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Preface

The work in this cumulative dissertation has been conducted from March 2019 to De-
cember 2023 in the research group of Ludwig Mathey at the Center for Optical Quantum
Technologies and the Institute of Quantum Physics of the University of Hamburg (Uni-
versität Hamburg). This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – SFB-925 – project 170620586. This work was
supervised by Prof. Dr. Ludwig Mathey and co-supervised by Prof. Dr. Henning Moritz.
Throughout this work I use I when referring to results from works that I have first-
authored, and we when referring to results from works that I have co-authored.
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Abstract

A thorough understanding of non-equilibrium quantum mechanical phenomena provides
the means to develop advanced and novel technologies. With growing expertise and
improving controllability of quantum systems, a plethora of use-cases has emerged that
employ and exploit physical processes for technological benefit. In this cumulative dis-
sertation, I present my work on some of such research directions, such as controlling the
non-equilibrium transport properties of graphene, engineering a non-equilibrium super-
radiant phase in driven two-band solids coupled to cavities, non-local quantum algorithm
optimization on the native Hamiltonian level, and dynamics of superfluids in the presence
of particle-hole symmetry.

We have devised a master equation approach for the driven dissipative electron dynam-
ics in graphene, which recovers experimental non-equilibrium transport measurements.
We have used this model to characterize the anomalous Hall response, in which the
geometric contribution to the transversal current is determined by the non-equilibrium
electron distribution across the light-induced topological Floquet-Bloch band structure.
The light-induced gap at the Dirac point is often obscured in time-resolved angle-resolved
photoelectron spectroscopy (trARPES) due to experimental limitations. I have predicted
that strong driving leads to Floquet-Bloch band populations at the Dirac point which
display an energy difference that extends far enough beyond Floquet replicas to over-
come resolution limitations in trARPES setups. Similarly, I have studied the optical
conductivity of driven graphene at terahertz frequencies, which displays the Floquet
gap at the Dirac point in particular, due to resonant inter-band transitions across the
Floquet-Bloch bands. In the presence of strong driving, the optical conductivity changes
its sign and the system displays optical gain due to an effective population inversion of
the Floquet-Bloch bands. This has motivated me to study a graphene-inspired quan-
tum optical model, in which I have found that a non-equilibrium superradiant phase
emerges due to the same mechanism of population inverted Floquet states which sustain
a coherent state in a resonant cavity. I refer to this as the Floquet-assisted superradi-
ant phase (FSP), and have studied its stability in the presence of environmental factors,
such as inhomogeneous broadening, driving with finite decoherence, and dissipation. The
FSP appears robust under realistic conditions, which suggests its utilization in a type
of Floquet-assisted laser-like mechanism at terahertz frequencies in a graphene-cavity
setup in future research.

Quantum computing faces the challenge of meticulously controlling quantum infor-
mation across scalable systems. The more pragmatic near-term utilization of noisy
intermediate-scale quantum (NISQ) devices draws attention to the potential of hybrid
quantum-classical optimization algorithms. I have identified benefits of non-local quan-
tum algorithm optimization approaches which act on the underlying Hamiltonian level

7



rather than in the circuit picture of variational quantum algorithms (VQAs). I have
found that a parameterization that optimizes the Fourier coefficients of the control pa-
rameters of the Hamiltonian displays improved optimization behavior and indicates a
mitigation of the barren plateau phenomenon which plagues conventional VQAs. Sim-
ilarly, we have optimized high fidelity implementations of the controlled NOT gate in
the quantum computing architecture of neutral atoms in tweezer arrays under realistic
conditions. We have considered non-local restrictions on the control parameters, which
do not affect the computational universality of the architecture. This motivates future
proposals that involve less intricate and more easily constructed NISQ computers.

Superfluid states of matter such as Bose-Einstein condensates (BECs) and BCS-like
condensates of neutral fermions display dynamics that are relevant for quantum simula-
tion, superconducting devices such as Josephson junctions, and atomtronics. The order
parameter of such superfluid phases is captured in effective field theories. We have devel-
oped a two-dimensional numerical simulation of an effective field theory which includes
terms that interpolate between the presence and absence of particle-hole symmetry. The
presence of this symmetry is accompanied by an amplitude mode that is present in BCS-
like systems, but not in BECs. This theory thus captures both BEC-like and BCS-like
superfluids in a manner that connects them continuously. We have demonstrated how
the dynamics of defects such as vortices and solitons are affected considerably by the
presence of particle-hole symmetry and the imbalance between particles and holes.
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Zusammenfassung

Ein tiefgreifendes Verständnis quantenmechanischer nicht-gleichgewichts Phänomene ist
maßgebend für die Entwicklung fortgeschrittener und neuartiger Technologien. Mit
wachsender Expertise und sich stets bessernder Kontrollierbarkeit von Quantensyste-
men, ergibt sich eine Vielzahl an Möglichkeiten physikalische Prozesse für technologis-
chen Mehrwert zu nutzen. In dieser kumulativen Dissertation präsentiere ich meine Ar-
beit in hierzu verwandten Forschungsfeldern, wie die Kontrolle von nicht-gleichgewichts
Transporteigenschaften in Graphen, das Konstruieren einer nicht-gleichgewichts superra-
dianten Phase in getriebenen Zwei-Band Festkörpern in Resonatoren, nicht-lokale Quan-
tenalgorithmusoptimierung auf der nativen Hamiltonian Ebene, und die Dynamik von
Suprafluiden im Zusammenhang mit Teilchen-Loch Symmetrie.

Wir haben eine Master-Gleichung-Methode für die Beschreibung getriebener dissipa-
tiver Elektrondynamik in Graphen entwickelt, welche experimentelle nicht-gleichgewichts
Transportmessungen reproduziert. Wir haben diese Methode genutzt um die anomale
Hall-Leitfähigkeit zu charakterisieren, in welcher der geometrische Beitrag zum transver-
salen Strom durch die nicht-gleichgewichts Elektronverteilung in der lichtinduzierten
topologischen Floquet-Bloch Bandstruktur gegeben ist. Die Floquet Bandlücke am
Dirac-Punkt ist in zeit- und winkelaufgelöster Photoelektronspektroskopie (trARPES)
erschwert aufgrund experimenteller Limitierungen. Ich habe gezeigt, dass starkes Treiben
zu Besetzungen der Floquet-Bloch Bänder am Dirac-Punkt führt, die einen Energieab-
stand aufweisen welcher sich weit genug über die Floquet-Bloch Bandrepliken erstreckt
um Auflösungslimitierungen in trARPES Experimenten zu überwinden. Ich habe eben-
falls die optische longitudinale Leitfähigkeit von Graphen untersucht, welches bei Fre-
quenzen im Terahertz-Bereich getrieben wird und aufgrund resonanter Übergänge die
Floquet-Bloch Bandlücken sichtbar macht. Unter starkem Treiben, ändert die optis-
che Leitfähigkeit ihr Vorzeichen und das System weist optische Verstärkung aufgrund
einer effektiven Populationsinversion in den Floquet-Bloch Bändern auf. Dieses Ergeb-
nis hat mich motiviert ein von Graphen inspiriertes quantenoptisches Model zu unter-
suchen, in dem ich herausfand, dass sich eine nicht-gleichgewichts superradiante Phase
aus dem selben Mechanismus populationsinvertierter Floquet Zustände ergibt, welche
einen kohärenten Zustand in einem resonanten Hohlraumstrahler aufrecht erhalten. Ich
bezeichne dies als die Floquet-assistierte superradiante Phase (FSP) und habe ihre Sta-
bilität in der Gegenwart limitierender Außenwirkung in Form von inhomogener Ver-
breiterung, endlicher Dekohärenz im treibenden Feld, und erhöhter Dissipation unter-
sucht. Die FSP stellt sich unter realistischen Konditionen als robust dar, was ver-
muten lässt, dass sie in weiterführender Forschung angewandt werden kann in einem
Floquet-assistierten Laser-ähnlichen Mechanismus im Terahertz-Frequenzberech in einer
Graphen-Hohlraumstrahler-Konstruktion.
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Quantencomputer stehen vor der Herausforderung Quanteninformation auf präzise
Weise in skalierbaren Systemen zu kontrollieren. Die pragmatischere Nutzung existieren-
der limitierter Quantensysteme (NISQ) zieht Aufmerksamkeit auf das Potential hy-
brider quanten-klassischer Optimierungsalgorithmen. Ich habe Vorteile identifiziert,
nicht-lokale Quantenalgorithmusoptimierung welche auf der nativen Hamiltonian-Ebene
agiert anzuwenden, anstatt der Schaltkreis-Variante variationeller Quantenalgorithmen
(VQAs). Ich habe herausgefunden, dass eine Parameterisierung in der die Fourier-
Koeffizienten von Parametern eines Hamiltonians optimiert werden ein verbessertes Op-
timierungsverhalten, so wie eine Reduktion des barren plateau Phänomen, welches ein
Problem für konventionelle VQAs darstellt, aufweist. Auf ähnliche Weise haben wir
Implementierungen des CNOT Quantengatter optimiert für die Quantencomputerar-
chitektur neutraler Atome in optischen Pinzetten unter realistischen Bedingungen. Wir
haben nicht-lokale Restriktionen auf die Kontrolparameter angewandt, welche die Uni-
versalität der Rechnerarchitektur nicht beeinflussen, aber zukünftige Ansätze motivieren
für weniger aufwändige und einfacher zu konstruierende NISQ Computer.
Suprafluide Aggregatszustände, wie Bose-Einstein Kondensate (BECs) und BCS-artige

Kondensate neutraler Fermionen, weisen Dynamiken auf welche relevant sind für Quan-
tensimulatoren, supraleitende Josephson junctions, und Atomtronik. Der Ordnungspa-
rameter solcher Suprafluide kann mit Hilfe effektiver Feldtheorien beschrieben werden.
Wir haben eine zweidimensionale Simulation einer effektiven Feldtheorie entwickelt,
welche Terme beinhält die das Interpolieren zwischen der Anwesenheit und Abwesenheit
von Teilchen-Loch Symmetrie erlauben. Die Anwesendheit dieser Symmetrie bedeutet
das Vorhandensein einer Amplitudenmode, welche in BCS-artigen Systemen existiert,
in BECs jedoch nicht. Diese Theorie beschreibt demnach sowohl BEC-artige als auch
BCS-artige Suprafluide auf eine Weise die es erlaubt diese Limites kontinuierlich zu
verknüpfen. Wir haben demonstriert, dass die Dynamik von Defekten wie Vortizes und
Solitonen maßgeblich durch Teilchen-Loch Symmetrie und das Verhältnis aus Teilchen
und Löchern beeinflusst wird.
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1 Introduction

In the past decades, the fundamental understanding of, and the capability to control,
quantum matter has been steadily advancing. This has enabled research on fundamental
equilibrium phenomena in quantum mechanics. For example, it has become possible to
control systems such as trapped clouds of ultra-cold atoms to a degree that has enabled
the realization of the superfluid phase of matter of Bose-Einstein condensates [1, 2]. The
fabrication of increasingly pristine two-dimensional quantum materials such as graphene,
provides platforms for studying previously inaccessible electron dynamics [3–5]. Further,
the utilization of high-finesse optical cavities has played a crucial role in understanding
the interplay between light and matter, and has been essential to the field of quantum
optics [6–8].

A central aspect of these advances was a deep understanding of the equilibrium and
low-energy physics that characterize these systems. With the capability of controlling
isolated quantum systems comes the hope of bringing these systems out of equilibrium in
an equally well controlled fashion. The corresponding prospect of controlling emergent
dynamics of quantum systems promises to provide deep fundamental insight into more
intricate non-equilibrium quantum phenomena, and possibly also new functionalities
with potential technological benefit. These intricacies may for instance take the form of
a non-trivial interplay between coherent optical driving and dissipation which leads to
tailoring quantum material properties [9, 10], or dynamical high-fidelity manipulation
of quantum information in arrays of individually and optically trapped atoms [11, 12].
Understanding and engineering these types of non-equilibrium phenomena is at the heart
of quantum technologies.

In this cumulative dissertation, I present my work which contributes to a range of these
topics. I focus on the theoretical understanding of non-equilibrium quantum dynamics
and the means to control emergent properties. This includes the driven dissipative elec-
tron dynamics in graphene irradiated at terahertz frequencies, which display intriguing
transport properties such as an anomalous Hall effect, and optical gain. I have connected
these results to solid-state-inspired quantum optics and the emergence of non-equilibrium
superradiance. In the context of quantum information processing, I have studied quan-
tum computational optimization methods that are constructed to operate non-locally
and in bases beyond the quantum circuit paradigm. I have also studied the effects of
particle-hole symmetry on the dynamics of superfluids. These topics largely find com-
mon ground in that they describe the coherent control of transport and information in
systems that are described as ensembles of two-level quantum systems. I have separated
these topics into different chapters that each introduce the necessary theoretical back-
ground, and motivate and contextualize my publications. My publications are included
in these chapters and are each prefaced by a motivation, a summary of the work, and a
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statement about my contribution.
Chapter 2 covers my work on the driven dissipative electron dynamics of graphene irra-

diated at terahertz frequencies. In that chapter, I provide an introduction into the topic
of graphene and its transport properties, the description and effects of driving graphene
with light, and how we capture dissipation in our master equation approach in order to
capture solid-state phenomena. I have studied these setups numerically with a versa-
tile code-base that has expanded throughout the years. In Publication I, this method
was conceived, and we have studied an anomalous Hall effect under consideration of
non-equilibrium electron distributions, in light of recent experimental results. I have im-
plemented and maintained the calculations for the frequency- and momentum-resolved
electron distribution in driven graphene, which reveals the non-equilibrium Floquet-
Bloch band populations. In Publication II, I have expanded the numerical simulation
of this setup in order to study the longitudinal optical response at terahertz frequen-
cies. This was motivated by the prospects of observing the light-induced Floquet band
gaps with respect to the driving intensity. I have found that the optical conductivity
does display features that are resonant with the expected Floquet band gaps. This
method reveals the gap at the Dirac point that displays a non-trivial band curvature
and is associated with an anomalous Hall effect. Additionally, the results show that this
system displays negative optical conductivity, i.e. optical gain at terahertz frequencies,
which is the consequence of effective population inversions at Floquet band gaps in the
presence of strong driving fields. In Publication III, I have studied the frequency- and
momentum-resolved electron distribution of driven graphene under realistic conditions
with the prospect of guiding time-resolved angle-resolved photoelectron spectroscopy
(trARPES) experiments. According to my simulations, the population of the Floquet
bands at the Dirac point remains primarily contained within the Floquet replicas that
are continuously connected to the Dirac point as a function of driving intensity. As a
consequence, this provides driving setups in which the energy difference of Floquet states
that have non-zero occupation exceeds the size of the Floquet zones across which the
spectrum repeats. This large separation of populated Floquet states at the Dirac point
has promise of being observable under realistic experimental limitations. In Publication
IV, I have studied the non-linear electron transport in graphene under strong driving and
simultaneous strong direct bias. The presence of strong fields leads to a rich structure in
the differential photoconductivity, as a result of the distinct dynamics that are captured
by either the Floquet picture, or a driven Landau-Zener picture, depending on which
external field is stronger. I have characterized the strong anisotropy of the momentum
distribution to the current in a comoving frame, and provided approximations for the
non-linear and temperature-dependent conductivity of graphene.
Chapter 3 covers my work on the emergence of a non-equilibrium superradiant phase in

a driven dissipative Dicke model, motivated by the optical properties of driven graphene
as discussed in Publication II. I introduce the theoretical framework of superradiance and
the Dicke model, and I emphasize the prospect of coupling a system such as graphene to
a cavity. In Publication V, I have extended the numerical method developed throughout
Publications I — IV, to include a single-mode cavity in order to study this graphene-
inspired Dicke model under consideration of solid-like dissipation. In this model, I have
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identified the analogous mechanism as in Publication II that displays population inver-
sion in the Floquet states, which explicitly depends on the particular choice of how to
capture dissipative processes. Tuning the cavity to be resonant with the Floquet states
results in the effective population inversion being depleted in order to sustain a coherent
state in the cavity in a type of non-equilibrium superradiant phase. I refer to this as the
Floquet-assisted superradiant phase (FSP), and have characterized this phenomenon in
Publication V. In Publication VI, I have studied the robustness of the FSP under consid-
eration of environmental factors such as inhomogeneous broadening, phase drift of the
coherent driving field, and dissipation up to realistic values. The detuning of the tran-
sitional frequencies of the two-level system due to inhomogeneous broadening, and the
finite linewidth of the driving field due to phase drift, do not destroy the FSP mechanism.
While the phase transition is affected, in that it requires moderately increased coupling
strengths, the FSP remains robust under realistic conditions and displays drastic line-
narrowing across the phase transition. Notably, the FSP remains viable at dissipation
rates that are comparable to those that we had used in Publication I to recover the
experimental non-equilibrium transport in graphene.
Chapter 4 covers my work on quantum computational optimization algorithms on the

native Hamiltonian level. I introduce the theoretical framework of quantum comput-
ing, variational quantum algorithms, the barren plateau phenomenon, quantum optimal
control, and how these topics intertwine. I connect these topics through descriptions
of non-local parameterizations of protocols on the native Hamiltonian level. In Pub-
lication VII, I have studied a time-nonlocal parameterization for variational quantum
optimization on the native Hamiltonian level, that optimizes the Fourier coefficients of
the controllable parameters. I have compared this to a piece-wise constant parame-
terization which is reminiscent of parameterized quantum circuits and optimal control
methods. In this direct comparison I have found that the Fourier ansatz outperforms the
piece-wise constant ansatz for the tasks of ground state preparation and quantum gate
compilation in terms of convergence behavior and fidelity, while maintaining compara-
ble efficiency of the resulting implementations. Further, I have compared the uniformly
sampled variances of gradients of objective functions for both ansätze and found that
the piece-wise constant ansatz expectedly displays exponential decay of the gradients,
which is characteristic of the barren plateau phenomenon. However, in the Fourier
ansatz these variances decrease at a slower rate, which suggests the mitigation of bar-
ren plateaus. In Publication VIII, we have studied the optimization of implementing
quantum gates under realistic conditions in the quantum computing platform of neutral
atoms trapped in optical tweezers. We have found high fidelity implementations of the
controlled NOT gate in the limit of weak interaction between excited Rydberg states,
and have demonstrated the robustness of these solutions in the presence of additional
fluctuations in the interatomic distances. Our analysis shows that the error induced
through such fluctuations grows drastically for intermediate distances between atoms.
With a focus on addressability, we have demonstrated the viability of a restricted param-
eterization, in which the control parameters that drive the transitions into the Rydberg
states are equal for all qubits instead of individually controllable. This restriction can
be maintained for large systems, as this seemingly harsh constraint does not affect the
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computational universality of the setup.
Chapter 5 covers my work on the dynamics of superfluids with respect to particle-hole

(PH) symmetry, captured in an effective field theory. I introduce the Lagrangian that
captures the PH symmetry via two dynamical terms. I reproduce how these terms affect
the equation of motion of this effective field theory, and how they interpolate between the
Gross-Pitaevskii equation that is used to describe Bose-Einstein condensates, and the
Lorentz-invariant non-linear Klein-Gordon equation that describes BCS-type superfluids.
This theory also provides a generalization of the conserved Noether charge, the low-
energy excitations, and the spectra in confining potentials. In Publication IX, we have
studied this model in two dimensions to understand the effect PH symmetry has on
the dynamics of superfluids. In particular, we have studied the dynamics of vortices
and solitons, which show that the absence of the Magnus force plays a large role in
PH symmetric superfluids. Due to the lack of a Magnus force, vortex-anti-vortex pairs
attract each other in the presence of PH symmetry, instead of propelling each other. In
solitons, this leads to a modification of the characteristic snaking phenomenon.
Chapter 6 presents a conclusion and summary of the results put forth in Publications

I — IX. I provide an outlook on future research directions based on these results.
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2 Control of Electron Transport in Driven
Dissipative Graphene

Graphene is a material that displays many interesting electronic properties and has been
the subject of active research since its initial fabrication [3]. Studies often focus on the
high electronic mobility [4, 5, 13–18], that is controlled via the back-gate-dependent
charge carrier density, which has led to the demonstration of graphene transistor de-
vices [19, 20]. Other remarkable results include the demonstration of the quantum Hall
effect [21–24], quantum dot spin-qubits [25], spintronics [26–28], and the potential for
valleytronics [29–31]. Further, the control of optical properties of graphene has been
of great interest [32–38] and more recently, the Floquet engineering of topologically
non-trivial states in graphene has been actively studied [39–44].

These phenomena rely on the peculiar electronic structure of graphene, which obeys
an array of symmetries and displays mathematical equivalence to the Dirac physics of
relativistic massless spin-1/2 particles [45–49]. Structural variants of graphene such as
nanoribbons [50–53], nanotubes [54, 55], or more recently twisted bilayer graphene [56]
are also actively being studied. The conceptual elegance and rich physics have turned
graphene into a staple of modern material science.

Throughout this chapter, I provide an introduction into the electron dynamics of
graphene as to motivate and contextualize Publications I — IV, in which I have studied
different electronic transport properties of driven graphene and how they relate to the
light-induced Floquet physics. This chapter focuses on the low-energy aspects and the
driven dissipative physics of graphene, and the tools that are necessary to study such
models. This chapter will also delve into the description of dissipative processes and
Floquet physics. Introductory literature on the topic of graphene is widely available,
and this chapter in large parts follows along the more in-depth discussions provided by
the book of Katsnelson [57] and various review papers [58–60].

2.1 Electronic Description of Graphene

Graphene is made up of a two-dimensional hexagonal, or honeycomb, lattice of carbon
atoms that occupy planar hybridized sp2 orbitals that leave one electron per site in a
perpendicular p-orbital, which forms π-bonds with the three equally spaced in-plane
neighbors. In order to describe the hexagonal lattice structure of graphene in a way that
obeys translational symmetry, a triangular construction of unit cell with two atoms is
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Figure 2.1: The structure of graphene. Panel (a) shows the real-space lattice structure

spanned by the unit-vectors a⃗1 and a⃗2, and the nearest-neighbour vectors δ⃗1,
δ⃗2, and δ⃗3. A and B denotes the sub-lattices. Panel (b) shows the Brillouin
zone of graphene. K and K ′ are the exceptional points at which the valence
and conduction bands touch.

necessary. In that case, the lattice is described by the unit-vectors

a⃗1 = a
√
3

(
cos(π6 )
sin(π6 )

)
a⃗2 = a

√
3

(
cos(π6 )
− sin(π6 )

)
(2.1)

with the lattice-spacing constant a ≈ 1.42Å. The nearest-neighbor sites are separated
by the vectors

δ⃗1 = a

(
cos(π3 )
sin(π3 )

)
δ⃗2 = a

(
−1
0

)
δ⃗3 = a

(
cos(π3 )
− sin(π3 )

)
. (2.2)

This structure is displayed in Fig. 2.1 (a). The low-lying electronic bands are captured
well within the tight-binding approach. Due to the two-atomic unit cell, the appropriate
wave function is described using two components ψA and ψB for the amplitudes within
the respective sub-lattices, denoted as A and B. To first order, the coupling between
these components is due to nearest-neighbor, i.e. inter-sub-lattice, tunneling such that
the dynamics are governed by the Hamiltonian

H(k⃗) = −t
(

0 S∗(k⃗)
S(k⃗) 0

)
, (2.3)
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where k⃗ is the two-dimensional momentum.1 This Hamiltonian acts on the state vectors
|ψ⟩ = (ψA, ψB)

T. The tunneling amplitude is t ≈ 2.7eV and the momentum-dependent
tight-binding coefficients are

S(k⃗) =
3∑

j=1

eik⃗δ⃗j . (2.4)

The dispersion relation of the resulting two symmetric bands reads

ϵ±(k⃗) = ±t|S(k⃗)| = t|2eiakx/2 cos
(
aky

√
3

2

)
+ e−iakx |. (2.5)

Within the Brillouin zone are two exceptional points at which |S(k⃗)| vanishes and conse-
quently the two bands touch. The Brillouin zone of graphene is illustrated in Fig. 2.1 (b).
The two exceptional points are

K⃗ =
4π

3
√
3a

(
cos(π6 )
sin(π6 )

)
K⃗ ′ =

4π

3
√
3a

(
cos(π6 )
− sin(π6 )

)
. (2.6)

Expanding the dispersion relation in the vicinity of these points provides the approximate
linearized Hamiltonian that describes the low-energy physics of graphene. For momenta
close to K⃗ or K⃗ ′ it is to first order

H(K⃗ + k⃗) ≈ 3

2
at

(
0 ei

π
6 (kx − iky)

(kx + iky)e
−iπ

6 0

)
(2.7)

H(K⃗ ′ + k⃗) ≈ 3

2
at

(
0 e−iπ

6 (kx + iky)

(kx − iky)e
iπ
6 0

)
. (2.8)

The phase factors e±iπ
6 are removed by a unitary transformation and the pre-factors are

conventionally collected as ℏvF = 3
2at, where vF ≈ 106ms−1 is the Fermi velocity of the

system. This results in the linearized Hamiltonian

H
k⃗
= ℏvF

(
0 kx − iky

kx + iky 0

)
(2.9)

at K⃗ and H ′
k⃗
= H∗

k⃗
at K⃗ ′. As the bands touch at K⃗ and K⃗ ′, the Fermi surface is

reduced to a single point in the case of charge neutrality. Graphene is therefore classified
as a gapless semimetal. The structure of this linearized Hamiltonian is paramount to
the rich physics of graphene and the large interest it has gathered. This description of
graphene2 displays an inversion symmetryHK = σxHK′σx and a time-reversal symmetry
HK = H∗

K′ .

1Technically, k⃗ is the wave-number vector such that ℏk⃗ is the momentum.
2These symmetries are also present prior to the linearization, however under exchange of k⃗ ↔ −k⃗

instead of K ↔ K′.
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Collecting the Pauli matrices into the vector representation σ⃗ = (σx, σy, σz) and re-

placing the momentum-operator by its real-space representation k⃗ = −i∇⃗, provides the
notation of

H = −iℏvF (∂xσx + τz∂yσy), (2.10)

where τz is the third Pauli matrix acting on the two-dimensional configuration space
of K⃗ and K⃗ ′, i.e. τz = 1 at K⃗ and τz = −1 at K⃗ ′. This Hamiltonian then acts on a
four-dimensional Hilbert space of states

|ψ⟩ =




ψA

ψB

ψ′
A

ψ′
B


 , (2.11)

where the prime indicates the associated exceptional point K(′). The Schrödinger equa-
tion takes the form

(v−1
F ∂t − ∂xσx − τz∂yσy) |ψ⟩ = 0, (2.12)

which is structurally reminiscent of the Dirac equation for a massless two-dimensional
fermion at a fraction of the speed of light with vF ≈ c/300. This equivalence is the reason
that the exceptional points K⃗ and K⃗ ′ are referred to as Dirac points. With respect to
the Dirac equation, the occupation of the two Dirac points is analogous to particles
and anti-particles, while the occupation of A and B sub-lattices is analogous to spin-
up and spin-down states. This is the reason that in descriptions of graphene the state
representation is referred to as a pseudo-spin. Note that the addition of a σz component
in the linearized graphene Hamiltonian produces a mass term that keeps the equivalence
to the Dirac equation in-tact. The true electronic spin is naturally present as well, and
could be considered, leading to a higher-dimensional description. However throughout
this work, I consider no spin-interactions in graphene, which leaves a spin-degeneracy of
ns = 2.

In many applications, the dynamics at the K⃗ and K⃗ ′ sectors decouple and can be
inferred from each other, due to the structural symmetry. Therefore, a reduced rep-
resentation that covers the vicinity of K⃗ is sufficient in many cases. The Hamiltonian
associated with this representation is

H
k⃗
= ℏvF (kxσx + kyσy) = ℏvFk(e−iϕkσ+ + eiϕkσ−), (2.13)

where k = |⃗k|, ϕk = arg(kx + iky) and σ± = 1
2(σx ± iσy). In the polar representation of

the momentum, the transformation

U
k⃗
=

1√
2

(
e−

i
2
ϕk e−

i
2
ϕk

e
i
2
ϕk −e i

2
ϕk

)
(2.14)
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diagonalizes the Hamiltonian, i.e. U †
k⃗
H

k⃗
U
k⃗
= ℏvF |⃗k|σz. The corresponding eigenstates

are read off of U
k⃗
as

|+⟩ = 1√
2

(
e−

i
2
ϕk

e
i
2
ϕk

)
|−⟩ = 1√

2

(
e−

i
2
ϕk

−e i
2
ϕk

)
. (2.15)

In the Bloch sphere representation, these states reside on the equator at an angle ϕk and
ϕk+π, respectively. Hence, the two eigenstates of linearized graphene have their pseudo-
spin aligned parallel and antiparallel with their momentum. Note that in accordance
with real spin degrees of freedom, a rotation about 2π provides a prefactor of −1.

2.2 Charge Transport and Electromagnetic Coupling

All momentum modes in graphene that are captured in this approach contribute to
the overall charge transport through the material. From the continuity equation of the
quantum mechanical wave-function in momentum space results the expression for the
current operator, which in the case of linearized graphene evaluates to

ȷ̂a =
e

ℏ
∂H

(∗)
k⃗

∂ka
= evFσ

(∗)
a (2.16)

with a = x, y. The complex conjugation is associated with the Dirac point K ′. The
expectation value is denoted as

ja(k⃗) = Tr(ρ
k⃗
ȷ̂a), (2.17)

whee ρ
k⃗
is the local density operator corresponding to the momentum k⃗, as explained in a

later section. It is necessary to specifically distinguish between the current-density ja(k⃗),
resolved in momentum space, and the full current Ja which is obtained by integrating
over the Brillouin zone

Ja =
ns
4π2

∫

BZ
ja(k⃗)dkxdky. (2.18)

In the case of linearized graphene, the integral over the Brillouin zone is replaced by
two integrals over sufficiently large areas DK and DK′ around the Dirac points. The
symmetries with respect to K and K ′ can be broken, which determines whether the
contributions to the current are equal, opposite, or independent. The polarization of
incoming light plays into this symmetry breaking. We have considered the effect of
breaking time-reversal symmetry in Publication I in order to study an anomalous Hall
effect in graphene. In the cases where the Dirac points contribute equally, the current
reduces to

Ja =
nsnv
4π2

∫

DK

ja(k⃗)d
2k, (2.19)

where nv = 2 is the valley-degeneracy.
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Graphene in its equilibrium state and in the absence of any electromagnetic potential
will naturally yield zero net current. Current emerges as a response to the presence of
electromagnetic fields that accelerate charge carriers. One method of studying linear re-
sponses consists of introducing a perturbation, e.g. a small electric field, and estimating
the induced change from the equilibrium state. Analytically, perturbation-theoretical
tools are well-suited for such calculations. It is also possible to numerically solve the
steady states of dissipative systems and infer response functions from observables nu-
merically. In the two-dimensional case of graphene, the linear conductivity tensor is
written as

σ̄ =

(
σxx σxy
σyx σyy

)
. (2.20)

The generalized tensor-components σab(r⃗, t) are functions of time and space. The off-
diagonal components σxy and σyx describe the transversal responses and become non-
zero in Hall-type setups. Assuming spatial homogeneity gives the current as the linear
response

J⃗(t) =

∫
σ̄(t− t′)E⃗(t′)dt′. (2.21)

This convolution simplifies in the Fourier representation, which reads

J⃗(ω) = σ̄(ω)E⃗(ω). (2.22)

This equation denotes the frequency-local linear response given by the complex-valued
conductivity tensor3 σ̄(ω). The DC conductivity is obtained as the small-frequency limit

σab = lim
ω→0

Ja(ω)

Eb(ω)
. (2.23)

For ω ̸= 0, the real part of the conductivity gives the in-phase response at that frequency,
which corresponds to the conduction current of charge carriers. The imaginary part of
the conductivity gives the out-of-phase response, which corresponds to the displacement
current. In this regard, the diagonal components of Eq. 2.22 are equivalent to Ohm’s law,
where conductivity takes the role of the reciprocal value of the characteristic impedance.4

In Publication II, I have identified circumstances under which the real part of the optical
conductivity in graphene changes its overall sign. Such a negative conductivity means
that the system becomes a gain medium that puts out energy as a consequence of non-
equilibrium physics. This result has motivated my work in Publication V and Publication
VI, as I discuss in section 3.
Tuning the chemical potential, and therefore the charge carrier density, of graphene is

a reliable way to drastically increase the conductivity [61–68]. At the charge neutrality

3The units of conductivities of two-dimensional materials can be misleading. σ̄ is in units of Siemens.
However, this is not the de facto conductance of a graphene sample, where the geometry and the
probing-axis enter such that units cancel to produce Siemens again.

4In electrical engineering jargon, conductance is only the real part, while the imaginary part is called
susceptance and is closely related to the capacitance, as they only differ by a factor of ω. The
combined complex-valued quantity is called the admittance.
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point, the Fermi surface reduces to a point and the conductivity of graphene takes its
smallest value, which is referred to as the minimal conductivity σ0. This has been
the subject of some ambiguity as theories commonly predict values for the minimal
conductivity of either σ0 = πe2

2h [14, 69–71] or σ0 = 4e2

πh [4, 71, 72]. Experimental

observations have found the minimal conductivity to be roughly σ0 ≈ 4e2

h [13]. The

optical conductivity of graphene is constant at σ0(ω > 0) = e2

4ℏ , as a consequence of
the constant density of states due to the linear dispersion relation [32]. The charge
carrier density is also affected by incoherent pumping which transfers population into
the excited bands and results in an increased conductivity, i.e. photoconductivity.
In order to study coherently driven charge transport phenomena it is necessary to

introduce the presence of electromagnetic fields into this model of graphene. In lattice
models, such as tight-binding, this is achieved via the Peierl’s substitution, which in the
limit of continuous momenta acts identically to minimal coupling in that the electromag-
netic vector potential A⃗(t) directly couples to the momentum. This is a consequence of
the local gauge freedom of the complex phase of the quantum mechanical wave-function.
The vector potential relates to the electric field as E⃗(t) = −∂tA⃗(t) − ∇⃗Φ. We gauge
fix the potentials to be ∇⃗A⃗ = 0 and Φ = 0 over the spatial extent of the theoretical
material sample. An alternating field at frequency ω and field strength E⃗ relates to the
vector potential as

A⃗AC(t) =
E⃗

ω
sin(ωt+ ϕ) =⇒ E⃗AC(t) = −E⃗ cos(ωt+ ϕ), (2.24)

with some arbitrary phase ϕ. Similarly, a direct bias field yields A⃗DC = −E⃗DCt. This
provides the means of describing the effects of applying periodic driving or constant
electric fields to the system. One source of such an alternating bias field in graphene is
the irradiation with polarized light. In my work, I considered in-plane fields only, i.e.
Ez = 0. In this case, the incidence of the light onto the graphene is perpendicular to the
sample.5 This leads to the Hamiltonian

H
k⃗
= ℏvF ((kx −

e

ℏ
Ax(t))σx + (ky −

e

ℏ
Ay(t))σy) (2.25)

and in the particular case of irradiation with circularly polarized light at frequency ωd

and with the field strength Ed

H
k⃗
= ℏvF ((kx −

eEd

ℏωd
cos(ωdt))σx + (ky −

eEd

ℏωd
sin(ωdt))σy). (2.26)

The transport properties of graphene are drastically altered by driving with such
an external field. This makes it possible to control the photoconductivity and charge
carrier dynamics in a variety of ways [35, 37, 38, 73–87]. Capturing the effects of
driving and probing graphene periodically, as well as constant in time, provides the

5In the case of linear polarization, the propagation axis of the light does not necessarily need to be
perpendicular to the graphene sample. However, any inclination leads to spatial differences in phase
fronts which need to be considered.
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means of describing the different electronic transport phenomena [88–93]. It is possible
to consider both steady state and transient transport for different types of polarization
of the incoming light. Depending on the intensity of the applied fields, one can consider
linear or non-linear responses in either longitudinal or transversal direction. Throughout
my work, I have considered driving frequencies of up to ωd = 2π × 50THz and field
strengths of up to Ed = 20MVm−1, as inspired by the experiment by McIver et al. [44].

2.3 Floquet Physics

When studying the non-equilibrium physics of periodically driven systems, it is often
very insightful to consider the perspective provided by Floquet theory. Floquet theory
is a general framework for capturing crucial aspects of the dynamics of systems that
are periodic in time. In general, these dynamics drastically differ from the undriven
counterparts. A common example in classical mechanics is Kapitza’s pendulum. In this
system, a pendulum is driven by periodically moving its suspension point up and down.
Depending on the details of the pendulum and the driving, this motion transforms the
instable fix-point of the pendulum standing upright into a stable fix-point. Therefore,
a small deviation will not make the pendulum roll down, but rather it will move back
into the upright position. This popular example shows that periodic driving leads to
profound phenomena in the resulting steady state physics. There is detailed literature
available on the topic of Floquet physics [94, 95], which inspired this section.
Consider a Hamiltonian that is periodic in time, i.e. H(t) = H(t + τ), for some time

τ . The Floquet theorem states that fundamental solutions ψn(t) to the time-dependent
Schrödinger equation

iℏ∂tψ(t) = H(t)ψ(t) (2.27)

display the same periodicity up to a phase factor, such that

ψn(t+ τ) = e−iϕnψn(t). (2.28)

Introducing a periodic function un(t) = un(t+ τ) allows one to write

ψn(t) = e−
i
ℏ ϵ

(n)
F tun(t), (2.29)

such that ϕn =
2πϵ

(n)
F

ℏω with the corresponding driving frequency ω = 2π
τ . The expression

ϵ
(n)
F is the Floquet energy of this nth state. An additional phase factor of e−imωt, m ∈ Z,
leaves this solution in-tact as

e−imωτ = 1. (2.30)

Therefore, for a Floquet state with energy ϵ
(n)
F , a ladder of states exists with level-spacing

equal to multiples of the driving photon energy mℏω, m ∈ Z, and the emerging Floquet
spectrum is periodic in frequency space. In particular, a solution can further be written
as a linear combination

ψn(t) =
∑

m∈Z

u(n)m e−i(mω+ 1
ℏ ϵ

(n)
F )t. (2.31)

24



Transforming the Schrödinger equation into frequency space leads to the relation

(mℏω + ϵ
(n)
F )u(n)m =

∑

l∈Z

Hm−lu
(n)
l , (2.32)

with the mth Fourier component of the time-dependent Hamiltonian

Hm =
1

τ

∫ t0+τ

t0

eimωtH(t)dt. (2.33)

Note that the time t0 is arbitrary, and a particular choice is referred to as the Floquet
gauge. Eq. 2.32 can be represented using the Floquet Hamiltonian

HF =




. . .
H0 + 2ℏω H1 H2 H3 H4

H−1 H0 + ℏω H1 H2 H3

H−2 H−1 H0 H1 H2

H−3 H−2 H−1 H0 − ℏω H1

H−4 H−3 H−2 H−1 H0 − 2ℏω
. . .




(2.34)

with the solutions

ψn = (. . . , u
(n)
1 , u

(n)
0 , u

(n)
−1 , . . . )

T
. (2.35)

The eigenvalues of HF are the Floquet energies ϵ
(n)
F of the solutions of the driven system.

However, the diagonalization ofHF can in general only be performed approximately. The
effective Floquet states describe the stroboscopic dynamics across the discrete points of
periodicity t = t0 +mτ , m ∈ Z. The dynamical structure in between these stroboscopic
points in time is called micro-motion and is not covered by HF . The micro-motion is
relevant for the details of the dynamics, however the Floquet bands of HF by themselves
provide deep structural insight into a driven system, particularly in the presence of
dissipation. It is didactically valuable to consider the trivial edge-case of vanishing
amplitude in the periodic terms, i.e. H(t) = H0. Then HF is diagonalized using the
same transformation as for diagonalizing H0 and the resulting Floquet energies are just
the bare eigenenergies up to multiples of the photon energy, albeit formally constrained
within regions in frequency space of size ℏω. By reintroducing finite amplitudes in
the periodic terms in the Hamiltonian, the bare levels of different Floquet replicas that
touch (or intersect) begin to repel each other. This leads to gaps at certain multi-photon
resonances of the bare level structure. Floquet theory is often referred to as an analog to
the Bloch theorem of solid-state physics, where a periodic potential in real-space leads to
quasi-momentum that is periodic with the Brillouin zone. The consequences in Floquet
theory are very similar with an emergent periodicity in the solutions in frequency rather
than momentum.6

6The Floquet theorem in its original form predates the Bloch theorem by half a century and covers the
effects of periodicity in partial differential equations agnostic to the physical nature of the parameters.
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Floquet theory has gained particular attention in more recent literature of solid-state
and condensed matter physics, as means of dynamically controlling various material
properties, i.e. Floquet engineering [9, 10]. In particular, Floquet topological physics
were actively studied [40–43, 96–99] in graphene. Similar approaches of designing Flo-
quet topological insulators have been considered in a variety of setups [100–110]. Oka
and Aoki showed how the topologically non-trivial Haldane model [111] is approximately
reproduced in light-driven graphene [39]. The topological nature of this effective Flo-
quet Hamiltonian predicts an anomalous Hall effect in graphene driven with circularly
polarized light. This was experimentally studied by McIver et al. [44], who showed an
anomalous Hall response slightly shy of quantization. An accurate description of the
transport requires taking the non-equilibrium physics of the driven dissipative system
into account, as well as the non-trivial Floquet-Bloch band occupations that it displays.
This was the key motivation of our work in Publication I, where we devised a numerical
model that captures the driven dissipative electron dynamics of graphene in order to
explain the anomalous Hall transport measurements. The description of graphene used
throughout these works is detailed in the following section.

2.4 Modelling Dissipative Processes

Dissipation plays a crucial role in the dynamics of practically any real system, and is
in particular a substantial aspect of solid-state physics. Considering dissipation neces-
sitates including processes of decoherence, decay, and loss into the model of a system.
The Lindblad master equation [112] describes the non-unitary time evolution of density
operators ρ in a way that includes such processes phenomenologically. It reads

ρ̇ = i[ρ,H] +
∑

j

γj(LjρL
†
j −

1

2
{L†

jLj , ρ}), (2.36)

where Lj are Lindblad operators that describe dissipative processes and γj are the cor-
responding coefficients. It is commonly utilized in disciplines such as quantum optics,
condensed matter, and quantum information processing. One condition for a proper
model of dissipation is that it recovers the correct equilibrium state. In solid-state
physics this would be reflected in the occupation of the Bloch bands. As discussed pre-
viously, the equilibrium state depends on the momentum which in turn is affected by
semi-classical electromagnetic fields via minimal coupling. The decay into the ground
state is therefore to be understood with respect to the vector potential, i.e. the dissipa-
tion has to act in a gauge invariant way. For this purpose, we consider dissipation that
acts in the instantaneous eigenbasis of the time-dependent Hamiltonian under consider-
ation of minimal coupling. We represent the system through a product of states that
are local in momentum space

ρ = ⊗
k⃗∈DK

ρ
k⃗
, (2.37)

where DK describes the vicinity of the Dirac pointK, as mentioned in a previous section.
We omit interaction terms between different momenta as might be mediated via phonons
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for instance. Thus, the dynamics separate in momentum space with the Lindblad master
equation acting locally.
To illustrate the choice of dissipation, consider a material such as graphene that is

initially in its ground state and then quenched via an electric field corresponding to a
vector potential that changes from A⃗(tinitial) to A⃗(tfinal), but is constant in time before
tinital and after tfinal. Sufficiently long after the quench, the system will have relaxed into
its equilibrium state, however at this point in time the vector potential will have the
value A⃗(tfinal) compared to it initial value of A⃗(tinitial). Consequently, the system acts
as if the bands were shifted in momentum space by ∆k⃗ = e

ℏ(A⃗(tfinal) − A⃗(tinitial)). The
dissipative model of this type of system has to capture this and display relaxation with
respect to the momentum that is translated by the vector potential. This consideration
is necessary to recover fairly fundamental results of transport such as Ohm’s law.
In the two-level description of graphene there is one electron per accessible momen-

tum with two possible states. Treating these states as fermionic excitations invites a
construction that considers two additional states. First, a state in which there are no
electrons with a given momentum present, i.e. both bands are empty. And second, a
state in which there are two electrons with a given momentum, i.e. both bands are oc-

cupied. Formally, this is written using fermionic operators for the two sub-lattices c
(†)
k⃗,A

and c
(†)
k⃗,B

with the anti-commutator relation

{c
k⃗,i
, c†

k⃗,j
} = δi,j , (2.38)

such that the Hilbert space is spanned by the states |0⟩, |A⟩ = c†
k⃗,A

|0⟩, |B⟩ = c†
k⃗,B

|0⟩ and
|2⟩ = c†

k⃗,B
c†
k⃗,A

|0⟩ for a given momentum k⃗. In particular, the states |A⟩ and |B⟩ span the

original two-dimensional Hilbert space. We introduce these additional states into the
dynamics via coupling through dissipative channels. Physically, these channels describe
electron exchange with a fermionic bath. Furthermore, in this four-level description it is
straight-forward to include a chemical potential µ. We write the corresponding four-level
Hamiltonian

Hπ⃗(t) =




−2µ 0 0 0
0 −µ ℏvF (πx(x)− iπy(t)) 0
0 ℏvF (πx(t) + iπy(t)) −µ 0
0 0 0 0


 (2.39)

with π⃗(t) = k⃗ − e
ℏA⃗(t), acting on the space {|2⟩ , |A⟩ , |B⟩ , |0⟩}. On this space we utilize

the Lindblad operators

L′
j =




0 δ5,j δ6,j 0
δ1,j δz,j δ+,j δ7,j
δ2,j δ−,j −δz,j δ8,j
0 δ3,j δ4,j 0


 , (2.40)

which cover the two-level processes of σz, σ+, and σ− on the two-dimensional single-
electron subspace {|A⟩ , |B⟩}, but also the additional channels in and out of the sector
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with zero or two electrons present. However, in this dissipative model the Lindblad
operators act in the instantaneous eigenbasis that diagonalizes Eq. 2.39, i.e. we define
Lj = U †(t)L′

jU(t) where U(t) diagonalizesHπ⃗(t) at each point in time. The instantaneous
eigenbasis reflects the presence of the vector potential, such that this method fulfills the
desired gauge invariance. We introduce a temperature T into this model by imposing
restrictions onto opposing processes. It is

γ+ = γ−e
− 2ϵ

kBT (2.41)

and

γ5 = γ1e
ϵ+µ
kBT γ6 = γ2e

−ϵ+µ
kBT (2.42)

γ7 = γ3e
−ϵ+µ
kBT γ8 = γ4e

ϵ+µ
kBT , (2.43)

where kB is the Boltzmann constant and ±ϵ are the instantaneous eigenenergies of
the Hamiltonian Hπ⃗(t). This ensures that the undriven equilibrium state reproduces
a Fermi-distribution at temperature T around the chemical potential µ. We have first
introduced this dissipative model in Publication I, which was first-authored by Marlon
Nuske, who played a major part in devising this method. I have continued expanding
my own implementation of this method, and utilized it in Publication II—IV. Further,
in Publication V and VI, I have used an extension of this method that includes a single-
mode cavity in a type of Dicke model, as I discuss in Chapter 3.
Considering the dissipative processes on the two-level system alone and reducing the

dynamics again to the two-dimensional sector provides a generalized expression. The
instantaneous eigenbasis of any two-level Hamiltonian H(t) with Tr(H(t)) = 0 is given
by a transformation U(t) such that

ϵσz = U †(t)H(t)U(t), (2.44)

where ±ϵ are the instantaneous eigenenergies of H(t) given by H⃗2(t) = ϵ2. This transfor-
mation makes it possible to rewrite the Lindblad master equation. I use the Bloch-sphere
representation

ρ(t) =
1

2
(1 + ρ⃗(t)σ⃗) H(t) = H⃗(t)σ⃗ (2.45)

to write the general equation of motion in this dissipative model. It is

˙⃗ρ(t) = 2ϵ(⃗h(t)× ρ⃗(t))− γ1ρ⃗(t)− γ2h⃗(t)− γ3(⃗h(t)ρ⃗(t))⃗h(t) (2.46)

with the Hamiltonian axis h⃗(t) = H⃗(t)ϵ−1. The structure of this equation of motion is
visualized in the Bloch sphere in Fig. 2.2.

γ1 = (γ+ + γ−)/2 + 2γz γ2 = γ− − γ+ γ3 = (γ+ + γ−)− 2γz (2.47)

emerge as the effective dissipation coefficients in this representation. I have derived
this particular representation in Publication V and used it for analytical calculations in
Publication IV and Publication V.
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Figure 2.2: The Bloch-sphere representation of the generalized two-level Lindblad equa-
tion with dissipation in the instantaneous eigenbasis. The location of the
density operator ρ⃗ is indicated with a black dot. The terms of Eq. 2.46 act-
ing on ρ⃗ are depicted as gray and blue arrows. The gray arrows indicate the
dissipative terms weighted with Lindblad coefficients. The term proportional
to γ1 is parallel to ρ⃗. The terms proportional to γ2 and γ3 are parallel to
h⃗. The unitary action in the direction of h⃗× ρ⃗ is proportional to 2ϵ and by
itself generates circular trajectories indicated in blue.

2.5 Momentum- and Frequency-resolved Electron Distribution

A crucial feature of the extended Hilbert-space in Eq. 2.39 and Eq. 2.40 is the ca-
pacity for calculating two-point correlation functions of the type ⟨c†

k⃗,i
(t2)ck⃗,j(t1)⟩, with

i, j ∈ {A,B}. This provides access to frequency- and momentum-resolved electron dis-
tributions

n(k⃗, ω) =
1

(tf − ti)
2

∫ tf

ti

∫ tf

ti

G(k⃗, t1, t2)eiω(t2−t1)dt2dt1 (2.48)

where ti to tf provides a time-window across which the spectral information is evaluated.
The correlation function in Eq. 2.48 is

G(k⃗, t1, t2) =
∑

j∈{A,B}
⟨c†

k⃗,j
(t2)ck⃗,j(t1)⟩. (2.49)

The expression in Eq. 2.48 is motivated by the theoretical study on the predictions
of time- and angle-resolved photoelectron spectroscopy (trARPES) measurements by
Freericks et al. [113]. trARPES is a well-established and state-of-the-art experimental
method for observing band structures and their dynamics in solid-state systems [114–
125]. It has been used to study the Floquet-Bloch states of strongly driven materi-
als [126–134]. Experiments consistently show that the observed band structures match
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the predictions of Floquet theory and trARPES has in particular been used to study
graphene driven by circularly polarized light [135–138]. The particular light-induced
gap at the Dirac point that is associated with an anomalous Hall effect in graphene [39]
has however been difficult to observe in these experiments. This is attributed to an
array of resolution- and signal-disambiguation limitations. These limitations cover var-
ious broadening effects, energy-resolution limitations, material defects [139–142], space
charge effects due to many photoelectrons [143–146], and laser-assisted photoemission
(LAPE) replica. This circumstance largely motivated Publication III, where I have stud-
ied means to circumvent some of these challenges and proposed a setup to observe said
Floquet band gap using trARPES.

Note that as n(k⃗, ω) resolves the spectral function of a given system, I have used
this quantity in Publications I — VI in order to obtain the population of light-induced
Floquet states, which has provided valuable insight into the driven dynamics. In such
two-level systems, this is achieved by integrating the spectral weight within bands of
frequencies that are associated with a given Floquet-Bloch band

n+m(k⃗) =

∫ (m+ 1
2
)ωd

mωd

n(k⃗, ω)dω (2.50)

n−m(k⃗) =

∫ mωd

(m− 1
2
)ωd

n(k⃗, ω)dω, (2.51)

where ωd is the frequency of the driving term that induces the Floquet-Bloch bands.
These expressions provide the population of the mth upper and lower Floquet-Bloch
band, respectively.
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2.6 Publication I: Floquet dynamics in light-driven solids

M. Nuske, L. Broers, B. Schulte, G. Jotzu, S. A. Sato, A. Cavalleri, A. Rubio, J.
W. McIver, and L. Mathey — Phys. Rev. Research 2, 043408 (2020)

This collaboration was motivated by the experiment of McIver et al. [44] in which they
studied an anomalous Hall effect in monolayer graphene driven with circularly polarized
terahertz radiation. Oka and Aoki [39] had predicted, that the high-frequency limit of
the Floquet band structure of this system is reminiscent of the Haldane model which
presents a topologically insulating ground state. They had proposed that this would
result in an anomalous Hall effect in graphene. The experimental results showed a non-
quantized transversal conductivity attributed to the intricate non-equilibrium electron
dynamics in driven systems.
In this work, first-authored by Marlon Nuske, we have numerically studied the Flo-

quet physics of light-driven solids. We have conceived a numerical method for capturing
driven dissipative dynamics and applied it to graphene irradiated by circularly polarized
light. This numerical method is capable of simulating pump-probe transport measure-
ments, as well as calculating the momentum- and frequency-resolved electron distribu-
tion, which resolves the population of the light-induced Floquet bands. In this setup we
have reproduced the transport measurements of the experiment by McIver et al. [44].
We have found that the populations of the Floquet bands play a crucial role in the non-

quantization of the anomalous Hall conductivity in this system. The electron distribution
is highly non-trivial and far from an equilibrium distribution and corresponds to an
effective electron temperature in the thousands of Kelvin, such that the system does
not enter any topologically insulating state. We have identified two major contributions
to the observed transversal current. First, a geometric contribution which consists of
the Berry curvature of the Floquet bands weighted by their population. The Berry
curvature is localized at the light-induced gaps and locally integrates to integer values.
Secondly, there is a regular contribution which consist of the band velocity weighted
by the population imbalance due to the non-equilibrium electron distribution. In this
description we were able to reproduce the experimental results well and explain the
deviations from the theoretical description. We have demonstrated that our numerical
model captures the transport properties observed in the experiment, which motivated
further research on the basis on this model.
My contribution to this work consisted of designing and implementing parts of the

numerical methods together with MN. In particular, I devised the numerics for the
momentum- and frequency-resolved electron distributions and for the two contributions
to the Hall conductivity. All authors have contributed to this work and to writing the
manuscript.
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We demonstrate how the properties of light-induced electronic Floquet states in solids impact natural physical
observables, such as transport properties, by capturing the environmental influence on the electrons. We include
the environment as dissipative processes, such as interband decay and dephasing, often ignored in Floquet
predictions. These dissipative processes determine the Floquet band occupations of the emergent steady state, by
balancing out the optical driving force. In order to benchmark and illustrate our framework for Floquet physics
in a realistic solid, we consider the light-induced Hall conductivity in graphene recently reported by McIver et al.
[Nat. Phys. 16, 38 (2020)]. We show that the Hall conductivity is estimated by the Berry flux of the occupied
states of the light-induced Floquet bands, in addition to the kinetic contribution given by the average band
velocity. Hence, Floquet theory provides an interpretation of this Hall conductivity as a geometric-dissipative
effect. We demonstrate this mechanism within a master equation formalism, and obtain good quantitative
agreement with the experimentally measured Hall conductivity, underscoring the validity of this approach which
establishes a broadly applicable framework for the understanding of ultrafast nonequilibrium dynamics in solids.

DOI: 10.1103/PhysRevResearch.2.043408

I. INTRODUCTION

Light control of matter has emerged as a new chapter of
condensed matter physics. While the established approach to
solid state physics is to probe equilibrium or near-equilibrium
properties of a given material, we now take a more active
stance, to design nonequilibrium states with desired properties
by periodic driving. This new vantage point is reflected in
recent experimental work on light-controlled superconduc-
tivity (see, e.g., Refs. [1–5], where a superconducting state
is either enhanced or induced by applying terahertz pulses).
More generally, optical control provides a dynamical avenue
towards creating functionalities on demand in materials [6],
for which we provide an efficient theoretical framework and
understanding.

A natural theoretical description of a periodically driven
system utilizes Floquet theory to determine its quasienergy
states. This approach formally represents a periodically
driven, time-dependent Hamiltonian as a time-independent
one, which allows the use of time-independent methodologies.
If the quasienergy states are interpreted as the eigenstates

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

of an effective Hamiltonian, this effective Hamiltonian can
be qualitatively distinct from the unperturbed Hamiltonian.
This approach constitutes “Floquet engineering” via periodic
driving. Implementing this approach in nearly isolated cold
atom systems has resulted in spectacular properties [7–15].

While this approach has a suggestive character, we demon-
strate that a naive treatment of the Floquet states as energy
states, which are then occupied by electrons with an equilib-
rium distribution, is in general not a correct prediction for the
driven system. First, the measurable properties, such as trans-
port properties, of the driven systems are generally different
from the measurable properties of the effective Hamiltonian.
The linear response to a probing term in the Hamiltonian,
which models the physical probe, interferes with the driving
term. The resulting linear response cannot be expressed as
the linear response of the effective Hamiltonian, in general.
Second, for a well-behaved effective Hamiltonian to describe
the low-frequency dynamics, the high-frequency limit of the
driving frequency is desirable. Typically that implies that
the driving frequency is large compared to the electronic
bandwidth, to avoid resonant driving of interband transitions.
However, in this high-frequency limit a high driving intensity
is required, so that the far off-resonant optical pumping has
a noticeable effect on the system. This implies currently un-
realistic experimental and material requirements. Third, the
steady state of the electrons that emerges in the driven system
is in general not an equilibrium distribution on the Floquet
quasienergies. These properties of driven systems emphasize

2643-1564/2020/2(4)/043408(15) 043408-1 Published by the American Physical Society
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FIG. 1. Dirac cone of the (a) undriven and (b) driven graphene band structure (top) and the corresponding real-space lattice (bottom).
The band structure of graphene driven with circularly polarized light develops gaps at each resonance and at the Dirac point. Applying a
longitudinal field EL induces a transverse Hall current jxy. (c) Electron distribution n(k, ω) as a function of momentum times h̄vF. Note that
h̄vFk = 200 meV corresponds to k ≈ 0.03/Å. The distribution is shown after a steady state is achieved for a tanh-type ramp to the driven state.
The parameters for (c) are inspired by the experimental ones used in Ref. [16]. Dotted gray lines show the numerically computed Floquet band
structure (see Appendix E). The maxima of the electron distribution of the driven state agree perfectly with the Floquet band structure. We
show a slice along the kx direction of the band structure shown in (b). Dashed gray lines separate the different Floquet replicas. (d) Floquet band
structure colored by Berry curvature (for details, see Appendix E). The Berry curvature is integrated over ring segments of momentum space.
This integrated quantity suppresses the curvature at the Dirac point. We only show the first Floquet replica since Berry curvature and Floquet
energies are periodic with ωdr. We use Edr = 26 MV/m, ωdr = 2π · 48 THz ≈ 200 meV/h̄, T1 = 1 ps, T2 = 0.2 ps, Tp = 0.4 ps, temperature
T = 80 K, and μ = 0. Faint gray lines indicate the Dirac cone for undriven graphene.

clear distinctions between a system with a Floquet engineered
Hamiltonian and a system with a static Hamiltonian.

