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Preface

The work in this cumulative dissertation has been conducted from March 2019 to De-
cember 2023 in the research group of Ludwig Mathey at the Center for Optical Quantum
Technologies and the Institute of Quantum Physics of the University of Hamburg (Uni-
versitdt Hamburg). This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) — SFB-925 — project 170620586. This work was
supervised by Prof. Dr. Ludwig Mathey and co-supervised by Prof. Dr. Henning Moritz.
Throughout this work I use I when referring to results from works that I have first-
authored, and we when referring to results from works that I have co-authored.
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Abstract

A thorough understanding of non-equilibrium quantum mechanical phenomena provides
the means to develop advanced and novel technologies. With growing expertise and
improving controllability of quantum systems, a plethora of use-cases has emerged that
employ and exploit physical processes for technological benefit. In this cumulative dis-
sertation, I present my work on some of such research directions, such as controlling the
non-equilibrium transport properties of graphene, engineering a non-equilibrium super-
radiant phase in driven two-band solids coupled to cavities, non-local quantum algorithm
optimization on the native Hamiltonian level, and dynamics of superfluids in the presence
of particle-hole symmetry.

We have devised a master equation approach for the driven dissipative electron dynam-
ics in graphene, which recovers experimental non-equilibrium transport measurements.
We have used this model to characterize the anomalous Hall response, in which the
geometric contribution to the transversal current is determined by the non-equilibrium
electron distribution across the light-induced topological Floquet-Bloch band structure.
The light-induced gap at the Dirac point is often obscured in time-resolved angle-resolved
photoelectron spectroscopy (trARPES) due to experimental limitations. I have predicted
that strong driving leads to Floquet-Bloch band populations at the Dirac point which
display an energy difference that extends far enough beyond Floquet replicas to over-
come resolution limitations in trARPES setups. Similarly, I have studied the optical
conductivity of driven graphene at terahertz frequencies, which displays the Floquet
gap at the Dirac point in particular, due to resonant inter-band transitions across the
Floquet-Bloch bands. In the presence of strong driving, the optical conductivity changes
its sign and the system displays optical gain due to an effective population inversion of
the Floquet-Bloch bands. This has motivated me to study a graphene-inspired quan-
tum optical model, in which I have found that a non-equilibrium superradiant phase
emerges due to the same mechanism of population inverted Floquet states which sustain
a coherent state in a resonant cavity. I refer to this as the Floquet-assisted superradi-
ant phase (FSP), and have studied its stability in the presence of environmental factors,
such as inhomogeneous broadening, driving with finite decoherence, and dissipation. The
FSP appears robust under realistic conditions, which suggests its utilization in a type
of Floquet-assisted laser-like mechanism at terahertz frequencies in a graphene-cavity
setup in future research.

Quantum computing faces the challenge of meticulously controlling quantum infor-
mation across scalable systems. The more pragmatic near-term utilization of noisy
intermediate-scale quantum (NISQ) devices draws attention to the potential of hybrid
quantum-classical optimization algorithms. I have identified benefits of non-local quan-
tum algorithm optimization approaches which act on the underlying Hamiltonian level



rather than in the circuit picture of variational quantum algorithms (VQAs). I have
found that a parameterization that optimizes the Fourier coefficients of the control pa-
rameters of the Hamiltonian displays improved optimization behavior and indicates a
mitigation of the barren plateau phenomenon which plagues conventional VQAs. Sim-
ilarly, we have optimized high fidelity implementations of the controlled NOT gate in
the quantum computing architecture of neutral atoms in tweezer arrays under realistic
conditions. We have considered non-local restrictions on the control parameters, which
do not affect the computational universality of the architecture. This motivates future
proposals that involve less intricate and more easily constructed NISQ computers.
Superfluid states of matter such as Bose-Einstein condensates (BECs) and BCS-like
condensates of neutral fermions display dynamics that are relevant for quantum simula-
tion, superconducting devices such as Josephson junctions, and atomtronics. The order
parameter of such superfluid phases is captured in effective field theories. We have devel-
oped a two-dimensional numerical simulation of an effective field theory which includes
terms that interpolate between the presence and absence of particle-hole symmetry. The
presence of this symmetry is accompanied by an amplitude mode that is present in BCS-
like systems, but not in BECs. This theory thus captures both BEC-like and BCS-like
superfluids in a manner that connects them continuously. We have demonstrated how
the dynamics of defects such as vortices and solitons are affected considerably by the
presence of particle-hole symmetry and the imbalance between particles and holes.



Zusammenfassung

Fin tiefgreifendes Verstandnis quantenmechanischer nicht-gleichgewichts Phanomene ist
mafigebend fir die Entwicklung fortgeschrittener und neuartiger Technologien. Mit
wachsender Expertise und sich stets bessernder Kontrollierbarkeit von Quantensyste-
men, ergibt sich eine Vielzahl an Moglichkeiten physikalische Prozesse fiir technologis-
chen Mehrwert zu nutzen. In dieser kumulativen Dissertation prasentiere ich meine Ar-
beit in hierzu verwandten Forschungsfeldern, wie die Kontrolle von nicht-gleichgewichts
Transporteigenschaften in Graphen, das Konstruieren einer nicht-gleichgewichts superra-
dianten Phase in getriebenen Zwei-Band Festkérpern in Resonatoren, nicht-lokale Quan-
tenalgorithmusoptimierung auf der nativen Hamiltonian Ebene, und die Dynamik von
Suprafluiden im Zusammenhang mit Teilchen-Loch Symmetrie.

Wir haben eine Master-Gleichung-Methode fiir die Beschreibung getriebener dissipa-
tiver Elektrondynamik in Graphen entwickelt, welche experimentelle nicht-gleichgewichts
Transportmessungen reproduziert. Wir haben diese Methode genutzt um die anomale
Hall-Leitfahigkeit zu charakterisieren, in welcher der geometrische Beitrag zum transver-
salen Strom durch die nicht-gleichgewichts Elektronverteilung in der lichtinduzierten
topologischen Floquet-Bloch Bandstruktur gegeben ist. Die Floquet Bandliicke am
Dirac-Punkt ist in zeit- und winkelaufgeloster Photoelektronspektroskopie (trARPES)
erschwert aufgrund experimenteller Limitierungen. Ich habe gezeigt, dass starkes Treiben
zu Besetzungen der Floquet-Bloch Bander am Dirac-Punkt fiihrt, die einen Energieab-
stand aufweisen welcher sich weit genug liber die Floquet-Bloch Bandrepliken erstreckt
um Auflésungslimitierungen in trARPES Experimenten zu iiberwinden. Ich habe eben-
falls die optische longitudinale Leitfahigkeit von Graphen untersucht, welches bei Fre-
quenzen im Terahertz-Bereich getrieben wird und aufgrund resonanter Ubergénge die
Floquet-Bloch Bandliicken sichtbar macht. Unter starkem Treiben, dndert die optis-
che Leitfahigkeit ihr Vorzeichen und das System weist optische Verstarkung aufgrund
einer effektiven Populationsinversion in den Floquet-Bloch Bandern auf. Dieses Ergeb-
nis hat mich motiviert ein von Graphen inspiriertes quantenoptisches Model zu unter-
suchen, in dem ich herausfand, dass sich eine nicht-gleichgewichts superradiante Phase
aus dem selben Mechanismus populationsinvertierter Floquet Zustande ergibt, welche
einen kohédrenten Zustand in einem resonanten Hohlraumstrahler aufrecht erhalten. Ich
bezeichne dies als die Floquet-assistierte superradiante Phase (FSP) und habe ihre Sta-
bilitdt in der Gegenwart limitierender Auflenwirkung in Form von inhomogener Ver-
breiterung, endlicher Dekohérenz im treibenden Feld, und erhchter Dissipation unter-
sucht. Die FSP stellt sich unter realistischen Konditionen als robust dar, was ver-
muten lasst, dass sie in weiterfiihrender Forschung angewandt werden kann in einem
Floquet-assistierten Laser-ahnlichen Mechanismus im Terahertz-Frequenzberech in einer
Graphen-Hohlraumstrahler-Konstruktion.



Quantencomputer stehen vor der Herausforderung Quanteninformation auf prazise
Weise in skalierbaren Systemen zu kontrollieren. Die pragmatischere Nutzung existieren-
der limitierter Quantensysteme (NISQ) zieht Aufmerksamkeit auf das Potential hy-
brider quanten-klassischer Optimierungsalgorithmen. Ich habe Vorteile identifiziert,
nicht-lokale Quantenalgorithmusoptimierung welche auf der nativen Hamiltonian-Ebene
agiert anzuwenden, anstatt der Schaltkreis-Variante variationeller Quantenalgorithmen
(VQAs). Ich habe herausgefunden, dass eine Parameterisierung in der die Fourier-
Koeflizienten von Parametern eines Hamiltonians optimiert werden ein verbessertes Op-
timierungsverhalten, so wie eine Reduktion des barren plateau Phanomen, welches ein
Problem fiir konventionelle VQAs darstellt, aufweist. Auf dhnliche Weise haben wir
Implementierungen des CNOT Quantengatter optimiert fiir die Quantencomputerar-
chitektur neutraler Atome in optischen Pinzetten unter realistischen Bedingungen. Wir
haben nicht-lokale Restriktionen auf die Kontrolparameter angewandt, welche die Uni-
versalitdt der Rechnerarchitektur nicht beeinflussen, aber zukiinftige Ansétze motivieren
fiir weniger aufwandige und einfacher zu konstruierende NISQ Computer.

Suprafluide Aggregatszustinde, wie Bose-Einstein Kondensate (BECs) und BCS-artige
Kondensate neutraler Fermionen, weisen Dynamiken auf welche relevant sind fiir Quan-
tensimulatoren, supraleitende Josephson junctions, und Atomtronik. Der Ordnungspa-
rameter solcher Suprafluide kann mit Hilfe effektiver Feldtheorien beschrieben werden.
Wir haben eine zweidimensionale Simulation einer effektiven Feldtheorie entwickelt,
welche Terme beinhélt die das Interpolieren zwischen der Anwesenheit und Abwesenheit
von Teilchen-Loch Symmetrie erlauben. Die Anwesendheit dieser Symmetrie bedeutet
das Vorhandensein einer Amplitudenmode, welche in BCS-artigen Systemen existiert,
in BECs jedoch nicht. Diese Theorie beschreibt demnach sowohl BEC-artige als auch
BCS-artige Suprafluide auf eine Weise die es erlaubt diese Limites kontinuierlich zu
verkniipfen. Wir haben demonstriert, dass die Dynamik von Defekten wie Vortizes und
Solitonen mafigeblich durch Teilchen-Loch Symmetrie und das Verhéltnis aus Teilchen
und Lochern beeinflusst wird.
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1 Introduction

In the past decades, the fundamental understanding of, and the capability to control,
quantum matter has been steadily advancing. This has enabled research on fundamental
equilibrium phenomena in quantum mechanics. For example, it has become possible to
control systems such as trapped clouds of ultra-cold atoms to a degree that has enabled
the realization of the superfluid phase of matter of Bose-Einstein condensates [1, 2]. The
fabrication of increasingly pristine two-dimensional quantum materials such as graphene,
provides platforms for studying previously inaccessible electron dynamics [3-5]. Further,
the utilization of high-finesse optical cavities has played a crucial role in understanding
the interplay between light and matter, and has been essential to the field of quantum
optics [6-8].

A central aspect of these advances was a deep understanding of the equilibrium and
low-energy physics that characterize these systems. With the capability of controlling
isolated quantum systems comes the hope of bringing these systems out of equilibrium in
an equally well controlled fashion. The corresponding prospect of controlling emergent
dynamics of quantum systems promises to provide deep fundamental insight into more
intricate non-equilibrium quantum phenomena, and possibly also new functionalities
with potential technological benefit. These intricacies may for instance take the form of
a non-trivial interplay between coherent optical driving and dissipation which leads to
tailoring quantum material properties [9, 10], or dynamical high-fidelity manipulation
of quantum information in arrays of individually and optically trapped atoms [11, 12].
Understanding and engineering these types of non-equilibrium phenomena is at the heart
of quantum technologies.

In this cumulative dissertation, I present my work which contributes to a range of these
topics. I focus on the theoretical understanding of non-equilibrium quantum dynamics
and the means to control emergent properties. This includes the driven dissipative elec-
tron dynamics in graphene irradiated at terahertz frequencies, which display intriguing
transport properties such as an anomalous Hall effect, and optical gain. I have connected
these results to solid-state-inspired quantum optics and the emergence of non-equilibrium
superradiance. In the context of quantum information processing, I have studied quan-
tum computational optimization methods that are constructed to operate non-locally
and in bases beyond the quantum circuit paradigm. I have also studied the effects of
particle-hole symmetry on the dynamics of superfluids. These topics largely find com-
mon ground in that they describe the coherent control of transport and information in
systems that are described as ensembles of two-level quantum systems. I have separated
these topics into different chapters that each introduce the necessary theoretical back-
ground, and motivate and contextualize my publications. My publications are included
in these chapters and are each prefaced by a motivation, a summary of the work, and a
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statement about my contribution.

Chapter 2 covers my work on the driven dissipative electron dynamics of graphene irra-
diated at terahertz frequencies. In that chapter, I provide an introduction into the topic
of graphene and its transport properties, the description and effects of driving graphene
with light, and how we capture dissipation in our master equation approach in order to
capture solid-state phenomena. I have studied these setups numerically with a versa-
tile code-base that has expanded throughout the years. In Publication I, this method
was conceived, and we have studied an anomalous Hall effect under consideration of
non-equilibrium electron distributions, in light of recent experimental results. I have im-
plemented and maintained the calculations for the frequency- and momentum-resolved
electron distribution in driven graphene, which reveals the non-equilibrium Floquet-
Bloch band populations. In Publication II, I have expanded the numerical simulation
of this setup in order to study the longitudinal optical response at terahertz frequen-
cies. This was motivated by the prospects of observing the light-induced Floquet band
gaps with respect to the driving intensity. I have found that the optical conductivity
does display features that are resonant with the expected Floquet band gaps. This
method reveals the gap at the Dirac point that displays a non-trivial band curvature
and is associated with an anomalous Hall effect. Additionally, the results show that this
system displays negative optical conductivity, i.e. optical gain at terahertz frequencies,
which is the consequence of effective population inversions at Floquet band gaps in the
presence of strong driving fields. In Publication III, I have studied the frequency- and
momentum-resolved electron distribution of driven graphene under realistic conditions
with the prospect of guiding time-resolved angle-resolved photoelectron spectroscopy
(trARPES) experiments. According to my simulations, the population of the Floquet
bands at the Dirac point remains primarily contained within the Floquet replicas that
are continuously connected to the Dirac point as a function of driving intensity. As a
consequence, this provides driving setups in which the energy difference of Floquet states
that have non-zero occupation exceeds the size of the Floquet zones across which the
spectrum repeats. This large separation of populated Floquet states at the Dirac point
has promise of being observable under realistic experimental limitations. In Publication
IV, I have studied the non-linear electron transport in graphene under strong driving and
simultaneous strong direct bias. The presence of strong fields leads to a rich structure in
the differential photoconductivity, as a result of the distinct dynamics that are captured
by either the Floquet picture, or a driven Landau-Zener picture, depending on which
external field is stronger. I have characterized the strong anisotropy of the momentum
distribution to the current in a comoving frame, and provided approximations for the
non-linear and temperature-dependent conductivity of graphene.

