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Abstract

Abstract

Embodied agents can only partially observe their surroundings from their ego-
centric perspectives at any moment. This leads to the prevalent situations of
insufficient observations, where the agents respond according to insufficient task-
relevant information. To resolve this, they must actively explore the environment
according to task requirements to collect sufficient task-related information. The
development of the capability of active vision plays an essential role in embodied
artificial intelligence agents operating in real-world application scenarios.

Different from the majority of existing work on embodied agents that is focused
on learning active vision control, as seen in tasks such as object-goal navigation,
this thesis concentrates on action-response embodied agents that have two distinct
output channels: one for active vision control for goal-oriented visual information
collection, and the other for task-relevant responses. Embodied agents of this setup
are natural, aligning closely with human capabilities, and are especially needed in
scenarios where rich interaction between agents and human users plays an essential
role. However, research on this kind of embodied agent has not yet received much
attention.

This thesis first studies disembodied models in situations of insufficient obser-
vations to investigate to what extent the issue of insufficient observations can be
addressed without the application of active vision. Specifically, we study the is-
sue in a special setup of the task of visual question answering (VQA), where the
visual information of an image is possibly insufficient to answer a given question.
Our experiments demonstrate that it is non-trivial to develop disembodied models
capable of detecting the sufficiency of perceived information while giving accurate
responses when the information is sufficient. In addition, our approach reveals
an inherent limitation of disembodied AI models, i.e., the lack of the capability of
active perception hinders the development of a progressive model that can produce
helpful responses in situations of insufficient observations. This motivates our work
on embodied agents with the capability of active vision.

Then, driven by the inherent limitation of disembodied AI models, we focus on
the development of active vision control for embodied AI agents. Motivated by the
neuroscientific learning theory that the components of sensory perception, atten-
tion mechanisms, and value evaluation are all involved in the rewarding process in
the brains of humans and animals, we model the action-response agent utilizing a
modular network and train the active vision control policy through reinforcement
learning (RL). To effectively evaluate the performance of the model and the train-
ing method, we introduce the task of robotic object existence prediction (ROEP),
where the situation of insufficient observations arises from potential occlusions
between objects. The experimental results demonstrate the effectiveness of the
proposed model and the training method in developing action-response agents.

Next, motivated by the observation that the efficient training of the proposed
model is challenging, this thesis analyzes the training process and generalizes the
learning paradigm of the proposed model into a novel reinforcement learning frame-
work, namely, internally rewarded reinforcement learning (IRRL). Theoretical and
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empirical analyses demonstrate that the inherent issues of noisy rewards and in-
sufficient observations in the training process of IRRL lead to an unstable training
loop where neither the policy nor the discriminator can learn effectively. It is
proven that the shape of the reward function has an impact on the stability of the
training process, based on which the clipped linear reward function is proposed to
mitigate the unstable training issue.

In summary, the task setups, simulation environments, methodologies, and find-
ings presented in this thesis contribute to the development of active vision for em-
bodied agents and associated areas within the realm of reinforcement learning. The
reinforcement learning framework proposed in this thesis, which incorporates di-
verse components such as visual perception, active vision control, and task-relevant
discrimination, provides a unified approach to the development of active vision for
action-response embodied agents, serving as a fundamental contribution.
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Zusammenfassung

Verkörperte Agenten können zu jedem Zeitpunkt ihre Umgebung nur partiell aus
ihrer egozentrischen Perspektive erfassen. Dies führt häufig zu Situationen, in de-
nen Beobachtungen unvollständig sind und die Agenten auf Basis der unvollständi-
gen, aufgabenbezogenen Informationen reagieren müssen. Um diese Herausfor-
derung zu bewältigen, ist es erforderlich, dass sie ihre Umwelt entsprechend den
Erfordernissen der Aufgabe aktiv erkunden, um genügend relevante Informationen
zu sammeln. Die Entwicklung des aktiven Sehens ist von wesentlicher Bedeutung
für verkörperte KI-Agenten, die in realistischen Szenarien eingesetzt werden.

Im Unterschied zu einem Großteil der bisherigen Forschungen über verkörperte
Agenten, die vornehmlich das aktive Sehen in Kontexten wie Objekt-Ziel-Navigation
thematisieren, richtet diese Arbeit ihr Augenmerk auf verkörperte Agenten, die mit
zwei verschiedenen Ausgabekanälen ausgestattet sind: einem für die Steuerung des
aktiven Sehens zur gezielten Sammlung visueller Informationen und einem zweiten
für aufgabenbezogene Handlungen. Solche verkörperten Agenten sind natürlich
und entsprechen den menschlichen Fähigkeiten. Sie werden vor allem in Szena-
rien benötigt, in denen eine reiche Interaktion zwischen Agenten und menschlichen
Nutzern eine wesentliche Rolle spielt. Allerdings hat die Forschung zu dieser Art
von verkörperten Agenten noch nicht viel Aufmerksamkeit erhalten.

In der vorliegenden Arbeit werden zunächst Modelle ohne physische Präsenz
in Kontexten mit unvollständigen Beobachtungen untersucht, um zu ergründen,
inwiefern die Herausforderung unvollständiger Information auch ohne den Ein-
satz aktiven Sehens bewältigt werden kann. Konkret wird das Problem in einem
speziellen Szenario betrachtet, bei dem die visuellen Informationen eines Bildes
möglicherweise nicht genügen, um eine gegebene Fragestellung zu beantworten.
Die Untersuchung zeigt, dass die Entwicklung nicht-physischer Modelle, die sowohl
eine Situation unvollständiger Information erkennen, als auch in Situationen aus-
reichender Datenlage präzise Antworten liefern können, eine keineswegs triviale
Aufgabe darstellt. Zudem wird eine grundlegende Einschränkung derartiger nicht-
physischer KI-Mod-elle aufgezeigt: Es lässt sich lediglich ein konservatives Modell
realisieren, das in Szenarien mit unvollständiger Information die Ausgabe poten-
ziell schädlicher Antworten vermeidet. Diese Erkenntnis legt den Grundstein für
weiterführende Arbeiten an verkörperten Agenten, die durch aktives Sehen in der
Lage sind, proaktiv die benötigten Informationen zu erwerben und so Reaktionen
zu erzeugen, die nicht nur unschädlich, sondern auch von Nutzen sind.

Angesichts der grundlegenden Einschränkungen nicht-physischer KI-Modelle
fokussieren wir uns auf die Entwicklung einer fortschrittlichen Steuerung des ak-
tiven Sehens für verkörperte KI-Agenten. Inspiriert von neurowissenschaftlichen
Lerntheorien, welche die Integration von Sinneswahrnehmung, Aufmerksamkeits-
mechanismen und Bewertungsprozessen in den Belohnungsmechanismus des men-
schlichen und tierischen Gehirns betonen, entwerfen wir den Action-Response-
Agenten mittels eines modularen Netzwerks und trainieren die Strategie für die
Steuerung des aktiven Sehens durch Reinforcement Learning (RL). Zur effektiven
Leistungbewertung des Modells und der Trainingsmethode implementieren wir die
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Aufgabe für den Roboter, die Existenz von Objekten vorherzusagen (ROEP), die
durch mögliche Verdeckungen durch andere Objekte bei unvollständigen Beobach-
tungen geprägt ist. Experimentelle Ergebnisse belegen die Machbarkeit, ein Mod-
ell für einen Action-Response-Agenten zu entwickeln, der sowohl in der Lage ist,
die Steuerung des aktiven Sehens auszuüben als auch aufgabenbezogene Aktionen
durchzuführen.

Anschließend, inspiriert von der Erkenntnis, dass das effiziente Training des
vorgeschlagenen Modells eine signifikante Herausforderung darstellt, widmet sich
diese Arbeit einer detaillierten Analyse des Trainingsprozesses und erweitert das
Lernkonzept des vorgeschlagenen Modells zu einem innovativen Reinforcement-
Learning Konzept, dem intern belohnten Reinforcement Learning (IRRL). Theo-
retische Überlegungen und empirische Untersuchungen zeigen, dass die grundle-
genden Problematiken von verrauschten Belohnungssignalen und unvollständigen
Beobachtungen innerhalb des IRRL-Trainingsprozesses zu einer instabilen Lern-
schleife führen, in welcher weder die Strategiefindung noch das Diskriminatorlernen
effektiv stattfinden können. In dieser Arbeit konnte nachgewiesen werden, dass die
Gestaltung der Belohnungsfunktion einen entscheidenden Einfluss auf die Stabilität
des Trainingsverlaufs nimmt. Vor diesem Hintergrund wird eine gedeckelte lineare
Belohnungsfunktion vorgeschlagen, um das Problem der Trainingsinstabilität zu
entschärfen.

Zusammenfassend trägt diese Arbeit durch die Präsentation spezifischer Auf-
gabenstellungen, Simulationsumgebungen, Methoden und Ergebnisse wesentlich
zur Fortentwicklung des aktiven Sehens für verkörperte Agenten und zu angren-
zenden Themenfeldern im Kontext des RL bei. Der in dieser Arbeit vorgeschlagene
Rahmen für das RL, der verschiedene Komponenten wie die visuelle Wahrnehmung,
die Steuerung des aktiven Sehens und die aufgabenbezogene Differenzierung inte-
griert, bietet einen einheitlichen Ansatz für die Entwicklung des aktiven Sehens
für verkörperte Agenten und stellt einen grundlegenden Beitrag dar.
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Chapter 1

Introduction

1.1 Motivation

Due to the inherent constraints of sensors and the presence of occlusions, humans
and animals are always only able to partially perceive the environment they in-
habit. The visual perception of humans is limited to the view directly in front of
us. Thus, when searching for something, even in a small room, we often need to
turn our bodies around or interact with objects to remove potential occlusion to
fully explore the environment. Similarly, the field of view of robots is constrained
by the state of their physical bodies. We expect that the visual perception of
robots operates in a similar pattern to that of humans in the 3D world, with the
ability to actively adjust the camera’s position, orientation, and focus.

Embodied agents possess physical or virtual bodies in real-world or simulated
environments, with the capability of interacting with their environments [Duan
et al., 2022]. Due to their maneuverability, they can actively adjust the state
of their vision system to perceive freely in the environment like humans. An
ideal embodied agent, when presented with a specific objective, is expected to
proactively collect the necessary information to accomplish the goal. Nevertheless,
in reality, the issue of insufficient observations could arise, posing challenges in the
development of the active visual system. The unexpected situation happens when
the observed information is still not enough to provide a reliable response, yet the
agent chooses to cease further exploration. This issue of insufficient observations
potentially leads to harmful and helpless responses from an intelligent assistant.

The expected functionality of an embodied agent is determined by its target
tasks. Depending on the setup of target tasks, the active-vision agent could have
a single-output channel or dual-output channels. The majority of existing work in
embodied agents with active vision is focused on only learning active vision control
actions, as seen in tasks such as object-goal navigation [Anderson et al., 2018a],
embodied language grounding [Hermann et al., 2017], and robotic instruction fol-
lowing [Anderson et al., 2018c]. In these scenarios, the only output of the agent
is the active vision control action (see Fig. 1.1). Another class of scenarios that is
realistic but has not yet gained much attention involves agents with two distinct
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Agent

Visual
Perception

Language
Instruction

Action for Active
Vision Control

Figure 1.1: Diagram of the action-only embodied agents with the single-output
channel of active vision control. This framework is applicable in tasks where only
the control of the active vision system is enough to solve the task, e.g., in the task
of object-goal navigation [Anderson et al., 2018a].

output channels: one for low-level active action control aimed at goal-driven vi-
sual information gathering, and another for high-level, task-relevant responses for
accomplishing a specific task goal (see Fig. 1.2). This setup closely resembles how
humans operate in their daily routines. For example, to find out the number of
chairs in a room, we first search for chairs in the room and then give the number.
In order to figure out the amount of money in a wallet, we need to examine the wal-
let’s content and count the notes and coins to arrive at the total sum. Throughout
the active vision exploration process, we gradually reduce our uncertainty regard-
ing possible answers and eventually come up with a final response with a high
level of certainty. This dual-output setup is more complex and presents greater
challenges compared to tasks where the agent only produces active vision control
actions. Typical tasks involving this type of agent include embodied question an-
swering [Das et al., 2018], embodied amodal recognition [Yang et al., 2019a], and
robotic occlusion reasoning [Li et al., 2021]. We introduce the term action-response
embodied agents to refer to embodied agents with dual-output channels for action
and response, and action-only embodied agents to those possessing a single-output
channel for action. This thesis concentrates on action-response embodied agents
due to their wider application potential and the relatively lesser extent of explo-
ration they have received in existing research.

Consider the following real-life scenario involving an action-response human
assistant, to better understand the issue of insufficient observations and the impact
of active vision behaviors on the resultant responses. How would an assistant
respond to a request “What’s the weather like today?” from an elderly person
with limited mobility or a visually impaired person? A responsible and diligent
assistant may head over to the windows of the room to visually assess the weather
conditions. In case the windows of the room are obscured by curtains, the assistant
may open the curtains and then perform the assessment. However, an irresponsible
assistant may simply give a random guess about what the weather is like, e.g., “The
weather is good!”, instead of actively exploring the environment to collect further
necessary observations to assess the weather conditions. This response could be
wrong and misleading, thus potentially harmful for the questioner if the weather is
actually cloudy and is going to rain soon. It could also happen that the assistant

2
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Agent

Visual
Perception

Language
Instruction

Action for Active
Vision Control

Task-Relevant
Response

Figure 1.2: Diagram of the action-response embodied agents with dual-output chan-
nels: the output of the active vision control channel is aimed at collecting sufficient
information for accomplishing the given task, and the output of the task-relevant
response channel is to produce the final response utilizing the information gath-
ered through active vision. This framework is applicable in cases where the active
vision system works as the support component for a high-level cognition task, e.g.,
in the task of embodied question answering [Das et al., 2018].

is lazy and prefers to avoid mistakes by simply responding “I don’t know”. This
response is better than the random guess from the perspective of the questioner
since it is at least not misleading. However, this response is unarguably not helpful.
The first type of response is what we expect from an assistant since it tackles the
issue of insufficient observations well through reasonable environmental interaction
and exploration. To address the challenges posed by insufficient observations, an
ideal human assistant, as well as an action-response embodied agent, should possess
the following capabilities to produce rapid and reliable responses:

1. Evaluating the sufficiency of observed information for achieving the given
task;

2. Producing immediate responses in case the observed information is sufficient;

3. Interacting with the environment to actively acquire additional task-relevant
information in case the observed information is insufficient.

However, endowing action-response embodied agents with such capabilities to
tackle the issue of insufficient observations is nontrivial. As the active vision
policy is goal-oriented, the agent is expected to have a good understanding of
both the goal of the task and the environment to evaluate information sufficiency
and perform both high-level action planning and low-level interaction control. A
wide range of techniques must be employed, encompassing natural language under-
standing, image processing, common-sense reasoning, action policy learning, world
model acquiring, and so on.

In this thesis, we attempt to model action-response agents using unified modular
neural networks, and develop the active vision control policy through reinforcement
learning. This is biologically plausible, as the components of sensory perception,
attention, and value evaluation are all involved in processing rewards in the brains
of humans and animals [Schultz, 2015] (cf. Chapter 3.1). Different from existing
works focusing on large-scale realistic environments and agents that are expected

3
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to integrate a wide range of capabilities, this thesis is not aimed at solving the chal-
lenging problem in scale. Instead, we specifically focus on the active vision control
policy and its collaboration with the task-relevant response. By working on small-
scale environments, we intentionally set aside distractions from other capabilities,
such as commonsense reasoning and world modeling. Although the experimental
environment used in this thesis is constrained, this research can provide valuable
insights regarding the development of action-response agents in more realistic and
large-scale environments.

1.2 Research Questions

To achieve the aforeintroduced goal, this thesis is dedicated to addressing the
following research questions.

• How to endow a disembodied model with the capability of information suf-
ficiency evaluation?

• How to model action-response embodied agents using neural networks and
optimize the active vision control policy using reinforcement learning?

• How to stabilize the reinforcement learning process of the active vision control
policy to make the training more efficient?

1.3 Research Methodology

To answer the first research question, we study the task of irrelevant visual question
detection, where a model is tasked to detect visual questions that are unanswer-
able. This task is closely related to the task of visual question answering, which
operates under a precondition that all the visual questions are answerable. To
perform the task, a model should be able to detect the sufficiency of the visual
information given a visual question. We employ a model architecture that was
originally designed for the task of visual question answering and investigate whe-
ther the abilities for information sufficiency detection are aligned with the abilities
for visual question answering. Furthermore, we endeavor to obtain an integrated
model that is capable of both visual question answering and irrelevant visual ques-
tion detection, which can prevent the generation of potentially harmful answers
when the visual information is insufficient while generating answers when the vi-
sual information is sufficient. To accomplish this objective, we adopt a strategy
of training a model on an assembled dataset containing both relevant and irrel-
evant image-question pairs, along with an additional answer option “irrelevant”
that indicates unanswerable questions.

To answer the second research question, we adopt the methodology of recur-
rent visual attention [Mnih et al., 2014], which is a seminal work in the attention
mechanism in the realm of computer vision. An architecture named Recurrent At-
tention Model (RAM) is designed for the image classification task. Align with the
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Figure 1.3: From the framework of the Recurrent Attention Model [Mnih et al.,
2014] to the framework of the action-response agent. Top: high-level framework
of the recurrent attention model; Bottom: high-level framework of the action-
response agent with active vision.

framework of action-response agents (cf. Fig. 1.2), RAM has two distinct output
modules: one for attention action generation and the other for image classification.
RAM can only perceive a small portion of pixels of the whole image with a limited
field of perception at each time step. Nevertheless, the location of the perception
field, controlled by a location network, can be changed at each time step to collect
visual information sequentially. The location network is trained in reinforcement
guided by feedback from the classification network, and the classification network
is trained in supervised learning using the human-annotated digit classes. By re-
currently processing a sequence of partial observations, RAM classifies digits in
images. We aim to adapt the model architecture and training methods of RAM in
the development of action-response embodied agents, see Fig. 1.3.
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In addition, to evaluate the effectiveness of the proposed method, we create
the task of robotic object existence prediction, where a robot with an egocentric
view can move around a table to predict the existence of a target object. This is a
small-scale and controllable task with a focus on the active vision capability of the
embodied agent. Compared with existing tasks in large-scale environments, this
task is more suitable for evaluating the capability of active vision in action-response
agents.

To answer the third research question, we generalize the reinforcement learning
of active vision control policy learning into a framework named internally rewarded
reinforcement learning, where the reward for reinforcement learning is from a dis-
criminator that is jointly optimized with the policy. We study the issue of the
unstable training loop in the training process of internally rewarded reinforcement
learning and investigate the impact of reward functions on the instability of the
training process.

1.4 Contributions of the Thesis

In this thesis, we highlight the importance of addressing the issue of insufficient
observations for embodied agents. We attempt to develop embodied agents with
an active vision that are able to handle these situations. Specifically, we focus
on action-response embodied agents, which have two output channels: one for the
active vision control and the other for the task-relevant response that depends on
the visual information collected through active vision.

As a preliminary study, we first work on disembodied models in scenarios of in-
sufficient observations. Specifically, we study the capacity to detect the sufficiency
of visual information in the visual question answering task. We demonstrate the
feasibility of endowing existing visual question answering models with the capac-
ity to detect information sufficiency and prevent producing potentially harmful
responses in situations with insufficient visual information through training the
model on datasets containing samples with both sufficient and insufficient visual
information. We also demonstrate the limitations of this approach by showing
that the performance of the resulting model degrades on samples with sufficient
information, in contrast to a model trained exclusively for scenarios with suffi-
cient information. This study underscores the challenges of employing supervised
learning to endow a model with the capability of detecting information sufficiency.
It also suggests the necessity of deploying embodied agents with active vision in
realistic application scenarios.

To facilitate the evaluation of the performance of action-response embodied
agents focusing on the active vision ability, we design a task with a reasonable
difficulty, namely robotic object existence prediction (ROEP), and develop its
corresponding simulation environment and dataset. We propose an end-to-end
modular network to model the active-vision agent and successfully train the agent
using supervised learning and reinforcement learning using the curriculum training
strategy. Experimental results on the ROEP task suggest the effectiveness of the
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proposed agent.
Based on the finding that the successful convergence of the proposed agent

is difficult to achieve, we analyze the training procedure in depth and generalize
the learning paradigm to a class of reinforcement learning problems. We prove
empirically and theoretically that the shape of the reward function has an impact
on the stability of the training process, based on which we proposed the clipped
linear reward function to mitigate the unstable training issue.

To the best of our knowledge, this is the first research that systematically
studies the learning of the active vision control policy for action-response embodied
agents from the perspective of unified modeling and reinforcement learning.

1.5 Structure of the Thesis

In Chapter 2, we briefly introduce the background in embodied agents with active
vision, especially related applications and approaches to learning the active vision
policy. Next, in Chapter 3, we introduce fundamental concepts of reinforcement
learning, with a particular focus on the generation of rewards for reinforcement
learning, including the neuroscientific theory of reward processing for humans and
animals, and the techniques of reward function design from a computational in-
telligence background. Then, in Chapter 4, we work on the issue of insufficient
observations on the VQA task, where the issue comes from irrelevant visual ques-
tions. We attempt to mitigate the issue in a supervised learning approach by
augmenting the dataset with additional samples of irrelevant questions and the
corresponding answer “I don’t know”. In this work, we aim to answer the ques-
tions “How to enhance disembodied models that inherently lack active vision to
address the issue of insufficient observations?” and “Is active vision an essential
component to tackle the issue of insufficient observations?”. Next, in Chapter 5,
we turn to embodied agents that have the capability of actively collecting infor-
mation to respond correctly. We propose an end-to-end recurrent neural network
that learns the active action policy and the task-relevant responding strategy si-
multaneously. To evaluate the performance of the proposed method for learning
active vision policy, we design an evaluation task, named “robotic object existence
prediction”. Then, in Chapter 6, with the goal of improving the stability of the
training process, we delve into the method introduced in Chapter 5 and generalize
it as a class of reinforcement learning problem named “internally reward reinforce-
ment learning”, which is applicable in a variety of problems. In the end, in Chapter
7, we discuss the contributions and future work of this thesis.
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Chapter 2

Embodied Agents with Active
Vision

2.1 Introduction

Given the achievements and success of disembodied AI methods on static datasets,
the enthusiasm for extending the application area of these methods into a wider
range of scenarios spurs researchers to focus on embodied AI agents, which are
intended to integrate AI models more closely with humans in the physical world
and enable them to autonomously interact with the environment.

Embodied agents are intelligent entities that have a physical or virtual pres-
ence, which is always robotic platforms or simulated avatars, in realistic or virtual
environments [Duan et al., 2022]. Key characteristics of embodied agents include
the capability of physical interaction with the environment and active perception
of the environment. Embodied agents are expected to have automatic control of
their physical interaction and active perception behaviors. The learning of em-
bodied agents is based on the theory of embodied cognition [Heidegger, 1988,
Merleau-Ponty and Smith, 1962, Varela et al., 2017], which is a theory in psychol-
ogy and cognitive science. It suggests that the interaction between the intelligent
entity and its environment plays a crucial role in cognition development and shap-
ing intelligence, challenging traditional cognition theories that the physical body
is independent of the mind. Driven by the theory of embodied cognition, embod-
iment learning in the realm of artificial intelligence attempts to learn perception,
cognition, decision-making, and other intelligent capabilities through the physical
interaction of embodied agents with the environment.

Active vision [Aloimonos et al., 1988], or more generally active perception [Ba-
jcsy, 1988], is a primary aspect of embodiment learning. We humans are able to
achieve active vision through saccades (moving eyes to change the point of fixa-
tion) and whole-body movements (moving the body to reach novel viewpoints).
To achieve active vision control of artificial embodied agents, they learn control
policies for visual sensor states, such as position, orientation, and focus, to actively
collect visual information through subtle sensor or whole-body movements. Ac-
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(a) Eyes of the iCub robot head can move
flexibly to achieve saccades.

(b) Pepper robot can change its viewpoint
through head and whole-body movements.

Figure 2.1: Various robotic active vision mechanisms based on different robot
hardware.

tive vision is closely linked with embodied agents and robotics [Chen et al., 2011],
where the physical body of the robot serves as a dynamic platform for the camera,
granting it the capability of active movement. Fig. 2.1a shows the iCub robot
head1, whose eyes can move flexibly, mimicking human eyes, to actively change its
gaze point. Fig. 2.1b shows the Pepper robot2, which can perform active vision
through head and whole-body movements. Due to the growing trend of developing
embodied AI agents, active vision has gained increasing attention in recent years.

Passive vision is a concept opposite to active vision, where the vision system
passively processes the visual input fed by the users. In contrast to passive vision,
active vision is more analogous to the vision system of humans and animals, where
the field of view is adjusted to collect information driven by the goal of achieving
specific tasks. Research in computer vision has been dominantly focusing on pas-
sive vision using static image datasets over the past few decades, e.g., ImageNet
[Deng et al., 2009], MS COCO [Lin et al., 2014], and Visual Genome [Krishna
et al., 2017]. Researchers were dedicated to developing models and approaches to
improve the performance of computer vision systems on such datasets on tasks
including image classification [Krizhevsky et al., 2012], object detection [Girshick
et al., 2014], semantic segmentation [Ronneberger et al., 2015], etc.

Embodied agents that are highly generalizable to the complex real world have a
prosperous impact on human society and civilization. They can make humans’ lives
easier and better, for example, autonomous driving vehicles can relieve humans

1https://icub.iit.it/
2https://www.softbankrobotics.com/emea/en/pepper
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Chapter 2. Embodied Agents with Active Vision

from the time-consuming and energy-draining task of driving while also enhancing
the safety of everyday transportation, versatile household support robots can free
humans from repetitive daily chores, and elderly assistance robots can improve the
living standards of the seniors in societies facing a labor shortage. On the other
hand, embodied AI agents can also fulfill tasks that exceed humans’ capabilities,
e.g., completing tasks in environments with extreme heat or potential collisions,
where the carbon-based human body is vulnerable to injury. The capability of
active vision and active information acquisition plays an essential role in such
embodied agents. Though building embodied agents with active vision is very
challenging, it is one of the long-standing goals of both the artificial intelligence
and robotics research communities.

2.2 Tasks of Active Vision

Active vision systems, such as autonomous vehicles, indoor-assistant robots, in-
dustrial robots, and unmanned aerial vehicles, are already widespread, and it is
anticipated that they will become even more prevalent with the rapid progress
in artificial intelligence. Powered by the capability of active vision, these hard-
ware platforms can perform a range of challenging tasks, such as object and site
modeling, manipulation, autonomous navigation, tracking, surveillance, and recog-
nition [Chen et al., 2011]. In this section, some representative applications will be
introduced.

2.2.1 Visual Navigation

Visual navigation is a straightforward application of active vision [Zhu et al., 2017,
Huang et al., 2023, Ramakrishnan et al., 2022]. In visual navigation, the agent
navigates the environment primarily based on its visual perception, mimicking the
navigation strategy of humans and animals. In contrast to laser-based navigation,
visual navigation is more versatile due to the incorporation of high-level semantic
information obtained from visual understanding. Visual navigation remains a very
challenging task, particularly in extensive and realistic environments. Accomplish-
ing generalizable visual navigation demands a superior level of visual understand-
ing, memory, world modeling, common-sense reasoning, high-level action planning,
and low-level interaction with the environment (cf. Fig.2.2).