In this paper, we present how the Floquet band properties
manifest themselves in transport properties in an optically
driven solid. As a central example we consider light control
of graphene. References [17–21] have proposed to illuminate
graphene with circularly polarized light with the purpose of
inducing a topologically insulating state [22–26], with the
same low-energy behavior as the Haldane model [27]. We note
that these proposed experiments would only reproduce the be-
havior of the Haldane model in a band insulating state, under
the above-mentioned assumption of a large driving frequency.
As we demonstrate below, neither of these assumptions is
fulfilled.

Our primary experimental motivation derives from the
measurements of Ref. [16]. The authors report on a recently
developed on-chip femtosecond technology to detect the Hall
current of graphene illuminated with light with a frequency
of tens of terahertz, which is orders of magnitude below the
bandwidth of graphene. These measurements illustrate the
realistic regime of current experiments, and are of guidance
for our study. However, we emphasize that our conceptual
approach directly applies to any light-driven Dirac material
[28–32], and more broadly to any solid with well-defined
electronlike quasiparticles. Theoretical studies on dissipative
dynamics in graphene have been reported in Refs. [33–35].

II. GEOMETRIC-DISSIPATIVE ORIGIN OF HALL
CONDUCTIVITY

We develop a master equation description for the transport
properties of illuminated graphene under realistic conditions.
As a key addition to the unitary evolution we include several
dissipative processes to provide an effective model for the
relaxation and dephasing of the electronic states. These are
shown schematically in Fig. 1(a). The form and the magni-
tude of the dissipative processes determine the steady state
that is induced by the optical driving. For this steady state,
we determine the Hall current jy by applying a dc probing
field EL along the x axis. From the linear response definition
jy = σxyEL, we determine the Hall conductivity σxy.

Furthermore, we determine the distribution of electrons
in momentum and frequency space n(k, ω), which is the
Fourier transform of the single-particle correlation function.
n(k, ω) is depicted in Fig. 1(c). This distribution describes
what frequencies and momenta are contained in the time evo-
lution of the electrons, shown here for the steady state. This
quantity is closely related to the quantity measured in time-
and angle-resolved photoemission spectroscopy (trARPES)
experiments [36]. We note that this distribution is consistent
with the Floquet bands, depicted in Fig. 1(b) and shown as
dashed lines in Fig. 1(c). Furthermore, the Floquet bands
are populated primarily in regions that are close to the orig-
inal Dirac dispersion. This implies that the predominantly
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occupied Floquet band switches at each resonance. We refer
to this property of the band occupation as a split-band pic-
ture. This is in contrast to the majority of previous works
on Floquet theory where the properties of the continuously
connected bands are studied. With these observations we de-
termine the derived quantity nσ (k), with band index σ = ±1,
which is determined by integrating the distribution n(k, ω)
for fixed k in the vicinity of every second frequency maxi-
mum (see also Appendix D). This provides an estimate of the
occupation of the Floquet states that includes the dissipative
broadening of the bands.

As an additional property of the driven state, we determine
the Floquet bands [see Figs. 1(b) and 1(c)]. From these, we
determine the y component of the band velocity vσ

y and the
Berry curvature �σ . We combine these quantities and define

�xy = 1

A

∑
k∈1.BZ
σ = ±1

�σ (k)nσ (k),

v̄y = 1

nA

∑
k∈1.BZ
σ = ±1

vσ
y (k)nσ (k),

where A is the lattice size and n = 1/A
∑

k,σ nσ (k) is the
electron density. The Berry flux �xy is the sum over the Berry
curvature of the Floquet bands, weighted with the band oc-
cupation nσ (k). Similarly, the average band velocity v̄y is the
sum over the y component of the band velocity of the Floquet
bands, weighted with the band occupation, and normalized
with the electron density. The average band velocity term is
nonzero for the light-driven state in the presence of the dc
field EL, due to an occupation imbalance along the y direction,
contributing to the Hall current. The central result of our study
is that the combination of these quantities provides a good
estimate of the Hall conductivity,

σxy ≈ nv̄y/EL + �xy. (1)

Both the Berry flux and the average band velocity is a sum
weighted with the steady state distribution of the driven state,
which in turn is determined by the dissipative processes. Our
result demonstrates that the Hall conductivity is a geometric-
dissipative phenomenon. As we demonstrate below, for a
small driving field Edr, the average band velocity dominates in
this prediction, whereas for a large driving field, the Berry flux
dominates. We note that the nonvanishing expectation value
of v̄y derives from an occupation imbalance in the transverse
direction of the probe, which was also discussed in Ref. [34].

We note that the Floquet states not only display a topo-
logical band gap at the Dirac points, as they would for large
driving frequencies (see Refs. [22–26]). In addition to this
renormalization of the Dirac cone, additional resonances ap-
pear at integer multiples of the driving frequency. Frequency
space naturally separates into Floquet zones of the size of
the driving frequency, in analogy to Brillouin zones. Each
Floquet zone contains two bands, corresponding to the under-
lying two-band structure of graphene. Each resulting Floquet
band has an additional Berry curvature at the resonances, in
addition to the curvature at the Dirac point. Integrating over
the entire band gives the Chern number of each band. For

the example shown, there are about 80 resonances stemming
from multiphoton absorption, and the Chern number of the
Floquet bands is of the order of 102–103. However, this is
not the magnitude of the Hall conductivity, because the band
is not occupied in a band insulating state, but rather has the
electron distribution depicted in Fig. 1(c). For this example,
we find that 99.8% of the Hall conductivity can be accounted
for by summing the contributions from the Dirac point and
the first four resonances. Higher-order resonances have no net
contribution to the Hall conductivity. We note that the total
Hall current has the opposite sign of that expected in the
high-frequency limit. We observe that the Hall conductivity
is not quantized in an obvious fashion, however, we find a soft
plateau of the conductivity as a function of the driving field,
more pronounced when depicted as a function of fluence (see
Appendix L). While the magnitude of the conductivity at the
plateau depends on the model assumptions, such as the choice
of dissipative processes, the robustness of this feature might
point to an underlying principle to be discussed elsewhere.

III. RABI SOLUTION

The key qualitative difference to the proposals that utilize
high-frequency driving, is the occurrence of resonances at
integer multiples of the driving frequency. As depicted in
Fig. 1(d), these resonances create a Berry curvature of the
Floquet bands. To demonstrate this point we determine the
Berry curvature at the single-photon resonance within a Rabi
picture, which gives access to all properties near the single-
photon resonance and provides analytical expressions. We
expand on this analysis in a Floquet picture further down,
which treats the full system within a numerical framework.
We describe the graphene dispersion and the interaction of the
electrons with the electromagnetic field via

HR = h̄vFkσz + σpoleEdrvF

2ωdr

(
0 ie−iωdrt−iτzσpolφk

−ieiωdrt+iτzσpolφk 0

)
,

and hence the solutions |ψR,±(t )〉 can be obtained in analogy
to the Rabi problem (see Appendix B). Here, keiφk = kx + iky

and τz = ±1 labels the two inequivalent Dirac points, σpol =
±1 determines the polarization of the light, vF denotes the
Fermi velocity, and e > 0 is the elementary charge. We then
compute the instantaneous Berry curvature within the Rabi
approximation, which gives

�±(k) = ∓e2

h

σpolvFλ
2

2k�3
R

, (2)

where λ = eEdrvF
2ωdr

is the bare Rabi frequency, � = ωdr−2vFk
2 is

the detuning, and �R = √
λ2 + �2 is the Rabi frequency. We

emphasize that this result applies directly to any light-driven
Dirac material, and that similar considerations can be ex-
tended naturally to any material with electronic quasiparticles.
As we discuss below, a Floquet analysis expands this analysis
to all resonances numerically.

IV. MASTER EQUATION

To evaluate the quantity nv̄/EL + �xy of Eq. (1), we deter-
mine the steady state occupation nσ (k) numerically. Similarly,
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we determine the Hall conductivity. We factorize the density
matrix ρ of the system as ρ = ∏

k ρk, where we choose a
discrete lattice of momenta k, centered around the Dirac point,
of size N × N . We represent each ρk in the four-dimensional
basis of |0〉, c†

k,+|0〉, c†
k,−|0〉, c†

k,+c†
k,−|0〉. The operators ck,σ

describe the upper and the lower band of momentum k, de-
picted in Fig. 1(a). We note that using this four-dimensional
basis enables us to determine the electron distribution n(k, ω),
and treat undoped and doped graphene in a systematic manner,
by varying the chemical potential. For each ρk, we solve
the master equation. The master equation contains unitary
contributions from the equilibrium Hamiltonian H0 and the
light-matter interaction Hem. The latter contains both the cir-
cularly polarized driving term, with electric-field strength Edr,
as well as a longitudinal dc probing field EL. In addition
to these unitary contributions, we introduce dissipative pro-
cesses, depicted in Fig. 1(a), modeled via Lindblad operators
(see Appendix A). The first describes decay from the upper to
the lower band, with a rate γ1 = 1/T1. The second describes
dephasing between the upper and the lower band, described by
a rate γz, which we combine into γ2 = 1/T2 = 1/(2T1) + 2γz.
The third rate γp = 1/Tp corresponds to a single-particle ex-
change with a fermionic bath of temperature T and chemical
potential μ.

We first demonstrate that the experimental results of
Ref. [16] are captured with this model. In Fig. 2 we compare
the circular dichroism of the Hall conductivity, which is de-
fined as one half the difference of the response for right- and
left-handed circular polarization, of the measurement and our
calculation. We find that both the peak-field dependence in
Fig. 2(b) as well as the chemical potential dependence for high
fluence in Fig. 2(a) are in quantitative agreement. The chosen
Edr and ωdr correspond to the peak driving field and central
frequency of the laser pulses used in the experiment, respec-
tively [16]. The dissipation rate T1 is inspired by Ref. [37]
and for T2 we choose 20fs, which is chosen to be notably
smaller than T1. The decay rate Tp is adjusted to match the
experimental data. We find that Tp = 30–50fs are appropriate
depending on the electric-field strength [see Fig. 2(b)]. We
emphasize that the properties of the driven state crucially
depend on the dissipative environment. Both the measurable
properties, such as the transport behavior, and the steady state
itself are shaped by the dissipation. This key result demon-
strates the urgency of including the dissipative environment
to model a material, and provides guidance for the design of
light-induced material properties. On the conceptual side, it is
this dissipative environment that is not captured in a Floquet
analysis, but profoundly alters the physical behavior of the
system.

V. BERRY FLUX OF RABI STATES

In Fig. 3(b) we depict the contributions to the Hall con-
ductivity in momentum space σ̃xy(k) = σxy(k)/A, as defined
in Appendix A. In addition to the negative contributions near
the Dirac point, which are not captured by the Rabi approach,
there are negative contributions below the single-photon res-
onance, and positive contributions above the resonance. For
comparison we depict the contributions to the Berry flux �xy

as determined within the Rabi approximation, in Fig. 3(a).

FIG. 2. (a) Circular dichroism of the transverse conductivity as
a function of chemical potential. The data from the numerical sim-
ulation (red line) and experimental data [16] (open circles) agree
quantitatively. (b) Electric-field dependence of the current dichroism
for several values of the particle-exchange timescale Tp, as indicated
in the legend. We see that a value in the range of Tp = 30–50 fs
is consistent with the experiment. The parameters for the numeri-
cal simulation are ωdr = 2π · 48 THz ≈ 200 meV/h̄, T1 = 100 fs,
T2 = 20 fs, T = 80 K, EL = 1.7 kV/m, and the driving pulse has
a Gaussian envelope with electric-field strength full width at half
maximum (FWHM) of

√
2 ps, corresponding to intensity FWHM

of 1 ps. Finally, Edr = 26 MV/m and Tp = 36 fs in (a) and chemical
potential μ = 0 in (b).

We find that the Rabi solution for the curvature gives a
qualitatively correct description of the momentum-resolved
conductivity. We note that the Rabi solution does not capture
two-photon processes, which create the gap opening at the
Dirac point, as well as higher-order gaps.

In Fig. 3(c) we depict a quantitative comparison. We show
the momentum-resolved conductivity contributions integrated
over a disk of radius kr, i.e., we show

∑
|k|<kr

σ̃xy(k). Similarly,
we show the contributions to the Berry flux �xy integrated
to kr, as well as the sum of the curvature and band velocity
contributions �xy + nv̄/EL, integrated up to kr. We note that
the integrated conductivity has been shifted up such that it has
a zero crossing at h̄vkr ≈ 30 meV, so that the behavior at the
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FIG. 3. Comparison of the momentum-resolved Berry flux, de-
picted in (a), which is obtained within the Rabi approximation, and
the momentum-resolved conductivity dichroism, depicted in (b). The
Berry flux displays a qualitatively similar behavior as the conduc-
tivity dichroism, in particular a sign change at the single-photon
resonance. The contribution near the Dirac point is not included
in the Rabi approximation. (c) We depict the conductivity density,
integrated over a disk in momentum space of radius kr , as shown
in (a). For comparison, we show the momentum-resolved Berry
flux, integrated over the same disk in momentum space, and the
sum of the integrated Berry flux and the integrated average band
velocity. The curves have been shifted such that their value vanishes
at h̄vF|kr| = 30 meV for a better comparison of the contribution of
the first resonance. Consistent with the proposed estimate in Eq. (2),
the sum of the Berry flux and the average band velocity predict the
conductivity, even in a momentum-resolved manner. In all plots we
use Edr = 3 MV/m, ωdr = 2π · 48 THz ≈ 200 meV/h̄, T1 = 50 ps,
T2 = 10 ps, Tp = 20 ps, T = 80 K, EL = 0.84 kV/m, μ = 0, and the
driving pulse is ramped with a tanh over 1 ps.

single-photon resonance can be compared directly to the Rabi
solution.

We find that the momentum-resolved representation of
nv̄y/EL + �xy gives a good prediction for the momentum-
resolved conductivity. Generally, the agreement is good for
small dissipation, in particular for small γz. The total value
of the conductivity, which is the measurable conductivity of
the system, is positive, and therefore of opposite sign than
the contributions near the Dirac point. This implies that the
positive contributions above the resonance, i.e., momentum
states with vFk > ωdr/2, exceed the negative contributions
below the resonance, i.e., vFk < ωdr/2. The sign change of
the contributions is a direct consequence of the split-band
picture depicted in Fig. 1(c). As mentioned above, in this
picture the predominantly occupied band switches at each

resonance. The specific value of the conductivity depends
continuously on the driving frequency and the dissipative
properties of the system.

The momentum-resolved Berry flux, which is depicted in
Fig. 3(a), derives from the Berry curvature and the occupation
of the Floquet bands. The Rabi approximation describes the
Floquet bands near the single-photon resonance. In Fig. 1(c)
and 1(d), this resonance occurs at h̄vFk ≈ ±100 meV. The
Rabi approximation of the curvature, given in Eq. (2), predicts
negative values of the curvature for the upper band, and posi-
tive curvature for the lower band, localized near the resonance.
The occupation of the upper band n+(k) is larger than the
occupation of the lower band n−(k) for momenta smaller than
the resonance. For momenta larger than the resonance we
have n+(k) < n−(k). This change of predominant occupation
results in a partial cancellation of the Berry flux. However,
the lower-band contribution dominates, resulting in a positive
contribution for the flux. Both the Berry curvature and the
Berry flux are rotationally symmetric. In contrast, the average
band velocity is manifestly anisotropic, since the band veloc-
ity vσ

y vanishes along the kx direction (see also Ref. [34]). This
gives rise to the modest anisotropy of the Hall conductivity
[see Fig. 3(b)].

VI. BERRY FLUX OF FLOQUET STATES

We expand this analysis by determining the Floquet bands
of the driven system, and their band velocity and curvature, as
described in Appendix E. While the Rabi solution gives access
to the properties of the single-photon resonance, the Floquet
analysis gives the light-induced band properties to any order.
We utilize the band velocities and the Berry curvature that is
obtained from the Floquet bands, and combine them with the
band occupations derived from n(k, ω), as shown in Fig. 1(c),
to determine the average band velocity and the Berry flux.

In Fig. 4(a), we display these quantities, and the sum of
the average band velocity and the Berry flux. We find again
that the sum of the Berry flux and the average band velocity
gives a good prediction for the conductivity. The prediction is
particularly good for small dissipation. We also display the
Rabi approximation, which gives a good estimate at small
Edr. We note that for small Edr the band velocity contribution
dominates, whereas for larger values of Edr, the Berry flux
dominates. The Berry-flux-dominated regime is achieved in
the strongly driven regime, because the Floquet bands become
flat, and the band velocities throughout the bands approach
zero.

In Fig. 4(b) we display the momentum-resolved contribu-
tions to the conductivity for zero dephasing rate γz = 0. Our
prediction for the conductivity based on Berry flux and aver-
age band velocity agrees almost perfectly with the simulated
conductivity. We note that we find equally good agreement
for nonzero γz, when considering only the momentum modes
along the ky direction (see Appendix G). When considering all
momenta and nonzero γz, the contributions to nv̄/EL + �xy

deviate from the contributions to the conductivity σxy, giv-
ing rise to the deviation between nv̄/EL + �xy and σxy in
Fig. 4(a). This suggests an additional contribution due to the
dephasing rate γz, possibly related to coherences between the
Floquet bands, to be discussed elsewhere. We note that at
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FIG. 4. (a) Comparison of the electric-field dependence of the
conductivity dichroism, the Berry flux, and the average band velocity.
Black diamonds show the simulated conductivity dichroism, and the
faint dashed line the sum of the Berry flux and the average band
velocity within the Rabi approximation. Red triangles show the sum
of the Berry flux and the average band velocity, based on Floquet
states. Blue squares show the Berry flux only and blue circles the
average band velocity only. (b) We show the conductivity density
σ̃xy, integrated over a disk in momentum space with radius kr,
for zero dephasing rate γz = 0. This integrated conductivity agrees
with the sum over the Berry flux and the average band velocity,
integrated over the same disk. For both panels the parameters are
ωdr = 2π · 48 THz ≈ 200 meV/h̄, T1 = 1 ps, Tp = 0.4 ps, T = 80 K
and EL = 1.7 kV/m. In (a) T2 = 0.2 ps and in (b) T2 = 2 ps and
Edr = 26 MV/m. All observables are shown after a steady state is
achieved for a tanh-type ramp of the driving field strength.

integer multiples of the resonance frequency at 2vFk ≈ nωdr,
the momentum-resolved sum of the Berry flux and average
band velocity changes sign. This behavior was described
for the single-photon resonance above, and repeats itself for
higher orders. We observe that while the momentum-resolved
contribution to all three quantities is large, there is a near can-
cellation of these contributions for higher-order resonances.

VII. CONCLUSION

The conceptual achievement that we put forth here is
widely applicable for the description of light-induced dy-
namics in solids with well-defined electronic quasiparticles.
We have presented a versatile and efficient master equation
approach that includes the dissipative environment, enabling

the description of light-driven solids under realistic condi-
tions. The dissipative environment, which is ignored in the
Floquet description of the driven system, shapes the emerging
steady state by balancing out the light-induced force on the
electrons. Furthermore, our approach is well suited to describe
realistic driving frequencies that are small compared to the
electronic bandwidth, and therefore induce resonant interband
excitations, and treat the dynamics that are induced by probing
processes explicitly.

Even though the construction of the light-induced Floquet
states is an incomplete description of a light-driven solid,
because the dissipative environment is ignored, we point out
what features of Floquet states manifest themselves in its
presence, resulting in Floquet physics in realistic materi-
als. The key elements of our approach were exemplified for
the recently observed light-induced Hall effect in graphene,
for which we obtain a quantitative understanding. We have
shown that the Hall conductivity is predicted by the sum of
the average band velocity and the Berry flux of the light-
induced Floquet bands. Therefore our prediction combines
geometric properties of the Floquet bands, and dissipative
properties of the material, which identify the Hall effect as
a geometric-dissipative effect. This insight, derived from our
master equation description, demonstrates the effectiveness of
our approach, and motivates its application to a wide range of
light-induced dynamics in solids.

ACKNOWLEDGMENTS

We acknowledge support from the Deutsche Forschungs-
gemeinschaft through the SFB 925. This work is supported
by the Cluster of Excellence “CUI: Advanced Imaging of
Matter” of the Deutsche Forschungsgemeinschaft (DFG) -
EXC 2056 - project ID 390715994. The research leading to
these results received funding from the European Research
Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013)/ERC Grant Agreement No.
319286 (QMAC). M.N. acknowledges support from Stiftung
der Deutschen Wirtschaft. A.R. acknowledge supported by the
European Research Council (ERC-2015-AdG694097) and the
Flatiron Institute of the Simons Foundation.

APPENDIX A: NUMERICAL ALGORITHM FOR THE
COMPUTATION OF CURRENTS

We use the von Neumann equation for the unitary part
of the time evolution and include interactions as well as
other damping and dephasing effects by including Lind-
blad operators. When using the Weyl gauge the Hamiltonian
does not couple different momentum points. As mentioned
in the main text we therefore consider the ansatz ρ = ∏

k ρk
for the density matrix ρ of the system. The full time evolution
of the density matrix is then governed by the master equation
[38]

d

dt
ρk = i

h̄
[ρk, Hk]−1

2

∑
α

(Lα†Lαρk+ρkLα†Lα − 2LαρkLα†).

The first line of this equation describes the unitary part of
the time evolution, fully determined by the Hamiltonian of
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FIG. 5. Sketch of the graphene dispersion relation (left). In the
Weyl gauge the Hamiltonian decouples in momentum space such that
we can treat each momentum point as a two-level system (sketch on
the right-hand side). We also sketch the effect of damping (T1) and
dephasing (T2) effects.

the system. The second line with the Lindblad operators Lα

accounts for damping and dephasing effects.
In the Weyl gauge (for details, see Appendix F) the

graphene Hamiltonian with light field coupled via minimal
coupling can be written such that it remains diagonal in mo-
mentum space,

H =
∑

k

Hk.

Each momentum mode is modeled by a two-level system (see
Fig. 5) and hence there are four possible fermionic states, that
correspond to an empty mode, a particle on the A sublattice, a
particle on the B sublattice, and a fully occupied mode,

�k = (|11〉 |01〉 |10〉 |00〉),

where |11〉 = c†
k,Ac†

k,B|0〉 and c†
k,σ creates an electron with

momentum k in band σ .
In order to write the Hamiltonian with respect to this basis

we introduce a set of Pauli-type matrices,

σx =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠, σy =

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠,

σz =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎠, σ (0)

z =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠,

σ (2)
z =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, σg =

⎛
⎜⎝

0 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 0

⎞
⎟⎠.

For the linearized dispersion relation the Hamiltonian for
each momentum point further splits into a sum of two terms,

Hk = H0,k + Hem(t ), (A1)

where

Hem(t ) = Hdr,k(t ) + HL,k(t ). (A2)

The first contribution is the equilibrium Hamiltonian with-
out any light field applied. Except for the chemical potential
it contains only terms of type σx,y,z because the empty and
the fully occupied sector do not have a unitary time evolution.
In our calculations we include the chemical potential in H0,k,
such that it becomes

H0,k = �
†
k

[
h̄vF(τzkxσx + kyσy)

− μ
(
1 + σz + σ (0)

z + σ (2)
z

)]
�k .

Here, τz = ±1 is the valley index, describing the two Dirac
points, k is the momentum relative to the Dirac momenta K
and K′, and vF ≈ 106 m/s is the Fermi velocity. We suppress
spin indices.

The second and third terms represent the two light fields,
that are coupled through the Peierls substitution k → k −
q
h̄ A(r, t ), with charge q = −e and e > 0 being the elementary
charge. The second term resembles the experimental driving
or pump pulse and is a circularly polarized electromagnetic
field propagating along the z direction,

Hdr,k(t ) = evF�
†
k (τzAdr,xσx + Adr,yσy)�k,

where

Adr =
(

Adr,x

Adr,y

)
= −

∫ t

0
dt ′ Edr (t ),

Edr (t ) = − Edr genv(t )[cos(ωdrt )ex + σpol sin(ωdrt )ey],

σpol defines the polarization of the light, ex,y are unit vectors
in the x and y directions, and genv(t ) is the envelope of the
pulse. The envelope genv(t ) is either chosen to be a Gaussian
envelope or a tanh-type switch on. Furthermore, we only
give the fields in the x-y plane (at z = 0) as, without loss of
generality, we choose the graphene sheet to lie in this plane.

For genv(t ) = 1 we obtain

Hdr,k = eEdrvF

ωdr
�

†
k[τz sin(ωdrt )σx − σpol cos(ωdrt )σy]�k.

(A3)

The third term is a dc longitudinal field, that resembles the
experimental probe field

HL,k = evFsswitch(t )�†
k (τzAL,xσx + AL,yσy)�k,

where

EL(t ) = ELex,

AL(t ) = −
∫ t

0
dt ′ EL(t ) = −ELt ex,

and sswitch(t ) denotes a switch-on during the first 0.1 ps.
In the high-frequency limit for the pump pulse the second

term of the Hamiltonian can be approximated by an effective
Hamiltonian describing the low-frequency dynamics of the
system [22,23],

Heff,k = −genv(t ) σpol�hf �
†
k σz�k,

where �hf = (h̄vFeEdr )
2/(h̄ωdr )3.

In addition to the unitary time evolution governed by
the Hamiltonian Hk we include Lindblad operators defined
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in the basis that diagonalizes the instantaneous Hamiltonian
Hdr,k(t ),

�k =Uk�k,

where

Uk =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1/
√

2 τze−iτzφk /
√

2 0

0 τzeiτzφk /
√

2 −1/
√

2 0

0 0 0 1

⎞
⎟⎟⎟⎠, (A4)

and φk is defined via

|k + e/h̄A|eiφk =
[

kx + e

h̄
Ax + i

(
ky + e

h̄
Ay

)]
.

In this basis we introduce

Lα = √
cα

⎛
⎜⎜⎜⎝

0 δα,1 δα,3 0

δα,2 0 δα,5 δα,7

δα,4 δα,6 0 δα,9

0 δα,8 δα,10 0

⎞
⎟⎟⎟⎠ for α = 1, 2, . . . , 10,

L11 = √
γzσz,

with for now arbitrary constants cα . Here, c5 and c6 corre-
spond to decay effects and γz corresponds to dephasing effects
in the singly occupied sector. Additionally, we explicitly allow
for the exchange of particles with the back gate. The timescale
and dynamics for the exchange of particles are set by the
damping constants c1–c4 and c7–c10.

We note that the transformation in Eq. (A4) is ill
defined when |k + e/h̄A| = 0. In this case Hk = 0 and
the instantaneous Hamiltonian is diagonal with respect
to any basis. We choose to implement the same Lind-
blad operators as above in the original AB basis for this
case.

We find that the resulting equations of motion for the
density matrix decouple into different sectors and write
the density matrix in the sector that is relevant for computing
the current as

ρk = σg + ρk,xσx + ρk,yσy + ρk,zσz + ρk,0σ
(0)
z + ρk,2σ

(2)
z .

The resulting equations of motion are

h̄∂tρk,x = δk+eAρk,z − εk+eAρk,y − [� + (c1 + c3 + c8 + c10)/2]ρk,x,

h̄∂tρk,y = εk+eAρk,x − [� + (c1 + c3 + c8 + c10)/2]ρk,y,

h̄∂tρk,z = δk+eAρk,x + c3(1/2 + ρk,0 − ρk,z ) − c4ρk,2 + c5(1/2 + ρk,0 − ρk,z ) − c6(1/2 + ρk,z − ρk,2)

− c7ρk,0 − c8(1/2 + ρk,z − ρk,2),

h̄∂tρk,0 = − (c7 + c9)ρk,0 − c10(1/2 + ρk,0 − ρk,z ) − c8(1/2 + ρk,z − ρk,2),

h̄∂tρk,2 = − (c2 + c4)ρk,2 + c3(1/2 + ρk,0 − ρk,z ) + c1(1/2 + ρk,z − ρk,2),

where

γ2 = (c5 + c6)/2 + 2γz,

εk+eA = 2τzvF[h̄|k| + ek · A/|k|],
δk+eA = 2τzvF[eA × k/|k|].

We note that while we give the equations of motion in the ba-
sis diagonalizing H0,k here, we implement them in the original
AB basis in the numerical simulations.

We choose the damping constants Boltzmann distributed

γ2 = 1/T2,

c5 = c6 exp(−2βε), c5 + c6 = 1/T1,

c1 = c2 exp[−β(−ε − μ)], c1 + c2 = 1/Tp,

c3 = c4 exp[−β(ε − μ)], c3 + c4 = 1/Tp,

c7 = c8 exp[−β(ε − μ)], c7 + c8 = 1/Tp,

and

c9 =c10 exp[−β(−ε − μ)], c9 + c10 = 1/Tp,

where ε = vF

√
(h̄kx + eAx )2 + (h̄ky + eAy)2 are the instanta-

neous eigenenergies.

This ensures that the ground state of the system without the
light field is Fermi distributed with chemical potential μ and
inverse temperature β = 1/(kBT ).

Note that T1 and T2 are the commonly introduced decoher-
ence measures. In analogy we define a third timescale Tp for
the exchange of particles with the back gate.

We solve the master equation numerically and then com-
pute the current for each momentum point,

jk =
〈
∂Hk

∂A

〉
= evF(τz〈σx〉ex + 〈σy〉ey),

where the Pauli matrices here refer to the singly occupied
sector and empty and doubly occupied modes do not con-
tribute to the current. The conductivity is then obtained as
σxy(k) = limEL→0 jy,k/EL. We perform the calculation of jy,k
at experimentally realistic values of EL, and have checked
that these values realize the linear response limit. Finally, we
define the conductivity density

σ̃xy = 1

A
σxy(k),

where A is the lattice size and the full conductivity

σxy =
∑

k

σ̃xy.
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We note that a similar method for the calculation of current
has been used in Ref. [34]. The crucial difference is that
we explicitly allow for the exchange of particles by includ-
ing the empty and the fully occupied mode. In particular
this also implies that we introduce a separate timescale for
particle-exchange processes Tp. Also in our case the trace
of the density matrix is ensured to be 1 at all times as in
Ref. [34]. Quantitatively the approach presented here yields
better agreement to experimental data from Ref. [16]. Fur-
thermore, including the empty and doubly occupied mode is
crucial for the calculation of the single-particle correlation
function.

APPENDIX B: ROTATING-WAVE APPROXIMATION
FOR GRAPHENE: RABI-BLOCH BANDS

We start from the graphene Hamiltonian from Eq. (A1)
with no longitudinal field,

Hk = H0,k + Hdr,k(t ).

The undriven Hamiltonian is diagonalized by

Hd
0 = U †H0U = h̄vFkσz,

U = 1/
√

2

(
1 1

eiφk −eiφk

)
,

eiφk = τzkx + iky

k
.

In this basis the driving Hamiltonian is

Hdr,k(t ) = eEdrvF

ωdr

(
τzsdr −iσpolcdr

iσpolcdr −τzsdr

)
,

where

sdr = sin(ωdrt − τzσpolφk ),

cdr = cos(ωdrt − τzσpolφk ).

Next, we do the rotating-wave approximation, keeping only
those terms nonoscillatory in the rotating frame. Then

Hdr,k(t ) ≈ σpoleEdrvF

2ωdr

(
0 −ie−iωdrt+iτzσpolφk

ieiωdrt−iτzσpolφk 0

)
.

In analogy to the Rabi problem the system can now be solved
analytically. The eigenenergies are ER,± = −h̄ωdr/2 ± h̄�R

and the eigenstates are

|ψ (t )〉 =|ψR,+(t )〉e−i�Rt + |ψR,−(t )〉ei�Rt ,

where

|ψR,±(t )〉 =
(−iσpoleiτzσpolφk

(
a ∓ a�−bλ

�R

)
e−iωdrt/2(

b ± b�+aλ
�R

)
eiωdrt/2

)
.

Furthermore,

� = ωdr − 2vFk

2
,

�R =
√

λ2 + �2,

λ = eEdrvF

2h̄ωdr
,

and the constants a and b are integration constants constrained
by normalizing |ψR,±(t )〉. The remaining freedom in a and b
determines the initial state. The band velocity in the y direc-
tion is immediately obtained as

v±
y (k) = ∂yER,±.

Further, note that

σpole
iτzσpolφk = τz(σpolkx + iky)

k
.

Next, we determine the instantaneous Berry curvature. For
this we need the eigenstates with respect to the original AB
basis, ∣∣ψAB

R,±(t )
〉 = U |ψR,±(t )〉.

The Berry connection is now given by

A±
j = i

〈
ψAB

R,±|∂ j |ψAB
R,±

〉
,

and as a result we obtain the Berry curvature as

�±(k) = ∂yAx − ∂xAy

= ±σpolvFλ
2

2k�3
R

± Re[(ky + iσpolkx )eiωdrt ]vFλ�

2k2�3
R

.

Finally, we can compute the resulting Hall conductivity from
Eq. (1) from the main text, where the Rabi occupations are
computed from the density matrix ρk as

nR,±(k) =〈
ψAB

R,±|ρk|ψAB
R,±

〉
.

Note that both the Berry curvature and the occupations
are time dependent. Therefore there is a time-independent
contribution from time-dependent curvature and occupations.
We have checked that this contribution is at least an order
of magnitude smaller than the time-independent contribu-
tion and hence the quantities can be averaged independently
�±(k, t )nR,±(k, t ) ≈ �±(k, t ) nR,±(k, t ). Hence we can drop
the second, time-dependent contribution to the Berry curva-
ture.

APPENDIX C: NUMERICAL RESULTS WITHIN
THE RABI APPROXIMATION

As described in the main text, mapping graphene onto
the Rabi problem is a good approximation close to the first
resonance. By the nature of the approximations made the
Rabi results are not valid close to the Dirac point and hence
the contribution of the Dirac point cannot be captured. We
have therefore shifted the curves in Fig. 3(b), such that only
the conductivity density of the first resonance is integrated.
For completeness we show the unshifted version in Fig. 6(a).
For the low dissipation considered the Dirac point obtains a
significant contribution that is larger than the contribution of
the first resonance. We also show results for higher dissipation
in Figs. 6(b) and 6(c), where the contribution of the Dirac
point is small.

APPENDIX D: CALCULATION OF SINGLE-PARTICLE
CORRELATION FUNCTION

Given a density matrix at a certain time ρ(t1) by the numer-
ical methods of Appendix A, the single-particle correlation
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FIG. 6. We depict the conductivity density, integrated over a disk
in momentum space of radius kr . For comparison, we show the
momentum-resolved Berry flux, integrated over the same disk in
momentum space, and the sum of the integrated Berry flux and the
integrated average band velocity. Both are obtained within the Rabi
approximation. In (c) the curves have been shifted such that their
value vanishes at h̄vF|kr| = 30 meV for a better comparison of the
contribution of the first resonance. In all plots we use Edr = 3 MV/m,
ωdr = 2π · 48 THz ≈ 200 meV/h̄, T = 80 K, EL = 0.84 kV/m,
μ = 0, and the driving pulse is ramped with a tanh over 1 ps.
(a) shows T1 = 50 ps, T2 = 10 ps, Tp = 20 ps, while (b) and (c) show
T1 = 4 ps, T2 = 0.8 ps, Tp = 1.6 ps.

function 〈c(t2)†c(t1)〉 can be calculated. The state is acted
upon with an annihilation operator c which gives a matrix of
the shape

cρ(t1) =

⎛
⎜⎝

0 0 0 0
r1 0 0 0
r2 0 0 0
0 r3 r4 0

⎞
⎟⎠.

This object is evolved to a later time t2 using the equations of
motion

ṙ1 =−r1(iμ + �1 + �3 + �4) − e−iφr2(+iνF |q| + �3 − �4),

ṙ2 =−r2(iμ + �1 + �3 + �4) − e+iφr1(+iνF |q| + �3 − �4),

ṙ3 =−r3(iμ + �2 + �3 + �4) − e+iφr4(−iνF |q| + �3 − �4),

ṙ4 =−r4(iμ + �2 + �3 + �4) − e−iφr3(−iνF |q| + �3 − �4),

where

�1 = 1
2 (γ (ud )

− + γ
(ld )
− + γz ), �2 = 1

2 (γ (uu)
+ + γ

(lu)
+ + γz ),

�3 = 1
4 (γ (b)

− + γ
(uu)
− + γ

(ud )
+ ), �4 = 1

4 (γ (b)
+ + γ

(lu)
− + γ

(ld )
+ ).

Here, it is q = qx + iqy the momentum and φ = arg(q) its
phase. μ is the chemical potential.

At any time t2 this state can be acted upon with c† and
traced over to give the correlation function.

The occupations of the system are then calculated using an
approach inspired by trARPES [36],

n(k, ω) = 1

t − t0

∫ t

t0

∫ t

t0

〈c†(t2)c(t1)〉eiω(t2−t1 )dt1dt2

= 2

t − t0
Re

[∫ t

t0

∫ t

t1

〈c†(t2)c(t1)〉eiω(t2−t1 )dt2dt1

]
.

The occupations of the individual Floquet bands are as-
signed by integrating n(k, ω) over frequency intervals of
multiples of ωd/2, starting and ending centered at the band
gaps,

nα,±(k) =
∫ (α+ 1

4 ± 1
4 )ωd

(α− 1
4 ± 1

4 )ωd

n(k, ω)dω.

The effective Floquet band occupations are found by summa-
tion over the Floquet index,

n±(k) =
∑

α

nα,±(k).

APPENDIX E: FLOQUET-BERRY CURVATURE
CALCULATION

Here, we present the details on the calculation of the Berry
curvature of Floquet bands. For each momentum k we use the
quasienergy operator in the extended Floquet-Hilbert space
(for details, see, for example, Ref. [39])

Q =

⎛
⎜⎜⎜⎝

. . .
...

...
. . .

· · · H0 H1 · · ·
· · · H−1 H0 + h̄ωdr · · ·
. . .

...
...

. . .

⎞
⎟⎟⎟⎠,

where

Hm =
∫

dt e−imωdrt [H0,k + Hdr,k(t )]

and

genv(t ) = 1.

In order to get the Floquet eigenstates and eigenenergies
we diagonalize Q after truncating such that −4 � m � 4.
The Floquet band structure is obtained from combining the
eigenenergies of different momentum points. Subsequently
we use the method presented in Ref. [40] in order to determine
the Berry curvature numerically. Finally, the Floquet band
velocity is obtained by numerically computing the momentum
derivative of the Floquet eigenenergies.
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FIG. 7. We show the conductivity density σ̃xy integrated over
momenta in an interval on the y axis, specifically fulfilling kx = 0,
|ky| < kmax

y . This integrated conductivity agrees with the sum over
the Berry flux and the average band velocity, integrated over the same
interval. The parameters are Edr = 26 MV/m, ωdr = 2π · 48 THz ≈
200 meV/h̄, T1 = 1 ps, T2 = 0.2 ps and Tp = 0.4 ps, T = 80 K, and
EL = 1.7 kV/m. All observables are shown after a steady state is
achieved for a tanh-type ramp of the driving field strength.

APPENDIX F: WEYL GAUGE

Here, we discuss the meaning of different gauge choices
and their importance for our method. For all our calcu-
lations we choose the Weyl gauge, i.e., we choose the
scalar potential φ = 0 and the time-dependent vector poten-
tial A(r, t ) = − ∫

dt E(r, t ). Using the Peierls substitution
k → k − q

h̄ A(r, t ) this leads to a time-dependent shift of the
momentum in the Hamiltonian. This can be viewed as a
time-dependent shift of the band structure. The Weyl gauge
is particularly useful for an electric field that is spatially con-
stant within the graphene sheet in the x-y plane. In this case
the vector potential within the x-y plane can also be chosen
independent of position and hence the contribution to the
Hamiltonian decouples in momentum space. As an example
for the choice of gauge we consider a uniform electric field
E = E êx and vanishing magnetic field B = 0. For this case the
Weyl gauge implies A = −Et . The vector potential is indeed
independent of position. An alternative gauge choice would
be a special case of the Coulomb gauge, A = 0. This choice
implies φ = Ex which can be viewed as a tilt of the lattice
potential. The resulting Hamiltonian obtains a nontrivial spa-
tial dependence and hence is no longer diagonal in momentum
space.

APPENDIX G: HALL CONDUCTIVITY FOR A CUT
ALONG THE Y DIRECTION

In Fig. 7 we display the momentum-resolved contributions
to the conductivity, integrated over the momentum state in-
terval from −kmax

y to kmax
y on the ky axis. The corresponding

integral over the contributions to nv̄/EL + �xy are depicted
as well. We find essentially perfect agreement for these
quantities. Hence, the deviations between these quantities in
Fig. 4(a) in the main text arise predominantly from the kx

direction, where the average band velocity vanishes and only
the Berry flux contributes.

FIG. 8. (a) Resonance-resolved conductivity dichroism as a
function of electric-field strength. The solid black line shows the
full current, while the dashed-dotted blue line shows only the con-
tribution from the gap at the Dirac point and other lines show the
contributions up to and including the nth resonance as indicated in
the legend. (b) Gap sizes as a function of electric-field strength.
The dashed-dotted blue line shows the gap at the Dirac point, while
other lines show the gaps at the nth resonance as indicated in the
legend. The dashed gray line shows the approximate scale of temper-
ature, damping, and dephasing effects kBT ≈ h̄/T1 ≈ 6 meV. The
parameters used are ωdr = 2π · 48 THz ≈ 200 meV/h̄, T1 = 100 fs,
T2 = 20 fs, Tp = 40 fs T = 80 K, EL = 1.7 kV/m, μ = 0, and the
envelope of the driving pulse is a tanh-type interpolation from 0 to 1,
that reaches 1 after 1 ps.

APPENDIX H: SUBSEQUENT OPENING OF GAPS

For larger electric field strength it is no longer sufficient
to consider the first resonance only. The contribution in the
high-frequency limit without damping has been analyzed in
Refs. [22–26]. In this limit there are no resonant contributions
and the total Hall current is σxy = −2 e2

h . For this result it is
assumed that only the lower graphene band is occupied. Under
experimental conditions finite frequency driving leads to exci-
tations into the upper graphene band. For intermediate driving
strength the Berry curvature is still well localized around
the Dirac point and individual resonances. We can therefore
investigate each of the contributions separately. Depending on
the strength of damping and dephasing effects one obtains a
steady state with significant occupation in the upper graphene
band close to the Dirac point [see Fig. 1(a)]. The upper band
has opposite Berry curvature and hence contributes to the Hall
current with opposite sign. Hence the Hall current arising
from the Dirac point is significantly reduced for experimental
conditions. Since the occupation of the lower band is always
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FIG. 9. Integrated Hall conductivities. We show the sum of the
conductivity for all momenta smaller than a threshold value as a
function of threshold momentum. The first, second, and third res-
onance are indicated by dashed lines. We use ωdr = 2π · 48 THz ≈
200 meV/h̄, T1 = 1 ps, T2 = 200 fs, Tp = 200 fs, T = 80 K, EL =
1.7 kV/m, μ = 0, and the envelope of the driving pulse is a tanh-type
interpolation from 0 to 1, that reaches 1 after 1 ps.

larger than the one of the upper band the net contribution from
the Dirac point is always negative.

The main resonant contribution comes from those gaps that
are lying on the original lower Dirac cone. For these gaps the
Floquet band below the gap has positive curvature while the
band above has equal and opposite curvature. Hence for equal
occupation of both bands close to the gap, there is no net
contribution to the current. This is the case for higher-order

gaps with a magnitude smaller than temperature and damping.
We say that these gaps are closed [see Fig. 8(b)]. In Fig. 8
only the first gap is open for electric-field strengths smaller
than 8 MV/m. In this regime the current is well described
by the Rabi-Berry curvature. For field strengths larger than
10 MV/m we expect the current arising from the first reso-
nance to saturate. The reduction that can be seen in this regime
in Fig. 8 is a numerical artifact that we explain in Appendix I.
While the current arising from the first resonance saturates,
the second resonance gap opens and for higher Edr leads to
a further increase of the Hall conductivity. At even higher
field strengths the higher-order gaps open subsequently. For
each gap the net contribution to the current is positive since
there is more occupation in the band below the gap than in the
one above. Hence the total resonant contribution is opposite to
the high-frequency contribution. Furthermore, we find numer-
ically that the magnitude of the high-frequency contribution is
always smaller than the magnitude of the resonant contribu-
tions and usually is a minor effect. This is in agreement with
the sign of the current in Ref. [16].

APPENDIX I: RESONANCE-RESOLVED CONDUCTIVITY
AND RESONANCE BROADENING

For low driving field strength Edr the current is well lo-
calized around individual resonances. In contrast, for large
Edr resonances start overlapping and it is therefore difficult
to identify the current arising from individual resonances.
We show an example of this phenomenon in Fig. 9. For low
values of Edr there is no contribution to the current in between
resonances. Hence the integrated conductivity shown in Fig. 9
is constant. For larger values of Edr resonances get broadened

FIG. 10. Circular dichroism of the transverse conductivity. (a) shows the total conductivity as a function of applied chemical potential.
(b)–(e) show the momentum-resolved conductivity for several different chemical potentials as indicated by black squares in (a). The panels are
aligned in the same order as the squares in (a). Black circles denote the position of the first bare resonance 2vFk = ωdr. For these panels we
average the conductivity of opposite momentum modes σ y(k) = [σy(k) + σy(−k)]/2 and for both Dirac points. The center of each panel (0,0)
is positioned at the Dirac point. The parameters for all panels are Edr = 1 MV/m, ωdr = 2π · 48 THz, T1 = 100 fs, T2 = 20 fs, Tp = 25 fs,
T = 80 K, EL = 840 V/m, and genv(t ) is a Gaussian envelope with a full width at half maximum tFWHM = 1 ps.
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FIG. 11. (a) Chemical-potential-resolved circular dichroism of the transverse conductivity. Black circles show experimental data from
Ref. [16] and the solid red line shows results from our numerical simulation. Here, μ is the chemical potential of the initial state and we
do not allow for the exchange of particles during the simulation. (b) Fluence dependence of the current dichroism for several values of
the particle-exchange timescale Tp, as indicated in the legend. We see that a value in the range of Tp = 30–50 fs is consistent with the
experiment. For both panels the parameters for the numerical simulation are ωdr = 2π · 48 THz ≈ 200 meV/h̄, T1 = 100 fs, T2 = 20 fs,
T = 80 K, EL = 1.7 kV/m, and the driving pulse has a Gaussian envelope with electric-field strength FWHM of

√
2 ps, corresponding to

intensity FWHM of 1 ps. Furthermore, we use Edr = 26 MV/m and Tp = 36 fs in (a) and μ = 0 in (b). For details on the experimental data,
see Ref. [16].

and there is no such constant regime. This is an indication
that the contribution of neighboring resonances is now over-
lapping. Since the contribution from resonances is always
negative below and positive above the resonance, overlapping
resonances lead to canceling contributions.

When we compute the resonance-resolved conductivity
as in Fig. 8, we do this by integrating the current up to
the momentum value halfway in between the corresponding
resonances. In other words we use the corresponding value of
the curve in Fig. 9. Once resonances start overlapping the con-
tributions cancel and hence lead to decreasing contributions
of the inner resonances. This is the reason why the curves in
Fig. 8 decrease.

APPENDIX J: CHEMICAL POTENTIAL DEPENDENCE
AT LOW FLUENCE

The momentum-resolved conductivity allowed us to iden-
tify the different contributions to the transverse current. In
experiment, however, such data are not easily accessible. In-
stead it is possible to tune the applied back gate, i.e., the
chemical potential [16]. When increasing the chemical poten-
tial, momenta close to the Dirac point are fully occupied and,
due to Pauli blocking, do not contribute to the conductivity.
For momentum modes smaller than the first bare resonance
negative contributions to the conductivity dominate. For in-
creasing chemical potential conductivity from these modes

becomes suppressed and the total conductivity increases (see
Fig. 10). Near the first resonance the situation reverses. Now
momentum modes above the resonance become fully occu-
pied and increasing the chemical potential further leads to
decreasing total conductivity. Hence the chemical-potential-
resolved transverse conductivity shows a clear signature of the
resonant behavior.

APPENDIX K: COMPARISON OF FIXED CHEMICAL
POTENTIAL AND FIXED DENSITY

For the simulation of the experiment from Ref. [16] it is
crucial to work at a fixed chemical potential instead of a
fixed density. To illustrate the difference we show a simulation
enforcing fixed density for each momentum mode during the
time evolution in Fig. 11(a). The parameters are the same as
in Fig. 2(a) in the main text. The shape of the curve is funda-
mentally different from the experimental data. We conclude
that the exchange of electrons with nonilluminated regions of
the graphene sample as well as with the substrate is important
even on the short timescales of the circularly polarized pulse.

APPENDIX L: FLUENCE DEPENDENCE

For completeness and for better comparison to the exper-
iments in Ref. [16] we show the data from Fig. 2(b) in the
main text as a function of fluence instead of peak driving field
in Fig. 11(b).
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2.7 Publication II: Observing light-induced Floquet band gaps
in the longitudinal conductivity of graphene

L. Broers and L. Mathey — Commun Phys 4, 248 (2021)

This work was motivated by the prospect of the direct experimental observation of
the light-induced Floquet band gap at the Dirac point of graphene driven by circularly
polarized light. This Floquet gap displays non-trivial topological properties and is of
particular interest in the context of the anomalous Hall effect, studied in Publication I.
In this work, I have studied the longitudinal optical conductivity at terahertz frequen-

cies of driven dissipative graphene as means of observing the light-induced Floquet band
gaps. I have implemented and utilized numerical methods expanding on those of Publi-
cation I, and found that inter-band transitions across the Floquet-Bloch bands lead to
resonant features in the optical conductivity. The locations of these features agree with
the predicted locations of the gaps of the Floquet-Bloch band structure as a function
of driving intensity. However, the signals of the many light-induced Floquet band gaps
occur on comparable energy scales, such that their signals in the optical conductivity
tend to obscure each other. I have identified a particular regime of probing at which the
gap at the Dirac point is clearly visible and observable in isolation of the higher-order
Floquet gaps. This is achieved by driving the system with an intensity such that the
size of the gap at the Dirac point is half the size of the driving photon energy, which is
a regime the other light-induced gaps do not reach. This leaves the signal provided by
the gap at the Dirac point observable under realistic conditions.
Further, my results show that the optical conductivity reverses its sign under certain

driving and probing conditions. In general, increasing the driving field strength leads to
Floquet band gaps opening and increasing in size up to a certain point. Increasing the
driving field strength beyond this leads to the Floquet band gaps decreasing in size as a
function of the field strength. It is in this regime of decreasing gap size, where the Floquet
band population located at a given gap becomes inverted in this model and the resulting
inter-band transitions contribute to the longitudinal current negatively. Probing at such
a negatively contributing Floquet band transition under the condition that there is no
other gap comparable in size obscuring the signal, leads to a sign change of the optical
longitudinal conductivity. Such a negative optical conductivity is equivalent to optical
gain at the corresponding frequency, which suggests the possibility of utilizing this effect
in a type of graphene-based gain medium. This has motivated further work in exploring
the possibility of obtaining coherent optical gain at terahertz frequencies from driven
graphene or similar materials by this Floquet-Bloch band inversion mechanism.
My contribution to this work consisted of conceiving the project, creating the nu-

merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.
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ARTICLE

Observing light-induced Floquet band gaps in the
longitudinal conductivity of graphene
Lukas Broers 1,2✉ & Ludwig Mathey1,2,3

Floquet engineering presents a versatile method of dynamically controlling material prop-

erties. The light-induced Floquet-Bloch bands of graphene feature band gaps, which have not

yet been observed directly. We propose optical longitudinal conductivity as a realistic

observable to detect light-induced Floquet band gaps in graphene. These gaps manifest as

resonant features in the conductivity, when resolved with respect to the probing frequency

and the driving field strength. The electron distribution follows the light-induced Floquet-

Bloch bands, resulting in a natural interpretation as occupations of these bands. Furthermore,

we show that there are population inversions of the Floquet-Bloch bands at the band gaps for

sufficiently strong driving field strengths. This strongly reduces the conductivity at the cor-

responding frequencies. Therefore our proposal puts forth not only an unambiguous

demonstration of light-induced Floquet-Bloch bands, which advances the field of Floquet

engineering in solids, but also points out the control of transport properties via light, that

derives from the electron distribution on these bands.

https://doi.org/10.1038/s42005-021-00746-6 OPEN

1 Center for Optical Quantum Technologies, University of Hamburg, Hamburg, Germany. 2 Institute for Laser Physics, University of Hamburg,
Hamburg, Germany. 3 The Hamburg Center for Ultrafast Imaging, Hamburg, Germany. ✉email: lbroers@physnet.uni-hamburg.de

COMMUNICATIONS PHYSICS |           (2021) 4:248 | https://doi.org/10.1038/s42005-021-00746-6 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;



Controlling solids with light constitutes a modern approach
to induce novel functionalities. A specific framework within
this broader effort is Floquet engineering. Floquet engi-

neering refers to inducing dynamics that are captured by an
effective Floquet Hamiltonian in a system by periodic driving. For a
non- or weakly interacting system this approach describes effective
single-particle states that form a natural basis for the driven system.
These states are the Floquet-Bloch bands of the electrons, in analogy
to the Bloch bands of the equilibrium system. These Floquet-Bloch
bands can have qualitatively distinct features from the Bloch bands
of the non-driven system1–4. A striking example are Floquet
topological insulators5–7, for which applications in spintronics8

have been discussed. A general overview on spintronics can be
found in9. A specific realization of Floquet topological insulators is
monolayer graphene illuminated with circularly polarized light, for
which the band structure approaches the Haldane model in the
high-frequency limit10,11. However, while the ground state of the
equilibrium Haldane model forms indeed a topological insulator,
which manifests in a quantized Hall conductance, the Hall con-
ductance of optically driven graphene is not topologically quantized,
but of geometric-dissipative origin12,13. This observation is part of
the larger challenge of an unambiguous detection of the Floquet-
Bloch bands in a solid. We note that the geometric properties of
bands in periodically driven lattices have been demonstrated in
ultracold atom experiments14–16 as well as helical wave guides17,18

and classical settings19. Signatures of Floquet-Bloch bands have
been seen in angle-resolved photoelectron spectroscopy20 and
approaches for observing related pseudospin textures have been
proposed21,22. In this context, the effects of Auger recombination23

and scattering decoherence24 on the electron dynamics in graphene
have been discussed. The transport properties of similar Floquet
systems have been discussed25 and the high-frequency probing limit
has been explored26. However, a smoking-gun in the transport
measurements of solids is lacking.

In this paper, we propose to detect light-induced Floquet band
gaps in graphene via the optical longitudinal transport. We deter-
mine the optical conductivity as a function of the probing frequency
and the driving field strength, which displays resonant features. We
present an interpretation of these features in terms of the Floquet-
Bloch band dispersion and the effective occupation of these states.
These occupations are determined by the dissipation and the
driving field, which balance out to form the steady state. We include
the dissipation processes in our master equation approach that we
use to describe the system. With this, we attribute the observable
resonant features in the optical conductivity to two transition
processes. One occurs between bands inside the same Floquet zone
and the other between adjacent bands of neighboring Floquet zones.
These processes compete in their impact on the optical con-
ductivity, which can result in vanishing and even negative optical
conductivity for specific frequencies and driving field strengths. In
general, we show that the conductivity depends on the relative
occupation of the Floquet bands. We also point out that the relative
occupation is in qualitative agreement with a comoving band
velocity, to be defined below. In particular, we show that there are
regimes of driving field strengths that show an effective inversion of
Floquet band populations. These are in the regimes in which
negative optical conductivity is achieved. Therefore, as a second
point besides the demonstration of Floquet-Bloch bands in solids,
our proposal shows non-trivial control of the transport properties of
solids, induced by light.

Results and discussion
Model Hamiltonian. We consider a circularly polarized laser
with frequency ωd= 2π × 48 THz ≈ 200 meV and variable field
strength Ed, which illuminates a graphene layer from

perpendicular direction. The electromagnetic forces drive the
electrons into a steady state. We propose to measure the long-
itudinal AC conductivity of this steady state in the optical fre-
quency domain. The conductivity displays frequency regimes in
which its magnitude is increased compared to the non-driven
graphene layer, and regimes in which it is decreased. These fre-
quency regimes derive from resonances between the Floquet
states, which in turn depend on the driving field strength. As a
result, these frequency regimes can be tuned to overlap, resulting
in a partial cancellation. In particular, the band gap Δ0 at the
Dirac point can be overshadowed, in general, by other features.
However, we point out a regime in which it can be identified
unambiguously.