Chapter 3 covers my work on the emergence of a non-equilibrium superradiant phase in
a driven dissipative Dicke model, motivated by the optical properties of driven graphene
as discussed in Publication II. I introduce the theoretical framework of superradiance and
the Dicke model, and I emphasize the prospect of coupling a system such as graphene to
a cavity. In Publication V, I have extended the numerical method developed throughout
Publications I — IV, to include a single-mode cavity in order to study this graphene-
inspired Dicke model under consideration of solid-like dissipation. In this model, I have
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identified the analogous mechanism as in Publication II that displays population inver-
sion in the Floquet states, which explicitly depends on the particular choice of how to
capture dissipative processes. Tuning the cavity to be resonant with the Floquet states
results in the effective population inversion being depleted in order to sustain a coherent
state in the cavity in a type of non-equilibrium superradiant phase. I refer to this as the
Floquet-assisted superradiant phase (FSP), and have characterized this phenomenon in
Publication V. In Publication VI, I have studied the robustness of the FSP under consid-
eration of environmental factors such as inhomogeneous broadening, phase drift of the
coherent driving field, and dissipation up to realistic values. The detuning of the tran-
sitional frequencies of the two-level system due to inhomogeneous broadening, and the
finite linewidth of the driving field due to phase drift, do not destroy the FSP mechanism.
While the phase transition is affected, in that it requires moderately increased coupling
strengths, the FSP remains robust under realistic conditions and displays drastic line-
narrowing across the phase transition. Notably, the FSP remains viable at dissipation
rates that are comparable to those that we had used in Publication I to recover the
experimental non-equilibrium transport in graphene.

Chapter 4 covers my work on quantum computational optimization algorithms on the
native Hamiltonian level. I introduce the theoretical framework of quantum comput-
ing, variational quantum algorithms, the barren plateau phenomenon, quantum optimal
control, and how these topics intertwine. I connect these topics through descriptions
of non-local parameterizations of protocols on the native Hamiltonian level. In Pub-
lication VII, I have studied a time-nonlocal parameterization for variational quantum
optimization on the native Hamiltonian level, that optimizes the Fourier coefficients of
the controllable parameters. I have compared this to a piece-wise constant parame-
terization which is reminiscent of parameterized quantum circuits and optimal control
methods. In this direct comparison I have found that the Fourier ansatz outperforms the
piece-wise constant ansatz for the tasks of ground state preparation and quantum gate
compilation in terms of convergence behavior and fidelity, while maintaining compara-
ble efficiency of the resulting implementations. Further, I have compared the uniformly
sampled variances of gradients of objective functions for both ansitze and found that
the piece-wise constant ansatz expectedly displays exponential decay of the gradients,
which is characteristic of the barren plateau phenomenon. However, in the Fourier
ansatz these variances decrease at a slower rate, which suggests the mitigation of bar-
ren plateaus. In Publication VIII, we have studied the optimization of implementing
quantum gates under realistic conditions in the quantum computing platform of neutral
atoms trapped in optical tweezers. We have found high fidelity implementations of the
controlled NOT gate in the limit of weak interaction between excited Rydberg states,
and have demonstrated the robustness of these solutions in the presence of additional
fluctuations in the interatomic distances. Our analysis shows that the error induced
through such fluctuations grows drastically for intermediate distances between atoms.
With a focus on addressability, we have demonstrated the viability of a restricted param-
eterization, in which the control parameters that drive the transitions into the Rydberg
states are equal for all qubits instead of individually controllable. This restriction can
be maintained for large systems, as this seemingly harsh constraint does not affect the
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computational universality of the setup.

Chapter 5 covers my work on the dynamics of superfluids with respect to particle-hole
(PH) symmetry, captured in an effective field theory. I introduce the Lagrangian that
captures the PH symmetry via two dynamical terms. I reproduce how these terms affect
the equation of motion of this effective field theory, and how they interpolate between the
Gross-Pitaevskii equation that is used to describe Bose-Einstein condensates, and the
Lorentz-invariant non-linear Klein-Gordon equation that describes BCS-type superfluids.
This theory also provides a generalization of the conserved Noether charge, the low-
energy excitations, and the spectra in confining potentials. In Publication IX, we have
studied this model in two dimensions to understand the effect PH symmetry has on
the dynamics of superfluids. In particular, we have studied the dynamics of vortices
and solitons, which show that the absence of the Magnus force plays a large role in
PH symmetric superfluids. Due to the lack of a Magnus force, vortex-anti-vortex pairs
attract each other in the presence of PH symmetry, instead of propelling each other. In
solitons, this leads to a modification of the characteristic snaking phenomenon.

Chapter 6 presents a conclusion and summary of the results put forth in Publications
I — IX. I provide an outlook on future research directions based on these results.
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2 Control of Electron Transport in Driven
Dissipative Graphene

Graphene is a material that displays many interesting electronic properties and has been
the subject of active research since its initial fabrication [3]. Studies often focus on the
high electronic mobility [4, 5, 13—18], that is controlled via the back-gate-dependent
charge carrier density, which has led to the demonstration of graphene transistor de-
vices [19, 20]. Other remarkable results include the demonstration of the quantum Hall
effect [21-24], quantum dot spin-qubits [25], spintronics [26-28], and the potential for
valleytronics [29-31]. Further, the control of optical properties of graphene has been
of great interest [32-38] and more recently, the Floquet engineering of topologically
non-trivial states in graphene has been actively studied [39-44].

These phenomena rely on the peculiar electronic structure of graphene, which obeys
an array of symmetries and displays mathematical equivalence to the Dirac physics of
relativistic massless spin-1/2 particles [45-49]. Structural variants of graphene such as
nanoribbons [50-53], nanotubes [54, 55], or more recently twisted bilayer graphene [56]
are also actively being studied. The conceptual elegance and rich physics have turned
graphene into a staple of modern material science.

Throughout this chapter, I provide an introduction into the electron dynamics of
graphene as to motivate and contextualize Publications I — IV, in which I have studied
different electronic transport properties of driven graphene and how they relate to the
light-induced Floquet physics. This chapter focuses on the low-energy aspects and the
driven dissipative physics of graphene, and the tools that are necessary to study such
models. This chapter will also delve into the description of dissipative processes and
Floquet physics. Introductory literature on the topic of graphene is widely available,
and this chapter in large parts follows along the more in-depth discussions provided by
the book of Katsnelson [57] and various review papers [58—60].

2.1 Electronic Description of Graphene

Graphene is made up of a two-dimensional hexagonal, or honeycomb, lattice of carbon
atoms that occupy planar hybridized sp? orbitals that leave one electron per site in a
perpendicular p-orbital, which forms m-bonds with the three equally spaced in-plane
neighbors. In order to describe the hexagonal lattice structure of graphene in a way that
obeys translational symmetry, a triangular construction of unit cell with two atoms is
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Figure 2.1: The structure of graphene. Panel (a) shows the real-space lattice structure
spanned by the unit-vectors d@; and do, and the nearest-neighbour vectors 51,
5, and d3. A and B denotes the sub-lattices. Panel (b) shows the Brillouin
zone of graphene. K and K’ are the exceptional points at which the valence
and conduction bands touch.

necessary. In that case, the lattice is described by the unit-vectors

i =3 (i) @i 150) =y

with the lattice-spacing constant a ~ 1.42A. The nearest-neighbor sites are separated
by the vectors

R S ) B G Y

This structure is displayed in Fig. 2.1 (a). The low-lying electronic bands are captured
well within the tight-binding approach. Due to the two-atomic unit cell, the appropriate
wave function is described using two components 14 and g for the amplitudes within
the respective sub-lattices, denoted as A and B. To first order, the coupling between
these components is due to nearest-neighbor, i.e. inter-sub-lattice, tunneling such that
the dynamics are governed by the Hamiltonian

o 0 S*(k)
-1 (B 7). o9
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where k is the two-dimensional momentum.! This Hamiltonian acts on the state vectors
[y = (Y4, ¢B)T. The tunneling amplitude is ¢t =~ 2.7eV and the momentum-dependent
tight-binding coefficients are

3
S(k) =™ (2.4)
j=1
The dispersion relation of the resulting two symmetric bands reads

. . A 3 A
er (k) = +t|S(k)| = t|2¢"*=/2 cos (ak@?) + e~laka), (2.5)

Within the Brillouin zone are two exceptional points at which |S(k)| vanishes and conse-
quently the two bands touch. The Brillouin zone of graphene is illustrated in Fig. 2.1 (b).
The two exceptional points are

- 4 cos(”)) - 4m < cos(%) >
K= . 6 K' = 6 . 2.6
i i 3v3a \—sin(%) 20
Expanding the dispersion relation in the vicinity of these points provides the approximate

linearized Hamiltonian that describes the low-energy physics of graphene. For momenta
close to K or K’ it is to first order

o - 3 0 e's (ky — iky)
~ — . 2
H(E + k)~ 5at <(kx +iky)e % 0 > 27)
3 0 e (ky + iky)
! ~ —qt . x Y . 2.
H(K' + k)~ Sa ((km—iky)ezﬁ 0 ) (2.8)

The phase factors e*% are removed by a unitary transformation and the pre-factors are
conventionally collected as hvp = %at, where vp ~ 10%ms™" is the Fermi velocity of the
system. This results in the linearized Hamiltonian

_ 0 ky — ik,
HE—hUF (kx-i-ik'y 0 ) (2.9)

at K and H. = H* at K'. As the bands touch at K and I?’, the Fermi surface is
reduced to a single point in the case of charge neutrality. Graphene is therefore classified
as a gapless semimetal. The structure of this linearized Hamiltonian is paramount to
the rich physics of graphene and the large interest it has gathered. This description of

graphene? displays an inversion symmetry Hyx = 0, Hg'0, and a time-reversal symmetry
Hyg = Hy,.

!Technically, k is the wave-number vector such that Ak is the momentum.

2These symmetries are also present prior to the linearization, however under exchange of k< —k
instead of K + K.
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Collecting the Pauli matrices into the vector representation ¢ = (0,,0y,0,) and re-
placing the momentum-operator by its real-space representation k = —iV, provides the
notation of

H = —ihvp(0y04 + 7:0y0y), (2.10)

where 7, is the third Pauli matrix acting on the two-dimensional configuration space
of K and K’, i.e. 7, = 1 at K and 7, = —1 at K’. This Hamiltonian then acts on a
four-dimensional Hilbert space of states

A

| ¥B
) = Yk (2.11)

Vg

where the prime indicates the associated exceptional point K). The Schrédinger equa-
tion takes the form

(vt — Opoy — T20y0y) |¥) = 0, (2.12)

which is structurally reminiscent of the Dirac equation for a massless two-dimensional
fermion at a fraction of the speed of light with vp ~ ¢/300. This equivalence is the reason
that the exceptional points K and K’ are referred to as Dirac points. With respect to
the Dirac equation, the occupation of the two Dirac points is analogous to particles
and anti-particles, while the occupation of A and B sub-lattices is analogous to spin-
up and spin-down states. This is the reason that in descriptions of graphene the state
representation is referred to as a pseudo-spin. Note that the addition of a o, component
in the linearized graphene Hamiltonian produces a mass term that keeps the equivalence
to the Dirac equation in-tact. The true electronic spin is naturally present as well, and
could be considered, leading to a higher-dimensional description. However throughout
this work, I consider no spin-interactions in graphene, which leaves a spin-degeneracy of
ng = 2.

In many applications, the dynamics at the K and K’ sectors decouple and can be
inferred from each other, due to the structural symmetry. Therefore, a reduced rep-
resentation that covers the vicinity of K is sufficient in many cases. The Hamiltonian
associated with this representation is

Hp = hwp(kyor + kyoy) = hwpk(e ko, +ePha_), (2.13)

where k = ||, ¢, = arg(ks + iky) and o4 = (0, £ ioy). In the polar representation of
the momentum, the transformation

1 e*%% 6*%@%
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diagonalizes the Hamiltonian, i.e. U%H Ug = th\E|0Z. The corresponding eigenstates
are read off of Uy as

1 e—%@c 1 e—%cﬁk
=7 (eém ) == <_e;¢k> - (2.15)

In the Bloch sphere representation, these states reside on the equator at an angle ¢ and
¢+, respectively. Hence, the two eigenstates of linearized graphene have their pseudo-
spin aligned parallel and antiparallel with their momentum. Note that in accordance
with real spin degrees of freedom, a rotation about 27 provides a prefactor of —1.

2.2 Charge Transport and Electromagnetic Coupling

All momentum modes in graphene that are captured in this approach contribute to
the overall charge transport through the material. From the continuity equation of the
quantum mechanical wave-function in momentum space results the expression for the
current operator, which in the case of linearized graphene evaluates to

e OHY

T evpol) (2.16)

with @ = z,y. The complex conjugation is associated with the Dirac point K’. The
expectation value is denoted as

Ja(k) = Tr(pgja): (2.17)

whee pz is the local density operator corresponding to the momentum E, as explained in a

-,

later section. It is necessary to specifically distinguish between the current-density j,(k),
resolved in momentum space, and the full current J, which is obtained by integrating

over the Brillouin zone
Ng

L= o (K)dkydk,. 2.1
To= g | duBydbedr, (218)

In the case of linearized graphene, the integral over the Brillouin zone is replaced by
two integrals over sufficiently large areas Dg and Dy around the Dirac points. The
symmetries with respect to K and K’ can be broken, which determines whether the
contributions to the current are equal, opposite, or independent. The polarization of
incoming light plays into this symmetry breaking. We have considered the effect of
breaking time-reversal symmetry in Publication I in order to study an anomalous Hall
effect in graphene. In the cases where the Dirac points contribute equally, the current

reduces to
Mgy

= o (B)d%k, 2.1
Jo="g [l (219)

where n, = 2 is the valley-degeneracy.

21



Graphene in its equilibrium state and in the absence of any electromagnetic potential
will naturally yield zero net current. Current emerges as a response to the presence of
electromagnetic fields that accelerate charge carriers. One method of studying linear re-
sponses consists of introducing a perturbation, e.g. a small electric field, and estimating
the induced change from the equilibrium state. Analytically, perturbation-theoretical
tools are well-suited for such calculations. It is also possible to numerically solve the
steady states of dissipative systems and infer response functions from observables nu-
merically. In the two-dimensional case of graphene, the linear conductivity tensor is

written as
- (C’m ny) . (2.20)
Oyz  Oyy

The generalized tensor-components o4, (7, t) are functions of time and space. The off-
diagonal components o, and oy, describe the transversal responses and become non-
zero in Hall-type setups. Assuming spatial homogeneity gives the current as the linear
response

J(t) = / a(t—tEt')dt'. (2.21)
This convolution simplifies in the Fourier representation, which reads
J(w) = 6(w)E(w). (2.22)

This equation denotes the frequency-local linear response given by the complex-valued
conductivity tensor® 7(w). The DC conductivity is obtained as the small-frequency limit

(2.23)

For w # 0, the real part of the conductivity gives the in-phase response at that frequency,
which corresponds to the conduction current of charge carriers. The imaginary part of
the conductivity gives the out-of-phase response, which corresponds to the displacement
current. In this regard, the diagonal components of Eq. 2.22 are equivalent to Ohm’s law,
where conductivity takes the role of the reciprocal value of the characteristic impedance.
In Publication II, I have identified circumstances under which the real part of the optical
conductivity in graphene changes its overall sign. Such a negative conductivity means
that the system becomes a gain medium that puts out energy as a consequence of non-
equilibrium physics. This result has motivated my work in Publication V and Publication
VI, as I discuss in section 3.

