the box concept (blue) with either the dimensions in mm (purple)

or in m (green). We can observe, that the resulting volume is the same, as we can find

a 1:1 mapping between either representation, i.e. a transformation, which transfers one

volume to the other (in this case a rotation of around the axis parallel to the blue cuboid).

our models the sets of instances described by values of different units are isomorphic,

the planning algorithm cannot directly execute operators with concepts that do not use

the specified unit as depicted in Figure 6.

Therefore, we need a conversion to the other representation before we can execute

the given operator. Classically, engineers program these interfaces manually for each

integration, which is a time consuming and costly process. We propose an algorithmic

solution to these conversions, based on the models of the domains that are involved

during the integration process.

Consider the example of a pick operator that needs a box with its outlines specified

in mm and an instance that comes from another level of abstraction and uses m.

Additionally, we have a conversion operator that calculates mm from m for arbitrary

distance measures, which we need to model and implement only once.

However, when we have an instance of a concept that has a dimension defined by

one of the two units, we cannot directly apply this generic conversion operator, since

150 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 15

only a concept that is a dimension can be converted. For the conversion, the concept

base is wrong, which prevents the application of the operator. Therefore, we need a

specialized operator that converts the ObjectMM to an ObjectM.

The implementation of this operator would apply the conversion operator on the

sub-role and keep all other information untouched.

A naive approach for this automatic unit conversion would be the isomorphic tran-

sition of subsection 4.1. This way we can change the concept bases and thus apply the

conversion operator to the dimension, that has a box. However, this will cause all infor-

mation of this instance, except for the dimensions, to be lost, as the operator only han-

dles the information for the dimension. It can take more detailed inputs but will ignore

additional information for the calculation of the output. In contrast to the alignment

between different levels of hierarchy, which must only apply the similarity operation

between two instances after the conversion, we will not cross any boundary between

abstractions and therefore we must not lose any information. Otherwise, we might get

stuck in our planning process.

For manually modeled and implemented operations, the engineer makes sure that

every detail of the output instance is filled in. We could define an operator that performs

the conversion process manually, taking boxes with the dimension of one unit and re-

turning boxes with the dimension of the other unit, preserving all details. In our model-

ing scheme, it is good practice to define only the required data as inputs and outputs to

the operator. This allows for broader applicability, use within the planning algorithm,

and precise description of the code, which are the primarily goals of the model. In the

case of the conversion operator, however, the detailed inputs and outputs are required

in the model, as we make the statement that even if the rest of the information about

the box, apart from the dimensions, remains untouched, we have ensured consistency

at this level of detail. In this way, we also declared that redundant information in our

model, such as the dimension, volume, and density, are consistent. With the special-

ized approach, we need a conversion operator for each concept in the domain’s concept

hierarchy and cannot even take advantage of inheritance but have to resort to manual

coding. This tedious integration task, considering redundancies that are domain-specific

and depend on both declarative and procedural knowledge, can be automated using our

set-based models.

In our unit conversion example we have all the information needed to generate con-

versions between instances that have a dimension with an arbitrary unit, such as boxes

with mm and m once we implemented a universal conversion operator between the dif-

ferent primitive units.

151

16 B. Kast et al.

Our algorithmic approach to implement the automatic conversion operator between

concepts that use different units consists of three steps:

1. The information within the instance is decomposed so that individual instances are

available for each role.

2. Once the required information has been extracted, an operator is applied to a subset

of these instances.

3. The separate pieces of information are merged back into a single instance.

In this way, we create a formally usable instance for our original operator. For the

fusion of step 3, we must decide which information is to be placed in which role of the

merged instance. To answer this question, we can set up a semi-automatic process where

the assignments are pre-filled but can be corrected manually. We also know that for the

unused information the roles will probably remain the same. So, we can concentrate

on the newly computed information from our conversion operator. At this point we

can define another heuristic that analyzes the inputs and outputs of an operator and

identifies information that was probably only processed but not newly generated. For

each consumed input we therefore look for an output of the same concept and, if there

152 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 17

is none, an output with the same concept base. These pairs are likely to describe the

same information, thus we assign the former role to the newly computed instance. For

the other outputs that do not yet have a candidate for their role, we can compare the

structure of the newly created concept that neglects pieces of sub-information without

assigned roles and compare that to more detailed concepts of the current domain. We

can then find candidates with a matching structure to this prototype concept and use the

same roles for the additional pieces of information that comply with the concept or the

concept base of unmatched roles.

In our example of the box with dimension the conversion operator would consume a

dimension in mm and return it in m with concepts that have the same concept base. If we

now merge all available information extracted from the initial box concept and cannot

assign the recalculated dimension in m, then we look for other boxes in the current do-

main with a matching structure to our box without the dimension, but additionally use

dimension in m as a sub-concept. We can then fill an instance of this concept with the

pieces of information extracted and calculated from our box with dimension. With this

set of rules, we can find a good estimate for plausible fusion operators, which then only

need to be suggested to the user for validation. This domain-specific conversion process

can then be stored as a new operator in our composed domain and is thus available to the

planning algorithm. By that, further links between otherwise separate operators are pos-

sible during planning without the need for manual coding to bring together previously

incompatible parts of a domain.

Arbitrary Operation on Sub-Information of an Instance However, this conversion

problem is only a simplified special case of a more general problem. We want to apply

operators on a subset of the information within a concept. There are possibly multiple

operators in our domain, which do not necessarily consume all inputs, and we still must

validate integrity when fusing the new pieces of information together. The core chal-

lenge is redundant information within our composed concept, for which consistency

must be ensured. They prevent an automatic data fusion, which becomes evident at the

intuitive example of an box with mass, volume and density. We can calculate the mass

even if we only have volume and density. Let us assume that for our box in the example

the color is defined as an additional piece of information. According to our automatic

conversion algorithm, we decompose the box concept and get three concepts with con-

cept bases for volume, density, and color. On those concepts we can apply the operator

to calculate the mass, which consumes nothing. As we have no other operator in this

domain to calculate the mass given color, density and volume, the validity check suc-

ceeds, and we can proceed with the fusion. We can perform an analysis of the existing

concepts, determine that the mass role is the correct one for the additional value we

are calculating, and create a template to model our additional operator. In our second

example domain, we have an additional operator that classifies objects based on their

color and calculates a mass based on that class. If we apply our algorithm to the same

problem in this domain, we find that there is a redundant path to calculate the mass

with the given information. Therefore, we cannot generate the fusion algorithm in this

domain because we would generate redundant data ad hoc and do not know whether the

color is affected by the mass or vice versa as visualized in Figure 7.

153

18 B. Kast et al.

Fig. 7: We validate the given fusion task, which emerges from the decomposition of an

available concept, the application of operators, and the final fusion with a meta-planning

task. If an alternative path to the same pieces of sub-information exists, the fusion is not

allowed, as inconsistencies might exist. Otherwise we can automatically conduct this

conversion.

In the following we want to formalize this example introducing the so-called meta-

domain, but first we want to discuss the differences between our task and the problems

in the field of sensor data fusion, where several sensor readings are combined to obtain a

better estimate of the current state. These bits of information may be redundant because

the same scene is recorded, however with different sensors, different modalities, and at

different times. In this case, we need probabilistic models that extract the redundant part

of the information from the noise of different measurements and reconcile possibly con-

flicting readings. This process is not possible without detailed probabilistic sensor and

process models. For our data fusion task, we cannot expect these probabilistic models to

be generally available, because they have to be normalized for each domain. However,

our operators are generally defined in different modules, and the domain can be auto-

matically composed. Therefore, it is unlikely that we can rely on robust probabilistic

models of the relationships between the operators. Nevertheless, from the operators in

the domain we can deduce which information within a concept is completely indepen-

dent from the other specified data.

For introduction purposes we start the formalization of our approach now by ad-

dressing the consistency of a single operator on a subset of an instance and later on

discuss the extended case, where the sub-concept relation between each two concepts

can be analyzed. To check whether all outputs of an operator that we want to apply to

a subset of the information within a concept are independent from the other pieces of

information, we specify a planning task and check if there is a solution, which indicates

154 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 19

that a dependent plan exists. In detail, we can construct a so-called meta-domain, in

which the concepts of an ordinary domain represent instances with our domain. The

similarity property of these instances reflects the hierarchy of concepts within the or-

dinary domain. Additionally, we can also implement operators in the meta-domain as

well as define and solve planning problems. These operators can have meta-models of

concepts as well as meta-models of operators as inputs. Using a meta-operator that sim-

ulates the operators of our usual domain solely based on a mapping of input concepts

to output concepts (i.e. not mapping instances as the usual operator would do, but just

providing the input and output structures), we can then specify an initial state and goals

that consist of instances that describe concepts. Such an instance representation of a

concept follows the lines of subsection 3.1, where concepts are introduced via basic

sets and compositions with roles. Thus the graph structure of a concept (confer for ex-

ample Figure 2) describes the instance in the meta-domain. With this setup, we can now

check for independent information within our concept so that a data fusion is possible.

For this purpose, we specify for each output of our conversion operator a planning task,

that has the goal to compute this output from all non-consumed inputs that are avail-

able as initial facts. In addition to these instances, the meta-concepts of all operators of

this domain apart from the conversion operator are available as start instances. Since

our planning algorithm can detect loops and thus aborts planning if no plan exists, we

can use it to detect non-redundant data within the concept in a non-constructive man-

ner. If we can find a plan that solves the task, there is an alternative way to compute

the same information as our conversion operator has calculated, and thus there is re-

dundant information within our concept. If this is not the case and we make the closed

world assumption for our domain, we can conclude that the checked information is not

redundant and can therefore be merged without loss of consistency.

In case there is a redundancy for the newly calculated outputs, a probabilistic sensor

fusion with appropriate probabilistic information in our models would be necessary,

which is targeted based on our models in [4], but not the focus of this paper.

Identification of Meaningful Networks to Process Sub-Information We proposed

an approach to solve the assignment problem in many cases and to switch to the semi-

automatic process in case of ambiguous roles. Additionally, we discussed an algorithm

to validate the consistency of the merged concept. However, we consider so far only a

single, given operator, which we check for applicability to sub-concepts. The even more

interesting task is to identify meaningful applications of operators that can be applied

to sub-concepts in our domain, which is depicted by the block for selecting another

concept pair at the top of Figure 8. This can be done in an offline step, followed by the

verification process described above and end in the generation of new operators. These

operators are then available during the planning process and envelop the manually im-

plemented operators but work on other types of input and output concepts.

The operator may possibly be a sequence or network of operators that transform

the initial facts provided by the sub-information of a concept into the set of information

that is then merged into the new concept. This process can be formulated as a planning

task in the meta-domain again. Obviously, this process is just a variation of the planning

task in the meta-domain from above. This means that we can decompose any concept

155

20 B. Kast et al.

Fig. 8: Flow diagram of the overall extended conversion algorithm. We pick the two

concepts of our domain between which we want to find a conversion. We construct

a planning task, in which the goals are the decomposed sub-concepts of one concept

while the starting instances are the sub-concepts of the other concept. The applicable

operators are the shells of the operators matching input concepts to output concepts (i.e.

no instance computation based on the implementation, preconditions, etc.). If exactly

one plan exists (i.e. no alternative path between starting instances and goal instances

exists), a valid conversion operator is found. It is the combination of the operators in

that plan.

in the domain and specify any second concept within our domain as a goal. Each plan

we find defines a feasible network that can be stored as a new operator. Only existing

concepts make sense as goals, since newly generated concepts are not used as an input

and are therefore useless to the planning algorithm. All conversion operators are only

valid for the specific domain, because additional operators can make sub-information

within a concept redundant as shown above.

5 Experiment

Fig. 9: The hierarchical planning algorithm picks, configures and executes each of the

possible actions. Additional important steps of the successful plan to Figure 1 are the

grasping of the assembled box, refinement of objects, pick up of the screw, and the

initial pick of the box. Originally published in [11].

We conduct the experiments in two separate parts. Firstly, we analyze the perfor-

mance of our optimization algorithms in simulation, as we can perform a large number

of test runs on longer lasting problems. Secondly, we validate our setup on a dual arm

robot cell to check for real-world applicability and robustness to the effects of imperfect

simulation.

156 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 21

Pick
(Box)

Assemble
(Box, Lid)

Pick
(BoxLid)

Pick
(Screw

driver)

ScrewOut
(Magazine)

ScrewIn
(BoxLid)

Place
(Screw

driver)

Handover
(BoxLid)

Place
(BoxLid)

Pick
(BoxLid)

Handover
(BoxLid)

Fig. 10: In this nominal plan localizations are omitted for brevity. As stated in subsec-

tion 3.3 the MPC-like behavior will result in completely different sequences if external

disturbances occur. The basic difference between the optimized and original domain is

the length of the loop to insert additional screws. Without optimization, the box and

screwdriver are placed on the table for each step, which results in handovers, pick, and

place actions with respective refinements for each screw, which are unnecessary in the

optimized domain. Originally published in [11].

Our real-world setup, which we also modeled for the simulated test runs, is a dual

arm robot with 14 degrees of freedom and a parallel gripper on each end-effector. We

conduct the localization with an RGB-camera, which is attached to each arm, such

that the refinement requires the robots to position in a certain area. We additionally

monitor the workspace with a 3D camera, which gives us initial estimates of the object’s

locations, while the precision is not high enough to directly manipulate the items. The

screwdriver is graspable by the robots and remotely controlled to pick up and fixate the

screws.

3 4 5 6 7 8 9 10 11 22 32 42 52 62

of parts

200

400

600

800

1000

#
o
f
s
te

p
s

in
th

e
s
u
c
c
e
s
s
fu

l
p
la

n

original

optimized

3 4 5 6 7 8 9 10 11 22 32 42 52 62

of parts

0

20

40

60

80

100

120

140

160

#
o
f
b
a
c
k
tr

a
c
k
in

g
s
te

p
s

original

optimized

Fig. 11: For both domains, the successful plan lengths grow linearly (change of step size

right of dashed line) with the number of parts in the goal product, while the optimized

domains require less steps due to no unnecessary placements. This also results in fewer

required backtrackings (right diagram). Originally published in [11].

157

22 B. Kast et al.

The task involves the assembly of two parts, which are then fixated by a config-

urable number of screws as depicted in Figure 1 and Figure 9. We modeled the actions,

which manipulate objects, such as pick, assemble, or screw, to reduce the precision of

unfixed objects but require a high precision in the beginning. Therefore, the planning

algorithm must find a solution, which incorporate the refinements prior to each of those

operations. Screwing is only possible in the air, with the object fixated by one robot and

the screwdriver in the second robot’s gripper. As we allow the placement of all picked

objects with a certain orientation, such that loops in state space are possible. Screwing

is only possible with a certain orientation as well, such that the screws face outwards,

which can be achieved with a handover. For the motion synthesis we use the constrain-

based approach of [15], which eases planning due to the little intermediate positions

required for a large coverage of the state-space.

3 4 5 6 7 8 9 10 11 22 32 42 52 62

of parts

0

200

400

600

800

1000

1200

1400

p
la

n
n
in

g
ti
m

e
[s

]

original

optimized

Fig. 12: The planning times for both domains grow near linearly, while the slope is

about a factor of 5 steeper for the original domain. This correlates with the fewer steps

and less backtracking procedures required in the optimized domain. Note the change in

step size right of the dashed line. Originally published in [11].

In this paper we propose an offline optimization algorithm, which extends the given

domain with automated unit transformation operators and wrappers, and an online op-

timization that aligns the domain to the specified goal. For the experiment, we can

apply the planning algorithm on the original, fully optimized, and partially optimized

domains.

In the original domain, the most abstract level is workpiece centric, while the other

levels of abstraction are hardware centric. This misalignment continues in the usage of

158 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 23

different units for the dimensions of the objects, which is checked to validate graspa-

bility by the robots. In total, there are 4 distinct layers of abstraction, which emerge

from the hierarchical ordering of the operators. In the second layer, the refinement op-

erations and accuracy of the locations come in, the third layer checks for collisions in

simulation, while the most detailed layer executes the actions on the real hardware.

For the original and the domain without offline optimization, no successful plan was

found. This is due to the unit mismatch between the first and second level of abstraction,

which results in no available action to pick objects successfully in the second level. Only

after the unit conversion and wrapping with the offline optimization algorithm solutions

can be found. For the further analysis of the alignment optimization, we thus compare

the performance between the fully optimized domain and the offline optimized original

domain, which we refer to as original domain for brevity in the following.

