
UNIVERSITÄTSKLINIKUM HAMBURG-EPPENDORF

Institut für Tumorbiologie

unter der Direktion von Prof. Dr. Klaus Pantel

Deciphering Molecular Subtypes in Advanced

Prostate Cancer by Transcriptional Profiling of

Circulating Tumor Cells

Dissertation

zur Erlangung des Grades eines Doktors (Dr. rer. biol. hum.)
an der Medizinischen Fakultät der Universität Hamburg.

vorgelegt von:
Lina Bergmann (geb. Merkens)

aus Buxtehude

Hamburg 2024



i

Angenommen von der
Medizinischen Fakultät der Universität Hamburg am: 06.05.2024

Veröffentlicht mit Genehmigung der
Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der/die Vorsitzende: Prof. Dr. Gunhild von Amsberg

Prüfungsausschuss, zweite/r Gutachter/in: Prof. Dr. Klaus Pantel



Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Epidemiology and Etiology . . . . . . . . . . . . . . . . . . . 1
1.1.2 Treatment Resistance . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Aggressive Variant Prostate Cancer . . . . . . . . . . . . . . 3
1.1.4 Neuroendocrine Transdifferentiation . . . . . . . . . . . . . . 6

1.2 Liquid Biopsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Circulating Tumor Cells . . . . . . . . . . . . . . . . . . . . . 10

1.3 Use of Liquid Biopsy in Prostate Cancer . . . . . . . . . . . . . . . . 12
1.3.1 Prognostic and predictive markers in the setting of prostate

adenocarcinoma . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Liquid Biopsy in the detection of neuroendocrine transdif-

ferentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Aim of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Materials and methods 18
2.1 Materials and Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Cell lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Chemicals and Reagents . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Commercial Kits . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.5 Oligonucleotides . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.6 Consumables . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.7 Laboratory Devices . . . . . . . . . . . . . . . . . . . . . . . . 25

ii



CONTENTS iii

2.1.8 Software and Online Resources . . . . . . . . . . . . . . . . . 27
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Cell culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1.1 Passaging . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1.2 Spike-in experiments . . . . . . . . . . . . . . . . . 28

2.2.2 Patient samples . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Processing of Blood Samples . . . . . . . . . . . . . . . . . . 28

2.2.3.1 Isolation of Peripheral Blood Mononuclear Cells . 28
2.2.3.2 CTC enrichment using CellSearch . . . . . . . . . . 29
2.2.3.3 CTC enrichment using Parsortix . . . . . . . . . . . 29
2.2.3.4 CTC enrichment using AdnaTest . . . . . . . . . . 30

2.2.4 Gene expression analysis . . . . . . . . . . . . . . . . . . . . 30
2.2.4.1 RNA isolation from cultured cells . . . . . . . . . . 30
2.2.4.2 cDNA synthesis from RNA of cultured cells . . . . 30
2.2.4.3 mRNA isolation and cDNA synthesis from CTC

lysates . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4.4 Pre-amplification of AdnaTest cDNA . . . . . . . . 32
2.2.4.5 Quantitative PCR . . . . . . . . . . . . . . . . . . . 32

2.2.5 Immunofluorescence staining . . . . . . . . . . . . . . . . . . 35
2.2.6 Statistical analyses . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Results 37
3.1 Selection and validation of the marker panel . . . . . . . . . . . . . 37

3.1.1 Selection of a transcript panel . . . . . . . . . . . . . . . . . . 37
3.1.2 Validation of marker transcripts in PCa cell lines . . . . . . . 39
3.1.3 Validation of marker transcripts in published PCa patient

tissue data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.4 Technical validation of the gene expression analysis in CTCs 44
3.1.5 Comparison of label-dependent and label-independent CTC

enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 CTC analysis in patient samples . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 CTC enumeration with CellSearch . . . . . . . . . . . . . . . 53
3.2.2 CTC detection and gene expression profiling with the Ad-

naTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2.1 Comparison of CTC detection by AdnaTest and

CellSearch . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2.2 Gene expression analysis of single markers . . . . 56



CONTENTS iv

3.2.2.3 Unsupervised analysis of gene expression profiles 63
3.2.2.4 Supervised analysis of gene expression profiles to

predict patient group . . . . . . . . . . . . . . . . . 65
3.2.3 Integration of CTC analysis and clinical data . . . . . . . . . 71

3.2.3.1 Correlation of liquid biopsy data and clinical pa-
rameters . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.3.2 Longitudinal analysis of individual patients . . . . 73

4 Discussion 80
4.1 Marker panel selection and analysis pipeline validation . . . . . . . 80
4.2 Influence of CTC enrichment methods on downstream analysis . . 83
4.3 Selection and classification of patient samples . . . . . . . . . . . . . 88
4.4 Gene expression profiles in enriched CTCs . . . . . . . . . . . . . . 90
4.5 Translation to clinical application . . . . . . . . . . . . . . . . . . . . 97
4.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 101

Abstract 102

Zusammenfassung 104

List of Abbreviations 106

References 108

Acknowledgements 124

Publications 126

Curriculum Vitae 127

Eidesstattliche Erklärung 128



List of Figures

1.1 Stages of prostate cancer progression. . . . . . . . . . . . . . . . . . 5
1.2 Signaling pathways in neuroendocrine transdifferentiation. . . . . . 9
1.3 Overview of analytes in liquid biopsy. . . . . . . . . . . . . . . . . . 11

3.1 Expression of the marker panel in PCa cell lines. . . . . . . . . . . . 40
3.2 Validation of the marker panel in published PCa datasets. . . . . . 42
3.3 Performance of the marker panel for classification of published

PCa datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Comparison of the assay performance in single versus multiplex

pre-amplification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Comparison of marker detection between pure cell lines and spike-

in controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Representative images of Parsortix-enriched CTCs. . . . . . . . . . 49
3.7 Comparison of AdnaTest and Parsortix-enriched CTCs. . . . . . . . 51
3.8 Overview of sample numbers and patient characteristics. . . . . . . 53
3.9 CTC counts in patient samples. . . . . . . . . . . . . . . . . . . . . . 54
3.10 Morphology of CTCs enriched by CellSearch. . . . . . . . . . . . . . 55
3.11 Comparison of AdnaTest and CellSearch. . . . . . . . . . . . . . . . 57
3.12 Normalized gene expression of single markers in enriched CTCs. . 60
3.12 Normalized gene expression of single markers in enriched CTCs. . 61
3.13 Correlation analysis of single markers. . . . . . . . . . . . . . . . . . 62
3.14 Hierarchical clustering of patient samples based on gene expres-

sion profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.15 Prediction of patient group based on binary analysis. . . . . . . . . 67
3.16 Random forest classification of NEPC and HSPC patients. . . . . . 69
3.17 Random forest classification of NEPC and AVPC patients. . . . . . 70
3.18 Association of liver metastasis and liquid biopsy results. . . . . . . 71
3.19 Correlation of serum markers and liquid biopsy read outs. . . . . . 72

v



LIST OF FIGURES vi

3.20 Survival analysis based on liquid biopsy read-outs. . . . . . . . . . 74
3.21 Longitudinal analysis of patient 22. . . . . . . . . . . . . . . . . . . . 75
3.22 Longitudinal analysis of patient 35. . . . . . . . . . . . . . . . . . . . 77
3.23 Longitudinal analysis of patient 65. . . . . . . . . . . . . . . . . . . . 78



List of Tables

2.1 Cell culture media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Chemicals and Reagents . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Commercial Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Commercial probe-based qPCR assays. . . . . . . . . . . . . . . . . 21
2.6 Single-stranded DNA oligonucleotides . . . . . . . . . . . . . . . . . 21
2.7 Double-stranded DNA oligomers (gBlocks) . . . . . . . . . . . . . . 23
2.8 Consumables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Laboratory Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 Composition of RevertAid cDNA synthesis reaction. . . . . . . . . . 31
2.11 Thermocycler protocol for RevertAid cDNA synthesis. . . . . . . . 31
2.12 Composition of AdnaTest cDNA synthesis master mix. . . . . . . . 31
2.13 Thermal cycler protocol for AdnaTest cDNA synthesis. . . . . . . . 32
2.14 Composition of cDNA pre-amplification reaction. . . . . . . . . . . 32
2.15 Thermal cycler protocol for AdnaTest cDNA synthesis. . . . . . . . 32
2.16 Composition of realtime qPCR mixtures for cell-line derived cDNA

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.17 Composition of realtime qPCR mixtures for CTC-derived cDNA

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.18 Composition of realtime qPCR mixtures for ValidPrime detection

of genomic DNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.19 Composition of realtime qPCR mixtures for the interplate calibrator. 34
2.20 Thermal cycler protocol for realtime qPCR and melting curve. . . . 34

3.1 List of transcripts selected for gene expression analysis in CTCs. . . 38
3.2 PCR efficiency of single qPCR assays. . . . . . . . . . . . . . . . . . 44

vii



1 Introduction

1.1 Prostate Cancer

1.1.1 Epidemiology and Etiology

Worldwide, approximately 1.4 million men were diagnosed with prostate cancer
(PCa) in 2020, making it the second most common non-cutaneous cancer in men
after lung cancer. In terms of lethality, PCa was ranked fifth with about 370,000
deaths in 2020 [1]. The major risk factors for PCa are age, familiar predisposi-
tion, hereditary syndromes and ethnicity, whereas life style factors such as obe-
sity and smoking show only weak association with PCa mortality [2]. Pathogenic
germline variants in homologous recombination repair genes, including BRCA2,
are among the most common hereditary alterations that predispose for PCa and
are also associated with a worse prognosis [3], [4].

Serum levels of the prostate-specific antigen (PSA) and digital rectal examina-
tion are standard methods for prostate cancer screening, while tissue biopsies
are mandatory to confirm a diagnosis. The majority of patients is diagnosed with
early stage, localized disease and has a good prognosis compared to patients with
metastatic disease at initial diagnosis [5]. Regular assessment of PSA in the serum
is key to monitoring PCa patients and an increase of PSA levels in the course of
therapy is referred to as biochemical recurrence.

The prostate is part of the male reproductive system and serves as an accessory
gland for the seminal fluid. Its epithelium contains three major cell types: lu-
minal, basal and neuroendocrine cells, with the exocrine luminal cells being the
largest cell population [6]. There is strong evidence that prostate adenocarcinoma
(PRAD) arises from the luminal cells, but also the basal cells are discussed as cell
of origin [7]. At the molecular level, androgen receptor (AR) signaling is the main
driver of tumor growth. PRAD has a lower tumor mutational burden compared

1



1. INTRODUCTION 2

to other tumor entities [8]. Common somatic mutations are found in genes such
as TP53, SPOP, FOXA1 and MYC [9]. However, structural aberrations predomi-
nate the aberrant genomic landscape in PRAD [10]. Especially, fusions with the
ETS transcription factor family, such as the most common TMPRSS2:ERG fusion,
are present in about half of the tumors [11]. In addition, aberrations such as am-
plification of the AR locus or MYC as well as loss of NKX3-1 and PTEN are fre-
quently found [9]. Due to the low tumor mutational burden and the infiltration
with immunosuppressive myeloid cells, PRAD is an immunologically cold tumor
[12]. Overall, PRAD shows a high degree of inter- and intra-patient heterogene-
ity. This includes intraprostatic spatial heterogeneity between individual tumor
foci even in a localized disease stage [13]. In 74 % of patients, primary tumor foci
show significant differences in terms of point mutations and copy number aber-
rations [14]. In the metastatic setting, monoclonal and polyclonal metastasis-to-
metastasis seeding is common and multiple sites of metastasis exhibit convergent
evolution of resistance mechanisms [15].

1.1.2 Treatment Resistance

As the deregulation of AR signaling is the major driver of PCa growth, targeted
systemic therapy options include androgen deprivation therapy (ADT) and novel
hormonal agents (NHA), such as enzalutamide or abiraterone in addition to che-
motherapy. In recent years, several clinical studies showed a benefit of intensified
first line treatment in metastatic hormone-sensitive PCa (mHSPC) compared to
ADT alone [16]–[18]. The combined use of ADT and NHA and/or taxane-based
chemotherapy significantly prolonged the overall survival (OS) and progression-
free survival (PFS) of the included patients [16], [18], [19]. However, progression
to metastatic castration-resistant PCa (mCRPC) occurs when cancer cells acquire
mutations that allow activation of the AR despite the deprived concentration of
its physiological ligands. Several molecular mechanisms have been described
that enable AR activation, such as increased expression of the AR mediated by
gene amplification, enhanced translation or attenuated protein degradation of
AR [20]–[22]. Mutations in the AR ligand binding domain can cause constitutive
activation of the receptor [23]. Depending on the prior therapy line, NHA are
also applied in the therapy of mCRPC, due to the underlying deregulation of AR
signaling [24], [25]. However, the increased use of NHA has also led to the emer-
gence of more complex, additional resistance mechanisms by which the tumor
cells evade the increased therapeutic pressure. For instance, additional muta-



1. INTRODUCTION 3

tions in the AR gene can render enzalutamide from an inhibitor to an agonist
of AR signaling [26]. Furthermore, the increased expression of long non-coding
RNAs can facilitate the expression of AR target genes [27]. Alternative splicing
of the AR omitting the C-terminal binding domain, for example the AR-V7 splice
variant, can induce NHA resistance [28]. Additionally, the oncogene c-Myc which
is highly expressed in mCRPC promotes AR transcription and enhances protein
stability of AR and splice variants, thereby supporting enzalutamide resistance
[29]. Another mechanism of escape of AR blockade is the induction of the gluco-
corticoid receptor. As AR and glucocorticoid receptor have partially overlapping
target genes, the up-regulation is sufficient to maintain the resistance phenotype
in the absence of AR signaling [30]. An additional resistance mechanism is lin-
eage plasticity and the emergence of AR-indifferent tumors that do not longer de-
pend on the classical AR signaling pathways for survival and proliferation [31].

1.1.3 Aggressive Variant Prostate Cancer

While the majority of CRPC tumors retains aberrant AR signaling as major driver
of cell proliferation also during NHA resistance, a subset of patients acquires re-
sistance to AR-targeted therapy by losing its dependency on the AR pathway.
This AR-independent disease stage is known as aggressive variant prostate can-
cer (AVPC). The frequency of AR-negative PCa increased from 11.6 % in the pre-
NHA era (1998-2011) to 36.7 % in the modern era (2012-2016) [31]. Importantly,
the standard biomarker in PRAD, serum PSA, is AR-dependent and, thus, no
longer reliable in AVPC [32]. Clinically, AVPC can be characterized by at least
one of the following criteria defined by Epstein et al. and Aparicio et al. [33], [34]:

• Histologic evidence of small-cell prostate carcinoma (pure or mixed);

• Exclusively visceral metastases;

• Radiographically predominant lytic bone metastases by plain x-ray or CT
scan;

• Bulky (≥ 5 cm) lymphadenopathy or bulky (≥ 5 cm) high-grade (Gleason ≥
8) tumor mass in prostate/pelvis;

• Low PSA (≤ 10 ng/mL) at initial presentation (before ADT or at symptoma-
tic progression in the castrate setting) plus high volume (≥ 20) bone metas-
tases;

• Presence of neuroendocrine markers on histology (chromogranin A or syn-
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aptophysin) or in serum (chromogranin A or GRP) at initial diagnosis or at
progression. Plus any of the following in the absence of other causes: A.
elevated serum LDH; B. malignant hypercalcemia; C. elevated serum CEA;

• Short interval (≤ 6 month) to androgen-independent progression following
the initiation of hormonal therapy with or without the presence of neuroen-
docrine markers.

An overview of the stages of PCa progression from localized PCa over mHSPC
and mCRPC to AVPC is shown in figure 1.1. Both molecularly and histologically,
AVPC is a heterogeneous disease and lineage plasticity is the main driver of resis-
tance. Neuroendocrine transdifferentiation (NET) is a mechanism that has been
observed in patients who lost AR-dependency and progressed to neuroendocrine
prostate cancer (NEPC) [35]. NEPC can refer to different forms of neuroendocrine
tumors of the prostate comprising small and large cell neuroendocrine carcinoma,
Peneth-cell like differentiation and carcinoid tumors [36]. However, upon NET
pure or admixed small cell carcinomas are observed and, therefore, the term
NEPC is used in this thesis to refer to these subtypes. Similar to the prostate,
NET is observed in lung cancer, where adenocarcinomas have been shown to
progress to small cell lung cancer as a mechanism of treatment resistance [37].
However, loss of AR and AR signaling do not necessitate the emergence of NEPC
[38]. Tumors that are negative for AR as well as neuroendocrine markers are re-
ferred to as double-negative prostate cancer (DNPC). While the molecular drivers
of DNPC have long been unknown, current research is starting to identify major
signaling pathways and transcription factors (TF) that govern cell proliferation
in this subtype. For example, Bluemn et al. have identified FGF signaling and
subsequent MAP kinase pathway activation as drivers of DNPC [31]. Further,
Tang et al. have found two AR-independent subtypes of CRPC next to the neu-
roendocrine tumors. One subtype has acquired a stem-cell like phenotype with
the AP1 family of TFs and YAP/TAZ driving the proliferation [39]. The acqui-
sition of cancer stemness features mediated by YAP1 was demonstrated in an
enzalutamide-resistant cell model before [40]. The other subtype is driven by
Wnt signaling and the downstream TFs TCF/LEF [39]. Additional studies on
mCRPC tissue and case reports have also identified a squamous cell differenti-
ation in patients with DNPC [41], [42], while a series of DNPC patient-derived
xenografts (PDX) has shown a mix of basal and luminal expression signatures
[38].

Treatment options for AVPC are still very limited and mostly rely on chemother-
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apy. Platinum-based chemotherapy has been shown to have a higher activity
in patients with AVPC as compared to unselected mCRPC patients [34]. Typi-
cally, a combination of chemotherapeutic agents is applied, such as Carboplatin-
Cabazitaxel or Platinum-Etoposide for pure NEPC [43], [44]. Alternatively, sal-
vage chemotherapy with Cisplatin, Ifosfamide, and Paclitaxel has been shown
to improve survival of heavily pretreated patients [45]. For a subpopulation of
patients with aberrations in DNA repair genes, PARP inhibitors have been ap-
proved [46]. To date, immune checkpoint inhibition has not led to significant
improvement of therapy, as seen in other entities. For instance, PD-L1 blockade
has shown poor overall response in a small cohort of AVPC patients, not selected
based on microsatellite instability [47]. However, checkpoint inhibitors are now
being tested in combination with other small molecule inhibitors or chemother-
apy, which might increase their benefit in the future [12].

Figure 1.1: Stages of PCa progression. PCa is typically detected in a localized or
metastatic hormone-sensitive stage that is accompanied by rising serum PSA; pa-
tients are treated with local therapy or systemic ADT; progression to CRPC is de-
tected by rising serum PSA; following treatment with NHA patients can progress
with AR-independent AVPC which is not detected with PSA.
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1.1.4 Neuroendocrine Transdifferentiation

While DNPC is still poorly understood, NET is the better studied resistance mech-
anism of AR-independence in AVPC. As a result of NET, patients progress with
treatment-emergent NEPC. NEPC is a highly proliferative and aggressive disease
with dismal prognosis [48]. In histology, NEPC often displays the typical mor-
phology of a small cell carcinoma with scant or hardly any cytoplasm and lack of
nucleoli. Chromogranin A, synaptophysin, neuron-specific enolase 2 (NSE) and
neural cell adhesion molecule 1 (CD56) are commonly used markers for NEPC
in immunohistochemistry. However, the histological findings can be heteroge-
neous and apart from pure small cell carcinomas, many patients have tumors
with mixed histology consisting of a high-grade adenocarcinoma and and an ad-
mixed small cell neuroendocrine component [36]. In addition, some patients have
amphicrine tumors that are double-positive for AR and neuroendocrine markers
on a cellular level [49]. Therefore, the categorization and nomenclature of these
tumors remain a challenge.

De novo small cell PCa is a rare disease that is found in less than 1 % of patients at
initial diagnosis [50]. In contrast, approximately 15 % - 20 % of patients progress
with NEPC after enduring treatment in the setting of CRPC [51], [52]. A study
by Abida et al. has found that the frequency of NEPC increased from 2.3 % to
10.5 % in mCRPC tissue biopsies from NHA-treated patients compared to NHA-
naïve patients [51]. The role of AR-targeted therapy in the emergence of NEPC
is further supported by an increase in NEPC incidence after the approval of en-
zalutamide and abiraterone from 6.3 % (1998-2011) to 13.3 % (2012-2016) [31]. Of
note, a rising age-adjusted incidence rate of NEPC was also observed in the years
2004 to 2011 suggesting other factors might as well promote this phenomenon
[53]. These factors might include an increased life-expectancy, advanced testing
or therapeutic pressure of taxanes or radiation therapy [54], [55].

In principle, there are two contradictory hypotheses to explain the primary cel-
lular origin of NEPC. According to the first hypothesis, NEPC emerges after
clonal evolution of basal or neuroendocrine cell populations in the prostate [56],
[57]. Before ADT and NHA treatment, AR-positive adenocarcinoma cells are
thought to have a growth advantage compared to the transformed basal or neu-
roendocrine cells. However, upon AR inhibition, their AR-independence is a ma-
jor growth advantage resulting in the development of NEPC [58]. More precisely,
lineage tracing experiments in a transgenic mouse model of PCa by Lee et al. have
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suggested basal cells as the origin of NEPC [56].

The second hypothesis assumes a mechanism of transdifferentiation from lumi-
nal adenocarcinoma cells to neuroendocrine tumor cells. Lotan et al. showed that
the frequency of ERG gene rearrangements is similar in patients with small cell
carcinoma compared to PRAD and in patients with mixed adenocarcinoma and
small cell carcinoma of the prostate the ERG status was highly congruent between
the two components [59], [60]. Since ERG fusion products such as TMPRSS2:ERG
are activated in an AR-dependent manner, this suggests that the NEPC cells had
previously been relying on AR signaling, which is typical only for luminal cells.
In addition, amplifications of the AR gene are similarly distributed in NEPC and
PRAD, again supporting an AR-driven origin [52].

In fact, the loss of AR in NEPC rarely occurs due to genomic aberrations, but
rather by epigenetic or post-transcriptional mechanisms [61]. In general, many
genomic alterations, such as point mutations or copy number aberrations, are
concurring in PRAD and NEPC, whereas considerable differences in transcrip-
tional and epigenetic regulation have been described [62]. On the transcriptional
level, single-cell RNA sequencing and intra-tumoral RNA velocity analysis sug-
gests that NE cells are directly originating from luminal-like adenocarcinoma
cells [63]. Additionally, re-exposure to androgens has been shown to reverse neu-
roendocrine transdifferentiation in in vitro models of androgen deprivation [64].
Taken together these results strongly support the notion of a transdifferentiation
mechanism driving the emergence of treatment-induced NEPC in the majority of
patients.

However, the exact mechanism of transdifferentiation has not been fully eluci-
dated, yet. First, the presence of amphicrine cells might indicate that the activa-
tion of neuroendocrine pathways and markers precedes the loss of AR signaling.
In this case, the amphicrine cells represent an intermediate stage in the transdif-
ferentiation process, after which the loss of AR signaling is required to progress
to small cell carcinoma. Labrecque et al. found that transcriptional programs in
amphicrine tumors differ from those in small cell tumors and that amphicrine
tumors express a smaller subset of neuroendocrine TFs and markers, suggest-
ing that the loss of AR is necessary to activate the full-blown neuroendocrine
expression signature [41]. However, the same study also found a subset of AR-
low tumors without the expression of neuroendocrine markers. Dedifferentiation
of luminal cells to a stem-like state might be the first step to the development of
DNPC, but might as well be an intermediate step to the development of NEPC, in
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which the adenocarcinoma cells first have to lose AR signaling and gain plasticity
before they differentiate to NEPC [65].

Importantly, NE differentiation alone is not sufficient for the development of this
rapidly growing cancer: the neuroendocrine cells in healthy prostate tissue do
not exhibit enhanced proliferation capabilities and, in cell culture experiments,
the induction of a neuroendocrine phenotype reduced cell growth and prolifer-
ation [66], [67]. Consequently, deregulation of additional pathways involved in
lineage plasticity, such as stemness signaling or epithelial-to-mesenchymal tran-
sition (EMT) is required for the fast and aggressive proliferation found in NEPC.
The combination of neuroendocrine differentiation and a plastic cell state is il-
lustrated, for example, by over-expression of the basal marker TROP2 and the
EMT-inducer SNAIL in aggressive PRAD cell models. Depending on the genetic
background, both have been shown to be sufficient to induce a neuroendocrine
phenotype individually, indicating that NET, basal-like gene expression and EMT
are interwoven in NEPC [68], [69]. Meanwhile, several genes have been identi-
fied that are involved in the process of NET and these include transcriptional
regulators, chromatin modulators, histone modifiers and enhancers of prolifera-
tion [70]. An overview of the central pathways and main players of NET is given
in figure 1.2.

As mentioned before, there are few genomic aberrations that are indicative of
NEPC. Combined loss-of-function alterations in the tumor suppressor genes TP53,
RB1 and PTEN are increased in patients with AVPC as compared to mCRPC [71].
In vivo knock-out studies have shown that the combinatorial, but not the single
knock-out of those tumor suppressors significantly enhances tumor aggressive-
ness as well as lineage plasticity and induces a neuroendocrine-like tumor growth
in mice [72], [73]. However, patient-derived xenograft models have also shown
that the combined loss of the three tumor suppressors does not inevitably cause
the emergence of NEPC [38].

