
Methods for Processing and Analyzing
Protein Structure Collections for
Data-Driven Structure-Property

Relationship Modeling

Cumulative Dissertation

to receive the degree

Dr. rer. nat.

at the Faculty of Mathematics, Informatics and Natural Sciences

Universität Hamburg

submitted to the

Department of Informatics of

Universität Hamburg

Jochen Sieg

born in Giessen

Hamburg, December 2023





1. Reviewer: Prof. Dr. Matthias Rarey
2. Reviewer: Prof. Dr. Andrew Torda
3. Reviewer: Prof. Dr. Gerhard Wolber
Date of thesis defense: 22.03.2024





Kurzfassung

Die effektive Vorhersage der Eigenschaften von Biomolekülen könnte entscheidende
Forschungsfragen beantworten: Welches Biomolekül wäre ein wirksames Arzneimittel
für eine bestimmte Krankheit? Wird eine Mutation bei einem Patienten pathologisch
sein? Welches Biomolekül kann Materialien wie Kunststoffe abbauen?

Das Paradigma der Struktur-Eigenschafts-Beziehung ist ein zentrales Konzept, welches
beschreibt, dass die Struktur eines Biomoleküls seine Eigenschaften bestimmt. Ins-
besondere für Proteine, die sogenannten Bausteine des Lebens, hat die Zahl der hochw-
ertigen dreidimensionalen Strukturdaten in den letzten Jahren enorm zugenommen.
Datengetriebene Vorhersagemethoden, wie maschinelles Lernen, sind eine viel ver-
sprechende Wahl, um Eigenschaften mittels der Strukturdaten vorherzusagen. Solche
datengetriebenen Methoden unterliegen jedoch Datenlimitierungen und benötigen Pro-
teinrepräsentationen, die der Natur und den Eigenschaften der Proteine angemessen
sind. In dieser Arbeit wurden Methoden zur Analyse und Verarbeitung von Daten-
sätzen entwickelt, um datengetriebene Eigenschaftsvorhersagen zu verbessern.

Zunächst wurde eine auf maschinellem Lernen basierende Interpretierbarkeitsmethode
entwickelt, um prädiktive Feature in einem Datensatz für bestimmte Eigenschaftsvorher-
sagen zu analysieren. Die Technik wurde zuerst zur Analyse von Unbiasing-Strategien in
Benchmark-Datensätzen für strukturbasiertes virtuelles Screening bei der Arzneimitte-
lentwicklung eingesetzt. Daraufhin wurde sie mit dem Shapley Value System erweitert
und verwendet, um stabilisierende Proteinanpassungen für das Protein-Engineering
zu interpretieren. Neben wichtigen domänenspezifischen Trends haben die Analy-
sen gezeigt, dass Datenlimitierungen ein tiefgreifender Engpass in der Modellierung
von Struktur-Eigenschafts-Beziehungen sind. Mehr Daten zu aquirieren ist oft nicht
möglich. Eine effektive Alternative kann die Prozessierung von existierenden Daten sein,
um bessere Proteinrepräsentationen für die jeweilige Aufgabe zu erhalten. Es wurden
zwei Prozessierungsmethoden entwickelt, welche relevante Proteinvariabilitäten mittels
Strukturensembles beschreiben. Die erste Methode enumeriert alternative Konformatio-
nen anhand von AltLoc-Annotationen, um die Proteinflexibilität zu repräsentieren. Die
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zweite Methode konstruiert Strukturensembles mittels der Ähnlichkeit von 3D Mikro-
Umgebungen von Aminosäureresten, um die strukturellen Änderungen durch Einzelmu-
tationen zu repräsentieren. Beide Methoden können auf gesamte Proteinstruktursamm-
lungen angewendet werden und essentielle Daten und verbesserte Repräsentationen von
Proteinen für eine Vielzahl von Eigenschaftsvorhersagen, Methodenentwicklung und
molekulares Modeling bereitstellen.
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Abstract

Effective prediction of the properties of biomolecules could answer crucial research ques-
tions: Which biomolecule would be an effective drug for a particular disease? Will a
mutation in a patient be pathologic? Which biomolecule can break down materials like
plastics?

The structure-property relationship paradigm is a central concept describing that the
biomolecule’s structure determines its properties. Especially for proteins, the so-called
building blocks of life, high-quality three-dimensional structure data has increased
tremendously in the last years. Data-driven prediction methods, like machine learning,
are a promising choice to predict properties from the structure data. However, such
data-driven methods are subject to data limitations and need protein representations
adequate for proteins’ nature and properties. In this work, methods were developed to
analyze and process data sets for improving data-driven property prediction.

First, a machine learning-based interpretability method was developed to analyze pre-
dictive features on a data set for a given property-prediction task. The technique was
first applied to analyze unbiasing strategies in benchmark data sets for structure-based
virtual screening in drug discovery. Then, it was extended with the Shapley Values
framework and used to interpret stabilizing protein adaptations for protein engineer-
ing. Besides important domain-specific trends, the analyses demonstrated that data
limitations are a profound bottleneck in structure-property modeling. Obtaining more
data is often not possible. An effective alternative can be to process the existing data to
derive better protein representations for the task at hand. Two processing methods that
describe relevant protein variabilities using structure ensembles were developed. The
first method enumerates alternative conformations from AltLoc annotations to repre-
sent proteins’ inherent flexibility. The second method constructs structure ensembles
through the similarity of residue 3D micro-environments to represent the structural
changes upon single mutations. Both methods can be applied to entire protein struc-
ture collections and provide essential data and an improved representation of proteins
for various property-prediction tasks, method development, and molecular modeling.
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Chapter 1

Introduction

A fundamental approach to viewing the physical world in the life sciences is through
data collected in experiments. This data can be, for example, the three-dimensional
structure of a protein solved with X-ray crystallography [1], measures of mutation effects
on protein function with deep mutational scanning [2] or assessments of the interaction
of proteins and small molecules using diverse ligand binding assays [3, 4]. Usually,
experimental methods generate the most reliable and highest quality data considered the
gold standard for computational methods [5–7]. However, experimental data generation
is often expensive in time and resources [8, 9] and has limitations in applicability [10,
11]. Computational methods can achieve faster, cheaper, and novel results through
predictions or make experimental processes more efficient [8, 9, 12–15].

The computational modeling of the complex relationships between protein structure
and relevant properties, like inhibition upon binding or mutation effects, is central
to numerous disciplines, including drug design and discovery [8, 9] and protein engi-
neering and design [12, 16, 17]. A major concept is that the protein’s structure is a
determinant of numerous relevant protein properties, like the function [15, 18, 19] or
binding partners [20, 21]. This concept will be termed the structure-property relation-
ship in this thesis. Various modeling approaches have been developed over the years to
map structures to properties and predict the unknown properties of new protein struc-
tures [20–25]. Data-driven methods, like machine learning, are promising techniques
that can learn to associate protein structure and properties automatically from pat-
terns in data sets [26, 27]. In the last years, many successful data-driven methods have
been proposed, applying innovative concepts and borrowing ideas from other domains to
structural bioinformatics and adjacent life science fields; examples are protein structure
prediction [28, 29], protein-ligand binding scoring [30], and methods predicting various
elemental and practically relevant properties of biomolecules [31, 32].
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1 Introduction

Today, high-quality protein structure data is abundant [33–35]. Simultaneously, the
progress in modern machine learning methods shows excellent potential in various do-
mains [28, 36–38]. Consequently, high expectations have been raised to improve prop-
erty prediction of biomolecules [15, 26, 27, 39]. However, several domain-specific chal-
lenges arising from the available data must be considered to deploy such data-driven
methods effectively to drug discovery and protein engineering tasks.

In this dissertation, three software methods were developed, and two in-depth analyses
were conducted to address central challenges in data-driven structure-property relation-
ship modeling. The first software method is a machine learning-based interpretability
method developed for and applied to two specific analysis studies. The analysis results
reveal detailed trends in data sets for structure-based virtual screening and proteins’
high-pressure adaptations. They also stress profound limitations that need to be over-
come to progress. In contrast, the other two developed tools more universally address
data limitations and shortcomings in representations of proteins during modeling. They
use structure ensembles to represent protein flexibility and structural changes upon sin-
gle mutations to improve various property-prediction tasks, method development, and
molecular modeling.

The following sections of this chapter introduce the relevant concepts for data-driven
structure-property relationship modeling. First, the current state of protein structure
data and relevant protein properties are described. Then, an overview of data-driven
methods for structure-property modeling is provided, and their limitations regarding
the underlying data sets, protein representations, and interpretability are described.
Finally, the structure of the rest of this work is presented.

1.1 Proteins and Structure Data Collections

Proteins are essential building blocks of life [40]. With their diverse functions, they play
an irreplaceable and ubiquitous role in the processes of organisms [40]. The functional
diversity of proteins includes, for example, the catalysis of chemical reactions, trans-
port processes, signal transduction, motion, and immunological defense and protection
against foreign substances [40].

The study of proteins is of fundamental and substantial practical importance in many
scientific research and industrial areas. Due to their ubiquitous involvement in phys-
iological and pathological processes, the intended alteration of protein function is a
goal in drug design [41]. A classical pharmaceutical concept is the targeted inhibition
of pathologically relevant proteins with small molecules to achieve a therapeutic ef-
fect [41]. Proteins are also used as therapeutic agents, as so-called biopharmaceuticals
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or biologics [42, 43] with antibodies being a notable example [44]. Proteins are also
essential in biotechnology due to their specific and diverse functions. In particular, en-
zymes - proteins that catalyze a chemical reaction - are often used as biocatalysts in
biotechnological processes [45]. The properties of proteins can be tailored for industrial
applications [45, 46]. For this purpose, proteins can be optimized using protein engi-
neering methods to achieve, for example, higher enzymatic activity, a broader substrate
spectrum, and higher protein stability [46].

Proteins are flexible, three-dimensional biomolecules [47]. Their physical structure
comprises interacting amino acids that create specific structural and chemical environ-
ments crucial for the protein’s properties like the function [48–51]. While many proteins
fold into a particular structure, in their native biological environments, proteins exist
as an ensemble of energetically accessible conformations [47]. Protein structure data
representing these states is essential for understanding protein properties. Since the
first solved protein structure of Myoglobin in 1958 [52], structure determination tech-
niques have constantly improved. The most common methods are X-ray crystallogra-
phy, nuclear magnetic resonance spectroscopy (NMR) and cryogenic electron microscopy
(Cryo-EM) [33]. Cryo-EM methods have been especially improved in the last years and
enable the structure determination of large multimeric protein complexes in atomic res-
olution [53–55]. More than 200, 000 structures of proteins could be determined over the
years, which are curated and made openly accessible by the Protein Structure Database
(PDB) [33]. As a result of these efforts, the research community now has access to a
large and growing set of high-resolution experimental protein structure data.

Besides experimental structure determination, enormous improvements have been
achieved in the in silico protein structure prediction based on the protein sequence in
the last few years [28, 29]. This progress is attributed [28] to the extensive data col-
lection and curation of the PDB and the methodological advancements in deep learn-
ing [36] in the areas of computer vision [56, 57] and computational linguistics [37].
In addition, the community-wide blind prediction challenge in CASP [58] provided a
well-defined and accepted prospective evaluation for structure prediction. Today, in ad-
dition to the approximately 200, 000 experimental protein structures in the PDB, more
than 214 million predicted structures are available in the AlphaFold Protein Structure
Database [34] and more than 617 million in the ESM Metagenomic Atlas [35]. Overall,
this makes high-quality structures for almost all folded proteins publicly available [59].
The unprecedented variety of protein structures available has the substantial potential
to improve multiple areas in structural bioinformatics, especially structure-property
relationship modeling for property prediction.
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1 Introduction

1.2 Protein Properties

The term ’protein properties’ is used differently throughout the life science disciplines.
Therefore, the following describes how the term is used in this thesis.

This thesis focuses on computational methods for drug discovery and protein engi-
neering. Protein properties in this context are considered various attributes and char-
acteristics of a particular protein, including structural, functional, chemical, biological,
pharmacological, and dynamic properties. Generally, all properties whose prediction
helps address relevant life science problems are of interest. Popular examples are the
protein function [60], potential binding sites [61], binding partners [62, 63], binding
affinity of biomolecules [64], flexibility [65, 66], hydrophobicity [67], and stability [68,
69]. Understanding these protein properties is invaluable for growing biological and
chemical knowledge and facilitating biotechnological and pharmaceutical advancement.

For example, predicting proteins’ function can help elucidate life from the molecular
level. A protein’s molecular function, biological role, and location of activity in the
organism build a basis to characterize biological systems and whole organisms [70]. The
diversity of functional properties resulted in specific prediction tasks, like the predic-
tion of subcellular locations [71] or predicting the specific chemical reactions enzymes
catalyze [25].

Predicting the binding of proteins and other molecules is integral to industrial drug
discovery and academic research [8]. In structure-based drug discovery, new drugs for a
therapeutic protein target are searched by first identifying a suitable binding site on the
target protein structure and then searching for small molecules binding the site with
a desired affinity, bioactivity, and molecular properties using techniques like virtual
screening [61, 72]. Protein property prediction methods are employed at every step of
this process and various other stages in the drug discovery pipeline [8, 61, 72].

It is highly relevant for various applications to determine how alterations like protein
mutations impact properties [46]. Protein engineering aims to find protein variants
with improved properties [46]. Prediction methods are frequently applied to guide
experimental redesign through the vast protein sequence space to optimize properties,
like enzymes’ substrate conversion, enantioselectivity, or light absorption [73]. Similar
approaches guide the optimization and design of therapeutic antibodies for specifically
binding a target antigen’s epitope. Antibodies are the largest class of biologics and
comprise a considerable part of blockbuster drugs [74]. Furthermore, mutations have
significant pharmaceutical relevance because they can cause drug resistance or lead to
diseases like cancer [75, 76]. Thus, predicting mutation effects on binding and stability
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can help to unravel the molecular roots of drug resistance and diseases and build a basis
for personalized medicine [69, 77, 78].

1.3 Structure-Property Relationship Modeling

As described above, the foundation for many protein property prediction methods is
the structure-property relationship paradigm, which describes that the protein’s three-
dimensional structure determines the protein’s properties. The application of this
paradigm can be challenging because structure-property relationships are often com-
plex, and their exact mechanisms still need to be understood [51, 68, 79–82]. It is not
uncommon that some relevant structural factors are known, for example, noncovalent
interactions. However, this knowledge is often incomplete, and the interplay of multiple
factors is intricate [68, 82, 83]. Even predicting the impact on properties due to minor
structural changes can be challenging [51, 81, 84]. Consequently, an explicit specifi-
cation of the relationships’ rules is usually intractable. For this reason, data-driven
methods are appealing because they do not require explicit knowledge of the relation-
ship. Such modeling techniques range from similarity-based approaches, which transfer
annotations of well-characterized protein data to unknown data points using similar-
ity, to predictive modeling approaches using statistical modeling and machine learning.
Both these approaches are described in detail in the following subsections.

Notable, the field of protein-structure relationship modeling is similar to the Quan-
titative Structure-Activity Relationships (QSAR) modeling field [85]. Both disciplines
employ data-driven and statistical methods to predict the properties of biomolecules.
However, QSAR focuses primarily on small molecules and applications in drug discov-
ery [85].

In recent decades, protein sequence data was abundant while structure data was com-
paratively limited [34], and many prominent methods for protein property prediction use
sequence-property relationship modeling. Notable sequence-based tools are the famous
BLAST [86] and FASTA [87] programs, which perform similarity searches for homology
detection against sequence databases. Machine learning tools like PredictProtein [88] or
RaptorX-Property [89] predict structural protein properties, like secondary structure,
solvent accessibility, and disordered regions based on the sequence. The tools presented
in the following for applications on structure also often exist analogously for protein se-
quences. With its rising availability, structure data will likely become a more attractive
and informative resource for calculating or predicting such properties directly from the
structures.
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1.3.1 Similarity Search Methods

An established approach to elucidating properties of uncharacterized proteins is by
transferring annotations from similar well-characterized proteins [90]. Typically, a simi-
larity search is conducted for a given query protein against a database of well-annotated
proteins. Protein similarity can be described through evolutionary origin and relation.
Proteins that share a common ancestor are called homologs. This relationship can
be inferred and detected statistically through excess similarity in sequence or struc-
ture [90]. Homology detection was already very successful on sequences [86, 87, 90–94].
However, the structure is more conserved over the evolutionary time frame than the se-
quence [90]. The increase in protein structure data enables the application of similarity
search to structure databases for detecting even more distant evolutionary relation-
ships [59]. Structure-based methods that can perform similarity searches against struc-
ture databases for homology detection are, for example, DALI [95], mTM-align [96], or
Foldseek [59]. In addition, tools focusing on specific sites of interest exist, for example,
binding site similarity search tools, like SIENA [97].

In contrast to detecting homology, accurately inferring properties from homologous
proteins is more complicated. For example, while there is generally the notion that
homology implies a similar function, the functional similarity is hard to quantify [90].
Often assessing functionally critical residues, like the active site, is necessary to reduce
errors when transferring annotations, especially for sequence-based homology detec-
tion [90]. Homology-based transfer becomes increasingly unsuited when the goal is to
predict significant impacts on the property after minor protein modifications. For ex-
ample, even single mutations can greatly affect the protein’s properties, like hindering
binding or destabilizing the protein. Consequently, they can lead to a loss of function,
drug resistance, and diseases [76].

1.3.2 Machine Learning Methods

Machine learning methods are a widely applied approach to protein property prediction.
They can automatically use patterns in a data set to derive a mathematical model
without explicitly specifying the details of the relationship, making them an appealing
approach to model structure-property relationships [26, 27].

1.3.2.1 Modeling with Machine Learning

Most machine learning methods applied to property prediction are probably supervised.
Supervised methods learn the parameters of an adaptive statistical model by minimizing
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the model’s prediction error for a target variable on a data set [98]. The model’s pa-
rameters are optimized during the training phase based on a training data set of known
input samples and their associated target values. Trained models are usually evaluated
on a test set of data with known target values, held out during the training phase to
assess the model’s ability to predict unknown data points. Generally, supervised ma-
chine learning applications can be divided into classification and regression problems.
In classification problems, the target variable is a finite number of discrete categories.
The task is to assign the input sample to one of the categories [98]. In contrast, in
regression problems, the target variable can be one or more continuous variables. Other
important fields are unsupervised machine learning and reinforcement learning, which
are not discussed in this work [98].

For structure-property relationship modeling, the input to a supervised machine learn-
ing model can be some representation of the protein’s three-dimensional structure, and
the target variable could be experimentally measured property values [27]. The in-
put structures must be described numerically as so-called features [27, 98]. There
are various ways to define features for protein structures, for example, using physic-
ochemical characteristics and geometric arrangements of atoms and residues [73, 99].
Geometric descriptions can include the torsion angles, distances, volumes, and surface,
while physicochemical characterizations can be charge, hydrophobicity or functional
groups [24, 99–101]. Features that describe known critical drivers of binding and fold-
ing, like noncovalent interactions, are frequently used [102]. Such interaction features
are usually a combination of geometric and chemical descriptions. For example, hydro-
gen bonds can be described by the distance and angle of the donor and acceptor [103].
Subsequently, calculated hydrogen bonds can be combined to calculate secondary struc-
ture elements of the structure [104], compute protonation states [103], and more. While
these features must be calculated before the machine learning fitting procedure with
external tools or algorithms, features can also be derived during training.

Deep learning [36] methods try to automatically discover meaningful features from
more basic features like atom positions and chemical elements with representation learn-
ing. In neural network methods, multiple processing layers try to learn multiple and
increasingly abstract levels of representations from the raw features. A typical exam-
ple is the task of object detection in an image [36]. The raw feature representation
of an image is an array of pixels. The first neural network layer would learn features
corresponding to edges in specific orientations and locations in the image. The second
layer would detect edges in relative arrangements and the next would connect these
edge arrangements into partial objects. In contrast, the last layer would predict which
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object is in the image based on the combinations of the object parts. The key benefit
of deep learning systems is that input features must not be designed by a human but
can be learned automatically from the data with representation learning [36, 105].

1.3.2.2 Examples of Machine Learning Methods

This section provides an exemplary overview of structure-property relationship mod-
eling approaches with machine learning, their methodological ideas, and the research
questions to which they are applied.

Knowledge about the location of functional sites in a protein, like binding sites, is
crucial for function prediction, drug discovery, and protein engineering. For example,
the P2Rank [101] tool predicts ligand binding sites in protein structures using a Ran-
dom Forest [106] classifier. The model scores local chemical environments of surface
probes for their ligandability, the potential that the chemical environment would likely
facilitate a small molecule ligand. Neighboring well-scoring probes are clustered to form
the binding site prediction [101]. Subsequently, a binding site can be the basis for pre-
dicting other relevant properties. Tools like the DoGSiteScorer [24] predict pockets and
estimate their druggability, which resembles the potential that the pocket can be ad-
dressed with a small molecule for pharmaceutical purposes. The tool uses a Support
Vector Machine [107] with geometric and physicochemical features of the pocket. For
example, a reliable estimate of a pocket’s druggability is relevant to prioritizing protein
targets in drug discovery [24].

Predicting binding partners of proteins is essential for multiple applications. The
MaSIF tool [108] predicts potential ligand and protein binding sites and protein-protein
complexes by combining molecular surface interaction fingerprints with geometric deep
learning. The fingerprints are learned from surface patches on the structure and their
geometric and chemical features. Matching such fingerprints for site complementarity
between biomolecules can enable efficient interaction prediction [108].

In drug discovery, structure-based virtual screening is an established approach to rank
small molecules from a database by their potential to bind in the pocket of a target
protein [109]. For this task, machine learning is used to assess the binding of different
small molecules. Typically, three-dimensional poses of small molecules are generated
with molecular docking tools, like FlexX [110], GLIDE [111] or AutoDock Vina [112],
and subsequently scored and ranked with an additional machine learning-based scor-
ing function. For example, the GNINA [30] method is a 3D-grid-based convolutional
neural network and structure-based scoring function. GNINA is inspired by the object
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detection task for images described above. Instead of detecting objects based on ar-
rangements of edges in the image, the GNINA network tries to automatically learn more
abstract representations of protein-ligand interactions that correlate with binding from
protein-ligand complexes [30]. Another tool, DIFFDOCK [113], is a diffusion generative
model that directly predicts a 3D structure of a bound protein-ligand complex without
using classical molecular docking tools or a definition of the binding site. DIFFDOCK
treats molecular docking as a generative modeling problem and learns a distribution
over ligand poses defined by their translational, rotational, and torsional degrees of
freedom to predict fitting ligand poses for a given protein structure [113].

Besides predicting the properties of a given protein, it is also vital to accurately pre-
dict how this property changes when there is a mutation in the protein. For example,
the mCSM tool [99] predicts thermodynamic stability and affinity changes upon mu-
tations as well as disease-related mutations using supervised machine learning. The
features used by the algorithm describe the local environment of the mutation posi-
tion in the structure through graph-based signatures and changes in pharmacophore
features induced by the mutation. In the DynaMut [114] tool, the mCSM approach
was combined with normal mode analysis to consider protein flexibility in the mutation
effect prediction. Further, a 3D grid-based convolutional neural network by Torng et
al. [115] predicts the likelihood of the 20 proteinogenic amino acid residues occupying
a given local 3D environment in the structure. Such models can guide protein design
and engineering [116].

1.4 Challenges in Data-Driven Modeling

Data-driven methods, like machine learning, are appealing because they enable predic-
tions while avoiding the explicit modeling of complex structure-property relationships.
However, challenges that must be overcome for their effective applications come from
their inherent data dependence, the black box character of many data-derived relation-
ships, and incomplete representations in the modeling process.

1.4.1 Data Limitations

Data scarcity and paucity are common problems. With small data set sizes, rela-
tionship modeling becomes more difficult. Much protein structure data is now avail-
able, but significantly less experimental protein property data. For example, similarity
search methods, like homology detection, depend on the availability of databases of
well-characterized proteins annotated with properties, like their function [18, 19, 117].
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However, only a fraction of all proteins’ properties have been and will be characterized
experimentally [25]. This limitation also applies to machine learning methods, which
need a certain amount of data to effectively capture the underlying patterns and vari-
ations of the property in the population [118], especially more expressive deep learning
methods [36, 105].

Further, the available data is subject to sampling bias. Depending on the data col-
lection procedures, specific population subsets can be over or underrepresented in the
available data. For example, experimental structure determination of membrane pro-
teins has been challenging [11]. Therefore, membrane proteins are underrepresented in
current experimental structure databases [119, 120]. In addition, data collection is usu-
ally driven by specific research interests and projects. For example, in the hit-to-lead
phase in drug discovery, hit compounds binding the target protein are optimized in fo-
cused explorations, also called molecular series, to identify similar binding compounds
with properties suited for a drug [121]. The protein-ligand binding data collected from
such efforts can be narrowly clustered, which makes predictions outside the cluster
difficult for models built from that data [118, 122, 123].

Another frequently occurring challenge is imbalanced data, where a small minority
of the samples hold interesting target values, like biomolecules with desired property
profiles. In contrast, most samples have uninteresting target values, i.e., undesired
property profiles. Imbalanced data sets challenge most standard learning algorithms
and evaluation approaches, especially with small sample sizes [124]. While handling
imbalanced data is still an active area of research, different approaches aim to alleviate
imbalance, ranging from data sampling techniques to cost-sensitive learning algorithms
and novelty detection methods [124, 125].

Data quality and experimental uncertainty are important factors to consider. The
determined three-dimensional protein structure is a model derived from experimental
measurements [126]. For example, a crystallographer derives the atomic structure model
from fitting the electron density from an X-ray crystallography experiment. Insufficient
density and resulting ambiguities in the structure modeling process can lead to un-
certainties and missing atoms, especially in more flexible areas like the side chains of
surface residues, solvents, and loops. Even entire domains can be missing [126]. Struc-
ture files from the PDB provide additional information on experimental uncertainties
of a structure model, like resolution, alternate locations, and more. Further, how well
the single atoms of the structure model match the electron density can be quantified
and assessed with tools like the EDIA scorer, which scores individual atoms for their
electron density support considering neighboring atoms and unaccounted density [127].
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Similarly, experimental measures of protein properties are subject to uncertainty and
noise [128, 129]. Analysis of deviations in repeated experiments or measurements of
the same systems allows for estimating these uncertainties. However, comparing ex-
periments is complicated because most public data comes from different laboratories
and was measured with various conditions, protocols, and assays. Still, estimation
approaches exist; for example, Kramer et al. [128] estimated uncertainty of protein-
ligand affinity measures in terms of Ki values, and Montanucci et al. [129] evaluated
the uncertainty of ∆∆G protein stability changes upon single mutations. Experimental
uncertainties constitute a natural upper bound to predictive models [128, 129].

Finally, data limitations have not only implications on building the predictive models
but also on evaluating them. Test data is subject to the same limitations. The ability
of the test set to represent a prospective evaluation well can be restricted under these
limitations. Therefore, it is not only challenging to build models but also challenging
to recognize working solutions.

1.4.2 Protein Representations

Proteins must be sufficiently represented for the property prediction task. Most pro-
tein structural data in standard databases like the PDB is typically deposited as single
structures. However, richer representations than single structures can add enabling
information for property prediction. A famous example of an ensemble-based protein
representation from the domain of protein structure prediction is multiple sequence
alignments (MSAs), which are the input to AlphaFold2 [28] and RoseTTAFold [29].
MSAs are sets of sequences folding into a similar structure from which co-evolutionary
signals can be extracted to derive structural constraints, a cornerstone for structure
prediction [28, 29, 130]. Therefore, representing proteins for structure-property mod-
eling not only with a single structure but with an ensemble is a formidable challenge,
especially given the recent abundance of structure data.

Structure ensembles can represent protein flexibility, which is not well expressed with
a single rigid structure. Protein flexibility is indispensable for adequately describing
structure-property relationships since it influences function, stability, energetic prop-
erties, and the binding of small molecules [131]. Generally, protein flexibility can be
represented in multiple ways. X-ray structures have experimentally derived annota-
tions describing the uncertainty of atom positions. B-factors describe the attenuation
of X-ray scattering due to thermal motion, with which the flexibility of atoms, side
chains, and regions can be identified and analyzed [132]. The electron density in X-ray
experiments can also describe multiple discrete locations for an atom, residue, or larger
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parts of the structure. Such states are modeled as alternative locations, also called
AltLocs. However, AltLocs are usually ignored by practitioners and users of the struc-
ture models [126]. Protein flexibility can also be explored with methods like molecular
dynamics (MD) simulations, which predict the spatial positions of atoms over time uti-
lizing molecular mechanics force fields [66]. However, MD simulations are limited to
small time frames by numerical stability issues and high computational demand [66].
Furthermore, structure ensembles of the same protein in different conformations can be
assembled from a database. For example, the SIENA [97] tool can compile structure en-
sembles of ligand binding sites clustered by the sites’ rigid regions, highlighting flexible
parts of the binding site. From these approaches, database searches and the enumeration
of AltLoc conformations can provide experimentally validated protein conformations as
structure ensembles.

Another critical challenge is identifying changes in protein properties in a desired
direction, which is crucial for finding an inhibitor for a target protein in drug discovery
or identifying mutations that increase the thermodynamic stability of an enzyme in
protein engineering. However, a single structure only represents a single state, which is
insufficient to represent the change in the structure upon binding or mutations. Solvent
displacement and considerable conformational changes can occur upon binding [79],
but large conformational changes are hard to model. Similarly, the structural changes
upon mutation between wild-type and mutant are essential determinants of the muta-
tion effect [84, 133]. A single structure can not fully represent the different states of
such events and variabilities. Again, structure ensembles representing both states can
improve protein representations in these cases.

Generally, structure ensembles can be compiled through sequence similarity tools,
like BLAST [86] or MMseqs2 [92]. However, these tools primarily focus on homology
detection. They can not be directly used for relevant downstream tasks, such as the
structural analyses of 3D sites, like ligand binding or mutation sites. Dedicated tools like
SIENA [97] can directly provide binding site ensembles for analyzing binding site flexi-
bility or structural differences between apo and holo-structures. Methods for comparing
structural sites, such as ligand binding sites, are well-established [61], whereas dedicated
analysis methods for other sites, such as mutation sites, are mostly unavailable.

1.4.3 Interpretabililty

Due to their implicit nature, predictive models can be somewhat black boxes that
are not directly interpretable [134]. This applies in particular to many competitive
machine learning models. However, knowledge about the learned relationship can be
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invaluable. Typically employed machine learning models do not differentiate between
correlation and causation. Disclosing what a model has learned helps to analyze if the
model is generalizing and is not biased or misinformed [134]. Explanations help to build
trust in a prediction model and help experts make model-informed decisions [134]. In
addition, explanations can be used to find clues for deciphering unknown structure-
property relationships.

Most interpretability approaches aim to provide explanations regarding feature im-
portance [134] by determining features and sometimes feature values most influencing
predictions.

Interpretability approaches can be broadly grouped into global and local explanation
approaches, also called model and instance approaches [134, 135]. Local approaches
try to extract explanations for single instances and their corresponding prediction. In
contrast, global approaches extract explanations from a model’s predictions for a whole
data set. Some models are considered white box models since they are easier for humans
to interpret. These are usually simpler models, like small decision trees and linear mod-
els. Surrogate approaches try to fit white box surrogate models with high accuracy on
top of a black box model. LIME [136] and SHAP [137] are popular examples of local sur-
rogate methods [134]. Further, interpretability approaches can either be model-specific
or agnostic [134]. For example, Random Forest [106] has a model-specific approach inte-
grated by design and provides interpretable variable importance from internally derived
estimates. Another popular global but model-agnostic approach are Partial Dependence
Plots [138], which aim to display how individual features contribute to the model by
varying each feature [134].

The application of interpretability approaches still poses a challenge since there is
no one-fits-all solution. Usually, more exhaustive interpretability approaches are more
demanding in computational resources and the quality of explanations is hard to quan-
tify [134]. Therefore, careful analysis and application-dependent decisions are often
required.

1.5 This Work

This work addresses challenges in data-driven structure-property modeling common to
multiple fields in protein property prediction. The four main publications of this cumu-
lative dissertation present three software methods and two in-depth analysis studies.

This doctorate project started with two analysis studies during which a machine
learning-based interpretability method was developed to aid the analyses. The stud-
ies’ findings disclosed crucial domain-specific patterns in data sets for structure-based
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virtual screening and the high-pressure adaptations of proteins. The overarching con-
clusions from the analysis studies were that data limitations often restrict structure-
property modeling and prediction. As an attempt in the second half of this doctorate
project to overcome such shortcomings and effectively and more fundamentally improve
multiple facets of structure-property modeling, two dedicated software methods were
developed that exploit the vast existing protein structure collections and annotations
to improve protein representations with structure ensembles.

The following chapter presents the four main publications of this cumulative disser-
tation.

Section 2.1 considers analyzing and evaluating unbiasing strategies of benchmark data
sets in structure-based virtual screening for drug design. An interpretability method
was developed, which comprehensively uses feature selection with wrapper methods
to quantify feature importance on a whole data set using baseline machine learning
methods. Various feature sets were analyzed with the method and trends identified.
The approach can be classified as a global interpretability method [134] that explains
an ensemble of multiple baseline models instead of only one model. Therefore, the
developed method comprehensively characterizes important features and depicts how
well a collection of baseline methods performs on a particular data set and prediction
task. This method was the basis for analyzing benchmark data sets’ unbiasing strategies,
with which essential data limitations, like the unsuitability of these unbiasing strategies
for machine learning, could be characterized. In particular, it could be shown that
machine learning methods learn combinations of simple, highly distinguishable features
between active and decoy small molecules, even though these features were expected to
be uninformative because of the unbiasing strategies.

Section 2.2 applies the developed interpretability method to interpreting high-pressure
protein adaptation for protein engineering. For this purpose, a data set of matched pro-
tein structure pairs from high-pressure and other habitats was collected, and a diverse
collection of protein features was computed. The interpretability method was extended
with individual feature attributions using the Shapley value framework on the evalu-
ated feature sets. The attribution was used to interpret feature importance based on
the features’ average performance increase in the feature selection with wrapper meth-
ods experiment. The extended method was applied to compare features important on
different data subsets to isolate and characterize protein features potentially related to
proteins’ high-pressure adaptations.

Section 2.3 presents the AltLocEnumerator method developed to enumerate exper-
imentally observed alternative protein conformations based on AltLoc annotations to
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represent the protein’s flexibility through structure ensembles. The method efficiently
extracts AltLoc annotations from protein structure files, checks valid overall protein
conformations, and provides the resulting protein conformations as an ensemble. Addi-
tionally, filters and options help to focus large conformation ensembles to a manageable
size for subsequent processing and structure-based tasks.

Section 2.4 describes the MicroMiner tool, which implements a new method for search-
ing similar local 3D micro-environments in protein structure databases. A novel per-
spective is introduced for searching and compiling structure ensembles of local residue-
centered structural protein sites, termed ’residue 3D micro-environments’. The method
was applied to the scientific key application of structural single mutation analysis.
MicroMiner was used to extract all amino acid pairs in protein structures, exemplifying
the structural changes of single mutations from the PDB. Subsequently, the extracted
data was used to annotate existing mutation effect measures with structures for the
mutant to combine the mutation effect with the structural change upon mutation.

1.6 Overview of Scientific Contributions

This cumulative dissertation consists of five peer-reviewed publications. The four first-
author publications (including one shared first-author publication) and the one co-
authored publication are summarized with individual contributions in Appendix A.1.

The four first-author publications are:

J. Sieg, F. Flachsenberg, and M. Rarey. “In need of bias control: evaluating
chemical data for machine learning in structure-based virtual screening”. In:
Journal of chemical information and modeling 59.3 (2019), pp. 947–961.

Note that a subchapter of the above publication was produced in J. Sieg’s Master’s
thesis [139], which is not part of this dissertation. See section 2.1.2 for a description
of which parts are preliminary work not conducted during this doctorate project.

J. Sieg, C. C. Sandmeier, J. Lieske, A. Meents, C. Lemmen, W. R. Streit, and
M. Rarey. “Analyzing structural features of proteins from deep-sea organisms”.
In: Proteins: Structure, Function, and Bioinformatics 90.8 (2022),
pp. 1521–1537.

T. Gutermuth, J. Sieg, T. Stohn, and M. Rarey. “Modeling with Alternate
Locations in X-ray Protein Structures”. In: Journal of Chemical Information
and Modeling 63.8 (2023), pp. 2573–2585.
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The publication above is a shared first-authored publication. T. Gutermuth and
J. Sieg contributed equally to this work.

J. Sieg and M. Rarey. “Searching similar local 3D micro-environments in
protein structure databases with MicroMiner”. In: Briefings in Bioinformatics
24.6 (2023), bbad357.

The co-authored publication is:

K. Schöning-Stierand, K. Diedrich, C. Ehrt, F. Flachsenberg, J. Graef, J. Sieg,
P. Penner, M. Poppinga, A. Ungethüm, and M. Rarey. “Proteins Plus: a
comprehensive collection of web-based molecular modeling tools”. In: Nucleic
Acids Research 50.W1 (2022), W611–W615.

16



Chapter 2

Publications

2.1 Analyzing Benchmark Data Sets for Virtual Screening

This section presents an analysis of benchmark data sets for structure-based virtual
screening [D1], which was part of this doctorate project. The goal was to evaluate
whether benchmark data sets designed for conventional structure-based methods, such
as docking with empirical and knowledge-based scoring functions [102], are also suitable
for scoring functions based on standard machine learning methods. For this purpose,
a new interpretability method was developed based on feature selection to evaluate to
what extent common data set unbiasing techniques work for machine learning methods.

2.1.1 Motivation

Virtual screening is a field in the early stages of drug design aimed at prioritizing large
in silico molecular libraries for the likelihood that the molecules are active at a particular
protein target [109]. A distinction can be made between ligand-based and structure-
based virtual screening. In ligand-based screening, the prediction is made based on the
similarity of a molecule with unknown activity to molecules with known activity. Fre-
quently applied methods include substructure searches, quantitative structure-activity
relationship (QSAR) analysis, pharmacophore analysis, and 3D shape matching [140].
On the other hand, structure-based virtual screening models the interactions of a small
molecule with unknown activity to the protein target based on the 3D protein struc-
ture [109]. The most popular method is molecular docking, in which potential 3D
binding poses of the query molecule in the protein binding pocket are calculated, and
their complementarity or affinity is assessed [140]. In recent years, machine learning
and deep learning methods have been applied more frequently to virtual screening, for
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example, in scoring functions for the ranking of docking poses [102, 141] and are seen
as promising techniques in the field [141].

Retrospective evaluation of virtual screening methods using benchmark data sets
has become a standard procedure [123, 142–144]. Popular data sets include the Di-
rectory of Useful Decoys (DUD) [142], the Directory of Useful Decoys - Enhanced
(DUD-E) [144], the Maximum Unbiased Validation-dataset (MUV) [143], the Demand-
ing Evaluation Kits for Objective in silico Screening (DEKOIS) [145], the Community
Structure-Activity Resource (CSAR) [146], and PDBbind [147]. These data sets are
frequently used to evaluate how well a method can prioritize active molecules in an
extensive set of inactive molecules. Although most of the data sets were designed with
a focus on conventional scoring functions, such as empirical and knowledge-based scor-
ing functions, they are also increasingly used to train and test more potent data-driven
methods from the machine learning [148, 149] and deep learning field [30, 150–152].

Whether these data sets and their assumptions are suited for training and validating
machine learning methods was evaluated in this doctorate project by building a method
to measure how well their unbiasing strategies work with machine learning [D1].

2.1.2 Preliminary Work

A part of the publication [D1] is not part of the doctorate project described in this
dissertation because they were created before the doctorate period. Specifically, the
observations and analyses described in [D1] in section "4. NON-CAUSAL BIAS IN
LITERATURE" and the resulting conclusions were made outside the doctoral project.
In the following, the analysis and resulting conclusions not included in the doctorate
project are shortly summarized for a clear distinction.

It was observed that only the ligand features were sufficient for the structure-based
deep learning method DeepVS [151] to achieve competitive performance on the DUD
and DUD-E data sets. Therefore, DeepVS was re-implemented with different descrip-
tors expressing only ligand information. The key finding was that molecular 2D features
of small molecules are discriminative features in the DUD and DUD-E datasets that
separate the set of active molecules from the set of decoys with high accuracy. Topo-
logical descriptors, such as substructure fingerprints, can describe these 2D features.
It was shown that the difference in 2D features is so concise that the protein struc-
ture information of DeepVS is hardly used by the deep learning method, although it
is a structure-based method. Moreover, the separation of actives and decoys based on
2D features is detectable on the whole data set, irrespective of the associated protein
targets of the small molecules, which allows for the artificial distinction of actives and
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decoys of unrelated targets. It was concluded that the decoy selection strategy based
on property-matched decoys used in DUD and DUD-E leads to this artificial perfor-
mance of 2D features. The authors of DUD and DUD-E applied the 2D dissimilarity
filter of the decoy matching protocol across the entire data set, resulting in the artificial
separation of actives and decoys on all protein targets collectively. Therefore, virtual
screening methods that use 2D features have an artificial advantage on these data sets.
Especially for highly flexible machine learning methods with black box characters, like
deep learning methods, it is hard to determine which signals of the input are picked up
by the model. Care must be taken because standard procedures such as cross-validation
are insufficient to detect bias when using these datasets [D1].

In this doctorate project, multiple analyses building up from this preliminary work
were performed to analyze further the suitability of the assumptions made by the data
sets compilation protocols for the application with machine learning methods. The goal
was to build a method to measure which data sets are better suited for machine learning
methods than others.

2.1.3 Unbiasing Strategies in Benchmark Data Sets

Standard benchmark data sets in structure-based virtual screening were created to min-
imize biases such as ’artificial enrichment’ [153] and ’analogue bias’ [122]. Artificial
enrichment describes that the decoy set or inactives set differs significantly from the ac-
tive molecules in simple properties, for example, molecular weight, number of hydrogen
bond donors or acceptors (see Table 2.1). On the other hand, analogue bias describes
that actives with the same chemotype are overrepresented in data sets, for example,
because the actives come from the same molecular series. The three data sets DUD,
DUD-E, and MUV evaluated here implement strategies to minimize such biases. A
short overview of the data sets unbiasing strategies is given in the following.
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DUD [142] DUD-E [144] MUV [143]

molecular weight molecular weight
number of hydrogen bond acceptors number of hydrogen bond acceptors number of hydrogen bond acceptors
number of hydrogen bond donors number of hydrogen bond donors number of hydrogen bond donors
number of rotatable bonds number of rotatable bonds
logP logP logP

net charge
number of all atoms
number of heavy atoms
number of boron atoms
number of bromine atoms
number of carbon atoms
number of chlorine atoms
number of fluorine atoms
number of iodine atoms
number of nitrogen atoms
number of oxygen atoms
number of phosphorus atoms
number of sulfur atoms
number of chiral centers
number of ring systems

5 features 6 features 17 features

Table 2.1: List of the unbiased features of DUD, DUD-E and MUV. This table was taken from [D1].
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The DUD data set [142] was created to benchmark docking methods. The compilation
protocol uses so-called property-matched decoys. Specifically, experimentally validated
active molecules are paired with assumed inactives, also called decoys, from the ZINC
database [154]. The decoys are selected to be similar to the actives regarding simple
properties (see Table 2.1) to reduce artificial enrichment. Simultaneously, to ensure
that the selected decoys are not active, a dissimilarity filter was applied such that each
decoy is dissimilar to any active using CACTVS fingerprints [155]. The DUD-E data
set [144] extends DUD and addresses some of its shortcomings. For example, artificial
enrichment was further reduced by including net charges in the matched properties (see
Table 2.1). In addition, analogue bias was addressed by including only the cluster rep-
resentatives of the scaffold clustered sets of actives. In contrast, the data sets of the
MUV collection are initially designed for ligand-based virtual screening but can also be
used for benchmarking structure-based methods [143]. MUV contains both experimen-
tally validated actives and inactives from the PubChem database [156]. Molecules are
selected to reduce artificial enrichment and analogue bias by enforcing a common spread
between actives and other actives as well as actives and inactives in a 17-dimensional
descriptor space of simple features (see Table 2.1). This spread should ensure that
an active molecule can not be classified correctly based on its nearest neighbor in this
simple feature space.

2.1.4 Methodological Summary

The interpretability method developed in this doctorate is based on feature selection.
Feature selection methods provide a toolbox for analyzing the multivariate feature dis-
tributions of a data set considering the target variable [157]. While their main task is
to select features for building a particular machine learning model, they can also help
to understand which features are important for a task and which models and features
are sufficient on a particular data set. Consequently, feature selection methods can be
used to evaluate the prediction performance of unbiased features (see Table 2.1) and
check whether the unbiasing holds for machine learning methods.

Feature selection with wrapper methods describes approaches that use a particular
machine learning model as a black box to evaluate feature subsets for their predictive
power in an evaluation experiment [157]. Accordingly, in the wrapper methodology,
models are trained and tested with different feature sets, for example, using cross-
validation. The number of possible feature sets that can be evaluated is the number of
combinations of the individual features. For n features, the number of feature sets is
defined by
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n∑

k=1

(
n

k

)
= 2n − 1

Due to the exponential number of feature sets and the relatively demanding computa-
tion process of training and evaluating a model with each feature set, this methodology
becomes computationally expensive as the number of features increases. To analyze
higher dimensional data sets, greedy strategies like backward elimination or forward
selection can be applied, which heuristically traverse the space of feature sets [157].

In this work, wrapper methods were chosen because they evaluate the performance
of combinations of features rather than considering individual features separately. This
analysis focuses not on building an optimal predictive model but on evaluating whether
and to what extent standard machine learning methods can exploit unbiased features of
standard benchmark data sets. In this scenario, good performance means that the fea-
ture unbiasing does not work as intended since close to random performance is expected
through the unbiasing procedure.

The two cross-validation (CV) scenarios illustrated in Figure 2.1 were used for eval-
uation. In intra-target CV, the data set of molecules for a single target is split into
training and test sets. In contrast, in cross-target CV, the molecules of a specific target
are either collectively assigned to the training or test data set. The second split is more
challenging since a model needs to predict across potentially unrelated targets.

The Random Forest classifier and Logistic Regression were used as machine learning
algorithms. For DUD and DUD-E it was feasible to evaluate each possible feature set.
For MUV, backward elimination was employed because of the high number of feature
sets. MUV was omitted from the cross-target CV experiment because it contains many
duplicate inactives across targets. Removing them would yield an arbitrary data set
not resembling the MUV unbiasing.

2.1.5 Evaluation of Unbiasing Strategies

The results of the feature selection analysis are shown in Figure 2.2, exemplarily for
Random Forest. However, especially for DUD and DUD-E, the unbiasing techniques
do not work well with machine learning, which is illustrated by the excellent prediction
performance when their unbiased features are used.