We can fixate the lid only with up to 4 screws for the real-world test, due to the

limited number of holes in the objects. These experiments succeed with both domains,

while the optimized is significantly faster.

To test the further scalability of our approach and measure execution times with a

larger number of runs and thus reduce the variance of our results, we switch to simu-

lated tests. The difficulty of the task is configured by the number screws we require for

fixation. While the real box has only four screw holes, we tested up to 60 screws in sim-

ulation, which resulted in 62 involved parts for assembly. We conduct each experiment

100 times with randomized starting positions of the objects.

For the original domain, we had to abort the experiments at 7 involved parts, as the

planning times exceeded 10 minutes. The optimized domain, however, could assemble

up tu 62 parts within that time as depicted in Figure 12. For both domains, we could

observe a near linear increase in planning times with the number of involved parts.

This shows the effectiveness of our hierarchical planning approach. Nevertheless, the

steepness of the original domain was about a factor of 5 higher than for the aligned

domain and it had a larger variance.

The reason for this can be found in the lengths of the successful plans, depicted

in Figure 11. For the same number of parts involved in the goal product, the number

of steps in the successful plan is about double the number in the aligned domain. As

the number of abstractions between both domains is equal, the plan lengths of the sub-

planning tasks increase as well. This results in larger contributions in the exponential

component, which results in the long planning times. Additionally, these longer plans

can fail more often during refinement. Therefore, we can observe a more frequent need

for backtracking, which further increases planning times.

As we analyze the reasons for the longer plans in the original domain, we can ob-

serve, that the intermediate goal of a box with a specific number of screws can be

achieved directly with the box fastened in the robots gripper for the optimized domain.

Thus, the next screw can be directly inserted, opposed to the original domain for which

the box must be separated from the robot and thus placed on the table. This placement

involves several additional steps, as a direct drop is not possible due to the wrong orien-

tation of the box with the screws facing downwards. Thus, a handover is required, which

can only happen after the screwdriver is placed. Afterwards all actions must be reverted

159

24 B. Kast et al.

to fasten the next screw, which results in the significantly longer and less efficient plans

of the original domain as depicted in page 21.

6 Conclusions

In this paper we discussed two domain optimizations algorithms, which build upon our

set-based formal models to optimize and extend a given domain.

They address different aspects to facilitate the integration of existing models to new

domains. The domain optimization and alignment algorithm, proposed in [11], mini-

mizes the suboptimalities that come with the factorization conducted by our hierarchical

planning algorithm. We show that it allows our planning algorithm to bring its strengths

of good scalability to larger problems, even for poorly modeled domains. As the mod-

eling of domains requires expensive experts, the widespread application of planning

approaches relies on such optimizations, which ease the engineering and allow more

people to configure and contribute to autonomous systems.

The second algorithm, which was first published in this paper, is an extension to

this idea of facilitated composition of domains. We further automate tasks of the engi-

neer and can algorithmically detect possible unit conversions, and general applications

of operators on sub-information of instances. By that, we enlarge the pool of possible

actions that can be used by our planning algorithm which allows to solve additional

tasks as shown in our experiment. As our algorithms generate human-readable models

for both, the declarative as well as the procedural extensions. They are easy to inter-

pret, such that engineers can be extended and build upon those additional pieces of

knowledge. This can be a powerful tool for an automated composition of modules from

different sources and facilitate the setup of autonomous systems. Especially in indus-

trial manufacturing, additional fields of applications, for which current systems are too

cumbersome to setup might now be feasible.

An interesting field for future research is the combination of our hierarchical and

model-based planning approach with data-driven algorithms. The strengths of our ap-

proach lie in the scalability due to the factorization of large problems. Data-driven ap-

proaches, on the other hand, promise better results, once they gathered enough data and

finished training. The combination of both approaches could either generate the initial

training data by using our planning algorithm, which could provide a hot start to the

training with the risk of local minima. Another option is the training of heuristics for

both, the hierarchical factorization and the forward-planner used in our approach. As a

third option, we could use trained networks as operators. All three options do have their

pros and cons, which would be worthwhile to examine.

References

1. Areces, C.E., Bustos, F., Dominguez, M., Hoffmann, J.: Optimizing planning domains by au-

tomatic action schema splitting. In: Twenty-Fourth International Conference on Automated

Planning and Scheduling (2014)

2. Bleiholder, J., Naumann, F.: Data fusion. ACM computing surveys (CSUR) 41(1), 1–41

(2009)

160 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

Automatic Domain Extension and Optimization based on Set-Theory 25

3. Dasarathy, B.V.: Sensor fusion potential exploitation-innovative architectures and illustrative

applications. Proceedings of the IEEE 85(1), 24–38 (1997)

4. Dietrich, V., Kast, B., Albrecht, S., Beetz, M.: Data-driven synthesis of perception pipelines

via hierarchical planning. In: International Conference on Robotics in Alpe-Adria Danube

Region. Springer (2020)

5. Durrant-Whyte, H.F.: Sensor models and multisensor integration. In: Autonomous robot ve-

hicles, pp. 73–89. Springer (1990)

6. Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S., et al.: Domain-independent con-

struction of pattern database heuristics for cost-optimal planning. In: AAAI. vol. 7, pp. 1007–

1012 (2007)

7. Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E.,

Kalakrishnan, M., Vanhoucke, V., et al.: Qt-opt: Scalable deep reinforcement learning for

vision-based robotic manipulation. arXiv preprint arXiv:1806.10293 (2018)

8. Kang, T.S., Nnaji, B.O.: Feature representation and classification for automatic process plan-

ning systems. Journal of manufacturing systems 12(2), 133–145 (1993)

9. Kast, B., Albrecht, S., Feiten, W., Zhang, J.: Bridging the gap between semantics and con-

trol for industry 4.0 and autonomous production. In: Int. Conf. on Automation Science and

Engineering. IEEE (2019)

10. Kast, B., Dietrich, V., Albrecht, S., Feiten, W., Zhang, J.: A hierarchical planner based on

set-theoretic models: Towards automating the automation for autonomous systems. In: Int.

Conf. on Informatics in Control, Automation and Robotics. SCITEPRESS Digital Library

(2019)

11. Kast, B., Dietrich, V., Albrecht, S., Feiten, W., Zhang, J.: Domain optimization for hierarchi-

cal planning based on set-theory. In: ICINCO 2020. SCITEPRESS Digital Library (2020)

12. Katz, M., Sohrabi, S., Samulowitz, H., Sievers, S.: Delfi: Online planner selection for cost-

optimal planning. IPC-9 planner abstracts pp. 57–64 (2018)

13. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller,

M.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

14. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, J., Wu, D., Yaman, F.: Shop2: An htn

planning system. Artificial Intelligence Research 20, 379–404 (2003)

15. Schmitt, P.S., Wirnshofer, F., Wurm, K.M., Wichert, G.V., Burgard, W.: Planning reactive

manipulation in dynamic environments. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (2019)

16. Seipp, J., Braun, M., Garimort, J., Helmert, M.: Learning portfolios of automatically tuned

planners. In: Twenty-Second International Conference on Automated Planning and Schedul-

ing (2012)

17. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-

twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go

with deep neural networks and tree search. nature 529(7587), 484 (2016)

18. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,

Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without human knowledge.

Nature 550(7676), 354–359 (2017)

19. Vallati, M., Hutter, F., Chrpa, L., McCluskey, T.L.: On the effective configuration of planning

domain models. In: Twenty-Fourth International Joint Conference on Artificial Intelligence

(2015)

20. Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung, J., Choi,

D.H., Powell, R., Ewalds, T., Georgiev, P., et al.: Grandmaster level in starcraft ii using

multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)

21. Xie, A., Ebert, F., Levine, S., Finn, C.: Improvisation through physical understanding: Using

novel objects as tools with visual foresight. arXiv preprint arXiv:1904.05538 (2019)

161

162 Chapter 10. Automatic Domain Extension and Optimization based on Set-Theory

163

11
Configuration of Perception Systems via

Planning Over Factor Graphs

Title Configuration of Perception Systems via Planning Over Factor Graphs

Authors Vincent Dietrich, Bernd Kast, Philipp Schmitt, Sebastian Albrecht,

Michael Fiegert, Wendelin Feiten, and Michael Beetz

ISBN/ISSN 978-1-5386-3081-5/2577-087X

DOI ICRA.2018.8460955

Status published

Publisher IEEE

Contribution of

Bernd Kast

I implemented the underlying modeling and planning for this pa-

per. Vincent Dietrich developed the probabilistic models, which ben-

efited from discussions about the theoretic foundations of our modeling

scheme with me. The other co-authors provided the general scientific

conditions and use-cases for this paper.

https://doi.org/10.1109/ICRA.2018.8460955

164 Chapter 11. Configuration of Perception Systems via Planning Over Factor Graphs

Summary A key factor for autonomous machines is the perception subsystem,

which is generally composed of different types of sensors at varying

locations. Evaluation algorithms accompany this subsystem, extracting

compiled information from the raw data to feed it to a sensor-data fusion

algorithm. The configuration problem for a new autonomous system is

structurally like other planning algorithms in our framework. Hence, we

can reuse our existing modeling and planning algorithms and implement

only models for this new domain. We define the goals by a required

maximal uncertainty level, which can be achieved by fusing different

measurements from independent locations. The planner can select ade-

quate sensors at reasonable positions and appropriate feature extraction

algorithms, which are then fused in a factor graph. This flexible au-

tonomous configuration approach is validated on an industrial assembly

cell.

Configuration of Perception Systems via Planning over Factor Graphs

Vincent Dietrich1 Bernd Kast1 Philipp Schmitt1 Sebastian Albrecht1

Michael Fiegert1 Wendelin Feiten1 Michael Beetz2

Abstract— Sensor guided, automated systems require the
composition of various sensors and data processing algorithms
to obtain relevant information for performing their task. Many
applications have additional requirements such as a certain
accuracy, which has to be achieved despite sensor noise and
calibration errors. In this paper we model the configuration
of perception systems as a planning problem over probabilistic
graphical models. We work on a subset of the full configuration
space of perceptions systems, specifically the used sensors, data
processing algorithms and view poses. Based on a semantic
description of the goal, available sensors and data processing
algorithms, our system plans perception steps and sensor data
fusion autonomously. The planner operates by constructing
a factor graph until the accuracy requirements of tasks are
fulfilled or unobtainable with the available action set. We
validate our approach in an industrial assembly scenario.

I. INTRODUCTION

Automated control systems in industrial applications, such

as logistics or manufacturing, require reliable and accurate

data about the state of the system and its surroundings. This

data must be obtained despite low signal to noise ratios,

ambiguous sensor readings and indirect measurements of

the quantities of interest. The state of the art approach

to fulfill these perception tasks in industry is to engineer

problem specific combinations of sensors and algorithms for

perception and data fusion. Often, sensor based solutions are

avoided entirely by designing expensive hardware, such as

fixtures or precise part feeding, for the task at hand.

For applications with short product life cycles or large

product variety the approach of manually engineering per-

ception systems is not viable. In the extreme case a special

perception task might occur only once. For these scenarios

there is a pressing need to autonomously configure percep-

tion systems. Solutions to this problem must address the

following challenges:

• Large variety of sensors and algorithms: Sensors as dif-

ferent as RGB cameras, LIDAR and sonar range finders

are required to capture the full spectrum of applications.

In the same way as there is not one single type of

sensor for all applications, a wide range of perception

algorithms is needed. An automated approach to the

configuration of perception systems must cope with this

variety.

1Siemens Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich,
Germany

2Institute for Artificial Intelligence, University Bremen, Am Fallturm 1,
28359 Bremen, Germany

*This work was supported by BMWi IKT III SADA Project
http://www.projekt-sada.de/.

Assembly Use Case

osc

orob

orc

o2

o1

o12

o2

o1 o2+ =

Initial Belief

Goal Belief

o2

Semantic Model of Perception System

Concepts Actions

Planner

Plan

o2

osc

o2

orc

Start State Goal State

Factor Graph Factor Graph

T
as

k
M

o
d
el

P
la

n
G

en
er

at
io

n

Fig. 1: Overview of the configuration approach for an exemplary
assembly use case, where a robot orob should assemble the part o1
into o2. Therefore, part o2 needs to be localized precisely. The task
and perception system description is grounded in a semantic model,
which comprises concepts such as a RGB camera and actions such
as an image based object detection. Using the semantic description
of the problem, the planner determines a sequence of actions to
satisfy the goal. The plan includes the automatic generation of a
factor graph which is used to estimate the object pose.

• Inherent perceptual uncertainty: Perception is subject

to uncertainties ranging from noisy raw data over false

measurements to calibration errors. Currently, the per-

ception engineer has the often implicit knowledge of

the involved uncertainties and chooses an appropriate

perception system. In order to enable automatic configu-

ration, an explicit representation and automatic handling

of these uncertainties is required.

• Task dependent requirements for perception: The infor-

mation that is required to successfully perform a task

has large qualitative differences from one application to

165

another. For a sorting application a basic classification

may be sufficient, while for an assembly task highly

accurate relative poses of objects are required. A single

measure, such as entropy of a belief state, does not cater

well to the variety of tasks.

The contribution of this paper is an approach for the

configuration of perception systems that addresses these

challenges. The approach is exemplarily depicted in Fig. 1.

The variety of sensors and perception algorithms is captured

with semantic models of equipment and algorithms that are

used to plan both perception and data fusion steps. Our

planner operates over belief distributions that are represented

as factor graphs, which efficiently handle high dimensional

geometric probability distributions. It proceeds with building

factor graphs using simulated perception algorithms until

the information required by the task is obtained. We show

the effectiveness of the approach in a simulated, industrial

assembly scenario.

II. RELATED WORK

Several approaches have been proposed in the past for

the problem of automatic configuration of perception sys-

tems. An approach based on unstructured information man-

agement is implemented in the RoboSherlock framework

by Beetz et al. [1]. In combination with the knowledge

bases KnowRob [2] and OpenEASE [3] and the Semantic

Robot Description Language SRDL [4], successful percep-

tion pipelines can be determined according to situation

requirements. The authors focus on semantic reasoning

grounded in OWL [5] ontologies, but also show how prob-

abilistic reasoning can be leveraged for perception, specif-

ically for object classification [6]. Geometric uncertainties

induced by perception actions and calibration errors are not

in the main focus of the framework.

Another approach for modeling and situation aware adap-

tion of perception actions can be found in the work of

Hochgeschwender et al. [7]. The authors introduced and

use the Robot Perception Specification Language RPSL [8]

to describe the perception task and employ a reasoning

mechanism to find a suitable perception plan.

The research area of world modeling for autonomous

systems does also provide solutions for adaptive perception.

Elfring et al. [9] present an approach to keep a consistent

probabilistic world model based on probabilistic multiple hy-

pothesis anchoring. The probabilistic world model is further

updated with strategies that maximize information gain and

allow for a basic task dependency [10].

Another relevant area of research is the field of active per-

ception [11]. Research ranges from view selection [12] over

adaptive parameter tuning [13] to concepts of a framework

which enables autonomous configuration of perception and

sensor fusion [14]. The latter work focuses on the underlying

software framework and anticipates the autonomous config-

uration as future work.

Handling geometric uncertainty, for instance in assembly

applications does have a long history. In early work from

Su et al. [15] geometric relations including uncertainty

are modeled within a directed graph of transformations

with covariance matrices. Using uncertainty propagation and

sensor fusion with Kalman filter, the covariance and pose

between coordinate systems is determined. Furthermore, the

authors provide an approach based on backward propagation

to determine the admissible set of actions as well as required

perception actions. The approach for handling geometric un-

certainty is still commonly used, for example in the work of

Blumenthal et al. [16]. For applications such as simultaneous

localization and mapping, handling of uncertainty with factor

graphs has become the dominant approach [17].

The most common way to express planning tasks is the

Planning Domain Definition Language PDDL [18] sub-

suming, for example, the problems addressable with the

Stanford Research Institute Problem Solver STRIPS lan-

guage [19] and the Action Description Language ADL [20].

Two standard approaches to solve planning tasks are classical

planning [21], [22] and Hierarchical Task Network (HTN)

planning [23], [24]. Planning represents an important step in

the automatic configuration of perception systems, but the

performance depends on the model and the specific task.