In contrast, many TFs have been identified as drivers of the NET process. ASCL1
and FOXA2 are pioneering TFs that can bind to closed chromatin regions to in-
duce genes associated with neuronal differentiation and cancer stem cells [74],
[75]. Additionally, the TFs POU3F2, SOX11, NKX2-1 and LMO3 have been rec-
ognized to promote the neuroendocrine phenotype [41], [76]–[78]. This is accom-
panied by an increased expression of chromatin remodelers and histone mod-
ifiers such as ACTL6B, EZH2 and LSD1 [79]–[81]. Moreover, RNA processing
factors such as SRRM4 and LIN28B are deregulated to facilitate the epigenetic
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Figure 1.2: Signaling pathways in NET. Emergence of NEPC is caused by AR
inhibition and requires transdifferentiation and epigenetic reprogramming; this
involves induction of multiple TFs and epigenetic regulators that facilitate pro-
liferation, lineage plasticity and neuroendocrine differentiation; red - down-
regulated, blue - up-regulated.

reprogramming during NET [82], [83]. Up-regulation of PEG10 and AURKA is
required to maintain the high proliferation capacity of the transdifferentiated tu-
mor cells [84], [85]. Next to the drivers of the NET process mentioned before,
downstream genes are used as NEPC markers, although there is no evidence for
a functional role in the NET process. One example is the most commonly used
marker for NEPC, CHGA, which is activated by ASCL1 and thereby indicates a
successful reprogramming of the cell fate [74]. PCSK1 encodes a pro-hormone
convertase involved in the maturation of proneuropeptides and prohormones in
neuroendocrine cells [86]. PCSK1 was identified as significantly upregulated in
NEPC compared to PRAD in different patient cohorts [41], [87]. CEACAM5 is
another marker of neuroendocrine differentiation in PCa [88]. As a cell surface
protein, it is of special interest for the development of new substances for the
detection or targeted therapy of NEPC. CEACAM5 expression in NEPC tissue
samples showed little overlap with other well-known cell surface markers such
as PSMA and TROP2 [89].
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1.2 Liquid Biopsy

Tissue biopsies are still the basis for diagnosis and therapy decisions in mod-
ern oncology. However, the collection of tissue biopsies is associated with high
risk and pain for the patients and, therefore, also not suitable for longitudinal
sampling. As tissue biopsies are often taken as a punch biopsy, they have the
risk not to cover the heterogeneity within the tumor or between different sites
of metastasis. The term liquid biopsy has been introduced for the analysis of tu-
mor cells or tumor cell-derived biomolecules from body fluids [90]. Body fluids
that are harnessed for liquid biopsy include blood, urine, saliva or cerebrospinal
fluid [91]. Liquid biopsies are considered to be less risky and they can be taken
repeatedly. This makes liquid biopsy a valuable tool at different disease stages,
including screening of people at risk, detection of minimal residual disease and
monitoring of treatment response, resistance and tumor progression [92]. Due to
the multitude of information that can be extracted from a liquid biopsy sample
- be it mutations, gene silencing or protein expression - liquid biopsy is a key
to precision oncology and personalized therapy. A schematic overview of liquid
biopsy and potential analytes is shown in figure 1.3. Circulating nucleic acids
(cfDNA, cfRNA), extracellular vesicles (EV), proteins and other tumor metabo-
lites can be isolated from the blood plasma. cfDNA fragments can be analyzed
to obtain information about tumor mutations, copy number aberrations, DNA
methylation profiles and chromatin accessibility [93]. Due to their role in cell
communication, EVs are considered important mediators in the formation of the
metastatic niche. Therefore, EVs may carry biomarkers that are relevant for dis-
ease progression [94]. Among the cellular fraction, tumor-educated platelets and
cancer-assiciated fibroblasts have been identified as biomarkers, while circulating
tumor cells (CTC) remain the most studied cell type in liquid biopsy [95], [96].

1.2.1 Circulating Tumor Cells

CTCs are malignant cells that have left the tumor tissue and entered the blood
stream. CTCs can either be passively shed from the tumor or actively leave the
tumor after acquiring mesenchymal traits [97]. However, loss of cell-cell-contacts
and the shear stress in the circulation are harsh conditions and, thus, the half-life
time of CTCs is limited to about 1 h to 3 h [98]. Some CTCs are able to survive the
stress, extravasate and migrate to distant organs. These cells become the medi-
ators of metastasis via the blood stream [99]. Whole exome sequencing of CTCs
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Figure 1.3: Overview of analytes in liquid biopsy. Primary tumors and metas-
tases shed tumor cells and additional biomolecules into the blood circulation,
these can be isolated from peripheral blood; circulating nucleic acids, extracellu-
lar vesicles and small metabolites can be analyzed in the blood plasma while the
mononuclear cell fraction contains CTCs and additional cancer-associated cells.

as well as primary and metastatic tissue has revealed that not only the primary
tumor but also metastases contribute to the pool of CTCs found in the circulation
[100].

In the circulation, a few CTCs are diluted in millions of leukocytes and erythro-
cytes. Therefore, enrichment of CTCs is the first step followed by detection and
analysis [91]. Enrichment of CTCs can generally be performed based on the ex-
pression of epithelial or tumor-specific markers (positive selection) and leukocyte
markers (negative selection), or based on physical properties such as deformabil-
ity and size. For positive selection of CTCs, EPCAM is the most common epithe-
lial cell surface marker used for immunomagnetic enrichment. The CellSearch
system is the first FDA-cleared device for automated EPCAM-based enrichment
and enumeration of CTCs. It has been successfully used for CTC detection in PCa,
breast cancer and colorectal cancer, among others [101]–[103]. Importantly, CTCs
can serve as prognostic and predictive biomarkers as well as surrogate markers
for survival in clinical trials [104]. Additional markers such as EGFR, HER2 or
organ-specific markers are also used by other enrichment technologies, such as
the AdnaTest [105]. In contrast, label-independent enrichment methods are not
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constrained by cell differentiation and have been shown to improve the detection
of CTCs undergoing EMT. The Parsortix device relies on cell size for CTC enrich-
ment. Its key part is a microfluidic cassette, in which cells are moving through
a stepped structure narrowing down to 6.5 µm to leave leukocytes through but
trap larger and more rigid tumor cells [106]. Other technologies, for instance mi-
crofluidic spirals or filters, also harness other physical properties of CTCs such as
density, deformability or electrical charges [92].

Immunocytochemistry staining of cytokeratins (CK) is commonly applied for the
detection of CTCs, but other methods such as the EPISPOT assay or PCR-based
assays are also available. CTCs can further be isolated for genomic, transcrip-
tomic or other analysis. These analyses can either be performed on the single cell
level or on the bulk CTC fraction. Copy number aberrations and mutations can
be analyzed by next generation sequencing (NGS), but this needs to be coupled
with whole genome amplification for single cell analysis [107]. In-situ hybridiza-
tion or amplification assays are used to study structural variants, but also mRNA
and microRNA expression in single CTCs [108]–[110]. If enough cells are avail-
able, CTC transcriptomes can be analyzed by next-generation single cell RNA-
sequencing [111].

In summary, CTCs can be enriched from peripheral blood and enumeration as
well as transcriptional profiling of these cells can inform about tumor burden and
specific aberrations. Consequently, CTCs serve as valuable biomarkers in clinical
trials.

1.3 Use of Liquid Biopsy in Prostate Cancer

In PCa, the detection of tumor-derived proteins in serum in the form of PSA mon-
itoring is the earliest application of liquid biopsy. PSA is used as a standard
biomarker for PCa screening, disease monitoring and detection of biochemical
recurence. However, PSA is not a tumor-, but a prostate-specific marker. It in-
dicates AR signaling, but does not yield information about driver mutations or
resistance mechanisms, especially in the case of AR-independent disease. There-
fore, more advanced liquid biopsy assays for PCa are developed, focusing on
complex analytes such as CTCs or cfDNA. In comparison to other metastatic car-
cinomas, detection of CTCs appears to be rather frequent in mCRPC [112]. This
facilitates the enrichment and, consequently, also the analysis of CTCs. With re-
gard to cfDNA, patients seem to be less frequently positive for tumor signatures
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compared to other advanced carcinomas. However, if positive, patients have a
comparably high number of mutant fragments [113].

For a reliable use in the clinic, the genomic aberrations found in CTCs or ctDNA
need to be congruent with tissue samples. Several studies confirmed a general
congruence of cancer tissue and liquid biopsy results. For instance, a high concor-
dance of selected somatic mutations of matched tissue biopsy and ctDNA sam-
ples has been found in a cohort of metastatic PCa [114].

1.3.1 Prognostic and predictive markers in the setting of prostate

adenocarcinoma

CTC count has been one of the first prognostic liquid biopsy-based biomarkers in
PCa. Evaluation of CTC count in a CRPC cohort before and after therapy has led
to the definition of a threshold of 5 CTCs per 7.5mL blood to assess disease prog-
nosis [101]. Meanwhile, the CTC count is included as an intermediate endpoint
of survival in clinical trials, thus being also used as a response biomarker [115].
Apart from the count of CTCs, also the presence of CTC clusters has been asso-
ciated with a worse prognosis [116]. Similarly, the baseline cfDNA concentration
can serve as an independent prognostic biomarker for PFS in clinical trials of first-
and second-line taxane chemotherapy [117]. In addition, early changes in ctDNA
fraction during NHA treatment have been shown to be associated with duration
of response to therapy and survival in a prospective trial in CRPC patients [118].

Since alternative splicing is a well-defined resistance mechanism against NHA,
the expression of the AR-V7 splice variant has been analyzed in CTCs. Indeed,
clinical studies have shown that patients with AR-V7 positive CTCs have a worse
outcome after NHA compared to patients with AR-V7 negative CTCs and the in-
tegration of AR-V7 detection and CellSearch-based enumeration in CTCs might
have an additional benefit as a predictive biomarker set [119], [120]. Moreover,
AR-V7 has been identified in exosomal RNA of mCRPC patients and also in this
setting, AR-V7 has been identified as a marker for resistance to hormonal ther-
apy [121]. Likewise, other known mutations from PCa tissue have been detected
in CTCs and ctDNA. For instance, amplification or mutation of AR in ctDNA
predicted the outcome of CRPC patients on NHA [122], [123]. Further, specific
tumor-derived, non-coding RNA expression levels in blood have been described
to be associated with prognosis and response to treatment, but applications in
clinical trials are not as common as for CTCs or ctDNA [124], [125].
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A step beyond the analysis of single markers is the assessment of a marker panel.
For instance, a signature of expression levels of cancer-related genes in CTCs from
mCRPC patients has been described as a classifier to predict resistance to NHA
and PFS with a higher accuracy than AR-V7 alone [126]. Similarly, evaluation of
CTC count and gene expression in CRPC and mHSPC patients predicted outcome
after docetaxel therapy [127]. In general, the use of NGS, such as targeted-NGS
for the evaluation of aberrations in large panel of genes or with low-pass whole
genome sequencing drastically increases the amount of data that can be extracted
from the low quantities of analytes in the blood. Similarly, analysis of mutations
and DNA methylation in CRPC patients can inform about prognosis and therapy
options [123], [128], [129].

In conclusion, CTC count and detection of tumor-specific transcripts such as AR-
V7 are well-established biomarkers for survival and treatment resistance in ad-
vanced PCa.

1.3.2 Liquid Biopsy in the detection of neuroendocrine transdif-

ferentiation

In recent years, scientists have started to apply liquid biopsy approaches to detect
progression from PRAD to NEPC.

The easiest approach tested is the quantification of neuromediators released into
the plasma by neuroendocrine cells. In a small pilot study, the neuromediators
CHGA, NSE and pro-GRP have been measured in plasma from mCRPC patients
before and after cabazitaxel treatment. However, no significant correlation with
disease progression or survival has been found [130]. Heck et al. have analyzed
serum NSE and CHGA in mCRPC patients treated with abiraterone. NSE and
CGA levels were not correlated and did not predict PSA response, but the com-
bination of both was a significant predictor of PFS and OS [131].

The expression of neuroendocrine and stemness markers has also been analyzed
on the level of cell-free RNA in plasma. Overall, the patients in advanced stage
PCa exhibited a high degree of heterogeneity in their expression profiles. At least
one of four neuroendocrine marker transcripts was identified in 15 % of CRPC
patients and this was associated with worse prognosis. Neuroendocrine markers
have always been detected in combination with other transcripts, such as luminal
or stemness markers. However, no tissue samples were analyzed to determine
sensitivity or specificity of that assay [132].
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At CTC level, staining of cell surface markers is an easy method for phenotype
analysis. Synaptophysin is one of the most commonly used markers for neuroen-
docrine cell differentiation and it has been tested for detection of neuroendocrine
CTCs in CellSearch. In mCRPC, detection of SYP positive cells is correlated with
short time to progression on NHA, but neuroendocrine differentiation was not
confirmed by histology [133]. Similarly, expression of the Notch ligand DLL3 has
been found to be significantly up-regulated in NEPC compared to adenocarci-
noma and detection of DLL3 on CTCs was highly congruent with matched tissue
biopsies. About 60 % of patients had DLL3-positive CTCs with variable fractions
of the DLL3-positive subpopulation [134].

CTC morphology has also been described as a marker for NEPC. Beltran and col-
leagues have used the non-selection-based EPIC Sciences platform to detect CTCs
in mCRPC patients with known histology based on morphology and immunocy-
tochemistry staining. CTCs from NEPC patients have lower AR expression and
a higher nuclear to cytoplasmic ratio. About 60 % of NEPC patients with CTCs
were positive for the neuroendocrine marker CD56 on at least one cell, while it
was absent in PRAD samples. NEPC CTCs were further characterized by smaller
cell area, cell circularity and an increased number of CTC clusters. Identifica-
tion of NEPC-like CTCs in CRPC patients was associated with aggressive disease
[135]. Using the same platform, CTCs have been analyzed in a case report of
a patient with primary high grade adenocarcinoma and a liver metastasis with
neuroendocrine transdifferentiation. Based on morphology, a fraction of the cells
showed a small cell phenotype and almost all cells expressed CD56 while none
expressed AR. Single cell whole genome sequencing of CTCs has revealed a high
concordance of copy number aberrations with the liver metastasis but not the pri-
mary tumor [136]. In CTCs, combined loss of the three tumor suppressors TP53,
RB1 and PTEN was correlated with the expression of neuroendocrine markers
and lower AR expression [136]. In depth analysis of TP53, RB1 and PTEN loss
in cfDNA with targeted NGS has shown concordance in all paired plasma-tissue
samples with a tumor fraction larger than 10 %. Loss of the tumor suppressors
was correlated with worse clinical outcome [137].

Transcript analysis of CTCs enriched from PCa patients using the EPCAM-based
VERSA platform revealed a high degree of heterogeneity between patients. In
addition to prostate markers, CHGA and SYP have been included as neuroen-
docrine markers, but the panel allowed only for poor clustering of NEPC patients,
mainly because only about half of CTCs from the NEPC patients had a positive
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CHGA signal. However, in one case, positivity for neuroendocrine markers pre-
ceded clinical symptoms about 3 months, thus emphasizing the potential use of
liquid biopsy for NEPC detection [138]. The same platform for CTC analysis has
been used in a study evaluating enzalutamide in mCRPC patients and identified
the expression of neuroendocrine markers as a resistance mechanism [139].

Taken together, various methods have been applied to identify patients under-
going NET with liquid biopsy. On the protein level, neuroendocrine markers
have been detected in plasma and on CTCs, but the sensitivity and specificity
of these markers is not well studied. Gene expression profiling of CTCs has
shown promising results for early detection of NET in single case studies, how-
ever, higher sensitivity is required for reliable application in clinical testing.

1.4 Aim of the study

As a consequence of enduring therapeutic pressure on the AR signaling path-
way, PRAD may lose its dependence on AR for cell proliferation. AVPC is AR-
indifferent, grows more aggressively and treatment options are limited. NET is a
resistance mechanism by which tumor cells acquire an AR-independent pheno-
type. Hence, PSA no longer is a reliable biomarker in the setting of AVPC and
new markers are urgently needed to detect AR-indifferent disease and monitor
treatment response in these patients. However, metastatic biopsies are often dif-
ficult to obtain and associated with risks and pain for patients. Additionally, a
single biopsy does not capture the heterogeneity that is observed in AVPC pa-
tients. Within a single patient, metastases with luminal or neuroendocrine differ-
entiation can coexist and even a single tumor can consist of different subclones.
Therefore, this study aimed to identify new biomarkers for AVPC and NEPC
based on CTC analysis. CTCs depict the heterogeneity within a patient better
than a tissue biopsy and the analysis is easy to repeat. Classical serum biomark-
ers for neuroendocrine disease such as SYP, CHGA and CD56 are not expressed
universally in NEPC and their specificity is limited as focal expression of these
markers is also observed in PRAD tumors [140]. As NET is mainly driven by
alterations in the epigenome, the decision was made to identify potential mark-
ers on the transcriptome, but not the genome level. For this purpose, CTCs were
chosen as liquid biopsy analytes.

Based on whole genome or whole exome sequencing experiments in tissue biop-
sies, several signatures have previously been identified that differentiate quite
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accurately between AR-driven adenocarcinoma and NEPC [41]. They are based
on the expression levels of different stem cell, NE- and AR- related transcripts.
Subsequently, the knowledge on these NEPC signatures has to be combined with
the recent advances in liquid biopsy approaches in order to identify patients pro-
gressing to NEPC based on blood samples. The aim of this study was to enrich
CTCs from patients with AVPC and NEPC as well as from patients with hormone-
sensitive disease as control and analyze the transcript profiles in these cells. As
the test should be suitable for future routine use in the clinic, multiplex qPCR
analysis of bulk RNA from enriched CTCs was chosen. This allowed a rapid turn
around time and was less expensive than NGS analysis, for instance. For this
purpose, a transcript panel was identified and validated based on recent publica-
tions, tissue data sets and PCa cell lines. In addition, the use of label-dependent
CTC enrichment methods was compared to label-independent CTC enrichment.
The marker panel was afterwards measured by qPCR on cDNA generated from
AdnaTest-enriched CTCs. In parallel, CTC counts were determined using the
CellSearch system. The acquired data was afterwards compared to clinical pa-
rameters of the patients.



2 Materials and methods

2.1 Materials and Reagents

2.1.1 Cell lines

All cell lines used in this study were provided by the Institute of Tumor Biolo-
gy or the lab for Experimental Oncology at the second medical clinic and had
been purchased from ATCC. LNCaP cells (RRID: CVCL_0395) originate from a
lymph node of a male patient with hormone-sensitive PRAD [141]. VCaP cells
(RRID: CVCL_22359) were derived from a bone metastasis of a patient with cas-
tration-resistant PCa still expressing PSA [142]. NCI-H660 (RRID: CVCL_1576)
originate from a lymph node metastasis of a patient with treatment-naive small
cell PCa [143]. DU145 cells (RRID: CVCL_0105) are castration-resistant PCa cells
without PSA expression derived from a brain metastasis [144]. PC3 cells (RRID:
CVCL_0035) originate from a bone metastasis of a patient with high grade castra-
tion-resistant PRAD [145]. LASCPC-01 cells (RRID: CVCL_UE17) are a model of
neuroendocrine PCa generated from a PDX model of benign prostate basal cells
with overexpression of MYCN and constitutively active AKT1 [146]. NCI-H209
cells (RRID: CVCL_1525) originate from bone marrow of a male patient suffering
from treatment-naive small cell lung cancer [147]. All cells were cultured in their
respective medium shown in table 2.1 at 37 ◦C. Cells grown in DMEM were kept
at 10 % CO2, while the other cells cultured in RPMI-based medium were kept at
5 % CO2.

Table 2.1: Cell culture media.

Medium Supplements Cell lines
DMEM 2mM L-glutamine, 10 % FCS DU145, VCaP, PC3

18
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Medium Supplements Cell lines
HITES 2mM L-glutamine, 5 % FCS, 1 %

Insulin-Transferrin-Selenium A, 10 nM
β-estradiol, 10 nM hydrocortisone in
RPMI

LASCPC-01, NCI-
H660

RPMI 2mM L-glutamine, 10 % FCS LNCaP, NCI-H209

2.1.2 Chemicals and Reagents

All chemicals and reagents used in this study are listed in table 2.2.

Table 2.2: Chemicals and Reagents

Reagent Company
AB-Serum Bio-Rad Medical Diagnostics (Dreieich,

DE)
β-estradiol Sigma-Aldrich (St. Louis, US)
β-mercaptoethanol Merck (Darmstadt, DE)
DMEM High Glucose PAN-Biotech (Aidenbach, DE)
DRAQ5™staining solution Miltenyi Biotec (Bergisch Gladbach, DE)
Dulbecco’s phosphate buffered
saline

Gibco (Eggenstein, DE)

Erythrocyte Lyse Buffer (10X) R&D Systems (Minneapolis, US)
Ethanol absolut ChemSolute/Th. Geyer (Renningen, DE)
Fetal Bovine Serum, Advanced Capricorn Scientific (Ebsdorfergrund, DE)
Ficoll-Paque Plus™ Amersham Bioscience (Buckinghamshire,

UK)
Fluoromount-G™ Thermo Fisher Scientific (Carlsbad, US)
Hydrocortisone Sigma-Aldrich (St. Louis, US)
Insulin-Transferrin-Selenium A,
100X

Gibco (Eggenstein, DE)

Isopropanol ChemSolute/Th. Geyer (Renningen, DE)
L-glutamine 200mM Gibco (Eggenstein, DE)
Nuclease-free water Qiagen (Hilden, DE)
Paraformaldehyde ChemSolute/Th. Geyer (Renningen, DE)
RNasin®Plus Ribonuclease In-
hibitor

Promega (Madison, US)

RPMI 1640 PAN-Biotech (Aidenbach, DE)
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Reagent Company
Triton X-100 Sigma-Aldrich (St. Louis, US)
Trypan blue staining solution Sigma-Aldrich (St. Louis, US)
0.25 % Trypsin-EDTA Gibco (Eggenstein, DE)
Water, deionised B. Braun (Melsungen, DE)
Water, nuclease-free Qiagen (Hilden, DE)

2.1.3 Antibodies

All antibodies including conjugates are given in table 2.3.

Table 2.3: Antibodies

Target RRID Clone Conjugate Manufacturer
CD45 AB_893337 HI30 PerCp Biolegend (San Diego, US)
pan-
cytokeratin

AB_1834350 AE1/AE3 AF488 Invitrogen (Carlsbad, US)

pan-
cytokeratin

AB_2616664 C-11 AF488 Biolegend (San Diego, US)

NCAM1 AB_2905076 REA196 BV423 Miltenyi Biotec (Bergisch
Gladbach, DE)

2.1.4 Commercial Kits

Table 2.4 lists all commercial kits used in this study.

Table 2.4: Commercial Kits

Kit Manufacturer
AdnaTest ProstateCancerDetect Qiagen (Hilden, DE)
AdnaTest ProstateCancerSelect Qiagen (Hilden, DE)
CellSearch® Circulating Tumor Cell
Kit

Menarini Silicon Biosystems (Castel
Maggiore, IT)

NucleoSpin RNA Mini Kit Macherey & Nagel (Düren, DE)
RevertAid First Strand cDNA Synthe-
sis Kit

Thermo Fisher Scientific (Waltham,
US)

Sensiscript RT Kit Qiagen (Hilden, DE)
TATAA Interplate Calibrator FAM TATAA Biocenter (Göteborg, SW)
TATAA Probe GrandMaster® Mix TATAA Biocenter (Göteborg, SW)
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Kit Manufacturer
TATAA SYBR® GrandMaster® Mix TATAA Biocenter (Göteborg, SW)
ValidPrime® Human Probe assay TATAA Biocenter (Göteborg, SW)

2.1.5 Oligonucleotides

Commercial qPCR assay were bought from TATAA Biocenter (Göteborg, SW) (ta-
ble 2.5). Primers that were designed in the institute or chosen based on recent
literature were purchased from MWG Eurofins (Ebersberg, Germany). Primers
designed and provided by TATAA Biocenter (Göteborg, SW) were produced by
Integrated DNA Technologies (München, Germany). All gBlocks were purchased
from Integrated DNA Technologies (München, Germany). Primer sequences are
listed in table 2.6 and gBlock sequences are given in table 2.7.

Table 2.5: Commercial probe-based qPCR assays.