Tuning the chemical potential, and therefore the charge carrier density, of graphene is
a reliable way to drastically increase the conductivity [61-68]. At the charge neutrality

3The units of conductivities of two-dimensional materials can be misleading. & is in units of Siemens.
However, this is not the de facto conductance of a graphene sample, where the geometry and the
probing-axis enter such that units cancel to produce Siemens again.

4In electrical engineering jargon, conductance is only the real part, while the imaginary part is called
susceptance and is closely related to the capacitance, as they only differ by a factor of w. The
combined complex-valued quantity is called the admittance.
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point, the Fermi surface reduces to a point and the conductivity of graphene takes its

smallest value, which is referred to as the minimal conductivity og. This has been

the subject of some ambiguity as theories commonly predict values for the minimal
2 2

conductivity of either op = T& [14, 69-71] or o9 = & [4, 71, 72]. E;(perimental

observations have found the minimal conductivity to be roughly o¢ =~ 4% [13]. The

optical conductivity of graphene is constant at op(w > 0) = Z—;, as a consequence of
the constant density of states due to the linear dispersion relation [32]. The charge
carrier density is also affected by incoherent pumping which transfers population into
the excited bands and results in an increased conductivity, i.e. photoconductivity.

In order to study coherently driven charge transport phenomena it is necessary to
introduce the presence of electromagnetic fields into this model of graphene. In lattice
models, such as tight-binding, this is achieved via the Peierl’s substitution, which in the
limit of continuous momenta acts identically to minimal coupling in that the electromag-
netic vector potential ff(t) directly couples to the momentum. This is a consequence of
the local gauge freedom of the complex phase of the quantum mechanical wave-function.
The vector potential relates to the electric field as E(t) = —8tff(t) — V®. We gauge
fix the potentials to be VA =0 and ® = 0 over the spatial extent of the theoretical
material sample. An alternating field at frequency w and field strength E relates to the
vector potential as

—

—

Apc(t) = gsin(wt +¢) = Eac(t) = —E cos(wt + ¢), (2.24)

with some arbitrary phase ¢. Similarly, a direct bias field yields fch = —EDct. This
provides the means of describing the effects of applying periodic driving or constant
electric fields to the system. One source of such an alternating bias field in graphene is
the irradiation with polarized light. In my work, I considered in-plane fields only, i.e.
FE, = 0. In this case, the incidence of the light onto the graphene is perpendicular to the
sample.’ This leads to the Hamiltonian

£ Ap(t))op + (ky — %Ay(t))ay) (2.25)

Hl; = FL’UF((I{J;B - 5

and in the particular case of irradiation with circularly polarized light at frequency wq
and with the field strength Ey4

€Ed eEd .
Hp = hop((ks — T cos(wqt))oe + (ky — Ton sin(wqt))oy). (2.26)
The transport properties of graphene are drastically altered by driving with such
an external field. This makes it possible to control the photoconductivity and charge
carrier dynamics in a variety of ways [35, 37, 38, 73-87]. Capturing the effects of
driving and probing graphene periodically, as well as constant in time, provides the

5In the case of linear polarization, the propagation axis of the light does not necessarily need to be
perpendicular to the graphene sample. However, any inclination leads to spatial differences in phase
fronts which need to be considered.
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means of describing the different electronic transport phenomena [88-93]. It is possible
to consider both steady state and transient transport for different types of polarization
of the incoming light. Depending on the intensity of the applied fields, one can consider
linear or non-linear responses in either longitudinal or transversal direction. Throughout
my work, I have considered driving frequencies of up to wq = 27 x 50THz and field
strengths of up to £q = 20MV m~!, as inspired by the experiment by Mclver et al. [44].

2.3 Floquet Physics

When studying the non-equilibrium physics of periodically driven systems, it is often
very insightful to consider the perspective provided by Floquet theory. Floquet theory
is a general framework for capturing crucial aspects of the dynamics of systems that
are periodic in time. In general, these dynamics drastically differ from the undriven
counterparts. A common example in classical mechanics is Kapitza’s pendulum. In this
system, a pendulum is driven by periodically moving its suspension point up and down.
Depending on the details of the pendulum and the driving, this motion transforms the
instable fix-point of the pendulum standing upright into a stable fix-point. Therefore,
a small deviation will not make the pendulum roll down, but rather it will move back
into the upright position. This popular example shows that periodic driving leads to
profound phenomena in the resulting steady state physics. There is detailed literature
available on the topic of Floquet physics [94, 95|, which inspired this section.

Consider a Hamiltonian that is periodic in time, i.e. H(t) = H(t + 7), for some time
7. The Floquet theorem states that fundamental solutions 1, (t) to the time-dependent
Schrédinger equation

i (t) = H (£ () (2.27)
display the same periodicity up to a phase factor, such that

Un(t +7) = e, (¢). (2.28)

Introducing a periodic function u,(t) = u,(t + 7) allows one to write

n(t) = e FF by (1), (2.29)

(n)
such that ¢, = 27;;5 with the corresponding driving frequency w = 27” The expression

e;?) is the Floquet energy of this nth state. An additional phase factor of e ™ m € Z,

leaves this solution in-tact as

e tmeT — 1, (2.30)

Therefore, for a Floquet state with energy egl), a ladder of states exists with level-spacing

equal to multiples of the driving photon energy mhw, m € Z, and the emerging Floquet
spectrum is periodic in frequency space. In particular, a solution can further be written
as a linear combination :
Yn(t) = 3 ueimetier ) (2.31)
me”Z
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Transforming the Schrodinger equation into frequency space leads to the relation

(mhew + &l = 57 Hypgul™, (2.32)
lez

with the mth Fourier component of the time-dependent Hamiltonian

1 to+7m
1%:/‘ eI (t)dt. (2.33)

T Ji,

Note that the time ¢ is arbitrary, and a particular choice is referred to as the Floquet
gauge. Eq. 2.32 can be represented using the Floquet Hamiltonian

Hy + 2hw Hy Ho Hj Hy
H Hy+hw H; Ho Hs
Hp = H_ o H_4 Hy H, H, (2.34)
H_; H o H_, Hy—hv H,
H_4 H_5 H_, H_4 Hy — 2hw
with the solutions
= (o™ ™ (2.35)

The eigenvalues of Hr are the Floquet energies egl) of the solutions of the driven system.

However, the diagonalization of Hg can in general only be performed approximately. The
effective Floquet states describe the stroboscopic dynamics across the discrete points of
periodicity t = tg +m7, m € Z. The dynamical structure in between these stroboscopic
points in time is called micro-motion and is not covered by Hgr. The micro-motion is
relevant for the details of the dynamics, however the Floquet bands of Hr by themselves
provide deep structural insight into a driven system, particularly in the presence of
dissipation. It is didactically valuable to consider the trivial edge-case of vanishing
amplitude in the periodic terms, i.e. H(t) = Hy. Then Hp is diagonalized using the
same transformation as for diagonalizing Hy and the resulting Floquet energies are just
the bare eigenenergies up to multiples of the photon energy, albeit formally constrained
within regions in frequency space of size hw. By reintroducing finite amplitudes in
the periodic terms in the Hamiltonian, the bare levels of different Floquet replicas that
touch (or intersect) begin to repel each other. This leads to gaps at certain multi-photon
resonances of the bare level structure. Floquet theory is often referred to as an analog to
the Bloch theorem of solid-state physics, where a periodic potential in real-space leads to
quasi-momentum that is periodic with the Brillouin zone. The consequences in Floquet
theory are very similar with an emergent periodicity in the solutions in frequency rather
than momentum.5

5The Floquet theorem in its original form predates the Bloch theorem by half a century and covers the
effects of periodicity in partial differential equations agnostic to the physical nature of the parameters.
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Floquet theory has gained particular attention in more recent literature of solid-state
and condensed matter physics, as means of dynamically controlling various material
properties, i.e. Floquet engineering [9, 10]. In particular, Floquet topological physics
were actively studied [40-43, 96-99] in graphene. Similar approaches of designing Flo-
quet topological insulators have been considered in a variety of setups [100-110]. Oka
and Aoki showed how the topologically non-trivial Haldane model [111] is approximately
reproduced in light-driven graphene [39]. The topological nature of this effective Flo-
quet Hamiltonian predicts an anomalous Hall effect in graphene driven with circularly
polarized light. This was experimentally studied by Mclver et al. [44], who showed an
anomalous Hall response slightly shy of quantization. An accurate description of the
transport requires taking the non-equilibrium physics of the driven dissipative system
into account, as well as the non-trivial Floquet-Bloch band occupations that it displays.
This was the key motivation of our work in Publication I, where we devised a numerical
model that captures the driven dissipative electron dynamics of graphene in order to
explain the anomalous Hall transport measurements. The description of graphene used
throughout these works is detailed in the following section.

2.4 Modelling Dissipative Processes

Dissipation plays a crucial role in the dynamics of practically any real system, and is
in particular a substantial aspect of solid-state physics. Considering dissipation neces-
sitates including processes of decoherence, decay, and loss into the model of a system.
The Lindblad master equation [112] describes the non-unitary time evolution of density
operators p in a way that includes such processes phenomenologically. It reads

. . 1
p=ilp. H+ Y (LipLt — S{LIL;. p}), (2.36)
J

where L; are Lindblad operators that describe dissipative processes and «y; are the cor-
responding coefficients. It is commonly utilized in disciplines such as quantum optics,
condensed matter, and quantum information processing. One condition for a proper
model of dissipation is that it recovers the correct equilibrium state. In solid-state
physics this would be reflected in the occupation of the Bloch bands. As discussed pre-
viously, the equilibrium state depends on the momentum which in turn is affected by
semi-classical electromagnetic fields via minimal coupling. The decay into the ground
state is therefore to be understood with respect to the vector potential, i.e. the dissipa-
tion has to act in a gauge invariant way. For this purpose, we consider dissipation that
acts in the instantaneous eigenbasis of the time-dependent Hamiltonian under consider-
ation of minimal coupling. We represent the system through a product of states that
are local in momentum space

P = Ofep, Pi> (2.37)

where Dy describes the vicinity of the Dirac point K, as mentioned in a previous section.
We omit interaction terms between different momenta as might be mediated via phonons
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for instance. Thus, the dynamics separate in momentum space with the Lindblad master
equation acting locally.

To illustrate the choice of dissipation, consider a material such as graphene that is
initially in its ground state and then quenched via an electric field corresponding to a
vector potential that changes from E(tinitial) to ff(tﬁnal), but is constant in time before
tinital and after tgn. Sufficiently long after the quench, the system will have relaxed into
its equilibrium state, however at this point in time the vector potential will have the
value /T(tﬁnal) compared to it initial value of E(tinitial). Consequently, the system acts
as if the bands were shifted in momentum space by Ak = %(E(tﬁnal) — j(tinitial))- The
dissipative model of this type of system has to capture this and display relaxation with
respect to the momentum that is translated by the vector potential. This consideration
is necessary to recover fairly fundamental results of transport such as Ohm’s law.

In the two-level description of graphene there is one electron per accessible momen-
tum with two possible states. Treating these states as fermionic excitations invites a
construction that considers two additional states. First, a state in which there are no
electrons with a given momentum present, i.e. both bands are empty. And second, a
state in which there are two electrons with a given momentum, i.e. both bands are oc-

cupied. Formally, this is written using fermionic operators for the two sub-lattices cg)

and cgg with the anti-commutator relation

’

)

{egch ) =0, (2.38)

such that the Hilbert space is spanned by the states |0), |A) = C,T;A |0}, |B) = cg B |0) and

|2) = cg B% A |0) for a given momentum k. In particular, the states |A) and | B) span the
originaftwo’—dimensional Hilbert space. We introduce these additional states into the
dynamics via coupling through dissipative channels. Physically, these channels describe
electron exchange with a fermionic bath. Furthermore, in this four-level description it is
straight-forward to include a chemical potential y. We write the corresponding four-level

Hamiltonian

oy 0 0 0
oo s hwop(ma (@) — imy(1) 0

Bzt =1 0 hop(me(t) + imy (1)) Cu 0 (2.39)
0 0 0 0

with 7(t) = k — %ff(t), acting on the space {|2),|A),|B),|0)}. On this space we utilize

the Lindblad operators

0 (557]‘ 56,j 0

§1; 6.5 04, 074
L,' — 5J 2] +7] 5] , 2‘40
7| %25 -5 —0x5 Osy (2.40)
0 d3; da5 O

which cover the two-level processes of ¢, 04, and o_ on the two-dimensional single-
electron subspace {|A),|B)}, but also the additional channels in and out of the sector
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with zero or two electrons present. However, in this dissipative model the Lindblad
operators act in the instantaneous eigenbasis that diagonalizes Eq. 2.39, i.e. we define
L;i=U T(t)L;-U(t) where U (t) diagonalizes Hzy) at each point in time. The instantaneous
eigenbasis reflects the presence of the vector potential, such that this method fulfills the
desired gauge invariance. We introduce a temperature T into this model by imposing
restrictions onto opposing processes. It is

2¢

V4 =7-€ FBT (2.41)
and
etp —etp
N5 = y1eFBT Y6 = ~yoe ¥BT (2.42)
—etp ety
Y7 = y3e *BT T8 = yaetBT, (2.43)

where kp is the Boltzmann constant and +e are the instantaneous eigenenergies of
the Hamiltonian Hz(t). This ensures that the undriven equilibrium state reproduces
a Fermi-distribution at temperature 1" around the chemical potential . We have first
introduced this dissipative model in Publication I, which was first-authored by Marlon
Nuske, who played a major part in devising this method. I have continued expanding
my own implementation of this method, and utilized it in Publication II-—IV. Further,
in Publication V and VI, I have used an extension of this method that includes a single-
mode cavity in a type of Dicke model, as I discuss in Chapter 3.

Considering the dissipative processes on the two-level system alone and reducing the
dynamics again to the two-dimensional sector provides a generalized expression. The
instantaneous eigenbasis of any two-level Hamiltonian H(t) with Tr(H(¢)) = 0 is given
by a transformation U(t) such that

eo, = UT()H(t)U(t), (2.44)

where +e are the instantaneous eigenenergies of H (t) given by H2(t) = ¢2. This transfor-
mation makes it possible to rewrite the Lindblad master equation. I use the Bloch-sphere
representation

1 IV T
p(t) = 51+ 4(t)3) H(t) = H(t)o (2.45)

to write the general equation of motion in this dissipative model. It is
p(t) = 2€(h(t) x f(t)) — 1p(t) — 2h(t) — y3(h(t)A(t))h(t) (2.46)

with the Hamiltonian axis h(t) = H(t)e!. The structure of this equation of motion is
visualized in the Bloch sphere in Fig. 2.2.