The Hamiltonian of light-driven graphene, close to the Dirac
point is given by

H ¼ ∑
k
cykhðkÞck; ð1Þ

where ck ¼ ðck;A; ck;BÞT and ck,i are the fermionic annihilation
operators of an electron with momentum k and sublattice index
i=A, B. Invoking the edge-bulk correspondance, the transport
properties of the periodic bulk captured by Eq. (1) directly
translate to localized edge modes of finite systems. The
Hamiltonian of a single momentum k is

hðkÞ ¼ _vFðqxσx þ qyσyÞ; ð2Þ
with

qx ¼ kx þ
Ed

ωd
sinðωdtÞ �

EL

ωL
cosðωLtÞ; ð3Þ

qy ¼ ky þ
Ed

ωd
cosðωdtÞ; ð4Þ

where vF ≈ 106 m s−1 is the Fermi velocity. ki are the momentum
components and σi are the Pauli matrices. Ed and ωd are field
strength and frequency of the driving laser. EL and ωL are the
same quantities for the longitudinal probing field.

We simulate the dynamics via a master equation approach,
expanding on previous work by some of the authors12. The
density matrix of the system factorizes in momentum space, as
ρ=∏kρk. Each ρk matrix operates on a four dimensional Hilbert
space, given by the states 0j i, cyk;A 0j i, cyk;B 0j i, cyk;Bcyk;A 0j i. We
include doubly and unoccupied states to determine two-time
correlation functions, and thereby frequency-resolved quantities.

In addition to the unitary time evolution induced by the
Hamiltonian in Eq. (2), we include dissipation via Lindblad
operators defined in the instantaneous eigenbasis of the driven
system, to describe the dissipative environment due to degrees of
freedom not included in the Hamiltonian. We include a
dephasing term γz, a decay term γ− and a term with decay rate
γbg that models particle exchange of the graphene layer to a
supporting substrate backgate. This model provides a realistic
discription of the non-equilibrium electron dynamics12.

We choose the coefficients γz= 1 THz, γ−= 2.25 THz and
γbg= 2.5 THz. This sets the scale for the broadening of the
effective bands in the single-particle correlation function as well
as the optical conductivity. These values are a factor of 10 smaller
than those estimated12 for the experimental setup of McIver
et al.13. Our predictions apply to high-mobility samples, e.g., BN-
encapsulated graphene. For larger values, such as those that are
realized in the work of McIver et al.13, resolving the gap features
that we describe in the following, would require larger driving
frequencies and stronger driving. Throughout this work we use
the temperature T= 80 K, which is the same as the setup of
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McIver et al.13. We fix the value of the chemical potential at
μ= 0.

Electron distribution. As a first observable we display the
momentum-resolved and energy-resolved electron distribution
inspired by Freericks et al.27

nðk;ωÞ ¼
Z τ2

τ1

Z τ2

τ1

Gðk; t2; t1Þ
eiωðt2�t1Þ

ðτ2 � τ1Þ2
dt2dt1; ð5Þ

which is manifestly real-valued with

Gðk; t2; t1Þ ¼ hcyk;Aðt2Þck;Aðt1Þi þ hcyk;Bðt2Þck;Bðt1Þi ð6Þ
for which its complex conjugate corresponds to the exchange of t1
and t2. We use the time interval [τ1, τ2] as the probing interval.
We choose τ1 such that the system has reached its steady state.
τ2− τ1 is a sufficiently long probing time of the order of hundreds
of driving periods 2π/ωd that is also commensurate with the
probing period 2π/ωL. We note that this quantity provides a
prediction for trARPES measurements27. In Fig. 1 we show
n(k= ∣k∣, ω) for the driving field strength Ed= 26Me Vm−1. We
note that a similar result was presented in previous work by some
of the authors12. The electron distribution of the steady state is
consistent with the effective band structure predicted by Floquet
theory and identifies the non-equilibrium electron occupation of
these Floquet-Bloch bands.

We label the band gaps as Δm, based on their location mωd/
(2vF) in momentum space for small driving field strength Ed→ 0,
as shown in Fig. 1. Due to the periodicity in frequency space of
the Floquet spectrum, there is a complementary gap ωd− Δm for
any given band gap Δm, with m > 0. These complementary gaps

are also visible in the optical conductivity of the system. They
reduce the conductivity at the corresponding frequency, rather
than enhance it. The gap Δ0 at the Dirac point does not exhibit
this behavior, as discussed later.

Optical conductivity. The second observable that we present is
the longitudinal optical conductivity. We propose to measure this
quantity experimentally, to compare to the predictions made
here. In Fig. 2 we show the real part of the total optical con-
ductivity of the system as a function of the driving field strength
Ed. This is obtained from our master equation approach as

σrðωLÞ ¼ Re
jxðωLÞ
ExðωLÞ

� �
; ð7Þ

with the longitudinal current and electric field

jxðωLÞ ¼ nsnvevF ∑
k

Z τþ2π
ωL

τ
TrðρkðtÞσxÞeiωLtdt; ð8Þ

ExðωLÞ ¼
Z τþ2π

ωL

τ
ðEd cosðωdtÞ þ EL sinðωLtÞÞeiωLtdt; ð9Þ

where τ is a point in time where the system has reached its steady
state. ns= nv= 2 are the spin- and valley-degeneracies. e is the
electron charge. σr(ωL) is obtained for the probing field EL= 10
Vm−1. We have verified that the conductivity obtained in this
manner is the linear response and that the sum over k includes
sufficiently many points surrounding the Dirac point.

As we demonstrate in Fig. 2a, σr(ωL) displays resonant features
that match the band gaps of the Floquet spectrum. The energy
gap Δ0 increases with increasing field strength Ed, in a

Fig. 1 Electron distribution of light-driven graphene, revealing its Floquet states. The electron distribution n(k, ω) of graphene driven with circularly
polarized light at the driving frequency ωd= 2π × 48 THz≈ 200meV and field strength Ed= 26MVm−1. The distribution n(k, ω) depends only on the
momentum k= ∣k∣. This quantity displays the steady state occupation of the Floquet-Bloch band structure. The one-photon resonance gap Δ1 at k=ωd/
(2vF), the two-photon gap Δ0 at the Dirac point, and the two-photon gap at k=ωd/vF are highlighted for clarity. vF is the Fermi velocity. Additionally, the
complementary gaps ωd−Δ1 and ωd−Δ2 are indicated. The dotted lines indicate the Floquet energies of the first Floquet zone.
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monotonuous fashion. The energy gaps Δm, with m > 0, first
increase with Ed, then reach a maximum at Ed ¼ EðmÞ

d;max, then

decrease, and ultimately reach 0 at Ed ¼ EðmÞ
d;band. At this driving

strength the gap is located at k= 0 and merges with Δ0.
The magnitude of σr(ωL) at the resonance Δ1, i.e., the

magnitude of σr(Δ1), displays a maximum for Ed<E
ð1Þ
d;max, relative

to its background, and a minimum for Ed>E
ð1Þ
d;max. The magnitude

of σr(ωL) at ωd− Δ1, displays the complementary behavior.
σr(ωd− Δ1) has a minimum for Ed<E

ð1Þ
d;max, and a maximum for

Ed>E
ð1Þ
d;max. Note that this does not happen for Δ0 due to the lack

of a complementary gap ωd− Δ0 as can be seen in Figs. 1 and 3.
We note that in the limit of Ed→ 0, the optical conductivity

σr(ωL) approaches the value 1
4
e2
_ for non-zero frequencies. An

example for this is visible in Fig. 2b, for ωL= 2π × 24 THz.
Additionally, we obtain a peak at ωL= 0, which is the Drude peak
broadened by the dissipative terms. We show the real part of the
longitudinal conductivity σr(ωL) for Ed= 0 in Supplementary
Note 2.

We obtain analytical expressions for Δ0 and EðmÞ
d;band by

considering the Hamiltonian in Eq. (2) at the Dirac point and
without probing, i.e., k= 0 and EL= 0. This has the time-
dependent Rabi solutions

þj i � eiðωdt=2þπ=4Þ cosðΩtÞ � iωd sinðΩtÞ
2Ω

e�iωdt Ed sinðΩtÞ
Ωω

 !
; ð10Þ

�j i � e�iðωdt=2þπ=4Þ �eiωdt Ed sinðΩtÞ
Ωωd

cosðΩtÞ þ iωd sinðΩtÞ
2Ω

 !
; ð11Þ

where

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2FE

2
d

ω2
d

þ ω2
d

4

s
: ð12Þ

The gap at the Dirac point is given by Δ0= 2Ω− ωd. This
expression is also the Aharanov-Anandan phase of this system2.
In the weak driving limit this gap follows the expected
perturbative behavior11Δ0 � v2FE

2
d=ω

3
d whereas in the strong

driving limit it develops a linear dependence on Ed as
Δ0 ≈ vFEd/ωd. We use the full expression for Δ0 to find the
driving strengths EðmÞ

d;band, since they occur whenever the gap Δ0

spans a multiple of ωd. By setting 2Ω− ωd=mωd, m 2 N, we
find

EðmÞ
d;band ¼ v�1

F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
2
þm2

4

r
ω2
d:

ð13Þ

We display the Dirac gap in Fig. 3, and compare it to the
electron distribution at k= 0, of the steady state. We observe that
the two maxima of the electron distribution that emerge from
ω= 0 follow the prediction of ±Δ0, even as Δ0 grows larger than
the Floquet zone boundary at ωd. Therefore, Δ0 is a more natural
energy scale to predict the resonances at k= 0 for large driving
intensities, than the direct band gap that is strictly smaller than
ωd. For increasing field strength Ed, the occupation of the upper

Fig. 2 Longitudinal optical conductivity of light-driven graphene. The real
part of the optical conductivity of graphene driven at the frequency
ωd= 2π × 48 THz≈ 200meV as a function of the driving field strength Ed
(a) and a cut at half the driving frequency ωL=ωd/2= 2π × 24 THz (b).
The dashed lines show the various band gaps Δm as given by Floquet
theory. The gap Δ0 becomes clearly visible above values of
ωL≈ 2π × 14 THz≈ 60meV and Ed≈ 28MVm−1. We also see the
complementary resonant features at ωd−Δm, with m > 0.

Fig. 3 Electron distribution at the Dirac point. The electron distribution
n(k= 0, ω) at the Dirac point as a function of the driving field strength Ed.
The driving frequency is ωd= 2π × 48 THz≈ 200meV. The scaling
behavior of the gap at the Dirac point is Δ0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2FE

2
d=ω

2
d þ ω2

d=4
q

� ωd,
where vF is the Fermi velocity. The vertical dotted line indicates Ed ¼
Eð1Þd;band: The horizontal dotted lines indicate Floquet zone boundaries. The
dashed lines show the Floquet energies at the Dirac point (See
Supplementary Note 1) that are formally constrained to be inside the first
Floquet zone. The occupations stay confined within the Floquet bands
adiabatically connected to the bare graphene and one replica outwards.
There are no complementary gaps at k= 0.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00746-6

4 COMMUNICATIONS PHYSICS |           (2021) 4:248 | https://doi.org/10.1038/s42005-021-00746-6 | www.nature.com/commsphys



two bands decreases. The occupation of complementary gaps is
zero throughout Fig. 3.

As visible in Fig. 2a, the conductivity vanishes around the
probing frequency ωL ≈ 2π × 12 THz ≈ 50meV and the driving
field strength of Ed ≈ 39MVm−1. Here the first gap Δ1 decreases
with increasing Ed and creates a negative contribution that
suppresses σr(ωL) to zero. For higher order gaps, e.g., Δ2 and Δ3 in
Fig. 2a, the same phenomenon even leads to a sign change in the
conductivity. Whenever a gap is in the regime of decreasing with
increasing Ed, and no other resonance contributes positively and
too strongly to the conductivity, the negative contributions can
cancel the background and result in net negative optical
conductivity. Such a total negative conductivity in the system
amounts to an out-of-phase response to a probing field with a
probing frequency in the regime in which σr(ωL) is negative. In
principle this can be utilized to obtain electrical gain out of the
system, where the required energy is effectively taken from the
driving.

Momentum-resolved conductivity. In order to gain further
insight into the origin of the features in the total optical con-
ductivity shown in Fig. 2, we explore the momentum resolved
contributions to the conductivity. In Fig. 4 we resolve the con-
tributions to the conductivity along the kx and ky directions
relative to the Dirac point in momentum space, defined as

~σrðk;ωLÞ ¼
nsnvevFjkj
ExðωLÞ

Z τþ2π
ωL

τ
TrðρkðtÞσxÞeiωLtdt: ð14Þ

Here, we include the linear scaling with the absolute momenta ∣k∣
in polar coordinates. Direct interband transitions between
neighboring Floquet bands give rise to resonant features in
~σrðk;ωLÞ that match the Floquet band energy differences Δϵ(k)
and ωd− Δϵ(k) (See Supplementary Note 1). These resonant
features contribute to the conductivity with alternating signs. The
sign changes occur close to the band gap locations, but slightly
shifted towards (away from) the Dirac point in case the gap size
increases (decreases) with respect to the field strength Ed. For
gaps that do not change with respect to Ed, i.e., gaps at their
maximum, this shift vanishes. Therefore, the accumulated con-
tributions across gaps net either positive or negative conductivity
depending on the change in gap size with respect to field strength
Ed. This is consistent with the enhancements and reductions in
σr(ωL) at the gaps Δm, with m > 0, and their complementary gaps
ωd− Δm, seen in Fig. 2a.

For probing frequencies ωL that are not resonant with a given
band gap, ~σrðk;ωLÞ does not vanish in general. This results in a
background conductivity that can obscure the gap Δ0 at the Dirac
point in particular, as is the case for Ed<E

ð1Þ
d;max in Fig. 2a. Since

the band gaps Δm, with m > 0, and their complementary gaps
ωd− Δm have a maximum at the field strength Ed ¼ EðmÞ

d;max, there
is always a range that no gap Δm, with m > 0, reaches that is
centered around ωL= ωd/2. In this range, it is the gap Δ0 that is
visible predominantly. The overall behavior of the gaps is self-
similar with respect to the driving frequency ωd. Therefore in this
system, there always exists a reliable range of probing frequencies
where the gap Δ0 can be observed.

The Floquet interband transitions resonant with Δϵ(k) occur
inside a given Floquet zone. The ones resonant with ωd− Δϵ(k)
occur across Floquet zone boundaries. Hence, we refer to them as
intra-Floquet ~σ intrar ðk;ωLÞ and inter-Floquet ~σ interr ðk;ωLÞ contri-
butions to the conductivity, respectively. To distinguish the two
we write

~σrðk;ωLÞ ¼ ~σ intrar ðk;ωLÞ þ ~σ interr ðk;ωLÞ þ ~σbgr ðk;ωLÞ; ð15Þ
where ~σbgr ðk;ωLÞ is a remaining background contribution
accounting for the ωL→ 0 behavior in ~σrðk;ωLÞ. Figure 4b shows
that σbgr ðky;ωLÞ � 0. We fit a function of two Lorentzians located
at Δϵ(k) and ωd− Δϵ(k) with the same fixed width Γ= 1 THz to
the numerical results of ~σrðky;ωLÞ. Specifically, we use

~σ fitr ðky;ωLÞ ¼
Γ

π

~σ intrar ðkyÞ
Γ2 þ ðωL � ΔϵÞ2

þ Γ

π

~σ interr ðkyÞ
Γ2 þ ðωL � ωd þ ΔϵÞ2

ð16Þ

as a fitting function.
The conductivity features derive from the transitions between

the Floquet bands, and are therefore related to the occupation of
these bands. We define the relative occupation

ΔnðkÞ ¼ ∑
m2Z

n�mðkÞ � nþmðkÞ; ð17Þ

where n±
m ðkÞ is the occupation at momentum k of the mth upper

(lower) Floquet band given by integrating n(k, ω) from ðm�
1
4 ±

1
4Þωd to ðmþ 1

4 ±
1
4Þωd.

Figure 5 shows the momentum-resolved intra-Floquet con-
ductivity ~σ intrar ðkyÞ which is determined via fitting as described
above, as well as the effective relative occupation Δn(k) of the

Fig. 4 Momentum-resolved optical conductivity of light-driven graphene. The momentum-resolved contributions to the optical conductivity of driven
graphene along the kx (a) and ky (b) momentum directions. The driving frequency is ωd= 2π × 48 THz≈ 200meV and the field strength is Ed= 34MVm
−1. For these parameters the gap at the Dirac point roughly matches half the driving frequency such that Δ0≈ωd/2. The dashed lines indicate the Floquet
band energy differences Δϵ(k) and ωd−Δϵ(k) (See Supplementary Note 1).
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Floquet bands as functions of the field strength Ed. They are in
good qualitative agreement with each other. Both quantities
display tongues with alternating signs and zero-crossings
seperating them that agree very well between Δn(k) and
~σ intrar ðkyÞ. The zero-crossings touch the vF k-axis at mωd/2 and

the Ed-axis at EðmÞ
d;band, m 2 N. The solid white lines show the

location of the Floquet band gaps, i.e., where the radial band

velocity vanishes, i.e., ∂k ϵ= 0. They roughly follow the zero-
crossings of Δn(k) and ~σ intrar ðkyÞ while showing small, but clear

deviations. We observe that for EðmÞ
d;max<Ed<E

ðmÞ
d;band the steady state

displays an inversion of the Floquet bands, which creates a
negative contribution to the optical conductivity. The dotted
white lines indicate where the comoving radial band velocity ∂Πϵ
with Π= vF(k+ Ed/ωd) vanishes, i.e., ∂Πϵ= 0. These lines show
improved agreement with the zero-crossings of Δn(k) and
~σ intrar ðkyÞ. Further, there is an overall resemblance between

∂Πϵ(k), Δn(k), and ~σ intrar ðkyÞ (See Supplementary Note 1).
We summarize that the momentum-resolved optical conduc-

tivity shows two types of interband processes across the effective
Floquet band structure. These resonant processes correspond to
the energy differences Δϵ(k) and ωd− Δϵ(k) between Floquet
bands and contribute both positively and negatively. We relate
these conductivities to the effective relative occupation of the
Floquet bands Δn(k). We find that effective inversions of the
Floquet bands correspond to reductions in the conductivity which
can lead to a sign change in the total optical conductivity. These
band inversions at the Floquet gaps and their reductions of the
optical conductivity systematically occur in regimes of decreasing
gap sizes with respect to the driving field strength.

Conclusion
In conclusion, we have proposed the longitudinal optical con-
ductivity of illuminated graphene as a realistic observable to
detect Floquet band gaps. We have shown that this quantity
displays the Floquet gaps as functions of the driving intensity and
the probing frequency. In particular, we have pointed out a
regime in which the band gap at the Dirac point can be detected.
All band gaps except for the band gap at the Dirac point, first
increase with the driving intensity, approach a maximal value,
and then decrease. For the increasing regime, the optical con-
ductivity displays a positive contribution. For the decreasing
regime, it displays a negative contribution that can amount to a
total negative conductivity at the given frequency. We point out
that this negative contribution derives from an inversion of the
occupation of the Floquet bands. Therefore, the proposed
experiment not only provides an unambiguous detection of Flo-
quet bands, but also demonstrates dynamical control of transport
in solids with light.

Methods
Driven graphene dynamics. We express the driven graphene Hamiltonian in a
four-level description, spanned by the states 0j i, cyk;A 0j i, cyk;B 0j i and cyk;Bc

y
k;A 0j i. The

cðyÞk;A=B are the annihilation (creation) operators at the momentum k in the sublattice

A/B. The Hamiltonian H is defined in Eq. (1). We factorize the density matrix in
momentum space as ρ=Πkρk and simulate the dissipative dynamics using the
Lindblad-von Neumann master equation

_ρ ¼ i½ρ;H� þ∑
j
cjðLjρLyj �

1
2
fLyj Lj; ρgÞ;

where the sum over j goes over the momentum-dependent Lindblad operators

Lz ¼Vðcyk;Ack;A � cyk;Bck;BÞVy

Lþ ¼Vðcyk;Bck;AÞVy

L� ¼Vðcyk;Ack;BÞVy

Ll ¼V

0 δl;�1 δl;�2 0

δl;1 0 0 δl;�3

δl;2 0 0 δl;�4

0 δl;3 δl;4 0

0
BBB@

1
CCCAVy

with l= ±1, ±2, ±3, ±4. δl,i is the Kronecker-Delta and V is the transformation into
the instantaneous eigenbasis of h(k) defined in Eq. (2). The dissipation coefficients

Fig. 5 Effective Floquet state occupation and intra-Floquet conductivity.
The effective occupation Δn(k) (a) and the fitted intra-Floquet conductivity
~σ intrar ðkyÞ (b) as functions of the field strength Ed. The solid white lines are
given by the locations in momentum space of the band gaps Δm, with
m > 0. The dotted white lines are given by the zero-crossings of a type of
comoving band velocity ∂ΠΔϵ= 0, where Π= vF(k+ Ed/ωd) (See
Supplementary Note 1). The dashed line is given by k ¼ Ed

ωd
.
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cj fulfill the conditions

cz ¼ γz
cþ þ c� ¼ γ� cþ ¼ c� expf�2ϵβg
c1 þ c�1 ¼ γbg c�1 ¼ c1 expfþϵβg
c2 þ c�2 ¼ γbg c�2 ¼ c2 expf�ϵβg
c3 þ c�3 ¼ γbg c�3 ¼ c3 expf�ϵβg
c4 þ c�4 ¼ γbg c�4 ¼ c4 expfþϵβg

with β ¼ ðkBTÞ�1. ±ϵ are the instantaneous eigenenergies of h(k). This approach is
also detailed in previous work12.

In order to calculate the electron distribution, we first calculate the two-point
correlation functions hcyk;iðt2Þck;iðt1Þi. We do this by acting with ck,i on the density
matrix ρk(t1) and continuing the time-evolution with the same master equation
until the time t2 at which we act on the resulting density with the operator cyk;i . We
do this for all pairs of times t1 and t2 in the interval [τ1, τ2] and calculate the
electron distribution as detailed in Eq. (5).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used to generate the data presented in this study is available from the
corresponding author upon reasonable request.
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2.8 Publication III: Detecting light-induced Floquet band gaps
of graphene via trARPES

L. Broers and L. Mathey — Phys. Rev. Research 4, 013057 (2022)

This work was motivated by the prospect of direct experimental observation of the
light-induced Floquet band gap at the Dirac point of graphene driven by circularly
polarized light, similar to Publication II. While many similar observations have been
made in different materials, the observation of the Floquet gap at the Dirac point of
light-driven graphene has not been achieved due to a set of challenges and limitations
in photoelectron spectroscopy techniques.
In this work, I have studied the numerical predictions of time-resolved angle-resolved

photoelectron spectroscopy (trARPES), which is a state-of-the-art tool for studying ma-
terial band structures. It is also a naturally accessible observable in the numerical
methods devised in Publication I and Publication II. I have demonstrated a particular
regime of parameters that promises to reveal the Floquet band gap, while also being
experimentally feasible. This proposed regime takes the experimental limitations of mo-
bility, Fourier broadening, laser-assisted photoemission, probe-pulse energy resolution,
and space-charge effects into account. In general, the driving frequency needs to be large
enough such that the light-induced Floquet band gaps overcome broadening effects. In
an undesirable compromise, a large driving frequency however necessitates a dispropor-
tionately larger driving field strength, which induces undesired space-charge effects and
laser-assisted photoelectrons that obscure the ARPES signal.
A key result of this work is that my numerics have shown a lack of population in the

vicinity of the Dirac point in lower-order Floquet bands, provided the driving is strong
enough. The population at the Dirac points remains predominantly in the Floquet-Bloch
bands that are continuously connected to the Dirac point as a function of the driving
field strength. As a consequence, the energy difference of populated Floquet-Bloch bands
at vanishing momenta effectively surpassed the size of the Floquet zones and thus the
experimental limitations in resolution. This circumstance makes the gap in principle
visible even in the presence of broadening and resolution limitations in moderately clean
graphene samples.
My contribution to this work consisted of conceiving the project, creating the nu-

merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.
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Detecting light-induced Floquet band gaps of graphene via trARPES
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We propose a realistic regime to detect the light-induced topological band gap in graphene via time-resolved
angle-resolved photoelectron spectroscopy (trARPES), which can be achieved with current technology. The
direct observation of Floquet-Bloch bands in graphene is limited by low-mobility, Fourier-broadening, laser-
assisted photoemission (LAPE), probe-pulse energy-resolution bounds, space-charge effects, and more. We
characterize a regime of low driving frequency and high amplitude of the circularly polarized light that induces
an effective band gap at the Dirac point that exceeds the Floquet zone. This circumvents limitations due to
energy resolutions and band broadening. The electron distribution across the Floquet replicas in this limit allows
for distinguishing LAPE replicas from Floquet replicas. We derive our results from a dissipative master equation
approach that gives access to two-point correlation functions and the electron distribution relevant for trARPES
measurements.

DOI: 10.1103/PhysRevResearch.4.013057

I. INTRODUCTION

Floquet engineering constitutes a novel approach to con-
trol material properties via light [1–4]. A prominent example
is the proposed light-induced topologically insulating state
of monolayer graphene [5–7]. The resulting anomalous Hall
effect in this system has been observed experimentally [8]
and has been explained as a geometric-dissipative effect [9]
in accordance with Floquet theory. Meanwhile, time-resolved
angle-resolved photoemission spectroscopy (trARPES) has
been established as the prime method for resolving dynamical
changes in effective band structures of solid-state systems
[10–16]. Experimental trARPES setups are constantly im-
proving and being used for investigating the dynamical
electronic processes in two-dimensional Dirac materials such
as graphene [17–21], WSe2 [20–24], and Bi2Se3 [25–28]. Ap-
proaches related to observing pseudospin textures in ARPES
were discussed in Refs. [29–32]. In Bi2Se3, Floquet replicas
of electronic bands were observed using trARPES setups [33].
However, the direct observation of both the replicas and the
topological gap at the Dirac point has been met with intricate
challenges in graphene and remains unachieved to date.

In this work we determine the regime of trARPES
measurements for observing the topological band gap at the
Dirac point of irradiated graphene. We propose to perform
these measurements in the regime of low driving frequencies
and high driving field strengths. In this previously unexplored

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

regime the dominant Floquet-Bloch band occupations are
spaced farther apart than the driving frequency. They are
therefore outside of the first Floquet zone. We propose to
detect this light-induced energy gap beyond the Floquet zone
in experiment because the different spectral features are well
resolved in this regime. We discuss the dependence of our
predictions on the system parameters, specifically how they
affect the systematic limitations of the energy resolution of
photoemission spectroscopy. These parameters include the
driving frequency and field strength, which determine the
Floquet-Bloch band structure, the dissipation coefficients that
broaden the band signals, and the pulse lengths of drive and
probe lasers. For the pulse lengths we point out a desirable
regime with sufficient energy resolution and high enough
repetition rates. These repetition rates are necessary to avoid
undesired space-charge effects, where the photoemitted
electrons interact and affect each other’s trajectories [23,34–
36]. In particular, it is possible to distinguish the laser-assisted
photoemission (LAPE) replicas from the Floquet replicas
within the gap at the Dirac point in our suggested regime.

We consider a single layer of graphene irradiated by a
circularly polarized infrared laser from a perpendicular di-
rection. We consider a laser pulse with a temporal Gaussian
envelope of pulse length τd. The pulse length is assumed to
be much longer than the driving period, so that it induces
Floquet-Bloch states that vary with the envelope function of
the pulse. The graphene sample is probed by a tunable ex-
treme ultraviolet laser pulse from the same direction. It has
a shorter pulse length and excites photoelectrons out of the
driven graphene over a time span during which the driving
intensity is approximately constant. This is necessary for re-
solving the time-dependent Floquet-Bloch bands, which are
sensitive to the driving amplitude. This is considered the stan-
dard approach to trARPES experiments [37] and is illustrated

2643-1564/2022/4(1)/013057(9) 013057-1 Published by the American Physical Society
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FIG. 1. An illustration of the trARPES principle. A circularly
polarized infrared drive pulse (red) hits the graphene target from a
perpendicular direction, exciting a transient state in the illuminated
region. After a time delay of �t , an ultraviolet probe pulse (blue)
hits the target and excites photoelectrons. A given electron leaves the
target with a kinetic energy Ekin at an inclination θ to the graphene
target and at an azimuthal angle φ. The momentum component �k||
parallel to the target is that of the preprobe transient state of the
electron bound in the graphene layer.

in Fig. 1. The emitted photoelectrons corresponding to a probe
frequency ωp have the kinetic energy

Ekin = h̄ωp − Eb − �, (1)

where Eb is the binding energy and � is the work function
of the material, which is the energy required to remove the
electron from the graphene. In addition, a photoelectron has
momentum �k with components

�k|| =
√

2mEkin h̄−1 sin(θ )( cos(φ), sin(φ))T (2)

parallel to the graphene layer. m is the electron mass, and θ

and φ are the inclination and azimuthal angles of the mo-
mentum with respect to the graphene layer. Measuring the
photoelectron counts at these angles and energies gives access
to the time-resolved Floquet-Bloch bands. The momentum �k||
is the electron momentum prior to the excitation process. For
simplicity this is denoted as k in the following.

II. PREDICTIONS FOR trARPES MEASUREMENTS

We describe the electron dynamics in graphene with the
Hamiltonian

H (t ) =
∑

k

c†
kh(k, t )ck, (3)

where ck = (ck,A, ck,B)T. Here c(†)
k,i , with i ∈ {A, B}, are the

annihilation (creation) operators of the graphene sublattices.

The single-particle Hamiltonian is given by

h(k, t ) = h̄vF [qx(t )σx + qy(t )σy], (4)

with

qx(t ) = kx + e

h̄
Ad(t ) sin(ωdt ), (5)

qy(t ) = ky + e

h̄
Ad(t ) cos(ωdt ), (6)

where vF ≈ 106 ms−1 is the Fermi velocity and kx =
|k| cos(φ) and ky = |k| sin(φ) are the momentum compo-
nents. σi are the Pauli matrices. The pulsed vector potential
amplitude is given by

Ad(t ) = Ed

ωd
exp

{ − t2τ−2
d 4 ln(2)

}
, (7)

where τd is the driving pulse full width at half maximum
(FWHM). For the pulse length we use the value τd = 500 fs
as a realistic value for driving frequencies in the range of
tens to hundreds of terahertz. Note that the specific choice of
a temporal Gaussian envelope is not crucial for the results.
However, more quickly varying temporal envelopes may in-
duce transient behavior that potentially obscure band signals.

We consider a product state ρ = 
kρk and evolve the
system using a Lindblad–von Neumann master equation that
includes dissipation. The dissipation channels amount to de-
phasing, decay, and electron exchange with a back gate. The
corresponding coefficients are chosen to be γz = 22.5 THz ≈
(44.4 fs)−1, γ± = 10 THz = (100 fs)−1 and γbg = 25 THz =
(40 fs)−1. These are the values that were demonstrated to
describe the experimental realization of Ref. [8] in Ref. [9].
Hence, this approach is well suited to describing the dynamics
in realistic solid-state samples, despite the potential intricacies
of material defects [38–41]. These values for the dissipation
coefficients also agree with the relaxation times of 20 to 40 fs
found in Refs. [42–45] and the electron-phonon channel re-
laxation estimated to be on the order of 100 fs [44–46]. This
also gives the timescale of the system to form a steady state
with an effective Floquet spectrum. We include a nonzero
temperature in the system by giving corresponding Boltzmann
factors to complementary dissipation coefficients so that the
equilibrium states realize the desired temperature T . Through-
out this work we use room temperature T = 300 K. For details
of this approach, see Ref. [9] or Appendix A.

Our predictions for the trARPES measurements are based
on the momentum- and energy-resolved electron distribution
calculated as [47]

n(k, ω) =
∫ t0

−t0

∫ t0

−t0

s(t1)s(t2)G(k, t2, t1)
eiω(t2−t1 )

4t2
0

dt2dt1 (8)

with the correlator [48]

G(k, t2, t1) =
∑

i∈{A,B}
〈c†

k,i(t2)ck,i(t1)〉 (9)

and the probe pulse envelope

s(t ) = exp
{ − (t − �t )2τ−2

p 4 ln(2)
}
, (10)

where τp is the probe pulse length (FWHM) and �t is the de-
lay time between the incidence of the drive and probe pulses.
For the probe length we use the value τp = 100 fs. t0 is the
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�

�

�

FIG. 2. The electron distribution at the Dirac point n(k = 0, ω) for zero delay (�t = 0) (a) as a function of the driving field strength
at the driving frequency ωd = 2π × 29.8 THz ≈ 123 meVh̄−1 and (b) as a function of the driving frequency at driving field strength Ed =
20 MV m−1. The solid lines show the expected Floquet energies ±√

(evF Ed/ωd )2 + (h̄ωd/2)2 ± h̄ωd/2. The dotted lines show the Floquet
energies confined within the first Floquet zone of width h̄ωd. The dashed lines indicate the field strength at which �0 = h̄ωd in (a) and the
driving frequencies m=1,2,3 in (b). The frequencies m=1,2,3 are defined in Eq. (14). The examples shown in Figs. 3 and 4 also use these
frequencies.

temporal integration range, for which we choose t0 = 3τd to
support the probe pulse sufficiently well.

We choose the pulse lengths of the drive and the pump
pulse to fulfill two requirements. First, the probe pulse length
is chosen to be short compared to the drive pulse length, so
that the drive-induced dynamics is resolved. Second, the probe
pulse length is chosen to be large compared to the driving
period. These conditions are expressed as

τd � τp � 2π

ωd
. (11)

When the probe pulse length τp and the driving period 2π/ωd

are comparable, Eq. (8) no longer resolves Floquet-Bloch
bands but rather resolves subdriving period electron occu-
pations. We note that increasing the pulse lengths requires
increasing the drive pulse energies, which are experimentally
limited. This also leads to a reduced repetition rate, which re-
sults in undesirable space-charge effects that greatly decrease
the resolution due to electron scattering [34,35,49]. We do
not include this effect in our numerics but acknowledge that
it necessitates a compromise in the pulse lengths, which is
reached with the given values of τp and τd.

III. NONEQUILIBRIUM ELECTRON DISTRIBUTION
NEAR THE DIRAC POINT

In Fig. 2(a), we show the electron distribution n(k = 0, ω)
at the Dirac point at zero delay, i.e., �t = 0. We choose
the driving frequency ωd = 2π × 29.8 THz and display the
electron distribution as a function of the driving field strength

Ed. We refer to the energy difference of the two distribution
maxima that emerge at k = 0 as the energy gap �0. We
see that this gap �0 grows monotonously as a function of
Ed rather than being confined within the first Floquet zone
of width ωd, as also discussed in Ref. [50]. We derive the
Floquet energy gap at the Dirac point from h(k = 0, t ) with a
fixed vector potential amplitude Ad = Ed/ωd. Using the Rabi
solution, we obtain the energy (see Appendix B)

�0/2 =
√

(evF Ed/ωd )2 + (h̄ωd/2)2 − h̄ωd/2. (12)

In the following, we point out the most promising regime in
which this gap can be detected. As we display in Fig. 2(a),
the gap �0 grows with increasing driving strength Ed; in
particular it grows beyond the Floquet zone boundary at ωd/2.
We propose to detect the energy gap �0 in this strongly driven
regime in which h̄ωd ≈ �0. While the Floquet quasienergies
are confined to the Floquet zone, the maxima of the electron
distribution continue to be shifted to higher frequencies with
increasing Ed so that they can be resolved despite broadening
effects and energy resolution limitations. For very large field
strengths with �0 � h̄ωd, the electrons will predominantly
populate the lower bands at the Dirac point. Therefore, inter-
mediate values of Ed are desirable, such that �0 ≈ h̄ωd, as we
discuss throughout this paper.

In Fig. 2(b), we show the electron distribution n(k =
0, ω) at zero delay, i.e., �t = 0, at the Dirac point
for driving field strength Ed = 20 MV m−1 as a function
of the driving frequency ωd. We display the energies
±

√
(evF Ed/ωd )2 + (h̄ωd/2)2 ± h̄ωd/2, which reproduce the
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maxima of the electron distribution. We see the expected
scaling behavior of the gap at the Dirac point �0 of Eq. (12)
as well as the spacing between the nearest Floquet replica
�0 + h̄ωd. We propose to measure the electron distribution
in the regime that is given by ωd > γ and �0 > h̄γ . γ

is given by γ = γ±/2 + 2γz + γbg = 75 THz ≈ 50 meV/h̄ ≈
(13.3 fs)−1 as an overall metric for the decay rate. This value
for γ is comparable to the coherence times of 22 fs found in
Ref. [51]. With increasing ωd and for fixed Ed, �0 decreases.
This dependence is predicted by Eq. (12). If �0 is smaller
than h̄γ , the two maxima of the electron distribution are not
resolved and are not detectable via trARPES. With decreasing
ωd, �0 increases and becomes easier to resolve. However,
the driving period 2π/ωd needs to be shorter than the char-
acteristic timescale of the dissipative processes, i.e., ωd > γ .
Otherwise, the picture of a close to adiabatically stirred Dirac
cone in equilibrium is more appropriate than that of emerging
Floquet-Bloch bands. Long scattering times have also been
connected to the visibility of �0 in Ref. [52]. The range of
feasible driving frequencies given by these two conditions
decreases for increasing γ but increases for increasing Ed.

In general, the m-photon gaps �m open up at momenta
of vF |k| = mωd/2, with m > 0, for small field strengths Ed.
These gaps move inwards towards the Dirac point for increas-
ing field strengths. Thus, increasing Ed increases the gap at
the Dirac point but at the same time decreases the distance in
momentum space to higher-order gaps. For the driving field
strength [50]

Ed = h̄ω2
d

evF

√
m2

4
+ m

2
(13)

the mth gap is located at k = 0 and merges with the gap
�0. The next gap �m+1 is then the gap closest to the Dirac
point with its distance maximized with respect to Ed. This
further enhances the visibility of the gap at the Dirac point
and makes this relation between driving field strength and
frequency desirable. We rewrite Eq. (13) to find the driving
frequency that is necessary for a given field strength Ed to
have the gap �0 be equal to m times the driving frequency ωd.
It is

m =
(

m2

4
+ m

2

)− 1
4
√

evF h̄−1Ed. (14)

The driving frequencies ωd = m have the highest dis-
tinguishability and are indicated in Fig. 2(b) as vertical
dashed lines. Additionally, at the frequency ωd = 1 =
( 4

3 )
1
4

√
evF h̄−1Ed, the energy of the first Floquet replica at

�0/2 + h̄ωd is minimized. This point denotes a regime that
is well suited for trARPES probing, and the conditions for re-
solvability simplify to γ < ( 4

3 )
1
4

√
evF h̄−1Ed. For γ = 75 THz

and Ed ≈ 20 MV m−1, this suggests a driving frequency close
to ωd = 1 ≈ 2π × 29.8 THz ≈ 123 meVh̄−1 or ωd = 2 ≈
2π × 23 THz ≈ 96 meVh̄−1.

To demonstrate the steady state that emerges for driving
at frequencies ωd = 1, 2, and 3, we show the electron
distribution n(k, ω) in Fig. 3. This expands on the steady-
state behavior of the electron distribution n(k = 0, ω) that
we displayed in Fig. 2. We choose driving field strength
Ed = 20 MV m−1. In the vicinity of the Dirac point, band

� �

�

�

� �

�

�

�

�

�

FIG. 3. The electron distribution n(k, ω) for zero delay (�t = 0)
and driving field strength Ed = 20 MV m−1. The driving frequencies
are (a) ωd = 1, (b) ωd = 2, and (c) ωd = 3. The dashed lines
indicate an effective gap �0 of size h̄ωd in (a), 2h̄ωd in (b), and 3h̄ωd

in (c). The solid lines indicate the instantaneous spectra obtained
from the Floquet Hamiltonian.
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occupations of the lower Floquet replicas are suppressed. The
Floquet replicas with sizable electron occupation are two up-
per and two lower effective bands at the Dirac point, which
are the four bands shown in Fig. 2. As the gap �0 increases,
the population is predominantly distributed among the two
lower bands. Away from the Dirac point, for nonzero k, the
additional Floquet bands have sizable electron occupation
and are visible in Fig. 3. The finite values of the electron
distribution inside the Floquet gaps is a consequence of the
broadening that occurs due to dissipative processes.

Having pointed out the regime that we propose to use to
detect the energy gap at the Dirac point in terms of the driv-
ing field strength and the driving frequency, we now present
the time-resolved response of the system. Figure 4 shows
the electron distribution at the Dirac point n(k = 0, ω) as a
function of the pulse delay time �t for the same driving field
strength and driving frequencies as in Fig. 3, i.e., 1, 2,
and 3 for Ed = 20 MV m−1. This gives an estimate of the
time-resolved Floquet-Bloch band occupations at the Dirac
point. The dashed lines indicate the corresponding Floquet
energies expected from static driving field strengths given by
the drive pulse at the delay time �t , i.e.,

ε(�t ) = ±
√

exp

{
−�t2

τ 2
d

8 ln(2)

}(evF Ed

ωd

)2

+
(

h̄ωd

2

)2

± h̄ωd

2
. (15)

The electron distributions that we show in Fig. 4 are close
to the instantaneous steady-state distribution for this value of
γ . Deviations from the instantaneous steady-state distribution
manifest themselves as features that are asymmetric during
the pulse rise and pulse decay. For this choice of γ and of the
pulse lengths, these features are small.

IV. LIMITATIONS OF RESOLUTION

One common phenomenon that obscures the results of
trARPES is LAPE [53]. The essentially free photoelectrons
emitted in a trARPES experiment respond to the drive pulse
with driving frequency ωd. This may result in the photoelec-
tron energy being shifted by one unit of the photon energy
±h̄ωd. These energy shifts are detected in trARPES mea-
surements as band replicas, whose similarities to Floquet
replicas might hinder identifying the signatures of Floquet
physics unambiguously. However, in contrast to Floquet repli-
cas, these LAPE replicas are not related to band gaps [37]. The
magnitude of the light-induced Floquet band gaps is tunable
via the field strength Ed [see Eq. (12)]. We propose to use
this tunability to distinguish the LAPE and Floquet replicas.
More specifically, the Floquet replicas at the Dirac point are
at ±�0/2 and ±(�0/2 + h̄ωd ), as we show in Fig. 3. The
monotonous behavior of the Dirac gap �0 makes it possible
to distinguish between LAPE and Floquet replicas.

The Floquet-Bloch bands resolved in n(k, ω) are broad-
ened due to dissipation. In addition they are Fourier broadened
with the probe pulse length. The combined result is a Voigt

� �

�

�

� �

�

�

�

�

�

�� �

FIG. 4. The electron distribution n(k = 0, ω) at the Dirac point
as a function of the delay time �t for a peak driving field strength
of Ed = 20 MV m−1. The driving frequencies are (a) ωd = 1,
(b) ωd = 2, and (c) ωd = 3. The dashed lines indicate the static
Floquet energies corresponding to the driving field strengths at the
center of the probe pulse.
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profile of approximate width

� ≈ γ

2
+

√
γ 2

4
+ 4

τ 2
p

, (16)

with γ = γ±/2 + 2γz + γbg. For our specified values this
is � = 80 THz = (12.5 fs)−1 ≈ 53 meVh̄−1. In order to suc-
cessfully resolve the effective bands in n(k, ω) it is crucial
that the bands gaps are large compared to �. For probe pulses
long enough that their contribution to � can be neglected, the
broadening is γ due to intrinsic dissipation. Reducing γ can
be achieved by using cleaner graphene samples with higher
mobility, which is technologically challenging.

Furthermore, trARPES experiments are, in general, lim-
ited by a Gaussian pulse energy resolution of the order
[37]

�E ≈ τ−1
p 1825 meV fs. (17)

The energy resolution of the measurement has to exceed
the band gap �0, the Floquet replica spacing ωd, and the
Floquet-Bloch band Voigt width �. These requirements are
realistically achieved in the proposed regime of �0 > h̄ωd.
For instance, fulfilling the resolvability conditions � � ωd

and �E � h̄ωd is not a necessity for identifying signatures
of Floquet physics for this regime.

To determine the minimal probe length that is necessary to
achieve an energy resolution equal to the gap, we insert the
expression for the gap �0 at the Dirac point into Eq. (17). It is

τmin
p = 1825 meV fs√

4e2v2
F E2

d /ω2
d + h̄2ω2

d − h̄ωd

. (18)

An energy resolution several times better is necessary to
clearly identify the Floquet-Bloch bands, which corresponds
to probe pulse lengths several times larger than the minimal
length, e.g., τp ≈ 10τmin

p .

V. CONCLUSION

In conclusion, we have pointed out a realistic regime
for the detection of the light-induced topological gap in
graphene via time- and angle-resolved photoelectron spec-
troscopy. Our proposed regime addresses the limitations of
band broadening, energy and momentum resolution, and
intrinsic limitations of the detection method for realistic es-
timates of dissipative processes. We find that these limitations
are overcome by increasing the driving field strength and
decreasing the driving frequency so that the energy difference
between finitely occupied Floquet-Bloch bands is larger than
the Floquet zone. The timescales associated with the dissipa-
tive processes set the limits of this regime. On the one hand,
the driving frequency has to be large enough that many driving
cycles occur during one characteristic timescale of the dissipa-
tion. On the other, decreasing the driving frequency increases
the gap size at the Dirac point, which has to exceed the band
broadening. As the gap becomes larger than multiples of the
driving frequency, limitations such as band broadening and
inherent energy resolutions no longer obstruct the identifica-

tion of signatures of Floquet physics. This regime also allows
undesired laser-assisted photoemission replicas in trARPES
measurements to be unambiguously identified as such at the
Dirac point and to be clearly distinguished from the Floquet
replicas. The detection of Floquet bands via trARPES would
constitute a profound insight in light-driven solids, which
would complement the measurements of transport reported in
Ref. [8] and thereby advance the field of optical control of
solids.

ACKNOWLEDGMENTS

We thank K. Rossnagel, J. McIver, and G. Jotzu for very
insightful discussions. This work is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion), SFB-925, Project No. 170620586, and the Cluster
of Excellence “Advanced Imaging of Matter” (EXC 2056),
Project No. 390715994.

APPENDIX A: MASTER EQUATION

We base our numerics on the Lindblad–von Neumann mas-
ter equation

ρ̇ = i[ρ, H] +
∑

j

c j (LjρL†
j − 1

2
{L†

j L j, ρ}), (A1)

where j ∈ {z,+,−,±1,±2,±3,±4}. We consider a product
state in momentum space ρ = ∏

k ρk and the Hamiltonian
in Eq. (3) in the extended basis spanned by the states |0〉,
c†

k,A |0〉, c†
k,B |0〉, and c†

k,Bc†
k,A |0〉. The transformation V into

the instantaneous eigenbasis diagonalizes the Hamiltonian
at any given time and determines the momentum-dependent
Lindblad operators as

Lz = V (c†
k,Ack,A − c†

k,Bck,B)V †, (A2)

L+ = V c†
k,Bck,AV †, (A3)

L− = V c†
k,Ack,BV †, (A4)

Ll = V

⎛
⎜⎝

0 δ−1,l δ−2,l 0
δ1,l 0 0 δ−3,l

δ2,l 0 0 δ−4,l

0 δ3,l δ4,l 0

⎞
⎟⎠V †. (A5)

The coefficients c j are

cz = γz, (A6)

c+ + c− = γ±, c+ = c−e−2εβ, (A7)

c j + c− j = γbg, c−1,2,3,−4 = c1,−2,−3,4eεβ, (A8)

with β = (kBT )−1 and the instantaneous level spacing ε.
This four-dimensional description makes two-point correla-
tion functions and therefore the electron distributions via
Eqs. (8) and (9) accessible.
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APPENDIX B: FLOQUET ENERGIES

At the Dirac point, the graphene Hamiltonian in Eq. (3)
with constant amplitude simplifies to

h(k = 0, t ) = evF

h̄
Ad[sin(ωdt )σx + cos(ωdt )σy], (B1)

which is the Rabi-Hamiltonian

HR = h̄

(
ω0/2 e−iωdt

e+iωdt −ω0/2

)
, (B2)

with ω0 = 0. In the rotating frame given by exp{−iσzωdt/2},
the corresponding dynamics are governed by the static Hamil-
tonian

H ′
R = h̄

(−ωd/2 

 +ωd/2

)
(B3)

with eigenenergies

ε = h̄
√

2 + ω2
d/4. (B4)

In the original frame of Eq. (B2) the solutions to the
Schrödinger equation then rotate with the energies

ε = ±h̄
(√

2 + ω2
d/4 − ωd/2

)
, (B5)

which gives Eq. (12) for  = evF h̄−1Ed/ωd.
This expression increases monotonously as a function of

Ed, and the Floquet energies are given by this expression
modulo the driving frequency ωd. Put differently, ε ± mh̄ωd

gives the various Floquet replicas at the Dirac point. When-
ever ε = mh̄ωd/2, the expression of ε in Eq. (B5) crosses a
Floquet zone boundary. We solve this condition for Ed to find
the driving field strengths at which this occurs for the mth
Floquet zone boundary. This gives us Eq. (13).

In the case of a time-dependent driving amplitude such as
in Eq. (7) and under the assumption that the Floquet states
form instantly, we insert the driving amplitude envelope at
a given point in time �t expressed relative to the amplitude
peak, such that

(�t ) = evF

h̄

Ed

ωd
exp

{ − (�t )2τ−2
d 4 ln(2)

}
. (B6)

This leads to the expression ε(�t ) in Eq. (15).
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2.9 Publication IV: Non-linear photoconductivity of strongly
driven graphene

L. Broers and L. Mathey — arXiv:2312.13217 (Under review at SciPost Phys.)

This work was motivated by the prospect of obtaining a more detailed understanding
of the non-linear electronic transport properties of strongly driven dissipative graphene.
Non-linear charge transport plays a crucial role in the light-controlled transport with
few-cycle pulses, and coherent electronics. A detailed understanding of driven graphene
is paramount for the development of new devices based on these effects. This work is a
preprint, and potentially subject to changes.
I have studied the non-linear photoconductivity of graphene in the presence of both

linearly polarized strong driving, and a strong direct bias in parallel direction. This
non-linear AC-DC transport setup provides a rich structure in the differential photocon-
ductivity with distinct limits where either the AC field or the DC field outweighs the
other. I have captured the dynamics in these two limits by using distinct descriptions,
that present good agreement with simulated results. In the limit of a dominant DC field,
I have explained the non-linear conductivity using a picture of modulated Landau-Zener
transitions. I have presented an analytical calculation that agrees with the structure of
the non-linear differential photoconductivity as a function of the electrical field strengths.
The DC field leads to a strong anisotropy of the momentum-distribution of currents,
reminiscent of wake-fields of current density in momentum-space emerging at the Dirac
point. Based on this observation, I have provided an analytical calculation of the con-
ductivity of undriven graphene as a function of temperature and DC field strength in
the non-linear regime, which recovers the distinct features of the numerical results. In
the opposite limit of a dominant AC field, I have provided a description rooted in Flo-
quet physics that is reminiscent of the Tien-Gordon effect of photon-assisted tunneling
and qualitatively agrees well with analytical estimates. The differential photoconductiv-
ity displays a checkerboard pattern that emerges from the displacement in momentum
space due to the DC field within the Floquet-Bloch band structure in the presence of
high intensity driving.
My contribution to this work consisted of conceiving the project, creating the nu-

merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.

65



SciPost Physics Submission

Non-linear photoconductivity of strongly driven graphene

Lukas Broers1,2,*, Ludwig Mathey1,2,3

1 Center for Optical Quantum Technologies, University of Hamburg, Hamburg, Germany
2 Institute for Quantum Physics, University of Hamburg, Hamburg, Germany

3 The Hamburg Center for Ultrafast Imaging, Hamburg, Germany
* lbroers@physnet.uni-hamburg.de

December 21, 2023

Abstract

We present the non-linear DC photoconductivity of graphene under strong
infra-red (IR) radiation. The photoconductivity is obtained as the response to
a strong DC electric field, with field strengths outside of the linear-response
regime, while the IR radiation is described by a strong AC electric field. The
conductivity displays two distinct regimes in which either the DC or the AC
field dominates. We explore these regimes and associate them with the dy-
namics of driven Landau-Zener quenches in the case of a large DC field. In the
limit of large AC field, we describe the conductivity in a Floquet picture and
compare the results to the closely related Tien-Gordon effect. We present an-
alytical calculations for the non-linear differential photoconductivity, for both
regimes based on the corresponding mechanisms. As part of this discussion of
the non-equilibrium state of graphene, we present analytical estimates of the
conductivity of undriven graphene as a function of temperature and DC bias
field strength that show very good agreement with our simulations.
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1 Introduction

Graphene displays a wide range of remarkable properties, which have been the subject
of basic research and of technological interest, since its discovery [1–6]. A key inter-
est have been the electronic transport properties [7–26], as well as the optical proper-
ties [27–34], including the more recent shift of interest towards optical driving [35–41].
As a key example we mention circularly polarized light which generates topological Flo-
quet band gaps leading to an anomalous Hall effect [42–45]. Control of transport has
been demonstrated by driving graphene with short pulses, which leads to charge-envelope-
phase-dependent Stückelberg interferometrically induced currents [46–49]. The coherent
destruction of tunneling [50–52] has been proposed in strongly driven graphene [53], as well
as photon-assisted tunneling [54]. Given the recent studies of light-controlled phenomena
in graphene, a comprehensive characterization of the non-linear photoconductivity and
coherent dynamics and transport in periodically driven graphene is imperative, and is also
motivated by future technologies based on high-intensity driving.

In this work, we present the non-linear longitudinal DC photoconductivity of mono-
layer graphene driven with linearly polarized terahertz radiation at the charge neutrality
point. The polarization of the driving radiation is parallel to the probing polarization.
We utilize a Master equation approach that explicitly models the dissipative properties of
the material, see [45]. We identify a rich structure in the differential conductivity which
features two limits, in which either the DC probing field strength or the AC driving field
strength dominates. These two limits are separated by a regime in which the two fields
are comparatively strong, and the dynamics display a subtle competition. In the regime in
which the DC field dominates, we describe the dynamics via Landau-Zener (LZ) transitions
that are modulated by the radiation field, and affected by the dissipative properties of the
system. Due to the modulation by the radiation field, dynamical patterns in momentum
space, in the vicinity of the Dirac points, emerge with a periodicity that is equal to the
accumulated momentum shift during one driving cycle. We present an analytical solution
to leading order in the transverse momentum component, i.e. the momentum component
orthogonal to the probing direction relative to one of the Dirac points. This analytical so-
lution reproduces the characteristic patterns in the differential photoconductivity. In the
absence of the radiation field, we estimate this current density pattern analytically and
derive an expression for the non-linear conductivity of strongly biased undriven graphene.
Further, we provide analytical calculations for the dependence on temperature of the un-
driven conductivity. For a weak DC probing field, we find that the conductivity scales
linearly with temperature down to small temperatures at which the conductivity converges
to the analytical minimal conductivity of πe2

2h . In the regime in which the AC driving field
dominates, we find that the differential photoconductivity displays a type of checkerboard
pattern. The DC field provides a shift in momentum space across the strongly driven
Floquet band structure, such that the conductivity pattern emerges from an interplay of
Floquet and transport dynamics. We note that the checkerboard pattern in the differen-
tial conductivity shows strong qualitative similarities to predictions for this system of the
distinct Tien-Gordon effect [55].

2 Methods

We consider monolayer graphene in the presence of a constant electric field, i.e. a direct
(DC) bias, in addition to continuous terahertz radiation, i.e. an alternating (AC) bias,
which is linearly polarized in parallel to the DC field. We write the linearized Hamiltonian

2
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Figure 1: Illustrations of the dynamics in the two regimes of either dominating
DC field strength E0 or AC field strength Ed. Panel (a) shows the structure of
the modified Landau-Zener quench in the limit of dominating DC field strength
E0. An electron in the ground state with initial momentum far away from the
gap is accelerated due to E0 and displays quenched dynamics across the gap.
Due to the additional AC field, the quench is modulated. Panel (b) shows the
structure of the Floquet band structure in the limit of large and dominating AC
field strength Ed. The DC field E0 accelerates electrons across this effective band
structure.

for a single momentum mode k = (kx, ky) near one of the Dirac points, as

1

ℏ
Hk(t) = vF

(
kx +

eE0

ℏ
t+

eEd

ℏωd
cos(ωdt)

)
σx + vFkyσy. (1)

A similar model applies to the other Dirac point, with σy → −σy. Here e is the elementary
charge, ℏ is the reduced Planck constant and vF ≈ 106ms−1 is the Fermi velocity of
graphene. E0 is the DC field strength, Ed is the AC field strength and ωd is the driving
frequency. σx and σy are Pauli matrices. We propagate the density operator of the system
using the Lindblad-von Neumann master equation

ρ̇k =
i

ℏ
[ρk, Hk(t)] +

∑

l

γl(LlρkL
†
l −

1

2
{L†

lLl, ρk}). (2)

The indices l of the Lindblad operators describe the dissipative processes of sponta-
neous decay and excitation, dephasing and incoherent exchange to an electronic back-
gate. The associated dissipation rates are γ−, γ+, γz and γbg, respectively. The tem-
perature T of the system enters the model through Boltzmann factors of conjugate pro-
cesses, e.g. γ+ = γ− exp{− 2ϵ

kBT }, where ϵ is the instantaneous eigenenergy scale of the
driven Hamiltonian. The Lindblad operators Ll act in the instantaneous eigenbasis of
the Hamiltonian. For further details of this method we refer to App. C and previous
works [45, 56, 57]. Throughout this work we use the parameters ωd = 2π × 12THz,
γz = 11.25THz, γ+ + γ− = 5THz, γbg = 12.5THz and T = 80K unless stated other-
wise. We explore values for the electric field strengths E0 and Ed up to a few megavolts
per meter.