Transcript Reference number Design
ACTB qA-01-0104P TATAA Biocenter
AR qA-01-0364P TATAA Biocenter
AR-V7 qA-01-0368P TATAA Biocenter
CCND1 qA-01-0203P TATAA Biocenter
CD45/PTPRC qA-01-0240P TATAA Biocenter
EGFR qA-01-0211P TATAA Biocenter
EPCAM qA-01-0212P TATAA Biocenter
FOLH1 qA-01-0357P TATAA Biocenter
GAPDH qA-01-0101P TATAA Biocenter
HOXB13 qA-01-0889P TATAA Biocenter
HPRT1 qA-01-0112P TATAA Biocenter
KLK3 qA-01-0356P TATAA Biocenter
KRT19 qA-01-0225P TATAA Biocenter
PROM1 qA-01-0371P TATAA Biocenter
RAI2 qA-01-0890P TATAA Biocenter
TACSTD2 qA-01-0372P TATAA Biocenter

Table 2.6: Single-stranded DNA oligonucleotides

Transcript Sequence Design
ACTL6B-F GGC CTG TTT GAT CCC TCG AA [148]
ACTL6B-R GGT GAC AAT GAC ACT CCC GT [148]
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Name Sequence Design
ASCL1-F TCG CCG GTC TCA TCC TAC TC TATAA Biocenter
ASCL1-R GTT GTG CGA TCA CCC TGC TT TATAA Biocenter
ASCL1-P AGG AGC TTC TCG ACT TCA CCA

ACT GG - FAM/ZEN

TATAA Biocenter

CEACAM5-F GGG ACC TAT GCC TGT TTT GTC TATAA Biocenter
CEACAM5-R AGA GAC CAG GAG AAG TTC CAG A TATAA Biocenter
CEACAM5-P TTC CAT AGT CAA GAG CAT CAC

AGT CTC TGC - FAM/ZEN

TATAA Biocenter

CHGA-F TCC CTG TGA ACA GCC CTA TG TATAA Biocenter
CHGA-R AAG GAT CCG TTC ATC TCC TCG G TATAA Biocenter
CHGA-P CTC CGA CAC ACT TTC CAA GCC

CAG CCC - FAM/ZEN

TATAA Biocenter

FOXA2-F CGG TGA AGA TGG AAG GGC A TATAA Biocenter
FOXA2-R CAT GTT GCT CAC GGA GGA GT TATAA Biocenter
FOXA2-P AGC CGT CCG ACT GGA GCA GC -

FAM/ZEN

TATAA Biocenter

KRT6A-F TAG TGC CCT CAC TTC TTC TCT

CTC

TATAA Biocenter

KRT6A-R GCT CAG CCT CAG AGA TAG AAC AC TATAA Biocenter
KRT6A-P TGT AAT CAC CAC TGG AGC TTC

ACT GTT - FAM/ZEN

TATAA Biocenter

LIN28B-F TGT AGT CTA CCT CCT CAG CCA A [83]
LIN28B-R ATT CTG CTT CCT GTC TTC CCT G [83]
LMO3-F TCT GAG GCT CTT TGG TGT AAC G [149]
LMO3-R CCA GGT GGT AAA CAT TGT CCT TG [149]
NKX2-1-F CGT ACC AGG ACA CCA TGA G TATAA Biocenter
NKX2-1-R ATG CCG CTC ATG TTC ATG C TATAA Biocenter
NKX2-1-P CCA TCT CCC GCT TCA TGG GC -

FAM/ZEN

TATAA Biocenter

NKX3-1-F CCC ACA CTC AGG TGA TCG AG ITB in-house
NKX3-1-R GAG CTG CTT TCG CTT AGT CTT ITB in-house
PCSK1-F CCG ACC AGA GAA TCA CGA GC TATAA Biocenter
PCSK1-R ACC AGG TGC TGC ATA TCT CG TATAA Biocenter
PCSK1-P CCA GAG CGA AGA TGC CAG CAG CC

- FAM/ZEN

TATAA Biocenter
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Name Sequence Design
PEG10-F GCC TCC ATC CCC ACA GAA GTG

AAG C

TATAA Biocenter

PEG10-R CAC TCT TAT GGC CGG TGT GCT

TGG A

TATAA Biocenter

PEG10-P CCC AAC CGT CAC CCT GGG TCC

CGA CTG CCC - FAM/ZEN

TATAA Biocenter

POU3F2-F GTA ACT GTC AAA TGC GCG GC TATAA Biocenter
POU3F2-R GAG GTG AGC AGG CTG TAG TG TATAA Biocenter
POU3F2-P CGG TCG CCA TGA CTC TCG GAG CC

- FAM/ZEN

TATAA Biocenter

SOX11-F CCA GGA CAG AAC CAC CTG AT [150]
SOX11-R CCC CAC AAA CCA CTC AGA CT [150]
SRRM4-F GCC CAT CGC CTG TCA AGA AA TATAA Biocenter
SRRM4-R TTT GGG CTA GAG GAG CTG TG TATAA Biocenter
SRRM4-P AAA GTT CCA AGA AAC ACA AGC

GAC G - FAM/ZEN

TATAA Biocenter

Table 2.7: Double-stranded DNA oligomers (gBlocks)

Name Sequence
ASCL1 TCG CCG GTC TCA TCC TAC TCG TCG GAC GAG GGC TCT

TAC GAC CCG CTC AGC CCC GAG GAG CAG GAG CTT CTC

GAC TTC ACC AAC TGG TTC TGA GGG GCT CGG CCT GGT

CAG GCC CTG GTG CGA ATG GAC TTT GGA AGC AGG GTG

ATC GCA CAA C

CEACAM5 TCG CCA AAA TCA CGC CAA ATA ATA ACG GGA CCT ATG

CCT GTT TTG TCT CTA ACT TGG CTA CTG GCC GCA ATA

ATT CCA TAG TCA AGA GCA TCA CAG TCT CTG CAT CTG

GAA CTT CTC CTG GTC TCT CAG CTG GGG CCA CT

CHGA TCC CTG TGA ACA GCC CTA TGA ATA AAG GGG ATA CCG

AGG TGA TGA AAT GCA TCG TTG AGG TCA TCT CCG ACA

CAC TTT CCA AGC CCA GCC CCA TGC CTG TCA GCC AGG

AAT GTT TTG AGA CAC TCC GAG GAG ATG AAC GGA TCC

TT
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Name Sequence
FOXA2 TGC CAT GCA CTC GGC TTC CAG TAT GCT GGG AGC GGT

GAA GAT GGA AGG GCA CGA GCC GTC CGA CTG GAG CAG

CTA CTA TGC AGA GCC CGA GGG CTA CTC CTC CGT GAG

CAA CAT GAA CGC CGG CCT GGG GAT GAA CGG CAT GAA

CAC GTA

KRT6A TAG TGC CCT CAC TTC TTC TCT CTC TCT CTA TAC CAT

CTG AGC ACC CAT TGC TCA CCA TCA GAT CAA CCT CTG

ATT TTA CAT CAT GAT GTA ATC ACC ACT GGA GCT TCA

CTG TTA CTA AAT TAT TAA TTT CTT GCC TCC AGT GTT

CTA TCT CTG AGG CTG AGC

NKX2-1 TAC TGC AAC GGC AAC CTG GGC AAC ATG AGC GAG CTG

CCG CCG TAC CAG GAC ACC ATG AGG AAC AGC GCC TCT

GGC CCC GGA TGG TAC GGC GCC AAC CCA GAC CCG CGC

TTC CCC GCC ATC TCC CGC TTC ATG GGC CCG GCG AGC

GGC ATG AAC ATG AGC GGC AT

PCSK1 CCG ACC AGA GAA TCA CGA GCG CTG ACC TGC ACA ATG

ACT GCA CGG AGA CGC ACA CAG GCA CCT CGG CCT CTG

CAC CTC TGG CTG CTG GCA TCT TCG CTC TGG CCC TGG

AAG CAA ACC CAA ATC TCA CCT GGC GAG ATA TGC AGC

ACC TGG T

PEG10 GCC TCC ATC CCC ACA GAA GTG AAG CTA CAG CTG GGA

GGT CTC CTC CCA CCC CAA CCG TCA CCC TGG GTC CCG

ACT GCC CAC CTC CTC CTC CTC CCC CTC CCC CCA ACA

TCA GCA ACA TCA ACA ACT CCA AGC ACA CCG GCC ATA

AGA GTG

POU3F2 GAG AGG GAG CCC GAG GCG AAA AAG TAA CTG TCA AAT

GCG CGG CTC CTT TAA CCG GAG CGC TCA GTC CGG CTC

CGA GAG TCA TGG CGA CCG CAG CGT CTA ACC ACT ACA

GCC TGC TCA CCT CCA GCG CCT CCA TCG TGC AC

SRRM4 GAA GGA GGT CCT CAT CCT ATA GCC CAT CGC CTG TCA

AGA AAA AGA AGA AGA AAA GTT CCA AGA AAC ACA AGC

GAC GCA GGT CAT TCT CCA AGA AGA GAA GGC ACA GCT

CCT CTA GCC CAA AAA GCA AAA GAA GAG ATG AG
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2.1.6 Consumables

All consumables used in this study are listed in table 2.8

Table 2.8: Consumables

Product Manufacturer
BD Vacutainer K2E Becton, Dickinson and Com-

pany (Plymouth, UK)
Cell culture flask T75, suspension cells Sarstedt (Nümbrecht, DE)
Cell culture flask T25, adherent cells Sarstedt (Nümbrecht, DE)
CellSave tube Menarini Silicon Biosystems

(Castel Maggiore, IT)
Conical tubes (15mL, 50mL) Greiner Bio-One (Fricken-

hausen, DE)
Cover slides (22 x 22 mm) Marienfeld (Lauda-

Königshofen, DE)
ImmEdge® hydrophobic barrier pen Vector Laboratories

(Burlingame, US)
Microseal® B plate seal Bio-Rad Laboratories (Her-

cules, US)
Monovette, EDTA Sarstedt Sarstedt (Nümbrecht,

DE)
Parsortix casette EU GEN 6.5 ANGLE plc (Guildford, UK)
Pipette tips (10 µL, 100 µL, 200 µL, 1,000 µL ) Sarstedt (Nümbrecht, DE)
Pipette tips with filter (10 µL, 100 µL, 200 µL,
1,000 µL)

Sarstedt (Nümbrecht, DE)

PCR plate, 96 wells Biorad Laboratories (Hercules,
US)

Reaction tubes (0.5mL, 1.5mL, 2.0mL) Sarstedt (Nümbrecht, DE)
Serological pipettes (2mL, 5mL, 10mL) Sarstedt (Nümbrecht, DE)
SuperFrost® Plus microscope slides R. Langenbrinck (Emmendin-

gen, DE)
Ultra-Low attachment plate, 24 well Corning (Kennebunk, US)

2.1.7 Laboratory Devices

A list of all laboratory devices used in this study is found in table 2.9.
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Table 2.9: Laboratory Devices

Device Manufacturer
AdnaMag-L Qiagen (Hilden, DE)
AdnaMag-S Qiagen (Hilden, DE)
Axio Oberver Fluorescence micro-
scope

Carl Zeiss (Jena, DE)

Celltracks Analyzer II® Menarini Silicon Biosystems (Castel
Maggiore, IT)

Celltracks® Autoprep® System Menarini Silicon Biosystems (Castel
Maggiore, IT)

Centrifuge 5415 R Eppendorf (Hamburg, DE)
Cytocentrifuge Rotofix 32 Hettich (Tuttlingen, DE)
Sterile hood Herasafe KS12 Heraeus Kendro (Langenselbold,

DE)
Incubator HERAcell 150i Thermo Scientific (Waltham, US)
Nanodrop® ND-1000 spectropho-
tometer

PEQLAB Biotechnology (Erlangen,
DE)

Micropipette (2.5 µL, 10 µL, 100 µL,
200 µL, 1,000 µL)

Eppendorf (Hamburg, DE)

Mini Plate Spinner MPS 1000 Labnet (Corning, US)
Mini Star Centrifuge VWR (Darmstadt, DE)
Multifuge 3 S-R Heraeus (Hanau, DE)
Neubauer counting chamber Hecht Assistent (Sondheim, DE)
Parsortix™PR1 ANGLE plc (Guildford, UK)
PCR Workstation Pro PEQLAB Biotechnology (Erlangen,

DE)
Pipette boy Hirschmann (Eberstadt, DE)
Roll mixer RM5 Hecht Assistent (Sondheim, DE)
Rotator 2-1175 neoLab (Heidelberg, DE)
Thermal Cycler PTC-200 MJ Research (Waltham, US)
Thermomixer compact Eppendorf (Hamburg, DE)
Thermoycler C1000 Touch CFX96™ Bio-Rad Laboratories (Hercules, US)
Thermocycler peqSTAR 96 Universal
Gradient

PEQLAB Biotechnology (Erlangen,
DE)

Vortex-Genie 2 Scientific Industries (Bohemia, US)
Water bath Lauda-GFL (Lauda-Königshofen,

DE)
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2.1.8 Software and Online Resources

Published RNA sequencing data sets for PCa tissue samples were downloaded
from cBioPortal (cbioportal.org). For the Neuroendocrine Prostate Cancer dataset
(Multi-Institute, Nat Med 2016), mRNA expression data were downloaded as
log(FPKM) values [135]. For the Metastatic Prostate Adenocarcinoma dataset
(SU2C/PCF Dream Team, PNAS 2019), sequencing data were downloaded at z-
scores relative to all samples.

qPCR data were inspected and Cq values were calculated using the CFX Man-
ager 3.1 software (Biorad, Germany). Plots and statistical analyses were done
with Graphpad Prism version 10 and R Studio version 2023.06.2 Build 561 with
R version 4.2.2. NormFinder version 5 for R was used to check the stability of
housekeeping genes and select housekeepers for subsequent analysis [151]. The
R package ComplexHeatmap (V 2.14.0) was used to draw all heatmaps. For su-
pervised analysis, the R packages ranger (V 0.16.0) and caret (V 6.0-94) were used.
Survival data were plotted and evaluated using the R package survminer (V 0.4.9).
Microscopy images were acquired and processed with ZEN 3.1 blue edition, (Carl
Zeiss, Jena, DE). The illustrations in the introduction were created with BioRen-
der.com.

2.2 Methods

2.2.1 Cell culture

2.2.1.1 Passaging

All cells were cultivated in their respective media as listed in 2.1. To passage ad-
herent cells, the medium was discarded and cells were washed with PBS. Cells
were detached by incubation with 1mL trypsin-EDTA at 37 ◦C. 4mL medium
were added and cells were resuspended by pipetting. Cells were collected by
centrifugation at 1,200 rpm for 3min and the supernatant was discarded. The cell
pellet was resuspended in 10mL medium and a fraction of cells was transferred
to a new T25 cell culture flask and fresh medium was added to a final volume of
5mL. NCI-H660, NCI-H209 and LASCPC-01 cells, which all grow in suspension,
were spun down at 1,200 rpm for 3min and resuspended in fresh medium. A frac-
tion of the cells was transferred to a new T75 cell culture flask and fresh medium
was added to a final volume of 15mL. In case of NCI-H660, the supernatant was
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not discarded, but 5mL were add to the new flask to foster the cell growth by
paracrine stimuli.

2.2.1.2 Spike-in experiments

For spike-in experiments, cells were harvested as described above. For small cell
numbers, the resuspended cells were diluted in PBS and 2mL cell suspension
were transferred to an ultra-low attachment 24-well plate and placed on the mi-
croscope. Cells were allowed to settle down for 5min before single cells were
soaked up with a 10 µL pipette under the microscope and transferred to a new
tube or a blood sample, respectively. Spike-in samples were afterwards treated
similar to the patient samples.

2.2.2 Patient samples

Blood samples from PCa patients were collected in 4.9mL or 7.5mL EDTA mono-
vettes at the University Medical Center Hamburg-Eppendorf between November
2020 and June 2023. Blood collection was approved by the ethical commission of
the city of Hamburg (Hamburger Ärztekammer) and all patients provided in-
formed consent. Patients were selected by an experienced clinician based on clin-
ical parameters and serum markers according to modified criteria defined by Ep-
stein et al. and Aparicio et al. [33], [34]. Samples were pseudonymized in the clinic
before transport to the research lab. For negative controls, blood was collected
in EDTA tubes from male donors at the blood donation facility at the Depart-
ment for Transfusion medicine, University Medical Center Hamburg-Eppendorf.
Blood samples from healthy donors were anonymized, but information on the
age of the donors was available. All blood samples were processed within 3 h
after blood collection.

2.2.3 Processing of Blood Samples

2.2.3.1 Isolation of Peripheral Blood Mononuclear Cells

Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifu-
gation. First, a whole blood sample or the cell fraction following the first step of
plasma isolation were filled up with PBS to final volume of 30mL. The diluted
blood sample was gently layered onto 20mL ficoll and centrifuged at 400 xg for
30min with low acceleration and break off. The aqueous upper phase and the
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silk-like PBMC phase on top of the ficoll phase were transferred to a new tube
and PBS was added to a final volume of 50mL. PBMCs were collected by cen-
trifugation at 400 xg for 10min with break. In case the pellet was of a reddish
color, it was resuspended in 1mL erythrocyte lysis buffer and incubated for 2min
at room temperature. 20mL PBS were added and the PBMCs were collected by
centrifugation at 400 xg for 10min with break. PBMCs were resuspended in 10mL
PBS and counted with an automated cell counter.

2.2.3.2 CTC enrichment using CellSearch

For CellSearch analysis, 7.5mL EDTA blood were transferred to a CellSave tube
and mixed by inversion. Within 72 h, CTCs were enriched using the automated
CellSearch device with the CellSearch Circulating Tumor Cell kit. In brief, CTCs
were automatically enriched based on EPCAM expression and stained with flu-
orescence-labeled antibodies against pan-cytokeratin and CD45 as well as DAPI.
Enriched and stained cells were scanned in a cassette using the Celltracks An-
alyzer II. Events with positive DAPI and pan-cytokeratin staining and absent
CD45 staining were automatically filtered. All suspicious events were manually
checked for cell morphology and CTC counts were documented. CTCs with a
peri-nuclear dot-like cytokeratin staining were indicative of a small cell-like phe-
notype and the presence of these small cell-like CTCs was documented.

2.2.3.3 CTC enrichment using Parsortix

CTC enrichment using Parsortix is based on microfluidics and harnesses the in-
creased cell size and decreased deformability of tumor cells for enrichment. 7.5mL
EDTA blood were used for CTC enrichment. If plasma was isolated from the
same tube, the respective volume was replaced with PBS after the first step of
plasma isolation. According to manufacturer’s instructions, the Parsortix device
was primed with the PX2_PF program and a GEN 6.5 cassette was inserted. The
CTCs were enriched using the S50F protocol or with the S99F protocol in case
more pressure was needed to keep the blood moving through the cassette. CTCs
were harvested using the PX2_H program with the Further Flush option. Cells
were either harvested directly into a cytospin funnel or into a 1.5mL reaction
tube. From the latter, 0.5mL were transferred into a cytospin funnel and the
remaining cells were spun down at 800 xg for 10min. The supernatant was dis-
carded and 200 µL AdnaTest lysis buffer were added. Cytospins were centrifuged
at 1,200 rpm for 7min and air-dried over night. Lysates and cytospin slides were
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stored at −80 ◦C.

2.2.3.4 CTC enrichment using AdnaTest

For subsequent transcript analysis, CTCs were enriched using the label-dependent
AdnaTest Prostate Cancer Select Kit. CTC enrichment relies on the expression of
the cell surface markers EPCAM, HER2 and EGFR. CTC lysates were prepared ac-
cording to the manufacturer’s instructions within 3 h after blood collection. First,
antibody-coupled magnetic beads were washed three times in 1mL PBS for 1min.
Next, 5mL blood were incubated with 100 µL equilibrated beads for 30min in
slow rotation at room temperature. The beads were captured with a magnet and
the blood was discarded. The beads were washed three times with 5mL PBS and
transferred to a 1.5mL reaction tube in 1mL PBS. Last, the beads were incubated
in AdnaTest lysis buffer to release the cell contents. The supernatant containing
the RNA was transferred to a new collection tube and stored at −80 ◦C.

2.2.4 Gene expression analysis

2.2.4.1 RNA isolation from cultured cells

Total RNA was isolated from cultured cells using the NucleoSpin RNA Mini kit
according to the manufacturer’s instructions. Briefly, up to five million cells were
lysed in 350 µL lysis buffer with 3.5 µL β-mercaptoethanol. The lysate was cleared
by centrifugation through a filter column. 350 µL 70 % ethanol were added and
the lysate was loaded onto an RNA binding column. The column was desalted
once with 350 µL MDB buffer and DNA was digested on the column with recom-
binant DNase for 15min. DNase was inactivated by washing buffer RAW2.

After two additional washing steps with RA3 buffer, the column was dried by
centrifugation and the RNA was eluted in 40 µL nuclease-free water. RNA con-
centration was measured using the Nanodrop photometer and the RNA was
stored at −80 ◦C.

2.2.4.2 cDNA synthesis from RNA of cultured cells

cDNA synthesis was set up using the RevertAid FirstStrand cDNA Synthesis Kit.
Reaction mixtures were prepared according to the table 2.10. First, RNA, water
and oligo(dT) primer were mixed and incubated at 65 ◦C for 5min and on ice for
2min. Next, the remaining reagents were added and reverse transcription was
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Table 2.10: Composition of RevertAid cDNA synthesis reaction.
reagent volume [µL]

5X Reaction buffer 4
dNTP mix, 10mM 2

Oligo(dT)18 primer, 100 µM 4
RiboLock RNase inhibitor 1

RevertAid M-MuLV RT 2
purified RNA 1 µg

RNase-free water ad 20 µL

Table 2.11: Thermocycler protocol for RevertAid cDNA synthesis.
temperature time

37 ◦C 60min
70 ◦C 5min

performed in the thermocycler at 37 ◦C and the reverse transcriptase was heat-
inactivated (table 2.11). cDNA was stored at −20 ◦C until further use.

2.2.4.3 mRNA isolation and cDNA synthesis from CTC lysates

mRNA isolation and cDNA synthesis were performed on AdnaTest CTC lysates
using the AdnaTest Detect Kit according to the manufacturer’s instructions. First,
oligo(dT) magnetic beads were equilibrated in lysis buffer and 20 µL beads were
added to 200 µL CTC lysate. Following incubation for 10min in rotation at room
temperature, beads were captured with a magnet and washed twice with wash
buffer A. Next, the beads were transferred to a new tube and washed twice in
buffer B and once in ice-cold Tris. For cDNA synthesis, the beads were resus-
pended in 14.75 µL nuclease-free water and incubated at 65 ◦C for 5min. The com-
plete volume of beads in water was mixed with 5.25 µL cDNA synthesis master
mix as shown in table 2.12 and incubated in a thermal cycler according to table
2.13. Lysates derived from Parsortix-enriched cells were processed similar to Ad-
naTest lysates.

Table 2.12: Composition of AdnaTest cDNA synthesis master mix.
reagent volume [µL]

10X reaction buffer 2 µL
dNTP mix 2 µL

RNasin Ribonuclease inhibitor 0.25 µL
reverse transcriptase 1 µL
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Table 2.13: Thermal cycler protocol for AdnaTest cDNA synthesis.
temperature time

37 ◦C 60min
93 ◦C 5min

Table 2.14: Composition of cDNA pre-amplification reaction.
reagent volume [µL]

2X TATAA SYBR GrandMaster Mix 25
assay mix (500 nM per assay) 5

cDNA on beads 5
nuclease-free water 15

2.2.4.4 Pre-amplification of AdnaTest cDNA

In order to analyse a higher number of target transcripts in the small cDNA vol-
ume from the enriched CTCs, transcripts were pre-amplified in a multiplex PCR
before every single transcript was quantified by real-time qPCR. Due to the pre-
amplification step, quantification of the transcripts was only possible in a semi-
quantitative manner. Each pre-amplification reaction was set up in 50 µL with
TATAA SYBR GrandMaster Mix, 5 µL cDNA on beads and a mix of the single
assays with a final concentration of 50 nM per assay as shown in table 2.14. Reac-
tions were carefully mixed by pipetting and not centrifuged to keep the beads in
suspension. cDNA was preamplified in 18 cycles according to the protocol in ta-
ble 2.15. Each cDNA sample was pre-amplified with three different assays mixes.
Assay mix 1 contained the single assays for AR, AR-V7, KLK3, FOLH1, EPCAM,
KRT19, TACSTD2, PROM1, CCND1, RAI2, CD45, ACTB, GAPDH, HPRT1, Valid-
Prime. In assay mix 2 the single assays for ASCL1, FOXA2, PCSK1, POU3F2,
PEG10, SRRM4, KRT6A, CHGA, CEACAM5, NKX2-1 were combined. LMO3,
SOX11, LIN28B, ACTL6B, NKX3-1 were mixed for assay mix 3.

2.2.4.5 Quantitative PCR

cDNA was detected and quantified by real-time qPCR using the TATAA Grand-
Master Mixes. For cell line-derived cDNA, 10 µL reaction mixes were prepared ac-

Table 2.15: Thermal cycler protocol for AdnaTest cDNA synthesis.
95 ◦C 3min
95 ◦C 15 s
60 ◦C 60 s repeat 18x
72 ◦C 20 s
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Table 2.16: Composition of realtime qPCR mixtures for cell-line derived cDNA
samples.

reagent volume [µL]
2X TATAA GrandMaster Mix 5

assay (10 µM per primer) 0.4
cDNA (diluted 1:10) 1
nuclease-free water 3.6

Table 2.17: Composition of realtime qPCR mixtures for CTC-derived cDNA sam-
ples.

reagent volume [µL]
2X TATAA GrandMaster Mix 12.5

assay (10 µM per primer) 1
cDNA (diluted 1:8) 5
nuclease-free water 6.5

cording to table 2.16. AdnaTest pre-amplified cDNA was diluted 1:8 in nuclease-
free water and 25 µL reaction mixes were prepared to allow for a larger input
volume of the template (table 2.17). All probe-based assays were used in combi-
nation with the TATAA Probe GrandMaster Mix and the remaining assays were
analyzed using the TATAA SYBR GrandMaster Mix. The ValidPrime qPCR re-
quired a minimally different reaction mix as shown in table 2.18. Set up of the
interplate calibrator reaction is shown in table 2.19. The thermocycler protocol
was the same for all reactions and is shown in table 2.20.