III. APPROACH AND NOTATION

We consider the problem of planning a sequence of

data gathering, data linkage and inference steps to obtain

a required set of information about the state of the robot and

its surroundings. The information about the unknown state x

of our system is represented as a probability distribution or

belief bel (x). Probabilistic graphical models have shown

success in modeling and estimating probabilistic relations

in a large variety of applications [25]. The focus in this

paper is on geometric uncertainty as it plays an important

role in many domains, such as industrial assembly. Special-

ized probabilistic graphical models known as factor graphs

are a well-suited representation for distributions involving

geometric uncertainty and allow efficient inference using

optimization techniques [26]. Therefore, we encode the belief

as a factor graph FG denoted by the tuple (V,E), where V

encodes the vertices of the factor graph and E the edges or

factors.

A state within our planning problem is specified by the

tuple s = (F, FG). In this tuple, F denotes a set of

facts that hold in the current state. These facts encode

currently available variables, such as encoder positions, as

well as previous measurements, such as outcomes of a object

detection procedure or the robot’s encoder values when this

measurement was taken. The factor graph FG that encodes

the belief bel (x) is constructed using these facts. At all times

the system can choose from three types of actions:

• Data Gathering: By performing (simulated) perception

actions, the planner gathers new data, which corre-

sponds to adding new facts to F . An example is an

object localization routine that produces a fact about

the localization outcome, e.g. a relative pose between

camera and object.

• Data Linkage: This action type sets facts into relation

with each other. In the presented scenario, it is used to

166 Chapter 11. Configuration of Perception Systems via Planning Over Factor Graphs

construct the factor graph FG. Following the example of

an object localization routine, the set of edges E of FG

is extended by the uncertain measurement. Depending

on the already existing vertices in V , new vertices are

added, e.g. for the camera pose or the object.

• Inference: Actions of this type target the generation of

new facts by inference. In the localization example, an

inference action may extract for instance a new object

pose estimate by optimizing the variables within the

factor graph FG.

Formally, an action a ∈ A, with A being the set of all

available actions, may only be applied if the current state s

fulfills its preconditions: s ∈ Pre(a). After action a is

applied we obtain a new state s′ = Post(s, a). With this

we can define valid plans (of length k ∈ N) as sequences of

states {si}i≤k and actions {ai}i≤k−1:

Definition 1 (Valid Plan) A plan {si}i≤k, {ai}i≤k−1 is

valid iff

1) si ∈ Pre(ai) for i ∈ 1...k − 1 and

2) si+1 = Post(si, ai) for i ∈ 1...k − 1.

Starting from an initial state sstart the aim of the planner

is now to reach a desired state of information within the

set Sgoal. With this we can define feasible plans:

Definition 2 (Feasible Plan) A plan {si}i≤k, {ai}i≤k−1 is

feasible iff it is valid and

1) s1 = sstart and

2) sk ∈ Sgoal.

An important assumption that we make during planning is

that our system only produces maximum likelihood measure-

ments as proposed in [27]. This has three key advantages:

• Deterministic planning domain: As our system’s actions

do not increase uncertainty, the belief state evolves as

follows:

belt+1 (x) = γ p (z | x) belt (x) , (1)

where z is a measurement and γ a normalization vari-

able. As the measurement z is random, the evolution of

the belief is random as well. Assuming maximum like-

lihood measurements yields a deterministic evolution of

the belief and a deterministic planning domain.

• Decoupling of perception planning and construction of

the factor graph: As measurements always correspond

to the mode of the measurement model, the generation

of new facts during planning does not require the

evaluation of the belief represented by the factor graph.

This decouples planning of perception steps and sensor

data fusion.

• No repeated fusion of the same measurement: Our

measurements are assumed to be deterministic during

planning. Therefore, perceiving objects with the same

algorithm from the same robot configuration results in

the same measurement. Thus the resulting fact is not

added repeatedly to the set F . This prevents adding the

same or similar data repeatedly into the factor graph.

For the experimental evaluation, we use a basic breadth-first

search that performs all valid actions a ∈ A on s, where

s ∈ Pre(a) holds.

IV. MODELING

We use a generic graph-based modeling approach (being

a subset of OWL [5]) to describe the perception domain.

Every fact f ∈ F is an instance of a so-called concept,

which models its properties. For instance, the RGB camera

concept has an intrinsics concept, which itself models the

parameters of a pinhole camera model. Actions are modeled

via the input concepts that they require and output concepts

that they produce. The model does not contain an explicit

formulation of pre- and post conditions. The actions are

implemented such that they fail upon execution if the

input facts do not fulfill the pre-conditions. An example

is the move-close action as introduced in Sec. VI-B.2,

which requires to know the object position with certain

accuracy. Furthermore, actions may only be executed if

actual facts of all modeled input concepts are available in F .

V. EXEMPLARY PLANNING SEQUENCE

For the sake of comprehensibility, we use this section to

visualize and describe the mode of operation of our approach

in a basic example with the help of Fig. 2. We assume a

setting where an object op is visible to a camera oc and

has to be located with respect to a reference coordinate

system cref . The goal is given by xref,p,-, specifying a

maximum positional uncertainty allowed for the task at hand.

The goal xref,p,- does not pose requirements on the time

stamp of the result. A prior pose estimate between cref
and the coordinate system cp of op is given in form of a

factor in the factor graph FG,0. Additionally, the extrinsic

calibration mref,c of oc is given in form of a fact. This initial

state is contained within s0. Note that all facts and goals are

grounded in a semantic model as indicated in the top part

of Fig. 2. The visualized model contains only the required

concepts and actions, but is in no way limited to these.

In the following, one feasible plan is presented in form

of a possible sequence of actions to reach the goal. In

the first step, 3 independent actions specified in As0,s1

are executed: 2D-meas, add-meas and query-FG. The

action 2D-meas simulates a perception algorithm that may

provide an estimate of an object position in a 2D image,

e.g. the deep learning approach called YOLO [28]. As

input, 2D-meas requires a RGB camera and, if successful,

produces a 2D measurement. In the given example 2D-meas

acts on op and oc and produces mc,p. It belongs to the intro-

duced subset of actions that gathers new facts from existing

facts. The second action add-meas belongs to the subset

of actions that link information in a graph representation.

In the example it inserts the measurement mref,c into the

factor graph FG,1 of s1. Finally, the third action query-FG

performs an optimization of the factor graph with respect

167

Semantic Model of Perception System

Concepts Actions

Sensors Measurements Data Gathering Data Linkage

Objects

s0

oc

op

xref,p,-

G

oc

op

xref,p,-

G

cref

cp

cc

s1

Parts

2D 6D

mref,c

6D

As0,s1

2D

mc,p

2D-meas

add-meas

oc

op

xref,p,-

G

As1,s2

add-meas

query-FG

oc

op

xref,p,-

G

Pose Uncertainty Inference

s2 s3

cref

cp

cc

As2,s3

xref,p,t0 query-FG

cref

cp

cc

query-FG

xref,p,t0

xref,p,t1

xref,p,t0

F0

FG,0

F1

FG,1

F2

FG,2

F3

FG,3

cref

cp

xref,p,t1

Fig. 2: Exemplary visualization of the planning procedure for a basic setting with one object and one camera. The goal is to reduce the
belief uncertainty over the object pose under a value specified within the goal set. In the upper part an exemplary model of the perception
domain is outlined. In the lower part, the different system states from the start set s0 to the final state set s3, where the goal could be
satisfied, are shown. A more detailed description of this figure can be found in Sec. V.

to the reference frame of the goal input. As output, a pose

with uncertainty, specifically xref,p,t0 is produced. This pose,

representing the pose prior over op, does not fulfill the goal

requirements. Therefore the action sequence continues.

The next step, the transition between the states s1 and s2
is achieved by executing the action set As1,s2 . The action

set contains two actions add-meas and query-FG. Again,

a measurement is added to the factor graph, in this case

the previously produced 2D projection mc,p. Note here that

using factor graphs, we are able to handle quite different

pose constraints like a noisy 6D pose or a noisy 2D image

projection. The general procedure and effect of the ac-

tion query-FG has been introduced in the previous paragraph

and is similar for this state transition. As can be seen in the

factor graph, the previously added extrinsic calibration mref,c

of the camera has no effect on the pose estimate between

the reference frame cref and the target object op coordinate

frame cp. Therefore the output of query-FG is an equally

uncertain pose estimate xref,p,t1 as xref,p,t0 .

Finally, in the last step of the exemplary plan an-

other factor graph optimization is performed. This last ac-

tion query-FG of As2,s3 acts on the factor graph FG,2 that

contains the measurement between target object and camera.

The resulting pose uncertainty is significantly lower and

satisfies in this example the requirements encoded in the goal

set G.

VI. EVALUATION

We chose an assembly use case, where geometric uncer-

tainties have significant effect on the process success. After

an introduction of the use case, we demonstrate the capability

of our approach to find plans that achieve the accuracy

required by the assembly process in minimal execution time.

A. Implementation

The modeling and planning environment is a self-

developed system that we intend to use in larger extent for

machine knowledge management and robot autonomy. More

detailed publications about this system will follow. For the

factor graph representation and optimization we build upon

the open source library GTSAM [26].

B. Experiment

1) Setup: Industrial assembly is a domain with high re-

quirements on geometric uncertainty quantification as many

168 Chapter 11. Configuration of Perception Systems via Planning Over Factor Graphs

osc

orob

orc

cref

o2

o1

c2

csc

crc

o2 + o1

ceff,t2

mref,rob

mref,2

mrc,2

msc,2

mref,sc

mrob,rc

ceff,t1

Fig. 3: Overview of the assembly use case. The symbol o de-
notes objects, c denotes coordinate systems and m denotes pose
constraints due to measurement or calibration. The graph of black
arrows visualizes the factor graph in its full extent.

assembly processes require tight positioning tolerances. In

our specific use case an object has to be grasped for a follow-

up assembly process as depicted in Fig. 3.

The perception goal consists of localizing the target object

o2 with respect to the robot end effector coordinate system

ceff . There is a static camera osc as well as an end effector

camera orc mounted on the robot orob. Moreover, there

exists an arbitrary chosen reference coordinate system cref .

The overall application is to assemble o1 into o2, where

the former already resides within the robot gripper. For the

sake of brevity, we assume that o2 has been localized and

grasped with perfect accuracy. Furthermore, to show that our

approach can cope with different viewpoints, an important

parameter in perception tasks, we let the system decide to

take a close view of the object. The action move-close that

performs this operation requires the object to be known with

a certain accuracy that is not given by the prior belief over the

object pose. If the relative uncertainty specified by the goal is

met, the assembly process can be successfully executed. The

uncertainty introduced by the relative movement of the robot

for the assembly process is not considered in this example.

2) Action Description: In this use case we allow the

following actions:

• Data Gathering

– 2D-meas: Simulates an object detection algorithm

working on RGB images that outputs the object

center as a 2D point an the image screen. This ac-

tion is similar to the 2D projection action described

in Sec. V.

– 6D-meas: Simulates a 6D pose estimation algo-

rithm based on RGB images. For instance, it could

represent the approach to estimate the 8 object

bounding box corners using convolutional neural

networks (BB8) as described in [29].

– move-close: Moves the robot orob such that the

end-effector camera orc has a closer and centered

view on the object. The pre-condition for this action

is that the standard deviation of the positional

uncertainty σ1 of the target object o2 is lower than

a threshold σthres. This is motivated by the fact

that a robot can not take a close look on an object

whose position is not known.

• Data Linkage

– add-meas: This action inserts a measurement to

the factor graph. See also Sec. V.

• Inference

– query-FG: The graph query has a pose as input

that specifies reference frame and target frame.

The action optimizes the factor graph with respect

to the reference frame and returns the pose and

uncertainty between reference frame and target

frame. See also Sec. V.

C. Results

In the following, results of the experiment will be dis-

cussed from two different viewpoints. First we analyze

the reduction of uncertainty in the belief. Subsequently, an

analysis of the temporal characteristics of the generated plans

is given.

1) Uncertainty Reduction: We only consider geometric

uncertainty, more specifically positional and rotational un-

certainty. For the assembly use case we are interested in

the maximum standard deviation. Therefore, we define the

standard deviations σ in the following as the maximum of the

principal components of the separate 3x3 covariance matrices

for position and rotation. The joint distribution of position

and rotation is currently not considered.

In Fig. 4 we visualize the positional and rotational un-

certainty of all pose estimates generated by the planning

system. Note here again, that the pose estimate between

the robot end-effector coordinate system ceff and the target

object coordinate system c2 is considered. This has important

implications for the following analysis. Hereafter, we will

discuss specific poses denoted by p and marked in the figure:

• p0: The pose p0 marks the initial belief over the target

object o2. Positional and rotational uncertainty are both

relatively large.

• p1: The pose p1 denotes the belief after a 2D mea-

surement between the static camera and the target

object msc,2. Due to the nature of the 2D measurement,

the rotational uncertainty is not reduced with respect to

p0.

169

• p2: The pose p2 denotes the belief after a 2D mea-

surement between the end-effector camera and the target

object mrc,2. The positional uncertainty is clearly lower

than p1. This is due to the application setting. The

end-effector camera is calibrated relative to the robot

end-effector, with the calibration denoted by mrob,rc.

The uncertainty of p2 is most heavily influenced by the

measurement chain of camera calibration mrob,rc and

measurement mrc,2, which is a subset of the full factor

graph as depicted in Fig. 3. Contrarily, for the uncer-

tainty of p1 the measurement chain of robot positioning

uncertainty mref,rob, static camera calibration mref,sc

and static camera observation msc,2 is decisive. Ob-

viously, this longer measurement chain including the

robot positioning uncertainty induces larger uncertainty.

The influence of the prior mref,2 on p1 and p2 is iden-

tical for both cases. As we model the belief as a factor

graph, all measurement chains are jointly considered

and the correct determination of the uncertainties is

automatically handled by our approach.

• p3: The pose p3 represents the belief after a 6D

measurement with the static camera. The uncertainty

is much lower than solely using 2D measurements.

• p4: This pose marks the lowest achievable belief

uncertainty for this exemplary planning setting. It is

based on the fusion of all 2D and 6D measurements for

all cameras and robot configurations, namely the static

camera osc, the end-effector camera crc in the initial

pose of the robot and the end-effector camera crc in the

close view pose of the robot.

10−3 10−2 10−1 100

σpos [m]

100

101

102

103

σ
ro

t
[◦
]

p0

p1

p2

p3

p4

Fig. 4: Visualization of resulting pose uncertainties generated via
the proposed configuration system for the assembly use case. Note
that due to the axis configuration this figure reads from right to left
and top to bottom as opposed to Fig. 5. A detailed description can
be found in Sec. VI-C.1. The corresponding experimental setup is
visualized in Fig. 3.

2) Timing: In this section we analyze the temporal extent

of different plans. We therefore assume that an image is

directly available whenever a perception action is applied.

In Fig. 5 all belief poses are visualized by time stamp and

positional uncertainty. Contrary to the previous section we

will additionally address sets of poses denoted by P . Fur-

thermore, state transitions allowed in this planning problem

are visualized via gray arrows.

The different actions have different timing characteristics.

For the simulated experiment we assume the following values

motivated by a real use case:

• 2D-meas: 30ms
• 6D-meas: 100ms
• move-close: 500ms
• add-meas: 1ms
• query-FG: 10ms

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time [sec]

10−3

10−2

10−1

100

101

σ
p

o
s
[m

]

p0

Pa Pb Pc

Pd
Pe

Fig. 5: Visualization of resulting pose uncertainties and the required
execution time in a real system to achieve the belief state quality. A
detailed description can be found in Sec. VI-C.2. The corresponding
experimental setup is visualized in Fig. 3.

The characteristic of the different pose sets is discussed

in the following.

• p0: The initial belief.

• Pa: Pose set Pa contains all poses that are estimated

using fast 2D measurements without moving the robot.

• Pb: Pose set Pb contains all poses that are estimated

using at least one 6D measurement without moving the

robot.

• Pc: To reach this set, the robot view pose is changed

and further 2D measurements are considered from the

new robot pose. The motion of the robot takes a large

amount of time, and the uncertainty is not decreased

with respect to the pose set Pb. From application view

it does not make sense to reach this belief.

• Pd: Pose set Pd is similarly reached via robot motion.

Further it requires at least one 6D measurement from

the new view pose.

• Pe: Pose set Pe is the set with the lowest reachable

belief uncertainty in the given use case. It is reached

by changing the view pose and fusing up to all possible

measurements.