M=+ +7-)/24 27 Y2 =- =+ Y3 = (74 +7-) — 272 (2.47)

emerge as the effective dissipation coefficients in this representation. I have derived
this particular representation in Publication V and used it for analytical calculations in
Publication IV and Publication V.
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Figure 2.2: The Bloch-sphere representation of the generalized two-level Lindblad equa-
tion with dissipation in the instantaneous eigenbasis. The location of the
density operator g is indicated with a black dot. The terms of Eq. 2.46 act-
ing on p are depicted as gray and blue arrows. The gray arrows indicate the
dissipative terms weighted with Lindblad coefficients. The term proportional
to 1 is parallel to p. The terms proportional to 5 and 73 are parallel to
h. The unitary action in the direction of h x p is proportional to 2¢ and by
itself generates circular trajectories indicated in blue.

2.5 Momentum- and Frequency-resolved Electron Distribution

A crucial feature of the extended Hilbert-space in Eq. 2.39 and Eq. 2.40 is the ca-
pacity for calculating two-point correlation functions of the type <C£i(t2)cﬁj(t1)>’ with
i,7 € {A, B}. This provides access to frequency- and momentum-resolved electron dis-
tributions

. 1 te te . )
n(k,w) = ——— / Gk, t1, ta)e™ 21 dtydt, (2.48)
(te—t)" Ju Ju

where ¢; to t; provides a time-window across which the spectral information is evaluated.

The correlation function in Eq. 2.48 is

Gkt to) = > <c£.}j(t2)c];7j(t1)). (2.49)

JjE€{A,B}

The expression in Eq. 2.48 is motivated by the theoretical study on the predictions
of time- and angle-resolved photoelectron spectroscopy (trARPES) measurements by
Freericks et al. [113]. trARPES is a well-established and state-of-the-art experimental
method for observing band structures and their dynamics in solid-state systems [114—
125]. It has been used to study the Floquet-Bloch states of strongly driven materi-
als [126-134]. Experiments consistently show that the observed band structures match
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the predictions of Floquet theory and trARPES has in particular been used to study
graphene driven by circularly polarized light [135-138]. The particular light-induced
gap at the Dirac point that is associated with an anomalous Hall effect in graphene [39]
has however been difficult to observe in these experiments. This is attributed to an
array of resolution- and signal-disambiguation limitations. These limitations cover var-
ious broadening effects, energy-resolution limitations, material defects [139-142], space
charge effects due to many photoelectrons [143-146], and laser-assisted photoemission
(LAPE) replica. This circumstance largely motivated Publication III, where I have stud-
ied means to circumvent some of these challenges and proposed a setup to observe said
Floquet band gap using trARPES.

Note that as n(E,w) resolves the spectral function of a given system, I have used
this quantity in Publications I — VI in order to obtain the population of light-induced
Floquet states, which has provided valuable insight into the driven dynamics. In such
two-level systems, this is achieved by integrating the spectral weight within bands of
frequencies that are associated with a given Floquet-Bloch band

. (m+Dwa
n,t (k) :/ n(k,w)dw (2.50)
L e
n, (k) :/ n(k,w)dw, (2.51)
(m—3)wa

where wq is the frequency of the driving term that induces the Floquet-Bloch bands.
These expressions provide the population of the mth upper and lower Floquet-Bloch
band, respectively.
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2.6 Publication I: Floquet dynamics in light-driven solids

M. Nuske, L. Broers, B. Schulte, G. Jotzu, S. A. Sato, A. Cavalleri, A. Rubio, J.
W. Mclver, and L. Mathey — Phys. Rev. Research 2, 043408 (2020)

This collaboration was motivated by the experiment of Mclver et al. [44] in which they
studied an anomalous Hall effect in monolayer graphene driven with circularly polarized
terahertz radiation. Oka and Aoki [39] had predicted, that the high-frequency limit of
the Floquet band structure of this system is reminiscent of the Haldane model which
presents a topologically insulating ground state. They had proposed that this would
result in an anomalous Hall effect in graphene. The experimental results showed a non-
quantized transversal conductivity attributed to the intricate non-equilibrium electron
dynamics in driven systems.

In this work, first-authored by Marlon Nuske, we have numerically studied the Flo-
quet physics of light-driven solids. We have conceived a numerical method for capturing
driven dissipative dynamics and applied it to graphene irradiated by circularly polarized
light. This numerical method is capable of simulating pump-probe transport measure-
ments, as well as calculating the momentum- and frequency-resolved electron distribu-
tion, which resolves the population of the light-induced Floquet bands. In this setup we
have reproduced the transport measurements of the experiment by Mclver et al. [44].

We have found that the populations of the Floquet bands play a crucial role in the non-
quantization of the anomalous Hall conductivity in this system. The electron distribution
is highly non-trivial and far from an equilibrium distribution and corresponds to an
effective electron temperature in the thousands of Kelvin, such that the system does
not enter any topologically insulating state. We have identified two major contributions
to the observed transversal current. First, a geometric contribution which consists of
the Berry curvature of the Floquet bands weighted by their population. The Berry
curvature is localized at the light-induced gaps and locally integrates to integer values.
Secondly, there is a regular contribution which consist of the band velocity weighted
by the population imbalance due to the non-equilibrium electron distribution. In this
description we were able to reproduce the experimental results well and explain the
deviations from the theoretical description. We have demonstrated that our numerical
model captures the transport properties observed in the experiment, which motivated
further research on the basis on this model.

My contribution to this work consisted of designing and implementing parts of the
numerical methods together with MN. In particular, I devised the numerics for the
momentum- and frequency-resolved electron distributions and for the two contributions
to the Hall conductivity. All authors have contributed to this work and to writing the
manuscript.
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We demonstrate how the properties of light-induced electronic Floquet states in solids impact natural physical
observables, such as transport properties, by capturing the environmental influence on the electrons. We include
the environment as dissipative processes, such as interband decay and dephasing, often ignored in Floquet
predictions. These dissipative processes determine the Floquet band occupations of the emergent steady state, by
balancing out the optical driving force. In order to benchmark and illustrate our framework for Floquet physics
in a realistic solid, we consider the light-induced Hall conductivity in graphene recently reported by Mclver et al.
[Nat. Phys. 16, 38 (2020)]. We show that the Hall conductivity is estimated by the Berry flux of the occupied
states of the light-induced Floquet bands, in addition to the kinetic contribution given by the average band
velocity. Hence, Floquet theory provides an interpretation of this Hall conductivity as a geometric-dissipative
effect. We demonstrate this mechanism within a master equation formalism, and obtain good quantitative
agreement with the experimentally measured Hall conductivity, underscoring the validity of this approach which
establishes a broadly applicable framework for the understanding of ultrafast nonequilibrium dynamics in solids.

DOI: 10.1103/PhysRevResearch.2.043408

I. INTRODUCTION

Light control of matter has emerged as a new chapter of
condensed matter physics. While the established approach to
solid state physics is to probe equilibrium or near-equilibrium
properties of a given material, we now take a more active
stance, to design nonequilibrium states with desired properties
by periodic driving. This new vantage point is reflected in
recent experimental work on light-controlled superconduc-
tivity (see, e.g., Refs. [1-5], where a superconducting state
is either enhanced or induced by applying terahertz pulses).
More generally, optical control provides a dynamical avenue
towards creating functionalities on demand in materials [6],
for which we provide an efficient theoretical framework and
understanding.

A natural theoretical description of a periodically driven
system utilizes Floquet theory to determine its quasienergy
states. This approach formally represents a periodically
driven, time-dependent Hamiltonian as a time-independent
one, which allows the use of time-independent methodologies.
If the quasienergy states are interpreted as the eigenstates
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and the published article’s title, journal citation, and DOI.
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of an effective Hamiltonian, this effective Hamiltonian can
be qualitatively distinct from the unperturbed Hamiltonian.
This approach constitutes “Floquet engineering” via periodic
driving. Implementing this approach in nearly isolated cold
atom systems has resulted in spectacular properties [7-15].
While this approach has a suggestive character, we demon-
strate that a naive treatment of the Floquet states as energy
states, which are then occupied by electrons with an equilib-
rium distribution, is in general not a correct prediction for the
driven system. First, the measurable properties, such as trans-
port properties, of the driven systems are generally different
from the measurable properties of the effective Hamiltonian.
The linear response to a probing term in the Hamiltonian,
which models the physical probe, interferes with the driving
term. The resulting linear response cannot be expressed as
the linear response of the effective Hamiltonian, in general.
Second, for a well-behaved effective Hamiltonian to describe
the low-frequency dynamics, the high-frequency limit of the
driving frequency is desirable. Typically that implies that
the driving frequency is large compared to the electronic
bandwidth, to avoid resonant driving of interband transitions.
However, in this high-frequency limit a high driving intensity
is required, so that the far off-resonant optical pumping has
a noticeable effect on the system. This implies currently un-
realistic experimental and material requirements. Third, the
steady state of the electrons that emerges in the driven system
is in general not an equilibrium distribution on the Floquet
quasienergies. These properties of driven systems emphasize

Published by the American Physical Society
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FIG. 1. Dirac cone of the (a) undriven and (b) driven graphene band structure (top) and the corresponding real-space lattice (bottom).
The band structure of graphene driven with circularly polarized light develops gaps at each resonance and at the Dirac point. Applying a
longitudinal field Ey, induces a transverse Hall current j,,. (c) Electron distribution n(k, w) as a function of momentum times /ivg. Note that
Tivek = 200 meV corresponds to k ~ 0.03/A. The distribution is shown after a steady state is achieved for a tanh-type ramp to the driven state.
The parameters for (c) are inspired by the experimental ones used in Ref. [16]. Dotted gray lines show the numerically computed Floquet band
structure (see Appendix E). The maxima of the electron distribution of the driven state agree perfectly with the Floquet band structure. We
show a slice along the k, direction of the band structure shown in (b). Dashed gray lines separate the different Floquet replicas. (d) Floquet band
structure colored by Berry curvature (for details, see Appendix E). The Berry curvature is integrated over ring segments of momentum space.
This integrated quantity suppresses the curvature at the Dirac point. We only show the first Floquet replica since Berry curvature and Floquet
energies are periodic with wq,. We use Eg, = 26 MV/m, wy, = 27 - 48 THz ~ 200 meV /A, T; = 1 ps, T, = 0.2 ps, T, = 0.4 ps, temperature
T = 80 K, and i = 0. Faint gray lines indicate the Dirac cone for undriven graphene.

clear distinctions between a system with a Floquet engineered
Hamiltonian and a system with a static Hamiltonian.

In this paper, we present how the Floquet band properties
manifest themselves in transport properties in an optically
driven solid. As a central example we consider light control
of graphene. References [17-21] have proposed to illuminate
graphene with circularly polarized light with the purpose of
inducing a topologically insulating state [22-26], with the
same low-energy behavior as the Haldane model [27]. We note
that these proposed experiments would only reproduce the be-
havior of the Haldane model in a band insulating state, under
the above-mentioned assumption of a large driving frequency.
As we demonstrate below, neither of these assumptions is
fulfilled.

Our primary experimental motivation derives from the
measurements of Ref. [16]. The authors report on a recently
developed on-chip femtosecond technology to detect the Hall
current of graphene illuminated with light with a frequency
of tens of terahertz, which is orders of magnitude below the
bandwidth of graphene. These measurements illustrate the
realistic regime of current experiments, and are of guidance
for our study. However, we emphasize that our conceptual
approach directly applies to any light-driven Dirac material
[28-32], and more broadly to any solid with well-defined
electronlike quasiparticles. Theoretical studies on dissipative
dynamics in graphene have been reported in Refs. [33-35].

II. GEOMETRIC-DISSIPATIVE ORIGIN OF HALL
CONDUCTIVITY

We develop a master equation description for the transport
properties of illuminated graphene under realistic conditions.
As a key addition to the unitary evolution we include several
dissipative processes to provide an effective model for the
relaxation and dephasing of the electronic states. These are
shown schematically in Fig. 1(a). The form and the magni-
tude of the dissipative processes determine the steady state
that is induced by the optical driving. For this steady state,
we determine the Hall current j, by applying a dc probing
field Ey, along the x axis. From the linear response definition
Jy = oxyEL, we determine the Hall conductivity oyy.

Furthermore, we determine the distribution of electrons
in momentum and frequency space n(k, w), which is the
Fourier transform of the single-particle correlation function.
n(k, w) is depicted in Fig. 1(c). This distribution describes
what frequencies and momenta are contained in the time evo-
Iution of the electrons, shown here for the steady state. This
quantity is closely related to the quantity measured in time-
and angle-resolved photoemission spectroscopy (trARPES)
experiments [36]. We note that this distribution is consistent
with the Floquet bands, depicted in Fig. 1(b) and shown as
dashed lines in Fig. 1(c). Furthermore, the Floquet bands
are populated primarily in regions that are close to the orig-
inal Dirac dispersion. This implies that the predominantly
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occupied Floquet band switches at each resonance. We refer
to this property of the band occupation as a split-band pic-
ture. This is in contrast to the majority of previous works
on Floquet theory where the properties of the continuously
connected bands are studied. With these observations we de-
termine the derived quantity n, (K), with band index o = %1,
which is determined by integrating the distribution n(k, w)
for fixed k in the vicinity of every second frequency maxi-
mum (see also Appendix D). This provides an estimate of the
occupation of the Floquet states that includes the dissipative
broadening of the bands.

As an additional property of the driven state, we determine
the Floquet bands [see Figs. 1(b) and 1(c)]. From these, we
determine the y component of the band velocity vJ and the
Berry curvature 2°. We combine these quantities and define

1
Py =~ ) Ko (k),
kel.BZ
o ==l

1

By=— D vkns(k),

kel.BZ
o ==l

where A is the lattice size and n = 1/A Zk,a ny(K) is the
electron density. The Berry flux @,y is the sum over the Berry
curvature of the Floquet bands, weighted with the band oc-
cupation n, (k). Similarly, the average band velocity vy is the
sum over the y component of the band velocity of the Floquet
bands, weighted with the band occupation, and normalized
with the electron density. The average band velocity term is
nonzero for the light-driven state in the presence of the dc
field E;, due to an occupation imbalance along the y direction,
contributing to the Hall current. The central result of our study
is that the combination of these quantities provides a good
estimate of the Hall conductivity,

Oxy ~ nvy/Ep, + Oyy. (D)

Both the Berry flux and the average band velocity is a sum
weighted with the steady state distribution of the driven state,
which in turn is determined by the dissipative processes. Our
result demonstrates that the Hall conductivity is a geometric-
dissipative phenomenon. As we demonstrate below, for a
small driving field E4;, the average band velocity dominates in
this prediction, whereas for a large driving field, the Berry flux
dominates. We note that the nonvanishing expectation value
of v, derives from an occupation imbalance in the transverse
direction of the probe, which was also discussed in Ref. [34].