Thresholds were calculated automatically by the CFX Manager software and melt
curves were checked for the SYBR-based assays. Cell line samples were measured
in triplicates while patients samples, due to restriction of available material, were
measured with one reaction per assay. For quantification of gene expression in
cell lines,ΔCq values were calculated by subtracting the mean Cq value of the ref-
erence genes ACTB and HPRT1. ΔCq values were visualized as reversed values
(19−∆Cq) and missing values were set to 0.

Table 2.18: Composition of realtime qPCR mixtures for ValidPrime detection of
genomic DNA.

reagent volume [µL]
2X TATAA Probe GrandMaster Mix 12.5

ValidPrime primer mix (10 µM per primer) 1
ValidPrime probe (10 µM) 0.5

cDNA (diluted 1:8) 5
nuclease-free water 6.5
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Table 2.19: Composition of realtime qPCR mixtures for the interplate calibrator.
reagent volume [µL]

2X TATAA Probe GrandMaster Mix 12.5
IPC primer mix (µM per primer) 5

IPC probe (10 µM) 2.5
IPC template 2

nuclease-free water 3

Table 2.20: Thermal cycler protocol for realtime qPCR and melting curve.
95 ◦C 3min
95 ◦C 15 s
60 ◦C 20 s repeat 40x
72 ◦C 20 s

60 ◦C to 95 ◦C 10min

PCR efficiency was calculated from the linear regression parameters of a four step
dilution series of gBlock or cDNA according to the following formula:

% PCR efficiency = ( 10
−1

slope − 1 ) ∗ 100

For data analysis, single plates were first merged into one large data set using
the interplate calibrator (IPC). All raw Cq values were corrected by first subtract-
ing the the average Cq of the IPC triplicate on the respective plate and after that
adding the average IPC Cq value of all plates analyzed, as shown below.

Cq corrected = Cq raw − Cq IPC intraplate average + Cq IPC interplate average

Next, all Cq values were corrected for potential contamination with genomic
DNA (gDNA) using the ValidPrime Kit. First, the Cq values of the reverse tran-
scriptase negative control were calculated using the Cq value of the gene of in-
terest (GOI) on gDNA, and the Cq value of the ValidPrime primer on the sam-
ple. The assays for CD45, ACTB, EPCAM, TACSTD2, POU3F2, PEG10, KRT6A,
HOXB13, LMO3, SOX11, LIN28B and NKX3-1 required correction. For assays
without a signal on gDNA and samples without detection of gDNA by the Valid-
Prime assay this step was omitted.

CqRT−control = CqGOIgDNA+(CqV alidPrimesample−CqV alidPrimegDNA)
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The calculated RT– control was used to correct the Cq values of the respective
samples and GOIs for the background signal from gDNA.

Cq corrected = −log2(2
−Cq GOI RT+ − 2−Cq GOI RT−

)

According to the AdnaTest manual a cut-off of 35 was chosen and all corrected
Cq values ≥ 35 were defined negative. For data normalization, Cq values for the
housekeeping genes were first checked for stability of expression using NormFinder.
NormFinder analysis revealed that the combination of GAPDH and ACTB had the
best stability in gene expression. ΔCq values were calculated by subtracting the
Cq value of the housekeeping genes from the Cq value of the GOI. Based on the
results from the blood samples of ten healthy individuals, a threshold for marker
positivity was defined as the mean ΔCq value minus one standard deviation to
corrected for potential signals from contaminating leukocytes. Normalized and
healthy donor corrected Cq values were reversed by subtraction from 26 (round-
ing up the highest ΔCq value) and transcripts without a signal were set to 0.

2.2.5 Immunofluorescence staining

Immunofluorescence staining was performed on cytospins derived from Parsortix-
enriched CTC samples. As controls, cell line suspensions were admixed with
PBMCs and cytospins were similarly prepared. All cytospins were stored at
−80 ◦C. For staining, cells were encircled with a hydrophobic barrier pen and
incubated with 4% para-formaldehyde in PBS for 10min. Slides were washed
three times for 3min with PBS. The cell membrane was permeabilized in 0.2%
triton-X 100 in PBS for 20min and cells were washed three times as before. Unspe-
cific antibody binding was blocked with 10% AB-serum in PBS for 30min. Cells
were stained with a cocktail of the directly conjugated antibodies (1:200, only
anti-CD45 1:100) for and the DNA dye DRAQ5 (1:1000) at room temperature for
60min. The cells were washed and mounted with one drop Fluoromount-G and
covered with cover slides. Slides were allowed to air-dry in the dark for 30min
and stored at 4 ◦C until imaging. For all incubation steps longer than 20min,
slides were kept in a humid chamber.

All slides were scanned at a fluorescence microscope at 20X magnification. Sus-
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picious cells with positive CK signal were captured at 40X magnification. Cells
were considered to be CTCs, when they had an intact nucleus, positive CK stain-
ing and negative CD45 staining. The CK staining was required to surround the
nuclear staining.

2.2.6 Statistical analyses

Differential gene expression between the groups was analyzed using Kruskal-
Wallis test and the Wilcoxon rank sum test together with Dunn’s correction for
multiple testing for pair-wise comparison. Chi-squared test and Fisher’s exact
test were used to assess differences among categorical variables, such as positiv-
ity of a certain marker per group. Hierarchical clustering on published data sets
was performed with the complete method and pearson as distance measure, while
clustering of patient samples based on gene expression profiles was performed
with the ward.D method and euclidean as distance measure. For the random for-
est analysis, mtry was set to 2, importance was set to impurity and splitrule was set
to extratrees, while default values were kept for all other parameters. Leave-on-
out cross-validation was included to calculate the out-of-bag error rate. P-values
are indicated as ∗ for P < 0.05, ∗∗ for P < 0.01, ∗ ∗ ∗ for P < 0.001 and ∗ ∗ ∗∗ for
P < 0.0001.



3 Results

3.1 Selection and validation of the marker panel

The leading hypothesis of this study was that the gene expression patterns of
CTCs isolated from advanced PCa patients can be used as a biomarker to identify
disease subtypes with impact on treatment decisions. To identify patients with
NEPC based on their CTC transcriptome profile, suitable markers first had to be
identified and PCR assays had to be selected and validated. Potential marker
transcripts were selected following literature review. The marker panel was af-
terwards validated on PCa cell lines representing different disease stages and on
published RNA sequencing data sets of mCRPC patients with known histology.
The assays were also technically validated and tested for potential interference
in multiplex PCR and their sensitivity was tested in controls with spike-in tumor
cells to validate the complete workflow of CTC enrichment, RNA isolation and
PCR-based detection.

3.1.1 Selection of a transcript panel

The first step in assay development was to select a suitable marker panel for
multiplex analysis. The epithelial markers EPCAM and KRT19 were included
for the purpose of classifying samples as CTC positive or negative [152]. Next,
well-known prostate-specific transcripts were chosen to serve as markers for CTC
positivity but also to monitor the activity of the AR pathway. These included AR,
AR-V7 and their downstream targets KLK3 and NKX3-1. HOXB13 and FOLH1
are further markers of luminal cell differentiation with the latter also being an
important marker in theranostics [153], [154]. RAI2 was included to study its role
in the loss of AR signaling dependency [153].

To identify transcripts that indicate NE differentiation or that are involved in

37
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NET, recent literature was searched in PubMed (National Center for Biotechnol-
ogy Information) using the terms neuroendocrine prostate cancer and small cell pros-
tate cancer. Genes were chosen for which a functional role in the NET process was
proven or which were identified as differentially expressed genes in data sets of
patients with PRAD versus NEPC [70]. Next, expression of those genes in blood
and immune cells was examined in The Human Protein Atlas (www.proteinatlas.-
org) [155]. In the section IMMUNE CELL TYPE EXPRESSION (RNA), markers
were only selected if they were classified as Not detected in immune cells. This was
required as CTC-enriched samples still contain a considerable number of leuko-
cytes that would interfere with the detection in the CTCs. As a consequence, sev-
eral well-known markers and drivers of NET had to be excluded, such as SYP,
NCAM1, EZH2 or REST, because they are regularly expressed in the contaminat-
ing fraction of leukocytes.

Table 3.1: List of transcripts selected for gene expression analysis in CTCs.
Gene
symbol

expr. in
NEPC

function expr. in
PBMCs

reference

ACTL6B up chromatin remodelling absent [79]
ASCL1 up lineage-pioneering TF absent [74]
CCND1 down cell cycle progression detected in

single
[156]

CEACAM5 up cell adhesion molecule absent [88]
CHGA up secretory protein absent [74]
EGFR up receptor tyrosine kinase absent [157]
FOXA2 up lineage-pioneering TF absent [75]
KRT6A down cytoskeletal protein absent [41]
LIN28B up mRNA maturation absent [158]
LMO3 up TF absent [41]
NKX2-1 up TF absent [159]
PCSK1 up pro-hormone convertase absent [41]
PEG10 up cell cycle progression absent [84]
POU3F2 up TF absent [76]
PROM1 up membrane protein absent [160]
SOX11 up TF absent [161]
SRRM4 up splice factor absent [162]
TACSTD2 up membrane receptor detected in

some
[68]

Genes with no expression in leukocytes selected for the NET panel are shown
in table 3.1 and include the TFs ASCL1, FOXA2, POU3F2, NKX2-1, LMO3 and
SOX11 as well as the epigenetic regulators PEG10, SRRM4, LIN28B and ACTL6B
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[41], [74]–[79], [82]–[84]. CEACAM5, PCSK1 and CHGA were included as markers
for NE differentiation [41], [74], [88]. CCND1 was included as a negative marker,
that is down-regulated upon NET [156]. In addition, TACSTD2 and PROM1 were
chosen as stemness markers [68], [160]. KRT6A was chosen as a marker for squa-
mous cell differentiation that had been observed in DNPC and EGFR is a known
resistance marker for chemotherapy [41], [157].

3.1.2 Validation of marker transcripts in PCa cell lines

The panel of 27 markers, designed based on literature research, was first tested
on PCa cell lines to validate the expression in different PCa phenotypes, such as
NEPC. The LNCaP cell line represents hormone-sensitive PCa, while VCaP cells
represent CRPC [141], [142]. PC3 and DU145 cells resemble double-negative, AR-
independent PCa [144], [145]. NCI-H660 and LASCPC-01 served as examples for
NEPC [143], [146]. Because of the limited number of NEPC cell lines, the small
cell lung cancer cell line NCI-H209 served as an additional reference for the NE
phenotype [147]. Relative gene expression of the markers in all seven cell lines is
shown in a heatmap (fig. 3.1).

The overall expression of the tested genes showed a remarkable similarity be-
tween the two NE cell lines NCI-H209 and NCI-H660. At the same time, their
expression profiles were most different from the other PCa cell lines, as both
highly expressed the NE markers but had low to absent expression of AR or
its related genes. The expression of epithelial markers and especially EPCAM,
which is used for CTC enrichment, was not reduced in the NE cell lines. Simi-
larly, the genetically modified LASCPC-01 cell line showed low expression of AR
and its related genes, while several NE markers such as LIN28B and SOX11 were
induced. In contrast, the only hormone-sensitive cell line, LNCaP, could clearly
be distinguished by its high expression of AR signaling pathway genes and the
absence of NE markers. VCaP cells have a CRPC phenotype and maintained the
expression of AR accompanied by focal weak expression of NE markers such as
CEACAM5. PCa cell lines representing DNPC, such as DU145 and PC3, showed
a decrease in the AR pathway in comparison to LNCaP and a focal increase in
NE marker expression such as FOXA2 or PEG10. Interestingly, DNPC cells main-
tained a high expression of CCND1 and NKX3-1, which indicated their PRAD
origin. Overall, analysis of the marker panel in PCa cell lines showed that the
selected genes were sufficient to differentiate between the represented disease
stages of PCa. Especially the expression of NE markers was clearly enriched in
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Figure 3.1: Expression of the marker panel in PCa cell lines. Gene expression in
cell lines was measured by qPCR and the relative, normalized gene expression is
shown as reversed ∆Cq; AC – adenocarcinoma, EPI – epithelial, MISC – miscella-
neous, NE – neuroendocrine.

NCI-H660 and NCI-H209, whereas PRAD marker expression was highly abun-
dant in hormone-sensitive LNCaP cells. Thus, the analysis of the marker panel
in PCa cell lines illustrated that different stages of PCa show unique expression
patterns that allow to differentiate between the cell lines.

3.1.3 Validation of marker transcripts in published PCa patient

tissue data sets

To test the marker panel on human PCa tissue samples, two published RNA se-
quencing data sets were downloaded from cBioPortal. The Metastatic Prostate
Adenocarcinoma data set contained 208 mCRPC samples with available gene
expression data [51]. NEPC scores were assigned to single samples and with a
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classification threshold of 0.4, 10 samples were classified as NEPC [135]. The
Neuroendocrine Prostate Cancer data set contained 49 samples of which 15 were
classified as NEPC [135].

Hierarchical clustering based on the selected marker panel showed a precise group-
ing of the NEPC samples in the Metastatic Prostate Adenocarcinoma data set
with all cases grouped into one cluster (fig. 3.2 B). NEPC samples showed a high
expression of the selected NE markers and reduced expression of the prostate-
specific markers. The majority of NEPC samples was positive for epithelial mark-
ers, but negative for CCND1 and the stemness marker TACSTD2 while PROM1
was up-regulated in some samples.

In the Neuroendocrine Prostate Cancer data set, NEPC samples mostly clustered
together, while four samples clustered with PRAD (fig. 3.2 A). In these samples,
expression of NE markers was mostly absent, but three out of the four NEPC
samples were positive for at least one of the NE markers. Similar to the Metastatic
Prostate Adenocarcinoma data set, NEPC samples were predominantly positive
for epithelial markers, negative for CCND1 and TACSTD2, but positive for PROM1.
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Figure 3.2: Expression of the marker panel in published PCa datasets. Gene
expression data were downloaded from cBioPortal and annotated as NEPC or
PRAD; hierarchical clustering was performed based on the selected marker panel;
A: Neuroendocrine Prostate Cancer (Multi-Institute, Nat Med 2016); B: Metastatic
Prostate Adenocarcinoma (SU2C/PCF Dream Team, PNAS 2019); AC – adenocar-
cinoma, EPI – epithelial, MISC – miscellaneous, NE – neuroendocrine.

When the the marker panel was used to predict the sample group in a supervised
learning approach, a random forest model allowed for good classification of sam-
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ples in the Neuroendocrine Prostate Cancer data set with an out-of-bag error rate
of 8.16 % and an AUC of 96.47 %. In the Metastatic Prostate Adenocarcinoma data
set the prediction was even more accurate with an out-of-bag estimated error rate
of 0.48 % and an AUC of 99.95 % (fig. 3.3).
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Figure 3.3: Performance of the marker panel for classification of published PCa
datasets. Relative expression of the genes in the marker panel was used to train
a random forest classifier with bootstrapping to predict the group status; perfor-
mance of the classifier is shown in a receiver operator curve; A: Neuroendocrine
Prostate Cancer (Multi-Institute, Nat Med 2016); B: Metastatic Prostate Adeno-
carcinoma (SU2C/PCF Dream Team, PNAS 2019); AUC – area under the curve.
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Table 3.2: PCR efficiency of single qPCR assays.
assay PCR efficiency [%]

ACTL6B 86
ASCL1 92

CEACAM5 86
CHGA 94
FOXA2 96
KRT6A 93
LIN28B 102
LMO3 97

NKX2-1 93
NKX3-1 96
PCSK1 87
PEG10 85

POU3F2 91
SOX11 97
SRRM4 95

3.1.4 Technical validation of the gene expression analysis in CTCs

After validating the marker panel in appropriate luminal and NE PCa cell lines
and published data sets, individual assays as well as the entire analysis pipeline
had to be tested and optimized to ensure reliable detection of the respective mark-
ers also from small sample quantities which are common in CTC analysis. Assays
for AR, AR-V7, KLK3 EPCAM, KRT19, HOXB13, FOLH1, RAI2, EGFR, CCND1,
PROM1 and TACSTD2 are commercial assays validated by the manufacturer.
These assays had successfully been used before in AdnaTest enriched samples
and were therefore not subjected to PCR efficiency calculation [153]. For all other
assays, PCR efficiency was determined from a four-step dilution series and the
results are shown in table 3.2.

PCR efficiencies range from 85 % to 102 % with a mean PCR efficiency of 93 %
which was close to an optimal PCR efficiency of 100 %.

Pre-amplification was required to measure all selected assays in the small cell
numbers that are common after CTC enrichment. Therefore, the assays were
tested for their compatibility in multiplex PCR that is required for pre-amplification.
Each assay was subjected to pre-amplification either as single assay or in the re-
spective assay mix (see Method section) and afterwards quantified by qPCR. The
differences in Cq values between single and multiplexed assays are shown in fig-
ure 3.4. The absolute differences in Cq values ranged from 0.09 to 3.93 with a
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mean difference of 1.03. Although five assays had absolute ΔCq values higher
than 2, the Cq were smaller in the multiplexed reaction, meaning that no signifi-
cant inhibition of single assays in the multiplex reaction was found and validation
was continued with all markers.

assay DCq assay DCq

ACTB 0.23 KRT6A 0.81

ACTL6B 0.17 LIN28B 0.88

ASCL1 3.36 LMO3 0.37

CEACAM5 0.63 NKX2-1 3.16

CHGA 0.15 NKX3-1 0.34

GAPDH 0.33 PCSK1 0.78

EGFR 0.42 PEG10 2.07

FOXA2 2.24 POU3F2 0.16

HOXB13 0.09 SOX11 0.11

HPRT1 0.47 SRRM 4 3.93

Figure 3.4: Comparison of the assay performance in single versus multiplex
pre-amplification. cDNA was pre-amplified with a single assay or a mix of as-
says; pre-amplified DNA was quantified by qPCR and the difference between
singleplex and multiplex was calculated; ΔCq – absolute difference between raw
Cq values after singleplex and multiplex pre-amplification.

As assays performed well in multiplex pre-amplification reactions, the workflow
was tested in combination with mRNA isolation and cDNA synthesis from small
sample quantities. For this, 25 single cells of different PCa cell lines were spiked
into AdnaTest lysis buffer. Detection of the transcripts in these spike-in controls
was compared to the expression level in the respective pure cell line determined
before in 3.1.2. Figure 3.5 A shows the detection of the single markers for each
cell line in comparison for the pure cell line and the lysis buffer spike-in control.

Gene expression showed a good concordance between pure cell lines and spike-in
controls. Markers with sensitive and specific detection in the respective positive
control cell line were classified as confident, while markers with unspecific re-
sults in more than one cell line were excluded from subsequent analysis of patient
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samples. As multiple NE markers were measured, insufficient specificity, could
cause false-positive results. The markers KRT6A, POU3F2 and SRRM4 were ex-
cluded from analysis in patient samples, because their expression was detected in
spike-in controls while they were absent in the respective cell lines. Interestingly,
the assays for KRT6A and POU3F2 together with PEG10 were the only assays
that showed activity on genomic DNA in validation experiments conducted by
TATAA Biocenter, suggesting that the presence of genomic DNA in the samples
might have been the cause for the distorted expression between pure cell lines
and spike-in samples.

After the assays had successfully been tested on lysis buffer spike-in controls,
CTC enrichment was added to the analysis pipeline. During the CTC enrichment
step target cells can get lost and the presence of leukocytes can introduce back-
ground signals [91]. Therefore, 25 single cells were spiked into healthy donor
blood to validate the detection of the markers following CTC enrichment. The
results were compared to the gene expression measured in the respective lysis
buffer spike-in controls. Figure 3.5 B illustrates the comparison of the marker de-
tection between lysis buffer and blood spike-in controls. In addition to the three
markers excluded after the first spike-in experiment, LIN28B and PEG10 were ex-
cluded from further analysis. Both samples showed unspecific detection in the
samples enriched from healthy donor blood.

After completing the technical validation, 22 out of 27 markers were confidently
detected in enriched CTC fractions. 17 out of these markers showed highly con-
fident overlap in marker detection. The marker panel was sufficient to differenti-
ate between PCa cell lines representing variable disease stages and and between
tissue samples from PRAD and NEPC patients. An analysis pipeline was devel-
oped to robustly detect the marker expression in as few as 25 cells enriched from
peripheral blood.
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Figure 3.5: Comparison of marker detection between pure cell lines and spike-
in controls. 25 single cells per cell line were spiked into AdnaTest lysis buffer
or healthy donor blood and subjected to RNA purification, cDNA synthesis, pre-
amplification and qPCR; the individual markers were classified as positive or
negative based on a threshold set by means of healthy donor samples; A: com-
parison of the marker detection in pure cell lines and 25 cells spiked into lysis
buffer, light blue – positive in pure cell line, dark blue – positive in lysis buffer
spike-in; B: comparison of marker detection between 25 cells spiked in lysis buffer
and 25 cells spiked in healthy donor blood and enriched by AdnaTest, light blue
– positive in lysis buffer spike in, dark blue – positive in 25 cells enriched from
healthy donor blood; the confidence level is based on the number of congruent
results for each marker: green: all samples congruent, yellow – all but one sample
congruent, red – two or more samples not congruent.
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3.1.5 Comparison of label-dependent and label-independent CTC

enrichment

Gene expression profiling strongly depends on the CTC enrichment method, as
size and cell surface marker expression may vary along the different steps of
the metastatic cascade and tumor progression. Consequently, one enrichment
method might be more suitable for the purpose of enriching NEPC-derived CTCs.
For this purpose, label-dependent CTC detection in form of the AdnaTest was
compared to the size-based Parsortix analysis. Multiple blood samples were
drawn from a single patient at one time point and analyzed in parallel. According
to the manual, AdnaTest samples were declared positive, if one or more epithe-
lial or prostate-specific markers were positive. For Parsortix, stained cells as well
as gene expression data were available for evaluation. When gene expression
data were available, criteria for CTC positive samples were similar to the AdnaT-
est. Positive CK staining and absent CD45 signal were required to identify CTCs
in immunocytochemical analysis. Representative images of Parsortix-enriched
CTCs are shown in figure 3.6. Figure 3.7 displays the comparison of both enrich-
ment methods.

Comparing AdnaTest and Parsortix, CTCs were significantly more frequently de-
tected with the AdnaTest with a positivity rate of 100 % in contrast to 62 % in
Parsortix (p = 0.0007). This indicates that an EPCAM-based enrichment strategy
might be more suitable than size-based enrichment in the selected disease stage.
In contrast, morphological information and CTC count are lost during AdnaTest-
based CTC enrichment. The representative images of CTCs shown in figure 3.6
illustrate the heterogeneity regarding the cell shape, expression of NE markers
and cluster formation that is observed in Parsortix-enriched cells.

13 matched samples were available for the comparison of gene expression be-
tween AdnaTest and Parsortix. For both enrichment methods, the samples were
subjected to an identical workflow of RNA isolation, cDNA synthesis and PCR-
based detection. Based on ten healthy donor samples, thresholds were calcu-
lated to classify samples as marker-positive or marker-negative depending on
their normalized expression data. The comparison of expression data from both
techniques for 13 patient samples is shown in figure 3.7.

Regarding the detection of epithelial markers, AdnaTest and Parsortix showed
mixed concordance with 56.4% of single marker-patient combinations showing a
congruent results. 38.5 % of single measurements were only positive in AdnaT-
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merge nucleus pan-CK CD56 CD45

Figure 3.6: Representative images of Parsortix-enriched CTCs. Cytospins were
prepared from Parsortix-enriched CTCs and immunofluorescence staining was
used to detect pan-CK (AF488) and CD56 (BV421), CD45 (PerCP) served as neg-
ative marker and nuclei were counterstained with DRAQ5.

est, while 5.1 % were only positive in Parsortix-enriched cells. However, just one
sample was only positive for CTCs in AdnaTest when combining all single mark-
ers, while most samples were positive for at least one marker in both tests. This
indicates, that the AdnaTest might be more sensitive to enrich epithelial cells from
blood. In contrast, CTCs might be lost in Parsortix due to small size or Parsortix
enriches another cell population, that might have down-regulated epithelial cell
programs. With regard to the prostate-specific markers, detection of single mark-
ers was mostly concordant with 69.2 % of congruence in the individual marker-
patient combinations. With 21.8 % AdnaTest-only positive and 8 % Parsortix-only
positive comparisons, more markers were detected in the AdnaTest enriched cell
lysates. Comparing the overall marker expression between samples, the major-
ity was positive for at least one prostate-specific marker with both method. Two
out of thirteen samples were only prostate marker positive in AdnaTest and one
samples was only positive in Parsortix.



3. RESULTS 50

As the detection of NE markers was among the central aims of this project, these
markers were closely compared between AdnaTest- and Parsortix-enriched CTCs.
In total, ten out of thirteen samples were positive for at least one NE marker. Of
those, five were positive with both tests, three were only positive in AdnaTest
and two samples were only positive after Parsortix enrichment. In four of the
five samples that were positive with both methods, more NE markers were de-
tected in AdnaTest. In all AdnaTest-only positive samples, more than one NE
marker was detected. In contrast, both Parsortix-only positive cases were posi-
tive for a single marker. Precisely, 56.8 % of detected markers were overlapping
with both methods, however, 37.8 % were only found in Adna-Test samples and
5.4 % only in Parsortix enriched samples. Thus, NE markers were significantly
more frequently detected after AdnaTest enriched (p = 0.0013).

In summary, both CTC enrichment methods - AdnaTest and Parsortix - showed
intermediate concordance with regard to CTC positivity. However, samples with
discordant results were more often only positive using the label-dependent Ad-
naTest. Thus the respective epitopes EPCAM, EGFR and HER2 covered by the
AdnaTest might increase the sensitivity of this analysis method compard to size-
based Parsortix enrichment. With regard to gene expression, the AdnaTest per-
formed better for the detection of an epithelial cell population and CTCs with NE
marker expression were more frequently detected. Thus, AdnaTest was chosen
for subsequent gene expression analysis in CTCs.