Concluding, it can be seen that time can easily be in-

corporated into the approach. Depending on the application

requirements, the planning system generates different action

sets. For instance, in an application where a fast position

170 Chapter 11. Configuration of Perception Systems via Planning Over Factor Graphs

estimate of an object is required, the actions leading to Pa

are sufficient. In a less demanding assembly task, where the

full pose needs to be known, the action sequence leading

to Pb is chosen. Finally, in an application which requires

very high accuracy, moving the robot to a better view pose

is required and an action sequence leading to Pe is used. The

key is that the configuration system, including the planner,

can autonomously decide the right steps to take depending

on the task.

The presented system represents an initial version of the

general approach. To achieve autonomous configuration for a

broad range of applications, the action set needs to be further

extended and more advanced planning techniques evaluated

to efficiently cope with the complexity of the task.

VII. CONCLUSION

In this paper we proposed a novel method to model and

plan the configuration of perception systems. Our approach

addresses the selection of sensor input and perception algo-

rithms, perception planning and sensor fusion in an integrated

yet modular fashion. Based on a semantic and probabilistic

description of sensors and perception algorithms, our system

plans elementary data gathering, data linkage and inference

steps to achieve the goal. Uncertainties are handled in a

generic manner by automatically building and inferring from

a factor graph that represents the probabilistic relations

between the involved entities. In this instance of the approach

the probabilistic relations are of geometric nature, covering

e.g. robot positioning tolerance, extrinsic camera calibration

uncertainty and noisy observations. The entire process up

to elementary operations is planned, which is thus enabling

flexible adaptation to different settings and requirements.

We validated our approach in an industrial assembly

scenario, where our planner successfully employs different

sensors, data processing steps and view poses to localize

the target part with sufficient accuracy in minimal time. An

avenue for future work is the incorporation of further prob-

abilistic properties, such as object classification probability,

and evaluating the system on larger problems as well as a

more extensive set of problem categories.

REFERENCES

[1] M. Beetz, F. Bálint-Benczédi, N. Blodow, D. Nyga, T. Wiedemeyer,
and Z.-C. Márton, “RoboSherlock: Unstructured information pro-
cessing for robot perception,” in IEEE Int. Conf. on Robotics and

Automation. IEEE, 2015, pp. 1549–1556.

[2] M. Tenorth and M. Beetz, “Knowrob: A knowledge processing infras-
tructure for cognition-enabled robots,” The Int. J. of Robotics Research,
vol. 32, no. 5, pp. 566–590, 2013.

[3] M. Beetz, M. Tenorth, and J. Winkler, “Open-EASE,” in IEEE Int.

Conf. on Robotics and Automation. IEEE, 2015, pp. 1983–1990.

[4] L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot de-
scription languages,” in IEEE Int. Conf. on Robotics and Automation.
IEEE, 2011, pp. 5589–5595.

[5] 2004. [Online]. Available: http://www.w3.org/Submission/OWL-S/

[6] D. Nyga, F. Balint-Benczedi, and M. Beetz, “PR2 looking at things
- Ensemble learning for unstructured information processing with
markov logic networks,” in IEEE Int. Conf. on Robotics and Automa-

tion. IEEE, 2014, pp. 3916–3923.

[7] N. Hochgeschwender, M. A. Olivares-Mendez, H. Voos, and G. K.
Kraetzschmar, “Context-based selection and execution of robot per-
ception graphs,” in IEEE Conf. on Emerging Technologies & Factory

Automation. IEEE, 2015, pp. 1–4.
[8] N. Hochgeschwender, S. Schneider, H. Voos, and G. K. Kraetzschmar,

“Towards a robot perception specification language,” 4th Int. Workshop

on Domain-Specific Languages and Models for Robotic systems, 2013.
[9] J. Elfring, S. van den Dries, M. Van De Molengraft, and M. Steinbuch,

“Semantic world modeling using probabilistic multiple hypothesis
anchoring,” Robotics and Autonomous Systems, vol. 61, no. 2, pp.
95–105, 2013.

[10] J. Elfring, R. van de Molengraft, and M. Steinbuch, “Semi-task-
dependent and uncertainty-driven world model maintenance,” Au-

tonomous Robots, vol. 38, no. 1, pp. 1–15, 2015.
[11] R. Bajcsy, “Active perception,” Proc. of the IEEE, vol. 76, no. 8, pp.

966–1005, 1988.
[12] R. Eidenberger and J. Scharinger, “Active perception and scene mod-

eling by planning with probabilistic 6d object poses,” in IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems. IEEE, 2010, pp. 1036–1043.
[13] H. Hu and G. Kantor, “Efficient automatic perception system param-

eter tuning on site without expert supervision,” in Conf. on Robot

Learning, 2017, pp. 57–66.
[14] S. Govindaraj, J. Gancet, M. Post, R. Dominguez, and F. Souvan-

navong, InFuse: A Comprehensive Framework for Data Fusion in

Space Robotics. Infinite Study, 2017.
[15] S.-F. Su and C. G. Lee, “Manipulation and propagation of uncertainty

and verification of applicability of actions in assembly tasks,” IEEE

Trans. on Systems, Man, and Cybernetics, vol. 22, no. 6, pp. 1376–
1389, 1992.

[16] S. Blumenthal, H. Bruyninckx, W. Nowak, and E. Prassler, “A scene
graph based shared 3d world model for robotic applications,” in IEEE

Int. Conf. on Robotics and Automation. IEEE, 2013, pp. 453–460.
[17] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,

I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE

Trans. on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.
[18] M. Fox and D. Long, “PDDL2. 1: An extension to PDDL for

expressing temporal planning domains,” J. of Artificial Intelligence

Research, 2003.
[19] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-

cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, no. 3-4, pp. 189–208, 1971.

[20] E. P. Pednault, “ADL and the state-transition model of action,” J. of

Logic and Computation, vol. 4, no. 5, pp. 467–512, 1994.
[21] M. Helmert, “The fast downward planning system,” J. of Artificial

Intelligence Research, vol. 26, pp. 191–246, 2006.
[22] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan gen-

eration through heuristic search,” J. of Artificial Intelligence Research,
vol. 14, pp. 253–302, 2001.

[23] K. Erol, J. Hendler, and D. S. Nau, “HTN planning: Complexity and
expressivity,” in AAAI, vol. 94, 1994, pp. 1123–1128.

[24] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu,
and F. Yaman, “SHOP2: An HTN planning system,” J. of Artificial

Intelligence Research, vol. 20, pp. 379–404, 2003.
[25] D. Koller and N. Friedman, Probabilistic graphical models: principles

and techniques. MIT press, 2009.
[26] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”

Georgia Institute of Technology, Tech. Rep., 2012.
[27] R. Platt Jr, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Be-

lief space planning assuming maximum likelihood observations,” in
Robotics: Science and Systems, 2010.

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in IEEE Conf. on Computer

Vision and Pattern Recognition, 2016, pp. 779–788.
[29] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial

occlusion method for predicting the 3d poses of challenging objects
without using depth,” in Int. Conf. on Computer Vision, 2017.

171

172 Chapter 11. Configuration of Perception Systems via Planning Over Factor Graphs

173

12
Automatic Configuration of Perception

Pipelines

Title Automatic Configuration of the Structure and Parameterization of Per-

ception Pipelines

Authors Vincent Dietrich, Bernd Kast, Michael Fiegert, Sebastian Albrecht, and

Michael Beetz

ISBN/ISSN 78-1-7281-2467-4

DOI ICAR46387.2019.8981611

Status published

Publisher IEEE

Contribution of

Bernd Kast

I brought in the experience of hierarchization and templating. Vincent

Dietrich implemented and conducted the experiments. He also wrote the

manuscript, which benefited from the co-authors’ scientific remarks.

Summary The setup of a perception system is not only about the right choice of

components, such as sensors and algorithms and their wiring, but also

about the parameterization of each component for the specific domain.

This paper compares and discusses different approaches to incorporat-

ing parameter optimization and component sequencing. The basic struc-

ture for all examined algorithms is hierarchically refinable, which acts

as a plan template. Due to our formal model, we can compile engineer-

ing knowledge into templates, which reduces the plan space and ensures

reasonable planning times.

https://doi.org/10.1109/ICAR46387.2019.8981611

Automatic Configuration of the Structure and Parameterization of

Perception Pipelines

Vincent Dietrich1 Bernd Kast1 Michael Fiegert1 Sebastian Albrecht1 Michael Beetz2

Abstract— The configuration of perception pipelines is a com-
plex procedure that requires substantial amounts of engineering
effort and knowledge. A pipeline consists of interconnected
individual perception operators and their parameters, which
leads to a large configuration space of pipeline structures and
parameterizations. This configuration space has to be explored
efficiently in order to find a solution that fulfills the specific
requirements of the target application. In this paper, we present
an approach to perform automatic configuration based on
structure templates and sequential model-based optimization.
The structure templates allow to reduce the search space and
encode prior engineering knowledge. We introduce a structure
template based on hypothesis generation, hypothesis refinement,
and hypothesis testing to demonstrate the effectiveness of
the approach. Experimental evaluation with state-of-the-art
operators is performed on data from the T-LESS dataset as
well as in a real-world robotic assembly task.

I. INTRODUCTION

Object detection and 6D pose estimation is crucial in

many application domains ranging from augmented reality,

over autonomous driving to manufacturing and logistics.

Especially in the domains which involve physical interaction

with objects such as material handling and assembly, the

targeted objects, environments, and accuracy requirements

vary significantly across applications. Therefore, the task

specific engineering effort for the configuration of perception

pipelines is high.

The pipeline building blocks are individual perception

operators, which are typically taken from available software

projects and libraries. Given a specific sensor setup, the

perception engineer has to build and parameterize a pipeline

that fulfills the application requirements. The process to get

to a working pipeline usually requires engineering knowledge

and intuition in choosing the right operators and tuning the

parameters. The goal of the presented approach is to provide

a practical method to automate this process.

Automatic configuration of perception pipelines is a diffi-

cult problem due to the following aspects:

• Complexity: Both the number of possible operators and

pipeline structures as well as the parameter space are

large, which leads to a combinatorial explosion. Not all

variants and parameter settings can be evaluated in a

brute force fashion. Therefore, approaches are required

to efficiently structure and reduce the search space.

• Uncertainty: Perception operators are generally subject

to uncertainty and errors in their predictions. Therefore,

single data points are not enough to assess the system

1Siemens Corporate Technology, Munich, Germany
2Institute for Artificial Intelligence, University Bremen, Germany

Parameterized Perception Pipeline

Operator LibraryAnnotated Input Data Structure Template Library

...

......

...

Structure Template

- Object Poses
- Object Masks
- ...

Automatic Configuration

...

...

...
...

Fig. 1: Overview of the automatic configuration approach. The
application specific task is specified via an annotated input data set.
A pipeline structure template is used to reduce the search space. The
template can be chosen from a structure template library. Operators
from an operator library are automatically selected, placed and pa-
rameterized within the template during the configuration procedure.

performance. Rather large datasets have to be used,

which are computationally demanding to evaluate.

• Sensitivity: Despite current advances, perception

pipelines are still sensitive to the application setting.

Varying lighting conditions, sensor noise, ranges, and

texture can all contribute to decreasing performance in

different application settings. This is especially true for

model-based (classical) operators, whereas data-driven

operators such as neural networks highly depend on

the provided training data. The dependency of pipeline

performance on object properties can be clearly seen in

the BOP benchmark [1].

In this paper, we present an approach for the automatic

configuration of perception pipelines. An overview of the

approach is depicted in Fig. 1. The main contributions are:

• a template based structuring approach for perception

pipelines to reduce the configuration space and encode

prior engineering knowledge,

• a pipeline structure template based on hypothesis gen-

eration, hypothesis refinement, and hypothesis testing,

• an approach to automatically configure the perception

pipeline structure and parameterization for combined

model-driven and data-driven setups, and

• a demonstration of the applicability of the approach

174 Chapter 12. Automatic Configuration of Perception Pipelines

on an open source dataset as well as in a real-world

assembly scenario.

After an overview over related work, we first present a

problem formalization in Sec. III and then introduce our

approach in Sec. IV. Finally, in the experimental section we

demonstrate the applicability and discuss characteristics of

our approach.

II. RELATED WORK

A. AutoML

AutoML addresses the tuning of hyper-parameters, algo-

rithm choice, and architecture search for machine learn-

ing. For the former, approaches like Bayesian Optimiza-

tion [2], Genetic Programming [3], and Sequential Model-

Based Optimization [4] have been proposed. Tools such

as AutoWEKA [5], Auto-sklearn [6], AutoKeras [7], and

TPOT [3] are designed for specific machine learning li-

braries, while others such as SMAC [4] and Hyperopt [8]

are designed for general use. The authors of AutoWEKA [5]

introduce the problem of Combined Algorithm Selection and

Hyper-parameter Optimization (CASH) for machine learning

operators. We address a related problem for a mixed set

of perception operators. Neural Architecture Search (NAS)

addresses the adaptation of network architectures and is

a promising field. For a review we refer to [9]. In this

publication we target mixed pipelines of classic algorithms

and neural networks, which is not in the scope of NAS.

AutoML techniques have been applied to, among other

data pre-processing pipelines [10], parameter tuning, and

algorithm selection for classification [6] and SAT solver

parameter tuning [4]. In this work AutoML techniques and

tools are applied in the concrete application domain of

perception pipeline parameter and structure configuration for

a diverse set of operators.

B. Perception System Engineering

Another relevant field of research is the automated design

of perception and sensor fusion software systems, which is

typically solved by some sort of design space exploration.

One line of research is the use of semantic models in order

to describe the task and generate appropriate perception

pipelines, such as [11], [12], [13]. Beetz et al. [14] use a

query-answering approach and semantic models in order to

generate perception pipelines at run-time. Hochgeschwen-

der et al. [15] use the Robot Perception Specification

Language [16] in order to describe and select perception

pipelines and choose the pipeline parameterization from a

pre-configured set depending on the current environment

state. In our previous work [17], we use a semantic model

in order to plan a sequence of perception and sensor fusion

actions in order to achieve the required pose estimation

accuracy for a given task.

Other approaches directly target the online and offline

adaptation of perception pipeline parameters. For instance,

Sakar et al. [18] model the parameters within a Bayesian

parameter dependence network in order to cope with the

search space complexity and dependencies. The authors

of [19] propose an approach to automatically tune the system

parameterization online without expert supervision. Durner et

al. [20] use logged execution data in order to optimize the

parameterization of different perception pipelines.

We present an approach for the joint configuration of per-

ception pipeline structure and parameterization in contrast to

previous work where both are regarded as separate problems.

III. PROBLEM FORMALIZATION

In order to formalize the targeted problem, we start with

the representation of the available knowledge about the

system, as specialization of the prior work [21] and [22].

Subsequently, the notations of dataset and error metrics are

introduced and finally, the pipeline configuration problem

formalized.

A. Concept, Operator and Pipeline

First, we denote the different data types and represen-

tations, the declarative knowledge, as concepts. Exemplary

concepts are image, bounding box, object mask, and pose.

An actual given image is an instance of the image concept.

The set of all instances is denoted as M and a concept C is

a subset thereof: C ⊆ M.

An operator O ∈ O denotes a function that maps a set

of input instances to a set of output instances and optionally

takes a parameter vector λ:

O :

{

C1
in × ...× Cnin

in × Λ → C1
out × ...× Cnout

out

(i1in, ... , inin

in , λ) 7→ (i1out, ... , inout

out)
,

nin, nout ∈ N, (1)

with Cj
in, j = 1, . . . , nin, and Ck

out, k = 1, . . . , nout, being

input and output concepts of the operator, ijin and ikout the

respective instances of aforementioned concepts, Λ the set

of parameterizations, and O the set of operators. A set of

instances is denoted as I, such as the set of input instances Iin
and output instances Iout. An example with the Single Shot

Pose operator [23] is depicted in Fig. 2. An operator that is

parameterized with the parameter vector λ is denoted as Oλ .

A pipeline P ∈ P is composed of several operators whose

inputs and outputs are connected in a graph structure. The

set P denotes the set of all possible pipeline structures, which

depends on the available instances and operators and may be

restricted by additional constraints. An example is depicted

in Fig. 2, where the Single Shot Pose operator is succeeded

by an iterative closest point matching (ICP). Both require

different inputs, the former a RGB image and the latter a

point cloud and initial poses in the form of a hypothesis

list. A pipeline can be represented as an individual operator

as shown in Fig. 2. Both operators have the individual

parameterizations λS and λI, which are concatenated to a

single parameter vector λSI.