We note that the Floquet states not only display a topo-
logical band gap at the Dirac points, as they would for large
driving frequencies (see Refs. [22-26]). In addition to this
renormalization of the Dirac cone, additional resonances ap-
pear at integer multiples of the driving frequency. Frequency
space naturally separates into Floquet zones of the size of
the driving frequency, in analogy to Brillouin zones. Each
Floquet zone contains two bands, corresponding to the under-
lying two-band structure of graphene. Each resulting Floquet
band has an additional Berry curvature at the resonances, in
addition to the curvature at the Dirac point. Integrating over
the entire band gives the Chern number of each band. For

the example shown, there are about 80 resonances stemming
from multiphoton absorption, and the Chern number of the
Floquet bands is of the order of 102-10%. However, this is
not the magnitude of the Hall conductivity, because the band
is not occupied in a band insulating state, but rather has the
electron distribution depicted in Fig. 1(c). For this example,
we find that 99.8% of the Hall conductivity can be accounted
for by summing the contributions from the Dirac point and
the first four resonances. Higher-order resonances have no net
contribution to the Hall conductivity. We note that the total
Hall current has the opposite sign of that expected in the
high-frequency limit. We observe that the Hall conductivity
is not quantized in an obvious fashion, however, we find a soft
plateau of the conductivity as a function of the driving field,
more pronounced when depicted as a function of fluence (see
Appendix L). While the magnitude of the conductivity at the
plateau depends on the model assumptions, such as the choice
of dissipative processes, the robustness of this feature might
point to an underlying principle to be discussed elsewhere.

II1. RABI SOLUTION

The key qualitative difference to the proposals that utilize
high-frequency driving, is the occurrence of resonances at
integer multiples of the driving frequency. As depicted in
Fig. 1(d), these resonances create a Berry curvature of the
Floquet bands. To demonstrate this point we determine the
Berry curvature at the single-photon resonance within a Rabi
picture, which gives access to all properties near the single-
photon resonance and provides analytical expressions. We
expand on this analysis in a Floquet picture further down,
which treats the full system within a numerical framework.
We describe the graphene dispersion and the interaction of the
electrons with the electromagnetic field via

GpOIEEder (O lle_iwd't_ir*'gp‘”q}k)
- ~ b

HR = thkUz + _ie[wdr[+[fzo‘wl¢k O

Za)dr
and hence the solutions |{/¢ +(¢)) can be obtained in analogy
to the Rabi problem (see Appendix B). Here, ke'® = k, + ik,
and 7, = %1 labels the two inequivalent Dirac points, oo =
41 determines the polarization of the light, v denotes the
Fermi velocity, and e > 0 is the elementary charge. We then
compute the instantaneous Berry curvature within the Rabi
approximation, which gives

62 [of 1U]:)L2
QF (k) = F— S——, )
h o 2kQ3
where A = eZE"—’”F is the bare Rabi frequency, A = “”‘TZ”F" is
Wy

the detuning, and Qr = /A2 + AZ is the Rabi frequency. We
emphasize that this result applies directly to any light-driven
Dirac material, and that similar considerations can be ex-
tended naturally to any material with electronic quasiparticles.
As we discuss below, a Floquet analysis expands this analysis
to all resonances numerically.

IV. MASTER EQUATION

To evaluate the quantity nv/Ep + ®yy of Eq. (1), we deter-
mine the steady state occupation n, (k) numerically. Similarly,
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we determine the Hall conductivity. We factorize the density
matrix p of the system as p = [, pk, where we choose a
discrete lattice of momenta k, centered around the Dirac point,
of size N x N. We represent each pi in the four-dimensional
basis of |0), c£,+|0), c;_IO), c;+c;_|0). The operators ck »
describe the upper and the lower band of momentum Kk, de-
picted in Fig. 1(a). We note that using this four-dimensional
basis enables us to determine the electron distribution n(k, w),
and treat undoped and doped graphene in a systematic manner,
by varying the chemical potential. For each px, we solve
the master equation. The master equation contains unitary
contributions from the equilibrium Hamiltonian Hy and the
light-matter interaction H.y,. The latter contains both the cir-
cularly polarized driving term, with electric-field strength Eg;,
as well as a longitudinal dc probing field Ey. In addition
to these unitary contributions, we introduce dissipative pro-
cesses, depicted in Fig. 1(a), modeled via Lindblad operators
(see Appendix A). The first describes decay from the upper to
the lower band, with a rate y; = 1/T;. The second describes
dephasing between the upper and the lower band, described by
arate y,, which we combine into y, = 1/T, = 1/(2T}) + 2y,.
The third rate y, = 1/T, corresponds to a single-particle ex-
change with a fermionic bath of temperature 7 and chemical
potential 1.

We first demonstrate that the experimental results of
Ref. [16] are captured with this model. In Fig. 2 we compare
the circular dichroism of the Hall conductivity, which is de-
fined as one half the difference of the response for right- and
left-handed circular polarization, of the measurement and our
calculation. We find that both the peak-field dependence in
Fig. 2(b) as well as the chemical potential dependence for high
fluence in Fig. 2(a) are in quantitative agreement. The chosen
E4: and wy; correspond to the peak driving field and central
frequency of the laser pulses used in the experiment, respec-
tively [16]. The dissipation rate 7; is inspired by Ref. [37]
and for 7, we choose 20fs, which is chosen to be notably
smaller than 7;. The decay rate 7), is adjusted to match the
experimental data. We find that 7, = 30-50fs are appropriate
depending on the electric-field strength [see Fig. 2(b)]. We
emphasize that the properties of the driven state crucially
depend on the dissipative environment. Both the measurable
properties, such as the transport behavior, and the steady state
itself are shaped by the dissipation. This key result demon-
strates the urgency of including the dissipative environment
to model a material, and provides guidance for the design of
light-induced material properties. On the conceptual side, it is
this dissipative environment that is not captured in a Floquet
analysis, but profoundly alters the physical behavior of the
system.

V. BERRY FLUX OF RABI STATES

In Fig. 3(b) we depict the contributions to the Hall con-
ductivity in momentum space &y, (K) = oxy(k)/A, as defined
in Appendix A. In addition to the negative contributions near
the Dirac point, which are not captured by the Rabi approach,
there are negative contributions below the single-photon res-
onance, and positive contributions above the resonance. For
comparison we depict the contributions to the Berry flux ®,,
as determined within the Rabi approximation, in Fig. 3(a).
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FIG. 2. (a) Circular dichroism of the transverse conductivity as
a function of chemical potential. The data from the numerical sim-
ulation (red line) and experimental data [16] (open circles) agree
quantitatively. (b) Electric-field dependence of the current dichroism
for several values of the particle-exchange timescale 7, as indicated
in the legend. We see that a value in the range of 7, = 30-50 fs
is consistent with the experiment. The parameters for the numeri-
cal simulation are wq, = 27 - 48 THz ~ 200 meV/h, T = 100 fs,
T, =201s, T =80 K, EL. =1.7kV/m, and the driving pulse has
a Gaussian envelope with electric-field strength full width at half
maximum (FWHM) of +/2 ps, corresponding to intensity FWHM
of 1 ps. Finally, Eqc = 26 MV /m and T, = 36 fs in (a) and chemical
potential & = 0 in (b).

We find that the Rabi solution for the curvature gives a
qualitatively correct description of the momentum-resolved
conductivity. We note that the Rabi solution does not capture
two-photon processes, which create the gap opening at the
Dirac point, as well as higher-order gaps.

In Fig. 3(c) we depict a quantitative comparison. We show
the momentum-resolved conductivity contributions integrated
over a disk of radius k., i.e., we show ZI K<k, Gxy (k). Similarly,
we show the contributions to the Berry flux ®,, integrated
to k., as well as the sum of the curvature and band velocity
contributions ®,y + nv/Ey, integrated up to k.. We note that
the integrated conductivity has been shifted up such that it has
a zero crossing at vk, ~ 30 meV, so that the behavior at the
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FIG. 3. Comparison of the momentum-resolved Berry flux, de-
picted in (a), which is obtained within the Rabi approximation, and
the momentum-resolved conductivity dichroism, depicted in (b). The
Berry flux displays a qualitatively similar behavior as the conduc-
tivity dichroism, in particular a sign change at the single-photon
resonance. The contribution near the Dirac point is not included
in the Rabi approximation. (c) We depict the conductivity density,
integrated over a disk in momentum space of radius k;, as shown
in (a). For comparison, we show the momentum-resolved Berry
flux, integrated over the same disk in momentum space, and the
sum of the integrated Berry flux and the integrated average band
velocity. The curves have been shifted such that their value vanishes
at ivglk,| = 30 meV for a better comparison of the contribution of
the first resonance. Consistent with the proposed estimate in Eq. (2),
the sum of the Berry flux and the average band velocity predict the
conductivity, even in a momentum-resolved manner. In all plots we
use Eq; =3 MV/m, wy = 27 - 48 THz =~ 200 meV /A, T; = 50 ps,
T,=10ps,T,=20ps, T =80K,E, =0.84kV/m, u =0, and the
driving pulse is ramped with a tanh over 1 ps.

single-photon resonance can be compared directly to the Rabi
solution.

We find that the momentum-resolved representation of
nv,/Ey + &y, gives a good prediction for the momentum-
resolved conductivity. Generally, the agreement is good for
small dissipation, in particular for small y,. The total value
of the conductivity, which is the measurable conductivity of
the system, is positive, and therefore of opposite sign than
the contributions near the Dirac point. This implies that the
positive contributions above the resonance, i.e., momentum
states with vpk > wq:/2, exceed the negative contributions
below the resonance, i.e., vpk < wg;/2. The sign change of
the contributions is a direct consequence of the split-band
picture depicted in Fig. 1(c). As mentioned above, in this
picture the predominantly occupied band switches at each

resonance. The specific value of the conductivity depends
continuously on the driving frequency and the dissipative
properties of the system.

The momentum-resolved Berry flux, which is depicted in
Fig. 3(a), derives from the Berry curvature and the occupation
of the Floquet bands. The Rabi approximation describes the
Floquet bands near the single-photon resonance. In Fig. 1(c)
and 1(d), this resonance occurs at vgk =~ 100 meV. The
Rabi approximation of the curvature, given in Eq. (2), predicts
negative values of the curvature for the upper band, and posi-
tive curvature for the lower band, localized near the resonance.
The occupation of the upper band n (k) is larger than the
occupation of the lower band n_ (k) for momenta smaller than
the resonance. For momenta larger than the resonance we
have n (k) < n_(k). This change of predominant occupation
results in a partial cancellation of the Berry flux. However,
the lower-band contribution dominates, resulting in a positive
contribution for the flux. Both the Berry curvature and the
Berry flux are rotationally symmetric. In contrast, the average
band velocity is manifestly anisotropic, since the band veloc-
ity v)‘,’ vanishes along the k, direction (see also Ref. [34]). This
gives rise to the modest anisotropy of the Hall conductivity
[see Fig. 3(b)].

VI. BERRY FLUX OF FLOQUET STATES

We expand this analysis by determining the Floquet bands
of the driven system, and their band velocity and curvature, as
described in Appendix E. While the Rabi solution gives access
to the properties of the single-photon resonance, the Floquet
analysis gives the light-induced band properties to any order.
We utilize the band velocities and the Berry curvature that is
obtained from the Floquet bands, and combine them with the
band occupations derived from n(k, w), as shown in Fig. 1(c),
to determine the average band velocity and the Berry flux.

In Fig. 4(a), we display these quantities, and the sum of
the average band velocity and the Berry flux. We find again
that the sum of the Berry flux and the average band velocity
gives a good prediction for the conductivity. The prediction is
particularly good for small dissipation. We also display the
Rabi approximation, which gives a good estimate at small
Eq4:. We note that for small Eg4, the band velocity contribution
dominates, whereas for larger values of Eg, the Berry flux
dominates. The Berry-flux-dominated regime is achieved in
the strongly driven regime, because the Floquet bands become
flat, and the band velocities throughout the bands approach
Zero.

In Fig. 4(b) we display the momentum-resolved contribu-
tions to the conductivity for zero dephasing rate y, = 0. Our
prediction for the conductivity based on Berry flux and aver-
age band velocity agrees almost perfectly with the simulated
conductivity. We note that we find equally good agreement
for nonzero y,, when considering only the momentum modes
along the k, direction (see Appendix G). When considering all
momenta and nonzero y;, the contributions to nv/E;, + @y
deviate from the contributions to the conductivity oy, giv-
ing rise to the deviation between nv/EL + @, and oy, in
Fig. 4(a). This suggests an additional contribution due to the
dephasing rate y,, possibly related to coherences between the
Floquet bands, to be discussed elsewhere. We note that at
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FIG. 4. (a) Comparison of the electric-field dependence of the
conductivity dichroism, the Berry flux, and the average band velocity.
Black diamonds show the simulated conductivity dichroism, and the
faint dashed line the sum of the Berry flux and the average band
velocity within the Rabi approximation. Red triangles show the sum
of the Berry flux and the average band velocity, based on Floquet
states. Blue squares show the Berry flux only and blue circles the
average band velocity only. (b) We show the conductivity density
Gy, integrated over a disk in momentum space with radius k,,
for zero dephasing rate y, = 0. This integrated conductivity agrees
with the sum over the Berry flux and the average band velocity,
integrated over the same disk. For both panels the parameters are
wgr =27 -48 THz ~ 200meV /i, Ty = 1ps, T, =0.4ps, T =80K
and EL. = 1.7 kV/m. In (a) 7, = 0.2 ps and in (b) T, =2 ps and
E4 = 26 MV /m. All observables are shown after a steady state is
achieved for a tanh-type ramp of the driving field strength.

integer multiples of the resonance frequency at 2vgk = nwq;,
the momentum-resolved sum of the Berry flux and average
band velocity changes sign. This behavior was described
for the single-photon resonance above, and repeats itself for
higher orders. We observe that while the momentum-resolved
contribution to all three quantities is large, there is a near can-
cellation of these contributions for higher-order resonances.

VII. CONCLUSION

The conceptual achievement that we put forth here is
widely applicable for the description of light-induced dy-
namics in solids with well-defined electronic quasiparticles.
We have presented a versatile and efficient master equation
approach that includes the dissipative environment, enabling

the description of light-driven solids under realistic condi-
tions. The dissipative environment, which is ignored in the
Floquet description of the driven system, shapes the emerging
steady state by balancing out the light-induced force on the
electrons. Furthermore, our approach is well suited to describe
realistic driving frequencies that are small compared to the
electronic bandwidth, and therefore induce resonant interband
excitations, and treat the dynamics that are induced by probing
processes explicitly.