Several simulation environments have been developed to facilitate research in
this area. AI2Thor [Kolve et al., 2017] is a simulation environment of indoor
scenes. It is built utilizing the Unity game engine3, which enables physical simula-
tions and provides near photo-realistic rendering. AI2Thor provides 120 simulated
indoor scenes, covering four types of rooms: bathrooms, bedrooms, kitchens, and
living rooms. These indoor scenes are designed by expert 3D designers to mimic
real-world room layouts and conditions. It offers extensive flexibility in control-
ling environmental variables, such as light conditions, object materials, colors,

3https://unity.com
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(a) Top-down view (b) First-person view

Figure 2.2: An example kitchen scene in the AI2Thor simulator [Kolve et al., 2017].
The scene is designed by mimicking realistic human living environments. Visual
navigation in this kind of realistic environment is challenging. For example, in the
task of searching for a kitchen sponge, given the above first-person view, the agent
needs to first navigate to the stove area, and then to the sink area to perform
a more detailed search, driven by the common-sense knowledge about the layout
of a common kitchen and relative locations between objects, i.e., a sink is always
close to the stove and a kitchen sponge is always placed around a sink. During the
navigation process, the agent also needs to avoid collision with the furniture for
safety and avoid retracing explored areas for efficiency.

positions, and states. Besides visual navigation, this simulation environment also
supports research in a large spectrum of other fields, such as embodied question an-
swering [Gordon et al., 2018], and language grounding [Zellers et al., 2021]. Fig.2.2
shows views of an example kitchen room of the AI2Thor simulator. iGibson [Shen
et al., 2021, Li et al., 2022] is a simulation environment based on the physics en-
gine Bullet4. Similar to AI2Thor, iGibson provides visual rendering and physical
simulation. It contains 15 fully interactive home-size scenes with 108 rooms. In
contrast to the human-designed indoor room environments in AI2Thor, scenes in
iGibson are directly reconstructed from homes and offices in the real world.

Anderson et al. [2018a] defined three types of visual navigation tasks: point-
goal navigation, object-goal navigation, and area-goal navigation. In the point-
goal navigation task, an agent is instructed to navigate to a location specified by
the relative coordination to the agent in unseen environments, e.g., “Go 7 meters
south, 5 meters west of you”. This task is nontrivial when the environment is
empty, however, it is challenging for the agent to navigate efficiently and safely in
unseen and realistic environments populated with furniture and objects. This task

4https://pybullet.org
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has been recently successfully solved with an almost perfect (99.9%) success rate in
various simulation environments by an approach using RGB-D, GPS, and compass
data [Wijmans et al., 2020]. The success of this method is largely due to a variant of
the Proximal Policy Optimization (PPO) algorithm [Schulman et al., 2017], which
is named Decentralized Distributed Proximal Policy Optimization (DD-PPO). This
method exhibits a notable property in scaling, where the performance of the agent
continuously improves with more training steps.

In the object-goal navigation task, an agent is instructed to navigate to an
object of a category specified by its name, e.g., “laptop”. To achieve this task effi-
ciently, the agent needs to learn the common appearance and locations of the target
object, and also the exploration strategy based on its observations. This task is
more challenging compared to the point-goal navigation task since there is more se-
mantic understanding and common-sense knowledge needed to effectively perform
this task. The straightforward idea of applying end-to-end RL-based methods has
been proven ineffective in this task, despite its success in point-goal navigation. Re-
searchers are attempting to address this task from the perspective of incorporating
explicit memory and extra prior knowledge into the agent.

Given that the agent can only partially observe the environment, memory plays
an essential role in efficient navigation. It helps the agent to explore the environ-
ment efficiently, for instance, avoiding retracing areas that are already explored.
While certain model architectures, like LSTM, have built-in memory components,
the addition of external and task-specific memory can further enhance navigation
performance. There are mainly two types of task-specific memory structures used
for navigation tasks: spatial memory and topological memory [Wu et al., 2019].
Spatial memory represents the spatial structure of the environment. In addition to
geometric data, semantic information can also be encoded into spatial memory to
build semantic maps [Chaplot et al., 2020, Huang et al., 2023]. As spatial memory
saves comprehensive information about the environment, it facilitates long-term
planning of the navigation trajectory. However, the size of spatial memory and
the required computation demands increase with the size of the environment. In
contrast to spatial memory, topological memory encodes the environment in topo-
logical graphs, where only abstract information about the environment is encoded,
such as landmarks and relations between objects [Wu et al., 2019]. The use of
topological memory is biologically inspired – rather than memorizing precise spa-
tial maps for navigation, humans primarily depend on the relative relation between
landmarks [Foo et al., 2005, Wang and Spelke, 2002]. Fig. 2.3 demonstrates an
example of topological memory represented by a graph.

Commonsense knowledge, e.g., common relative positions between objects,
plays an important role in semantic navigation, especially in unseen environments.
For example, a garbage bin is always located in a room corner, a laptop is commonly
on a table, and a pillow is always placed on a bed. Numerous studies have focused
on incorporating such commonsense knowledge into models for object-goal navi-
gation. Some of them explore knowledge graphs to encode prior knowledge about
relative spatial relations between objects and incorporate this knowledge into the
agent through the usage of graph neural networks Yang et al. [2019b], Wu et al.
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Figure 2.3: An example graph illustrating the topological memory of relative spa-
tial relations between objects with edges representing the semantic concept “close
to”.

[2019]. Motivated by the assumption that rich commonsense knowledge and world
models have been already encoded in pretrained large language models (LLMs)
during the large-scale pretraining, LLMs are recently studied to facilitate com-
monsense reasoning and high-level action planning in the visual navigation task
[Ramakrishnan et al., 2022, Huang et al., 2023, Zhou et al., 2023]. In Appendix A,
we explore the use of commonsense knowledge encoded in LLMs to help robotic
action planning in occlusion reasoning scenarios.

2.2.2 3D Reconstruction

Another interesting and growing application of active vision is 3D reconstruction,
a field that lies in the intersection between computer vision, computer graphics,
and robotics. 3D reconstruction is a process of capturing the appearance of objects
or scenes in the real world and converting them into digital 3D models. It is useful
in a variety of domains. In the entertainment industry, it is employed to generate
digital assets for virtual reality and video games. In the area of architecture, it
helps in the creation of building models [Zhou et al., 2020, Kompis et al., 2021]. In
the field of archaeology, 3D reconstruction technology helps digitize and preserve
cultural heritage [Gomes et al., 2014]. 3D reconstruction also aids in creating
3D spatial maps for robotic and autonomous vehicle navigation, supporting the
application of visual navigation that has been introduced before [Adamkiewicz
et al., 2022, Kwon et al., 2023].

Conventional 3D reconstruction relies on dense 2D views. However, the con-
sumption of time and energy required to sample dense views may not be allowed
in resource-constrained scenarios, for example, in the case of reconstructing a large
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Figure 2.4: An illustration of active vision for 3D object reconstruction. An active
vision control policy selects the next-best view sequentially, instead of sampling
views densely and uniformly, to capture views of the object. Based on the selected
views, a reconstructed digital model of the object is generated by deep neural
networks. The exampel object is from the NeRF dataset [Mildenhall et al., 2020].

building in minutes using a drone [Zhou et al., 2020, Kompis et al., 2021]. With
active vision, the viewpoint and focus of the camera can be dynamically adjusted,
through the control of a mobile robot, a robotic manipulator, or a drone, to opti-
mize the trade-off between efficiency and quality of data collection for 3D recon-
struction. The goal of active vision control is always described as the selection of
the Next-Best View (NBV).

Object reconstruction is a typical application in the field of 3D reconstruction.
In the task of active object reconstruction, the camera is controlled by a mobile
robot or a robotic arm to actively select views for the target object. Existing
work in object reconstruction can be categorized into two general classes: explicit
3D geometric modeling and implicit neural representation learning. Explicit 3D
geometric modeling directly creates 3D models of objects using geometric primi-
tives like points, polygons, or voxels, while implicit neural representation learning
leverages deep neural networks to learn neural representations of 3D objects and
explicit 3D models can be obtained using the obtained representations through a
separate conversion procedure [Rakotosaona et al., 2023]. Fig. 2.4 demonstrates
the task of active object 3D reconstruction.

Explicit 3D geometric modeling with active vision has been studied for a long
time. Isler et al. [2016] considered the problem of selecting the next-best view for
efficient volumetric reconstruction of a target object as a task of information gain
maximization. They proposed a set of formulations for evaluating the amount of
information gain from a set of candidate views based on an online constructed
probabilistic volumetric map. The next-best-view selection policy can be then
directly obtained according to the information gain formulations. Deep learning
approaches have been studied for this task in recent years. For instance, Yang
et al. [2018] proposed a unified deep learning model for view planning and object
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reconstruction. This model is a modular neural network, inspired by the recurrent
attention neural network [Mnih et al., 2014]. Specifically, a 3D decoder module,
which generates 3D volume, is trained in supervised learning to minimize the differ-
ence between the predicted and the ground-truth volume. A view planner, which
predicts the locations of a sequence of informative and discriminative views, is
trained in reinforcement learning using a reward function that considers the recon-
struction accuracy, 3D to 2D projection accuracy, and a penalty on the movement
distance.

Neural Radiance Fields (NeRF) [Mildenhall et al., 2020] is a recent technology
in neural rendering. It learns implicit neural representations of 3D objects and
scenes, which can be used to render highly realistic views from arbitrary view-
points and generate 3D models. This technique showcases impressive capability
in realistic 3D modeling. Compared to explicit representations like points and
voxels, implicit neural representations offer advantages including a lower memory
footprint and higher precision in reconstruction.

Conventional NeRF relies on a large amount of images and corresponding cam-
era states. With a limited number of sampled images, NeRF struggles to model
the target object in a satisfactory quality [Yu et al., 2021]. Active vision for NeRF
seeks to reduce the number of images needed for learning high-quality neural rep-
resentations by actively sampling informative images. This idea has attracted a lot
of attention recently [Pan et al., 2022, Ran et al., 2023, Lee et al., 2022, Yan et al.,
2023]. However, it is challenging to select the next-best view using implicit neural
representations because it is not straightforward to evaluate the importance of a
given view image in 3D modeling. To tackle this problem, Pan et al. [2022] bor-
row ideas from active learning and propose to incorporate uncertainty estimation
into NeRF for informative view selection. Specifically, NeRF predicts the value of
uncertainty estimate along with occupancy and color. Align with the method of
Pan et al. [2022], Lee et al. [2022] estimate the uncertainty of 3D modeling given
a novel view. Specifically, they infer the uncertainty of the 3D modeling using
the entropy of the weight distribution of the color samples along each ray of the
object’s implicit neural representations. A next-best-view selection policy is then
obtained under the guidance of the uncertainty estimate. Similarly, to evaluate
the uncertainty of candidate views, Yan et al. [2023] proposed to directly calcu-
late entropy from the reconstructed occupancy probability field. Ran et al. [2023]
also attempt to measure the importance of candidate views by evaluating the view
quality using a proxy criterion of Peak Signal-to-Noise Ratio (PSNR), a commonly
used metric in the field of image and video processing to qualify the quality of lossy
compression.

2.2.3 Visual Attention

Visual attention has a significant influence on the research on the active vision of
embodied agents, especially the mechanism of saccadic active vision. Hard atten-
tion and soft attention are two primary attention mechanisms used in computer
vision. In contrast to soft attention, where the model takes the whole image as the
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input and assigns different attention weights on different regions, hard attention
only processes a subset of the whole input data at each time step and observes
other parts by actively changing the location of the attention. Though soft at-
tention is more commonly used mostly due to the simplicity in integrating it with
various neural network architectures, hard attention yields advantages in scenarios
with limited computation resources, for example, in the task of image classifica-
tion for high-resolution geometrical satellite images [Wang et al., 2019, Rangrej
et al., 2022]. It also benefits situations where focusing on specific regions of the
input is particularly important, for example, in tasks of fine-grained image clas-
sification, such as the classification of bird species, where detailed information is
crucial for accurate classification [Ba et al., 2015, Li et al., 2017, Liu et al., 2016,
Fu et al., 2017]. Through the hard attention mechanism, the model can attend to
areas containing subtle task-relevant features to perform high-accurate fine-grained
classification.

Hard attention has a close relationship with cognition science, as it is analogous
to human attention mechanisms [Rong et al., 2021, Das et al., 2017]. Both hard
attention and human attention enjoy a selective characteristic, namely, the ability
to focus on specific parts of the perception field while ignoring others, thereby
enabling efficient allocation of computation and cognition resources. Due to the
close connection between these two research areas, insights and findings from one
field can inform and improve the other.

2.3 Active Vision Control

There are three primary approaches to developing task-driven active vision control
(see Fig. 2.5). The most long-studied and well-established approach is informa-
tion gain-driven active vision control [Isler et al., 2016, Kompis et al., 2021, Chen
et al., 2022]. This approach is based on the concept of information gain maxi-
mization, which is often used in decision-making processes. The idea is to make
action decisions that provide the most informative view, to most effectively reduce
the uncertainty of performing the given task. However, this approach heavily re-
lies on a well-defined and task-specific evaluation metric for information gain and
thus suffers from low generality. In addition, semantic information is hard to be
involved in this class of methods where low-level representations are processed in
information gain evaluation, which limits the application of these methods.

Reinforcement learning-based active vision control directly learns the policy by
optimizing a surrogate objective that is represented by a reward function [Mnih
et al., 2014, Yang et al., 2018, 2019a, Wijmans et al., 2020, Li et al., 2021]. This
approach is particularly effective when the surrogate objective represented by the
reward function is close to the true objective [Schulman et al., 2015a], for exam-
ple in the task of visual navigation. This method has demonstrated effectiveness
in learning active vision control in various tasks, including point-goal navigation
[Wijmans et al., 2020], 3D reconstruction [Yang et al., 2018]. However, this ap-
proach is not always applicable because it is not feasible to obtain reliable reward
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Figure 2.5: Three primary approaches to active vision control. From left to right
are diagrams of (a) information gain-driven, (b) reinforcement learning-based, and
(c) large language model-based methods, respectively.

signals in certain tasks, such as in tasks of embodied question answering, and em-
bodied amodal recognition [Das et al., 2018, Yang et al., 2019a]. What’s more,
the issue of unstable training in reinforcement learning is still an open problem
[Greensmith et al., 2004, Schulman et al., 2015b, van Hasselt et al., 2016, Li et al.,
2023], increasing the barrier to applying this approach in reality. Compared with
information gain-driven approaches, reinforcement learning-based approaches can
involve more high-level semantic information in the system through the function-
ality of the reward model, which can guide the RL policy learning with high-level
semantic objectives.

Another approach that is attracting growing attention is large language models-
based active vision control [Ahn et al., 2022, Driess et al., 2023, Zhao et al., 2023,
Yu et al., 2023]. These approaches take advantage of commonsense knowledge
in pretrained LLMs or pretrained multimodal language models for active vision
control. These approaches demonstrate great generalization in complex realistic
scenarios. However, existing work mainly concentrates on utilizing commonsense
knowledge in pretrained LLMs for high-level planning, rather than for low-level
action control. It is because low-level interaction action is highly dependent on
the physical properties of the hardware, which is not likely learned in pretrained
LLMs. A promising approach is integrating reinforcement learning-based meth-
ods and LLM-based methods by taking advantage of both of them: reinforcement
learning learns low-level interaction policies that are highly dependent on the phys-
ical environment and the pretrained LLM guides high-level planning and helps to
accelerate the process of reinforcement learning [Chu et al., 2023].
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2.4 Action-only and Action-response Agents

As previously introduced (cf. Fig. 1.1 and Fig. 1.2), we categorize embodied agents
with active vision into two classes: action-only agents and action-response agents,
based on the role of their active vision systems. Action-only agents are those
operating in tasks where learning the active vision control policy of the agent itself
is the primary objective, e.g., in the task of point-goal navigation [Anderson et al.,
2018a, Wijmans et al., 2020], where the active vision control policy is essentially
a navigation policy. Agents for various visual navigation tasks are action-only.
Besides that, agents designed for tasks such as target tracking, goal searching,
robotic grasping and manipulation with interactive exploration, and environmental
monitoring are also action-only.

Action-response agents are those that operate in scenarios where the active vi-
sion system serves as an information collector for gathering relevant data, with the
ultimate objective of the task being to produce responses based on the processing
of this data, e.g., in tasks of embodied question answering [Das et al., 2018], and
embodied amodal recognition [Yang et al., 2019a]. Besides, the agent for tasks
such as scene classification [Wang et al., 2019], scene description [Tan et al., 2020],
3D reconstruction [Yan et al., 2023], and interactive question answering [Gordon
et al., 2018] also belong to this category, where the agent needs to learn both an
active vision control policy and a task-specific response strategy.

Compared to action-only agents, action-response agents appear to have wider
applications in human-centered real-life scenarios but are more challenging. The
accomplishment of these tasks depends on a combination of skills, for example, in
the embodied question answering task, the agent needs to understand complicated
questions in natural language, perform both long-horizon action planning and low-
level interaction in indoor environments to collect necessary question-relevant vi-
sual information, and generate answers according to collected visual information in
the end. Existing action-response agents struggle to achieve these tasks, for exam-
ple, it has been demonstrated that existing embodied question answering models
learn biases to accomplish the task [Anand et al., 2018, Ilinykh et al., 2022]. Thus,
these tasks are not suitable for research primarily focusing on the methodology of
developing active vision control policies.

2.5 Discussion

In this chapter, we introduced some background on the research area of active
vision for embodied agents and relevant topics. It can be seen that this direction is
rooted in existing research on robotics, computer vision, and artificial intelligence,
and is developing rapidly as the advances in technologies such as deep learning,
reinforcement learning, physical simulation, and computer graphics. Within the
broad research field of active vision for embodied agents, this thesis particularly
focuses on the study of methodologies for developing the active vision control policy
for action-response agents using reinforcement learning-based approaches.
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Chapter 3

Reinforcement Learning for
Behavior Control

3.1 Introduction

How do humans or other animals learn their behaviors? Learning from demonstra-
tions of a supervisor seems a straightforward way to behavior acquisition, however,
learning from trial and error through interacting with the environment seems a
more natural paradigm, which is termed reinforcement learning (RL). Humans
and animals adopt this strategy commonly to learn behaviors. They receive re-
wards or penalties from the environment, depending on their interaction behaviors
with the environment and their subjective preference and goals in mind. These
feedback signals are captured by their sensors and are processed by their brains,
and further used to optimize their behaviors for more reward acquisition.

From the perspective of neuroscience, rewards or penalties are captured by sen-
sations (e.g., visual observations, tactual sensations, etc.), then operate in neural
processing, leading to the generation of chemical messengers, such as dopamine,
and ultimately lead to the emergence of behaviors learning, decision-making, etc.
Animals gain the ability to improve their behavior strategies from rewards, and
those who are better at reward acquisition survive as a result of natural selection
[Darwin, 1859].

In a formal formulation by Schultz [2015], the rewarding process of reinforce-
ment learning consists of three components: sensory components, attentional com-
ponents, and value components, see Fig. 3.1. Sensory components of rewards
involve visual, auditory, and gustatory sensations, among others, reflecting the
impact of the external environment on the organism. They are generated through
sensory perception by identifying stimuli and objects, lying as the foundation of
rewards. Attentional components of rewards arise because rewards come from only
a part of the entire environment. An attention mechanism is triggered to make
the reward processing efficient. Value components of rewards evaluate the positive
effects of rewards. The evaluation value is not determined by objective or physical
facts but reveals the brain’s subjective evaluation of the effects of goal achieve-
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Rewarding stimuli, objects, events,
situations, activities

Sensory
components

Attentional
components Value components

Identification Attention Motivation

Reinforcement Learning

Figure 3.1: Three components of the rewarding process in reinforcement learning.
All reward components operating together lead to the occurrence of the reinforce-
ment learning process for reward maximization. This figure is based on Schultz
[2015].

ments, such as survival, reproduction, or obtainment of essential substances. Ac-
cording to whether the aforementioned reward components are determined by the
environments or brains, they are categorized into external or internal components.
Sensory components are external as sensory sensations are directly stimulated by
environmental feedback. Attention components can be either external or inter-
nal, depending on what causes attention. For example, attention triggered by the
physical properties of objects is external (e.g., sparkling objects or sharp sounds
tend to raise attention), while attention triggered by surprise is internal. Value
components are considered internal as value evaluation depends on the subjective
goals of the individual.

The rewarding process for reinforcement learning is commonly simplified in the
literature of computational intelligence, compared to its mechanism revealed in
the literature of neuroscience. For example, most of the existing research revolves
around scenarios where the reward signals are values directly provided by the
environment outside the agent as an evaluation of the superiority of an action
step (cf. Fig. 3.3), e.g., scores in a video game, 0 or 1 indicating the success of
performing a grasping task in a robotic manipulation task, etc. These algorithms
take such reward values for policy learning, without the involvement and updating
of other reward components as studied in the literature of neuroscience.

However, in the application of embodied agents with active vision, the system
is more comprehensive, and more components are involved in the reinforcement
learning framework. Correspondences between these components and the three
aforementioned reward components in the reward theory of neuroscience can be
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well established (see Fig. 3.1 and Fig. 3.2). Specifically, visual perception of the
agent works as the sensory component; active vision control works as the atten-
tion component, controlling the viewpoint of the visual perception component;
information sufficiency evaluation that assesses the the sufficiency of perceived in-
formation for achieving the given task (i.e., the quality of the active vision control
policy and the visual perception component), and eventually generates rewards for
RL algorithms works as the value component. The information sufficiency evalu-
ation component varies depending on the type of agents. For action-only agents,
the information sufficiency evaluation component is normally defined using a fixed
surrogate metric, such as information gain. In contrast, the information suffi-
ciency evaluation component is more complicated for action-response agents, as
the component should be formulated and optimized as a reward model. Rewards
are determined by all three components, instead of simply coming from the exter-
nal environment as an evaluation of the superiority of the action policy according
to predefined rules.

The alignment between rewarding components of active-vision agents and those
of humans and animals motivates us to model such agents using unified modular
neural networks, and train the active vision control policy using reinforcement
learning, to mimic the natural learning mechanism. Reinforcement learning is a
promising technique to endow action-response embodied agents (cf. Fig. 1.2) with
the capability of active vision, with reasons as below:

1. RL has demonstrated versatility in learning behaviors across diverse scenar-
ios, ranging from game environments to realistic robotic control tasks.

2. The effectiveness of deep neural networks in function approximation endows
RL with great potential in incorporating other components, for example,
multimodal perception components for state approximation. [Hermann et al.,
2017, Hill et al., 2021].

3. The characteristics of trial-and-error search and delayed reward endow RL
algorithms with the ability to optimize action policies based on high-level
long-term objectives. This aligns well with the task setup of active vision
control in action-response embodied agents.

Nevertheless, it is known that RL algorithms are unstable to train. This issue is
even more fierce in the training process of the active vision control policy under the
high-level framework of the action-response agent with active vision (cf. Fig. 1.3)
because it is difficult to define a reliable reward function for the learning of the
active vision control policy using feedback from the response module. The final
task-relevant response highly depends on the performance of the active vision con-
trol policy, and in turn, the reward for training the active vision control policy
depends on the performance of the response module. How to stabilize the simul-
taneous training process of such models is an open question.

In this chapter, we begin by introducing the basics of reinforcement learning for
behavior policy learning, including its mathematical formulation, the characteris-
tics of RL, the relationship between reinforcement learning, supervised learning,
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Figure 3.2: Components of the rewarding process in reinforcement learning for the
active vision of embodied agents.

and unsupervised learning, and the introduction to some common RL algorithms.
Following this, we discuss the background of reward functions in RL, covering
aspects such as their significance in stable and successful RL, challenges, cur-
rent methodology, and potential promising solutions. Following Sutton and Barto
[1998], in this thesis, we use the term reinforcement learning to refer to the prob-
lem, the class of approaches, and the research field simultaneously.

3.2 Reinforcement Learning Basics

The learning paradigm of “learning from trial and error” seems intuitive and
simple. However, how to formulate it, develop corresponding computational ap-
proaches, and use these approaches to train artificial models for tackling practical
problems has been a long-standing research question. A large amount of research
has been conducted to answer this question.

3.2.1 Formulation of Reinforcement Learning

In an RL scenario, an agent interacts with an environment (cf. Fig. 3.3). At
each time step (t = 0, 1, 2, ..., T ), the agent is at a state st ∈ S, where S is the
state space. The policy of the agent π(at | st) = Pπ [A = at | S = st] selects
and performs an action at ∈ A, where A is the action space. Given the present
state st and the selected action at, a transition probability function P (st+1 | st, at)
represents the probability of a state the agent will arrive in at the next time
step. A reward function R(st, at, st+1) specifies the reward rt+1 the agent re-
ceives after the execution of the action and arrival at the new state. Both the
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transition probability and the reward function are defined by the world model
(also called the dynamic model), which is always unknown in real-world task se-
tups. The interaction between the agent and its environment leads to a trajectory
{S0, A0, R1, S1, A1, R2, ..., ST}, where state ST is the terminal state. RL aims to
learn a sequential decision-making policy π(a | s) = Pπ [A = a | S = s] to maximize

the expectation of cumulative rewards over time, i.e., E
[∑T

t=1 rt

]
. The interaction

between the agent and its environment can be formulated using Markov Decision
Processes (MDPs) [Bellman, 1957].

MDPs are stochastic processes satisfying the Markov property, i.e., future states
depend only on the present state and action. The assumption of the Markov
property provides reasonable simplification for the modeling of sequential decision-
making problems, endowing the framework of MDPs with a tradeoff between appli-
cability and mathematical tractability. For example, the Markov property makes
it plausible to use the data of one-step transitions for policy learning, e.g., the
policy updating method in temporal-difference learning, which will be introduced
in Sec. 3.2.4. An MDP is formally formulated asM = ⟨S,A, pE, ρ, r, γ⟩, where, S
is the state space, A is the action space, pE : S ×A×S → R is the state transition
probability, ρ : S → R is the distribution of the initial state, r : S × A × S → R
is the reward on each transition, and γ ∈ (0, 1) is a discount factor.

Agent

Environment

StatesRewardsActions

Figure 3.3: The agent-environment interaction loop of reinforcement learning. This
figure is based on Sutton and Barto [1998].

3.2.2 Characteristics of Reinforcement Learning

Two key characteristics distinguish RL from other machine learning approaches.
The first one is trial-and-error search [Sutton and Barto, 1998], i.e., an agent ac-
tively tries different trajectories in the environment and updates its policy accord-
ing to the environmental feedback. This makes it possible for the agent to learn
its action strategies through interaction with the environment rather than human
supervision. The distribution of training data depends on the previous and current
policies of the agent, as training data is collected dynamically during the training
process. In contrast, in supervised learning and unsupervised learning, the training
data is pre-collected, thus the data distribution is deterministic and static. This
raises the challenge of the trade-off between exploration and exploitation. On the
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one hand, the agent needs to explore the environment with novel action strategies
to discover trajectories with higher cumulative rewards compared with those that
have been visited in history to make it possible for the agent to learn a better pol-
icy. On the other hand, the policy of the agent is updated to encourage the action
strategies that have been recognized as good ones. Thus, during the learning pro-
cess, the agent tends to exploit visited trajectories with high cumulative rewards,
which would lead to a different distribution of future collected data compared with
the strategy of only encouraging exploration. In addition, from the perspective of
learning in a stochastic environment, an agent needs to exploit a trajectory many
times to estimate the expected reward corresponding to the trajectory. Thus, it
is critical for the RL agent to balance exploration and exploitation to achieve the
acquisition of optimal decision-making strategies. Fig. 3.4 illustrates the effects of
exploitation and exploration in policy learning.