3
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We calculate the total longitudinal current of the system by integrating the momentum-
resolved contributions of the current operator

jx = evFσx (3)

over momentum space. Note that the periodicity of the AC field requires integration over
one driving period to obtain the DC component of the total current. It is

Jx = nvns
evFωd

8π3

∑

k∈D

∫ τ+ 2π
ωd

τ
Tr(σxρk(t))dt∆kx∆ky, (4)

with the valley- and spin-degeneracy nv = ns = 2. ∆kx and ∆ky are the numerical
discretization of momentum space. We note that both the two spin states, as well as both
Dirac points give the same contribution for all observables in this paper. D is a sufficiently
large neighborhood in momentum space around the Dirac point K to ensure convergence.
τ is a time that is large enough that the system has formed a steady state in the comoving
frame kx → kx − e

ℏE0t. We calculate the differential conductivity of the system as

Gxx =
dJx
dE0

(5)

and in the absence of driving as

G0
xx = Gxx|Ed=0. (6)

We further introduce the differential photoconductivity with respect to the AC field
strength as

gxx =
dGxx

dEd
. (7)

We obtain the derivatives of Eqs. 5 and 7 numerically as central finite differences. Since
in this model we are considering graphene at its charge neutrality point, i.e. at vanishing
chemical potential, the conductivity we calculate is commonly referred to as the minimal
conductivity of graphene, in relation to the possible enhancement of the conductivity by
increasing the charge carrier density by means of a non-zero chemical potential.

3 Results

We calculate the overall current Jx as a function of the DC field strength E0 and the AC
field strength Ed up to values of 4MVm−1 and 20MVm−1, respectively. This range of the
DC probing field includes the nonlinear DC conductivity of driven graphene well beyond
the linear response regime. In Fig. 2 (a) and (b) we show the differential photoconductivity
gxx and the change in differential conductivity

∆Gxx = Gxx −G0
xx, (8)

respectively. The structure of these observables is rich and there are two distinct regimes
which correspond to the cases of Ed ≫ E0 and E0 ≫ Ed, in which qualitative structural
dependencies can clearly be identified. Depending on whether the DC field or the AC
field dominates, the steady state dynamics change significantly. As we discuss below, the
AC and DC fields are on equal scales when Ed = 2πE0. This condition is met when the
momentum shift due to the DC field that is accumulated during one driving period is equal
to the momentum displacement amplitude due to the AC field. We indicate this condition
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Figure 2: The differential conductivities of strongly driven graphene. Panel (a)
shows the differential photoconductivity gxx as a function of the DC field strength
E0 and the AC field strength Ed. The diagonal line is given by Ed = 2πE0 and
separates the results into the two regimes where either the DC field strength E0

or the AC field strength Ed dominates. Panel (b) shows the change in differential
conductivity ∆Gxx as a function of E0 for various values of Ed.

with the diagonal line in Fig. 2 (a). The structure of the differential photoconductivity
gxx in these two regimes is intricate and can be understood from different perspectives
in analyzing the corresponding dynamics. The following subsections discuss these two
regimes.

3.1 Dominant DC Field

We first analyze the regime in which the AC field strength E0 is significantly larger than
the AC field strength Ed. In this regime, the differential photoconductivity gxx in Fig. 2
(a) shows a striped pattern as a function of Ed and E0 which leads to step-like features in
the change in differential conductivity ∆Gxx that we show in Fig. 2 (b). The dynamics of
this case are captured naturally in the comoving frame kx → kx − eE0

ℏ t, produced by the
large momentum shift due to the DC field E0. In this frame, an electron with a momentum
far to one side of the Dirac point and initially in thermal equilibrium accelerates due to
the DC field and eventually passes the Dirac point. These dynamics are a type of Landau-
Zener (LZ) quench across the gap given by the transverse momentum component, i.e.
∆ = 2ℏvFky. The driving term is linearly polarized in parallel with the DC field, such
that the LZ quench is further modified by an undulating motion in kx as depicted in
Fig. 1 (a). As the relative phase of the AC field during the quench depends on the initial
value of kx, the transition probability is periodic in momentum with eE0ℏ−12πω−1

d , which
is the momentum shift induced by the DC field during one driving period. Therefore,
the temporal periodicity of the AC field leads to a periodic current density pattern in
momentum space.

In Fig. 3, we show examples of such patterns in the quantity

∆jx(k) =
ωd

2π

∫ τ+ 2π
ωd

τ
∆jx(k)dt, (9)

which is the time-average of the momentum-resolved photocurrent density

∆jx(k) = jx(k)− jx(k)|E0,Ed=0, (10)
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Figure 3: The momentum-resolved photocurrent density in the presence of a
strong DC field of E0 = 3MVm−1 and an AC field strength of Ed = 2MVm−1

(a) and Ed = 6MVm−1 (b) averaged over one driving period. Here the dissi-
pation coefficients are reduced by a factor of five compared to the values in the
main text, for visual clarity. The dashed lines indicate the momentum shift that
is accumulated during one driving period, which corresponds to the periodic pat-
terns that occurs due to the AC field.

in which we subtract the equilibrium current density which integrates to zero. τ is a time
large enough that a steady state has formed in the comoving frame kx → kx− eE0

ℏ t. In the
case of large values of E0 and comparatively small dissipation, the steady state current
density pattern stretches very far across momentum space before significantly decaying.
Note that for increasing AC field strength Ed the pattern becomes more intricate.

In the picture of modified LZ quenches, the integrated current in Eq. 4 consists of a
contribution close to the gap, and a much larger contribution from the decaying tail of
the current density pattern as is clearly visible in Fig. 3. We neglect the first part and
estimate the current as a product of the periodic current density pattern and exponential
decay with a dissipation rate Γ = 1

2γ− + γbg. We present the details of this calculation in
App. A. We write the total current as

JLZ
x ≈ nvns

evFωd

8π3

∫ eE02π
ℏωd

0

∫

R2

2P (kx,0 + κ, ky)e
−Γ ℏkx

eE0 dkxdkydκ, (11)

where P (kx, ky) is the transition probability into the excited state of a system initially in
the ground state at momentum kx. It is

P (kx, ky) = lim
t→∞

| ⟨+|U(t, 0) |−⟩ |2, (12)

where U(t2, t1) is the time-evolution operator of the Hamiltonian in Eq. 1 from time t1 to t2
and |±⟩ are the eigenstates of the σx Pauli matrix. kx,0 is an initial momentum component
that is negative and large enough such that the dynamics are initially adiabatic, in order
to capture the quenched dynamics in their entirety. κ is an additional momentum offset
in order to average over the periodicity of the density pattern.

We calculate P (kx, ky) from the modified LZ problem (See App. A). To leading order
in ky it is

| ⟨+|U(t, 0)|−⟩ |2 = exp{−
πℏvFk2y
eE0

|
∫ t

0
ei

2
ℏΠ(t′)dt′|2} (13)

6
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Figure 4: Comparison of the quenched dynamics for E0 = 3MVm−1 and Ed =
4.75MVm−1 as a function of the initial momentum component kx at vFky = ωd/4.
Panel (a) shows the analytical solution to the modified Landau-Zener quenched
dynamics (See App. A) that lead to the expression in Eq. 13. Panel (b) shows
the numerical results in the presence of weak dissipation. A weak exponential
decay due to the dissipation is visible, and the overall structure agrees well with
the analytical estimate in panel (a). Panel (c) shows the analytical estimate
for the differential photoconductivity from the modified Landau-Zener quench to
leading order in ky as given by Eq. 17. The striped structure agrees qualitatively
with the numerical results in Fig. 2 (a) for large values of E0. The black line
is given by Ed = 2πE0. The black dot indicates the parameters used in panels
(a) and (b). The shaded area indicates the regime in which Eq. 17 is not a valid
approximation.

with the integrated dynamical momentum of Eq. 1,

Π(t) = ℏvF
∫ t

0
(kx +

eE0t
′

ℏ
+
eEd

ℏωd
cos(ωdt

′))dt (14)

such that we find the full transition probability

P (kx, ky) ≈ exp
{
−
πℏvFk2y
eE0

∑

n∈Z

Jn

(−4vF eEd

ℏω2
d

sin(n
ℏω2

d

4vF eE0
)

)
e
inℏωd

kx
eE0

}
, (15)

for values of kx that are negative and large enough for the initial state to be in equilibrium
prior to the quench transition. Jn is the nth Bessel function of the first kind. This
expression explicitly displays the periodicity of eE0ℏ−12πω−1

d in kx that is induced by the
AC field. For the total current we average the transition probability over this periodicity
and to leading order find the expression

P̄ (ky) =

∫ eE02π
ℏωd

0
P (kx, ky)dkx ≈ c0 +

π2ℏ2v2Fk4y
e2E2

0

∑

n∈Z

J2
n

(−4vF eEd

ℏω2
d

sin(n
ℏω2

d

4vF eE0
)

)
, (16)
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where we ignore c0 as it is constant with respect to Ed and does not contribute to the
photoconductivity (See App. A). In Fig. 4 (c), we show the resulting contribution to the
differential photoconductivity for small ky

g̃LZxx ∝ d2

dEddE0

π2ℏv2F
4eΓE0

∑

n∈Z

J2
n

(−4vF eEd

ℏω2
d

sin(n
ℏω2

d

4vF eE0
)

)
. (17)

In the case of E0 ≫ Ed, g̃
LZ
xx displays a striped structure that is consistent with the

differential conductivity in Fig. 2 (a). For values of 2πE0 ≳ Ed, the prediction starts to
deviate as the contributions from momenta with larger ky component are not captured
by the leading order calculation for the transition probability in the modified LZ quench.
The oscillating terms proportional to E−1

0 in Eq. 17 result in erratic behavior for small DC
fields, which leads to the chaotic results in the regime of 2πE0 < Ed. This demonstrates
that the modified LZ quench is not a good description in the limit of E0 ≪ Ed, where
many driving oscillations happen during the transition and dissipation cannot be neglected
as a driven steady state forms.

In Figs. 4 (a) and (b) we show the time-evolution of the current density jx(t) as a
function of the initial value of kx and for vFky = ωd/4. We show this for E0 = 3MVm−1

and Ed = 4.75MVm−1. Fig. 4 (a) shows the analytical solution of Eq. 13 to leading order
in ky, whereas Fig. 4 (b) shows the numerical simulation in the presence of weak dissipation.
The dashed line indicates the points in time at which the drift of the momentum mode
passes the band gap. Note the periodicity in the transition probability pattern as a
function of kx. The results agree very well with each other and display how dissipation
acts as simple decay when the drift occurs quickly relative to the dissipation time scales.
For larger values of Ed, momentum modes with large transversal components contribute to
the current. The patterns at these large values of ky are not captured by the approximation
to leading order in ky. This explains the discrepancies of the striped patterns in Fig. 4 (c)
and Fig. 2 (a) for increasing values of Ed.

In the limit of vanishing driving, i.e. Ed → 0, the expression in Eq. 15 reproduces
the well-known approximation of the transition probability of the LZ problem P (ky) ∝
exp{−πℏvFk2ye−1E−1

0 }. In this limit, we calculate the bare, i.e. undriven, non-linear con-
ductivity of graphene for large E0 (See App. A) and find

GE0≫0
xx =

dJx|Ed=0

dE0
≈ 6

√
eE0vF

(γbg +
1
2γ−)

2ℏπ2
e2

h
. (18)

In the undriven, i.e. Ed → 0, and linear limit, i.e. E0 → 0, we calculate the conductivity
as a function of temperature (See App. A) and find

GE0→0
xx ≈ e2

h

(
π

2
− arctan((

kBT

ℏγ1
)
3
4 ) +

kBT

ℏ
log(4)

γ−

)
. (19)

A linear dependence of the minimal conductivity on the temperature in graphene as we
find here is consistent with the literature [16–24]. In gated graphene this behavior reverses
and the conductivity is found to decrease as a function of temperature [25,26]. In the case
of T = 0, Eq. 19 recovers the analytical result of the minimal conductivity of graphene

GE0→0
xx

∣∣
T→0

=
π

2

e2

h
. (20)

The minimal conductivity of graphene has been the subject of many studies and theory
commonly produces the values π

2
e2

h [7–10] or 4
π
e2

h [10–12], while experiments consistently

find 4e2

h .
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Figure 5: The undriven differential conductivity G0
xx of graphene for various tem-

peratures. Panel (a) shows the linear conductivity as a function of temperature.
The black line indicates the analytical solution in Eq. 19 (See App. A). Panel
(b) shows the non-linear differential conductivity as a function of E0 for various
temperatures. In the limit of large E0 the conductivity becomes temperature-
independent. The black line shows the analytical expression for the conductivity
presented in Eq. 21. The dashed lines indicate the bare conductivity of π

2
e2

h .

In Fig. 5 we show the conductivity in the absence of any AC field, i.e. G0
xx as in Eq. 6,

for different temperatures. In Fig. 5 (a) we show the linear conductivity, i.e. E0 → 0,
as a function of temperature. Note that the expression in Eq. 19 is derived in the case
of γbg = 0. Therefore, we introduce a parameter γ′ as γ− → γ− + γ′ and fit this to
the numerical results of the Lindblad master equation. We find very good agreement
for γ′ = γbg/6. The gray line in Fig. 5 (a) shows this fitted analytical prediction. In
Fig. 5 (b) we show G0

xx as a function of E0 for different temperatures. For small and
intermediately large values of E0 there is a clear dependency on the temperature. This
is expected, since for large E0 the current is dominated by contributions at momenta
where the level spacing is large enough to suppress any thermal excitation. In general, the
conductivity initially decreases with E0, reaches a minimal value at some value of E0 which
increases with temperature. The conductivity then increases again while approaching the
asymptotic behavior of Eq. 18. For T = 300K, the minimum of the differential conductivity
is approximately located at E0 ≈ 0.6MVm−1. This qualitative structure is consistent with
recent results [58]. We combine the analytical results of Eqs. 18 and 19 into an expression
for the differential conductivity at T = 0K

G0
xx ≈ e2

h

(
α
π

2
+

√
(1− α)2π2

4
+

36eE0vF

(γbg +
1
2γ−)

2ℏπ2

)
, (21)

where the construction of the parameter α ensures that for vanishing E0 the numerical
and analytical result is recovered, i.e. G0

xx|E0→0 = π
2
e2

h as in Eq. 20. We find very good
agreement with the numerical results for α = 1

4 and show this estimate in Fig. 5 (b) as a
black line. Note that this scaling behavior can in principle be used to determine the scale
of dissipation Γ in a given graphene sample. The expression in Eq. 21 for the differential
conductivity is necessary in the context of the Tien-Gordon effect [55] as we discuss later.

3.2 Dominant AC Field

Here we analyze the regime in which the AC field is dominant, and the differential pho-
toconductivity displays a checkerboard pattern as we show in Fig. 2 (a). As the AC field
strength Ed greatly exceeds the DC field strength E0, we describe the system as primarily

9
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Figure 6: The electron distribution n(k, ω) (See App. C) as a function of kx for
ky = ωd/4vF and for the AC field strengths Ed = 10MVm−1 (a) and Ed =
13MVm−1 (b). The solid lines show the Floquet spectra of the Hamiltonian in
Eq. 24. Here the dissipation coefficients are reduced by a factor of five compared
to the values in the main text, for visual clarity. For increasing dissipation the
gaps become increasingly indiscernible.

driven periodically and perturbed by the comparatively weak DC field E0. This naturally
suggests describing the system in the Floquet picture, in which dynamics are captured via
the effective Floquet Hamiltonian

HF =




. . .

H0 + ℏωd H1 H2

H−1 H0 H1

H−2 H−1 H0 − ℏωd

. . .



, (22)

which has an effective band structure that deviates from the undriven Hamiltonian. Here
Hm is the mth Fourier component of the original Hamiltonian H(t) such that

Hm =
ωd

2π

∫ 2π
ωd

0
eimωdtH(t)dt. (23)

The structure of the Floquet Hamiltonian explicitly includes infinitely many replicas of
the bare bands coupled to each other by the components Hm ̸=0 and separated by multiples

10
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of the photon energy ℏωd. In the case of Eq. 1 it is Hm,|m|>1 = 0, and we explicitly write

HF

ℏ
=




. . .

ωd vF k̄ 0 Ω 0 0
vFk ωd Ω 0 0 0
0 Ω 0 vF k̄ 0 Ω
Ω 0 vFk 0 Ω 0
0 0 0 Ω −ωd vF k̄
0 0 Ω 0 vFk −ωd

. . .




(24)

with k = kx + iky and Ω = evFEd
2ℏωd

.
In the case of very large AC field strengths, the Floquet band structure approaches an

increasingly regular pattern in which the Floquet band gaps align with the quasi-resonant
condition of vFkx = mωd/2, m ∈ Z. In Fig. 6 (a) and (b), we show the momentum-
and frequency-resolved electron distributions n(k, ω) (See App. C) at vFky = ωd/4 for
Ed = 10MVm−1 and Ed = 13MVm−1, respectively. We also show the eigenvalues of
the Floquet Hamiltonian in Eq. 24 for the same parameters as solid lines. Note that for
Ed = 0 the gap at kx = 0 in this example is ∆ = ℏωd/2, which is fully suppressed in
the effective Floquet band structure in Fig. 6. We calculate the Floquet energies at the
quasi-resonant conditions in first order of ky (See App. B) and find that the mth Floquet
band gap is given by

∆ϵ(m) = 2ℏvFkyJm(2
evFEd

ℏω2
d

) +O(k2y), (25)

where Jm is the mth Bessel function of the first kind. For increasing Ed, the range of
values of ky for which this expression remains valid increases. For those values of Ed for
which the mth Bessel function evaluates to zero, the transition probability becomes unity
as a form of coherent destruction of tunneling [50,53].

Fig. 2 (a) shows that the differential photoconductivity displays a type of checkerboard
pattern in the regime that we consider in this section. The regularity of this pattern with
respect to E0 aligns along values of

E
(m)
0 =

mℏω2
d

4πevF
(26)

with m ∈ N, as we indicate with vertical lines. These values of E
(m)
0 are the DC field

strengths for which during one driving period 2π
ωd

, a shift in momentum equivalent to
the difference in location between m resonances is accumulated. In consideration of the
Floquet band gaps in Eq. 25, this translates into a momentum shift that is commensurate
with m Floquet band gaps for small ky.

We demonstrate that the contributions to the photoconductivity are located at these
Floquet band gaps in Fig. 7 (a), where we show the photocurrent density ∆jx(k), as de-
fined in Eq. 10, integrated over ky as a function of kx, and the AC field strength Ed in
the limit of small E0. We see a clear structure of dominant contributions to the differen-
tial photoconductivity at momentum components kx = mωd/vF , i.e. at locations of the
Floquet band gaps for small ky as given in Eq. 25. With increasing Ed, contributions
at higher-order resonances start to emerge that are aligned with the locations of Floquet
band gaps. The regularity in the differential photoconductivity gxx with respect to Ed

emerges as a consequence of these quasi-resonant contributions, which relate to the size of
the Floquet band gaps in Eq. 25. For large values of Ed the roots of the even-order Bessel

11
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Figure 7: The distribution of current contributions in momentum space. In panel
(a), we show the photocurrent density in momentum space integrated over only
the ky component as a function of the kx component, and the AC field strength
Ed. The dominant contributions are located at the multi-photon resonances
indicated by the vertical dashed lines. In panel (b), we show the Floquet band
energy differences resolved in k-space for large AC field strength Ed = 10MVm−1.
The Floquet gap locations align with the resonance conditions for ky = 0, giving
rise to a striped pattern of Floquet band gaps. The circles indicate the original
resonance conditions in bare graphene. In panel (c), we show the differential
photoconductivity as given by the Tien-Gordon expression in Eq. 28 using the
expression for the bare differential conductivity in Eq. 21. Note the similarities in
the regular checkerboard pattern to the differential photoconductivity in Fig. 2.

functions in Eq. 25 become increasingly aligned, as do the roots of the odd-order Bessel
functions. This results in an odd-even pattern of dominant contributions with respect to

E
(m)
0 , i.e. the checkerboard pattern in Fig. 2 (a). In Fig. 7 (b), we show the Floquet band

energy differences for Ed = 10MVm−1, where it is clearly visible how the Floquet band
gaps for small ky align in the regular pattern along kx at which the dominant contributions
to the photocurrent occur. This is consistent with pulsed two-level systems, in which LZ
transitions across instantaneous Floquet band structures provide an accurate description
of the dynamics [59].

For comparison, we consider the predictions of the Tien-Gordon effect. In semicon-
ducting nanostructures that are AC and DC biased simultaneously, the DC I-V curves
without an AC driving field taking into account photon-assisted tunneling. The original
discussion put forth by Tien and Gordon discussed the dynamics of superconducting junc-
tions in a perpendicular electric field [55]. For a bias voltage V (t) = V0 +

Vd
ωd

sin(ωdt) they
approximate the driven I-V curve as

I(V0) =
∑

m

J2
m(
Vd
ωd

)I0(V0 +mωd). (27)

A similar analysis has been put forth for graphene in the presence of an oscillating chemical
potential [60], i.e. an alternating gate bias. The expression in Eq. 27 translates into the
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conductivity

GTG
xx =

∑

m

J2
m

(
evFEd

ℏω2
d

)
G0

xx

(
E0 +

mℏω2
d

2πvF e

)
. (28)

In Fig. 7 (c) we show the differential photoconductivity as it is predicted by Eq. 28 using the
approximate expression for the bare conductivity in Eq. 21. We find that the characteristic
structure shows a similar checkerboard pattern to that in Fig. 2 (a). In particular, the
regularity with respect to E0 is identical, as in Eq. 28 the same multi-photon offset to the
DC field strength E0 occurs as in Eq. 26. The regularity with respect to Ed agrees with
the results in Fig. 2 (a) and the Floquet band gap scaling in Eq. 25, despite the distinct
nature of the two phenomena. Note that the Tien-Gordon prediction in Eq. 28 becomes
increasingly inaccurate towards the regime where it is 2πE0 > Ed, which is where the
checkerboard pattern is lost in the differential photoconductivity in Fig. 2 (a).

4 Conclusion

We have presented the non-linear longitudinal differential DC photoconductivity of light-
driven monolayer graphene. We model the electron dynamics near the Dirac points of
the graphene dispersion, in the presence of a DC probing field and an AC driving field.
The driving field has the same linear polarization as the probing field. The differential
photoconductivity displays two regimes as a function of the AC driving field strength, and
the DC probing field strength, depending on which of these field strengths is dominant.
The dynamics of these two regimes are captured well in two very distinct pictures, which
we have explored analytically, and compared to the numerical result.

In the regime in which the direct bias dominates, the photoconductivity displays a
striped pattern. It derives from the Landau-Zener dynamics of the electrons across the
Dirac cone, driven by the two electric fields. We presented an analytical calculation that
reproduces the formation of the striped patterns in the photoconductivity. We put forth
an analytical prediction for the formation of current density patterns in momentum space
in the limit of large direct biases. From this we have approximated the non-linear conduc-
tivity in the absence of an alternating bias, which shows behavior that is independent of
temperature. Further, in the limit of a small direct bias and no alternating bias, i.e. the
undriven linear case, we have calculated that the minimal conductivity increases linearly
with the temperature and recovers the value of π

2
e2

h for vanishing temperature.
In the regime of the dominant AC driving field, the photoconductivity displays a

checkerboard pattern. In this regime, we use a Floquet picture to describe the dynamics.
The regularity as a function of the direct bias is given by values which during one driving
period accumulate a shift in momentum that is equal to the differences of Floquet band gap
locations. We have shown that for large alternating bias and small transverse momenta, the
Floquet band gaps align along the corresponding values of equal longitudinal momenta at
which the dominant contributions to the photoconductivity are located. Further we have
compared these results to the Tien-Gordon effect. We have used the analytic expression
of the non-linear conductivity to calculate the differential photoconductivity using the
expression put forth by Tien and Gordon, which displays a similar checkerboard pattern.
In particular, the regularity as a function of the direct bias is manifestly identical. The
regularity as a function of the alternating bias is very similar, and agrees with the analytic
expression of the Floquet band gaps to leading order in transverse momentum.

The results we have put forth provide insight into the non-linear electronic transport
properties of strongly driven graphene. The insights presented here support the engineer-
ing of non-equilibrium quantum electronic devices in the future.
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A Analytical Approaches to the Differential Photoconduc-
tivity

Transition Probability for Generalized Quenches

We consider a two-level Hamiltonian with energy spacing ∆ and a time-dependent quench
π(t) that we write as

H = ∆σx + π(t)σz (29)

such that the second time-derivative of any state is given by

∂2t |ψ⟩ = − i

ℏ
∂t(H |ψ⟩) = −1

ℏ
(
1

ℏ
ϵ(t)2 + iσzπ̇(t)) |ψ⟩ , (30)

where we have used that H2 = ϵ2 = ∆2 + π(t)2 in centered two-level systems, i.e. when
Tr(H) = 0. For the components of |ψ⟩ = (ψ+, ψ−) it is

ψ̈± = − 1

ℏ2
(∆2 + π(t)2 ± iℏπ̇(t))ψ± (31)

ψ̇± = − i

ℏ
(±π(t)ψ± +∆ψ∓) (32)

such that for initial conditions ψ±(0) we have

ψ̇±(0) = − i

ℏ
(±π(0)ψ±(0) + ∆ψ∓(0)). (33)

We write ψ±(t) = exp{ξ±(t)} such that Eq. 31 yields

ξ̈± + ξ̇2± = −∆2

ℏ2
− π2

ℏ2
∓ iπ̇

ℏ
(34)

ξ±(0) = ln(ψ±(0)) (35)

ξ̇±(0) = − i

ℏ
(±π(0) + ∆

ψ∓(0)
ψ±(0)

). (36)

We expand ξ =
∑∞

m=0 ξm∆m in orders of ∆ and write

ξ̈±,m +
m∑

n=0

ξ̇±,m−nξ̇±,n = −δm,2 − δm,0(π
2 ± iπ̇). (37)

The case m = 0 gives

ξ̈±,0 + ξ̇2±,0 = ∓iπ̇ − π2 =⇒ ξ̇±,0 = ∓iπ (38)

=⇒ ξ±,0 = ln(ψ±(0))∓ iΠ(t) (39)

with

Π(t) =

∫ t

0
π(t′)dt′. (40)
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The case m = 1 is solved to satisfy the initial condition Eq. 36 such that

ξ̈±,1 ∓ i2πξ̇±,1 = 0 =⇒ ξ̇±,1 = −iψ∓
ψ±

e±2 i
ℏΠ(t) (41)

=⇒ ξ±,1 = −iψ∓
ψ±

∫ t

0
e±2 i

ℏΠ(t′)dt′ (42)

The case m = 2 is solved as

ξ̈±,2 ∓ i2πξ̇±,2 = −1− (−iψ∓
ψ±

e±2 i
ℏΠ(t))2 (43)

=⇒ ξ̇±,2 = −e±i2Π(t)

∫ t

0
e∓i2Π(t′) − ψ2

∓
ψ2
±
e±2iΠ(t′)dt′ (44)

=⇒ ξ±,2 = −
∫ t

0
e±i2Π(t′)

∫ t′

0
e∓i2Π(t′′)dt′′dt′

︸ ︷︷ ︸
ξ′±,2

+
ψ2
∓

ψ2
±

∫ t

0
e±i2Π(t′)

∫ t′

0
e±i2Π(t′′)dt′′dt′

︸ ︷︷ ︸
ξ′′±,2

(45)

We note that ξ′±,2 = ξ′∗∓,2 such that we define ξ′2 = Re[ξ′+,2] = Re[ξ′−,2].
Higher orders of m > 2 are solved iteratively by

ξ̈±,m ∓ i2πξ̇±,m = −
m−1∑

n=1

ξ̇±,m−nξ̇±,n (46)

=⇒ ξ̇±,m = −e±i2Π(t)

∫ t

0
e∓i2Π(t′)

∑

n

ξ̇±,m−nξ̇±,ndt
′ (47)

=⇒ ξ±,m = −
∫ t

0
e±i2Π(t′)

∫ t′

0
e∓i2Π(t′′)

∑

n

ξ̇±,m−nξ̇±,ndt
′′dt′. (48)

Here, we consider ξ− up to second order with the boundary conditions ψ−(0) = 1 and
ψ+(0) = 0. We calculate the amplitude square

|a(t)|2 = exp{(ξ−,0 + ξ−,2
∆2

ℏ2
)} exp{(ξ̄−,0 + ξ̄−,2

∆2

ℏ2
)} = exp{2∆

2

ℏ2
Re[ξ′2]} (49)

= exp{−∆2

ℏ2

∫ t

0
(cos(

2

ℏ
Π(t′))

∫ t′

0
cos(

2

ℏ
Π(t′′))dt′′ + sin(

2

ℏ
Π(t′))

∫ t′

0
sin(

2

ℏ
Π(t′′))dt′′)dt′}

(50)

= exp{−∆2

ℏ
([

∫ t

0
cos(

2

ℏ
Π(t′))dt′]2 + [

∫ t

0
sin(

2

ℏ
Π(t′))dt′]2)} (51)

= exp{−∆2

ℏ
|
∫ t

0
ei

2
ℏΠ(t′)dt′|2}. (52)

We apply this to the explicit case of

π(t) = ℏvFkx + evFE0t+
evFEd

ωd
sin(ωdt) (53)

Π(t) = ℏvFkxt+
evFE0t

2

2
− evFEd

ω2
d

cos(ωdt) +
evFEd

ω2
d

. (54)

This constitutes a Landau-Zener quench with an additional alternating motion. The con-
struction of the parameters is chosen to invoke the similarities to graphene. In particular,
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we write ∆ = ℏvFky to emphasize this connection. Note that the Hamiltonian in Eq. 29
then becomes equivalent to that in Eq. 1 under a simple basis rotation around σy. We
continue by writing the central exponential function as

exp{i2
ℏ
Π(t)} = e

i2
evF Ed
ℏω2

d ei2vF kxte
i
ℏ evFE0t2e

−i
2evF Ed

ℏω2
d

cos(ωdt))
(55)

= e
i2

evF Ed
ℏω2

d

∑

n∈Z

inJn

(−2evFEd

ℏω2
d

)
ei(nωd+2vF kx)te

i
ℏ evFE0t2 . (56)

We integrate this product of exponential functions for a fixed value of n, which gives

∫ t

0
ei(nωd+2vF kx)t′e

i
ℏ evFE0t′2dt′ =

√
iπℏ

4evFE0
e
− iℏ(nωd+2vF kx)2

4evF E0 (57)

×
(
erf

(√
−i
4E0

(nωd + 2kx)

)
− erf

(√
−i
4E0

(nωd + 2kx + 2E0t)

))
. (58)

In order to consider the transition amplitude across the quench, we assume that |kx|, with
kx < 0, and t are both large enough such that the error functions approach −1 and 1 for
large times. Then the absolute square of the integral becomes

|
∫ ∞

0
exp{i2Π(t)}dt|2 ≈ ℏπ

evFE0
|
∑

n∈Z

inJn

(−2evFEd

ℏω2
d

)
e
− iℏn2ω2

d
4evF E0 e

− inℏωdkx
eE0 |2. (59)

In the undriven case of Ed = 0 we correctly recover the first order correction to
the transition amplitude as predicted in the Landau-Zener problem. In that case it is
J0(−2Edω

−2
d ) = 1 and Jn>0(−2Edω

−2
d ) = 0, such that

|a(t→ ∞)|2 = e
−πℏvF k2y

eE0 . (60)

In the driven case the calculation is more intricate. Remember that the expression
Eq. 59 is periodic in kx. We take the expression for the transition probability and simplify
the absolute squared expression. It is

|a|2 = exp

{
−
πℏvFk2y
2eE0

|
∑

n∈Z

inJn(−
2vF eEd

ℏω2
d

)e
−i

ℏn2ω2
d

4vF eE0 e
−i

nℏωdkx
eE0 |2

}
(61)

= exp



−

πℏvFk2y
2eE0

∑

n,m∈Z

in−mJn(−
2vF eEd

ℏω2
d

)Jm(−2vF eEd

ℏω2
d

)e
−i

ℏ(n2−m2)ω2
d

4vF eE0 e
−i

ℏ(n−m)ωdkx
eE0





(62)

= exp



−

πℏvFk2y
2eE0

∑

n,m∈Z

inJn+m(−2vF eEd

ℏω2
d

)Jm(−2vF eEd

ℏω2
d

)e
−i

nℏ(n+2m)ω2
d

4vF eE0 e
−i

nℏωdkx
eE0




(63)

=
∏

n∈Z

exp

{
−
πℏvFk2y
2eE0

Jn(−
4vF eEd

ℏω2
d

sin(
nℏω2

d

4vF eE0
))e

−i
nℏωdkx

eE0

}
(64)

= e
−πℏvF k2y

2eE0

∞∏

n=1

exp

{
−
πℏvFk2y
eE0

Jn(−
4vF eEd

ℏω2
d

sin(
nℏω2

d

4vF eE0
)) cos(

nℏωdkx
eE0

)

}
(65)
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where we have used that

in
∑

m∈Z

Jn+m(−2Ed

ω2
d

)Jm(−2Ed

ω2
d

)e
−i

n(n+2m)ω2
d

4E0 = Jn(
4Ed

ω2
d

sin(n
ω2
d

4E0
)), (66)

which we obtain by invoking the relations

Jµ(z) =
1

2π

∫ 2π

0
eiµτ−iz cos(τ)dτ (67)

Jµ(z)Jν(z) =
2

π

∫ π
2

0
Jµ+ν(2z cos(t)) cos((µ− ν)t)dt. (68)

In the following, we use the expression in Eq. 65 to approximate contributions to the
conductivity.

Integrated Contributions from Modulated Quench Transitions

We estimate the conductivity by first integrating the transition probability over momentum-
space, which gives the total current. Afterwards we take the derivative with respect to the
two bias strengths E0 and Ed. However, that expression is only finite in the presence of
dissipation which relaxes the excited states after the quench. Therefore, we consider this
calculation in a two-step model, where the transition occurs in full and only afterwards
dissipation starts to act, decaying any population that was excited. This is modeled by
exponential decay by a phenomenological dampening coefficient Γ. Note that kx in |a|2
is the initial value of the momentum component. We calculate the transition probability
averaged over this initial value by writing

|a|2 = exp

{
−
πℏvFk2y
2eE0

∑

n∈Z

Jn(−
4vF eEd

ℏω2
d

sin(
nℏω2

d

4vF eE0
))e

−i
nℏωdkx

eE0

}
(69)

=
∞∑

l=0

(−πℏvF k2y
2eE0

)l

l!

∑

{nj∈Z}
j∈{1,...,l}

e
−i

(
∑l

j=1 nj)ℏωdkx

eE0

l∏

j=1

Jnj (−
4vF eEd

ℏω2
d

sin(
njℏω2

d

4vF eE0
)) (70)

and integrating this expression to leading order such that

|a|2 = ℏωd

2πeE0

∫ 2πeE0
ℏωd

0
|a|2dkx,0 (71)

=

∞∑

l=0

(−πℏvF k2y
2eE0

)l

l!

∑

{nj∈Z}
j∈{1,...,l}

δ(

l∑

j=1

nj)

l∏

j=1

Jnj (−
4vF eEd

ℏω2
d

sin(
njℏω2

d

4vF eE0
)) (72)

= 1−
πℏvFk2y
2eE0

+ (
πℏvFk2y
2eE0

)2
∑

n∈Z

J2
n(−

4vF eEd

ℏω2
d

sin(
nℏω2

d

4vF eE0
)) +O(k6y). (73)

In the first step we evaluated the integral and found that the exponential functions lead to
vanishing integration unless the exponent is zero. This condition is expressed through the
delta-function δ(

∑l
j=1 nj). In the following step we have evaluated the first three terms

of the series. Note that the l = 1 term is proportional to J0(0) = 1 and for the l = 2
term the sum reduces since n2 = −n1 and a sign change in both the index of the Bessel
function and the sine in the argument of the same Bessel function cancel each other. As
we are interested in the differential photoconductivity, we first notice that the first two
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terms vanish when differentiating with respect to Ed, such that we can ignore them. We
consider the conductivity in the limit, where the quench occurs fast and dissipation acts
afterwards with a simple exponential decay such that we integrate current contributions
over all kx as

g̃xx ∝ ∂Ed
∂E0 |a|2

∫ ∞

0
e
−Γ ℏkx

eE0 dkx (74)

= ∂Ed
∂E0(|a|2

eE0

ℏΓ
) (75)

≈ k4y
π2ℏv2F
4eΓ

∂Ed
∂E0

∑

n∈Z

1

E0
J2
n(−

4vF eEd

ℏω2
d

sin(
nℏω2

d

4vF eE0
)). (76)

This expression provides the contributions to the differential photoconductivity as a func-
tion of ky for small values of ky. In order to access higher order contributions it is necessary
to evaluate Eq. 48 and then perform the analogous calculation of the conductivity.

Non-Linear Conductivity in the Large-DC-Bias Limit

For large values of evFE0ℏ−1 ≫ Γωd, we can approximate the transition probability of
a ground state at t → −∞ towards t → ∞ as a function of ky. We assume that the
transition happens fast enough such that the entire transition process happens and then
decay starts acting. In a comoving frame, time translates into kx-momentum and the
transition probability is proportional to the conductivity density. We take the result for
the transition probability for Ed = 0 and multiply this by an exponential decay in kx
starting at kx = 0. It is

|a(kx, ky)|2 = e
−πvF ℏk2y

eE0 e
−Γ ℏkx

eE0 Θ(kx) (77)

where Θ(kx) is the Heaviside function. This integrates over momentum space to

Jx = nsnv
evF
4π2

∫ ∞

−∞

∫ ∞

0
2|a(kx, ky)|2dkxdky = 2

√
e5E3

0vF
Γ2ℏ3π4

(78)

Hence the conductivity from this main contributions is

G0
xx =

dJx
dE0

= 6

√
eE0vF
Γ2ℏπ2

e2

h
. (79)

This is in agreement with the large E0 limit of Fig. 5 (b) up to some constant offset
provided by the current density close to the Dirac point which we neglected here. This
calculation holds only in the limit where the exponential decay in kx-direction happens
close enough to the Dirac point that a linear dispersion is still a valid approximation.
From the Lindbladian in the 4× 4 basis it is easy to see, that Γ = γ± + γbg.

Temperature-dependent Conductivity Without Driving

In the limit of small E0, dissipation acts significantly during the transition and the previous
approximation is no longer valid. Also, temperature starts to become relevant in this limit.
In the comoving frame kx → kx − eE0ℏ−1t, the solution is a stationary state such that
ℏ∂tρ = eE0∂kxρ. To approach this problem analytically we neglect the expanded sector
of the Hilbert space and only consider the original 2× 2 system, i.e. γbg = 0. In this case
the Lindblad-von Neumann master equation can be cast into the form

ℏ∂tρ⃗ = 2H⃗ × ρ⃗− ℏγ1ρ⃗− ℏγ2h⃗− ℏγ3(ρ⃗h⃗)⃗h (80)
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for the density operator representation

ρ =
1

2
(1 + ρ⃗σ⃗) (81)

where σ⃗ = (σx, σy, σz) is a vector containing the Pauli matrices. Similarly, it is

H = H⃗σ⃗ (82)

and h⃗ = ϵ−1H⃗ with ϵ =
√
H⃗.H⃗. For details on and a derivation of this representation of

the master equation we refer to previous work [61]. We invoke this representation in the
comoving frame and write

eE0∂kx ρ⃗ = 2H⃗ × ρ⃗− ℏγ1ρ⃗− ℏγ2h⃗− ℏγ3(ρ⃗h⃗)⃗h. (83)

In the case of finite temperature the dissipation coefficient γ2 depends on the temper-
ature T as

γ2 = γ± tanh

(
ϵ

kBT

)
, (84)

where ϵ =
√
(ℏvFkx + evFE0t)2 + (ℏvFky)2. We consider this in the expansion in orders

of E0 and find

e∂kx ρ⃗m−1 = 2(H⃗0× ρ⃗m+ H⃗1× ρ⃗m−1)−ℏγ1ρ⃗m−ℏγ2,mh⃗m−n−ℏ
∑

n,l

γ3(ρ⃗m−n−lh⃗n)⃗hl. (85)

We solve this for m = 0 and find the thermal state

ρ⃗0 = − tanh

(
ℏvFk
kBT

)
h⃗. (86)

We continue to find the solution form = 1, which expressed in polar coordinates kx+iky =
keiϕ, has the x-component

ρ1,x =
e

2
sech2

(
ℏvFk
kBT

)
 2ℏ2v2F cos2(ϕ)

ℏ2kBT (γ1 + γ3)
+
γ1ℏ2v2F sin2(ϕ) sinh

(
2ℏvF k
kBT

)

ℏ2γ21ℏvFk + 4ℏ3v3Fk3


 . (87)

In order to obtain the conductivity we have to integrate this expression over momentum
space. This expression integrates angularly to

1

e

∫ 2π

0
ρ1,xdϕ =

πℏ2v2F sech
2
(
ℏvF k
kBT

)

ℏ2kBT (γ1 + γ3)
+
πℏ2v2Fγ1 tanh

(
ℏvF k
kBT

)

ℏ3vFkγ21 + 4ℏ3v3Fk3
. (88)

The first term integrates radially to

∫ ∞

0
k
πℏ2v2F sech

2
(
ℏvfk
kBT

)

ℏ2kBT (γ1 + γ3)
dk =

kBT

ℏ2
π log(2)

γ1 + γ3
. (89)

The second term relies on some approximation of the hyperbolic tangent, we use to good
approximation that

∫ ∞

0

πℏ2v2Fγ1 tanh
(
ℏvF k
kBT

)

ℏ3vFγ21 + 4ℏ3v3Fk2
dk ≈

(
π2

4
− π

2
arctan((

kBT

ℏγ1
)
3
4 )

)
1

ℏvF
. (90)
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We collect the terms and write the conductivity as

G0
xx = nvns

evF
4π2

∫ ∞

0

∫ 2π

0
kρ1,x(k)dϕdk (91)

with the valley- and spin-degeneracy nv = ns = 2. With this we insert the derived
expressions and get the final result

G0
xx ≈

(
π

2

(
1− 2

π
arctan((

kBT

ℏγ1
)
3
4 )

)
+
kBT

ℏ
2 log(2)

γ1 + γ3

)
e2

h
. (92)

B Floquet Band Gaps at Small Transverse Momenta

We want to calculate the Floquet band structure in the limit of small ky for the driven
Hamiltonian

1

ℏ
H = vF (kx +

eEd

ℏωd
cos(ωdt))σx + vFkyσy. (93)

We start by going into the time-dependent basis under the transformation

V = exp{−ivF (kxt+
eEd

ℏω2
d

sin(ωdt)σx)} (94)

such that the Schrödinger equation becomes

∂tψ = −ivFkyV †σyV ψ (95)

with the effective Hamiltonian proportional to

V †σyV = sin(2(vFkxt+
evFEd

ℏω2
d

sin(ωdt)))σz + cos(2(vFkxt+
evFEd

ℏω2
d

sin(ωdt)))σy. (96)

In this basis the time-evolution operator after one driving period describes the same
transformation as the effective static Floquet Hamiltonian. The formal solution yields

U

(
2π

ωd

)
= T̂ [exp{−ivFky

∫ 2π
ωd

0
V †σyV dt}], (97)

where T̂ indicates time-ordering. This expression is a formal notation for an infinite series
of nested integrals. We approximate this transformation by the Magnus expansion to first
order in ky. It then suffices to calculate

U

(
2π

ωd

)
= exp{−ivFky

∫ 2π
ωd

0
V †σyV dt}, (98)

where the integral in the exponential is now a closed expression that can be integrated by
itself before exponentiation. We calculate the integral by first writing

20



SciPost Physics Submission

sin(2(vFkxt+
evFEd

ℏω2
d

sin(ωdt))) =
1

2i

∑

n∈Z

inei2vF kxtJn(2
evFEd

ℏω2
d

)ein(ωdt−π
2
) (99)

− ine−i2vF kxtJn(2
evFEd

ℏω2
d

)ein(−ωdt−π
2
) (100)

=
∑

n∈Z

Jn(2
evFEd

ℏω2
d

) sin(2vFkxt− nωdt) (101)

∫ 2π
ωd

0
→ 2π

ωd

∑

n∈Z

Jn(2
evFEd

ℏω2
d

)
1− cos(2π(2vF kx

ωd
− n))

2vF kx
ωd

− n
(102)

and analogously

cos(2(vFkxt+
evFEd

ℏω2
d

sin(ωdt))) →
2π

ωd

∑

n∈Z

Jn(2
evFEd

ℏω2
d

)
sin(2π(2vF kx

ωd
− n))

2vF kx
ωd

− n
. (103)

The final transformation in the original basis is

V †(
2π

ωd
)U(

2π

ωd
) (104)

which has the eigenvalues λ± = e
±iϵ 2π

ℏωd , where ϵ are the Floquet energies. Hence, the
Floquet energies can be calculated as

ϵ± =
ℏωd

i2π
log(λ±). (105)

In the case in which 2vFkxω
−1
d is integer valued, we simplify

2π

ωd

∑

n∈Z

Jn(2
evFEd

ℏω2
d

)
1− cos(2π(l − n))

l − n
= 0 (106)

2π

ωd

∑

n∈Z

Jn(2
evFEd

ℏω2
d

)
sin(2π(l − n))

l − n
=

2π

ωd
J2l(2

evFEd

ℏω2
d

) (107)

and similarly in the case where 2vFkxω
−1
d is half-integer we write

2π

ωd

∑

n∈Z

Jn(2
evFEd

ℏω2
d

)
1− cos(2π(l − n))

l − n
=

2π

ωd
J2l+1(2

evFEd

ℏω2
d

) (108)

2π

ωd

∑

n∈Z

Jn(2
evFEd

ℏω2
d

)
sin(2π(l − n))

l − n
= 0 (109)

In either of these case it is V ( 2πωd
) ∝ 1 and we therefore find

U(
2π

ωd
) = e

−i
2πℏvF ky

ℏωd
Jl

(
2
evF Ed
ℏω2

d

)
σy

(110)

which has the eigenvalues

λ± = e
∓i

2πℏvF ky
ℏωd

Jl

(
2
evF Ed
ℏω2

d

)

(111)

and we therefore find the Floquet energies

ϵ± = ℏvFkyJl
(
2
evFEd

ℏω2
d

)
. (112)

Note that
2vF ky
ωd

< 1 and Jl(z) ≤ 1, such that analytic continuation in the complex plane
does not have to be considered and the eigenvalues take this simple shape.
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C Dissipative Calculations

The model of graphene that we use in this work employs of a Hilbert space that includes

two additional states. We consider fermionic operators c
(†)
k,A and c

(†)
k,B that annihilate

(create) electrons at momentum k in sublattice A and B, respectively. The Hilbert space

is then spanned by the states |0⟩, c†A |0⟩, c†B |0⟩ and c†Bc
†
A |0⟩. In particular, the first

and fourth states describe the situation in which either no electrons or two electrons are
occupying a given momentum mode k. In this space we define the dissipation operators
in the instantaneous eigenbasis of the driven Hamiltonian, e.g. L− describes decay from
the excited single-electron eigenstate to the single-electron ground state. It is

L− =




0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0


 L+ =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 Lz =




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0




(113)

L↓,j =




0 δj,1 0 0
0 0 0 0
δj,2 0 0 δj,3
0 δj,4 0 0


 L↑,j =




0 0 δj,2 0
δj,1 0 0 δj,4
0 0 0 0
0 0 δj,3 0


 . (114)

L↑/↓,j describe the individual transitions in and out of the single-electron sector. In
the master equation these particular processes are weighted by the dissipation rate γbg =
γ↓+γ↑ and γ± = γ++γ− We weight opposing processes by Boltzmann factors that ensure
a Fermi distribution with temperature T in the equilibrium state

γ↑ = γ↓ exp{−
ϵ

kBT
} (115)

γ+ = γ− exp{− 2ϵ

kBT
}. (116)

kB is the Boltzmann constant and ±ϵ are the instantaneous eigenenergies of the Hamil-
tonian, e.g. Eq. 1. For further details on this dissipative model we refer to previous work
that employ the same model [45,56,57].

Further, this description allows us to calculate two-point correlation functions using
these fermionic operators, such as ⟨c†A(t2)cA(t1)⟩ and ⟨c†B(t2)cB(t1)⟩. We use these corre-
lation functions to calculate the momentum- and frequency-resolved electron distribution
in the steady state of the driven dissipative system.

n(k, ω) =
1

(tf − ti)2

∫ tf

ti

∫ tf

ti

∑

j=A,B

⟨c†k,j(t2)ck,j(t1)⟩ eiω(t2−t1)dt1dt2 (117)

This electron distribution reveals the Floquet band structure of the system and the electron
population in these bands. This quantity is reminiscent of time- and angle-resolved photo-
electron spectroscopy [62]. For further details on this method see previous works [45,56,57].
We use this calculation for Fig. 7 in the main text.
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3 The Floquet-assisted Superradiant Phase

A central result of Publication II was that the longitudinal optical conductivity of
strongly driven dissipative graphene can display a sign reversal at probing frequencies
that are resonant with light-induced band gaps. From this, the question emerged whether
the corresponding optical gain can be utilized to build a gain medium or a coherent light-
source by exploiting the underlying mechanism of population inverted Floquet bands in
solids. A possible construction would consider coupling the material to a single-mode
cavity that is resonant to these population-inverted Floquet states, in order for a coher-
ent light-field in the cavity to be sustained by depleting the population inversion in a type
of laser-like mechanism. This consideration motivated Publication V, and subsequently
Publication VI, in which I have studied a modified driven dissipative Dicke model that is
inspired by the physics of circularly driven dissipative graphene. In this quantum optical
model the same mechanism does occur, leading to a population inversion in the Floquet
states, which in fact culminates in a non-equilibrium superradiant phase, to which I refer
as the Floquet-assisted superradiant phase (FSP). The emergence, characterization, and
robustness of the FSP are the focus of Publication V and Publication VI.
Throughout this chapter I provide an overview of the necessary background in quan-

tum optics, with a focus on the Dicke model and the superradiant phase. This invites
a discussion on non-equilibrium phenomena, superradiance, and different types of laser
mechanisms. I also address the challenges of realizing the Dicke model and how this
connects to a graphene-based setup such as the one that motivates Publication V and
Publication VI. Quantum optics is a large and well-established field of research, and
detailed books as well as extensive reviews of the Dicke model, superradiance, and laser
phenomena are widely available [147–151] and have inspired the content of this chapter.

3.1 The Dicke Model and Superradiance

The Dicke model [152, 153] is one of the quintessential quantum optical models. It
describes N identical two-level systems with level-spacing ωz that are placed inside, and
coupled to, a single-mode cavity with frequency ωc. The Hamiltonian reads1

H = ℏ
ωz

2

N∑

j=1

σjz + ℏωca
†a+

λ√
N

N∑

j=1

(σj+ + σj−)(a+ a†), (3.1)

where σj± = 1
2(σ

j
x ± iσjy) and σjx,y,z are the local Pauli matrices of the jth two-level

system. λ is the coupling strength and a(†) are the annihilation (creation) operators

1Note that I use the definition of the Pauli matrices that fulfills σ2
j = 1, and not σ2

j = 1
4
.
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of the cavity mode. Note that the interaction contains four terms of the form σj±a
(†).

The two so-called counter-rotating terms σj−a and σj+a
† are sometimes neglected in the

rotating-wave approximation (RWA), as they describe relaxation and excitation pro-
cesses by two quanta at once and are therefore fast-oscillating compared to the remain-
ing two interaction terms. Applying this approximation recovers the Tavis-Cummings
model [154]. Considering the edge-case of N = 1 of the Tavis-Cummings model recovers
the Jaynes-Cummings model [155]. Considering the case of N = 1, while keeping the
counter-rotating terms produces the quantum Rabi model.

The Hamiltonian in Eq. 3.1 is sometimes referred to as the Dicke-Lieb-Hepp model, as
it was first proposed in this form by Lieb and Hepp [153]2 two decades after the original
model of superradiance proposed by Dicke [152], which did not consider the presence
of a cavity. This semantic ambiguity extends into the nomenclature of superradiance,
which refers to the two distinct phenomena of transient superradiant flashing and the
steady-state superradiant phase, which occur in these models. The former, also referred
to as superradiant bursting or just superradiance, occurs in the original Dicke model as
a collective spontaneous emission of N excited emitters in proximity which leads to a
coherent burst of radiation that scales with N2 in intensity. I am not concerned with
this phenomenon throughout my work. The superradiant phase on the other hand,
also referred to as superradiance, is an equilibrium phenomenon of the Dicke-Lieb-Hepp
model. It describes a second-order phase transition characterized by the occupation of
the cavity. For coupling strengths that exceed the critical value λ > λc =

1
2

√
ωcωz [153,

156, 157] the system displays a new ground state. This ground state consists of a coherent
state in the cavity and substantial component along the σx direction in the two-level
systems, which represents finite polarization in case the model is used to describe atoms
inside an optical cavity. Note that the coherent state in the cavity emerges, while the
two-level systems show no population inversion, i.e. ⟨σz⟩ < 0. For λ < λc, the system is
in its normal phase where the ground state is trivial and consists of an empty cavity and
all two-level systems in their local ground state. Throughout this section I am concerned
with the Dicke-Lieb-Hepp model as written in Eq. 3.1, to which I refer to as the Dicke
model.

When quantum optical models of this type were first studied, it was noticed that
experimental realizations of the Dicke model are faced with a no-go argument [158–160],
which sparked an intricate discussion about the relevance of gauge-fixing [161] that is still
attracting attention [162, 163]. The outline of the argument goes as follows. Historically,
the Dicke model was derived for a set of atoms inside an optical cavity coupled through
the electric transition dipole moment. In minimal coupling, the electromagnetic vector
potential A⃗ couples to momentum as

p⃗→ π⃗ = p⃗− eA⃗, (3.2)

where π⃗ is the dynamical momentum. In the parabolic kinetic term of non-relativistic

2In fact in the work by Lieb and Hepp, the RWA was used which makes it also a study on the Tavis-
Cummings model.
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Hamiltonians this leads to the transformation

p⃗ 2

2m
→ π⃗2

2m
=

1

2m
(p⃗ 2 − 2ep⃗A⃗+ e2A⃗ 2). (3.3)

The quadratic term ∝ A⃗ 2 may be neglected when it is considered to be small. The
vector potential is then quantized as

A⃗(r⃗, t) =
∑

j,λ

√
ℏ

2ϵ0ωjV
ϵ⃗j,λ(aj,λe

i(k⃗j r⃗−ωjt) + a†j,λe
−i(k⃗j r⃗−ωjt)), (3.4)

where λ ∈ {1, 2} denotes the index of the polarization vectors ϵ⃗j,λ which describe

transversal modes, i.e. k⃗j ϵ⃗j,λ = 0. V is the mode volume of the cavity and ϵ0 is the vac-

uum permittivity. It is ωj = c|⃗kj | with the speed of light c. In considering a single-mode
cavity this expression of the vector potential reduces to one operator a with frequency
ω, momentum k⃗, and polarization vector ϵ⃗.
At the same time an atomic potential is assumed, which is solved to identify two low-

lying states, |e⟩ and |g⟩ with the level-spacing Ee−Eg = ℏωz. Assuming that the spatial
extent of the set of atoms is much smaller than the wavelength of the cavity mode, i.e.
the Dipole approximation, leads to the cross-term of Eq. 3.3

⟨e|p⃗A⃗(r⃗, t)|g⟩ =
√

ℏ
2ϵ0ωV

⟨e|p⃗eik⃗r⃗0a+ p⃗e−ik⃗r⃗0a†|g⟩ . (3.5)

Here, r⃗0 is the approximate location of the two-level systems which is chosen to set the
phase of the dipole element d⃗eg = e ⟨e|r⃗|g⟩ = ie

ℏωzm
⟨e|p⃗|g⟩ such that the coupling term

in Eq. 3.3 becomes

− e

m
(|e⟩ ⟨e|p⃗A⃗(r⃗, t)|g⟩ ⟨g|+ h.c.) = ωz

√
ℏ

2ϵ0ωV
|d⃗eg|σx(a+ a†), (3.6)

with the polarization vector parallel to the dipole element, i.e. ϵ⃗d⃗eg = |d⃗eg|. The pre-
factors in Eq. 3.6 are collected as the coupling strength λ. When this calculation is
performed for N identical systems, this recovers the Dicke Hamiltonian in Eq. 3.1. The
no-go argument then states, that the quadratic term in Eq. 3.3 can in fact not be
neglected in this derivation, as it becomes dominant in the would-be superradiant phase
of the Dicke model. Deriving the model while not neglecting the quadratic term and

quantizing the vector potential results in an additional term∝ (a+ a†)
2
that prevents the

superradiant phase transition from occurring in the first place. Note that this argument
addresses the realization of the Dicke model through this equilibrium description of
atoms inside optical cavities and does not immediately extend to other systems or non-
equilibrium setups.
Consequently, experimental realizations of the Dicke model are fairly sparse and solu-

tions to this conundrum usually consist of the light-matter coupling being generated by
intricate pumping mechanisms, such that the Dicke model emerges effectively. Success-
ful realizations include setups utilizing hyperfine states of atoms confined in an optical
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cavity [164–166], circuit QED setups [167], or trapped ion systems [168, 169]. A preva-
lent realization consists of trapping a Bose-Einstein condensate inside a perpendicularly
oriented optical cavity [170–178], where the two-level sector consists of momentum-state
superpositions that form checkerboard patterns and lead to scattering into the cavity.

3.2 Non-equilibrium Models and Laser Mechanisms

Beyond the equilibrium phenomena of quantum optics, such as the Dicke superradiant
phase, lies the introduction of driving terms to study more intricate physics. The non-
equilibrium dynamics of quantum optical models in the presence of additional driving
have been [179–184] and continue to be [185–196] an active field of study. In realizations
of the Dicke model, different driving schemes have been demonstrated to lead to various
non-equilibrium phases [197–203] and time-crystalline phenomena [203–208]. With the
recently growing interest in Floquet engineering and non-equilibrium superradiance, the
distinction between various classes of coherent-light sources becomes increasingly subtle.