In conclusion, a panel of 22 markers was identified by literature research and
validated in vitro and in silico. An analysis pipeline was developed to robustly
detect the marker expression in as few as 25 cell enriched from peripheral blood
by the AdnaTest.
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Figure 3.7: Comparison of AdnaTest and Parsortix-enriched CTCs. Two blood
samples per patient were drawn to enrich CTCs with AdnaTest and Parsortix in
parallel; A: number of CTC positive samples in AdnaTest and Parsortix (number
of samples in total in brackets), CTC positivity was determined either with im-
munocytochemical staining of enriched cells or gene expression analysis; B: com-
parison of gene expression in bulk CTCs enriched by the respective enrichment
method, gene expression was measured by semi-quantitative PCR after an iden-
tical workflow of RNA isolation, cDNA synthesis and pre-amplification; based
on ten healthy donor samples, thresholds were calculated to classify samples as
marker-positive or marker-negative depending on their normalized expression
data; light-blue: marker positive in AdnaTest, dark-blue: marker positive in Par-
sortix.
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3.2 CTC analysis in patient samples

In total, 122 samples were collected from PCa patients and ten samples were col-
lected from male healthy donors. Sex and age of the healthy donors was chosen
to match the patient cohort. Average patient age was 65.5 years (46-88 years) and
the mean age of the healthy donors was 63.6 years (59-69 years). 17 samples had
to be excluded from further analysis due to missing clinical data or because no
conclusive group assignment was possible. This left 105 samples from 76 patients
for a comprehensive CTC analysis. An overview of the distribution of the sam-
ples between the groups and the applied CTC enrichment methods is given in
figure 3.8. 99 samples were analyzed with the AdnaTest and CellSearch counts
were available from 83 samples. According to their clinical manifestation, pa-
tients were assigned to one of four groups. Patients with aggressive disease ac-
cording to modified Aparicio criteria, except for neuroendocrine histology, were
classified as AVPC [34]. This group exhibited highly elevated median serum PSA
and a slightly increased median serum NSE with a broad range of serum NSE
detection between patients. Patients with histological evidence of small cell, neu-
roendocrine prostate cancer, pure or admixed, were defined as NEPC group. This
was based on the pathology report with either positivity for SYP and/or CHGA
or a small cell morphology, which are widely accepted NEPC markers [36]. This
group was characterized by low serum PSA but elevated NSE and CEA. As con-
trol group, patients with metastatic hormone-sensitive PCa (HSPC) who were
naive to hormonal treatment were chosen. In the HSPC group, serum PSA was
elevated but NSE and CEA were not. The grouping of patients relied on a com-
bination of clinical parameters. At the time point of blood collection, histology
analysis was not available for all patients. Also for patients with multiple blood
draws, histology findings were not available for all time points. As many of the
AVPC classified patients had multiple metastases with expected spatial hetero-
geneity, the AVPC group is rather heterogeneous and not as precisely defined
as the NEPC group. Overall, patients were at an advanced disease stage with
several lines of treatment. The majority of patients was treated with ADT, NHA
and taxane-based chemotherapy. Some patients with NEPC were treated with a
combination of cabazitaxel and carboplatin. At the time point of blood collection
most patients had progressive disease.
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NEPC n=39 AVPC n=52 DNPC n=3 HSPC n=11

median age (years) 65 (51-81) 68.5 (46-88) 70.5 (66-75) 62.5 (53-80)

median PSA (ng/ml) 0.36 (0.01-206) 243.465 (0-5647) 54.82 (37.82-71.8) 47.8 (10.86-342)

median NSE (ng/ml) 49.7 (9.5-962) 19.6 (10.1-114.6) 48.35 (42-57.7) 14.7 (10.8-18.6)

median CEA (ng/ml) 3 (1.2-6179) 2.3 (0-285.8) 1.3 1.3 (0-8.2)

median LDH (U/l) 293 (154-2923) 283 (152-1748) 796 (417-1175) 214 (167-253)

liver metastasis 18 (62.0 %) 8 (17.0 %) 0 1 (12.5 %)

n = 122 blood samples

n = 17 samples excluded

n = 105 samples from 76 patients 
included in analysis

CellSearch 
(n=83)

AdnaTest 
(n=99)

79 204

A B

C

Figure 3.8: Overview of sample numbers and patient characteristics. A: Num-
bers of collected and excluded samples; B: Venn diagram showing the number of
samples analyzed per enrichment method; C: patient characteristics for the indi-
vidual groups.

3.2.1 CTC enumeration with CellSearch

CellSearch is the first FDA-cleared technology for CTC enumeration and still
represents the gold standard for CTC analysis. Enumeration relies on EPCAM
expression for CTC enrichment and epithelial CK expression for CTC detection
[163]. In total, 83 samples were analyzed by CellSearch. Potential CTCs were
identified based on positive pan-CK and absent CD45 expression.

In the NEPC group, 88.5 % of samples were positive for CTCs with a mean count
of 30 CTCs per 7.5mL and a range of 0-13,000 CTCs. This was significantly higher
than in the HSPC group with 36.4 % positive samples and a median CTC count of
0 CTCs per 7.5mL (p = 0.0049). Similarly, the AVPC group showed a significantly
increased CTC positivity of 88.6 % with a median count of 32.5 CTCs per 7.5mL
and a range of 0-20,000 CTCs (p = 0.0018). As only two samples were available
for analysis in the DNPC group, the informative value of this comparison was
limited, but still both samples showed exceeding CTC counts of 187 and 1480
CTCs per 7.5mL. In AVPC, NEPC and DNPC the median CTC count was above
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the threshold of 5 CTC per 7.5mL for a dismal prognosis in PCa as defined by De
Bono et al. [101]. This is in line with the clinically observed aggressive course of
disease in these patients.

% CTC positive median count range

NEPC (n = 26) 88.5 30 0 – 13,000

AVPC (n = 44) 88.6 32.5 0 – 20,000

DNPC (n = 2) 100.0 833.5 187 – 1,480

HSPC (n = 11) 36.4 0 0 – 29

A Bp = 0.0049

p = 0.0018

p = 0.0135

Figure 3.9: CellSearch CTC counts in patient samples. CTCs were enriched from
blood samples using the automated CellSearch system; CTCs were detected and
enumerated based on positive CK staining, absent CD45 staining and an intact
nucleus; A: CTC count of single samples per group, red line indicates median; B:
median CTC count and range per group.

As illustrated in figure 3.10, CTCs detected by CellSearch analysis showed vari-
able morphology. Some cells were round with bright CK staining surrounding
the entire nucleus. Other cells had less intense CK staining, while some were
characterized by a perinuclear dot-like CK staining. In these cells, a bright spot
of CK staining was observed next to the nucleus, but only a very faint staining
surrounded the complete nucleus. This CK staining pattern is indicative of a
small cell morphology that is associated with pure NEPC [36]. In addition, CTC
clusters were detected in five samples in total. Some clusters consisted only of
CTCs while in other clusters the CTCs were accompanied by immune cells. In-
terestingly, all of the samples with clusters had extraordinary high CTC counts
of more than 100 CTCs per 7.5mL blood and none belonged to the NEPC group.
However, none of these features showed an association with the patient groups.

In conclusion, high CTC counts were measured in all three aggressive disease
groups compared to HSPC. This illustrates the dismal prognosis of these patients,
but facilitates the gene expression analysis due to the overall high abundance of
relevant tumor cell populations in the blood samples.
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merge CK DAPI CD45

Figure 3.10: Representative morphology of CellSearch-enriched CTCs. CTCs
were enriched from blood samples using the automated CellSearch system; CTCs
were detected and enumerated based on positive cytokeratin staining, absent
CD45 staining and an intact nucleus; for each event the merged image as well
as the individual signals from CK, DAPI and CD45 channel are depicted.
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3.2.2 CTC detection and gene expression profiling with the Ad-

naTest

In total, 99 samples were analyzed using the AdnaTest and complete expression
profiles were available for 94 samples and ten healthy donors. The frequency of
CTC positive samples was compared between AdnaTest and CellSearch. To get a
deeper insight into gene expression patterns between the groups and the overall
profiles of the single samples, the data were analyzed on the level of single genes
as well as in a supervised and unsupervised learning approach.

3.2.2.1 Comparison of CTC detection by AdnaTest and CellSearch

79 samples were available for the comparison of AdnaTest and CellSearch. Over-
all, both methods showed high positivity rates for CTCs (figure 3.11). With the
AdnaTest, 95 % of samples were positive for CTCs compared to 81 % in CellSearch
(p = 0.014). 13 samples were not concordant between both methods: One sample
was negative in AdnaTest but not CellSearch, while twelve samples were CTC
negative in CellSearch and positive in AdnaTest. Differences in CTC positivity
rates can occur due to statistical variability in true CTC counts between two blood
samples especially at low CTC numbers. However, as most non-concordant sam-
ples were positive in AdnaTest and not CellSearch, this might not be due to
chance but due to the two additional antigens that are enriched with AdnaTest
but not in CellSearch. Comparison of the four patient groups revealed a higher
concordance of AdnaTest and CellSearch in the NEPC and AVPC groups that both
share high CTC counts compared to the HSPC group (p = 0.0021, p = 0.0003).
While more than 85 % of CTC positive samples in the NEPC and AVPC group
were CTC positive with both enrichment methods, only 36 % of CTC positive
samples in the HSPC group were positive with both methods. The other 64 % of
samples were only CTC positive with the AdnaTest. This indicates that both en-
richment methods robustly detect CTCs in samples with high CTC counts, while
the AdnaTest more frequently detects CTC at smaller cell counts.

3.2.2.2 Gene expression analysis of single markers

After the comparison to CellSearch, the AdnaTest was applied to examine the
expression of the 22 marker genes that had been selected and validated before.
Raw Cq values were normalized by the housekeeping genes ACTB and GAPDH
and for every marker, thresholds were set based on the expression in healthy
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Figure 3.11: Comparison of AdnaTest and CellSearch based CTC enrichment.
Multiple blood samples were collected from a single patient and analyzed in par-
allel with AdnaTest and CellSearch; A: CTC positivity was compared between
both methods, the Venn diagram illustrates the numbers of CTC positive sam-
ples comparing both enrichment methods; B: comparison of the percentage of
CTC positive samples between the four patient groups and the two enrichment
methods; CS – CellSearch.

donors to avoid false-positive results. The normalized expression for every single
marker was compared between the four patient groups (figure 3.12).

The most prominent prostate-specific marker, AR, was detected in most patient
samples. AR expression in the AVPC group was significantly higher than in the
NEPC and the HSPC group (p = 0.0012; p = 0.0265). Although overall expressed
in fewer samples, the AR-V7 splice variant showed a similar pattern with in-
creased expression in AVPC compared to NEPC and HSPC samples (p = 0.0017;
p = 0.0015). Gene expression of KLK3, FOLH1 and NKX3-1, which represent
targets of AR-mediated gene regulation, was detected in all groups, while the ex-
pression was significantly reduced in the NEPC patients compared to the AVPC
patients (p = 0.002; p = 0.0004; p = 0.0002). The prostate-specific TF HOXB13 was
up-regulated in AVPC compared to HSPC (p = 0.0455). Interestingly, no signif-
icant differences were found between AVPC and NEPC (p = 0.1489), indicating
that it might be a suitable marker to prove the prostatic origin of a neuroendocrine
carcinoma. Taken together, these results highlight the loss of AR-dependency in
the NEPC group, while the detection of AR and associated markers was main-
tained in the AVPC group.

The epithelial marker EPCAM was used as an epitope in CTC enrichment and,
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thus, expected to be detected in all samples. Indeed, EPCAM was highly ex-
pressed in the majority of samples and expression showed no significant differ-
ences between the groups, which confirms the utility of the corresponding gene
product for CTC enrichment. Similarly, KRT19 and TACSTD2 expression was not
significantly altered between the groups. This indicates that the epithelial differ-
entiation was maintained through all disease stages analyzed.

EGFR, which is also used for CTC enrichment in AdnaTest, was only detected
in a minority of samples and no differences were identified between the groups.
The cell cycle regulator CCND1 was significantly reduced in NEPC samples com-
pared to AVPC (p = 0.0084). RAI2 was expressed in a minority of samples and
showed no significant differences between the groups, similar to the stemness
marker PROM1. While CCND1 was identified as an additional marker for PRAD,
the other three markers had no added value for the characterisation of the four
groups.

In addition, significant differences between the groups were found for six out of
nine NE markers. CHGA was one of the most abundantly expressed NE mark-
ers and its expression was significantly increased in NEPC samples compared
the the HSPC and the AVPC samples (p = 0.0065; p < 0.0001). Similarly, CEA-
CAM5 was significantly higher expressed in NEPC samples compared to HSPC
and AVPC (p = 0.0081; p = 0.0003). ACTL6B was another NE marker with sig-
nificantly enhanced expression in NEPC samples compared to HSPC and AVPC
(p = 0.04; p = 0.0019). Similarly, the transcription factor ASCL1 was significantly
increased in NEPC compared to AVPC, albeit being expressed in only the mi-
nority of samples (p = 0.0072). In addition, PCSK1 and FOXA2 were induced
in NEPC compared to AVPC (p = 0.0003; p < 0.0001), although only expressed
in a small number of samples. The NE markers LMO3, SOX11 and NKX2-1 did
not show significant differences in gene expression between the groups and were
overall rarely expressed.

In summary, the analysis of differential gene expression of the selected markers
highlights the significant alterations in the NEPC group especially in compari-
son to the AVPC group. The NEPC group was mainly characterized by a down-
regulation of PRAD markers and expression of multiple NE markers.

Next, the individual markers were analyzed for the correlation of their expression
to identify clusters of markers with similar or opposite expression patterns. The
results of the correlation analysis are shown in figure 3.13.



3. RESULTS 59

A strong positive correlation was observed for prostate-specific markers FOLH1,
AR, AR-V7, KLK3, NKX3-1 and HOXB13 as well as the epithelial markers KRT19,
EPCAM and TACSTD2. This observation is supported by the fact, that the prostate-
specific markers depend on each other for their gene expression. It indicates that
all prostate-specific markers are equally well suited to identify the adenocarci-
noma differentiation. The cell cycle regulator CCND1 was also positively corre-
lated with that cluster, suggesting that its expression is characteristic of a prostate
luminal cell differentiation. The NE markers also formed a defined cluster, al-
though less clearly delimited and with an overall lower degree of correlation.
Within the NE marker cluster, CHGA and NKX2-1 showed the strongest corre-
lation to the other NE markers, and even weak correlation to some of the PRAD
markers. Interestingly, only a fraction of the NE markers including FOXA2, PCKS1
and ACTL6B showed significant anti-correlation to a number of PRAD markers
including AR, KLK3 and FOLH1. This might suggest, that different profiles of
NE marker expression can be observed comparing PRAD-high and PRAD-low
NEPC samples. Especially PCSK1 and FOXA2, seem to be associated with an
AR-low phenotype, while the markers CEACAM5, CHGA and NKX2-1 might
as well be correlated with double-positivity in this study cohort. Additionally,
the stemness-marker PROM1 was correlated with the NEPC exclusive markers
and anti-correlated to some PRAD markers. Thus, PROM1 might be involved in
the lineage plasticity that is required for complete transdifferentiation. In con-
trast, EGFR showed rather strong correlation with both NE and PRAD mark-
ers. It might therefore be associated with the double-positive phenotype or with
highly heterogeneous tumors in general. Similarly, RAI2 was positively corre-
lated with CHGA and NKX2-1 among other NE markers but not with PRAD
markers. Thus, RAI2 expression might as well be associated with a heteroge-
neous double-positive phenotype in PCa. Overall, the NE markers seemed to be
more variable in their expression and did not form a well-defined cluster as seen
for the PRAD markers. This indicates that tumor cells undergoing NET do not
simply switch from one differentiation state to another, but are rather acquiring a
heterogeneous state that is dominated by plasticity.
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Figure 3.12: Normalized gene expression of single markers in enriched CTCs.
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Figure 3.12: Normalized gene expression of single markers in enriched CTCs,
continued. CTCs were enriched from blood samples and gene expression was
measured by semi-quantitative PCR following RNA isolation, cDNA synthesis
and pre-amplification; gene expression is shown as reversed normalized Cq with
healthy donor based thresholds applied; violin plots show all single samples as
dots with the median expression per group indicated as red line; A: adenocar-
cinoma markers, B: epithelial markers, C: miscellaneous markers, D: neuroen-
docrine markers.
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Figure 3.13: Correlation of the gene expression of single markers. Normalized
gene expression of all marker transcripts irrespective of the patient group was
subjected to correlation analysis by Spearman correlation coefficient; significant
correlations are shown as dots with the colour resembling the correlation coeffi-
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3.2.2.3 Unsupervised analysis of gene expression profiles

Expression analysis of single genes revealed significant differences between the
clinical groups and correlation analysis indicated distinct profiles of NE and PRAD
markers. Thus, the next step was to examine the gene expression profiles of all
samples in an unsupervised analysis. For this, 94 samples with a complete ex-
pression profile were subjected to hierarchical clustering. The resulting heatmap
and clusters are depicted in figure 3.14.
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Figure 3.14: Hierarchical clustering of patient samples based on gene expres-
sion profiles. Normalized gene expression data were scaled and subjected to
hierarchical clustering; based on the dendrogram, samples were split into four
clusters; sample cluster, group and CTC count per 7.5 mL are displayed above
the heatmap.

The hierarchical clustering defined four clusters. The first cluster comprised 34
samples and the expression profile was dominated by a high expression of the
PRAD markers and a high expression of epithelial markers. Although some sam-
ples showed expression of one to two NE markers, including CEACAM5, SOX11
and LMO3, NE marker expression was almost absent in samples of this cluster.
Thus, this cluster was termed the ARhigh cluster. Samples in this cluster predom-
inantly showed clinical characteristics of AVPC patients and none of the samples
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belonged to the NEPC group. Samples in the ARhigh cluster had high CTC counts
with a median of 40 CTCs per 7.5mL of blood. In addition, this cluster was
characterized by high expression of CCND1 and some samples also expressed
EGFR. The second cluster included 35 samples with mixed expression of PRAD
markers and reduced to absent expression of epithelial markers. In combination
with the low median CTC count of 1.5 CTCs per 7.5mL of blood, this cluster
was designated the CTClow cluster. Consistent with this, the NE markers were
as well negative in this group, except for a few samples with expression of espe-
cially CEACAM5 and ACTL6B. Regarding the clinical group, the CTClow cluster
showed a mixed composition with samples of all groups. This underscores that
this cluster does not reflect a clinical subtype but rather an overall CTClow phe-
notype that is independent of the clinical phenotype. With eleven samples, the
third cluster was the smallest of the four clusters. Its expression profile was char-
acterized by an almost absent expression of PRAD markers except for HOXB13.
The epithelial markers KRT19 and EPCAM were still highly expressed, although
TACSTD2 was down-regulated in comparison to the ARhigh and the amphicrine
cluster (p = 0.006, p = 0.0044). NE markers were highly expressed in this group
with all samples being positive for multiple markers. In particular, the mark-
ers FOXA2 and PCSK1 were specific for this cluster showing significant increase
in comparison to the other three clusters (p < 0.0001, p < 0.0001). Therefore,
this cluster was considered the pure NEPC cluster. In addition, the stemness-
associated marker PROM1 was significantly enriched in this cluster compared to
the ARhigh and the amphicrine cluster (p = 0.0028, p = 0.0401). In line with the ex-
pression profiles, cluster three only contained samples with histological evidence
of NEPC. Patients with AVPC and HSPC were absent from the NEPC cluster,
indicating the high specificity of this gene expression signature. For the cases as-
sessed, CTC counts were very high in the NEPC cluster with a median count of
381 CTCs per 7.5mL blood. Lastly, the fourth cluster with 14 samples exhibited
a double-positive gene expression profile. Next to high expression of epithelial
markers, all samples showed intense expression of PRAD markers and positivity
for multiple NE markers, predominantly CHAG, CEACAM5 and ACTL6B. Thus,
this cluster was designated the amphicrine cluster, as it showed a combination
of luminal and NE marker expression. Further, this cluster was characterized
by a significantly increased expression of EGFR compared to all other clusters
(p < 0.0001). Similar to the ARhigh cluster, the samples in the amphicrine cluster
were mostly positive for CCND1. Compared to the ARhigh and the CTClow clus-
ters, RAI2 was significantly up-regulated (p = 0.0013, p = 0.0002). Samples in



3. RESULTS 65

the amphicrine cluster also showed high CTC counts with a median of 743 CTCs
per 7.5mL blood. Patients in this cluster had either been classified as NEPC or
AVPC based on their clinical parameters, indicating the difficulties in identifying
the amphicrine patients in the clinic, especially with lack of complete histopatho-
logical analysis.

For patients with blood samples from multiple time points, the clustering of
the individual samples was often stable for samples that were collected over a
short period of time. For example, NEPC patient 75 had two samples drawn
within six weeks and both were clustering to the NEPC cluster. Similarly, two
blood samples were collected from patient 10 within six weeks and both were
assigned to the ARhigh cluster. In contrast, samples collected over a longer period
of time displayed how patients could either switch between subtypes or stay sta-
ble during disease progression. For instance, patient 3 had two samples collected
within an interval of four months. The first was taken before switching to carbo-
platin/etoposide based chemotherapy and the second at the time of progression.
At both time points the patient fell into the ARhigh cluster. Opposed to that, pa-
tient 65 was first assigned to the amphicrine cluster, but after five month moved
to the NEPC cluster due to loss of PRAD markers and increase of NE markers.

In conclusion, unsupervised analysis revealed four clusters with distinct gene ex-
pression profiles. These included a CTClow cluster, and three CTC positive clus-
ters with ARhigh, NEhigh or amphicrine subtype. Clustering of patients was sta-
ble for short time periods, but could display transdifferentiation processes over
longer intervals.

3.2.2.4 Supervised analysis of gene expression profiles to predict patient group

The aim of this project was to develop a liquid biopsy assay that allows to iden-
tify patients undergoing NET based on the CTC gene expression signature. For
this purpose, methods for classification and prediction of the clinical group based
on the gene expression profiles were explored. As the unsupervised analysis re-
vealed an increased expression of NE markers in the NEPC samples but a mixed
expression of PRAD markers, the first approach was to classify the samples based
on the positivity for any NE marker. Every marker per sample was either deemed
positive or negative based on an expression threshold determined with healthy
donor samples. Based on this binary classification, 87.9 % of all AdnaTest posi-
tive NEPC samples were positive for at least one NE marker (see table 3.15 A).
This was significantly higher than in the AVPC group with 60.4 % NE marker
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positivity (p = 0.0112). In the DNPC group, only one out of three samples was
positive for NE markers. However, the detection of NE markers was still too high
in the non-NEPC groups to classify the samples based on this measure. In con-
trast, no significant differences were found between the samples with regard to
the percentage of samples with detection of at least one PRAD marker. Similar to
the AVPC and the HSPC group, PRAD markers were identified in 90.9 % of the
NEPC samples. Only when HOXB13, which was identified to be the only PRAD
marker in pure NEPC before, was excluded, the percentage of positive samples
was significantly reduced from 91.7 % in the AVPC group to 66.7 % in the NEPC
group (p = 0.0044).

As already in the non-NEPC groups, more than half of the samples were positive
for at least one NE marker, this parameter was not sufficient for group predic-
tion. For example, five blood samples were collected from patient 7 within four
months. At all time points, the samples were grouped into the ARhigh cluster.
However, the patient was positive for one or two NE markers at every time point.
In line with the clustering, histopathological analysis taken in parallel to the last
blood sample showed strong PSA and nuclear AR staining, while the neuroen-
docrine marker SYP was negative and the cell morphology was not suspicious of
small cell carcinoma.

Thus, the number of positive NE markers per samples was counted and depicted
in figure 3.15 A. The non-NEPC samples, including AVPC, HSPC and DNPC sam-
ples, expressed a significantly lower number of NE markers with a median of 1
positive marker in contrast to 3 markers in the NEPC group (p < 0.0001). The
count of positive NE markers was used as a classifier in a ROC analysis to differ-
entiate between NEPC and AVPC or HSPC, respectively. NEPC and HSPC could
be separated with an AUC of 84.3 % (figure 3.15 B and C). Similarly, the positive
marker count was sufficient to differentiate between NEPC and AVPC with an
AUC of 82.8 %. At a threshold of two or more positive NE markers the classifier
reached a sensitivity of 78.79 % and a specificity of 81.82 % for the differentia-
tion of NEPC and HSPC samples. Similarly, a threshold of two ore more positive
NE markers showed the most favorable combination of 78.79 % sensitivity and
79.17 % specificity for the comparison of NEPC and AVPC samples.