Optimal state

Sub-optimal state

Optimal state

Sub-optimal state

Exploitation Exploration

Figure 3.4: Illustration of exploitation and exploration in the discovery of the
optimal trajectory. Through exploitation, the agent possibly misses the optimal
state and gets stuck in a sub-optimal solution, while exploration contributes to the
success of finding the optimal solution. Blue circles in the graphs indicate starting
states, and green circles indicate intermediate states.

There are already some approaches to control the trade-off between explo-
ration and exploitation in the literature. A simple and commonly used one is the
ε-greedy method, where we can adjust the value of ε in the range of 0 to 1. The
agent chooses the action with the highest estimated probability with probability
1 − ε and other actions with probability ε. However, the value of ε needs careful
tuning in real applications, depending on the task and environment. Other ap-
proaches include Softmax exploration where the chosen action is sampled from the
estimated distribution, adaptive epsilon where the value of ε decreases to reduce
exploration over the training process, count-based exploration where the agent is
encouraged to select actions that appear rarely in the past, and parameter noise
where exploration is encouraged by adding noise to parameters of policy or value
functions or by injecting noise into the action selection process [Eberhard et al.,
2022]. The determination of the trade-off method is still an empirical process in
an individual RL problem.

The second characteristic of RL is delayed reward [Sutton and Barto, 1998].
Optimizing the policy on delayed rewards makes it possible to consider the task as
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a whole and optimize the policy to maximize the cumulative reward over time. This
characteristic makes it possible to achieve a globally optimal solution in principle.
However, technically, it is challenging to perform RL in long-horizon tasks with
sparse reward signals, where the agent can only get rewards at the end of each
episode, i.e., the reward is delayed. For example, in a goal-seeking navigation
task in a large environment, where the agent should take many steps sequentially,
including searching for keys, moving to doors, opening doors, and reaching the
goal, the agent can only get a reward when the agent successfully achieves the goal
or when the budget (e.g., maximum running time and number of movement steps)
runs out. The task-specific navigation policy is challenging to learn through RL
because it rarely happens that the agent achieves the goal by accident. How to
assign credit (or blame) to action steps when the task is successfully achieved (or
failed) is crucial for RL agents to handle delayed rewards to learn policies efficiently.
Some methods were developed for better credit assignment, e.g., eligibility traces
[Barto et al., 1983] and experience replay [Andrychowicz et al., 2018]. However,
accurate credit assignment is still a challenge. Fig. 3.5 presents an example of
policy learning from delayed rewards in a grid world environment.

Figure 3.5: Delayed reward in an example case of the BabyAI environment
[Chevalier-Boisvert et al., 2019]. In this example, the agent (red triangle), is tasked
to pick up the green box, which is located in a neighbor room of the agent. Only
by successfully picking up the target object can the agent receive a positive re-
ward. Otherwise, the agent gets a reward of 0. To collect high rewards, the agent
needs to remove the obstacle (yellow circle) blocking the door, pick up the red key
and use it to open the red door and pick up the target object (green box) in the
end. The reward is delayed and sparse in this task. On the one hand, the delayed
reward provides an overall optimization objective for policy learning. On the other
hand, the sparse reward makes the policy learning hard.

3.2.3 Reinforcement Learning, Supervised Learning, and
Unsupervised Learning

Reinforcement learning, supervised learning, and unsupervised learning are three
primary approaches in the realm of machine learning. Each of them has its unique
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features, strengths, and application areas.
Supervised learning has been the most dominant class of problems in machine

learning research in the last decades. Human-annotated data is needed in super-
vised learning, where models learn mapping functions from samples and corre-
sponding human-annotated labels and are expected to generalize to unseen sam-
ples. Reinforcement learning, different from supervised learning, does not require
dense human supervision signals provided in annotations. Though it is also pos-
sible to learn action behaviors using supervised learning in principle, it is always
impractical to collect and annotate agent states with desired actions in a sequen-
tial decision process, e.g., it is intractable for human annotators to annotate all
the possible optimal next movement in a Go game [Silver et al., 2016, 2017]. On
the contrary, the mechanisms of trial-and-error searching and delayed rewarding
in reinforcement learning make it possible to learn optimal action behaviors with-
out the need for human-annotated actions. Supervised learning and reinforcement
learning are not mutually exclusive. Some components of reinforcement learning
approaches are trained using supervised learning, e.g., the critic model in the actor-
critic methods [Konda and Tsitsiklis, 1999, Mnih et al., 2016], and world models
in model-based methods [Schrittwieser et al., 2020, Hafner et al., 2023].

Unsupervised learning is another important category in machine learning re-
search. It is similar to reinforcement learning from the perspective that both of
them do not need human-annotated data. However, these two approaches are
different in their purposes: unsupervised learning is aimed at uncovering hidden
representations of a bunch of data, while reinforcement learning is to maximize
rewards to learn interaction behaviors.

Recent research suggested that the pathway to highly generalizable artificial
intelligence systems may involve a combination of all of these three main machine
learning methods [Ouyang et al., 2022, Touvron et al., 2023]. Specifically, un-
supervised learning is used to learn general representations from unlabeled data,
supervised learning is to incorporate rich task-relevant human knowledge into the
system, and reinforcement learning is used to finetune the system to pose fine-
grained control to the system by providing an extra small amount of guidance
signals. Though supervised learning and unsupervised learning are both crucial
and interesting to study, in this thesis, we focus on reinforcement learning ap-
proaches for the learning of action behaviors of embodied agents.

3.2.4 Reinforcement Learning Algorithms

Based on how to derive the action policy, RL methods can be divided into two
major categories: value-based and policy gradient algorithms. Both of these two
methods are built based on value function estimation (see Section 3.2.5). Value-
based algorithms solve RL problems by estimating the state-value function or the
action-value function. The action is selected using value estimates, for example,
selecting the action with the highest action value in a given state or sampling
actions according to the distribution of the action value estimates obtained from a
Softmax function. Typical value-based algorithms include SARSA [Rummery and

26



3.2. Reinforcement Learning Basics

Niranjan, 1994], Q-learning [Watkins, 1989], and Deep Q-Networks [Mnih et al.,
2013]. Value-based algorithms are more suitable in RL problems with a discrete
action space. On the contrary, policy-gradient algorithms directly optimize a policy
function and thus are more suitable for solving RL problems with a continuous
action space. Typical policy gradient methods include REINFORCE [Williams,
1992], TRPO [Schulman et al., 2015a], PPO [Schulman et al., 2017]. Some of these
algorithms will be introduced later in Sec. 3.2.6 and Sec. 3.2.7 in more detail.

Actor-critic methods combine ideas of both value-based and policy gradient
methods, where an actor, working as a policy function, suggests actions and the
critic, working as an action-value function, evaluates the quality of the action se-
lected by the actor. This class of methods can handle tasks with continuous action
spaces and the training process is more stable compared to policy gradient al-
gorithms. In the optimization of actor-critic methods, the actor is optimized to
maximize estimated values by the critic to maximize the expectation of cumulative
rewards, while the critic is usually updated using temporal-difference learning to
optimize the accuracy of value estimates. The actor and critic functionally in-
tertwine with each other thus careful hyperparameter tuning is required. Some
variants of the original actor-critic method, such as Advantage Actor-Critic (A2C)
and Asynchronous Advantage Actor-Critic (A3C) [Mnih et al., 2016] have been
designed for higher training efficiency.

Next, we will introduce some representative RL algorithms, most of which
have demonstrated effectiveness in applications. We note that some important
and prospective methods are not introduced in this part, such as model-based RL
algorithms [Schrittwieser et al., 2020, Hafner et al., 2023], offline RL algorithms
[Levine et al., 2020], and transformer-based RL algorithms [Chen et al., 2021]. We
recommend readers read corresponding references if they are interested in up-to-
date work in these areas.

3.2.5 Value Functions

The estimation of value functions is essential for developing the optimal policy
for most RL methods. There are two types of value functions: the state-value
function V (s) estimates the goodness of the agent being in a given state, and the
action-value function V (s, a) estimates the goodness of the agent performing a
given action in a given state.

Value functions are defined using the term return, i.e., the cumulative dis-
counted summation of future rewards Gt =

∑T
i=t+1 γ

i−t−1Ri, where t ∈ [0, T )
and GT = 0. γ ∈ (0, 1) is the discount factor that is to penalize the con-
tribution of rewards in farther future. The state-value function is defined as
Vπ (s) = Eπ [Gt | St = s], and the action-value function is defined as Qπ (s, a) =
Eπ [Gt | St = s, At = at]. The relation between Vπ and Qπ can be formulated using
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the distribution of estimated actions π (a | s), as

Vπ (St = s) = Eπ [Qπ (St = s, At = a)]

=
∑
a∈A

π (A = a | S = s)Qπ (St = s, At = a) ,

or

=

∫
A
π (A = a | S = s)Qπ (St = s, At = a) da.

The subscript π of Vπ and Qπ indicates that value functions depend on the policy.
Given a policy, value functions can be estimated from its experience trajectories.
We expect to obtain an optimal policy that can lead to optimal value functions,
i.e., optimal expectation of return.

The advantage is defined as the difference between the action-value function
and the state-value function, i.e., A(s, a) = Qπ(s, a) − Vπ(s). It represents the
value or gain of taking action a at state s compared with taking a random action
sampled from the distribution of policy π(a | s). It is a better measurement of the
quality of an action at a state compared with the action value because it considers
the goodness of the given state and the relative improvement of taking a specific
action. The advantage can be represented as a normalization of the action value
over the action distribution determined by the policy:

A(s, a) = Qπ(s, a)− Vπ(s)

= Qπ(s, a)−
∑
a∈A

π (A = a | S = s)Qπ (St = s, At = a) .

It has a lower variance compared with the action value, thus leading to a more
stable and efficient learning process. The idea of using advantage for policy learning
is a general technique across a wide range of RL algorithms. For example, it is
incorporated into the actor-critic algorithm, where the critic estimates the state
value to calculate the advantage for more stable policy updating.

Value functions are recursive. Given a policy π, a functional relation between
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the value of a state St = s and its successor state St+1 = s′ can be derived as

Vπ (s) = Eπ [Gt | St = s]

= Eπ

[
T∑

i=t+1

γi−t−1Ri | St = s

]

= Eπ

[
Rt+1 +

T∑
i=t+2

γi−t−1Ri | St = s

]
= Eπ [Rt+1 + γGt+1 | St = s]

=
∑
a∈A

π(a | s)
∑
s′∈S

∑
r

p(s′, r | s, a) [r + γE [Gt+1 | St+1 = s′]]

=
∑
a∈A

π(a | s)
∑
s′∈S,r

p(s′, r | s, a) [r + γVπ (s
′)]

= Eπ [Rt+1 + γVπ(St+1) | St = s] .

This is the Bellman equation for the state value. It suggests that the value of
the present state equals the summation of the discounted expectation of the value
of the next state and the corresponding expectation of the reward obtained by
reaching the next state. A similar form of function exists also for the action-value
function as below:

Qπ (s, a) = Eπ [Gt | St = s, At = at]

= Eπ [Rt+1 + γVπ(St+1) | St = s, At = at]

= Eπ [Rt+1 + γEπQπ(St+1, At+1) | St = s, At = at] .

As we can see from the above equations, Bellman functions build the relation
between state values (action state values) and their successors.

3.2.6 Value-based Algorithms

Temporal-Difference Learning Temporal-Difference (TD) learning can eval-
uate and update policies when the world model is unknown and is known as a
core method in RL. The target of value updating for a given state is V ∗(St) =
Rt+1 + γV (St+1), which is the Bellman equation without expectation, which re-
sults in bias in the optimization goal of value functions. The present state value
can be updated in a heuristic manner as below:

V (St)← V (St) + α(V ∗(St)− V (St))

← V (St) + α(Rt+1 + γV (St+1)− V (St)).

As we can see, TD learning updates value estimation using existing value es-
timates instead of directly using returns calculated from experience trajectories,
which is called “bootstrapping”.
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SARSA and Q-Learning SARSA and Q-learning are two representative meth-
ods of TD learning [Rummery and Niranjan, 1994, Watkins, 1989]. SARSA is an
on-policy approach that uses online transition data of a quintuple (St, At, Rt, St+1,
At+1), from which the name “SARSA” comes, to update the action-value function
as the following formula:

Qπ(St, At)← Qπ(St, At) + α(Rt+1 + γQπ(St+1, At+1)−Qπ(St, At)).

In contrast, Q-learning works in an off-policy manner where the (target) policy
is updated with the objective of selecting the action corresponding to the high-
est action value, regardless of the (behavior) policy that generates the training
trajectories. The action-value function updates in the following formula:

Qπ(St, At)← Qπ(St, At) + α(Rt+1 + γmaxat+1∈AQπ(St+1, at+1)−Qπ(St, At)).

Compared to SARSA, Q-learning uses the transition data of a quadruple (St, At, Rt,
St+1) to update its action value.

Deep Q-Networks Value functions can be represented using tables by saving
state or action values. However, when the state and action space are large or
continuous, it is infeasible and impractical to build such tables. Deep Q-Networks
(DQNs) use neural network-based approximation functions as a variant of Q learn-
ing [Mnih et al., 2013]. However, the issue of instability and divergence arises when
the techniques of function approximation, bootstrapping, and off-policy training
are applied together, which is called the issue of Deadly Triad [Sutton and Barto,
1998]. To stabilize the training process, DQNs use the technique of experience
replay, and a separate and scheduled updated target network. This method has
achieved great success in the task of Atari games and has been recognized as a mile-
stone in the development of deep RL. The action-value function is a neural network
with parameters θ, which is trained with the training objective of minimizing the
loss

Lθ = E(s,a,r,s′)∼D

[(
r + λmaxa′Q(s′, a′; θ−)−Q(s, a; θ)

)2]
,

where D is the data of transitions, θ− is the parameters of the separate target
network, and θ is the parameters of the network of the actual action-value function.

3.2.7 Policy-gradient Algorithms

Vanilla Policy Gradient The above-introduced value-based algorithms all learn
value functions and then select actions accordingly, for example, through greedy or
ε-greedy action selection. Policy gradient methods directly learn the parameterized
policy function π(a | s, θ) = P(At = a | St = s, θ), where θ is the parameters of the
policy function. These methods have several advantages compared to value-based
methods. First, the continuous parameters of a policy gradient method can update
and adjust the policy smoothly, which can make the training process more stable

30



3.2. Reinforcement Learning Basics

and efficient. Second, policy gradient methods could result in a better policy for a
task whose policy function is easier to learn.

For discrete state and action space, the learned policy function estimates the
action preference value h(s, a, θ) for each state-action pair, which is then processed
by a softmax function for action selection to get the action distribution. A prior
distribution, e.g., a Gaussian or Laplace distribution, is used to model the policy
for continuous state and action space. Value functions are not required for action
selection even though they could be useful, e.g., in actor-critic methods. For
episodic tasks, the learning objective of policy gradient methods can be defined as
the value of the starting state of an episode, i.e., J (θ) := V π(s), where s is the
initial state of an arbitrary trajectory. The parameter of the policy is updated in
the following scheme

θ ← θ + α∇θJ (θ),
where α is the updating step size. The optimization objective can be extended as

J (θ) =
∑
s∈S

dπ(s)V π(s)

=
∑
s∈S

dπ(s)
∑
a∈A

πθ(a | s)Qπ(s, a),

where dπ(s) is the deterministic distribution of a Markov chain and Qπ(s, a) is the
action-state function, both of which are subject to the policy. The effect of the
policy parameter on the state distribution is nontrivial to formulate. Fortunately,
the policy gradient theorem provides an analytical solution to calculate the
gradient of the optimization objective with respect to the policy parameter, which
is what we need for optimizing the policy function through gradient descent. The
gradient of J (θ) with respect to θ is derived as

∇θJ (θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)∇θπθ(a | s)

= Es∼dπ(s),a∼πθ
[Qπ(s, a)∇θlnπθ(a | s)].

This is the derivation of the vanilla policy gradient algorithm. This gradient
estimate has no bias but high variance, leading to an unstable learning process.
Many follow-up works were done aiming at gradient estimates with a trade-off be-
tween the variance and bias, to achieve more stable and efficient training [Schulman
et al., 2015b].

Monte-Carlo Policy Gradient Monte-Carlo policy gradient, i.e., REINFORCE,
is a simple and representative policy-gradient algorithm [Williams, 1992]. As the
return is an unbiased estimation of the action value, i.e., Qπ(S,A) = Eπ[G | S,A],
the gradient of J (θ) with respect to θ can be formulated as

∇θJ (θ) = Es∼dπ(s),a∼πθ
[Qπ(s, a)∇θlnπθ(a | s)]

= Es∼dπ(s),a∼πθ
[G∇θlnπθ(a | s)],
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The gradient estimates of REINFORCE are unbiased but have a large vari-
ance, which makes the training unstable. To mitigate this issue, a variant of RE-
INFORCE, named actor-critic REINFORCE, was designed. In actor-critic RE-
INFORCE, a value function is estimated as in value-based methods. Then an
advantage value A(S,A) = Q(S,A)−V (S) = Eπ[G | S,A]−V (S) is calculated for
the gradient estimation. The use of the advantage in place of the action value or
the return reduces the variance of gradient estimates while keeping the gradient es-
timation unbiased. Compared to the basic REINFORCE method, the actor-critic
variant can learn the policy faster and more stable.

Proximal Policy Optimization Proximal Policy Optimization (PPO) is the
current most popular RL algorithm even though it has been proposed for many
years [Schulman et al., 2017]. Different from the REINFORCE and actor-critic
methods, which are both on-policy algorithms, PPO is an off-policy algorithm: the
policy used for generating data for training (the behavior policy) is different from
the policy that the RL method is going to improve (the target policy). The main
advantage of off-policy algorithms is that off-policy algorithms have higher sample
efficiency because they can use the samples from collected transitions multiple
times to update the policy. Besides, off-policy methods potentially have better
exploration capability because the data is collected by an old policy that is different
from the current policy. The training objective of PPO is defined as

J (θ) = Es∼ρπθ′ (s) [V (s)]

= Es∼ρπθ′ (s)

[∑
a∈A

πθ(a | s)Âθ′(s, a)

]
,

where πθ′ is the behavior policy, ρπθ′ (s) is the state distribution corresponding to
the policy πθ′ , Â(·)s is the estimated advantage, which is aimed at reducing the
variance of gradient estimates, πθ is the target policy. By using the importance
sampling trick, which is a technique of estimating probabilities of a distribution
using samples from another different distribution, the resulting objective function
can be further extended as

J (θ) =
∑
s∈S

ρπθ′ (s)
∑
a∈A

(πθ(a | s)Âθ′(s, a))

=
∑
s∈S

ρπθ′ (s)
∑
a∈A

(πθ′(a | s)
πθ(a | s)
πθ′(a | s)

Âθ′(s, a))

= Es∼ρπθ′ (s),a∼πθ′

[
πθ(a | s)
πθ′(a | s)

Âθ′(s, a)

]
,

where the ratio πθ(a|s)
πθ′ (a|s)

is called importance weight, representing the relative dif-

ference between the target policy and the behavior policy. The ratio between the
target policy and the old policy can be defined as

r(θ) =
πθ(a | s)
πθ′(a | s)

,
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which is a function of θ.

During training, the difference between the behavior policy and the target pol-
icy needs to be constrained because of the issue of the surrogate optimization
objective: the surrogate optimization objective should be as close as possible to
the real optimization objective [Schulman et al., 2015a]. PPO provides a simple
yet effective method to impose such a constraint on the training procedure. Specif-
ically, the ratio r(θ) is forced to be in a small range [1− ε, 1 + ε], where ε is a small
number as a hyperparameter, to constrain the difference between the two policies.
The training objective then becomes

J (θ) = Es∼ρπθ′ (s),a∼πθ′

[
min(r(θ)Âθ′(s, a), clip(rθ, 1− ε, 1 + ε)Âθ′(s, a))

]
,

where the function clip(rθ, 1 − ε, 1 + ε) clips the value of rθ between the range of
[1− ε, 1+ ε]. The function min(·) returns the minimum value between the original
one and the clipped one as the training objective.

In the practical PPO implementation, the policy network shares parameters
with the value network to predict state values. Two additional terms are added to
the training objective below

J (θ) = Es∼ρπθ′ (s),a∼πθ′
[min(r(θ)Âθ′(s, a), clip(rθ, 1− ε, 1 + ε)Âθ′(s, a))

− c1(Vθ(s)− Vtarget)
2 + c2S[πθ](s)],

where the square error loss (Vθ(s) − Vtarget)
2 indicates the value estimation error,

and S[πθ](s) denotes an entropy bonus to encourage exploration, c1 and c2 are two
hyperparameters to control the weights of three factors in the training objective.

3.3 Reward Functions in Reinforcement Learn-

ing

The above-introduced RL algorithms all depend on well-designed and accurate
reward signals for policy updating. Reward function is one of the key elements in
RL to evaluate and produce reward signals given states and actions. The design
of reward functions is critical for the success of learning the expected behavior
policies [Ma et al., 2023]. Nevertheless, in practice, most RL practitioners design
their reward functions in an ad hoc process of trial and error. They always search
for a relatively good reward function manually and can not guarantee that the
selected one is the optimal one [Booth et al., 2023]. It has been reported that
inappropriate reward functions could lead to the issue of the learning of sub-optimal
policies, reward hacking [Sutton and Barto, 1998, Everitt et al., 2017], unstable
training, and the failure of behavior learning. In this section, we introduce common
techniques in the designing of good reward functions for RL methods to use.

The difficulty of designing a proper reward function varies depending on the
task. It is easier to define appropriate reward functions in tasks like board games
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and video games, where the rule of achieving the task and the evaluation of suc-
cess are clear, compared to tasks in complicated real-life scenarios, such as robotic
tasks, where the environment is complex and the evaluation of success is challeng-
ing. Thus, apart from the developing of RL algorithms that have good inherent
probabilities in stable and efficient learning, the designing of proper reward func-
tions is essential as well to successfully applying RL approaches in more broad and
challenging realistic scenarios.

3.3.1 Human-designed Reward Functions

Reward functions are normally defined by human experts using their domain
knowledge about the target task [Booth et al., 2023]. Though it is always an
empirical and iterative process to determine a good reward function with trial and
error, some general rules have been discovered.

Reward Shaping using Expert Knowledge Reward shaping is an effective
technique to accelerate RL or a key to successful RL [Dorigo and Colombetti,
1994, Randløv and Alstrøm, 1998]. When using reward shaping, the ultimate goal
of the target task is not changed, while the reward function is adjusted to make
the RL agent learn the expected behavior more efficiently. A common use case
of reward shaping is converting sparse reward into dense reward, thus the reward
function can provide more guidance signals for the agent. This technique makes
the convergence faster by explicitly guiding the agent to explore desired behaviors.
For example, in a robotic manipulation task, a shaped reward typically contains
the distance between the robot grasper and the target object as an additional
reward term along with the ultimate task reward, i.e., the success of grasping the
target object. This distance-based reward element encourages the robot grasper
to reach the object faster in exploration and thus accelerates the learning process
[Nagpal et al., 2020].

Another common idea of reward shaping is separating a task manually into a
sequence of sub-tasks, each of which has a sub-goal [Chane-Sane et al., 2021]. For
example, in a robotic pick-and-place task where the robot is asked to pick up a
target object and place it into a specific location, the task can be separated into
a sequence of sub-tasks, including reaching the goal object, grasping the object,
picking up the object, and placing the object into the target place. Only rewarding
the success of the whole task makes the reward signal very sparse and rarely
happens, which makes the RL very slow. By separating the task into a sequence of
sub-tasks and rewarding each of them, the robot can easily achieve the long-horizon
task and thus learn the policy more efficiently.

However, reward shaping can potentially incur unexpected biases in behavior
learning, which leads to suboptimal or wrong policy learning [Sutton and Barto,
1998, Norvig, 2019]. So shaped reward functions should be designed carefully.
For example, the issue of reward hacking [Everitt et al., 2017] can happen when
the shaped reward function incurs unintended incentives to the agent. The agent
may exploit the shaped objective to find unintended shortcuts, which leads to bad
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performance on the original task while gathering high reward values. For example,
if we use the mass of garbage collected as an intermediate reward for a cleaning
robot, the agent may learn to put useful stuff into the garbage bin to gain a higher
reward, which is unexpected and harmful.

Reward Scaling Deep learning methods have been proven to be sensitive to the
scale of input data. A large amount of research has been done such as batch nor-
malization [Ioffe and Szegedy, 2015], layer normalization [Ba et al., 2016], and etc.
Large input values can lead to instability and slow convergence in deep learning,
for example, leading to the issue of gradient exploding. Reward signals, as a kind
of input data of neural networks, also follow this principle. Reward scaling is a
technique to enhance the learning process of RL to make the training more stable
and efficient [Engstrom et al., 2019]. By scaling rewards, the magnitude of the
value of the reward is changed for the sake of numerical computation, while the
pattern of the reward remains unchanged. Reward scaling can be seen as a part
of the design of the reward function, or a kind of postprocessing of reward signals
as well.

As introduced before, value functions are trained with the objective of regress-
ing on the expectation of the return (see Sec.3.2.4). The scale of the reward value
should align with the value function for effective learning. Reward scaling can be
achieved simply by multiplying all rewards by a fixed factor to change the range
of reward values. This is like the linear transformation of the raw reward values.
The more generalized form of this transformation is post-processing raw rewards
with a specific function, such as the exponential function or the logarithmic func-
tion, which not only changes the range of reward values but also the shape of the
reward curves [Li et al., 2023]. Reward normalization is suitable for RL algorithms
that process a batch of transition data for policy updating, such as PPO [Schul-
man et al., 2017]. Raw rewards are subtracted by the mean and divided by the
standard derivation to be mapped into the range of 0 to 1 [Touvron et al., 2023].
Reward clipping constraints reward value in a specific range to avoid extremely
large or low reward values [Strouse et al., 2022].

These reward scaling methods are used empirically depending on specific envi-
ronments and tasks without sufficient theoretical guidance. Additional hyperpa-
rameters are introduced in these methods, such as the scaling factor or the clipping
range. Optimal hyperparameters should be tuned according to the observation of
the training curve. Thus, these methods are always treated as practical tricks for
achieving stable and efficient RL training.

Intrinsic Rewards As it could be nontrivial to design appropriate reward func-
tions for specific tasks, learning basic task-agnostic skills beforehand and then fine-
tuning the agent with these skills on specific tasks is a promising solution [Singh
et al., 2004]. The assumption is that the skills learned utilizing intrinsic rewards
are reusable for various downstream tasks, thus they can make the learning of task-
specific skills easier. These basic skills are learned utilizing intrinsic rewards that
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Figure 3.6: An elaborated view of the agent-environment interaction loop of rein-
forcement learning. This figure is based on Singh et al. [2004].

are task agnostic, for example, they are designed to encourage the agent to explore
unseen views of the environment or to discover novel skills to interact with the
environment. The theory of intrinsic rewards is derived from an elaborated view
of the agent-environment interaction loop (cf. Fig.3.6), where the environment is
separated into the external environment, and the internal environment, The ex-
ternal environment is outside of the agent, while the internal environment is in
the same organism, e.g., the brain, with the RL agent. The intrinsic motivation is
produced by the critic of the internal environment, e.g., identifying the novelty of
an arrived state. This is in line with the theory of Schultz [2015], where the reward
components can be divided into external and internal components, according to
whether the reward is determined by the environment or the brain. How to define
intrinsic rewards and how to reuse learned skills obtained from intrinsic rewards
are attracting a lot of attention in the RL community in recent years [Singh et al.,
2004, Strouse et al., 2022, Li et al., 2023].