B. Dataset and Error Metrics

In this work, we characterize the targeted application

domain of the perception pipeline via a given annotated

175

1. Operator

2. Pipeline

3. Pipeline represented as single Operator

λS

RGB Hypotheses

SingleShotPose

λSI

RGB

Hypotheses

SingleShotPose-ICP

Point Cloud

λS

RGB Hypotheses

SingleShotPose

λI

Hypotheses

ICP
Point Cloud

Fig. 2: Exemplary operator, pipeline, and reduction of a pipeline to
an individual operator.

dataset D. The dataset needs to reflect the application prop-

erties, e.g., the expected distributions of scenes, sensor noise,

and environment conditions.

We model the dataset as a list of scene instance sets dj ,

with j = 1, . . . ,m:

D = {d1, d2, ..., dm},m ∈ N, (2)

where each scene instance set contains the data for a specific

scene. The scene instance sets are composed of input in-

stances Iin, ground truth instances Igt, and expected pipeline

output instances Iexp:

d = (Iin, Igt, Iexp), with Iin, Igt, Iexp ⊆ M. (3)

Input instances include different sensor data inputs, such

as images and point clouds and prior belief knowledge.

Ground truth instances describe the scene state in different

(intermediate) representations such as object poses, masks,

and bounding boxes. Expected output instances represent the

information that is required by the application, such as a list

of objects and their poses. The expected output instances are

typically a subset of the ground truth instances.

In order to formulate the actual configuration problem,

a metric is required to quantify the pipeline performance

on a dataset. Therefore, we define the metric eD for the

parameterized pipeline Pλ and the dataset D as the average

of the individual error for each scene instance set ed(Pλ , dj):

eD(Pλ ,D) =
1

m

m
∑

j=1

ed(Pλ , dj),

with dj ∈ D,m = |D|.

(4)

The scene instance set error ed(Pλ , dj) requires the exe-

cution of the pipeline and computation of the instance error

metric ei between the pipeline output Iout and the expected

instances Iexp:

ed(Pλ , dj) = ed(Pλ , (Iin, Igt, Iexp))

= ei(Pλ(Iin), Iexp)

= ei(Iout, Iexp).

(5)

The instance error metric ei depends on the application and

the type of expected pipeline output instances Iexp and is

chosen accordingly.

C. Pipeline Configuration

Now we can introduce the configuration of pipeline struc-

ture and parameterization as an optimization problem:

(P∗, λ∗) ∈ argmin
P∈P,λ∈Λp

eD(Pλ ,D), (6)

where ΛP is the parameterization space of pipeline P.

Typically, this can only be solved by derivative-free optimiza-

tion methods due to missing derivative information for most

operators and structure adaptations. In this general problem

representation, the structural variety is encoded via P. In

the following section, we introduce structural elements and

structure parameters to model and optimize the set of pipeline

structures.

IV. APPROACH

A general overview of our approach is depicted in Fig. 1.

The input is annotated data, a library of perception operators

and a pipeline structure template that may be taken from a

template library. The operator library contains the description

of inputs, outputs, and parameters as introduced in the pre-

vious section. The pipeline template allows to narrow down

the search space, based on prior engineering knowledge.

Different templates can for instance cover different sensor

and data fusion architectures [24].

A. Pipeline Template Model

We employ a pipeline template model, where structural

elements of the pipeline are parameterized via structure

parameters λ̃ ∈ Λ̃, Λ̃ ⊆ Λ that encode the operator

instances and their sequence of execution. The template

we employed as working example is displayed in Fig. 3.

We structure the pipeline template in three main structural

elements: hypothesis generation, hypothesis refinement, and

hypothesis scoring. The structural elements are configured

via the respective structure parameters λ̃G, λ̃R, and λ̃S.

During hypothesis generation, the resulting hypotheses of

different pose estimation pipelines are accumulated to a com-

mon list of all initial hypotheses. In the following hypothesis

refinement phase, the list of hypotheses is subsequently

refined by a parameterized number of operators. Finally, all

intermediate hypotheses are gathered and scored. This struc-

ture represents an instance of a hypothesize-and-test strategy.

The actual operator instantiation of the structural elements

is encoded via structure parameters, which represent the

176 Chapter 12. Automatic Configuration of Perception Pipelines

Îin λ

Îin λ

...
Îin λ

...

Îin λ

...

Îin λ

Hypothesis
Generation

Hypothesis
Refinement

Hypothesis
Scoring

Accumulation Accumulation

Structure
Parameters λ̃G λ̃R

G1

Gk

R1 Rm

Example Structure
Parameterization:

λ̃G = G5G1G2

λ̃R = R2R1

λ̃S

Sn

λ̃S = S4

Example Pipeline Naming:

G5G1G2 − R2R1 − S4

Structural
Elements

Perception
Pipeline

k,m, n ∈ N

with

Fig. 3: Pipeline template that is used as working example. It is separated in three parameterizable structural elements, hypothesis generation,
hypothesis refinement, and hypothesis scoring. The hypotheses can be generated by multiple operators. The refinement is a sequential
procedure, where each refinement operator gets its input hypotheses from the preceding operator. The structural elements are parameterized

via the structure parameters λ̃G, λ̃R, and λ̃S.

employed operators as ordered lists. All different variants

are encoded in the set of parameter values, which depends

on the available operators G,R, S ∈ O for each structural

element. For instance, given the two operators R1 and R2,

the set of parameterizations is

Λ̃R({R1, R2}) = {∅, R1, R2, R1R2, R2R1}, (7)

with λ̃R ∈ Λ̃R({R1, R2}) and Λ̃R ∈ Λ.

The pipeline structure template additionally defines condi-

tions on the inputs and outputs of the operators for different

structural elements. In the working example, hypothesis gen-

eration operators G must produce a hypothesis list as output

and may not require a hypothesis list as input. Refinement

operators R require a hypothesis list as input and must

produce a hypothesis list as output. The hypothesis scoring

operators S transform hypotheses to scored hypotheses.

B. Optimization

In the following, we introduce two different optimiza-

tion strategies on top of sequential model-based optimiza-

tion (SMBO) [4]. In brief, SMBO performs black box opti-

mization effectively by building a computationally efficient

performance prediction model, that is used to evaluate the

majority of parameter configurations.

With the different strategies we aim to gain insight,

whether the joint optimization of all parameters is to be

preferred over a strategy where operators are optimized

individually as a prior step. We start with a description of

common initializations and proceed with the strategies.

First, the available operators from the operator library are

matched to the structural elements of the pipeline template,

which is performed based on the template conditions for

the different structural elements. Additionally, the required

input of the operators has to be given within the dataset.

The set of values for the structure parameters is initialized

by generating the possible sequences of the operators for

each structural element. Finally, operator and structure pa-

rameters are added to the optimization configuration space.

The operator parameters are additionally conditioned on the

structure parameters such that they are only considered when

the operator is within the currently chosen operator sequence

of the structure parameter.

The dataset D is split into a training set Dtrain and a test

set Dtest. The test set is used as a holdout dataset to assess the

generalization of the pipeline structure and parameterization.

We furthermore perform the training of data-driven operators,

such as neural networks as initialization step. For this step

only Dtrain as well as additional simulated data can be used.

1) Joint-Optimization Strategy JointOpt: Within the joint-

optimization strategy, structure parameters and operator in-

dividual parameters are jointly optimized. Therefore, the

responsibility to guide the search process is solely with the

optimizer.

2) Pre-Optimization Strategy PreOpt: For the pre-

optimization strategy the assumption is made that individ-

ually optimized operators are performing well within the

pipeline structure. Therefore, prior to the optimization of

structural parameters, the parameters of individual operators

are optimized. This requires the following conditions to be

fulfilled:

• input instances Iin and ground truth instances Igt must

be available for the input and output of the operator and

• the error metric ei(Iout, Iexp) needs to be defined for

the operator output types.

The operator individual optimization is followed by a joint

optimization of the structural parameters and the remaining

operator parameters. The previously optimized parameters of

the individual operators are fixed.

C. Test Metric

In order to evaluate the results and stop the optimization

we use a test error etest where an acceptance threshold θ is

applied on the instance error of the test dataset:

etest(Pλ ,Dtest) =
1

n

n
∑

j=1

{

1 if ei(Pλ(Iin), Iexp) > θ

0 otherwise
,

(8)

with dj = (Iin, Igt, Iexp) ∈ Dtest, n = |Dtest|. The thresh-

old θ results from the application requirements. The test error

reflects the ratio of data instance sets where the application

requirements are not fulfilled.

V. EVALUATION

We evaluate the proposed pipeline configuration approach

in different experiments. First, we use a subset of the T-LESS

177

Symbol Name Input Output Parameters Description

OM MaskRCNN RGB image Object
masks

Neural network
weights, default
hyper-parameters

The Matterport implementation [25] is used. The network is
trained on all available object classes in the target scene.

OP Point Pair
Feature
Matcher
(PPF)

Point cloud,
Object
masks

Pose
hypotheses

29 parameters Engineered pose estimation pipeline consisting of HALCON [26]
18.11 operators: create surface model, find surface model,
sample object model 3d, and surface normals object model 3d.
The pipeline is applied on each input point cloud cluster,
generated via object mask.

GMP MaskRCNN
+ PPF

RGB image,
Point cloud

Pose
hypotheses

Combined from
OM and OP

Composed pipeline of the MaskRCNN and point pair feature
matcher.

GS Single Shot
Pose

RGB image Pose
hypotheses

Neural network
weights, default
hyper-parameters

The open source implementation of [23] is used. The output is
restricted to top 5 candidates. The network is trained only for the
target object class.

RI Iterative
Closest
Point

Point cloud,
Pose
hypotheses

Pose
hypotheses

7 parameters ICP implementation from Open3D library, version 0.3.0.0 [27]
with optional down-sampling and normal estimation, using the
following functions: uniform down sample, estimate normals, and
registration icp. The runtime is restricted by the maximum
number of iterations. A rendered point cloud of the hypothesis is
used as object cloud.

RH Shape-based
Refinement

RGB,
Pose
hypotheses

Pose
hypotheses

26 parameters Engineered pose refinement pipeline consisting of the following
operators from HALCON [26] version 18.11 :
read object mode 3d, create shape model 3d, and
find shape model 3d. The shape model is generated during
runtime with a parameterizable depth and rotation delta around
the initial hypothesis. Optionally, a region of interest can be
applied around the initial pose hypothesis.

RD Depth Adap-
tation

Depth
image,
Pose
hypotheses

Pose
hypotheses

- Position adaptation along the ray from optical frame to pose
hypothesis using the depth delta between input depth image and
rendered depth image. This operator allows to roughly
compensate for erroneous distance estimations.

SR Depth Delta
Score

Depth
image,
Pose
hypotheses

Pose
hypotheses

- Annotates each hypothesis with a score based on the depth
difference between rendered hypothesis object depth and actual
depth.

TABLE I: Overview of the operators used within the experiments. Additionally required concepts such as CAD models and

camera intrinsics are left out for the sake of simplicity.

Dataset [28] for the comparison of the optimization strategies

and analysis of different aspects of the overall approach. In

the second experiment, the approach is applied to an indus-

trial assembly scenario, where the automatic configuration is

used to determine a working pipeline and parameterization

for the given assembly task. As the experimental setup is

shared to significant parts, common elements are introduced

first.

A. Common Experimental Setup

The set of operators used in the experiments is listed

in Tab. I. The operators are chosen such that different

approaches for 6D pose estimation and refinement are repre-

sented. The shape refinement operator RH and depth adapta-

tion operator RD are custom engineered. The operator GMP

is composed of the MaskRCNN operator OM and the Point

Pair Feature Matcher OP. Individually, the operators OM

and OP are not matched within the pipeline template due to

wrong output type and missing input. In these experiments,

each operator may only be inserted once in each structural

element. Therefore, the initialization of the structure param-

eters given the set of operators results in 64 distinct pipeline

structures.

The overall dataset is split into 50% training and 50%
test data. The pre-optimization is only performed on GMP

according to the strategy definition. The parameter default

values and ranges are initialized according to recommended

values in the documentation, if available.

As error metric e, we use the visual surface discrep-

ancy eVSD as defined in the BOP benchmark [1], with the

misalignment tolerance τ . We set τ = 0.02m, in accordance

to the BOP benchmark. We evaluate the results for the

acceptance thresholds θ = 0.3 and θ = 0.15. For the

error calculation only the hypothesis with the highest score

computed via SR is considered.

The framework is written in Python. As sequential

model-based black box optimizer we use PySMAC ver-

sion 0.10.0 [4]. The experiments are computed on a Intel

Core i7-4810MQ CPU. The training time of the neural

networks is not considered in the following diagrams.

B. Strategy Comparison

In this first experiment, we apply our approach on a per-

ception problem from the T-LESS dataset [28] and compare

the different optimization strategies. Only the T-LESS scene

scene 09 and object obj 03 are used for this experiment.

The strategy evaluation is performed on a randomly sampled

subset of the overall dataset with a size of 100 images,

which is kept constant across all experiments. The strategies

JointOpt and PreOpt are evaluated for 6 different opti-

178 Chapter 12. Automatic Configuration of Perception Pipelines

0 5 10 15 20

wall-clock time [hours]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

e
te
s
t

θ = 0.3

JointOpt strategy

PreOpt strategy

0 5 10 15 20

wall-clock time [hours]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

e
te
s
t

θ = 0.15

JointOpt strategy

PreOpt strategy

Fig. 4: Error trajectories for the strategies JointOpt and PreOpt for different error thresholds. For better visibility the outer

hull and mean values of the individual trajectories of the 6 different seeds are displayed. The initial plateau for the PreOpt

strategy represents the pre-optimization of individual operators. On average, the performance of both strategies is similar.

Pipeline Test Error
θ = 0.15

Strategy Seed

JointOpt 4 GSGMP-RHRD-SR 0.08
PreOpt 5 GSGMP-RHRDRI-SR 0.09
PreOpt 2 GSGMP-RHRD-SR 0.11
JointOpt 0 GS-RHRD-SR 0.13
PreOpt 0 GSGMP-RHRDRI-SR 0.13
JointOpt 2 GSGMP-RHRD-SR 0.15
JointOpt 3 GMPGS-RHRD-SR 0.15
PreOpt 1 GSGMP-RH-SR 0.17
JointOpt 1 GSGMP-RHRDRI-SR 0.19
PreOpt 4 GMPGS-RHRD-SR 0.21
PreOpt 3 GS-RHRD-SR 0.24
JointOpt 5 GMPGS-RH-SR 0.36

TABLE II: Test error for the best results for 6 different seeds

of the PreOpt and JointOpt strategies. Result are sorted by

the test error with a threshold θ = 0.15

mization seeds. The stopping criterion for the optimization is

either a zero valued test error or a maximum runtime. For the

JointOpt strategy the maximum runtime is set to 24 h. The

PreOpt strategy consists in two optimization phases, the pre-

optimization with a maximum runtime of 9 h and the joint

optimization with a maximum runtime of 15 h, such that both

strategies run within 24 hours.

In Fig. 4, the outer hull and mean of the resulting test

error trajectory for the different optimization seeds are dis-

played for both strategies for a threshold θ of 0.3 and 0.15

respectively. The pre-optimization duration of maximum

9 h of the PreOpt strategy is displayed as default error

plateau within the PreOpt strategy of the minimal default

pipeline GS-SR. Additionally, the resulting pipelines for the

different strategies and optimization seeds together with their

test error are displayed in Table II.

Several characteristics can be observed. First, the resulting

minimum absolute test error and error variance is higher for

the more difficult case of θ = 0.15, which is the expected

outcome. The best performing configuration for each seed

is typically found within the first 6 hours of optimization,

which leads to a flat error curve.

For θ = 0.3 the PreOpt strategy has higher variance,

whereas for θ = 0.15 the error trajectories of the JointOpt

strategy display higher variance. The mean error in both

settings is slightly better for the PreOpt strategy. The

PreOpt strategy also shows a faster convergence rate, as the

parameter search space is smaller once the pre-optimization

is finished. In this setup, no clear strategy preference can be

deduced. In terms of resulting pipeline structures, there is

a strong presence of the refinement operator RH, especially

at the first position. The refinement pipeline RHRD is most

frequent within the results.

The resulting pipelines generally are compatible with engi-

neering intuition. The RH operator improves the orientation

estimate, but remains with erroneous depth estimation due

to its RGB only input. The RD operator may correct the

depth estimation and is mostly placed afterwards. The ICP

(operator RI) is placed last in the top performing pipelines,

which can be explained by the required accuracy in the initial

guess. Interestingly it is not used in most of the pipelines.

This is possible since the ICP may produce wrong hypotheses

with good final depth score in the given setup.