It is common practice to consider quantum optical models in the presence of incoher-
ent driving which pumps the population of the excited states. This leads for instance
to the construction of lasing mechanisms, which are approximated analytically in the
form of rate equations, where optical gain is the result of the pump-induced population
inversion and stimulated emission. The quantum theory of regular lasing emerges in its
original manner from the Jaynes-Cummings model in the presence of repeated injection
of population inverted atoms as put forth by Lamb and Scully [209]. There have been
countless realizations of conventional laser mechanism throughout the decades. How-
ever, there are also various unconventional laser mechanisms, such as lasing without
inversion [210–214], counter-lasing [215, 216], dressed-state lasing [185, 217–222], and
more [223–230]. A noteworthy mechanism is superradiant lasing [231–245], which is
achieved by pumping the two-level systems of the Dicke model to engineer continuous
steady-state superradiance3 that characteristically displays an ultra-narrow linewidth.

An important distinction between incoherent and coherent driving is that in a system
with coherent periodic driving, the Floquet theorem applies. As previously laid out in
Section 2.3, this leads to the formation of hybridized states of the bare system in the
presence of the interaction with the driving. In quantum optics, these are also referred
to as dressed states, whereas in solid-state systems the term Floquet bands or Floquet
states is often used. Note that the term dressed states is also used to refer to the
corresponding eigenstates of quantum optical models in which quantized light-modes
and orbitals hybridize. Including semi-classical coherent driving in quantum optical
systems has been considered since the early days of the field of quantum optics. The
Rabi model [246] is arguably the most minimalistic quantum optical model in that it
describes a single simplified atom that is coherently irradiated by semi-classical light.

3Superradiant lasing is engineered in the Dicke-Lieb-Hepp or Tavis-Cummings model, and is a steady-
state superradiance phenomenon distinct from the Dicke superradiant phase. It builds on the tran-
sient superradiant flashing phenomenon of the original Dicke model, which did not consider a cavity.
This is one manifestation of the aforementioned semantic ambiguities that surround this topic.
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The Hamiltonian consists of a two-level system in the presence of a periodic driving term
and reads

HR =
ℏωz

2
σz +

ωz

2ω
d⃗E⃗(eiωt + e−iωt)σx. (3.7)

E⃗ is the electric field of the semi-classical driving term and d⃗ is the electric transition
dipole moment of the atom. The conventional approach to solving this system consists
of going into the rotating frame given by V = e−iσz

ω
2
t and in the classical rotating-

wave approximation (cRWA) dropping the counter-rotating terms that oscillate at the
frequencies ±2ω. This approximation is valid in the limit of weak driving, i.e. low field
strengths, and has been widely used to study the behavior of absorption spectra of
driven systems since the early days of quantum optics. However, this approximation
breaks down for strong driving, at which point the counter-rotating term has to be
considered. The details of Floquet states depend on the structure of the driving term,
such that for instance the Rabi model after the cRWA leads to qualitatively distinct
Floquet states compared to the Rabi model prior to this approximation. This is relevant
in the following section, where I motivate a connection from quantum optics to two-band
materials, in particular graphene, which displays a similar expression to that in Eq. 3.7.

3.3 Towards a Graphene-based Dicke model

As discussed in Chapter 2, I have studied a setup of driven graphene in Publication II
that displays optical gain through a mechanism of population inverted Floquet states.
This motivated studying this mechanism in a coherently driven quantum optical setup,
where a single layer of graphene couples to a single-mode cavity. This is also in light of
the more recent interest into engineering non-equilibrium dynamics [247–249], where the
control of population of Floquet states has also been studied in different setups [250–
254]. In Publication V and Publication VI, I have considered a driven dissipative Dicke-
like model that contains a coherent driving term in the two-level systems in a manner
that is inspired by the circularly polarized irradiation of graphene as in Eq. 2.26. The
Hamiltonian reads

H =

N∑

j=1

ℏωz

2
σjz +

ℏΩ
2
(e−iωdtσ+ + eiωdtσ−) + ℏωca

†a+
λ√
N

N∑

j=1

σjx(a+ a†) (3.8)

and is locally structurally reminiscent of the Rabi model in Eq. 3.7 in the cRWA. Here Ω
is a frequency that represents the intensity of the driving term, agnostic to its realization.
The connection of this coherently driven Dicke model to graphene manifests itself in
different ways and is well-motivated. First, note that in graphene no counter-rotating
driving term exists, due to the nature of the linear dispersion relation and the minimal
coupling, such that the resulting term in Eq. 3.8 should not be confused with the results
of an approximation. This is crucial, since in contrast to the Rabi model in the cRWA,
this term remains valid in the presence of strong driving, such that the two systems
display distinct Floquet physics. However, the structure makes it straight-forward to
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analyze the Floquet states in this system and their population inversion in order to gain
insight into the underlying non-equilibrium physics.

Second, note that due to the linear dispersion relation of graphene, the minimal cou-
pling does not produce any quadratic term ∝ A⃗ 2 to begin with. Hence, the interaction
term in Eq. 3.8 is not the result of an approximation that neglects a quadratic term as
the one presumed in the no-go argument of the Dicke superradiant phase. As a side
remark, the linear dispersion in graphene has lead to discussions about a cyclotronic
realization of the Dicke model using the non-equidistant Landau levels of graphene in
a strong magnetic field [255, 256]. The arguments that are put forth as a no-go theo-
rem of this cyclotronic realization [256] do not make statements about other realizations
utilizing graphene, in particular non-equilibrium cases. Graphene has also been pro-
posed as an alternative to realizing the bosonic mode4 in the Dicke model, by utilizing
surface-plasmonic excitations [257].
Finally, the connection to graphene is particularly emphasized through the dissipation

that I employ in this model, which is the same as the one used to describe the dynamics
of driven dissipative graphene in Publications I through IV. This dissipative model is
implemented via the Lindblad master equation and is distinct in that the Lindblad oper-
ators act in the instantaneous eigenbasis of the Hamiltonian, as discussed in Section 2.4.
In the description of two-band materials such as graphene, this model reproduces steady
states in the presence of bias fields in a gauge-invariant manner. This choice of dissipa-
tion directly affects the emergence of population inverted Floquet states. The remaining
distinction of this Dicke-like model and graphene consequently lies primarily in the bare
Hamiltonian of the two-level systems in Eq. 3.8, which makes the system more accessible
analytically while still providing meaningful insight. All of these considerations moti-
vate this model as means of studying the behavior of driven two-band materials inside
a cavity.
In a mean-field description, the Hamiltonian in Eq. 3.8 separates into two sectors

describing the dynamics of the two-level systems and the cavity, respectively. I write for
the individual two-level systems the locally identical Hamiltonian

Ha =
ℏωz

2
σz +

ℏΩ
2
(e−iωdtσ+ + eiωdtσ−) +

λ√
N
σx ⟨a+ a†⟩ (3.9)

and for the cavity
Hc = ℏωca

†a+ λ
√
N ⟨σx⟩ (a+ a†). (3.10)

I assume that the cavity hosts a coherent state that is fully characterized by the param-
eter α = ⟨a⟩, such that the equation of motion of the coherent state reads

α̇ = −(iωc + κ)α− iλ
√
Nρx, (3.11)

where κ is a cavity loss rate that I include to describe a potentially dissipative cavity.
ρx = ⟨σx⟩ is the σx expectation value of the identical two-level systems. This equation

4At face value, the Hamiltonian in Eq. 3.8 considers a single bosonic mode coupled to N two-level
systems. What type of physical system is used to realize the bosonic mode is in principle unspecified,
although it will relate to the origin of the coupling term.
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Figure 3.1: Schematic overview of the FSP mechanism. The two-level systems inside
the cavity have a transitional frequency ωz and are driven with an intensity
of Ω at a frequency ωd > ωz. The Floquet states change as a function of
Ω as indicated by the curved arrows, and in the presence of dissipation in
the instantaneous eigenbasis, display population inversion. The single-mode
cavity at ωc is resonant to the population inverted Floquet states, which
leads to a depletion of the inversion in order to sustain a coherent state α
inside the cavity. The cavity loss rate κ results in a photonic output.

of motion is coupled to that of the density operators

ρ =
1

2
(1 + ρ⃗σ⃗) (3.12)

of the two-level systems, where σ⃗ is the vector containing the Pauli matrices. I write this
in the general representation that I provided for the solid-like dissipation in Section 2.4
in Eq. 2.46. It reads

˙⃗ρ = 2ϵah⃗a × ρ⃗− γ1ρ⃗− γ2h⃗a − γ3(⃗haρ⃗)⃗ha, (3.13)

where ϵa is the instantaneous level spacing of the Hamiltonian Ha = ϵah⃗aσ⃗ given for
instance by the relation H2

a = ϵ2a, since Tr(Ha) = 0. The dissipation coefficients in this
representation are

γ1 =
γ+ + γ−

2
+ 2γz γ2 = γ− − γ+ γ3 =

γ+ + γ−
2

− 2γz, (3.14)

where γ±,z are the coefficients of the processes modeled by the Lindblad operators σ±,z

in the instantaneous eigenbasis, see Section 2.4.

Equations 3.11 and 3.13 recover the Dicke superradiant phase correctly, but also dis-
play the emergence of a non-equilibrium superradiant phase for strong driving, i.e. large
Ω, through the mechanism depicted in Fig. 3.1. For strong driving, the Floquet states of
the two-level system become population inverted, in a mechanism analogous to the one
I had identified in graphene in Publication II. This mechanism depends on the relation
between the characteristic frequencies of the system. I have studied the case in which
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ωd > ωz > ωc. The cavity is tuned to be resonant to the light-induced Floquet states
and hosts a coherent state with a photonic population that matches the depletion of
the population inversion, in a type of laser-like mechanism. Notably, the complex order
parameter α, given by the coherent state, oscillates at a frequency close to the Floquet
state transition frequency. The two-level systems experience this oscillating order pa-
rameter as an additional driving term which leads to further modification of the Floquet
states and to a type of hole-burning effect in the two-level systems. I refer to this non-
equilibrium phase as the Floquet-assisted superradiant phase (FSP) and it is the focus
of Publication V, where I characterize this phenomenon analytically and numerically.
In Publication VI, I have further studied this model, in particular with respect to the
robustness against environmental factors such as homogeneous broadening, noisy driv-
ing, and increased dissipation, all of which might affect the viability and stability of
the FSP. Inhomogeneous broadening enters this model through normal-distributed de-
tuning of the transitional frequencies of the individual two-level systems. Noisy driving
is included via random phase drift and leads to a finite linewidth in the semi-classical
driving field as well as the light-field inside the cavity. I find that the power spectrum of
the light-field in the cavity experiences drastic line-narrowing across the FSP transition
which overcomes the intrinsic linewidths of the system. Such line-narrowing corresponds
to increased spectral coherence and is characteristic of laser mechanisms. The critical
coupling strength at which the FSP occurs decreases with decreasing dissipation, which
presents the prospect of realizing the FSP in the presence of very weak coupling in suffi-
ciently clean materials and high-finesse cavities. Notably, in the case of large dissipation
coefficients that are on the order of the values that we used to described graphene in
Publication I, the FSP remains reasonably accessible under realistic conditions with a
critical coupling comparable to that of the equilibrium Dicke superradiant phase. The
results of Publication V and Publication VI are promising, and pave the road for demon-
strating the FSP mechanism in a full construction of driven dissipative graphene coupled
to a cavity under realistic conditions.
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3.4 Publication V: Floquet engineering of non-equilibrium
superradiance

L. Broers and L. Mathey — SciPost Phys. 14(2), 018 (2023)

This work was motivated by the observation of a negative longitudinal optical con-
ductivity due to inverted Floquet band populations in graphene driven at terahertz
frequencies in Publication II. The prospect of obtaining optical gain out of driven dissi-
pative two-band materials such as graphene prompted me to try and better understand
the underlying mechanism from a quantum optical perspective. This also raised the
question if this effect could be utilized to construct a type of coherent light-source.
I have introduced a coherently and strongly driven Dicke model as a simplified model

of a two-band material coupled to a single-mode cavity. In particular, I have considered
solid-like dissipation as I had used for graphene in Publication I — IV. I studied this
model numerically and analytically with a focus on the emergence of a non-equilibrium
superradiant phase in the presence of strong driving. I have found that the mechanism
of population inverted Floquet states as in Publication II does appear in this system
as well. Further, I have shown that tuning the cavity into resonance with the Floquet
state energy differences leads to the effective population inversion being depleted in
order to sustain a coherent steady state in the cavity. This leads to a non-equilibrium
superradiant phase to which I refer to as the Floquet-assisted superradiant phase (FSP).
I have characterized the FSP with respect to the coupling strength and the driving
field strength, as well as the dependency on the cavity frequency and the transition
frequency of the two-level systems. The phase diagram of the photonic field in the
cavity shows that the FSP emerges for small values of the coupling strength, compared
to the equilibrium Dicke superradiant phase. I have identified the conditions under which
the FSP emerges in the weak coupling regime, and how this relates to the mechanism of
population inverted Floquet states. Further, the phase diagram displays the FSP within
the analytical boundaries that I have predicted for the regime in which the population
inversion in the Floquet states occurs. The FSP presents an intriguing mechanism for
coherent light-sources that could in future work be studied in driven graphene coupled
to a cavity as a realistic platform.
My contribution to this work consisted of conceiving the project, creating the nu-

merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.
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Floquet engineering of non-equilibrium superradiance
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Abstract

We demonstrate the emergence of a non-equilibrium superradiant phase in the dissi-
pative Rabi-Dicke model. This phase is characterized by a photonic steady state that
oscillates with a frequency close to the cavity frequency, in contrast to the constant pho-
tonic steady state of the equilibrium superradiant phase in the Dicke model. We relate
this superradiant phase to the population inversion of Floquet states by introducing a
Schwinger representation of the driven two-level systems in the cavity. This inversion
is depleted near Floquet energies that are resonant with the cavity frequency to sustain
a coherent light-field. In particular, our model applies to solids within a two-band ap-
proximation, in which the electrons act as Schwinger fermions. We propose to use this
Floquet-assisted superradiant phase to obtain controllable optical gain for a laser-like
operation.
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1 Introduction

Driven dissipative quantum systems display a plethora of intriguing phenomena, including un-
conventional coherent light sources and amplification mechanisms. Phenomena such as lasing
without inversion [1–4], lasing with driven quantum dots [5, 6] and population inversion in
strongly driven two-level systems [7, 8], have been proposed or implemented to extend the
conventional lasing mechanism. These examples are based on the non-equilibrium dynamics
of the dissipative Rabi model, which presents a minimal example of driven quantum systems.
Similarly, driven Dicke models [9] exhibit rich non-equilibrium dynamics of superradiant phase
transitions and unconventional lasing states [10–19]. Driving the coupling in cavity-BEC se-
tups, which can be mapped onto the dissipative Dicke model, hosts several non-equilibrium
phases [20–25]. Incoherently pumped Strontium transitions have been used to explore the
crossover regime of superradiant lasing [26, 27]. Nitrogen vacancy (NV) center spins in di-
amond present a similar platform that has been used to create superradiant lasers [28–30].
In many-body systems, Floquet engineering aims to tune collective properties, such as band
topology [31–35], with coherent driving [36–38]. It has been shown that population inver-
sion of Floquet states can occur in driven systems [39–41]. Floquet theory itself presents a
method to describe the effective dressed states in driven systems and their population, and is
applicable to driven dissipative cavity systems [42,43], in particular.

We present the emergence of a Floquet-assisted superradiant phase (FSP) in the dissipative
Dicke model under the influence of circularly polarized driving of the two-level systems, rem-
iniscent of the Rabi model. This superradiant phase is distinct from other recently explored
dynamical phases and lasing mechanisms in the Dicke model such as the dynamical phases that
emerge under parametric driving of the coupling [20–25], NV room temperature superradiant
lasers [28–30] and the Floquet maser realized using magnetic feedback circuits [44]. The FSP
presents a mechanism for light-amplification and coherent light sources in two-level systems
that is induced by the driven coherences between effective dressed states and is thus not cap-
tured by semi-classical rate equations in which population inversion is impossible. We find
that this mechanism originates from the effective population inversion of Floquet states that is
depleted and transferred into the cavity if the cavity frequency is close to resonance with the
Floquet energy difference. This photonic coherent state saturates quickly, leading to a steady
state of constant magnitude with respect to the coupling strength. We analytically determine
the regime of driving field strengths in which the system displays Floquet state population
inversion and is therefore susceptible to the FSP. We further present an analytical prediction
of the parameters at which the FSP first emerges in the limit of small coupling strengths.

This work demonstrates that despite the fact that Floquet states are effective descriptions
with energies that are only defined modulo multiples of a given driving frequency, their popu-
lation inversion can induce and sustain a coherent photonic state in a close-to-resonant cavity.
The connection between this light-amplification mechanism in two-level systems and effective
populations of Floquet states translates into solid-state systems that can be described with two
bands, e.g. monolayer graphene. This suggests the possibility of coherent Floquet engineered
light-amplification in solids, where the dispersion relation leads to a modification of our model
in which the two-level systems are no longer equal and their collective coupling to the cav-
ity becomes more intricate. Such a system would still be susceptible to the mechanisms that
underly the FSP which we describe here.

This work is structured as follows. In section 2, we describe the Rabi-Dicke model and
its dissipative mean-field description. In section 3, we present numerical results for the phase
diagram of the photonic steady state which shows the FSP. We also show the photonic steady
state of the FSP in frequency space as a function of the driving field strength. Further, we
present analytical calculations of the Dicke superradiant transition in this model. In section
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4, we extend our results to a Schwinger representation which we use to calculate two-point
correlation functions and Floquet state populations. In this representation we demonstrate
the population inversion of the Floquet states and its depletion in the FSP. We then present an
approximation of the Floquet energies of the two-level system in the FSP from an approximate
bichromatic Floquet description. In section 5, we present analytical bounds for the driving
field strengths at which population inversion occurs. Additionally, we demonstrate an accurate
description of the onset at which the FSP first occurs for weak coupling to the cavity. In section
6, we conclude and discuss our findings.

2 Dissipative Rabi-Dicke Model

We consider a system of N identical two-level systems with level-spacing ωz coupled to a
single lossy cavity mode with frequencyωc, as schematically depicted in Fig. 1. We emphasize
that the dynamical superradiant state can be realized on any set of well-defined two-level
systems, including solids in a two-band approximation, see e.g. [45]. The individual two-level
systems experience Rabi-like driving with frequency ωd and effective field strength Ed. The
Hamiltonian of this Rabi-Dicke model is

1
ħh H =

N∑
j=1

[
ωz

2
σ j

z +
Ed

ωd
(e−iωd tσ

j
+ + eiωd tσ

j
−)] +ωca†a+

λp
N

N∑
j=1

(a+ a†)σ j
x , (1)

where λ is the coupling strength and σ j
x ,y,z are the Pauli-matrices of the jth two-level system.

It is σ± = (σx± iσy)/2. a(†) is the photon annihilation (creation) operator. This Hamiltonian,
that we use as the basis for our analysis, derives from an underlying model such as

1
ħh H0 =

ωz

2
σz +

ωz

2ħhωd
E⃗ d⃗(e−iωd tσ+ + eiωd tσ−) . (2)

Here E⃗ is the driving field and d⃗ is the dipole moment of the transition. Our effective driving
field strength relates to this case as Ed =

1
2ωz E⃗ d⃗ħh−1, where 2Edω

−1
d is the Rabi frequency. As

a second model that motivates the Hamiltonian H, we present the model

1
ħh Hg = vF (kx +

eE
ħhωd

cos(ωd t))σx + vF (ky +
eE
ħhωd

sin(ωd t))σy (3)

that we used in the context of light-driven graphene [41, 45]. Here vF = c/300 is the Fermi
velocity with the speed of light c. e is the elementary charge, E is the driving field strength
and kx ,y are the momentum components. Our effective driving field strength relates to this
case as Ed = evF Eħh−1. In the following we take ħh= 1.

We use a mean-field approximation of the photon dynamics via the coherent state ansatz
α = αr + iαi = 〈a〉, with the system separating into the two-level subsystem A and the cavity
subsystem C resulting in the approximate Hamiltonian H =

∑
j H j

A +HC, with

H j
A =

ωz

2
σ j

z +
Ed

ωd
(e−iωd tσ

j
+ + eiωd tσ

j
−) +

λ 〈a+ a†〉p
N

σ j
x , (4)

HC =ωca†a+λ
p

N 〈σx〉 (a+ a†) , (5)

We include a cavity loss rate κ, such that the equation of motion of the photon mode is

α̇= −(iωc + κ)α− iλ
p

N 〈σx〉 . (6)
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The Lindblad-von Neumann master equation of the two-level system is

ρ̇ = i[ρ,
ωz

2
σz +

Ed

ωd
(e−iωd tσ++ eiωd tσ−)+

2λαrp
N
σx]+
∑

l∈{+,−,z}
γl[LlρL†

l −
1
2
{L†

l Ll ,ρ}] , (7)

where we omit the superscript j, since the two-level systems are all identical, in this approx-
imation. We describe the dissipation of the two-level system in its instantaneous eigenbasis,
which has been shown to accurately describe two-band solids [45]. In particular, the Lindblad
operators are L+ = Vσ+V †, L− = Vσ−V † and Lz = VσzV †, where V is the unitary transfor-
mation into the instantaneous eigenbasis of HA(t) = εA(t)VσzV †. εA(t) is the instantaneous
eigenenergy of the Hamiltonian HA(t). γ± and γz are the coefficients of spontaneous decay
and dephasing, respectively. The equation of motion of the two-level system then takes the
form (see App. A)

ρ̇ = i[ρ, HA(t)]− γ1(ρ −
1
2
)− γ2

2
HA(t)ε

−1
A (t)−

γ3

2
Tr(ρHA(t))HA(t)ε

−2
A (t) , (8)

with

γ1 = (γ− + γ+)/2+ 2γz , γ2 = γ− − γ+ , γ3 = (γ− + γ+)/2− 2γz . (9)

Throughout this work we use γ−+γ+ =
ωd

100π , γ+ = γ−e−
2εA
kB T ≈ 0, γz =

ωd
50π and κ= ωc

100 . Due to
these small values of the decay and dephasing coefficients, the Floquet states are well-resolved
in frequency space. The cavity loss rate κ is very small compared to ωc which constitutes the
’good cavity’ regime. We find that the FSP depends on dissipation and is in particular sensitive
to the cavity loss rate. However, the scaling behavior with respect to dissipation is not the focus
of this work. Rather, we point out the existence of a novel superradiant phase, that emerges
in the presence of optical driving. For this purpose we choose a dissipative model. We note
that the Lindblad master equation applied to strongly driven two-level systems with weak
dissipation has been found to show some deviations from more accurate methods [46]. We
understand these deviations to be small enough to not affect the central results of this paper.
The specific choice of the dissipative model in the instantaneous eigenbasis is motivated by
the natural dissipative environment of electrons in solids [45]. The two-level systems that we
consider here can be realized as two electron states, with one electron occupying one or the
other. As we describe below, these two states can be embedded in a four-level system that
includes both states to be occupied or empty, within a Schwinger construction. While this is
the natural Hilbert space for an electronic realization, we emphasize that the results we obtain
here can be generated from the Rabi-Dicke model, i.e. Eq. 1.

3 Floquet-Assisted Superradiant Phase

We determine the steady state regimes of the system. For that purpose, we solve the equations
of motion Eqs. 6 and 7 and find the photonic state α(t), which serves as the order parameter
of superradiant phases. In Fig. 2 (a), we show the magnitude of α as a function of the driving
field strength Ed and the coupling strength λ, for ωz =ωd/2 and ωc =ωd/4, as an example.
We note that no specific ratio between these frequencies is required. We find two phases of
non-zero |α|. The phase for small driving field strengths Ed is related to the Dicke superradiant
phase and approaches it for Ed→ 0, which is an equilibrium phenomenon. In this limit, Eq. 1
recovers the dissipative Dicke-model. To capture this state, we write the equilibrium state of
the static two-level system as

ρ =
1
2
(1− γ− − γ+

γ− + γ+

HA

εA
) , (10)
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Figure 1: An illustration of the dissipative Rabi-Dicke model (a) and a depiction of
its Hamiltonian as in Eq. 1 (b). A cavity (red) contains a set of identical two-level
systems (blue) which experience circularly polarized Rabi-like driving (purple). γ±
and γz denote the coefficients of dissipative processes in the two-level systems, i.e.
spontaneous decay and dephasing. κ is the loss rate of the cavity, which determines
the coherent output of the cavity.

which solves Eq. 8. We find the corresponding photonic steady state from Eq. 6 by inserting
α̇= 0 and 〈σx〉= ρx . It is

0= −(iωc +κ)(αr + iαi)− iλ
p

Nρx , (11)

with

ρx = −
γ− − γ+
γ− + γ+

4λαr N−
1
2Æ

ω2
z + 16λ2α2

r N−1
, (12)

which we solve to find

αp
N
= (1+ i

κ

ωc
)

√√√�γ− − γ+
γ− + γ+

λωc

ω2
c +κ2

�2 −
�ωz

4λ

�2
. (13)

If α is purely imaginary, then ρx is zero, because of Eq. 12. This implies that the α= 0 solution
is the state of the system, based on Eq. 11. If α has a non-vanishing real part, i.e. αr ̸= 0, the
system is in the Dicke superradiant state. We determine the critical coupling strength λc of
this transition by setting the expression under the root in Eq. 13 equal to zero. It is

λc =
1
2

√√γ− + γ+
γ− − γ+

ωz

ωc

�
κ2 +ω2

c

�
. (14)

In the case of κ = 0 and γ+ = γ−e−
ωz
kB T this reproduces the well-known result for the critical

coupling

λc =
1
2

√√
ωzωc coth(

ωz

2kB T
)

T→0→ 1
2

p
ωzωc . (15)

We show this transition in Fig. 2 (b) compared to the numerical solution, which show excellent
agreement. Increasing Ed initially maintains this transition, but increases the critical coupling
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strength λc|Ed>0 − λc ∝ E2
d . For the parameters in our example it is λc =

ωd

4
p

2
for Ed = 0.

Further, the phase is separated into two regimes by a boundary E b
d ≈ 0.02ω2

d for λ >
p

2λc .
For Ed < E b

d the phase shows similar scaling to the Dicke superradiant phase, i.e. the value of
α matches the case of Ed = 0. For Ed > E b

d the system experiences heating in this part of the
phase, due to the weak dissipation in the two-level systems.
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Figure 2: In panel (a) we show the magnitude of the photonic field α as a func-
tion of the driving field strength Ed and the coupling strength λ. For large Ed, the
Floquet-assisted superradiant phase (FSP) emerges and exhibits an oscillating pho-
tonic steady state. In panel (b) we show the Ed→ 0 limit, i.e. the Dicke superradiant
transition, which is predicted very well analytically. In panel (c) we show the mag-
nitude of the Fourier transform |α̂|/pN as a function of the driving field strength Ed
for the coupling strength λ= λc . In the FSP, the steady state frequency of the cavity
is close to the cavity frequency. We also show a zoomed-in version of the regime
in which the FSP occurs. In panel (d) we show the power spectrum |α̂|2∆ωN−1 of
the FSP integrated over the frequencies shown in (c) in order to compensate for the
frequency shift of the FSP as a function of Ed. The dashed lines in (a), (c) and (d)
indicate the analytically determined lower bound for the FSP, see Eqs. 25 and 26.
The dotted lines in (a), (c) and (d) indicate the driving field strength at which the
Floquet energy spacing is equal to the cavity frequency.

For larger field strengths Ed, there is a second superradiant phase, the FSP, with a non-zero
photon amplitude |α|. The existence and properties of this non-equlibrium state is the central
point of this paper. For weak coupling, i.e. λ ≪ λc , this phase emerges at the driving field
strength at which the difference of Floquet quasi-energies is resonant with the cavity mode,
as we discuss later. For increasing λ, this domain broadens and gives the tongue structure in
Fig. 2 (a). Within this phase, |α| quickly approaches a constant value for increasing coupling
strength λ. The dashed line in Fig. 2 (a) indicates the asymptotic lower bound of the FSP
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for increasing λ. We calculate and present the driving field strengths that bound the FSP in
section 5. A natural regime of realizing the FSP is given by two requirements. On the one
hand, the instantaneous eigenenergy εA, which is of the order of the driving frequency ωd,
needs to exceed the temperature. This derives from the ratio γ2/(γ1 + γ3) = tanh( εA

kB T ). On
the other hand the driving field strengths Ed has to be sufficiently high to drive the system
into the FSP, specifically Ed/ω

2
d ≈ 0.3. For the case of graphene, see Eq. 3, for electric fields

of the order of 18MV m−1, and for temperatures of the order of 100K, this results in driving
frequencies around ωd ≈ 2π× 48THz. Note that for very large Ed beyond the point at which
the Floquet bands cross, there is a further very faint phase, to be discussed elsewhere.

In Fig. 2 (c) we show the magnitude of the Fourier transform α̂(ω) of the photonic steady
state as a function of the driving field strength Ed at λ = λc , indicated by the solid line in
Fig. 2 (a). We see that the steady state of the cavity in the FSP oscillates with a frequency
close to the cavity frequency ωc. This differs from the Dicke superradiant phase in which
the steady state is not oscillatory. The frequency in the FSP is the effective Floquet energy
difference of the two-level system, which is interacting non-linearly with the cavity mode, as
we elaborate in the following section. This energy is equal to the cavity frequency ωc at the
driving field strength indicated by the vertical dotted lines, which is the same as the onset
driving field strength at which the FSP emerges for small λ in Fig. 2 (a). In Fig. 2 (d) we show
the power spectrum of the photon mode |α̂|2∆ω =

∫ |α̂(ω)|2dω, integrated over the range of
frequencies shown in Fig. 2 (c) in order to compensate for the shifting frequency of the FSP as
a function of the driving field strength Ed. In the following section, we show that this profile
of the magnitude of the order parameter is related to the depleted population inversion of the
Floquet states of the two-level system.

4 Floquet State Population Inversion

To understand the underlying mechanism from which the FSP originates, we calculate the
Floquet state population of the driven two-level system. We introduce a Schwinger represen-
tation of the two-level Hamiltonian in Eq. 4, and calculate the population in frequency space.
In this representation the system is embedded into a larger system consisting of two modes b1
and b2. The resulting Hilbert-space is spanned by the creation operators b†

1 and b†
2 of these

two modes. Note that these modes can be understood as hard-core bosons in the atomic case
of the Dicke model, i.e. b2

1 = b2
2 = 0, but also as fermions in two-band models of solid-state

systems, where these are the electrons, cp. [41, 45]. Our mean-field results are not affected
by the specific exchange relations, bosonic or fermionic. The Pauli-matrices are written as

σx = b†
1 b2 + b†

2 b1 , σy = i(b†
1 b2 − b†

2 b1) , σz = b†
1 b1 − b†

2 b2 . (16)

We calculate the two-point correlation functions 〈b†
j (t2)b j(t1)〉 and determine the fre-

quency resolved population of the two-level steady state as

n(ω) =
1

(τ2 −τ1)2

∫ τ2

τ1

∫ τ2

τ1

2∑
j=1

〈b†
j (t2)b j(t1)〉 e−iω(t2−t1)dt2dt1 , (17)

where the time τ1 is large enough for the system to have reached a steady state and (τ2−τ1) is
large enough to contain hundreds of driving periods. Note that in this calculation the operators
b j(t1) and b†

j (t2) act only on one of the N atoms. For large N , we assume that the remaining
N − 1 atoms maintain their steady state unaltered, such that the steady state α(t) is also not
affected by either action of b j(t1) or b†

j (t2).
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Figure 3: In panel (a) we show the Floquet state population n(ω) as a function of
the driving field strength Ed calculated in the Schwinger formalism. The dotted line
indicates the Floquet energies ε0

F for λ = 0, the solid lines indicate the approximate
Floquet energies εF for λ = λc which we obtain from Eq. 21. In panel (b) we show
the effective population difference ∆n between Floquet states for λ = 0 (blue) and
λ= λc (red). The regime in which population inversion occurs also contains the FSP,
which depletes the inversion. In panel (c) we show the difference ∆N between the
two populations in panel (b). The dashed lines in all panels indicate the values of
Ed that bound the regime in which population inversion occurs, see Eqs. 25 and 26.
The dotted gray lines in (b) and (c) indicate the driving field strength at which the
Floquet energy difference ∆ε0

F is resonant with the cavity frequency ωc .

We show n(ω) as a function of the driving field strength Ed in Fig. 3 (a) for λ= λc . We use
the same values of ωz = ωd/2 and ωc = ωd/4 as for the example in Fig. 2. We see that the
state of the probed two-level system is distributed across frequencies that are resonant with
the Floquet energies of the system and its replicas ±ε0

F +mωd, m ∈ Z. For λ = 0, and α = 0,
these Floquet energies are

ε0
F =

ωd

2
±
√√√ E2

d

ω2
d

+
(ωd −ωz)2

4
. (18)

In the regime of the FSP, the Floquet spectrum is modified due to the additional driving that the
two-level system experiences from the interaction with the oscillating photonic steady state.
We approximate that the FSP oscillates at ωc = ωd/4. The integer ratio of ωd and ωc is not
required, it merely enables a two-frequency Floquet analysis. For this choice of frequencies
the two-level Hamiltonian in Eq. 4 is

H(t) = e−i4ωc t H−4 + e−iωc t H−1 +H0 + eiωc t H1 + ei4ωc t H4 , (19)

with

H0 =
ωz

2
σz , H±1 =

λ|α|p
N
σx , H±4 =

Ed

ωd
σ∓ . (20)

8
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The corresponding Floquet Hamiltonian is

HF =




. . . H1 H4
H−1 H0 + 2ωc H1 H4

H−1 H0 +ωc H1 H4
H−1 H0 H1

H−4 H−1 H0 −ωc H1
H−4 H−1 H0 − 2ωc H1

H−4 H−1 . . .




. (21)

It operates on the Floquet representation of the state

|ψ〉〉= (. . . ,ψ↑,(n−1)ωc
,ψ↓,(n−1)ωc

,ψ↑,nωc
,ψ↓,nωc

, . . . )T . (22)

Inserting the numerical steady state solutions of α that we find using Eq. 6, and show in
Fig. 2 (a), allows us to calculate the Floquet energies εF in the FSP using the Floquet Hamil-
tonian HF . We show these Floquet energies as a function of the driving field strength Ed in
Fig. 3 (a) as gray solid lines. We see that these energies match the dominantly populated
frequencies in n(ω) of the two-level system very well. Note that slight mismatches are a con-
sequence of the approximation that the photonic steady state oscillates with the frequencyωc ,
which we made to justify the expression of HF .

We sum up the population of all Floquet replicas to calculate the effective relative popula-
tion of the two-level system as

∆n=
∞∑

m=−∞



∫ (m+ 1

2 )ωd

mωd

n(ω)dω−
∫ (m+1)ωd

(m+ 1
2 )ωd

n(ω)dω


 . (23)

In Fig. 3 (b), we show this effective relative population∆n of the two-level system as a function
of the driving field strength Ed for the cases of λ= 0 and λ= λc . We see that there is a regime
in which the system experiences an effective population inversion, bracketed by the vertical
dashed lines. In the case of non-zero coupling, i.e. λ= λc , part of the population inversion is
partially depleted to maintain the FSP, i.e. the non-zero steady state of the photon mode. In
Fig. 2 (a), we see that the range of the FSP increases for increasing values of λ, to approach
the entire regime in which population inversion occurs. In general, the FSP regime is smaller
than the inversion regime, because of the detuning of the cavity frequencyωc and the Floquet
quasi-energy difference ∆ε0

F .
In Fig. 3 (c), we show the depletion of the effective population inversion of the two-level

system
∆N =∆n|λ=0 −∆n|λ=λc

. (24)

The behavior of ∆N agrees very well with that of the photonic steady state that we show
in Fig. 2 (d) up to an overall factor. We conclude that the photonic steady state of the FSP
originates from the effective population inversion of the Floquet states which is depleted to
obtain a non-zero α. This explains the constant scaling of the FSP with respect to λ. In the limit
of λ→∞, the intensity of the photonic steady state is limited by the population inversion of
the Floquet states.

5 Cavity-Resonant Floquet Energies

While the magnitude of the photon amplitude α saturates quickly to a constant value with
increasing λ, here we determine the onset of the FSP for small λ. For small λ, the FSP emerges
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Figure 4: The magnitude of the photonic steady state α as a function of the driving
field strength Ed, the cavity frequencyωc (a) and the two-level energy spacingωz (b).
The coupling is small with λ = ωd/24, such that the Floquet-assisted superradiant
phase (FSP) appears only close to resonance between the cavity frequency ωc and
the Floquet energy difference ∆ε0

F , indicated by dot-dashed lines at Eonset
d . The gray

shaded areas are regimes in which no population inversion of Floquet states occurs.
They are bounded by Emin

d and Emax
d . The dotted lines indicate the values of ωc and

ωz of the other subfigure, respectively.

near resonance of the Floquet energy difference∆ε0
F and the cavity frequencyωc. We therefore

present the dependence of the magnitude of α on the cavity frequency ωc, as well as the two-
level energy spacing ωz . In Fig. 4 (a) we show the magnitude of α as a function of the driving
field strength Ed and the cavity frequency ωc at ωz = ωd/2 and λ = ωd/24. We see that the
FSP emerges near resonance of ∆ε0

F and ωc with the lower bound of Ed given by the regime
of the population inversion of Floquet states. For ωc → 0, the critical coupling λc decreases
to values smaller than that of λ used here, such that we see the Dicke superradiant phase
for small Ed. For ωc → ωd we see an expected finite population in the cavity as it becomes
resonant with the driving field.

We find the analytical solutions of the driven dissipative steady state for λ = 0 (See
App. A) and use them to calculate the driving field strength at which population inversion
occurs (Emin

d ). We also calculate the driving field strengths at which the Floquet state energies
cross (Emax

d ) and at which the Floquet energy difference is resonant with the cavity frequency
(Eonset

d ). They are

Emin
d =

ω2
d

2

√√√1
4
−
�

1
2
− ωz

ωd

�2
, (25)

Emax
d =

ω2
d

2

√√√
1−
�

1− ωz

ωd

�2
, (26)

Eonset
d =

ω2
d

2

√√√�
1− ωc

ωd

�2
−
�

1− ωz

ωd

�2
. (27)

We use the regime bound by Emin
d and Emax

d to estimate where Floquet state population inver-
sion occurs and therefore the system is susceptible to the FSP. Eonset

d indicates where the FSP
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first emerges for small λ, i.e. the driving field strength at which the Floquet energy difference
is resonant with the cavity frequency. In Fig. 4 (b) we show these regimes and the magnitude
of α as a function of the driving field strength Ed and the two-level spacing ωz at ωc =ωd/4
and λ = ωd/24. We see that Eonset

d correctly predicts the initial onset of the FSP for small λ
inside the region of Floquet state population inversion.

6 Conclusion

We have demonstrated the emergence of a Floquet-assisted superradiant phase (FSP) in the
dissipative Rabi-Dicke model that is directly related to the effective Floquet state population
inversion of the two-level system. We propose to tune the Floquet energy difference close to
resonance with the cavity, which results in the emergence of the FSP. In the FSP, the popula-
tion inversion is depleted to populate a coherent photonic steady state that oscillates with a
frequency that is close to the cavity frequency. This frequency is the Floquet energy difference
of the effectively bichromatically driven two-level systems.

We have presented the frequency resolved state population of the two-level system, calcu-
lated in a Schwinger representation, and found that the depletion of the population inversion
qualitatively agrees with the magnitude of the photon state. We have characterized the onset
of the FSP with respect to the cavity frequency and the two-level energy spacing in the limit
of small coupling strengths analytically. This analytical result for the regime that experiences
population inversion agrees with the emergence of the FSP with an initial onset for resonant
cavity frequency and Floquet energy difference.

We emphasize that the FSP is conceptually distinct from other recently discussed dynamical
phases in comparable systems. For instance, the dynamical normal phase [21] emerges in
dissipative Dicke models with parametrically driven coupling strength and is characterized
by the periodic emission of pulses with opposite phase. The Floquet maser [44] presents
continuous superradiance by periodically inducing spin polarization inversion in a noble gas
inside a magnetic feedback circuit. This system can be expressed using an undriven Dicke-
adjacent model, albeit with different coupling terms. In NV center spins in room temperature
diamonds [28–30] and in cold Strontium setups [26, 27], incoherent effective driving can
lead to superradiant steady states for cavities that are resonant with the atomic or vacancy
center spin transitions. While all of these non-equilibrium phases are captured by models
related to the Dicke model, they are all substantially different from the FSP and its underlying
mechanism.

The FSP presents a laser-like mechanism using population inverted Floquet states of two-
level systems that are brought into resonance with a cavity mode. The model we have proposed
is in particular applicable to solid-state systems coupled to a cavity, where the identical two-
level systems are replaced by a momentum-dependent two-band model. The master equation
approach that we utilized is well-suited for describing such materials dissipatively. In such
materials, Floquet state population inversion has been observed which provides motivation to
implement this mechanism, with the prospect of creating Floquet-assisted laser systems.
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A Analytical Steady State Solutions

We take a two-level Hamiltonian H = H⃗σ⃗, such that Tr(H) = 0. Let V be the transformation
into the instantaneous eigenbasis of H, such that V HV † = εσz , where ε sets the energy scale
of the Hamiltonian. In general such a Hamiltonian can be written as

H = ε

�
cos(θ ) e−iφ sin(θ )

eiφ sin(θ ) − cos(θ )

�
, (A.1)

such that
V = eiσy

θ
2 eiσz

φ
2 . (A.2)

We write the Lindblad-von Neumann master equation in the original basis of H, but include dis-
sipation in the instantaneous eigenbasis, such that Lz = V †σzV = Hε−1 = h and L± = V †σ±V .
It is

ρ̇ = i[ρ, H] +
∑

i∈{+,−,z}
γi(LiρL†

i −
1
2
{L†

i Li ,ρ}) (A.3)

= iε[ρ, h] + γz(Tr(hρ)h− 2(ρ − 1
2
)) (A.4)

+ γ−(−
1
2

h− 1
2
(ρ − 1

2
)− 1

4
Tr(h⃗ρ⃗)h) + γ+(+

1
2

h− 1
2
(ρ − 1

2
)− 1

4
Tr(h⃗ρ⃗)h) , (A.5)

with ρ = 1
2(1+ ρ⃗σ⃗). We simplify this to

∂t(ρ⃗σ⃗) = iε[ρ⃗σ⃗, h⃗σ⃗]− γ1ρ⃗σ⃗− γ2h⃗σ⃗− γ3(h⃗ρ⃗)h⃗σ⃗ , (A.6)

with

γ1 = (γ− + γ+)/2+ 2γz , γ2 = γ− − γ+ , γ3 = (γ− + γ+)/2− 2γz (A.7)

and further
˙⃗ρ = (2ε(h× ·)− γ1 − γ3h⃗ 〈h⃗, ·〉)ρ⃗ − γ2h⃗ . (A.8)

We find the steady state solution of the dissipative Rabi model by rewriting ρ⃗(t) with respect

to the basis {h⃗, ˙⃗h, h⃗× ˙⃗h}, such that

ρ⃗(t) = ρ1(t)h⃗+ρ2(t)
˙⃗h+ρ3(t)(h⃗× ˙⃗h) , (A.9)

ρ1(t) = ρ⃗(t)h⃗ , (A.10)

ρ2(t) = |˙⃗h|−2ρ⃗(t)˙⃗h , (A.11)

ρ3(t) = |˙⃗h|−2ρ⃗(t)(h⃗× ˙⃗h) . (A.12)

Assuming that |˙⃗h|2 does not depend on time, the equations of motion become

ρ̇1(t) = ∂t(h⃗ρ⃗) =
˙⃗hρ⃗ + h⃗ ˙⃗ρ = |˙⃗h|2ρ2 − (γ1 + γ3)ρ1 − γ2 , (A.13)

ρ̇2(t) = |˙⃗h|−2∂t(
˙⃗hρ⃗) = |˙⃗h|−2(¨⃗hρ⃗ + ˙⃗h ˙⃗ρ) = −2ε(t)ρ3 − γ1ρ2 + |˙⃗h|−2¨⃗hρ⃗ , (A.14)

ρ̇3(t) = |˙⃗h|−2∂t((h⃗× ˙⃗h)ρ⃗) = 2ε(t)ρ2 − γ1ρ3 + |˙⃗h|−2(h⃗× ¨⃗h)ρ⃗ . (A.15)
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We expand the second derivative of the Hamiltonian vector ¨⃗h in this basis as well and find

¨⃗h(t) = (¨⃗hh⃗)h⃗+ (¨⃗h˙⃗h)˙⃗h+ (¨⃗h(h⃗× ˙⃗h))(h⃗× ˙⃗h) , (A.16)
¨⃗h(t)ρ⃗(t) = ρ1(

¨⃗hh⃗) +ρ2(
¨⃗h˙⃗h)|˙⃗h|2 +ρ3(

¨⃗h(h⃗× ˙⃗h))|˙⃗h|2 = −ρ1|˙⃗h|2 +ρ3(h⃗(
˙⃗h× ¨⃗h)) , (A.17)

(h⃗× ¨⃗h(t))ρ⃗(t) = ρ2((h⃗× ¨⃗h(t))˙⃗h)|˙⃗h|2 +ρ3((h⃗× ¨⃗h(t))(h⃗× ˙⃗h))|˙⃗h|2 = −ρ2(h⃗(
˙⃗h× ¨⃗h)) . (A.18)

We then arrive at the equations of motion

ρ̇1(t) = |˙⃗h|2ρ2 − (γ1 + γ3)ρ1 − γ2 , (A.19)

ρ̇2(t) = −2ε(t)ρ3 − γ1ρ2 −ρ1 +ρ3|˙⃗h|−2h⃗(˙⃗h× ¨⃗h) , (A.20)

ρ̇3(t) = 2ε(t)ρ2 − γ1ρ3 −ρ2|˙⃗h|−2h⃗(˙⃗h× ¨⃗h) . (A.21)

In the Rabi-problem in particular it is H⃗ = ( Ed
ωd

cos(ωd t), Ed
ωd

sin(ωd t), ωz
2 )

T and therefore

|˙⃗h|−2h⃗(˙⃗h× ¨⃗h) =
ωdωz

2
s

E2
d

ω2
d
+
ω2

z
4

, |˙⃗h|2 = E2
d

E2
d

ω2
d
+
ω2

z
4

, ε(t) =

√√√ E2
d

ω2
d

+
ω2

z

4
, (A.22)

which are all constant in time. We assume a periodic steady state ρ(t) = ρ(t+ 2π
ωd
) and express

the equations of motion in terms of Fourier coefficients

imωρm
1 = |˙⃗h|2ρm

2 − (γ1 + γ3)ρ
m
1 − γ2δm,0 , (A.23)

imωρm
2 = −2ερm

3 − γ1ρ
m
2 −ρm

1 +ρ
m
3 |˙⃗h|−2h⃗ f⃗ , (A.24)

imωρm
3 = 2ερm

2 − γ1ρ
m
3 −ρm

2 |˙⃗h|−2h⃗ f⃗ . (A.25)

We find that the Fourier modes do not couple in this representation. We solve the system of
equations for arbitrary m and find the complete expressions for ρm

1 , ρm
2 and ρm

3 , fully deter-
mining the dissipative steady state

ρ1 = Cγ2
1ω

4
d(4E2

dω
−2
d +ω

2
z ) + Cω4

d

�
(4E2

dω
−2
d +ω

2
z )−ωdωz

�2
, (A.26)

ρ2 = −Cγ1ω
4
d(4E2

dω
−2
d +ω

2
z ) , (A.27)

ρ3 = −Cω4
d

�
(4E2

dω
−2
d +ω

2
z )−ωdωz

�Ç
4E2

dω
−2
d +ω

2
z , (A.28)

with the prefactor

C =
−γ2

16E4
dΓ + Γω

4
d(γ

2
1 + (ωd −ωz)2)ω2

z + 4E2
dω

2
d(γ

2
1Γ + γ1ω

2
d + 2Γωz(−ωd +ωz))

(A.29)

and Γ = γ1 + γ3. Expressed in the original basis, it is

ρx(t) = C22Edω
−1
d

��
γ2

1 +ω
2
z −ωdωz + 4E2

dω
−2
d

�
cos(ωd t) + γ1Ed sin(ωd t)

�
, (A.30)

ρy(t) = C22Edω
−1
d

��
γ2

1 +ω
2
z −ωdωz + 4E2

dω
−2
d

�
sin(ωd t)− γ1Ed cos(ωd t)

�
, (A.31)

ρz(t) = C2

�
(γ2

1 + (ωd −ωz)
2)ωz − 2E2

dω
−2
d (ωd −ωz)
�

, (A.32)

with the prefactor

C2 = C
Ç

4E2
d +ω

2
dω

2
z . (A.33)

In Fig. 5, we show the comparison between numerical results and the analytical solutions,
which match exactly.
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Figure 5: A comparison between the analytical (solid lines) and numerical (dots)
results of the dissipative two-level steady state components ρx and ρz at t = 2πω−1

d
for λ = 0. It is ωz = ωd/2. The zero-crossing of ρz matches the onset of Floquet
state population inversion in Fig. 3 (b).
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3.5 Publication VI: Robustness of the Floquet-assisted
superradiant phase and possible laser operation

L. Broers and L. Mathey — arXiv:2211.01320 (Under review at Phys. Rev. A)

This work was motivated by the results on the Floquet-assisted superradiant phase
(FSP) in Publication V. The emergence of the FSP suggests the possibility of construct-
ing a terahertz laser-source utilizing the FSP of driven graphene inside a cavity. A
realistic setup, however, relies on a certain degree of robustness against realistic envi-
ronmental factors that might affect the underlying mechanism. This work is a preprint,
and potentially subject to changes.
I have analyzed the robustness of the FSP with respect to three different types of envi-

ronmental factors. First, I have considered phase diffusion of the coherent driving field.
Introducing a random walk to the phase of the driving field leads to a finite linewidth
that in general broadens the responses of the driven system. I have found that across
the FSP transition, the linewidth of the photon field in the cavity drastically narrows
and overcomes the linewidth of the driving field, as well as the intrinsic linewidth of the
cavity. Such line-narrowing is directly connected to a large temporal coherence, which
is characteristic of lasing mechanisms. Second, I have considered inhomogeneous broad-
ening in which the two-level systems are randomly detuned around a central frequency.
My simulations show that the FSP is robust against this, while experiencing a reduction
in efficiency. Since far-detuned systems no longer participate in the collective process of
the FSP, the magnitude of the photon field is reduced while stronger coupling is neces-
sary to compensate for this. Third, I have analyzed the effects of increasing both the
coefficients of the dissipative processes of the two-level systems, and the cavity loss rate.
The results suggest that the FSP is robust up to dissipation scales that are comparable
to the values that we used to describe graphene in Publication I. Finally, I have found
that weaker dissipation, in particular a higher finesse cavity, leads to a reduction of
the critical coupling strength, meaning that the FSP appears for very weak coupling in
sufficiently clean setups. I have concluded that the FSP is robust and attainable under
experimentally feasible conditions. It qualifies for interpretation as a lasing mechanism,
which motivates future work on driven graphene coupled to a single-mode cavity.
My contribution to this work consisted of conceiving the project, creating the nu-

merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.
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We demonstrate the robustness of the recently established Floquet-assisted superradiant phase of
the parametrically driven dissipative Dicke model, inspired by light-induced dynamics in graphene.
In particular, we show the robustness of this state against key imperfections and argue for the
feasibility of utilizing it for laser operation. We consider the effect of a finite linewidth of the driving
field, modelled via phase diffusion. We find that the linewidth of the light field in the cavity narrows
drastically across the FSP transition, reminiscent of a line narrowing at the laser transition. We then
demonstrate that the FSP is robust against inhomogeneous broadening, while displaying a reduction
of light intensity. We show that the depleted population inversion of near-resonant Floquet states
leads to hole burning in the inhomogeneously broadened Floquet spectra. Finally, we show that the
FSP is robust against dissipation processes, with coefficients up to values that are experimentally
available. We conclude that the FSP presents a robust mechanism that is capable of realistic laser
operation.

I. INTRODUCTION

In the superradiant phase transition of the Dicke model
[1, 2] the ground state of a set of identical two-level sys-
tems (TLS) that are coupled to a cavity is accompanied
by symmetry breaking and the emergence of a coherent
photon state. Realizations of the Dicke model, and con-
sequently the superradiant phase transition, have been
proposed [3–5] and demonstrated experimentally [6–9].
The realization of the Dicke model in cavity-BEC setups
leads to intricate non-equilibrium superradiant phases,
which can appear in the presence of parametric driving
of the coupling parameter [10–20]. Meanwhile, general-
izations of the Dicke model have been studied to find rich
phase diagrams that display superradiant phases, regu-
lar lasing and the unconventional counter-lasing [21–29].
These types of Dicke models are also referred to as driven,
due to the tunability of the atom-photon processes [30–
32].

The first studies on the superradiant phase were pre-
ceeded by studies on the closely related phenomenon of
superradiance, introduced in the seminal work by Dicke
[33]. Unlike the superradiant phase, superradiance is
a transient process of collective coherent spontaneous
emission that can be engineered into continuous oper-
ation which results in superradiant lasing with ultranar-
row linewidths [34–49]. The mechanisms behind regular
lasing as well as superradiant lasing rely on incoherent
driving which is realized via pumping into higher levels
in order to create population inversion. Superradiance
has also been studied in the presence of coherent driving
of the two-level systems [50–54]. This lead to studies on
two-photon dressed-state lasers [55–63] in particular in
quantum dot system [64–67], as a type of lasing without
inversion [68–71]. Superradiance has also been studied
in solid-state systems [72–75]. This relates to Floquet-
engineering, which explores the possibilities of dynami-
cally controlling properties such as band populations and
topology [76–87].

FIG. 1. Mechanism of the Floquet-assisted super-
radiant phase. (a) The bare energy levels ωz of a collec-
tion of two-level systems are dressed via strong driving field
strengths Ed and deformed into Floquet states. Depending
on the details of driving and dissipation, this process leads
to population inversion in the Floquet states as indicated by
the gray hatched areas. At Floquet energies that are reso-
nant with the cavity frequency ωc, this population inversion
is depleted and transferred into a coherent state in the cavity.
(b) The phase diagram of the light field in the cavity shows
the trivial phase (TP), the Dicke superradiant phase (DS) for
small driving field strengths and the Floquet-assisted super-
radiant phase (FSP) for large driving field strengths around
Eonset

d . The coupling strength λFSP
c at which the FSP emerges

depends on the cavity loss rate κ that increases with κ.
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Generally speaking, one crucial feature of both regular
and unconventional lasing is the generation of monochro-
matic scalable coherent emission that displays line nar-
rowing below the intrinsic linewidth. Further, practical
laser operation is expected to be stable in the presence
of environmental factors. Such factors include inhomoge-
neous broadening which in solid-state systems occurs due
to material defects, while in gaseous setups it occurs due
to the velocity distribution of the atoms. This leads to
spectral linewidths that exceed intrinsic linewidths due
to shifted energy levels that would be degenerate in the
absence of inhomogeneous broadening.

In recent work we have presented the Floquet-assisted
superradiant phase (FSP) [88] in a parametrically driven
Dicke model in the presence of solid-like dissipation.
The underlying mechanism of the FSP consists of strong
coherent driving of the TLSs which leads to Floquet
states with energies that deviate from the bare transi-
tions. These Floquet states can be tuned into resonance
with a cavity while they simulatenously experience effec-
tive population inversion due to the interplay of coher-
ent driving and dissipation. This model is motivated by
the demonstration of negative optical conductivities as
a consequence of population inverted Floquet states in
coherently driven graphene [89]. Coupling the TLSs to
the cavity results in the population inversion being de-
pleted in order to sustain the oscillating coherent state
in the cavity. The mechanism of the FSP is illustrated
in Fig. 1. The regime in which inversion occurs as calcu-
lated in previous work [88] is indicated with grey hatched
lines.

In this paper, we demonstrate the robustness of the
FSP. We introduce a phase diffusion process and hence
a finite linewidth in the driving field. We show that the
transition into the FSP is accompanied by significant nar-
rowing of the linewidth of the cavity light field such that
the emergence of the FSP is stable in the presence of
finite phase coherence of the driving field. Further, we
demonstrate that the FSP is stable in the presence of in-
homogeneous broadening. Finally, we show that the FSP
is robust with respect to the dissipation of the TLSs up
to decay rates of the order of those in recent light-driven
graphene experiments. We then identify the cavity loss
rate as the most sensitive parameter, as the FSP van-
ishes comparatively rapidly as a function of cavity losses.
Overall, our results suggest the possibility of laser oper-
ation based on the FSP in a solid-state system, such as
a two-band material, due to the form of the dissipative
processes, the magnitude of the dissipation that we con-
sider, the robustness against inhomogeneous broadening,
and the strong line narrowing across the transition. This
type of laser operation is distinct from regular lasing and
superradiant lasing, but comparable to a modified type
of dressed-state lasing in solids.

This work is structured as follows. In section II we de-
scribe the master equation of the parametrically driven
dissipative Dicke model. In section III we introduce
phase diffusion into the driving term of the TLS which

leads to a broadened linewidth, that is overcome by the
drastic line narrowing of the light field in the cavity. In
section IV we introduce inhomogeneous broadening into
the TLSs which modifies the transition, as not all TLSs
participate in the FSP. In section V we show the FSP
transition as a function of the cavity loss rate as well as
the TLS dissipation rates to show the robustness of the
FSP. In section VI we conclude our results and present
an outlook for possible implementations of the FSP.