3.3.2 Learning-based Approximation of Reward Functions

Reward functions can also be approximated using learning-based methods [Chris-
tiano et al., 2017, Ouyang et al., 2022, Li et al., 2023, Ho and Ermon, 2016].
Compared with the classic RL setup where the reward comes from a manually
designed reward function by processing feedback from the environment, this ap-
proach is useful in situations where the reward function is too complex to design
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by human experts. The reward function can be approximated by a neural net-
work using data like demonstrations, or other supervision signals like classes in a
classification task.

Inverse Reinforcement Learning (IRL) [Ng and Russell, 2000] is a seminal work
in recovering reward functions and learning behaviors from observed trajectories.
In IRL, a reward function is first recovered and then an RL policy is learned
utilizing the recovered reward function as in a normal RL setup. IRL is useful
in situations where teacher demonstrations are available while the knowledge of
defining an appropriate reward function is absent or not enough. It is challenging
in terms of determining the optimal reward function that can lead to the optimal
learned policy.

Generative Adversarial Imitation Learning (GAIL) [Ho and Ermon, 2016] is
another work in learning a policy from expert demonstrations. Different from
IRL, GAIL does not recover a reward function before the learning of the policy.
Instead, GAIL formulates the task as a generative adversarial learning problem
and simultaneously learns a policy and a discriminator which works as the reward
function to provide reward signals. The discriminator is trained to distinguish
the ground truth and the generated trajectories, and the policy is trained in RL
using the output of the discriminator as reward signals. Compared to the classic
generative adversarial networks (GAN) [Goodfellow et al., 2014], the distribution
of the collected trajectories is analogous to the ground-truth data distribution, and
the policy is analogous to the generator.

Different from GAIL where the discriminator and the policy mutually improve
in a continuous adversarial improvement process, in some task setups, the relation-
ship between the policy and the discriminator is collaboration rather than adver-
sarial competition [Mnih et al., 2014, Christiano et al., 2017, Ouyang et al., 2022,
Li et al., 2023]. For example, in the task of hard attention for image classification
[Mnih et al., 2014], the policy controls the attention position of the perception
field, and a discriminator takes collected visual information for image classifica-
tion. The policy and the discriminator functionally collaborate in a way that the
performance of the discriminator gives feedback regarding the performance of the
policy, while the performance of the policy influences the performance of the dis-
criminator in turn. In the finetuning of large language models (LLMs) using RL
from human feedback (RLHF) [Ouyang et al., 2022], a reward model is firstly
trained in a supervised learning manner on preference data to obtain the ability to
evaluate human preference of generated sentences to provide reward signals. The
RL algorithm PPO is then applied to learn a chat policy utilizing the rewards
produced by the reward model. As the chat policy improves, the distribution of
the generated data shifts, thus the reward model needs to be retrained to handle
the novel data distribution for preference evaluation. The reward model and the
policy model functionally depend on each other and are trained iteratively. Similar
to IRL, where a cost function should be trained for policy learning, the training
process of this RLHF paradigm is unstable and hard to converge.

The same training paradigm, where a discriminator and a policy collaborate and
improve simultaneously, exists in a broad range of tasks, e.g., learning game and
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robotic control from human preference [Christiano et al., 2017], unsupervised skill
discovery [Gregor et al., 2017, Strouse et al., 2022], active perception in robotics
[Lakomkin et al., 2018, Li et al., 2021].

3.3.3 AI-designed Reward Functions

Designing an appropriate reward function is always very challenging and crucial in
the application of RL algorithms in real-world application scenarios. The empiri-
cal and iterative selection process of the reward function is time-consuming when
the task is complicated. Taking advantage of rich common-sense knowledge en-
coded in the pretrained large models, especially pretrained large language models
(LLMs), designing reward functions with the help of large models has been proven
an effective method for designing reward functions. This kind of work is generally
termed reinforcement learning from AI feedback (RLAIF) [Bai et al., 2022b, Lee
et al., 2023]

Though this approach seems promising, how to ground the model into the tar-
get task and environment is challenging. RLHF, as has been introduced before,
is known to be relying on dense human labels, which are expensive to collect. As
an improvement of RLHF, Bai et al. [2022b] proposed the concept of Constitu-
tional AI (CAI), where an LLM is finetuned using a small set of basic principles
defined by humans, i.e., a constitution, instead of using prompt-response pairs
that are constructed using human feedback. CAI uses a separated pretrained
LLM to provide feedback, according to the predefined principles as responses, to
align the LLM with human values and intentions. Specifically, CAI includes two
training stages. The first one is the supervised stage, where a helpful-only model
generates responses to harmful prompts, critiques the responses according to a
randomly selected principle from the constitution, and then revises the responses.
This pipeline runs multiple times with different principles to get a final revised
response. After that, the helpful-only model is finetuned on the revised responses
with supervised finetuning. The second stage is the RLAIF stage, where the model
from the first stage is asked to generate pairs of responses for harmful prompts and
is then instructed to choose the best one out of a pair of responses according to
the predefined principle. This procedure constructs a preference dataset, which is
then used to train a preference model and finetune the policy.

Lee et al. [2023] proposed a straightforward RLAIF method where the reward
model is trained with data labeled by a basic LLM after supervised fine-tuning.
Similar to CAI, this method also defines some principles but there is no critique and
revision process involved. They demonstrated that with well-designed prompts, AI
feedback can achieve comparable alignment improvement for LLMs compared with
human feedback. Pang et al. [2023] proposed an approach named Self-Improvement
by Reinforcement Learning Contemplation (SIRLC), which is built on top of the
observation that LLMs are good at self-evaluation. In line with CAI, SIRLC works
in a self-evaluation manner. In contrast, there are no predefined principles in self-
evaluation but only an evaluation score computed by the LLM itself. A target LLM
is then optimized with RL to maximize the expectation of the scores to achieve
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the goal of LLM alignment.
The idea of using pretrained large models to design reward functions has also

been studied in the realm of agents and robotics [Klissarov et al., 2023, Yu et al.,
2023, Hu and Sadigh, 2023, Du et al., 2023]. Ma et al. [2023] proposed EUREKA
(Evolution-driven Universal REward Kit for Agent) to use pretrained LLMs to
automatically design reward functions. Specifically, this method uses the code-
generation capability of LLMs, taking the environment code and the task descrip-
tion as the input to generate the code of reward functions. Two crucial techniques,
reward candidate sampling, and reward reflection, are invented to tackle the prob-
lem of unexecutable reward functions and improve reward functions, respectively.
Experimental results suggest that reward functions designed by EUREKA out-
perform those designed by human experts, showcasing the potential of utilizing
feedback from pretraining models for more efficient RL training in more compli-
cated tasks.

3.4 Discussion

In this chapter, we introduced reinforcement learning from both neuroscientific
and computational perspectives, with a particular interest in the generation and
functions of rewards. It can be seen that there is a gap between the learning the-
ory in neuroscience and existing methods in computational reinforcement learning.
Existing research in computational reinforcement learning revolves around a rel-
atively simplified setup, primarily focusing on reinforcement learning algorithms
utilizing highly artificial and human-designed reward values. On the contrary, the
reinforcement learning theory in neuroscience covers a relatively comprehensive
range of procedures, spanning from sensory perception to attention mechanisms,
and goal-oriented and subjective value evaluation. These procedures are always
not considered and integrated into the computational reinforcement learning frame-
work in existing work on computational reinforcement learning. This thesis seeks
to explore possible approaches to incorporate these components into the reinforce-
ment learning process, particularly with a focus on the application of embodied
agents with active vision, as the development of such agents necessitates these
components in the reinforcement learning process.

39



Chapter 4

Disembodied Models in
Addressing Insufficient
Observations

4.1 Introduction

The prevalent application scenarios of insufficient observations motivate our re-
search on embodied agents equipped with active vision. Before our work on em-
bodied agents, it is worth studying to what extent the issue of insufficient observa-
tions can be tackled without the application of active vision, i.e., with disembodied
models. The answer to this research question motivates our interest in active vision
and embodied agents.

In the last decades, deep neural network (DNN) models have achieved signif-
icant success in a variety of tasks. A large portion of existing work is on dis-
embodied models that passively process static data fed by users. This is often
referred to as “disembodied AI”, as the models are not embodied in the physi-
cal world, instead, they interact with users through a virtual interface. Thanks
to the efficiency of deep learning, certain DNN models have reached human-level
performance on many large-scale datasets. Most of these datasets are composed
of data that contains sufficient information to deduce the corresponding human-
annotated label. This simplification makes the datasets appropriate benchmarks
for early-stage study on primary principles and methods of deep learning, without
too much distraction from annoying, complex, and uncontrollable cases from re-
alistic use cases. For example, the ImageNet dataset [Deng et al., 2009] includes
images that provide ample visual details of the object (e.g., pixels of a dog) corre-
sponding to the labeled category (e.g., “a dog”) for the image classification task1,
questions are guaranteed answerable given the corresponding images in widely used
datasets of the task of visual question answering (VQA) [Antol et al., 2015, Goyal
et al., 2017].

1It should be noted that in the ImageNet dataset, there are images unintentionally labeled
incorrectly, which is called the issue of noisy labeling [Yun et al., 2021].
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Although these static datasets were not initially created with the consideration
of the issue of insufficient observations, the growing necessity to deploy AI models
in diverse real-world situations is driving researchers to look into this issue. In
realistic application settings, the challenge of insufficient observations is not only
present in embodied agents operating in 3D environments but also occurs in sit-
uations dealing with static data. The issue of insufficient observations manifests
differently on different tasks. On the VQA task, this issue corresponds to situa-
tions where the question is irrelevant or unanswerable to the corresponding image,
i.e., the visual information provided by the image, which serves as the information
base for the QA task, is insufficient for answering the given question [Ray et al.,
2016, Mahendru et al., 2017, Whitehead et al., 2022, Wu et al., 2023]. For example,
in realistic applications, users may mistakenly ask the question “What is the color
of the cat” to an image containing only a dog [Mahendru et al., 2017], visually
impaired people may ask visually irrelevant questions to an assistant application
which is designed to answer visual questions [Gurari et al., 2018]. Similarly, in the
image classification task, the issue corresponds to situations where the entities in
the given images are unknown to the model. For instance, in daily use, users may
feed a blurry image with nothing recognizable to an image classification model to
classify or an image with a novel class of objects that are not included in the train-
ing data. These situations with insufficient information pose novel requirements
for such models to distinguish the sufficiency of present visual information and
produce reliable responses.

Though these situations are common in realistic application scenarios and deal-
ing with these situations is essential for improving user experience, it has been
demonstrated that existing models across various domains, including visual ques-
tion answering [Gurari et al., 2018, Whitehead et al., 2022], image captioning
[Rohrbach et al., 2018], and pretrained vision-language models (VLMs) [Wu et al.,
2023, Zhou et al., 2024] struggle in scenarios with insufficient observations. When
the provided visual information is insufficient for responding to the query and the
model does not have the capability of actively acquiring further information, these
models tend to produce arbitrary responses, which could be potentially harmful to
the users. It is unarguable that harmlessness should be the most prioritized prop-
erty of the responses from an AI model or an embodied assistant agent. An idea
to eliminate harmfulness in the responses is converting a model, which produces
arbitrary answers in scenarios with insufficient observations, into a conservative
one, which abstains from answering.

In the application of models without the capability of active vision, the response
of abstaining from classification or answering is better or probably an optimal solu-
tion compared with producing an arbitrary classification or answer, as the response
is at least not misleading even though the response is helpless [Li et al., 2020, Bai
et al., 2022a, Whitehead et al., 2022]. We use the VQA task and specifically study
the straightforward idea of training a VQA model with extra “I don’t know” labels
to convert a potentially harmful model into a harmless one when the question is
irrelevant to the visual information provided by the image. As the capability of
detecting insufficient observation scenarios is the prerequisite for proceeding with
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further actions to interact with the environment, this work serves as a preliminary
study under the umbrella of the thesis topic on embodied agents with active vision.

4.2 VQA with Irrelevant Questions

Visual question answering [Antol et al., 2015] is an important multimodal task in
the field of artificial intelligence in recent years. In this task, a model is expected
to produce answers to natural language questions regarding the visual content of
corresponding images. This task has received significant interest from researchers
because it not only can be utilized to examine the development of multimodal and
crossmodal technologies [Fu et al., 2020], but also has great potential in real-world
application scenarios [Gurari et al., 2018].

Despite significant progress in recent years, the majority of conducted research
focuses on improving accuracy on current hand-curated VQA datasets [Antol et al.,
2015, Goyal et al., 2017, Kafle and Kanan, 2017], in most of which questions are
relevant to corresponding images by default, i.e., visual information regarding the
question is sufficient for generating answers. When given an irrelevant question
to an image, current state-of-the-art models would still produce an answer with
high certainty, represented by a high probability score, rather than predict that
the question is irrelevant and cannot be answered correctly. Obviously, it is not
what we expect for an intelligent VQA system. On the one hand, this situation
suggests that current VQA models do not truly understand the visual information
of images and what questions are asking about. On the other hand, producing
answers to irrelevant questions would be harmful to user experience and mislead
users by conveying misinformation that the premises in question are all correct.

More formally, irrelevant questions in the context of VQA can be defined by
premises [Mahendru et al., 2017], which are facts implied by questions. For in-
stance, the question “What’s the black cat on the table doing?” implies the pres-
ence of a black cat, a table, and that the cat is on the table. Mahendru et al.
[Mahendru et al., 2017] categorize premises into three classes of order. The first-
order premises mean the presence of objects (e.g. a cat). The second-order premises
reflect attributes of objects (e.g. a black cat) and the third-order premises are about
relations and interactions between objects (e.g. a cat on a table). Once there is
at least one false premise in a question, the question should be classified as an
irrelevant question to the paired image. In the previous example, if there is a
dog instead of a cat, or the cat is under the table in the image, the question is
irrelevant to the image. In this case, if a VQA model still gives an answer like
“sleeping”, misinformation that there is “a black cat on the table” in the image
would be conveyed to the asker.

Current approaches treat the VQA task as a multiclass classification problem.
Given a question q ∈ Q and an image v ∈ V , a VQA model is expected to give the
ground truth answer a∗ ∈ A with the highest classification score

â = argmax
a∈A

pθ(a|v, q), (4.1)
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where â is the predicted answer, and θ are the parameters of the trained model.
The task of irrelevant question detection can be defined as a binary classification
task. For a question-image pair (q, v), the task is to classify whether the question
q is relevant to the image v.

In our approach, we have the hypothesis that the abilities required for detecting
irrelevant questions align with those required for answering visual questions, and
aim to answer the research question: if we can endow a state-of-the-art neural
network on existing VQA datasets with the ability to detect irrelevant questions by
simply training on an extended VQA dataset with irrelevant questions? Similar to
the process of answering visual questions, judging whether a question is relevant to
an image also requires a model to have a thorough and comprehensive understand-
ing of both images and questions. To achieve this task, a model has to acquire
information about classes of objects, colors, relative locations, counts, etc. Based
on this hypothesis, using an end-to-end network architecture designed for the VQA
task for detecting irrelevant questions is a more natural approach, in contrast to
existing best-performing methods [Mahendru et al., 2017, Ray et al., 2016] which
utilize separated image captioning models and MLP networks. In this work, we
investigate the possibility of solving the task of irrelevant question detection with
a neural network designed for the VQA task.

To integrate the ability to detect irrelevant questions into a VQA model, a
straightforward idea is to train a VQA model jointly on a dataset containing both
relevant cases and irrelevant cases by treating answers to irrelevant cases as “irrel-
evant”. However, interference between these two tasks is still unclear when jointly
training them together. Therefore we conducted several experiments to investigate
this issue. We expect the performance of the joint model on both two tasks could
be boosted based on our hypothesis. Our main findings of the research in this
chapter are as follows:

1. We demonstrate that the task of irrelevant question detection could be solved
well by a neural network designed for the VQA task, and we set a new baseline
performance on the QRPE dataset [Mahendru et al., 2017].

2. We empirically prove that the task of irrelevant question detection benefits
from the techniques of iterative reasoning and relational modeling.

3. Our experimental results suggest that jointly training a VQA model on
datasets extended with irrelevant cases sacrifices the accuracy of VQA on
relevant cases, which implies that jointly training a VQA model on a mixed
dataset with both relevant and irrelevant questions is not an ideal solution
to address the issue of insufficient observations.

4.3 Related Work

Works of Ray et al.[Ray et al., 2016] and Mahendru et al. [Mahendru et al., 2017]
are most related to ours. Ray et al. [Ray et al., 2016] firstly introduce the problem
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of irrelevant question detection in the context of VQA. They construct a dataset
named Visual True and False Question (VTFQ) by showing annotators images
paired with randomly selected questions and asking them to annotate whether the
question is relevant to the corresponding image or not. Mahendru et al. [Mahendru
et al., 2017] propose a premise extraction pipeline to automatically extract premise
information from questions. In their paper, they give a formal definition of ques-
tion premises and classify premises into the aforementioned three orders according
to their complexity. A new dataset named Question Relevance Prediction and
Explanation (QRPE) is constructed by them for the task of irrelevant question de-
tection based on the premises of questions. The QRPE dataset contains irrelevant
question-image pairs against the first-order or second-order premises. Fig. 4.1 and
Fig. 4.2 display examples of question-image pairs where the content of the images
conform to or contradict the premises of the visual questions. This dataset en-
compasses more ambiguous examples in comparison to the VTFQ dataset, which
makes it more challenging. Several different methods have been proposed for de-
tecting question relevance by Mahendru et al. [2017]. Their experimental results
indicate that image captioning-based models have the best performance on this
task. Though both of these papers briefly mention the benefits of integrating rel-
evance detection into existing VQA systems, less attention has been devoted to
relations between the relevance detection task and the VQA task.

(a) Relevant image (b) Irrelevant image

Figure 4.1: An example case of the first-order premise failure in the QRPE dataset
[Mahendru et al., 2017]. The corresponding visual question of the above two images
is “Where are the birds standing?”, where there is a first-order premise suggested
by the visual question, i.e., the presence of objects “birds”. The question is irrele-
vant and thus unanswerable given the image on the right due to the failure of the
premise, i.e., there is no bird in the image.

Dealing with situations with irrelevant questions in the VQA task has poten-
tial application values. A natural application of VQA models is to help visually
impaired people to perceive their environment. In contrast to normal users with
good vision, users with impaired vision may take images that are of poor qual-
ity and may ask questions that are irrelevant to the image unintentionally. The
VizWiz dataset [Gurari et al., 2018] is constructed with data from such an applica-
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(a) Relevant image (b) Irrelevant image

Figure 4.2: An example case of the second-order premise failure in the QRPE
dataset [Mahendru et al., 2017]. The corresponding visual question of the above
two images is “Where are the white buckets?”, where there is a second-order
premise suggested by the visual question, i.e., the presence of objects “buckets”
with certain attributes “white”. The visual question is irrelevant and thus unan-
swerable given the image on the right due to the failure of the premise, i.e., there
is no white bucket in the image but only a black bucket.

tion scenario, where visually impaired users take images and ask visual questions
regarding the image. Fig. 4.3 shows an example case of this dataset. It has been
demonstrated that this dataset is very challenging for existing VQA models.

4.4 Irrelevant Visual Question Detection

4.4.1 Methodology

We choose the Multimodal Relational reasoning (MuRel) network [Cadene et al.,
2019], one of the current state-of-the-art models on the VQA task, as our basic
model. The use of the technologies of explicit iterative reasoning and relational
modeling distinguishes MuRel from other networks. The two components asso-
ciated with iterative reasoning and relational modeling in the network are the
MuRel cell and the pairwise module. It has been shown that visual features play
an important role in VQA performance [Anderson et al., 2018b, Jiang et al., 2018].
MuRel uses the bottom-up visual features [Anderson et al., 2018b] to represent
images. specifically, an object detector Faster R-CNN [Ren et al., 2015] is used
to extract region feature vectors to generate the bottom-up features of images. A
pretrained skip-thought encoder [Kiros et al., 2015] is used for the question features
extraction.

MuRel cell takes visual features and question features as inputs and produces
updated visual features. The MuRel cell could be invoked several times to update
visual features interactively. A pairwise module is an element of the MuRel cell.
It obtains region features and coordinates of regions to model relations between
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Figure 4.3: An example case sampled from the VizWiz dataset [Gurari et al., 2018].
The visual question corresponding to the above image is “Could you possibly tell
me what the content of this jar is?”. This question is unanswerable because a jar is
not fully visible in the given image, making it impossible to determine its contents.
In this case, an ideal VQA model is expected to abstain from answering instead of
giving an answer like “food” or “water”, which could cause harmful consequences
for the user.

them. An efficient bilinear fusion module [Ben-Younes et al., 2019] works as the
multimodal fusion strategy to combine visual and language information. A running
process of the MuRel cell with the pairwise module is formalized as

{sti} = MuRelCell({st−1
i }, {bi}, q), (4.2)

where t ∈ {1, ..., T} is the step number of the current process, sti represents the
updated representation of region i, bi is the coordinate of region i and q is the
representation of the input question. In the first step of the process (when t = 1),
s0i = vi exists, where vi is the feature of region i of the visual features provided by
the bottom-up features. After the last step of this process, when t = T , all sTi are
aggregated together to provide a single vector s, which is then fused with question
features q to produce a probability distribution ŷ over all possible answers. This
process can be formalized as

ŷ = B(s, q,Θc), (4.3)

where Θc are trainable parameters of the classifier.
We term MuRel-bin the MuRel relational reasoning network trained for rele-

vance detection with a binary classifier. The network architecture of MuRel-bin is
illustrated in Fig. 4.4. The network is applied to the task of irrelevant question
detection. Inputs of MuRel-bin are bottom-up features of images and question fea-
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Figure 4.4: Illustration of the network architecture of MuRel-bin.

tures extracted by a skip-thought encoder. Labels of “relevant” and “irrelevant” in
irrelevant question detection datasets are treated as two answers and correspond
to two output neurons. Cross entropy loss is calculated to supervise the learning
process.

4.4.2 Dataset

We use the QRPE dataset 2 [Mahendru et al., 2017] to evaluate the MuRel-bin
model and compare it against other approaches on the task of irrelevant question
detection. The QRPE dataset is curated automatically based on the MS COCO
dataset [Lin et al., 2014], the Visual Genome dataset [Krishna et al., 2017], and
the VQA v2 dataset [Goyal et al., 2017]. To build this dataset, first-order and
second-order premises are firstly extracted from questions through a semantic tuple
extraction pipeline used in the SPICE metric [Anderson et al., 2016] for evaluating
the quality of image captions. For first-order premises, irrelevant images for a
question are selected by checking the absence of the appropriate class label in
the MS COCO annotations. For second-order premises, images that contain a
matching object but a different attribute to the question premise according to
annotations of Visual Genome are determined as irrelevant images. To ensure
that the irrelevant image is similar enough to the relevant image, the one with
the closest visual distance to the relevant image has been selected from irrelevant
candidate images. In the end, every question in the QRPE dataset is paired with
a relevant image and an irrelevant image. Compared to the VTFQ dataset, which
is the first dataset for the task of irrelevant question detection, the QRPE dataset
is balanced in the label space, larger, and constructed in finer granularity.

The training set of the QRPE dataset contains 35,486 irrelevant question-image
pairs which are generated from the training set of the VQA v2 dataset. The test
set of the QRPE dataset contains 18,425 irrelevant question-image pairs which
are generated from the validation set of the VQA v2 dataset. Based on the order
of the false premise, irrelevant cases can be divided into a first-order part and a
second-order part. The number of irrelevant question-image pairs in the QRPE

2https://virajprabhu.github.io/qpremise/dataset/
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Table 4.1: Number of irrelevant question-image pairs in the QRPE dataset.

Split Overall First-order Second-order

Training set 35,486 32,939 2,547

Test set 18,425 17,096 1,329

dataset is shown in Table 4.1.

4.4.3 Experimental setup

Matching the experimental setup of existing methods we compare, we randomly
select 90% of the training set of the QRPE dataset for training and the rest for
validation. To avoid bias resulting from random division, we train 5 models inde-
pendently and report the average accuracy on the test set as the final results. All
MuRel-bin models are trained from scratch on the QRPE dataset. We performed
some preliminary studies for training strategy and critical hyperparameters. We
observed that overfitting problems can easily arise when inappropriate learning
rates are applied. Finally, a similar learning scheduler as Cadene et al. [2019] with
different settings is used in our training. We begin with a learning rate of 5e− 6,
linearly increasing it at each epoch till it reaches 2e − 5 at epoch 6. Then we
decrease the learning rate by a factor of 0.25 every 2 epochs from epoch 8 to epoch
14, at which we stop training. In our experiments, the batch size is set to 80, and
experiments are conducted on 2 × NVIDIA Geforce 1080 TI.

4.4.4 Baseline Comparison

We compare MuRel-bin against state-of-the-art approaches on the QRPE dataset.
The goal of this experiment is to evaluate whether a well-performing network
designed for the VQA task can solve the task of irrelevant question detection well.

QC-Sim, PC-Sim, and QPC-Sim [Mahendru et al., 2017] are existing best-
performing approaches on the QRPE dataset. QC-Sim uses an image captioning
model NeuralTalk2 [Karpathy and Fei-Fei, 2015] pretrained on the MS COCO
dataset to automatically generate natural language descriptions for images. An
LSTM network is used to encode both the generated image captions and corre-
sponding questions into vector representations. Then, question and caption repre-
sentations are concatenated and fed into an MLP network to predict the relevance
between questions and images. PC-Sim and QPC-Sim are variants of QC-Sim.
PC-Sim uses automatically generated image captions and premises extracted from
questions for relevance prediction. QPC-Sim considers all three sources, includ-
ing questions, premises, and captions, for relevance prediction, and achieves the
highest overall accuracy.

Results of MuRel-bin in Table 4.2 are achieved when the number of reasoning
steps is set to 3 and the pairwise module is not used. Fig. 4.5 shows the train-
ing curves of MuRel-bin under this setting. The figure indicates that the model
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Figure 4.5: Training curves of MuRel-bin on the QRPE dataset.

Table 4.2: Comparison of accuracies on the QRPE dataset.

Models Overall First-order Second-order

QC-Sim 74.35 75.82 55.12

PC-Sim 75.05 76.47 56.04

QPC-Sim 75.35 76.67 55.95

MuRel-bin 86.62 88.13 67.02

converges soon. After 8 epochs, an evaluation accuracy of around 90% is reached.
We can notice that from epoch 8 on, the evaluation loss starts to increase slightly,
which indicates that the model tends to overfit. A comparison of accuracy between
MuRel-bin and other approaches on the overall and two splits of the test set of the
QRPE dataset is shown in Table 4.2.

Results of QC-Sim, PC-Sim, and QPC-Sim are reported in their original paper
[Mahendru et al., 2017]. The accuracy on the test set would be 50% if chosen
at random since every question in the test set of QRPE is paired with a relevant
and an irrelevant image. From Table 4.2, we can see that MuRel-bin outperforms
existing best-performing approaches by a big margin (over 10%) both on the overall
test set and each split divided according to the order of false premises. Therefore,
we conclude that a well-performing network architecture designed for the VQA
task can solve the task of irrelevant question detection well.

4.4.5 Ablation study

In this part, we investigate the effects of the techniques of multi-step reasoning
and relational modeling on irrelevant question detection. Their contributions to
the VQA task have been well proven [Cadene et al., 2019]. In Table 4.3, we
compare four MuRel-bin models with different settings. To ensure comparability,
we train them following the same experimental setup. The setting “Pairwise”
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Table 4.3: Accuracies in the ablation study of MuRel-bin.

Pairwise Iter. Overall First-order Second-order

✗ ✗ 85.64 87.20 65.69

✓ ✗ 86.15 87.84 64.35

✗ ✓ 86.62 88.13 67.02

✓ ✓ 86.16 87.72 66.27

means whether the pairwise module is used and the setting “Iter.” means whether
iterative reasoning is used. In our experiments, the number of reasoning steps is
set to 3 when iterative reasoning is used.