Overall, there is a benefit of searching structure and

parameter search space in order to improve the perception

performance in the given setup. But the sensitivity with

respect to the initial seed can be high.

Additionally, it can be noted here that the authors tried to

configure the perception system manually within the same

configuration space. The results lacked behind in terms of

perception performance and overall cost. Moreover, param-

eter tuning is a very tedious procedure where the perception

engineer has to wait regularly for evaluation results on

the dataset. But not all configuration space dimensions are

explored in an automatic fashion. In the presented state of the

179

work the perception engineer still has to decide on structure

templates and the hardware setup to be used. Also, the design

of entirely new operators and perception algorithms is still

out of scope.

C. Real Assembly Scenario

The second experiment is a real-world robotic assembly

experiment. The task is to localize a control cabinet part and

mount it on a hat rail. The part is a SIMATIC ET 200S termi-

nal module. The manipulators are two seven-axis robots with

parallel 2-finger grippers and the sensor is an ASUS Xtion

PRO LIVE. The overall setup is displayed in Fig. 5. For the

manipulation planning and assembly motion generation we

use the approaches from [29] and [30].

ASUS Xtion

Start configuration:

Target configuration:

reference point

Fig. 5: Experimental setup for the pipeline evaluation in an assem-
bly scenario. The object is placed in 16 different orientations on
a reference point. The goal is to mount the object on the hat rail
and success and failure are determined via successful snap-in. The
experiment is repeated twice, resulting in 32 trials overall.

In order to assess the benefit of using the pipeline param-

eter and structure optimization, we compare the performance

of different optimized pipelines based on the assembly

success. The used dataset for the pipeline configuration

consists of 100 images with multiple object instances that

were acquired using a slow but accurate perception pipeline,

where additional wrist-mounted cameras are placed close to

the objects in order to ensure high accuracy. As configuration

strategy the JointOpt strategy is used with a maximum

Assembly Success
Pipeline

GMPGS-RHRDRI-SR 26 / 32
GS-RHRDRI-SR 22 / 32
GMP-SR 16 / 32
GS-SR 5 / 32

TABLE III: Pipeline performance in the assembly scenario,

sorted by success rate.

runtime of 12 hours and different seeds. The choice for the

JointOpt strategy is arbitrary according to the comparison

results. The authors prefer it here, as structure and parameters

are computed in the same optimization step.

Successful detections:

Non successful detections:

Fig. 6: Exemplary pose estimation results for successful and non-
successful assembly operations. Best viewed in color.

For the actual experiments the part is placed on the

reference point, see Fig. 5, either lying on the flat side or

standing as depicted. These orientations correspond to the

acquired training data. Additionally, after each run the object

is rotated around the upright axis about 45◦ with respect to

the previous pose. This yields 16 different poses overall. The

experiment is performed twice, which results in 32 overall

180 Chapter 12. Automatic Configuration of Perception Pipelines

assembly trials. The trial is counted as success, when the

part snaps and remains on the hat rail. For the experiments

the hat rail is localized with the same pipeline as used for

the dataset generation.

The results are shown in Table III. The compared pipelines

are the individually optimized basic hypothesis generation

pipelines Mask-RCNN + PPF (GMP) and Single Shot

Pose (GS) and two different resulting pipelines from the

optimization GMPGS-RHRDRI-SR and GS-RHRDRI-SR.

The hypothesis refinement pipeline RHRDRI showed to be

good in this experimental setting, whereas RHRD performs

better in the T-LESS use case.

In summary, it can be deduced, that the joint optimization

of pipeline structure and parameterization leads to higher

success rates compared to the base operators GMP and GS.

Still, there remains a performance gap, due to high process

requirements, sensor noise, operator insufficiencies, and the

distance to the object. It could be addressed, for instance,

by improved generation of training data for the neural

networks and a different choice and positioning of the sensor.

The integration of these configuration space dimensions is

conceptually feasible and within the scope of future work.

VI. CONCLUSION

In this paper, we present an approach to perform auto-

matic configuration of perception pipelines based on struc-

ture templates and sequential model-based optimization. The

approach allows to determine suitable parameters as well

as a suitable pipeline structure in order to adapt to the

specific task setting. In experiments on the T-LESS dataset

as well as a real-world robotic assembly scenario we could

demonstrate that large performance improvements can be

achieved when both pipeline structure and parameterization

are jointly configured. Overall, the presented approach shows

promising results in reducing manual engineering effort in

the design of perception systems.

REFERENCES

[1] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. Glent Buch, D. Kraft,
B. Drost, J. Vidal, S. Ihrke, X. Zabulis, et al., “BOP: benchmark for
6D object pose estimation,” in European Conf. on Computer Vision,
2018.

[2] S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient
hyperparameter optimization at scale,” arXiv:1807.01774, 2018.

[3] R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C.
Kidd, and J. H. Moore, “Automating biomedical data science through
tree-based pipeline optimization,” in European Conf. Applications of

Evolutionary Computation, 2016.
[4] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based

optimization for general algorithm configuration,” in Int. Conf. on

Learning and Intelligent Optimization. Springer, 2011.
[5] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-

weka: Combined selection and hyperparameter optimization of clas-
sification algorithms,” in ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining. ACM, 2013.
[6] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,

and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in Neural Information Processing Systems, 2015.

[8] J. Bergstra, “Hyperopt: distributed asynchronous hyper-parameter op-
timization,” https://github. com/hyperopt/hyperopt, 2016.

[7] H. Jin, Q. Song, and X. Hu, “Auto-keras: Efficient neural architecture
search with network morphism,” arXiv:1806.10282, 2018.

[9] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” arXiv:1808.05377, 2018.

[10] A. Quemy, “Data pipeline selection and optimization,” in Int. Work-

shop on Design, Optimization, Languages and Analytical Processing

of Big Data, 2019.

[11] H. Niemann, G. F. Sagerer, S. Schroder, and F. Kummert, “ERNEST:
A semantic network system for pattern understanding,” Trans. on

Pattern Analysis and Machine Intelligence, vol. 12, no. 9, 1990.

[12] N. J. J. P. Koenderink-Ketelaars, “A knowledge-intensive approach
to computer vision systems,” Ph.D. dissertation, Delft University of
Technology, Netherlands, 2010.

[13] A. Fritze, U. Mönks, C.-A. Holst, and V. Lohweg, “An approach to
automated fusion system design and adaptation,” Sensors, vol. 17,
no. 3, 2017.

[14] M. Beetz, F. Bálint-Benczédi, N. Blodow, D. Nyga, T. Wiedemeyer,
and Z.-C. Márton, “RoboSherlock: Unstructured information process-
ing for robot perception,” in Int. Conf. on Robotics and Automation.
IEEE, 2015.

[15] N. Hochgeschwender, M. A. Olivares-Mendez, H. Voos, and G. K.
Kraetzschmar, “Context-based selection and execution of robot per-
ception graphs,” in Conf. on Emerging Technologies & Factory Au-

tomation. IEEE, 2015.

[16] N. Hochgeschwender, S. Schneider, H. Voos, and G. K. Kraetzschmar,
“Declarative specification of robot perception architectures,” in Int.

Conf. on Simulation, Modeling, and Programming for Autonomous

Robots. Springer, 2014.

[17] V. Dietrich, B. Kast, P. Schmitt, S. Albrecht, M. Fiegert, W. Feiten,
and M. Beetz, “Configuration of perception systems via planning over
factor graphs,” in Int. Conf. on Robotics and Automation. IEEE,
2018.

[18] S. Sarkar and S. Chavali, “Modeling parameter space behavior of
vision systems using bayesian networks,” Computer Vision and Image

Understanding, 2000.

[19] H. Hu and G. Kantor, “Efficient automatic perception system param-
eter tuning on site without expert supervision,” in Conf. on Robot

Learning, 2017.

[20] M. Durner, S. Kriegel, S. Riedel, M. Brucker, Z.-C. Márton, F. Bálint-
Benczédi, and R. Triebel, “Experience-based optimization of robotic
perception,” in Int. Conf. on Advanced Robotics. IEEE, 2017.

[21] B. Kast, S. Albrecht, W. Feiten, and J. Zhang, “Bridging the gap
between semantics and control for industry 4.0 and autonomous
production,” in Int. Conf. on Automation, Science and Engineering,
2019.

[22] B. Kast, V. Dietrich, S. Albrecht, W. Feiten, and J. Zhang, “A hierar-
chical planner based on set-theoretic models: Towards automating the
automation for autonomous systems,” in Int. Conf. on Informatics in

Control, Automation and Robotics, 2019.

[23] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot
6d object pose prediction,” Conf. on Computer Vision and Pattern

Recognition, 2018.

[24] W. Elmenreich, “An introduction to sensor fusion,” Research Report,

Vienna University of Technology, Austria, 2002.

[25] W. Abdulla, “Mask r-cnn for object detection and instance segmen-
tation on keras and tensorflow,” https://github.com/matterport/Mask
RCNN, 2017.

[26] MVTec HALCON, https://www.mvtec.com/products/halcon/.

[27] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

[28] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and
X. Zabulis, “T-LESS: An RGB-D dataset for 6d pose estimation of
texture-less objects,” in Winter Conf. on Applications of Computer

Vision. IEEE, 2017.

[29] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. v. Wichert,
and W. Burgard, “Optimal, sampling-based manipulation planning,” in
Int. Conf. on Robotics and Automation. IEEE, 2017.

[30] F. Wirnshofer, P. S. Schmitt, W. Feiten, G. v. Wichert, and W. Burgard,
“Robust, compliant assembly via optimal belief space planning,” in Int.

Conf. on Robotics and Automation. IEEE, 2018.

181

182 Chapter 12. Automatic Configuration of Perception Pipelines

183

13
Data-Driven Synthesis of Perception Pipelines

via Hierarchical Planning

Title Data-Driven Synthesis of Perception Pipelines via Hierarchical Plan-

ning

Authors Vincent Dietrich, Bernd Kast, Sebastian Albrecht, and Michael Beetz

ISBN/ISSN 978-3-030-48989-2

DOI 0.1007/978-3-030-48989-2_55

Status published

Publisher Springer

Contribution of

Bernd Kast

I developed the underlying planning framework with the theoretical

foundations for the hierarchization. Vincent Dietrich implemented the

calibration scheme for the intermediate goals. We had close discus-

sions about integrating this approach with the planner and aligning it

with the theoretical foundations incorporated into this paper. The co-

authors proofread and provided the scientific environment that enabled

this work.

Summary In this paper, we relaxed the structural limitations on the plan imposed

by the plan templates used in the previous paper. We apply the generic

hierarchical planning scheme to the domain of perception configuration

planning. The challenge we solved in applying our approach in this

domain was the difficulty of formulating hierarchical dependencies and

derivation of intermediate goals. In this paper, we solved those problems

with a data-driven calibration process that ensured that models were ap-

propriately configured for the problem at hand.

https://doi.org/10.1007/978-3-030-48989-2_55

Data-Driven Synthesis of Perception Pipelines

via Hierarchical Planning

Vincent Dietrich1[0000−0003−0568−9727], Bernd Kast1[0000−0001−7838−3142],
Sebastian Albrecht1[0000−0002−3647−4043], and

Michael Beetz2[0000−0002−7888−7444]

1 Siemens Corporate Technology, Munich, Germany
{first name.surname}@siemens.com

2 Institute for Artificial Intelligence, University Bremen, Germany
beetz@cs.uni-bremen.de

Abstract. Robotic systems in production environments have to adapt
quickly to new situations and products to enable customization and short
product cycles. This is especially true for the robot perception, which is
sensitive to changes in environment and task. Therefore, we present an
approach to quickly synthesize perception pipelines based on hierarchi-
cal planning. We calibrate the hierarchical model, such that it reflects
condensed experience from historical data. We validate our approach
in a simulated assembly scenario with objects from the Siemens Robot
Learning Challenge, taking into account different possible sensor types
and placements.

Keywords: Perception System Engineering · Robot Perception · Hier-
archical Planning.

1 Introduction

Robotic systems, for instance in assembly applications, require reliable percep-
tion in order to take meaningful actions in partially unstructured environments.
Unfortunately, changes in task or environment can degrade the perceptual per-
formance, for instance when the product changes. This requires expensive and
time consuming engineering effort to find a new system configuration that fulfills
the task requirements of accuracy and speed. The engineering of perception sys-
tems is challenging and depends on task, environment, sensor, sensor placement
and the available set of algorithms and their parameterization. A perception en-
gineer uses a combination of knowledge and experience in order to steer a trial-
and-error procedure to find a suitable configuration. For instance, as depicted
in Fig. 1, different algorithms have distinct output characteristics that addition-
ally depend on the quality of the input data. The engineer implicitly knows these
characteristics and uses this knowledge to choose promising pipelines. Addition-
ally, a human engineer can perform a hierarchical task decomposition and start
with high level decisions such as the sensor choice, while roughly estimating the
expected performance given the sensor’s data quality.

184 Chapter 13. Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning

2 V. Dietrich et al.

Fig. 1: Kernel density estimation of the positional output error with respect to ground
truth of different perception and state estimation operators for a set of 200 perception
pipelines. The operators have distinct error characteristics, which have to be taken into
account in order to design a perception pipeline. Also, the inherent uncertainty and
noise in the operator output is clearly visible.

Therefore, we present and investigate an approach to encode the engineer-
ing knowledge and experience in a hierarchical model, such that a hierarchical
planner can perform a knowledge enabled search for suitable configurations.

The main contributions of this publication are:

– a hierarchical model that enables hierarchical planning for the synthesis of
perception pipelines,

– a systematic handling of metrics that enables online planning, and
– an approach to encode engineering knowledge and experience in the hierar-

chical model via model calibration.

2 Related Work

In the computer vision community, the problem of automatic configuration or
synthesis has a long standing history. For instance, Radig et al. [9] proposed a
toolbox in 1992 for automated design of image understanding systems that uses
the FIGURE system for knowledge based synthesis of pipelines by Messer [7].
The approach is based on logical rules and descriptions implemented in PRO-
LOG, which are used to infer suitable pipelines. The more recent work of Na-
gato et al. [8] applies genetic programming and hierarchical program structuring
in order to quickly adapt an image processing pipeline to a changing production
environment. The approach was successfully demonstrated in a real production
environment. Irgendfried et al. [4] address the automation of the design of entire
inspection systems using accurate sensor simulation and uncertainty quantifi-
cation. Another notable approach is the RoboSherlock framework by Beetz et

185

Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning 3

al. [1] which leverages unstructured information management and ontologies in
order to generate perception pipelines based on semantic queries. Our own prior
work includes automatic configuration of perception systems using single level
planning and factor graphs for uncertainty representation [3] and the joint opti-
mization of pipelines and parameters [2].

This work is grounded in robotics research and builds upon a hierarchical
modeling and planning system that has successfully been demonstrated for task
and motion planning [6]. This allows a tight integration between task planning
and perception planning. Additionally, the target domain is not restricted to
computer vision. General sensor fusion and state estimation algorithms, for in-
stance using physics simulation, are targeted as well. Furthermore, a condensed
model is trained that encodes experience and can be used for relatively fast
planning of pipelines.

3 Approach

Current Belief

Hierarchical Planning

Knowledge Layer

Execution LayerGoal

Model
CalibrationDataset

New Belief

Pipeline

Fig. 2: Schematic overview of the approach. The core is a hierarchical planning system
which acts on a 2-layer hierarchical model with a knowledge layer and an execution
layer. The knowledge layer needs model calibration which is performed with a ground
truth annotated dataset of pipeline executions. This planning system is able to deter-
mine a pipeline that converts a given belief to a belief with a target quality specified
by a given goal.

Our approach is based on a hierarchical model combined with hierarchical
planning and model calibration as depicted in Fig. 2. The hierarchical model is
based on prior publications [5] [6] [2] and allows to model algorithms, denoted
as operators, and instance classes, denoted as concepts, within the perception
domain at different abstraction layers. This allows the hierarchical planner to
search for solutions on cheap abstract domains and verify or refine the plans up
to a real execution [6]. The model contains concepts such as pose, belief, point
cloud and depth image. In this publication we employ only two different lay-
ers, the knowledge layer and the execution layer. The former encodes symbolic

186 Chapter 13. Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning

4 V. Dietrich et al.

knowledge and experience available for the domain. The latter provides the abil-
ity to actually execute the available perception algorithms on simulated or on
real data.