Even though the construction of the light-induced Floquet
states is an incomplete description of a light-driven solid,
because the dissipative environment is ignored, we point out
what features of Floquet states manifest themselves in its
presence, resulting in Floquet physics in realistic materi-
als. The key elements of our approach were exemplified for
the recently observed light-induced Hall effect in graphene,
for which we obtain a quantitative understanding. We have
shown that the Hall conductivity is predicted by the sum of
the average band velocity and the Berry flux of the light-
induced Floquet bands. Therefore our prediction combines
geometric properties of the Floquet bands, and dissipative
properties of the material, which identify the Hall effect as
a geometric-dissipative effect. This insight, derived from our
master equation description, demonstrates the effectiveness of
our approach, and motivates its application to a wide range of
light-induced dynamics in solids.
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APPENDIX A: NUMERICAL ALGORITHM FOR THE
COMPUTATION OF CURRENTS

We use the von Neumann equation for the unitary part
of the time evolution and include interactions as well as
other damping and dephasing effects by including Lind-
blad operators. When using the Weyl gauge the Hamiltonian
does not couple different momentum points. As mentioned
in the main text we therefore consider the ansatz p = [, pk
for the density matrix o of the system. The full time evolution
of the density matrix is then governed by the master equation
[38]

i _i[ H ]_lZ(LaTLa + LaTLa_ZLa LaT)
dtpk—h,ok, k=3 : Pr+ Pk Pk .

The first line of this equation describes the unitary part of
the time evolution, fully determined by the Hamiltonian of
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FIG. 5. Sketch of the graphene dispersion relation (left). In the
Weyl gauge the Hamiltonian decouples in momentum space such that
we can treat each momentum point as a two-level system (sketch on
the right-hand side). We also sketch the effect of damping (7;) and
dephasing (73) effects.

the system. The second line with the Lindblad operators L*
accounts for damping and dephasing effects.

In the Weyl gauge (for details, see Appendix F) the
graphene Hamiltonian with light field coupled via minimal
coupling can be written such that it remains diagonal in mo-

mentum space,
H = ZHk.
k

Each momentum mode is modeled by a two-level system (see
Fig. 5) and hence there are four possible fermionic states, that
correspond to an empty mode, a particle on the A sublattice, a
particle on the B sublattice, and a fully occupied mode,

Wi = (|11) [01)  [10)  [00)),
where |11) = c; Ac; 5l0) and ClTw creates an electron with
momentum K in band o.

In order to write the Hamiltonian with respect to this basis
we introduce a set of Pauli-type matrices,

00 0 0 00 0 0
o 0o 1 0 o 0o —-i o
%“=1o 1 0 o] “=lo i o of
00 0 0 00 0 0
00 0 0 00 0 0
o 1 0 o o_ [0 0 0o o
=10 0o -1 o] % Tlo o 1 o

00 0 0 0 0 0 -1

1 0 0 0 0 0 0 0
so_|0 -t ool __fo 12 0o o0
:=1lo o o o] %=lo o 12 o

0 0 0 0 0 0 0 0

For the linearized dispersion relation the Hamiltonian for
each momentum point further splits into a sum of two terms,

Hy = Hyx + Hen (1), (AD)
where

Hem (1) = Har k(1) + Hp k(7). (A2)

The first contribution is the equilibrium Hamiltonian with-
out any light field applied. Except for the chemical potential
it contains only terms of type oy, . because the empty and
the fully occupied sector do not have a unitary time evolution.
In our calculations we include the chemical potential in H ,
such that it becomes

Hox = V] [ve(tkeoy + kyoy)
- u(l+o.+0 +02) W

Here, t, = %1 is the valley index, describing the two Dirac
points, k is the momentum relative to the Dirac momenta K
and K’, and vg ~ 10° m/s is the Fermi velocity. We suppress
spin indices.

The second and third terms represent the two light fields,
that are coupled through the Peierls substitution k — k —
1A(r, 1), with charge ¢ = —e and e > 0 being the elementary
charge. The second term resembles the experimental driving
or pump pulse and is a circularly polarized electromagnetic
field propagating along the z direction,

Hir i (t) = evp W] (1Aq x0 + Adr.y0, ) Wi,

A t
Ag = (%) =~ | df' Eq(t),
Adr,y 0

Eq(t) = — Eq Zenv(1)[cOs(wqyrt ey + Opol Sin(wdrt)ey]v

opol defines the polarization of the light, e, , are unit vectors

in the x and y directions, and gen(?) is the envelope of the

pulse. The envelope geny () is either chosen to be a Gaussian

envelope or a tanh-type switch on. Furthermore, we only

give the fields in the x-y plane (at z = 0) as, without loss of

generality, we choose the graphene sheet to lie in this plane.
For geny(f) = 1 we obtain

€Ed1- VF

Hyx = ‘I’E[Tz sin(wgrt )0y — Opol COS(Wqrt )oy | W

Wdr
(A3)

The third term is a dc longitudinal field, that resembles the
experimental probe field

HL,k = eUFsswitch(t)\Ijz(TzAL,xe + AL,yUy)\pks
where

EL(t) = ELe,,

t
AL(t) = —/ dt'EL(t) = —Evt ey,
0

and Sqwitch () denotes a switch-on during the first 0.1 ps.

In the high-frequency limit for the pump pulse the second
term of the Hamiltonian can be approximated by an effective
Hamiltonian describing the low-frequency dynamics of the
system [22,23],

Heff,k = _genv(t)opolAhf "Ij]jo'z\pka

where Aps = (hvpeEg)?/(hwg: ).
In addition to the unitary time evolution governed by
the Hamiltonian Hyx we include Lindblad operators defined
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in the basis that diagonalizes the instantaneous Hamiltonian
Hgr x (1),

Dy =Uy Wk,
where
1 0 0 0
U = 0 1 V2 w20 . (A
0 T.e%%/2 —1/¥2 0
0 0 0 1

and ¢y is defined via

K+ e/hiAle™ = [kx + %Ax + "(ky + %Ay)]'

In this basis we introduce
0 841 Sa3 0

801,2 0 80{,5 80(.7

LY = \/cq

forae =1,2,...,10,
801,4 8%6 0 «,9

0 Sug a0 O
LH:\/EGZ,

|

with for now arbitrary constants c¢,. Here, ¢s5 and cg corre-
spond to decay effects and y, corresponds to dephasing effects
in the singly occupied sector. Additionally, we explicitly allow
for the exchange of particles with the back gate. The timescale
and dynamics for the exchange of particles are set by the
damping constants c¢;—c4 and c¢7—cyg.

We note that the transformation in Eq. (A4) is ill
defined when |k + e¢/AA| =0. In this case Hx =0 and
the instantaneous Hamiltonian is diagonal with respect
to any basis. We choose to implement the same Lind-
blad operators as above in the original AB basis for this
case.

We find that the resulting equations of motion for the
density matrix decouple into different sectors and write
the density matrix in the sector that is relevant for computing
the current as

Pk = Og + Pkx0x + POy + P07 + P00 " + px 202

The resulting equations of motion are

1i0; Pk ,x = OkteA Pk, — €kterPk,y — [T+ (c1 +¢3 + 8 + ¢10)/2] ok
1o px,y = €kteaprx — [+ (c1 + 3 + cg + c10)/2] ok,
R, p,; = SkteaPrx +€3(1/2 4 pro — Pr,2) — capr2 +c5(1/2 4 pro — pr.2) — c6(1/2 + pk: — Pk2)

— ¢70K,0 — c8(1/2 + pxz — Pk2)s

hd, px,0 = — (c7 + c9)pk,0 — c10(1/2 + pxo — Pk2) — cs(1/2 + Pz — Px.2),
R, px2 = — (c2 + ca)pk 2 + c3(1/2 + pro — Px2) + c1(1/2 + pkz — Pk2)s

where

y2 = (c5 +¢6)/2+ 2y,
€kter = 27.Vp[A[K| 4 ek - A/[K]],
Skrea = 27, Ur[eA x K/[K]].
We note that while we give the equations of motion in the ba-
sis diagonalizing Hy x here, we implement them in the original

AB basis in the numerical simulations.
We choose the damping constants Boltzmann distributed

v =1/15,

¢s = cgexp(—2B¢€), c¢s+cs = 1/T1,

cp =cexpl—B(—e —w)l, c1+c=1/T,

cz =caexpl—B(e —w)l, c3+ca=1/T),,

c7 =cgexpl—B(e —w)l, c¢7+cs=1/T),
and

cg =cioexp[—p(—€ — )], co+cio =1/T),

where € = v/ (lik, + €A, )? + (fiky + eAy)2 are the instanta-
neous eigenenergies.

This ensures that the ground state of the system without the
light field is Fermi distributed with chemical potential x and
inverse temperature 8 = 1/(kgT).

Note that 77 and T, are the commonly introduced decoher-
ence measures. In analogy we define a third timescale 7, for
the exchange of particles with the back gate.

We solve the master equation numerically and then com-
pute the current for each momentum point,

. dHy

Jk = 8_A = evF(rz(0x>ex + (Uy)ey),
where the Pauli matrices here refer to the singly occupied
sector and empty and doubly occupied modes do not con-
tribute to the current. The conductivity is then obtained as
oxy(K) = limg, 0 jyk/EL. We perform the calculation of jy
at experimentally realistic values of Ej, and have checked
that these values realize the linear response limit. Finally, we
define the conductivity density

6xy = Z ny(k)»

where A is the lattice size and the full conductivity

Oxy = E Oxy-
Kk
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We note that a similar method for the calculation of current
has been used in Ref. [34]. The crucial difference is that
we explicitly allow for the exchange of particles by includ-
ing the empty and the fully occupied mode. In particular
this also implies that we introduce a separate timescale for
particle-exchange processes 7,,. Also in our case the trace
of the density matrix is ensured to be 1 at all times as in
Ref. [34]. Quantitatively the approach presented here yields
better agreement to experimental data from Ref. [16]. Fur-
thermore, including the empty and doubly occupied mode is
crucial for the calculation of the single-particle correlation
function.

APPENDIX B: ROTATING-WAVE APPROXIMATION

FOR GRAPHENE: RABI-BLOCH BANDS

We start from the graphene Hamiltonian from Eq. (A1)
with no longitudinal field,

Hy = Hox + Har x ().
The undriven Hamiltonian is diagonalized by

H{ =U'HyU = hvgkor,

1 1
1/*/§<ei¢k _et¢k>’
ik Tk + ik,\'.

k
In this basis the driving Hamiltonian is

eEqvr [ T,54;
Hyrx(t) = ——| .
Wr 10pol Cdr

U

e

—10pol Car
—TSdr ’
where

Sar = sin(wgt — Tzapol¢k)v
car = cos(wgrt — Tzapol¢k)-
Next, we do the rotating-wave approximation, keeping only

those terms nonoscillatory in the rotating frame. Then

UpOIEEd[UF ( 0 _ieiwtirt+if10pol¢k>

Hg x(t) ~ o ot =i 0

In analogy to the Rabi problem the system can now be solved
analytically. The eigenenergies are Er 1 = —hwq:/2 £ QR
and the eigenstates are

[ (1)) :|wR,+(t)>eiiQRt + |WR,7(I)>€iQR[,

where

Q
bA+a)\ jiwgt/2
(b + o )e e

[Vr£(1)) = (

. i, A—bLY it /2
—io etk (g o= GAZbLY p—iwa
pol ( + R )

Furthermore,

A= wWqr — ZUFk’
2

VA2 + A2,
_ eEder
T 2hwg

QR

and the constants a and b are integration constants constrained
by normalizing [{g +(¢)). The remaining freedom in a and b
determines the initial state. The band velocity in the y direc-
tion is immediately obtained as

vy (k) = yEg +.
Further, note that
7z (Opolkx + lk})
—

Next, we determine the instantaneous Berry curvature. For
this we need the eigenstates with respect to the original AB
basis,

Gpolelfzﬂpmd’k —

[WRE @) = Ulyr £ ().
The Berry connection is now given by
A7 = iy VRE),
and as a result we obtain the Berry curvature as
QF(k) = d,A, — A,

Opol U]:}nz Re[(ky + iUpO]kx)eiwdrt]UF)\.A
ZkQ%{ 2/629132 ’

Finally, we can compute the resulting Hall conductivity from
Eq. (1) from the main text, where the Rabi occupations are
computed from the density matrix pk as

ng,+(K) Z(wﬁlimkwlfgﬁ:)'

Note that both the Berry curvature and the occupations
are time dependent. Therefore there is a time-independent
contribution from time-dependent curvature and occupations.
We have checked that this contribution is at least an order
of magnitude smaller than the time-independent contribu-
tion and hence the quantities can be averaged independently
QE(k, Hng +(k, 1) ~ Q*(Kk, 1) ng +(k, t). Hence we can drop
the second, time-dependent contribution to the Berry curva-
ture.

APPENDIX C: NUMERICAL RESULTS WITHIN
THE RABI APPROXIMATION

As described in the main text, mapping graphene onto
the Rabi problem is a good approximation close to the first
resonance. By the nature of the approximations made the
Rabi results are not valid close to the Dirac point and hence
the contribution of the Dirac point cannot be captured. We
have therefore shifted the curves in Fig. 3(b), such that only
the conductivity density of the first resonance is integrated.
For completeness we show the unshifted version in Fig. 6(a).
For the low dissipation considered the Dirac point obtains a
significant contribution that is larger than the contribution of
the first resonance. We also show results for higher dissipation
in Figs. 6(b) and 6(c), where the contribution of the Dirac
point is small.

APPENDIX D: CALCULATION OF SINGLE-PARTICLE
CORRELATION FUNCTION

Given a density matrix at a certain time p(#;) by the numer-
ical methods of Appendix A, the single-particle correlation
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FIG. 6. We depict the conductivity density, integrated over a disk
in momentum space of radius k. For comparison, we show the
momentum-resolved Berry flux, integrated over the same disk in
momentum space, and the sum of the integrated Berry flux and the
integrated average band velocity. Both are obtained within the Rabi
approximation. In (c) the curves have been shifted such that their
value vanishes at fivglk.| = 30 meV for a better comparison of the
contribution of the first resonance. In all plots we use £y, = 3 MV/m,
wg =27 - 48 THz ~ 200 meV/h, T =80 K, E;, = 0.84 kV/m,
=0, and the driving pulse is ramped with a tanh over 1 ps.
(a) shows T} = 50 ps, T, = 10 ps, T, = 20 ps, while (b) and (c) show
Ty =4ps, T, =0.8ps, T, = 1.6 ps.

function (c(t;)"c(t;)) can be calculated. The state is acted
upon with an annihilation operator ¢ which gives a matrix of
the shape

0 0 0 O
rn 0 0 O
cp (tl ) = r; O O 0
0 r3 ¥4 0

This object is evolved to a later time #, using the equations of
motion

F=—r(i+T1 + T34 Ty) — e ry(+ivelgl + T3 — Ty),
Fo=—ra(ip + Ty + T3 + T4) — e r(+ivplg| + T3 — T4),
Fy=—r3(in + T2 + T3+ Tu4) — e ry(—ivelg| + T3 — Ty),
Fy=—r4(ip+ T2 + T3+ T4) — e P r3(—ive|q| + T3 — Ty),

where

(ld)

=50 4y Ly = 304" + 7" +p2),

Ty = + 7 + ).

+ ),
Ty =3 4+ 78 4 D),

Here, it is g = g, + ig, the momentum and ¢ = arg(q) its
phase. u is the chemical potential.

At any time #, this state can be acted upon with ¢’ and
traced over to give the correlation function.