The results in Table 4.3 show that a MuRel-bin model with iterative reasoning
but without the pairwise relational module achieves the best overall performance
and the highest accuracies on both the first-order and second-order parts. The first
three rows of Table 4.3 show that both iterative reasoning and relational modeling
contribute to the MuRel-bin network’s performance on the QRPE dataset, which
is consistent with their benefits on the VQA task. However, comparing row 3 and
row 4, we find adding the pairwise module to a model with iterative reasoning
results in a loss of accuracy. We observed that the distance between training and
evaluation loss curves increases when the pairwise module is used in this case, thus
a possible explanation for this situation is using the iterative reasoning process and
the pairwise module together leads to overfitting.

4.5 Integrating Irrelevant Question Detection into

VQA

4.5.1 Methodology

In this part, we investigate the idea of integrating the ability to detect irrelevant
questions into a VQA model by joint training a VQA model on a training set
containing also irrelevant cases. For handling irrelevant cases, the model treats
answers of irrelevant cases as a special answer “irrelevant”. Based on our hypoth-
esis that the abilities required for detecting irrelevant questions align with those
required for answering visual questions, we expect that training data for these two
tasks could benefit each other through joint training. The approach to joint train-
ing the MuRel network on an extended VQA dataset containing irrelevant cases is
illustrated in Fig. 4.6.

4.5.2 Dataset

In extended training sets, irrelevant cases are annotated with the answer “irrele-
vant” for fitting VQA networks. In our experiments, we construct extended train-
ing sets based on the VQA v2 dataset, which is the most widely used VQA dataset.
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Figure 4.6: Illustration of the approach to jointly training the MuRel network on
an extended VQA dataset containing irrelevant cases.

The VQA v2 dataset contains 443K, 214K, and 453K question-image pairs for
training, evaluation, and testing, respectively. We denote the training set of the
VQA v2 dataset as V QAv2 in the report of our experiments. We assume that all
questions in the VQA v2 dataset are relevant to their corresponding images since
human annotators are instructed to ask questions about the image that can be an-
swered. First, we add 90% of irrelevant question-image pairs in the training set of
the QRPE dataset to V QAv2 to build an extended training set V QAv2+QRPE.
The reason why we only select 90% of irrelevant cases is to match the training
setting in Section 4.4 for fair comparisons on the test set of the QRPE dataset. In
V QAv2+QRPE, irrelevant cases account for 6.7% of all cases. To investigate the
impact of different proportions of irrelevant cases, we construct another training
set by adding all irrelevant cases in the training set of both the QRPE dataset and
the VTFQ dataset. We denote this training set as V QAv2 +QRPE + V TFQ, of
which irrelevant cases account for 9.0%.

For V QAv2, the 3000 most frequent answers are selected as candidate answers.
The top two most frequent answers are “yes” and “no”, both of which occur over
80K times in the training set. Following them are answers “1” and “2”, both of
which occur over 10K times.

For V QAv2 + QRPE and V QAv2 + QRPE + V TFQ, the special answer
“irrelevant” is included in the 3000 candidate answers. In these two training sets,
counts of the answer “irrelevant” are 31938 and 44024 respectively, which matches
the numbers of irrelevant cases in them. Thus, in both of these two training
sets, the answer “irrelevant” ranks between “no” and “1”. The count of answer
“irrelevant” is about half the count of answer “yes” and in the same order of
magnitude as some other frequent answers.

4.5.3 Experimental setup

For experiments on joint training, we use a MuRel network with a pairwise module
and a 3-step iterative reasoning process, because this setting achieves the best
performance on the VQA v2 dataset. We adopt the same learning schedulers with
the original MuRel model [Cadene et al., 2019] trained on the VQA v2 dataset. The
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Table 4.4: Comparison of accuracies on the test-dev split of the VQA v2 dataset
after joint training on different training sets.

Training set Yes/No Num. Other All

V QAv2 82.70 48.32 56.13 66.19

V QAv2 +QRPE 83.03 47.95 54.79 65.64

V QAv2 +QRPE + V TFQ 82.91 48.35 54.69 65.59

Table 4.5: Comparison of accuracies on the QRPE dataset after training on dif-
ferent datasets.

Training set Accuracy

QRPE 86.16

V QAv2 +QRPE 86.24

starting learning rate is set to 1.5e−4 with a batch size of 160. Models are trained
for 25 epochs. Our experiments are conducted on 4 × NVIDIA Geforce 1080 TI.
We train all models on different training sets following the same experimental setup
to ensure comparability.

4.5.4 Results

Three MuRel models are trained on V QAv2, V QAv2 + QRPE, and V QAv2 +
QRPE + V TFQ respectively, and evaluated on the validation set of the VQA
v2 dataset at every epoch. Checkpoints with the highest top 1 accuracy on the
validation set are selected and tested on the test-dev split of the VQA v2 dataset
for comparison. Scores of accuracy in Table 4.4 are calculated by the evaluation
metric of the VQA Challenge 3 for all questions, “yes/no” questions, “number”
questions, and other questions that are neither answered “yes/no” nor number.

From the accuracies reported in Table 4.4, we derive that jointly training a
VQA model on training sets containing also irrelevant cases impairs its overall
performance on the normal VQA data. As the proportion of irrelevant cases in-
creases, the overall accuracy gradually decreases. We notice that the accuracy of
“yes/no” questions can be improved when training on extended training sets.

We also test the MuRel model trained on V QAv2 +QRPE on the test set of
the QRPE dataset to see the impacts of joint training on the task of irrelevant
question detection. To get the accuracy of this model on an irrelevant question
detection dataset, we treat the answer of “irrelevant” as a prediction of irrelevance
and other answers as a prediction of relevance. For a fair comparison, we take the
same checkpoint that produces scores in Table 4.4 for testing on the QRPE test
set. The overall accuracy achieved by this MuRel model on the test set of QRPE
is 86.24%. This accuracy is a bit higher than the accuracy of 86.16% achieved by

3https://visualqa.org/evaluation.html
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the MuRel-bin model with the same setting (see Table 4.5). It suggests that joint
training can maintain accuracy on the task of irrelevant question detection well.

To avoid degradation on the VQA task when jointly training a model on a
training set containing data for both VQA and relevance detection, we would like
to suggest an alternative architecture. In this architecture, network layers for
processing features of images and questions are shared for two tasks, while the
output layers are separated. When the network is trained on irrelevant cases,
parameters in output layers for the VQA task are not updated. This separation
procedure might avoid unexpected interference with those tasks and reduce the
overfitting problem.

4.6 Discussion

In this study, we investigated networks designed for VQA on the task of irrel-
evant question detection. A multimodal relational network for VQA was used
for experiments. We demonstrated that the network adapted as a binary classi-
fier outperforms the existing state-of-the-art methods by a large margin on the
task of irrelevant question detection. It suggested that existing end-to-end neural
networks-based models, which were originally designed for situations where task
information is sufficient, are able to perform information sufficiency detection well
when the model is specifically trained in a supervised learning manner for the task
of detecting information sufficiency. The ablation study regarding the effectiveness
of the components of iterative reasoning and relational modeling suggested that
the relevance prediction task has the requirement for the reasoning ability and
relational modeling ability as the VQA task has. This indicated that the abili-
ties required for task-relevant information detection are not distinct compared to
performing corresponding tasks when information is sufficient.

Following the aforementioned findings, we further investigated the idea of inte-
grating the ability to detect irrelevant questions into a VQA model by training a
VQA model on a training set containing irrelevant cases. The experimental results
demonstrated that through supervised learning on mixed cases with both suffi-
cient and insufficient observations, the model is able to gain the ability to detect
information sufficiency, however, we noted that its previous ability on sufficient
information settings is sacrificed. The performance degradation happens possibly
because the change in data distribution makes it more challenging for the model
to handle through supervised learning.

Future work may include building a larger and more difficult dataset for the
task of irrelevant question detection. Though compared with the VTFQ dataset,
the QRPE dataset is collected in a finer granularity by concerning different orders
of false premises, it only contains irrelevant questions with false first-order and
second-order premises and ignores irrelevant cases with false third-order premises
concerning relations and interactions between objects. That makes current datasets
unsuitable for the true challenges of the relevance detection task. In addition to
the necessity of building new datasets, it is also promising to study methods of
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improving models’ performance on the VQA task by taking advantage of the task
of irrelevant question detection and vice versa. While we observed that jointly
training a model on extended datasets containing also irrelevant cases leads to
degradation of accuracy on the VQA task, we hypothesize that it may be possible
to improve the performance by using other training methods, such as the method
mentioned that shared layers are trained jointly while output layers are trained
separately.

4.7 Summary

In this chapter, we attempt to answer the first research question “How to endow
a disembodied model with the capability of information sufficiency evaluation?”
Our experiments demonstrated that we can train a disembodied model explicitly
on a dataset including additional “Irrelevant” labels through supervised learning
to endow the model with the capacity of information sufficiency evaluation. The
resulting model responds with the special answer “Irrelevant” instead of producing
normal answers, such as “black” to questions regarding the colors of objects when
the information is deemed insufficient. However, this response is not very helpful
to the users. We revealed the inherent limitations of disembodied AI models in
situations of insufficient observations, i.e., only a conservative model is possibly
achieved to prevent producing wrong and potentially harmful responses. To make
responses more helpful to the users, the issue of insufficient observations should
be tackled fundamentally by actively collecting more useful information. This
motivated our follow-up work on embodied agents with the capability of active
vision, with which a progressive model can be obtained to actively collect necessary
information for producing responses that are more helpful to the users.
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Chapter 5

Learning Active Vision Control
Using Reinforcement Learning

5.1 Introduction

In this chapter, we will be focusing on embodied AI agents with active vision. This
is driven by the inherent limitations of disembodied AI models, namely, their in-
ability to collect necessary information in situations with insufficient observations.
Specifically, we will be working on action-response embodied agents that have dual-
output channels: the output of the active vision action channel collects necessary
information, and the output of the task-relevant response channel produces the
response based on information collected through active vision (cf. Fig. 1.2).

Existing tasks designed for action-response agents are overly complex when
serving as evaluation tasks for research purposes. For instance, tasks like em-
bodied question answering [Das et al., 2018] and interactive question answering
[Gordon et al., 2018] involve large-scale indoor environments, demanding exten-
sive abilities from the agents, such as commonsense reasoning, long-term action
planning, and memory. However, such comprehensive requirements and high-level
complexity hinder our understanding of the fundamental mechanism and develop-
ment of active vision control and corresponding response for embodied AI agents.
A task with a reasonable level of complexity is needed for effectively evaluating
the performance of such models and their training methods. In line with this re-
quirement, we designed a robotic task named robotic object existence prediction
(ROEP), where the situation of insufficient observations arises from potential oc-
clusions between objects. This task can be seen as a simplified version of embodied
question answering, characterized by limited state and action spaces.

Inspired by the recurrent attention model [Mnih et al., 2014], we are interested
in exploring the feasibility of developing end-to-end modular networks, where the
active vision policy module and the task-relevant response module are optimized
simultaneously. The idea of simultaneous optimization of the two modules is mo-
tivated by our insight that the outputs of active vision action and task-relevant
responses functionally collaborate and interfere with each other. Aligning with the
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training strategy of the recurrent attention model, we attempt to train the active
vision control policy using reinforcement learning, while the task-relevant response
module is going to be trained through supervised learning.

5.2 Robotic Occlusion Reasoning

Indoor assistant robots that are able to perform tasks, such as searching for objects
and answering questions about the environment, according to verbal commands
from users have promising application prospects. We expect robots to not only
complete these tasks correctly but also complete them efficiently, which benefits
improving user experience and reduces energy requirements.

The ability to reason about potential occlusions of objects is essential for achiev-
ing the aforementioned goal. When asked to search for an object, a robot needs to
reason whether the target object is possibly occluded by visible objects, and then
determine whether to check the occluded space by executing movement actions.
However, occlusion reasoning is non-trivial: a robot needs to know the size of the
target object from the verbal instruction and compare it with the size of the visi-
ble objects to perform occlusion reasoning. Though existing work has shown that
robots with active perception can achieve various tasks [Zhu et al., 2017, Ye et al.,
2018, Wang et al., 2018, Yang et al., 2019a], in this work we further investigate if
robots can efficiently explore environments by performing occlusion reasoning.

To answer this question, we propose a novel robotic object existence predic-
tion (ROEP) task. Fig. 5.1 shows the task in real scenarios and a simulation
environment that is built using the robot simulator CoppeliaSim [Rohmer et al.,
2013]. The robot is the humanoid Pepper1 from SoftBank Robotics, which has
three omnidirectional wheels for flexible locomotion. The movement of the robot
is implemented as a circular motion around the table by 30 degrees clockwise or
anticlockwise. The robot receives a word instruction (e.g. “marble”) and is re-
warded for correctly predicting whether the target object exists on the table while
executing as few movement steps as possible. There are three main challenges
behind achieving this goal: 1) the robot needs to connect linguistic concepts with
visual representations; 2) the robot needs to memorize past interactions with the
environment to make action selection decisions; and 3) the selected actions and
the final prediction functionally interact with each other, which makes the training
difficult.

We propose a novel model (see Fig. 5.2) to address the above challenges. This
model is a recurrent neural network consisting of five modules: a visual percep-
tion module, a word embedding module, a memory module, an action selection
module, and an existence prediction module. The model can be jointly trained
with reinforcement learning and supervised learning methods using a curriculum
training strategy [Bengio et al., 2009].

We evaluate our model by comparing it with three baselines: a passive model
without any movement, a random model with a stochastic movement selection

1https://www.softbankrobotics.com/emea/en/pepper.
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5.2. Robotic Occlusion Reasoning

Third-person view

Egocentric view

Yes
marble?

circle_right circle_right
stop

Real scenario

Simulation environment

Figure 5.1: The task of robotic object existence prediction: given a word instruc-
tion (e.g. “marble”), a robot standing by a table needs to execute as few movement
steps as possible to give a correct prediction (e.g. yes) whether the queried object
exists on the table.

strategy, and an exhaustive exploration model that takes a maximum number of
movements. Experimental results demonstrate that our model can outperform the
passive and random baselines by a large margin, and achieve a similar prediction
accuracy to the exhaustive exploration model while requiring only about 10% of
the baseline’s number of movement steps on average. This shows the necessity
of active perception and occlusion reasoning to successfully achieve the task, and
that a good occlusion reasoning ability is obtained by our model.

As the number of different objects increases, the number of possible combina-
tions of two objects with occlusion increases exponentially. So a good generaliza-
tion performance on novel combinations of two objects is especially important for
occlusion reasoning. We evaluate the generalization performance of our model on
novel object combinations held out from the training data, where we show that
the generalization to novel object combinations comes with a moderate loss of ac-
curacy while maintaining a small average number of movement steps. Moreover,
the generalization performance increases when more kinds of object combinations
are included in the training data.
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The main contributions of the work in this chapter can be summarized as
follows: 1) we formulate a novel robotic object existence prediction (ROEP) task,
which poses a high requirement of active perception and occlusion reasoning ability
for robots; 2) we develop a novel model that can efficiently achieve this task; and
3) we find that the proposed model generalizes to novel object combinations with
a moderate loss of accuracy and that the variety of object combinations in the
training data benefits generalization.2

5.3 Related Work

Mobile robots with active perception: Zhu et al. [2017] proposed a reinforce-
ment learning model for the task of target-driven visual navigation. The model
is expected to navigate towards a visual target in indoor scenes with a minimum
number of movement steps by its egocentric visual inputs and the image of the
target. Ye et al. [2018] studied the problem of mobile robots searching small tar-
get objects in arbitrary poses in indoor environments. They proposed a model
integrating an object recognition module and a deep reinforcement learning-based
action selection module together for the object searching task. Wang et al. [2018]
focused on the efficiency of robots when searching for target objects. They pro-
posed a scheme to encode the prior knowledge of the relationship between rooms
and objects in a belief map to facilitate efficient searching. Instead of focusing on
achieving tasks in large-scale indoor environments, we concentrate on the efficiency
of robotic active vision when encountering a specific tabletop occlusion situation.

Object occlusion: The occlusion situation between objects is very common
in robotic scenarios. However, the occlusion reasoning ability of autonomous mo-
bile robots has not been studied well. Yang et al. [2019a] introduced the task of
embodied amodal recognition focusing on the visual recognition ability of agents
in scenes with occlusion. They proposed a model that can navigate in the envi-
ronment to perform object classification, location, and segmentation. However,
this work did not concentrate on the occlusion reasoning ability of the agent. A
recent work on developing robots with occlusion reasoning ability is [Deng et al.,
2021]. This work introduced the task of answering visual questions via manip-
ulation (MQA), where a robot manipulator needs to perform a series of actions
to move objects possibly occluding some small objects on a tabletop, in order to
correctly answer visual questions. Similar to the ROEP task, the MQA task also
requires the robot to have the ability of occlusion reasoning to perform reasonable
exploration actions. However, the robot in MQA is a manipulator that explores
the environment by moving objects, while we focus on autonomous mobile robots
to explore the environment by active perception.

Embodied learning: Robotics research is recently benefiting from achieve-
ments in vision and language processing. On the other hand, researchers are also

2Code for reproducing the experimental results reported in this chapter is open-sourced at
https://github.com/mengdi-li/robotic-occlusion-reasoning. A video showing the exper-
imental results is available at https://youtu.be/L4p7yo8dMmQ.
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5.4. Task Setups

Table 5.1: Objects used in the simulation environment

Category Objects

Large
cracker box cleanser laptop pitcher

desktop plant wine teddy bear

Medium
apple baseball foam brick mug

rubiks cube meat can coffee can

Small
bolt dice key marble

card battery button battery

taking advantage of agents situated in 3D environments to conduct multimodal
research. It has been proven that an active agent is able to connect linguistic con-
cepts with visual representations of the environment through training to complete
action-involved tasks [Hermann et al., 2017, Chaplot et al., 2018]. Hill et al. [2021]
found that an embodied agent can achieve one-shot word learning when trained
with reinforcement learning in a 3D environment. The proposed ROEP task also
involves multimodalities, including vision, language, and action. Different from the
abovementioned work, our model needs to specifically connect linguistic concepts
with visual representations of object size through training to achieve the ROEP
task.

5.4 Task Setups

5.4.1 Simulation Environment

Existing simulation environments are not suitable for the ROEP task. We create
a corresponding tabletop simulation environment using the robot simulator Cop-
peliaSim [Rohmer et al., 2013] (see Fig. 5.1). The robot can capture egocentric
RGB images by a visual sensor mounted on its head, and execute actions selected
from (circle left, circle right, and stop). By taking the action circle left, the robot
circles around the table clockwise by 30 degrees. The action circle right works
in the same way but in an anticlockwise direction. When the action stop is se-
lected or the maximum number of 6 movement steps is reached, the robot takes
no movement action and predicts whether the queried object exists.

A total of 21 everyday objects are used in the simulation environment. Some of
them are from the YCB dataset [Calli et al., 2015]. The rest of them are provided
by CoppeliaSim or collected online. These objects are divided into 3 categories
according to their relative size, as shown in Table 5.1. When fitting these objects
into cubes, objects from the Large category have a minimum height of 21cm and
an average volume of 2905cm3. The heights of objects from the Medium category
are from 5cm to 14cm, and their average volume is 508cm3. Objects from the
Small category have a maximum height of 3cm and an average volume of 7cm3.
There are potential occlusions of objects from different categories.
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Table 5.2: Reasoning table

Query

Visible Object Large Medium Small

One Large predict move move

One Medium predict predict move

One Small predict predict predict

5.4.2 Data Generation

Our data is automatically generated based on predefined rules like the development
of the CLEVR [Johnson et al., 2017] and the ShapeWorld [Kuhnle and Copestake,
2017] datasets. All the samples are generated on-the-fly during training and testing
periods. Each data sample is a triplet [Scene, Query, Prediction]. Scene is an
arrangement of objects on the table. Query is a word randomly selected with
equal probability from Table 5.1 to instruct the robot to search for the referred
object in Scene. Prediction is a ground-truth binary label representing whether
the target object exists in Scene. It is randomly set as positive or negative with
an equal probability of 50%. Based on a determined pair of Query and Prediction,
a corresponding scene is then generated.

There are three different types of scenes: 1) scenes that contain one object;
2) scenes with two objects without occlusion from the initial field of view of the
robot; and 3) scenes with two objects, one of which is occluded by the other one
from the initial field of view of the robot. They account for the same proportion
(1/3) in the generated data. To generate scenes with one object, the object is
randomly placed on the table. To generate scenes with two objects, some geometric
calculations using the position coordinates of the robot’s visual sensor, and both
position coordinates and heights of the two objects are applied to control whether
there are occlusions in generated scenes. It should be noted that the smaller object
is not necessarily fully occluded by the larger one in scenes with occlusion.

We have a reasoning table (see Table 5.2) of the ideal action strategy at the
first time step in an episode. This table shows whether the robot should move to
change its viewpoint or predict the existence of the target object directly when
given a query for objects of a specific category (different columns), and the object
seen from the initial viewpoint. Except for the situation where a Large object
is queried, or a Small object is seen, the robot has to utilize both information
from the word instruction and visual perception to make an ideal action decision.
Because there are at most two objects on the table, whenever the robot sees two
objects, the robot should give an existence prediction directly no matter which
object is queried.
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Figure 5.2: The architecture of the proposed occlusion reasoning model. The
Action Selection module is trained through reinforcement learning, while other
modules are updated using supervised learning.

5.5 Methodology

5.5.1 Model

Our proposed model is inspired by the recurrent attention model [Mnih et al.,
2014], which was originally applied to attention-driven image classification tasks.
The proposed model is a recurrent neural network overall (see Fig. 5.2), and can
be divided into five parts: 1) a memory module for incrementally building up state
representations, 2) a visual perception module for extracting visual representations,
3) a word embedding module for extracting distributed representations of a query
word, 4) an action selection module for making action decisions, and 5) an existence
prediction module for producing final predictions.

The visual perception module takes the egocentric RGB image (256 × 256
pixels) as input to extract visual representations. It first extracts the 128 28×28
image feature maps from the conv3 layer of a fixed ResNet18 [He et al., 2016]
pretrained on ImageNet [Deng et al., 2009]. The feature is then passed through
two CNN layers both with 256 3×3 kernels, and an average pooling layer to obtain
the visual representations vt with a length of 256. This process is similar to the
visual module of the MAC model [Hudson and Manning, 2018] designed for visual
reasoning on the CLEVR dataset [Johnson et al., 2017].

Theword embeddingmodule maps each word instruction to a 10-dimensional
word vector w. The weights of the embedding module are randomly initialized,
and updated during training.

The memory module is a recurrent unit that takes the concatenated repre-
sentations ct = (vt, w) as the input, and combines ct with the internal representa-
tions at the previous time step mt−1 to produce the new internal representations
mt ∈ R256×1. This process can be formalized as

mt = fm(mt−1, ct) = ReLU(Wm ·mt−1 +Wc · ct + b) (5.1)
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where Wm ∈ R256×256 and Wc ∈ R256×266 are weight matrices, b ∈ R256×1 is a bias
vector, ReLU(·) is the rectified linear activation function. More sophisticated units
such as LSTM or GRU are not used for the memory module because a vanishing
gradient is not a problem for our task since only a small number of recurrent steps
have to be taken.

The action selection module and existence prediction module are both
classification networks with softmax outputs. The action selection module is a
fully connected network with one hidden layer (128 hidden units). Its three soft-
max outputs correspond to three movement actions. The existence prediction
module has a single linear layer followed by a softmax layer with two outputs that
correspond to the positive and negative prediction respectively.

5.5.2 Model Optimization

The parameters of our model include parameters of the visual perception module,
the word embedding module, the memory module, the action selection module,
and the existence prediction module θ = {θv, θw, θm, θa, θp}. The model is non-
differential overall. We train the model jointly with supervised learning and re-
inforcement learning methods, where θa is trained using reinforcement learning,
{θv, θw, θm, θp} are trained using supervised learning.

The task can be formalized as a partially observable Markov decision process
from the perspective of reinforcement learning. The true state of the environment
cannot be fully observed. The action selection module is a reinforcement learning
agent, which needs to learn a stochastic policy π(at|s0:t; θa) with the parameters
θa, where at is one of the three actions in the predefined action set. Executing
each movement action except the stop action leads the model to obtain a new
visual input. s0:t = w, v0, a0, v1, a1, ..., vt is the history of past interactions with the
environment from time step 0 to t. The internal representations mt in the memory
module is an approximation to s0:t.

The model is expected to gain a high reward at the end of each episode. We
design a cost-sensitive reward function containing two parts, an accuracy reward
racc and a latency reward rlat. An accuracy reward of 1 is received when a correct
prediction is produced. An accuracy reward of −1 is received when an incorrect
prediction is produced. The latency reward is

rlat =
1

T + 2
(5.2)

where T is the number of movement steps the agent takes in one episode. T = 0
means that the stop action is selected at time step 0. The total reward at time
step T is a summation of these two rewards: rT = racc + rlat. We use T + 2 rather
than T + 1 as the denominator of rlat to make sure that rT is negative when the
prediction is incorrect. At other time steps (t = 0, ..., T − 1), we set rt = 0.

The agent is expected to maximize the expected reward return J(θa) under the
policy π(at|s0:t; θa).
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J(θa) = Eπ(at|s0:t;θa)

[
T∑
t=0

rt

]
(5.3)

We use Monte-Carlo policy gradient (REINFORCE) [Williams, 1992] to opti-
mize the agent. REINFORCE uses the sample gradient to approximate the actual
gradient of J(θa)

∇θaJ ≈
T∑
t=0

∇θa log π(at|s0:t; θa)(Rt − bt) (5.4)

where Rt =
∑T

t′=0 rt′ is the accumulated reward following the action at, bt is the
estimated reward predicted by a baseline network, which has a single linear layer
taking mt as the input. The estimated reward bt is used for reducing the variance
of gradient estimation. The baseline network is trained with a mean squared error
loss Lb =

1
T

∑T
t=0(Rt − bt).

To use gradient descent algorithms for optimizing the agent, we define loss La =
−J(θa). It should be noted that gradients of La and Lb are not backpropagated
to the memory, visual perception, and word embedding module.

We train these modules along with the existence prediction module using su-
pervised learning methods to optimize the binary cross-entropy loss

Lp = −y log ŷ − (1− y) log(1− ŷ) (5.5)

where y is the labeled ground-truth prediction (1 for yes, 0 for no), ŷ is the esti-
mated probability of the prediction yes. Gradients of Lp are backpropagated to
update parameters of the existence prediction θp, memory θm, visual perception
θv, and word embedding θw module.

The total loss function is a weighted summation of the three losses, as

Ltotal = Lp + α · La + β · Lb (5.6)

where α and β are weight coefficients of La and Lb respectively.