The key aspect of this publication is the systematic use and calibration of
so called metrics m ∈ M. The metrics allow to assess properties, especially the
quality of instances, in a compact manner. E.g., when a perception engineer looks
at a point cloud he indirectly assesses its quality and determines by experience
which algorithm he should try next in order to get the desired result. The oper-
ators on the knowledge layer can be parameterized such that they encode this
experience and model the relationship of the input metrics and output metrics.
We summarize the metric model as follows:

– A metric is single valued
– A metric can be associated with a distribution
– Multiple metrics can be associated with an instance
– We differentiate between computable and estimated metrics.

Computable metrics can be calculated at runtime based on the available data, as
for instance the size of a point cloud. Estimated metrics can not be determined
in an exact manner at runtime and need to be approximated. E.g., the positional
distance with respect to ground truth is not known at pipeline runtime. Still, it
has to be estimated if the planning goal is formulated as positional distance. The
set of input and output metrics of an operator are denoted as MIN and MOUT

respectively.

Knowledge layer
(K)

Execution layer
(E)

poseEstimation E

poseEstimation K

tOP = fT(MIN)

MOUT = fIO(MIN)

Belief

Point Delta mbel

0.0015 m**

Pos. Delta mpos

0.0012 m**

Belief

Point Delta mbel

0.0013 m*

Pos Delta mpos

0.0009 m**

Parameter Set

subset subset

Point Cloud

Point Delta mpcd

0.0012 m*

Points mnum

1280 x 960*

Point Cloud

Point Delta mpcd

0.002 m**

Points mnum

1280 x 960*

*computable metric

**estimated metric

Fig. 3: Hierarchical view on a pose estimation operator on knowledge layer and execu-
tion layer. Detailed explanation in Sec. 3.

In order to work within the hierarchical modeling and planning approach,
the metrics require a representation on different levels of abstraction. The role
of the metrics within the hierarchy is therefore shown exemplary in Fig. 3. A
pose estimation operator on the knowledge as well as the execution layer is

187

Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning 5

displayed alongside with input and output instances. Each instance is annotated
with different metrics that describe the quality of the instance. On the knowledge
layer these are mostly estimated metrics that approximate the actual value. On
the execution layer actual values can be calculated for some of the metrics. Due
to uncertainties in data and execution the operators on the execution layer not
always yield results as predicted on the knowledge layer. A subset relationship is
defined for all concepts, which is used during planning in order to identify such
deviations and perform backtracking if the relationship does not hold. Therefore,
model inaccuracies at the knowledge layer can be handled.

The approximations on the knowledge layer and for estimated metrics on the
execution layer is encoded in the functions fT and fIO that model the runtime
and the relationship between inputs and outputs of the operator, see Fig. 3. Both
can be arbitrary functions that require parameterization. This step is performed
initially based on a dataset of already executed perception pipelines, cf. Fig. 2.
In this work we use linear models for the transfer functions and linear regression
for the calibration.

For the hierarchical planning we use the planner presented in [6]. The frame-
work is designed such that different planning or search algorithms can be used
at different layers. We use a scheduler at the knowledge level in order to find the
fastest pipeline that fulfills the application requirements. On the execution layer
breadth first search is used. On the knowledge layer no distinction between dif-
ferent operator parameterizations is made. The parameterization is chosen based
on a sub-problem planned within the execution layer. Additionally, only metrics
are used during planning that can be calculated or estimated during runtime.
Therefore, the presented system can be used out of the box for online decision
making and active perception.

4 Evaluation

We address two core questions regarding the presented approach:

– Is the model and the calibration approach suitable for the given application?
– Is the planning system capable of synthesizing working pipelines in a rea-

sonable amount of time?

The target application is an assembly scenario, where the robot perception sys-
tem should give accurate 6D poses of the objects base plate and shaft 1 from the
Siemens Robot Learning Challenge3, see Fig. 4. The setup is simulated and two
different depth cameras are used, an Intel D435 consumer sensor equivalent and
a Photoneo PhoXi M industrial sensor equivalent. Distance dependent longitu-
dinal noise is added based on camera characteristics according to manufacturer
data4. Additionally, the sensors are placed at six different poses in order to cover
a range of different hardware setups, see Fig. 4.

3 https://new.siemens.com/us/en/company/fairs-events/robot-learning.html
4 https://www.intel.com/content/dam/support/us/en/documents/
emerging-technologies/intel-realsense-technology/BKMs Tuning RealSense D4xx
Cam.pdf and http://wiki.photoneo.com/index.php/PhoXi 3D scanners family

188 Chapter 13. Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning

6 V. Dietrich et al.

d = 25 cm,
α = 45◦

d = 50 cm,
α = 45◦

d = 25 cm,
α = 90◦

d = 50 cm,
α = 90◦

Target Object

d = 75 cm,
α = 90◦

d = 75 cm,
α = 45◦

Object: base plate

Object: shaft 1

Fig. 4: Left: Application setup with 6 different view poses. Right: Target objects from
the Siemens Robot Learning Challenge.

We use the following computable metrics on the execution layer:

– mnum: Number of points of the point cloud
– mpcd: average distance between points that can be a associated with known

objects in the scene, such as a plane, and those objects
– mbel: average distance between a depth rendering of the object estimate and

the point cloud

The position distancempos between belief and ground truth can not be computed
at runtime and has to be estimated. The mapping between mbel and mpos is
therefore as well approximated with a linear model during the model calibration.
The available operator set within the experiment is summarized in Tab. 1.

Table 1: Overview of used operators and their model calibration.5

Operator Comment # Param. Sets fT fIO

getPointCloud* point cloud rendering 0 - 0.030 s d → mpcd

prepareModel create object point cloud 1 1 0.050 s -
removePlane plane estimation and removal 3 1 0.013 s mnum → mnum

smoothTSDF using Signed-Distance Functions 2 1 0.288 s

(

mnum

mpcd

)

→

(

mnum

mpcd

)

poseEstimationFPFH using Fast Point Feature Histograms 8 2 mnum → t mpcd → mbel

refineICP Iterative Closest Point 2 2 mnum → t mbel → mbel

refinePhysics* achieve physical plausibility with plane 6 1 2.060 s mbel → mbel

The model calibration is performed on a dataset of an exhaustive exploration
of pipelines on 2 scenes, 2 cameras and 6 viewpoints of the object base plate . The
result of the calibration are parameterized models of the runtime behavior fT

5 Operators marked with * are implemented using Bullet (https://pybullet.org/), oth-
erwise using Open3D (http://www.open3d.org/)

189

Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning 7

and the input to output relation fIO. In this work we use single-input, single-
output linear models, but the approach supports models of arbitrary complexity
and arbitrary number of inputs and outputs. The choice of input and output
types for the models is done by manual examination of the correlation. The
relationship between given and ground truth metrics is calibrated in addition
to the operator behavior. In Tab. 1 the calibrated input-output relationships
for the different operators are listed. Approximately constant values are directly
shown. In the first row of Fig. 5 actual linear approximations for runtime and
input-output relationship are displayed.

Fig. 5: Top left: Linear model fit for runtime depending on input cloud size for poseEs-
timationFPFH. Top right: Linear model fit for the output mbel depending on the input
mbel. Bottom left: Comparison between baseline and planned pipelines for sensor D435.
Bottom right: Comparison between baseline and planned pipelines for sensor Phoxi M.

In order to assess the approach we compare the planning results with the
results of a greedy search, as shown in the bottom row of Fig. 5. The calibration
has been performed only on base plate and results are displayed for both ob-

190 Chapter 13. Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning

8 V. Dietrich et al.

jects. Furthermore, the planning was performed with two different goal settings:
0.005m and 0.0025m as indicated by the colors and the horizontal lines.

We can make a few observations. First of all, longer runtimes lead to lower
errors, which is coherent with engineering intuition. Although this is not a gen-
eral rule. For instance, the removal of the plane can lead to higher accuracy and
shorter runtime due to a lower number of points for the pose estimation. Fur-
thermore, we can observe that the ground truth of the majority of the planned
results fulfills the goal requirements. During planning only runtime metrics are
used, which can only approximate the ground truth. Therefore, the result may
sometimes deviate from the ground truth due to uncertainty and insufficient cal-
ibration. The goal is reached with high success rates for the calibration object
as well as the unseen object, which indicates that the model generalizes and is
sufficiently complex. Most of the outliers are associated with the unseen and
non calibrated shaft 1 object, which conforms with our expectations. A further
observation regards the runtime of the planned pipelines. On the knowledge level
a scheduler is used in order to find the fastest pipelines that reach the goal. The
experimental data shows that the planning system is actually capable of identi-
fying a suitable compromise between speed and accuracy. This is achieved with
a median planning time of about 51 s. Finally, we compare the results between
the consumer camera and the industrial camera. The more expensive industrial
camera can achieve higher accuracy overall. But while there are no outliers for
2.5mm the model still leaves room for improvement as the outliers for a goal of
5mm imply.

In summary, both questions formulated at the beginning of this section can
be generally answered positively. However, there is still potential within further
investigation to improve the model accuracy and decrease the synthesis times
for actual use for active perception.

5 Conclusion

We presented an approach to synthesize perception pipelines using hierarchical
planning, which allows to find a sequence of operators with sufficient accuracy for
the task at hand. The hierarchical model consists of a knowledge layer, which en-
codes engineering experience from data and steers the search procedure, and an
execution layer where actual operators are executed on the given data. Schedul-
ing on the top level ensures that pipelines with short runtime are preferred.
Experiments in simulation with different objects, sensor types and sensor place-
ments show promising results. The knowledge layer is calibrated for one object
and performs well for a unseen test object. The duration of the synthesis process
is mostly less than a minute and therefore allows rapid adaptation, e.g., for a
product change. Further speedup would also enable running the synthesis online
during operation.

191

Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning 9

References

1. Beetz, M., Bálint-Benczédi, F., Blodow, N., Nyga, D., Wiedemeyer, T., Márton,
Z.C.: RoboSherlock: Unstructured information processing for robot perception. In:
Int. Conf. on Robotics and Automation. IEEE (2015)

2. Dietrich, V., Kast, B., Fiegert, M., Albrecht, S., Beetz, M.: Automatic configuration
of the structure and parameterization of perception pipelines. In: Int. Conf. on
Advanced Robotics. IEEE (2019)

3. Dietrich, V., Kast, B., Schmitt, P., Albrecht, S., Fiegert, M., Feiten, W., Beetz, M.:
Configuration of perception systems via planning over factor graphs. In: Int. Conf.
on Robotics and Automation. IEEE (2018)

4. Irgenfried, S., Worn, H., Bergmann, S., Mohammadikaji, M., Beyerer, J., Dachs-
bacher, C.: Cad based workflow for semi-automatic design of optical inspection
systems. AT-AUTOMATISIERUNGSTECHNIK 65(6) (2017)

5. Kast, B., Albrecht, S., Feiten, W., Zhang, J.: Bridging the gap between semantics
and control for industry 4.0 and autonomous production. In: Int. Conf. on Automa-
tion, Science and Engineering. IEEE (2019)

6. Kast, B., Dietrich, V., Albrecht, S., Feiten, W., Zhang, J.: A hierarchical planner
based on set-theoretic models: Towards automating the automation for autonomous
systems. In: Int. Conf. on Informatics in Control, Automation and Robotics (2019)

7. Messer, T.: Model-based synthesis of vision routines. In: Advances In Machine Vi-
sion: Strategies and Applications, pp. 79–97. World Scientific (1992)

8. Nagato, T., Koezuka, T.: Automatic generation of image-processing programs for
production lines. Fujitsu Sci. Tech. J 52(1), 27–33 (2016)

9. Radig, B., Eckstein, W., Klotz, K., Messer, T., Pauli, J.: Automatization in the
design of image understanding systems. In: Int. Conf. on Industrial, Engineering
and Other Applications of Applied Intelligent Systems. Springer (1992)

192 Chapter 13. Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning

193

Bibliography

[1] V. Dietrich, B. Kast, P. Schmitt, S. Albrecht, M. Fiegert, W. Feiten, and M. Beetz, “Con-

figuration of perception systems via planning over factor graphs,” in IEEE International

Conference on Robotics and Automation, 2018.

[2] B. Kast, V. Dietrich, S. Albrecht, W. Feiten, and J. Zhang, “A hierarchical planner

based on set-theoretic models: Towards automating the automation for autonomous sys-

tems,” in International Conference on Informatics in Control, Automation and Robotics.

SCITEPRESS Digital Library, 2019.

[3] Siemens AG, fortiss GmbH, Baselabs GmbH, NXP Semiconductors, DFKI, and ALL4IP

Technologies GmbH und Co KG, Project Sada, 2018 (accessed September 3, 2018), http:

//www.projekt-sada.de/.

[4] V. Dietrich, B. Kast, S. Albrecht, and M. Beetz, “Data-driven synthesis of perception

pipelines via hierarchical planning,” in International Conference on Robotics in Alpe-Adria

Danube Region. Springer, 2020.

[5] B. Kast, V. Dietrich, S. Albrecht, W. Feiten, and J. Zhang, “Domain optimization for hierar-

chical planning based on set-theory,” in International Conference on Informatics in Control,

Automation and Robotics. SCITEPRESS Digital Library, 2020.

[6] A. Car and A. Frank, “General principles of hierarchical spatial reasoning-the case of

wayfinding,” in 6th International Symposium on Spatial Data Handling, 1994.

[7] B. Kast, P. Schmitt, S. Albrecht, D. Meyer-Delius, and J. Zhang, “Augmenting working

areas with action-relevant information for intuitive human-robot cooperation,” in Interna-

tional Convention on Rehabilitation Engineering and Assistive Technology, 2018.

[8] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and

D. Wilkins, “Pddl-the planning domain definition language,” Yale Center for Computational

Vision and Control, Tech. Rep., 1998.

[9] M. Fox and D. Long, “Pddl2.1: An extension to PDDL for expressing temporal planning

domains,” Artificial Intelligence Research, vol. 20, 2003.

[10] M. Cashmore, M. Fox, D. Long, and D. Magazzeni, “A compilation of the full PDDL+

language into SMT.” in AAAI Workshop: Planning for Hybrid Systems, 2016.

http://www.projekt-sada.de/
http://www.projekt-sada.de/

194 Bibliography

[11] D. Höller, G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier, and R. Alford, “Hddl:

An extension to PDDL for expressing hierarchical planning problems,” in AAAI Conference

on Artificial Intelligence, vol. 34, no. 06, 2020.

[12] J. Hoffmann, “Ff: The fast-forward planning system,” AI magazine, vol. 22, no. 3, 2001.

[13] M. Helmert, “The fast downward planning system,” Artificial Intelligence Research, 2006.

[14] S. Richter and M. Westphal, “The lama planner: Guiding cost-based anytime planning with

landmarks,” Journal of Artificial Intelligence Research, 2010.

[15] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated algorithm selection:

Survey and perspectives,” Evolutionary computation, vol. 27, no. 1, 2019.

[16] B. Kast, S. Albrecht, W. Feiten, and J. Zhang, “Bridging the gap between semantics and

control for industry 4.0 and autonomous production,” in International Conference on Au-

tomation Science and Engineering, 2019.

[17] B. Ganter and R. Wille, Formal concept analysis: mathematical foundations. Springer

Science & Business Media, 2012.

[18] D. L. McGuinness and F. Van Harmelen, “Owl web ontology language overview,” W3C

recommendation, vol. 10, no. 10, 2004.

[19] B. De Schutter and T. Van Den Boom, “Model predictive control for discrete-event and

hybrid systems,” in IEEE Conference on Decision and Control, 2003.

[20] M. Dogar, A. Spielberg, S. Baker, and D. Rus, “Multi-robot grasp planning for sequential

assembly operations,” Autonomous Robots, vol. 43, no. 3, 2019.

[21] R. Moriyama, W. Wan, and K. Harada, “Dual-arm assembly planning considering gravi-

tational constraints,” in IEEE International Conference on Intelligent Robots and Systems,

2019.

[22] P. Bercher, D. Höller, G. Behnke, and S. Biundo, “More than a name? On implications of

preconditions and effects of compound HTN planning tasks.” in European Conference on

AI, 2016.

[23] S. Edelkamp, “Limits and possibilities of PDDL for model checking software,” Edelkamp,

& Hoffmann, 2003.

[24] F. Fourati, M. T. Bhiri, and R. Robbana, “Verification and validation of PDDL descriptions

using event-b formal method,” in International Conference on Multimedia Computing and

Systems. IEEE, 2016.

[25] R. Barták, A. Maillard, and R. C. Cardoso, “Validation of hierarchical plans via parsing of

attribute grammars,” in International Conference on Automated Planning and Scheduling,

2018.