The analysis showed that even single unbiased features result in good prediction
performance much better than a random guess, especially for the intra-target CV (see
Figure 2.2a and b). This was surprising because the distributions of individual features
were expected to be matched between actives and decoys. In the example of the number
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Figure 2.1: Cross validation (CV) scenarios used in the experiments, namely intra-target CV and
cross-target CV, are depicted schematically. Intra-target CV evaluates prediction perfor-
mance on a single target, while cross-target CV evaluates predictions to new targets. This
figure was taken and adapted from [D1].

of the hydrogen bond acceptors, shown in the first row in Figure 2.3, the mean and
variance seem to be matched on the level of the whole data set. However, on the
level of individual targets, the distributions can still be distinct, as shown for target
sahh in DUD-E in the second row in Figure 2.3. Furthermore, even when the feature
distributions are better matched and not linearly separable, non-linear machine learning
methods like Random Forest can separate actives from decoys if test actives are more
similar to training actives than training decoys. The contour plots in Figure 2.4 illustrate
this on the target pnp in DUD.

Another observation for DUD and DUD-E is a positive correlation between the num-
ber of unbiased features used and the performance (see Figure 2.2a, b, d, e). This
suggests standard machine learning methods can capture synergies when combining
multiple unbiased features. Surprisingly, almost perfect prediction performance can be
achieved in the intra-target CV and competitive performance on the cross-target CV.
These results demonstrate that simple and unbiased features of small molecules can have
a considerable influence when evaluating structure-based methods on these benchmark
data sets. Especially, the performance in the cross-target CV discloses artificial and
overoptimistic evaluation performance, which illustrates that the unbiasing strategies
are not suited for machine learning.
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Figure 2.2: Evaluation of the unbiased features with Random Forest. The first row shows the results
of the intra-target CV, and the second row shows the results of the cross-target CV. On
the x-axis, the number of features is shown, and on the y-axis, the mean ROC AUC of
the CVs. A box illustrates the range of performance in terms of ROC AUC overall targets
when x features are used. The red line marks the random performance of a ROC AUC
value of 0.5. This figure was taken from [D1].

24



2.1 Analyzing Benchmark Data Sets for Virtual Screening

Figure 2.3: Comparison of the distributions of the matched property ’Number of Hydrogen Bond
Acceptors’. The first row shows the distributions over all targets in DUD-E. The second
row shows the distributions only on the example of the target sahh. This figure was taken
and adapted from [D1].

On MUV, the performance of unbiased features is substantially lower, but the predic-
tions are still better than a random guess. In contrast to DUD and DUD-E, no corre-
lation between the performance and the number of features can be observed, probably
because the MUV unbiasing strategy tries to reduce bias in a 17-dimensional feature
space in contrast to matching distributions of single features.

In conclusion, the described analysis suggests that the benchmark data sets’ unbiasing
strategies are unsuitable for machine learning. While the unbiasing strategy of MUV
might be better suited than DUD and DUD-E, it also has serious limitations [123].
The feature selection method developed here enabled the detailed analysis of the un-
biasing strategies, determining which and how many features are important for solving
the target task on the data set. With the method, the extent of bias could be as-
sessed. Therefore, when using these data sets to evaluate a new method, it is important
not to compare the method’s performance to random predictions but to the baseline
performance given by the unbiased features.

2.1.6 Outlook

After publication of [D1], other studies [158] were published supporting the described
findings and came to similar conclusions.
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Figure 2.4: Example of the linearly non-separable case in the intra-target CV experiment with the
single feature LogP on the protein target pnp of DUD. The first and second rows depict
the feature distribution on the training and testing set of one fold of the CV, respectively.
The third and fourth rows show Logistic Regression and Random Forest contour plots.
The red triangles on the top of the contour plots mark the LogP value for the test actives,
and the blue triangles at the bottom mark the LogP values of the decoys in the test set.
This figure was taken and adapted from [D1]. Contour plots were recomputed using the
same script and data as in [D1], but with a different random seed, exhibiting negligible
differences.
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The analysis in this doctorate project concluded that new data sets suitable for ma-
chine learning are needed to overcome the identified problems. An inherent and chal-
lenging problem is the data limitations in currently available data sets, for example,
from the unavailability of inactives and the similarity of actives. New data sets are
published that try to address these biases, such as LIT-PCBA [159], which provides
baseline performances for different methodologies and uses an extended version of the
MUV bias scoring [123] for building bias-reduced training and test splits for machine
learning. However, other studies suggested that these unbiasing scoring functions do
not help to improve the ability to generalize [160]. Alternatively, instead of integrating
unbiasing strategies in the data selection protocol of data sets, subfields of representa-
tion learning, like algorithmic fairness [161], try to integrate unbiasing strategies into
the learning process of machine learning models.

Building suitable benchmark data sets in the future might be achieved through larger
community efforts that systematically generate new data, the industry making inactive
data available, careful curation, and comparing to baseline methods instead of ran-
dom performance. In addition, community challenges like D3R [5] or CACHE [6] aim
to provide a competition platform supplying prospective testing to foster innovative
methodology. Ultimately, to progress in the field, not only the methodology but also
the techniques and data sets used for validating new methods have to improve.

2.2 Analyzing Structure Data Sets for Protein Adaptations

In the second doctorate project [D2] of this work, protein structures were analyzed for
adaptations to the conditions of their source organisms’ habitat. The scientific goal
of this study was to decipher protein adaptations to high pressure by a comparative
analysis of protein features. The interpretability method described in section 2.1.4
was extended and applied to the analysis of protein adaptations. The methodological
enhancement uses the Shapley values framework on the output of the before-developed
feature selection procedure [D1] to attribute importance to individual features. The
resulting per-feature importance estimates were applied to isolate predictive features
and interpret their relationship to protein adaptations.

2.2.1 Motivation

Proteins functional under extreme conditions are highly relevant for improving biotech-
nological processes in fields like pharmacology, agriculture, and biofuel production [162].
Such proteins occur naturally in extremophilic organisms inhabiting environments with
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prevailing extreme conditions. The deep sea is one of the largest terrestrial extreme en-
vironments. It is particularly interesting because it simultaneously poses its inhabitants
under multiple extremes, including extreme temperature, pressure, and salt concentra-
tion ranges [162–164]. Driven by environmental metagenomic efforts, recent years have
seen an increased understanding of life forms from extreme environments, and a grow-
ing number of genome and protein data became available [162]. Despite the progress,
the effective engineering of proteins to function under extreme conditions remains a
long-standing challenge [68, 162].

Accurately modeling the structure-property relationship is crucial for rational de-
sign and computational methods for designing and engineering proteins. However, the
knowledge of this relationship is limited for many protein adaptations. For example,
high-pressure adaptations are not well-described, while protein adaptations to high tem-
peratures are described the most extensively [162, 165]. Still, a profound understanding
of high-temperature adaptations enabling large-scale protein engineering is yet to be
derived [68]. It is presumed that high-temperature adaptations are a complex and
context-dependent combination of multiple factors that are difficult to disentangle [68].
In addition, most extremophilic organisms are exposed to multiple extremes in their en-
vironments. Therefore, their proteins potentially exhibit multifactorial adaptions [166],
making it even more challenging to disentangle the protein features of specific stability
adaptations.

Optimizing proteins for extreme conditions is a crucial challenge for protein engineer-
ing. The currently available protein data of extremophiles might hold valuable clues
that can be exploited to unravel the factors responsible for adaptations, but the data
was not analyzed at scale yet. Comparing not only the proteins of organisms of two en-
vironments but multiple different environments might help decipher multifactorial and
individual adaptations to extremes.

The scientific question addressed in this project [D2] was whether the currently avail-
able structural protein data of deep-sea organisms could be used to generate new in-
sights into protein adaptations to high hydrostatic pressure. Unique to this study is
the generation of a large-scale protein structure data set of orthologous protein pairs
from organisms of multiple environments from which relevant protein characteristics
were isolated using machine learning-based feature importance attribution.

2.2.2 Data Set Creation

A data set of matched protein structure pairs was created. The idea is to pair a protein
of a deep-sea organism with a similar related protein from an organism of a different
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environment. In this approach, the source environments of the proteins are used as
surrogates for the property of stability towards extreme conditions. This assumption is
necessary since there is little data on experimentally determined protein pressure stabil-
ity. The creation of pairs of similar proteins should emphasize the structures’ remaining
and likely nuanced differences for the analysis of adaptations whose characteristics are
believed to be subtle.

The data set was generated by collecting the names of deep-sea organisms from the
literature. Then, the available experimental structures of deep-sea organisms in the
PDB [33] were extracted. The individual chains of the structures were used to find
potential orthologous chains in the PDB using the sequence similarity search and com-
parison tools HHsearch [93] and needle [167] and the structure comparison tool TM-
align [168] to generate structure chain pairs with a high probability of evolutionary
relationship. The chains from deep-sea organisms are called deep-sea structures, and
the paired chains are called decoy structures in the following.

2.2.3 Analytical Workflow

The generated data set was analyzed for high-pressure adaptations with the workflow
illustrated in Figure 2.5. This top-down approach aimed to detect global protein adap-
tations of the population of deep-sea proteins in contrast to adaptations in certain
protein families or organisms. Machine learning-based feature selection was employed
in a cluster CV scenario. The protein pairs were clustered by sequence similarity while
keeping the pair relation. Multiple clusters were grouped into five folds. Therefore, the
models should pick up features descriptive of protein characteristics in different protein
families during training, which can then be directly assessed on the test set.

The workflow steps from Figure 2.5 are summarized in the following. A detailed
description can be found in [D2].

The compiled data set was split based on the deep-sea organisms’ optimal growth tem-
perature in the first step. The pairs with structures from deep-sea (hyper)thermophiles
are used for feature selection, while the scarcely available pairs of structures from
deep-sea psychrophiles (prefer cold temperature) and deep-sea mesophiles (prefer mod-
erate temperature) were used as an external test set. The pairs from deep-sea (hy-
per)thermophiles were used in the five-fold cluster CV, and one of these folds was set
aside as a second external test set.

An additional partitioning was performed based on the decoy structure’s source or-
ganism used in the CV. The data was split into four overlapping subsets listed and
described in Table 2.2.
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Figure 2.5: The workflow for analyzing protein adaptations in deep-sea proteins. The data set of
matched protein pairs was split based on the optimal growth temperature preferences
of the deep-sea source organism. Structure pairs of deep-sea (hyper)thermophiles were
used for feature selection, while pairs from psychro- and mesophiles were used as external
test sets. Exemplarily, it is illustrated how 1.4 million structure feature combinations are
evaluated. The best-performing sets are then validated on the two external test sets. This
figure was taken from [D2].

set name short description

DecoyAll All decoy organisms
MesoModel Mesophilic model organisms
ThermoAll All thermophilic organisms

ThermoModel Thermophilic model organisms

Table 2.2: Overview of overlapping subsets based on the decoy structures’ source organisms. The
’DecoyAll’ set is the complete set of deep-sea/decoy structure pairs from deep-sea (hy-
per)thermophiles. The ’MesoModel’ set comprises decoy structures from mesophilic model
organisms, for example, Homo sapiens and Escherichia coli, ’ThermoAll’ contains pairs
with thermophiles from the literature, and the ’ThermoModel’ set is a subset of the ’Ther-
moAll’ set holding only well-studied model thermophiles, like Thermus thermophilus and
Thermotoga maritima. This table was taken and adapted from [D2].
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25 sequential and 45 structural features were computed on each protein chain of
the data set. Sequential features were, for example, the relative frequency of amino
acid residues and their physicochemical properties. In contrast, features computed on
the structure describe noncovalent molecular interactions, the secondary structure, the
solvent-accessible surface (SAS), the buriedness of residues and waters, volume, rigidity,
and flexibility.

The three machine learning algorithms, Logistic Regression, Random Forest, and
Gradient Boosting, were employed to classify the structures as either ’deep-sea’ or ’de-
coy’. Feature selection with wrapper methods is applied to evaluate the performance
of different feature sets with the CV, like in section 2.1. The best-performing models
and feature sets are evaluated on the external test sets as an additional validation step.
Since the exponential number of feature combinations makes the enumeration of all
feature sets in the feature selection infeasible, only feature combinations of up to five
features are evaluated. For the 45 structural features these are

∑s=5
k=1

(
45
k

)
= 1, 385, 979

feature sets.

To interpret which features are important and potentially related to protein adap-
tations, the feature selection with wrapper methods procedure from section 2.1.4 was
extended to quantify the importance of individual features with the enhancement de-
scribed in the following section 2.2.4.

2.2.4 Methodological Summary

The method developed in [D2] extends the interpretability method from section 2.1.4
with the Shapley value framework [169] from cooperative game theory for estimating
the importance of individual features. Initially, Shapley values were developed to quan-
tify the contributions of individual players in a cooperative game. The Shapley value
of an individual player is the average of the player’s marginal contributions over all
possible permutations the coalition can be formed [169]. Thus, a player’s contribution
is described as the average change in the coalition’s value when the player participates.
This concept can be used to attribute contributions single features make in combina-
tion with other features in a machine learning prediction task. The set of all features is
denoted as N , and the set S | S ⊆ N is a certain combination of features. The Shapley
value of a feature fi | fi ∈ N is the weighted sum of the marginal contributions feature
fi makes when included in the feature set S:

Shfi(v) =
∑

S⊆N\{fi}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {fi})− v(S)),
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where n = |N | is the total number of features, and the function v is a function
mapping a feature set to a real number representing its value. The Shapley values
concept can be directly applied to the feature selection methodology with wrapper
methods described in section 2.1.4 to quantify the contributions of individual features.
In this scenario, the value of collaboration described through v is the feature set’s mean
performance in the CV experiment.

The exponential scaling of feature sets makes the computation of Shapley values in-
feasible when a larger number of features is used. For example, this issue can be avoided
with sampling approaches through which Shapley values can be estimated in polynomial
time [170]. In this project, analogously to the sampling approach, the contribution of
each feature fi was computed by considering only the marginal contributions from a
sample of all possible coalitions, specifically all feature sets up to five features. Features
with high contributions indicate that the feature is important for the classification task,
which can be used to interpret protein adaptations.

2.2.5 Analyzing Important Features For Protein Adaptations

The evaluation results of important features are illustrated in Figure 2.6 and 2.7. Fea-
tures with high contributions indicate that these features are important for predicting
deep-sea proteins across different protein clusters or families.

The results in Figure 2.6 and 2.7 show that the features considered important by the
three machine learning algorithms within each data set are relatively similar. Therefore,
the selection of the machine learning method does not seem critical, and even the simpler
Logistic Regression algorithm captures signals similar to the non-linear tree ensemble
methods.

Viewing the results in the context of the compared proteins’ source organisms’ en-
vironments is essential to interpret protein adaptations to high pressure. Specifically,
strong contributing features can be observed in the experiments of the ’DecoyAll’ and
’MesoModel’ data sets, namely the relative frequencies of GLN, GLU, ILE, LYS, SER,
positively and negatively charged residues, polar residues, and CYS for the ’MesoModel’
data set for the sequence and the portion of the polar surface, positively and negatively
charged surface, the buried polar residues, buried positively and negatively charged
residues and the number of noninteracting anions of the whole protein and on its sur-
face. The distribution of charged and polar residues are the most contributing features
in both sequence and structure features. Intriguingly, these features correspond well
to the characteristics usually described as thermal adaptations: an increased propor-
tion of charged and a reduced number of polar residues [68, 82, 166, 171]. This exact
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Figure 2.6: Heatmap of the contributions of each sequence feature overall data sets and machine
learning algorithms. The color illustrates the average increase in prediction performance
in terms of mean ROC AUC in the cluster CV if the feature is included. On the x-axis,
the names of the features are listed. The y-axis depicts the data sets and the machine
learning algorithm used. The algorithms are Logistic Regression (LR), Random Forest
(RF), and Gradient Boosting (GB). This figure was taken from [D2].

Figure 2.7: Heatmap of the contributions of each structure feature overall data sets and machine
learning algorithms. The color illustrates the average increase in prediction performance
in terms of mean ROC AUC in the cluster CV if the feature is included. On the x-axis,
the names of the features are listed. The y-axis depicts the data sets and the machine
learning algorithm used. The algorithms are Logistic Regression (LR), Random Forest
(RF), and Gradient Boosting (GB). This figure was taken from [D2].
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same trends were observed in the results of this doctorate project. Considering that the
deep-sea protein data comes from (hyper)thermophilic organisms, it can not be ruled
out that the features highlighted as important in the results describe thermal and not
pressure or other adaptations. While adaptions to high temperature and high pressure
might be related and dependent, this cannot be concluded based on the results of the
’DecoyAll’ and ’MesoModel’ experiments alone.

For disentangling adaptations to temperature from other adaptations in deep-sea
proteins, the ’ThermoAll’ and ’ThermoModel’ data sets were employed to compare
deep-sea proteins to proteins of thermophiles. Features important in all four data sets
might describe distinct properties of deep-sea proteins that can not be attributed to
thermal adaptations. The results on the ’ThermoAll’ and ’ThermoModel’ data sets
show notably less prominent trends than those on the first two. The most important
sequence features are the proportion of LYS and ILE, which, interestingly, are, on
average, increased in deep-sea proteins over all four data sets. This enrichment was
described before by others [172, 173], but a mechanism for how this residue preference
might adapt deep-sea proteins still needs to be clarified. On the structure level, the
most distinctive contributions come from noninteracting anions of the whole protein
and at the surface. Both are increased on average in deep-sea proteins. However, the
contributions of the features on the ’ThermoAll’ and ’ThermoModel’ are not strongly
pronounced, suggesting that the features ranked here as the most important features
are likely not traits of the whole population of deep-sea proteins but only of a subset.

In conclusion, a clear pattern or mechanism for high-pressure adaptations could not
be derived. However, the results of the systematic analysis provide clues on which
features might be linked to an adaptive mechanism. The features highlighted on the
’DecoyAll’ and ’MesoModel’ data sets might illustrate the apparent differences already
extensively described in the literature on thermal adaptations [68, 82, 166, 171]. When
the ’ThermoAll’ and ’ThermoModel’ data sets are also considered, a small set of rather
subtle and hard-to-interpret features emerges. Therefore, the results suggest that pres-
sure adaptations might be only present in a subset of deep-sea proteins, which is in
accordance with current beliefs [162, 174] but does not provide detailed new insights
into a particular adaptive mechanism. Further analysis and results reaching the same
conclusions are described in detail in [D2].

2.2.6 Outlook

The major limitation hindering the analysis of protein adaptations using comparative
studies still seems to be the available data and its annotation. Even though there has
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been recent progress in data collection, the experimental structure data available is
scarce, mostly from (hyper)thermophiles and imbalanced towards individual organisms.
In addition, given the complexity and entanglement of extreme adaptations, using the
habitat as a surrogate for protein properties might be a bottleneck whose resolution
requires a tremendous and community-wide effort.

The next steps to further investigate high-pressure adaptations in proteins could
be analyzing individual protein families and organisms using the clues derived in this
study. Certain protein classes are suspected to be more likely to hold adaptations,
for example, enzymes involved in energy metabolism [162]. In addition, alternative
data sources might be helpful, like considering protein sequences databases or predicted
structures. However, whether these data sources are helpful must be investigated. While
current metagenomic efforts seem to step-wise improve the knowledge of extremophiles,
unraveling the molecular mechanism and adaptations within these organisms and their
proteins poses an additional challenge.

2.3 Alternate Location Enumeration

In the third project of this doctorate [D3], a new method was developed for auto-
matically handling alternate locations (AltLocs) in protein structures and structural
complexes. AltLocs are experimentally derived structure annotations describing dis-
crete conformations of regions of the structure, like single atoms, side chains, or larger
parts. In this doctorate project, a new method was co-developed to efficiently and
automatically enumerate AltLoc conformations for a given structure. The method was
implemented in the AltLocEnumerator tool which provides the generated conformations
to the user as a structure ensemble. AltLocEnumerator can automatically generate valid
structure ensembles representing experimental evidenced protein flexibility through a
simple and function-rich interface ready for various structure-based tasks.

2.3.1 Motivation

Proteins are usually represented as a single rigid structure that insufficiently expresses
the inherent protein flexibility. However, flexibility is vital for many essential tasks,
for example, docking or binding free energy estimation in drug discovery [175, 176].
Protein flexibility can be described through structure ensembles of the protein collected
from a structure database [176], estimated with computational methods like molecu-
lar dynamics simulations [175] or derived from experimental indicators, like B-factors
[132]. AltLocs encompass another source of structural conformations supported with
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experimental evidence and are directly available from single structure files. However,
despite 42% [D3] of structures in the PDB annotated with AltLocs, they are often over-
looked. AltLoc annotations describe discrete conformations of parts of the structure,
like different side chain conformations, derived by crystallographers from ambiguities
in the experimental data, i.e., the electron density [126]. The negligence of AltLocs by
molecular modelers and other practitioners might be due to a lack of accessible meth-
ods to handle AltLocs efficiently, automatically, and correctly. It is common practice to
arbitrarily select only a single AltLoc conformation either by picking the first appear-
ing conformation when parsing the structure file or selecting all AltLoc conformations
labeled with a certain identifier, like ’A’ [D3]. However, this leads to a single rigid
structure when there is actually an exponential number of conformations of the full
protein structure when all AltLoc conformations are combined. Some modeling tools
allow manually selecting specific AltLocs, e.g., ChimeraX [177] or PyMOL [178], which
can become tedious.

AltLocs can be crucial in almost all structure-based tasks. Even though structural
changes encoded in AltLoc conformations are usually relatively small, even small confor-
mational changes can significantly impact the structure and interactions of biomolecules.
For example, side chain conformations can make a difference in small molecule dock-
ing. A specific AltLoc conformation can enable noncovalent interactions, like hydrogen
bonds or polar interactions, while the alternative can not [D3]. Further, AltLoc con-
formations can help to express structural variations for developing and evaluating side
chain prediction methods widely used in protein design, protein docking, or structure
optimization [179].

At the start of this project, no method existed that enables practitioners to exploit
the protein flexibility encoded in AltLoc annotations automatically without human
intervention while checking for reasonable overall structure conformations and efficiently
handling the exponential number of potential structure conformations.

2.3.2 AltLocs in the PDB

AltLocs describe alternative atom coordinates and are annotated to a structure by
crystallographers when interpreting the electron density. The usage and annotation of
AltLocs throughout the structures in the PDB are not fully consistent. Perhaps because
an explicit guideline on when and how to annotate AltLocs is unavailable, leaving space
for interpretation. This, however, complicates the automatic processing of AltLocs.

AltLocs are annotated in PDB structure files in the ATOM/HETATM section as
additional entries labeled with alphabetic characters, often starting with ’A’. AltLocs
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can be annotated for all entities of a structural complex in the PDB structure file, in-
cluding proteins, nucleic acids, and other molecules. Each alternative atom coordinate
is assigned an occupancy value between zero and one, reflecting the AltLoc conforma-
tion’s frequency experimentally observed in the crystal [126, D3]. However, it can be
challenging for crystallographers to determine the exact differences in occupancy, re-
sulting in uniform values for all conformations. All occupancy values over the AltLoc
conformations of an atom should sum up to one [126]. While AltLocs are atom-level
annotations, they are usually used on a per-residue basis, for example, to describe alter-
native side chain conformations. In addition, while theoretically, an arbitrary number
of conformations can be annotated, most AltLocs describe only two discrete states [D3,
179].

Interestingly, the number of AltLocs annotated in PDB structure files correlates pos-
itively with the resolution [D3, 179]. This implies that poorly resolved structures do
not provide a sufficient experimental basis for determining AltLocs. In contrast, in
high-resolution structures, AltLocs can be deduced more reliably [D3, 179]. Improv-
ing structure determination methods will likely make more high-resolution structures
containing more AltLoc annotations available.

Figure 2.8 shows examples of AltLocs in the PDB. Figure 2.8a illustrates the sim-
ple case of two side chain conformations. In this case, only the side chain atoms have
alternative coordinates annotated. However, AltLocs can describe more than two con-
formations and include both side chain and backbone atoms as depicted in Figure 2.8b.
Further, as illustrated in Figure 2.8c the AltLoc conformations of multiple residues can
depend on each other. Here, the AltLoc annotations describe two loop conformations.
Finally, AltLoc conformations can also appear in HETATM entries, including small
molecules, cofactors, and water molecules. For example, Figure 2.8d shows two AltLoc
conformations in the GNP ligand in complex with an aminoglycoside kinase.

2.3.3 Handling AltLocs with AltLocEnumerator

AltLocEnumerator was implemented as a command line tool within the NAOMI Chem-
Bio Suite [180–182]. The tool takes a structure in PDB/mmCIF format as input. It
automatically generates a particular single structure conformation or a structure en-
semble from the AltLoc annotations in the input file. AltLocs of structural complexes
of proteins, nucleic acid, and other molecules are handled automatically, and the user
can select different AltLoc enumeration strategies (see Table 2.3). The enumeration
strategies represent common use cases, like obtaining only a single or all structure con-
formations with the best occupancy estimate ((i), (ii)). Also, all possible valid structure
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Figure 2.8: Examples of AltLocs in the PDB. a) The AltLocs describe two side chain conformations,
which is a frequent case. b) AltLocs of a residue with five different conformations differing
in the side chain and backbone atoms. c) Two AltLocs of a peptide fragment containing
parts of a helix and loop. The AltLocs of multiple sequential residues depend on each
other. d) Two AltLoc conformations in a ligand molecule. This figure was taken from [D3].

conformations can be enumerated (iii) and exported as a structure ensemble. In ad-
dition, two simple and often employed strategies are provided, which select AltLoc
conformations using a single AltLoc identifier ((iv), (v)) to generate a specific structure
conformation.
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Table 2.3: List of strategies to enumerate AltLoc conformations implemented in AltLocEnumerator. This table was taken from [D3].

output conformations name description

(i) single best occupancy score Generation of a single structure
conformation with the maximal
occupancy score.

(ii) multiple all best occupancy score Generation of all structure conformations
with the same maximum occupancy score.

(iii) multiple enumerate all Enumeration of all possible valid
structure conformations.

(iv) single first encounter Selection of a structure conformation based on
the first encountered AltLoc identifier while
reading the file.

(v) single specific AltLoc-ID Selection of a structure conformation with a
user-specified AltLoc identifier. For example,
all AltLoc conformations with identifier ’B’.

39



2 Publications

The AltLocEnumerator tool provides some additional options. The number of enu-
merated structure conformations can be limited for strategies (ii) and (iii). Limitation
can be necessary when there is a combinatorial explosion of residue AltLoc conforma-
tions. In addition, local sites or a subset of residues can be specified to focus the AltLoc
enumeration on a set of residues, for example, a binding site. This option can also help
to reduce the problem of combinatorial explosions. Further options include stripping
HETATMs before AltLoc handling, which allows building some structure conformations
that would clash with HETATMs. Finally, a root mean square deviation (RMSD) filter
can greedily select a diverse set of structure conformations by filtering out all struc-
ture conformations below a user-defined RMSD threshold to already accepted structure
conformations.

2.3.3.1 Methodological Summary

The newly developed method behind AltLocEnumerator efficiently combines AltLoc
conformations of individual residues with a branch-and-bound algorithm. Only valid
structure conformations are generated by selecting the AltLoc combinations that do not
introduce backbone clashes or chain breaks. The algorithm is illustrated in Figure 2.9.
The general idea is to handle and represent AltLoc annotations as residue conformations
by grouping alternate locations of atoms from the same residues together. These residue
AltLoc conformations are extracted from the input structure file (see Figure 2.9a) and
occupancy values are assigned to the residue AltLoc conformations as the mean of the
occupancy values of the atoms with AltLocs in the residue.

A data structure is constructed from the residue AltLoc conformations, named
AltLoc-DAG, which is an ensemble of directed acyclic graphs (DAGs) (see Figure
2.9b). The AltLoc-DAG represents a reduced search space of all possible combinations
of residue AltLoc conformations containing only compatible residue conformations.
Nodes represent residue conformations and are weighted by their occupancy. The DAG
is organized hierarchically in layers, each holding the AltLoc conformations of a partic-
ular residue. An edge is added when two residues are successive in the macromolecular
sequence, and no chain break would be introduced by selecting the two conforma-
tions. In addition, clashes between all residue conformations are tracked as indicated
by the dashed red arrow in Figure 2.9b. Subsequently, the AltLoc-DAG is refined into
separated independent DAGs (see Figure 2.9b and c).

Valid structure conformations can be determined from the AltLoc-DAG (see Figure
2.9d) by employing the first three search strategies ((i), (ii) and (iii)) listed in Table 2.3.
A valid structure conformation can be found by traversing each DAG from the top to
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Figure 2.9: Workflow of the method behind AltLocEnumerator for enumerating valid structure con-
formations from AltLoc annotations. a) depicts the extraction of residue conformations
and their occupancy values from the structure file. b) illustrates the construction of
the AltLoc-DAG data structure, an ensemble of DAGs. The AltLoc-DAG represents a
reduced search space for the extraction of valid structure conformations. c) shows the
refinement of the AltLoc-DAG and splitting independent residue AltLoc conformations
in separate DAGs. d) demonstrates the search for a valid structure conformation with a
traversal on the AltLoc-DAG. This figure was taken from [D3].

the bottom layer. Any path without a node pair with a clash represents a valid structure
conformation. Strategies (i) and (ii) employ a greedy depth-first search-like traversal
scoring the occupancy values of the residue conformations to find the valid structure
conformation with the best occupancy score or all valid structure conformations with
the best occupancy score, respectively. In contrast, strategy (iii) enumerates all paths
in the AltLoc-DAG (ignoring occupancy but considering clashes), providing all possible
valid structure conformations.

For further methodological details, see [D3].

2.3.3.2 Evaluation

AltLocEnumerator was evaluated on the binding sites of the structures with AltLocs
in the sc-PDB [183]. A naive approach was implemented with scripts that parses the
binding site residues with AltLocs from the structure file and computes the number
of structure conformations by taking the product of residue AltLoc conformations.
The naive approach combines all residue conformations without considering depen-
dencies between separate residue AltLoc conformations. The comparison showed that
AltLocEnumerator extracts the same AltLoc annotated residues as the naive approach.
However, the number of structure conformations differed in 15.56% of the cases. Of
these cases, most differed because the maximum number of structure conformations
to enumerate (513) was reached by AltLocEnumerator. The remaining 370 cases were
checked manually and differed only due to expected or acceptable reasons. For example,
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the conformations reported by the naive approach but not by AltLocEnumerator had
backbone breaks or clashes with HETATMs. We found cases where AltLocs were used
to model alternative amino acids instead of conformations. Also, the naive approach re-
ports combinations with AltLocs representing only a single residue conformation, which
AltLocEnumerator ignores.

The runtime of AltLocEnumerator was also evaluated on the sc-PDB subset with
AltLocs in the binding sites. The results are depicted in Figure 2.10. The results
show that using the ’best occupancy score’ strategy with AltLocEnumerator does not
take considerably more time than the much simpler baseline strategy of selecting
AltLocs with the first encountered AltLoc identifier (Figure 2.10a). Consequently,
with AltLocEnumerator the single structure conformation with the best occupancy
score can be selected without significant compromise in runtime. Specifying a ligand
binding site has an adverse effect on the runtime when only a single structure conforma-
tion should be generated. However, for generating structure ensembles the focus on the
ligand site can speed up the computation probably because the overhead of processing
the local site specification is not beneficial when only a single structure conformation is
generated. In Figure 2.10b it can be seen that the core algorithm of AltLocEnumerator
takes the least time while handling the input and building and validating generated
structure conformations with NAOMI, as well as writing them to disc takes the most
time. Particularly, in the strategies generating structure ensembles, the last two steps
are taking the most time. These results show that the developed algorithm is efficient
enough to replace the naive default strategy ’first encounter’ with the new ’best oc-
cupancy score’ strategy when a single structure conformation is required. In addition,
structure ensembles of AltLoc conformations can be generated flexibly for the whole
structure or a local site with AltLocEnumerator in just a few seconds.

It was also evaluated whether considering AltLocs in the redocking of protein-ligand
complexes has a positive effect on the generated ligand poses. This experiment combined
AltLocEnumerator and the docking tool JAMDA [184]. The analysis showed that in
many cases, considering AltLocs yields ligand poses with better RMSD in the top ranks
than the baseline structure conformation. However, this improvement could only be
observed when more poses were considered for the AltLoc approach than for the baseline
approach. When accounting for this numerical advantage by considering the same
number of poses for both approaches, no significant change in performance compared
to the baseline was observed. The analysis shows that better poses can be generated
using AltLocs but cannot automatically be selected from the ranking.
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Figure 2.10: Results of AltLocEnumerator runtime evaluation on the sc-PDB. a) shows the runtime
of four different enumeration strategies implemented in AltLocEnumerator (strategies
(i) to (iv)). The runtime is evaluated for the whole structure and the ligand site sepa-
rately. b) detailed runtime for each step in the tool when using the whole structure. The
’input’ time describes the time needed to process the input data. ’AltLoc selection’ illus-
trates the time taken for the newly developed algorithm to construct the AltLoc-DAG
and perform the search (except for the ’first encounter’ strategy). ’complex building’
describes the time needed by NAOMI to build and validate the complex data structure
and ’output’ is the time needed for writing the generated structure conformations as
PDB files on the disc. This figure was taken from [D3].

2.3.4 Outlook

With AltLocEnumerator the protein flexibility described through AltLoc conformations
can now be handled automatically for any structure-based downstream application.
Since AltLocs have often been ignored in the past, applying AltLocEnumerator to in-
vestigate the influence of AltLoc conformations in diverse tasks in drug discovery and
protein engineering would be an interesting next step. In addition, the tool can be
integrated into existing workflows to incorporate AltLoc-based protein flexibility. A
convenient starting point could be workflows where structure ensembles already handle
protein flexibility, for example, in ensemble docking [185]. Further technical develop-
ments could include the integration of additional criteria to select conformations. For
example, interactions, like hydrogen bonds could be scored or the electron density sup-
port of conformations could be considered using methods like the EDIA scorer [127].
Furthermore, more strategies could be tested that generate diverse conformation en-
sembles, for example, different clustering algorithms.
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2.4 3D Micro-Environment Similarity Search

In the fourth doctorate project [D4], a new method for searching similar local 3D micro-
environments in protein structure databases was developed and implemented in the tool
MicroMiner. The method introduces a novel perspective for searching and compiling
structure ensembles of local residue-centered structural protein sites, termed residue
3D micro-environments. In general, micro-environment similarity search constitutes a
basis for exploring and analyzing the local details characterizing structure and function.
This project focused on the scientific key application of structural single mutation anal-
ysis. With MicroMiner, millions of amino acid pairs illustrating the structural changes
upon single mutations could be extracted from the PDB. Specifically, more than 255·106
pairs for monomers and more than 45 · 106 pairs for protein-protein interfaces were ex-
tracted. With these pairs, existing experimental data of mutation effects, like ∆∆G

measurements and affinity changes, are annotated with structures for the mutant. For
this existing data, only a structure for the wild-type was usually available, insufficiently
representing the structural change upon mutation. In addition, within this doctorate
project, the MicroMiner tool was integrated into the ProteinsPlus web platform [D5].
MicroMiner can be combined on the server with established structure-based drug dis-
covery tools, like binding site detection methods, to bridge the gap between mutation
analysis and drug design. The MicroMiner method provides a new way to process
existing protein structure collections to extract structure ensembles for a more compre-
hensive representation of structural changes in atomic details at local sites in protein
structures.

2.4.1 Motivation and Idea

The idea of the MicroMiner method arose in this doctorate project while investigating
the limitations and challenges in mutation effect prediction data sets [133, 186]. Accu-
rately representing the structural changes induced by single mutations on the protein
structure is essential for various applications like mutation effect prediction and mod-
eling, structure prediction, and side chain modeling, which affect multiple downstream
applications in protein engineering and drug discovery. When working with mutation
effect measurements, like energy changes, a protein structure is usually only available for
the wild-type and not for the mutant [133]. Current approaches [114, 187, 188] mitigate
the problem through ’hypothetical reverse mutations’ [189, 190] by modeling the mu-
tant residue in the wild-type structure. However, a reliable representation, especially
for more extensive structural changes, induced by a single mutation in atomic detail
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remains vital [133, 186]. Intriguingly, even sophisticated structure prediction methods
like AlphaFold2 are currently incapable of accurate mutation effect prediction for single
mutations [191, 192]. Therefore, practitioners and method developers working in pro-
tein engineering and drug discovery need a reliable and directly available representation
of the structural changes induced by a single mutation.

In this project [D4], a potential solution to this problem was developed with MicroMiner.
Protein structure databases like the PDB were observed to contain many similar pro-
teins, providing examples illustrating structural changes of single mutations at local
positions in the protein structure. However, with established tools, extracting these
structure pairs of single mutation sites is not straightforward. Dedicated tools that
can extract single mutation sites from protein structure databases at scale are lacking.
In this doctorate project, the MicroMiner method was developed from the observa-
tion that searching for such local protein sites of single mutations has requirements
similar to searching for ligand binding sites in protein structure databases. Based on
this observation, the MicroMiner method was developed based on the SIENA [97] and
ASCONA [193] methods for binding site similarity search, which were available in the
NAOMI framework [180–182]. Instead of searching for the 3D protein environments of
small molecule ligands, i.e., the binding site, MicroMiner searches for the 3D protein
environment of individual residues, called residue 3D micro-environments. The idea
behind applying MicroMiner for mutation analysis is to use large quantities of existing
protein structure data as a resource to extract local 3D micro-environments representing
the structural changes of single mutations. With the structure data in the PDB, struc-
tural changes can be represented through experimentally determined structure pairs of
the wild-type and the mutant. These depict the structural details in atomic resolution
and can readily be used for downstream applications.

2.4.2 Approaches for Searching Locally Similar Protein Structures

Since protein similarity search is widely established, various prominent local similarity
analysis methods exist. However, it was found in this doctorate project that a tool is
lacking to search similar local 3D protein sites in protein structure databases with the
requirements for single mutation analysis.

The most well-known protein similarity search methods are local sequence aligners
like BLAST [86], MMseqs2 [92], or DIAMOND [94] which are fundamental bioinfor-
matics tools. However, they focus on homology detection, which usually identifies the
largest similar sequence part shared between two proteins or domains. An assessment
of a particular local 3D site considering its’ short sequence fragments, 3D contacts, and
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multiple chains is not provided in these tools. In addition, purely sequence-based tools
usually have no mechanism to handle experimental artifacts in 3D structures, like unre-
solved residues. On the other hand, prominent structure-based similarity search tools,
like Dali [95, 194], TM-align [96, 168], or Foldseek [59] detect homology through con-
served structure, consequently aiming to identify and align structurally similar protein
regions, which can be contrary to handling protein flexibility and structural changes
upon mutations. In addition, Dali and TM-align perform global protein alignments,
and only Foldseek, which was released recently, aligns proteins locally. Therefore, cur-
rently, widely employed protein similarity search tools are not directly applicable to the
problem of searching and aligning local 3D protein sites of single mutations.

In contrast, it was found in this doctorate project that the perspective of similarity
search tools for ligand binding sites seems more suitable for searching similar local 3D
protein sites of single mutations. Binding sites are usually modeled as local 3D sites
in the protein structure where a ligand resides. Therefore, in this doctorate project, it
was hypothesized that binding site similarity search methods build a reasonable basis to
model the local 3D site of an amino acid for which a mutation should be found. Numer-
ous tools for binding site similarity assessment exist [195], for example ASCONA [193],
PocketShape [196], DeeplyThough [197] and ProCare [198]. Importantly, only some of
these tools can be used in a reasonable time for database searches because they only
perform pairwise comparisons and do not employ a fast prefiltering step of the search
database first. Further, searching for single mutation sites requires an identical target
sequence except for a single residue. However, structural deviations should be tolerated
to identify structural changes upon mutation. Not all of the mentioned binding site
similarity tools can directly consider amino acid identity but employ, for example, more
abstract concepts like interaction/pharmacophore points or the protein surface. In ad-
dition, many binding site similarity tools are not directly suited to capture structural
changes upon mutation because they employ strict geometric matching criteria. This
doctorate project hypothesized that the ASCONA [193] and SIENA [97] binding site
similarity search tools are likely suited for searching similar 3D sites of single muta-
tions. ASCONA is a fast sequence and geometry-based binding site aligner focusing on
aligning binding site conformations while allowing for some mutations. This approach is
considered suitable since it can work with protein flexibility and single mutations while
being relatively fast due to sequence-based comparisons and only a fuzzy geometric
evaluation. SIENA is built on top of ASCONA and adds a fast prefilter for searching
protein structure databases using k-mers. Finally, ASCONA and SIENA were a con-
venient choice since both were developed by Stefan Bietz during his doctorate in the
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group of Matthias Rarey and implemented in the NAOMI code base, which was also
used during this work.

2.4.3 Searching Single Mutation Structure Pairs with MicroMiner

MicroMiner proposes a novel perspective on protein similarity search employing residue
3D micro-environment similarity search. The local neighborhood of a single reference
residue in the protein structure defines a residue 3D micro-environment. Per default, it
is described as all residues within a distance of 6.5Å to any heavy atom of the reference
residue. This micro-environment is used as a query to find protein structures in a
database that contain similar local micro-environments. To achieve this, MicroMiner
first performs a fast prefiltering of the protein structure database using k-mers and then
uses the ASCONA site alignment algorithm to align the query micro-environment to
the candidates to identify similar target micro-environments.

By default, MicroMiner simultaneously searches for all residues in the provided query
protein structure. However, three preselection modes exist to select specific query micro-
environments from the query structure. The ’full_complex’ mode is the default pre-
selection mode and constructs the micro-environments as they are in the file in the
asymmetric unit. The ’monomer’ mode constructs the micro-environments by only
considering residues from the same chain as the reference residue. In contrast, the ’ppi’
mode only selects micro-environments with different chains in the environment to search
for micro-environments at protein-protein interfaces.

Besides the preselection modes, MicroMiner implements two search modes. The ’stan-
dard’ search mode implements the same strategy as SIENA, employing a threshold-
controlled k-mer filter and the normal ASCONA site alignment. Since this doctorate
project focused on single mutation analysis, a dedicated ’single_mutation’ search mode
was developed, which exploits the characteristics of single mutations for algorithmic
optimizations and faster searches but also reduces the enormous and impractical re-
sult sizes obtained with a less restrictive search algorithm. The ’single_mutation’ mode
searches and reports only micro-environment hits representing single mutations in which
a different amino acid replaces the query reference residue. However, the remaining
residues of the micro-environment are identical.

The result of a search is a tabular hit list of hit micro-environments with multiple local
and structural similarity measures of the micro-environments, like the root mean square
deviation (RMSD) of the local site. The local similarity scores allow, for example, easy
filtering and investigation of structural changes induced by single mutations. Optionally,
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Figure 2.11: MicroMiner can identify and filter for structural changes upon a single mutation with a
simple RMSD filter. The mutation Lys213 (2DOR, chain A) to Glu213 (1JQV, chain A)
in the dihydroorotate dehydrogenase from Lactococcus lactis is illustrated. MicroMiner
reports a local Cα-RMSD of 4.21Å for this micro-environment alignment. Norager et
al. [199] reported the depicted mutation to be responsible for the open and closed form
of the enzyme’s binding site. This figure was taken from [D4].

the hit micro-environments can automatically be superimposed on the query micro-
environment to generate structure ensembles for direct visual inspection. Figure 2.11
shows an example single mutation MicroMiner hit for a dihydroorotate dehydrogenase.
The hit micro-environment has an RMSD of 4.21Å indicating considerable structural
changes upon mutation.

The MicroMiner tool was integrated into the ProteinsPlus web application [D5] during
this doctorate project. Only the ’single_mutation’ search mode is currently supported
on the web server. This makes MicroMiner openly available at https://proteins.plus
and part of an interoperable collection of structure-based modeling tools through which
MicroMiner builds the connecting link between structural mutation analysis and stan-
dard modeling tools in drug discovery.

2.4.3.1 Methodological Summary

The workflow of MicroMiner is illustrated with a single query micro-environment in
Figure 2.12. First, the query micro-environment is determined from a reference residue
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in the query protein structure (see Figure 2.12a). Then, connected sequence fragments
are extracted from the query micro-environment for the subsequent database search.
The database search uses the k-mers of the query micro-environment and matches
these against the k-mers contained in structures from the database (see Figure 2.12b).
Database structures fulfilling the k-mer prefiltering criteria are collected as candidates.
All candidates from the database search are evaluated by site alignments utilizing the
general algorithm of ASCONA [193] (see Figure 2.12c). The algorithm behind ASCONA
aligns the query micro-environment sequence fragments to the candidate protein chains.
Sufficiently scoring sequence-based matches are subsequently scored geometrically to
evaluate whether they can be assembled to form a similar structural arrangement as the
query site. Successful site alignments are reported as hits of similar micro-environments.
Different similarity scores are calculated and provided for each hit, including the se-
quence identity of the local environments and the global chains, the RMSD of the Cα

atoms, and all atoms of the site residues.

Two algorithmic adaptations were developed for the ’single_mutation’ mode. The
first adaptation is in the database search step. Instead of using the original k-mers of the
query micro-environment, similar k-mers are generated in which the reference residue is
substituted by one of the other 19 proteinogenic standard amino acids. This adaptation
explicitly enables the search for a mutation at the reference residue position. The
second adaptation is in the site alignment step of ASCONA. Instead of generating the
sequence alignments with approximate string matching using dynamic programming,
a seed and extend approach with linear string matching [200] was developed. In this
seed and extend strategy, the reference residue position is again replaced by all 19 other
proteinogenic standard amino acids to represent the mutation. Then, exact matches
of the query sequence fragments with the candidate sequences are computed. These
exact seed matches are then extended without gaps to a minimum size. The subsequent
geometric scoring and site assembly are identical to the ASCONA algorithm.

For further methodological details, see [D4].

2.4.3.2 Comparison to SIENA/ASCONA

The similarity search of residue 3D micro-environment poses further challenges than
binding site similarity searches. A major difference is the increased search space. Pro-
teins have only a relatively small number of ligand-binding sites. Therefore, a protein
with only a handful of relevant binding sites can have hundreds or even thousands of
residues, resulting in orders of magnitude larger query and hit sites. In addition, picking
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Figure 2.12: Illustration of the MicroMiner method workflow on the example of a single query residue
3D micro-environment. a) shows the query selection process of selecting a reference
residue, determining its’ 3D micro-environment, and extracting its sequence fragments.
b) demonstrates the database search that generates a candidate list. c) illustrates the
detailed evaluation of each candidate with the ASCONA site alignment algorithm. d)
shows the resulting structure ensemble of the hit micro-environments with the query
micro-environment. This figure was taken from [D4].

query binding sites requires an experimentally determined protein-ligand complex, bind-
ing site predictions, or other annotations. In contrast, residue 3D micro-environments
in a query protein structure can be specified for all residues directly, which allows the
analysis of residue micro-environments on a considerably larger scale than binding sites.

Multiple adaptations compared to the SIENA and ASCONA methodology were de-
veloped and implemented in MicroMiner and the NAOMI ChemBio Suite. Specifically,
the approach of the search procedure was revised and redesigned to focus not on search-
ing a single query site but on searching all query sites in a query structure at once. This
redesign reduced redundant computations in the k-mer prefiltering step and the overall
number of k-mer lookups. For comparison, SIENA employs an SQLite database for
the k-mer prefiltering, performing separate database queries for each query site, even
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if query sites have shared k-mers. Further, in MicroMiner, a faster in-memory k-mer
search index was implemented, inspired by the MMseqs2 [92] tool. This search index
employs k-mer indexing as a hash function [92]. Also, it stores the sequence start posi-
tion of each k-mer, allowing additional filtering strategies to reduce false positives. In
addition, in binding site similarity search, the number of candidate structures from the
prefiltering is small enough to load and process them all at once in the main memory.
The result sizes for the residue micro-environment search in MicroMiner are larger than
for SIENA, and the candidates must be processed sequentially with ASCONA to stay
within the limits of the main memory. Further, the search workflow allows for parallel
execution, a feature not implemented in SIENA. In MicroMiner, the independent eval-
uations of candidate structures with ASCONA can be run in parallel. Furthermore, in
MicroMiner, the search database creation was parallelized, reducing the construction
time. Finally, the focus on single mutation analysis allowed for algorithmic optimiza-
tions in the k-mer and site alignment step (as described in section 2.4.3.1), which helped
to reduce the runtime complexity and discard false positive hits earlier.