5.5.3 Training Details

We found that it is hard to train the model from scratch on data with all three
different types of scenes, which corresponds to the finding of [Yang et al., 2019a]
that joint training perception and policy networks from scratch is difficult. We
resort to a curriculum training strategy to train the model on data with 4 levels
of increasing difficulty. We refer to data only containing scenes with one object as
L1-1-vis, data only containing scenes with two objects without occlusion as L2-2-
vis, data only containing scenes with two objects with occlusion as L3-2-occ, and
data containing all types of scenes as L4-overall, in which three types of scenes
occupy the same proportion. The model is trained on these four levels of data
sequentially. The parameters obtained from one training stage are loaded as the
initial parameters for the next training stage.
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Table 5.3: Performance evaluation on different test data

ModelL1 ModelL2 ModelL3 Final Model

Test Data Acc. Steps Acc. Steps Acc. Steps Acc. Steps

L1-1-vis 99.4%0.0 90.9% 0.02 88.7% 1.20 99.0% 0.74

L2-2-vis 68.3% 0.0 97.4%0.01 91.2% 0.64 97.1% 0.39

L3-2-occ 74.4% 0.0 77.7% 0.07 98.3%1.23 96.9% 1.02

L4-overall 80.8% 0.0 88.5% 0.03 92.6% 1.00 97.2%0.71

We use the Adam optimizer with a learning rate of 1e− 4. The weight coeffi-
cients in the total loss function (cf. Eq. (5.6)) are set as α = 1e− 2, β = 1 for the
training stage on the first three levels. A smaller weight coefficient α = 1e − 4 is
used for the last training level to stabilize the training process.

5.6 Experiments

5.6.1 Curriculum Training

Our model is trained using a curriculum training strategy. Specifically, the model
is trained sequentially on L1-1-vis, L2-2-vis, L3-2-occ, and L4-overall data with a
fixed number of episodes (900k, 900k, 400k, and 400k respectively) in our experi-
ments. The total training process takes about four days using one GPU (NVIDIA
Titan RTX). We noticed that it is unnecessary to train the model to achieve the
best performance in the first three training stages if we are only interested in the
final model. We repeat the experiment three times to avoid the effect of random-
ness. The accuracy of correct predictions and the average number of movement
steps are used as metrics to evaluate the performance.

Fig. 5.3 shows the training curves in different training stages. In the first two
training stages on L1-1-vis and L2-2-vis data, the accuracy increases stably until
reaching a plateau of over 97%, while the average number of movement steps stays
near 0. In the third training stage on L3-2-occ data, the accuracy rapidly increases
in the first 30k episodes with the rapid increase of the average movement steps. In
the last two training stages on L3-2-occ and L4-overall data, the average movement
steps continuously decrease after the accuracy has reached a plateau.

We refer to models obtained from the first three training stages at the 900k,
900k, and 400k episodes as ModelL1, ModelL2, and ModelL3 respectively. The final
model is obtained from the last training stage at the 400k episodes, and denoted
as Final Model. The performance of each model, when tested on different test
data (10k episodes), is presented in Table 5.3. The results show that each model
scores well on the test data that corresponds to the training statistics (diagonal
in bold font) and that the final model performs nearly as well as the individual
models on their test data. Fig. 5.4 shows examples when there is only one object,
which is larger than the target object, visible from the initial perspective of the
agent. A video showing the experimental results is available at https://youtu.
be/L4p7yo8dMmQ.

64

https://youtu.be/L4p7yo8dMmQ
https://youtu.be/L4p7yo8dMmQ


5.6. Experiments

Figure 5.3: Training curves of the proposed model in different training stages.
The model is sequentially trained on L1-1-vis, L2-2-vis, L3-2-occ, and L4-overall
data. The parameters obtained from one training stage are loaded as the initial
parameters for the next training stage.

5.6.2 Baseline Comparison

We compare the proposed model with three baselines that have the same architec-
ture as the proposed model, but with different action selection strategies. These
baselines include a passive model without any movement, a random model with a
stochastic movement selection strategy, and an exhaustive exploration model that
executes the circle left action for a maximum number of movement steps before
producing a prediction. The average movement steps of the three baselines are 0,
1.82, and 6 respectively.

The prediction accuracy of these baselines and our final model when tested on
different test data is presented in Table 5.4. The passive model and the random
model are able to achieve a performance close to that of the exhaustive model on
L1-1-vis, and L2-2-vis data, but perform poorly on L3-2-occ data. This reveals
that active perception is necessary to address the ROEP task. Our model can
achieve a similar accuracy on all test data to the exhaustive model while requiring
only 11.8% of the baseline’s number of movement steps on average (0.71 steps
by our model, 6 steps by the exhaustive model). This demonstrates that our
model has obtained a good occlusion reasoning ability. However, there are still
some challenges remaining: 1) The model learns to always choose one direction
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Figure 5.4: Examples of egocentric images in an episode when the query is “apple”.
Numbers below the images indicate the time steps in an episode. (a), (b): only
one object larger than the target object exists; (c): the target object is occluded
by a larger object. In all cases, the agent moves to check the occluded space and
provides the correct answer after the last shown frame.

Figure 5.5: In this example, an apple is partially occluded by a pitcher. When the
query is “apple”, the agent does not choose the optimal action circle right, instead
it chooses the action circle left.

to move, rather than choose the optimal direction according to the orientation of
the visible object or partial occlusion to check the occluded space (see Fig. 5.5);
2) The model moves 0.39 steps on average in scenes without occlusion (L2-2-vis),
which is unnecessary.

5.6.3 Generalization Evaluation

A good generalization performance on novel combinations of two objects is espe-
cially important for occlusion reasoning. To evaluate the generalization perfor-
mance, we train our network on two different sets of training data excluding some
object combinations, which are called holdout combinations. That means scenes
with some specific object combinations, e.g. [mug, battery], are not included in
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Table 5.4: Performance comparison with baselines

Test Data Passive Model Random Model Exhaustive Model Our Model

L1-1-vis 98.0% 97.6% 99.2% 99.0%

L2-2-vis 96.1% 92.6% 96.4% 97.1%

L3-2-occ 77.6% 83.3% 97.4% 96.9%

L4-overall 90.3% 91.1% 97.4% 97.2%

Table 5.5: Generalization Evaluation

21 holdout 42 holdout

Test Data Acc. Steps Acc. Steps

L1-1-vis 98.6% 0.651 98.8% 0.629

L2-2-vis (training) 96.8% 0.262 97.2% 0.197

L3-2-occ (training) 94.7% 0.873 96.2% 0.892

L2-2-vis (holdout) 95.8% 0.399 92.7% 0.317

L3-2-occ (holdout) 91.5% 0.895 86.7% 0.841

the training data.

There are three types of combinations of two different size categories, namely
[Large, Medium], [Large, Small ], [Medium, Small ], and 147 (7 × 7 × 3) possible
combinations of two objects from different size categories. In the first training set,
21 object combinations (7 for each category combination) are held out only for
testing, which accounts for 14.3% of all possible combinations. In the second set,
42 object combinations (14 for each category combination) are held out, which
accounts for 28.6% of all possible combinations. Holdout combinations are de-
termined by randomly selecting from all possible object combinations before the
start of training. Every object in Table 5.1 is shown in the training data. Exper-
iments are repeated three times with different holdout combinations and random
initialization.

Table 5.5 presents the test results of the models trained on the aforementioned
two sets of training data, denoted as 21 holdout and 42 holdout respectively. Test
data L2-2-vis (training) and L3-2-occ (training) contain scenes with object com-
binations used for training. Test data L2-2-vis (holdout) and L3-2-occ (holdout)
only contain scenes with holdout object combinations. The results show that the
two models can achieve similar high performance on scenes with object combina-
tions used for training. When tested on L2-2-vis (holdout) and L3-2-occ (holdout),
the model trained on 21 holdout can still work well with an accuracy of over 90%
and a small average number of movement steps. The performance of the model
trained on 42 holdout drops moderately to 86.7% accuracy when tested on L3-2-occ
(holdout), where occlusion reasoning on novel combinations is necessary.
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5.7 Discussion

Experimental setup: The experimental setup of the task of object existence
prediction described in this chapter is simplified. There is a strong prior that
there are at most two objects existing on the table, which limits the complexity
of potential occlusion situations. An interesting extension is to generate scenes
with more objects on the table and extend the task to counting objects. Moreover,
the action space of the robot is small. The actions of circle left and circle right
used in the current experimental setting limit the generalization capability to en-
vironments with tables of different sizes or shapes. More complex robot actions
such as move ahead, rotate left, rotate right can be included in the action space in
future work. On the one hand, it makes it feasible to transfer a robot with these
more complex actions to other environments. On the other hand, it makes the
task more challenging, as the robot has greater flexibility in its movements, which
places higher demands on action planning.

Training complexity: The current training process is complex since the
curriculum training strategy involves four sequential training stages to obtain the
final model. A possible solution to simplify training is using unsupervised learning
[Ha and Schmidhuber, 2018] instead of curriculum learning to learn good visual
and word representations. Another possible solution to make training easier is
to strengthen the functional coordination between the reinforcement learning and
supervised learning processes, which will be studied in Chapter 6. An LLM-based
approach, which does not require any task-specific training, for this task is explored
in Appendix A.

Sim-to-real transfer: In this work, we validate the effectiveness of the pro-
posed model in a simulation environment. We can imagine that directly transfer-
ring the resulting model trained in a simulation environment to a real-world sce-
nario (see Fig. 5.1) would result in a certain performance loss. Some techniques,
such as fine-tuning the model in a more photo-realistic simulation environment
with randomized lighting conditions of the real environment, may mitigate the
performance degradation.

5.8 Summary

In this chapter, we attempt to answer the second research question “How to model
action-response embodied agents using neural networks and optimize the active vi-
sion control policy using reinforcement learning?” To answer this question, we
introduced the task of robotic object existence prediction (ROEP), which has a
moderate complexity and serves as an appropriate evaluation task for the develop-
ment of action-response agents. We model the action-response agent for this task
with a novel recurrent neural network that was trained jointly with reinforcement
learning and supervised learning methods using a curriculum training strategy.

We empirically demonstrated that the proposed model can efficiently achieve
the ROEP task compared with the baselines. We also showed that generalization to
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novel object combinations comes with a moderate loss of accuracy while including
more kinds of object combinations in the training data can increase the general-
ization performance. This finding, which is related to the finding in [Hill et al.,
2020], can be considered as a recommendation when training a model for tasks
that implicitly involve occlusion reasoning (e.g., object goal navigation [Chaplot
et al., 2020]).

In contrast to the previously studied disembodied model, which might abstain
from responding in situations with insufficient observations, our agent developed
in this chapter has the capability to actively collect necessary visual information
through active vision and respond accordingly. While we demonstrated that it
is feasible to develop action-response agents that can handle both active vision
control and task-relevant responses, we acknowledge the complexity of the training
strategy. Specifically, we resort to a highly artificial curriculum learning strategy
to facilitate the training process of the agent model proposed in this chapter. In
the next chapter, we will delve deeper into the training challenge of such agents,
and attempt to find methods to ease the training process.
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Chapter 6

Stabilizing Reinforcement
Learning for Active Vision

6.1 Introduction

In the previous chapter, we demonstrated that the active vision control policy
can be developed through reinforcement learning, utilizing predictions from the
response module as the reward. However, training the model proved to be chal-
lenging. The successful training of the model in Chapter 5 relied on a human-
designed curriculum training strategy, which restricts the model’s application in
broader contexts.

We recognize that such challenges of unstable training are present in a series of
models across various problems. In these problems, the RL policy is trained using
reward signals that come from the discrimination performance of a discriminator
module that is simultaneously trained with the RL policy, and in turn, the dis-
criminator is trained depending on the information collected by the policy. In this
chapter, we attempt to consider this training challenge from a more fundamental
perspective, not only limited to the application area of active vision control policy
learning but also other application areas, as long as they share the same training
paradigm, such as in the realm of unsupervised skill discovery. In this class of
reinforcement learning problems, reward signals for policy learning are generated
by an internal reward model that is dependent on and jointly optimized with the
policy. This interdependence between the policy and the reward model leads to an
unstable learning process because reward signals from an immature reward model
are noisy and impede policy learning, and conversely, an under-optimized policy
impedes reward estimation learning.

This learning setting is referred to as Internally Rewarded Reinforcement Learn-
ing (IRRL) as the reward is not provided directly by the environment but internally
by a reward model. We formally formulate IRRL and present a class of problems
that belong to IRRL. We theoretically derive and empirically analyze the effect of
the reward function in IRRL and based on these analyses propose the clipped lin-
ear reward function. Experimental results show that the proposed reward function
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can consistently stabilize the training process by reducing the impact of reward
noise, which leads to faster convergence and higher performance compared with
baselines in diverse tasks.

6.2 Reinforcement Learning with Reward Mod-

els

Rewards are essential for animals and artificial agents to learn by exploration in
an environment. In the brain, reward signals are emitted by specific neurons as a
consequence of the processing of external stimuli [Olds and Milner, 1954, Schultz,
2015]. For instance, when a child receives words of praise from the parents as feed-
back for exhibiting appropriate behavior, the rewards obtained are contingent upon
the child’s individual understanding of the words. In some cases, the child may
misunderstand the praise as criticism, thus wrongly obtaining a negative reward
and impeding its behavior learning. An elaborated view of the standard agent-
environment interaction formulation [Sutton and Barto, 1998] of reinforcement
learning (RL) demonstrates this mechanism [Singh et al., 2004]. This framework
separates the environment into an external environment, which provides external
stimuli (e.g., a word of praise from the parents), and an internal environment,
which is in the same “organism” with the agent and contains a reward model1 that
processes external stimuli and produces reward signals (cf. Fig 6.1 left panel).

In the study of this chapter, we focus on situations where the reward is deter-
mined by both external stimuli and the state of a sophisticated and evolutionary
internal environment that produces either task-relevant rewards [Mnih et al., 2014,
Ba et al., 2015, Li et al., 2021, Rangrej et al., 2022] or task-agnostic rewards [Gregor
et al., 2017, Strouse et al., 2022], and we use the term Internally Rewarded Re-
inforcement Learning (IRRL) to refer to the learning problem in these situations
(cf. some IRRL examples in Fig. 6.3).

In IRRL, the policy of the agent is trained by RL, and the reward model of
the internal environment is simultaneously trained either in self-supervised learn-
ing (SSL) manner by directly using the sensations from the external environ-
ment [Pathak et al., 2017, Gregor et al., 2017, Eysenbach et al., 2019, Strouse
et al., 2022], or in a supervised learning (SL) manner by using extra human-
annotated task-relevant signals [Mnih et al., 2014, Yu et al., 2017, Tan et al., 2020,
Li et al., 2021, Christiano et al., 2017, Ouyang et al., 2022]. The reward model
provides reward signals for training a policy that, in return, controls the collection
of the trajectories for the reward model. These scenarios have become preva-
lent with increased interest in integrating the capability of high-level prediction
and low-level control of behaviors into a single model in the realms of attention
mechanisms [Mnih et al., 2014, Ba et al., 2015, Yu et al., 2017, Li et al., 2017,
Rangrej et al., 2022], embodied agents [Gordon et al., 2018, Yang et al., 2019a],

1We adopt the term “reward model” instead of using “critic”, as used by Singh et al. [2004], to
prevent confusion with the term “critic” in actor-critic algorithms [Konda and Tsitsiklis, 1999].

71



Chapter 6. Stabilizing Reinforcement Learning for Active Vision
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Figure 6.1: Left: The agent-environment interaction loop of IRRL. This diagram
is based on the scheme of intrinsically motivated RL [Singh et al., 2004] with an
optional path of supervision signals, which reflects an extrinsic reward. Right:
The internal reward model consists of a discriminator, which estimates a posterior
probability of correct discrimination given sensations and supervision signals from
the external environment, and a reward function, which produces rewards by pro-
cessing the posterior probability.

robotics [Lakomkin et al., 2018, Li et al., 2021], unsupervised RL [Gregor et al.,
2017, Eysenbach et al., 2019, Strouse et al., 2022], and reinforcement learning from
human feedback (RLHF) [Christiano et al., 2017, Ouyang et al., 2022].

The role of the reward model depends on the target task. In the task of digit
recognition with hard attention (see Fig. 6.3a), for example, the reward model
assesses the certainty of performing correct digit classification. In the unsupervised
skill discovery task (see Fig. 6.3b), however, the reward model works as an intrinsic
motivation system to evaluate the novelty of generated skills. The reward model
consists of a discriminator and a reward function, as shown in the right panel of
Fig. 6.1. The discriminator estimates the posterior probability of the target label
provided by supervision signals or sensations. Given the posterior, the reward
function produces rewards for the behavior learning of the agent.

Simultaneous optimization between the policy and the discriminator in IRRL
is however non-trivial because of the unstable training loop where neither of them
can learn efficiently (see Fig. 6.2). In this work, we seek to solve this issue by re-
ducing the impact of reward noise, which is challenging due to the unavailability of
an oracle discriminator whose posterior probability can reflect the information suf-
ficiency for discrimination. We theoretically formulate IRRL to explicitly analyze
the noisy reward issue and characterize the distribution of the noise empirically
by approximating the oracle discriminator with the discriminator of a converged
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Figure 6.2: Simultaneous optimization between the policy of the agent and the
reward model is challenging because an under-optimized reward model yields noisy
rewards, and in turn, an immature policy yields insufficient observations, which
leads to an unstable training loop.

model. Based on our formulation and empirical results, we demonstrate the effect
of the reward function in reducing the bias of the estimated reward and the vari-
ance of the reward noise and propose a simple yet effective reward function that
stabilizes the training process.

We present extensive experimental results on IRRL tasks with task-relevant
rewards (i.e., visual hard attention, and robotic active vision), or tasks with task-
agnostic rewards (i.e., unsupervised skill discovery). The results suggest that our
proposed reward function consistently improves the stability and the speed of train-
ing, and achieves better performance than the baselines on all the tasks. In par-
ticular, on the skill discovery task, our approach with the simple reward function
achieves the same performance as the state-of-the-art sophisticated ensemble-based
Bayesian method by Strouse et al. [2022] but without using ensembles. We further
demonstrate that the superiority of the proposed reward function is due to its ef-
fectiveness in noise reduction, which is in line with our theoretical analysis.2 The
contributions of the study of this chapter are summarized as follows:

1. We formulate a class of RL problems as IRRL, and formulate the inherent
issue of noisy rewards that leads to an unstable training loop in IRRL.

2. We empirically characterize the noise in the discriminator and derive the ef-
fect of the reward function in reducing the bias of the estimated reward and
the variance of the reward noise stemming from an underdeveloped discrim-
inator.

3. We propose a simple yet effective reward function, the clipped linear reward
function, which consistently stabilizes the training process and achieves faster
convergence speed and higher performance on diverse IRRL tasks.

2Code for reproducing the experimental results reported in this chapter is open-sourced at
https://github.com/mengdi-li/internally-rewarded-rl
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6.3 Related Work

The RL process is notoriously unstable. Previous work has studied various tech-
niques to stabilize training, such as reducing the bias and variance of gradient
estimation for policy gradient methods [Greensmith et al., 2004, Schulman et al.,
2015b], and value estimation for value-based methods [van Hasselt et al., 2016].
As another factor impacting RL training, reward noise that stems from various
sources, e.g., sensors on robots, and adversarial attacks, is attracting attention
because of the growing interest in applying RL to more realistic and complicated
tasks [Huang et al., 2017, Everitt et al., 2017, Wang et al., 2020]. In cases where
the noise directly resides in the reward, both policy gradient and value-based RL
methods suffer. Everitt et al. [2017] and Wang et al. [2020] formulate RL with
corrupted rewards and partially address the issue for cases with extra knowledge
about the noise. Unlike the noise caused by reward corruption, the noise in IRRL
comes from a discriminator and is subject to the learning process, so their ap-
proaches are not directly applicable to our scenarios in terms of both formulation
and experimental emulation.

The issues of unstable training in IRRL have been mentioned in the literature,
but they have not been systematically studied. Some works [Mnih et al., 2014, Ba
et al., 2015, Li et al., 2017] ignore the impact of the unstable training loop at the
expense of the training speed and the performance of the final model. Other works
resort to elaborated training strategies, e.g., staged training [Gordon et al., 2018,
Yang et al., 2019a, Lysa et al., 2022], curriculum training [Das et al., 2018, Li et al.,
2021], imitation learning [Tan et al., 2020, Rangrej et al., 2022], or task-specific
reward shaping [Deng et al., 2021]. However, extra efforts such as data collection
or human ingenuity are needed in these methods.

Strouse et al. [2022] study the pessimistic exploration problem in the context
of unsupervised skill discovery (cf. Fig. 6.3b) where a skill discriminator is used to
generate rewards. As the skill discriminator is subject to noise, this issue can be
seen as a consequence of the unstable training loop under the framework of IRRL.
Similar to our work, they also resort to modifying the reward function. They
propose to train an ensemble of discriminators and reward the policy with their
disagreement. Experimental results suggest that the proposed disagreement-based
reward lets the agent learn more skills through optimistic exploration. However,
this method introduces more model parameters and hyper-parameters than base-
line methods that are not based on ensembles. In this chapter, we consider the
issue in a more general context including but not limited to unsupervised skill
discovery, and manage the issue in a more simple and efficient way.

6.4 Problem Formulation

We formulate the policy learning of IRRL as a Markov decision process M =
⟨S,A, pE, ρ, r, γ⟩, where, S is the state space, A the action space, pE : S×A×S →
R the state transition probability, ρ : S → R the distribution of the initial state,
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(a) Hard attention for digit recognition on the Cluttered MNIST dataset
[Mnih et al., 2014]. A small glimpse (the squares) controlled by an attention policy
sequentially changes its location to collect information for recognizing the digit. During
training, the reward model is expected to produce rewards that reflect the sufficiency of
information collected by the attention policy, and in turn, the policy is expected to attend
to informative regions, i.e., pixels of the digit, to collect information for the classifier to
learn digit recognition. The starting and stopping glimpses are represented by yellow and
red boxes respectively. The green line indicates the positions of intermediate glimpses.

 

(b) Unsupervised skill discovery in a four-room environment [Strouse et al.,
2022]. An agent spawned at the top-left corner is expected to learn a navigation policy
that performs distinguishable skills without using any extrinsic rewards. In this task, a
skill is represented by the final state of a trajectory. During training, the agent generates
a trajectory conditioned on a randomly sampled skill label, and a discriminator estimates
the posterior probability of the trajectory being the target skill, based on which the
reward is produced. The policy and the discriminator are optimized simultaneously.

Figure 6.3: Example tasks of IRRL

r : S ×A×A → R the reward on each transition, and γ ∈ (0, 1) a discount factor.

Different from conventional RL settings, where reward r depends exclusively on
the external environment, in IRRL reward r is determined by a reward model, which
resides in the internal environments and interprets the supervision signals from the
external environment to generate internal rewards (cf. Fig. 6.1). Here, we assume
that the external environment, hence the observations an agent is making, is caused
by a label y sampled from a prior distribution p(y). The reward model depends on
a trainable discriminator qϕ parameterized with ϕ. Given a trajectory τ ∈ (S×A)n
(n ∈ N is the trajectory length) sampled from a policy πθ parameterized with θ,
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(c) Robotic object counting in occlusion scenarios. A humanoid robot is trained
to learn a locomotion policy to explore occluded space by rotating around the table
and to terminate exploration to achieve efficient counting of specified objects, e.g.,
small blue cube. The robot performs the task solely based on its egocentric RGB view.
During training, the policy uses the reward that is produced by a reward model contain-
ing an object counter, which is simultaneously updated with the policy. Similar to the
task of hard attention, the reward should be able to evaluate the information sufficiency
of observations for correct object counting.

Figure 6.3: Example tasks of IRRL (cont.)

the discriminator qϕ(y | τ) computes the probability of label y being the cause of
trajectory τ .3

Many existing works, which have been studied independently before, can be
categorized as instances of IRRL. In the subsequent discussion, we present three
lines of existing works as concrete examples of IRRL:

1. Hard attention. Hard attention mechanism [Mnih et al., 2014, Ba et al.,
2015, Li et al., 2017, Rangrej et al., 2022] is essential when all available information
is expensive or unrealistic to process, e.g., scene classification for high-resolution
satellite images [Wang et al., 2019, Rangrej et al., 2022]. Fig. 6.3a shows the task of
hard attention for digit recognition on the Cluttered MNIST dataset [Mnih et al.,
2014].

2. Intrinsically motivated RL. In this setting, an agent is trained using
dense intrinsic rewards to explore the environment based on its curiosity about
encountered states [Pathak et al., 2017] or to discover diverse skills based on their
novelty [Gregor et al., 2017, Eysenbach et al., 2019, Strouse et al., 2022]. Fig. 6.3b
shows the task of unsupervised skill discovery in a four-room environment [Strouse
et al., 2022].

3. Task-oriented active vision. This is an emerging research topic with
the goal of endowing embodied agents with high-level perception and reasoning
capabilities. The agent actively changes its egocentric view to collect information
for achieving downstream tasks, e.g., question answering [Gordon et al., 2018,
Deng et al., 2021, Li et al., 2021], object recognition [Yang et al., 2019a], or scene

3To simplify notations, we use lower-case letters (e.g., y) to both represent random variables
and their realizations if the distinction is clear from the context. Similarly, we use p(y) to
represent both the distribution of y and the probability of y if the context is clear.
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description [Tan et al., 2020]. Fig. 6.3c shows the task of robotic object counting
in occlusion scenarios.

6.4.1 Model Optimization

In IRRL, the policy and the discriminator are optimized simultaneously with dif-
ferent optimization objectives.

Policy Optimization

The optimization objective of policy learning in IRRL can be formulated from two
perspectives, which are accuracy maximization and mutual information maximiza-
tion.

Accuracy Maximization This is an intuitive formulation, where the policy of
the agent is optimized to maximize the expectation of an accuracy-based reward

racc = 1y

[
argmax

y′∈Y
qϕ(y

′ | τ)
]
, (6.1)

where Y is a set of possible labels and 1y[x] is an indicator function that returns
1 if x is the target label y, 0 otherwise. This formulation has been widely used
in existing works on hard attention [Mnih et al., 2014, Kingma and Ba, 2015,
Li et al., 2017], embodied agents [Gordon et al., 2018, Yang et al., 2019a], and
robotics [Lakomkin et al., 2018, Li et al., 2021]. However, an obvious disadvantage
of the accuracy-based reward is that it cannot faithfully reflect the discriminator’s
uncertainty about the observations collected by the reinforcement learner, which
makes learning slow and leads to suboptimal performance (cf. Sec. 6.6). Therefore,
it will be analyzed only empirically in this work.

Mutual Information Maximization Mutual information is commonly used
to estimate the relationship between pairs of random variables. The objective of
mutual information maximization has been utilized in the realm of unsupervised
skill discovery [Gregor et al., 2017, Eysenbach et al., 2019, Strouse et al., 2022].
We generalize it to the optimization objective of IRRL.

Given a target label y and a trajectory τ sampled from p(y) and πθ respec-
tively, their mutual dependency can be obtained by the KL-divergence of their
joint distribution p(y, τ) and the product of their marginal distributions p(y)p(τ):

I(y; τ) := DKL(p(y, τ) ∥ p(y)p(τ)) (6.2)

= Eτ∼πθ,y∼p(y) [log p(y | τ)− log p(y)] ,

which is also known as Shannon’s mutual information between y and τ and which
reaches its maximum if the full knowledge of y can be deduced from τ . In this
equation, p(y | τ) is the oracle posterior probability that reflects the information
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sufficiency of observations for discrimination. It can be interpreted as being gen-
erated by an oracle discriminator, a conceptual term utilized for the theoretical
formulation. If p(y | τ) is known, then by defining

r∗log := log p(y | τ)− log p(y) (6.3)

as the reward for an RL algorithm involving πθ, one can maximize I(y; τ), i.e., πθ

generates trajectories for an optimal discrimination of the target label y.
Because the oracle discriminator p(y | τ) is not available in practice, we can

replace p(y | τ) with a neural network qϕ(y | τ) with trainable parameters ϕ and
define the reward as

rlog = log qϕ(y | τ)− log p(y), (6.4)

and maximize the Barber-Agakov variational lower bound of I(y; τ) [Barber and
Agakov, 2003]:

IBA(y; τ) := Eτ∼πθ,y∼p(y)[log qϕ(y | τ)− log p(y)].