II. PARAMETRICALLY DRIVEN DICKE
MODEL

We consider a dissipative Dicke model that is paramet-
rically driven with circularly polarized light. The Hamil-
tonian of this system is

1

ℏ
H =

∑N
j=1

ωj
z

2 σ
j
z + σj+A−(t) + σj−A+(t)

+ωca
†a+ λ√

N

∑N
j=1 σ

j
x(a+ a†) (1)

with the driving field

A±(t) =
Ed

ωd
exp{±iωdt}. (2)

ωd is the driving frequency and Ed is the effective driving
strength that takes the dimension of frequency squared.
Ed can be related to electric field strengths of driving
terms in other systems that motivate the general form of
this Hamiltonian. ωc is the cavity frequency. The fre-
quencies ωjz are frequencies of the TLSs. We first choose
these to be equal, i.e. ωjz = ωz, and later consider a
distribution of frequencies ωjz, to model inhomogeneous

broadening. σjk is the kth Pauli-matrix acting on the jth

TLS, where σj± = (σjx ± iσjy)/2. a
(†) is the annihilation

(creation) operator of the photon mode in the cavity. λ
is the coupling strength between the TLSs and the cav-
ity. We consider a mean-field ansatz which separates the
model into the two sub-Hamiltonians

1

ℏ
Hj =

ωjz
2
σjz + σj+A−(t) + σj−A+(t) +

λ√
N

⟨a+ a†⟩σjx

(3)

1

ℏ
Hc = ωca

†a+
λ√
N

N∑

j=1

⟨σjx⟩ (a+ a†). (4)

Here ⟨σjx⟩ and ⟨a+ a†⟩ are the expectation values of
the respective operators. The dynamics generated by
Eq. 4 are solved by a coherent state characterised by α =
⟨a⟩ which acts as the order-paramater of superradiant
phases. The dynamics of α are governed by the equation
of motion

α̇ = −(iωc + κ)α− i
λ√
N

N∑

j=1

⟨σjx⟩ , (5)
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where κ is the cavity loss rate. Additionally, we express
the dynamics of the jth TLS via the Lindblad master
equation which we write as

ρ̇j = i[ρj , Hj ] +
∑

l

γjl (L
j
l ρ
jLj,†l − 1

2
{Lj,†l Ljl , ρ

j}). (6)

The Lindblad operators Ljl = σj+, σ
j
−, σ

j
z are weighted

by the dissipation coefficients γjl with l ∈ {+,−, z} and
act in the instantaneous eigenbasis of the jth TLS analo-
gously to the method applied in previous works [88–91].

The coefficients γj− and γj+ describe spontaneous decay

and excitation, respectively. The coefficients γjz = γz
describe dephasing. This choice of dissipation has been
shown to describe the dynamics in light-driven two-band
solids [90]. Note that the temperature T is encoded in
the ratio of

γj− − γj+

γj− + γj+
= tanh

(
ϵj

kBT

)
, (7)

where the instantaneous eigenenergy scale ϵj of Hj is
roughly of the order of the jth TLS level spacing ωjz.
Note that this suggests an ideal range of operation for
the FSP. In terms of experimental feasibility it is desir-

able to keep Ed small but ϵj

kBT
large. This compromise is

met up to room temperature for characteristic frequen-
cies of the order of tens to hundreds of terahertz, which is
in agreement with the motivational work on light-driven
graphene [92]. As an example throughout this work, we
use ωd = 2π × 48THz and ωz = 2π × 24THz such that

at room temperature tanh( ϵj

kBT
) ≈ 1. Therefore, we take

γj+ ≈ 0.

We further use ωc = 2π × 12THz, γj− + γj+ = γ− +
γ+ = 2THz, γz = 4THz, κ = 2π × 120MHz and
λc =

√
ωcωz/2 ≈ 2π × 8.5THz, where λc is the critical

coupling strength of the standard Dicke model. The crit-
ical coupling λc does not directly relate to the FSP, but
it gives a readily comparable scale of the system param-
eters. Unless stated otherwise, we take the driving field
strength to be adjusted to the onset value of the FSP.
This means that the Floquet energies of the driven TLSs
are resonant with the cavity frequency ωc, such that

Ed =
ω2
d

2

√(
1− ωc

ωd

)2

−
(
1− ωz

ωd

)2

, (8)

as we have discussed in previous work [88]. In our exam-
ple, with ωc/ωd = 1/4 and ωz/ωd = 1/2, this amounts
to

Eonset
d =

√
5

8
ω2
d. (9)

The vertical line in Fig. 1 indicates the onset driving field
strength.
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FIG. 2. Light field fluctuations across the FSP transi-
tion. Panels (a) and (b) show the root-mean-square and the
standard deviation of the light field amplitude across the FSP
transition as a function of the phase diffusion standard devi-
ation sϕ. The horizontal line indicates the coupling strength
at which the FSP transition occurs in the absence of phase
diffusion, i.e. sϕ = 0. Panel (c) shows the amplitude of
a single-trajectory of the light field for sϕ = 0 (blue) and
sϕ = 0.4 (black), as well as an inset of the driving field for
the same values of sϕ.

III. PHASE DIFFUSION

As a first metric for robustness, we consider the in-
fluence of a finite linewidth of the driving field on the
linewidth of the cavity light field in the FSP. For this
purpose we introduce a Gaussian random walk ϕ(t) that
models phase diffusion in the driving field [93], rather
than the monochromatic driving field described in Eq. 2.
The standard deviation of ϕ(t) after one driving period
2πω−1

d is given by sϕ. This corresponds to a linewidth of
∆ω = ωd

sϕ
2π in the driving field which we now write as

A±(t) =
Ed

ωd
exp{±i(ωdt+ ϕ(t))}. (10)

In Fig. 2 (a), we show the root-mean-square of the light
field amplitude |α|rms across the FSP transition at the on-
set value of Ed = Eonset

d , see Eq. 9, as a function of λ and
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FIG. 3. Linewidth narrowing in the FSP. Panel (a)
shows the power spectrum averaged over 50 phase diffu-
sion trajectories as a function of the coupling strength λ for
sϕ = 0.4 on a logarithmic scale. Across the FSP transition
indicated by the dashed line, the linewidth of the light field
in the cavity narrows drastically. Panel (b) shows the light
field amplitude across the FSP transition for the individual
trajectories in light colors and their mean in solid dark blue.
Panel (c) shows the power spectra for λ = 0.02λc, rescaled by
a factor of 26 for comparison, and λ = λc.

sϕ. We see that the FSP transition is stable against the
fluctuations of the driving field, i.e. as a function of sϕ,
however the FSP regime is shifted towards larger values
of λ, and the transition regime displays stronger fluctu-
ations. Since the phase diffusion broadens the linewidth
of the driving field, the TLSs develop amplitude at many
frequencies including the cavity frequency ωc which leads
to residual occupations in the cavity that contribute to
the broadened FSP transition.

In Fig. 2 (b), we show the standard deviation |α|std of
the light field amplitude as a function of λ and sϕ. Close
to the FSP transition, the amplitude that we show in
Fig. 2 (a) displays large fluctuations, that are suppressed
both in the FSP and the trivial phase. With increasing
phase diffusion, the steady state in the FSP shows an
increasing standard deviation and the sharp feature in
|α|std across the transition broadens. For intermediate
values of sϕ, the increased standard deviation indicates
the shifted location of the FSP transition.

In Fig. 2 (c), we show the amplitude of the light field in
the FSP at λ = λc for sϕ = 0 and sϕ = 0.4 on long time
scales. The case of sϕ = 0.4 corresponds to a significantly
broadened driving field and hence the amplitude of the
light field in the FSP jitters considerably. This case cor-
responds to the vertical dashed lines in Figs. 2 (a) and
(b). The inset shows the effect of the phase diffusion on
the driving field.

Next we present the line narrowing of the light field
across the FSP transition in the presence of phase diffu-

sion. For this purpose we consider the power spectrum

S(ω) =
|α̂(ω)|2∫

R |α̂(ω)|2dω , (11)

where α̂(ω) is the Fourier transform of α(t).
In Fig. 3 (a) we show S(ω) at the onset driving field

strength with sϕ = 0.4 and averaged over 50 phase diffu-
sion trajectories. Prior to the FSP transition that occurs
at approximately λ = 0.37λc, there is a broadened signal
at the cavity frequency with a linewidth that is given by
the cavity loss rate κ. Across the transition, the linewidth
narrows drastically as the occupation of the cavity mode
increases. We show the corresponding light field ampli-
tude |α| in Fig. 3 (b) as a transposed plot for the same
set of sampled phase diffusion trajectories in light colors,
and their mean as a dark solid line.
In Fig. 3 (c) we show the power spectrum S(ω) prior

to (λ = 0.02λc) and past (λ = λc) the FSP transition,
rescaled for comparison. The line narrowing is clearly vis-
ible as the full-width half-maximum reduces drastically.
The narrowing of the linewidth past the transition cor-
responds to the coherence times increasing beyond those
of the driving field and those given intrinsically by the
cavity. This is a hallmark of lasing states.

IV. INHOMOGENEOUS BROADENING

As a second metric for robustness we consider the con-
sequences of inhomogeneous broadening on the FSP tran-
sition. In order to include inhomogeneous broadening,
we consider a distribution of detuned two-level spacings
ωjz that have the average frequency ωz. In this model
the index of the TLSs is arbitrary, so we label them by
their energy for convenience. The relevant quantity for
broadening effects is the mode density of the TLSs. We
consider N = 100 TLSs with normal distributed energy
detuning around ωz with a relative standard deviation of
sω. For this purpose, we set the jth energy level to

ωjz = ωz

(
1 + sωerf

−1

[
2j

N + 1
− 1

])
, (12)

where erf−1 is the inverse error function, such that the
energy levels are evenly distributed as desired without
random sampling.
In Fig. 4, we show the amplitude of the light field

across the FSP transition as a function of the inhomo-
geneous broadening standard deviation sω. We find that
the transition remains sharp for increasing sω. However,
the value of λ at which the FSP transition occurs in-
creases with sω while the amplitude |α| of the light field
decreases. This is a consequence of a subset of TLSs not
contributing to the FSP due to being far detuned from
the cavity frequency. To compensate for this lack of con-
tributing TLSs, the coupling strength needs to increase
in order to enter the FSP. If the detuning due to inhomo-
geneous broadening is larger than the intrinsic linewidth
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FIG. 4. Effect of inhomogeneous broadening on the
FSP transition. The FSP transition at the onset driving
field strength as a function of the coupling strength λ and
the inhomogeneous broadening parameter sω. The vertical
dashed line corresponds to the case that we show in Fig. 5.

of a given TLS, it is not affected by the effective driv-
ing that is present due to the interaction with the cavity
which contains a non-zero light field.

In order to gain insight into the Floquet states of the
system as well as their occupation, we consider the TLSs
embedded in a larger space spanned by the creation (an-

nihilation) operators b
j,(†)
1,2 . They are connected to the

Pauli matrices via

σjx = bj,†2 bj1 + bj,†1 bj2 (13)

σjy = i(bj,†2 bj1 − bj,†1 bj2) (14)

σjz = bj,†2 bj2 − bj,†1 bj1. (15)

We note that the operators b1,2 can be either fermionic
operators or hardcore bosons. While we introduce them
as auxiliary operators in this work, a natural platform to
implement the dynamical state that we put forth here,
is in a two-band material. In that implementation, the
electron operators of the two bands coincide with the
Schwinger operators that we use here. In this Schwinger
representation, individual two-time correlation functions
⟨bj,†n (t2)b

j
n(t1)⟩ are accessible, rather than propagators of

particle conserving operators Eq. 14–16. We can calcu-
late the steady state distribution [94]

nj(ω) =
1

(tb − ta)2

∫ tb

ta

∫ tb

ta

Gj(t2, t1)eiω(t2−t1)dt2dt1
(16)

for each of the N TLSs with the correlation function

Gj(t2, t1) =
2∑

n=1

⟨bj,†n (t2)b
j
n(t1)⟩ . (17)

Here ta is a time that is large enough for the system to
have formed a steady state and tb− ta is an interval that
is large enough to ensure sufficient frequency resolution.
The distribution nj(ω) reveals the energies and occupa-
tion of the Floquet states of the jth TLS. Collecting the
steady state distributions of all N TLSs gives the collec-
tive distribution of the entirety of TLSs

n(ω) = N−1
N∑

j=1

nj(ω), (18)

which displays the frequency resolved distribution of the
ensemble of TLSs, rather than that of individual TLSs.
Taking the difference of the collective distribution across
opposite frequencies gives the relative collective distribu-
tion

∆n(ω) = n(ω)− n(−ω). (19)

∆n(ω) displays the frequency resolved imbalance of the
ensemble and reveals the effective population inversion
of the entire system and how it is depleted in the FSP.
In Figs. 5 (a) through (c), we show the steady state dis-

tributions nj(ω) for sω = 0.4 and different combinations
of Ed and λ. The horizontal lines indicate the centered
two-level spacing ωz and the cavity frequency ωc. The
solid line indicates the centered spacing of the Floquet
levels that for the jth TLS have the energy

ϵjF = ±


ωd

2
−
√
E2

d

ω2
d

+
(ωd − ωjz)2

4


 . (20)

In Fig. 5 (a), we show the case of Ed = 0 and λ =
0. In this equilibrium state the lower levels are all fully
populated with energies given by Eq. 12. In Fig. 5 (b),
we show the case of Ed = Eonset

d and λ = 0. As expected,
the states are dominantly distributed around the Floquet
energies given by Eq. 20. At this driving field strength
the Floquet states are population inverted. In Fig. 5 (c),
we show the case Ed = Eonset

d and λ = λc. This case
is inside the FSP and the Floquet states that are close
to resonant with the cavity frequency are modified due
to the presence of the finite photon field in the cavity.
Hence, a gap opens and the populations of the Floquet
states are modified.
In Fig. 5 (d), we show the relative collective distri-

bution ∆n(ω) for sω = 0.4, Ed = Eonset
d and for both

λ = 0 (dark blue filling) and λ = λc (black line, white
filling), which correspond to Figs. 5 (b) and (c), respec-
tively. We see that inside the FSP and close to the cavity
resonance, the Floquet states are not only modified by
a gap opening, but the effective population inversion is
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FIG. 5. Two-level steady state distributions in the
presence of inhomogeneous broadening. Panels (a)
through (c) show the steady state distributions nj(ω) for
N = 100 TLSs at Ed = 0 (a) and Ed = Eonset

d (b, c) as
well as λ = 0 (a, b) and λ = λc (c). The distributions are
concentrated at the Floquet energies of the broadened energy
levels. The horizontal lines show the average level spacing
ωz and the cavity frequency ωc. Panel (d) shows the relative
collective distribution ∆n(ω) for λ = λc (black line, white
filling) and λ = 0 (dark blue filling) the difference between
the two (hatched filling) is the effective population inversion
of Floquet states that is depleted to sustain the FSP.

largely depleted. The inhomogeneous broadening leads
to off-resonant TLSs that are unaffected and do not con-
tribute to the FSP mechanism. This type of hole-burning
is responsible for the reduced light field amplitude as a
function of sω in Fig. 4.

V. TWO-LEVEL AND CAVITY LOSSES

As a third metric for robustness, we show the effect of
the TLS dissipation rates and the cavity loss rate on the
FSP. In Fig. 6 we show the magnitude of the light field
in the cavity as a function of the effective driving field
strength Ed and the coupling strength λ, as well as the
dissipation coefficients. The quantity we show is the in-
tensity per TLS of the light field |α|2N−1 multiplied with
the cavity loss rate κ. This serves the purpose of quanti-
fying the coherent output of the system rather than the
photon count inside the cavity.

In Fig. 6 (a) and (b) we show the effect of the TLS
dissipation coefficients. We choose the example γ = γz =
2(γ− + γ+), i.e. we keep the ratio of γ− + γ+ and γz
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FIG. 6. Effects of strong dissipation on the FSP.
The output intensity of the light field per TLS κ|α|2/N as
functions of combinations of Ed, λ, κ and γ. In panel (a),
we show the output intensity per TLS as a function of γ and
Ed for λ = 0.75λc and κ = ωd/400. In panel (b), we show
the output intensity per TLS as a function of γ and λ for
Ed = Eonset

d and κ = ωd/400. In panel (c), we show the
output intensity per TLS as a function of κ and Ed for λ =
0.75λc and γ = ωd/24π. In panel (d), we show the output
intensity per TLS as a function of κ and λ for Ed = Eonset

d

and γ = ωd/24π.

constant for convenience. We see that the FSP transition
is robust for increasing values up to γ ≲ 0.15ωd for λ =
0.75λc. In our example, that is inspired by light-driven
graphene, this corresponds to γ ≈ 45THz compared to
the characteristic energies of the Hamiltonian of the order
of ωd = 2π × 48THz. This demonstrates a robustness
to dissipation up to rates which are comparable to the
coefficients used to describe experimental setups of driven
graphene [92, 95–99]. This further supports the viability
of graphene as a potential platform for hosting the FSP.

In Fig. 6 (c) and (d) we show the effect of the cav-
ity loss rate κ on the FSP. We find a small range of
available values for κ at which the FSP emerges and
further the threshold at which the FSP becomes unsus-
tainable is comparatively small at values of κ ≲ 0.02ωd

for λ = 0.75λc. In our example this corresponds to
κ ≈ 5THz. This demonstrates the sensitivity of the FSP
with respect to cavity losses, which we identify as the
most sensitive parameter.
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For the purpose of realizing the FSP, for driving field
strengths close to Eonset

d the FSP will occur for large val-
ues of κ, if λ is sufficiently large. Similarly, the given
magnitude of λ provides an upper limit on κ to achieve
the realization of the FSP. We note that the FSP can be
realized for arbitrarily small values of λ, given sufficiently
small κ. Therefore, for a given platform, a high-finesse
cavity might enable the realization. We note, however,
that the optimal output intensity is achieved for interme-
diate magnitudes of both κ and λ. Stronger dissipation
results in a larger inversion of the TLSs, and therefore in
a higher output intensity. So for the optimal operation
of FSP, intermediate values of the dissipation rates are
desirable.

VI. CONCLUSION

We have demonstrated the robustness of the Floquet-
assisted superradiant phase (FSP) in the parametrically
driven Dicke model with a dissipative model, that is de-
signed for the electron dynamics in a solid. The photonic
steady state in the FSP is robust against inhomogeneous
broadening, reasonably strong dissipative processes of
the two-level systems and phase diffusion in the driving
field. Across the FSP transition, the linewidth of the light
field narrows drastically and overcomes the linewidth of
the driving field as well as the intrinsic linewidth of the
cavity that is given by its loss rate, which is a hallmark
of laser mechanisms.

In our model the dissipation is performed in the in-
stantaneous eigenbasis. This choice is motivated by the
capabilities of capturing dynamics of two-band solids, as

has been demonstrated in previous work [90]. The depen-
dence of the FSP on the ratio of characteristic frequencies
and temperature, as well as the driving field strength in
units of the driving frequency squared suggests the most
promising range of driving frequencies to be of the or-
der of tens to hundreds of terahertz. This energy scale
also coincides with the situation in two-band solids such
as light-driven graphene [89, 90, 92]. The values of the
dissipation coefficients up to which we find the FSP to
be stable also agrees with realistic estimates of coherence
times in available graphene samples [92, 95–99].

We conclude from the robustness and the small values
of the critical coupling of the FSP that it can be utilized
for laser operation. The FSP is in principle accessible
in two-band solids such as light-driven graphene under
realistic conditions. The details of the collective effect of
solid-state dispersion relations on the emergence of the
FSP will be the subject of future research. Such a demon-
stration would then constitute a Floquet-assisted solid-
state laser system in the terahertz frequency domain. As
such, we propose to expand the range of dressed-state
laser mechanisms into the domain of Floquet-engineered
electron bands in solids, that is accessible with current
pump-probe technology.

ACKNOWLEDGEMENTS

This work is funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – SFB-
925 – project 170620586, and the Cluster of Excellence
’Advanced Imaging of Matter’ (EXC 2056), Project No.
390715994.

[1] K. Hepp and E. H. Lieb, Phys. Rev. A 8, 2517 (1973).
[2] Y. K. Wang and F. T. Hioe, Phys. Rev. A 7, 831 (1973).
[3] P. Domokos and H. Ritsch, Phys. Rev. Lett. 89, 253003

(2002).
[4] F. Dimer, B. Estienne, A. S. Parkins, and H. J.

Carmichael, Phys. Rev. A 75, 013804 (2007).
[5] D. Nagy, G. Kónya, G. Szirmai, and P. Domokos, Phys.

Rev. Lett. 104, 130401 (2010).
[6] A. T. Black, H. W. Chan, and V. Vuletić, Phys. Rev.
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4 Native and Non-Local Quantum
Algorithm Optimization

The early stages of research on quantum computing focused on two central aspects.
First, the formulation and development of quantum algorithms that could leverage this
new paradigm to efficiently solve classically intractable problems, or gain advantage over
classical counterparts. And second, the design and realization of physical platforms, also
called architectures, that are used to implement such quantum algorithms. Popular plat-
forms of quantum computing are trapped ions [258–263], superconducting qubits [264–
269], photonics [270, 271], quantum dots [25, 272], nuclear spins [273, 274], and neutral
atoms [11, 12, 275–278]. The DiVincenzo criteria [279] of proper and scalable quantum
computers have been identified fairly early, but each realization faces its own obstacles,
such that the identification of a clear ideal candidate is a point of contention. The first
major algorithms to demonstrate the prowess of quantum computing were the Deutsch-
Jozsa algorithm [280], Grover’s algorithm [281], and Shor’s algorithm [282]. Later, the
field of quantum cryptography [283–286] gained traction with promises of providing
fundamentally secure communication channels across large distances in proposed quan-
tum networks [287, 288]. Other intricate approaches have also been proposed, such as
quantum error correction [289], topological quantum computing [290], and measurement-
based quantum computing [291, 292].

The past decade has also shown tremendous growth in the computer science field of
machine learning, which has affected research in physics and in particular quantum com-
putational science. Quantum machine learning (QML) has grown into a sizable branch
of quantum computing research [293–296]. As the joint field of quantum computing
and machine learning, it promises to utilize noisy intermediate-scale quantum (NISQ)
devices effectively. It formalizes neural networks and optimization methods in a manner
that synergizes well with the intricacies of quantum information theory and provides a
new perspective on the potential utilization of quantum computers.

Throughout this chapter, I provide a brief introduction into quantum information
theory with a focus on the native Hamiltonian domain as a contrast to the quantum
circuit paradigm. I emphasize the universality condition of gate libraries from the per-
spective of dynamical Lie algebras. I introduce the concept of variational quantum
algorithms (VQAs), the resulting barren plateau phenomenon, and how this necessitates
new ansätze to quantum algorithm optimization. I highlight how these topics connect
to quantum optimal control methods and use this to provide motivation and context for
Publication VII and Publication VIII, in which I studied non-local quantum optimiza-
tion approaches on the native Hamiltonian level. Literature such as the book by Nielsen
and Chuang [297] and review articles [298–300] have inspired this chapter.
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4.1 Quantum Information Processing

The field of quantum computing addresses the problem of the exponentially increas-
ing complexity of quantum systems as a function of the number of constituents, i.e.
the system size. It addresses this by proposing dedicated quantum systems as con-
trollable processing platforms. At the core of this paradigm lies the idea of encoding
information into the states of quantum systems, which are manipulated and measured in
order to directly perform operations on the information a given state represents. Con-
sequently, the fundamental quantum physical principles of superposition, entanglement,
and measurement play a fundamental role in the manner information is manipulated and
extracted, and hence how quantum algorithms are constructed. This paradigmatic dif-
ference promises a potentially exponential speed-up over classical computers, which are
restricted to classical and discrete operations on their information space. The canonical
construction of quantum computing takes the concept of the classical bit, which can be
in one of the two possible classical logical states 0 and 1, and promotes it to a quantum
two-level system with the basis states fittingly denoted as |0⟩ and |1⟩. Such a quantum
bit, or qubit, can occupy any quantum superposition of these computational states, and
further an array of n qubits can occupy any entangled superposition of computational
n-bit-string states

|ψ⟩ =
2n−1∑

q=0

cq[⊗n
j=1 |qj⟩j ], (4.1)

where qj ∈ {0, 1} is the jth digit of the binary-representation of the index q, such that
|qj⟩j denotes the jth local qubit state and ⊗ denotes the generalized tensor product that
produces the n-qubit computational basis states. cq is the complex-valued amplitude
corresponding to such a computational basis state. By construction, quantum computing
tackles dynamical problems that in general explore the entire Hilbert space of a given
n-qubit system. In accordance with quantum mechanics, information is extracted by
measuring the qubit states, where the probability of finding the qubits in the bit-string
configuration q is |cq|2. Similarly, any changes to the quantum state of an array of
qubits are governed through the principles of quantum mechanics, e.g. the time-evolution
generated through the Schrödinger equation. The time-evolution explicitly determines
the transformation that acts on the qubits, the details of which depend on the particular
physical realization of the system. In close analogy to classical computing on the binary
level, quantum algorithms are conventionally expressed in the language of quantum gates
that are arranged in quantum circuits that represent sequences of logical operations.

Mathematically, a quantum circuit is a concatenation of unitary transformations rep-
resented by such quantum gates. In the early development of quantum algorithms, this
construction of using logical operations on quantum states was studied, due to its intu-
itive and sequential arrangements of operations of information processing. The Deutsch-
Jozsa algorithm [280] is capable of efficiently determining the parity of a given binary
function, Shor’s algorithm [282] can be utilized to factor large primes efficiently, and
Grover’s algorithm [281] provides efficient search in a quantum space. The hypothetical
consequences of quantum computers utilizing Shor’s algorithm to efficiently break RSA

130



encryption, which relies on large prime factorization, led to widespread interest into the
field of quantum computing outside of academia.
In classical computer science, the only single-bit operation is the NOT, which inverts

the logical value of a bit. This is contrasted by single-qubit transformations, which are
given by the Lie group SU(2), i.e. a continuum of operations that are represented as
rotations on the Bloch sphere by arbitrary angles θ around any axis n̂

U = exp{−iθ
2
n̂σ⃗}. (4.2)

σ⃗ = (σx, σy, σz) is the vector containing the Pauli matrices. Further, two-qubit gates
provide entanglement and are necessary (as well as sufficient) to access the entire Hilbert
space of any array of qubits. One such two-qubit gate that is commonly considered is the
controlled NOT (CNOT) operation, which is a quantum analog to classical conditional
operations. The CNOT performs a σx transformation on the target qubit only for the
component of the control qubit that is in the |1⟩ state. This transformation may be
written as

CNOT = P0 ⊗ 1 + P1 ⊗ σx, (4.3)

where Pj = |j⟩ ⟨j| are projectors onto the logical states. The quantum nature of this
construction becomes apparent as soon as the control qubit is in a superposition such
as |ψ⟩ = (|0⟩ + |1⟩)/

√
2. A target qubit that is in the state |0⟩ will after the CNOT

has acted on this pair of qubits be in a composite Bell state |ψ⟩ = (|0⟩ |0⟩+ |1⟩ |1⟩)/
√
2

with the control qubit. This construction is unattainable in classical computers and
exemplifies one of the crucial advantages that the quantum computational paradigm
provides. Other commonly considered two-qubit gates are the controlled Z (CZ) and the
square-root swap (

√
SWAP).

The specific set of quantum gates L ⊂ SU(2n) that a given physical n-qubit system is
capable of implementing is called its gate library. A gate library is said to be universal if
and only if any unitary transformation U ∈ SU(2n) acting on the corresponding Hilbert
space can be implemented to arbitrary precision with an arbitrarily large quantum cir-
cuit that contains only quantum gates from that gate library L. It has been proven that
universality is guaranteed when arbitrary single-qubit transformations and CNOT gates
between all pairs of qubits are possible [297]. Note that the CNOT is not unique here
and almost any two-qubit gate fulfills this condition [301]. Specific gate libraries are
provided by the details of a given physical implementation, also referred to as the quan-
tum computing architecture, and are formally the result of the generators that make
up the underlying Hamiltonian structure. Over time there have been many quantum
computing architectures that have been proposed and realized for a steadily increasing
amount of qubits. These include trapped ions [258–263], superconducting qubits [264–
269], quantum dots [25, 272], photonics [270, 271], nuclear spins [273, 274], and neutral
atoms [11, 12, 275–278].
It is instructive to write a general Hamiltonian as

H(t) =
∑

j

ϑj(t)Hj , (4.4)
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where Hj are hermitian operators that generate the corresponding gate library. In
the context of quantum computing, the Hj most commonly take the form of single-
body or two-body Pauli-matrix tensor-products, or sums of such objects. ϑj(t) are the
corresponding time-dependent parameters that are manipulated externally in order to
implement the quantum gates. If across a time-window [0, τ ], all ϑj ̸=k(t ∈ [0, τ ]) = 0,
except for one ϑk(t) ̸= 0 which integrates to some value 1

ℏ
∫ τ
0 ϑk(t)dt = θk, then the

time-evolution operator over this time-window reads

U = e−iθkHk . (4.5)

This implements the gate U corresponding to the generator Hk, e.g. as in Eq. 4.2. In this
manner a gate library is constructed from a Hamiltonian. Note that by construction, this
paradigm omits the implementation of non-commuting generators acting simultaneously
on an overlapping subset of qubits, e.g. two simultaneous CNOT operations with different
control qubits but the same target qubit. This restriction is a direct consequence of the
deliberate choice to represent quantum information processing utilizing discrete quantum
gates, and I address the consequences of this in a later section.

The condition of computational universality can alternatively be expressed using the
concept of the dynamical Lie algebra of a Hamiltonian such as in Eq. 4.4. The dynamical
Lie algebra can be understood as the set of all possible nested commutators of any
combination of the generators Hj of a given Hamiltonian [302, 303]. If and only if the
dynamical Lie algebra is complete, i.e. it spans the Lie algebra su(2n) of generators of
all transformations on the Hilbert space of n qubits, then the gate library, or rather the
Hamiltonian, is universal. A minimal example is the single-qubit case, where any two
linearly independent generators can be used to construct arbitrary single-qubit gates,
such as in Eq. 4.2. This is a consequence of the structure of the su(2) algebra that
is commonly represented through Pauli matrices that obey the commutation relation
[σj , σk] = 2iϵjklσl, where ϵ is the Levi-Cevita symbol and a sum over l is implied. In
a two-qubit example, an arbitrary generator σa ⊗ σb, with a, b ̸= 0, in addition to full
single-qubit control provides the commutators

[σj ⊗ 1, σa ⊗ σb] = 2iϵjacσc ⊗ σb (4.6)

[1 ⊗ σk, σa ⊗ σb] = 2iϵkbdσa ⊗ σd (4.7)

[1 ⊗ σk, [σj ⊗ 1, σa ⊗ σb]] = −4ϵjacϵkbdσc ⊗ σd. (4.8)

These provide the generators σc⊗σb, σa⊗σd, and σc⊗σd with c ̸= a and d ̸= b. Together
with the initial generators, this spans su(4), i.e. the setup is universal on two qubits.

4.2 Variational Quantum Algorithms

The field of quantum machine learning has been increasingly gaining traction [293–296,
298]. Combining classical machine learning with quantum computing promises to be
mutually beneficial, and it has brought forth a plethora of methodologies [304–311] such
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as quantum neural networks [312–318] and quantum approximate optimization algo-
rithms [319–322], which present new perspectives on the near-term utilization of quan-
tum computers. In particular VQAs present a large class of hybrid quantum-classical
algorithms that are widely regarded to be one of the most immediately relevant QML
methods for NISQ devices [299, 300, 323–328]. In the conventional setup of VQAs, a
quantum circuit with a predetermined arrangement of gates is considered. The gates
(usually single-qubit) perform actions that depend on external parameters, denoted as
θj . In such a quantum circuit, the overall transformation is the product of the individual
gate actions determined by the parameters θj . The full unitary transformation of such
a circuit is then

Uθ =
∏

j

e−iθjHjVj , (4.9)

where the Vj are non-parameterized intermediate gates that commonly provide entan-
glement such as the CNOT. I show an example of such a quantum circuit in Fig. 4.1 (a).
This unitary transformation Uθ, that such a circuit implements is a function of the vector
of parameters1

θ =
∑

j

θj êj , (4.10)

where êj denotes the basis vectors of this construction. The construction in Eq. 4.9
is called a parameterized quantum circuit and the initial choice of the arrangement of
gates is a direct ingredient of any VQA ansatz of this type. The next ingredient of
VQAs is the target transformation that the circuit ideally implements for some a priori
unknown choice of θ. By constructing an objective function from observable that encodes
the desired transformation, the task of finding the ideal θ becomes an optimization
problem, since minimizing the difference between the measured value and the desired
value of this objective function is equivalent to having the circuit implement the desired
transformation. The objective function is constructed freely and is generalized as some
linear combination of simultaneous observables Oi weighted by real numbers wi such
that

Lθ =
∑

i

wi ⟨Oi⟩ . (4.11)

As this is inherently measurement-based, the efficient evaluation of objective functions
and the tomography of states becomes an important aspect of the construction of efficient
optimization algorithms [329–333].
The process of optimization consists of iteratively changing the values of θ in order

to improve the objective Lθ. It is very common to utilize gradient-based methods for
this. In that case, it is necessary to calculate the gradient of the objective function with
respect to the parameters θ. The derivative of the transformation Uθ in Eq. 4.9 with
respect to a given parameter θk is [334]

∂θkUθ = −iU+,kHkU−,k (4.12)

1Note that I deliberately write the vector θ without the arrow-notation, because it is primarily a
construction for collecting parameters, and occasionally it is more instructive to represent this as a
two-dimensional collection of parameters such as θj,k in Eq. 4.19 and Eq. 4.20.
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with

U−,k =
∏

j≤k

e−iθjHjVj U+,k =
∏

j>k

e−iθjHjVj U+,kU−,k = Uθ. (4.13)

The derivative of the objective function is then

∂θkLθ =
∑

j

wj∂θk ⟨ψ0|U †
θOjUθ |ψ0⟩ (4.14)

= i
∑

j

wj ⟨ψ0|U †
−,k[Hk, U

†
+,kOjU+,k]U−,k |ψ0⟩ . (4.15)

From this expression it is possible to evaluate the gradient of the objective function
analytically, or devise methods of measuring it. Alternatively, it is also possible to
evaluate the objective function for the parameters θ as well as for a slightly altered value
θ + δêk, for some small δ, and estimate the gradient from finite differences such that

∂θkLθ ≈
Lθ+δêk − Lθ

δ
. (4.16)

Optimization is then achieved iteratively through processes such as basic gradient descent
steps where the parameters are updated as

θ → θ − η∇Lθ. (4.17)

Here η is a small number called the learning rate, that determines how much the param-
eters changes per iteration. This update step rule can be made more intricate through
methods such as ADAM [335] or the quantum natural gradient [316]. This entire con-
struction and the update rule in Eq. 4.17 in particular, are originally motivated by, and
closely related to, neural networks in classical machine learning.

Note that while this methodology is very promising, it has been shown that this class
of methods for optimizing parameterized quantum circuits scales unfavorably with the
size of the system, which leads to the phenomenon of barren plateaus [334, 336–343].
Barren plateaus are regimes in the parameter space of θ that grow at an exponential rate
as a function of the number of qubits, and across which the gradient ∇Lθ of the objective
function decreases in magnitude at an exponential rate as a function of the number of
qubits and the circuit depth. Consequently, large systems become exponentially more
difficult to optimize, as the gradient becomes practically inaccessible, in particular in
the presence of measurement noise, and provides unreliable means of approaching any
local minimum in the objective function. This has motivated the search for modified
approaches to VQAs that mitigate the barren plateau phenomenon [344–346]. It has
been shown that a problem-inspired reduction of the controllability of an ansatz im-
proves learning behavior [347]. In the case of local objective functions, barren plateaus
have been demonstrated to occur only in deep circuits [348, 349]. Barren plateaus are
explicitly a phenomenon that is determined by the parameterization and the resulting
landscape of the objective across the parameter space. This circumstance has motivated
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Figure 4.1: The generalization of the underlying native Hamiltonian structure of quan-
tum circuits. Panel (a) shows an example of a parameterized quantum circuit
with variational parameters θ1, θ2, and θ3, and two CNOT gates. Panel (b)
illustrates the pulses corresponding to the individual quantum gates, as they
are implemented on the underlying Hamiltonian level. Panel (c) depicts an
example of how pulses are generalized to take non-zero values simultane-
ously unlike in Panel (b), such that θ1 and θ3 are the local pulse-areas of the
ϑ1 pulse. Panel (d) displays the two parameterizations in Eqs. 4.19 (blue)
and 4.20 (red) that approximate the pulse ϑ1(t). The shaded areas show the
change in the pulse induced by varying one of the parameters.

the efforts for devising VQA approaches that differ in their parameterization, controlla-
bility, and general construction. This has motivated my work in Publication VII, where
I have studied a non-local parameterization at the native Hamiltonian domain, instead
of within the quantum circuit paradigm, as I explain in the following section.

4.3 Non-local Optimization on the Native Hamiltonian Domain

A crucial advantage is gained by devising a VQA approach beyond the quantum cir-
cuit paradigm. As mentioned above, quantum circuits are restrictive by construction.
In conventional circuit-based VQAs, the choice of the circuit architecture is a discrete
problem that precedes the optimization and is usually tackled with heuristics itself. At
the same time, any sequence of gates as expressed in Eq. 4.5 is natively the result of
an underlying protocol of time-dependent functions ϑj(t) as in Eq. 4.4. I illustrate this
correspondence in Fig. 4.1 (b). In principle, these functions can take arbitrary shape
independently of each other, which provides a space of solutions that is not contained in
the quantum circuit construction. In this native domain, the unrestricted simultaneous
action of the generators is formally recovered from the circuit representations by writing

135



θj,k = ϑj,kτ/N and

U =

N∏

k=1

e−
i
ℏ
∑

j ϑj,kHj
τ
N →

N→∞
T̂ [e−

i
ℏ
∫ τ
0

∑
j ϑj(t)Hjdt] = T̂ [e−

i
ℏ
∫ τ
0 H(t)dt], (4.18)

where τ denotes the time during which the transformation U is implemented. In the
continuous limit of N → ∞, this reproduces the general time-evolution operator for
a Hamiltonian as written in Eq. 4.4. While this in itself may be unsurprising, the
shift of perspective on quantum algorithm optimization is very valuable. Applying this
generalization to VQAs constitutes the transition to quantum optimal control (QOC)
methods [350, 351]. In particular, this makes it possible to devise new classes of param-
eterizations which do not map onto the circuit paradigm of conventional VQAs. I depict
this generalization in Fig. 4.1 (c).
QOC describes a class of methods that aim to provide ideal protocols or pulses for the

external manipulation of dynamical quantum systems with respect to a given task [352–
356]. Such tasks span a variety of objectives for pulse engineering in quantum sys-
tems [357–363]. The parallels between VQAs and QOC are prominent, as they both
consider a desired outcome of the dynamics of a quantum system, and transform it into
an optimization problem that is solved iteratively. From the construction in Eq. 4.18, a
straight-forward parameterization of the ϑj(t) emerges in terms of piece-wise constant
functions [352]

ϑj(t) = θj,k,
k − 1

N
<
t

τ
<

k

N
, (4.19)

which is reminiscent of the quantum circuit paradigm in the Trotterized limit. In par-
ticular, this generalizes the parameterized quantum circuit approach in Eq. 4.9 and its
worth noting that from this perspective, conventional VQAs present a sparsely controlled
subset of QOC methods.
An immediate advantage of this generalization is that on the native Hamiltonian

level, there is no longer any need for preconceived circuit architectures such as in ran-
domly parameterized quantum circuit approaches. One advantage of the quantum circuit
paradigm is the sequential and intuitive construction of discrete logical operations, which
provided a framework to devise new quantum algorithms. A central part of optimiza-
tion methods however, especially machine learning approaches, is that the solutions they
provide are found in a manner that is indifferent to intuition, i.e. solutions are often not
easily identified as solutions from their structure alone. In addition, the paradigm shift
from parameterized quantum circuits to optimization on the native Hamiltonian domain
provides a solution space in which all possible gate arrangements are covered by con-
struction. This generalizes the problem in a manner that avoids the task of preconceiving
circuits in its entirety. For these reasons, the case can be made that optimization on the
native Hamiltonian domain is a natural choice for quantum algorithm optimization.
As studies on barren plateaus have shown, VQAs can benefit from non-locality [344,

347–349]. Similarly, the CRAB [357, 358] algorithm of optimal control theory demon-
strates that a shift in the optimization basis is an effective method for improving an
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algorithm. This motivates a natural choice for an alternative parameterization of ϑj(t)
that I have studied in Publication VII. This parameterization optimizes the Fourier
coefficients of ϑj(t) and is therefore non-local in time. It is

ϑj(t) =

nf∑

k=1

θj,k sin(πk
t

τ
), (4.20)

where nf is the number of Fourier modes and constitutes a hyperparameter that deter-
mines the resulting expressibility of ϑj(t). As mentioned earlier, τ is the time during
which this control pulse is applied. This ansatz provides smooth and slowly varying
protocols which start and end at zero by construction. I visualize the parameterizations
of Eq. 4.19 and Eq. 4.20 in Fig. 4.1 (d). Related types of parameterizations have been
considered in optimization methods in different settings [364, 365]. It is worth noting,
that the proof of the emergence of barren plateaus [334] relies on the parameterized
quantum circuit structure that leads to the expression in Eq. 4.15. In contrast, I have
calculated the analogous expression for the Fourier parameterization in Eq. 4.20

∂θj,kLθ = i
∑

l

wl

∫ τ

0
sin(kπ

t

τ
) ⟨ψ0|U0

t [U
t
τOlU

τ
t , Hj ]U

t
0|ψ0⟩ dt, (4.21)

which eludes the premises of the aforementioned proof. Hence, it can not be directly
inferred that the Fourier parameterization has to display barren plateaus. Here U tb

ta is the

time-evolution operator from time ta to time tb, for tb > ta. If ta > tb, it is U
tb
ta = (U ta

tb
)
†
.

In Publication VII, I have analyzed the performance of this Fourier parameterization and
compared it to the piece-wise constant parameterization, which acts as a benchmark due
to its similarity to circuit-based VQAs. The results showed an improved performance and
convergence behavior for the Fourier parameterization across several objectives, such as
the energy minimization of randomized problem Hamiltonians and the implementation
of the quantum Fourier transform. Additionally, the Fourier parameterization displays
a mitigation of the barren plateau phenomenon in a direct comparison to the piece-wise
constant parameterization. I showed this by analyzing the uniformly sampled variances
of the gradient of the objective function for both parameterizations with respect to the
number of qubits.
In Publication VIII, we have considered quantum algorithm optimization in the quan-

tum computing platform of neutral atoms in optical tweezers [12, 276]. We have con-
sidered the particular setup in which the logical qubit states |0⟩ and |1⟩ are encoded
in metastable hyperfine states of ytterbium atoms [366]. The atoms are individually
trapped, which gives high fidelity control over the atomic positions. Entanglement be-
tween qubits is achieved via additional highly excited Rydberg states |R⟩. These states
display a large polarizability that leads to Van-der-Waals interactions that scale with
r−6, where r is the distance between two interacting atoms. By introducing Rabi pulses
Ωj(t) that drive the transition from the logical |1⟩ state of an atom into the Rydberg
state |R⟩, it is possible to control the interaction between atoms. Single-qubit oper-
ations on the hyperfine states are performed via Raman transition pulses Aj(t). The

137



corresponding Hamiltonian is

1

ℏ
H =

n∑

j=1

Aj(t)σ
(j)
x +Ωx,j(t)τ

(j)
x +Ωy,j(t)τ

(j)
y +

n∑

i ̸=j

|R⟩i |R⟩j ⟨R|i ⟨R|j
C6

|ri − rj |6
, (4.22)

where τ
(j)
x = |R⟩j ⟨1|j + |1⟩j ⟨R|j and τ

(j)
y = −i |R⟩j ⟨1|j + i |1⟩j ⟨R|j . C6 is the strength

of the Van-der-Waals interaction. We have performed variational optimization on the
Rabi and Raman pulses to implement the CNOT gate at various fixed distances. For
atoms that are in proximity, the excitation of more than one Rydberg state is highly
suppressed, which results in the Rydberg blockade regime [11, 367]. We have analyzed
the opposite limit of weak coupling at large distances, and demonstrated its viability
under utilization of quantum algorithm optimization. We have then considered the
presence of fluctuations in the interatomic distance and how this affects the fidelity of
CNOT-implementations at various distances.

We have further considered a class of non-local restrictions in which all the parameters
of one subset of transformations are equal, i.e. reduced to one parameter that controls the
corresponding processes simultaneously and identically. In particular, we have demon-
strated the universality of the Rydberg architecture under such restrictions for many
qubits. This means computational universality is maintained even if the Raman pulses
that act on the single-qubit subspaces, or the Rabi pulses that control excitation into the
Rydberg states, are controlled globally, i.e. Aj(t) = A(t) or Ωj(t) = Ω(t), respectively.
Note that this includes acting on qubits which are not involved in the target transfor-
mation by cancelling out the overall transformation locally to produce the identity.

This type of restrictions implies that the accessible generators are not the individual

σ
(j)
x or τ

(j)
x , but rather Sx =

∑n
j=1 σ

(j)
x or Tx =

∑n
j=1 τ

(j)
x , respectively. In general this

implies a change in the dynamical Lie algebra. To prove that this restriction preserves
universality, it is necessary to demonstrate that the dynamical Lie algebra is unaffected.
Therefore, it is sufficient to recover the unrestricted generators from the restricted set
of generators. For instance, if the restriction demands that Sx is a generator, but the

individual σ
(j)
x are not, i.e. globally identical Raman pulses, then it is sufficient to show

that σ
(j)
x is accessible through nested commutators of generators. This is the case, since

it is

[[Sx, τ
(j)
x ], τ (j)x ] ∝ σ(j)x . (4.23)

Analogously, in the case of the restriction where Tx are generators, but the individual

τ
(j)
x are not, i.e. globally identical Rabi pulses, it is

[[Tx, σ
(j)
x ], σ(j)x ] ∝ τ (j)x . (4.24)

The full proof is detailed in the appendix of Publication VIII, however Eqs. 4.23 and 4.24
already display the central argument of the dynamical Lie algebra being unaltered. We
have also presented concrete examples of sequences of transformations that produce the
individual local gates under these restrictions. This restriction is interesting, because
it is counter-intuitive from a quantum circuit perspective. In principle, the reduced
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controllability affects the training behavior in such a setup, but to what degree is yet
unclear. The reduced dimensionality of the parameter space is however beneficial to
optimization methods. This construction also synergizes well with the optimization of
quantum algorithms which we have studied in both Publication VII and Publication
VIII, as it constitutes further non-locality. This result implies that it is possible to
design a universal quantum computer with this restriction in mind which would result
in less intricate machinery and a potentially more robust and less costly architecture.
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4.4 Publication VII: Mitigated barren plateaus in the
time-nonlocal optimization of analog quantum-algorithm
protocols

L. Broers and L. Mathey — arXiv:2111.08085 (Accepted in Phys. Rev. Re-
search)

This work was motivated by recent discussions in the literature on variational quantum
algorithms (VQAs) and the barren plateau phenomenon that has been shown to occur in
VQAs. Barren plateaus are characterized as exponentially growing regimes in parameter
space in which the gradients of a given objective function decrease at an exponential
rate. Barren plateaus therefore act as a type of de facto no-go theorem in a large class of
quantum algorithm optimization methods. One particular signature of barren plateaus
is given by exponentially decaying variances in the gradient of the objective function
with respect to the number of qubits. This motivates modifications of VQA ansätze to
circumvent this roadblock.
In this work, I have proposed and analyzed an extended ansatz of VQAs. This exten-

sion includes going from the parametrized quantum circuit paradigm to analog quantum
information processing on the native Hamiltonian domain. This is related to quantum
optimal control in the sense that arbitrary control protocols of the Hamiltonian parame-
ters can be utilized in gradient based optimization of quantum algorithms, e.g. quantum
gate compilation. Further, I have proposed a parametrization of these native control
protocols in terms of real-valued Fourier coefficients, which provides protocols that are
by construction slowly varying, smooth, and are optimized non-locally in time. I have
compared this ansatz with the more conventional parametrization of piece-wise constant
step-functions, which in the Trotterized limit connects back to discrete quantum cir-
cuit constructions. The piece-wise constant parameterization therefore acts as a proper
benchmark in a direct comparison.
I have compared the two ansätze in terms of training behavior, fidelity of solutions,

and time-efficiency for the tasks of compiling the quantum Fourier transform, as well
as minimizing the energy of randomized problem Hamiltonians. I have found that the
Fourier based ansatz outperforms the step-wise ansatz in particular in convergence speed
and consistency without a loss of time-efficiency of the solutions. Further, I have analyzed
and compared the variances of the gradients of an example objective. The piece-wise
constant benchmark ansatz shows variances that decay exponentially with the number of
qubits, which indicates a clear onset of barren plateaus. This is expected in this ansatz
as it is reminiscent of parametrized quantum circuits. In the Fourier based ansatz, the
variances decay at a non-exponential rate with the number of qubits, which indicates a
mitigation of barren plateaus.
My contribution to this work consisted of conceiving the project, creating the nu-

merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.
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Mitigated barren plateaus in the time-nonlocal optimization of analog
quantum-algorithm protocols

Lukas Broers1,2 and Ludwig Mathey1,2,3
1Center for Optical Quantum Technologies, University of Hamburg, 22761 Hamburg, Germany

2Institute for Quantum Physics, University of Hamburg, 22761 Hamburg, Germany
3The Hamburg Center for Ultrafast Imaging, 22761 Hamburg, Germany

Quantum machine learning has emerged as a promising utilization of near-term quantum computa-
tion devices. However, algorithmic classes such as variational quantum algorithms have been shown
to suffer from barren plateaus due to vanishing gradients in their parameters spaces. We present an
approach to quantum algorithm optimization that is based on trainable Fourier coefficients of Hamil-
tonian system parameters. Our ansatz is exclusive to the extension of discrete quantum variational
algorithms to analog quantum optimal control schemes and is non-local in time. We demonstrate the
viability of our ansatz on the objectives of compiling the quantum Fourier transform and preparing
ground states of random problem Hamiltonians. In comparison to the temporally local discretiza-
tion ansätze in quantum optimal control and parameterized circuits, our ansatz exhibits faster and
more consistent convergence. We uniformly sample objective gradients across the parameter space
and find that in our ansatz the variance decays at a non-exponential rate with the number of qubits,
while it decays at an exponential rate in the temporally local benchmark ansatz. This indicates
the mitigation of barren plateaus in our ansatz. We propose our ansatz as a viable candidate for
near-term quantum machine learning.

I. INTRODUCTION

Quantum machine learning (QML) connects classical
machine learning and quantum information processing.
This emergent field promises new methods that advance
quantum computation [1, 2] and has brought forth a class
of approaches referred to as variational quantum algo-
rithms (VQA) [3–6]. In particular, noisy intermediate-
scale quantum (NISQ) devices [7–9] are predicted to ben-
efit from the synergies with machine learning found in
VQA. These approaches optimize parameters in a se-
quence of unitary operations, the product of which de-
scribes the time-evolution of the system. The optimiza-
tion is performed with respect to a chosen observable.
Examples include quantum approximate optimization al-
gorithms (QAOA) [10, 11], quantum neural networks [12–
18], quantum circuit learning [19] and quantum assisted
quantum-compiling [20–22].

Similarly, quantum optimal control (QOC) aims to op-
timize the time-dependent system parameters of a quan-
tum system to attain a given objective [23–29]. QOC has
been connected to VQA approaches, and advantages of
moving from the discrete circuit picture to the underly-
ing physical system parameters have been demonstrated
[30, 31]. Such analog VQA approaches commonly uti-
lize piecewise constant, or step-wise, parameterization
ansätze [32–36], which behave like the Trotterized limit
of very deep parameterized quantum circuits with very
small actions per gate.

A major obstacle of VQA is the existence of barren
plateaus in the loss landscapes, i.e. increasingly large
regimes in the parameter space with exponentially van-
ishing gradients, which hinder training [37–44]. The gen-
eral scaling behavior and emergence of barren plateaus
is largely not understood and the dependence of bar-
ren plateaus on the details of VQA has been an active

field of research in recent years. The comparison of local
to global objective functions, the dependence on circuit
depth, and the effects of spatial and temporal locality
of parameterizations have been studied in connection to
barren plateaus [40–42, 45–47]. In particular, the emer-
gence of barren plateaus has been proven in time-locally
parameterized quantum circuits for global objective func-
tions and for local objective functions in the case of non-
shallow circuits [40, 42, 45]. Limiting the controllability
of such ansätze can reduce the onset of barren plateaus
[47–50], which constitutes a trade-off in expressibility
[51, 52] in favor of trainability. This includes ansätze
that are tailored to a given problem, such as the vari-
ational Hamiltonian ansatz [4, 53], the unitary coupled
cluster ansatz [54], and QAOA [11]. These results sug-
gest that non-local ansätze that depart from the param-
eterized circuit paradigm may mitigate barren plateaus
without the loss of generality. Overcoming the obstacle
of barren plateaus is crucial for the success of near-term
QML technologies.

In this paper, we propose a parameterization ansatz
for quantum algorithm optimization using generalized
analog protocols. In this ansatz we directly control the
Fourier coefficients of the system parameters of a Hamil-
tonian. This constitutes a method that is non-local in
time and is exclusive to analog quantum protocols as it
does not translate into discrete circuit parameterizations
which are conventionally found in VQA. We compare our
ansatz to the common optimal control ansatz of step-wise
parameterizations for the example objectives of compil-
ing the quantum Fourier transform as well as minimiz-
ing the energy of random problem Hamiltonians. This
comparison shows that this Fourier based ansatz results
in solutions with higher fidelity and in particular supe-
rior convergence behavior. Note that the optimization
of Fourier coefficients has been proposed for the control
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FIG. 1. Levels of abstraction of quantum algorithms.
A common formulation of quantum circuits consists of a set of
discrete gates, see panel (a). The physical realization of these
gates consists of temporally isolated control protocols of the
system parameters. These are denoted as θj(t) for the dif-
ferent parameters, see panel (b). A more efficient realization
utilizes the full space of temporal evolutions of the parame-
ters θj(t). This includes fully parallel protocols which take
less time to complete the task, see panel (c). Any such proto-

col can be expressed via its Fourier coefficients θ̂j,k, which we
specifically treat as trainable parameters in our ansatz, see
panel (d).

of molecular dynamics [55]. It has also been used in a
mixed approach that optimizes in the basis of piecewise
constant functions [56], as well as in phase-modulated
gradient-free optimization [57]. The Fourier basis has
also been used with tuned frequencies in the CRAB algo-
rithm [23, 58]. However, studies on this particular ansatz
in the context of analog quantum computing as a natu-
ral extension of VQA appear to be lacking. We demon-
strate that our ansatz exhibits non-exponential scaling
behavior with respect to the number of qubits in the
objective gradient variance, which suggests the absence
of barren plateaus. We conclude that our ansatz is a
promising candidate for efficient training and avoiding
barren plateaus in VQA.

II. METHODS

In quantum circuits, the time-dependent Hamiltonian
parameters that implement the gates are sequential,
rather than parallel, and therefore contain long idling

times. This is a consequence of deconstructing uni-
tary transformations into algorithmic sequences of log-
ical gates. Fig. 1 illustrates different levels of abstrac-
tion of quantum algorithms. The departure from the
conventional quantum circuit paradigm towards a larger
and more intricate space of solutions of quantum proto-
cols enables a computational speed-up due to parallelized
Hamiltonian operations.
We write a general time-dependent Hamiltonian as

H(t) =
∑

j

θj(t)Hj , (1)

where Hj are Hermitian matrices that define the sys-
tem. θj(t) are the parameters that determine the time-
dependence of the system. The resulting time-evolution
operator is formally written as

Uθ = T̂ [exp{−i
∫ 1

0

∑

j

θj(t)Hjdt}], (2)

where T̂ indicates time-ordering. We restrict the time-
evolution to t ∈ [0, 1] and use units in which ℏ = 1, for
simplicity. The unitary transformation Uθ is explicitly
a function of the protocols θj(t). In order to perform
numerical optimization, it is necessary to choose a par-
ticular parameterization for the θj(t).
In the ansatz which we highlight in this work, we pa-

rameterize the θj(t) in terms of the first nf real-valued
Fourier coefficients θj,k such that

θj(t) =

nf∑

k=1

θj,k sin(πkt). (3)

This ansatz is motivated by its inherent temporal non-
locality, as varying a single parameter θj,k changes the
protocol θj(t) at all points in time. It presents a natural
choice for a time-non-local parameterization that results
in protocols that are smooth and slowly varying by con-
struction, which is advantageous experimentally. We ini-
tialize the parameters θj,k randomly between ±π/k, such
that slow modes are emphasized.
In addition to our ansatz, we consider the step-wise

ansatz that uses the common discretization in terms of
piecewise constant system parameters.

θj(t) = θj,k,
k

nf
≤ t <

k + 1

nf
, (4)

with k = 0, . . . , nf − 1. We initialize the θj,k randomly
between ±π. This ansatz is time-local and generates dis-
continuous step-functions with nf steps with values θj,k.
These steps are reminiscent of the sequences of parame-
terized gates in quantum circuits as they are convention-
ally found in VQA. Due to its connection to conventional
parameterized variational circuits, this ansatz serves as
a benchmark to which we compare our ansatz of Eq. 3.
In either ansatz, we optimize the parameters

θ =
∑

j,k

θj,kêj,k, (5)



3

with respect to a given objective function Lθ, which en-
codes a target transformation. The exact expression of
any objective Lθ depends on the details of the problem it
describes. The êj,k are formally constructed unit-vectors
that collect the trainable parameters θj,k in the vector θ.
Successful optimization corresponds to a time-evolution
operator Uθ which implements the target transformation.
For a single optimization iteration, we vary the individual
parameters θj,k by a small δ and evaluate the objective
function to estimate the respective derivatives

∂Lθ

∂θj,k
≈ Lθ+δêj,k − Lθ

δ
(6)

such that we obtain the gradient

∇Lθ =
∑

j,k

∂Lθ

∂θj,k
. (7)

We then update the parameters as

θold → θnew = θold − ηg†∇Lθ, (8)

where η is the learning rate, which we update dynami-
cally using the ADAM [59] algorithm. g is the Fubini-
Study metric, which contains information on the quan-
tum geometry of the system in order to improve train-
ing behavior and makes this approach a quantum natu-
ral gradient descent method [60]. For more details see
App. A.