To test whether the sample group could be predicted with an even higher accu-
racy, a more sophisticated machine-learning based, supervised model was trained
to include all variables that were acquired. A random forest classifier was chosen,
as it can easily be trained without extensive optimization of hyperparameters and
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no. CTC+

samples NE+ AC+

NEPC (n=35) 33 87.9 % 90.9 %

AVPC (n=50) 48 60.4 % 97.9 %

DNPC (n=3) 3 33.3 % 100 %

HSPC (n=11) 11 54.5 % 81.8 %
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Figure 3.15: Prediction of patient group based on binary analysis. Normalized
gene expression data were simplified to binary representation of marker positiv-
ity based on thresholds set by means of healthy donor samples, only CTC positive
samples were considered for the analysis; A: percentages of samples positive for
at least one neuroendocrine or adenocarcinoma (AC, HOXB13 excluded) marker,
respectively; B: frequency distribution of the number of detected NE markers in
NEPC and non-NEPC (AVPC, DNPC, HSPC) samples; C: ROC analysis compar-
ing NEPC vs AVPC and HSPC, respectively, based on the number of positive NE
markers per sample.

does not require careful scaling of the input data. In addition, the random forest
algorithm includes bootstrapping of the samples which reduces the risk of over-
fitting the model that arises from a small group size and a missing validation data
set. In order to avoid over-fitting of the model, only one sample was included per
patient in case multiple samples had been collected. For patients with multiple
samples, only the first sample which was positive for CTCs was included in the
analysis. Only samples that were CTC positive based on the AdnaTest results
were included into the analysis to avoid training the classifier to identify CTC
positive samples in general.

First, the model was trained to differentiate between NEPC and HSPC group
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based on a subset of 22 NEPC and 11 HSPC samples. The results are shown in
figure 3.16. The accuracy of sample classification could be improved in compari-
son to the simple count classifier, reaching an AUC of 95.5 % and a sensitivity of
90.9 % at 95.5 % specificity. In leave-one-out cross-validation, the out-of-bag error
rate was 15.15 %. The predictions of the model are shown in 3.16 B. Samples that
were mis-classified had borderline probabilities for both groups and were not
clearly interpretable for the model. These samples were examined closer for the
course of their disease. For instance, sample PC256 from patient 21 was predicted
by the classifier to belong to the HSPC group, while the patient was categorized
as NEPC based on clinical parameters. Indeed, histology analysis of metastatic
tissue showed a double-positive tumor with AR expression and partial small cell
morphology with dot-like lesions in CK staining. Overall, the patient also had
low CTC counts, indicating that also the cell number might not have been suf-
ficient to detect more NE markers. In contrast, the other four mis-classified pa-
tients originally belonged to the HSPC group. Two of the samples were positive
for ASCL1 and thus might have been attributed to the NEPC group. As NE mark-
ers were not observed in histology, this indicated that the ASCL1 assay might be
more error prone. Two samples as well showed low or partial PSA staining in
histology and might therefore have been in the process of reduction of AR sig-
naling and thus, the corresponding patients should be followed-up more closely.
Another mis-classified HSPC sample was only positive for one epithelial marker
and it therefore remains questionable whether this sample was positive for CTCs
at all.

In addition, the importance of the single markers for the performance of the clas-
sifier was analyzed. As shown in figure 3.16 C, the epithelial markers KRT19
and EPCAM were the most important features for group assignment. This indi-
cates the maintained epithelial differentiation in the NEPC group and might as
well be derived from the increased CTC counts observed in this group. The NE
markers CHGA, ACTL6B and CEACAM5 also highly contributed to the classifica-
tion. These markers also showed significant changes in expression between the
groups on a single marker level. The three NE markers were directly followed
by the PRAD markers HOXB13, AR-V7 and KLK3. All three clusters of genes
thus appear to shape the expression profile indicative of the respective group. In
contrast the markers AR and SOX11 are of least importance for the model.

As the discrimination of aggressive but AR-expressing and aggressive neuroen-
docrine disease is relevant in the clinic, another model was trained to differen-
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Figure 3.16: Random forest classification of NEPC and HSPC patients. Normal-
ized gene expression of NEPC and HSPC samples from individual patients were
used to train a random forest classifier with leave-on-out cross-validation; A:
ROC analysis of the model trained, B: model prediction based on cross-validation,
C: variable importance of the single markers in the classifier.

tiate between AVPC and NEPC patients. 22 NEPC and 32 AVPC patients were
included in this analysis. The model was able to discriminate between the pa-
tient groups with an AUC of 88.2 % and an out-of-bag error rate of 23.53 % with
a trend to incorrectly identify NEPC samples as AVPC and not vice versa (see
figure 3.17 A, B). A closer examination of the mis-classified patients revealed that
these cases were mostly assigned to the amphicrine cluster with double-positive
marker expression. Other mis-classified patients from both the AVPC and the
NEPC group belonged to the CTClow cluster. Thus, marker detection might have
been hampered by the low CTC numbers in those samples. The most important
variables in the model were CHGA and KLK3 (see figure 3.17 C). This emphasizes
the importance of both NE and PRAD markers for prediction and simultaneously
explains the difficulties in the discrimination of double-positive samples. While
the epithelial markers EPCAM and KRT19 were intermediately important for the
model, the NE markers SOX11 and LMO3 as well as the stemness markers TAC-
STD2 and PROM1 were only of limited value for the model.

In conclusion, the count of positive NE markers was sufficient to discriminate
between NEPC and non-NEPC samples with an AUC of more than 80 %. A ran-
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Figure 3.17: Random forest classification of NEPC and AVPC patients. Normal-
ized gene expression of NEPC and AVPC samples from individual patients were
used to train a random forest classifier with leave-on-out crossvalidation; A: ROC
analysis of the model trained, B: model prediction based on cross-validation, C:
variable importance of the single markers in the classifier.

dom forest classifier trained on the marker panel achieved an even higher accu-
racy and classified NEPC and HSPC samples with an AUC of 95.5 %. Epithelial
and NE markers were most important for the correct classification of the samples.
Classification of NEPC and AVPC samples was possible with an AUC of 88.2 %.
NE and PRAD markers were necessary for the correct prediction of the group.
Double-positive samples impeded a similarly accurate discrimination of NEPC
and AVPC samples compared to HSPC samples.
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3.2.3 Integration of CTC analysis and clinical data

3.2.3.1 Correlation of liquid biopsy data and clinical parameters

Following the successful development of a liquid biopsy assay, the next step was
to test whether patient clustering and subtype prediction based on the assay re-
sults correlated with clinical parameters and patient outcomes.

Visceral metastasis is rather uncommon in PCa, but frequently observed in ag-
gressive disease including NEPC [34]. In order to find associations between the
metastatic status and the liquid biopsy results, the incidence of liver metastasis
was compared to the NE marker status and the expression profiles in AdnaTest
(fig. 3.18). Information were available for 80 samples from 59 patients.

NE+ NE-
0%

50%

100%

liver met+
liver met-

AR
hig

h

CT
C
low

NE
PC

AM
PH
I

0%

50%

100%

liver met+
liver met-

p = 0.0327

Figure 3.18: Association of liver metastasis and liquid biopsy results. Fre-
quency of liver metastasis was compared between samples depending on the
detection of NE markers and the overall expression profiles represented by the
four clusters identified in unsupervised analysis; threshold for NE-positive sam-
ples > 1 NE marker positive; AMPHI: amphicrine.

First, liver status was evaluated depending on the detection of NE markers in
AdnaTest. A threshold of two or more positive markers was chosen based on
the results of the sample classification in 3.2.2.4. 45.2 % of NE+ samples had liver
metastasis and this was significantly more frequent than in the NE- group with
22.4 % (p = 0.0327). Next, the frequency of liver metastasis was compared for the
four clusters identified in unsupervised analysis of CTC transcript profiles. Liver
metastasis was most frequently detected in the NEPC cluster in which 55.6 % of
samples were from patients with liver metastasis. In the amphicrine cluster, this
frequency was slightly reduced to 40.0 %. The lowest frequency of liver metas-
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tasis was found in the ARhigh cluster with 22.6 %. Similarly, 28.6 % of samples
in CTClow cluster had liver metastasis. However, no significant differences in the
frequency of liver metastasis between the clusters were found.

Serum markers such as PSA, NSE and LDH are used in the clinic to monitor re-
sponse to treatment. Thus, these markers were correlated to the respective liquid
biopsy assay read outs to analyze the concordance of these markers and the reli-
ability of the liquid biopsy analyses (fig. 3.19).
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Figure 3.19: Correlation of serum markers and liquid biopsy read outs. The
serum markers PSA, NSE, CEA and LDH were correlated to the associated liq-
uid biopsy assay read outs KLK3 expression, NE marker count and CTC count,
respectively; the color of the dots indicates the Spearman correlation coefficient
according to the color legend and only correlations with a p-values below 0.05
are shown.

KLK3 expression in CTCs and serum PSA were positively correlated with a cor-
relation coefficient of 0.67, as expected from the biological relation between the
KLK3 transcript and its gene product PSA (p = 0.0008). This emphasizes the ac-
curacy of the developed pipeline for gene expression in CTCs. Serum LDH is an
unspecific tumor marker that indicates cellular turn-over and, thus, is used as a
surrogate for tumor burden [164]. In line with that, a positive correlation to the
CTC count determined by CellSearch was observed (r = 0.7, p = 0.0031), indicat-
ing that also the CTC counts represented the tumor burden in the patients. This
supports the hypothesis that EPCAM-based CTC enrichment captures the rele-
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vant cell population in AVPC and NEPC patients. Serum LDH also correlated
with serum NSE (r = 0.64, p < 0.0001) and this might reflect the high prolifera-
tion index usually found in NEPC [36]. Since NSE was not part of the transcript
panel itself, serum NSE was compared to the count of positive NE markers to
represent NET of the CTCs. Here, a moderate positive correlation with a coeffi-
cient of 0.32 was found (p < 0.0001). Similarly, serum CEA correlated with the
NE marker count in CTCs (r = 0.49, p < 0.0001). In several samples with multiple
NE markers in CTCs, only a slight increase of serum NSE was observed similar
to the samples without detection of NE markers in CTCs. Thus, detection of NE
markers in CTCs might be a more sensitive and specific marker for NET. The in-
creased sensitivity of the CTC-based analysis was also illustrated by single cases.
For instance, PC334 was identified as NEPC based on the detection of four NE
transcripts while serum markers NSE and CEA were not elevated above normal
in a parallel blood sample.

Survival of patients after first diagnosis was assessed for the groups as well as for
the clusters and the CTC counts to explore prognostic values of the liquid biopsy
analysis. The survival probability of the patients as well as the number of patients
at risk is displayed in figure 3.20.

With regard to the clinical group no significant differences in OS were found (fig.
3.20 A). However, many patients were censored at early time points, thus leaving
only few patients for long time follow-up. Expression of NE markers showed
only a minimal effect on OS with a similar prognosis for patients who expressed
more than one marker and those who were marker negative (fig. 3.20 B). Based
on a threshold of 5 CTCs per 7.5mL blood, no significant differences in OS were
found between CTChigh and CTClow samples [101] (fig. 3.20 C). Lastly, survival
was compared for the four clusters identified in unsupervised analysis of the ex-
pression profiles (fig. 3.20 D). No significant differences in OS were found be-
tween the clusters.

In conclusion, the choice of the first diagnosis as starting point and the limited
follow-up for some patients resulted in no significant differences in OS with re-
gard to clinical group, CTC count and expression profile.

3.2.3.2 Longitudinal analysis of individual patients

While longitudinal analysis was not the central aim of this study, multiple blood
samples were collected and evaluated for twenty patients. Per patient, 2-5 sam-
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Figure 3.20: Survival analysis based on liquid biopsy read-outs. Overall sur-
vival of patients after first diagnosis was analyzed for all patients; A: Com-
parison of survival between clinical groups; B: comparison of survival for pa-
tients depending on the detection of neuroendocrine (NE) markers (threshold:
> 1 marker); C: Comparison of patient depending on the CTC count based on
CellSearch (threshold: >= 5 CTCs); D: Comparison of patient survival between
the four cluster identified in the gene expression analysis, AMPHI: amphicrine.

ples were available. As the follow up samples were not drawn at pre-defined
time points as required for systematic analysis, three case reports are presented
in this section to highlight the value of longitudinal CTC analysis to recapitulate
the clinical cause of the disease. First, patient 22 was initially diagnosed with
Gleason 8 metastatic PCa and metastatic lesions in lymph nodes and liver. His
initial PSA was 85.2 ng/mL. Histopathology report from that time found an ade-
nocarcinoma partially admixed with a neuroendocrine carcinoma. While PSA
was positive in the adenocarcinoma proportion of the tumor, transdifferentiated
areas were PSA negative and highly proliferative. In total, four samples were
available for analysis and the combined results are displayed in figure 3.21.
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Figure 3.21: Longitudinal analysis of patient 22. A: Serum markers at the time
point of blood collection are shown in the upper plot; CTC count determined by
CellSearch and the number of positive markers in AdnaTest are depicted in the
lower plot; B: representative images of CTCs enriched by Parsortix at the last time
point of blood collection; immunofluorescence staining was used to detect pan-
CK (AF488) and CD56 (BV421), CD45 (PerCP) served as negative marker and
nuclei were counterstained with DRAQ5.

At the first time point of blood collection, the patient had a count of 9 CTCs/mL
and the AdnaTest detected NE markers, which is in line with the histological
analysis. PRAD markers were not detected, which might indicate that the highly
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proliferative NE cells contributed more to the CTC pool in the blood. Serum PSA
and NSE were both elevated. The patient was treated for his NE disease with
carboplatin/etoposide chemotherapy and serum markers as well as CTC count
and NE markers in AdnaTest were reduced at the second time point of blood
collection, while the AdnaTest still detected PRAD markers. Five months later
an increase in CTCs was detected that was not accompanied by an increase of
any of the serum markers. Only at the last time point of blood collection af-
ter six additional months, serum LDH and NSE dramatically rose accompanied
by an increase of the number of NE markers found in AdnaTest. For this time
point, parallel Parsortix analysis was also available. CTCs had an NE phenotype
with a partial small cell-like morphology as indicated by dot-like CK staining
and intermediate to strong CD56 expression. In line with serum PSA, detection
of adenocarcinoma markers with the AdnaTest was reduced, indicating an AR-
independent progression. This case highlights the superiority of CTC count in
detection of disease progression compared to the serum markers LDH and NSE.
While both markers only showed an increase at the fourth time point, the CTC
count indicated disease progression already at an earlier time point. AdnaTest
results illustrated the response of the NEPC to the carboplatin/etoposide ther-
apy during the second blood draw, while PRAD markers were still detectable.
The NE markers ASCL1, LMO3 and CEACAM5 were the first transcript to be
up-regulated in CTCs, while at the last time point all markers but ASCL1 were
detected. This supports the role of ASCL1 as a pioneering TF in the NET process.

Similarly, the temporal landscape of NE marker expression was illustrated in the
disease course of patient 35. He was first diagnosed with hormone-sensitive PCa
and treated with ADT. After multiple lines of treatment the patient progressed
with NEPC. The patient experienced a fast progression of the disease with a con-
tinuous increase in CTC count and expression of NE markers as illustrated in
figure 3.22.

The drastic tumor growth was represented by rising serum LDH and CTC count
in CellSearch. At the same time, serum PSA increased less steeper and the num-
ber of detected PRAD markers in AdnaTest remained unchanged. In contrast,
serum NSE and the number of positive NE markers in AdnaTest strongly in-
creased. The histopathology report found a small-cell neuroendocrine carcinoma
in the liver. The tumor cells had a dot-like pan-CK staining, were negative for
CHGA and SYP, but focally positive for CD56 and highly proliferative. Compar-
ison of the AdnaTest results for the three collection time points informed about
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Figure 3.22: Longitudinal analysis of patient 35. Serum markers at the time
point of blood collection are shown in the upper plot; CTC count determined by
CellSearch and the number of positive markers in AdnaTest are depicted in the
lower plot.

the time course of NE marker expression. ASCL1, CEACAM5 and CHGA were
the first markers to be detected two of which also were among the first markers
detected in patient 22. While CHGA was not detected in histological examina-
tion, the AdnaTest gave a positive result for CHGA, suggesting that liquid biopsy
better represented intra-patient tumor heterogeneity. At the second time point of
blood collection about two weeks later, the markers NKX2-1, LMO3 and ACTL6B
were also found positive. Lastly, the markers PCSK1 and FOXA2 turned positive
in the blood sample collected six weeks later. Interestingly, these two NE mark-
ers were significantly up-regulated in the pure NEPC cluster and, thus, might be
indicative or even required to the progression to purely neuroendocrine disease.
However, patient 35 was assigned to the amphicrine cluster at all time points
due to the continuous expression of PRAD markers. This suggests that, other
metastatic lesions might still be dominated by adenocarcinoma clones.

At diagnosis, patient 65 presented with neurological symptoms of primary os-
seous metastatic prostate carcinoma. Decompression surgery revealed an ade-
nocarcinoma originating from the prostate. A high volume disease according to
CHAARTED criteria was diagnosed in CT scan and bone scan. There was no
sign of visceral metastasis. Additional immunohistochemical examinations of
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the resected tumor tissue showed positive expression of AE1/AE3, PSAP, PSMA
and partially weakly positive for PSA, as well as nuclear positivity for AR. At
that time, the cells were negative for synaptophysin and there was no evidence
for a neuroendocrine small cell component. Intensified hormonal therapy with
abiraterone was initiated. Subsequently, a serological and morphological tumor
response was observed. As shown in figure 3.23, neuroendocrine markers were
detected in CTCs at the first time point of blood collection, when no macroscopic
signs of NEPC were visible. As observed in the other two case reports, CHGA
and CEACAM5 were the first markers to be detected.
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Figure 3.23: Longitudinal analysis of patient 65. Serum markers at the time
point of blood collection are shown in the upper plot; CTC count determined by
CellSearch and the number of positive markers in AdnaTest are depicted in the
lower plot.

After six months, however, a local, PSA-negative progression of the primary tu-
mor occurred. A biopsy showed extensive infiltrates of a neuroendocrine prostate
carcinoma with positivity for synaptophysin and negativity for PSA, AR, PSMA
and NKX3.1. The proliferation index Ki67 was >95 % of the tumor cells. Serum
NSE was elevated. In line with that, the CTC count, the number of positive PRAD
markers on CTCs and serum PSA were decreased. In contrast, the number of NE
markers increased as ASCL1, ACTL6B and PCSK1 turned positive. This resulted
in a switch of the patient from the amphicrine to the pure NEPC cluster. This case
report highlights the value of the developed CTC analysis pipeline for early de-
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tection of NEPC. It also illustrates the switch of the patient from the amphicrine
to the pure NEPC cluster in response to intense therapy and emphasizes the need
for sensitive monitoring of treatment response.



4 Discussion

Treatment-emergent neuroendocrine transdifferentiation and the lack of reliable
biomarkers are major problems in late stage PCa. The aim of this study was to
identify new biomarkers for NEPC based on liquid biopsies which depict tumor
heterogeneity and allow repeated monitoring of the patients. For this purpose,
a panel of 22 markers including specific epithelial, PRAD and NE transcripts
was selected based on literature review and validated in PCa cell lines and pa-
tient tissue samples. A multiplexed, qPCR-based transcript analysis pipeline
was developed as a reliable and cost-effective method to characterize enriched
CTCs. The analysis of patient samples revealed heterogeneous CTC morphology
and significantly increased CTC counts in AVPC and NEPC compared to HSPC.
The gene expression analysis detected several markers with differential expres-
sion between the groups. Based on the transcript profiles, four major molecu-
lar subtypes were identified. The expression profiles allowed to robustly predict
NEPC samples and longitudinal case studies highlighted the potential of the liq-
uid biopsy assay for early detection of NEPC.

4.1 Marker panel selection and analysis pipeline val-

idation

Liquid biopsy allows the analysis of patient samples at the level of variable bio-
molecules and, hence, at different points in the flow of information from geno-
type to phenotype [92]. Depending on the research question, a suitable type of
biomarker needs to be chosen. In case of treatment resistance and transdifferenti-
ation in PCa, the targeted analysis of gene expression profiles by PCR-based anal-
ysis of mRNA was chosen. Genomic aberrations at this disease stage have been
shown to be largely consistent with castration-resistant but still AR-dependent
adenocarcinoma [52]. Thus, the detection of mutations or structural aberrations

80



4. DISCUSSION 81

at either the level of CTCs or cfDNA would not enable the specific identification
of patients undergoing NET. The combined loss of the three tumor suppressor
genes TP53, PTEN and RB1 has been shown to be characteristic of AVPC, but the
increased combined defect from 4 % in CRPC to 31 % in AVPC as observed by
Aparicio et al. is not sufficient for sensitive identification of patients [71]. In ad-
dition, the genomic loss of a gene is even more difficult to detect in liquid biopsy
samples in which the background of healthy leukocyte DNA covers the dele-
tion in the tumor DNA. In addition, the direct analysis of proteome profiles in
very small sample quantities, as usually seen in liquid biopsy, is still technically
challenging and expensive. Immunocytochemical staining allows the analysis
of selected protein biomarkers in enriched CTCs, however the method is lim-
ited by the small number of proteins that can be measured simultaneously [92].
In contrast, the analysis of RNA species allows to identify differentiation stages
and can rather easily and sensitively be accomplished with PCR or sequencing
based methods [92]. In addition to mRNA, other regulatory RNA species such
as microRNA can be analyzed. However, technical validation of microRNA mea-
surement from liquid biopsy samples has shown large variability depending on
several sampling parameters [165]. Consequently, mRNA was chosen as liquid
biopsy analyte to capture cell differentiation. Due to the small sample volume,
PCR-based detection in combination with a multiplexed pre-amplification reac-
tion was chosen. This allows the semi-quantitative analysis of multiple markers
from a small sample volume with high sensitivity. Compared to sequencing-
based analysis, it is less expensive and has a shorter turnaround time. Thus,
multiplexed PCR-based detection is a suitable method for repeated application
in the clinical setting.

Phenotypic plasticity has recently been added to the hallmarks of cancer as it is
an overarching principle of treatment resistance and not only observed in PCa
[166]. When choosing suitable biomarkers for the detection of NET, the aim was
to include not only markers of terminal NE differentiation, but also markers of
lineage plasticity in general. However, many regulators of plasticity and epige-
netic regulation, such as EZH2 and other histone modifiers, are universally ex-
pressed. In CTC analysis, this bears the problem of unspecific signals from the
leukocyte background that is accompanying the enriched CTCs. For this reason,
numerous well-established drivers of lineage plasticity and transdifferentiation
such as REST, NCAM1 and DLL3 had to be excluded from the marker panel.
Consequently, SOX11, TACSTD2 and PROM1 were included as less prominent
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markers of plasticity and stemness phenotypes that have also been identified in
the context of NET in recent literature [68], [160], [161].

In addition, several TFs that drive neuronal or NE differentiation as well as termi-
nal NE markers were selected. Overall, TFs are lower expressed than for example
structural or membrane proteins [167]. This is especially challenging for the sen-
sitive detection of these markers in small cell numbers as commonly observed
in liquid biopsy. Indeed, the most frequently detected neuroendocrine markers
were CHGA, CEACAM5 and ACTL6B – all of which are not TFs but effector pro-
teins of NE differentiation [74], [79], [88]. These markers were identified with
high confidence in the spike-in experiments compared to the pure cell lines. In
contrast, some of the TFs such as LMO3 or SOX11 were confidently identified in
spike-in controls of the highest expressing NEPC cell line, but the signal was lost
in spike-in samples of the neuroendocrine lung cancer cell line. This suggests
that these TFs might show false-negative results in patients with overall low CTC
numbers or with a minor NE subclone. Thus, this study has shown that it is im-
portant to include also effectors of NE differentiation and not only the drivers on
the level of gene regulation.

The identification of DNPC patients was not the primary aim of this study, but
a few patients with histological evidence of DNPC were included in our CTC
analysis on an exploratory basis. A study by Bluemn et al. found a comparable
frequency of DNPC and NEPC in a rapid autopsy study of CRPC patients. Due
to the lack of suitable positive markers to identify this disease stage, DNPC is
more difficult to recognize. The drivers of DNPC tumor growth are still poorly
understood and only very recent publications point towards activation of Wnt
and YAP/TAZ signaling as key signaling pathways [39]. In addition, Labrecque
et al. found an up-regulation of a squamous cell like gene expression signature
in DNPC patient tissue [41]. Based on this observation, KRT6A was included in
the marker panel to explore these squamous cell traits in our patient cohort. Un-
fortunately, the KRT6A assays was unspecific in the spike-in controls and had to
be excluded from further analysis. In future experiments, more markers should
be tested including for instance YAP1 and TEAD1 which were identified by Tang
et al. and are not expressed in leukocytes, unlike other drivers of the DNPC phe-
notype such as FOSL1 and TAZ. In addition, published transcriptome data sets
of CRPC patients can be used to search for DNPC samples and more potential
marker transcripts. As explained before, the sensitivity of the assay panel might
be improved by including not only TFs but also downstream effector proteins.
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Such published data sets could be used to identify the most often and promi-
nently up-regulated markers with the advantage of including more samples than
a single study.

After careful validation of our marker panel in spike-in controls, five markers
had to be excluded due to insufficient specificity and sensitivity. SRRM4 was ex-
cluded due to insufficient sensitivity as it could not be detected in any of the pos-
itive control cell lines upon enrichment from blood. Although the SRRM4 assay
had a better PCR efficiency than other assays that performed well in spike-in con-
trols, the overall expression of SRRM4 as a splice factor might have been too low
for robust detection in low cell numbers. POU3F2, KRT6A, PEG10 and LIN28B
were excluded due to unspecific signals in the spike-in controls compared to the
cell line alone. Interestingly, the first three are exactly the three assays that have
been annotated by the manufacturer to be active on genomic DNA. This suggests,
that although mRNA enrichment by oligo(dT)-beads is part of the sample pro-
cessing workflow, contamination with gDNA is still present in the purified RNA
sample. In the pre-amplification step, even small amounts of gDNA can be am-
plified if mRNA-specific primers are not available, for example due to the gene
structure. Thus, DNA and RNA signals are superimposed and quantification of
RNA expression is not possible. The ValidPrime Kit was used with the intention
to correct the detected expression for the gDNA signal [168]. It uses two control
reactions to calculate the the pure RNA signal. First, the respective assay is tested
on a gDNA control, second the samples are tested with a primer pair directed
against an untranscribed DNA region. Approximately 20 % of the samples had
a positive signal for the presence of gDNA in the cDNA sample. However, as
seen in the spike-in controls, in this study the ValidPrime correction was not suf-
ficient to disable unspecific results from assays with activity on gDNA. Thus, it is
essential to carefully design new assays in order to avoid unspecific signals.