2.4.3.3 Evaluation

Since MicroMiner’s single mutation search is the first of its category, a direct compari-
son to other methods is not possible. Instead, a single mutation search benchmark was
constructed to validate the single mutation search. Known protein structure pairs of
wild-type and mutant with a specified position of the single mutation were extracted
from four mutation datasets. It was evaluated whether MicroMiner can retrieve the
annotated mutant structure from a PDB database search given the wild-type structure
as a query. Retrievals were considered successful if the micro-environment alignment
aligned the query reference residue to the correct mutated residue in the expected target
structure. The evaluation results in Figure 2.13 show that at first, MicroMiner could
only retrieve an average of 83% of the mutant structures. Surprisingly, manual investi-
gation of the failed cases showed that many wild-type/mutant structure pairs from the
datasets were erroneously annotated. For example, they had multiple mutations in their
direct neighborhood despite being labeled a single mutation. After removing these cases,
MicroMiner successfully retrieved 100%. This manual investigation demonstrated the
necessity of consistently analyzing structure pairs representing single mutation. Current
structure annotations in common mutation datasets seem not checked for such issues.
With MicroMiner, this is now possible automatically.
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Figure 2.13: Shows the performance of MicroMiner in retrieving known wild-type/mutant structure
pairs from four mutation datasets. The cases labeled ’Found’ (83%) were successfully
retrieved, while ’Erroneous annotation/unfitting structure’ (17%) denotes the cases not
retrieved by MicroMiner because of incorrect or unfitting annotations. For example,
no mutation was present in the structure, or additional mutations were detected in the
micro-environment. This figure was taken from [D4].

2.4.3.4 Applications

MicroMiner was applied in an all-vs-all experiment on the PDB to extract the struc-
ture pairs of all similar micro-environments exemplifying single mutations. More than
255 · 106 amino acids pairs could be extracted using the ’monomer’ mode and more
than 45 · 106 pairs for protein-protein interfaces with the ’ppi’ mode. After filtering
and redundancy removal, 4 868 764 amino acid pairs for single chains and 799 129 for
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protein-protein interfaces remain. These two data sets represent a previously unavail-
able wealth of data describing the structural changes of single mutations that can now
be used in numerous downstream applications.

One downstream application is annotating existing data sets of mutation effect
measures with protein structures for the mutant, i.e., combining the mutation effect
measurement with the structural change upon mutation. MicroMiner considerably
improves the experimental structure annotation coverage of the six mutation effect
data sets ProTherm [201], ThermoMutDB [202], Platinum [77], ProThermDB [203],
FireProtDB [204] and SKEMPI2 [205] (see Figure 2.14). Only three of the six data sets
originally had mutant structure annotations. There were 414 unique wild-type/mutant
structure pairs over all data sets. Using MicroMiner, this number could be increased
6.4-fold to 2653 structure pairs. Still, many mutations are without a structure for
the mutant. However, this is unsurprising since there is probably no experimentally
determined protein structure in the PDB for every mutation. Some mutations also
do not result in folded proteins or proteins unsolvable experimentally. Regardless, the
number of annotated structures could be improved considerably. This experiment also
demonstrates how the annotation process of mutation effect data sets can be automated
to combine mutation effect data with the structural changes upon mutation in atomic
resolution based on experimental data from the PDB.

Another application of MicroMiner is to bridge the gap between mutation analysis
and structure-based drug discovery. During this doctorate project, the MicroMiner tool
was integrated into the ProteinsPlus web platform [D5]. MicroMiner can be combined
on the server with established structure-based modeling tools for drug discovery. For
example, users can combine MicroMiner with the DoGSite3 [206] tool to detect binding
sites emerging upon mutations directly on the server. The following use case demon-
strates this retrospectively [207] on the tumor antigen p53 (p53). Many pathological
mutations in p53 lead to thermolabile variants that can not reliably fulfill the tumor
suppressor role anymore [207]. However, small molecule stabilizers can target these
cancer mutations, making such p53 variants druggable for personalized therapy [208].
A prominent example is the Y220C mutation estimated to be responsible for an an-
nual 100 000 cancer cases [209]. Figure 2.15 demonstrates how MicroMiner can be used
in combination with DoGSite3 [206] on the ProteinsPlus server to detect the ligand
binding site emerging upon the pathological Y220C mutation originally described by
Joerger et al. [207]. The first step to screen p53 for emerging binding sites would
be to get a list of disease-related mutations, for example, from UniProt [210] or the
TP53 Database [211]. Next, the wild-type p53 structure can be used as a query to
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Figure 2.14: Improvement of the mutant structure coverage of six mutation effect data sets using
MicroMiner. The x-axis shows the percentage of mutations with a structure for the
wild-type. The y-axis illustrates six mutation effect data sets. The bars display the
percentage of wild-type/mutant structure pairs. Bars labeled with ’original annotations’
are structure pairs annotated by the data set curators. The bars with ’original w/o
erroneous annotations’ labels show the same information but with the erroneous anno-
tations removed. The ’MicroMiner annotations’ bars give the percentage of mutations
MicroMiner annotated with a mutant structure from the PDB. This figure was taken
from [D4].

MicroMiner’s single mutation search, and all structures exemplifying single mutations
at the positions of disease-related mutations can be investigated based on experimental
structures returned from the PDB. Binding pockets can be predicted with DoGSite3
for the wild-type structure and structures retrieved with MicroMiner. In Figure 2.15a
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(a) (b) (c)

Figure 2.15: Illustrates the combination of MicroMiner with DogSite3 on the ProteinsPlus webserver
for the detection of druggable ligand binding sites upon disease-related mutations in the
tumor suppressor p53. a) shows the p53 wild-type structure (1TUP, chain A) focused on
Tyr220. DoGSite3 predicts no pocket. b) depicts the Y220C mutation (6SHZ, chain A).
A pocket is predicted by DoGSite3 close to Cys220, where the larger tyrosine side chain
has resided in the wild-type. c) also depicts the Y220C mutation (2VUK, chain B) but
with ligand P83 bound in the emerged pocket. DoGSite3 also predicts a pocket in this
structure. This figure was taken from [D4].

the wild-type p53 at the position of Tyr220 is depicted. At this site, DoGSite3 predicts
no pocket. However, a pocket is predicted for the Y220C mutant (see Figure 2.15b).
The predicted pocket’s location is in accordance with Joerger et al. [207], who described
their pocket at the location previously occupied by the larger tyrosine side chain. Fi-
nally, Figure 2.15c depicts the Y220C mutation with a bound ligand stabilizing the p53
mutant obtained through virtual screening and rational drug design [208]. This use
case illustrates how structure-based drug discovery workflows can benefit from mutant
structures provided by MicroMiner and how druggable binding pockets emerging upon
mutation could systematically be analyzed.

2.4.4 Outlook

Given the abundance of protein structures, the detailed analysis of large structure data
sets will become increasingly important for various applications. With MicroMiner, an
unprecedented quantity of structural ensembles of single mutations was extracted in
this doctorate project. This data constitutes a reliable representation of the structural
change induced by single mutations. The extracted data can readily be used in multiple
downstream analyses and new data-driven approaches for mutation effect prediction,
mutation modeling, protein structure prediction and more.

Modeling practitioners benefit from MicroMiner and its ProteinsPlus integration be-
cause it enables the interactive exploration of the structural landscape of the single
mutations of a protein of interest. In this way, MicroMiner can help in rational pro-
tein engineering and drug design. For example, modelers could investigate mutations
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of functionally important residues, mutations leading to thermo-stabilization or ligand
binding sites emerging upon mutation.

The MicroMiner method could be extended and applied to problems in functional site
analysis, analyzing motifs, co-evolved 3D contacts, and protein flexibility. One of the
most exciting potential research applications is to use residue 3D micro-environment
search for knowledge-based mutation modeling. Single mutation micro-environments
returned by MicroMiner could be used as a starting template to model and refine single
residue substitutions in a given protein structure. Compared to existing methods, a
structural micro-environment template could provide a solid basis for modeling muta-
tions inducing larger structural changes in the target protein structure. Another excit-
ing research idea is to use similar micro-environments of identical sequences to refine
predicted protein structures on a local and residue-wise basis. The residue-centered per-
spective of residue 3D micro-environments is similar to the perspective of the pLDDT
confidence score of AlphaFold2 [28]. An interesting research direction would be to
use a 3D micro-environment similarity search to search for site conformations (micro-
environments with identical sequences) in the PDB to provide experimental structures
to refine structural details in predicted protein structures based on the local 3D en-
vironment of each residue. A final research direction could be to use fast and highly
optimized local sequence aligners like MMseqs2 [92] as a prefilter for MicroMiner. Such
an approach is necessary when a certain protein similarity and homology are required,
and the data set to be analyzed is enormous, like the AlphaFold Protein Structure
Database [34] or the ESM Metagenomic Atlas [35].

The next methodological advancement to be incorporated into the MicroMiner tool
could be an efficient algorithm to screen for multiple mutations in micro-environments.
A promising and systematic approach could be the integration of substitution matrix-
based scoring, 3D constraints in the prefilter step, and a comprehensive parameter
evaluation and tuning for the ASCONA algorithm. Furthermore, there is potential to
improve the search speed of the MicroMiner implementation. For example, candidate
structures are currently read as PDB files from the disc as implemented in SIENA.
Therefore, much of the overall runtime involves parsing candidate PDB text files, in-
terpreting them, and translating them into the final data structures. Preprocessing
the structure files into a serialized format, which can be transferred directly into the
relevant data structure, would significantly improve the search time. Moreover, imple-
mentations of many modern bioinformatics tools [92, 94] use single instruction, multiple
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data (SIMD) parallel processing. SIMD implementations of standard bioinformatics al-
gorithms are openly available [212] for modern architectures and could potentially be
integrated into NAOMI and MicroMiner.
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Chapter 3

Summary

This dissertation presented methods and analysis studies for improving data-driven
structure-property relationship modeling. The analyses delivered in-depth insights
stressing current boundaries in the research fields. Detailed domain-specific descriptions
of data limitations and potential new research directions were obtained using the newly
developed interpretability method. The analyses provided significant new insights and
raised concerns about the suitability of unbiasing strategies of standard benchmark data
sets used in structure-based virtual screening for developing machine learning methods.
In addition, a comprehensive and detailed description of the complex picture of protein
features correlating with high-pressure environments was derived, pointing to potential
future research directions for deciphering protein adaptations.

In the further course of this doctorate, software solutions for large-scale data pro-
cessing were developed. The evaluations showed good results and various applications
opened up during their development, indicating a promising positive impact on the re-
search field. With the new AltLocEnumerator and MicroMiner tools, extensive data
sets of structure ensembles can be compiled, which provide a more complete and com-
prehensive representation of proteins for property prediction and modeling. On the one
hand, AltLocEnumerator offers the possibility of using long-ignored AltLoc conforma-
tions from structure files simply, consistently, and efficiently. Practical program options
help to handle conformation enumeration and focus the display of protein flexibility,
for example, on relevant protein sites, such as ligand binding sites. On the other hand,
the method behind the MicroMiner tool represents a new and promising perspective
for local residue-centered 3D query search in protein structure databases, which can be
applied to various possible scientific questions. In this thesis, the focus was on the key
application of structural analysis of single mutations. The MicroMiner tool can search
similar single mutation sites and filter for structural changes. Using MicroMiner, more
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3 Summary

than two hundred million amino acid pairs in protein structures exemplifying structural
changes of single mutations could be extracted from the PDB and made accessible in
a data set. Simultaneously, experimental measures of mutation effects could be com-
bined with the structural change upon mutation. MicroMiner makes an unprecedented
amount of structural single mutation data connected to experimental mutation effect
measures available for developing data-driven methods. Furthermore, MicroMiner pro-
vides a direct way to combine mutation analysis with structure-based tools, opening up
many molecular modeling applications, as demonstrated with the use case of identifying
binding sites emerging upon pathological mutation in the tumor suppressor p53.

Overall, achieving effective computational modeling and in silico predictions of pro-
tein properties is a grand scientific challenge. Its pursuit requires tremendous efforts
and solving various subproblems. This thesis addressed problems in the central area of
data-driven structure-property relationship modeling. Software solutions were proposed
to understand and overcome domain-specific challenges like data set bias, complex pro-
tein properties and single rigid protein representations. The analysis and software tools
created during this doctorate project are hopefully incremental parts that collectively
help solve the grand challenge of property prediction.
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Scientific Contributions

A.1 Publications

[D1] J. Sieg, F. Flachsenberg, and M. Rarey. “In need of bias control: evaluating
chemical data for machine learning in structure-based virtual screening”. In:
Journal of chemical information and modeling 59.3 (2019), pp. 947–961.

This publication analyzes unbiasing strategies of benchmark data sets in structure-based
virtual screening and develops the feature selection-based interpretability method de-
scribed in this thesis. A subchapter in this publication was preliminary work conducted
before this doctorate project during J. Sieg’s Master’s thesis [139]. The content of the
Master’s thesis is limited to the subchapter "4. NON-CAUSAL BIAS IN LITERATURE"
from page 954 to 957 in the publication, which is summarized in section 2.1.2 of this
dissertation. The parts of the paper relevant to this dissertation describe the inter-
pretability method and its application. J. Sieg wrote the manuscript, implemented the
necessary software, curated the data, and performed analysis. F. Flachsenberg and
M. Rarey contributed to the method development and analysis and provided feedback
and supervision. All authors reviewed and approved the final manuscript.
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[D2] J. Sieg, C. C. Sandmeier, J. Lieske, A. Meents, C. Lemmen, W. R. Streit, and
M. Rarey. “Analyzing structural features of proteins from deep-sea organisms”.
In: Proteins: Structure, Function, and Bioinformatics 90.8 (2022),
pp. 1521–1537.

This publication describes the analysis of high-pressure protein adaptations and the
extension of the interpretability method to individual feature attributions. J. Sieg and
M. Rarey conceptualized the work. J. Sieg performed the method development, anal-
ysis, investigation, validation and writing of the manuscript. J. Sieg, C. C. Sandmeier
and J. Lieske conducted the data curation. A. Meents, C. Lemmen, W. R. Streit and
M. Rarey provided supervision and feedback. All authors reviewed and approved the
final manuscript.

[D3] T. Gutermuth, J. Sieg, T. Stohn, and M. Rarey. “Modeling with Alternate
Locations in X-ray Protein Structures”. In: Journal of Chemical Information
and Modeling 63.8 (2023), pp. 2573–2585.

The publication presents a new method for handling alternate locations (AltLocs)
implemented in the AltLocEnumerator tool. T. Stohn, J. Sieg and M. Rarey con-
ceptualized the method, and T. Stohn implemented a prototype during his Master’s
thesis [213]. J. Sieg and T. Gutermuth revised the method and implementation and per-
formed the integration in NAOMI. J. Sieg focused on the implementation of the method
and T. Gutermuth on the tool. T. Gutermuth, J. Sieg, and M. Rarey conceptualized
the PDB analysis. T. Gutermuth and M. Rarey conceptualized the docking analysis.
T. Gutermuth conducted the PDB and docking analysis. J. Sieg and T. Gutermuth
wrote the paper. The paper is a shared first-author publication. T. Guthermuth and
J. Sieg contributed equally. All authors reviewed and approved the final manuscript.

[D4] J. Sieg and M. Rarey. “Searching similar local 3D micro-environments in
protein structure databases with MicroMiner”. In: Briefings in Bioinformatics
24.6 (2023), bbad357.

This publication presents a new method for searching similar local 3D micro-environments
in protein structure databases implemented in the tool MicroMiner. J. Sieg concep-
tualized the work and performed the method development, data curation, analysis,
investigation, validation, and writing of the manuscript. M. Rarey contributed valuable
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feedback and helped to drive the project. All authors reviewed and approved the final
manuscript.

[D5] K. Schöning-Stierand, K. Diedrich, C. Ehrt, F. Flachsenberg, J. Graef, J. Sieg,
P. Penner, M. Poppinga, A. Ungethüm, and M. Rarey. “Proteins Plus: a
comprehensive collection of web-based molecular modeling tools”. In: Nucleic
Acids Research 50.W1 (2022), W611–W615.

This publication presents new features of the modeling server ProteinsPlus, including
the interactive web server integration of MicroMiner and JAMDA, new GeoMine fea-
tures, and AlphaFold structures integration. All authors contributed to the publication
and wrote or revised the paper. J. Sieg and C. Ehrt wrote the text about MicroMiner,
which is relevant to this dissertation. All authors reviewed and approved the final
manuscript.

A.2 Conference Contributions

A.2.1 Talks

[V1] J. Sieg, F. Flachsenberg, and M. Rarey. In the Need of Bias Control:
Evaluation of Chemical Data for Machine Learning Methods in Structure-Based
Virtual Screening. 11th International Conference on Chemical Structures
(ICCS). Noordwijkerhout, Netherlands, 2018.

[V2] J. Sieg, F. Flachsenberg, and M. Rarey. Challenges in
Protein-Structure-Driven Machine Learning and Applications in Biotechnology.
2nd Machine learning and AI in (bio)chemical engineering (MABC).
Cambridge, United Kingdom, 2019.

[V3] J. Sieg and M. Rarey. Data-Driven Analysis of Single Point Mutations through
Rapid Scan of 3D Micro-Environments. 29th Intelligent Systems for Molecular
Biology (ISMB) / 20th European Conference on Computational Biology
(ECCB). Virtual conference, 2021.

[V4] J. Sieg and M. Rarey. Computational Analysis of Protein Structures from
Deep-Sea Organisms. 13th European Congress of Chemical Engineering
(ECCE) / 6th European Congress of Applied Biotechnology (ECAB). Virtual
conference, 2021.
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[V5] J. Sieg and M. Rarey. Data-Driven Analysis of Single Point Mutations through
Rapid Scan of 3D Micro-Environments. 3D-BioInfo 2021 Annual Meeting.
Virtual conference, 2021.

A.2.2 Poster

[V1] J. Sieg and M. Rarey. Data-Driven Analysis of Single Point Mutations through
Rapid Scan of 3D Micro-Environments. 29th Intelligent Systems for Molecular
Biology (ISMB) / 20th European Conference on Computational Biology
(ECCB). Virtual conference, 2021.

[V2] J. Sieg and M. Rarey. Data-Driven Analysis of Single Point Mutations through
Rapid Scan of 3D Micro-Environments. 3D-BioInfo 2021 Annual Meeting.
Virtual conference, 2021.
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Appendix B

Software Architecture

B.1 NAOMI

NAOMI [180–182] is a software library written in the C++ programming language that
provides functionality and tools for various cheminformatics and structural bioinformat-
ics tasks and is used as the basis for most software developed in this doctorate. The
NAOMI library already provides a broad spectrum of functionality for cheminformat-
ics and bioinformatics methods and tasks. On the one hand, essential functionality is
implemented, like reading common molecule [180] and protein structure [181] formats
and transferring them into validated representations stored in data structures. On the
other hand, elaborate functions for more specific tasks are available, including predicting
non-covalent interactions, predicting binding pockets, aligning binding sites, and more.
NAOMI is divided into a core library containing common and reusable functionality
for multiple tasks and an application-oriented part providing user-facing command line
tools utilizing the core library.

B.2 AltLocEnumerator

The AltLocEnumerator method is implemented as part of NAOMI and split into tool
and library code. The tool code handles the reading of the input structure, additional
site specifications, and other user-provided arguments. It calls the library code to ex-
ecute the AltLoc enumeration algorithm and writes the results to output structure
files. On the other hand, the AltLoc enumeration method is implemented in the li-
brary code. Figure B.1 shows the main classes of the library. AltLocDAGEnsemble is
the central data structure. It is built from the Parser::PDBEntry representation of
the input structure file. The data structure provides necessary information on AltLoc
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conformations encoded in an ensemble of annotated directed acyclic graphs (DAGs).
The construction of the AltLocDAGEnsemble is conducted by a static function of the
AltLocDAGEnsembleBuilder class. The created AltLocDAGEnsemble instance can then
be used by one of the static search functions of the AltLocDAGEnsembleSearcher class
to search for one or more valid AltLoc conformations of the overall structure com-
plex. More specifically, an AltLocDAGEnsemble is composed of a vector of AltLocDAG

instances representing individual DAGs. An AltLocDAG object contains a vector of
VertexGroup instances, which organizes the DAG in layers. Lastly, a VertexGroup

contains multiple AltLocVertex instances. An AltLocVertex represents a particular
AltLoc conformation of a residue, storing its AltLoc identifier, occupancy, edges to other
vertexes, and vertexes of other clashing conformations. Correspondingly, a VertexGroup

holds all AltLoc conformations of a particular residue.

AltLocDAGEnsemble

AltLocDAGVector

AltLocVertex

altLocID

occupancy

edges

clashingVertexes

AltLocDAG

VertexGroupVector

VertexGroup

AltLocVertexVector

AltLocDAGEnsembleSearcher

searchForOnePathOfMaximumOccupancy

searchForAllPathsOfMaximumOccupancy

searchForAllPaths

AltLocDAGEnsembleBuilder

buildAltLocDagEnsembleForOccupancyMax Is created by
(statically)

Uses
(statically)

Figure B.1: Schematic illustration of important classes in the AltLocLib and their interactions. The
central data structures and functions of the AltLoc enumeration algorithm are depicted.
Arrows indicate the dependencies of classes, like composition and usage dependencies.
The illustration is inspired by the Unified Modeling Language (UML).

B.3 MicroMiner

The code of the MicroMiner program is separated into a core library called MicroEnvLib
and tool code providing a command line interface. The MicroEnvLib supplies the com-
ponents to perform residue 3D micro-environment searches. The specific functionality
and algorithms are either implemented directly in the MicroEnvLib or are used by the
MicroEnvLib from other core libraries in NAOMI. The MicroEnvLib uses functionality
from the ComplexLib for handling protein structures as Complex data structures and
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specific 3D sites in protein structures as so-called ActiveSite data structures. The
MicroEnvLib also utilizes multiple alignment algorithms and alignment scores imple-
mented in the AlignLib to align sites to candidate protein structures—multiple of which
were implemented in this dissertation. Further, functions of the ProrteinFlexibilityLib
are used to superimpose hit structures on query structures.

The core classes of the MicroEnvLib are illustrated in Figure B.2. The SiteSearcher
class builds the center and entry point for executing micro-environment similarity
searches. The class executes the search workflow by taking a list of query micro-
environments as input, first searching them against the KmerDB instance with a cer-
tain search strategy, and then matching candidate structures to the query micro-
environments with a particular matching strategy. A KmerDB used for k-mer look-ups
is stored as a member of SiteSearcher. The two steps of the search are represented
by the two abstract classes SearchStrategyInterface and SiteMatcherInterface

of which the SiteSearcher holds an implementation each. Derived classes of the
SearchStrategyInterface should provide algorithms to retrieve candidate structures
from the KmerDB. The SIENALikeSearchStrategy, as the name suggests, implements
the SIENA [97] search strategy while the SingleMutationSearchStrategy runs the
newly developed k-mer matching strategy for single mutations. On the other hand, im-
plementations of the SiteMatcherInterface should provide functionality to match the
query sites against the candidate structures. The EditDistanceSiteMatcher calls the
site alignment algorithm ASCONA [193] uses. In contrast, the SingleMutationMatcher
implements the newly developed variation of the ASCONA site alignment algorithm
optimized for matching single mutations. The class structure was intentionally designed
for the components to be exchangeable, which helped during the development to test
different site search and matching algorithms by simply swapping instances of different
derived classes.

The MicroMiner tool code defines and documents the tool’s command line interface.
It handles the command line arguments given by a user as input. The arguments are
validated and transferred to the internally used data structures and then given to the
functions in the MicroEnvLib for calculation. The hits and other results generated are
written to output files by the tool code. In addition, the tool code handles the input
data splitting and chunking for parallel processing of multiple input protein structures.

B.4 Feature Interpretability Method

The software implementation of the interpretability method developed and used in the
two analysis projects in [D1] and [D2] was realized as a collection of Python scripts
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KmerDB

KmerTable

FilePathMapping

ChainToComplexMapping

query

readComplex

getComplexIdForChainId

SearchStrategyInterface

query

SIENALikeSearchStrategy

query

SingleMutationSearchStrategy

query

SiteSearcher

KmerDB

SearchStrategyInferface

SiteMatcherInterface

search

SiteMatcherInterface

getSiteAlignments

EditDistanceSiteMatcher

getSiteAlignments

SingleMutationSiteMatcher

getSiteAlignments

Figure B.2: Schematic depiction of the interactions between core classes in the MicroEnvLib. Arrows
indicate the dependencies of classes, like composition, usage dependencies, and inheri-
tance. The illustration is inspired by the Unified Modeling Language (UML).

closely coupled to the in-house high-performance cluster (HPC) at the Center for Bioin-
formatics, Hamburg. In contrast to the other projects, these projects were driven by the
analysis and not the development of a dedicated software tool. Figure B.3 illustrates
the workflow between the most important Python scripts. The workflow starts with the
featurize.py script to calculate the feature matrix for a given set of input data and
the split.py script that calculates a split of the input data into training and test sets.
Both scripts may incorporate additional information provided by external software. For
example, the featurize.py script can incorporate features computed by external tools
or libraries, like NAOMI, RDKit, or command line tools. The split.py script can use
additional information like clusterings of the input data samples to create train and test
folds. A set of feature combinations is sampled from the generated feature matrix with
the combinations.py script. This sampling can be done with different strategies. For
example, in the [D2] project, all feature combinations of up to five features were used
as the sampled set. The three described scripts are executed locally. In contrast, the
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machine_learning.py script is executed in different instances over multiple computa-
tion nodes using array jobs of the Sun Grid Engine batch system that is operated at the
Center for Bioinformatics. One instance of the script processes a batch of the flattened
feature selection experiments, which are defined by a certain training set, a test set,
and a feature combination. The machine_learning.py scripts utilize the scikit-learn
library [214] for running various machine learning algorithms. The results from the ma-
chine learning computations are collected and analyzed locally. With the shapley.py

script Shapley values estimates can be computed from the machine learning results.
Finally, the machine learning results and the computed Shapley values can be put into
a user-centered report format, including plots and tables.
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Data

featurize.py

compute feature vectors
optionally with external
software

split.py

split data into folds
optionally with external
software

Feature matrix

combinations.py

sample of feature
combinations

Split indices
Feature combinations

machine_learning.py

trains and tests machine learning
models with feature combinations

On HPC

report.py

generates a report and plots from
results

shapley.py

compute Shapley values from
machine learning results

Flattened parallel execution
on batch system

Tables
Plots

Report

On local machine

On local machine

Figure B.3: Schematic illustration of the implementation of the interpretability method and the in-
formation flow between central components. Arrows indicate the flow of information.
The computation is executed by six Python scripts, which are executed on either a local
machine or on the HPC. The first step on the local machine prepares all necessary files
for an intensive feature selection with wrapper methods experiment. In the second step,
machine learning models are trained and evaluated on the prepared input data. In the
third step, the machine learning results are used to compute Shapley values, tables, and
plots, which are finally reported to the user as a set of tables and plots.
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Software Usage

C.1 AltLocEnumerator

C.1.1 Command Line Tool

The following shows the interface of the AltLocEnumerator command line tool:

$ ./bin/AltLocEnumerator --help

Tool for enumerating alternative residue conformations (AltLocs) of

a protein structure. The input to AltLocEnumerator is a single PDB

or CIF file. The output is one or more PDB file(s) containing the

alternative conformations

Usage: AltLocEnumerator -f [protein] -a [Mode]

The following options are supported:

--license LicenseKey Activate a new license

General Options:

-h [ --help ] Show this help and exit.

-f [ --file ] file Protein input file in format

PDB/PDBxmmCIF

-a [ --altLoc ] arg (=default) Enumeration mode. Single complex

modes: ’Default’, ’BestOcc’,

’altLocId’. Multiple complex

modes: ’AllBest’, ’All’.
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Optional Options:

-l [ --ligand ] arg Input ligand file for site of

interest definition

sdf/mol2/PDB/PDBxmmCIF

format, only residues in the site

of interest will be enumerated

-p [ --pocket ] arg Input pocket by pocket

PDB/PDMxmmCIF file for site of

interest definition, only residues

in the site of interest will be

enumerated

-e [ --edf ] arg Input pocket by EDF file for site of

interest definition, only residues in

the site of interest will be enumerated

-o [ --outputfolder ] arg (=./) Output directory

-w [ --writepdb ] arg (=1) write the new pdb files. Can be used to

only determine the number of complexes

that would be

enumerated without writing the PDBs.

-t [ --hetatoms ] arg (=1) Include HETATM entries. If false

HETATMs will be removed in preprocessing.

-v [ --verbosity ] arg (=warning) UinfoLevel [Quiet (0), Error (1),

Warning (2), Info (3), Steps (4)]

-r [ --activesiteradius ] arg (=6.5) The radius used for active site

construction when a ligand file is supplied

-m [ --minRMSD ] arg (=0) Filters conformations by RMSD. Only used

for the enumeration modes that

export multiple complexes

-n [ --maxNumberComplexes ] arg (=100) Maximum number of complex

conformations that will be generated. Only

used for

the enumeration modes that export multiple

complexes. A high number will

result in high memory usage (not advised).

--altlocid arg The altLocId to select and use. Only

used when altLoc enumeration mode is ’altLocId’
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The AltLocEnumerator takes an input structure file with --file option and writes
structure conformations to files into a directory given with --outputfolder.

Five AltLoc enumeration strategies can be selected with the --altLoc option. The
three single complex modes generating a single output structure file comprise the
Default strategy, which implements NAOMI’s default enumeration strategy before Alt-
LocEnumerator was developed, which is the first-encounter strategy. With the BestOcc
strategy, one AltLoc conformation with the highest occupancy is selected. Further,
the altLocId strategy generates the structure conformation using the AltLoc identifier
specified with --altlocid. In contrast, the two multiple complex modes can generate
multiple output structure files. The strategy AllBest generates all conformations hav-
ing the highest occupancy, while the All strategy generates output structure files for
all valid conformations.

Optionally, AltLocEnumerator can focus on the conformation enumeration of spe-
cific sites, like binding sites. With --ligand, a small molecule file can be provided
to define the site. The size of the ligand-defined site can be controlled with the
--activesiteradius parameter that defines the distance cutoff to include neighbor-
ing residues. Alternatively, residue lists can be given to specify a site, either as a
PDB/mmCIF file with the --pocket parameter or an EDF with the --edf option.

Further options allow controlling the writing of complexes to file (--writepdb) or
the inclusion of HETATM entries in the enumeration (--hetatoms). The logging level
can be set with the --verbosity parameters. In addition, the generation of multiple
complexes can be limited to a fixed number using the --maxNumberComplexes option.
This can be useful when there are thousands of structure conformations to be enumer-
ated. Furthermore, generated structure conformations can be filtered by RMSD with
--minRMSD to generate a smaller and more diverse set of conformations. New licenses
can be activated with the --license option.

The AltLocEnumerator tool can be called via the command line as shown in the
following example:

./bin/AltLocEnumerator --file protein.pdb --altLoc BestOcc -o out_dir

With this command, a single structure conformation with the highest occupancy is
generated for protein.pdb and written as a PDB file to out_dir/protein_1.pdb.
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C.2 MicroMiner

C.2.1 Command Line Tool

MicroMiner’s command line interface offers two modules called index_builder and
search. The usage of the MicroMiner tool and its modules is described in the next
sections.

C.2.1.1 The index_builder module

The index_builder module creates a k-mer search index from a directory of protein
structure files for fast look-ups of structure complexes containing particular k-mers.

The index_builder of MicroMiner has the following command line interface:

$ ./MicroMiner index_builder --help

MicroMiner index_builder ...:

-h [ --help ] Print help message

-i [ --input ] arg Input directories. Will be searched

recursively for PDB/mmCIF files. Use

with --extension.

-e [ --extension ] arg (=.cif.gz) File extension of structure files to

read with --input. Supports common

formats like .pdb, .ent, .cif, .mcif

(note the leading .). For reading

compressed files add .gz, like .ent.gz.

-o [ --output ] arg Output prefix.

-k [ --kmerSize ] arg (=6) k-mer size.

-c [ --cpus ] arg (=1) Number of threads to use.

The index_builder module takes one or multiple directories as input with the
--input option and extracts structure files that have the file extension specified with
--extension. Different file extensions of standard structure file formats are supported
by NAOMI, including gzip-compressed files. The module generates multiple output files
representing the k-mer index. A common prefix is given to all generated output files
that can be specified with --output. The size of k-mers can be set with the --kmerSize
option, and the number of threads to use for parallel construction of the k-mer index
can be selected with --cpus.
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file name file size in MB
my_index.db.bin 1, 186

my_index.db.paths 11

my_index.db.map 6

my_index.db.log 12

Table C.1: Disc space usage of the MicroMiner k-mer search index for the PDB containing 199, 534
structure files and using a kmerSize of 5.

An example call to the index_builder looks like this:

./MicroMiner index_builder -i structure_dir -o my -e .pdb -k 5 --cpus 6

This command will generate four files that have the prefix ’my’ and different suffixes,
which are explained in the following listing:

• my_index.db.bin: The serialized k-mer index data structure contains all k-mers
and the information in which sequence and sequence position each k-mer appears.

• my_index.db.paths: Mapping of structure complex entries to their structure files
on the disc.

• my_index.db.map: Maps sequence entries to their parent complex entry.

• my_index.db.log: A log file containing information on structure files that could
be successfully processed or failed and a summary of k-mers in the search index.

The disc space usage of the four files for the PDB version used in the MicroMiner
publication is listed in Table C.1.

C.2.1.2 The search module

The search module performs searches against a protein structure database to find
similar local 3D micro-environments to a query. The search module uses the k-mer
search index that first must be created with the index_builder module.

MicroMiners search module command line interface looks like the following:

./bin/MicroMiner_release search --help

MicroMiner search ...:
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-h [ --help ] Print help message

-q [ --complex ] arg Input query PDB file(s). Search

with specific structure files.

--query_dirs arg Read query structure files from

directories. Use with --extension.

--extension arg (=.cif.gz) File extension of query structure

files to read with --query_dirs.

Supports common formats like .pdb,

.ent, .cif, .mcif (note the

leading .). For reading compressed

files add .gz, like .ent.gz.

-e [ --edf ] arg Limit query reference residues to

residue list in EDF (ensemble data

file). Can only be used with the

--complex option and with a single

input complex.

-s [ --searchdb ] arg Search k-mer index. Provide the

file prefix.

-o [ --output ] arg Output prefix for files to be

generated.

-w [ --write ] Whether to write PDB files of hits

superposed on the query. For large

hit numbers this can take multiple

GB of disc space.

-c [ --cpus ] arg (=1) Number of threads to use.

-m [ --mode ] arg (=standard) Kmer search mode. Can be ’standard’

or ’single_mutation’.

-r [ --representation ] arg (=full_complex) Define how to use the protein

structure from the input file. Can

be ’full_complex’, ’monomer’ or

’ppi’.

Algorithm options:

--site_radius arg (=6.5) Radius to define the

residue 3D micro-environment.

--identity arg (=0.7) Minimum site identity

98



C.2 MicroMiner

threshold [0.3 .. 1.0]

--fragment_length arg (=7) Minimum length of a sequence

fragment. Shorter fragments

will be elongated [3 .. 15]

--fragment_distance arg (=3) Maximum fragment distance/

mismatches in sequence

[0 .. 10]

--flexibility_sensitivity arg (=0.6) Degree of accepted structural

flexibility [0.0 .. 1.0]

--score_threshold arg (=80) Threshold for substitution

scoring. Only used in

’single_mutation’ mode

for the seed & extend step.

The threshold follows the

MMseqs2 k-mer scoring scheme.

--kmer_matching_rate arg (=0.9) Percent of unique k-mers that

need to match in hit candidate.

Only used in ’standard’ mode

[0.0 .. 1.0]

For performing a search with the module, MicroMiner needs the k-mer index, which
is set with the --searchdb option. Query structures can be provided in two different
ways. First, query structure files can be provided with --complex, which takes one or
multiple structure file paths via the command line. Note that the number of query files
can be limited. For example, on Linux systems, there is a maximum number of bytes a
command line call is allowed to have. For this reason, there is a second way of providing
query structures using --query_dirs and --extension analogously to the --input

parameter in the index_builder module. Directories given with the --query_dirs

option are searched recursively for query structure files with the specified file extension.
Per default, MicroMiner generates query micro-environments for each residue in a query
structure. With the --edf argument, an Ensemble Data File (EDF) can be provided.
This file specifies a list of reference residues for which query micro-environments should
be generated. Note that the --edf argument can only be used with the --complex

option and with a single input complex. Three kinds of query micro-environments
preselection strategies are provided that can be switched with the --representation

option. The full_complex mode constructs query micro-environments from the query
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structures as they are present in the structure file. In contrast, the ’monomer’ mode
considers only residues of the same chain for the environment construction. Lastly, the
’ppi’ mode only uses micro-environments for the search, containing residues from at
least two chains. In addition, with the --mode option, two different search modes can
be selected. The standard mode searches with the same strategy as SIENA [97] while
the single_mutation mode searches only for single mutations.

Multiple algorithmic options can be set for the search. The size of micro-environments
can be controlled with the --site_radius option. The --identity parameter sets a
lower bound for sequence identity of the aligned sites (only used in standard mode).
The --fragment_length option specifies the minimal length sequence fragments need
to have. With --fragment_distance, a limit can be set for the mismatches between
aligned sequence fragments. The --flexibility_sensitivity controls the tolerance
of the structural comparison. These algorithmic options are analogous to the options in
SIENAs [97] command line interface. Further, two new algorithmic options are incorpo-
rated. The --score_threshold controls the extend steps in the sequence matching in
the single_mutation mode. With the --kmer_matching_rate option, the percentage
of k-mers that has to match a query site can be set (only used in standard mode).

Analogously to the index_builder, the output prefix for generated files is specified
with --output in the search module. The default output of a MicroMiner search is a
table listing the hits. In addition, using the --write flag, PDB structure files of the hits
superposed to the query micro-environment can be generated for visual inspection. The
processing and aligning of candidate structures can be parallized. The --cpus controls
the number of threads to use.

The following shows an example call to the search module:

MicroMiner search -q 2imm.pdb -s my_index.db -o my_query -m single_mutation

This call generates a single output file with the name my_query_resultStatistic.csv
listing the hits. The following illustrates the first three lines of the file, showing the
header line and two hits.

queryName queryAA queryChain queryPos hitName hitAA hitChain hitPos siteIdentity

siteBackBoneRMSD siteAllAtomRMSD nofSiteResidues alignmentLDDT fullSeqId

2IMM PRO A 43 3W13 SER D 49 0.875 0.431 0.936 8 0.946 0.842

2IMM PRO A 43 43C9 SER A 43 0.875 0.180 1.496 8 1.000 0.772
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If the above command would, in addition, be run with the --write flag, an additional
directory would be created with the name my_query_ensemble, which contains PDB
structure files of superimposed hits. Structure files in the directory are organized by
query site (as defined by the reference residue). Hit PDB files are named after both the
hit and the hit residue aligned to the query’s reference residue. An example file path is
out_ensemble/2IMM_PRO_A_43/3W13_SER_D_49.pdb.

C.2.2 Evaluation and Application Scripts

The scripts for evaluating and applying MicroMiner were realized as a separate Python
project available at https://github.com/rareylab/microminer_utils. The project
is called microminer_utils and consists of multiple Python and Shell scripts, a Python
package, and Jupyter Notebooks with which the experiments in the MicroMiner publi-
cation were conducted. See the README.md file in the repository for a description of
how to reproduce the experiments from the paper.

The Python package is called helper and bundles common functionality, such as
calling command line tools like MicroMiner and TM-align. It standardizes different
mutation data sets to a unified format. In addition, an adapter for the internal high-
performance cluster (HPC) was written.

The Python scripts in the repository’s top-level directory build the command line
interface for executing MicroMiner and TM-align on a particular data set. The scripts
use the functionality in the helper Python package to prepare the input and output
for MicroMiner and TM-align and handle the parallel execution on the local machine
or the HPC.

Further, the Shell scripts execute specific experiments from the paper and can be
used to reproduce the published results. They define the list of data sets to use and the
successive calls to different Python scripts for running the experiments. Additionally,
system and infrastructure-specific options, like the directories for writing results or
whether the experiments should be run on the HPC or locally, are set.

Lastly, the code to generate the plots and other published results can be generated
with the Jupyter Notebooks. They receive the results generated with the Shell scripts
as input and construct the plots and other details.

The following is an overview of the most noteworthy scripts:

• create_dataset.py: Prepares raw data sets for the execution with MicroMiner
and TM-align.

• search.py: Runs a search with MicroMiner.
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• eval_known_mutations.py: Compares MicroMiner results to known wild-type/mutant
structure pairs.

• annotate_mutation_datasets.py: Uses MicroMiner hits to annotate mutant
structures to existing mutation data sets, like ProTherm.

• annotation_statistics.py: Compares the mutant structure annotations with
and without MicroMiner-derived structures.

• run_mutation_benchmark.sh: Runs the experiment in the section ’Evaluation of
MicroMiner for structural mutation search’ in the paper.

• run_pdb_experiments.sh: Runs the experiment in the section ’Single mutations
in the PDB’ in the paper.

• run_mutation_annotation.sh: Runs the experiment in the section ’Annotating
mutation effect measurements with structures for the mutant’ in the paper.

C.2.3 Web server

The MicroMiner tool is available at the ProteinsPlus server at https://proteins.plus/.
The ProteinsPlus is a web service developed within the Center for Bioinformatics Ham-
burg. The web interface and the use of MicroMiner on the server are described in
detail in the publication [D5]. A user can use the single mutation search of MicroMiner
through the web interface for PDB, AlphafoldDB, and custom-uploaded structures.
MicroMiner searches a given query structure against a weekly updated PDB mirror.
MicroMiner can be run for all residues in a query structure. The results will be pre-
sented in an interactive and filterable hit table. By clicking on a hit in the table, the
hit structure is displayed in the 3D structure viewer, and the side chains of the aligned
sites are shown and focused in the viewer for inspection by the user. Further, the hit
table can be filtered, for example, by RMSD of the local environments to investigate
structural changes upon mutation.
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ABSTRACT: Reports of successful applications of machine
learning (ML) methods in structure-based virtual screening
(SBVS) are increasing. ML methods such as convolutional
neural networks show promising results and often outperform
traditional methods such as empirical scoring functions in
retrospective validation. However, trained ML models are
often treated as black boxes and are not straightforwardly
interpretable. In most cases, it is unknown which features in
the data are decisive and whether a model’s predictions are
right for the right reason. Hence, we re-evaluated three widely
used benchmark data sets in the context of ML methods and
came to the conclusion that not every benchmark data set is
suitable. Moreover, we demonstrate on two examples from
current literature that bias is learned implicitly and unnoticed from standard benchmarks. On the basis of these results, we
conclude that there is a need for eligible validation experiments and benchmark data sets suited to ML for more bias-controlled
validation in ML-based SBVS. Therefore, we provide guidelines for setting up validation experiments and give a perspective on
how new data sets could be generated.

1. INTRODUCTION

The basic task of virtual screening (VS) is to prioritize large in
silico molecule libraries by the probability of the molecules to
show activity against a particular protein target. A distinction
can be made between ligand-based and structure-based VS. In
ligand-based VS, new active molecules are predicted based on
their similarity to known actives. In contrast, structure-based
VS (SBVS) methods model the interactions between small
molecules and the protein to predict actives.1

New VS methods are typically tested by retrospective
validation on benchmark data sets.2,3 Benchmark data sets
contain molecules of known activity and are used for a
standardized comparison of different methods to select the
method best suited for a task.4 Frequently used examples are
the Directory of Useful Decoys (DUD),5 the Directory of
Useful Decoys - Enhanced (DUD-E),6 Demanding Evaluation
Kits for Objective in silico Screening (DEKOIS),7,8 the
Maximum Unbiased Validation Data set (MUV),4 the
Community Structure−Activity Resource (CSAR),9

PDBbind,10 and more.11

In recent years, machine learning (ML) methods have been
trained and evaluated on these data sets.12−17 The reported
results show that ML methods outperform other method-
ologies such as empirical and knowledge-based scoring
functions on these data sets.12−17 However, the interpretability
of many ML methods is not straightforward.18 On the one
hand, it is of great interest to understand the determinants of

decision making of high-performing models to deduce the
relationships potentially not captured otherwise. On the other
hand, it is not recognizable whether a model’s decisions are
based on real signals in the data or on bias. We made two
conspicuous observations in current literature that suggest that
the latter is the case and bias is learned unnoticed from
established data sets. We see the reason for this bias in the
insufficiency of the current standard of validation experiment
design, which is consistent with recent findings in a similar
domain.19

In the following, an overview of benchmark data sets for VS
and their advantages and disadvantages is given. Then it is
evaluated if the unbiasing protocols of the examined data sets
are suited for ML methods on the examples of the DUD,
DUD-E and MUV data sets. Subsequently, our observations
from the literature are described and analyzed. The results
reveal that small molecule features dominate the predictions
across dissimilar proteins when actually a structure-based
descriptor is used, leading to biased models. Based on these
results and observations, we propose guidelines for validation
experiments to avoid bias and finally give an outlook on the
generation of new data sets suitable for ML methods.
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1.1. Examples of Benchmark Data Sets in Virtual
Screening. Benchmark data sets consist of sets of active and
inactive molecules, each associated with a specific target. Often
the actives are experimentally validated, but the documentation
of experimentally validated inactive molecules is scarce. For
this reason, assumed inactives, called decoys are frequently
used.20

The first benchmark-like data sets were published in the
early 2000s.21−23 These data sets include randomly selected
molecules as assumed inactives, and first approaches for
picking samples while avoiding bias caused by the data set’s
compositions have been undertaken.23

Different biases have been identified by the community over
time, which can either artificially increase or decrease
prediction performance. Verdonk revealed that differences in
distributions of basic physicochemical molecular properties of
the active and inactive sets leads to artificial discrimination by
those low dimensional features rather than features of higher
dimensions.24 An example is that many scoring functions favor
molecules of larger size in docking because the potential
number of interactions correlates with size.24 This bias has
been described by the term artificial enrichment and has been a
problem when random molecules were selected as inactives. It
can be counteracted by selecting inactives such that they are
similar to the active molecules in terms of low dimensional
properties.24 In contrast to overestimations, the enrichment
can be underestimated when utilizing experimentally non-
validated inactives for which the assumption of inactivity turns
out to be false.5 This bias is termed false negative bias.
In 2006, Huang et al. introduced the DUD data set, which in

its generation protocol addresses artificial enrichment and false
negative bias.5 DUD focuses on docking methods and
comprises 40 different protein targets. The original DUD
version contained 2950 actives and 95 326 assumed inactives.
To circumvent the problem of the deficiency of experimentally
validated inactive molecules, so-called decoys are selected in
silico from the ZINC database.25 Artificial enrichment has been
addressed by selecting decoys such that they resemble the
active molecules in their basic physicochemical properties.
Those properties are molecular weight (MW), LogP, number
of hydrogen bond acceptors and donors, as well as the number
of rotatable bonds (see Table 1). It is worth mentioning that
the presence of amine, amide, amidine and carboxylic acid has
also been considered but with a lower priority. Simultaneously,
to provide a higher confidence that decoys are actually inactive,
the selection process ensures that each decoy is dissimilar to
any of the active molecules with respect to CACTVS
fingerprints26 and a Tanimoto coefficient threshold of 0.9.
The evaluation in a comparative docking study showed less
artificial enrichment in DUD than in earlier data sets.5 In fact,
DUD has been considered the gold standard after its release
and is still used today.20

Two years after the release of DUD, in 2008, analogue bias
has been described by Good and Oprea.27 Analogue bias is
based on the observation that artificially improved enrichment
can be achieved if a data set contains many analogue actives
with the same chemotype. The activity of ligands in a cluster
that share the same scaffold is easy to predict as soon as the
activity of a single molecule of the cluster can be identified.
Consequently, a common scaffold shared by actives but not
present in the inactives leads to overestimations. This bias has
been found in DUD.27 A strategy to address this bias is to
diversify the ligands by clustering actives by their scaffolds and

selecting representatives.27 Another limitation of DUD has
been the chosen set of matched properties. Multiple groups
reported that net charges are a strong discriminative feature in
the data set,28,29 which may lead to artificial enrichment in
validation.
In 2012, after DUD had been analyzed in many studies and

shortcomings had been identified, the DUD-Enhanced (DUD-
E) data set was published.6 The DUD-E compilation protocol
addresses shortcomings of DUD and simultaneously extends
the DUD data set to 22 886 actives and 1 411 214 decoys for
102 targets. The additional actives were retrieved from
ChEMBL30 and the inactives from the ZINC25 database. To
address analogue bias, active molecules were clustered by their
Bemis-Murcko scaffolds.31 To further reduce artificial enrich-
ment bias, net charges were added to the matched properties
between actives and decoys (see Table 1). Finally, a more
stringent topology filter was employed during decoy selection
to further reduce the probability of false negative inactives.6

Most of the benchmark data sets in VS focus on structure-
based methodologies such as docking.32 A popular example of
a benchmark data set specifically designed for ligand-based
methods is the maximum unbiased validation (MUV) data set
collection.4 MUV was published in 2009 and it comprises 17
separate data sets each associated with a target protein. Each
data set contains 30 active and 15 000 inactive molecules, all
retrieved from PubChem.33 Note that MUV contains
experimentally analyzed actives and inactives. Therefore, the
probability that the inactives are in fact inactive is high.
Samples of MUV were selected by a strategy addressing the
data set’s representation in a certain descriptor space (termed
the data set’s topology) with methods from spatial statistics.