Discriminator Optimization

Concurrent with policy learning, the discriminator qϕ(y | τ) is trained to better
approximate p(y | τ). To this end, instead of the cross-entropy loss

−Eτ∼πθ,y∼p(y) [p(y | τ) log qϕ(y | τ)] ,

which involves the oracle discriminator p(y | τ), a proxy cross-entropy loss
−Eτ∼πθ,y∼p(y) log qϕ(y | τ) is used in practice, which is equivalent to assuming
p(y | τ) = 1, i.e., assuming that τ contains sufficient information for deducing y
with the oracle discriminator.

6.4.2 The Issue of Reward Noise

As the trainable discriminator qϕ(y | τ) only approximates the oracle discriminator
p(y | τ), it inevitably introduces noise εlog in the reward rlog in Eq. (6.4), which is
given by

εlog = rlog − r⋆log = log qϕ(y | τ)− log p(y | τ).
To demonstrate the negative impact of reward noise on the learning process

(cf. Fig. 6.2), we conduct reward hacking experiments, where we replace the train-
able discriminator qϕ(y | τ) with a pretrained one qϕ̃(y | τ) that is obtained from
a converged model to mimic the oracle discriminator p(y | τ). The setup of the
reward hacking experiment is illustrated in Fig. 6.4. We choose the digit recogni-
tion task as the target task (cf. Fig. 6.3a) and use the recurrent attention model
(RAM) [Mnih et al., 2014] (detailed information about this task and the model is
given in Sec. 6.6.1 and Sec. 6.6.3).

Fig. 6.5 shows a plot of training curves when using different reward functions
with and without reward hacking. As shown by the gap between the training curves
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when using an identical reward function with and without reward hacking, the noise
of an under-optimized discriminator influences the training process negatively. In
this work, we aim to narrow the gap by devising an effective reward. As we will
see in the next section, a well-designed reward is key to stabilizing the learning
process.

Discriminator

Discriminator

Policy

Online-training

 

 

  

Reward hackingNormal training

Pretrained and fixed

Figure 6.4: Illustration of the experimental setup of reward hacking. In normal
training, the reward is produced based on the posterior probability estimated by an
online-training discriminator ϕ. In training with reward hacking, the reward stems
from a pretrained and fixed discriminator ϕ̃. δ̃ indicates the difference between a
pair of posterior probabilities estimated by ϕ and ϕ̃.

6.5 Reward Noise Moderation

In this section, we first analyze the reduction of the bias of the estimated reward
and the variance of the reward noise and then propose a reward that alleviates the
negative effect of reward noise and stabilizes the training process.

6.5.1 Generalized Reward

Since the noisy reward in Eq. (6.4) is a transformation of the posterior probability
qϕ(y | τ), it is reasonable to study the effect of a series of transformations of
qϕ(y | τ) as long as they agree on the same optimal objective. Based on the
logarithmic transformation in Eq. (6.4), the generalized reward is defined as

rg = g [qϕ(y | τ)]− g [p(y)] (6.5)

and the generalized oracle reward as

r∗g = g [p(y | τ)]− g [p(y)] ,
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Figure 6.5: RAM trained using the accuracy-based and the logarithmic reward with
and without reward hacking (RH). A model without reward hacking is subject to
more noisy rewards and suffers from an unstable learning process, resulting in
slower convergence and lower accuracy.

where g is an increasing function (e.g., log), such that maximizing g(·) leads to the
maximization of the mutual information I(y; τ). When selecting the appropriate
function, it is important to consider both its ability to transmit information and
its ability to moderate noise. The former ensures that the maximization of mutual
information can be achieved efficiently, while the latter helps to reduce the impact
of reward noise.4

6.5.2 Generalized Reward Noise

To analyze the noise in the generalized reward rg we apply the second-order Taylor
approximation to the generalized reward noise

εg := rg − r∗g = g [qϕ(y | τ)]− g [p(y | τ)]

at point p(y | τ). By defining δ := qϕ(y | τ)− p(y | τ) as the discriminator noise,
we have as the expectation of the reward noise (equivalently, the bias of the reward
estimator)

E[εg] ≈ g′(p(y | τ))E[δ] + 1

2!
g′′(p(y | τ))E

[
δ2
]
, (6.6)

4The transformation g(·) can also be motivated by the f -mutual information objectives (see
Sec. 6.7.1).
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and as the variance of the reward noise

V[εg] ≈ (g′(p(y | τ)))2V[δ] + (
1

2!
g′′(p(y | τ)))2V

[
δ2
]

+ g′(p(y | τ))g′′(p(y | τ))Cov
[
δ, δ2

]
. (6.7)

Our goal is to mitigate the impact of the reward noise by minimizing the expecta-
tion and the variance of the noise. This is expected to be achieved especially at the
early learning stage when the issue of the unstable training loop is severe because
both the discriminator and the policy are immature: the trajectory collected by the
policy contains little information for discrimination, and the estimated posterior
of the discriminator cannot reflect the sufficiency of information collected by the
policy. To this end, in the following sub-sections, we theoretically and empirically
analyze Eq. (6.6) and Eq. (6.7) and investigate reward functions.

6.5.3 Characterization of the Discriminator Noise

We make hypotheses regarding the distribution characteristics of the discriminator
noise δ, which is necessary to analyze the expectation and variance of the reward
noise εg according to Eq. (6.6) and Eq. (6.7). We hypothesize that the expectation
of δ is zero, i.e., E[δ] = 0, and the distribution of δ is symmetric.

We conduct an empirical study of the distribution of the discriminator noise
following the setup of the reward hacking experiment (cf. Fig. 6.4). Instead of
using a pretrained discriminator to interfere in the training process, we visualize
the approximated discriminator noise δ̃ during normal training. δ̃ is the difference
between the posterior probabilities estimated by the online-training discriminator
and the pretrained discriminator, i.e., δ̃ = qϕ(y | τ)− qϕ̃(y | τ) ≈ δ.

Fig. 6.7 demonstrates violin plots of the discriminator noise at four training
epochs (the model converges at about 1200 epochs). Each violin plot is drawn
from 1000 random samples from the testing dataset. We can observe that the
mean of the noise is close to zero at different training stages, i.e., E[δ] ≈ 0, and the
plots are almost symmetrical with respect to the average noise except at the very
beginning when the model weights are being updated after random initialization.
We assume that the noise characteristics are generalized to other problems of IRRL
because of the shared high-level abstraction among them (cf. Fig. 6.1).

Besides the visualization of the discriminator noise when the policy is trained
using the logarithmic reward (see Fig. 6.7), we also visualize the discriminator
noise when using the accuracy-based and the clipped linear reward in Fig. 6.6. We
can see that the discriminator noise when using the clipped linear reward has a
smaller bias and variance.

6.5.4 Linear Reward

Considering the impact of g(·) on the Taylor approximation to E[εg] and V[εg] in
Eq. (6.6) and Eq. (6.7), we propose a linear reward

rlin = qϕ(y | τ)− p(y), (6.8)
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(a) Accuracy-based reward
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(b) Clipped linear reward

Figure 6.6: Visualization of the discriminator noise of RAM trained using the
accuracy-based (cf. Eq. (6.1)) and the clipped linear reward (cf. Eq. (6.9)).

instead of the commonly applied logarithmic reward rlog, to stabilize IRRL. The
corresponding expectation and variance of the noise are E[εlin] = E[δ] = 0 and
V[εlin] = V[δ], respectively. The linear reward enjoys lower reward bias than the
logarithmic reward since

|E[εlog]| ≈
1

2! p2(y | τ)E[δ
2] > 0 = |E[εlin]|.

Furthermore, the variance of rlin is low and stable compared with the variance of
logarithmic reward rlog, which suffers from high variance

V[εlog] ≈ p−2(y | τ)V[δ] + (
1

2! p2(y | τ))
2V[δ2],

since p(y | τ) < 1 in most cases and is dependent on the training policy. A detailed
derivation is given in Sec. 6.5.5. The empirical evaluation of various g functions is
given in Sec. 6.6.6.
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Figure 6.7: Violin plots of the approximated discriminator noise δ̃ in the training
process of RAM, of which the policy is trained using the logarithmic reward func-
tion (cf. Eq. (6.4)). The small white bar indicates the mean of the noise. The thick
vertical line represents the interquartile range and the thin vertical line represents
the area between the upper and lower adjacent values.

6.5.5 Noise of the Logarithmic Reward

Based on the formulation of Eq. (6.6) and Eq. (6.7), the expectation and variance
of the reward noise when using the logarithmic reward (εlog) can be derived as
follows:

E[εlog] = g′(p(y | τ))E[δ] + 1

2!
g′′(p(y | τ))E[δ2] + E[o(δ2)]

=
1

p(y | τ)E[δ]−
1

2! p2(y | τ)E[δ
2] + E[o(δ2)]

≈ − 1

2! p2(y | τ)E[δ
2],

V[εlog] = (g′(p(y | τ)))2V[δ] + (
1

2!
g′′(p(y | τ)))2V[δ2] + g′(p(y | τ))g′′(p(y | τ))Cov[δ, δ2]

+ V[o(δ2)] + 2g′(p(y | τ))Cov[δ, o(δ2)] + g′′(p(y | τ))Cov[δ2, o(δ2)]

≈ (g′(p(y | τ)))2V[δ] + (
1

2!
g′′(p(y | τ)))2V[δ2] + g′(p(y | τ))g′′(p(y | τ))Cov[δ, δ2]

≈ (g′(p(y | τ)))2V[δ] + (
1

2!
g′′(p(y | τ)))2V[δ2]

=
1

p2(y | τ)V[δ] + (
1

2! p2(y | τ))
2V[δ2].

The variance is approximated using the fact that Cov[δ, δ2] = E[δ3]−E[δ]E][δ2] =
(µ3 + 3µσ2 + γσ3) − µ(µ2 + σ2) = 2µσ2 + γσ3 ≈ 0, where σ2 = E[(δ − µ)2] is the
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variance, and µ = E[δ] and γ = E[( δ−µ
σ
)3] are the mean and skewness, which are

both about zero due to the symmetry of the distribution of δ (see Sec. 6.5.3).

6.5.6 Clipped Linear Reward

The issue of reward noise is not fully tackled by using the linear reward. Given
a target label y, it is intuitive to assume that the posterior probability p(y | τ)
of an oracle discriminator should be, in most cases, equal or larger than the prior
p(y), as y is a cause of the trajectory τ . However, a discriminator qϕ may return
a posterior probability qϕ(y | τ) lower than p(y), especially at the early training
stage when both the policy and the discriminator are under-optimized.

Since we expect qϕ(y | τ) to be close to p(y | τ), we replace the term qϕ(y | τ)
of rlin in Eq. (6.8) with max(qϕ(y | τ), p(y)) to integrate the prior knowledge and
define the clipped linear reward as

rlin := max(qϕ(y | τ), p(y))− p(y)

= max(qϕ(y | τ)− p(y), 0). (6.9)

Similar clipping techniques are empirically found to be beneficial when applied to
the logarithmic reward [Strouse et al., 2022]. In this work, we go further with an
analysis of reward functions from the perspective of noise moderation and achieve
better performance with the proposed reward. The proposed clipped linear reward
has a similar shape to the rectified linear unit (ReLU) activation function [Nair
and Hinton, 2010] which preserves information about relative intensities in multiple
layers of deep neural networks. Likewise, the clipped linear reward function can
robustly preserve information that travels from an internal discriminator to the
policy network.

6.6 Experiments

In this section, we introduce experiments conducted to evaluate the effectiveness of
the proposed method on the three aforementioned tasks in Sec. 6.4. We first intro-
duce experimental setups and baselines. Then, we compare the proposed clipped
linear function with multiple baselines including state-of-the-art methods. Finally,
we conduct reward hacking experiments on the clipped linear reward function to
visualize its capability to reduce the impact of reward noise.

6.6.1 Experimental Setup

Hard Attention for Digit Recognition We adopt the dataset configuration
of Mnih et al. [2014], and use two basic models for this task: the recurrent attention
model (RAM) [Mnih et al., 2014] and the dynamic-time recurrent attention model
(DT-RAM) [Li et al., 2017]. RAM performs a fixed number of movement steps
before performing the final digit recognition, while the policy of DT-RAM learns
to terminate the exploration before reaching a maximum number of movement
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steps. The performance of the agent is evaluated using the accuracy of the digit
recognition.

Unsupervised Skill Discovery We use the same experimental setup and basic
model on the four-room environment as in the work of the discriminator disagree-
ment intrinsic reward (DISDAIN) [Strouse et al., 2022]. The performance of the
agent is evaluated using the number of learned skills.

Robotic Object Counting The setup is based on the task of object existence
prediction [Li et al., 2021]. We use their model and train it using PPO [Schulman
et al., 2017] instead of REINFORCE for higher efficiency. The performance of the
agent is evaluated using the accuracy of object counting.

Details of the environments and model implementations will be introduced
below.

6.6.2 Environments

Cluttered-MNIST We generate the Cluttered MNIST dataset by a generator
provided by the code repository5 of Sønderby et al. [2015], where we adopt the
dataset configuration from Mnih et al. [2014]. A Cluttered MNIST image is gen-
erated by randomly placing an original MNIST image (28×28) and 4 randomly
cropped patches (8×8) from original MNIST images in an empty image (60×60).
We generate 60k Cluttered MNIST images, of which 90% are used for training and
the rest for validation.

Four-room Environment The four-room environment is adopted from Strouse
et al. [2022] and is shown in Fig. 6.3b. There are four rooms and 104 states. The
agent is initialized at the top-left corner at each episode and can select an action
from {left, right, up, down, no-op} at each time step. The length of each trajectory
is 20, by which the agent is able to reach all but one state, raising the maximum
number of possible learned skills 103. The target skill label is uniformly sampled
as an integer in [0, 127] at each episode.

Object Counting We create a simulation environment for the task of object
counting in occlusion based on the simulation environment provided by the code
repository8 of Li et al. [2021]. We use cubes of three different sizes (small, medium,
and large) in two different colors (red, and blue) as objects on the table. The goal
object is one of the small or medium objects. Each scene is initialized under the
following constraints: 1) at least one large object is on the table as an abstraction;
2) the number of other objects N is sampled from a Poisson distribution (λ = 4)
and is clipped at a maximum number of 6; 3) one of the goal objects is occluded
by an object of a larger size with a probability of 80% to make occlusion happen
frequently. The number of goal objects is uniformly sampled between 0 and N .

5https://github.com/skaae/recurrent-spatial-transformer-code
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The agent is initialized in front of the table and takes as input an egocentric RGB
image with a resolution of 256×256 (cf. Fig. 6.3c). The agent has three discrete
actions: rotate right, rotate left, and stop. The agent circles around the table by
30 degrees with each rotation action. The maximum number of movement steps is
6, by which the agent can move to the opposite of its initial position. We generate
offline datasets for training (100k scenes) and evaluation (1k scenes) because online
occlusion checking including scene initialization in the CoppeliaSim simulator is
slow.

6.6.3 Implementation

RAM We use an existing implementation of the original RAM model6. Given
an image and the coordinate of the glimpse, a glimpse network extracts visual
representations of the attended patch by an MLP. The coordinate is mapped into
representations by another MLP. The two representation vectors have the same
dimensionality of 256. They are added together to get glimpse representations. A
simple RNN as the core network recurrently processes glimpse representations and
produces hidden representations with a dimensionality of 256 at each time step. A
policy network takes hidden representations of the core network as input to predict
the location of the next glimpse. When the maximum number of movement steps is
reached, a classification network takes hidden representations of the core network
as input to produce the class prediction and finalize the task. The maximum
number of movement steps is 18 in our experiments. The original RAM uses multi-
resolution glimpses at each time step to achieve higher classification accuracy. The
glimpse of the lowest resolution can cover almost the entire image. This setting
compromises the quality of the attention policy. To focus on policy learning in
this work, we use a single small glimpse of size 4 × 4 at each time step. The
idea of not using multi-resolution glimpses has been used by Elsayed et al. [2019]
for better interpretability. In our experiments, RAM models are trained using
REINFORCE [Williams, 1992] and optimized by Adam [Kingma and Ba, 2015] for
1500 epochs with a batch size of 128 and a learning rate of 3e-4.

DT-RAM The DT-RAM model used in the experiments is from our own imple-
mentation. Instead of using two separate policy networks for location prediction
and task termination respectively, which were designed for curriculum learning in
the original DT-RAM, we use an integrated policy network for both location pre-
diction and task termination. Same as RAM, the glimpse size is 4 × 4, and the
maximum number of movement steps is 18 for DT-RAM. In our experiments, DT-
RAM models are trained for 1500 epochs with the same optimization configuration
as RAM models.

6https://github.com/kevinzakka/recurrent-visual-attention
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Model for Unsupervised Skill Discovery The implementation of the model
for unsupervised skill discovery is based on the code repository7 of Strouse et al.
[2022]. In this implementation, the model uses the last state as an abstraction
of the trajectory. The model is trained using a distributed actor-learner setup
similar to R2D2 [Kapturowski et al., 2019]. The Q-value targets are computed
with Peng’s Q(λ) [Peng and Williams, 1996] instead of n-step double Q-learning.
Following Strouse et al. [2022], performance of the agent is evaluated using the
number of learned skills

nskills = 2E[log qϕ(y|τ)−log p(y)], (6.10)

which can be understood as the measurement of the logarithmic reward in bits.

Model for Object Counting The implementation of the model for robotic ob-
ject counting is based on the code repository8 of Li et al. [2021]. We replace the
REINFORCE algorithm with PPO for more efficient training. The implementa-
tion of the PPO algorithm is based on the code repository9 of Chevalier-Boisvert
et al. [2019]. The model consists of a pretrained and fixed ResNet18 [He et al.,
2016] to extract feature maps from its conv3 layer. The feature maps are then
passed through two CNN layers and an average pooling layer to get visual rep-
resentations of dimension 256. The index of the target object is mapped into a
10-dimensional embedding, which is called the goal representation. The visual
and goal representations are concatenated together as the input of an RNN net-
work, which recurrently produces hidden representations at each time step for the
policy network and classification network. When the policy network selects the
stop action, the classification network is triggered to produce the prediction of the
number of the target object. We train the model for 2M episodes. Five processes
are used to collect experience with a horizon of 40 steps. We train the model using
Adam [Kingma and Ba, 2015] with a learning rate of 1e-4. Other hyperparameters
of PPO are the same as the original implementation9 except that we use 10 epochs
of minibatch optimization and 5 parallelization processes.

6.6.4 Baseline Comparison

Baselines We compare the proposed clipped linear reward function with alter-
native reward functions. The first is the accuracy-based reward function racc in
Eq. (6.1). The second is the logarithmic reward function based on Shannon’s
mutual information. Instead of using the original logarithmic reward function
(Eq. (6.4)), we use a clipped variant, i.e., rlog = max(log qϕ(y | τ) − log p(y), 0),
for fair comparison with our clipped linear reward function. We found that reward
clipping generally results in similar or better performance in our experiments,

7https://github.com/deepmind/disdain
8https://github.com/mengdi-li/robotic-occlusion-reasoning
9https://github.com/mila-iqia/babyai
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Figure 6.8: Comparison between the clipped linear reward function ( ) with base-
lines, including the clipped logarithmic ( ) and the accuracy-based ( ) reward
function, on the task of hard attention for digit recognition using RAM and DT-
RAM. All the experiments in this work ran over three random seeds. Lines and
shaded areas show the mean and standard deviation over multiple runs.

which is consistent with the empirical finding by Strouse et al. [2022]. The empir-
ical study of reward clipping is provided in Sec. 6.6.7. On the skill discovery task,
we additionally compare our reward function with the state-of-the-art DISDAIN
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reward function [Strouse et al., 2022], which was designed specifically to mitigate
the pessimistic exploration issue in this task. The reward of the DISDAIN method
is r = rlog+λrDISDAIN, where rlog is the logarithmic reward function (cf. Eq. (6.4)),
λ is a weighting coefficient, and rDISDAIN is an auxiliary ensemble-based reward
calculated as

rDISDAIN = H

[
1

N

N∑
i=1

qϕi
(y | τ)

]
− 1

N

N∑
i=1

H [qϕi
(y | τ)] , (6.11)

where N is the number of discriminators of the ensemble, and H[X] is the entropy
of random variable X. The DISDAIN reward is essentially the estimation of the
epistemic uncertainty of the discriminator.

Comparison Results Fig. 6.8 shows that both RAM and DT-RAM trained
using the clipped linear reward function achieve the highest accuracy and fastest
training speed. Furthermore, the small blue shaded areas indicate that multiple
runs using the clipped linear reward function are consistent with each other, which
suggests high stability of the training process. Fig. 6.9a demonstrates that the
clipped linear reward function outperforms both the clipped logarithmic reward
function and the accuracy-based reward function by a large margin and achieves
almost the same performance as DISDAIN. We note that the DISDAIN method de-
pends on an ensemble of discriminators and needs more hyper-parameters to tune,
e.g., the weight of the DISDAIN reward and the number of ensemble members,
while our method is much simpler. Fig. 6.9b shows that the clipped linear reward
function also benefits the challenging robotic object counting task by making the
model converge faster and achieve the highest final accuracy.

We can see that the clipped linear reward function generally outperforms the
logarithmic and the accuracy-based reward function. The improvement is signif-
icant on the skill discovery task, which makes sense according to our theoretical
analysis in Sec. 6.5.4. Since the number of possible discrimination classes in the
skill discovery task (128 classes) is much larger than that of other tasks (10 classes
in the digit recognition task, and 7 classes in the robotic object counting task),
p(y | τ) tends to be closer to zero when trajectory τ contains a small amount of
information for discrimination in the skill discovery task. Thus the expectation
and variance of the noise of the logarithmic reward function are larger, resulting in
a severer unstable training issue, while our clipped linear reward function resulting
in low expectation and variance of the reward noise still performs well.

Interesting case studies for the digit recognition task, the object counting task,
and an intuitive comparison of state occupancy in the unsupervised skill discovery
task are given in Sec. 6.6.8.

6.6.5 Effect of Noise Moderation

Following the experimental setup in Sec. 6.4.2, we conduct reward hacking exper-
iments using the clipped linear reward to visualize its capability in narrowing the
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Figure 6.9: Comparison with baselines on the tasks of unsupervised skill discovery
and robotic object counting. On the unsupervised skill discovery task, the auxiliary
DISDAIN reward ( ) is compared. Legends are shared between the two sub-figures.

gap between training processes with and without reward hacking (cf. Fig. 6.4).
Fig. 6.10 shows the training curves. In order to facilitate a comprehensive com-
parison, we incorporate training curves when using the accuracy-based and the
logarithmic reward (cf. Fig. 6.5) into the figure. We can see from Fig. 6.10 that
when using reward hacking, all three rewards perform similarly (see dashed lines).
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Figure 6.10: RAM trained using the three kinds of reward functions with and
without reward hacking (RH). The clipped linear reward function achieves a much
smaller gap between the training processes with and without reward hacking.

This suggests that the linear function performs as well as the logarithmic function
in terms of information transmission. However, when not using reward hacking,
the training curve of the clipped linear reward is much closer to the training curve
of using reward hacking, compared to the other two rewards. This suggests that
the advantage of the clipped linear reward function is due to the reduction of the
impact of reward noise.

6.6.6 Evaluation of Various g Functions

We evaluate several other g functions in addition to the linear and logarithmic
functions using the RAM model on the digit recognition task. Fig. 6.11 illustrates
the clipped generalized reward with respect to the estimated posterior probabil-
ity when using different g functions (cf. Eq. (6.5)). The reward is clipped at
qϕ(y | τ) = p(y) = 0.1 (cf. Eq. (6.9)). Fig. 6.12 shows training curves when using
different g functions. We can see that the linear function results in the best per-
formance, and g functions that are similar in shape to the linear function generally
perform well. The logarithmic function and function g(x) = x6 perform worse than
others, which can be explained from the perspective of the requirements of g func-
tions. Though the logarithmic function works ideally in information transmission
in theory where noise is not an issue, it suffers from noisy rewards as discussed in
Sec. 6.5. Function g(x) = x6, on the other hand, leads to a small bias and variance
of the estimated reward, which suggests a favorable ability in noise moderation.
However, it cannot transmit information with high fidelity. Its incompetence in
information transmission can be observed from the shape of the corresponding plot
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in Fig. 6.11, where a wide range of values, e.g., [0, 0.5], is compressed to values close
to zero, leading to a substantial ignorance of information in various observations.
In contrast, the linear function achieves a trade-off between these two abilities and
exhibits the best performance among all the g functions considered.
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Figure 6.11: Clipped generalized reward with respect to the estimated posterior
probability.
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Figure 6.12: Evaluation of various g functions using the RAM model on the digit
recognition task.
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Figure 6.13: Reward clipping on the unsupervised skill discovery task.

6.6.7 Reward Clipping

We compare the performance of models trained using the logarithmic and the linear
reward with and without reward clipping. Experimental results are that the clipped
logarithmic reward achieves almost the same performance on the digit recognition
task on both RAM and DT-RAM, slightly better performance on the skill discovery
task (∼ 1.5 more learned skills), and slightly worse performance (∼ 3.5% lower
accuracy) on the object counting task. The clipped linear reward achieves almost
the same performance on the object counting task, slightly better performance
(∼ 1% and ∼ 1.5% higher accuracy on RAM and DT-RAM respectively) on the
digit recognition task, and considerable improvement (∼ 23 more learned skills)
on the unsupervised skill discovery task (see Fig. 6.13). These results suggest that
reward clipping is a generally beneficial technique, which is consistent with our
theoretical analysis in Sec. 6.5.6.

6.6.8 Case Study

Hard attention for digit recognition

In Fig. 6.14, we provide cases of the DT-RAM model on the digit recognition task
for intuitive comparison between models trained using different reward functions.
All the cases are randomly sampled without any cherry-picking. We can see that
trajectories generated by the model trained using the clipped linear reward can
cover sufficient information for recognizing the digit, while trajectories generated
by the model trained using the logarithmic reward function tend to be pessimistic,
e.g., trajectories in cases of digit 9 and digit 6 in the first row, digit 0 in the second
row, and digit 4 in the third row. The exploration trajectories generated by the
model trained using the accuracy-based reward tend to sample less informative
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areas, e.g., trajectories in cases of digit 6 in the first row, and digit 2 in the third
row and second column, which may account for its low accuracy.

Robotic object counting

Fig. 6.15 shows examples of the pessimistic exploration issue when using the log-
arithmic reward function and the accuracy-based reward function. The agent
trained using the accuracy-based reward function chooses not to move, and the
agent trained using the logarithmic reward function terminates exploration too
early to acquire sufficient information for predicting the number of the target ob-
ject. They guess the number of target objects based on insufficient observations,
while the agent trained using the clipped linear reward function learns to choose
a reasonable number of movement steps to explore the environment.

Unsupervised Skill Discovery

Fig. 6.16 demonstrates state occupancy reached using different reward functions at
initialization, at the intermediate stage, and at convergence during training. We
can see that using the clipped linear reward function, the agent learns to reach
all states as using the DISDAIN reward, while the agent mainly explores the first
room when using the clipped logarithmic reward function.

6.7 Discussion

6.7.1 Interpretation from the Information-theoretic Per-
spective

The linear reward function has specific meanings from an information-theoretic
perspective. It can be derived from the optimization objective of maximizing the
χ2-divergence, one of the f -mutual information measures [Csiszár, 1972, Espos-
ito et al., 2020], instead of the commonly used KL-divergence corresponding to
Shannon’s mutual information [Shannon, 1948] (cf. Eq. (6.2)). The derivation is
provided below.