Note that in a physical realization, the parameters
θj(t) cannot become arbitrarily large, and are limited by
physical constraints or features of the realization. In our
numerical approach, these parameters are unbounded.
However, we find that these parameters remain reason-
ably small throughout learning, as we show below.

III. RESULTS

We compare our Fourier ansatz to the step-wise ansatz
for the objectives of quantum compiling and energy min-
imization. Further, we evaluate the scaling behavior of
the variances of objective gradients with respect the num-
ber of qubits. Throughout this work we use the Ising
Hamiltonian [61] with a two-component transverse field
for nq qubits as the controllable system that generates
the variational unitary Uθ. It is

H(t) =

nq∑

j=1

(
Bjx(t)σ

j
x +Bjy(t)σ

j
y

)
+

nq−1∑

j=1

Jj(t)σ
j
zσ

j+1
z ,

(9)
with controllable parameters Bjx(t), B

j
y(t) and Jj(t). We

consider open boundary conditions, such that the in-
dex of Jj(t) goes up to j = nq − 1. In total this gives
(3nq−1)nf trainable parameters in θ, as the Bjx(t), B

j
y(t)

and Jj(t) take the role of the θj(t) in Eq. 1. Our ansatz In

FIG. 2. Illustration of hybrid quantum optimization.
A quantum processing unit (QPU) is assumed to have con-
trollable parameters θ. Problem-specific input r is mapped
onto the initial state of the qubits which the QPU evolves in
time according to the parameters θ and its underlying Hamil-
tonian H. The final qubit state is measured to determine
the value of an objective function Lθ and the Fubini-Study
metric g. These quantities are used on a classical machine
to approximate the quantum natural gradient step to update
the parameters θ and improve Lθ.

Eq. 3 presents a general parameterization of system pa-
rameters and therefore the particular choice of the Hamil-
tonian is not essential. In particular, neither the Fourier
ansatz nor the choice of the Hamiltonian are informed a
priori by any objective at hand. They are agnostic to
the optimizational tasks we utilize them for.

A. Quantum Compiling

We first demonstrate the performance of our ansatz
for the example of learning implementations of the QFT
represented by the unitary operation V , operating on nq
qubits. The matrix elements of V are

Vk,l = 2−
nq
2 exp{i2πkl2−nq}, (10)

where k, l = 1, . . . , 2nq . For compiling unitary transfor-
mations, we utilize the objective function

LUθ = 1− 1

|{r}|
∑

r

| ⟨r|U†
θV |r⟩ |2, (11)

where {r} is a set of randomized unentangled input states

|r⟩ = ⊗nq

i=1[cos(
ϕi
2
) |0⟩+ eiψi sin(

ϕi
2
) |1⟩], (12)

which is similar to recent methods [62]. This objec-
tive function estimates the implementation error ϵ =

1 − |Tr(U†
θV )2−nq |2 between the unitaries Uθ and V .

Note that there exist state estimation and tomography
methods [63–67] that are experimentally favorable over
the overlap in Eq. 11. Here we use this overlap due to its
straightforward numerical accessibility.



4

0 100 200 300 400

6

12

18

24

30

0 100 200 300 400

0 300 600 900 1200

6

12

18

24

30

0 300 600 900 1200

0 800 1600 2400 3200

6

12

18

24

30

0 800 1600 2400 3200

0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Implementation errors during training of the
quantum Fourier transform. The errors ϵ during train-
ing as a function of the hyperparameter nf for the QFT for
nq = 2 (a,d), 3 (b,e) and 4 (c,f) for our Fourier based ansatz
(a,b,c) and the step-wise protocol ansatz (d,e,f). For suffi-
ciently large nf ≥ nf,min both ansätze converge to very small
errors. Our Fourier based ansatz outperforms the step-wise
ansatz in terms of convergence speed and consistency.

In Fig. 3, we show the estimated implementation error
ϵ during training, as a function of nf for nq ≤ 4. We
observe that both implementations converge to the tar-
get transformation for sufficiently large nf . For smaller
nf the accessible unitary transformations generated from
the ansätze Eqs. 3 and 4 are insufficient and presumably
do not contain the QFT on nq qubits.

We emphasize that our Fourier based ansatz is con-
sistently outperforming the step-wise ansatz in terms of
convergence speed. We show in Figs. 3 (a,b,c) that our
ansatz tends to converge after roughly 50, 100 and 200
training iterations for nq = 2, 3 and 4, respectively.
Figs. 3 (d,e,f) show that the step-wise protocol ansatz
tends to converge after roughly 100, 300 and 1800 it-
erations for nq = 2, 3, 4, respectively. For nq = 4 in
Fig. 3 (f), the convergence behavior of the step-wise
ansatz is increasingly inconsistent. The step-wise ansatz
has the tendency to linger at suboptimal fidelities from
which it only moves away very slowly. This behavior be-
comes more prominent with increasing nq and is a con-
sequence of the loss landscape that follows from the pa-

rameterization in Eq. 4. Our ansatz does not show this
behavior, but rather exhibits faster and more direct con-
vergence. This is an indication for the absence of vanish-
ing gradients, as is apparent when comparing Figs. 3 (c)
and (f).
In order to further evaluate the quality of the con-

verged solutions, we show the minimal errors after train-
ing ϵopt with respect to the hyperparameter nf for both
ansätze in Figs. 4 (a) and (b). We find the minimal nf
that is necessary for convergence during training to be
approximately nf,min ≈ 4, 6 and 8 for nq = 2, 3 and 4,
respectively. The minimal nf necessary for convergence
appears to be the same for both ansätze in this exam-
ple. For larger nf , the minimal error converges to very
small values that show no strong dependence on nf . For
the cases of nq = 3 and nq = 4, the resulting minimal
error tends to approach ϵopt ≈ 10−5. We note that for
a concrete experimental realization, additional consider-
ations, e.g. what dissipative processes are present and
how well a specific parameter can be tuned dynamically,
determine the overall success of these approaches, which
will be explored elsewhere.

As a second figure of merit we consider the effective
implementation action, which we quantify with the in-
tegrated magnitude of the vector of system parameters
θ(t), such that

Φ =

∫ 1

0

|θ(t)|dt. (13)

Given that the parameters θj(t) have the units of energy,
this quantity is an overall measure of the phase or ac-
tion that is accumulated during the time-evolution. It
therefore quantifies an estimate of both the energy that
is required to implement a protocol in a given time, as
well as the time that is required given a bound to the
magnitude of the parameters θj(t). This figure of merit
allows us to determine whether a solution with improved
fidelity in our Fourier ansatz merely emerges due to de-
creased time-efficiency. In Figs. 4 (c) and (d) we show
the effective actions Φopt of the same optimal solutions
of Figs. 4 (a) and (b), with respect to the hyperparam-
eter nf . We find the two ansätze to be very similar in
terms of necessary action and therefore time-efficiency.
In both ansätze, there is no strong dependence on the
hyperparameter nf past nf,min. While the implementa-
tion actions consistently remain reasonably small, there
is a clear and expected tendency of implementations to
require larger effective actions with increasing amounts
of qubits.

B. Energy Minimization

As a second optimization task, we consider the en-
ergy expectation value of a problem Hamiltonian Hp and
its minimization. Specifically, we consider the objective
function

LEθ = ⟨E⟩θ = ⟨0|U†
θHpUθ|0⟩ , (14)
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FIG. 4. Minimal errors and effective actions for train-
ing the quantum Fourier transform. The minimal errors
ϵopt (a,b) found during training and the corresponding effec-
tive protocol actions Φopt (c,d) of both ansätze. The training
results are for the QFT for nq = 2 (blue circles), 3 (red tri-
angles) and 4 (green squares). The inconsistent ϵopt in the
step-wise ansatz for nq = 4 (b) is a consequence of the sub-
optimal convergence behavior, related to the emergence of
barren plateaus.

where Uθ is the time-evolution operator of the Hamilto-
nian given in Eq. 2, which we use to construct the trial
state Uθ |0⟩. We use the shortened notation |0⟩ = |0⟩⊗nq

of the state where all qubits are in the logical zero state.
We perform this ground state search for random prob-
lem Hamiltonians for both our ansatz and the step-wise
ansatz with nf = 16. In this example we do not apply
the QNG, i.e. we set the metric g = 1, for simplicity.
Fig. 5 shows the energy differences to the ground state
energies ∆E = ⟨E⟩θ − E0 for the training trajectories
of three randomized problem Hamiltonians for up to six
qubits. We again see that our ansatz outperforms the
step-wise ansatz in terms of convergence speed. There
is an increasing tendency of gradients to flatten out in
the step-wise ansatz. This behavior is not present in our
ansatz and indicates the onset of barren plateaus in the
optimization of ground state preparation for step-wise
protocols.

C. Objective Gradient Variances

In order to quantify the presence of barren plateaus,
we consider the variance of the gradients of the objective
function for both our ansatz and the step-wise ansatz. In
random parameterized quantum circuits this amounts to
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FIG. 5. Training trajectories for energy minimization.
Learning trajectories for the ground state preparation of three
randomly generated problem Hamiltonians for nq = 4, 5, 6
qubits for our ansatz (solid lines) and the step-wise ansatz
(dashed lines). ∆E = ⟨E⟩θ − E0 is the expected energy of
the prepared states relative to the ground state energy. In all
cases nf = 16.

uniformly sampling possible initializations in the parame-
ter space of θ [40]. In analog parameterizations of quan-
tum algorithms, the parameter space is aperiodic and
non-compact such that sampling is more intricate. We
consider uniformly sampled vectors θ inside a (3nq − 1)-
dimensional ball with radius |θ|max for each time-step in
the step-wise ansatz, and |θ|max/k for each kth Fourier
mode in our ansatz. The value of |θ|max determines the
set of reachable states of a given ansatz. We consider the
variance of the gradient with respect to the first param-
eter

Var[∂θ1,1LEθ ] = ⟨(∂θ1,1LEθ )2⟩ − ⟨∂θ1,1LEθ ⟩
2

(15)

for the specific problem Hamiltonian

Hp = σ1
zσ

2
z

nq∏

j=3

1j . (16)

We calculate the variance as a function of |θ|max for
up to 8 qubits for nf = 128. Analytical arguments on
the existence of barren plateaus in RPQCs [40] rely on
time-local expressions of the gradient of a loss function
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such as Eq. 14. This also applies to the step-wise ansatz.
However, in our ansatz given by Eq. 3, the expression is

∂θ1,1
LEθ = i

∫ 1

0

sin(πt′) ⟨0|U0
t′ [U

t′
1 HpU

1
t′ , H1]U

t′
0 |0⟩ dt′,

(17)
where U ba is the time-evolution operator from the time a

to the time b ≥ a. For a ≥ b it is U ba = (Uab )
†
. The vari-

ance of this expression includes all possible covariances
of time-local changes to the protocols θ(t), which differs
substantially from the variances in RPQCs. Further, in
the parameter space of θ(t), the unitaries U t

′
0 and U1

t′ are
neither necessarily independent in the sense of the Haar
measure nor guaranteed to be 2-designs. Therefore, the
analytical argument for RPQCs [40] does not apply to
our ansatz. In particular, the argument generates no
statement about the scaling behavior.

In Fig. 6 (a), we show the results of the step-wise
ansatz. We find that the variance is independent of
the amount of qubits nq for small |θ|max. For increas-
ing |θ|max, the variance decays exponentially with |θ|max

with slopes that are independent of nq. More impor-
tantly, the variance decays exponentially as a function of
nq with a log-scale slope of roughly ln( 12 ), as indicated by
the equally spaced lines. The step-wise ansatz is reminis-
cent of a continuous Trotterized limit of parameterized
circuits and therefore these results are consistent with
barren plateau studies on RPQCs [40].

In Fig. 6 (b), we show the results for our ansatz.
The variances show asymptotic behavior as functions of
|θ|max. They converge at increasingly large values of
|θ|max, which vastly exceed implementation actions that
are necessary for highly entangling unitaries such as the
QFT as we show in Fig. 4 (c). Thus, in our ansatz |θ|max

provides a useful hyperparameter for initialization that
can be tuned to comparatively small values where the
scaling with nq is very favorable. Further, we find that
the variance decreases as a function of nq at a decreasing
and non-exponential rate. This non-exponential scaling
behavior indicates the reduction of barren plateaus in our
ansatz, in particular during initialization.

IV. CONCLUSION

We have proposed a system-agnostic ansatz of analog
variational quantum algorithms rooted in quantum op-
timal control. The central feature of our ansatz is that
it treats the Fourier coefficients of the time-controlled
system parameters of a given Hamiltonian as trainable.
Therefore, our ansatz is non-local in time and has no
direct analog in discretized parameterized quantum cir-
cuits. By restricting the modes to low-end frequencies
we keep the amount of trainable parameters low, while
also ensuring smooth quantum protocols and sufficient
controllability by construction. We have applied a mea-
surement based stochastic quantum natural gradient op-
timization scheme to our ansatz to generate protocols

� �� π �� π �� π �� π ��� π

��-�

��-�

� �� π �� π �� π �� π ��� π

��-�

��-�

FIG. 6. Variances of the energy objective gradient.
The variance of the gradient ∂θ1,1LE

θ of the loss function

LE
θ = ⟨0|U†

θ [σ1
zσ

2
z ]Uθ|0⟩ for up to 8 qubits for the step-wise

ansatz (a) and our Fourier based ansatz (b) on a logarithmic
scale. The parameters are sampled uniformly within a radius
of |θ|max for nf = 128. The lines are visual guides.

for the quantum Fourier transform for up to four qubits.
Additionally, we have optimized ground state prepara-
tion processes for random problem Hamiltonians for up to
six qubits. We compared the results to optimizations of
the more commonly utilized step-wise parameterization
ansatz. The results we have presented here are limited
to few-qubit systems, as the numerical simulations on
the native Hamiltonian level are computationally more
demanding than the circuit-based counter-parts of con-
ventional VQA. This does not translate into a lack of
scalability in a true hybrid realization of the proposed
method.

We have demonstrated that the convergence behav-
ior of our ansatz outperforms the step-wise protocols in
speed and consistency. We have found the effective im-
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plementation action to be comparable and to remain rea-
sonably small in both ansätze. We have analyzed the
gradient along the loss landscape for both ansätze, and
have shown that our ansatz shows non-exponentially de-
creasing variances with respect to the amount of qubits,
indicating an absence of barren plateaus. The step-wise
ansatz shows a characteristic exponential decay with the
amount of qubits that is consistent with barren plateau
studies on random parameterized quantum circuits. The
scaling behavior of objective gradient variances for larger
systems, as well as tuning the sampling range for initial-
ization and its relation to expressibility, will be elabo-
rated on elsewhere.

In conclusion, our ansatz is a promising candidate for
mitigating barren plateaus in quantum algorithm opti-

mization and presents an alternative to parameteriza-
tions that are discrete or local in time. This approach
is of direct relevance for current efforts of implementing
quantum computing, as it provides realistic and efficient
access to optimal quantum algorithm protocols.
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Dunjko, and Thomas E. O’Brien. Performance compari-
son of optimization methods on variational quantum al-
gorithms. Phys. Rev. A, 107:032407, Mar 2023.

[7] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw,
Tobias Haug, Sumner Alperin-Lea, Abhinav Anand,
Matthias Degroote, Hermanni Heimonen, Jakob S.
Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim,
Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy
intermediate-scale quantum algorithms. Rev. Mod.
Phys., 94:015004, Feb 2022.

[8] John Preskill. Quantum Computing in the NISQ era and
beyond. Quantum, 2:79, August 2018.

[9] Jarrod R McClean, Jonathan Romero, Ryan Babbush,
and Alán Aspuru-Guzik. The theory of variational hybrid
quantum-classical algorithms. New Journal of Physics,
18(2):023023, feb 2016.

[10] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes
Pichler, and Mikhail D. Lukin. Quantum approximate
optimization algorithm: Performance, mechanism, and
implementation on near-term devices. Phys. Rev. X,
10:021067, Jun 2020.

[11] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman,
Eleanor G. Rieffel, Davide Venturelli, and Rupak Biswas.
From the quantum approximate optimization algorithm
to a quantum alternating operator ansatz. Algorithms,
12(2), 2019.

[12] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione.
The quest for a quantum neural network. Quantum In-
formation Processing, 13(11):2567–2586, 2014.

[13] Amira Abbas, David Sutter, Christa Zoufal, Aurelien
Lucchi, Alessio Figalli, and Stefan Woerner. The power
of quantum neural networks. Nature Computational Sci-
ence, 1(6):403–409, 2021.

[14] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, To-
bias J. Osborne, Robert Salzmann, Daniel Scheiermann,
and Ramona Wolf. Training deep quantum neural net-
works. Nature Communications, 11(1):808, 2020.

[15] Kunal Sharma, M. Cerezo, Lukasz Cincio, and Patrick J.
Coles. Trainability of dissipative perceptron-based quan-
tum neural networks. Phys. Rev. Lett., 128:180505, May
2022.

[16] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quan-
tum convolutional neural networks. Nature Physics,
15(12):1273–1278, 2019.

[17] Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkoff,
Andrew T. Sornborger, and Patrick J. Coles. Absence
of barren plateaus in quantum convolutional neural net-
works. Phys. Rev. X, 11:041011, Oct 2021.

[18] M Cerezo and Patrick J Coles. Higher order derivatives of
quantum neural networks with barren plateaus. Quantum
Science and Technology, 6(3):035006, jun 2021.

[19] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quan-
tum circuit learning. Phys. Rev. A, 98:032309, Sep 2018.

[20] Sumeet Khatri, Ryan LaRose, Alexander Poremba,
Lukasz Cincio, Andrew T. Sornborger, and Patrick J.
Coles. Quantum-assisted quantum compiling. Quantum,
3:140, May 2019.

[21] M. E. S. Morales, J. D. Biamonte, and Z. Zimborás.
On the universality of the quantum approximate opti-
mization algorithm. Quantum Information Processing,
19(9):291, 2020.

[22] Jacob Biamonte. Universal variational quantum compu-
tation. Phys. Rev. A, 103:L030401, Mar 2021.

[23] Patrick Doria, Tommaso Calarco, and Simone Mon-



8

tangero. Optimal control technique for many-body quan-
tum dynamics. Phys. Rev. Lett., 106:190501, May 2011.

[24] Tommaso Caneva, Tommaso Calarco, and Simone Mon-
tangero. Chopped random-basis quantum optimization.
Phys. Rev. A, 84:022326, Aug 2011.

[25] S. Lloyd and S. Montangero. Information theoretical
analysis of quantum optimal control. Phys. Rev. Lett.,
113:010502, Jul 2014.

[26] Steffen J. Glaser, Ugo Boscain, Tommaso Calarco, Chris-
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Appendix A: Quantum Natural Gradient

In order to estimate the gradient of Lθ, we modify
a single component θj,k by a small amount δ = 10−7.
This results in slightly altered time-evolution operators

U j,kθ = Uθ+δêj,k and values for the objective Lθ+δêj,k .
This gives access to the finite difference estimate

∂Lθ

∂θj,k
≈ Lθ+δêj,k − Lθ

δ
. (A1)

We do this for all possible j and k and write

∇⃗Lθ =
∑

j,k

∂Lθ

∂θj,k
êj,k. (A2)

The quantum natural gradient update ∆θ is then given
by [60]

g(∆θ) = −η∇⃗Lθ (A3)

where η is a dynamical learning rate following the ADAM
algorithm with standard parameters and a step-size of
0.01 [59]. The quantum natural gradient considers the
underlying geometry of the parameterized states using
the Fubini-Study metric g which has the components

g
(j,l)
(i,k) = Re[⟨∂θi,qψ|∂θj,l

⟩ − ⟨∂θi,qψ|ψ⟩ ⟨ψ|∂θj,l
ψ⟩]

≈ Re[⟨r|U†,i,q
θ U j,lθ |r⟩ − ⟨r|U†,i,q

θ Uθ|r⟩ ⟨r|U†
θU

j,l
θ |r⟩].
(A4)

The corresponding operator products are naturally ex-
pressed as longer time-evolution operators of the same
form as Eq. 2 with the given parameters θ as

U†,i,q
θ Uθ = T̂ [e−i

∫ 2
0

∑
j,k(θj,k+δêj,k êi,qΘ(t−1)) sin(πkt)Hjdt],

(A5)

and analogously U†,i,q
θ U j,lθ and U†

θU
j,l
θ . Θ is the

Heaviside-function such that the parameter θi,q is slightly
altered by δ at t = 1. The Fubini-Study metric g with
respect to |r⟩ = Ur |0⟩⊗n can be measured by evaluating

⟨0|⊗nq U†
rU

†,i,q
θ UθUr |0⟩⊗nq . Solving the linear system of

Eq. A3 yields the quantum natural gradient descent step.
For very large experimental setups, determining the cur-
vature with respect to only a select subset of θ can be a
beneficial compromise in terms of time-efficiency.



4.5 Publication VIII: Quantum Gate Optimization for Rydberg
Architectures in the Weak-Coupling Limit
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and L. Mathey — arXiv:2306.08691 (Under review at Phys. Rev. Research)

This collaboration was motivated by the recent advancements of both neutral atom
quantum computing architectures, and quantum machine learning methods. The vari-
ational optimization of quantum algorithms promises resourceful utilization of noisy
intermediate-scale quantum (NISQ) devices. The Rydberg architecture of neutral atoms
displays a promising candidate for utilizing such algorithms. This work is a preprint,
and potentially subject to changes.
In this work, first-authored by Nicolas Heimann, we have considered the optimiza-

tion of implementations of the controlled NOT gate on the native Hamiltonian level of
neutral atoms in tweezer arrays. In this setup, Raman pulses control the single-qubit
actions on a hyperfine sub-space, while a global Rabi pulse controls the transition from
this logical sector into highly excited Rydberg states. These Rydberg states have a large
polarizability and interact via Van-der-Waals terms. We have optimized the Raman and
Rabi pulses under realistic constraints in order to implement a CNOT gate. During this
optimization, we have fixed the interatomic distances and considered a global Rabi pulse
that acts on both atoms identically. We have found that within these restrictions the
optimization works very reliably. In particular, we have highlighted the weak-coupling
limit in which the algorithm converges to high-fidelity solutions consistently, provided
that the interaction does not go below a critical threshold. Further, introducing fluctua-
tions into the interatomic distances in a high-fidelity solution leads to a transformation
error that strongly depends on the mean interatomic distance. For small distances, i.e. in
the Rydberg blockade regime, these transformation errors are small. Our results show
that they are also small in the weak-coupling limit of large distances. However, the
transformation error increases drastically for intermediate distances. Further, we have
considered the general restriction of controlling one class of transformations globally, i.e.
identically for all qubits, and showed that it maintains the computational universality of
the Hamiltonian independent of system size. This result suggests the possibility of NISQ
architectures that work on a restricted set of parameters by design while maintaining
universality.
My contribution to this work included conceptualizing and implementing the numerics

of the quantum simulation and the optimization algorithm together with NH. NH per-
formed and evaluated the numerical studies. I have performed the analytical calculations
on the dynamical Lie algebra under the restriction to either global Rabi or global Raman
pulses and showed the resulting computational universality. NP, TP, KS, AI provided
insight into experimental details that informed the restrictions and energy scales of the
parameterization, and have also contributed to the conception of the project and the
writing of the manuscript. This collaboration was performed under the joint supervision
of CB and LM.

151



Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling Limit
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1Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
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We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
Two low-energy hyperfine states in each of the atoms represent the logical qubit and a Rydberg
state acts as an auxiliary state to induce qubit interaction. Utilizing a hybrid quantum-classical
optimizer, we generate optimal pulse sequences that implement a CNOT gate with high fidelity,
for experimentally realistic parameters and protocols, as well as realistic limitations. We show that
local control of single qubit operations is sufficient for performing quantum computation on a large
array of atoms. We generate optimized strategies that are robust for both the strong-coupling,
blockade regime of the Rydberg states, but also for the weak-coupling limit. Thus, we show that
Rydberg-based quantum information processing in the weak-coupling limit is a desirable approach,
being robust and optimal, with current technology.

I. INTRODUCTION

Rydberg tweezer arrays have evolved into an intrigu-
ing and promising platform for quantum computing [1–3]
and quantum simulation [4, 5]. These devices support the
preparation of scalable, nearly defect-free systems [6–8],
high fidelity single-qubit operations [9] and the imple-
mentation of two-qubit gates via Rydberg states [10–14].
This includes the quantum gate design based on Rydberg
blockade, that corresponds to the widely explored regime
of strong van-der-Waals interaction strength and small
interatomic distances. Furthermore, qubit architectures
based on alkaline-earth and alkaline-earth-like atoms [15],
such as strontium [16, 17] and ytterbium atoms [18–20],
have desirable features such as long-lived decoupled nu-
clear spin states that are suitable to be used as qubit
states, as well as single-photon Rydberg transitions for
implementing fast two-qubit gates. The existence of a
meta-stable clock state further allows for elaborate qubit
schemes allowing novel error correction strategies and
shelving operations for non-destructive mid-circuit read-
out [21]. Further design options include triple magic
trapping of qubit and Rydberg states [22], and local Ryd-
berg control via manipulation of inner shell electrons [23].

Optimization methods, such as quantum machine
learning and quantum optimal control are a powerful and
versatile approach of operating and controlling quantum
dynamics in a way that is optimal or near-optimal accord-
ing to a desired metric. In particular, variational quan-
tum algorithms [24–26] are a class of algorithms which
utilize a generalized quantum circuit with parameterized
gates to transform the synthesis of quantum algorithm
solutions into an optimization problem. This approach
can be extended towards quantum optimal control [27–
31] and has been utilized in different noisy intermediate-
scale quantum devices [32], such as trapped ions [33–36],

∗ nheimann@physnet.uni-hamburg.de

superconducting qubits [37–40] and neutral atoms [41–
45]. Recently, time-optimal gates have been constructed
using quantum optimal control [41] and realized experi-
mentally [46].
In this paper, we demonstrate machine learning as-

sisted design of a controlled-not (CNOT) gate in Ryd-
berg tweezer systems. The logical qubit states are imple-
mented in two hyperfine states of the atoms, which are
controlled via Raman pulses. Additionally we consider a
Rydberg state in each atom, which can be Rabi-driven
from one of the hyperfine states. We demonstrate that
using either a global Rabi protocol, driving the Rydberg
transition of all atoms, and individual Raman protocols,
driving the hyperfine transition of individual atoms, or
a global Raman protocol and individual Rabi protocols,
are sufficient to support universal quantum computing.
We focus on the case of a global Rabi protocol and indi-
vidual Raman protocols. The parameters of the atomic
states and the magnitudes of the Rabi and Raman pro-
tocols, as well as an applied magnetic field, are modeled
after 171Yb atom tweezers. However, we emphasize that
our analysis and results are directly applicable to all Ry-
dberg tweezer systems, as they include realistic condi-
tions of operation of current devices. We consider a fixed
total operation time, and determine fidelity-optimal im-
plementations based on a hybrid quantum-classical opti-
mizer algorithm. We use the van-der-Waals interaction
strength as a variable parameter. We identify the min-
imal van-der-Waals interaction that supports an imple-
mentation of a CNOT gate with high fidelity, and find
that the fidelity saturates beyond that magnitude. We
determine the robustness of our optimal implementations
with respect to fluctuations of the distance between the
atoms. We find that the implementations are not only ro-
bust in the blockade but also in the weak-coupling limit.
We propose this regime to be utilized for robust opti-
mal quantum computing under realistic conditions with
current technology.
This paper is organized as follows. In Sect. II, we

introduce the model and method used throughout the
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computational subspace

Figure 1. Optimization platform. (a) Hybrid quantum-classical optimization scheme. The hyperfine states |0⟩ and |1⟩
act as logical states, forming the computational subspace depicted as red-dashed lines, and can be manipulated individually
by the control Raman protocol A1(t) and the target Raman protocol A2(t), in which qubit 1 is the control qubit and qubit
2 is the target qubit. The Rabi protocol Ω(t) controls transfer between the state |1⟩ and a highly excited Rydberg state |R⟩.
The protocols Ω(t), Aj(t) and B are parameterized by the transformation parameters θ = {θi}. The atoms are coupled via the
van-der-Waals interaction VvdW of the Rydberg states. For a transformation parameter set θ, an initial state ρ0 is propagated
yielding the final state ρθ. This time propagation in the quantum unit is controlled by a classical unit synthesising the loss
function L from ρθ, allowing to optimize the transformation parameters θ. (b) Level diagram and dissipation channels, for our
main example of 171Yb. We consider decay from |R⟩ into |1⟩, as well as into |s⟩ which is otherwise decoupled dynamically, and
is introduced to model population loss. The magnetic field B defines the Zeeman splitting of the two hyperfine states. (c) A
high fidelity protocol implementing the CNOT transformation. The Rabi protocol Ω(t) and the Raman protocols Aj(t) are
constrained by a maximal frequency of Ωmax = Amax = 2π × 10MHz. The phase ϕ(t) of the Rabi protocol Ω(t) is depicted by
the filling color. (d) The transformation U corresponding to the pulse sequence shown in (c), depicted at the time τ = 1µs.
The CNOT operation is clearly visible in the computational subspace, enclosed by the red-dashed square.

manuscript. In Sect. III, we present the performance and
the protocols of the hybrid quantum-classical optimizer
within the weak-coupling limit. In Sect. IV, we show how
spatial fluctuations affect the gate fidelity for a realistic
range of interatomic distances. In Sect. V, we conclude.

II. MODEL

We consider neutral atoms trapped individually in
optical tweezers. For each of the atoms we consider
two long-lived, low-energy states that constitute a qubit,
written as |0⟩ and |1⟩. Additionally we consider a highly
excited Rydberg state |R⟩, and a generic state |s⟩ that
we use to model the decay of the Rydberg state. The
Rydberg state |R⟩ is utilized for its strong van-der-Waals
interaction between two atoms in this state, providing a
non-linearity to design two-qubit gates. We consider the
Hamiltonian

H =
∑

j

Hj +
∑

i,j

V i,jvdW |R⟩i |R⟩j ⟨R|i ⟨R|j , (1)

where

V i,jvdW =
ℏC6

|ri − rj |6
(2)

is the van-der-Waals interaction between the ith and jth
atom at the respective positions ri and rj . C6 is the co-
efficient of the van-der-Waals interaction and depends on

the specific atom species and Rydberg state. We choose
C6 = 1THz · µm6, as inspired by [15, 20], as a typical
magnitude for Rydberg atoms of two-electron atoms. Hj

is the local Hamiltonian of the jth atom. It is

Hj =
ℏ
2




0 Ω(t) 0
Ω∗(t) 0 Aj(t)
0 Aj(t) 0


+

1

2



0 0 0
0 µB 0
0 0 −µB


 ,

(3)
and operates on the states {|R⟩ , |1⟩ , |0⟩}. The two logical
qubit states |0⟩ and |1⟩ are realized as hyperfine states
of the atom, and µB is the Zeeman splitting between
them induced by an external magnetic field B, where 2µ
is the difference of the magnetic moments. The corre-
sponding Zeeman shift of the Rydberg state is normal-
ized to zero in the rotating frame. Aj(t) is the Raman
coupling between the logical qubit states |0⟩j and |1⟩j
of atom j, which derives from a two-photon transition,
and which we consider to be real-valued. This assump-
tion is realized by optimizing the excitation light homo-
geneity to select the phases of each coupling Aj(t) [8]

to zero. Ω(t) = |Ω(t)|e−iϕ(t) is the complex-valued Rabi
coupling between the levels |1⟩j and |R⟩j for all j, i.e. in
a global fashion. As discussed in App. D, we show that
using either a global Rabi coupling and individual Ra-
man couplings, or indvidual Rabi couplings and a global
Raman coupling, is sufficient for universal quantum com-
puting. We illustrate the hybrid quantum-classical op-
timizer in Fig. 1. For a given optimization task, we
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limit the Rabi and Raman coupling by maximal val-
ues of Ωmax and Amax. Here, we focus on the case of
Ωmax = Amax = 2π×10MHz, but note that our approach
equally applies to the general case, i.e. Ωmax ̸= Amax. In
App. C, we show that a value of Ωmax = 2π × 10MHz
is sufficient for our analysis. The maximum gradient of
the Rabi phase ϕ(t) is ∂tϕmax = ±π/100ns, motivated by
typical acousto-optic modulator bandwidths. The mag-
netic field B is assumed to be stationary, but can be cho-
sen arbitrarily within the range Bmin ≤ B ≤ Bmax, where
Bmin = 100G and Bmax = 200G which corresponds to
0.1MHz ≤ µB/h ≤ 0.2MHz.

The finite lifetime 1/γ of the Rydberg state leads to
decoherence. We consider two contributions to the decay,
black body radiation and spontaneous decay [47]. Both
black body radiation and spontaneous decay induce tran-
sitions out of the Rydberg state |R⟩ to states other than
|0⟩, |1⟩, and |R⟩. We model these states with an aux-
iliary state |s⟩. Spontaneous decay also induces transi-
tions from the Rydberg state |R⟩ to the state |1⟩, i.e. the
computational subspace. In Fig. 1 (b) we illustrate this
effective dissipation model. The dynamics of the system
are governed by the Lindblad master equation

ρ̇ = − i

ℏ
[H, ρ] +

∑

ij

D[Lji ]ρ, (4)

where D[L]ρ = LρL† − 1
2{L†L, ρ}, with the Lindblad

operators Lsj =
√
γs |s⟩j ⟨R|j and L1

j =
√
γ1 |1⟩j ⟨R|j

of the jth atom. The total decay rate of the Rydberg
state obeys γ = γs + γ1 where γs = 20γ1 [21]. Here we
choose typical values of the lifetime of the Rydberg state
of 1/γ = 10µs, 100µs and 500µs [15]. We assume magic-
trapping between |1⟩ and |R⟩ and neglect losses arising
from turning off the trap during gate operations as well
as dephasing contributions [18, 48].

Gradient Ascent Pulse Engineering (GRAPE) [49] is a
quantum optimal control technique to construct pulse se-
quences, which determine the dynamical evolution of the
system, such that a desired target transformation U is re-
alized. Note that we employ this method for non-unitary
dynamics, given in Eq. 4. We consider a general Hamil-
tonian Hθ(t) = H0 +

∑
k fk(t; θ)hk + h.c., where fk(t; θ)

are complex-valued functions, θ = {θi} are parameters,
which are to be optimized, and the hk are hermitian op-
erators. The transformation parameters θ correspond to
a transformation which we evaluate for a given state ρ0
by integrating Eq. (4) over the algorithm time τ . We
denote the final state a particular parameter set θ as
ρθ. Throughout this work, we fix the algorithm time to
τ = 1µs. The optimization is performed with respect to
the objective, i.e. the loss function, which in our case we
define as

L = 1− Fθ = 1− 1

4
⟨|Tr(ρ†θPUρ0U†P )|⟩ρ0 , (5)

where Fθ is the fidelity and P =
∑
q |q⟩ ⟨q| is the pro-

jector onto the computational subspace, which is P =

|00⟩ ⟨00|+ |01⟩ ⟨01|+ |10⟩ ⟨10|+ |11⟩ ⟨11|. ⟨·⟩ρ0 is the av-
erage over 32 initial random product states ρ0 =

⊗
i ρi

sampled from the Bloch spheres of the computational
subspaces. The batch size of 32 is an empirical value
that provides efficient optimization. The optimal trans-
formation parameters θopt = argminθL are inferred via
stochastic gradient descent [50]. First, the loss L is eval-
uated given the transformation parameters θ. Next, the
parameters are varied as θi → θi + ϵ by a small amount
ϵ = 10−8, and subsequently the modified loss Li is eval-
uated. The first order gradient is approximated by the
finite difference ∂L/∂θi = (Li−L)/ϵ and the parameters
are then updated as

θi → gi

(
θi + ηi

∂L
∂θi

)
, (6)

where ηi are dynamically adapted learning rates accord-
ing to the ADAM method [51]. The functions gi im-
pose constraints on the protocols. Note that these con-
straints do not affect the gradient. We refer to this step
in the algorithm as a training epoch and illustrate this
in Fig. 1 (a). Optimization occurs by iterating over the
training epochs until convergence.
The central example that we apply this optimization

method to, is the optimal implementation of the CNOT
gate. So the number of atoms Na = 2. However, we em-
phasize that the methodology presented here naturally
applies to atom systems with larger numbers. The notion
of a global Rabi coupling implies that for Na > 2, any
additional atom besides the two involved in the CNOT
operation will also experience the global coupling Ω(t).
This results in a transformation on these other qubits,
which may be undesired. Our optimization method can
also be utilized to learn a coupling Aj>2(t) that imple-
ments the identity operation, in the presence of the fixed
global coupling Ω(t). We emphasize that this is possi-
ble, because even in the case of arbitrarily many neutral
atoms, a single global Rabi coupling is sufficient for uni-
versal quantum computing. For example, the resulting
transformation on the other qubits can be mitigated ef-
ficiently by moving the other atoms sufficiently far apart
such that the van-der-Waals interaction becomes neg-
ligible while additionally applying the control coupling
A1(t). By construction of the CNOT gate, the control
coupling A1(t) will transform the qubit states |0⟩ and |1⟩
into themselves, respectively. This will in general only
result in a relative phase between these states which can
be corrected. Alternatively, for alkaline-earth-like atoms
like 171Yb, the omg qubit architecture [15] can be em-
ployed to realize local two-qubit gates despite the global
coupling Ω(t). Since the Rydberg excitation originates
from the meta-stable 3P0 state it is straight forward to
site-selectively shelve atoms in the ground state qubit
1S0 if the CNOT gate is not desired. We note that uni-
versal quantum computing is equally possible in the case
in which there is a global Raman coupling that is equal
for all atoms, and the Rabi couplings are applied to the
atoms individually. This result is both conceptually in-
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teresting, as well as of experimental relevance, because
it suggests an alternative, minimal set of experimental
control parameters. We expand on this implementation
approach elsewhere. In this work, we focus on the case
of a global Rabi pulse. For details on the computational
universality under these constraints, see App. D.

We optimize the transformation parameters θ, which
parameterize Ω(t) and Aj(t) as stepwise functions which
we linearly interpolate in the dynamics, as well as B
which we consider to be constant during the time evo-
lution such that it is represented by a single parameter.
We refer to these parameterizations as the Rabi protocol
Ω(t), the control Raman protocol A1(t) and the target
Raman protocol A2(t). We give a detailed account of
the parameterization in App. A. We construct the ini-
tial protocols |Ω0(t)| and A0

j (t) to be positive and slowly

varying. The initial phase of the Rabi protocol ϕ0(t) is
generated via a random walk starting at ϕ0(0) = 0, see
App. B.

In Fig. 1 (c) we illustrate the Rabi protocol Ω(t) and
the Raman protocols Aj(t) of a high fidelity CNOT re-
alization. In Fig. 1 (d) we show the transformation cor-
responding to this high fidelity realization. The CNOT
transformation is visible in the computational subspace,
while the transformation on the remaining subspace is
arbitrary.

III. WEAK-COUPLING SOLUTIONS

In this section, we identify optimal implementations of
the CNOT gate in the weak-coupling limit, i.e. based
on dynamical phase accumulation. We consider a large
interatomic distance r ≈ 10µm, of the two atoms. For
this distance, the van-der-Waals interaction is small com-
pared to the maximal Rabi frequency VvdW ≪ ℏΩmax

allowing for occupation of the Rydberg-Rydberg state
|R⟩⊗ |R⟩, where VvdW = V 1,2

vdW(r), based on the van-der-
Waals interaction in Eq. 2, with r = |r1−r2|. Hence, the
magnitude of the nonlinearity is limited by the algorithm
time τ and the interaction strength VvdW. We introduce
the dimensionless gate action

Φ = τVvdW/ℏ, (7)

as the maximally achievable non-linear phase accumula-
tion. Note that as the algorithm time τ = 1µs is fixed,
the gate action Φ is equivalently a measure of the inter-
action strength. In this section we treat the interaction
strength VvdW as an external parameter rather than a
trainable parameter.

In Fig. 2 (a) we show the average of the infidelity
1 − ⟨F ⟩θ over 15 optimized protocols [52] for the tar-
get transformation of the CNOT gate. We show this as a
function of the gate action Φ and the number of training
epochs in the absence of dissipation, i.e. for γ = 0. We
find that for small gate actions Φ <∼ 2π the optimization
algorithm does not generate a high-fidelity protocol. The
fidelity steadily increases with increasing gate action Φ.

We fit the expression 1−⟨F ⟩θ = A(Φ−Φc)
2 in the vicinity

of the critical gate action Φc and find that A = 0.37 and
Φc = 2.018π. For values of 2π < Φ < 3π, the infidelity
converges to approximately 1 − ⟨F ⟩θ ≈ 7 × 10−3, which
indicates sufficient gate action Φ, i.e. it indicates that
sufficient time and interaction is provided to generate a
two-qubit operation. For gate actions of values Φ > 3π
the infidelity decreases further as it converges to approx-
imately 1− ⟨F ⟩θ ≈ 3× 10−3. In this regime, we observe
more efficient optimization behavior that reaches values
of 1− ⟨F ⟩θ < 10−2 after roughly 200 training epochs. In
the case of no interaction, the transformation consists of
single-qubit transformations that cannot implement the
CNOT operation.
In Fig. 2 (b) we show representations of transforma-

tions in the computational subspace for Φ = π/2 and
Φ = 4π. In the case of insufficient interaction strength,
for Φ = π/2, the implemented transformation is visibly
distinct from a CNOT gate. In the case of sufficiently
large interaction strength, for Φ = 4π, a high fidelity im-
plementation of the CNOT gate is visible. In Fig. 2 (c)
we show the infidelity of optimized protocols as a func-
tion of the gate action Φ, with and without dissipation.
We use the dissipative parameters discussed in Sect. II.
For small values of Φ, the gate fidelity is independent
of dissipation, as the Rydberg state is weakly occupied
during the protocol. For increasing values of Φ, the pro-
tocols approach high fidelities with dissipation, but with
an increased infidelity. This increase of the infidelity is
also visible along the learning trajectory for Φ = 4π as
we show in Fig. 2 (d). Here we see that dissipation re-
sults in a lower bound of the infidelity of the optimized
protocol. This lower bound is reduced by minimizing the
occupation time of the Rydberg states |R⟩j . The max-
imal Rabi frequency Ωmax provides a limitation of this
optimization in the case of a fixed algorithm time τ .
We find that the optimization method provides high

fidelity protocols in the presence of experimentally moti-
vated dissipation. Generally, higher fidelities than what
we present can be achieved by increasing the number of
training epochs. In a realistic setup, measurement noise,
laser phase- and intensity noise, and spatial fluctuations
are additional challenges, that can be included in our
optimization approach.

IV. SPATIAL FLUCTUATIONS

To demonstrate the robustness properties of the opti-
mal implementations that we have obtained, we include
fluctuations of the distance between the two Rydberg
atoms. In an experimental realization, these fluctuations
might derive from thermal motion of each of the atoms in
the tweezer potentials, or fluctuations of the tweezer po-
tential itself. We consider spatial distances between the
two atoms of 4µm to 11µm, which interpolates between
the blockade regime and the weak-coupling limit.
We consider a high-fidelity implementation U of the
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Figure 2. Gate optimization in the weak-coupling limit. (a) We display the infidelity 1 − ⟨F ⟩θ as a function of the gate
action Φ and the number of training epochs. The infidelity after 500 training epochs is depicted as red dots. Near Φc ≈ 2π,
we fit the infidelity 1 − ⟨F ⟩θ with the fitting function Φ =

√
(1 − ⟨F ⟩θ)/A + Φc, which we depict as a black solid line, while

the black-dashed lines depict the converged infidelities of 7 × 10−3 for 2π < Φ < 3π and 3 × 10−3 for Φ > 3π. (b) Optimized
gate transformations in the computational subspace. For a gate action of Φ = π/2 the infidelity is 1 − ⟨F ⟩θ = 0.25, indicating
that the gate action is insufficient to create a high fidelity protocol. For Φ = 4π we show a transformation having an infidelity
of 1− ⟨F ⟩θ = 3× 10−4, indicating sufficient gate action. The phases of the matrix elements are encoded on a cyclic color map.
(c-d) Infidelity without dissipation (blue) and with dissipation of values 1/γ = 500µs (red-dashed), 1/γ = 100µs (green-dotted)
and 1/γ = 10µs (grey-dotted). (c) Infidelity after 500 training epochs as a function of the gate action Φ. (d) The infidelity
during training for a fixed gate action Φ = 4π as a function of the number of training epochs. Dissipation results in slower
reduction of the infidelity with the number of training epochs and determines the lower bound of the infidelity that is visible
for large dissipation, i.e. for large γ.

CNOT gate, which has been optimized for a specific
interaction strength VvdW and zero dissipation γ = 0.
We now introduce fluctuations of the atom distance, i.e.
r → r + δr(t), in which the spatial fluctuations δr(t) are
sampled from a normal distribution N(0, σr) at a fre-
quency of 512MHz. Based on a single, stochastic time
series r + δr(t), we now determine the modified, time-
dependent interaction strength

VvdW(t) =
ℏC6

|r + δr(t)|6 . (8)

We use this interaction strength to generate the time-
evolution Ũ(σr), while keeping all other features of the
protocol unchanged, i.e. we use the same Ω(t), Aj(t)
and B protocol. To quantify to what degree the fidelity
is reduced due to the spatial fluctuations, we define the
average transformation error as

ϵ(σr) = 1− 1

4
⟨|Tr(Ũ(σr)

†CNOT)|⟩δr(t),θ. (9)

Here we take the statistical average of the implementa-
tion error over 50 sampled trajectories of δr(t) and 10
high fidelity protocols provided by transformation pa-
rameters θ optimized from different initial values.

In Fig. 3 we show the transformation error ϵ(σr) as
a function of the interatomic distance r for various val-

ues of the standard deviation σr. At large distances of
about r > 9µm, the protocols are only weakly suscepti-
ble to spatial fluctuations. Since the van-der-Waals in-
teraction in Eq. 2 scales with r−6, the gradient falls off
rapidly as the mean distance r increases. Because of this
rapid fall-off, fluctuations of r result in a smaller and
smaller increase of the error ϵ(σr) with increasing r. On
the other hand, in the blockade regime at distances of
r < 5µm, the interaction strength VvdW dominates the
maximal Rabi frequency Ωmax. In this limit, transitions
into the Rydberg-Rydberg state |R⟩1 |R⟩2 are highly sup-
pressed. Therefore, the spatial fluctuations do not induce
large errors in this limit either but are more noticeable
than in the weak-coupling limit, in this example. How-
ever, in the intermediate regime of 5µm < r < 8µm, the
transformation error ϵ(σr) is highly susceptible to spatial
fluctuations. At these interatomic distances, the van-der-
Waals interaction and the the maximal Rabi frequency
are of the same order, i.e. VvdW ∼ ℏΩmax. Hence, the op-
timized protocols are highly susceptible to spatial fluctu-
ations, making these intermediate interatomic distances
undesirable in any realization. The robustness with re-
spect to spatial fluctuations is one of the key features
that makes the Rydberg blockade regime attractive for
quantum computing purposes [10]. However, we empha-
size that in the weak-coupling limit, the system is equally
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Figure 3. Robustness against spatial fluctuations. The
transformation error ϵ(σr) in the presence of spatial fluctua-
tions, for the noise parameter σr = 0.5, 0.4, 0.3, 0.2, 0.1, 0µm
(blue, orange, red, green, cyan, black dashed), and as a func-
tion of the interatomic distance r. For small (< 6µm) and
large (> 8µm) distances the optimal implementations are ro-
bust against spatial fluctuations. For intermediate distances
of r = 6 − 8µm, the system is strongly susceptible to spatial
fluctuations and the relative error grows quickly as a function
of σr. The vertical dashed line depicts the minimum distance
required to implement the CNOT gate, see Fig. 2 for refer-
ence.

robust against spatial fluctuations [53].

V. CONCLUSION

In conclusion, we have demonstrated quantum gate op-
timization of a CNOT gate in a Rydberg architecture
under experimentally motivated constraints, via machine
learning. The two qubit states are two long-lived hyper-
fine states of each of the two atoms. Additionally, we
include a Rydberg state in each atom in our model, as
an auxilliary state to provide a van-der-Waals interaction
to create a two-qubit gate. These atoms are held in opti-
cal tweezers, at fixed distance. The model and parameter
choices are based on 171-Yb, such as the dissipative prop-

erties of the Rydberg state. However, we emphasize that
our approach is universally applicable to Rydberg archi-
tectures. We assume that the long-lived hyperfine states
can be driven by Raman protocols, and the transition
from one of the hyperfine states to the Rydberg state
by a single global Rabi protocol. We show that utilizing
either individual Raman protocols for each atom and a
global Rabi protocol for both atoms, or individual Rabi
protocols for each atom and a global Raman protocol for
both atoms, is sufficient for universal quantum comput-
ing. Focusing on the case of individual Raman protocols
for each atom and a global Rabi protocol, we utilize a
hybrid quantum-classical optimization approach, based
on gradient ascent pulse engineering (GRAPE), to de-
termine protocols that implement a high fidelity CNOT
gate. Keeping the total algorithm time of the proto-
cols fixed at 1µs, we scan the optimal implementations
as a function of the interaction strength. Finally, we
map out the robustness of the optimal protocols against
spatial fluctuations of the interatomic distance. We find
that both for the weak-coupling limit and for the block-
ade regime, the implementations are robust. However,
the intermediate regime, at which the maximal Rabi fre-
quency is comparable to the van-der-Waals interaction,
is not robust and thus undesirable. Additional imper-
fections, such as doppler shifts or imperfections in the
laser intensities, will be explored elsewhere. We also note
that the weak-coupling regime enables gate implementa-
tions in tweezer arrays with strongly suppressed next-
nearest interactions, resulting in more straight-forward
implementations. With these results, we have demon-
strated the immediate and significant impact that hybrid
quantum-classical optimization, or machine learning in-
spired methods in general, have on quantum gate design.
Going forward, this suggests systematic, large-scale, and
in-depth utilization of quantum machine learning meth-
ods.
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Appendix A: Protocols and parameterization

In the following we detail the parameterization of
the protocols in our optimization method. We denote
the concatenated parameters of the protocol as θ =
{θΩ, θ∂ϕ, θA1

, θA2
, θB}. We represent the protocols |Ω(t)|

and Aj(t) in a step-wise discretized manner such that
the elements of ϑ ∈ θΩ, θAj

represent the amplitudes of
respective protocols at m discrete points in time. We lin-
early interpolate these step-wise representations ϑ ∈ Rm
on the temporal lattice with the step-size ∆t = τ/(m−1).
The interpolation is

s(ϑ, t) = (1− pi)ϑi + piϑi+1, (A1)

where i = ⌊t/∆t⌋ is the latest index corresponding to
the time t and pi = t/∆t − i is an interpolation weight.
The amplitudes of the Rabi protocol |Ω(t)|, the control
Raman protocol A1(t) and the target Raman protocol
A2(t) are then given by

|Ω(t)| = s(θΩ, t) (A2)

A1(t) = s(θA1
, t) (A3)

A2(t) = s(θA2
, t). (A4)

The phase ϕ(t) of the Rabi protocol Ω(t) is given by the
stepwise differential parameterization

ϕ(t) = s(θϕ, t), (A5)

where θϕ,i = θϕ,i−1 + θ∂ϕ,i and θϕ,0 = θ∂ϕ,0. This
construction creates slowly varying phase protocols and
avoids sudden phase-jumps. The magnetic field is given
by the constant parameterization

B = θB . (A6)

In the presented analysis we consider a total number of
4 × 64 + 1 parameters, that is θ ∈ R257. Further, as
mentioned in the main text, we constrain the parameters
in between minimal and maximal values. The constraints
gi(θi) in Eq. 6 are defined as follows

gΩ(θΩ,i) = max(0,min(Ωmax, θΩ,i)) (A7)

gA1
(θA1,i) = max(0,min(Amax, θA1,i)) (A8)

gA2(θA2,i) = max(0,min(Amax, θA2,i)) (A9)

g∂ϕ(θ∂tϕ,i) = max(∂tϕmin,min(∂tϕmax, θ∂ϕ,i)) (A10)

gB(θB) = max(Bmin,min(Bmax, θB)), (A11)

with Ωmax = 2π × 10MHz, Amax = 2π × 10MHz,
∂tϕmin = −π/100ns, ∂ϕmin = +π/100ns, Bmin = 100G
and Bmax = 200G.

Appendix B: Protocol initialization

We construct the initial parameters such that the re-
sulting protocols vary slowly, start and end at zero, and
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Figure 4. Protocol initialization. The initial Rabi proto-
col Ω(t) of algorithm time τ = 1µs. The amplitude of a sam-
ple initial Rabi protocol |Ω0(t)| (blue) contains 16 sinosiodal
modes and has a maximal Rabi frequency of Ωmax. The ini-
tial Raman protocols A0

1(t) and A0
2(t) are initialized by the

same strategy. The phase of the initial Rabi protocol ϕ0(t)
(red-dashed) is given by a random walk starting at ϕ0(0) = 0.

are fairly well-behaved. We first consider a distribution
of initial parameterizations

S =

{∑

k

ϕk sin(kπt/τ)

}
, (B1)

where ϕk are random numbers from the uniform distribu-
tions [−1/

√
k,+1/

√
k]. We introduce this dependence on

k to emphasize slow modes. We initialize the transforma-
tion parameters θΩ, θA1

and θA2
such that the following

initial protocols are realized

|Ω0(t)| = Ωinit min(1, s2Ω(t)) (B2)

A0
1(t) = Ainit min(1, s2A1

(t)) (B3)

A0
2(t) = Ainit min(1, s2A2

(t)), (B4)

where we sample sΩ, sA1
and sA2

from the distribution S,
Ωinit is the maximal frequency of the initial Rabi protocol
and Ainit is the maximal frequency of the initial Raman
protocols. Through out this work we scale the initial
protocols by the corresponding maximal frequencies, i.e.
Ωinit = Ωmax and Ainit = Amax. The parameters of the
phase are initialized as θ0∂ϕ,0 = 0 and θ0∂ϕ,i is uniformly

sampled from [−δ, δ]. where δ ∈ R+. Here we choose
δ = 1.5. Fig. 4 shows an example of a random initial
Rabi protocol Ω0(t). The initial magnetic field B0 is
sampled from the distribution [Bmin, Bmax].

Appendix C: Maximal Rabi frequency

The maximal Rabi frequency Ωmax provides a limita-
tion on the minimally achievable infidelity 1 − F of the
gate protocol. If Ωmax is not sufficiently large to complete
a Rabi oscillation of one of the states |1⟩1 or |1⟩2 to one
of the Rydberg states |R⟩1 or |R⟩2 during the protocol
of algorithm time τ , then no protocols with satisfactory
fidelity can be constructed. In Fig. 5 we show the average

0MHz 5MHz 10MHz

Ωmax/2π

10−2

10−1

1
−
〈F
〉 θ

Figure 5. Maximal Rabi frequency. High fidelity protocols
are realized for Ωmax = 2π × 10MHz, with a gate action of
Φ = 4π after 400 training epochs. Lower infidelities can be
achieved with more training epochs.

infidelity 1 − ⟨F ⟩θ over several optimized protocols as a
function of the Rabi frequency Ωmax for a fixed maximal
Raman frequency of Amax = 2π × 10MHz and a gate ac-
tion of Φ = 4π. For small values of the maximal Rabi
frequency Ωmax < 2π × 2MHz, the infidelity displays a
plateau of large values of roughly 1 − ⟨F ⟩θ ≈ 0.5. With
increasing Ωmax > 2π × 2MHz, the infidelity decreases.
For Ωmax > 2π × 8MHz, the infidelity begins to satu-
rate at values 1− ⟨F ⟩θ < 10−2. Note that the protocols
are not necessarily fully converged and lower infidelities
can be achieved with more training epochs. Therefore, a
maximal Rabi frequency Ωmax = 2π×10MHz is sufficient
for our analysis.

Appendix D: Universal Quantum Computing with
Global Pulses

In the following we demonstrate that a single global
Rabi coupling for Na neutral atoms is capable of univer-
sal quantum computing. We also show this for the case of
a single global Raman coupling and invidiual Rabi cou-
plings. We consider Na three-level systems consisting of
the states {|R⟩ , |1⟩ , |0⟩}, and the Hamiltonian

H = µB

n∑

j=1

σjz+

n∑

j=1

Aj(t)σ
j
x+

n∑

j=1

(Ωjx(t)τ
j
x+Ωjy(t)τ

j
y )+HI ,

(D1)
where

σjx =



0 0 0
0 0 1
0 1 0


 σjy =



0 0 0
0 0 −i
0 i 0


 σjz =



0 0 0
0 1 0
0 0 −1


 ,

(D2)

act on the subspace {|1⟩ , |0⟩} of the jth system.