The occupations of the system are then calculated using an
approach inspired by trARPES [36],

1 topt ]
nk, w) = m / / (c'(tr)c(ty )>€lw(r27{l)dt1dlz
- fo Iy

— 2 ' ' T iw(t—ty)
= Re (c"(tr)c(ty))e dnydt |.
r—1o o Jn

The occupations of the individual Floquet bands are as-
signed by integrating n(k, w) over frequency intervals of
multiples of w,;/2, starting and ending centered at the band
8aps,

(1Yo
g2 (K) = / n(k. w)do.
(

a—gEg o

The effective Floquet band occupations are found by summa-
tion over the Floquet index,

ne(k) =) ny (k).

APPENDIX E: FLOQUET-BERRY CURVATURE
CALCULATION

Here, we present the details on the calculation of the Berry
curvature of Floquet bands. For each momentum k we use the
quasienergy operator in the extended Floquet-Hilbert space
(for details, see, for example, Ref. [39])

Q— Hy, H,;
- H—l H0+ha)dr .

where
H, = /dt e_i’"“’d'l[Ho,k + Hyr x (2)]

and

genv(t) = 1.

In order to get the Floquet eigenstates and eigenenergies
we diagonalize Q after truncating such that —4 < m < 4.
The Floquet band structure is obtained from combining the
eigenenergies of different momentum points. Subsequently
we use the method presented in Ref. [40] in order to determine
the Berry curvature numerically. Finally, the Floquet band
velocity is obtained by numerically computing the momentum
derivative of the Floquet eigenenergies.
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FIG. 7. We show the conductivity density &y, integrated over
momenta in an interval on the y axis, specifically fulfilling k, = 0,
|ky| < k7. This integrated conductivity agrees with the sum over
the Berry flux and the average band velocity, integrated over the same
interval. The parameters are £y, = 26 MV/m, wy, = 27 - 48 THz =~
200 meV/h, Ty =1ps, T, =0.2psand T, = 0.4 ps, T = 80 K, and
E; = 1.7 kV/m. All observables are shown after a steady state is
achieved for a tanh-type ramp of the driving field strength.

APPENDIX F: WEYL GAUGE

Here, we discuss the meaning of different gauge choices
and their importance for our method. For all our calcu-
lations we choose the Weyl gauge, i.e., we choose the
scalar potential ¢ = 0 and the time-dependent vector poten-
tial A(r,t) = — f dt E(r,t). Using the Peierls substitution
k— k- %A(r, t) this leads to a time-dependent shift of the
momentum in the Hamiltonian. This can be viewed as a
time-dependent shift of the band structure. The Weyl gauge
is particularly useful for an electric field that is spatially con-
stant within the graphene sheet in the x-y plane. In this case
the vector potential within the x-y plane can also be chosen
independent of position and hence the contribution to the
Hamiltonian decouples in momentum space. As an example
for the choice of gauge we consider a uniform electric field
E = E¢&, and vanishing magnetic field B = 0. For this case the
Weyl gauge implies A = —Et. The vector potential is indeed
independent of position. An alternative gauge choice would
be a special case of the Coulomb gauge, A = 0. This choice
implies ¢ = Ex which can be viewed as a tilt of the lattice
potential. The resulting Hamiltonian obtains a nontrivial spa-
tial dependence and hence is no longer diagonal in momentum
space.

APPENDIX G: HALL CONDUCTIVITY FOR A CUT
ALONG THE Y DIRECTION

In Fig. 7 we display the momentum-resolved contributions
to the conductivity, integrated over the momentum state in-
terval from —k;™* to k™ on the k, axis. The corresponding
integral over the contributions to nv/Ey + ®y, are depicted
as well. We find essentially perfect agreement for these
quantities. Hence, the deviations between these quantities in
Fig. 4(a) in the main text arise predominantly from the k,
direction, where the average band velocity vanishes and only
the Berry flux contributes.

T T T ’.' T
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3 60| e e
1S - P e -.-"‘v: -----
— —“‘ Od i - o
< ‘4' R * Lo s
» »*
30 Lt T e -7
¢" 4"“ Rliae - -
e -* ws® -
A PSSt L -—r=r" |
0 5 ettt i T
0 10 20 30 40
Eqr [IMVmM™1]

FIG. 8. (a) Resonance-resolved conductivity dichroism as a
function of electric-field strength. The solid black line shows the
full current, while the dashed-dotted blue line shows only the con-
tribution from the gap at the Dirac point and other lines show the
contributions up to and including the nth resonance as indicated in
the legend. (b) Gap sizes as a function of electric-field strength.
The dashed-dotted blue line shows the gap at the Dirac point, while
other lines show the gaps at the nth resonance as indicated in the
legend. The dashed gray line shows the approximate scale of temper-
ature, damping, and dephasing effects kg7 =~ hi/T; ~ 6 meV. The
parameters used are wq, = 27 - 48 THz ~ 200 meV /A, Ty = 100 fs,
T,=201s,T,=40fs T =80 K, EL. =1.7kV/m, u =0, and the
envelope of the driving pulse is a tanh-type interpolation from O to 1,
that reaches 1 after 1 ps.

APPENDIX H: SUBSEQUENT OPENING OF GAPS

For larger electric field strength it is no longer sufficient
to consider the first resonance only. The contribution in the
high-frequency limit without damping has been analyzed in
Refs. [22-26]. In this limit there are no resonant contributions
and the total Hall current is oy, = —2%. For this result it is
assumed that only the lower graphene band is occupied. Under
experimental conditions finite frequency driving leads to exci-
tations into the upper graphene band. For intermediate driving
strength the Berry curvature is still well localized around
the Dirac point and individual resonances. We can therefore
investigate each of the contributions separately. Depending on
the strength of damping and dephasing effects one obtains a
steady state with significant occupation in the upper graphene
band close to the Dirac point [see Fig. 1(a)]. The upper band
has opposite Berry curvature and hence contributes to the Hall
current with opposite sign. Hence the Hall current arising
from the Dirac point is significantly reduced for experimental
conditions. Since the occupation of the lower band is always
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FIG. 9. Integrated Hall conductivities. We show the sum of the
conductivity for all momenta smaller than a threshold value as a
function of threshold momentum. The first, second, and third res-
onance are indicated by dashed lines. We use wq, = 27 - 48 THz ~
200 meV/h, Ty = 1ps, T, =200 fs, T, =200 fs, T =80 K, EL. =
1.7kV/m, u = 0, and the envelope of the driving pulse is a tanh-type
interpolation from O to 1, that reaches 1 after 1 ps.

larger than the one of the upper band the net contribution from
the Dirac point is always negative.

The main resonant contribution comes from those gaps that
are lying on the original lower Dirac cone. For these gaps the
Floquet band below the gap has positive curvature while the
band above has equal and opposite curvature. Hence for equal
occupation of both bands close to the gap, there is no net
contribution to the current. This is the case for higher-order

gaps with a magnitude smaller than temperature and damping.
We say that these gaps are closed [see Fig. 8(b)]. In Fig. 8
only the first gap is open for electric-field strengths smaller
than 8 MV/m. In this regime the current is well described
by the Rabi-Berry curvature. For field strengths larger than
10 MV /m we expect the current arising from the first reso-
nance to saturate. The reduction that can be seen in this regime
in Fig. 8 is a numerical artifact that we explain in Appendix I.
While the current arising from the first resonance saturates,
the second resonance gap opens and for higher Eq4 leads to
a further increase of the Hall conductivity. At even higher
field strengths the higher-order gaps open subsequently. For
each gap the net contribution to the current is positive since
there is more occupation in the band below the gap than in the
one above. Hence the total resonant contribution is opposite to
the high-frequency contribution. Furthermore, we find numer-
ically that the magnitude of the high-frequency contribution is
always smaller than the magnitude of the resonant contribu-
tions and usually is a minor effect. This is in agreement with
the sign of the current in Ref. [16].

APPENDIX I: RESONANCE-RESOLVED CONDUCTIVITY
AND RESONANCE BROADENING

For low driving field strength Eg4 the current is well lo-
calized around individual resonances. In contrast, for large
E4: resonances start overlapping and it is therefore difficult
to identify the current arising from individual resonances.
We show an example of this phenomenon in Fig. 9. For low
values of Ey, there is no contribution to the current in between
resonances. Hence the integrated conductivity shown in Fig. 9
is constant. For larger values of Eg; resonances get broadened

u [meV]
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—100
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FIG. 10. Circular dichroism of the transverse conductivity. (a) shows the total conductivity as a function of applied chemical potential.
(b)—(e) show the momentum-resolved conductivity for several different chemical potentials as indicated by black squares in (a). The panels are
aligned in the same order as the squares in (a). Black circles denote the position of the first bare resonance 2vgk = wq,. For these panels we
average the conductivity of opposite momentum modes o (k) = [0y(k) + 0,,(—k)]/2 and for both Dirac points. The center of each panel (0,0)

is positioned at the Dirac point. The parameters for all panels are Eq, = 1 MV/m, wy, = 27 - 48 THz, T}

100 fs, T, = 20 fs, T, = 25 fs,

T =80 K, EL =840 V/m, and g.,(¢) is a Gaussian envelope with a full width at half maximum fgwpy = 1 ps.
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FIG. 11. (a) Chemical-potential-resolved circular dichroism of the transverse conductivity. Black circles show experimental data from
Ref. [16] and the solid red line shows results from our numerical simulation. Here, p is the chemical potential of the initial state and we
do not allow for the exchange of particles during the simulation. (b) Fluence dependence of the current dichroism for several values of
the particle-exchange timescale T, as indicated in the legend. We see that a value in the range of 7, = 30-50 fs is consistent with the
experiment. For both panels the parameters for the numerical simulation are wqy, = 27 - 48 THz ~ 200 meV/A, T} = 100 fs, 7, = 20 fs,
T =80 K, E. = 1.7 kV/m, and the driving pulse has a Gaussian envelope with electric-field strength FWHM of +/2 ps, corresponding to
intensity FWHM of 1 ps. Furthermore, we use Eq = 26 MV /m and 7, = 36 fs in (a) and i = 0 in (b). For details on the experimental data,

see Ref. [16].

and there is no such constant regime. This is an indication
that the contribution of neighboring resonances is now over-
lapping. Since the contribution from resonances is always
negative below and positive above the resonance, overlapping
resonances lead to canceling contributions.

When we compute the resonance-resolved conductivity
as in Fig. 8, we do this by integrating the current up to
the momentum value halfway in between the corresponding
resonances. In other words we use the corresponding value of
the curve in Fig. 9. Once resonances start overlapping the con-
tributions cancel and hence lead to decreasing contributions
of the inner resonances. This is the reason why the curves in
Fig. 8 decrease.

APPENDIX J: CHEMICAL POTENTIAL DEPENDENCE
AT LOW FLUENCE

The momentum-resolved conductivity allowed us to iden-
tify the different contributions to the transverse current. In
experiment, however, such data are not easily accessible. In-
stead it is possible to tune the applied back gate, i.e., the
chemical potential [16]. When increasing the chemical poten-
tial, momenta close to the Dirac point are fully occupied and,
due to Pauli blocking, do not contribute to the conductivity.
For momentum modes smaller than the first bare resonance
negative contributions to the conductivity dominate. For in-
creasing chemical potential conductivity from these modes

becomes suppressed and the total conductivity increases (see
Fig. 10). Near the first resonance the situation reverses. Now
momentum modes above the resonance become fully occu-
pied and increasing the chemical potential further leads to
decreasing total conductivity. Hence the chemical-potential-
resolved transverse conductivity shows a clear signature of the
resonant behavior.

APPENDIX K: COMPARISON OF FIXED CHEMICAL
POTENTIAL AND FIXED DENSITY

For the simulation of the experiment from Ref. [16] it is
crucial to work at a fixed chemical potential instead of a
fixed density. To illustrate the difference we show a simulation
enforcing fixed density for each momentum mode during the
time evolution in Fig. 11(a). The parameters are the same as
in Fig. 2(a) in the main text. The shape of the curve is funda-
mentally different from the experimental data. We conclude
that the exchange of electrons with nonilluminated regions of
the graphene sample as well as with the substrate is important
even on the short timescales of the circularly polarized pulse.

APPENDIX L: FLUENCE DEPENDENCE

For completeness and for better comparison to the exper-
iments in Ref. [16] we show the data from Fig. 2(b) in the
main text as a function of fluence instead of peak driving field
in Fig. 11(b).

[1] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C.
Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri,
Light-induced superconductivity in a stripe-ordered cuprate,
Science 331, 189 (2011).

[2] W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, 1. Gierz, M. C.
Hoffmann, M. Le Tacon, T. Loew, B. Keimer, and A. Cavalleri,

Optically enhanced coherent transport in YBa, Cus Ogs by
ultrafast redistribution of interlayer coupling, Nat. Mater. 13,
705 (2014).

[3]1 M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi,
S. Lupi, P. Di Pietro, D. Pontiroli, M. Ricco, S. R. Clark, D.
Jaksch, and A. Cavalleri, Giant THz photoconductivity and

043408-13



M. NUSKE et al.

PHYSICAL REVIEW RESEARCH 2, 043408 (2020)

possible non-equilibrium superconductivity in metallic K5Cq,
Nature (London) 530, 461 (2016).

[4] J.-i. Okamoto, A. Cavalleri, and L. Mathey, Theory of En-
hanced Interlayer Tunneling in Optically Driven High-7,
Superconductors, Phys. Rev. Lett. 117, 227001 (2016).

[5] J.-i. Okamoto, W. Hu, A. Cavalleri, and L. Mathey, Transiently
enhanced interlayer tunneling in optically driven high-7, super-
conductors, Phys. Rev. B 96, 144505 (2017).

[6] D. N. Basov, R. D. Averitt, and D. Hsieh, Towards proper-
ties on demand in quantum materials, Nat. Mater. 16, 1077
(2017).

[7] M. Aidelsburger, M. Atala, S. Nascimbene, S. Trotzky, Y.-A.
Chen, and I. Bloch, Experimental Realization of Strong Effec-
tive Magnetic Fields in an Optical Lattice, Phys. Rev. Lett. 107,
255301 (2011).

[8] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger,
Creating, moving and merging Dirac points with a Fermi gas
in a tunable honeycomb lattice, Nature (London) 483, 302
(2012).

[9] T. Uehlinger, D. Greif, G. Jotzu, L. Tarruell, T. Esslinger, L.
Wang, and M. Troyer, Double transfer through Dirac points in
a tunable honeycomb optical lattice, Eur. Phys. J.: Spec. Top.
217, 121 (2013).

[10] J. Struck, M. Weinberg, C. Olschliger, P. Windpassinger, J.
Simonet, K. Sengstock, R. Hoppner, P. Hauke, A. Eckardt, M.
Lewenstein, and L. Mathey, Engineering Ising-XY spin-models
in a triangular lattice using tunable artificial gauge fields, Nat.
Phys. 9, 738 (2013).

[11] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Experimental realization of the
topological Haldane model with ultracold fermions, Nature
(London) 515, 237 (2014).

[12] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbéne, N. R. Cooper, I. Bloch, and N.
Goldman, Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms, Nat. Phys. 11, 162 (2015).

[13] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I.
Bloch, A Thouless quantum pump with ultracold bosonic atoms
in an optical superlattice, Nat. Phys. 12, 350 (2016).