We use the optimization objective of maximizing the f -mutual information
between the observation trajectory τ and the target class y in place of the objective
of Eq. (6.2) and obtain

If (y; τ) :=Df (p(y, τ) || p(y)p(τ))

= Eτ∼πθ,y∼p(y)F

(
p(y | τ)
p(y)

)
,

where Df (P ||Q) := Eq(x)f
(

p(x)
q(x)

)
= Ep(x)F

(
p(x)
q(x)

)
is the f -divergence of two prob-

ability distributions P and Q on X, with f : R+ → R being a generic convex
function satisfying f(1) = 0, F (x) := f(x)/x for simplicity of expectation over P
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instead of Q for later use, and p(x) and q(x) are probability density functions of
P and Q respectively. By choosing f(x) = x log x, f -divergence becomes the well-
known Kullback–Leibler divergence and, correspondingly, the f -mutual informa-
tion is then Shannon’s mutual information [Shannon, 1948, Kinney and Gurinder
S. Atwal, 2014, Belghazi et al., 2018]. Other typically used f -divergences and their
expected mutual information over p(x, y) are listed in Table 6.1. When using the
χ2-divergence, i.e., f(x) = (x− 1)2, f -mutual information becomes

If (y; τ) = Eτ∼πθ,y∼p(y)

[
p(y | τ)
p(y)

− 1

]
.

When y is sampled from a uniform distribution, i.e., p(y) is a constant, we have
If (y; τ) = α Eτ∼πθ,y∼p(y) [p(y | τ)− p(y)], where α = 1/p(y). Following the deriva-
tion of Eq. (6.3), this optimization objective induces the linear reward function in
Sec. 6.5.4.

Table 6.1: f -mutual information and the corresponding convex functions

f -divergence f(x) If (x; y)

Kullback–Leibler x log x Ep(x,y) log
p(y|x)
p(y)

χ2 (x− 1)2 Ep(x,y)
p(y|x)
p(y)
− 1

Total Variance 1
2
|x− 1| Ep(x,y)

1
2

∣∣∣1− p(y)
p(y|x)

∣∣∣
Squared Hellinger (1−√x)2 Ep(x,y)

[
2− 2

√
p(y)
p(y|x)

]
Le Cam 1−x

2x+2
Ep(x,y)

[p(y|x)−p(y)]2

2p(y|x)+2p(y)

Jensen Shannon x log 2x
x+1

+ log 2
x+1

Ep(x,y)

[
log 2p(y|x)

p(y|x)+p(y)
+ p(y)

p(y|x) log
2p(y)

p(y|x)+p(y)

]
Reverse KL − log x Ep(x,y)

[
p(y)
p(y|x) log

p(y)
p(y|x)

]
In recent years, f -mutual information has been studied in many deep learning

applications, such as generative models [Nowozin et al., 2016, Gimenez and Zou,
2022], representation learning [Lotfi-Rezaabad and Vishwanath, 2020, Mittal et al.,
2023], image classification [Wei and Liu, 2021], imitation learning [Zhang et al.,
2020], etc. Wei and Liu [2021] suggested that a properly defined f -divergence mea-
sure is robust with label noise in a classification task, which is related to our finding
that the χ2-mutual information is a more robust information measure against the
inherent noise in the policy learning of IRRL compared to Shannon’s mutual in-
formation. This leads to interesting future work on investigating principles for
selecting the optimal f -mutual information measure, and the possibility of using
other f -mutual information measures for achieving more stable IRRL.

6.7.2 Limitations and Future Work

This work is an early step towards stabilizing IRRL. Some identified limitations
potentially lead to interesting future work. First, we evaluated the efficiency of
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the suggested reward functions within a subset of IRRL scenarios. It is appealing
to study the generalizability and explore the potential adaptions across a wider
spectrum of applications, e.g., RLHF for large language models finetuning. Second,
we only considered classification-based reward models but not regression-based
ones. A unified guideline for designing reward functions in both cases would be
significant. Third, we stabilized the training process of IRRL from the perspective
of reducing the impact of reward noise without explicitly considering reducing the
impact of insufficient observations (see Fig. 6.1). An integrated method considering
both issues should lead to a more optimal solution.

6.8 Summary

In this chapter, we attempt to answer the third research question “How to stabilize
the reinforcement learning process of the active vision control policy to make the
training more efficient?” We generalized the reinforcement learning process of
the active vision control policy into a class of reinforcement learning problems,
namely Internally Rewarded Reinforcement Learning (IRRL), where the policy is
trained using reward signals from the feedback of a discriminator-based reward
model, which is simultaneously optimized in a supervised learning manner using
information collected by the policy. The inherent issues of noisy rewards and
insufficient observations in the training process of IRRL lead to an unstable training
loop where neither the policy nor the discriminator can learn effectively. Based on
theoretical analysis and empirical studies, we proposed the clipped linear reward
function to reduce the impact of reward noise.

Extensive experimental results suggested that the proposed method consis-
tently stabilizes the training process and achieves faster convergence and higher
performance compared with baselines in diverse tasks. Additionally, we gave an in-
terpretation of the use of the linear reward function from the information-theoretic
perspective, which suggested an interesting future research direction. As interest
grows in integrating the capability of high-level prediction and low-level control of
behaviors into a single model, for instance in embodied AI, robotics, and unsuper-
vised RL, stable and efficient training of IRRL will be particularly relevant.

We acknowledge that the proposed reward function is not guaranteed the opti-
mal solution for the unstable training issue of IRRL. Future research is necessary
to enhance the stable training of such models, for example on more theoretical
analysis of the influence of the variance and bias of rewards on the training stabil-
ity.
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Figure 6.14: Comparison of DT-RAM models trained by different reward func-
tions. Trajectories generated by the model trained using the clipped linear reward
can cover sufficient information for recognizing the digit, while trajectories gen-
erated by the model trained using the logarithmic reward function tend to be
pessimistic. The exploration trajectories generated by the model trained using the
accuracy-based reward tend to sample less informative areas. The starting and
stopping glimpses are represented by yellow and red boxes respectively. The green
line indicates the positions of intermediate glimpses. GT: the ground-truth class;
Predicted: the predicted class (red indicates incorrect predictions).
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Figure 6.15: Comparison of models trained by different reward functions on the
robotic object counting task. The number next to the arrow after a sequence of
egocentric views is the number of goal objects predicted by the agent. Red numbers
indicate wrong predictions.
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(a) Clipped logarithmic

(b) DISDAIN

(c) Clipped linear

Figure 6.16: States reached by agents that are trained with different reward func-
tions. Plots depict ratios of final states reached after performing 10 trajectories
per skill (the ratio is clipped between 0.001 and 0.1 for the sake of visualization).
The diversity of states reached by the agent reflects the diversity of skills the agent
learns. We expect that the agent reaches as diverse states as possible. The agent
trained with the clipped logarithmic reward function mostly reaches the states of
its starting room (the top-left room) and cannot reach the bottom-right room even
when the training is converged (see the figure in the first row and third column).
However, the agent trained using the DISDAIN and clipped linear reward is able
to near-uniformly reach all the states of the four rooms (see figures in the last two
rows and third column). The agent using the clipped linear reward learns faster
compared to the agent using DISDAIN, as it can reach diverse states faster during
training (see figures in the last two rows and second column).
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Chapter 7

Discussions and Conclusions

7.1 Reinforcement Learning for Embodied Agents

It has been demonstrated in this thesis that the technique of reinforcement learning
still has great potential to improve. The motivation to create embodied AI agents
is a driving force towards advancement in this area. The integration of sensory
perception, attention, and value evaluation into the reinforcement learning frame-
work facilitates the emergence of embodied agents that are generalizable, versatile,
and robust enough to be deployed into realistic human environments.

This thesis suggests that reinforcement learning is a versatile computational
approach that can be employed in the development of the active vision control
policy of action-response agents. Conventional reinforcement learning methods
are not suitable for achieving this goal, due to the complexity of tasks involving
embodied agents, compared with tasks on game environments that were extensively
studied in the literature. A more generalized reinforcement learning framework,
which considers the internal processing of external stimuli, attention mechanisms,
and goal-oriented value evaluation, was proposed and we showcased its effectiveness
in the learning of active vision control.

This extension of reinforcement learning incurs specific challenges in model opti-
mization. Compared to the conventional reinforcement learning framework, where
the reward signals are directly produced by the external environment according to
predefined roles with human expertise, reinforcement learning utilizing automati-
cally generated reward signals, which depend on perception and value evaluation
components, is more complicated and hard to converge. We demonstrated that
the shape of the reward function of the reward model in the internal environment
impacts the learning stability of the reinforcement learning process and proposed
methods to mitigate this issue. We believe that more work is needed to improve
the proposed learning framework, to improve its efficiency and scalability, and to
extend the application scope of this framework.

In this thesis, we only used small-scale tasks to evaluate the effectiveness of
the proposed approach. This leads to another point of our discussion about the
scalability of the proposed method in the next section.
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7.2 Scalability

In this thesis, we aimed to design models for action-response embodied agents and
train the active vision control policy using reinforcement learning. The feasibility
of this idea is demonstrated in small-scale environments, however, we question the
scalability of this approach in large-scale settings when applied in isolation. De-
veloping action-response agents within large-scale environments poses a significant
challenge than in small-scale settings, as the more comprehensive capabilities of
the agents are necessary. On the other hand, compared to the development of
action-only agents, like the point-goal navigation agent where the scalability of an
RL-based method has been demonstrated [Wijmans et al., 2020], action-response
agents in large-scale environments require more comprehensive high-level capabil-
ities, which are pretty challenging to acquire through pure RL.

The paradigm of unsupervised learning followed by supervised learning and
reinforcement learning could be the ideal pathway to robust and generalized AI
agents. Compared to RL, unsupervised learning is more suitable for learning robust
representations and behaviors, particularly when processing multi-modal informa-
tion in complex, large-scale environments. Supervised learning, on the other hand,
offers higher data efficiency in acquiring task-specific skills. Nevertheless, the role
of RL still remains essential. Its benefits and advantages are indispensable in the
learning of low-level interaction behaviors guided by a high-level task objective.

However, though remarkable success has been achieved in pretrained foundation
models in natural language processing and computer vision, developing pretrained
embodied agents through unsupervised learning is still a big challenge and a long-
standing goal in the community.

7.3 Trustworthy AI Models and Agents

Beyond the specific goal of this thesis on developing action-response embodied
agents with active vision, there lies a more general objective which is to develop
trustworthy AI models and agents. They are expected to produce helpful, harmless,
and ethical responses in realistic applications. As studied in this thesis, a VQA
model should be able to abstain from answering when the visual question from the
user is irrelevant to the given visual content to avoid the producing of potentially
harmful answers; an embodied agent should be able to evaluate the information
sufficiency and perform actions to actively collect more necessary information for
the given task when the collected information is deemed inefficient.

The capabilities of information sufficiency evaluation and interactive infor-
mation collection play essential roles in achieving trustworthy AI models and
agents. In this thesis, the capability of information sufficiency evaluation is ob-
tained through supervised learning, and the evaluation result is represented by the
uncertainty of the prediction of the ground-truth label. The capability of interac-
tive information collection is developed through reinforcement learning, through
which an interactive information collection policy is trained. This methodology is
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actually aligned with recent work on trustworthy chatbots [Ouyang et al., 2022,
Touvron et al., 2023]. Researchers employed supervised learning to train a re-
ward model to evaluate the human preference for responses given by the chatbot,
analogous to information sufficiency evaluation, and used reinforcement learning
to finetune the chat policy, aiming at improving human preference, as indicated
by a preference score predicted by the reward model. The resulting chat policy
thus adopts strategies like abstaining from responding to questions that could lead
to illegal answers, asking for more details in the case of ambiguous queries, or
directly pointing out the conflict with the truth when questions involve counter-
factual premises. Different from our methodology, the fundamental models for
these chatbots are obtained through unsupervised pretraining on large-scale unla-
beled data. The success of this methodology in the application of chatbots points
out a promising direction in the development of trustworthy embodied agents.

7.4 Reinforcement Learning with Reward Mod-

els

In this thesis, stemming from our primary interest in the application of RL for
active vision control learning, we also studied the fundamental challenge of unsta-
ble training in RL with discriminator-based reward models. The framework of RL
with reward models has been applied in tasks across diverse domains involving in-
teraction between AI agents and environments or users. As application scenarios of
AI models extend, this framework appears to have a broader range of applications.

Beyond the methods proposed in this thesis, there remains considerable poten-
tial for exploration in addressing the issue of unstable training. We discuss two
research areas below where the framework of RL with reward models is applied.

Unsupervised Skill Discovery As already discussed in Chapter 6, existing
methods in the task of unsupervised skill discovery involve the paradigm of RL with
reward models: a discriminator is simultaneously optimized with the skill policy
in supervised learning and provides reward signals for policy learning. Efficient
optimization of these methods is still challenging. For example, recent works in this
area argue that mutual information maximization is not an appropriate training
objective based on the observation that this objective does not differentiate skills
in different scales thus limiting the diversity of learned skills [Park et al., 2022,
2023]. Based on the findings of this thesis, it is reasonable to hypothesize that
this challenge could be possibly alleviated from the perspective of mitigating the
unstable training loop that is caused by the issue of noisy rewards and insufficient
observations.

RLHF for AI Alignment AI alignment, with the goal of aligning AI models
with human values, has been attracting increasing attention recently [Norvig, 2019,
Casper et al., 2023]. Reinforcement learning from human feedback (RLHF) has
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been demonstrated as an effective method for achieving this goal, as seen in its
successful application in chatbots such as ChatGPT [Ouyang et al., 2022] and
Llama 2 [Touvron et al., 2023]. RLHF for LLMs finetuning involves RL training
of the chat policy guided by reward signals from a reward model that is trained in
a supervised learning manner using human-annotated data. While effective, it has
been recognized as a challenging task to jointly train a chat policy and a reward
model [Rafailov et al., 2023, Casper et al., 2023]. This challenge poses barriers to
human control over the behavior of large language models and other pretrained
large-scale models. It would be significant to propose guidelines for simplifying the
training of RLHF in such applications.

7.5 Conclusions

In conclusion, this thesis contributed to the development of the active vision con-
trol policy of action-response embodied agents. An embodied agent with active
vision that is capable of actively collecting visual information for producing reliable
responses can be modeled using a modular network, of which the active vision con-
trol policy is optimized using reinforcement learning guided by reward signals from
the response module, and the response module is trained in a supervised learn-
ing manner using visual information collected by the active vision control policy.
This method can be generalized and formulated as a novel reinforcement learning
framework, which is characterized by a jointly optimized discriminator-based re-
ward model that provides reward signals for policy learning. The application of
this framework is widespread, however, its learning process suffers from the inher-
ent issue of an unstable training loop, where an under-optimized reward model
yields noisy rewards, and in turn, an immature policy yields insufficient observa-
tions. It was demonstrated empirically and theoretically that the use of a clipped
linear reward function instead of the commonly used logarithmic reward function
alleviates this issue, stabilizing the training process.
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LLM-based Active Vision for
Robotic Object Existence
Prediction

A.1 Introduction

In this part, we implement a robot demo controlled by a large language model
(LLM)-based system for active vision control. The system diagram is illustrated
in Fig. 2.5 in Chapter 2. In line with our previous work on the reinforcement
learning-based method for active vision control, which is introduced in Chapter 5,
we utilize the task of Robotic Object Existence Prediction (ROEP) for evaluation.
In this task, a robot standing next to a round table is asked to predict the existence
of an object on the table. The robot can move around the table to observe the
tabletop scene from various perspectives. The ROEP task is introduced in detail
in Sec. 5.2. Specifically, we use a Pepper robot1 equipped with a LiDAR scanner
for the demo implementation. We test the robot on some ROEP task scenarios
(see an example scenario in Fig. A.2) to evaluate the effectiveness of an LLM-based
approach.

A.2 Methodology

The framework of our active-vision agent has a similar structure to the Matcha
(Multimodal environment chatting) agent [Zhao et al., 2023], where both of them
use natural language as the intermediate representations for multimodal sensations
and use LLMs to generate control commands for active information gathering. The
diagram of our method is illustrated in Fig. A.1.

An LLM functions as the core of this method. The input of the LLM in-
cludes three sources, 1) the task-specific initial prompts, 2) users’ questions, and
3) scene descriptions of the current view. The initial prompt contains four parts:

1https://www.softbankrobotics.com/emea/en/pepper
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Figure A.1: Framework of the proposed LLM-based active-vision agent for the task
of Robotic Object Existence Prediction (ROEP).

a) task descriptions; b) the robot’s action space descriptions; c) examples; and
d) additional prompts for fine-grained control. These prompts are shown in the
following prompt snippets. The prompt of task descriptions mainly introduces the
task setup, the general concept of occlusion between objects, and the expected
behavior of the robot (see Prompt Snippet A). The prompt of the robot’s action
space descriptions introduces possible actions of the robot and the meaning of
each action (see Prompt Snippet B). This informs the LLM of the set of possi-
ble actions to choose and the meaning of each action for better action planning.
However, only given this general information, the reasoning chain generated by
the LLM could be very diverse. Thus, we also give some examples to explicitly
encourage the LLM to reason in a specific pattern. We give three examples in
the prompt, each of which represents a class of scenarios (see Prompt Snippet C).
These example scenarios are distinct from those scenarios used for evaluation, to
avoid the contribution of memorization in task solving. We note that too many
examples could harm the performance of the LLM in task-specific reasoning, as
the LLM could be biased on the examples and overlook the general definition of
the task and commonsense knowledge. Further, we add some additional prompts
to impose some constraints on the output of the LLM based on our preliminary
experiments (see Prompt Snippet D).

Users’ questions are produced by an off-the-shelf Automatic Speech Recog-
nition (ASR) model. The questions are queries about the existence of a type of
object, e.g., “Is there an apple on the table”. Scene descriptions are generated
by an object detecter based on the first-person view of the Pepper robot regarding
the tabletop. Specifically, visual information represented by RGB images is con-
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Prompt Snippet A: Task Descriptions

A 120 centimeters-tall humanoid robot stands next to a 1-meter-high round table at a distance
of 1 meter. The robot is expected to predict whether a target object is on the table or not.

Objects can be visually occluded by larger objects, for example, a key can be occluded by a
mug because a key is visually smaller than a mug in size. Objects cannot be visually occluded
by smaller objects, for example, a pear cannot be visually occluded by a pencil because a pear
is visually larger than a pencil in size.

If the target object is observed, the robot should directly stop and predict “Yes”.

If the target object is not observed, the robot needs to compare the size of the target object
with each of the observed objects.

If the target object is smaller than one or some observed objects, the target object could be
visually occluded by them from the current viewpoint of the robot. In this case, the robot
should rotate to check the visually occluded space.

If the target object is larger than all the observed objects, the target object cannot be visually

occluded by any of the observed objects, so the robot should directly stop and predict “No”.

Prompt Snippet B: Robot’s Action Space Descriptions

The robot can perform three actions:

1. “rotate left”: rotate 30 degrees around the table to the left.

2. “rotate right”: rotate 30 degrees around the table to the right.

3. “stop and predict”: stop rotating around the table and predict the existence of the target

object.

verted to language descriptions using a pretrained object detection model ViLD
[Gu et al., 2022] as a list of detected objects, e.g., “a pencil, a mug, a laptop” (see
Fig. A.3 for an example). Compared to conventional object detectors, ViLD works
in an open-vocabulary manner, i.e., it is able to detect objects that are specified
in a set of target objects. And because it was pretrained on large-scale datasets,
it is highly robust to diverse scenes.

Taking advantage of the commonsense knowledge, multi-step reasoning capa-
bility, and in-context learning capability, the LLM reasons potential occlusion be-
tween the queried target object and observed objects, and generates a reasoning
chain in natural language, including an action command selected from robot’s
action space descriptions in the initial prompt. Examples of the reasoning chain
are shown in Sec. A.4. When the “stop and predict” action command is chosen,
the LLM will generate the final answer. In our practical implementation, we let
the robot speak out its reasoning chain in natural language using the built-in Text-
To-Speech (TTS) service of the Pepper robot to make the system more transparent
and trustworthy to the user.

The action commands “rotate left” and “rotate right” are executed by the lo-
comation controller module to control the robot to move around the table.
This module is hardcoded, utilizing the LiDAR signal for accurate rotation action
control. The robot collects new observations after the execution of each rotation
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Prompt Snippet C: Examples

# Example 1
Question: Is there an apple on the table?
AI: Initialized the robot and observe the scene.
Observation: a coin, an apple, a bank card
AI: The robot observes three objects: [a coin, an apple, an bank card]. The target object is
the apple. An apple is observed. So the robot chooses to stop to not waste time in further
exploration. Therefore, the robot should take the action: stop and predict => The answer is:
Yes
Terminate

# Example 2
Question: Is there a pear on the table?
AI: The robot is just initialized and observing the scene.
Observation: a button battery, a bank card, a key
AI: The robot observes three objects: [a button battery, a bank card, a key]. The target
object is the pear. A pear is not observed. Because pears are larger than all the observed
objects [button batteries, bank cards, keys], a pear cannot be visually occluded by any of the
observed objects. So the robot should choose to stop to not waste time in further exploration.
Therefore, the robot should take the action: stop and predict => The answer is: No
Terminate

# Example 3

Question: Is there a bank card on the table?

AI: Initialized the robot and observe the scene.

Observation: a laptop, a key, an electric kettle, an eraser

AI: The robot observes four objects: [a laptop, a key, an electric kettle, an eraser]. The target

object is the bank card. A bank card is not observed. Among observed objects, bank cards

are smaller than [laptops, electric kettles], so a bank card can be visually occluded by [laptops,

electric kettles]. Bank cards have a similar size to [keys, erasers], so a bank card cannot be

visually occluded by [keys, erasers]. So the robot should change its viewpoint to check the

visually occluded space of the laptops and the electric kettle to see if there is a bank card.

Therefore, the robot should take the action: rotate right

Terminate

Prompt Snippet D: Additional Prompts

You will be the “AI” to assist the robot to achieve the task. The user will provide the “Obser-

vation”. Stop generating when the first robot action is clear to execute and wait for the user

to give you feedback. Do not generate fake “Observation”.

action, and new scene descriptions will be generated by the ViLD module for the
LLM to perform further occlusion reasoning.

A.3 Evaluation

We evaluate our method on scenarios with object settings (types and combinations)
different from those used in the examples in the initial prompt to evaluate its
generalizability. We use three experimental scenarios:
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1. The target object can be directly observed;

2. The target object is not observed, however, it may be occluded by observed
objects according to common sense;

3. The target object is not observed, and it cannot be occluded by observed
objects according to common sense.

Detailed configurations of each of these experimental setups are introduced in
Table A.1, where “Visible objects” are objects that are visible to the robot from
its initial viewpoint, “Occluded object” is the object that is occluded by one of
the visible objects from the initial viewpoint of the robot, “Queried object” is the
object whose existence is queried by the user, “GT answer” is the ground-truth
answer of the existence prediction.

Table A.1: Setups of three experimental scenarios

No. Visible objects Occluded object Queried object GT answer

1 Pencil, mug, laptop Eraser Pencil Yes

2 Pencil, mug, laptop Eraser Eraser Yes

3 Pencil, mug Eraser Laptop No

A.4 Results

In Scenario 1, the initial state and observation of the robot are shown in Fig. A.2
and Fig. A.3, respectively. To answer the question of whether there is a “pencil”
on the table, the robot performs the following reasoning chain and produces the
final answer “Yes”.

Scenario 1: Reasoning Chain

The robot observes three objects: [a pencil, a mug, a laptop computer]. The target object

is a pencil. A pencil is observed. So the robot chooses to stop to not waste time in further

exploration. Therefore, the robot should take the action: stop and predict => The answer is:

YES!

In Scenario 2, the initial state and observation of the robot are identical to
those in Scenario 1, since the only difference between them is the queried object
(cf. Table. A.1). To answer the question of whether there is an “eraser” on the
table, the robot performs the reasoning chain reported in “Scenario 2: Reasoning
Chain (1/2)” and chooses to execute the action “rotate right”.

Instructed by the chosen action “rotate right”, the robot moves and observes
the scene from a novel viewpoint. The state and observation of the robot after
executing the chosen action are shown in Fig. A.4 and Fig. A.5, respectively. The
robot performs the reasoning chain reported in “Scenario 2: Reasoning Chain
(2/2)” and produces the final answer “Yes”.
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Figure A.2: The initial state of the robot in Scenario 1 and Scenario 2.

(a) First-person view of the robot (b) Object detection result

Figure A.3: The initial observation of the robot in Scenario 1 and Scenario 2.

Scenario 2: Reasoning Chain (1/2)

The robot observes three objects: [a pencil, a mug, a laptop computer]. The target object is

an eraser. An eraser is not observed. Among the observed objects, an eraser is smaller than

a laptop computer. So an eraser could be visually occluded by a laptop computer from the

current viewpoint of the robot. Therefore, the robot should take the action: rotate right.

In Scenario 3, the initial state and observation of the robot are shown in Fig. A.6
and Fig. A.7, respectively. To answer the question of whether there is a “laptop” on
the table, the robot performs the following reasoning chain reported in “Scenario
3: Reasoning Chain” and produces the final answer “No”.
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Scenario 2: Reasoning Chain (2/2)

The robot observes four objects: [a mug, a pencil, a laptop computer, an eraser]. The target

object is an eraser. An eraser is observed. So the robot chooses to stop to not waste time

in further exploration. Therefore, the robot should take the action, stop and predict => The

answer is: YES!

Figure A.4: The state of the robot after executing the action “rotate right” in
Scenario 2.

Scenario 3: Reasoning Chain

The robot observes two objects: [a pencil, a mug]. The target object is a laptop. A laptop is

not observed. Among the observed objects, laptops are larger than both the pencil and the

mug. Therefore, a laptop can not be visually occluded by any of the observed objects. So the

robot chooses to stop to not waste time in further exploration. Therefore, the robot should

take the action: stop and predict => The answer is: NO!

A.5 Conclusion and Discussion

Without the need for task-specified finetuning, the robot controlled by the LLM-
based active vision system demonstrates effectiveness and generalizability in the
task of ROEP. However, there are several challenges hindering the application of
LLM-based approaches to scenarios in the wild. The first one is the achievement
of more efficient vision understanding. Existing methods of vision-to-language
conversion through separate models, such as object detection models or image
captioning models, possess significant information loss. Natural language is not a
high-fidelity representation of visual observations because of its discrete property.
This poses a driving force for the advance of end-to-end visual-language models,
where visual information and language information have a shared representation
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(a) First-person view of the robot (b) Object detection result

Figure A.5: The observation of the robot after executing the action “rotate right”
in Scenario 2.

Figure A.6: The initial state of the robot in Scenario 3.

space. However, improving the reasoning capability of visual-language models is
challenging [Chen et al., 2024].

The second challenge is enabling robots to perform more versatile physical
interactions with their environments. Existing methods normally utilize hardcoded
action policies [Zhao et al., 2023] or pretrained action policies through imitation
learning [Ahn et al., 2022] to control robots based on action commands from LLMs.
These methods have fixed action sets that are developed by human experts, which
limits the generalization of LLM-based methods to diverse tasks and scenarios.
Pretrained language-conditioned action policies that are highly generalizable to
novel scenarios are appealing [Peng et al., 2022]. A unified pretrained model that
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(a) First-person view of the robot (b) Object detection result

Figure A.7: The initial observation of the robot in Scenario 3.

can directly generate low-level control signals, e.g., the state of robotic graspers
and arms, is another research direction to explore [Zitkovich et al., 2023].
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Some of the concepts, methodologies, datasets, simulation environments, experi-
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international conferences.
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