Table 1. List of Unbiased Features of DUD, DUD-E, and
MUV

DUD5 DUD-E6 MUV4

molecular weight molecular weight
number of hydrogen
bond acceptors

number of hydrogen
bond acceptors

number of hydrogen
bond acceptors

number of hydrogen
bond donors

number of hydrogen
bond donors

number of hydrogen
bond donors

number of rotatable
bonds

number of rotatable
bonds

logP logP logP
net charge

number of all atoms
number of heavy atoms
number of boron atoms
number of bromine
atoms

number of carbon atoms
number of chlorine
atoms

number of fluorine
atoms

number of iodine atoms
number of nitrogen
atoms

number of oxygen atoms
number of phosphorus
atoms

number of sulfur atoms
number of chiral centers
number of ring systems

5 features 6 features 17 features
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The goal of MUV design was to reduce artificial enrichment
and analogue bias by selecting samples such that a common
spread between actives and other actives as well as actives and
inactives is employed in a descriptor space of 17 simple
features (see Table 1). The goal is a data set topology in simple
descriptor space in which the probability that the nearest
neighbor of each active is an active or an inactive is equal.4 The
MUV data sets have been developed with the focus on ligand-
based methods, but the authors note its usability in SBVS as
well,4 which has been done in studies.15

Table 2 gives an overview of the DUD, DUD-E, and MUV
data set.

1.2. Bias in Chemical Data. The term bias has several
connotations and is often not used uniformly. In essence, bias
describes the distortion from a true underlying relationship.
Available chemical data are biased because experiments are
conducted with different intentions than sampling the chemical
space uniformly.35−37 Chemical space is infinite, but the
pharmacologically relevant space is estimated to comprise
about 1060 molecules.38 The diversity of the synthesized
subspace is biased due to known molecules and even de novo
projects focus on molecules near the known active molecules.36

There are legitimate reasons for excluding certain molecules
from drug discovery projects for example costs, synthetic
feasibility and availability in a library.37 These reasons are
comprehensible in drug discovery processes, but they prevent a
uniform sampling of the chemical space. However, a
nonuniform sampling does not mean that methods based on
the available chemical data can not be used in practice, but it is
important to consider the composition of the data in validation
procedures and therefore in any benchmark data set.
Otherwise it is not clear whether a method performs better
because of a superior methodology or beneficial validation
data.
Over time, several tendencies of bias in chemical data have

been described. Cleves and Jain35 presented general biases in
chemical data as inductive bias. The authors showed that active
ligands that are known today have been synthesized due to
decisions of humans based on different assumptions, which
may lead to advantageous performance of methods making the
same assumptions. Those ligands are often synthesized based
on their similarity to known ligands. They demonstrated that
historically, known drugs for some targets show a noticeable
2D similarity in dependence of time, which they called 2D bias.
Typically, actives for a specific target with high 2D similarity
are patented in a narrow time span whereas more 2D dissimilar
actives tend to be discovered years later. Consequently, for
these ligands 2D methods have an artificial advantage over
other methods.35

Another bias not specifically addressing the data composi-
tion has been described by Jain et al.39 and is called
confirmation bias. This bias is the tendency of a human to
try to confirm a hypothesis by purely searching for a
correlation with the outcome of the hypothesis. However,
this correlation may not be physically founded and this
approach can lead to false conclusions. For example, a model
can be selected on the basis of correlation with some scoring
function, but this scoring function might be based on
assumptions that contradict the physical reality. An example
from ligand-based VS would be the hypothesis that molecules
similar to known active molecules are active as well, while
’activity cliffs’ are not considered.39

In summary, there are several bias specifications describing
certain scenarios of distorted data composition in the literature
that contain patterns or signals that should not be learned by a
model, because they misrepresent the true underlying
distribution.
We will introduce another specification related to con-

firmation bias that in our opinion describes the worst kind of
bias in a data collection. In particular, we distinguish domain
bias and noncausal bias. Both falsely present prospective
predictivity. On the one hand, domain bias distorts a
prediction because the distribution of the sampled population
resembles easy test cases or less diverse samples. The bias is
based on biological mechanisms, such that the model is right
for the right reason, but the applicability domain is narrow. An
example for domain bias is when the train and test samples are
too similar, for example, when a common scaffold is shared by
the actives in the training and test set. Therefore, the measured
model performance is biased to a certain domain, which is
acceptable if modeling this domain is the aim, but is
insufficient for generalization.
On the other hand, noncausal bias describes the case in

which there is correlation but no causation. In this case, good
predictions can be achieved by patterns in the data that do not
represent any biological mechanism relevant for binding, but
exhibit pure correlation with the labeled outcome. This bias
yields a good statistic, but on the basis of fallacious models not
based on physical reality. Such models do not work in general
but only on data that fits the bias pattern, which makes them
unusable for prospective predictions. Interestingly, there are
reports of successfully finding leads based on in silico
predictions, for which it has been experimentally refuted that
the molecule binds for the predicted reason.40

In Section 4, we will show in detail on ML-based scoring
functions from the literature that noncausal bias has been
learned implicitly and unnoticed from established benchmark
data sets.

1.3. Review of Benchmark Data Sets in Context of
Machine Learning. ML methods are increasingly used in
SBVS,12−17,41 but to our knowledge there is no data set
specifically dedicated to ML. Therefore, we review the purpose
of established data sets and their limitations regarding ML
methods in this paper.
A general distinction between benchmark data sets for SBVS

and ligand-based VS is often made.20,32 However, this
differentiation might be misleading. A more accurate and
fine-grained differentiation would be to categorize these data
sets according to the methodology they have been designed
for. Exemplarily, DUD and DUD-E are generated for docking
with conventional scoring functions. Therefore, those data sets
have been tailored for the requirements defined by those

Table 2. Overview of Three Benchmark Data Sets DUD,
DUD-E, and MUV

DUD DUD-E MUV

number of targets 40 102 17
targeted
methodology

docking docking ligand-based
similarity search

number of unbiased
features

5 6 17

special design
decision

2D
dissimilarity

2D
dissimilarity

experimental
inactives

number of
citations34

782 366 106
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methods and their vulnerabilities. The 1D properties matched
between actives and decoys by the DUD and DUD-E protocols
are captured by scoring functions, for example the hydrogen
bond donor count in hydrogen bonds terms. However,
classification should not be driven by simple and unspecific
molecular features such as donor and acceptor counts, but
rather by the quality of interactions. Simultaneously, the 2D
dissimilarity between actives and decoys can be employed,
because conventional scoring functions do not capture 2D
features like molecular topology. Similarly, the MUV data set is
not compiled for general ligand-based VS methods but for
nearest neighbor similarity search that starts with a query of
actives and does not use the 17 simple features but rather more
complex descriptors like MACCS structural keys. Conse-
quently, different methods and descriptors not considered in a
data set’s compilation protocol might be unsuited for the data
set even if they are also by definition ligand-based or structure-
based.
An example illustrating this problem are net charges in the

first version of the DUD data set, which have not been
included in the matched properties between actives and
inactives.6 While 42% of the ligands were charged, only 15% of
the decoys had a nonzero charge.6 Therefore, it has been
possible to artificially increase performance by just assigning
charged molecules as active. After overoptimistic results were
reported due to differing charge distributions, some updated
versions of DUD have been released.6,28,29 Accordingly, for
validation it is important to compare the features considered in
the compilation protocol with the descriptor to validate. It
might be not straightforward to spot whether an improvement
in score after the addition of a feature is due to bias.
Another example for a limitation of transferability of DUD

and DUD-E is the employed 2D dissimilarity. It is known and
stated by the authors6 of DUD-E that 2D descriptors are
inappropriate for use with their data set. Simultaneously, the
same is obviously true for DUD. Still there are reports using
these descriptors on those data sets. The extent of distinctness
by 2D features has been analyzed by Bietz et al.42 by mining
the most discriminative SMARTS-patterns in the DUD data
set. It could be shown that, for example, for the AMPC target
80% of all ligands contain a sulfur atom and only 10% of the
decoys. There are other examples in which simple patterns

such as the presence of single atoms can discriminate a
noticeable portion of actives and inactives.42 The 2D
dissimilarity is expected, but it should be noted that the
decoys can be easily distinguished according to very basic
substructures, which might be relevant for the validation of
novel descriptors.
In summary, data sets have a design purpose focusing on a

specific methodology. Data set design decisions are made
based on the goal of the data set to provide good test cases for
the targeted methodology. This might lead to bias when the
data set is used with methods or descriptors that are different
than the targeted methodology. Special care has to be taken,
because there is a repertoire of nonlinear ML algorithms that
can be paired with a large variety of chemical descriptors. For
this reason we evaluate whether ML methods can be validated
on established data sets. Concretely, we will evaluate the
unbiasing techniques of DUD, DUD-E, and MUV in Section 3
and analyze noncausal bias learned from a subset of these data
sets in Section 4.

2. METHODS

Experiments are conducted in Python using RDKit43 for
reading molecules and calculating molecular features. For ML
experiments the libraries scikit-learn,44 Keras,45 and Tensor-
Flow46 were utilized. The charge-corrected DUD, DUD-E, and
MUV data sets were downloaded from the respective web
pages.47−49

On the one hand, classification performance of predictors is
evaluated with the area under the receiver operating character-
istic curve (AUC). This metric provides a value between 0 and
1, where 0.5 indicates a random guess.50 On the other hand,
VS is an early recognition problem, which we assess with the
enrichment factor at the top x percent of the ranked
predictions, for example the top one percent (EF1%).51 Both
measures are highly used in the field of VS and therefore
should make the results of our experiments comparable to
published classifier performances.
In the following experiments, three different cross validation

(CV) experiments are performed, which are illustrated in
Figure 1. In the first validation scenario, the set of molecules
belonging to a single target t is split into training and validation
sets. This validation procedure will be called intra-target CV

Figure 1. Three cross validation (CV) scenarios used in the experiments are depicted schematically, namely intra-target CV, cross-target CV, and
leave-one-out cross-target CV with a protein similarity filter. In the case of the first two scenarios three folds are exemplarily depicted.
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and represents the task in VS of predicting further molecules
that are active against a target based on known active and
inactive molecules of this target. The second scenario is called
cross-target CV. Here, the set of targets T = {t1, ..tn} is split
into disjunctive training set Ttrain ⊂ T and test set Ttest ⊂ T.
With each target in T a set of molecules is associated. This CV
represents a more challenging task for the method because the
applicability domain is not restricted to a single target. Instead,
the goal of this validation is to assess the predictive power
across perhaps unrelated targets. There are different variations
of cross-target CV. For example a more sophisticated version is
leave-one-out cross-target CV with a similarity filter (see
Figure 1). In n iterations each target t ∈ T is once used as the
test set. To aggravate predictions, a similarity filter is applied
before training to remove targets from the training set, which
are similar to the test target. The aim of this CV is to assess
predictive power across dissimilar targets.

3. EVALUATING UNBIASING TECHNIQUES

The unbiasing techniques applied in the protocols of DUD,
DUD-E, and MUV are evaluated for their consistency with
machine learning (ML) methods. In all three data sets, the
unbiasing comprises the reduction of the discriminative power
of simple features (see Table 1 for a list of features) by the
compilation protocols. Since protocols address those features,
a reasonable assumption would be that those features barely
contribute to predictions. To examine this unbiasing with ML,
learning models were trained and tested while using only these
features for predictions. Since ML methods are effective at
capturing patterns across multiple features, it is also interesting
to evaluate combinations of features. Accordingly, in this
experiment we put to test whether the predictive power of
these features is reduced in the data sets when ML is used for
prediction.

3.1. Evaluation Setup. First, the unbiased features were
calculated using RDKit. In the case of DUD all ∑k = 1

n = 5(k
n) = 31

Figure 2. Results of the evaluation of unbiased features with AUC of DUD, DUD-E, and MUV with RF. The first row shows results of the intra-
target CV for (a) DUD, (b) DUD-E, and (c) MUV. In the second row, results of cross-target CV are depicted for (d) DUD and (e) DUD-E.
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combinations of the 5 unbiased features were calculated. For
DUD-E there are 63 feature sets and in the case of MUV
131 071 sets. Since for MUV the number of feature sets is too
high, a greedy enumeration strategy was applied. A backward
elimination52 was employed to subsequently remove features
from the whole unbiased feature set. Initially, the set of MUV
features Ff, where f dedicates the number of features in the set,
contains f = 17 features. The feature set F17 was used to train
and evaluate models with cross validation. Then all possible
sets of Ff−1 were evaluated in the same way and the single
feature contributing the least to the performance in terms of
AUC in the cross validation was eliminated from the feature
set. The process was iteratively repeated until f = 1 and the
highest performing feature was determined. The strategy for
feature subset enumeration is analogous to the enumeration
used in feature selection tasks with wrapper methods.52 In
feature selection the goal is to reduce the number of features
and select the best subset of features relevant to the learning
task.52 In contrast, the aim in this experiment is to identify
whether and to what extent unbiased feature subsets of a
benchmark data set perform with a given learning algorithm.
For evaluation, intra-target and cross-target CV were utilized

(see Figure 1a,b). All CV experiments were conducted with 10
random folds. The folds of intra-target CVs were stratified to
preserve the ratio of the samples for both classes in each fold.
As reference ML methods, Random Forest (RF) classifier53

and logistic regression (LR) from scikit-learn were used with
default parameters except for RF, for which the number of
estimators was set to 400. LR was selected because it is a
simpler linear model. In contrast RF is a nonlinear method and
is considered comparatively robust against overfitting and easy
to parametrize.54 Furthermore, RF is a widely used method in
the field of VS and drug discovery.
For these experiments, training and test sets were scaled

column-wise on the basis of the respective training set by the

formula zij
xij j

j
= μ

σ

−
, where i denotes the row and j the column

in the feature matrix. Accordingly, from each single feature
value xij, the mean μj of the column is subtracted and divided
by the standard deviation σj.
3.2. Evaluation Results. The results of intra-target CV

with RF and LR evaluated with the AUC are presented in
Figure 2a−c and S1a−c. Plots showing the performance
assessed with the EF1% is shown in Figure S2a−c for RF and
for LR in Figure S3a−c. Each boxplot shows the results of all
targets of the respective data set. Hence, one point in the plot
represents the mean performance of a method on a single
target in 10-fold CV with a certain set of unbiased features.
Consequently, a box in the plot shows the range of
performance in AUC or EF1% over all targets when exactly
x features are used for prediction.
The results of cross-target CV with AUC are depicted in

Figure 2d and e for RF as well as in Figure S1d,e for LR.
Results with EF1% are shown in Figure S2d,e for RF and
Figure S3d,e for LR. In this experiment, random cross-target
CV has been repeated ten times with different random splits to
address empirical stability of the results. One point in these
plots represents the mean performance of a method on a 10-
fold cross-target CV with a certain set of unbiased features.
Therefore, a box in these plots depicts the distribution of mean
AUC or EF1% values of differently splitted cross-target CVs
when x features are used.

We did not perform cross-target CV on MUV because of the
high number of duplicates in the set of inactives of different
targets. Of the 255 510 molecules in the whole MUV data set
there are only 95 916 unique PubChem-compound-IDs.
Deduplication would leave only 38% of samples and would
yield an arbitrary composition not representing the MUV
anymore. This redundancy is probably due to the fact that the
experimentally analyzed space is generally small, but negative
results are even less often reported.
The AUC results of intra-target CV are similar for DUD and

DUD-E in Figures 2 and S1, which is comprehensible since
both data sets have been generated with a similar strategy. A
noticeable observation is that the predictive performance
achieved by many of the models is rather high. Comparing RF
and LR in these experiments shows higher median and
maximum values for the nonlinear RF, which was expected.
The highest achieved mean AUC with RF is 1.0 for both DUD
and DUD-E, which indicates perfect performance. With LR the
maximum mean values are 0.95 and 0.99 for DUD and DUD-
E, respectively, which also shows very good classification of
molecules. An interesting observation is that AUC values
increase when more features are included.
Evaluation with EF1% shows also very good performance on

DUD and DUD-E. When AUC results are compared to EF1%
a similar correlation of the number of features and perform-
ance can be observed for RF (see Figure S2a,b). In contrast,
for LR this effect is only partly present on the DUD-E data set
(see Figure S3a,b).
The predictive performance on MUV in the intra-target CV

is substantially lower as on the other two data set, but still
substantial values are achieved. The maximum AUC with RF is
0.76 when using 15 different features, while the best AUC with
LR is 0.88 when seven features are used. In the case of MUV,
combining features has no observable correlation with the
performance.
When considering EF1% on MUV, the results show

noticeable enrichment for both RF and LR. It is worth
mentioning that for this experiment not all feature combina-
tions were enumerated on MUV, but a backward elimination
was employed, which was guided by the AUC metric.
Generally the performance with cross-target CV is lower

than with intra-target CV. Still, a noteworthy separation can be
achieved in this validation setup. Especially, RF achieves AUC
values up to 0.78 and 0.80 on DUD and DUD-E, respectively.
In contrast, when LR is utilized the best AUC values are 0.63
for DUD and 0.58 for DUD-E. The results of RF assessed with
AUC and EF1% show the same correlation of the number of
features with the performance as in the intra-target evaluation.
This trend is also observable for most LR results, but not as
prominent.

3.3. Evaluation Discussion. 3.3.1. DUD and DUD-E. For
the interpretation of the results of DUD and DUD-E it is
important to consider models trained on a single feature and
models trained on combinations of features separately. Since
distributions of single features are matched between the classes
by the compilation protocol by approximating mean and
standard deviation it was expected that they contain not much
information for discrimination and single feature-based
predictions would be close to a random guess. However, the
performance achieved with single features is far from an AUC
of 0.5 with RF for most targets and also the LR performs very
well. To analyze these results it is useful to examine the
distributions of single features from both classes. In the Figures
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S4 and S5 the distributions of the matched features for the
DUD and DUD-E are depicted. These plots show the
distributions over the whole data sets (over all targets). For
both data sets, the histograms are mostly overlapping and the
properties seem to be well matched, except for the molecular
weight in DUD-E for which proportionally more actives are
present from a molecular weight of approximately 500 Da.
Consequently, it would be expected that molecular weight can
be used to discriminate classes on DUD-E.
To explain the high performance with single features, we

plotted the feature distribution of the target with the highest
AUC in intra-target CV on DUD with RF. It can be seen at the
distribution of LogP on the target PNP in Figure S6 (first row)
that features are not as well matched as over the whole data set.
In this example, a notable subset of actives has lower or higher
LogP values than the decoy set. For further examination of
results, we plotted the LogP histograms of the training and test
sets of a single fold from intra-target CV in the second and
third row of Figure S6. The fourth row of the plot shows the
distribution of scores of the LR model in an one-dimensional
contour plot over a range of LogP values. Test actives are
marked by red triangles and test decoys by blue triangles. As
can be seen from the blue color of the contour plot all test
samples get scores near zero. This could be expected from the
histograms since there is no LogP threshold, which could
adequately separate the classes. In contrast, RF achieves almost
perfect test performance with an AUC of 0.99 on this split.
This can be explained with the last row of Figure S6, which
shows the contour plot of scores from the RF model. There are
many intervals with different scores, which was expected. It can
be seen from the triangles marking the test actives that for each
test active there exists an interval that corresponds to a higher
than zero score. However, very low scores are predicted for
almost all decoys of the test set. Therefore test actives get
higher scores than the decoys, which is sufficient to classify
them correctly. The performance of RF can be explained by
the fact that the LogP values are matched in certain intervals
only. Since predictions of RF are based on splitting the input
space into intervals this unbiasing is ineffective, when the test
set matches the intervals learned from the training set. In
conclusion, the LogP values of actives and decoys in this
example are well enough matched for removing bias for linear
models, but not for a nonlinear model as RF. However, this
does not explain the still very high AUC values achieved by LR
models in Figure S1 when a single feature is used.
The high AUC values of LR model’s when only a single

feature is used can be explained by looking at Figure S7. In this
example, the intra-target CV experiment on the target SAHH
of DUD-E with the number of hydrogen bond acceptors as
feature is shown. This feature is not well matched between
classes. For this target, on average actives contain more
acceptors than decoys. This distribution is still present after the
random split into training and test set. For this reason, the LR
model can learn a well separating threshold as depicted in the
contour plot in Figure S7. For this example, LR and RF have
the same performance in AUC because most molecules are
easy to classify.
As mentioned before, an interesting observation is the

correlation of the number of features and the performance,
which increases until AUC values close to 1.0 are achieved for
most experiments. This is not surprising since ML can capture
synergies between subsets of features. However, separability is
extremely high. This is probably because in the unbiasing one-

dimensional feature spaces are matched, but not the multi-
dimensional spaces. When considering a single target high
performance with multiple features is nothing that needs to be
avoided at any cost, because activity also depends on
nonadditive molecular features.39 However, when perfect
performance is already reached with molecule features alone,
a structure-based method might be strongly biased because it
uses both the molecule and the protein. Therefore, in our
opinion for DUD and DUD-E multidimensional unbiasing is
necessary, if they are used for benchmarking of ML methods.
Interestingly, the same correlation can also be observed in

the cross-target setup. This CV should be less prone to bias
coming from molecular similar actives for example originating
from the same molecular series. Correspondingly, the AUC
values are lower as in the intra-target CV. However, the
resulting AUCs are still reaching values of 0.78 and 0.80 for
DUD and DUD-E, respectively, even though all predictions are
based on molecular features only. An explanation for this is
that we performed a random cross-target CV and the test and
training actives of different targets might be similar because the
targets could be related. This is further evaluated in Section 4
on the more stringent leave-one-out cross-target CV on DUD.

3.3.2. MUV. In contrast to DUD and DUD-E, the AUC
values achieved for MUV are substantially lower (see Figure
2c). An explanation for this is that the embedding of actives
among inactives in the 17 dimensional feature space with
methods from spatial statistic removes more bias from the data
set than approximating mean and standard deviation of single
features of actives and inactives independently. This also
explains that no synergistic effect by combining features is
observed. In comparison with DUD and DUD-E, the unbiasing
protocol of MUV seems to be more suited for ML methods,
but still there are serious limitations. For example, the linear
LR reaches higher maximum AUC values than RF. This is
probably explained through overfitting of the RF models,
which we did not investigated further. Interestingly, Wallach et
al. showed for the ECFP that the suitability of MUV for ML is
restricted by the MUV bias function, which considers the
relation between actives to actives and actives to inactives in
the feature space, but not inactives to actives and inactives to
other inactives.37 They proposed their own bias function called
AVE37 to overcome these limitations. However, it is
comprehensible that MUV is not a perfect fit for ML because
it was designed for similarity search starting from a query active
rather than a training set of active and inactive molecules.

3.3.3. AVE Analysis. In an additional experiment, we
evaluated the AVE-bias score proposed by Wallach et al.37

on the intra-target CV experiments shown in Figures 2 and
S1−S3. AVE is an extension of the MUV scoring function and
assess the redundancy between training and test set. The
results are shown in Figures S8−S10. AVE values different
from zero indicate bias. For DUD, there is a notable
correlation of AUC with AVE using RF but much less in LR
and EF1% experiments. AVE bias in these experiment is not
surprising because there was already substantial MUV bias
reported for DUD.4 For DUD-E, there is a notable correlation
between AVE and AUC in RF and LR experiments and
moderate correlation with EF1%. The correlation on MUV is
weak for RF and moderate for LR experiments. Furthermore,
the points in the plots are colored according to the number of
features used (corresponding to the number of features on the
x-axis in Figure 2). For DUD and DUD-E, it is observable that
when more features are included also more AVE bias is
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exhibited. However, with most single features the performance
is very high, but no AVE bias is present. In conclusion, there is
a noteworthy correlation in DUD and DUD-E between
performance and AVE, but in a substantial part of the
experiments AVE can not explain the high performance.
3.3.4. Conclusion. In summary, DUD and DUD-E have

been developed to evaluate conventional scoring functions for
docking. With this goal, the unbiasing technique employed
tries to approximate the distribution of single low dimensional
features between actives and inactives. As our results
demonstrate for a nonlinear ML method like RF it is not
sufficient to select decoys to match mean and standard
deviation of these low dimensional features. RF is able to
accurately separate classes even on the basis of a single feature
and especially when multiple low dimensional features are
combined. Even LR is able to achieve impressive results,
because for some targets features are not matched well enough.
Moreover, experiments on MUV show also substantial
performance when unbiased features are used with RF and
LR, which is in accordance with others.37

Therefore, we can conclude that when the method is
exchanged the unbiasing of the data set might be ineffective
and molecular features alone might still play a major role in the
validation of structure-based approaches, when ML is used. As
a consequence, when using these data sets with ML methods, it
should be kept in mind that low dimensional features are
sufficient to achieve a notable performance in separating
classes in the intra-target CV. Also a noteworthy separation can
be achieved in the cross-target CV where predictions for
targets dissimilar to the targets in the training set are made.
These baseline performances should be considered when more
complex descriptors are used which include those features.
Finally, the performance should be compared to those
baselines instead of random performance.

4. NON-CAUSAL BIAS IN LITERATURE
In the following, two examples of convolutional neural
networks (CNN) for the scoring of protein−ligand complexes
after docking are presented from literature. We made an
observation that indicates that even after elaborate and
conscientious validation by the authors bias might be a
problem. In the subsequent examples, we first introduce the
networks and their validation procedures from literature. Then
the experiments we conducted to examine our observations are
described.
4.1. Example 1: DeepVS. DeepVS is a CNN inspired by

natural language processing.14 The structure-based approach
uses a novel descriptor to featurize and vectorize 3D protein-
molecule complexes after docking. The aim is to learn general
protein−ligand interactions from basic features in the local
neighborhood of atoms of the small molecule in the 3D
complex, called atom contexts.14

The DeepVS descriptor is depicted in Figure 3. For each
atom a in the ligand molecule, the local neighborhood is
considered. The neighborhood is described by the distances,
atom types, atomic partial charges, and associated protein
residues of the kc atoms in the ligand molecule nearest to a and
the kp atoms in the protein nearest to a. For example, in Figure
3, kc is three and includes N3 (atom a itself), H, and C2, as
indicated by the red circle. In the same example, kp is 2 and
includes the protein atoms CD and OE. These discrete values
are transformed into real-valued vectors, which constitute the
first hidden layer of the network. The network consists of the

first hidden layer, a convolutional layer (second hidden layer),
a third hidden layer and an output layer with a softmax
classifier.14 In the final DeepVS network, the hyperparameters
kc and kp have been set to 6 and 2, respectively. The training
was performed on minibatches of size 20 with stochastic
gradient descent (SGD), negative log-likelihood as loss
function and backpropagation.14

DeepVS has been validated on the DUD data set in a leave-
one-out cross-target CV (LOO−CV) with a similarity filter as
illustrated in Figure 1. In each iteration of the LOO−CV, one
of the n = 40 DUD targets is left out as a test set. From the
remaining 39 proteins, all that are similar to the selected one
are discarded and the rest form the training set. Similarity of
proteins has been described as sharing the same protein class
or showing a positive cross-target enrichment in the original
DUD paper.5 Each trained model has been used to make
predictions for the respective test protein. The validation
revealed a mean AUC of 0.81 and an enrichment factor at 2%
(EF2%) of 6.62 in the LOO−CV, which outperformed several
other scoring functions.14

One experiment in the validation of DeepVS raised our
attention. It is reported by the authors that setting the
parameter kp to 0 yields an AUC of 0.80 and EF2% of 6.95
(Table 6 in Pereira et al.14).14 By setting kp = 0, all explicit
protein information is removed from the descriptor. The
remaining descriptor considers only small molecule atoms, but
the resulting AUC drops only by 0.01 and the EF2% marginally
increases by 0.33, therefore, it seems DeepVS is invariant to
the information from protein atoms. The descriptor with kp = 0
corresponds roughly to a ligand-based approach. With the
exception of the molecule conformation which has been
generated through docking, no information from the protein is
contained in the descriptor. Ligand-based approaches are
based on finding active molecules due to their similarity to
known ligands. Since targets similar to the test target are
removed before training, it is not expected that any ligands of
the training targets are structurally similar to the test ligands.
Therefore, the predictability based on ligand similarity should
be low. However, the achieved prediction performance is
almost unchanged, which indicates noncausal bias.

4.2. Evaluating DeepVS. To understand these results, we
reimplemented the DeepVS network in TensorFlow and
performed the same validation experiment with altered input
data. Since the input to the original DeepVS was docking
output, the small molecules have a binding site specific
conformation. To remove this protein-dependent information
from the experiment, we generated small molecules con-

Figure 3. This figure, taken from Pereira et al.,14 illustrates the
DeepVS descriptor on the example of the local atom context of atom
N3 (yellow) of thymidine in complex with a thymidine kinase (PDB-
ID:1KIM). The parameters kc = 3 and kp = 2 are indicated by the two
large red circles.
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formations with RDKit, not considering the individual protein
structure. This yielded a purely ligand-based descriptor.
The results of our ligand-based reimplementation are plotted

against the reported folds of the original DeepVS in Figures 4
and S11. The achieved mean AUC of the reimplementation is
0.79, as shown in Figure 4a and the mean EF2% is 5.03 (see
Figure S11a). ROC curves are provided in Figure S12. On the
basis of these results, it seems that the overall performance of
the DeepVS approach is in fact mostly invariant to protein
information. Although, for both scores the ligand-based results
correlate with the original structure-based DeepVS, it can be
observed that the results in AUC are more similar than the
achieved EF2% values. For single folds the simple molecule
conformations of the ligand-based version suffice to achieve
higher early enrichment while for other folds using docking
poses and protein information is advantageous. However, the
high performance of the ligand-based version in the LOO−CV
implies noncausal bias.
Since small molecules only are sufficient to discriminate

actives from inactives across dissimilar targets, there must be a
discriminative noncausal molecular property across the whole
DUD data set. To ensure that decoys are not actually active
molecules, a certain minimum topological distance from every
decoy to every ligand in the whole data set was required when
the data set was designed.5 For this reason, 2D molecular
features should be discriminatory across all DUD targets.
By examining the DeepVS descriptor, it becomes obvious

that the descriptor is able to capture 2D topology. In Figure 3,
the red circle on the right containing the small molecule atoms
shows the local atom context of N3 in 3D space. Indeed, the
red circle also marks the local substructure around atom N3,
because the nearest atoms in 3D space often correspond to the
nearest atoms in the molecular graph.
To compare the local neighborhood of an atom in 3D space

with the topological neighborhood, we conducted another
experiment. Using our ligand-based reimplementation, instead
of considering the kc nearest atoms in 3D space we considered
the kc = 6 nearest atoms in the molecule graph, yielding a
topological version of the ligand-based DeepVS. The resulting
mean AUC and EF2% over all 40 folds of the topological
DeepVS is 0.78 and 5.41, respectively (see Figures 4b and
S11b). ROC curves for the 40 folds are shown in Figure S13. A
comparison of AUC and EF2% values between our 3D and 2D
reimplementations is shown in Figure S14, which indicates a
strong correlation in terms of AUC and a good correlation for
EF2% values. To further evaluate whether the 3D descriptor
captures the 2D information, we examined if the same actives

were enriched by both methods. In the first 5% of the ranked
lists, 81% of predicted actives are identical between both
methods over all 40-folds with a standard deviation of 18%. A
full distribution of the active identity is depicted in Figure
S15a. These experiments demonstrate that similar results can
be achieved when using exclusively 2D information.
Another open question is to determine to which extent the

usage of a CNN contributes to the performance and how
standard ML approaches would perform. To examine the
baseline performance of a 2D descriptor, we applied Morgan3
fingerprints folded to 4096 bits with RF and LR in the same
validation setup as used for DeepVS. The resulting mean AUC
is 0.78 for RF and 0.70 for LR (see Figure 4c,d), while the
resulting mean EF2% are 5.52 and 5.47 for RF and LR,
respectively (see Figure S11c,d). On the one hand, these
results show that also other nonlinear ML methods such as RF
are sufficient to achieve a comparable performance and using a
CNN does not improve the prediction results significantly. On
the other hand, when using a simple linear LR model the mean
AUC is already quite high with 0.70, which shows that correct
classification can be achieved with a linear function for many
test cases. As in the previouse case, we compare the hit lists to
see whether the same actives are enriched by conventional ML
methods as with the CNN. At the first 5% of the hit lists on
average 46% (28% standard deviation) of actives are identical
(see Figure S15b for details). Therefore for most targets
(folds) there is a difference between the information captured
and used by RF with Morgan3 fingerprints and the 3D
DeepVS model but still a comparable performance can be
achieved and ligand features suffice to make predictions across
dissimilar targets.

4.3. Example 2: Grid-Based 3D CNN. For our second
example, we wanted to examine a currently frequent approach
of ML-based scoring functions using a CNN inspired by image
recognition. In these approaches the 3D complex of the
protein and ligand is discretized with a grid around the binding
site. There are multiple examples, such as AtomNet,13 an
unnamed network by Ragoza et al.15 and KDEEP.

17 As in the
case of image recognition, the intention of these networks is to
automatically and hierarchically abstract high-level features
holding information for binding from low-level features of the
complex. Because of the workload required to rebuild and re-
evaluate these networks, we decided to examine the CNN by
Ragoza et al. only because the authors provided an elaborate
validation from different perspectives and shared their code.
Ragoza et al. discretize the protein−ligand complex with a

uniform 3D grid of 24 Å centered around the binding site. The

Figure 4. Correlation plots of AUC values of the structure-based original DeepVS (values taken from ref 14) and the four other approaches. (a)
Performance of our 3D ligand-based reimplementation. (b) Correlation of the reimplementation using the topological distance on the molecular
graph instead of 3D distances. Finally, the performance of (c) RF and (d) LR with Morgan3 fingerprints is plotted against the original DeepVS.
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resolution is set to 0.5 Å. A grid point stores information about
heavy atom types represented by a continuous density function
depending on the distance of an atom to the grid point and the
respective van der Waals radius. Each channel of the grid
resembles a different atom type (like RGB channels in images).
Atom types for protein atoms and ligand atoms are considered
separately in different channels. In total 34 distinct atom types
are considered. These include simple elements of atoms, such
as nitrogen, oxygen or sulfur. In addition aliphatic and
aromatic properties of carbons are considered as well as
nitrogen and oxygen atoms acting as hydrogen bond acceptors
or donors.15

The architecture of the CNN consists of three subsequent
pooling and convolutional layers and a final output layer. The
input to the network is the featurized 3D grid of the binding
pocket. The final scores are provided with the softmax
function.15 See Ragoza et al.15 for a more detailed description
of the architecture. Ragoza et al. performed the training of the

network with SGD and backpropagation while minimizing the
multinomial logistic loss. Oversampled batches of size 10 have
been utilized such that each batch is balanced according to the
number of actives and inactives. In addition, training data have
been augmented by random rotation and translation.15

The described CNN architecture has been evaluated
comprehensively for the tasks of pose prediction and VS on
CSAR, DUD-E and independent test sets.15 CSAR and DUD-
E have been used in cross-target three-fold cluster cross
validations (cCCV). For each of the two data sets, all targets
were clustered into three-folds to ensure that targets with
sequence identity greater 90% for CSAR and 80% for DUD-E
are in the same fold. This should prevent the training targets
from being too similar to test targets.15

The achieved results for pose prediction and VS differ. Pose
prediction with cCCV on CSAR yielded a mean AUC of 0.815
outperforming AutoDock Vina (Vina). In contrast, in an intra-
target validation, Vina outperformed the CNN or is almost as

Figure 5. Illustration of the two variants of the grid descriptor on the example of compound CHEMBL58224. The first row depicts a (a) 3D
structure of the molecule and (b) corresponding representation of the 3D grid descriptor. In the second row, the (c) 2D conformation of the
molecule and (d) according 2D grid representation are illustrated. In panels b and d, the coloring of the boolean-valued grid points is overlaid for
the illustration of the channels of the grid.
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good. For the VS task, the best reported mean AUC with the
CNN in the cCCV on DUD-E is 0.86. On the test, Vina
achieved an AUC of only 0.68. Interestingly, Ragoza et al.
showed that a model trained with DUD-E performed rather
poor on CSAR test data and vice versa. The authors evaluated
models trained on combinations of DUD-E and CSAR data.
The combined model exhibits an AUC of 0.83 on the VS task
and 0.79 at the pose prediction task, showing slightly worse
performance as the networks trained for a single task. For this
reason Ragoza et al. conclude that the results demonstrate that
the data sets generated for different tasks prevent models from
learning a similar scoring function.15

4.4. Evaluating Grid-Based 3D CNN. As in the first
example from literature, a CNN was trained for the scoring of
docking output. The evaluation was performed on the DUD-E
data set, which is compiled with a comparable strategy as the
DUD data set. Interestingly, Ragoza et al. noticed that learning
with data sets for different tasks leads to models with differing
scoring functions.15 A reason for this might be bias learned
from the DUD-E data set. Ragoza et al. already suspected
overly optimiztic predictions in the case of their DUD-E
experiments, which should be mitigated through cCCV.15 The
intention in utilizing the cCCV was that the targets used for
training are not similar to the test targets. As in the case of
DeepVS, the performance of the CNN could be due to small
molecule information only.
To examine this possibility, we reimplemented the described

CNN in Keras with some adaptions to the descriptor and
replicated the cCCV experiments described by Ragoza et al.15.
First, as in the reimplementation of DeepVS, protein
information was left out completely. No docking was
performed. Instead, conformations of the small molecules in
DUD-E were generated using RDKit. The molecules are then
put into a 3D grid of 483 grid points with a spacing of 0.5 Å as
the original descriptor. The second adaptation was that for the
reimplemented descriptor not all 34 atom types were used. For
computational efficiency only the elements bromine, carbon,
chlorine, fluorine, iodine, nitrogen, oxygen, phosphorus and
sulfur were used. This reduced the channels of each grid from
34 to 9. The third adaptation made to the descriptor was that
no density function representing the atoms was utilized.
Instead, a boolean function was applied, which sets a grid point
to 1 if this grid point is in the van der Waals radius of an atom.
This adapted descriptor is a simpler version, capturing only a
subset of the features of the original descriptor. The descriptor
is illustrated in Figure 5. The 3D conformation of the molecule
(Figure 5a) is discretized by the grid descriptor. The descriptor
for the depicted conformation is shown in Figure 5b, where the
different channels (O, N, and C) are overlaid.
With the modified descriptor, the reimplemented CNN was

trained and evaluated. The three-folds for the cCCV on DUD-
E were generated using the Python script55 provided by
Ragoza et al.15 The resulting AUC values achieved with the
simpler descriptor and the reimplemented CNN are 0.82, 0.84,
and 0.85 for the three-folds, which results in a mean of 0.84.
Therefore, the difference to the original CNN model trained
on DUD-E is 0.02, which is very similar to the performance of
the CNN of the original publication using docking. In terms of
early enrichment EF2% values of 12.60, 14.87, and 13.98 were
achieved for the three folds. ROC curves are shown in Figure
S16. The experiment here is ligand-based; therefore,
predictions across dissimilar targets should not be possible
on the basis of ligand similarity. The still high AUC values

strongly indicate that a similar bias is learned as in the example
of DeepVS. As with DUD, it is possible for DUD-E to learn
activity prediction across targets with small molecule
information only.
As in the case of DUD, molecular topology is a

discriminative feature across the DUD-E data set.6 To examine
if this is the reason for the ligand-based results for this CNN,
we conducted a 2D version of the original 3D experiment
using exclusively a 2D description of the molecules. Instead of
generating 3D molecule conformations, we generated only 2D
depictions (see Figure 5c) using a constant atom radius of 1.5
Å for all atoms and calculated their respective 2D grid
representation as shown in Figure 5d. The 2D grid builds the
input to a 2D version of the CNN. We performed the same
cCCV and achieved AUC values of 0.82, 0.85, and 0.84 for the
three-folds, yielding a mean of 0.84. The achieved EF2% values
are 11.70, 15.41, and 11.31. ROC curves are shown in Figure
S17. To compare whether the same actives were enriched with
the 3D and 2D version of the CNN, we compared the hit lists
from both methods regarding the actives. On average, 73%
(1% standard deviation) of the actives are identical at the first
5% of the hitlists. The full distribution of identical actives can
be found in Figure S18. These results indicate that a substantial
part of the performance of the original grid-based CNN is,
such as in the case of DeepVS, based on the difference across
all DUD-E targets of lower dimensional molecular features
included in the molecules’ topology.

5. TOWARD BIAS-CONTROLLED VALIDATION
A comprehensive and elaborated validation for a VS method is
the basis for reliability, acceptance, and usage of this method in
the scientific community. Elaborate efforts are made to validate
methods, but as we showed in the previous section on two
examples from literature, it is possible to achieve comparable
results when a ligand-based version of a structure-based
descriptor is used. Simultaneously, the performance in those
experiments is noncausal bias, because ligand similarity should
not suffice to make predictions across dissimilar targets.
A reason this bias remained unnoticed is the non-

transparency of the used ML models. In particular, deep
learning models such as CNNs are difficult to interpret and are
often treated as black boxes. This lack of interpretability
increases the effort required for validation as well as the
necessity for a comprehensive validation. In the two examples,
elaborated validation experiments have been conducted by the
authors.14,15 Still, as we have shown, substantial noncausal bias
remained unrecognized.
We demonstrated in detail for DeepVS that molecular

topology is a discriminative feature in the used validation setup
and is captured implicitly by the DeepVS descriptor. Our
results strongly indicate the same reason for the bias
influencing the performance measuring of the grid-based 3D
CNN. In both cases, discriminative lower dimensional features
of the small molecules were contained in an nontransparent
structure-based 3D descriptor. This is difficult to spot, and an
apparently reasonable model is actually learning noncausal
bias, especially, when difficult-to-interpret neural networks are
employed. Our experiments with standard ML methods
showed that the difference in performance between RF and
CNNs is very small, which makes it debatable whether benefits
of CNNs outweigh the additional effort and the lack of
interpretability that is associated with deep learning models.
This also shows the importance of performing baseline
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experiments and comparing complex methods with simple and
interpretable ones.
That lower dimensional features are biasing higher dimen-

sional descriptors is an recurring problem that has already been
addressed in the context of simple properties and conventional
scoring functions in DUD and DUD-E as well as for similarity
search in MUV. However, the increasing trend of applying ML
methods in SBVS comes with a variety of novel descriptors and
expressive methods that can abstract higher dimensional
features from low dimensional ones. This holds the risk of
learning bias, because the currently established data sets focus
on different methodologies. When comparing the ML
methodology on the basis of DUD and DUD-E it is evident
that those data sets have not been designed with ML methods
in mind. Conventional scoring functions such as empirical
scoring functions are typically weighted sums over physically
motivated descriptors.41 Current ML methods operate differ-
ently. They are strongly data-driven, make use of a large
number of free variables, and are able to derive nonlinear
relationships. While this is an advantage in general, it leads to a
higher risk of learning noncausal bias from data sets. In
particular, the protocols of DUD and DUD-E assume that
simple 1D properties might cause bias. However, as the results
of Section 3 show, in contrast to MUV, the combination of 1D
features for example by a ML method has not been considered
in the unbiasing protocol of DUD and DUD-E and it is
arguable if combinations of these features should have a strong
influence on structure-based descriptors. In addition, the
design decision to employ a 2D dissimilarity of each decoy to
any active of the whole data set generates a strongly
discriminating feature and could be employed because 2D
features are not captured by conventional scoring functions.
The authors of DUD-E therefore state that their data set is not
suited for topological or 2D methods because “Through its
construction, ligands light up against DUD-E decoys using
these 2-D similarity methods, which create an artificially
favorable enrichment bias for them.”.6 This design decision
restricts the applicability of DUD and DUD-E for 2D methods,
but not in general. However, what should be more emphasized
is that the 2D dissimilarity is employed across all targets of the
data sets, which can artificially enable the differentiation of
actives and inactives on the basis of molecules from
biologically unrelated targets.
In conclusion, whether bias occurs in the validation of a

method depends on the composition of the data set used as
well as the method and descriptor used on the data set (and
other factors such as the performance metric and the strategy
for splitting into train/test sets).
In our studies, we focused on three well established data sets

in VS, but there are other established and also more recent
data sets, which should be evaluated for their suitability with
ML8−11,56 as well before similar problems arise from different
data sets.
This discloses two current problems in VS with ML. First,

method developers need to evaluate the appropriateness of a
benchmark data set for their method-descriptor combinations.
Second, there is a need for a benchmark data set suited for ML
methods in VS. To both, we provide some first guidelines to
foster the discussion in the scientific community.