τ jx =



0 1 0
1 0 0
0 0 0


 τ jy =



0 −i 0
i 0 0
0 0 0


 τ jz =



1 0 0
0 −1 0
0 0 0


 ,

(D3)
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act on the subspace {|R⟩ , |1⟩} of the jth atom. Anal-
ogously, we also define the matrices on the subspace
{|R⟩ , |0⟩} of the jth atom as

νjx =



0 0 1
0 0 0
1 0 0


 νjy =



0 0 −i
0 0 0
i 0 0


 . (D4)

The interaction term is

HI =
∑

⟨i,j⟩

C6

(ri(t)− rj(t))6
|R⟩i ⊗ |R⟩j ⟨R|i ⊗ ⟨R|j , (D5)

where rj(t) is the real-space position of the jth atom. µB
is the Zeeman splitting due to a constant and global mag-
netic field B. Aj(t) is the amplitude of the jth Raman
coupling of the jth atom that control the transition be-
tween |1⟩j and |0⟩j . Ωjx,y(t) are the Rabi coupling compo-
nents of the jth atom that control the transition between
|1⟩j and |R⟩j . For convenience we denote the global

sums of local operators as Sz =
∑n
j=1 σ

j
z, Tx =

∑n
j=1 τ

j
x,

Ty =
∑n
j=1 τ

j
y and V =

∑
i,j Vi,j . We consider the base

set of generators contained in Eq. D1,

H′
0 = {σ1

x, . . . , σ
n
x , Sz, τ

1
x , . . . , τ

n
x , τ

1
y , . . . , τ

n
y , V }. (D6)

We consider that B > 0 is always on, which makes con-
trolling individual local rotations more difficult. We con-
sider the rotating frame given by U = exp{i 12µBtSz},
such that we reduce the base set of generators to

H′′
0 = {σ1

x, . . . , σ
n
x , τ

1
x , . . . , τ

n
x , τ

1
y , . . . , τ

n
y , V }, (D7)

with all generators now being controllable individually
from each other.

First, we consider the case in which Ωjx,y = Ωx,y, such

that the local operators τ ix,y are no longer individually
controllable. The base set of generators becomes

H0 = {σ1
x, . . . , σ

n
x , Tx, Ty, V }. (D8)

From these base generators we find the commutators

[σix, Tx] =

n∑

j=1

[σix, τ
j
x] = −iνiy (D9)

[νiy, σ
i
x] = −iτ ix (D10)

[νiy, Ty] =
n∑

j=1

[νiy, τ
j
y ] = −iσiy. (D11)

Eqs. D9 and D10 can be repeated analogously to obtain
νix and τ iy. This means that despite the global Rabi term
that determines the transition between |1⟩j and |R⟩j for
all 1 ≤ j ≤ Na, the local generators τ ix,y are part of the
dynamical Lie algebra and therefore controllable individ-
ually. From Eq. D11 we see that that σiy is accessible, and

therefore σiz is accessible as well. This allows full access
to local single-qubit operations. Note that this means

the magnetic field B was not necessary for computational
purposes to begin with. However, in experimental setups
it serves the purpose of providing non-degenerate levels
|0⟩ and |1⟩ at all times. Since the transformation U into
the comoving frame does not affect the interaction term,
i.e. UV U† = V , we find that the base set of generators in
Eq. D8 is computationally universal on the logical space

⊗nj=1{|0⟩j , |1⟩j}. We demonstrate this by constructing

specific examples of rotations around τ ix, τy, σ
i
y and σiz

by an arbitrary angle α as

eiατ
i
x = ei

3π
2 σ

i
xei

3π
2 Txeiασ

i
xei

π
2 Txei

π
2 σ

i
x (D12)

eiατ
i
y = ei

3π
2 σ

i
xei

3π
2 Tyeiασ

i
xei

π
2 Tyei

π
2 σ

i
x (D13)

eiασ
i
y = ei

3π
2 σ

i
xei

3π
2 Tyei

3π
2 Txeiασ

i
xei

π
2 Txei

π
2 Tyei

π
2 σ

i
x

(D14)

eiασ
i
z = ei

7π
4 σ

i
xei

3π
2 Tyei

3π
2 Txeiασ

i
xei

π
2 Txei

π
2 Tyei

π
4 σ

i
x .
(D15)

From these rotations, entanglement between qubits can
be achieved utilizing V in the canonical manner of Ryd-
berg architectures.
Second, we consider the case of individual Rabi cou-

plings Ωjx,y(t), but a single global Raman coupling
Aj(t) = A(t). Analogously to the previous case, the base
set of generators then becomes

H0 = {Sx, τ1x , . . . , τnx , τ1y , . . . , τny , V }. (D16)

The argument follows analogously and we find that

[Sx, τ
j
x] =

n∑

i=1

[σix, τ
j
x] = −iνjy (D17)

[νiy, τ
i
x] = iσix (D18)

[νiy, τ
i
y] = −iσiy, (D19)

and therefore arbitrary single-qubit rotations can be con-
structed as

eiασ
i
x = ei

3π
2 τ

i
xei

3π
2 Sxeiατ

i
xei

π
2 Sxei

π
2 τ

i
x (D20)

eiασ
i
y = ei

3π
2 τ

i
xei

3π
2 Sxeiατ

i
yei

π
2 Sxei

π
2 τ

i
x (D21)

eiασ
i
z = ei

3π
2 τ

i
xei

3π
2 Sxei

π
4 τ

i
yeiατ

i
xei

7π
4 τ

i
yei

π
2 Sxei

π
2 τ

i
x , (D22)

despite only global control over Sx. It again follows that
the dynamical Lie algebra is capable of all necessary oper-
ations for universal quantum computing. Note in partic-
ular that the generator Sz associated with the magnetic
field was again not necessary for constructing arbitrary
single-qubit rotations.
In this case of global Raman coupling, the Rabi cou-

plings can be performed individually which means that
there is no undesirable population in Rydberg states as
overhead of unrelated transformations. The overhead
transformation occurs only on the local σx which is easily
circumvented. We can perform a CNOT gate on the 1st
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and 2nd qubit while in the Rydberg blockade radius as

CNOT = ei
π
2 τ

2
xReiπτ

1
xRei

π
2 τ

2
x (D23)

R = ei
π
2 Sxei

π
4 τ

2
xe
i π√

8
(τ2

x+τ
2
y )ei

π
4 τ

2
xei

3π
2 Sx , (D24)

in the presence of any amount of other qubits which by
construction also experience the rotations generated by
Sx. This transformation will in particular act on all these
additional qubits as the identity, as desired. Finally, we
note that the controlled-Y gate is implemented more nat-

urally in this case as

C(Y) = e−i
π
2 τ

2
xe−i

π
4 Sxeiπτ

1
xei

π
4 Sxei

π
2 τ

2
x . (D25)

Here it is implied that every transformation also con-
tains the presence of the interaction term V which is
large enough to consider the system to be in the Rydberg
blockade regime. We emphasize that the Rydberg block-
ade is not necessary for the arguments we make about
universal quantum computing. We only consider the Ry-
dberg blockade for the analytically constructed examples
in Eqs. D23, D24 and D25.



5 Particle-Hole Symmetry in Superfluids

Superfluidity is the property of frictionless flow, found in ordered phases of ultracold
and weakly interacting quantum systems. It is present in Bose-Einstein condensates
(BECs) and also Bardeen-Cooper-Schrieffer (BCS) systems of weakly interacting neutral
fermions. In the Ginzburg-Landau [368] theory of phase transitions, the order parameter
of superfluids at low temperatures is described with a complex-valued scalar field. This
order parameter characterizes the second-order phase transition of the particle density
of BECs or the pairing-density in BCS theory. The low-energy physics of the order
parameter that are captured within such mean-field theories are of immediate relevance
for quantum simulators, and atomtronics.

Throughout this chapter, I provide an outline of the effective mean field theory that
describes the dynamics of the order parameter of such systems. A defining feature of this
theory is that it interpolates between the presence and absence of particle-hole symmetry,
which recovers the BEC and BCS limits, respectively. I present the Lagrange density
from which I recover the derivation of the equations of motion, the Noether charge, the
linearized excitations around the equilibrium state, and the spectra in the presence of a
confining potential. This acts as brief introductory material for Publication IX, where we
have used this approach to study the dynamics of defects in two-dimensional superfluids,
and how these are affected by the presence or absence of particle-hole symmetry. We
have used this theory to capture dynamics of the BEC-BCS crossover in two-dimensional
fermionic fluids in a yet unpublished collaboration. More in-depth literature is available
elsewhere [369, 370]. This chapter goes along the lines of the review article by Pekker
and Varma [369]. Further derivations within this chapter were a collaborative effort with
my colleague Jim Skulte.

5.1 Mixed-Symmetry Superfluid Lagrange Density

We start from the Lagrange density1 of a complex scalar field Ψ(r⃗, t).

L = −iK1

2
(Ψ∗(r⃗, t)∂tΨ(r⃗, t)−Ψ(r⃗, t)∂tΨ

∗(r⃗, t))−K2|∂tΨ(r⃗, t)|2

− r|Ψ(r⃗, t)|2 + U

2
|Ψ(r⃗, t)|4 + ξ2|∇Ψ(r⃗, r)|2, (5.1)

where r is a bias that is reminiscent of a chemical potential and U is the density-
density coupling strength that introduces non-linearity. ξ is the characteristic length

1This theory could be extended to a charged superfluid, i.e. a superconductor, by introducing coupling
to the electromagnetic vector potential, which introduces additional local gauge freedom.
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scale of the kinetic term. The three corresponding terms are provided by the Ginzburg-
Landau theory of phase transitions. The remaining terms contain K1 and K2, which
are coefficients that directly determine the character of the emergent dynamics. In
particular, they determine whether the action is particle-hole symmetric and whether
the equation of motion is Lorentz-invariant, i.e. relativistic. The operation of exchanging
the field Ψ(r⃗, t) with its complex conjugate reflects the transformation of particles and
holes into each other in the fermionic BCS Hamiltonian. Imposing the corresponding
symmetry requires a Lagrange density that is invariant under this transformation which
is reflected in the construction of the dynamical term proportional to K2. The K1-term
is the only part of Eq. 5.1 that is not symmetric under this transformation. Invoking
the Euler-Lagrange equation yields the equation of motion2

−K2∂
2
tΨ(r⃗, t) + iK1∂tΨ(r⃗, t) = −ξ2∇2Ψ(r⃗, t)− rΨ(r⃗, t) + U |Ψ(r⃗, t)|2Ψ(r⃗, t). (5.2)

Setting either K1 = 0 or K2 = 0 recovers the non-linear Klein-Gordon equation or the
time-dependent Gross-Pitaevskii equation, respectively.
Meanwhile, the canonical conjugate Π(r⃗, t) of the field Ψ(r⃗, t) is

Π(r⃗, t) =
∂L
∂Ψ̇

= −iK1

2
Ψ∗(r⃗, t)−K2∂tΨ

∗(r⃗, t). (5.3)

In the Gross-Pitaevskii limit, i.e. K2 = 0, this relation identifies the field Ψ(r⃗, t) and its
complex conjugate Ψ∗(r⃗, t) as canonical conjugates. In that case, the dynamics are fully
captured with Ψ(r⃗, t) alone which is a manifestation of the first-order time-derivative in
the equation of motion and the absence of particle-hole symmetry. In the Klein-Gordon
limit, i.e. K1 = 0, the canonical conjugate is identified with the time-derivative ∂tΨ

∗(r⃗, t)
and the dynamics are fully captured by Ψ and Ψ̇, as a consequence of the second-order
time-derivative in the equation of motion.
The Lagrange density in Eq. 5.1 displays a U(1)-symmetry that is characterized by

the infinitesimal transformation

Ψ → Ψ′ = Ψeiϵ = Ψ+ iϵΨ+O(ϵ2) (5.4)

Ψ∗ → Ψ′∗ = Ψ∗e−iϵ = Ψ∗ − iϵΨ∗ +O(ϵ2). (5.5)

By Noether’s theorem, this continuous symmetry leads to the conserved current

jµ = i
∂L

∂(∂µΨ)
Ψ− i

∂L
∂(∂µΨ∗)

Ψ∗, (5.6)

which obeys the continuity equation

∂µj
µ = 0. (5.7)

From this follows the corresponding conserved Noether charge

J = i

∫

Rn

(ΠΨ−Π∗Ψ∗)dr (5.8)

=

∫

Rn

K1|Ψ|2 + iK2(Ψ
∗∂tΨ−Ψ∂tΨ

∗)dr, (5.9)

2There is also an analogous equation of motion for Ψ∗(r⃗, t).

164



which in the case of K2 = 0 describes the conservation of the integrated density, i.e.
the total number of particles. In the case of K1 = 0, this quantity describes the differ-
ence between the total number of particles and holes. In general, the weighted sum of
the number of particles and the difference of particles and holes is conserved, such that
K1 and K2 determine how many particles may be lifted from the system by creating a
hole. This circumstance has profound consequences on the available excitations in the
system. In the case of K2 > 0, in which the total number of particles is not conserved,
the order parameter hosts global amplitude oscillations. This type of amplitude mode
is sometimes identified with the Higgs boson in particle physics, which emerges anal-
ogously as excitations in the displacement from a non-zero ground state in the same
spontaneously broken continuous symmetry.3 With decreasing K2, this degree of free-
dom is continuously lifted as the constraint on the number of particles is imposed to
an increasing degree, effectively making the system more stiff with respect to amplitude
modes. Calculating the low-energy excitations around the equilibrium quantifies this
phenomenon.

5.2 Low-Energy Excitations

The equilibrium solution of this theory is obtained by setting the time-derivatives to
zero, as well as assuming homogeneity, i.e. a spatially constant Ψ(r⃗, t). Independent of
K1 and K2, this gives

0 = −rΨ(r⃗, t) + U |Ψ(r⃗, t)|2Ψ(r⃗, t) (5.10)

which is solved by4

|Ψ(r⃗, t)| = Ψ0 =

√
r

U
, (5.11)

for r/U > 0. The competing terms lead to an energy landscape commonly referred to
as the sombrero-potential, due to its visual similarity to the popular hat, concerning the
rim in particular. The ground state manifold Φ0 = {Ψ0e

iϕ0 : ϕ0 ∈ [0, 2π)} is then located
precisely within the circular minimum of the potential. The linear dynamics around one
such equilibrium position are found by introducing a small displacement δΨ(r⃗, t) in the
amplitude and a small displacement δϕ(r⃗, t) in the complex phase such that

Ψ(r⃗, t) = (Ψ0 + δΨ(r⃗, t))eiδϕ(r⃗,t) (5.12)

= Ψ0 + iδϕ(r⃗, t)Ψ0 + δΨ(r⃗, t) +O(δ2). (5.13)

Reinserting this into Eq. 5.2 and separating the real and imaginary parts provides the
linearized equations of motion

−K2∂
2
t δΨ(r⃗, t) +K1∂tΨ0δϕ(r⃗, t) = −ξ2∇2δΨ(r⃗, t) + 2rδΨ(r⃗, t) (5.14)

−K2∂
2
tΨ0δϕ(r⃗, t)−K1∂tδΨ(r⃗, t) = −ξ2Ψ0∇2δϕ(r⃗, t). (5.15)

3The Anderson-Higgs mechanism that emerges as a consequence of local gauge-freedom in particle
physics, also emerges in superconductors, but is absent in neutral particle-hole symmetric superfluids.

4Due to the U(1)-symmetry, the choice of the global phase of Ψ0e
iϕ0 is arbitrary, so I set it to ϕ0 = 0.
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Figure 5.1: The low-energy excitations in the sombrero-potential of the effective field
Ψ = Ψr + iΨi. Ψ0 denotes a symmetry-broken ground state. The amplitude
mode is depicted in red and displays a low energy excitation in the radial
displacement. The Goldstone mode is depicted in blue and consists of dis-
placement along the manifold of ground states.

Fourier transforming these equations gives the momentum- and frequency-representation

(ξ2k2 + 2r −K2ω
2)δΨ(k⃗, ω) + iK1ωΨ0δϕ(k⃗, ω) = 0 (5.16)

(ξ2k2 −K2ω
2)Ψ0δϕ(k⃗, ω)− iK1ωδΨ(k⃗, ω) = 0, (5.17)

which couples the modes such that

(
ξ2k2 + 2r −K2ω

2 iK1ω
−iK1ω ξ2k2 −K2ω

2

)(
δΨ(k⃗, ω)

Ψ0δϕ(k⃗, ω)

)
= 0. (5.18)

The determinant of the matrix in this expression vanishes for

ωa,ϕ =
1√
2K2

2

√
K2

1 + 2K2 (ξ2k2 + r)±
√
K4

1 + 4K2
1K2 (ξ2k2 + r) + 4K2

2r
2, (5.19)

where ωa denotes the amplitude mode that we associate with the positive sign, and ωϕ is
the phase mode that we associate with the negative sign. Within the sombrero-potential,
the phase mode, or Goldstone mode, ωϕ describes the angular motion along the equipo-
tential rim, while the amplitude mode ωa describes orthogonal radial displacement. As
previously remarked, a global excitation along this radial direction, i.e. the amplitude
mode, does not conserve the total number of particles and is therefore lifted from the
system by divergence in the limit of K2 → 0. I show the radial and phase displacements
within the sombrero-potential in Fig. 5.1
In the limit of K1 → 0, the expressions for the modes in Eq. 5.19 reduce to

ωa =

√
ξ2k2 + 2r

K2
ωϕ =

ξ|k|√
K2

. (5.20)
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The Goldstone mode is linear and gapless, while the amplitude mode displays a gap of
size

√
2r/K2. The emergence of the gapless linear mode is a consequence of breaking

the global continuous U(1) symmetry, as covered by the Goldstone theorem.
For the limit of K2 → 0, this calculation requires considering the squares ω2

a,ϕ. ω2
a

diverges for K2 → 0, such that the amplitude mode is effectively lifted from the system,
as previously mentioned.5 This is a manifestation of the increasing density stiffness with
a loss of particle-hole symmetry. The limit of ω2

ϕ is inconclusive as the denominator and
the enumerator both approach zero. Invoking L’Hospitâl’s rule twice yields

lim
K2→0

ω2
ϕ = lim

K2→0

K4
1q

2
(
ξ2k2 + 2r

)
(
K4

1 + 4K2
1K2 (ξ2k2 + r) + 4K2

2r
2
)3/2 =

ξ4k4 + 2rξ2k2

K2
1

, (5.21)

which gives the solution to the Goldstone mode

ωϕ =

√
ξ4k4 + 2rξ2k2

K1
. (5.22)

This mode is still gapless and linear for small momenta. By inserting the physical
parameters that produce the physics of a BEC, i.e. ξ = ℏ√

2m
, r = µ and K1 = ℏ,

Eq. 5.22 correctly recovers the well-known Bogoliubov quasi-particle dispersion relation
of BECs.
The expression for the amplitude mode ωa in the limit of vanishing momenta k de-

scribes the onset of the amplitude mode excitation spectrum under consideration of
mixed values of K1 and K2. It is

6

ωa|k→0 =

√
K2

1 + 2K2r

K2
. (5.23)

5.3 Spectra in Confining Potentials

It is also possible to introduce an additional external potential into the theory. Revisiting
Eq. 5.2 in the absence of the density-density interaction, while including an external
potential V (r⃗) gives

−K2∂
2
tΨ(r⃗, t) + iK1∂tΨ(r⃗, t) = − ℏ2

2m
∇2Ψ(r⃗, t) + (V (r⃗)− r)Ψ(r⃗, t) (5.24)

We assume this potential leads to a set of bound eigenstates Ψ(r⃗, t) = Ψne
−iωnt with

eigenenergies En. We do not assume any relation between frequency and energy in this
model and insert such an eigenstate in order to write the Fourier representation

K2ω
2
nΨn +K1ωnΨn = EnΨn, (5.25)

5Alternatively, one could set K2 = 0 in Eq. 5.18 and find that the solution corresponding to ωa does
not exist in the first place.

6The most observant readers might notice the discrepancy between Eq. 5.23 and the corresponding
expression in the cited review article by Pekker and Varma. Jim Skulte noticed this discrepancy
before I did.
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which gives the positive frequency solution

ωn =

√
K2

1 + 4EnK2 −K1

2K2
(5.26)

such that the difference of frequencies of arbitrary eigenstates is

ωn − ωm =

√
K2

1 + 4EnK2 −
√
K2

1 + 4EmK2

2K2
. (5.27)

In the limit of K2 → 0, Eq. 5.24 is just the Schrödinger equation, and it is

ωn − ωm =
En − Em

K1
, (5.28)

which is the well-known energy-frequency relation when K1 = ℏ. In the limit of K1 → 0
it is

ωn − ωm =

√
En

K2
−
√
Em

K2
. (5.29)

As a consequence, the spectrum of this system changes as a function of K1 and K2.
In a yet unpublished collaboration we have used this model as a starting point for an
effective field theory describing an experimental realization of two-dimensional BEC-BCS
crossover physics.
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5.4 Publication IX: Vortex and soliton dynamics in
particle-hole symmetric superfluids

J. Skulte, L. Broers, J. G. Cosme and L. Mathey — Phys. Rev. Research 3,
043109 (2021)

This work was motivated by the prospect of investigating non-linear dynamics, turbu-
lence, and chaotic behavior in superfluids. These phenomena are rooted in the formation
of the dynamics of defects such as vortices and solitons. The differences in the dynamical
behavior of such defects in particle-hole (PH) symmetric superfluids to those without
such a symmetry are crucial for understanding the formation and characteristics of tur-
bulences in different types of superfluids.
In this work, first-authored by Jim Skulte, we have analyzed the mean-field dynamics

of both PH symmetric and asymmetric superfluids in two dimensions inside a radial box
potential. We have developed a numerical simulation of an effective field theory that
is capable of capturing the dynamics of defects. We have found that vortex-anti-vortex
pairs behave very differently in PH symmetric superfluids compared to PH asymmetric
ones. In PH asymmetric superfluids, the vortex-anti-vortex pairs move in parallel as they
accelerate each other due to the Magnus forces that they impart on each other in the
presence of their respective phase-windings. In PH symmetric superfluids, these pairs
accelerate directly towards each other and annihilate. We have attributed this to the lack
of a Magnus force in balanced PH symmetric superfluids. We have also demonstrated
this lack of a Magnus force analytically. These vortex dynamics play an important role
for the decay of solitons. In PH asymmetric superfluids, solitons will in the presence of
noise start to seed vortex-anti-vortex pairs along their axis. These pairs start to move in
different directions, depending on the exact location of their emergence. Consequently,
the soliton breaks apart in a process that is referred to as snaking, due to the writhing
motion of the vortex-anti-vortex pairs along the soliton. In PH symmetric superfluids,
there is also a formation of vortex-anti-vortex pairs along the soliton. However, due to
the lack of a Magnus force there is no snaking, but rather the vortices and anti-vortices
annihilate as they attract each other along the soliton axis. We have shown that the PH
symmetry plays a crucial role in the dynamics of defects which are the principal building
blocks of turbulent dynamics in superfluids.
My contribution to this work consisted of conceptualizing and creating large portions

of the numerical method, together with JS. JS performed the analytical calculations, as
well as the numerical studies, and wrote most of the manuscript. JC and I assisted JS
in analyzing the numerical results and in writing the manuscript. This work was done
under the supervision of LM.
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Vortex and soliton dynamics in particle-hole-symmetric superfluids

Jim Skulte ,1,2 Lukas Broers ,1 Jayson G. Cosme ,3 and Ludwig Mathey1,2

1Zentrum für Optische Quantentechnologien and Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
2The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany

3National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines
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We propose to induce topological defects in particle-hole-symmetric superfluids, with the prime example
of the Bardeen-Cooper-Schrieffer state of ultracold atoms, and detect their time evolution and decay. We
demonstrate that the time evolution is qualitatively distinct for particle-hole-symmetric superfluids and point
out that the dynamics of topological defects is strongly modified in particle-hole-symmetric fluids. We obtain
results for different charges and compare them with the standard Gross-Pitaevskii prediction for Bose-Einstein
condensates. We highlight the observable signatures of the particle-hole symmetry in the dynamics of decaying
solitons and subsequent vortices.

DOI: 10.1103/PhysRevResearch.3.043109

I. INTRODUCTION

The presence or absence of particle-hole symmetry in
a physical system is a fundamental property pervading its
dynamical properties. Particle-hole symmetry is realized in
Lorentz invariant theories such as the standard model of
elementary physics [1], low-energy effective models close
to quantum criticality [2], and the famous Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity [3,4].1 We note
that the order parameter dynamics of high-Tc superconduc-
tors can be described by an effective particle-hole-symmetric
theory, which allows for exploring the dynamics of the
Higgs/amplitude mode [5–8]. Similarly, in ultracold neutral
atoms the emergence of an effective particle-hole symmetry
has been predicted theoretically [9,10] and confirmed experi-
mentally [11,12]. Recently, amplitude oscillations of the order
parameter in the Bose-Einstein condensate (BEC) to BCS
crossover have been reported [13], suggesting the presence of
approximate particle-hole symmetry.

The dynamics of topological defects, such as solitons and
quantized vortices, derives from and exemplifies the proper-
ties of the underlying quantum fluid. The stability of solitons
has been discussed extensively for the nonlinear Schrödinger
equation or Gross-Pitaevskii (GP) equation [14–18]. Za-
kharov and Rubenchik coined the term snaking to refer to
the characteristic bending of solitons prior to their decay.

1Due to the close connection between relativistic Lorentz in-
variance and particle-hole symmetry, models that are particle-hole
symmetric are also sometimes referred to as relativistic models.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Snaking is a manifestation of the Magnus force. This has
been discussed for neutral bosonic systems within the GP
equation [19–25], in the BEC-BCS crossover [26–28], and in
superconductors [29,30].

We propose to determine the influence of particle-hole
symmetry on the dynamics of topological defects in two-
dimensional neutral superfluids. We focus on the BCS state
as our primary example, but our results hold for any ap-
proximately particle-hole-symmetric system, e.g., bosons in
an optical lattice near unit filling [12]. For this purpose
we present the similarities and differences in the dynam-
ics of topological defects in the absence and presence of
particle-hole symmetry. We also compare the dynamics of the
particle-hole-symmetric theory for zero and nonzero Noether
charge, corresponding to a balanced mixture of particles and
holes and an imbalanced mixture of particles and holes,
respectively. We find that the case with nonzero charge is
reminiscent of the dynamics of the GP equation. On the
other hand, for vanishing charge, in which the number of
particles and holes is balanced, we show that vortices do not
experience any Magnus force. This leads to a soliton decay
without snaking, setting it apart from soliton dynamics in
non-particle-hole-symmetric fluids, such as BECs. To induce
soliton dynamics of the quantum fluid in the BCS limit, we
propose to imprint a soliton on the BEC side of the crossover
in the presence of a potential barrier. As the next step, we
propose to ramp the fluid adiabatically across the crossover
into the BCS limit while keeping the barrier potential up.
Finally, the barrier potential is ramped to zero, to induce the
soliton dynamics. This protocol of initializing the dynamics
enables imprinting of the phase pattern with an off-resonant
optical pulse, whereas direct phase imprinting in the particle-
hole-symmetric limit is prohibited. We note that this statement
holds only for an exact particle-hole-symmetric case. In ex-
periments such as those in Ref. [27], particle-hole symmetry is
only approximately realized. That is, the appropriate effective
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FIG. 1. Schematic representation of (a), (c), and (e) the proposed
protocol to imprint a soliton and (b), (d), and (f) the corresponding
density profiles |ψ |2 and phase distributions θ . (a) A narrow laser
sheet is applied to a quantum fluid on the BEC side of the crossover
to create a density depletion in the condensate. (b) and (d) The
quantum fluid is split into two subsystems with a relative phase of
zero. (c) Next a π pulse is applied to half of the condensate to create
(e) and (f) the phase pattern of a dark soliton. Next the interaction is
adiabatically changed across the crossover deep into the BCS side.
The narrow laser sheet separating the two subsystems is removed,
which triggers the soliton dynamics. Here ξ is the healing length of
the condensate.

action is expected to have both K1∂t and K2∂
2
t contributions, as

we discuss below. The K1∂t term allows the phase imprinting
as it is the dominant term in the BEC regime. The proposed
protocol is displayed in Fig. 1.

II. SYSTEM

We consider a low-energy effective models of the form [3]

S =
∫

d2x dt

(
K2(∂tψ )(∂t ψ̄ ) − iK1(∂tψ )ψ̄

− 1

m
∇ψ̄∇ψ − μ|ψ |2 + g

2
|ψ |4 + Vext|ψ |2

− iμQ[(∂t ψ̄ )ψ − ψ̄∂tψ]

)
, (1)

where K1,2 are the above-mentioned parameters that deter-
mine the time dependence, μ is the square root of the gap
energy, which has the dimensions of a mass term, g is the
contact interaction strength, and Vext is the externally applied
potential. A similar effective field theory has been proposed
and discussed to model the BEC-BCS crossover in [31–34].
We include a Lagrange multiplier μQ to fix the Klein-Gordon
charge (7) (discussed below). By setting K2 = 0, K1 = 1, and
μQ = 0, we recover the GP equation

i∂tψ (x, t ) = ∇2

2m
ψ (x, t ) + V (|ψ |2)ψ (x, t ), (2)

where V [|ψ (x, t )|2] = μ − g|ψ (x, t )|2 + Vext (x). We refer to
a condensate described by the GP equation as a GP fluid. This
equation is manifestly not particle-hole symmetric under the
exchange ψ ↔ ψ̄ . On the other hand, particle-hole symmetry
is fulfilled in the action (1) by setting K1 = 0 and K2 �= 0.

We introduce a dimensionless representation via ψ = ψ̃/ξ ,
∇ = ∇̃/ξ , ∂t = cs/ξ ∂̃t , and V = μṼ , where ξ is the healing
length of the fluid and cs the speed of sound. This leads to the
modified nonlinear Klein-Gordon (NLKG) equation

∂2
t̃ ψ̃ (x, t ) = ∇̃2ψ̃ (x, t ) + Ṽ (|ψ̃ |2)ψ̃ (x, t ) + iμQ∂t̃ ψ̃ (x, t ).

(3)
We refer to condensates evolving according to the NLKG
equation as Klein-Gordon (KG) fluids. In the following we
drop the tilde. We trap the fluid using a box potential of the
form

Vext (x) = V0{1 + tanh[(|x| − r0)/ξ ]}. (4)

We note that this model is a relativistic BEC [35–37] and a
similar equation has been proposed to model cold dark matter
[38–40] and relativistic boson stars [41–43].

In the following we show the influence of particle-hole
symmetry on the dynamics of topological defects. For the
KG fluid, we introduce the canonical momentum �(x, t ) =
∂t ψ̄ (x, t ) + iμQψ̄ (x, t ) to obtain two coupled first-order par-
tial differential equations

∂tψ (x, t ) = �̄(x, t ) + iμQψ (x, t ), (5)

∂t�(x, t ) = ∇2ψ̄ (x, t ) + V (|ψ |2)ψ̄ (x, t ) − iμQ�(x, t ). (6)

A crucial feature of a KG fluid is that the particle number
N = ∫ |ψ (x, t )|2dx is not conserved, in contrast to a GP fluid.
Instead, in the KG fluid, the Noether charge

Q = −i
∫

[�̄(x, t )ψ̄ (x, t ) − �(x, t )ψ (x, t )]d2x (7)

is conserved. The Noether charge Q can be thought of as the
difference of particles and holes in the system. That is, a zero
Noether charge describes the situation with an equal number
of particles and holes. An intuitive example for illustrating
the Noether charge is a system of interacting bosons in an
optical lattice with unit filling. An excitation corresponds to
exciting one atom out of the lattice side and leaving behind a
hole. Thus, the Noether charge stays unchanged as the same
number of particles and hole were created. Another possible
excitation is to excite the atom out of the lattice and further
removing it from the system, which leaves a hole behind. The
system then slightly goes away from unit filling as there is
now an imbalance between the number of holes and particles
and this corresponds to an effective nonzero Noether charge.
Another example can be envisioned in the BCS regime for
nonzero temperature. Here a rf knife can be used to remove
some of the atoms occupying the Bogoliubov modes, leading
to an imbalance between particle and hole excitations.

We apply the Madelung transformation to the field and the
canonical momentum, in which the field ψ is written in an
amplitude-phase representation

ψ (x, t ) = A(x, t ) exp[iθ (x, t )], (8)

�(x, t ) =
(

Ȧ(x, t )

A(x, t )
+ i[μQ − θ̇ (x, t )]

)
ψ (x, t ), (9)
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and obtain the continuity equation and particle-hole-
symmetric Euler equation

∂tρKG + μQ

2
∂tρS = −∇(ρSu), (10)

(
ρKG

ρS
+ μQ

2

)
∂t u = u∇u + ∇ρS

2ρ0
− ∇

2

(�√
ρS√

ρS

)
, (11)

where we introduce the GP density ρS = A2, the KG den-
sity ρKG = A2∂tθ , the velocity u = ∇θ , and the box operator
� = ∂2

t − ∇2. In this representation, the charge simplifies to
Q = ∫

ρKGdx. In the particle-hole-symmetric Euler equations
there is a prefactor ρKG/ρS in front of the time derivative of
the velocity field ∂t u. This prefactor depends on the charge Q.
This is a crucial difference to the GP Euler equation where
this prefactor is always 1.

The particle-hole-symmetric Euler equation (11) has two
quantum pressure terms. One term is due to the kinetic energy

of the condensate and is proportional to ∇2√ρS√
ρS

. It is the zero-
point motion of the condensate and becomes dominant if the
condensate has spatial variations on short length scales [44].

The second is proportional to ∂2
t
√

ρS√
ρS

and originates from the
second-order time derivative. It only exists for particle-hole-
symmetric condensates.

We present the local velocity field around a single vor-
tex. Therefore, we transform into the Feshbach-Villars basis,
which translates the NLKG to coupled GP equations for the
particles and antiparticles, respectively [45]

ψ = 1√
2

(ψp + ψa ), (12)

� = i√
2

(ψa − ψp). (13)

Next we expand the field around the vortex core position r0

with the amplitude Ai and phase θ i [see Eqs. (8) and (9)] and
propagate the location of the vortex core using the equations
of motion and compare the new location with the previous
location to obtain the local velocity field (for a detailed discus-
sion and derivation see [46–48]). For the two velocity fields
we obtain

va = − (−i, 1)T · ∇(Ap + Aa ) + (Ap + Aa ) (1, i)T · ∇θ

Aa
,

(14)

vp = (−i, 1)T · ∇(Ap + Aa ) + (Ap + Aa ) (1, i)T · ∇θ

Ap
, (15)

where the spatial plane (x, y) is represented as the complex
plane z = x + iy. Translating this back into the (ψ,�) basis,
we obtain

vψ = 1√
2

(vp + va ) =
√

2

(
1 − Aa

Ap

)
vp. (16)

For Q �= 0 we have Aa �= Ap, which means that we obtain a
nonzero velocity field. In this case the velocity is proportional
to the velocity obtained for GP fluids [47]. For Q = 0, we
have Ap = Aa and Np = Na, with Ni the total number of
particles/antiparticles. For this balanced scenario the local
velocity field vanishes precisely as shown in Fig. 2. As pointed
out before and as can be seen from Eq. (16), for a finite charge

FIG. 2. Schematic sketch of (a) and (c) the local velocity fields of
the particles (blue) and antiparticles (red) and (b) and (d) the resulting
total local velocity field for the ψ field (gray). (a) An unbalanced
mixture of particles and antiparticles with a finite charge Q leads to
(b) a nonzero effective velocity field for the ψ field. (c) A balanced
mixture of particles and antiparticles with a vanishing charge Q leads
to (d) a vanishing effective velocity field for the ψ field.

Q corresponding to an imbalance between particles and an-
tiparticles, the magnitudes of the velocity fields are different
[see Fig. 2(a)], which results in a nonzero velocity field for the
KG fluid ψ [see Fig. 2(b)]. In contrast, for a balanced mixture
the local velocity field magnitudes are the same [see Fig. 2(c)]
and due to the opposite direction of the velocity fields the
velocity field of the KG fluid vanishes [see Fig. 2(d)].

III. NUMERICAL RESULTS

To expand on our analytical predictions and to propose an
experimental setup to detect vortex dynamics of KG fluids, we
simulate the equations using the pseudospectral method [49]
for both the GP and KG fluids. We set the ratio between the
chemical potential μ and the contact interaction g to μ/g =
10/ξ 2. In the following we express all length scales in units
of ξ . Our simulations are discretized in a 256 × 256 grid. We
choose r0/ξ = 25, where r0 is half of the box size, as defined
in Eq. (4), and resolve ξ with three grid points. The phase and
density distribution for snapshots in real time are shown for
a GP fluid [see Fig. 3(a)] and for a KG fluid with vanishing
charge [see Fig. 3(c)]. Circles (KG fluid with Q = 0) and dia-
monds (GP fluid) in red correspond to a phase winding of +1,
while blue corresponds to −1 [see Fig. 3(b)]. The gray arrows
show the flow of time in the figure. It can be seen that for a
dipole distance d12 > 2ξ in the GP fluid the dipole will start
to propel forward perpendicular to the dipole axis and will not
annihilate. In contrast, the KG vortex dipoles will move along
the dipole axis and annihilate each other, due to the absence
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FIG. 3. Dynamics of vortex dipole pairs in a GP and a KG fluid.
The phase and the density of (a) the GP fluid and (c) the KG fluid
are shown. (b) The symbols display the locations of the vortices and
antivortices in red and blue, respectively, of the GP fluid (diamonds)
and the KG fluid (circles), and difference times. The snapshots of
(a) and (c) are indicated via black arrows. The gray arrows indicate
the movement of the vortices in time.

of a velocity field. Related observations of vortex dynamics
were reported in Ref. [50]. We note that the particle-hole
symmetry is the origin of this qualitatively distinct behavior
from GP fluid dynamics. We propose that the data from a fu-
ture experimental realization of our proposal could be used to
numerically fit the ratio of K1 and K2 for different interaction
strengths. This links our proposal to the parameters used in
the universal effective action of such systems.

To investigate the influence of the particle-hole symmetry
on the soliton dynamics, we initialize the condensate with
a modified Thomas-Fermi profile [44], as described in the
Supplemental Material [48], for a box potential in Eq. (4)
with V0 = 10 and r0 = 30 for the GP (KG) fluid and start
with a soliton imprinted in the fluid. We let the condensate
relax using the imaginary-time propagation [51] extended to
particle-hole-symmetric fluids [48]. For the KG fluids, we set
the initial canonical momentum as � = i μQ

2 ψ with μQ ∈ R,
resulting in a charge of Q = μQN . Furthermore, we add 1%
white noise on the initial condensate density to study the
stability of solitons.

The system is propagated in time according to Eqs. (2),
(5), and (6). At lowest order, the Higgs mode and the Gold-
stone mode decouple in a particle-hole-symmetric theory [3].
Within this approximation, this initial state only induces the
dynamics of the Goldstone mode. However, this approxi-
mation fails in soliton and vortex solutions. For the same
parameters μ and g, the healing length is twice as large in
the KG case compared to GP equation due to the difference in
the prefactor of the kinetic energy.

In Fig. 4 we present the real-time dynamics of the complex
field ψ shaded from white to black corresponding to decreas-
ing amplitude, i.e., black regions denote areas with vanishing
|ψ |. The phase of the wave function is represented as color.
The wave function is normalized for each snapshot such that
the maximum value is set to unity to make it easier to compare
GP and KG results.

In the GP fluid, we observe the established soliton instabil-
ity in Figs. 4(a)–4(c) [16] and the motion of trapped vortices
in Figs. 4(c)–4(e) [23,47]. The vortices move towards the edge
of the condensate. As they approach the edge, they experience
a net force and move along the trap boundary as depicted in
Figs. 4(d) and 4(e) [23]. The behavior of the KG fluid with
Q �= 0 is similar. As displayed in Figs. 4(f)–4(j), the soliton
decays into vortices, which then move around the condensate.
Similar to the GP fluid, as the phase rotates in Figs. 4(f)–4(j),
the vortices experience a net force leading to their motion
along the trap boundary as seen in Figs. 4(i)–4(j).

In contrast, for the KG fluid with Q = 0, the soliton de-
cays into vortices that are located along the soliton axis, as
shown in Figs. 4(k)–4(m). Similar results have been found
in [28]. Moreover, we find that the vortices are not rotating
as displayed in Figs. 4(m)–4(o), which is consistent with
Eqs. (14) and (16) and Fig. 3. When the vortices reach the
trap boundary, they evaporate into the thermal cloud as shown
in Figs. 4(n) and 4(o).

IV. CONCLUSION

In conclusion, we have shown that by measuring the den-
sity profile of a two-dimensional condensate after imprinting
a soliton in a particle-hole-symmetric superfluid, such as a
BCS state of neutral particles, it is possible to test the ef-
fective low-energy theoretical description of the system. We
have shown analytically and numerically that for particle-
hole-symmetric superfluids with vanishing Noether charge,
the Magnus force is absent. This allows for a dipole pair of
vortices to approach each other without transverse motion and
to annihilate, reminiscent of a recent observation in Ref. [50].
Another consequence of the vanishing Magnus force is that a
soliton does not bend as it decays into vortices. Probing these
effects experimentally will reveal how well particle-hole sym-
metry is realized in the dynamics of superfluids or whether the
non-particle-hole-symmetric term, the first-order derivative in
time, is the dominant contribution in the effective theory.
This is crucial in understanding the notion of turbulence in
particle-hole-symmetric fluids such as superconductors. Our
work reveals that turbulence in a BCS superconductor and
its scaling laws might deviate from Kolmogorov scaling laws
[52], which apply to classical systems as well to GP fluids.
We note that our predictions could be experimentally con-
firmed using refined experimental technique, such as in situ
observations of two-dimensional Fermi liquids when probing
the BEC-BCS crossover in neutral atoms [53,54] or the well-
controlled imprinting of vortex dipole pairs [50].
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FIG. 4. Overview of the soliton instability for the three distinct cases corresponding to (a)–(e) the GP results, (f)–(j) the KG results with
Q �= 0, and (k)–(o) the KG results with Q = 0. For a better comparison between the GP and KG results the ψ field density is normalized such
that the maximum value is set to unity in each snapshot. The shading of the plots ranging from black to white visualizes the magnitude of the
field |ψ |, while the colormap indicates the phase. (a), (f), and (k) Initial soliton seeded with white noise. (b), (g), and (l) Soliton bending. (c),
(h), and (m) Vortices appearing after the soliton decay. The long-time dynamics of the vortices inside the trap are presented in (d), (i), and (n)
and in (e), (j), and (o). White dashed lines indicate the soliton axis and the perpendicular axis. The spatial length is expressed in terms of the
healing length ξ . A movie showing the dynamics is presented in the Supplemental Material [48].
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6 Conclusion

In this cumulative dissertation, I have presented my work on driven dissipative elec-
tron dynamics in graphene, the emergence of a non-equilibrium superradiant phase in a
graphene-inspired Dicke model, the benefits of non-local parameterizations in quantum
algorithm optimization on the native Hamiltonian domain, and the role of particle-hole
symmetry in the dynamics of superfluids. Throughout my work, I have developed and
utilized different numerical methods that capture these physics, and that are viable for
further use in future research. Controlling the properties of quantum systems through
coherent external processes is at the heart of many quantum technologies, and the re-
sults of my work contribute to this by providing insight into the dynamical control of
non-equilibrium dynamics.

In Publication I, we have introduced a model of driven dissipative two-band solids
which utilizes a four-level description. This description includes doubly and unoccu-
pied momentum modes, as well as dissipative processes that act in the instantaneous
eigenbasis in a gauge-invariant way, and phenomenologically capture electron exchange
with the environment. We have used this to reproduce the anomalous Hall transport
in graphene as measured in the experiment by McIver et al. [44]. Our model further
captures the electron distribution of the non-equilibrium steady state, which reveals the
Floquet-Bloch bands and their populations. We have found that the non-equilibrium
Floquet-Bloch band populations lead to two primary contributions to the transversal
current in the presence of circularly polarized driving. The first contribution emerges
directly from the charge carrier imbalance across the momentum space of the driven
system. The second contribution is of geometric origin and emerges due to the Berry
curvature of the topological Floquet-Bloch bands, which is associated with the anoma-
lous Hall effect. In Publication II, I have studied the longitudinal optical conductivity
of graphene driven with circularly polarized terahertz radiation. The optical conduc-
tivity provides means of observing light-induced Floquet gaps under realistic conditions
through inter-band transitions of Floquet-Bloch bands. The contributions to the current
of these inter-band transitions are proportional to the Floquet-Bloch band populations.
The driving field leads to gaps in the Floquet-Bloch bands, which increase in size with
the field strength up to a certain driving intensity. For very strong driving this behavior
changes and the Floquet-Bloch band gaps decrease in size while their location in momen-
tum space changes. It is during this regime of decreasing Floquet band gap size, where I
have consistently found population inversion in the Floquet-Bloch bands located at the
gaps. This population inversion leads to negative contributions to the optical conductiv-
ity, which I have shown to result in a net negative optical conductivity when competing
contributions are small. This net negative optical conductivity implies optical gain at
terahertz frequencies and suggests the possibility of utilizing this mechanism in a co-
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herent light-source. These results have motivated the work in Publications V and VI.
In Publication III, I have further used this model to study predictions of time-resolved
angle-resolved photoelectron spectroscopy (trARPES) measurements of graphene driven
with circularly polarized light under realistic conditions. The experimental observa-
tion of the light-induced band gap at the Dirac point in graphene had been obscured
through limitations in resolution, Fourier broadening, and undesired signals due to space
charge effects and laser-assisted photoelectron replicas. Resolving the gap necessitates
an unfavorable compromise between ideally large driving frequencies in the presence of
sufficiently large driving intensity. I have proposed that for strong driving, the popu-
lation at the Dirac point remains largely contained within the Floquet bands that are
continuously connected to the undriven bands as a function of the driving field strength.
This leads to an energy difference between occupied bands that exceeds the size of the
Floquet zone and suggests that it may be possible to overcome these limitations and
potentially observe this large light-induced gap at the Dirac point under realistic con-
ditions. In Publication IV, I have studied the non-linear transport in strongly driven
graphene in the simultaneous presence of a large DC field. I have studied the resulting
non-linear differential photoconductivity which displays a rich structure as a function
of the DC field strength and the AC driving field strength with two distinct limits. In
one limit, the DC field strength outweighs the AC field strength and the dynamics are
captured within a modified Landau-Zener description in momentum space. In this case,
the electron distribution in momentum space becomes strongly anisotropic, as the dissi-
pative Landau-Zener transitions lead to wake-field-like features that are modulated by
the periodic AC field. I have used this representation in a comoving frame to analyti-
cally capture characteristic features of the differential photoconductivity, as well as the
temperature dependent and non-linear conductivity in the undriven limit, which agrees
well with the numerical results. In the opposite limit, the AC field strength outweighs
the DC field strength and the Floquet-Bloch band structure determines the structure of
the differential photoconductivity in a type of photon-assisted tunneling.

In Publication V, I have studied a graphene-inspired driven dissipative Dicke model
under consideration of solid-like dissipation. For this work, I have implemented and uti-
lized an extended version of the numerical methods developed throughout Publications I
— IV, which includes coupling to a single-mode cavity. I have found that this model dis-
plays a non-equilibrium superradiant phase in the case of strong driving. Analogous to
the results in Publication II, the Floquet states display population inversion in a regime
of strong driving. By tuning the cavity to be resonant with these population-inverted
Floquet states, a coherent state in the cavity is sustained by depleting this effective
population inversion. I refer to this as the Floquet-assisted superradiant phase (FSP),
which I have characterized throughout this publication. I have calculated the onset of
the FSP for weak-coupling as a function of the cavity frequency and the transition fre-
quency of the two-level systems. The results suggest that the FSP can be utilized in
a type of coherent light-source at terahertz frequencies, and that potentially the same
mechanism appears in driven material-cavity setups. In Publication VI, I have tested
the FSP against environmental factors such as noisy driving, inhomogeneous broaden-
ing, and strong dissipation, in order to evaluate whether the FSP qualifies as a type of
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laser-like mechanism. I have found that the FSP is robust against all of these factors,
and in particular displays sharp line-narrowing across the FSP transition, which over-
comes the linewidth of the driving field as well as the inherent linewidth of the cavity.
The inhomogeneous broadening affects the critical coupling of the FSP, but the mecha-
nism remains accessible. This suggests that non-trivial band-structures in similar setups
change the details of the phase, but do not obscure the FSP mechanism on a qualitative
level. On one hand the FSP is viable in the presence of dissipation coefficients that are
comparable to the parameters we have used to describe graphene in Publication I. On
the other hand, decreasing the dissipation coefficients and the cavity loss rate reduces
the critical coupling, which makes the FSP accessible in the case of very weak coupling,
in sufficiently pristine setups. These results motivate utilizing the FSP in a setup of
driven graphene coupled to an optical cavity to construct a laser-like mechanism.
In Publication VII, I have studied the performance of a time-nonlocal parameteriza-

tion for quantum algorithm optimization on the native Hamiltonian level. Instead of
optimizing the parameterized gates of a preconceived quantum circuit structure as is the
case in conventional variational quantum algorithms (VQAs), native optimization acts
directly on the control parameters of the underlying Hamiltonian. This generalizes the
variational approach to pulses and is reminiscent of quantum optimal control methods.
In particular, I have studied a parameterization that optimizes the Fourier coefficients of
the Hamiltonian control parameters in order to perform quantum computational tasks.
In a direct comparison with the more common piece-wise constant parameterization,
the Fourier ansatz displays superior convergence behavior and overall fidelity, without a
loss of efficiency of the implementations. Further, I have found that uniformly sampling
the variance of the gradient of an example objective displays exponential decay as a
function of the number of qubits in the case of the piece-wise constant parameterization.
This behavior is characteristic of the barren plateau phenomenon. In the time-nonlocal
Fourier ansatz however, these variances decay at a reduced, non-exponential, pace. This
suggests a mitigation of the barren plateau phenomenon in the Fourier parameteriza-
tion and motivates further research on non-local approaches beyond the quantum circuit
paradigm, for the purpose of optimization on near-term quantum computers. In Publi-
cation VIII, we have studied the performance of native Hamiltonian optimization in the
quantum computing architecture of neutral atoms in optical tweezer arrays. We have
optimized implementations of the controlled NOT operation under realistic conditions
which leads to high fidelity solutions in particular in the canonically unfavorable limit of
large distances, i.e. weak coupling. We have tested these solutions against fluctuations of
the interatomic distance and found both the small distance limit, and the large distance
limit, to be robust against these fluctuations, whereas the regime of intermediate inter-
atomic distances displayed a large susceptibility to fluctuations. Further, we have shown
that the computational universality of this system is maintained under restrictions of the
controllability in which a single parameter is used to control single-site actions globally,
even if this extends to qubits that are not affected under the desired transformation. We
have shown this by demonstrating that the dynamical Lie algebra of the Hamiltonian
remains unaffected by this class of restrictions. Reducing the controllability of a setup
through such restrictions, allows for optimization-inspired architectures that maintain
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computational universality, while requiring less intricate machinery. This motivates fu-
ture research in identifying architectures that benefit from these types of restrictions in
particular.

In Publication IX, we have studied the dynamics of vortices and solitons in superflu-
ids in the presence and absence of particle-hole (PH) symmetry. Superfluidity is found
in Bose-Einstein condensates (BECs) as well as in BCS-like states of neutral fermions.
These systems, however, display distinct physics and host different low-energy excita-
tions. In particular BCS-like superfluids display an amplitude mode, which is absent
in BECs due to the conservation of particles. We have developed a two-dimensional
simulation of an effective field theory [369] that interpolates between the presence and
absence of PH symmetry, i.e. between BEC-like and BCS-like superfluids. The resulting
equations of motion continuously connect the limits of the Gross-Pitaevskii equation and
the non-linear Klein-Gordon equation, across which the conserved quantities of the the-
ory and the dynamics of excitations change. We have shown how the dynamics of defects
such as vortices and solitons differ in these two limits. In particular, in balanced PH sym-
metric superfluids there is no Magnus force, in contrast to PH asymmetric superfluids.
This determines the dynamics of vortex-anti-vortex pairs, which in the PH asymmetric
case, propel each other forward through the Magnus forces they exert onto each other.
In balanced PH symmetric superfluids, vortex-anti-vortex pairs attract and annihilate
each other. These distinct dynamics also affect the dynamics of solitons, which in the
presence of the Magnus force decay through a process of vortex-anti-vortex pair forma-
tion and a resulting snaking behavior, which breaks the soliton. In the absence of the
Magnus force snaking does not occur. These results demonstrate the consequences PH
symmetry has on the dynamics of superfluids. This extends to more involved physics in
superfluids such as the emergence of turbulences and the intricacies of atomtronic setups.
This methodology further presents an intriguing framework to describe the dynamics in
the BEC-BCS crossover of neutral fermionic systems.
Non-equilibrium transport phenomena, the Floquet engineering of material properties

and superradiance, optimizing the processing of quantum information, and engineering
superfluid dynamics through symmetries are all different types of coherent dynamical
control of transport and information in quantum systems. The dynamics of quantum
systems in the presence of pulses and protocols as means to tailor a desired behavior
is at the heart of many quantum technological proposals and future research directions
alike. Building on the results of my work in these fields, several future directions of
research present themselves. The numerical simulations I have adopted and developed
throughout my work capture the dissipative electron dynamics of graphene under various
conditions and driving setups. The method extends to different two-band materials, as
well as graphene nanoribbon setups. The inclusion of a cavity mode makes it possible
to study coherently driven graphene-cavity setups, which as my results suggest, host
a robust Floquet-assisted superradiant phase under realistic conditions. My results on
quantum algorithm optimization motivate the utilization of non-local parameterizations
on the native Hamiltonian level. The generalization of control pulses outside the domain
of quantum circuits presents a natural choice for near-term optimization endeavors. The
prospect of designing universal quantum computation platforms under restrictions that
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leave the dynamical Lie algebra in-tact, while circumventing technological challenges
associated with local addressability, presents a promising and underdeveloped line of
research.
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[16] M. Müller, M. Bräuninger, and B. Trauzettel, “Temperature dependence of the
conductivity of ballistic graphene,” Phys. Rev. Lett., vol. 103, p. 196 801, 19 2009.

[17] E. G. Mishchenko, “Dynamic conductivity in graphene beyond linear response,”
Phys. Rev. Lett., vol. 103, p. 246 802, 24 2009.

[18] J. Schiefele, F. Sols, and F. Guinea, “Temperature dependence of the conductivity
of graphene on boron nitride,” Phys. Rev. B, vol. 85, p. 195 420, 19 2012.

[19] M. Lemme, T. Echtermeyer, M. Baus, and H. Kurz, “A graphene field-effect
device,” English, IEEE Electron Device Letters, vol. 28, no. 4, pp. 282–284, 2007.

[20] F. Schwierz, “Graphene transistors,”Nature Nanotechnology, vol. 5, no. 7, pp. 487–
496, 2010.

[21] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of
the quantum hall effect and berry’s phase in graphene,” Nature, vol. 438, no. 7065,
pp. 201–204, 2005.

[22] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler,
J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature
quantum hall effect in graphene,” Science, vol. 315, no. 5817, pp. 1379–1379,
2007. eprint: https://www.science.org/doi/pdf/10.1126/science.1137201.

[23] Z. Jiang, Y. Zhang, Y.-W. Tan, H. Stormer, and P. Kim, “Quantum hall ef-
fect in graphene,” Solid State Communications, vol. 143, no. 1, pp. 14–19, 2007,
Exploring graphene.

[24] C. L. Kane and E. J. Mele, “Quantum spin hall effect in graphene,” Phys. Rev.
Lett., vol. 95, p. 226 801, 22 2005.

[25] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, “Spin qubits in graphene
quantum dots,” Nature Physics, vol. 3, no. 3, pp. 192–196, 2007.

[26] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, “Elec-
tronic spin transport and spin precession in single graphene layers at room tem-
perature,” Nature, vol. 448, no. 7153, pp. 571–574, 2007.

[27] W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K.
Kawakami, “Tunneling spin injection into single layer graphene,” Phys. Rev. Lett.,
vol. 105, p. 167 202, 16 2010.

186

https://www.science.org/doi/pdf/10.1126/science.1137201


[28] W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, “Graphene spintronics,”
Nature Nanotechnology, vol. 9, no. 10, pp. 794–807, 2014.

[29] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and
X. Xu, “Valleytronics in 2d materials,” Nature Reviews Materials, vol. 1, no. 11,
p. 16 055, 2016.

[30] S. A. Vitale, D. Nezich, J. O. Varghese, P. Kim, N. Gedik, P. Jarillo-Herrero, D.
Xiao, and M. Rothschild, “Valleytronics: Opportunities, challenges, and paths for-
ward,” Small, vol. 14, no. 38, p. 1 801 483, 2018. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/smll.201801483.
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and M. Gärttner, “Neural-network quantum state tomography in a two-qubit
experiment,” Phys. Rev. A, vol. 102, p. 042 604, 4 2020.

[333] R. Levy, D. Luo, and B. K. Clark, “Classical shadows for quantum process to-
mography on near-term quantum computers,” arXiv:2110.02965, vol. preprint,
2021. arXiv: 2110.02965 [quant-ph].

[334] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, “Barren
plateaus in quantum neural network training landscapes,” Nature Communica-
tions, vol. 9, no. 1, p. 4812, 2018.

[335] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2015.

[336] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, “Local random quantum
circuits are approximate polynomial-designs,” Communications in Mathematical
Physics, vol. 346, no. 2, pp. 397–434, 2016.

[337] A. Arrasmith, Z. Holmes, M Cerezo, and P. J. Coles, “Equivalence of quantum
barren plateaus to cost concentration and narrow gorges,” Quantum Science and
Technology, vol. 7, no. 4, p. 045 015, 2022.

[338] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles,
“Noise-induced barren plateaus in variational quantum algorithms,” Nature Com-
munications, vol. 12, no. 1, p. 6961, 2021.

[339] C. Zhao and X.-S. Gao, “Analyzing the barren plateau phenomenon in training
quantum neural networks with the ZX-calculus,” Quantum, vol. 5, p. 466, 2021.

[340] M. Larocca, P. Czarnik, K. Sharma, G. Muraleedharan, P. J. Coles, and M.
Cerezo, “Diagnosing Barren Plateaus with Tools from Quantum Optimal Con-
trol,” Quantum, vol. 6, p. 824, 2022.
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