4.2 Influence of CTC enrichment methods on down-

stream analysis

CTCs are diluted in millions of leukocytes in the blood and need to be enriched
for subsequent molecular analysis [92]. In this study, three different CTC en-
richment methods were used. The CellSearch analysis is the only FDA-cleared
technology for CTC enrichment and detection and was able to identify CTCs
in the majority of patient samples analyzed in this project. The AdnaTest is as
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well based on immunomagnetic enrichment and had concordant results with
CellSearch. Only a small number of samples were positive by the AdnaTest but
not by CellSearch. This was probably due to the additional epitopes for CTC en-
richment compared to CellSearch. In contrast, size-based Parsortix enrichment
performed worse with fewer CTCs counted after immunocytochemistry stain-
ing and fewer markers identified after gene expression analysis compared to
AdnaTest. This illustrates the huge impact of the CTC enrichment method on
the downstream molecular analysis of the CTCs. All enrichment methods come
with their own advantages and disadvantages that need to be carefully consid-
ered when designing experiments with CTCs. First, label-dependent methods
are well suited for specific enrichment of CTCs, but the choice of epitope might
as well exclude relevant cell populations. EPCAM is the cell surface marker most
frequently used for CTC enrichment, for instance in CellSearch and AdnaTest,
as it is expressed in epithelial cells and can be used for the majority of solid tu-
mors [169]. A key issue is the enrichment and detection of CTCs undergoing
EMT, as these cells down-regulate EPCAM [169]. The use of the mesenchymal
cell surface marker vimentin has been studied to identify CTCs that have un-
dergone EMT. Transcript analysis of CTCs isolated after vimentin-based positive
selection revealed an EPCAM-negative, mesenchymal phenotype. Additionally,
vimentin-based CTC count has been found to have higher sensitivity and speci-
ficity for identifying patients with disease progression in a cohort of metastatic
PCa patients [170]. However, as vimentin is also expressed by leukocytes, ad-
ditional prostate cancer-specific markers are required for CTC detection and the
higher background of leukocytes in the enriched fraction requires more sensi-
tive detection methods for the tumor-specific markers. Nevertheless, EPCAM is
widely used in PCa CTC detection and should not be neglected in enrichment of
CRPC-derived CTCs. First, EPCAM has been associated with PCa stemness in 3D
cell cultures [171]. In addition, EPCAM levels have been described to generally
correlate with proliferation and dedifferentiation [169]. In CRPC patients, more
EPCAM-high CTCs than EPCAM-low CTCs were found and only the number of
EPCAM-high CTCs was associated with overall survival [172].

Transferring the techniques established in PRAD to NEPC, raises the questions
whether NEPC CTCs are excluded from CTC enrichment by positive selection
based on EPCAM. A study by Beltran et al. compared the CTC counts between the
CellSearch system and the EPIC platform, which does not include an enrichment
step, but proceeds with staining of all nucleated cells. They found that in some
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patients with mixed or pure NEPC, the EPIC platform detected CTCs, that were
not detected by CellSearch [135]. These cells had low to absent expression of
AR and were negative for CK. In contrast, analysis of EPCAM expression in NE-
differentiated tumor tissue from different primaries has revealed that the majority
of these tumors have strong or at least variable EPCAM expression [173]. SCLC
is an aggressive neuroendocrine tumor that shares many features with NEPC,
also on the molecular level [174]. A study of nine CTC cell lines derived from
SCLC showed high EPCAM expression in eight of the cell lines analyzed while
being only partially positive for mesenchymal markers [175]. In a single-cell RNA
sequencing-based study of CRPC samples, the neuroendocrine cell populations
were the ones with the highest expression of EPCAM compared to luminal and
basal cells [176]. Taken together, the evidence found in the literature indicates
that EPCAM is an appropriate antigen for CTC enrichment of AVPC and NEPC
derived CTCs.

Additional tumor-specific cell surface markers can be utilized to enrich CTCs
with down-regulated or absent EPCAM expression. For example, the AdnaT-
est relies on three epitopes for enrichment, although anti-EPCAM antibodies are
over-represented compared to the other two epitopes EGFR and HER2. Both
proteins are growth factor receptors that are associated with CRPC. EGFR is up-
regulated in tumor tissue during progression to CRPC to facilitate androgen-
indpendent growth [177], [178]. Additionally, increased expression of EGFR has
recently been associated with NET, where EGFR co-activates LIFR signaling and
contributes to metabolic alterations that accompany NET [157]. Similarly, HER2
has been found to be contributing to CRPC progression and metastatic spread.
Both receptors are as well associated with tumor initiating cells and CTCs [179].
The possibility of targeted therapy for aggressive disease is currently in preclini-
cal testing, thus both markers are relevant for the purpose of this study [180].

To enrich NEPC-derived CTCs with a higher specificity, it is also possible to add
NEPC-specific cell surface epitopes to the enrichment protocol. One candidate
is DLL3, a membrane protein and inhibitory ligand of the Notch signaling path-
way. DLL3 is currently evaluated in vivo as a specific target for diagnosis and
treatment of NEPC. Radioactively labeled anti-DLL3 antibodies have been suc-
cessfully evaluated for specific imaging of NEPC tumors in mouse xenografts
[181]. Similarly, antibody-drug-conjugates targeting DLL3 resulted in durable
responses in mouse xenografts and partial response in one NEPC patient in a
basket trial [134]. The same study also analyzed DLL3 expression in CTCs and
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found varying percentages of DLL3-positive cells in NEPC and castration-resist-
ant PRAD [134]. Interestingly, a fraction of DLL3-positive CTCs were negative
for CK, indicating that the use of DLL3 for CTC enrichment might capture cells
which are overseen with the current EPCAM-based methods. Consequently, the
integration of DLL3 or comparable NEPC-specific cell surface markers is a pos-
sibility to optimize CTC enrichment for NEPC patients in future studies. This
can enhance sensitive detection of patients progressing with NEPC and might
also point to therapeutic targets in a tumor subtype that still lacks effective ther-
apy options. However, it is important to remember that adding more epitopes to
an antibody cocktail for CTC enrichment simultaneously increases the leukocyte
background due to more possibilities for unspecific binding. Thus the choice of
antigens for label-dependent CTC enrichment has to be made carefully, including
as many epitopes as necessary, but as few as possible.

As both AdnaTest and CellSearch mainly rely on EPCAM for CTC enrichment,
it is not surprising that there was a broad overlap between the results of the two
methods, with the AdnaTest detecting few more cases. In an analogical experi-
ment, Gorges et al. compared CTC positivity rates between CellSearch and Ad-
naTest from paired colorectal cancer patient samples. The positivity rate for CTCs
could be increase from approximately 30 % to 50 % when the results of both sin-
gle assays were combined [103]. Similarly, in a direct comparison of AdnaTest
and CellSearch results in a cohort of mCRPC patients, AdnaTest was more sensi-
tive and detected CTCs in 92 % of CellSearch positive samples while only 68 % of
AdnaTest positive samples had a positive CellSearch result [182].

However, direct comparison of CellSearch in AdnaTest remains difficult due to
the different read outs obtained with both tests. According to the manufacturer
and also in line with other studies, in this project samples were considered pos-
itive as soon as one of the prostate-specific or epithelial markers was detected
[182]. Nevertheless, this method might also be prone for false-positive results.
In this project ten age-matched healthy donor samples were analyzed with the
AdnaTest to control for the background signal of the single assays. Indeed, PSA
and EPCAM signals were detected in few healthy donor samples. This suggests,
that samples with only one positive epithelial or prostate marker might have cir-
culating epithelial cells but not necessarily circulating tumor cells. Expression
of single prostate markers or epithelial markers in healthy donor samples has
also been observed before, for example from total RNA, but also in PBMC from
healthy donors [132], [183]. This emphasizes the need for careful background
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correction using healthy donor samples to avoid false-positive results.

In contrast, label-independent methods use physical properties such as size and
deformability to enrich CTCs. A bias due to epitope selection can therefore be
avoided. However, no improvement in CTC detection nor in NE marker detec-
tion was observed in this study after Parsortix-based enrichment compared to the
AdnaTest. This might be due to particular morphological features of the AVPC
and NEPC derived CTCs. Chen et al. could show that in mCRPC CTCs nuclear
and overall size was diminished compared to CTCs from non-metastatic patients.
In addition, patients with visceral metastasis showed an even more pronounced
reduction in nuclear size [184]. Very small CTCs detected especially in the most
aggressive patients had a mean size of 6.8 µm which is almost identical to the
size of the critical gap of the Parsortix casette with 6.5 µm [184]. As AVPC and
NEPC patients progressed from mCRPC and visceral metastasis is one particu-
lar characteristic of AVPC, size-based CTC enrichment is not the most favorable
CTC enrichment method at this late disease stage, as especially the smaller cells
are derived from the more aggressive tumors.

To circumvent the issue of CTC enrichment, other studies have as well assessed
luminal and NE markers in RNA isolated from whole blood of mCRPC patients.
Detection of NE markers was associated with progression on NHA and over-
expression of a higher number of markers was associated with poor survival
[132]. However, the increased background of signals from leukocytes requires
even more sensitive PCR assays and might therefore detect patients undergoing
NET less early.

In both, AVPC and NEPC patients, extremely high CTC counts were measured.
Indeed, high CTC counts have previously been associated with aggressiveness of
disease. In mCRPC patients, elevated CTC counts were related to visceral metas-
tasis, high alkaline phosphatase and high LDH [185]. This positive correlation be-
tween CTC count and serum LDH was reproduced in our patient cohort, empha-
sizing that EPCAM-based CTC enrichment captures the relevant cell populations
that represent tumor burden. Several studies have investigated the CTC counts
in CRPC applying different enrichment strategies. Using a label-independent ap-
proach, Ladurner et al. detected ≥ 5 CTCs/7.5mL blood in 50% of mPCa patients
compared to 69 % in our cohort which included more aggressive patients [186].
In line with our study, CellSearch analysis of samples from progressive CRPC
patients had previously shown almost 80 % CTC positivity and a median CTC
count of 45 CTCs/7.5mL blood [187]. Thus, the high CTC counts observed in this
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project are consistent with recent literature. Similarly, Puca et al. found uniformly
high CTC counts with a mean of 39 CTCs/mL and 37 CTCs/ml in CRPC-NE and
CRPC-Adeno, respectively [134]. Clusters were found in both groups in contrast
to our study where cluster were only seen in the AVPC group. However, as few
clusters were found, no reliable conclusions can be drawn from this observation.
In contrast, Conteduca et al. reported higher CTC counts in NEPC compared
to CRPC-Adeno samples analyzed with the EPIC Science platform [136]. Small
cell, neuroendocrine tumors typically have a very high proliferation rate as in-
dicated by Ki67 staining and, thus, might indeed shed more cells into the blood
stream. However, as neither the AVPC nor the HSPC group are congruent with
the CRPC-Adeno cohort, it is difficult to extrapolate those findings to this study.
Not only high CTC counts but also a small cell morphology have been observed
in NEPC patients by Beltran et al. These cells had a higher nuclear to cytoplasmic
ratio, an overall smaller cell area and higher cytoplasmic circularity [135]. Al-
though CTC morphology was assessed in the CellSearch analysis, no significant
differences between the groups were identified. Rather the detection of small cell
CTCs was associated with increased CTC counts, suggesting that patients with
a higher tumor burden and hence more aggressive disease had a higher hetero-
geneity in their CTC morphology. Small cell-like CTCs were identified based on
manual inspection of the CellSearch galleries and the peri-nuclear dot-like CK
staining. In order to systematically evaluate CTC morphology as a prognostic or
predictive marker, it would be necessary to measure the size and shape of the nu-
cleus and the CTC and calculate suitable ratios for reliable quantification of the
morphological diversity.

In conclusion, EPCAM-based CTC enrichment is a suitable method to analyze
NEPC derived CTCs. The high CTC counts observed in this cohort are consistent
with results from previous studies on comparable patient populations.

4.3 Selection and classification of patient samples

Careful patient sample collection is a prerequisite for biomarker detection and
precise allocation to groups is the basis of reliable inter-group comparison. How-
ever, this is particularly challenging in a heterogeneous disease setting such as
mCRPC and AVPC. For the NEPC group, classification was rather straight-forward
as patients were required to have histopathological report proving neuroendocrine
disease. This included the detection of neuroendocrine markers such as CHGA,
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SYP or CD56 in immunohistochemistry staining or a small cell morphology. Anal-
ysis of the pathology reports was limited by a non-standardized report format
and missing stainings for NE markers in some tissue samples. In contrast, alloca-
tion to the AVPC group was based on a variety of clinical criteria including ele-
vated serum markers and short progression on NHA among others. This resulted
in a highly heterogeneous subgroup with very variable serum markers, CTC
counts and survival. However, histopathological analysis was not performed for
all AVPC patients and not every metastatic lesion was biopsied. Thus, it cannot
be completely excluded that at least subclones of NEPC or DNPC were growing
in the AVPC patients and contributed to the CTC pool in the blood. DNPC sam-
ples were defined based on the loss of expression of AR as well as neuroendocrine
markers in histopathological analysis. However, analysis of DNPC samples was
not a central aim of this study and the few samples that have been collected were
the result of a selection bias for AVPC and NEPC features.

Most samples have been collected from patients at the time point of progression
on their current therapy, but some patients also had stable disease at the time
point of blood collection. However, the specific type of treatment and also the
number of treatment lines differed between the patients. The majority of patients
had previously received ADT and NHA or chemotherapy and typically had four
or even more lines of treatment in total before blood collection. At the time point
of blood collection most patients were progressing on taxane-based chemother-
apy, but other treatments included also NHA, carboplatin-based chemotherapy
or PARP inhibition and few also immune checkpoint blockade. This resulted in
a heterogeneous patient cohort with tumors that might have developed different
mechanisms of treatment resistance based on the respective sequence of therapies
they had received. Additionally, this heterogeneity complicated the collection of
survival data, because it was difficult to define a common day 0, since the pa-
tients had received different treatments in different orders. Thus, the initial diag-
nosis of PCa was chosen as starting point. Consequently, this might have led to
limited significance of the survival analysis comparing the different groups. For
instance, the association of OS and CTC count or AR-independent disease is well
established in current literature, however this was not reproduced in this study
[101], [52]. For future studies, the patient cohort and the definition of the day 0
should be defined in advance to increase the power of the analysis and reduce
uncertainties in patient allocation. For instance, the date of progression to CRPC
could be chosen for survival analysis, while the date of initial diagnosis could
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be used only for patients with de novo NEPC. Still, in a project that runs two to
three years, advances in the field may require a revision of the inclusion criteria
and here it is of utmost importance that the clinicians involved in this process
are blinded regarding the results of the liquid biopsy assays. For the longitudinal
analysis, samples were not collected at predefined time points, but depending
on when the patients visited the outpatient clinic and whether they underwent
progression on their current therapy. Thus, longitudinal analyses allowed lit-
tle conclusion about the lead time of liquid biopsy-based biomarkers, but rather
showed stability or changes in the CTC profiles over time. Consequently, future
longitudinal studies should start analyzing patient samples at the time point of
progression to CRPC as those tumors are commonly still driven by AR signaling.
After that, blood samples should be taken in predefined intervals and finally at
the time point of clinical manifestation of AVPC or NEPC. This procedure would
enable an estimation of the lead time of the CTC-based biomarkers compared to
the clinical markers.

In conclusion, AVPC and NEPC are heterogeneous disease stages that require
careful allocation of patient samples to the respective groups. As the transition
between the groups is fluent, a correct clinical allocation can be challenging but
might be improved by the developed molecular analysis. To identify significant
differences between these heterogeneous groups, it is essential to precisely define
inclusion criteria, blood sampling times and the intervals for survival analyses.

4.4 Gene expression profiles in enriched CTCs

Gene expression profiles were determined for 22 genes in 106 blood samples.
The analysis of single markers showed several significant alterations in marker
expression between groups. The AVPC group was characterized by increased
expression of PRAD associated markers, whereas the NEPC group had reduced
expression of PRAD markers with increased expression of NE markers. As only
few DNPC cases were collected, this subgroup was not large enough to detect
significant changes in the gene expression profiles.

Although a significant reduction in the expression of most PRAD markers was
observed in the NEPC compared to the AVPC group, the NEPC samples showed
a dichotomous distribution of PRAD marker expression. This is in line with the
observations by Cancel et al. who found expression of AR and the androgen-
regulated gene NKX3.1 in more than half of NEPC samples. These were more
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frequently the samples with NEPC admixed to PRAD [159]. Subsequent hier-
archical clustering indeed confirmed this observation and revealed two distinct
clusters with NEPC patients. The role of CCND1 in NET has recently been dis-
cussed in the literature with divergent results about the regulation in NEPC [156],
[188]. In this patient cohort, we found a clear down regulation of CCND1 in
the NEPC group and a positive correlation with several PRAD markers. This is
consistent with evidence from cell models suggesting a role for CCND1 as a core-
pressor of neuronal genes in complex with histone deacetylases [189]. As pointed
out before, markers of terminal NE differentiation such as CHGA, CEACAM5 and
ACTL6B were more frequently up-regulated than TFs such as LMO3, SOX11 or
NKX2-1. However, no single NE marker was detected in all NEPC samples. Con-
sequently, the analysis of single markers is not sufficient to reliably discriminate
between the disease stages

Correlation analysis of all individual markers revealed significant positive corre-
lation of the PRAD specific markers. As for instance KLK3 and NKX3.1 are down-
stream targets of AR, this correlation was expected. Consequently, the number of
PRAD markers can be reduced in future experiments, as there is only a limited
gain of information from each individual marker. Thus, it may be sufficient to
include AR as the master regulator, KLK3 as one downstream target and PSMA
due to its role in theranostics. For the NE markers, the significant positive corre-
lation was less distinctive, most likely due to the overall lower detection of these
markers. Only a subset of the NE markers showed significant anti-correlation
with the PRAD markers. This indicates that different sets of NE markers might
be associated with particular disease stages or steps in the NET process. While
NE markers with no correlation to PRAD are those that are expressed early on
in a double-positive state and stay activated in a pure NEPC state, the markers
with anti-correlation to PRAD might be expressed at later stages in which tumor
cells already switched off AR expression. A similar differentiation of NE mark-
ers in two distinct clusters has been made by Labrecque et al. [41]. NE mark-
ers were divided in REST-repressed genes and TFs regulating NE differentiation,
with the letter being only up-regulated in AR-negative tumor tissue. While in-
deed CHGA and PCSK1 showed corresponding results in our patient cohort and
the Labrecque data, other markers such as ASCL1 and ACTL6B were inconsistent.
In contrast to this study, Labrecque et al. analyzed tissue samples derived from
a rapid autopsy. Thus, differences in the co-expression of particular NE markers
and PRAD markers might result from various metastatic lesions contributing to
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the CTC pool. Alternatively, the NET process might include different intermedi-
ate steps in individual patients, hence resulting in heterogeneous patterns of NE
marker expression.

Although the identified significant differences were in line with the expectations
for each clinical group, overall quantification remains difficult, due to the pre-
amplification step included in the transcript analysis workflow. In principle,
quantification would be possible, as long as the pre-amplification reaction is per-
formed with a reproducibly high efficiency. The pre-amplification includes a re-
duced number of cycles to ensure that the reaction is stopped in the exponential
phase of amplification. Our PCR assays showed efficiencies between 85 % and
102 % in single reactions and amplification of the target was not inhibited in the
multiplexed reaction. As all samples underwent the same analysis workflow, re-
duced performance of one assay compared to another would cause a systematic
error that would affect all samples equally. However, normalization of gene ex-
pression adds another layer of complexity to the data analysis. The Cq values of
the individual markers were normalized using two housekeeping genes. Both
housekeepers are also expressed in leukocytes, thus the number of leukocytes
influences the normalization of the CTC private markers. As leukocytes dramat-
ically outnumber the CTCs in all samples and the same concentration of beads is
added per sample, a stable background of leukocytes in the enriched CTC fraction
can be expected. The ranges observed in CellSearch counts were much higher
than the range of the CTC background. However, different batches of antibody-
conjugated beads or storage times of blood samples may introduce variation in
the leukocyte background. For data analysis in this study, a threshold was calcu-
lated for each transcript with expression in healthy donor blood samples based
on the mean Cq value in the healthy donor controls. In patient samples, mark-
ers with lower or similar expression to healthy donors were considered negative.
This did not only account for potential signals from leukocytes but also for rare
circulating epithelial cells originating from tissue injury or other sources, thus
further reducing potential false-positive results. Given that serum PSA correlates
with PSA expression in the tumor and that CTCs recapitulate the properties of
the tumor, positive correlation of serum PSA and KLK3 expression in CTCs indi-
cated, that the quantification of KLK3 expression was reliable. Still, binary read
outs were chosen for subsequent analysis to account for the semi-quantitative
approach of transcript detection. This included the classification based on the
number of positive markers and the random forest classifier based on multiple
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decision trees with individual thresholds for marker expression.

In addition to the semi-quantitative multiplex PCR-based workflow, other meth-
ods are available to study mRNA expression in CTCs. Recently, the use of droplet
digital PCR (ddPCR) has been validated for the detection of prostate biomarkers
in enriched CTCs. The multiplex assay allowed for an absolute quantification of
six transcripts and showed high specificity and increased sensitivity compared to
classical qPCR [190]. Although the pre-amplification and, hence, the uncertain-
ties in quantification can be neglected with ddPCR, a lower number of targets can
be multiplexed. RNA sequencing offers the possibility to quantify expression of
all transcripts and has been successfully applied for CTCs in the form of single
cell RNA sequencing [191]. However, isolation of single cells and NGS require
considerable resources and expertise and is therefore not the optimal method for
clinical testing.

Four distinct clusters were identified by unsupervised analysis of patient sam-
ples based on the gene expression profiles. One cluster was characterized by a
CTClow signature. The other three clusters were positive for CTCs and resembled
ARhigh, amphicrine and pure NEPC populations. The ARhigh cluster mainly com-
prised AVPC patients and was highly positive for PRAD markers, but negative
for NE markers. This indicates that tumor growth in patients with this type of
aggressive disease is still accompanied by AR expression. Although these pa-
tients have acquired resistance to several AR-targeting agents including NHA,
the AR signaling may still be fostered by splice variants such as AR-V7 also ob-
served in this cluster or by aberrant recruiting of other steroid receptors [30]. A
similar ARhigh cluster was observed in CTCs of an advanced PCa patient cohort
by Sperger et al. Patients in this cluster had a significantly worse OS and AR
splice variants appeared as the most prominent resistance mechanism. The same
study also investigated the expression of the NE markers CHGA and SYP, but
these markers were not sufficient to identify an NE cluster [138]. In a rapid au-
topsy study, Labrecque et al. studied the transcriptome of 98 mCRPC tumors
lesions by whole RNA sequencing. Five different phenotypes were identified
based on hierarchical clustering that showed good concordance with the clusters
identified in this study: ARhigh, ARlow, amphicrine, neuroendocrine without AR
expression and double-negative [41]. Similar to our clusters, amphicrine tumors
had high expression of both PRAD and a limited number of NE markers, while
pure NEPC patients showed a broader spectrum of NE marker expression. How-
ever, conclusions about amphicrine disease are overall limited due to the nature
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of the bulk CTC analysis. As CTCs can be derived from different sites of metasta-
sis within a patient, amphicrine expression profiles do not necessarily have to be
the consequence of an amphicrine tumor with parallel expression of AR and NE
markers in the same tumor or even the same cell, but might as well be the super-
position of expression profiles, for instance from a bone metastasis with lumninal
differentiation and a liver metastasis with pure small cell neuroendocrine pheno-
type. Single cell resolution is required to confirm a true amphicrine phenotype
of the CTCs. A suitable method to identify a panel of transcripts in single cells
without the need for expensive NGS analysis is the use of padlock probes for in
situ staining of mRNA in enriched CTCs [109]. However, significant differences
in NE marker profiles such as specific expression of FOXA2 and PCSK1 in the
NEPC cluster, suggest biological variance between the two neuroendocrine clus-
ters. In addition, histological analysis showed that patients in the amphicrine
cluster rather had double positive tumors with expression of SYP but without
morphological characteristics of small cell carcinoma. In contrast, most patients
in the pure NEPC cluster were negative or only weakly positive for AR in his-
tology and also showed morphological features of small cell carcinoma, such as
dot-like CK staining. The frequency of liver metastasis was similar between both
clusters, but survival analysis showed a trend towards worse prognosis for pa-
tients in the NEPC cluster. The collection of more patient samples is required
in the future to explore the prognostic consequences of amphicrine compared to
pure NEPC.