6. GUIDELINES FOR VALIDATION EXPERIMENTS
We suggest five guidelines for the setup of validation
experiments for ML in VS, which are not necessarily restricted

to these methods. This includes determining if a data set is
suitable for validating a particular method and descriptor, as
well as identifying implicit bias.
(i) Validation domain of a data set: If a new method is in

place, a data set is selected for validation. In general, it is very
good to choose established data sets since they were assembled
independently from the method development. It is not
sufficient, however, to just consider the application problem.
The data set must be suited for the method applied. Some
authors of data sets already give hints in their publications. For
example, DUD and DUD-E are known to be not suitable for
methods capturing topological descriptors.
(ii) Method and descriptor design: More detailed evalua-

tions can be conducted if the method and descriptor are
modular. Particularly, components of the descriptor and
method should be easily controllable in their information
content and ideally exchangeable. This is beneficial to evaluate
different descriptors and method variations. A positive example
for a modular descriptor is the DeepVS descriptor because it
allows to control the extent of information from the protein
and from the small molecule.
(iii) Data set’s unbiasing strategy: As observed from the

compilation protocols of DUD, DUD-E, and MUV, each data
set applies some unbiasing techniques to reduce the predictive
power of certain features. These features are considered
biologically irrelevant in that they should have not much
influence on the distinction of actives from inactives. Whether
an unbiasing technique of a data set compilation protocol
works with a certain method needs to be validated. Evaluating
these unbiased features and their combinations with a
particular method, as in the experiment in Section 3, is
important because perceptible predictive power in this
experiment indicates that the data set’s unbiasing strategy
and the employed method are not compatible. If the data set
with the unbiased features is still used, it is necessary to
compare the method’s performance not against random
predictions, but to the baseline performance given by the
unbiased features. If, however, the unbiased features are not
used explicitly or implicitly by the method, the data set can be
used.
(iv) Baseline definition: Comparing a method’s performance

to random predictions is not enough to recognize bias or test
cases which are too easy. A novel and complex method should
always be compared to standard methods and simple
approaches in the same validation scenario. Perhaps simple
linear classifiers or nearest neighbor searches are as good as a
more complex nonlinear method. The importance of weak-but-
realistic baselines was also recognized by others.37 Beyond that,
we showed when a structure-based method identifies most
active molecules of a single target in a test set the developer
might assume that the performance achieved is due to
relationships derived from protein and small molecule features.
However, without performing a baseline experiment this
conclusion can not be taken for granted. A simple ligand-
based similarity search achieving a similar performance on the
test set indicates that the test cases might be too simple.
Furthermore, it is worthwhile to also perform ligand-based
baseline experiments when the validation scenario would be
that ligand-based methods have no predictive power. As
described in Section 4, unexpected good results strongly
indicate implicit and noncausal bias.
(v) Detecting noncausal bias: Our final guideline deals with

evaluating a model with multiple sanity tests in the sense of
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negative controls to identify noncausal bias. This corresponds
to our approach in Section 4, where we evaluated feature
subsets of the descriptor where no causal relationship exists
and expected to see no performance, for example, the
descriptor can be systematically decomposed into features
that are expected to be insufficient for activity prediction in the
specific validation scenario. This yields a set of negative
controls that the model needs to pass to validate against
noncausal bias and should finally reveal which feature subsets
are decisive. The first step in the validation of a structure-based
method would be to remove the protein from the experiment
and examine the performance without protein information.
Furthermore, one can replace the target protein by a
biologically unrelated protein and see whether the performance
drops. The hard part in this systematic bias detection is to
actually look at the descriptor and validation experiment and
come up with a subset of features to evaluate.
Gabel et al.57 also proposed two guidelines for better

validation experiments for ML-based scoring functions for
affinity prediction, which are complementary to ours. These
guidelines describe testing the sensitivity of the scoring
function to the ligand pose and the ability of the scoring
function to discriminate actives from inactives in a VS task.57

7. ON GENERATING NEW DATA SETS
We see a need for data sets appropriate for ML methods in
SBVS. A basic concept for designing a data set without ML-
specific bias would be to define a bias scoring function to
optimize the selection of data points for a new data set. For
ligand-based VS, Wallach et al.37 proposed a variation of the
MUV function for ML called AVE. This scoring function assess
bias by equating bias with a one-nearest neighbor predictor, a
simple learning method. A similar concept was applied during
the development of the original MUV data set, for which bias
was measured by the performance in a simple descriptor space.
This essentially resembles a negative control. When there is
good performance in an insufficient experimental setup, then
there is bias. This concept could be extended to a wide range
of possible biases. For example, to remove the samples
introducing the bias in the experiment of DeepVS, the
performance in the LOO−CV with similarity filter could be
used as a bias scoring function for optimization. Therefore, it is
possible to generate specifically tailored data sets for certain
methodologies.
The ideal data set would be a data set of uniformly sampled

data points from the chemical space without bias for any
methodology. Such a data set would enable the comparison of
different methodologies without restrictions. However, the
explored chemical space is not sampled uniformly. This most
likely leads to a trade-off between bias reduction and the
comparability of methodologies. Dissimilar methodologies
might have different vulnerabilities to bias and tailored data
sets for conventional scoring functions might be unsuited to
ML methods. For this reason, there is a need for data sets that
are suitable for both ML and conventional scoring functions.
Ultimately, an open problem is the quality and quantity of

the available data. Some problems could be fixed if more
experimentally validated molecules would be published,
especially if inactivity will be more frequently reported to the
community. However, it is unforeseeable when the level of an
adequate number of data points will be reached. There are,
however, ongoing efforts to further refine decoy selection
protocols.58 Finally, an important step toward better data sets

would be a more open sharing of negative results, for example,
from large industrial screening campaigns.3,59

8. CONCLUSION
This perspective draws attention to the problem of bias in
current ML-based scoring functions for SBVS. We showed that
bias, such as artificial enrichment, is still a problem in
established data sets when the context of methodology is
changed. ML functions are susceptible to unnoticed bias
because they tend to be black boxes and in addition are
validated on data sets that are not compiled for ML. More
complex methods and descriptors can disguise decisive lower
dimensional features. The current popularity of difficult-to-
interpret deep learning models covers up bias even more,
which can lead to models that instead of protein−molecule
interactions learn only molecular features from a structure-
based descriptor. To recognize this and other biases, we
proposed practical guidelines, which should aid the validation
process and avoid fallacious models. The guidelines (ii), (iv),
and (v) encourage to design novel methods and descriptors
modular to compare variations of them to multiple baselines
and validate the model against different sanity tests, which
enhances the understanding of the model and reveals biased
predictors.
Moreover, we see the need for new data sets suited for ML,

because established data sets have not been compiled with the
nature of ML methods in mind. This makes current benchmark
data sets unsuited for differently operating novel methods and
descriptors. Therefore, the proposed guidelines (i) and (iii)
also include the verification of the validation domain and
unbiasing strategy of a data set because not every data set is
suited for every method.
To demonstrate the issues raised, we investigated the

behavior of two recently published CNN-based scoring
functions. Both scoring functions are well-designed and reflect
state-of-the-art methodologies. The utilized methods, that is,
docking and the CNNs, do not pose a problem, but the
validation experiments do pose a problem. The reported
performances change little when essential protein information
is removed from the descriptors, especially in terms of AUC.
Therefore, the validation does not reveal much about the true
practical performance on new targets and compound classes.
Since experimental prospective studies can be performed only
on rather limited scale, they are not appropriate for measuring
method performance in general. As a consequence, it is
necessary for the method developer to not only validate the
model’s predictive capabilities in certain applicability domains,
as with intra-target validation and cross-target validation, but
also to verify that the chosen validation setup is valid for the
model under consideration. As part of ML-based research, it is
an important challenge for the near future to come up with
reasonable validation schemes. Only then will we be able to
exploit the full potential of modern machine learning for drug
discovery.
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Figure S1: Box plot of the evaluation of unbiased features with logistic regression (LR) of
DUD, DUD-E and MUV using AUC. The first row shows results of the intra-target CV for
(a) DUD, (b) DUD-E and (c) MUV. In the second row results of cross target CV are depicted
for (d) DUD and (e) DUD-E.
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Figure S2: Box plot of the evaluation of unbiased features with random forest (RF) of DUD,
DUD-E and MUV. Performance is assessed with the mean enrichment factor on one percent
of the test sets (EF1%). The first row shows results of the intra-target CV for (a) DUD,
(b) DUD-E and (c) MUV. In the second row results of cross target CV are depicted for (d)
DUD and (e) DUD-E.
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Figure S3: Box plot of the evaluation of unbiased features with logistic regression (LR) of
DUD, DUD-E and MUV. Performance is assessed with the mean enrichment factor on one
percent of the test sets (EF1%). The first row shows results of the intra-target CV for (a)
DUD, (b) DUD-E and (c) MUV. In the second row results of cross target CV are depicted
for (d) DUD and (e) DUD-E.
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Figure S4: Histograms of all unbiased features of DUD over all targets of the dataset. Actives
are marked in red and inactives in blue.
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Figure S5: Histograms of all unbiased features of DUD-E over all targets of the dataset.
Actives are marked in red and inactives in blue.
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Figure S6: Illustration of the intra-target CV experiment with LogP on the protein target
PNP of DUD. In this experiment the highest mean AUC value with random forest was
achieved over all DUD targets and single features. Histograms depict the LogP distributions
on the target level and of the training and test set of one fold of the CV. Additionally,
contour plots of the scores of the random forest model and logistic regression model fitted on
the training set is shown. The red triangles on the top of the contour plots mark the LogP
value for the actives in the test set, while the blue triangles at the bottom mark the LogP
values of the test decoys.
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Figure S7: Illustration of the intra-target CV experiment with the number of hydrogen
bond acceptors on the protein target SAHH of DUD-E. In this experiment the highest mean
AUC value with linear regression was achieved over all DUD-E targets with single features.
Histograms depict the acceptor distributions on the target level and of the training and test
set of one fold of the CV. Additionally, contour plots of the scores of the random forest model
and logistic regression model fitted on the training set is shown. The red triangles on the
top of the contour plots mark the number of acceptors for the actives in the test set, while
the blue triangles at the bottom mark the number of acceptors of the test decoys.
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Figure S8: Correlation plots of AVE bias and AUC in the intra-target CV of DUD. One point
represents the mean performance in dependence of the AVE bias over a single intra-target
CV experiment (this plot sets the results of Figure 2, S1, S2, S3 in relation to AVE bias). For
RF evaluated with AUC there is a notable correlation between performance and AVE bias.
The coloring of the points illustrates the number of features used in the experiments (light
coloring means less features and darker more features). It can be seen that experiments
with less features exhibit low or no AVE bias, while experiments with many features have
increased AVE bias. Even though there is correlation when using RF with AUC there are
also many examples, especially with a single feature, where there is very high performance,
but no AVE bias. Therefore, not all bias in DUD is explained by AVE.
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Figure S9: Correlation plots of AVE bias and AUC in the intra-target CV of DUD-E.
One point represents the mean performance in dependence of the AVE bias over a single
intra-target CV experiment (this plot sets the results of Figure 2, S1, S2, S3 in relation
to AVE bias). For RF and LR evaluated with AUC there is a notable correlation between
performance and AVE bias. For experiments with EF1% there is a moderate and weak
correlation observable. The coloring of the points illustrates the number of features used in
the experiments (light coloring means less features and darker more features). It can be seen
that experiments with less features exhibit low or no AVE bias, while experiments with many
features have increased AVE bias. Even though there is correlation when using RF and LR
with AUC there are also many examples, especially with a single feature, where there is very
high performance, but no AVE bias. Therefore, not all bias in DUD-E is explained by AVE.
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Figure S10: Correlation plots of AVE bias and AUC in the intra-target CV of MUV. One
point represents the mean performance in dependence of the AVE bias over a single intra-
target CV experiment (this plot sets the results of Figure 2, S1, S2, S3 in relation to AVE
bias). There is a weak to moderate correlation between LR results in both AUC and EF1%,
while for RF no notable correlation is observed. The coloring of the points illustrates the
number of features used in the experiments (light coloring means less features and darker
more features). There is no clear trend observable in the coloring.
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Figure S11: Correlation plots of enrichment factor at 2% (EF2%) values of the structure-
based original DeepVS (values taken from Pereira et al. 2016) and the four other approaches.
a) shows the performance of our 3D ligand-based reimplementation. The second plot (b))
shows the correlation of the reimplementation using the topological distance on the molec-
ular graph instead of 3D distances. Finally, the performance of RF and LR with Morgan3
fingerprints is plotted against the original DeepVS in c) and d), respectively.

Figure S12: ROC curves of the 40 folds of the LOO-CV with our ligand-based 3D reimple-
mentation of DeepVS.
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Figure S13: ROC curves of the 40 folds of the LOO-CV with our ligand-based 2D (topolog-
ical) reimplementation of DeepVS.

Figure S14: Comparison of AUC and EF2% values of our ligand-based 3D reimplementation
and our 2D (topological) reimplementation of DeepVS. Correlation plots over the 40 cross
validation folds.
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Figure S15: Distribution of overlapping actives between the (a) 3D DeepVS and 2D DeepVS
as well as the (b) 3D DeepVS and RF with Morgan3 fingerprints. The mean values over the
40 folds of the LOO-CV on DUD are shown. On the y-axis the overlap of actives between the
hitlists is depicted in dependence of the first x% of the ranked molecules, which is shown on
the x-axis. Consequently, one point in the plot describes that in the first x% of the hitlists
y% of the enriched actives are identical between methods. The light colored band shows the
standard deviation.

Figure S16: ROC curves for the three folds of the cCCV with our ligand-based 3D reimple-
mentation of the grid-based CNN.
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Figure S17: ROC curves for the three folds of the cCCV with our ligand-based 2D reimple-
mentation of the grid-based CNN.
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Figure S18: Distribution of overlapping actives between the 3D and 2D version of the grid-
based CNN. The mean values over the 3 folds of the cCCV on DUD-E are shown. On the
y-axis the overlap of actives between the hitlists is depicted in dependence of the first x%
of the ranked molecules, which is shown on the x-axis. Consequently, one point in the plot
describes that in the first x% of the hitlists y% of the enriched actives are identical between
methods. The light colored band shows the standard deviation.
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Abstract

Protein adaptations to extreme environmental conditions are drivers in biotechnolog-

ical process optimization and essential to unravel the molecular limits of life. Most

proteins with such desirable adaptations are found in extremophilic organisms

inhabiting extreme environments. The deep sea is such an environment and a promis-

ing resource that poses multiple extremes on its inhabitants. Conditions like high

hydrostatic pressure and high or low temperature are prevalent and many deep-sea

organisms tolerate multiple of these extremes. While molecular adaptations to high

temperature are comparatively good described, adaptations to other extremes like

high pressure are not well-understood yet. To fully unravel the molecular mecha-

nisms of individual adaptations it is probably necessary to disentangle multifactorial

adaptations. In this study, we evaluate differences of protein structures from deep-

sea organisms and their respective related proteins from nondeep-sea organisms. We

created a data collection of 1281 experimental protein structures from 25 deep-sea

organisms and paired them with orthologous proteins. We exhaustively evaluate dif-

ferences between the protein pairs with machine learning and Shapley values to

determine characteristic differences in sequence and structure. The results show a

reasonable discrimination of deep-sea and nondeep-sea proteins from which we dis-

tinguish correlations previously attributed to thermal stability from other signals

potentially describing adaptions to high pressure. While some distinct correlations

can be observed the overall picture appears intricate.

K E YWORD S

deep sea, machine learning, piezophile, protein adaptations, protein pressure adaptations,
protein stability, protein structure, protein thermal stability, Shapley values, thermophile

1 | INTRODUCTION

Exploiting the properties of proteins from extremophilic microorgan-

isms is a highly active area of research.1–5 Understanding molecular

protein adaptations toward extreme conditions would enable

effective design and engineering of proteins with specific properties,

which would have important implications for biotechnological pro-

cesses in many fields like pharmacology, agriculture, and biofuels pro-

duction.1,4–10 While this research objective is around for multiple

decades, in recent years, the understanding of extreme environments
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and extremophiles has increased tremendously.4,11 Increasing efforts

in metagenomics for a variety of environments provides a continu-

ously growing number of genomic data from extreme

environments,4,5,12,13 which in turn, yields a rich source of protein

data from extremophiles. Not surprisingly, there is a great interest to

systematically analyze the data currently available.

Most extreme environments on earth are characterized by multi-

ple extremes.11 One of the largest and a particular interesting extreme

environment is the deep sea. It poses multiple extreme conditions on

its inhabitants and for this reason, many deep-sea organisms likely

exhibit multiple adaptations.4,9,11,14,15 The extremes in the deep sea

are a temperature range from high temperature at hydrothermal vents

with up to 120�C to low temperature at the sediment of around 2�C.8

Especially, elevated hydrostatic pressure is inherent in this biom.16

The average pressure at the ocean floor is 38 MPa8 and reaches a

maximum of approximately 110 MPa at the Challenger Deep of

Mariana Trench.17 In addition, other stressors like an extreme salt

range can be found in the deep-sea sediment and at hydrothermal

vents.18

Within this study we aim to disentangle the multifactorial aspects

of several adaptations in proteins from deep-sea organisms. We are

specifically interested to decipher potential protein adaptions to high

hydrostatic pressure. The organisms that live under elevated pressure

or even need high pressure to grow are called piezophiles

(or barophiles).9,15,19,20 Protein adaptations to high pressure are not

well-described9,16,17 and the identification of a molecular signature

for high pressure is complicated through other prevailing extremes,

for example, the temperature differences of most high pressure envi-

ronments.4,15 Different studies also suggest that pressure adaptations

might be challenging to detect, because they might be rather subtle

and pronounced differently in different protein classes.4,15 In addition,

like for other extremes,21 protective mechanisms on the cellular level

also seem to play a role as an adaptive strategy in some

piezophiles,4,15 which demonstrates that not all pressure adaptions

need to be encoded in the protein.

In contrast to pressure, the adaptations to high temperature are

by far the most well-described extreme adaptations.4,9,16 Numerous

studies are comparing thermophiles and mesophiles.22–24 Even diverse

protein engineering efforts demonstrated the thermal stabilization of

proteins.25 Comparison based studies investigating correlating protein

properties between homologous proteins of thermophiles and meso-

philes even suggest that a global or “nearly universal” signature of

protein thermal adaptations exists.24 However, while intensively stud-

ied a fully precise and global physical picture sufficient to enable

large-scale rational protein design is not yet derived.26 Despite gen-

eral trends, it seems that an essential bottleneck is that a complex

context-dependent combination of multiple factors determines the

stability toward extreme temperature.26

Equipped with the insights of the last decades on protein adapta-

tions to high temperature we aim to delineate high temperature pro-

tein adaptations from potential high pressure adaptations in proteins

from deep-sea extremophiles inhabiting both, a high pressure and high

temperature environment. By taking this perspective not only

potential pressure adaptations might be deciphered, but even further

insights into the still intricate facets of thermal adaptations might be

provided.

Currently, not many studies are taking a data-driven perspective

to compare characteristics of proteins of piezophiles or deep-sea

organisms with their homologs from other environments. Of the exis-

ting studies most are comparing amino acid preferences in the

proteom based on genome data16,27–31 while analysis of protein struc-

tures on a larger scale are becoming available only recently.32 Conse-

quently, it becomes interesting to assess the state of experimental

protein structures from deep-sea organisms currently available and

comprehensively analyze their features regarding adaptations.

In this study, we first establish a dataset of protein structures

from deep-sea organisms. We collect names of organisms living in the

deep sea from literature and map those names to the Protein Data

Bank (PDB).33 Based on the collected protein structures we assess the

current state of available experimental structural protein data of

deep-sea organisms. Using the deep-sea protein data we further col-

lect protein structures from organisms not from the deep sea to com-

pile a dataset of orthologous pairs. Protein pairs are selected such

that they are related, meaning they are reasonably similar in sequence

and structure. This selection aims to enable the isolation of correlating

protein features involved in adaptation mechanisms by minimizing

evolutionary changes unrelated to extreme adaptations. Subse-

quently, we analyze a wide range of protein features in a comprehen-

sive top-down machine learning-based feature selection process. The

goal is to isolate sequence and structure features that differentiate

proteins of deep-sea organisms from proteins of organisms inhabiting

different environments. In these experiments we (i) evaluate if there

are distinguishing differences between deep-sea proteins and proteins

from other environments, like mesophilic and thermophilic organisms

and in different protein classes. Then (ii) we determine which features

are characteristic and important for differentiation. Finally, (iii) we

compare the relevant features derived to already described protein

characteristics of thermophiles to assign the observed signals to the

individual extremes.

2 | MATERIALS AND METHODS

2.1 | Collection of deep-sea protein structures

The names of microorganisms found in the deep sea were collected

from literature.17,34–36 The literature for each organism was

reviewed manually. The resulting list of organism names was mat-

ched to the source organism annotation in the PDB to retrieve pro-

tein structures (using the binomial nomenclature and manual

review). The list of PDB entries resulting from this protocol can be

seen as the currently available experimental deep-sea protein

structure data in the PDB. The list of deep-sea organism names col-

lected from literature and the corresponding PDB entries can be

found in the Supporting Information (deep_sea_species.tsv and

deep_sea_pdbs.tsv).
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2.2 | Generation of potential orthologous protein
pairs

Based on the collected deep-sea protein structures potential

orthologous protein structures in the PDB were searched. Three pro-

tein similarity methods are used to identify protein chain pairs that

are related in sequence and structure. All sequences from the deep-

sea PDB entries are selected based on the _entity_poly.

pdbx_seq_one_letter_code data field in the CIF files. Exact sequence

duplicates from the same PDB entry were removed, for example, from

homomeric assemblies to avoid redundant computation. The

remaining deep-sea chains are subject to the following protocol to

generate orthologous structure pairs from each protein chain.

First, the deep-sea protein chains were used as input to HH-suite37

(version v3.3.0). HH-suite performs profile–profile alignments of Hidden

Markov Models (HMM) to assess the relationship of protein sequences.

HH-suite is able to sensitively identify remote homologs with low

sequence identity.38 We used HHblits37 with UniRef30_2020_0639 to

generate HMM profiles for the deep-sea protein chains (using three iter-

ations). The created profiles are then used as input to HHsearch37 to

search PDB70 (http://wwwuser.gwdg.de/�compbiol/data/hhsuite/

databases/hhsuite_dbs/ version 210115) for homologous sequences.

From the resulting hits those with a probability >50 and E < 10�3 are

kept as potential orthologous partner to a deep-sea chain.

The second phase aims to enrich the protein collection found

with HHsearch. Since HH-suite comes with PDB70 a precomputed

search database of profiles from a clustered and redundancy reduced

version of the PDB a substantial number of sequences from the PDB

are removed. However, in this study we are interested in highly similar

proteins as long as they are from different organisms. Instead of gen-

erating a nonredundant profile database of the whole PDB, which is

highly computational intensive, we further enriched our collection of

potential protein pairs using the needle tool from EMBOSS suite40

(version 6.6.0). needle is an implementation of the Needleman–

Wunsch algorithm for global sequence alignments. We use needle to

compute all pairwise sequence alignments between each deep-sea

protein chain and the sequences from the entire PDB. The gapopen

and gapextend parameters were set to 10.0 and 0.5, respectively.

From the resulting hits all pairs with a sequence identity >25% are

kept as potential partner.

In an intermediate step all PDB entries from the potential hits

that are present in the deep-sea set are removed from the potential

hit list.

Finally, we use TM-align41 (version 20190822) to compute the

final protein pairs by filtering the potential sequence hits from HH-

suite and needle by fold similarity of the structure. TM-align computes

a three-dimensional (3D) structural protein alignment by minimizing

the TM-score. The TM-score is a length dependent measure for global

fold similarity of two protein chains. We use a TM-score cut-off of

0.5, which has been reported as a criterion to identify protein chains

of the same fold.42 Any protein chain matched based on sequence

which has at least one of the two resulting TM-scores below the

threshold is removed.

This protocol is designed to collect protein chain pairs that are at

least remotely related in sequence and at the same time share the

same overall 3D fold, which finally should provide a high probability

that these proteins are evolutionary related and orthologous. The

nondeep-sea dataset collected by this protocol will be called decoy

dataset in the following.

2.3 | Filtering protein structures

PDB entries containing DNA, RNA or chimeric entries or entities, that

is, protein chains from different organisms, were removed. Only struc-

tures solved with X-ray crystallography, with a resolution better than

3.0 Å are kept. In addition, protein chains with a sequence length <50

are removed. We also remove PDB entries with suspicious source

organism names that contain any of the words “synthetic,”
“uncultured,” “undefined,” “unidentified,” “artificial,” the symbol “?”
or where the organism name is empty.

The list of filtered pairs can be found in the Supporting Informa-

tion (protein_pairs.tsv).

For the removal of highly redundant protein chains from our

datasets we used the MMseqs243 software suite (version 13-45111).

The PDB contains many highly similar protein chains. On the one hand,

we exploit this redundancy to deduce subtle difference between pro-

teins from different organisms. On the other hand, for proteins from the

same organism we want to avoid highly similar chains to avoid skewing

the distribution in the subsequent evaluation. For this purpose,

MMseqs2 is applied with default parameters (greedy set cover strategy,

coverage = 0.8, min_seq_id = 0.0) to the sequences of each organism

separately. The source organism names were normalized by converting

them to lower case and stripping off all words of the name after the first

two. For each generated cluster a single representative is selected based

on resolution, R-free and largest proportion of resolved residues in the

structure. First, the protein chains of the deep-sea dataset were clus-

tered for each source organism separately. Second, the protein chains of

the decoy set were clustered also for each source organism separately.

After this step we removed identical sequences within the decoy set

across all organisms.

2.4 | Protein features and structure preparation

In total 25 sequence and 45 structure features were computed and

used in the experiments (see Table 1).

For sequence features the relative frequency of the 20 amino

acids for each protein is computed as well as the relative frequency of

amino acids with the physicochemical properties: polar (SER, THR,

TYR, ASN, GLN), hydrophobic (ALA, VAL, LEU, ILE, PRO, TRP, PHE,

MET), positively charged (LYS, ARG), negatively charged (ASP, GLU),

and aromatic (PHE, TRP, TYR).

Structure features can be grouped into the categories noncovalent

molecular interactions, secondary structure features, features of the

protein's solvent-accessible surface (SAS) and buried residues, buried
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waters, volume as well as rigidity/flexibility. Furthermore, features

within these categories are combined to create new features.

All structure features except those in the category volume

and flexibility were computed using the NAOMI44 library. The

protonation states of each protein chain is determined with

Protoss.45

Hydrogen bonds and ionic interactions were computed using the

definition and scoring within Protoss.45 Salt bridges were only com-

puted between the residues ASP, GLU with LYS, and ARG.

Cation–π and aromatic π–π interactions were computed with the

NAOMI library. Cation–π interactions were considered between LYS

and ARG with PHE, TYR or TRP with a distance threshold of <6 Å

between cation and ring center, as well as, a maximal deviation of 2 Å

of the cation from the normal defined at the ring center on the ring

plane. π–π Interactions were calculated between PHE, TYR, and TRP

with a maximal distance of 5.5 Å between ring centers.

Hydrophobic/lipophilic atoms were identified using the same def-

inition as the JAMDA scoring function.46 A hydrophobic contact is

predicted between two hydrophobic atoms if for their distance

d applies vdWsum < d < 1.75vdWsum. Hydrophobic contacts were only

considered if they are between the side chains of ALA, VAL, LEU, ILE,

PRO, TRP, PHE, and MET.

TABLE 1 List of computed protein
structure and sequence features

Structure features Sequence features

Hydrogen bonds Secondary structure Amino acid proportions

Hbonds backbone-backbone Residues in helix ALA

Hbonds sidechain-sidechain Residues in strand ARG

Hbonds backbone-sidechain Residues in loop ASN

Acceptors backbone, noninteracting Solvent-accessible surface

(Å2)

ASP

Donors backbone, noninteracting Hydrophobic CYS

Acceptors sidechain, noninteracting Polar GLN

Donors sidechain, noninteracting Sulfur GLU

Hbonds surface Pos. charged GLY

Acceptors surface, noninteracting Neg. charged HIS

Donors surface, noninteracting Aromatic ILE

Ionic interactions Buried residue mass (Da) LEU

Salt bridges Hydrophobic LYS

Anions, noninteracting Polar MET

Cations, noninteracting Sulfur PHE

Salt bridges surface Pos. charged PRO

Anions surface, noninteracting Neg. charged SET

Cations surface, noninteracting Aromatic THR

Aromatic interactions Water TRP

Cation–π Buried waters TYR

Cation–π surface Volume VAL

Aromatic π–π Packing density Hydrophobic

residues

Aromatic π–π surface Flexibility Polar residues

Aromatic, noninteracting Torsional constraints Pos. charged

residues

Aromatic surface, noninteracting Independent hinge joints Neg. charged

residues

Hydrophobic interactions Aromatic residues

Hydroph. interactions

Hydroph. noninteracting

Hydroph. interactions surface

Hydroph. interactions surface,

noninteracting

Note: Counts of these features are computed per protein structure/sequence and used in the machine

learning experiments. “Noninteracting” denotes potential interaction sites that are able to form a specific

interaction but in the given state of the structure do not participate in an interaction.
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Besides the number of observed interactions we also consider

potential interaction sites such as atoms, lone pairs, and π electron

systems that are able to form a specific interaction but in the given

state of the structure do not participate in an interaction. We term

these “noninteracting” in the following. An example are hydrogen

bond acceptors or donors which are not involved in a hydrogen bond.

We also consider interactions and noninteracting sites at certain loca-

tions in the protein structure, like on the protein surface or in

sidechain and backbone for hydrogen bonds. All features in the cate-

gory noncovalent interactions are represented by counts of each fea-

ture and are normalized by the number of all residues in the structure.

Secondary structure elements were computed with an implemen-

tation of the DSSP algorithm47 within the NAOMI framework. Resi-

dues were assigned to the structure elements helix or strand based on

the computation or as loop if neither helix nor strand was predicted.

Secondary structure features are also normalized by the number of

residues in the whole protein structure.

An SAS representation was calculated using the respective algorithm

in HYDE48 from which features of different atoms on the surface could

be derived (e.g., noncovalent interaction features located at the surface).

The SAS is computed based on heavy atoms only. From the surface rep-

resentation we derive the proportion of surface area made up by residues

with the physicochemical properties: hydrophobic, polar, positively and

negatively charged, aromatic- and sulfur-containing residues (MET, CYS).

The definitions of those properties are the same as for the sequence fea-

tures, except sulfur containing residues. All surface area-based features

are normalized by the surface area of the whole protein.

Analogously we compute the physicochemical property distribu-

tion of residues buried within the protein (without surface contact). In

addition to simply counting we weight the counts by the molecular

weight (MW) to capture the size differences of single amino acids.

These features are normalized by the MW of the whole protein.

The number of buried waters was used as a descriptor. A water mol-

ecule was considered buried if < 1=3 of its oxygen's surface is part of

the surface that is defined by the heavy atoms of the protein and

waters of the complex. The surface was computed with the respective

algorithm in HYDE.48

Packing density was computed with ProteinVolume49 (version

1.3) as the van der Waals volume divided by the total volume of the

structure in solution.

Rigidity/flexibility descriptors were used from MSU ProFlex

(https://github.com/psa-lab/ProFlex version 5.2, formally called

FIRST50). Specifically, we used the predicted number of torsional con-

straints and hinge joints as features to describe the global rigidity of

the structure. Both features are normalized by the number of residues

in the respective protein.

2.5 | Machine learning-based feature evaluation

2.5.1 | Feature selection scheme

To evaluate the collected protein structure pairs for expressive differ-

ences we use machine learning-based feature selection. Supervised

machine learning methods optimize mathematical functions to learn

the discrimination of labeled data points. In our case the goal is to

learn a model that differentiates between protein structures from

deep-sea organisms and protein structures from nondeep-sea organ-

isms. Correspondingly, the labels we use in our experiments are “deep
sea” and “decoy” representing the deep-sea and decoy protein

dataset, respectively. Machine learning algorithms are effective for

capturing correlations not only in single features, but in combinations

of features.

Figure 1 shows the workflow of our feature evaluation experi-

ments. Initially, we split the collected protein pairs based on the opti-

mal growth temperature (OGT) of their deep-sea source organism.

The protein pairs with proteins of (hyper)thermophilic deep-sea

organisms (called HT-group) will be used for feature selection. In con-

trast, pairs with proteins of deep-sea psychrophiles and mesophiles

(called PM-group) will be used as an external test set.

To be able to measure whether combination of features are pre-

dictive across different protein families we employ a cluster cross-

validation strategy. For the creation of the folds we cluster the protein

sequences of both deep-sea and decoy samples of the HT-group

dataset with MMseqs2. We use the connected component clustering

mode with a coverage of 0.5 and a min_seq_id of 0.3, which is more

suited to capture transient graph connections and therefore should

assign more remote homologs in the same cluster. Subsequently, we

ensure that all orthologous pairs are kept in the same cluster by

adding new edges for the orthologous pairs to the graph representing

the generated clustering of MMSeqs2. On this new graph we com-

pute the connected components again to obtain the final clusters. A

fixed number of folds is then generated by assigning the clusters to

five folds by trying to keep the size of the folds equal. The folds can

be found in the Supporting Information (folds.tsv).

While four of the five cluster-folds are used for feature selection

the remaining cluster-fold is used as another external test set. With

this we evaluate selected features on a fold of deep-sea proteins

sequentially dissimilar to those used in feature selection but which are

also from (hyper)thermophiles. The performance on the external test

sets is determined by models trained on all four-folds of the cross-

validation with the five best performing features from the feature

selection. For the PM-group, any decoy chains present in both the

PM-group and the four-folds are removed from the PM-group before

evaluation.

To further investigate the relevance of the decoys' origin we split

the folds based on the decoy source organism. We will call the set of

all pairs the DecoyAll set (equivalent to the HT-group). Other decoy

sets are specifically selected subsets. The MesoModel set contains

pairs with mesophilic model organisms like Homo sapiens and

Escherichia coli. The ThermoAll set contains the structures from ther-

mophilic organisms from literature24,51 of which the ThermoModel

set is a subset that only contains proteins of well studied thermophilic

organisms for example Thermus thermophilus and Thermotoga mar-

itima. The feature selection workflow illustrated in Figure 1 is sepa-

rately conducted for the four different datasets. A list of the decoys

source organisms in each group can be found in the Supporting Infor-

mation (decoy_subsets.tsv).
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We perform feature selection with wrapper methods52 to evalu-

ate different feature combinations and find the optimal feature set for

the binary classification task within a large fraction of all possible fea-

ture sets. In this feature selection scheme all combinations of a list of

single features are enumerated and machine learning models are

trained and evaluated with each feature set in the cluster cross-valida-

tion. The number of possible feature sets is 2n � 1, where n is the

number of features. Enumerating all possible feature sets is infeasible.

Therefore, we only evaluate feature sets up to a size of s = 5 features

(see Figure 1). Correspondingly, for the n = 45 structure features the

number of feature sets is
Ps¼5

k¼1

45

k

� �
¼1,385,979. The threshold of

5 was chosen as a trade-off between computation time and expected

predictive power.

Machine learning algorithms are employed from scikit-learn53

(version 0.23.2). We use the linear method logistic regression

(solver='lbfgs', max_iter = 10 000) as well as the nonlinear methods

random forest classifier (n_estimators = 200) and the gradient boo-

sting classifier (n_estimators = 200) which are both based on

ensembles of decision trees. The linear method is comparably simple

and will be used as baseline method. The two nonlinear ensemble

methods are able to capture more complex relationships between

features.

The measure of choice to assess the prediction performance of

the trained machine learning models is to compute the area under the

receiver operating characteristic curve (ROC AUC)54 on the test

datasets. The ROC AUC is a threshold free measure assessing the abil-

ity of a model to rank positive instances relative to negative instances.

This metric provides a value between 0 and 1, where 0.5 represents

the random baseline. A useful statistical property is that a ROC AUC

of a classification model is equivalent to the probability to rank a ran-

domly selected positive sample higher than a randomly selected nega-

tive sample.54 Consequently, in our experiments, a trained model

achieving a ROC AUC of 0.70 would correspond to a 70% probability

to rank a randomly selected deep-sea protein before a randomly

selected decoy protein based on the given test set.

For the experiments training and test sets were normalized

columnwise using the respective training set. We used

zij ¼ xij�μj
� �

=σj to compute the normalized feature value zij from each

feature value xij. Here, i denotes the row and j the column in the fea-

ture matrix; zij is computed by subtracting the mean μj of the column

from xij and divide by the column's standard deviation σj.

2.5.2 | Feature attribution scheme

We follow two approaches to not only select predictive features, but

to attribute relevance through prediction performance to single fea-

tures. With this we want to validate our approach and interpret fea-

tures in the context of protein adaptations to extreme conditions. The

basis for these interpretation approaches is the enumeration and eval-

uation of feature combinations.

In the first approach we will simply evaluate which feature combi-

nations are sufficient to achieve a notable performance in the valida-

tion scenario. Small feature subsets, even single features, achieving a

F IGURE 1 The workflow of the feature selection experiments. Initially, the structure pair data is split based on the deep-sea source organism.
The pairs of deep-sea (hyper)thermophiles are used to select important protein features with machine learning. Exemplary, for the n = 45
structure features there are 1.4 million feature combinations which are evaluated. The selected features are evaluated on two external test sets
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comparable or better performance relative to larger sets, like the set

of all features indicate highly relevant features in the smaller set.

For the second approach we use the framework of Shapley

values55 from cooperative game theory. Shapley values provide a con-

cept to attribute contributions single features make in combination

with other features to the individual single features. The Shapley

value of a feature i is defined as the weighted sum of the marginal

contributions i makes when i is included in a feature set S:

Shi vð Þ¼
X

S ⊆ N ∖ if g

j S j ! n�jSj�1ð Þ!
n!

v S[ if gð Þ�v Sð Þð Þ,

where N is the set of all features, S is a subset of N, n is the total num-

ber of features, and v is a function that maps a feature set to a real

number. In our experiments, we define v to map a feature set to the

ROC AUC value the feature set generates in our experiment. Shapley

values can be computed in polynomial time, for example, through

sampling.56 Here, in this study, similar to a sampling approach, we

compute the contribution of each feature i by considering only the

marginal contributions from a sample of all possible coalitions (in our

case the subset of all feature combinations we enumerate). Specifi-

cally, we use the resulting mean ROC AUC values from the cluster

cross-validation experiments of all enumerated feature combinations

to attribute contributions to each feature i in terms of ROC AUC. In

other words, we will compute the Shapley value for each feature

i using the mean ROC AUC in the cluster cross-validation experiments

of all enumerated feature sets. Features with high resulting contribu-

tion values would indicate that these features hold valuable informa-

tion for the classification model.

3 | RESULTS AND DISCUSSION

3.1 | Deep-sea protein data in the PDB

The dataset created contains protein structures from 25 deep-sea

organisms. In total, 1281 PDB entries could be retrieved. A compre-

hensive overview of the distribution of organisms and number of pro-

teins is shown in Table 2.

The organisms listed in Table 2 were collected in depths greater

1000 m or an elevated optimal growth pressure was reported. Based

on the collection depth and the linearly increasing pressure through

the water column the approximate pressure range the retrieved

organisms inhabit is 10 MPa to roughly 110 MPa (starting from

1000m depth). There are 14 Bacteria, 10 Archaea, and 1 Eukarya in

the dataset. The reported OGTs (or preferred temperature range) of

the organisms are between 2�C and 98�C. This illustrates both

extremes of hyperthermophilic and psychrophilic organisms that

inhabit the deep sea. Following the definition of Hait et al.24 for

hyperthermophilic (HT) (T ≥ 75�), thermophilic (T) (50�≤ T < 75�), mes-

ophilic (M) (24�≤ T < 50�), and psychrophilic (P) (T < 24�) there are

10 hyperthermophilic, 5 thermophilic, 3 mesophilic, and 6 psychro-

philic organisms in the dataset.

The distribution of protein structures collected from the PDB is

imbalanced between the organisms. This reflects the imbalanced

organism distributions in the PDB itself and is not surprising since

research interest, accessibility and cultivation conditions are also dif-

ferent for different organisms. Most PDB entries that have been

retrieved are from Pyrococcus horikoshii with 562 proteins structures

(44%) and Methanocaldococcus jannaschii with 359 structures (28%).

Besides the proportions of proteins of the dataset that come from

individual organisms it is interesting to look at proportions of groups

of organisms. The 10 hyperthermophilic Archaea, for example, make

up the majority of proteins in the dataset (1078 PDB entries, 84%). In

addition, 139 protein entries are from thermophilic organisms which

means that 95% of proteins are from organisms living under elevated

temperature. In contrast, only 38 proteins (3%) are from psychrophilic

organisms and 25 (2%) from mesophilic organisms.

These results show that the current state of available protein data

of deep-sea organisms in the PDB is skewed toward individual organ-

isms and toward hypterthermopilic Archaea. Therefore, it is unlikely

that the currently available experimental protein structure data on

deep-sea proteins is representative for the whole population of pro-

teins from the deep-sea habitat. However, the data available provides

a reasonable basis to compare the proteins of deep-sea (hyper)ther-

mophiles to those of organisms from other environments.

3.2 | Protein pair generation

Protein chains of the retrieved deep-sea proteins were used to iden-

tify related protein chains from nondeep-sea organisms from the PDB

named decoys in the following (see Section 2).

For 1243 deep-sea protein chains (1204 PDB entries) at least one

decoy chain could be identified. In total, 19 173 decoy chains were

found in the PDB by the protocol (see protein_pairs.tsv in the

Supporting Information). The matching of deep-sea and decoy chains

in this step can be represented by a bipartite graph. In this set of pairs

a single deep-sea chain can be paired with multiple decoy chains and

a decoy chain can be paired with multiple deep-sea chains.

Highly redundant protein chains were removed with MMseqs2 as

described in the methods section. The final dataset contains

501 deep-sea chains and 8200 decoy chains that come from 20 differ-

ent deep-sea and 1379 decoy organisms and form 17 148 chain pairs.

According to the applied clustering criteria 60% of the deep-sea

chains were highly similar and therefore redundant. This dataset was

then grouped into connected component clusters for cluster cross-

validation (see Section 2) and is the basis for the machine learning

experiments in the following sections.

In Figure 2A the distribution of sequence and structure similarity

of the pairs is depicted. We calculated the mean TM-score (mTM-

score) as the mean of the two resulting TM-scores from each align-

ment. The distribution of this structural measure of similarity shows

an expected value of 0.69 for the average chain pair indicating consid-

erable structural similarity.42 In contrast, the mean sequence identity

as calculated by TM-align is 0.19, which alone would not suffice to
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indicate an evolutionary relation. The ranking in Figure 2B lists the

most frequent source organisms in the decoy dataset based on the

number of protein chains. Figure 3 illustrates the 3D protein struc-

tures of two examples of deep-sea protein chains and their paired

structures.

3.3 | Machine learning-based feature evaluation

3.3.1 | Data Preparation

The compiled protein pair dataset was processed for feature selection

(see Figure 1). The data was first split based on the deep-sea organ-

isms in the HT-group and PM-group. The HT-group was clustered and

grouped into cross-validation folds. From the folds subsets were gen-

erated based on the source organisms of each decoy in the protein

pairs. The composition of the resulting four data subsets of the HT-

group are listed in Table 3. Each of these datasets is evaluated sepa-

rately with the feature selection workflow in the following.

3.3.2 | Can deep-sea proteins be distinguished?

As a first analysis we investigate the extent deep-sea proteins can be

predicted and distinguished from orthologs, but not which specific

features are distinguishing them. We will look into the specific fea-

tures in the next sections.

The prediction performance of feature sets in the cross-validation

experiment and on the external test sets are depicted in the first and

second row in Figure 4, respectively.

The cluster cross-validation results in Figure 4 show the distribu-

tion of obtained mean ROC AUC over all enumerated feature

TABLE 2 Deep-sea organisms from literature with protein structures in the PDB

Species name Depth (m) T (�C) P (MPa) Domain T-phile PDB entries

Pyrococcus horikoshii57 1395 98 3019 Archaea HT 562

Methanocaldococcus jannaschii58 2600 85 7559 Archaea HT 359

Geobacillus sp. HTA-46260 10 897 55–75 Bacteria T 113

Pyrococcus abyssi61 2000 96 20–40 Archaea HT 91

Methanopyrus kandleri62 2000 98 2017 Archaea HT 39

Shewanella loihica63,64 1325 18 Bacteria P 20

Methanothermococcus thermolithotrophicus35,65 0.5 65 50 Archaea T 17

Thermococcus thioreducens66 2300 83–85 Archaea HT 16

Oceanobacillus iheyensis67 1050 30 30 (max) Bacteria M 14

Persephonella marina68 2507 73 Bacteria T 7

Photobacterium profundum69–71 255169,71/511070 1569,71/8–1270 2869,71/1070 Bacteria P 6

Idiomarina loihiensis72 1296 4–46 Bacteria M 6

Marinactinospora thermotolerans73 3865 28 Bacteria M 5

Shewanella benthica74 10 898 cold 70 Bacteria P 4

Pyrococcus yayanosii75 4100 98 52 Archaea HT 4

Moritella profunda76 2815 2 22 Bacteria P 4

Shewanella violacea77 5110 8 30 Bacteria P 3

Thermovibrio ammonificans78 2500 75 Bacteria HT 3

Thermococcus chitonophagus79 2600 85 23 Archaea HT 2

Caldithrix abyssi80 3000 60 Bacteria T 1

Thermosipho melanesiensis81 1832–1887 70 Bacteria T 1

Cryptococcus liquefaciens N682,83 6500 Eukarya 1

Shewanella piezotolerans WP384 1914 15–20 20 Bacteria P 1

Palaeococcus ferrophilus85 1338 83 30 Archaea HT 1

Methanocaldococcus vulcanius86 2600 80 Archaea HT 1

1281

Note: The number of PDB entries corresponds to the number after filtering and with redundancy. The depth column shows the sample depth in the sea.

The T column shows the optimal growth temperature (OGT) or the preferred temperature range if not indicated differently. The P column shows the

optimal growth pressure or preferred pressure range if not indicated differently. The T-phile column indicates the classification in hyperthermophile (HT)

(T ≥ 75�), thermophile (T) (50�≤ T < 75�), mesophile (M) (24�≤ T < 50�), and psychrophile (P) (T < 24�).
Abbreviation: PDB, Protein Data Bank.
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combinations in the four-fold cluster cross-validation. Feature sets are

plotted by their size, meaning at each x position the distribution of

mean ROC AUC of all feature sets containing x features is shown. For

example, a data point in the column x = 1 shows the mean ROC AUC

achieved by one of the three used machine learning algorithms in the

cross-validation by using only a single feature, for example, the

F IGURE 2 Distributions of the protein pair dataset. (A) The distributions of similarity scores between the protein chain pairs of the deep-sea
and decoys dataset. The mean TM-score (orange) is calculated by taking the mean of the two resulting TM-scores for each protein structure
alignment. (B) Lists the 15 most frequent source organisms in the decoy dataset based on the number of protein chains

F IGURE 3 Exemplary structures of protein pairs. Structures from deep-sea organisms are colored in red and decoys in gray. The first row
shows pairs generated for the aspartate carbamoyltransferase (1Ml4 chain A) from the deep-sea organisms Pyrococcus abyssi in red (A). (B) The
structure paired with an ornithine carbamoyltransferase (1PVV chain A) from Pyrococcus furiosus. (C) structure ensemble with 10 different paired
protein chains. The second row shows pairs collected for the 3-isopropylmalate dehydrogenase (3VMK chain A) from the deep-sea organism
Shewanella benthica in red (D). (E) The pair with the 3-isopropylmalate dehydrogenase (1CM7 chain A) from Escherichia coli. (F) Structure
ensemble with 10 different paired protein chains. Structure alignments have been computed with TM-align and are visualized with NGL.87

Opacity of decoy structures has been set to 0.6 for visualization purposes
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proportion of ALA in the protein. Correspondingly, in the x = 2 col-

umn performances of feature sets containing two features, for exam-

ple the proportion of ALA and VAL is depicted. Figure 4 illustrates the

performance of all three used machine learning algorithms at once.