Bibliography 195

[26] C. Garrett, T. Lozano-Pérez, and L. Kaelbling, “FFrob: An efficient heuristic for task and

motion planning,” in Algorithmic Foundations of Robotics XI. Springer, 2015.

[27] D. Beßler, M. Pomarlan, A. Akbari, M. Diab, J. Rosell, J. Bateman, and M. Beetz, “As-

sembly planning in cluttered environments through heterogeneous reasoning,” in Joint Ger-

man/Austrian Conference on Artificial Intelligence, 2018.

[28] K. Erol, J. Hendler, and D. Nau, “HTN planning: Complexity and expressivity,” in AAAI

Conference on Artificial Intelligence, 1994.

[29] L. Castillo, J. Fernández-Olivares, O. Garcia-Perez, and F. Palao, “Efficiently handling tem-

poral knowledge in an HTN planner.” in International Conference on Automated Planning

and Scheduling, 2006.

[30] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu, and F. Yaman, “Shop2: An

HTN planning system,” Artificial Intelligence Research, 2003.

[31] R. Goldman, “Durative planning in HTNs.” in International Conference on Automated

Planning and Scheduling, 2006.

[32] S. Kambhampati, A. Mali, and B. Srivastava, “Hybrid planning for partially hierarchical

domains,” in AAAI Conference on Artificial Intelligence, 1998.

[33] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic action planning with

geometric and differential constraints,” in International Conference on Robotics and Au-

tomation, 2010.

[34] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion planning in the now,”

in IEEE International Conference on Robotics and Automation, 2011.

[35] E. Scioni, G. Borghesan, H. Bruyninckx, and M. Bonfè, “Bridging the gap between discrete

symbolic planning and optimization-based robot control,” in IEEE International Confer-

ence on Robotics and Automation, 2015.

[36] B. Kim, L. P. Kaelbling, and T. Lozano-Pérez, “Learning to guide task and motion plan-

ning using score-space representation,” in IEEE International Conference on Robotics and

Automation, 2017.

[37] S. Stock, M. Mansouri, F. Pecora, and J. Hertzberg, “Online task merging with a hierar-

chical hybrid task planner for mobile service robots,” in IEEE International Conference on

Intelligent Robots and Systems, 2015.

[38] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox, “Online replanning

in belief space for partially observable task and motion problems,” in IEEE International

Conference on Robotics and Automation, 2020.

[39] S. Awodey, Category theory. Oxford university press, 2010.

196 Bibliography

[40] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive configuration spaces,”

in International Conference on Robotics and Automation, 1997.

[41] V. Dietrich, B. Kast, M. Fiegert, S. Albrecht, and M. Beetz, “Automatic configuration of

the structure and parameterization of perception pipelines,” in International Conference on

Advanced Robotics, 2019.

[42] S. Wintermute, “Imagery in cognitive architecture: Representation and control at multiple

levels of abstraction,” Cognitive Systems Research, vol. 19, 2012.

[43] J. S. Penberthy and D. S. Weld, “UCPOP: A sound, complete, partial order planner for

adl.” International Conference on Principles of Knowledge Representation and Reasoning,

1992.

[44] A. Barrett and D. S. Weld, “Partial-order planning: evaluating possible efficiency gains,”

Artificial Intelligence, vol. 67, no. 1, 1994.

[45] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Sampling-based methods for factored

task and motion planning,” International Journal of Robotics Research, vol. 37, no. 13-14,

2018.

[46] Z. Zhao, Z. Zhou, M. Park, and Y. Zhao, “Sydebo: Symbolic-decision-embedded bilevel

optimization for long-horizon manipulation in dynamic environments,” IEEE Access, vol. 9,

2021.

[47] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hierarchical planning for long-horizon ma-

nipulation with geometric and symbolic scene graphs,” in IEEE International Conference

on Robotics and Automation, 2021.

[48] B. Nurimbetov, M. Issa, and H. A. Varol, “Robotic assembly planning of tensegrity struc-

tures,” in IEEE/SICE International Symposium on System Integration, 2019.

[49] R. Glück, A. Hoffmann, L. Nägele, A. Schierl, W. Reif, and H. Voggenreiter, “Towards a

tool-based methodology for developing software for dynamic robot teams,” 2018.

[50] J. Leuvennink, K. Kruger, and A. Basson, “Architectures for human worker integration

in holonic manufacturing systems,” in International Workshop on Service Orientation in

Holonic and Multi-Agent Manufacturing. Springer, 2018.

[51] N. Nikolakis, K. Sipsas, and S. Makris, “Cockpit: a portal for symbiotic human–robot

collaborative assembly,” in Advanced Human-Robot Collaboration in Manufacturing.

Springer, 2021.

[52] R. Müller, R. Peifer, and O. Mailahn, “Objectification of assembly planning for the im-

plementation of human-robot cooperation,” in International Conference on Applied Human

Factors and Ergonomics. Springer, 2018.

Bibliography 197

[53] A. A. Malik and A. Bilberg, “Complexity-based task allocation in human-robot collab-

orative assembly,” Industrial Robot-The International Journal of Robotics Research and

Application, 2019.

[54] M. Rizwan, V. Patoglu, and E. Erdem, “Human-robot collaborative assembly planning us-

ing hybrid conditional planning,” in FAIM/ISCA Workshop on Artificial Intelligence for

Multimodal HRI, 2018.

[55] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for motion planning

with constraints,” Annual Review of Control, Robotics, and Autonomous Systems, 2018.

[56] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”

Robotics Research, vol. 30, no. 7, 2011.

[57] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-query path plan-

ning,” in International Conference on Robotics and Automation, 2000.

[58] E. Aertbeliën and J. De Schutter, “eTaSL/eTC: A constraint-based task specification lan-

guage and robot controller using expression graphs,” in International Conference on Intel-

ligent Robots and Systems, 2014.

[59] P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G. v. Wichert, and W. Burgard, “Modeling and

planning manipulation in dynamic environments,” in International Conference on Robotics

and Automation, 2019.

[60] T. Hasegawa, T. Suehiro, and K. Takase, “A model-based manipulation system with skill-

based execution,” Transactions on Robotics and Automation, vol. 8, no. 5, 1992.

[61] A. Wahrburg, S. Zeiss, B. Matthias, J. Peters, and H. Ding, “Combined pose-wrench and

state machine representation for modeling robotic assembly skills,” in IEEE International

Conference on Intelligent Robots and Systems, 2015.

[62] S. Brunner, F. Steinmetz, R. Belder, and A. Dömel, “Rafcon: A graphical tool for engineer-

ing complex, robotic tasks,” in IEEE International Conference on Intelligent Robots and

Systems, 2016.

[63] C. Schlegel and R. Worz, “The software framework smartsoft for implementing sensorimo-

tor systems,” in IEEE International Conference on Intelligent Robots and Systems. Human

and Environment Friendly Robots with High Intelligence and Emotional Quotients, 1999.

[64] A. Lotz, A. Hamann, I. Lütkebohle, D. Stampfer, M. Lutz, and C. Schlegel, “Modeling non-

functional application domain constraints for component-based robotics software systems,”

arXiv preprint arXiv:1601.02379, 2016.

198 Bibliography

[65] A. Lotz, A. Hamann, R. Lange, C. Heinzemann, J. Staschulat, V. Kesel, D. Stampfer,

M. Lutz, and C. Schlegel, “Combining robotics component-based model-driven develop-

ment with a model-based performance analysis,” in IEEE International Conference on Sim-

ulation, Modeling, and Programming for Autonomous Robots, 2016.

[66] H. Sirkin, M. Zinser, and J. Rose, “How robots will redefine competitiveness,”

Boston Consulting Group, https://www.bcg.com/publications/2015/lean-manufacturing-

innovation-robots-redefine-competitiveness.aspx, 2015.

[67] S. Landscheidt and M. Kans, “Method for assessing the total cost of ownership of industrial

robots,” Procedia Cirp, vol. 57, 2016.

[68] F. Sadeghi, A. Toshev, E. Jang, and S. Levine, “Sim2real viewpoint invariant visual servoing

by recurrent control,” in IEEE Conference on Computer Vision and Pattern Recognition,

2018.

[69] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke, “Training deep neural net-

works for visual servoing,” in IEEE international conference on robotics and automation,

2018.

[70] H. Wang, B. Yang, J. Wang, X. Liang, W. Chen, and Y.-H. Liu, “Adaptive visual servoing

of contour features,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, 2018.

[71] E. Muñoz, Y. Konishi, V. Murino, and A. Del Bue, “Fast 6D pose estimation for texture-

less objects from a single RGB image,” in IEEE International Conference on Robotics and

Automation, 2016.

[72] C. Song, J. Song, and Q. Huang, “Hybridpose: 6d object pose estimation under hybrid rep-

resentations,” in IEEE/CVF conference on computer vision and pattern recognition, 2020.

[73] H. Zhang and Q. Cao, “Detect in RGB, optimize in edge: accurate 6D pose estimation

for texture-less industrial parts,” in International Conference on Robotics and Automation,

2019.

[74] F. Wirnshofer, P. Schmitt, W. Feiten, G. v. Wichert, and W. Burgard, “Robust, compliant

assembly via optimal belief space planning,” in International Conference on Robotics and

Automation, 2018.

[75] F. Wirnshofer, P. S. Schmitt, G. von Wichert, and W. Burgard, “Controlling contact-rich

manipulation under partial observability,” in Robotics: Science and Systems, 2020.

[76] P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G. v. Wichert, and W. Burgard, “Modeling and

planning manipulation in dynamic environments,” in International Conference on Robotics

and Automation. IEEE, 2019.

[77] T. Migimatsu and J. Bohg, “Object-centric task and motion planning in dynamic environ-

ments,” IEEE Robotics and Automation Letters, vol. 5, no. 2, 2020.

Bibliography 199

[78] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Strips planning in infinite domains,”

arXiv preprint arXiv:1701.00287, 2017.

[79] S.-H. Leitner and W. Mahnke, “OPC UA-service-oriented architecture for industrial appli-

cations,” ABB Corporate Research Center, vol. 48, no. 61-66, 2006.

[80] M. Hause, “The SysML modelling language,” in European Systems Engineering Confer-

ence, 2006.

[81] R. Drath, A. Luder, J. Peschke, and L. Hundt, “AutomationML-the glue for seamless au-

tomation engineering,” in IEEE International Conference on Emerging Technologies and

Factory Automation, 2008.

[82] D. Stampfer, A. Lotz, M. Lutz, and C. Schlegel, “The SmartMDSD toolchain: An integrated

mdsd workflow and integrated development environment (ide) for robotics software,” Jour-

nal of Software Engineering for Robotics, vol. 7, no. 1, 2016.

[83] C. Schlegel, A. Lotz, M. Lutz, and D. Stampfer, “Composition, separation of roles and

model-driven approaches as enabler of a robotics software ecosystem,” in Software Engi-

neering for Robotics. Springer, 2021.

[84] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model for scientific text,”

arXiv preprint arXiv:1903.10676, 2019.

[85] M. Galanis, V. Dietrich, B. Kast, and M. Fiegert, “Rtfm: Towards understanding source

code using natural language processing,” in International Conference on Informatics in

Control, Automation and Robotics. SCITEPRESS Digital Library, 2020.

[86] C. Wang, L. Wang, J. Qin, Z. Wu, L. Duan, Z. Li, M. Cao, X. Ou, X. Su, and W. Li,

“Path planning of automated guided vehicles based on improved a-star algorithm,” in IEEE

International Conference on Information and Automation, 2015.

[87] G. Qing, Z. Zheng, and X. Yue, “Path-planning of automated guided vehicle based on

improved dijkstra algorithm,” in Chinese control and decision conference, 2017.

[88] T. Zheng, Y. Xu, and D. Zheng, “Agv path planning based on improved a-star algorithm,”

in IEEE Advanced Information Management, Communicates, Electronic and Automation

Control Conference, 2019.

[89] B. Kim, L. Shimanuki, L. P. Kaelbling, and T. Lozano-Pérez, “Representation, learning,

and planning algorithms for geometric task and motion planning,” International Journal of

Robotics Research, 2021.

[90] M. Chakraborty, S. K. Biswas, and B. Purkayastha, “Recursive rule extraction from NN

using reverse engineering technique,” New Generation Computing, vol. 36, no. 2, 2018.

200 Bibliography

[91] J. R. Zilke, E. L. Mencía, and F. Janssen, “Deepred–rule extraction from deep neural net-

works,” in International Conference on Discovery Science. Springer, 2016.

[92] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNExplainer: Generating ex-

planations for graph neural networks,” Advances in neural information processing systems,

vol. 32, 2019.

[93] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Learning compositional

models of robot skills for task and motion planning,” International Journal of Robotics

Research, vol. 40, no. 6-7, 2021.

[94] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills to symbols: Learning

symbolic representations for abstract high-level planning,” Journal of Artificial Intelligence

Research, vol. 61, 2018.

[95] M. Guo and M. Bürger, “Geometric task networks: Learning efficient and explainable skill

coordination for object manipulation,” IEEE Transactions on Robotics, 2021.

[96] M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O. Kroemer, “Learning to com-

pose hierarchical object-centric controllers for robotic manipulation,” arXiv preprint

arXiv:2011.04627, 2020.

[97] M. Saha and P. Isto, “Multi-robot motion planning by incremental coordination,” in IEEE

International Conference on Intelligent Robots and Systems, 2006.

[98] G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with

performance bounds,” in IEEE international conference on intelligent robots and systems,

2011.

[99] J. Liu and R. K. Williams, “Submodular optimization for coupled task allocation and inter-

mittent deployment problems,” IEEE Robotics and Automation Letters, vol. 4, no. 4, 2019.

[100] S. D. Han and J. Yu, “Ddm: Fast near-optimal multi-robot path planning using diversified-

path and optimal sub-problem solution database heuristics,” IEEE Robotics and Automation

Letters, vol. 5, no. 2, 2020.

[101] M. Toussaint, “Logic-geometric programming: An optimization-based approach to com-

bined task and motion planning.” in International Joint Conference on Artificial Intelli-

gence, 2015.

[102] A. Schierl, A. Hoffmann, L. Nagele, and W. Reif, “Integrating reactive behavior and plan-

ning: Optimizing execution time through predictive preparation of state machine tasks,” in

IEEE International Conference on Robotic Computing, 2018.

[103] L. Nägele, A. Hoffmann, A. Schierl, and W. Reif, “Legobot: Automated planning for co-

ordinated multi-robot assembly of lego structures,” in IEEE International Conference on

Intelligent Robots and Systems, 2020.

Bibliography 201

[104] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter, “iTASC: a tool for multi-

sensor integration in robot manipulation,” in IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems, 2008.

[105] W. Decré, H. Bruyninckx, and J. De Schutter, “Extending the iTaSC constraint-based robot

task specification framework to time-independent trajectories and user-configurable task

horizons,” in International Conference on Robotics and Automation, 2013.

202 Bibliography

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

München, den Unterschrift:

	Hierarchical Approach to Domain Operations for Multimodal Autonomous Systems
	Introduction
	Motivation and Objectives
	Research Questions
	Contributions and Outline

	Set-Based Hierarchical Modeling Approach
	Declarative Knowledge
	Motivation
	Theoretic Grounding

	Procedural Knowledge
	Motivation and Requirements
	Theoretic Grounding

	Hierarchical Planner
	Motivation
	Planning Algorithm
	Hierarchical Factorization Algorithm
	Planning Algorithm

	Domains, Explainability and Introspection

	Domain Optimizations
	Motivation
	Alignment of the Domain to the Task
	Reasoning for Data Fusion
	Model Harvesting from Unstructured Sources
	Automatic Refinement and Abstraction of Operators
	Detection of Model Inconsistencies
	Data Driven Optimizations
	Postprocessing for Parallel Execution

	Conclusions

	Cumulative Part
	Bridging the Gap Between Semantics and Control for Industry 4.0 and Autonomous Production
	A hierarchical planner based on set-theoretic models: Towards automating the automation for autonomous systems
	Domain Optimization for Hierarchical Planning Based on Set-Theory
	Hierarchical Planner with Composable Action Models for Asynchronous Parallelization of Tasks and Motions
	Automatic Domain Extension and Optimization based on Set-Theory
	Configuration of Perception Systems via Planning Over Factor Graphs
	Automatic Configuration of Perception Pipelines
	Data-Driven Synthesis of Perception Pipelines via Hierarchical Planning
	Bibliography