Interestingly, the ARlow and the double-negative cluster identified by Labrecque
et al. were most similar to our CTClow cluster, suggesting that the CTClow cluster
might as well comprise patients with ARlow or double-negative disease. As the
DNPC cases were characterized by the absence of expression of AR and related
markers as well as NE markers, these patients could hardly have been detected
by our marker panel due to the lack of missing positive markers. The expression
of epithelial markers is the only available indicator for CTCs in these samples,
but epithelial markers alone are not sufficient to conclude the disease subtype.
Similarly, ARlow tumors with a high tumor burden would most likely be accom-
panied by CTC profiles that look similar to ARhigh tumors with a low CTC burden.
The high CTC counts detected in a subset of patients in the CTClow cluster prove
that an ARlow/double-negative subtype might indeed be hidden in the seemingly
CTClow cluster. In addition, the frequency of liver metastasis and the survival of
this cluster were also not significantly different from the ARhigh cluster and, thus,
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suggest a similarly aggressive disease course for some patients in this cluster. As
discussed before, more positive markers are required to identify DNPC tumors
and confirm this hypothesis.

Significant differences were observed between the clusters that were not apparent
in the clinical groups. One example is the epithelial and stemness marker TAC-
STD2. While TACSTD2 positive samples were found in all clinical groups with-
out significant differences in expression, significant up-regulation was identified
in the ARhigh and amphicrine clusters compared to the NEPC cluster. Thus, TAC-
STD2 appears to be widely expressed in advanced PCa that maintains AR expres-
sion. Targeted therapies with antibody-drug conjugates directed against TAC-
STD2 have been developed and are already approved for triple-negative breast
cancer [192]. Our data suggest the implementation of TACSTD2 as a marker and
therapeutic target also in personalized treatment of advanced PCa. Next, a sig-
nificant up-regulation of RAI2 was observed in the amphicrine compared to the
ARhigh cluster. RAI2 has recently been identified as a regulator of transcriptional
repressors and histone methylation [193]. Thus, RAI2 is a promising biomarker
for the progression to amphicrine PCa and a closer analysis of its function in
transdifferentiation can improve our understanding of the underlying biologi-
cal processes and facilitate the development of new therapies. HOXB13 was the
only PRAD associated marker that was not down-regulated in the NEPC clus-
ter. This is in line with recent data from PCa tissue arrays confirming HOXB13
expression in AR-independent disease stages and its high specificity and sensi-
tivity as a marker for prostate origin [194]. Thus, HOXB13 is a valuable marker
to prove prostate origin, for instance in patients with a PSMA negative progress
in the liver. Comparing the amphicrine and the pure NEPC clusters, FOXA2 and
PCSK1 were the only NE markers with significant differential expression. PCSK1
has previously been shown to be specifically induced in pure small cell PCa, but
not in amphicrine tumors [41]. These differences in NE marker expression pro-
files suggest, that the amphicrine cell state might be an intermediate step in the
process of NET, whereas specific TFs such as FOXA2 that drive the full-blown NE
differentiation require a loss of AR signaling to be induced [75]. This hypothesis
was supported by observations from longitudinal CTC analysis. In three show
cases with detection of NE markers at multiple time points, FOXA2 and PCSK1
were the last markers to become positive.

Additionally, PROM1 was specifically up-regulated in the NEPC cluster. It is
known to be involved in the maintenance of the stem cell state and to be an in-
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hibitor of differentiation [160]. Interestingly, in a cell culture model of androgen
depletion, Sánchez et al. first observed the acquisition of NE features followed by
the emergence of a cancer stem cell phenotype after prolonged androgen with-
drawal [160]. This supports the idea of a multi-step transdifferentiation process,
that also requires the activation of stemness pathways to ultimately switch off the
AR pathway and develop a small cell neuroendocrine phenotype.

In conclusion, clusters identified based on gene expression profiles of CTCs are
similar to the phenotypic clusters observed in primary tumors and metastatic
lesions. Individual clusters might represent steps in the NET process and indicate
specific targets for precision medicine. More positive markers are necessary to
identify ARlow and double-negative disease stages.

One of the major aims of the liquid biopsy test was to detect AR-negative, neu-
roendocrine relapse before the manifestation of clinical symptoms. A classifier
was developed based on the gene expression profiles to predict the disease sub-
type. While the number of positive NE markers already enabled subtype pre-
diction, a random forest classifier allowed robust identification of NEPC patients
with an AUC of 95.5 % and a sensitivity of 90.9 % at 95.5 % specificity. In a similar
study, Zhao and colleagues performed qPCR based detection of the NE markers
CHGA and SYP in EPCAM-enriched CTCs. Longitudinal samples from mCRPC
patients were collected for at least three time points. Their assay had a good
specificity of 91 %, but a limited sensitivity of only 51 %. However, integrating
the results of single samples from the same patient increased their per-patient
prediction accuracy to 100 % [195]. In contrast, our assay showed that expression
of only a single marker, even at multiple time points, was not predictive of NEPC.
For example, patient 11 was positive for CEACAM5 at 3 out of 4 time points and
showed aggressive but not neuroendocrine disease in histology. In contrast, pa-
tients with NEPC (e.g. patient 35) might have had varying numbers of NE mark-
ers expressed, but were positive at all time points, given they were CTC positive.
Thus the inclusion of additional markers in our panel clearly improved the sen-
sitivity for a single sample and improved the discrimination between aggressive
disease and true NET.

CHGA, ACTL6B, CECAM5, KLK3 and KRT19 were among the most important
markers for the model performance. This indicates that NE, epithelial as well as
adenocarcinoma markers were required for accurate classification of advanced
PCa patients. Other markers such as LMO3, SOX11, PROM1 and RAI2 had only a
minimal influence on the classifier performance. Therefore, these markers could
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be excluded from the panel to improve cost-effectiveness of the diagnostic test
by avoiding irrelevant information. For instance, SOX11 and LMO3 showed no
significant differences between the groups in the individual marker analysis. The
adenocarcinoma markers were also highly correlated to each other. NKX3-1 was
not among the highly ranked PRAD markers and was lost earlier than HOXB13.
This could therefore be excluded from future analysis. A minimal marker panel
that would be sufficient for clinical diagnosis could therefore include EPCAM,
KRT19, CHGA, ACTL6B, CEACAM5, FOXA2, PCSK1, AR, AR-V7, KLK3, HOXB13
and EGFR. The marker panel should include multiple NE markers, since it has
been shown that the number of positive markers alone was a predictor for NEPC
and because no individual marker was positive in all samples. Further markers
such as FOLH1 and TACSTD2 should also be included, as these may provide
information on potential targets for personalized treatment.

Cases of patients being incorrectly predicted by the classifier highlighted the
weaknesses of the transcript panel. For instance, patients with double-positive
expression profiles have repeatedly been mis-classified. This could be due to an
imbalance of the data set with an over-representation of AVPC samples and the
lack of specific markers for the AVPC and the amphicrine patients. This lack of
specific markers is also reflected by the inability to discriminate the HSPC pa-
tients in a classifier for all three groups. Thus, more specific markers need to be
included. Whole transcriptome analysis of amphicrine tumors compared to pure
adenocarcinoma or pure NEPC might reveal more promising markers. In addi-
tion, the collection of more patient samples will result in a more balanced data set
and will allow a sophisticated validation of the classifier based on an independent
patient cohort.

4.5 Translation to clinical application

As new biomarkers are urgently needed to identify patients with PSA-negative
relapse, a liquid biopsy test was developed to identify patients with NEPC. Al-
though our assay showed robust performance in a cohort of more than one hun-
dred PCa patients, additional steps are required to translate our pipeline into a
diagnostic test for routine clinical application. Recently, establishment of clinical
utility, standardization of platforms for analysis and reimbursement have been
identified as the most challenging barriers for the application of liquid biopsy
testing in clinical practice [196]. With respect to the liquid biopsy test validated
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in this study, further data are required to prove the ability to overcome these bar-
riers.

First, prospective collection of patient samples is required to evaluate the find-
ings in the initially retrospectively collected cohort and prove clinical utility. In
order to improve patient care in the clinic, the test needs to detect the emergence
of NEPC before of clinical relapse. The lead time of the liquid biopsy assay must
therefore be examined by longitudinal sampling of CRPC patients and a close fol-
low up to compare how long before clinical relapse CTC profiles indicate disease
progression. The case of patient 22 illustrates that CTC count is able to identify
progression of NEPC before an incline of serum markers. Sperger et al. reported
a case study where CTC-based transcript analysis of CHGA and SYP allowed the
identification of NEPC with a lead time of 3 month before clinical progression
to NEPC. A larger cohort of prospectively collected samples is required to fur-
ther validate these initial results. Repeated measurements at six to eight week
intervals would allow a close coverage to detect early signs of transdifferentia-
tion and inform about the most feasible monitoring interval for routine clinical
application.

Next, technical details need to be refined to adapt the pipeline to the require-
ments of routine clinical testing. Several parameters impact the ease of clinical
implementation. These include the turnaround and hands-on time of the analyt-
ical pipeline. The workflow of CTC enrichment, cDNA synthesis and PCR-based
transcript detection currently takes less than 24 hours. This is considerably faster
than NGS-based methods that also require sophisticated bioinformatic data eval-
uation. In contrast, our workflow could provide fast results for timely treatment
adjustment. Simple data evaluation based on predefined thresholds and the pre-
diction of a classifier allow easy interpretation of the data. Additionally, hands-
on time could be further reduced by automating of the workflow. Recently, the
AdnaTest was adapted to work on the automated EZ Connect platform (Qiagen,
Hilden) [197]. This includes the CTC enrichment as well as the mRNA isolation
steps. However, the system is currently developed for research use only and is
not approved for diagnostic purposes. For broad use, including in smaller labora-
tories, it would be required to establish the CTC enrichment and mRNA isolation
workflow on a standard platform for automated pipetting that is also used for
other routine assays. However, as especially PCR assays are performed at high
efficiency when multiple samples are run in parallel, cost-efficient establishment
of the analysis pipeline is possibly subjected to larger laboratories.
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The current analysis pipeline is based on EDTA tubes for blood collection. This
preserves cell viability and RNA integrity, but requires fast sample processing
within three hours to avoid degradation. Thus, the test could not be performed
in a central laboratory as this needs longer storage and transportation times. To
make the test also available for smaller outpatient clinics, the use of RNA sta-
bilizing tubes is essential. As the type of blood collection tube might influence
the downstream analysis, a careful choice of a suitable collection tube is required
[165]. Recently, several companies have developed RNA stabilizing blood collec-
tion tubes, such as the PAXgene tube by Qiagen or TEMPUS tubes by Applied
Biosystems [198]. A close comparison of the available stabilizing agents and the
test of compatibility with the downstream transcript detection pipeline is neces-
sary to bring the assay closer to clinical application.

From a health economic perspective, a liquid biopsy test must be cost-effective to
pose a benefit not only for the patient but also for the health care system. Espe-
cially for a biomarker intended for disease monitoring and, hence, repeated sam-
pling, low costs are essential for broad use in the clinic. We chose a PCR-based
approach for our liquid biopsy assay because it is less expensive than NGS-based
methods with regard to the reagents and instrumentation required. While the
current workflow still requires manual work with a lot of hands-on time, au-
tomation will reduce this and, thus, the personal cost. Cost-effectiveness in terms
of value for money will need to be demonstrated in order to achieve reimburse-
ment from public health care providers. This is required to offer the test to all
eligible patients. Although meta-analysis concerning the use of liquid biopsy in
early stage prostate cancer show benefits in terms of cost and cost-effectiveness,
additional studies are required to also confirm benefits in late stage disease mon-
itoring [199].

Finally, biomarker improvement needs to be accompanied by the development of
new personalized therapy options. Today, treatment options for NEPC are mostly
limited to platinum-based chemotherapy and, thus, the earlier detection of pro-
gression to NEPC alone will not greatly improve patient outcomes. Several treat-
ment options are currently in clinical testing in patients with NEPC and AVPC
including novel small molecule inhibitors and immune therapies. For NEPC pa-
tients, ongoing clinical trials are evaluating the use of epigenetic therapies in the
form of EZH2 and LSD1 inhibitors to counteract NET. An LSD1 inhibitor has re-
cently shown promising results in advanced solid tumors and especially in neu-
roendocrine carcinomas [200]. Currently, this inhibitor is tested in a separate clin-
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ical trial for CRPC patients with progression on enzalutamide (NCT04628988).
Pre-clinical data points towards reversal of transdifferentiation following EZH2
inhibition in NEPC models [201]. Thus, EZH2 inhibition is currently being inves-
tigated for SCLC and CRPC with resistance to NHA (NCT03460977). Based on
the high frequency of AURKA amplification observed in NEPC, inhibitors have
been evaluated in clinical trials, however primary endpoints were not met despite
some exceptional responders. This highlights the need for biomarkers and com-
panion diagnostics [202]. In AVPC, the combination of cabazitaxel-carboplatin
chemotherapy with olaparib maintenance therapy is currently being tested, but
results are not available, yet (NCT03263650). This concept is based on the ob-
servation of a BRCAness phenotype in CRPC with synthetic lethality follow-
ing PARP inhibition [203]. In addition, the combination of immune checkpoint
blockade with either NHA or tyrosine kinase inhibitors is currently tested for
patients with treatment-emergent NEPC (NCT04926181, NCT04848337). As up-
regulation of receptor tyrosine kinases such as RET, ALK or VEGFR is associ-
ated with NEPC, this concept has shown promising results in preclinical stud-
ies so far [204], [205]. In neuroendocrine carcinomas of various origins, an anti-
DLL3 antibody drug-conjugate showed clinical benefit in the majority of NEPC
patients although the objective response rate was limited [206]. Likewise, DLL3-
targeting T cell engagers are currently being tested for DLL3 positive, neuroen-
docrine tumors including NEPC in phase I/II clinical trials and a previous study
in SCLC has already suggested improved benefit from biomarker-assisted pa-
tient selection (NCT04471727, NCT04702737) [207], [208]. Similar to anti-DLL3
therapy, liquid biopsy enables a tumor-agnostic, personalized therapy selection,
depending on the respective expression of mutational profiles. For example, anti-
TROP2 antibody-drug conjugates are approved for triple-negative breast cancer
and are now being investigated more broadly for advanced epithelial malignan-
cies (NCT04152499) [209]. TROP2 was one of the markers analyzed in this study
and results suggest a high expression in AVPC patients. In breast cancer, strong
TROP2 expression in tissue biopsy was associated with improved overall sur-
vival, encouraging closer examination of the predictive value of TROP2 expres-
sion in CTCs for the selection of treatment, also in PCa [210]. Similarly, patients
with mutations in BRCA1/2 or other homologous recombination repair genes are
eligible for PARP inhibitor treatment [211]. Consequently, the precise identifica-
tion of actionable targets might be more important than the accurate classification
of the tumor subtype in an anyhow highly heterogeneous disease. In conclusion,
a sophisticated marker panel to detect AVPC and NEPC patients should include
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prognostic biomarkers for the disease subtype and predictive biomarkers to sup-
port therapy decisions.

4.6 Conclusion and Outlook

The aim of this project was to identify biomarkers for neuroendocrine transdiffer-
entiation in patients suffering from advanced prostate cancer. For this purpose,
blood was collected from more than 100 PCa patients with known disease stage
and CTCs were enriched. 22 markers identified by literature research and vali-
dated in cell lines and published data sets were analyzed in bulk CTC fractions.
The transcript analysis revealed a high degree of inter-patient heterogeneity in
CTC populations with distinct expression patterns between the disease subtypes.
This allowed robust prediction of the NEPC samples and identified treatment rel-
evant molecular targets. Longitudinal case studies emphasized the advantages of
liquid biopsy-based disease monitoring for early detection of relapse.

The translation of the liquid biopsy assay for NEPC into clinical application will
require systematic prospective, longitudinal analysis of patients to assess the lead
time of the liquid biopsy assay compared to clinical parameters. Precise defi-
nition of inclusion criteria and careful allocation of the heterogeneous patients
to the disease stages will be essential to obtain reliable results. Automation of
the workflow and removal of redundant and informative markers can further
increase the cost-effectiveness of the assay. Most importantly, therapy options
need to be refined in AVPC and NEPC. The inter-patient heterogeneity observed
in this cohort indicates the necessity for personalized medicine in advanced PCa
that also considers molecular markers in addition to macroscopic clinical param-
eters. Our liquid biopsy assay enables the identification of therapeutic targets
such as TROP2 as well as the monitoring of therapy response and, thus, paves
the way for precision medicine in advanced PCa. Future research will need to
deal with additional subtypes of AVPC such as ARlow PCa and DNPC to develop
more sophisticated assays that can detect all AR-independent relapses. CTCs as
well as cfDNA offer the possibility to explore epigenetic features such as methy-
lome profiles to further refine monitoring and diagnosis of AVPC patients beyond
NET.



Abstract

Standard therapy for prostate cancer is directed against the androgen receptor
(AR) signaling pathway. As a result of increased therapeutic pressure from novel
hormonal agents, patients are more frequently progressing to AR-independent,
aggressive variant prostate cancer (AVPC). The acquisition of neuroendocrine
features in a transdifferentiation process leads to the emergence of neuroendocrine
prostate cancer (NEPC) and presents one resistance mechanism to AR-targeted
therapy. As PSA no longer is a reliable biomarker in AVPC and NEPC, there
is an urgent need to identify new biomarkers for AR-independent progression
and transdifferentiation. The molecular analysis of circulating tumor cells (CTC)
and tumor cell fragments shed into body fluids is known as liquid biopsy (LBx).
LBx poses significantly reduced risk to patients, can be performed repeatedly and
represents tumor heterogeneity more effectively than a tissue biopsy. Thus, this
study aimed to establish a liquid biopsy-based biomarker for the detection and
monitoring of patients with NEPC.

For this purpose, a transcript panel was selected based on literature review and
validated in cell lines and published tumor tissue data sets. The combined work-
flow of CTC enrichment and transcript detection was validated in spike-in con-
trols. Blood samples were collected from patients with AVPC, NEPC and hor-
mone-sensitive prostate cancer at the University Medical Center Hamburg-Ep-
pendorf. CTC counts were measured by CellSearch. After validation of the en-
richment methods, the expression of a 22 gene panel was analyzed in AdnaTest-
enriched CTCs. Gene expression profiles were evaluated using supervised and
unsupervised approaches and correlated to clinical data.

Comparison of different enrichment methods showed that CTCs were more fre-
quently detected with EPCAM-based CTC enrichment. The detection of neuroen-
docrine markers was not improved by Parsortix enrichment compared to Ad-
naTest. CellSearch analysis revealed significantly increased CTC counts in NEPC
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and AVPC patients accompanied by a heterogeneous CTC morphology. Gene ex-
pression profiles revealed a high degree of heterogeneity between patients with
significant deregulation of several individual markers. Unsupervised analysis
identified four distinct clusters, which were termed ARhigh, CTClow, amphicrine
and pure NEPC. Using a random forest model, HSPC and NEPC samples could
be distinguished with an AUC of 95.5 % and an out-of-bag error rate of 15.5 %
in cross-validation. In longitudinal samples of single patients, the detection of
neuroendocrine markers in CTCs recapitulated the clinical course of therapy re-
sponse and progression.

In conclusion, AVPC and NEPC patients had a high CTC burden, which facili-
tated subsequent molecular analyses. The gene expression profiles of the marker
panel in CTCs reflected the histology of the tumors and were sufficient to dis-
tinguish intrinsic molecular subtypes of advanced prostate cancer. In the future,
the convenient PCR-based analysis pipeline may allow monitoring of advanced
prostate cancer patients for earlier adjustment of therapy for NEPC.



Zusammenfassung

Die zielgerichtete Therapie des Prostatakarzinoms beruht üblicherweise auf der
Hemmung des Androgenrezeptor (AR) Signalwegs. Neue hormonartige Wirk-
stoffe haben zuletzt gute Behandlungserfolge erzielt, jedoch kann der erhöhte Be-
handlungsdruck bei einigen Patienten zum Progress mit einer AR-unabhängigen,
aggressiven Variante des Prostatakarzinoms (AVPC) führen. Der Erwerb neu-
roendokriner Eigenschaften im Rahmen einer Transdifferenzierung stellt einen
möglichen Resistenzmechanismus dar und manifestiert sich klinisch als therapie-
induziertes neuroendokrines Prostatakarzinom (NEPC). Da PSA in diesem Stadi-
um der Erkrankung nicht länger als verlässlicher Biomarker verwendet werden
kann, ist es dringend notwendig neue Marker für die AR-unabhängigen Stadien
zu entwickeln. Die molekulare Analyse von zirkulierenden Tumorzellen (CTC)
und anderen Tumorzell-assoziierten Biomolekülen in Körperflüssigkeiten wird
als Flüssigbiopsie bezeichnet. Diese ist mit einem deutlich geringeren Risiko für
die Patienten verbunden als eine herkömmliche Gewebebiopsie, kann einfacher
wiederholt werden und bildet die Heterogenität der Erkankung häufig besser ab.
Ziel dieser Arbeit war daher die Identifizierung und Validierung Flüssigbiopsie-
basierter Biomarker für die Detektion von NEPC und das Monitoring von betrof-
fenen Patienten.

Zu diesem Zweck wurde ein Panel von Transkripten auf Basis einer Literatur-
recherche ausgewählt und in Zelllinien und publizierten Datensätzen Genom-
weiter Genexpression relevanter Tumorerkrankungen validiert. Der kombinierte
Ablauf von CTC-Anreicherung und Transkript-Detektion wurde mit Zelllinien-
basierten Kontrollen geprüft. Blutproben wurden von AVPC, NEPC und hormon-
sensitiven Kontrollpatienten am Universitätsklinikum Hamburg-Eppendorf ge-
sammelt. Die CTC-Anzahl wurde mittels CellSearch bestimmt. Nach der Validie-
rung verschiedener Anreicherungsmethoden wurde das 22-Gen-Panel in Adna-
Test-angereicherten CTCs untersucht. Die Genexpressionsprofile wurden mit über-
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wachten und unüberwachten Methoden analysiert und mit den klinischen Daten
korreliert.

Im Vergleich der verschiedenen Anreicherungsmethoden wurden mit dem Adna-
Test mehr CTC-positive Proben als mit CellSearch und Parsortix identifiziert. Die
Detektion der neuroendokrinen Marker war in Parsortix-angereicherten CTCs im
Vergleich mit dem AdnaTest nicht verbessert. Insgesamt zeigte die CellSearch
Analyse eine heterogene Zellmorphologie und eine signifikant erhöhte Anzahl
von CTCs in AVPC und NEPC Patienten. Die Genexpressionsprofile verdeut-
lichten die Heterogenität der Patientenkohorte, innerhalb derer zahlreiche neu-
roendokrine und Adenokarzinom-assoziierte Transkripte signifikant dereguliert
waren. Basierend auf den Expressionsprofilen wurden vier Cluster identifiziert,
die als ARhoch, CTCniedrig, rein neuroendokrin und amphikrin zusammengefasst
werden konnten. Ein Random-Forest-Model mit einer AUC von 95.5 % konnte
zudem zuverlässig zwischen der NEPC- und der Kontrollgruppe unterscheiden.
In der longitudinalen Analyse einzelner Patienten konnte der klinische Verlauf
anhand der CTC-Daten rekapituliert werden.

Zusammenfassend wurde in dieser Arbeit eine hohe CTC-Last in AVPC und
NEPC Patienten nachgewiesen, was die nachfolgende molekulare Analyse er-
leichterte. Die Expressionsprofile des ausgewählten Markerpanels in den CTCs
spiegelten die Histologie der Tumoren wider und erlaubten die Unterscheidung
molekularer Subtypen innerhalb des fortgeschrittenen Prostatakarzinoms. Zu-
künftig könnte diese erfolgreich entwickelte, PCR-basierte Analyse genutzt wer-
den, um die Entstehung von NEPC früher zu erkennen und die Therapie der
entsprechenden Patienten gezielt anzupassen.



List of Abbreviations

Abbreviation Meaning
AR Androgen receptor
ADT Androgen deprivation therapy
AMPC Amphicrine prostate cancer
AUC Area under the curve
AURKA Aurora kinase A
AVPC Aggressive variant prostate cancer
cDNA Complementary DNA
CEA Carcinoembryonic antigen
cfDNA Cell-free DNA
CK Cyto-keratin
ctDNA Circulating tumor DNA
CRPC Castration-resistant prostate cancer
CTC Circulating tumor cell
ddPCR Droplet digital PCR
DMEM Dulbecco’s modified Eagle medium
DNA Deoxyribonucleic acid
DNPC Double negative prostate cancer
EMT Epithelial-to-mesenchymal transition
EV Extracellular vesicle
FCS Fetal calve serum
gDNA Genomic DNA
GOI Gene of interest
HSPC Hormone-sensitive prostate cancer
IPC Interplate calibrator
LDH Lactate dehydrogenase
lncRNA Long noncoding RNA
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Abbreviation Meaning
mRNA Messenger RNA
NE Neuroendocrine
NEPC Neuroendocrine prostate cancer
NET Neuroendocrine transdifferentiation
NGS Next-generation sequencing
NHA Novel hormonal agents
NSE Neuron-specific enolase
OS Overall survival
PCa Prostate cancer
PBS Phosphate-buffered saline
PBMC Peripheral blood mononuclear cell
PCR Polymerase chain reaction
PDX Patient-derived xenograft
PFS Progression-free survival
PRAD Prostate adenocarcinoma
PSA Prostate-specific antigen
qPCR quantitative PCR
RNA Ribonucleic acid
ROC Receiver Operator Characteristic
SCLC Small cell lung cancer
TF Transcription factor
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