The performances per algorithm are comparable and can be found in

Figures S1–S3 in the Supporting Information.

Three general trends of sequence and structure features can be

observed from the cross-validation results. First, the best and average

performance to distinguish deep-sea proteins from their orthologs

increases by including more features in almost all cases. Second, a

small number of ≤5 features already yield results similar in comparison

to using all features. Even single features yield considerable prediction

performance in certain cases. Finally, the prediction performance is

observed to be higher when using sequence features instead of struc-

ture features. In contrast, to these general trends the prediction per-

formance between decoy datasets differs. For the DecoyAll (A) and

MesoModel (B) decoy sets the best mean ROC AUC performance is

>0.90 in both sequence and structure. This is an almost perfect class

separation. Substantially lower, but also reasonable predictive are the

results on the ThermoAll (C) and ThermoModel (D) set with a best

mean ROC AUC of 0.81 for sequence and 0.75 for structure features.

The second row of Figure 4 shows the results on the two hold-

out external test sets. Models were generated for the five best per-

forming feature sets from the feature selection for each feature set

TABLE 3 Overview of the protein pair datasets used for feature evaluation

Decoy Set Deep-sea species Decoy species Deep-sea proteins Decoy proteins

All decoy organisms (DecoyAll) 14 1343 474 7699

Mesophilic model organisms (MesoModel) 12 7 361 1215

All thermophilic organisms (ThermoAll) 11 60 398 931

Thermophilic model organisms (ThermoModel) 9 8 370 684

Note: The DecoyAll set contains all deep-sea/decoy protein pairs (equals the HT-group). The other rows are protein pair subsets selected on the decoys

source organisms. The MesoModel datasets contains protein pairs with mesophilic model organisms like Homo sapiens and Escherichia coli. The ThermoAll

dataset contains pairs with decoy proteins of thermophiles from literature and the ThermoModel dataset contains pairs with decoy proteins of model

thermophiles like Thermus thermophilus and Thermotoga maritima.

F IGURE 4 Prediction performance of protein feature combinations on the different protein pair datasets. The first row shows the
distribution of mean ROC AUC in the cluster cross-validation. Performance is depicted for all used machine learning methods over all enumerated
feature combinations for the four different protein pair datasets (A–D). The x-axis shows the number of used features in the feature sets. The
performance achieved with protein sequence and structure features is depicted separately. The two rightmost entries on the x-axis show the
performance with all sequence and structure features, respectively. The second row shows the single best obtained prediction performance on
the external test sets from the five best features from feature selection for each of the four protein pair dataset (E–H). The red horizontal line
illustrates the random performance baseline of 0.5
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size and for each algorithm, respectively. Only the best performance

over all machine learning algorithms and feature sets are shown.

Results for all machine learning algorithms and feature sets can be

found in Figures S4–S9 in the Supporting Information.

The results on the hold-out cluster-fold from (hyper)thermophiles,

of the HT-group, show a prediction performance that is comparable

to the top performance achieved in the cross-validation in all four

experiments. In contrast the performance on the deep-sea proteins

from psychro- and mesophiles, the PM-group, is considerably lower

and in most cases not better than a random prediction.

The results of both the cluster cross-validation and the external

test sets show that deep-sea proteins can be successfully separated

from orthologous proteins of different environments. However, the

extent of this separation depends strongly on the specific source envi-

ronment of deep-sea organisms and decoy organisms. Noteworthy,

on all datasets but the hold-out PM-group data good to perfect pre-

diction performance could be achieved with both sequence and struc-

ture features. Consequently, there are systematic differences across

the dissimilar protein clusters of (hyper)thermophilic deep-sea organ-

isms. For the DecoyAll and MesoModel dataset these differences are

global and very easy to capture, they are even encoded in single fea-

tures. In contrast, systematic differences in the ThermoAll and Ther-

moModel sets are less obvious and not global. Furthermore, the poor

results on the hold-out PM-group suggest that the most relevant fea-

tures to recognize deep-sea proteins from (hyper)thermophiles are

not necessarily relevant to predict proteins from deep-sea

psychrophiles and mesophiles. Different adaptation strategies might

exists between these groups. However, with only 27 structures the

external test dataset on proteins from deep-sea psychro/mesophiles

is probably not comprehensive enough for conclusions.

3.3.3 | Which features are important?

To determine the features important for predictions we use the attrib-

uting schemes described in the methods section, mainly the Shapley

values analysis. The Shapley values of all features in the different

experiments are depicted in Figures 5 and 6. We also provide the

standard deviations of the marginals in Figures S10 and S11. In addi-

tion, the distribution of each individual feature in all four datasets can

be found in Figures S12–S25 as well as a list of the best performing

feature sets from Figure S4 (best_features files).

The Shapley value plots in Figures 5 and 6 illustrate the average

ROC AUC contributions each individual feature makes for sequence

and structure features, respectively. More precisely, a cell in the plot

shows the average ROC AUC contribution a specific single feature

makes on a specific dataset for a certain machine learning algorithm in

the cluster cross-validation.

Distinct contributions of certain features can be observed from

the results. Notably, these distinct features are in accordance with the

most predictive feature sets in the cross-validation in the respective

experiments (see best_features.csv). While the contributions within

each experiment are relatively consistent for all three machine learn-

ing algorithms (minimal Pearson's correlation coefficient of 0.93 for

sequence; 0.78 for structure) the important features differ between

the four experiments. The feature contributions in the DecoyAll and

F IGURE 5 Average ROC AUC contributions of each individual sequence feature over all enumerated and evaluated feature sets in the cluster
cross-validation. Contributions are computed as the mean of the marginals based on Shapley values. Features are depicted on the x-axis and
datasets with the machine learning methods logistic regression (LR), random forest (RF), and gradient boosting (GB) on the y-axis
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MesoModel experiment are similar (minimal Pearson's correlation

coefficient 0.91 for sequence; 0.90 for structure). In addition, contri-

butions in ThermoAll and ThermoModel are similar (minimal Pearson's

correlation coefficient of 0.88 for sequence; 0.77 for structure). How-

ever, the contributions between ThermoAll, ThermoModel and

DecoyAll, MesoModel are rather dissimilar (maximal Pearson's correla-

tion coefficient of 0.30; 0.31 for structure). Given that the same or

similar features are important in the two respective datasets we ana-

lyze their results separately.

3.3.4 | Deep-sea proteins versus proteins from all
decoys and mesophilic model organisms

In the DecoyAll and MesoModel experiments the most contributing

sequence features are the proportion of GLN, GLU, ILE, LYS, SER, posi-

tively and negatively charged residues, polar residues, as well as CYS

for the MesoModel experiment. There are also slighter contributions

from the proportion of ALA, HIS, and THR for the DecoyAll experiment

and HIS and THR for the MesoModel experiment. Using only the single

most contributing features for classification leads already to a mean

ROC AUC of 0.91 (MesoModel with GLN) and 0.83 (DecoyAll with

pos. charged residues) in the cross-validation (see best_features.tsv).

This illustrates that the distribution of these residue features alone are

highly descriptive. Unsurprisingly, the distribution plots of these fea-

tures show clear differences between deep-sea proteins and

corresponding decoy proteins (see Figures S13 and S16). Specifically,

on average deep-sea proteins have less GLN and more positively

charged residues than their orthologs from other environments.

For structure features, the most contributing features are the pro-

portion of polar surface, positively and negatively charged surface as

well as the buried polar residues, buried positively and negatively

charged residues and the number of noninteracting anions in the

whole protein and on the surface. In addition, salt bridges seem to

play a role at the surface and in the whole protein. From these polar

and charged surface features are by far the most contributing. Using

for example positively and negatively charged surface as feature set

yields a mean ROC AUC of 0.85 and 0.90 on the DecoyAll and

MesoModel dataset with logistic regression in the cross-validation.

The difference in these features can also be well observed in the dis-

tribution plots in Figure S23. On average deep-sea proteins show an

increased fraction of charged surface and an decreased fraction of

polar surface.

While both sequence and structure features are effective predic-

tors, sequence features are more predictive. It is known that the

amino acid composition of an organism's proteom correlates with the

organism and an organism's environment.88,89 However, the trends in

important sequence features correspond well to the important struc-

ture features considering their physicochemical properties. In both

the distribution of charged and polar residues is highly important. The

differences in these features even seem to be sufficient to almost per-

fectly distinguish the here used deep-sea and decoy proteins.

To interpret which biological mechanism these correlations

describe it is reasonable to consider the organisms from which the

used data was derived. We are comparing deep-sea proteins of mostly

hyperthermophilic Archaea. Therefore, it is interesting to determine

which features are already attributed to thermal stability in the litera-

ture. A recent comparison study by Hait et al.24 aimed to identify

F IGURE 6 Average ROC AUC contributions of each individual structure feature over all enumerated and evaluated feature sets in the cluster
cross-validation. Contributions are computed as the mean of the marginals based on Shapley values. Features are depicted on the x-axis and
datasets with the machine learning methods logistic regression (LR), random forest (RF), and gradient boosting (GB) on the y-axis
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generalized molecular principles of thermal adaptation and extracted

“nearly universal” signatures from a larger set of prokaryotes with

known OGT. The signatures were identified over a diverse set of

orthologous protein pairs from (hyper)thermophiles and mesophiles

similar to our approach. Hait et al. reported that in 94% of the experi-

ments hyperthermophiles preferred charged amino acids, a pattern

that is also very prominent in our results. In addition, it is reported

that the small amino acids GLY and ALA (88%) as well as amid amino

acids (96%) are disfavored. While we only observe a moderate contri-

bution from ALA in the DecoyAll (and none in the MesoModel experi-

ment) and none from GLY we can observe a very strong contribution

from the proportion of the amid amino acid GLN, but not ASN. On

the structure level Hait et al. reported an increased hydrophobic core

(73%), higher exposure of charged/polar surface area (79%) and abun-

dant salt-bridges (83%) as well as a higher number of cation–π interac-

tions (74%). In our result the hydrophobic core and the number

cation–π interactions seems to have no noteworthy contribution.

However, we also observe high contributions of charged and polar

surface area as well as ionic interactions (salt bridges). Explicitly, the

polar surface is reduced on average in our deep-sea proteins and

charged surface and salt bridges are increased.

In conclusion, the comparison of the deep-sea proteins from

mainly hyperthermophilic Archaea shows a very strong and simple to

capture pattern of protein properties to differentiate them from mes-

ophilic proteins and orthologous proteins in general (as measured on

the baseline DecoyAll set). Intriguingly, it seems that the patterns

observed are very similar to the protein properties typically attributed

to protein adaptions for thermal stability, which are specifically a

reduced number of polar and an increased number of charged resi-

dues.14,24,26,90 This is not surprising since most available experimental

protein structure data from deep-sea organisms comes from hyper-

thermophilic Archaea. As a consequence, it is complicated to assign

these correlations unambiguously to extreme adaptations, like to tem-

perature, pressure, or both.

3.3.5 | Deep-sea proteins versus proteins from
thermophiles

In the experiments involving only decoy structures from thermophiles

(ThermoAll, ThermoModel) the most prominent sequence features are

the proportion of ILE and LYS which by far show the highest contribu-

tions (see Figure 5). The third most relevant feature is ARG and we

can also observe smaller contributions from ASN and LEU. Using LYS

or ILE individually as feature sets results in mean ROC AUC values

between 0.71 and 0.74 in the cross-validation and a similar perfor-

mance on the external cluster-fold (see Figure 4, best_feature files).

Deep-sea proteins contain more LYS and more ILE on average than

their respective decoys (see Figures S13 and S14). In contrast, ARG is

slightly decreased on average in deep-sea proteins (see Figure S12).

Noteworthy, the feature set of both ILE and LYS is only marginally

better than the two features alone, suggesting that both are

correlated.

The most contributing structure features (contribution >0.05) are

the number of torsional constraints, buried sulfur residues and number

of noninteracting anions at the surface and in the whole protein, as well

as, the number of noninteracting acceptors in side chains, surface area

of sulfur residues and hydrophobic surface, the positively and negatively

charged surface area and buried hydrophobic residues are contributing.

These most contributing features correspond well to the best per-

forming single feature sets in the cross-validation experiment (see

best_features.tsv). Notably, on the external test cluster-fold especially

the number of noninteracting anions at the surface and in the whole

protein show prediction performance consistent with the cross-

validation when used as single features (ROC AUC of approx. 0.63).

In the literature, there are only a handful of studies exploring dif-

ferences between deep-sea proteins and thermophiles which focus

mainly on sequence composition of proteins from deep-sea

piezophiles. Nath et al.31 determined relevant amino acids to differen-

tiate the protein sequences of piezophilic–thermophilic and

thermophilic–nonpiezophilic of Pyrococcus yayanosii and Pyrococcus

furiosus as well as Thermococcus barophilus and Thermococcus

kodakarensis KOD1. They ranked ARG, LYS, ASN, and ILE for the first

pair and ILE, LYS and ARG for the second pair as the most important

features. These results are in agreement with the results we obtained.

In another sequence of studies, Di Giulio27,28 also found that espe-

cially the frequency of LYS, ILE, and ARG are correlated with

piezophilic organisms. The author described the hydrostatic pressure

asymmetry index for the protein sequences of three pairs of

piezophilic-thermophilic and thermophilic–nonpiezophilic organisms,

namely, Pyrococcus abyssi with P. furiosus, P. yayanosii with P. furiosus,

and T. barophilus with T. kodakarensis. Interestingly, depending on the

organism pairs the correlation was either positive or negative.28 The

author reasoned that because both LYS and ARG have similar physi-

cochemical properties at some point in evolution the organisms com-

mitted to one or the other. In our experiment we see an increased use

of LYS and ILE but an reduced use in ARG meaning that the proteins

from organisms we investigate show a positive correlation with LYS

and ILE and a negative correlation with ARG.

Again, sequence features are more predictive than structure fea-

tures. Interestingly, no clear correspondence between the relatively

well correlating amino acids LYS and ILE and the properties of impor-

tant structure features is apparent. A reason for this might be, on the

one hand, structural adaptations induced by the sequence adaptations

might be simply not well described by our chosen structure features or

cannot be sufficiently captured from the accuracy or static state of the

crystal structure. On the other hand, this discrepancy might be because

the amino acid preference is not expressed in structural differences and

is therefore potentially unrelated to protein extreme adaptions.

In conclusion, both ILE and LYS and also ARG to a lesser extent

are reasonably important in sequence and were also found to be

important by others. In contrast, no individual structural feature is

contributing very distinctively, except perhaps noninteracting anions.

The predictive power of structure features observed in Figure 4 is

therefore rather due to combinations of multiple features, instead of a

clear preference in one of the single structure feature. The results
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suggest that this combination is related to noninteracting anions, sul-

fur containing residues and the flexibility of the protein.

3.3.6 | Important deep-sea protein features

When we compare the prediction performance and important fea-

tures from all four experiments, we observe that deep-sea protein

structures are harder to distinguish from structures of thermophiles

(ThermoAll, ThermoModel) than from structures of mesophiles and all

decoys (MesoModel, DecoyAll). This is not surprising, considering that

most (hyper)thermophilic deep-sea organisms are likely evolutionary

more similar to the thermophiles. While the important features in the

MesoModel experiments are clear, it is not possible to assign single

correlations to individual (or multiple) extreme conditions on these

results alone. For this reason, we compared the deep-sea proteins to

proteins of thermophiles to further isolate potential pressure adapta-

tions in proteins from (hyper)thermophilic deep-sea organisms.

An interesting result is that the features most important in the

ThermoAll and ThermoModel experiments seem to be relevant also in

the MesoModel and DecoyAll experiments (see Figures 5 and 6). Over

all four datasets deep-sea proteins contain more LYS and more ILE on

average than their respective decoys (see Figures S13 and S14). The

only structure features that are reasonably important over all four

datasets are the distribution of noninteracting anions in the whole

protein and at the surface. Both are increased on average in deep-sea

proteins (see Figure S19). These results suggests that the distribution

of these features is a rather unique trait of deep-sea proteins.

While our results provide clues about the features characterizing

(hyper)thermophilic deep-sea proteins, a clear pattern or mechanism

for high pressure adaptations is not apparent. However, effective pre-

diction of deep-sea proteins is possible in all four experiments. These

results demonstrate that predictive structural patterns between differ-

ent deep-sea protein clusters exists. Our most predictive features and

feature sets indicate which kind of protein property this hidden pat-

tern might be related to.

4 | CONCLUSION

4.1 | Molecular adaptations to the deep-sea
environment

The result that proteins of deep-sea (hyper)thermopiles are nearly

perfectly separable from proteins from mesophiles likely illustrates

the obvious differences between the proteins from thermophiles and

mesophiles which have been explored heavily in the past.14,24,26,90

However, these obvious differences alone are not sufficient to fully

enable engineering of proteins toward high temperature26 and proba-

bly other extreme conditions. Our results on the ThermoAll and Ther-

moModel datasets show that in addition to the general trends already

analyzed in detail, there are other, more complicated patterns in pro-

tein sequence and structure correlating with the deep-sea source

environment. However, these correlations are not global for the

whole population of deep-sea proteins. On the one hand, these non-

global correlations are in accordance with current beliefs on pressure

adaptations,4,15 which are stating that pressure adaptations are only

present in a subset of deep-sea proteins. Yet, some of the relevant

features, most importantly LYS, ILE and charged atoms (especially

anions), are shared across protein clusters and different decoy sets,

which indicate the same adaptations in different protein classes. On

the other hand, it seems that the features characteristic for proteins

of deep-sea (hyper)thermophiles differ from those of deep-sea

psychrophiles. However, the available structure data on deep-sea

psychrophiles is scarce, which make these results not conclusive.

Consequently, the next interesting question to address would be

in which deep-sea proteins and protein classes do we see molecular

adaptations? One approach would be to investigate the proteins for

which the determined important features are relevant. It would also

be interesting to analyze individual protein classes that are more likely

to hold adaptations, like enzymes involved in the energy metabolism.4

In addition, further experiments with different subpopulations of

deep-sea organisms are necessary, for example based on evolutionary

relations of organisms or the similarity of their source environments,

like the prevailing extreme conditions or the metabolism. Besides that,

with our experiments we could provide a picture of the importance of

a wide range of different features. However, to pin point single highly

important features, further features need to be evaluated. An interest-

ing example would be the proteins energetics and dynamics, which

are not directly captured by our current descriptors or with the static

protein structures. In conclusion, there are still multiple directions lit-

tle explored yet and which are likely to provide valuable clues to dis-

entangle the multiple protein adaptations to extremes.

4.2 | The current status of protein structures from
deep-sea organisms

The currently available experimental protein structure data from

deep-sea organisms in the PDB is scarce. In this work we could

retrieve 1281 experimental protein structures (501 nonredundant)

from 25 deep-sea organisms (see Table 2). While this constitutes a

first data basis to analyze protein structures from deep-sea organisms

and the absolute number of structures is probably sufficient for many

analyses, the diversity of the retrieved organisms is limited. Most

structures are from hyperthermophilic Archaea and 95% of the pro-

teins are from organisms living under elevated temperature while only

5% are from psychrophilic and mesophilic deep-sea organisms. While

the protein structure is more informative, the sequence data that is

available in more variety and quantity would foster our understanding

given the more tangible signals in sequence features.

In contrast, the available structure data for generating orthologous

protein pairs with proteins of organisms from other environments from

the PDB seems to be plenty. While we generated structure pairs having

the same fold and at least remote homology is detectable in sequence, a

more stringent sequence similarity likely provides an even less noisy
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picture of protein differences. However, this would reduce the number

of pairs and leave more deep-sea proteins unpaired. Probably the most

important bottleneck in the pair generation process is the annotation of

the source organisms environments, OGT and pressure or . This, how-

ever, remains a grand and largely multidisciplinary challenge.4 Further-

more, while we currently using deep-sea proteins as a proxy for

pressure stability (or other extreme adaptations), it would be extremely

beneficial to compare protein pairs with experimentally determined low

and high pressure stability.

In the future, the ever increasing efforts in environmental meta-

genomics4,12 will provide more genome data from extreme environ-

ments. Carefully curated metadata annotation of these genomes with

the conditions of their natural environment would provide an invaluable

resource to comprehend the relationship between protein structure and

environmental conditions. At the same time recent advancement made

in protein structure prediction from sequence91,92 provides a incompa-

rable amount of structural protein information which is detached from

what is experimentally solvable. Although, we still need to find out

whether these methods model the subtleties in protein structures that

we are looking for when we search for protein adaptations. Neverthe-

less, with more data available more comprehensive evaluation on single

protein classes could be conducted. In addition, more expressive meth-

odologies could be applied which allow to explore not only handcrafted

features but also derive features from the data itself, which might be a

fitting approach given the subtlety and context-dependence molecular

adaptations are believed to have. An example of these are deep neural

networks which we intentionally set aside in this study because of the

limited data. Therefore, the future promises to further advance our

understanding of the molecular limits of life and to exploit the full

potential of enzymes from extremophiles.

Finally, we hope the compiled dataset and our feature evaluation

will be useful to the community and a helpful starting point for other

studies.
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Figure S1: Logistic regression feature selection results of the cluster cross validation for all 5
decoy set experiments. Distribution of mean ROC AUC values of all built models in the cross
validation is shown for the number of features used by the models. Performance achieved with
protein sequence and structure features is depicted separately. The two rightmost entries on
the x-axis show the performance with all sequence and structure features, respectively.
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Figure S2: Random forest feature selection results of the cluster cross validation for all 5
decoy set experiments. Distribution of mean ROC AUC values of all built models in the cross
validation is shown for the number of features used by the models. Performance achieved with
protein sequence and structure features is depicted separately. The two rightmost entries on
the x-axis show the performance with all sequence and structure features, respectively.
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Figure S3: Gradient boosting classifier feature selection results of the cluster cross validation
for all 5 decoy set experiments. Distribution of mean ROC AUC values of all built models
in the cross validation is shown for the number of features used by the models. Performance
achieved with protein sequence and structure features is depicted separately. The two right-
most entries on the x-axis show the performance with all sequence and structure features,
respectively.

S-4



Figure S4: Logistic regression results on external test set number 1 of a hold-out set of
protein pairs from psychrophilic and mesophilic deep-sea organisms. Each box shows the
ROC AUC distribution of the five best feature sets from feature selection for the respective
machine learning algorithm and feature set size. The two rightmost entries on the x-axis
show the performance with all sequence and structure features, respectively.
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Figure S5: Random forest results on external test set number 1 of a hold-out set of protein
pairs from psychrophilic and mesophilic deep-sea organisms. Each box shows the ROC AUC
distribution of the five best feature sets from feature selection for the respective machine
learning algorithm and feature set size. The two rightmost entries on the x-axis show the
performance with all sequence and structure features, respectively.
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Figure S6: Gradient boosting results on external test set number 1 of a hold-out set of
protein pairs from psychrophilic and mesophilic deep-sea organisms. Each box shows the
ROC AUC distribution of the five best feature sets from feature selection for the respective
machine learning algorithm and feature set size. The two rightmost entries on the x-axis
show the performance with all sequence and structure features, respectively.
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Figure S7: Logistic regression results on external test set number 2 of a hold-out cluster-
cross-validation fold. Each box shows the ROC AUC distribution of the five best feature sets
from feature selection for the respective machine learning algorithm and feature set size. The
two rightmost entries on the x-axis show the performance with all sequence and structure
features, respectively.
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Figure S8: Random forest results on external test set number 2 of a hold-out cluster-cross-
validation fold. Each box shows the ROC AUC distribution of the five best feature sets from
feature selection for the respective machine learning algorithm and feature set size. The
two rightmost entries on the x-axis show the performance with all sequence and structure
features, respectively.
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Figure S9: Gradient boosting results on external test set number 2 of a hold-out cluster-
cross-validation fold. Each box shows the ROC AUC distribution of the five best feature sets
from feature selection for the respective machine learning algorithm and feature set size. The
two rightmost entries on the x-axis show the performance with all sequence and structure
features, respectively.
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Figure S10: Standard deviation of Shapley values of the single sequence features. This
corresponds to the standard deviation of ROC AUC contributions of each individual sequence
feature over all enumerated and evaluated feature sets in the cluster cross validation. In other
words, the standard deviation of the Shapley values is computed as the standard deviation
of the marginals over all coalitions of features. Features are depicted on the x-axis and data
sets with the machine learning methods logistic regression (LR), random forest (RF) and
gradient boosting (GB) on the y-axis. The same color range as in the Shapley values plots is
used. The standard deviation of the marginals expresses the relation of individual features
to other features and the target variable. For example the standard deviation can be high
when features are correlated or a single feature is only predictive in combination with certain
other features.
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Figure S11: Standard deviation of Shapley values of the single structure features. This
corresponds to the standard deviation of ROC AUC contributions of each individual structure
feature over all enumerated and evaluated feature sets in the cluster cross validation. In other
words, the standard deviation of the Shapley values is computed as the standard deviation
of the marginals over all coalitions of features. Features are depicted on the x-axis and data
sets with the machine learning methods logistic regression (LR), random forest (RF) and
gradient boosting (GB) on the y-axis. The same color range as in the Shapley values plots is
used. The standard deviation of the marginals expresses the relation of individual features
to other features and the target variable. For example the standard deviation can be high
when features are correlated or a single feature is only predictive in combination with certain
other features.
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Figure S12: First distribution plots of single sequence features for deep-sea and decoy pro-
teins. Distributions show the data of all protein pairs in the 5 cross validation folds of the
HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the
title.
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Figure S13: Second distribution plots of single sequence features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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Figure S14: Third distribution plots of single sequence features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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Figure S15: Fourth distribution plots of single sequence features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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Figure S16: Fifth distribution plots of single sequence features for deep-sea and decoy pro-
teins. Distributions show the data of all protein pairs in the 5 cross validation folds of the
HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the
title.
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Figure S17: First distribution plots of single structure features for deep-sea and decoy pro-
teins. Distributions show the data of all protein pairs in the 5 cross validation folds of the
HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the
title.
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Figure S18: Second distribution plots of single structure features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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Figure S19: Third distribution plots of single structure features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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Figure S20: Fourth distribution plots of single structure features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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Figure S21: Fifth distribution plots of single structure features for deep-sea and decoy pro-
teins. Distributions show the data of all protein pairs in the 5 cross validation folds of the
HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the
title.
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Figure S22: Sixth distribution plots of single structure features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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Figure S23: Seventh distribution plots of single structure features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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Figure S24: Eighth distribution plots of single structure features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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Figure S25: Ninth distribution plots of single structure features for deep-sea and decoy
proteins. Distributions show the data of all protein pairs in the 5 cross validation folds of
the HT-group respectively for the DecoyAll, MesoModel, ThermoAll and ThermoModel data
sets. p-values for paired two-sided t-test and wilcoxon signed-rank test are shown in the title.
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ABSTRACT: In many molecular modeling applications, the standard procedure is
still to handle proteins as single, rigid structures. While the importance of
conformational flexibility is widely known, handling it remains challenging. Even
the crystal structure of a protein usually contains variability exemplified in alternate
side chain orientations or backbone segments. This conformational variability is
encoded in PDB structure files by so-called alternate locations (AltLocs). Most
modeling approaches either ignore AltLocs or resolve them with simple heuristics
early on during structure import. We analyzed the occurrence and usage of AltLocs in
the PDB and developed an algorithm to automatically handle AltLocs in PDB files
enabling all structure-based methods using rigid structures to take the alternative
protein conformations described by AltLocs into consideration. A respective software tool named AltLocEnumerator can be used as
a structure preprocessor to easily exploit AltLocs. While the amount of data makes it difficult to show impact on a statistical level,
handling AltLocs has a substantial impact on a case-by-case basis. We believe that the inspection and consideration of AltLocs is a
very valuable approach in many modeling scenarios.

■ INTRODUCTION
The Protein Data Bank (PDB)1 provides a wealth of protein
and DNA/RNA structures. One significant approximation of
many computational methods using structures from the PDB is
assuming the structure as rigid. Even one of the essential
breakthroughs in recent years, the prediction of protein
structures by Alphafold2,2 focuses on the prediction of rigid
structures. While this achievement and many other method
improvements are based on rigid structures, the inherent
flexibility still poses a challenge even for the most sophisticated
methods.3 Abandoning this approximation and treating the
structure as at least partially flexible is considered one
significant opportunity to improve existing methods in drug
discovery and design4−6 and would ultimately provide a more
precise description of the true nature of proteins. In a first step,
this can be done by exploiting existing experimental data, for
example, by building an ensemble of multiple structures.
Alternatively, computational methods like molecular dynamics
simulations can be used to generate ensembles as well, which
can require significant computational effort.7−11
One description of structural flexibility prevalent in the PDB,

with almost 42% of structures using it according to our
analysis, is alternative locations (AltLocs). AltLocs are utilized
by crystallographers to describe parts of the structure that
could reasonably be modeled in multiple locations. There exist
multiple tools to automatically detect and model AltLocs for
side chains as well as backbone atoms12,13 trying to describe
conformational polymorphisms present in the experimental
data. However, AltLocs are barely used by tools using PDB
structures even though structural flexibility is deemed critical,
and their importance in the process of ligand binding is widely

accepted.14 Using AltLocs is a starting point toward fully
incorporating computationally demanding protein flexibility
with the added advantage that AltLocs have experimental
evidence. While AltLocs have been used rather rarely in studies
working with PDB structures, there are examples where the
consideration of AltLocs was essential to the success15 or their
negligence an inevitable problem16 to the study at hand. One
reason for the rare use of AltLocs in the literature could be the
few tools that work with AltLocs automatically. While there are
some options to decide on specific AltLocs manually (using
ChimeraX,17,18 Pymol,19 or a text editor), which allows
deletion of unwanted conformations, this can be tedious or
even result in invalid structures. Despite being a well-known
problem in the modeling community, it is often neglected, and
automatic selection of AltLocs by software libraries or tools is
barely described.20,21

To solve this problem, we developed an algorithm to
automatically enumerate different conformations described by
AltLocs while considering the occupancy and correctness of
the resulting model. This algorithm can be used through a new
tool named AltLocEnumerator, allowing users to easily
enumerate different conformations of their structures and
decide which ones to use for their structure-based task.
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Crystallographers use AltLocs to express alternative atom
coordinates when the electron density indicates multiple
conformations in parts of the structure. The PDB provides a
description of how to annotate AltLocs inside the file (PDB file
format specification version 3.30).22 Interestingly, a general
and comprehensive description of when and how to annotate
AltLocs does not seem to be available.
For this reason, AltLocs are not annotated entirely

consistent through the PDB, which makes the automation of
selecting AltLoc conformations more challenging. AltLocs are
annotated in the PDB file as multiple ATOM/HETATM
entries with different AltLoc identifiers with most structures
using the alphabet characters starting with A. Although AltLocs
can be used to model multiple alternative, discrete
conformations, most describe only two states of a single
residue. An occupancy value is assigned to each different
conformation, with the more likely conformation having a
higher occupancy. All occupancy values of an atom with
AltLocs should add up to 1. In many cases, it is difficult for
crystallographers to extract substantial differences in occu-
pancy resulting in equal values for all conformations. An
example of a simple AltLoc of a single residue with two AltLocs
can be seen in Figure 1a. A more complex example of a residue
with five different conformations described with AltLocs is
displayed in Figure 1b. While AltLocs mostly describe
independent side chain conformations and can be trivially
combined, some AltLocs of different residues can depend on
each other. This dependence can, for example, happen when
the AltLocs describe changes in the backbone that only allow
the combination of certain AltLocs, or some AltLoc
conformations would clash if used in conjunction. An example
of the first behavior in which a complete loop is modeled in
two different conformations is shown in Figure 1c. Just as
ATOM entries in the PDB can have AltLocs, so can HETATM
entries, and therefore, small molecules, cofactors, or even water

molecules can be described with multiple conformations or
locations simultaneously. An example in which a part of a small
molecule in a binding site has multiple locations is shown in
Figure 1d.
AltLocs can have a huge influence on any method using

structures, for example, by enabling hydrogen bonds that are
not possible in another conformation, enabling apolar
interactions or opening up subpockets. In the case of Fischer
et al., modeling an entire loop in three different conformations
that are present in the apo structure enabled them to find novel
ligands with new chemotypes that would not have been found
in a standard rigid docking procedure.15 However, this work
was done on a single protein with multiple crystal structures,
introducing the question how AltLocs are used in the complete
PDB. To the best of our knowledge there is only one analysis
of the occurrence and variety of AltLocs in the PDB, and it is
focused on the effect of AltLocs in side chain conformation
prediction.23 Miao and Cao23 use a manually curated data set
of 3590 protein chains without nucleic acids and describe in
great detail the solvent accessibility as well as conformational
variety of all AltLocs within this data set. They find 56% of the
structures in the data set have AltLocs and highlight many
interesting trends, namely, that the presence of AltLocs in
structures is correlated with the resolution.
In this work, we analyze the current state of AltLocs in the

PDB including their frequency in different residues and
dependence on the resolution as well as submission date of
the structure, and we show examples of special cases recurring
throughout the PDB. Furthermore, we present our new
algorithm implemented in the AltLocEnumerator tool for the
automatic handling of AltLocs designed to enable any software
using rigid structures to automatically use AltLocs. We use
AltLocEnumerator and our recently developed docking tool
JAMDA24 to test if using additional complexes described by

Figure 1. Examples for the usage of AltLocs in the PDB. (a) Example of a residue with two AltLocs that differ solely in the side chain position. PDB
1A6M with atoms of residue 8 shown. Multiple AltLocs are colored differently: AltLoc A in tan, AltLoc B in blue. (b) Example of one residue with
five different AltLocs that differ in both the side chain as well as backbone atom placement. PDB 4EWO with atoms of residue 348 shown. Multiple
AltLocs are colored differently. (c) Example of multiple connected residues with dependent AltLocs. In this case, the AltLocs describe a differently
built loop between residues 215−240 in PDB 3KGA. Multiple AltLocs are colored differently. (d) Example of a HETATM entry with two different
AltLocs. PDB 5IQB and GNP with atoms of residue number 500 shown.
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AltLocs yields better results and showcase some examples in
which AltLocs were especially important.

■ METHODS
We present a fast branch-and-bound algorithm to generate
valid alternative protein structure conformations described
through AltLoc annotations. The algorithm searches for
compatible residue conformations maximizing the conforma-
tional states’ probabilities by scoring the AltLoc occupancy
values.
In general, there is an exponential number of ways to

combine single residue conformations. For this reason,
enumerating all combinations becomes infeasible as soon as
structures contain a higher number of residues with AltLoc
conformations. The aim is, therefore, to efficiently rule out
invalid AltLoc conformations early. To solve this problem, we
developed a constrained conformational search which avoids
combinations of residue conformations that lead to atom
clashes or introduce backbone chain breaks. The algorithmic
workflow is illustrated in Figure 2 supporting five different
search strategies listed in Table 1.
The first three search strategies ((i), (ii), (iii)) use the

algorithm depicted in Figure 2 and therefore systematically
check for chain breaks and clashes of AltLocs. In contrast, the
second two ((iv), (v)) are simpler strategies that select residue
conformations based on a single AltLoc identifier. However, all
strategies check overall structural validity using NAOMI.25,26

In case no valid structure conformation is detected, no
structure is returned. Strategy (iv) was our default strategy

before and is our baseline method in the experiments of this
work.
DAG-Based Search Space Construction. The alternative

residue conformations need to be enumerated systematically to
find valid overall conformations of the structural complexes of
protein, nucleic acid, and other molecules. The central data
structure, named AltLoc-DAG, is an ensemble of directed
acyclic graphs (DAGs) to represent a reduced search space of
only the compatible residue conformations (see Figure 2a−c).
Conformations are grouped into the same DAG if they cannot
be modeled independently.
To construct the AltLoc-DAG for a given input structure, we

first extract all atoms with at least two alternate location
identifiers. Although theoretically feasible, we ignore cases
where AltLocs are used to model different molecules, for
example, different amino acids. The resulting list of all residues
with AltLocs is then annotated with occupancies by taking the
mean of the occupancy values of the atoms with AltLoc
annotations.
Atom clashes are calculated between all pairs of residue

conformations using the AltLoc annotated atoms. After
visualization of the first results, we set the clash threshold at
more than 35% overlap of the van der Waals radii of two heavy
atoms, i.e.,

>vdW d
vdW

0.35sum

sum

The AltLoc-DAGs nodes represent the individual residue
conformations. Node weights are set with the occupancy of the
residues’ conformations. Then, edges are added organizing the

Figure 2. Algorithm for generating valid structure conformations. (a) Extraction of AltLoc conformations with their occupancies for a residue
(PDB 1A6M). (b) Construction of a DAG ensemble. Nodes represent residue AltLoc conformations which are weighted by their occupancy score.
Compatible residue conformations consecutive in the backbone are connected with a directed edge. Clashes are tracked as indicated by the dashed
red arrow. (c) DAG ensemble is refined. Fully connected layers are split into separate DAGs, but DAGs connected through a red edge (clash) are
merged. (d) Search for a valid conformation of the entire structure. In this example, residue conformations are selected to maximize the occupancy
score (as indicated by the red path) while avoiding clashes and chain breaks.

Table 1. Different AltLoc Generation Strategiesa

Output
conformations Name Description

(i) single best occupancy score Generation of a single structure conformation with the maximal occupancy score
(ii) multiple all best occupancy score Generation of all structure conformations with the same maximum occupancy score
(iii) multiple enumerate all Enumeration of all possible valid structure conformations
(iv) single first encounter Selection of structure conformation based on the first encountered AltLoc identifier while reading the file
(v) single specific AltLoc-ID Selection of structure conformation with a user-specified AltLoc identifier, for example, all AltLoc

conformations with identifier “B”
aThe first three strategies use the algorithm to generate valid structures, while the last two simply select AltLoc conformations based on a single
AltLoc identifier.
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AltLoc-DAG in layers, where each layer contains the set of
alternate conformations for a single residue. An edge is added
between nodes whose residues are adjacent in the macro-
molecular sequence, and their conformations can be connected
by a backbone peptide bond or phosphodiester bond for
nucleic acids. In this way, we do not add edges when
combinations of conformations would discontinue the back-
bone and introduce chain breaks. We use the NAOMI
library25,26 to determine the linear backbone connections. In
addition, we use NAOMI to identify disulfide bridges between
residue conformations. Conformation pairs forming these
bonds are considered as not clashing.
The initial DAGs are then split between two consecutive

layers exactly if two conditions hold (see also Figure 2, steps b
and c): First, the two subsequent layers are fully connected;
i.e., all alternate locations are pairwise compatible. Second,
there is no red edge indicating a clash connecting any layer
below to any layer above it.
Determining Valid Structure Conformations. We

implemented three different strategies to search the DAG
ensemble for valid overall structure conformations (see Table 1
(i), (ii), and (iii)). All strategies search for one or more valid
paths in each DAG from the top to the bottom layer. A path
p = v1, ...vn is valid if n equals the maximal depth of the DAG,
and there is no node pair in the path with a clash. If there is not
at least one valid path for all DAGs in the ensemble, then there
exists no valid conformation of the overall structure.
In the first two search strategies (i) and (ii), we employ a

scoring function to select one or multiple valid and likely
overall conformations. This scoring is guided by the structure’s
occupancy annotations. Occupancy values estimate the amount
of each AltLoc conformation observed in the crystal
experimentally. Therefore, occupancy values of residue
conformations can be interpreted as probabilities of the
independent events that the residue is observed in a certain
conformation. Our score is inspired from a maximum-
likelihood estimation based on these probabilities. However,
in practice, conformations of different residues might be
dependent; e.g., they clash or introduce chain breaks.
Therefore, the goal is to select a valid overall conformation
by maximizing the occupancy values under these depend-
encies. We achieve this by searching for valid paths in each
DAG while maximizing the following scoring function

=
=

s occ vlog( ( ))occ
i

n

i
1

where vi is the ith node in p, and occ is a function that retrieves
the occupancy of vi.
The first two search strategies (i) and (ii) generate a single

conformation of the maximal occupancy score and all
conformations of the maximal occupancy score, respectively.
The difference between the two search strategies is that the
first strategy retrieves only the first occurring path with a
maximal score, while the second additionally considers and
stores equally scoring paths. This property is useful because
occupancy values are often uniformly distributed between
residue conformations yielding not a single best overall
conformation but multiple.
A DAG is traversed starting from the top layer nodes with a

depth-first search-like procedure to obtain an initial solution.
We apply a greedy search approach to provide a good scoring
first solution by visiting adjacent nodes in decreasing order of

their occupancy. Before visiting a new node, it is checked if the
residue conformation representing the new node clashes with
any conformation in the current path indicated by a red edge
from the new node to one of its predecessors. If there is a
clash, the node will not be visited. When a target node in the
last layer is found, we save the path and its occupancy score as
a valid solution if it is the currently best solution according to
the occupancy score (strategy (i)) or not worse than the best
solution found so far (strategy (ii)). In addition, to each node
during the recursive backtracking, we annotate the best score
achievable from this node (ignoring clashes). Once a valid
solution is found, we search in the remaining graph for better
solutions while pruning subgraphs we already visited when
they can provably not lead to a better scoring path.
The third search strategy (iii) simply enumerates all paths

and, therefore, all possible valid overall structure conforma-
tions. Here no occupancy scoring is used, but just the DAGs
are traversed while considering clashes.
AltLocEnumerator. The algorithm described above forms

the central component of a software tool named AltLocEnum-
erator. We implemented AltLocEnumerator within the
NAOMI framework.25,26 AltLocEnumerator takes a structure
file in PDB or mmCIF format as input and generates one or
more conformations of the contained structure that can be
exported as PDB files. In addition to the described algorithm,
AltLocEnumerator contains the following options and features:
Standard AltLoc Strategies. In addition to the more

sophisticated strategies (i)−(iii), AltLocEnumerator also
implements the more simple strategies (iv) and (v), which
represent often employed standard strategies. In these
strategies, resulting conformations are validated with
NAOMI, but no additional clash or chain break detection is
employed. For example, strategy (iv) is somewhat arbitrarily
selecting some AltLoc identifier based on the ordering in the
file (which will mostly be identifier “A”). This was our previous
standard strategy. In contrast, strategy (v) allows the user to
specifically select all residue conformations in the structure of a
particular AltLoc identifier. This option can, for example, be
used if the authors of the structure file intended to represent
functional or structural meaning to the conformation with a
specific identifier.
Limit Number of Enumerated Structures. For the search

strategies yielding multiple overall structure conformations
(strategies (ii) and (iii)), the user can provide a maximum
number of structures to return. The resulting structure
conformations will be sorted by occupancy, according to the
greedy depth-first search-like traversal. This option can be
useful when there is a combinatorial explosion of residue
conformations leading to millions of valid structure con-
formations.
Specify Local Sites. The algorithm can focus on a local site

or subset of residues in the structure. With this option, only
AltLoc conformations of a user-specified subset of residues is
considered for conformation generation. This option helps to
reduce the number of generated structures. For example, for
most protein−ligand docking tools, only the residues
belonging to the active site are of interest. A list of residues
can be specified as a PDB or mmCIF file or in a text-based
configuration file. Alternatively, a ligand file can be provided, in
which case all residues in a user-defined distance to any ligand
atom are used to define a surrounding binding site.
Remove HETATMs. Before running the algorithm, all

HETATMs can be removed from the input. This option
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enables building some protein and DNA/RNA structures by
stripping off HETATMs that would clash otherwise.
Filter by RMSD. An RMSD (root-mean-square deviation)

threshold can be provided to filter generated valid structures by
their structural similarity. All structure conformations below
the user-given RMSD difference threshold to a previously
generated conformation will be omitted, resulting in smaller
and more diverse conformation sets.
Data Sets. The Protein Data Bank1 is the largest and

continually expanding public repository for protein and nucleic
acid structures and contains X-ray, NMR, and cryo-EM
structures. We used the state of the 21.03.2022 for the analysis
in this paper, containing over 185,000 structures. A full list of
all PDB codes can be extracted from the Supporting
Information.
The sc-PDB27 is a data set extracted from the PDB

describing a large collection of drug-like protein−ligand
complexes. It contains 17,594 binding pockets of 16,359
different PDB structures enabling the simulation of early phase
drug discovery scenarios. Since all proteins within the sc-PDB
are in mol2 format and NAOMI25,26 can only read proteins in
the PDB/CIF formats, the respective PDB files from the
current PDB release were used as input. The reference ligands
of all binding pockets in the sc-PDB were utilized to only
enumerate relevant AltLocs within 6.5 Å to the reference
ligand.
Extracting AltLocs Statistics from the PDB. To extract

data about AltLocs from the PDB, bash scripts were used that
extract all residues together with their ID, residue name, chain,
and number of conformations. This data can then be used to
calculate other information like how many AltLocs are present
per PDB structure or the distribution of the number of
conformations per AltLoc. This analysis is done in separate
steps for all ATM/HETATM entries in the PDB to
differentiate between the residue types. The scripts used to
extract the information and the resulting data can be found in
the Supporting Information.
Runtime Evaluation. We evaluate the runtime of

AltLocEnumerator, its enumeration strategies (i) to (iv), and
its running modes on the subset of 2700 structures of the sc-

PDB that contains AltLocs. In addition to the four strategies,
we evaluate the runtime when we focus on the AltLocs of the
whole structure in comparison to only the AltLocs of a single
binding site of interest. We define the local site as the ligand
binding site using all residues at a distance of 6.5 Å from any
ligand heavy atom. We restrict the maximum number of
structures enumerated to 513 in the strategies creating
ensembles. Experiments were conducted on a standard desktop
machine (Intel(R) Core(TM) i5-9500 CPU 3.00 GHz, 16GB
DDR4 RAM, NVMe TOSHIBA 512GB).
Preparation and Docking of the sc-PDB. The PDB files

were prepared by removing all ligands, only keeping relevant
water molecules (two or more hydrogen bonds to the protein
and reference ligand) and choosing standard protonation states
of all amino acids. The initial placement of the molecule to be
docked is restricted to within 6.5 Å of the reference ligand. All
molecules were redocked into the prepared receptors with
JAMDA24 using the ligand file provided in the sc-PDB, and the
RMSD to the crystal pose was calculated. An arbitrary number
of poses can be investigated in the redocking, and we chose the
best scored pose, best two, best three, best 10, and best 32. In
this way, unsuccessful redockings can be differentiated to
dockings in which good docking poses are scored low.

■ RESULTS AND DISCUSSION
AltLocs in the PDB. Following up the development of the

AltLocEnumerator, we wanted to investigate how AltLocs are
used in the PDB. Doing this analysis there are a plethora of
reasons for any given trend, and many are based on the tools
and preferences of crystallographers rather than the data that
were collected. As these statistics on the complete PDB are not
published anywhere else, we report them here to inform the
reader, but complete interpretation of the data exceeds the
scope of this publication. According to our analysis, 41.97% of
the structures in the PDB (state 21.03.2022) contain at least
one AltLoc. Interestingly, the data set by Miao and Cao23 is
enriched in AltLocs compared to the complete PDB and
contains 56% of structures with AltLocs but otherwise follows
many similar trends as seen in our analysis of the complete
PDB. One commonality of both, the number of AltLocs in a

Figure 3. Percentage of structures resolved with X-ray diffraction containing at least one AltLoc on the y-axis and the resolution of the structures on
the x-axis. The number of structures present at each point is color coded.
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PDB structure resolved using X-ray diffraction heavily
correlates with the structure’s resolution: Well resolved
structures contain more AltLocs than ones with lower
resolution (see Figure 3). Structures resolved using electron
microscopy show low usage of AltLocs (see Figure S1).
The reason for this might be that only high resolution

structures contain enough data to model further parameters to
the model by adding AltLocs to it.28 Unsurprisingly, the higher
the number of residues with AltLocs gets, the fewer structures
can be found with this number of AltLocs with an exponential
decline, as seen in Figure 4a. Most structures in the PDB
contain no AltLocs at all, but more than 21% also contain six
or more residues with AltLocs. Although rare, some structures
can contain more than a thousand residues with an AltLoc
(PDB 5TQP), and every AltLoc is not limited to two different
conformations. The number of conformations per AltLoc can
be seen in Figure 4c. Over 84% of AltLocs describe two
conformations, while a surprising amount of ∼10% contains
only one conformation. This behavior is counterintuitive
because using an AltLoc with only one conformation defeats

the purpose of the AltLoc describing multiple possible
conformations simultaneously. One reason is that sometimes
crystallographers build a model with a part of the structure that
is only present in one AltLoc and not present in another,
yielding parts of the structure with a single AltLoc. This can be
seen in the carbonic anhydrase II complex (PDB 6ROB).
Another reason is that some structures, especially ones
published at the beginning of the 2000s, use AltLocs to
distinguish differently built models. This can be seen in the
thymidylate synthase complex (PDB 2AAZ) which describes
all residues in Model 1 as AltLoc A and all in Model 2 as B,
which is contrary to how AltLocs should be used in our
opinion. Three and four conformations per AltLoc are still
reasonably frequent, while a higher number of conformations is
scarce with a maximum of seven conformations per AltLoc
(e.g., PDB 3B2C) and a single structure (PDB 2V93) with up
to 13 conformations. The type of residue for which an AltLoc
is used is not equally distributed, as seen in Figure 4b.
Almost 15% of all AltLocs in ATOM entries occur in serine

residues. Following in frequency are glutamic acid, arginine,

Figure 4. AltLoc statistics for the complete PDB (state 21.03.2022). (a) Percentage of structures containing x residues with an AltLoc. (b)
Percentage of structural residues with an AltLoc by residue type. Residues are all structural subunits modeled with ATOM entries. (c) Distribution
of the number of conformations per AltLoc. (d) Percentage of hetero groups with AltLoc by molecule type. Hetero groups are all structural
subunits modeled with HETATM entries.
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and lysine, which are more flexible than serine and can also
form strong Coloumbic or hydrogen bond interactions.
Aspartic acid is only half as frequently modeled with AltLocs
as its longer counterpart glutamic acid, which might be due to
the increased flexibility of the latter. Due to the prevalence of
proteins inside the PDB, most AltLocs are inside amino acids,
but RNA/DNA structures also contain AltLocs. Apart from
serine, the general trend seems to be that more flexible amino
acids tend to be modeled with AltLocs more frequently. This
frequency of residues is broadly in line with the previously
mentioned analysis of Miao and Cao.23 The residue names of
all HETATM AltLoc entries are dominated by water (>84%),
as seen in Figure 4d. Besides water, AltLocs of HETATM
entries are diverse and span over many chemically different
molecules. At the same time, crystallization additives (e.g.,
glycerol, 1,2-ethandiole), simple metals/ions (e.g., sulfate,
chloride ions), and cofactors are more common probably due
to their respective higher frequency in the PDB.
Another interesting trend is the usage of AltLocs in the

history of the PDB, as they become more popular over time.
While between 1990 and 2000 only about 10% of structures
contained residues with AltLocs, in the past 10 years, around
60% of all structures contained AltLocs, as seen in Figure 5a.
This trend may be correlated with improved programs for
structure modeling as well as methods and, therefore,
improved published structures’ resolutions. However, the
trend is still present even when restricting the resolution to
small ranges like, for example, from 2.0 to 2.2 Å (Figure 5b),
showing that AltLocs are still getting more frequent even when
corrected by the structures’ resolutions. The complete statistics
and the scripts to generate them can be found in the
Supporting Information.
Validation of the AltLocEnumerator. To validate that

AltLocEnumerator works as intended, we compared the
AltLocs found and the number of structures generated from
AltLocEnumerator to the data created when parsing all PDBs
for the sc-PDB subset. From the 17,594 binding pockets in the
sc-PDB, 2700 (15.04%) contained AltLocs. For each binding
pocket, between 1 (AltLocs present, but only one clash-free
conformation version could be built using NAOMI) to 513
(maximum number of conformations) different structure
conformations are built. The number of structures generated
for the data-based approach was calculated as the product of

residue conformations with an AltLoc in the PDB, which
ignores compatibility issues or dependencies between AltLocs.
The residues that were different between generated structures
and the number of structures generated in total were recorded.
AltLocEnumerator and our PDB analysis do not differ in the
residues that have AltLocs but in the number of structures
generated. For the complete sc-PDB subset, 2546 of the 16,359
(15.56%) differ in the number of structures generated. The
vast majority of this difference is due to the maximum number
of structures that will be enumerated using AltLocEnumerator.
Removing all PDB entries in which AltLocEnumerator
enumerates the maximum number of structures, only 370 of
14,183 (2.61%) differ. Since AltLocEnumerator considers the
compatibility of AltLocs from different residues, we can expect
a lower number of conformations compared to full
enumeration.
An example is the HIV protease complex (PDB 4J54) in

which the residues 16, 17, and 47 each have two alternative
conformations modeled as AltLocs (see Figure 6a). From the

eight possible complexes, only four remain due to incompat-
ibility of backbone atoms. Another reason for conformer
reduction are clashes between specific AltLocs and other parts
of the structure like HETATM entries.
We also noticed that in some rare cases AltLocs are used to

model alternative amino acids or molecules rather than
conformations. The Crambin mixed sequence complex (PDB

Figure 5. Percentage of structures with AltLocs over time (state 21.03.2022). The number of structures present at each point is color coded. (a)
Percentage of structures with AltLocs over time. (b) Percentage of structures with AltLocs over time with a resolution between 2.0 and 2.2 Å.

Figure 6. Highlights of special cases of AltLocs that introduce
differences in the validation. (a) HIV protease complex (PDB 4J54) is
shown in which the AltLocs of residues 16 and 17 are dependent on
each other, as enumerating them would introduce backbone breaks.
(b) Crambin complex (PDB 1JXU) is shown in which the same
residue is described as two different amino acids (serine, proline)
using AltLocs.
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1JXU) is an example for this with residue 22 being modeled as
either serine or proline (see Figure 6b). Since this is, in our
opinion, not the intended use of AltLocs, we decided not to
model the change of molecular entities.
Some differences can be related to our codebase

NAOMI.25,26 For example, NAOMI focuses on the first
model inside any structure and ignores subsequent models,
yielding fewer conformations than a simple enumeration of all
AltLocs in a PDB file. Another reason is AltLocs with a single
conformation. As AltLocEnumerator completely neglects any
single conformation AltLocs and the data analysis does
enumerate one structure, this can lead to a difference in the
analysis if there are no other multi-conformation AltLocs
present. One example is the thymidylate synthase complex
(PDB 2AAZ), in which all atoms in Model 1 are written in
AltLoc notation as AltLoc A, and all atoms in Model 2 are
written as AltLoc B, and this trend continues as the model
numbers increase. As we discard any information on
subsequent models using NAOMI, connecting AltLocs
described in this way is not possible. This usage of AltLocs
is contrary to how we believe they should be used and is not
modeled in our algorithm, as all residues in different models
are treated as independent. One last interesting case is the
PTP1B complex (PDB 5QEL), which is part of a group
deposition created with the PanDDa29,30 method. In this case,
the complete protein is described using AltLocs, but almost all
residues are entirely identical in all described AltLocs. The
intention of this is unclear to us, but we suspect that AltLoc
identifiers are given consistently across the group deposition.
As our algorithm does not check if AltLocs are identical before
trying to enumerate them, this leads to a numerical explosion

that inhibits correct handling of AltLocs resulting in different
models. However, if the intent of the AltLoc labeling is clear,
such cases could be handled by a specific AltLoc-ID with
strategy (v).
Runtime. The results of the runtime experiments on a

standard desktop machine are illustrated in Figure 7. The
evaluation shows that generating a single valid structure
conformation with the highest occupancy score is approx-
imately as fast as the much simpler baseline strategy (compare
“best occupancy score” and “baseline” in Figure 7a). Therefore,
AltLocEnumerator allows selecting the most probable valid
conformation without noteworthy loss in computation
efficiency.
For most AltLoc selection strategies, AltLocEnumerator

takes less than one second on average. Only the “enumerate
all” strategy on the whole structure takes more time (median =
6.96 s, mean = 11.88 s), which is not surprising since it is the
strategy generating most conformations.
Focusing the AltLoc enumeration on a site of interest, e.g., a

ligand binding site, harms the runtime when generating only a
single structure conformation but improves the average
runtime considerably when enumerating multiple conforma-
tions. The processing time of the local 3D site is probably only
profitable after a certain number of conformations, for which
enumeration can be avoided by focusing on the local site.
Figure 7b shows the runtime of each intermediate step of the

algorithm. On average, the “AltLoc selection” step (represent-
ing the algorithm in Figure 2) is the least time-consuming step.
Especially in the strategies enumerating multiple conforma-
tions, the complex building time and the time to write the
output PDB files dominate the runtime.

Figure 7. AltLocEnumerator runtime analysis on sc-PDB structures with AltLocs (n = 2700). (a) Overall runtime of AltLocEnumerator for four
different enumeration strategies. Showing runtime when focusing on the whole structure and only on the local ligand binding site. (b) Runtime of
each step of the tool for four different enumeration strategies using the whole structure. “input” denotes the time needed to process the input data.
“AltLoc selection” shows the time for running the core algorithm for selecting residue conformations. “complex building” represents the time for
NAOMI to build and chemically validate the overall structure. “output” refers to the step for writing the built structure as a PDB file. Time values
below 10−3 were set to 10−3 for illustration purposes.
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Significance of AltLocs for Docking. Most existing
docking tools use structures from the PDB on an as-is basis
and ignore AltLocs. This introduces the question of whether
considering AltLocs is beneficial for structure-based design
methods such as docking, as shown in a single case by Fischer
et al.15 To partially answer this question, we investigate the
task of redocking an existing ligand in its corresponding
structure and measure the success as root-mean-square
deviation (RMSD) to the experimentally determined binding
pose. To analyze a redocking, the most widely used measure
for success is the prediction of a pose with an RMSD of lower
than a threshold (mostly 2 Å) within the top scored ones.
Here, we investigate the top one, two, three, 10, and 32 poses.
Using a changing number of top poses allows us to
differentiate between cases in which the docking tool is unable
to create a correct binding pose and those in which it is able to
do so but ranks it worse than poses with high RMSD
deviations.
We use all structures present in the sc-PDB that contain

AltLocs in the binding site (n = 2700) and dock into the
baseline model as well as all enumerated conformations using
our recently developed docking tool JAMDA.24 Using
improved structures from the pdb-redo might be beneficial,
but since most users work with standard PDB files, they were
used here as well.31 The maximum number of conformations
was set to 100 to remain in the tractable region with our
available compute resources. When enumerating all possible
complexes using the AltLocEnumerator, the 2700 binding
pockets containing AltLocs are enumerated to 20,545
complexes. The exact number of binding pockets enumerated
to a given number of complexes is shown in Table S1. We
compare the baseline conformation that was described by the
crystallographers to the ones that were added with AltLocs.
This poses an additional challenge, as the crystallographers will
have chosen the best-suited conformation for the ligand in
many cases.
In a first experiment, we evaluate whether taking both the

baseline and nonbaseline AltLoc complexes into consideration
does yield better poses. This solely shows if better solutions are
possible using nonbaseline AltLoc complexes, and it is
important to keep in mind that more complexes and therefore
more poses are investigated when taking nonbaseline
complexes into consideration.
Conducting this experiment, we can see in Table 2 that in

over 50% of the cases the RMSD to the reference ligand can be
improved using a nonbaseline AltLoc conformation. However,

this experiment drastically overrates this performance increase
because most improvements are minor and irrelevant from the
modeler’s perspective. To highlight this, the differences in the
best-achieved redocking RMSD of the baseline AltLoc
conformation and the best-achieved redocking RMSD of
nonbaseline conformations are displayed in Figure 8.

While some complexes show a relevant gain in redocking
RMSD of, in exceptional cases up to 8 Å, the differences are
tiny for most, introducing the question if minor changes
constitute a better pose.
If we define a significant gain in redocking RMSD as a

minimum difference of 0.5 Å, between 15% and 8.6% of the
docking experiments fit this criterion when considering the
AltLoc ensemble (Table 2). In addition, the percentage of
binding pockets that can be significantly improved shows a
negative trend the more poses we investigate. This behavior
could be explained by the fact that once an excellent binding
pose is generated in the baseline model it is unlikely that a
binding pose in the AltLoc ensemble significantly improves it.
Another estimate of pose quality is for how many binding

pockets the improved pose results in a successful redocking
that was not successful using only the baseline model. A
successful redocking is defined as a prediction in which the
lowest RMSD of the top x poses is lower than a user-given
threshold, mostly lower than 2 Å. As the success depends on
the chosen RMSD cutoff, and to most accurately describe the
data, we decided to display the success percentage in
correlation to this cutoff for each top x value in Figure 9.
There is a visible gain in success percentage if we only

investigate the best scored pose for each complex. This gain
diminishes the more poses we consider for each enumerated
structure, which is an identical effect to the one seen prior in
Table 2. In addition, the performance difference is threshold
dependent and only starts to become visible at a threshold of
about 1−1.5 Å. The effect is diminished compared to the effect
seen in Table 2, because only the subset of RMSD
improvements are counted that improve the redocking above
the success threshold.

Table 2. Results of the Analysis if at Least One Complex
Using the AltLoc Ensemble Achieves a Better RMSD in
Redocking Using the Top X Poses than the Complex Using
the Baseline Conformationa

Top X Percentage improved Percentage improvement ≥0.5 Å
1 52.9 15.0
2 53.7 13.4
3 53.7 12.9
10 54.9 10.5
32 53.0 8.6

aResults are based on the percentage of the 2700 binding pockets
containing AltLocs with improved redocking RMSD. The third
column is only counting an improvement once the redocking RMSD
improves by more than or equal to 0.5 Å.

Figure 8. Histogram of the difference between best RMSD and
RMSD of complex with baseline AltLocs for best score for the top 10
and top 32 poses. The x-axis displays the difference between the best-
achieved RMSD of the binding pocket and the RMSD of one
conformation and is binned with a binwidth of 0.1. The y-axis displays
the count of observations in the respective bin.
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While these different analyses showcase that using AltLocs
can yield better poses, this advantage is only relevant if ranking
them correctly is possible. Because when using AltLocs we
investigate both the baseline and all nonbaseline complexes,
the number of complexes and therefore poses considering the
AltLoc ensemble always outnumbers the one using just the
baseline conformation. This fact causes a numeric advantage
for the AltLoc mode. To solve this advantage, we tried multiple
methods to evaluate an identical number of poses for both
approaches, namely, using the best scored poses in all
complexes, all poses of the complex with the best scored top
pose, and the top poses of docking to the ensemble of all
receptors. However, for all these approaches, we could not
yield a significantly better (or worse) performance than just
using the baseline model (see Figures S2−S4).
A detailed discussion of these different approaches can be

found in the Supporting Information. We came to the
conclusion that harvesting the entire value of considering
AltLocs during docking is only possible with scoring functions
taking protein flexibility explicitly into account, for example, by
scoring the energetic differences between alternative side chain
contacts.
A part of the problem might be that for the binding pockets

containing AltLocs many conformations described do not
interact directly with the ligand or only describe minor
differences. These conformations will, in many cases, not alter
the redocking experiment (even though they may alter other
structure-based experiments). Nevertheless, because we found
cases in which the consideration of AltLocs significantly
improved the outcome of the experiment, any well-prepared
redocking should consider AltLocs. This will be most likely
even more true for cross-docking experiments in which
alternative binding site conformations are critical for correct
predictions for ligands variing in shape and size.
Specific AltLocs can be Crucial for Structure-Based

Tasks. To explain why and how AltLocs can influence

structural tasks like redocking, we highlight some cases in
which AltLocs were critical to the success of a redocking.
For the HIV integrase complex (PDB 4CJ3, Figure 10a),

there is a possible hydrogen bond in the baseline AltLoc
complex with a threonine that is not possible in the
nonbaseline complex. Counterintuitively, because there is no
hydrogen bond between this threonine in the PDB, using the
baseline complex does yield worse results. The worse results
are probably because many poses form a hydrogen bond with
the threonine, leading to a suboptimal binding pose.
In the HIV protease complex (PDB 3QRM), the baseline

AltLocs of multiple residues perform worse than their
nonbaseline counterparts (Figure 10b). In this case, the reason
is not obvious because there are no direct clashes or
interactions formed or broken between the baseline and
nonbaseline AltLoc complex, but the effect is still present. This
highlights that in some cases the reason for a structure being
better suited can be difficult to find.
In the human malate dehydrogenase complex (PDB 2DFD,

Figure 10c), the baseline AltLoc complex clashes with the
ligand. Therefore, the correct binding mode cannot be
reproduced in the baseline complex. While this is probably
an oversight by the crystallographers, errors like this happen
and are not always corrected when publishing structures.
Another example that is probably due to an error by the

submitting crystallographers is the Plasmodium falciparum
thymidylate kinase complex (PDB 2YOF, Figure 10d). In this
example, both ligand and residues have AltLocs, but the same
identifier versions of the ligand and residue AltLocs clash. Due
to this (and the RMSD calculation focused on the first
appearing AltLoc of the ligand), the nonbaseline AltLoc
complex significantly outperforms the baseline complex.
As these single cases show, there are many reasons for why a

nonbaseline AltLoc complex can be better suited for the given
task than its baseline counterpart. Reasons for this include but
are not limited to human error, to interactions that are only
present (or absent) in one specific conformation described by

Figure 9. Percentage of binding pockets with successful redocking on the y-axis and RMSD threshold used to define a successful redocking on the
x-axis. Using only the baseline AltLoc complex (blue) and using all enumerated AltLoc complexes (red). The number of poses investigated is
indicated above the panel.
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AltLocs, or by the binding pocket just being better suited for
the task at hand for nonobvious reasons.
AltLocs can Describe Protein Flexibility Present in

Multistructure Ensembles. Another reason to consider
AltLocs is that they describe protein flexibility that would
otherwise only be described using an ensemble of multiple
PDB structures or chains. This makes AltLocs very valuable
information especially for proteins for which only a few
structures exist in the PDB. Using SIENA32 to construct an
ensemble of PDB structures with very similar binding pockets,
we can find protein conformations in other PDBs that are
described by AltLocs in an original PDB. As an example for
structures of Catechol O-methyltransferase (PDB 3HVI) and
WlbA (PDB 3O9Z), we found the side chain conformations
described by their AltLocs in other structures/chains (see
Figure 11).
This highlights that the protein flexibility described by

AltLoc conformations is consistent with structure ensembles of
the same or a similar protein in the PDB. AltLocs have the
advantage that they must not be retrieved with a database
search since they are contained in the same file and in addition
are curated by the structure’s author. When ignoring AltLocs,
experimentally validated conformations might be missed that
are not available otherwise.

■ CONCLUSION
In this publication, we report the development of a novel
algorithm for the automatic treatment of AltLocs. A software
tool using this algorithm allows users to handle AltLocs in PDB
structures by creating single, consistent structures or structure
ensembles.
AltLocEnumerator was developed to fit into existing

workflows, only building valid structures that confer the
quality criteria of typical modeling environments like NAOMI,
allowing users to focus on any part of the structure.
First, we thoroughly investigated how AltLocs occur in the

PDB and how they are used by crystallographers. This analysis
revealed general statistical trends on AltLocs in the complete
PDB and that AltLocs became more popular over time, with
around 60% of all structures released in the last 10 years
containing AltLocs, emphasizing the importance of accounting
for them.
Our validation showed that AltLocEnumerator’s algorithm

creates reasonable structures from AltLocs combinations. In
addition, we measured the required computation times on the
entire sc-PDB subset and highlighted some cases in which
AltLocEnumerator produced unexpected results.
For the example of redocking, we have shown that different

structural conformations described by AltLocs improve pose
quality. The ranking of docking poses with varying AltLocs was
challenging with a standard scoring function not considering
intraprotein interactions. This analysis also emphasized that
the problem of automatically describing protein flexibility for
docking remains challenging and requires further research.
Respective studies for cross-docking and virtual screening
experiments are the next logical steps to fully comprehend how
AltLocs impact docking. However, due to computational
constraints, they are not part of this publication.
The examples in which AltLocs significantly impact

redocking highlight why it is essential to investigate AltLocs
before employing structures in modeling work. Our analysis of
AltLocs and their conformations in other PDB structures using
SIENA32 also highlights that AltLocs can be applied to create
decent conformational flexibility models from a single
structure.
To this day AltLocs are mostly ignored entirely by choosing

the first or highest occupancy option for the complete
structure. Handling AltLocs can prevent using faulty
combinations of stuctural elements and provides a way to
standardize and automate receptor preparation. With the
introduction of AltLocEnumerator, we hope to offer a tool for

Figure 10. Crystal structures of examples of nonbaseline AltLoc
complexes with significantly improved redocking RMSD compared to
baseline complexes. All examples are taken from the top 10/top 32
poses to use cases in which JAMDA does not achieve the correct
binding pose in the baseline AltLoc. All examples allow for a
successful redocking in a nonbaseline AltLoc complex that was
unsuccessful in the baseline one. The clash criteria used are the
baseline criteria implemented in Chimera. (a) AltLocs in the binding
pocket of PDB 4CJ3. The baseline AltLoc of the threonine allows
forming a hydrogen bond that is not present in the complex. In
addition, the nonbaseline AltLoc in glutamine improves the redocking
to a lesser extent. In redocking, the nonbaseline complex outperforms
the baseline one by ∼2.7 Å using the top 32 poses, making the
redocking successful. (b) AltLocs in the binding pocket of PDB
3QRM. The baseline AltLoc of residues 50−51 and 82 in chain A and
84 in chain B perform worse than the nonbaseline counterparts. In
redocking, the nonbaseline complex outperforms the baseline one by
∼5.4 Å using the top 10 poses (1.14 Å in top 32), making the
redocking successful. (c) AltLocs in the binding pocket of PDB
2DFD. The baseline AltLoc clashes with the ligand. In redocking, the
nonbaseline complex outperforms the baseline one by ∼8.0 Å using
the top 10 poses, making the redocking successful. (d) AltLocs in the
binding pocket of PDB 2YOF. The baseline AltLoc clashes with the
ligands baseline AltLoc. In redocking, the nonbaseline complex
outperforms the baseline one by ∼7.2 Å using the top 32 poses,
making the redocking successful.

Figure 11. Showcase of AltLocs that describe side chain
conformations that otherwise would only be possible to model
when considering multiple PDBs/chains. The overlays of the binding
pockets were created using SIENA.32 (a) Overlay of PDBs 3HVI
(tan), 1H1D (blue), and 3HVJ (green). The AltLoc in 3HVI does
describe the side chain conformations of TRP186 of both 1H1D and
3HVJ. (b) Overlay of PDBs 3O9Z (tan), 3OA0 chain A (blue), and
3OA0 chain B (yellow). The AltLoc in 3O9Z does describe the side
chain conformations of HIS185 of both chains A and B in 3OA0.
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any structure-based task that allows users to integrate an
informed decisions on which structural conformations to use.

■ ASSOCIATED CONTENT
Data Availability Statement
AltLocEnumerator is available for Linux, Mac, and Windows as
part of the NAOMI ChemBio Suite at https://uhh.de/naomi
and is free for academic use and evaluation purposes. The data
on AltLoc occurrence as well as the resulting scores of the
docking evaluation are available in the Supporting Information.
The sc-PDB is available at http://bioinfo-pharma.u-strasbg.fr/
scPDB/.27
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Discussion about reranking of docking results, additional
statistics on AltLocs, additional statistics on docking
calculations and performance, additional statistics about
docking performance and RMSD of AltLocs used, table
of the number of enumerated structures from the
original structures in the sc-PDB (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Matthias Rarey − Universität Hamburg, ZBH - Center for
Bioinformatics, 20146 Hamburg, Germany; orcid.org/
0000-0002-9553-6531; Email: matthias.rarey@uni-
hamburg.de

Authors
Torben Gutermuth − Universität Hamburg, ZBH - Center for
Bioinformatics, 20146 Hamburg, Germany; orcid.org/
0000-0002-9304-8251

Jochen Sieg − Universität Hamburg, ZBH - Center for
Bioinformatics, 20146 Hamburg, Germany; orcid.org/
0000-0001-5343-7255

Tim Stohn − Universität Hamburg, ZBH - Center for
Bioinformatics, 20146 Hamburg, Germany; Present
Address: Tim Stohn: Computer Science Department,
Center for Integrative Bioinformatics (IBIVU), Vrije
Universiteit Amsterdam, De Boelelaan 1111, Amsterdam
1081 HV, The Netherlands; Division of Molecular
Carcinogenesis, The Oncode Institute, The Netherlands
Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX,
The Netherlands

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.3c00100

Author Contributions
#Torben Gutermuth and Jochen Sieg contributed equally.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of
Education and Research as part of de.NBI (031L0105) and
protP.S.I. (031B0405B).

■ REFERENCES
(1) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
Bank. Nucleic Acids Res. 2000, 28, 235−242.
(2) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.;
Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A.
J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.;
Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.;
Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.;
Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.;
Hassabis, D. Highly accurate protein structure prediction with
AlphaFold. Nature 2021, 596, 583−589.
(3) Saldano, T.; Escobedo, N.; Marchetti, J.; Zea, D. J.; Mac
Donagh, J.; Velez Rueda, A. J.; Gonik, E.; Garcia Melani, A.;
Novomisky Nechcoff, J.; Salas, M. N; Peters, T.; Demitroff, N.;
Fernandez Alberti, S.; Palopoli, N.; Fornasari, M. S.; Parisi, G. Impact
of protein conformational diversity on AlphaFold predictions.
Bioinformatics 2022, 38, 2742−2748.
(4) Alvarez-Garcia, D.; Barril, X. Relationship between Protein
Flexibility and Binding: Lessons for Structure-Based Drug Design. J.
Chem. Theory Comput. 2014, 10, 2608−2614.
(5) Wong, C. F. Flexible receptor docking for drug discovery. Expert
Opin. Drug Discovery 2015, 10, 1189−1200.
(6) Cozzini, P.; Kellogg, G. E.; Spyrakis, F.; Abraham, D. J.;
Costantino, G.; Emerson, A.; Fanelli, F.; Gohlke, H.; Kuhn, L. A.;
Morris, G. M.; Orozco, M.; Pertinhez, T. A.; Rizzi, M.; Sotriffer, C. A.
Target Flexibility: An Emerging Consideration in Drug Discovery and
Design. J. Med. Chem. 2008, 51, 6237−6255.
(7) Antunes, D. A.; Devaurs, D.; Kavraki, L. E. Understanding the
challenges of protein flexibility in drug design. Expert Opin. Drug
Discovery 2015, 10, 1301−1313.
(8) Stachowski, T. R.; Fischer, M. Large-Scale Ligand Perturbations
of the Protein Conformational Landscape Reveal State-Specific
Interaction Hotspots. J. Med. Chem. 2022, 65, 13692.
(9) Kamenik, A. S.; Singh, I.; Lak, P.; Balius, T. E.; Liedl, K. R.;
Shoichet, B. K. Energy penalties enhance flexible receptor docking in a
model cavity. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2106195118.
(10) Bottegoni, G.; Rocchia, W.; Rueda, M.; Abagyan, R.; Cavalli, A.
Systematic Exploitation of Multiple Receptor Conformations for
Virtual Ligand Screening. PLoS One 2011, 6, No. e18845.
(11) Barril, X.; Morley, S. D. Unveiling the Full Potential of Flexible
Receptor Docking Using Multiple Crystallographic Structures. J. Med.
Chem. 2005, 48, 4432−4443.
(12) Keedy, D. A.; Fraser, J. S.; van den Bedem, H. Exposing Hidden
Alternative Backbone Conformations in X-ray Crystallography Using
qFit. PLoS Comput. Biol. 2015, 11, No. e1004507.
(13) Lang, P. T.; Ng, H.-L.; Fraser, J. S.; Corn, J. E.; Echols, N.;
Sales, M.; Holton, J. M.; Alber, T. Automated electron-density
sampling reveals widespread conformational polymorphism in
proteins. Protein Sci. 2010, 19, 1420−1431.
(14) Wankowicz, S. A.; de Oliveira, S. H.; Hogan, D. W.; van den
Bedem, H.; Fraser, J. S. Ligand binding remodels protein side chain
conformational heterogeneity. eLife 2022, 11, No. e74114.
(15) Fischer, M.; Coleman, R. G.; Fraser, J. S.; Shoichet, B. K.
Incorporation of protein flexibility and conformational energy
penalties in docking screens to improve ligand discovery. Nat.
Chem. 2014, 6, 575−583.
(16) Qi, H. W.; Kulik, H. J. Evaluating unexpectedly short non-
covalent distances in x-ray crystal structures of proteins with
electronic structure analysis. J. Chem. Inf. Model. 2019, 59, 2199−
2211.
(17) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Meng, E. C.;
Couch, G. S.; Croll, T. I.; Morris, J. H.; Ferrin, T. E. UCSF
ChimeraX: Structure visualization for researchers, educators, and
developers. Protein Sci. 2021, 30, 70−82.
(18) Goddard, T. D.; Huang, C. C.; Meng, E. C.; Pettersen, E. F.;
Couch, G. S.; Morris, J. H.; Ferrin, T. E. UCSF ChimeraX: Meeting

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00100
J. Chem. Inf. Model. 2023, 63, 2573−2585

2584



modern challenges in visualization and analysis. Protein Sci. 2018, 27,
14−25.
(19) The PyMOL Molecular Graphics System, Version 1.8.;
Schrödinger, LLC, 2015.
(20) Cock, P. J. A.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C.
J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; de
Hoon, M. J. L. Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics
2009, 25, 1422−1423.
(21) Spruce Toolkit, version 2022.2. Open Eye Scientific Software.
h t tp s ://docs . eye sopen . com/too lk i t s/py thon/spruce tk/
OESpruceConstants/OEAlternateLocationOption.html (accessed
March 8, 2023).
(22) Berman, H.; Henrick, K.; Nakamura, H. Announcing the
worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003, 10, 980−
980.
(23) Miao, Z.; Cao, Y. Quantifying side chain conformational
variations in protein structure. Sci. Rep. 2016, 6, 37024.
(24) Flachsenberg, F.; Meyder, A.; Sommer, K.; Penner, P.; Rarey,
M. A Consistent Scheme for Gradient-Based Optimization of
Protein−Ligand Poses. J. Chem. Inf. Model. 2020, 60, 6502−6522.
(25) Urbaczek, S.; Kolodzik, A.; Fischer, J. R.; Lippert, T.; Heuser,
S.; Groth, I.; Schulz-Gasch, T.; Rarey, M. NAOMI: On the Almost
Trivial Task of Reading Molecules from Different File formats. J.
Chem. Inf. Model. 2011, 51, 3199−3207.
(26) Urbaczek, S.; Kolodzik, A.; Groth, I.; Heuser, S.; Rarey, M.
Reading PDB: Perception of Molecules from 3D Atomic Coordinates.
J. Chem. Inf. Model. 2013, 53, 76−87.
(27) Kellenberger, E.; Muller, P.; Schalon, C.; Bret, G.; Foata, N.;
Rognan, D. sc-PDB: an Annotated Database of Druggable Binding
Sites from the Protein Data Bank. J. Chem. Inf. Model. 2006, 46, 717−
727.
(28) Davis, A. M.; Teague, S. J.; Kleywegt, G. J. Application and
limitations of X-ray crystallographic data in structure-based ligand and
drug design. Angew. Chem., Int. Ed. 2003, 42, 2718−2736.
(29) Pearce, N. M.; Krojer, T.; Bradley, A. R.; Collins, P.; Nowak, R.
P.; Talon, R.; Marsden, B. D.; Kelm, S.; Shi, J.; Deane, C. M.; von
Delft, F. A multi-crystal method for extracting obscured crystallo-
graphic states from conventionally uninterpretable electron density.
Nat. Commun. 2017, 8, 15123.
(30) Pearce, N. M.; Krojer, T.; von Delft, F. Proper modelling of
ligand binding requires an ensemble of bound and unbound states.
Acta Crystallogr., Sect. D: Struct. Biol. 2017, 73, 256−266.
(31) van Beusekom, B.; Touw, W. G.; Tatineni, M.; Somani, S.;
Rajagopal, G.; Luo, J.; Gilliland, G. L.; Perrakis, A.; Joosten, R. P.
Homology-based hydrogen bond information improves crystallo-
graphic structures in the PDB. Protein Sci. 2018, 27, 798−808.
(32) Bietz, S.; Rarey, M. SIENA: efficient compilation of selective
protein binding site ensembles. J. Chem. Inf. Model. 2016, 56, 248−
259.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00100
J. Chem. Inf. Model. 2023, 63, 2573−2585

2585

 Recommended by ACS

Solvent Accessibility Promotes Rotamer Errors during
Protein Modeling with Major Side-Chain Prediction
Programs
Tareq Hameduh, Yazan Haddad, et al.
JULY 06, 2023
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

Hydrophobicity─A Single Parameter for the Accurate
Prediction of Disordered Regions in Proteins
Nitin Kumar Singh, Mithun Radhakrishna, et al.
AUGUST 15, 2023
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

AlphaFold2-RAVE: From Sequence to Boltzmann Ranking
Bodhi P. Vani, Pratyush Tiwary, et al.
MAY 12, 2023
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

Best Practices of Using AI-Based Models in Crystallography
and Their Impact in Structural Biology
Marc Graille, Antoine Taly, et al.
JUNE 12, 2023
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

Get More Suggestions >



Supporting Information:

Modeling with Alternate Locations in X-ray

Protein Structures

Torben Gutermuth,†,‡ Jochen Sieg,†,‡ Tim Stohn,†,¶ and Matthias Rarey∗,†

† Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146

Hamburg, Germany

‡These authors contributed equally

¶Currently working: Computer Science Department, Center for Integrative Bioinformatics

(IBIVU), Vrije Universiteit Amsterdam, De Boelelaan 1111, Amsterdam 1081 HV, The

Netherlands; Division of Molecular Carcinogenesis, The Oncode Institute, The Netherlands

Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands

E-mail: matthias.rarey@uni-hamburg.de

Supporting discussion

As elaborated in the main text, one problem persisting with the analysis is that all approaches

considering AltLocs evaluate more poses than the approach just considering the standard

complex. Due to this difference, there is a numeric advantage for the approaches that utilise

all enumerated complexes. To fix this advantage, we tried multiple rescoring schemes so that

the approach that utilises non-standard AltLoc complexes evaluates an equal number of poses

as its standard counterpart. One approach is to use the top scored x poses when merging

the results of all complexes compared to the standard complex. The results of this approach
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can be seen in Figure S2. Conducting this rescoring scheme, the standard approach shows

identical performance or even outperforms the AltLoc approach. This behaviour might be

because through merging results, very similar poses are evaluated using the AltLoc approach.

However, similar poses are clustered in the standard approach, and another different pose is

evaluated instead. Another approach to alleviating this problem is to use only the docking to

a single structure. This could be done by always choosing the structure with the best score

of the top scored pose, which might indicate that this structure is best suited for redocking

the ligand. As shown in Figure S3, this approach yields an almost identical performance

to just using the traditional complex. Another option is to use an ensemble approach and

eliminate poses that are too similar to each other while using all structures. However, as in

the previous examples, this approach performs identical to the traditional method, as seen

in Figure S4. As we already knew that the performance difference is heavily dependent on

the type of AltLoc and its interactions with the ligand, another hypothesis was that the

AltLocs we investigate might constitute primarily minute changes to the protein, which do

not alter the docking significantly. However, as seen in Figure S5, when investigating only

structural conformations that correspond to bigger changes, the exhibited effect diminishes,

contrary to our stated hypothesis. Mostly the AltLocs that constitute minor changes to the

structure create significant differences in the RMSD of the redocking. With that analysis

and the effects already shown in the main text, we can conclude that considering AltLocs

for redocking does improve the results. We are unable to yield these results in an automated

way. This is because while there are structural conformations described by AltLocs that are

beneficial for the redocking, we cannot discriminate between them and those that are not

beneficial automatically.

Supporting Figures and Tables
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Figure S1: Percentage of structures resolved with electron microscopy containing at least
one AltLoc on the y-axis and the resolution of the structures on the x-axis. The number of
structures present at each point is colour-coded.
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Figure S2: Redocking performance for standard AltLoc complexes compared the Top x best-
scored poses of all enumerated complexes with success thresholds as x variable for multiple
Top x poses.
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Figure S3: Redocking performance for standard AltLoc complexes compared the Top x of the
structure with the best scored top pose of all enumerated complexes with success thresholds
as x variable for multiple Top x poses.
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Figure S4: Redocking performance for standard AltLoc complexes compared the Top x of
the ensemble of all structures with success thresholds as x variable for multiple Top x poses.
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(a) Top 1 poses. (b) Top 2 poses

(c) Top 3 poses (d) Top 10 poses

(e) Top 32 poses

Figure S5: Two-dimensional histogram of protein RMSD difference between traditional Al-
tLoc and one enumerated version on the x-axis with the respective difference in the best-
achieved redocking RMSD in the top 32 poses on the y-axis. The number of observations
found in each voxel is colour-coded.
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Table S1: Statistic of the number of complexes generated for the 2700 binding pockets in
the sc-PDB containing AltLocs. The first column shows the number of complexes generated
using the AltLocEnumerator, and the second column the number of binding pockets used as
input to generate this number of complexes. The maximum number of complexes generated
is 100.

Number of complexes enumerated using AltLocEnumerator Number of binding pockets
1 6
2 1555
3 48
4 565
5 1
6 31
8 207
9 2
10 4
12 19
16 93
20 2
24 15
28 1
32 37
36 1
48 16
64 16
72 3
80 1
88 1
96 5
100 71
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Abstract

The available protein structure data are rapidly increasing. Within these structures, numerous local structural sites depict the details
characterizing structure and function. However, searching and analyzing these sites extensively and at scale poses a challenge. We
present a new method to search local sites in protein structure databases using residue-defined local 3D micro-environments. We
implemented the method in a new tool called MicroMiner and demonstrate the capabilities of residue micro-environment search on
the example of structural mutation analysis. Usually, experimental structures for both the wild-type and the mutant are unavailable
for comparison. With MicroMiner, we extracted > 255 × 106 amino acid pairs in protein structures from the PDB, exemplifying single
mutations’ local structural changes for single chains and > 45 × 106 pairs for protein–protein interfaces. We further annotate existing
data sets of experimentally measured mutation effects, like ��G measurements, with the extracted structure pairs to combine the
mutation effect measurement with the structural change upon mutation. In addition, we show how MicroMiner can bridge the gap
between mutation analysis and structure-based drug design tools. MicroMiner is available as a command line tool and interactively on
the https://proteins.plus/ webserver.

Keywords: mutation modeling; mutation effect prediction; protein structure; protein site; micro-environment

INTRODUCTION
The quality and quantity of protein structures have increased
tremendously in recent years. Even large multimeric structures
can be resolved at atomic resolution with cryo-EM [1–3]. More
recently, breakthroughs in structure prediction [4, 5] provide an
unprecedented manifold of predicted high-quality protein struc-
ture data [6]. Therefore, many new possibilities for large-scale
structural bioinformatics arose, and an avalanche of data is avail-
able for detailed exploration.

The standard methods for searching protein structure
databases focus on homology detection and can be grouped
into sequence [7–11] and structure-based [12–14] tools. They
are central for annotating functional, structural and sequential
features from experimentally characterized to unknown proteins
based on evolutionary relationships. Usually, the similarity is
assessed by identifying the largest similar part shared between
two proteins or domains. Although these methods are founda-
tional for bioinformatics, their focus is not ideal for searching for
similarities between local 3D sites in protein structures.

Local 3D sites of the protein structure are of particular interest
in many applications. Their local chemical and structural envi-
ronment, often characterized by sequentially distant 3D contacts,
can be crucial for the structure–function relationship since they
facilitate binding, catalysis, structural support or dynamics and
other functions [15–22]. For example, binding sites provide a local
protein micro-environment that facilitates binding ligands, pro-
teins or nucleic acids. Knowledge about the similarity of binding
sites can be used to deal with selectivity issues and off-target
effects in drug design, help predict unknown binding sites and

uncharacterized protein functions [23]. However, while methods
for calculating the similarity of binding sites, especially ligand
binding sites, are well established [23], methods for comparing
and searching other similar sites in protein structures are less
widespread.

In this work, we developed a method that considers the sim-
ilarity of local amino acid residue sites in the protein structure.
We use the term residue 3D micro-environment to describe the
neighboring protein residues of a particular residue in 3D space
[16]. This local neighborhood represents the local structural and
chemical environment of the residue [16, 17]. In the past, residue
micro-environments have been an important resource for muta-
tion effect prediction [24–26], protein design [27] and functional
site prediction [16, 17, 28].

The method, implemented in the tool MicroMiner, automati-
cally extracts the surrounding residues of a query residue making
up the query micro-environment and uses them to find similar
local environments in other protein structures. A focus on the 3D
site allows the identification of local similarities. Global similari-
ties or differences are not necessary to detect them.

With MicroMiner local sites with identical sequences but struc-
tural deviations can be searched to explore local protein confor-
mations and flexibility. Besides that, local structural changes due
to mutations can be explored by searching for similar environ-
ments with deviating sequence. In addition, multimeric protein
complexes can be considered, which enables the search for local
environments in protein–protein interfaces (PPIs). The method
and the implementation of MicroMiner are fast enough to search
for similar micro-environments of all residues in an input protein
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structure against the entire PDB [29] with almost 200 000 struc-
tures in just a few seconds.

An important difference between the perspective of residue
3D micro-environments and classical sequence-based homology
detection is the detailed residue-wise assessment of local 3D pro-
tein sites considering sequence, 3D contacts and multiple chains,
instead of the sequence similarity on the level of two protein
chains or domains. Even though standard sequence homology
detection methods can already find many protein sequence pairs
sharing similar 3D micro-environments, it is not directly pos-
sible to extract the 3D micro-environments and estimate their
similarity simply from these tools’ output. We believe that a
dedicated method to query similar 3D micro-environments will
be important for many applications and a valuable complement
to classical homology detection tools.

As a key application, we demonstrate how our method can
be used for single mutation search. Accurate structures for the
wild-type and the mutant are crucial for mutation modeling
and prediction in various applications. Despite breakthroughs in
structure prediction, methods like AlphaFold2 are insufficient
to predict mutation effects [30, 31]. Various community efforts
are dedicated to connecting protein structures with mutation
data [32, 33]. However, data set biases and limited data are well-
known obstacles [34–39]. A major limitation for the analysis of
mutation data is the lack of structures for both the wild-type
and the mutant. Usually, only the wild-type structure is available.
Thus a precise representation of the mutation-induced structural
changes is missing [36, 37], even though a reliable structure is
vital for method development and molecular modeling in drug
discovery and protein engineering.

Single mutations can be represented as similar 3D micro-
environments with identical sequences except for the position
of the reference residue, where there should be a mutation.
MicroMiner can exploit the redundancy in the PDB to provide
a wealth of experimental wild-type/mutant structure pairs
elucidating local structural changes of single mutations. The
PDB contains roughly 200 000 experimental structures but
represents only around 100 000 unique protein structures [5],
meaning many variants of the same or similar proteins exist.
Furthermore, we can use the detected structure pairs to annotate
existing mutation data sets of experimental thermodynamic
measurements, like ��G stability changes, protein–protein and
protein–ligand affinity changes upon mutation with experimental
structures for both the wild-type and the mutant. Finally, for
the use case of the tumor suppressor p53, we illustrate how
MicroMiner can bridge the gap between mutation analysis and
structure-based drug discovery.

METHODS
Overview
We developed a new method for searching similar local 3D sites in
protein structure databases. The workflow to search with a single
query residue 3D micro-environment is illustrated in Figure 1. The
query micro-environment is extracted from the query structure
(Figure 1A) and used to find similar local environments in a
protein structure database (Figure 1B–C). The workflow output is
an ensemble of the hit structures superposed to the query micro-
environment (Figure 1D) and multiple similarity measures.

Our new method originates from SIENA [40] and ASCONA
[41], which are ligand binding site comparison, search, and filter
methods. Instead of describing the local protein environment of

a small molecule ligand, i.e. the ligand binding site, we describe
the local protein environment of individual residues. Since there
are far more residues in a protein than ligand binding sites this
constitutes a significant increase in the search space. Further-
more, our new algorithm was designed to search for all residue
micro-environments in the query structure simultaneously. To
achieve this, we incorporated a faster in-memory search index for
prefiltering, parallel processing and an algorithm optimized for
detecting single mutations.

The method and the MicroMiner tool are implemented as part
of the NAOMI ChemBio Suite [42, 43].

Query construction
Protein structures in PDB/mmCIF format are supported as input
(see Figure 1A). A distance threshold can be set to control the size
of the local environments. Per default, all residues within 6.5 Å
from each heavy atom of the reference residue are selected as the
environment. Individual reference residues can be selected manu-
ally using a text-based configuration file. Additionally, we provide
three preselection options: (i) search with residue environments
as they are present in the input structure file (’full_complex’);
(ii) use each chain in the input structure separately for micro-
environment construction by only including residues from the
same chain as the reference residue, effectively searching with
monomeric structures (’monomer’); and (iii) searching exclusively
with the residue environments located at protein–protein inter-
faces, specifically, environments comprising residues from multi-
ple chains (’ppi’).

Subsequently, the selected query residue micro-environments
are processed and query sequence fragments are extracted (see
bottom of Figure 1A). If the query fragments are shorter than
a minimum length (default 7 residues), they are elongated in
both N- and C-terminal directions until they fulfill the length
requirement. Fragments are ignored if they cannot be extended
to the required length. Then, the sequence fragments are used for
candidate selection.

Candidate database construction and selection
A fast k-mer prefiltering is applied to the protein structure
database to select candidate structures likely to contain similar
local environments (see Figure 1B), which is a similar approach to
well-established tools [7–9, 11] and is also used by SIENA [40].

The k-mer search database is implemented as in-memory
arrays inspired by MMseqs2 [9] (see section 1 in the Supporting
Information for details). To construct the database, MicroMiner
takes a directory of PDB/mmCIF files as input and maps k-mers
to the chains of structure complexes. The peptide chains from
the ATOM records of the structure files are extracted with NAOMI
[42, 43]. We map posttranslationally modified residues to the 20
standard proteinogenic amino acids (see Table S1) and ignore k-
mers containing other residues. By default, we use 5-mers.

The prefiltering for candidate structures starts by generating
k-mers from the query sequence fragments of the query residue
micro-environment (see Figure 1B).

In the standard search mode, the candidate selection strategy
of SIENA is executed, which reports a candidate if the structure
contains a threshold-controlled percentage of the query micro-
environments k-mers [40].

We developed a single_mutation mode, in which the algo-
rithm searches for mutations at the position of the reference
residue. The desired micro-environment hits should be identical
in sequence except for the position of the reference residue.
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Figure 1. MicroMiner workflow. The workflow for searching with a single residue’s 3D micro-environment is illustrated. (A) Query selection: selection
of a reference residue (Lys15 of chain I of BPTI complex with trypsin, 2FTL) and determination of its structural neighborhood (micro-environment) from
which connected sequence fragments are extracted. (B) Database search: Generation of k-mers from the fragments for a database search to obtain a list
of candidate structures. (C) Local site alignment with ASCONA: The candidates are aligned to the query micro-environment. (D) The structure ensemble
of similar local micro-environments is reported.

Therefore, instead of using the original k-mers for the reference
fragment, we generate sets of similar k-mers in which the ref-
erence residue is substituted by one of the other 19 standard
amino acids, respectively. With these 19 k-mer sets, we look for
structures containing the entire mutated reference fragment by
considering only pairs of k-mer hits with the same distance on
the sequence as the query k-mers. In addition, if there is more
than one fragment in the query micro-environment, we expect at
least a single further k-mer match on the additional fragments to
avoid random hits.

Structural site alignment
The ASCONA algorithm aligns each candidate structure to the
query site by identifying local protein sites in the candidate
structure with a sequence and geometric arrangement similar
to the query residue micro-environment. The ASCONA algorithm
is described in detail by Bietz et al. [41]. Firstly, the query site is
represented through peptide fragments elongated to the minimal
size (by default 7 residues). Next, local sequence alignments
between the fragments and all chains of the target structure
are computed. Then, the resulting sequence-based matches are

assembled geometrically to match the query site using a fuzzy
geometric scoring of the matched fragments’ backbone atoms.
ASCONA scores the distance deviations and Euclidean distances
of rotation quaternions of the query fragments and a potential
assembled target site to identify a set of target fragments with
similar relative orientation and distances.

To align single mutation sites, we designed a seed and extend
strategy instead of using dynamic programming. First, we search
for exact seeds in the target sequence using linear string matching
[44] without elongating the query’s fragments beforehand. Again,
we substitute the reference residue by all 19 amino acids to
mimic a point mutation at that position. Then, short seeds are
extended to the minimum length without gaps. Extended seeds
will be accepted if they contain, at most, a maximal number of
mismatches (by default 2). The subsequent geometrical fragment
scoring by ASCONA is unchanged.

The result is one or more structurally validated residue-wise
alignments of the query site with sites in the target structure,
which may be within a single chain or different chains of mul-
timeric proteins. Additionally, there may be multiple hits in the
target structure, such as in homomeric structures.
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Table 1: Used mutation data sets and their experimental measurements upon mutation.

Data set name Mutation location Experimental measurement Has structures for mutant

ProTherm [45] Protein mutations Thermodynamic changes Yes
FireProtDB [46] Protein mutations Thermodynamic changes No
ThermoMutDB [47] Protein mutations Thermodynamic changes Yes
ProThermDB [48] Protein mutations Thermodynamic changes No
SKEMPI2 [49] Protein–protein interface Binding free energy changes No
Platinum [50] Protein–ligand interface Binding affinity changes Yes
Shanthirabalan et al. [51] Protein mutations Structural deviations Yes

Output
MicroMiner generates a residue-wise hit list for each query
residue micro-environment as TSV file. Optionally, PDB files
of the structure ensembles superposed on the environments’
Cα atoms can be exported. Multiple similarity measures of
the aligned micro-environments are calculated and reported,
including sequence identity, root mean square deviation (RMSD)
of the matched Cα atoms and all atoms, and the mean local
distance difference test (lDDT) score of the environments’ Cα

atoms. Global similarity measures are also provided, such as the
global sequence identity of the reference residue’s chain to the
aligned chain. The output allows for easy hit filtering by local
and global similarity measures and the visualization of identified
micro-environments.

Data sets preparation
Table 1 shows the mutation data sets used.

We downloaded FireProtDB (“EXPORT CSV” option, 15 Novem-
ber 2022), ThermoMutDB (JSON file, 15 November 2022), SKEMPI2
(version 08.06.2018) and Platinum (16 June 2021) from their
respective websites. ProTherm was obtained from http://togodb.
biosciencedbc.jp/db/protherm (21 February 2019). ProThermDB
(version 29_march_2021) and the data set of Shanthirabalan
et al. were provided through their authors after personal
communication.

All data sets were processed into a uniform format and single
mutations with a protein structure for the wild-type (and mutant)
were extracted. In the case of the Shanthirabalan et al. data set, we
had to apply additional preprocessing to determine the position
of the mutation (see section 2 in the Supporting Information). For
SKEMPI2 and Platinum, the custom PDB files were downloaded.
The PDB files from PDB version 20230331 were used for all other
data sets.

Evaluation of 3D mutation search
We used 123 unique wild-type PDB structures paired with known
mutant structures to validate our method for searching single
mutations. Only ProTherm, ThermoMutDB, Platinum and the
Shanthirabalan et al. data set contain such structure pairs. Single
mutation structure pairs are extracted as the tuple of PDB-ID and
residue type of wild-type and mutant, respectively, as well as the
sequence position of the residue in the wild-type. We also use the
wild-type chain identifier except for ProTherm, where it is mostly
unavailable.

Then we use MicroMiner with the structure file of the wild-type
as the query to search for single mutations in the PDB. Successful
retrieval is evaluated by checking if there was a hit with the
expected mutant PDB-ID and the residue type in MicroMiner’s
output for the corresponding wild-type residue position. We used

‘full_complex’ mode for Platinum since it comes with custom PDB
files. For all other data sets, we used ’monomer’ mode.

MMseqs2
We used MMseqs2 [9] (version ad6dfc66d7bbc4fd626fc19adf10ba
587bc137c4) with the pdb_seqres.txt (version 18 August 2023)
downloaded from the PDB FTP server. We use the search module
with default parameters, except for –max-seqs that we set to one
million for an exhaustive search against the PDB. Chain hits are
determined by checking if there was a hit for the query tuple
of PDB-ID and chain identifier with the expected PDB-ID of the
target.

Annotating experimentally measured effects
upon mutations with protein structures
for the mutant
We use MicroMiner and the PDB to annotate existing data
sets of experimentally measured effects of single mutations
with experimentally solved protein structures for the mutant.
All single mutations with a protein structure for the wild-
type were extracted from ProTherm, FireProtDB, ThermoMutDB,
ProThermDB, SKEMPI2 and Platinum. Single mutations are
extracted as a tuple of wild-type PDB-ID, residue type, residue
position and chain identifier (except for ProTherm), and the
residue type of the mutant. Then, we query the PDB with the wild-
type protein structures for single mutations using MicroMiner.
From the results, we extracted all hits matching the single
mutation tuples. For analysis, hits with a global sequence identity
< 40% are discarded. Since they come with custom PDB files, we
run experiments on Platinum and SKEMPI2 with ‘full_complex’
mode. On all other data sets ’monomer’ mode was used.

RESULTS AND DISCUSSIONS
Evaluation of MicroMiner for structural mutation
search
The single mutation search benchmark results are illustrated in
Figure 2. Initially, in this retrospective experiment, MicroMiner
could only retrieve an average of 83% of mutant structures
from the PDB. Surprisingly, after investigating the pairs not
found by MicroMiner, we found that many wild-type/mutant
structure pairs from the evaluation data sets were erroneously
annotated or, for example, had additional mutations in the direct
neighborhood. This last finding was surprising as the data sets
were reported only to include single and not multiple mutations.
After excluding these cases, we found that MicroMiner retrieved
100% of the point mutant structures, even for the Shanthirabalan
et al. data set designed to capture high structural changes upon
mutations. The list of problematic mutations can be found in
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Figure 2. Performance of MicroMiner for retrieval of known structure
pairs with a single mutation. The number of correct mutant structures
MicroMiner retrieved from the PDB, given the wild-type structure is shown
for four data sets. ’Found’ shows the number of successful retrievals.
’Erroneous annotation/unfitting structure’ shows the number of cases
in which the expected mutant structure could not be retrieved because
of erroneous data annotation (e.g. the same amino acid was present;
no mutation) or structural matching criteria were not met (e.g. the
mutant structure contained additional mutations at the local 3D micro-
environment).

the file ‘problematic_single_mutations.tsv’ in the Supporting
Information.

We analyzed the failed cases manually by inspecting the muta-
tion positions of the superposed structure pairs in the Mol∗ 3D
viewer [52]. In total, we found 189 problematic structure pairs in
the data sets. 140 mutations were incorrectly annotated for mul-
tiple reasons. In 116 cases, there was no mutation. For six muta-
tions, the position in the structure was unresolved. In addition,
six mutations had another adjacent mutation in the sequence,
despite being annotated as point mutation variants. Lastly, 12
structure pairs were unrelated proteins we could not reliably
align with TM-Align [13]. The remaining 49 cases were not found
because they did not meet the matching criteria of MicroMiner.
There were either additional mutations or unresolved residues
in the local 3D site in the mutant structure. We consider the
local environments different in these cases because the query
micro-environment cannot be matched completely. For example,
for nine PPI mutations from Platinum, the second chain of the
PPI was missing in the target structure from the PDB, or there
were additional nearby mutations in the other chain (see Table
S2). However, these nine mutations are successfully retrieved with
the ’monomer’ mode. These cases demonstrate the local details
in the structure MicroMiner can check and evaluate.

Comparison of micro-environment search and
homology detection
We ran the single mutation benchmark with MMseqs2 [9]
to compare conventional homology detection and 3D micro-
environment search. MMseqs2 is a widely utilized standard tool
for homology detection employing local sequence alignments.
Local sequence aligners provide an alignment of the protein
chains and do not directly report single mutations. Therefore,
a direct comparison of MMseqs2 results to the mutated residues
in the benchmark is not straightforwardly possible. Instead, we
simply searched with MMseqs2 for the target sequence of the
mutant given the query sequence of the wild-type. From the

1041 unique chain pairs in the benchmark, MMseqs2 successfully
reported 99.42%. As expected, it is easy for MMseqs2 to reliably
retrieve the target sequences for the benchmark test. The missed
pairs contained only the structure pairs identified as actually
different proteins in the previous section. Interestingly, one
sequence pair flagged by us as a different protein was found
by MMseqs2, which was due to many unresolved residues in the
atom sequence which are present in the seqres sequence used by
MMseqs2.

MMseqs2 also reports the 94 sequence pairs corresponding
to 178 problematic single mutations described in the previous
section. These are 9.10% of the sequence pairs MMseqs2 reports
from the benchmark chain pairs and corresponds to 15.67% of all
single mutations in the benchmark.

In general, even though similar chains can be reliably reported,
extracting specific residues constituting single mutations from
MMseqs2’s local sequence alignment output is not trivial.
While it is possible to select only the alignments with a single
mismatch, it would reduce the number of results. Identifying
single mutations when there are multiple mismatches and gaps
present is more complicated. For example, even when only
a single mismatch has no other mismatches in its sequence
neighborhood does not mean that there are no close contacts
to other mutated residues in 3D space, either in the same
chain or in different protein chains at PPIs. Furthermore,
experimental artifacts, like unresolved residues, need to be
handled. By representing single mutations as residue 3D micro-
environments MicroMiner can differentiate between these cases
and additionally compute structural similarity measures of the
mutation site.

Nevertheless, fast and sensitive local sequence aligners like
MMseqs2 could potentially be used as a prefiltering for 3D micro-
environment analysis depending on the protein similarity (and
homology) constraints one wants to impose on the search. We
wanted to focus on the local 3D micro-environments for the
prefiltering which consist of multiple smaller sequence fragments
and frequently coming from different protein chains. However,
if suitable for the application at hand, it is possible to combine
MicroMiner with existing local sequence aligners, for example, for
the analysis of the structural details contained in massive protein
structure data sets.

Local flexibility and global similarity analysis
The analysis results of the hits for the 123 unique wild-type
proteins from the evaluation mutation data sets are shown in
Figure 3. 137 325 similar environment hits for 3344 query micro-
environments are reported by MicroMiner.

The distribution of the local Cα-RMSD of the environment hits
is shown Figure 3A and has a mean of 0.36 Å (median=0.29 Å,
standard deviation=0.27 Å) and the mean local all-atom-RMSD is
0.87 Å (median=0.81 Å, standard deviation=0.44 Å). The low RMSD
values demonstrate that MicroMiner retrieves environments
with, on average, high structural similarity. The size of the local
environments is illustrated in Figure 3B. The mean number
of residues in environments is 14.77 (median=14.00, standard
deviation=4.37). Intuitively, residues buried in the structure’s
core will have more residues in their 3D micro-environment
than residues at the surface and in loops. The relationship
between similar local environments of single mutations and the
proteins’ global structure and sequence similarity are depicted
in Figure 3C–D. The mean maximal TM-Score of the chains with
the mutation is 0.97 (median=0.98, standard deviation=0.05) and
0.91 (median=0.94 standard deviation=0.10) for sequence identity.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/6/bbad357/7311328 by Staats- und U

niversitätsbibliothek H
am

burg user on 13 D
ecem

ber 2023



6 | Sieg et al.

Figure 3. Analysis of single mutation hits. (A) Histograms of local Cα-RMSD (blue) and local all-atom RMSD (orange) values of the hits to the query. (B)
Histogram of micro-environment query sizes described by the number of residues in the sites. Micro-environments are defined with a distance threshold
of 6.5 Å from the reference residue. (C) Comparison of local Cα-RMSD on the x-axis to global fold similarity on the y-axis. Max. TM-Score is the maximum
of the two TM-Scores reported by TM-Align. (D) Comparison of the environment’s local Cα-RMSD on the x-axis to the global protein sequence similarity
on the y-axis.

The results show that, on average, the wild-type structures and
the mutant’s reported structure are related and share the same
fold. Accordingly, MicroMiner can provide plenty of structures for
investigating the local structural changes of mutations through
available experimental structures from the PDB.

We investigated the 0.33% of hits with a max-TM-Score <= 0.5
for false positives. These hits are in query sites with fewer residues
(see bottom left in Figure S1). Manual inspection of these hits
shows that they appear at structural variable regions and regions
of missing data, i.e., mainly at the termini (see Figure S2). These
query sites are small and solvent-exposed with no residues in the
3D neighborhood, leaving structurally and sequentially unspecific
single chain fragments. However, such false positive hits can

be avoided by ignoring small sites at unspecific regions or only
considering structures with high global similarity.

While many of the hits with max-TM-Score <= 0.5 are false
positive random hits, some of them arguably might be interest-
ing cases where globally unrelated proteins share locally well-
conserved sites, potentially a structural or functional motif (see
Figure S3).

Local structure deviations
While single mutations leading to a folded protein usually do
not have a substantial effect on the global fold [51], MicroMiner
reports multiple environments with higher local RMSD (see
Figure 3C). Therefore, hits with high local RMSD (and reasonable
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Figure 4. Example hit with a local Cα-RMSD of 4.21 Å. Shows a mutation of
dihydroorotate dehydrogenase from Lactococcus lactis from Lys213 (2DOR,
chain A) to Glu213 (1JQV, chain A). The mutation is responsible for the
open and closed form of the binding site [53].

global similarity) might be interesting cases where considerable
structural changes upon single mutations are exemplified.
However, fully automatic isolation of structural changes upon
mutation is challenging since different crystallization conditions,
bound ligands and other protein modifications might play a role
[51]. Still, hits with higher local RMSD are potentially interesting
cases for visual inspection that can give valuable insights. For
example, Figure 4 shows a hit with high local RMSD due to a
nearby loop’s movement. In this case, it was reported [53] that the
mutation also found by MicroMiner is responsible for an active
site’s open and closed loop conformation. Another example of
larger global re-arrangements is shown in Figure S4.

Single mutations in the PDB
We used MicroMiner to extract the available structure pairs
exemplifying single mutations from the PDB for single chains
(‘monomer’ mode) and protein-protein interfaces (‘ppi’ mode),
respectively. All-vs-all experiments were performed by querying
each PDB structure against the PDB database using their
asymmetric units. For single chains, we found 255 853 766
structure hits that exemplify the local structural changes of
single mutations. After filtering bidirectional hits and selecting
a single mutation tuple (query PDB-ID, chain ID, residue type,
residue position and hit residue type) by choosing the hit with
the highest global sequence identity and filtering hits with a
global sequence identity < 40% and mutations to non-standard
amino acid, we get 4 868 764 single mutations structure pairs. For
PPI mutations, we found 45 752 144 single mutation hits. After
filtering, 799 129 hits that exemplify the local structural changes
of single mutations at PPIs remain. We also provide mutations
to non-standard residues in separate files. The data sets can be
found at http://doi.org/10.25592/uhhfdm.13411.

Annotating mutation effect measurements with
structures for the mutant
We used MicroMiner to annotate the mutations of ProTherm,
FireProtDB, ThermoMutDB, ProThermDB, SKEMPI2 and Platinum
with experimental protein structures from the PDB for the
mutant. Figure 5 shows the improvement in annotation.

For all data sets, the number of mutant structures could
be increased. Even half of the data sets did not previously
contain mutant structure annotations. In summary, before,
all six data sets had 414 unique mutations with a wild-
type/mutant structure pair annotated (596 uncorrected). With

Figure 5. Improvement of experimental structure annotation coverage
for mutation effect data. The x-axis shows the percentage of mutations
derived from the data set with a known wild-type structure. On the y-axis,
the mutation data sets are listed, including the absolute number of single
mutations with a structure for the wild-type. The ’original annotations’
bars illustrate the portion of mutations annotated with a structure for
the mutant by the data sets curators. Bars labeled with ’original w/o
erroneous annotations’ show the percent of mutations with erroneous
data annotation removed. The label ’MicroMiner annotations’ gives the
percentage of mutations that could be annotated with structures for the
mutant from the PDB using MicroMiner.

the structures retrieved with MicroMiner there are now 2653
unique mutations with wild-type/mutant structure pairs—a 6.4-
fold increase. Considering structure hits for the same mutation,
16 313 pairs can be used to describe mutations as structure
ensembles.

Having protein structures for both wild-type and mutant can be
valuable for training and validating methods for predicting effects
upon mutation. However, most mutation effect measurements
are still without a mutant structure. This is unsurprising, since
there is probably no experimental protein structure for every
mutation in the PDB. Furthermore, even many of the mutations
measured might not lead to folded proteins or are observable in
structure determination experiments.

The results illustrate that manual annotation of mutation data
with structures is a cumbersome and error-prone task that can
now be automated. The generated structure annotations can be
found in the supporting information.

Case study p53: detecting ligand binding sites
emerging upon mutation
In a case study on the cellular tumor antigen p53 (p53), we
will show retrospectively how MicroMiner can bridge the gap
between mutation analysis and structure-based drug design tools.
We combine MicroMiner with the binding site prediction method
DoGSite3 [54] for the ligand-based rescue of p53. This experiment
was solely performed on the https://proteins.plus/ webserver.
p53 is a prime target in cancer therapy as it is responsible for
multiple deleterious effects on cancer cells. Missense mutations
through which p53 loses its tumor suppressor activities are the
most common single gene alterations in human cancers [55, 56].
Prevalent mutations can be grouped into mutations hindering
the protein–DNA interaction and structural mutations leading to
thermolabile variants and, therefore, a loss of function [56, 57].
It is estimated that one-third of the pathological mutations are
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Figure 6. Identifying druggable binding sites upon mutation in p53. (A) Wild-type p53 (1TUP, chain A). No pocket is predicted for wild-type Y220. (B)
Y220C p53 mutant (6SHZ, chain A). A single pocket is predicted at the position where the tyrosine side chain resided. (C) Y220C p53 mutant with ligand
P83 (2VUK, chain B).

structural mutations that potentially can be targeted with small
molecule chaperons to regain tumor suppressor activity [57]. This
rescue strategy is a promising paradigm that renders specific p53
mutants druggable for ‘personalized’ cancer therapy. An example
is the mutation Y220C, the ninth most frequent cancer-related
mutation in p53 and responsible for an estimated number of
100 000 cancer cases per year [57, 58]. Currently, a phase I/II
candidate in the clinic is targeting Y220C p53 mutants [56].

We can apply MicroMiner retrospectively [58] to show how to
identify bindings sites emerging upon mutations. First, a list of
diseases-related p53 mutations can be obtained from the TP53
Database [59], UniProt [60] or the literature. We then can query
the PDB for single residue mutations in the p53 wild-type using
MicroMiner and investigate diseases-related mutations on the
example of experimentally solved structures. Figure 6A highlights
Tyr220 in the wild-type p53. DoGSite3 predicts no pockets in
the proximity of Tyr220. In Figure 6B, tyrosine is mutated to a
smaller cysteine residue (the disease-related Y220C mutation).
In the retrieved structure, a pocket is predicted in proximity to
Cys220 where the tyrosine side chain resided in the wild-type. This
result corresponds to the conclusion of Joerger et al. [58] in their
pioneering study where the binding pocket of the Y220C mutant
was originally described. A series of structure-based studies fol-
lowed [57, 61, 62], identifying and optimizing small molecules to
stabilize mutant p53. Figure 6C shows a Y220C mutant structure
retrieved by MicroMiner containing the ligand found by Boeckler
et al. [61].

We hope that MicroMiner will be helpful for mutation analysis
in structure-based drug discovery by finding druggable pockets
and binding small molecules or functional groups. In this way,
MicroMiner can support the development of selective drugs.

CONCLUSION
Having structures of similar protein sites available enables many
applications, analyses, and method development across different
disciplines in structural bioinformatics. We here presented a new
method to efficiently search for similar local residue 3D micro-
environments in protein structure databases implemented in the
tool MicroMiner.

Despite the great success in structure prediction, a method
like AlphaFold2 can not be used directly to predict the effects of
single mutations [31]. With MicroMiner, we extracted hundreds
of millions of experimental wild-type/mutant structure pairs that
exemplify the local structural changes of single mutations from
the PDB. Many of these pairs elucidate considerable structural
changes upon mutation. We believe that having accurate struc-
tures for the mutant will be crucial for improving future methods

for mutation effect prediction, mutation modeling, protein struc-
ture prediction and side chain modeling.

The web interface provides an interactive way to explore a
protein’s structural mutation landscape through experimental
PDB structures. This can help model mutations and side chain
conformations and investigate mutation effects that lead to
thermo-stabilization, better crystallization or even detecting
novel binding sites upon mutations.

Given the enormous increase of available protein structures,
we believe methods to search local protein sites for the focused
analysis of structural details will be an important addition to
existing tools. For example, MicroMiner could analyze functional
sites, motifs, co-evolved contacts and local protein flexibility.
Such applications and further methodological improvements are
subject to future work.

With MicroMiner, we present a novel method to analyze the
structural changes of mutations. MicroMiner can structurally
annotate relevant unexplored mutations in protein structures,
bridge the gap between mutation analysis and structure-based
drug discovery and foster new methods and modeling approaches.

Key Points

• We propose a new method implemented in the tool
MicroMiner to extract similar local residue micro-
environments at scale from protein structure databases
to explore the details characterizing structure and func-
tion.

• With MicroMiner, we extracted > 255 × 106 amino acid
pairs in protein structures from the PDB, exemplifying
single mutations’ local structural changes for single
chains and > 45×106 pairs for protein-protein interfaces.
We believe these large data sets will enable the develop-
ment of future methods and modeling approaches for
mutation analysis and structure prediction.

• We provide MicroMiner as a stand-alone tool and in a
web interface to interactively explore a protein’s muta-
tional landscape and connect mutation analysis with
structure-based drug discovery tools.
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MicroMiner is available as part of the NAOMI ChemBio Suite
and is free for academic use and evaluation purposes at https://
software.zbh.uni-hamburg.de/. MicroMiner can be used inter-
actively within our webserver https://proteins.plus/. Currently,
the webserver only supports the “single_mutation” search mode
of MicroMiner. However, the stand-alone version of MicroMiner
provides the “single_mutation” search mode and the “standard”
search mode which can search for sequence identical and
mutated micro-environments. The generated data sets of single
mutation structure pairs are available at http://doi.org/10.25592/
uhhfdm.13411. The code for performing the experiments is
available at https://github.com/rareylab/microminer_utils.
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Databases with MicroMiner
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Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg,

Germany
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1. K-mer Indexing and Look-up Table Implementation

Our prefiltering of protein structure databases uses k-mers and k-mer integer indices for

efficient lookups (also called q-gramsS1). A k-mer xk is a substring of length k ∈ N of a

sequence s, where s is from an ordered integer-based alphabet A = a1, ..., an ∀ 0 ≤

a1 < ... < an. Let a start position of a k-mer in s be denoted with i; then a k-mer is a

substring xk = si...si+k−1. We denote the set of the |A|k possible k-mers of length k as

Ak | xk ∈ Ak. The function

f : Ak −→ [0, |A|k − 1]

maps each k-mer to a unique unsigned integer representation. We refer to the integer of

a particular k-mer as its k-mer-index. The k-mer-index is computed with:

S-1



f(xk) =
k∑

j=1

xk[j] · |A|k−j

We implemented a k-mer lookup table with two in-memory arrays. The two arrays map

k-mer integer indices to k-mers present in particular sequences. The first array holds all

sorted k-mer entries extracted from the protein data, and the second is an offset array of size

20k + 1, mapping the k-mer integer indices to the ranges of k-mer entries in the first array.

A k-mer entry contains the k-mers sequence identifier and the starting position of this k-mer

in its sequence. We additionally store another array to map sequence identifiers to complex

identifiers to handle multimeric structures.

2. Preprocessing of Shanthirabalan et al. Data Set

Shanthirabalan et al.S2 compiled a data set of protein chains representing single mutations.

We kindly received a list of the PDB entry pairs and their chain identifier of the wild-

type/mutants through personal communication with the authors. To obtain the residue

positions of every single mutation, we aligned the respective chains with TMalign.S3 From

the alignment, we selected the mutation with maximal distance to the termini. We removed

structure pairs with TM-Scores <= 0.5, a sequence identity <= 80% and structure pairs

with indels that are not within a distance of 20 residues from each terminus. The code

can be found in the preprocess_shanthirabalan_dataset.py file at https://github.com/

rareylab/microminer_utils.
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Table S1: Modified to standard residues conversion table.

Modified Residue Standard Residue
MSE MET
SEP SER
TPO THR
CSO CYS
PTR TYR
KCX LYS
LLP LYS
CME CYS
CSD CYS
MLY LYS
TYS TYR
OCS CYS
ALY LYS
FME MET
CAS CYS
M3L LYS
HYP PRO
CSX CYS
HIC HIS
CSS CYS
YCM CYS
MLZ LYS
KPI LYS
SAC SER
MEN ASN
CXM MET
CGU GLU
TPQ TYR
NEP HIS
0TD ASP
DAL ALA
B3K LYS
B3D ASP
B3E GLU
B3A ALA
B3Y TYR
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Table S2: The 9 mutations from the Platinum data set not found because of the differences at the PPI in another chain of the
structural assembly when run in ’full_complex’ mode. The mutations are found when ’monomer’ mode is used. Note that the
wild-type structures are custom-prepared PDB files by Platinum.

Wild
PDB-ID

Mutant
PDB-ID

Wild
chain

Wild
residue

Mutant
residue

Wild
position reason

2Z4O 2QD6 A I V 50 near other mutation I 150 V in chain B
3NU3 3NU5 A I V 50 near other mutation I 150 V in chain B
3OXC 3CYX A I V 50 near other mutation I 150 V in chain B
2JBZ 2WDY A D A 111 Chain C missing in 2WDY
2JBZ 2WDS A H A 110 Chain C missing in 2WDS
1CNQ 1YXI A A L 54 Chain C missing in 1YXI
1AMK 1QDS A E Q 65 Chain B missing in 1QDS
2TDM 1TSV A R A 179 Chain B missing in 1TSV
2TDM 1TSY A R K 179 Chain B missing in 1TSY
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Figure S1: Comparison of query site size and global fold similarity (max. TM-Score) on the
single mutation benchmark data set.
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(a) Example of a false positive hit for a small
query site at a terminus. The query is a
rat cytosolic PEPCK (3DT4, tan), reference
residue of the micro-environment is His6 in
chain A (marked in green). The hit struc-
ture is an aminopeptidase from E. coli (1A16,
blue) where Leu121 (chain A) is matched to
the queries reference residue. Max. TM-
Score=0.31, local Cα RMSD=2.35.

(b) Example of a false positive hit for a small
query site at a chain break. The query is
a human EGFR kinase domain (2ITY, tan),
reference residue of the micro-environment is
Ala864 in chain A (marked in green). The
hit structure is an alcohol dehydrogenase
from Pyrobaculum aerophilum (4JBG, blue)
where Gly189 (chain A) matches the queries
reference residue. Max. TM-Score=0.27, lo-
cal Cα RMSD=1.79.

Figure S2: Examples of false positive random hits.

S-6



(a) Example of a locally similar but globally
dissimilar hit. The query is a human Aldose
Reductase (1PWM, tan), reference residue
of the micro-environment is Ser127 in chain
A (marked in green). The hit structure is
an OLD nuclease from Thermus Scotoduc-
tus (6P74, blue) where Gly111 (chain A)
matches the queries reference residue. Max.
TM-Score=0.31, local Cα RMSD=0.38. The
structures share a locally similar loop.

(b) Example of a locally similar but glob-
ally dissimilar hit. Query is a human
DNA-binding domain of human p53 (2XWR,
tan), reference residue of micro-environment
is Arg290 in chain B (marked in green,
residue is resolved incompletely). The
hit structure is a putative enoyl CoA
hydratase/isomerase (crotonase) from Le-
gionella pneumophila (3I47, blue) where
Glu83 (chain A) is matched to the queries
reference residue. Max. TM-Score=0.28, lo-
cal Cα RMSD=0.11. The hit structure shows
a helix that extends the terminal helix in the
query.

Figure S3: Examples of locally similar but globally dissimilar hits potentially representing
structural or functional motifs.

S-7



Figure S4: Example of a hit with high local RMSD due to larger structural rearrangements
of the whole structure. The example shows a lipase from a Geobacillus strain (4FMP, tan),
the reference residue of the micro-environment is Phe25 in chain A (marked in green). The
hit structure (5CE5, blue) shows a mutation to Leu26 (chain A). The max. TM-Score is
0.90 but the local Cα RMSD is 5.8. Superposition was calculated with ChimeraX.S4
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ABSTRACT

Upon the ever-increasing number of publicly avail-
able experimentally determined and predicted pro-
tein and nucleic acid structures, the demand for easy-
to-use tools to investigate these structural models
is higher than ever before. The ProteinsPlus web
server (https://proteins.plus) comprises a growing
collection of molecular modeling tools focusing on
protein–ligand interactions. It enables quick access
to structural investigations ranging from structure
analytics and search methods to molecular docking.
It is by now well-established in the community and
constantly extended. The server gives easy access
not only to experts but also to students and occa-
sional users from the field of life sciences. Here, we
describe its recently added new features and tools,
beyond them a novel method for on-the-fly molecu-
lar docking and a search method for single-residue
substitutions in local regions of a protein structure
throughout the whole Protein Data Bank. Finally, we
provide a glimpse into new avenues for the annota-
tion of AlphaFold structures which are directly ac-
cessible via a RESTful service on the ProteinsPlus
web server.

GRAPHICAL ABSTRACT

INTRODUCTION

The ProteinsPlus (1,2) web server, openly available at https:
//proteins.plus, offers molecular modeling support for all
protein structures that are publicly available as PDB files
in the Protein Data Bank (PDB) (3). Usually, workflows
for structure-based design necessitate a comprehensive user
knowledge of different molecular modeling tools. For exam-
ple, predicting potential binding sites, finding similar bind-
ing sites for ensemble docking, and molecular docking of
small molecules of interest into a binding site requires access
to and knowledge of a high number of tools with a multi-
tude of parameters. Furthermore, researchers must rely on
their computational resources. With the ProteinsPlus server,
these shortcomings are overcome by enabling users to per-
form all these steps via one unique and easily accessible in-
terface. The server is under constant development including
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fine-tuning, feature extensions, and the integration of addi-
tional modeling tools.

Here, we offer insights into feature extensions for the
structural multi-purpose comparison tool GeoMine, the
newly integrated molecular docking tool JAMDA and Mi-
croMiner - a method that can be used to screen for single-
residue substitutions in local protein environments in the
whole PDB.

Finally, the artificial intelligence-based protein struc-
ture predictions by AlphaFold (currently predicted by Al-
phaFold Monomer v2.0) enable unprecedented access to
high-quality models of proteins of yet unknown structure
(4). These models are now readily accessible via the Al-
phaFold Protein Structure Database (https://alphafold.ebi.
ac.uk/) and can be directly imported via the provided REST
API.

MATERIAL AND METHODS: EXTENSIONS AND
NOVEL TOOLS

GeoMine

From the analysis of binding sites to investigations of geo-
metric preferences for interactions, the ever-increasing num-
ber of molecular structures in the PDB offers a multitude
of possibilities for in-depth studies of binding sites, their
properties and their similarities. This requires comprehen-
sive search capabilities. With GeoMine (5,6), we have de-
veloped a search engine that allows for the generation of
and the search for atom-based geometric query patterns
and an extensive textual and numerical filtering of the PDB.
The query atoms can be described manually or automat-
ically with varying degrees of detail, from major proper-
ties like the corresponding molecule type, i.e. nucleic acid,
protein, ligand, water, or metal, to more restrictive ones,
e.g. the molecular surface contribution of a protein or nu-
cleic acid atom. Further feature points like aromatic ring
centers can be added to the query and described equally.
Distance ranges or hydrogen bond, pi–pi, pi stacking, pi–
cation, metal and ionic interactions between atoms and fea-
ture points can be introduced into the query, and angle
ranges between those can be specified. With the combina-
tion of all these features, almost any 3D pattern can be de-
signed and searched in the entire PDB.

In the ProteinsPlus user interface, the query can be cre-
ated in a 3D viewer from scratch by the placement of new
atoms and feature points or by selecting those in a visualized
binding site of a PDB/AlphaFold structure or any uploaded
structure file. For this structure, GeoMine predicts bind-
ing pockets with interactions and hydrogen atoms using the
tools DoGSiteScorer (7) and Protoss (8,9), respectively. If a
ligand is present but no pocket has been calculated, a pocket
is defined using a radius of 6.5 Å of any ligand atom. The
computing times for the iterative search of over one million
preprocessed bindings sites depends on the specificity of the
query. Most requests can be processed in the range of min-
utes. For each detected hit, the root-mean-square deviation
(RMSD) between the query and the part of the site match-
ing the query is calculated enabling a ranking of the results
by geometric fit. The 150 best results are listed in a table and
can be visually inspected superimposed to the query in the
NGL viewer. Different visualization options are available,

for example, choice of residues (complete pocket or only of
the residues that match the query). The 150 best-matching
pockets can be downloaded in PDB format together with
a report containing the statistical overview of all results.
The statistics report lists the PDB IDs and ligand names
of all found pockets, the distributions of the RMSD values,
and the properties of all matched atoms, feature points, dis-
tances, interactions, and angles of the query, e.g. the func-
tional group distribution for a matched ligand atom. The
user interface with a query history allows a continuous re-
finement of the results providing an interactive workflow of
query modification and subsequent searching in the results.
With this tool, protein function or ligand off-targets can be
discovered by searching similar binding site properties in
3D space. GeoMine has recently been applied for a detailed
analysis of structural features in protein kinase structures
(5).

JAMDA

Protein–ligand docking is one of the core tasks in structure-
based drug design. With JAMDA, we aimed for the imple-
mentation of a fully-automated docking workflow in the
ProteinsPlus server that does not only provide the actual
docking algorithm but also encompasses all necessary pre-
processing steps, including protonation state assignment
and calculation of hydrogen coordinates for the protein
(8), prediction of protonation and tautomeric states of the
molecules to be docked (10), as well as the generation of 3D
coordinates/conformations (11). While a certain degree of
manual intervention is possible, our goal was to provide a
fully automated workflow with optimized default parame-
ters. This enables even less experienced users to derive po-
tential binding modes of small molecules in the binding site
of interest. From the analysis of structure-activity relation-
ships to the test of new binding hypotheses, the established
pipeline offers unlimited access to predicted binding modes.

JAMDA docking combines the TrixX docking algorithm
(12,13) for initial pose generation with the JAMDA scoring
function (14), and our novel LSL-BFGS optimization al-
gorithm(14,15) for scoring and pose optimization. Initially,
conformers for the molecule to be docked are generated
with the Conformator (11). The raw poses are subjected to
a scoring and optimization cascade using the JAMDA scor-
ing function to refine and rank the docking poses.

On ProteinsPlus, JAMDA allows for a fully automated
docking: Only the protein, the binding site, and the
molecules to be docked must be provided by the user. The
binding site can be defined based on a known ligand or se-
lected from the pocket definitions in ProteinsPlus (1) (e.g.
predicted by DoGSiteScorer (16)). To enable the user to
manually adjust the binding sites, all ligand-based and pre-
dicted binding sites which do not originate from GeoMine
are editable by the user in the pockets tab by clicking on the
pencil symbol of the pocket of interest in the upper right
corner. Neither the protein nor the molecules to be docked
must be manually prepared by the user because this is an
integral part of the JAMDA docking workflow: The pro-
tein is prepared by assigning likely protonation states us-
ing Protoss (8). Furthermore, only structurally relevant wa-
ter molecules and small molecules that are common cofac-
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tors are kept. The molecules to be docked can be provided
by picking a ligand from the NGL viewer for redocking
studies or by uploading molecules in any common molec-
ular file format (including SMILES without coordinates).
Their predominant protonation and tautomeric states are
predicted with UNICON (10) prior to docking. Most of
these preprocessing steps can optionally be customized by
the user.

The preprocessing and docking are performed on the
server and, currently, up to five molecules may be docked
simultaneously. In the ProteinsPlus web interface, the re-
sulting docking poses are shown in a table (with JAMDA
score and the RMSD if a redocking was performed) and
visualized in the NGL viewer panel for interactive analy-
ses. They can also be downloaded for alternative visualiza-
tions and further processing. In consequence, JAMDA of-
fers a pipeline for molecular docking that provides reliable
results even in the absence of substantial knowledge regard-
ing molecular modeling tools.

MicroMiner

MicroMiner searches for mutations in protein structure
databases. On ProteinsPlus, it screens for single-residue sub-
stitutions in the experimental structures of the entire PDB.
Retrieved mutant structures can be easily analyzed and
compared to the wildtype through automatically generated
superpositions in the NGL viewer. The tool focuses on the
local 3D micro-environment of single residues in a query
protein. It searches the protein structure database for sim-
ilar local environments with a mutated central residue. For
reasonably large wildtype protein structures it is feasible to
search for substitutions of all residues in the query at once.
In this way, a user can comprehensively explore the wealth
of experimental protein structures that exemplify the local
effects of mutations through the interactive web interface.

MicroMiner originates from the ASCONA (17) and
SIENA (18) technology for binding site similarity search
and ensemble compilation. However, instead of focusing on
the protein environment of ligands, MicroMiner uses the
local 3D micro-environment of any individual residue as
the query to search for residues embedded in similar lo-
cal arrangements. A database search starts by selecting a
query residue from which the local 3D protein neighbor-
hood within a distance cutoff (default 6.5 Å) represents the
query micro-environment. The connected sequence frag-
ments of this environment are used to identify candidate
protein structures with similar sequence fragments in the
database. Second, all potential matches are identified by
residue-wise sequence alignments. A subsequent fuzzy geo-
metric filter based on the C� atom orientation and distances
of the matching sequence fragments ensures a reasonably
similar structural arrangement while tolerating structural
changes upon mutation. Thus, we identify local micro-
environments with a high sequence and structural similar-
ity. Figure 1 shows the MicroMiner workflow.

Within the ProteinsPlus server, the user can select single
residues of interest or all residues in the input structure to
be searched against the PDB. Searching for all residues is
feasible within one minute or less on average, depending
on the size of the input protein and the number of similar

Figure 1. MicroMiner workflow. With the local 3D micro-environment of
a selected query residue, the PDB is searched. Structures from the database
containing a similar micro-environment identical in sequence except for the
query residue position are retrieved and superposed for analysis. In this
way, MicroMiner yields structure ensembles exemplifying the local effects
of mutations.

micro-environments in the PDB. The protein structures of
retrieved micro-environments can be explored interactively
as a structure ensemble in the 3D viewer and sorted by prop-
erties of interest, for example, the RMSD of the local envi-
ronments to investigate the structural effects of mutations.
Further applications are the search for highly conserved re-
gions in protein structures, comparisons of the impact of
conservative and radical substitutions, or the investigation
of structural effects upon substitution for evaluating the re-
liability and accuracy of computationally generated models
of single-residue substitutions.

Integration of AlphaFold structures

The inclusion of AlphaFold protein structure models (4)
(https://alphafold.ebi.ac.uk/) in the ProteinsPlus web server
enables easy access to machine learning-based predictions
of previously unknown structures. The models are accessi-
ble on our web server by entering the UniProt Accession
Number on the landing page or uploading a preprocessed
structure. The user can analyze these structures in the same
way publicly available PDB structures can be analyzed by
making use of all applicable capabilities of the ProteinsPlus
tools.

Besides the structural uncertainty of AlphaFold struc-
tures (19), the missing ligand annotations are a major draw-
back. This led to the development of the database AlphaFill
(20) which annotates the 3D models with cofactors and
metal ions and transfers them into the structure assisting
in the functional annotation of the models. However, this
annotation procedure was only followed for structures that
show an identity of at least 35% to known 3D structures
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Figure 2. This workflow shows exemplary results for structural investigations of the AlphaFold model for the Nek6 (UniProt Accession Number Q9HC98).
First, the user can detect druggable binding sites with DoGSiteScorer. Pocket ‘P 2’ which was predicted as druggable is depicted in green on the right.
Next, the pocket can be used for a SIENA search for similar binding sites. Shown are two matches from this analysis with Nek7 structures: 2WQN with
ADP and 6S73 in complex with the ligand with the ID F9N in the PDB. GeoMine can be applied for more specific user-defined searches in the binding sites
of the PDB. Using a geometric query annotating solvent-exposed potentially interacting atoms and their distances, we found 116 pockets with a similar
geometry in the PDB (e.g. cAMP-dependent protein kinase A with the PDB ID 7BAQ, PDB ligand ID T82 or interleukin-1 receptor-associated kinase
4 with the PDB ID 6O94, PDB ligand ID LRS). The corresponding query can be found in the Supplementary Data for upload to the GeoMine tool on
the ProteinsPlus for this structure. Interesting small molecules from the identified similar sites can be downloaded and subsequently be used for molecular
docking with JAMDA. The figures on the right show the second highest-scoring predicted binding mode for ADP in the binding site of Nek6 and its 2D
interaction visualization with PoseView (21).

stored in the PDB and restricted to common cofactors and
ions with potentially functional roles. For researchers inter-
ested in the structural annotation of structures that have no
known homologs in the PDB, the ProteinsPlus web service
comes in handy. It enables on-the-fly prediction of bind-
ing sites with DoGSiteScorer, retrieval of similar binding
sites with SIENA, the identification of further potentially
interesting ligands by user-defined GeoMine queries, and
the molecular docking of these ligands into the AlphaFold
model with JAMDA, see Figure 2.

Ligand annotation for AlphaFold models

Given a protein of interest, e.g. the human protein ki-
nase NIMA-related kinase 6 (Nek6), we can start our Pro-
teinsPlus investigations by providing its UniProt Accession
Number Q9HC98 and entering the structural analysis mode
of the web service. Next, we can predict potential binding
sites using DoGSiteScorer. These predicted sites can be used
to search for potential ligands with SIENA. By selecting, for
example, the pocket named ‘P 2’ and performing a SIENA
search for this predicted binding site, we can retrieve similar
sites in complex with various ligands. Besides ADP (the an-
notation which was also found by AlphaFill), we find sim-
ilar kinase binding sites in complex with further ligands, in
this case, the inhibitor with the PDB ligand ID F9N in com-
plex with Nek2 and Nek7. The active site sequence iden-
tity is 94%. The retrieved aligned complexes can be down-
loaded, together with the corresponding ligand SDF files.
The results also enable the exploration of structural flexibil-
ity of similar binding sites that can be used, e.g. for the gen-
eration of other conformational states that are not covered

in the AlphaFold database by homology modeling based on
the identified structures.

The ligands retrieved from the SIENA run can either
be transferred into the binding site based on the resulting
alignment or using the on-the-fly docking tool JAMDA. It
can be applied to find whether the found ligands from sim-
ilar sites can be accommodated in the model’s binding site.
However, care should be taken regarding the model quality
of the binding site residues as this can have a huge impact on
the docking performance. Some preprocessing steps of the
original AlphaFold structure might be necessary to obtain
reliable ligand binding modes (22).

The search for similar binding sites using the Pro-
teinsPlus, however, is not restricted to binding sites with a
high sequence identity. GeoMine can be applied to generate
user-defined queries that search for geometric patterns of in-
teracting binding site residues in nearly one million binding
sites (predicted or ligand-annotated) in the PDB. For our
example protein kinase, additional GeoMine queries result
in the identification of further protein kinases in complex
with inhibitors which can be used as idea generators for in
silico drug design.

SUMMARY AND OUTLOOK

The ProteinsPlus web server offers a unique access point
to protein structure and protein–ligand complex data pro-
cessing on the worldwide web. Current developments with
only conservative extensions of the user interface enable
even broader access to molecular modeling tools which
usually require comprehensive user knowledge. Further-
more, steady improvements and feature extensions based
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on suggestions of users render it a lively and well-kept
platform. To support users in getting started with the web
server, we offer comprehensive documentation of the pro-
vided services (https://proteins.plus/help/index) and hands-
on tutorials (https://proteins.plus/help/tutorial). As with all
computational modeling approaches, the tools behind Pro-
teinsPlus have their limitations. All users are asked to con-
sult the corresponding methods’ publication for more de-
tails on the respective restrictions and application domains.

Besides the introduction of new features for GeoMine
and the integration of the novel methods JAMDA and Mi-
croMiner, we are in a constant process of elaborating the
web server, its tool base, and its potential use cases. The first
inclusion of AlphaFold structures in the web server opens
new avenues for structural explorations that have not yet
been fully explored. With numerous extensions in mind, in-
cluding 2D and automated query generation in GeoMine or
multiple mutations search in MicroMiner, we hope to create
a steadily growing, easy-to-use modeling infrastructure for
the life science community.
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