[14] C. Grossert, M. Leder, S. Denisov, P. Hinggi, and M. Weitz,
Experimental control of transport resonances in a coherent
quantum rocking ratchet, Nat. Commun. 7, 10440 (2016).

[15] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L.
Wang, M. Troyer, and Y. Takahashi, Topological Thouless
pumping of ultracold fermions, Nat. Phys. 12, 296 (2016).

[16] J. W. Mclver, B. Schulte, E.-U. Stein, T. Matsuyama, G. Jotzu,
G. Meier, and A. Cavalleri, Light-induced anomalous Hall ef-
fect in graphene, Nat. Phys. 16, 38 (2020).

[17] H. L. Calvo, H. M. Pastawski, S. Roche, and L. E. F. Foa Torres,
Tuning laser-induced band gaps in graphene, Appl. Phys. Lett.
98, 232103 (2011).

[18] G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A.
Balseiro, Irradiated graphene as a tunable Floquet topological
insulator, Phys. Rev. B 90, 115423 (2014).

[19] P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, and L. E. F. Foa
Torres, Floquet chiral edge states in graphene, Phys. Rev. B 89,
121401(R) (2014).

[20] H. Dehghani, T. Oka, and A. Mitra, Dissipative
Floquet topological systems, Phys. Rev. B 90, 195429
(2014).

[21] K. Kristinsson, O. V. Kibis, S. Morina, and 1. A. Shelykh,
Control of electronic transport in graphene by electromagnetic
dressing, Sci. Rep. 6, 20082 (2016).

[22] T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys.
Rev. B 79, 081406(R) (2009).

[23] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological
characterization of periodically driven quantum systems, Phys.
Rev. B 82, 235114 (2010).

[24] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Trans-
port properties of nonequilibrium systems under the application
of light: Photoinduced quantum Hall insulators without Landau
levels, Phys. Rev. B 84, 235108 (2011).

[25] H. Dehghani, T. Oka, and A. Mitra, Out-of-equilibrium elec-
trons and the Hall conductance of a Floquet topological
insulator, Phys. Rev. B 91, 155422 (2015).

[26] T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, and H.
Aoki, Brillouin-Wigner theory for high-frequency expansion in
periodically driven systems: Application to Floquet topological
insulators, Phys. Rev. B 93, 144307 (2016).

[271 E D. M. Haldane, Model for a Quantum Hall Ef-
fect without Landau Levels: Condensed-Matter Realiza-
tion of the “Parity Anomaly”, Phys. Rev. Lett. 61, 2015
(1988).

[28] T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, Dirac
materials, Adv. Phys. 63, 1 (2014).

[29] O. Vafek and A. Vishwanath, Dirac fermions in solids: From
high-7, cuprates and graphene to topological insulators and
Weyl semimetals, Annu. Rev. Condens. Matter Phys. 5, 83
(2014).

[30] W. Zawadzki, Semirelativity in semiconductors:
A review, J. Phys.: Condens. Matter 29, 373004
(2017).

[31] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[32] A. V. Balatsky, B. Brena, H. C. Herper, and B. Sanyal, Func-
tional Dirac materials: Status and perspectives, Phys. Status
Solidi RRL 12, 1870334 (2018).

[33] L. Esin, M. S. Rudner, G. Refael, and N. H. Lindner, Quantized
transport and steady states of Floquet topological insulators,
Phys. Rev. B 97, 245401 (2018).

[34] S. A. Sato, J. W. Mclver, M. Nuske, P. Tang, G. Jotzu, B.
Schulte, H. Hiibener, U. De Giovannini, L. Mathey, M. A.
Sentef, A. Cavalleri, and A. Rubio, Microscopic theory for the
light-induced anomalous Hall effect in graphene, Phys. Rev. B
99, 214302 (2019).

[35] S. A. Sato, P. Tang, M. A. Sentef, U. D. Giovannini, H. Hiibener,
and A. Rubio, Light-induced anomalous Hall effect in massless
Dirac fermion systems and topological insulators with dissipa-
tion, New J. Phys. 21, 093005 (2019).

[36] J. K. Freericks, H. R. Krishnamurthy, and T. Pruschke, The-
oretical Description of Time-Resolved Photoemission Spec-
troscopy: Application to Pump-Probe Experiments, Phys. Rev.
Lett. 102, 136401 (2009).

043408-14



FLOQUET DYNAMICS IN LIGHT-DRIVEN SOLIDS

PHYSICAL REVIEW RESEARCH 2, 043408 (2020)

[37] L. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E.
Springate, A. Stohr, A. Kohler, U. Starke, and A. Cavalleri,
Snapshots of non-equilibrium Dirac carrier distributions in
graphene, Nat. Mater. 12, 1119 (2013).

[38] P. Pearle, Simple derivation of the Lindblad equation, Eur. J.
Phys. 33, 805 (2012).

[39] A. Eckardt and E. Anisimovas, High-frequency approximation
for periodically driven quantum systems from a Floquet-space
perspective, New J. Phys. 17, 093039 (2015).

[40] T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in dis-
cretized Brillouin zone: Efficient method of computing (spin)
Hall conductances, J. Phys. Soc. Jpn. 74, 1674 (2005).

043408-15



2.7 Publication II: Observing light-induced Floquet band gaps
in the longitudinal conductivity of graphene

L. Broers and L. Mathey — Commun Phys 4, 248 (2021)

This work was motivated by the prospect of the direct experimental observation of
the light-induced Floquet band gap at the Dirac point of graphene driven by circularly
polarized light. This Floquet gap displays non-trivial topological properties and is of
particular interest in the context of the anomalous Hall effect, studied in Publication I.

In this work, I have studied the longitudinal optical conductivity at terahertz frequen-
cies of driven dissipative graphene as means of observing the light-induced Floquet band
gaps. I have implemented and utilized numerical methods expanding on those of Publi-
cation I, and found that inter-band transitions across the Floquet-Bloch bands lead to
resonant features in the optical conductivity. The locations of these features agree with
the predicted locations of the gaps of the Floquet-Bloch band structure as a function
of driving intensity. However, the signals of the many light-induced Floquet band gaps
occur on comparable energy scales, such that their signals in the optical conductivity
tend to obscure each other. I have identified a particular regime of probing at which the
gap at the Dirac point is clearly visible and observable in isolation of the higher-order
Floquet gaps. This is achieved by driving the system with an intensity such that the
size of the gap at the Dirac point is half the size of the driving photon energy, which is
a regime the other light-induced gaps do not reach. This leaves the signal provided by
the gap at the Dirac point observable under realistic conditions.

Further, my results show that the optical conductivity reverses its sign under certain
driving and probing conditions. In general, increasing the driving field strength leads to
Floquet band gaps opening and increasing in size up to a certain point. Increasing the
driving field strength beyond this leads to the Floquet band gaps decreasing in size as a
function of the field strength. It is in this regime of decreasing gap size, where the Floquet
band population located at a given gap becomes inverted in this model and the resulting
inter-band transitions contribute to the longitudinal current negatively. Probing at such
a negatively contributing Floquet band transition under the condition that there is no
other gap comparable in size obscuring the signal, leads to a sign change of the optical
longitudinal conductivity. Such a negative optical conductivity is equivalent to optical
gain at the corresponding frequency, which suggests the possibility of utilizing this effect
in a type of graphene-based gain medium. This has motivated further work in exploring
the possibility of obtaining coherent optical gain at terahertz frequencies from driven
graphene or similar materials by this Floquet-Bloch band inversion mechanism.

My contribution to this work consisted of conceiving the project, creating the nu-
merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.
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Observing light-induced Floguet band gaps in the
longitudinal conductivity of graphene

Lukas Broers® 2™ & Ludwig !\/\atheym'3

Floguet engineering presents a versatile method of dynamically controlling material prop-
erties. The light-induced Floquet-Bloch bands of graphene feature band gaps, which have not
yet been observed directly. We propose optical longitudinal conductivity as a realistic
observable to detect light-induced Floquet band gaps in graphene. These gaps manifest as
resonant features in the conductivity, when resolved with respect to the probing frequency
and the driving field strength. The electron distribution follows the light-induced Floquet-
Bloch bands, resulting in a natural interpretation as occupations of these bands. Furthermore,
we show that there are population inversions of the Floquet-Bloch bands at the band gaps for
sufficiently strong driving field strengths. This strongly reduces the conductivity at the cor-
responding frequencies. Therefore our proposal puts forth not only an unambiguous
demonstration of light-induced Floquet-Bloch bands, which advances the field of Floquet
engineering in solids, but also points out the control of transport properties via light, that
derives from the electron distribution on these bands.
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to induce novel functionalities. A specific framework within

this broader effort is Floquet engineering. Floquet engi-
neering refers to inducing dynamics that are captured by an
effective Floquet Hamiltonian in a system by periodic driving. For a
non- or weakly interacting system this approach describes effective
single-particle states that form a natural basis for the driven system.
These states are the Floquet-Bloch bands of the electrons, in analogy
to the Bloch bands of the equilibrium system. These Floquet-Bloch
bands can have qualitatively distinct features from the Bloch bands
of the non-driven system!~*. A striking example are Floquet
topological insulators”~/, for which applications in spintronics®
have been discussed. A general overview on spintronics can be
found in®. A specific realization of Floquet topological insulators is
monolayer graphene illuminated with circularly polarized light, for
which the band structure approaches the Haldane model in the
high-frequency limit!%!1. However, while the ground state of the
equilibrium Haldane model forms indeed a topological insulator,
which manifests in a quantized Hall conductance, the Hall con-
ductance of optically driven graphene is not topologically quantized,
but of geometric-dissipative origin!>!3, This observation is part of
the larger challenge of an unambiguous detection of the Floquet-
Bloch bands in a solid. We note that the geometric properties of
bands in periodically driven lattices have been demonstrated in
ultracold atom experiments!4-16 as well as helical wave guides!”-18
and classical settings!®. Signatures of Floquet-Bloch bands have
been seen in angle-resolved photoelectron spectroscopy?® and
approaches for observing related pseudospin textures have been
proposed?122. In this context, the effects of Auger recombination?
and scattering decoherence?* on the electron dynamics in graphene
have been discussed. The transport properties of similar Floquet
systems have been discussed?® and the high-frequency probing limit
has been explored?®. However, a smoking-gun in the transport
measurements of solids is lacking.

In this paper, we propose to detect light-induced Floquet band
gaps in graphene via the optical longitudinal transport. We deter-
mine the optical conductivity as a function of the probing frequency
and the driving field strength, which displays resonant features. We
present an interpretation of these features in terms of the Floquet-
Bloch band dispersion and the effective occupation of these states.
These occupations are determined by the dissipation and the
driving field, which balance out to form the steady state. We include
the dissipation processes in our master equation approach that we
use to describe the system. With this, we attribute the observable
resonant features in the optical conductivity to two transition
processes. One occurs between bands inside the same Floquet zone
and the other between adjacent bands of neighboring Floquet zones.
These processes compete in their impact on the optical con-
ductivity, which can result in vanishing and even negative optical
conductivity for specific frequencies and driving field strengths. In
general, we show that the conductivity depends on the relative
occupation of the Floquet bands. We also point out that the relative
occupation is in qualitative agreement with a comoving band
velocity, to be defined below. In particular, we show that there are
regimes of driving field strengths that show an effective inversion of
Floquet band populations. These are in the regimes in which
negative optical conductivity is achieved. Therefore, as a second
point besides the demonstration of Floquet-Bloch bands in solids,
our proposal shows non-trivial control of the transport properties of
solids, induced by light.

C ontrolling solids with light constitutes a modern approach

Results and discussion

Model Hamiltonian. We consider a circularly polarized laser
with frequency wq=2mx48 THz~200meV and variable field
strength E4, which illuminates a graphene layer from

perpendicular direction. The electromagnetic forces drive the
electrons into a steady state. We propose to measure the long-
itudinal AC conductivity of this steady state in the optical fre-
quency domain. The conductivity displays frequency regimes in
which its magnitude is increased compared to the non-driven
graphene layer, and regimes in which it is decreased. These fre-
quency regimes derive from resonances between the Floquet
states, which in turn depend on the driving field strength. As a
result, these frequency regimes can be tuned to overlap, resulting
in a partial cancellation. In particular, the band gap A, at the
Dirac point can be overshadowed, in general, by other features.
However, we point out a regime in which it can be identified
unambiguously.

The Hamiltonian of light-driven graphene, close to the Dirac
point is given by

H= §c]ih(k)ck, 1)

where ¢ = (¢ A Gep)' and g are the fermionic annihilation
operators of an electron with momentum k and sublattice index
i=A, B. Invoking the edge-bulk correspondance, the transport
properties of the periodic bulk captured by Eq. (1) directly
translate to localized edge modes of finite systems. The
Hamiltonian of a single momentum k is

h(k) = hAvp(q,0, + q,0y), (2)
with
E E
=k, +—Ysin(wyt) — = t
qx X + wy Sln(wd ) w, COS((‘)L )’ (3)
E

=k, +—2 t

g, = ky + o4 cos(wgt), 4

where vg = 106m s~ is the Fermi velocity. k; are the momentum
components and o; are the Pauli matrices. Eg and wy are field
strength and frequency of the driving laser. E; and wy are the
same quantities for the longitudinal probing field.

We simulate the dynamics via a master equation approach,
expanding on previous work by some of the authors!?. The
density matrix of the system factorizes in momentum space, as
p = Iipx. Each py matrix operates on a four dimensional Hilbert
space, given by the states |0), CLA|0>, CLB|0>, CLBCLAIO). We
include doubly and unoccupied states to determine two-time
correlation functions, and thereby frequency-resolved quantities.

In addition to the unitary time evolution induced by the
Hamiltonian in Eq. (2), we include dissipation via Lindblad
operators defined in the instantaneous eigenbasis of the driven
system, to describe the dissipative environment due to degrees of
freedom not included in the Hamiltonian. We include a
dephasing term y,, a decay term y_ and a term with decay rate
Ybg that models particle exchange of the graphene layer to a
supporting substrate backgate. This model provides a realistic
discription of the non-equilibrium electron dynamics!2.

We choose the coefficients y,=1THz, y_ =2.25THz and
Ybg = 2.5 THz. This sets the scale for the broadening of the
effective bands in the single-particle correlation function as well
as the optical conductivity. These values are a factor of 10 smaller
than those estimated!? for the experimental setup of Mclver
et al.13. Our predictions apply to high-mobility samples, e.g., BN-
encapsulated graphene. For larger values, such as those that are
realized in the work of Mclver et al.!3, resolving the gap features
that we describe in the following, would require larger driving
frequencies and stronger driving. Throughout this work we use
the temperature T=80K, which is the same as the setup of
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Fig. 1 Electron distribution of light-driven graphene, revealing its Floquet states. The electron distribution n(k, w) of graphene driven with circularly
polarized light at the driving frequency wq = 27 % 48 THz ~ 200 meV and field strength £4=26 MV m~". The distribution n(k, @) depends only on the
momentum k = |k|. This quantity displays the steady state occupation of the Floquet-Bloch band structure. The one-photon resonance gap A at k = wy/
(2v), the two-photon gap Ag at the Dirac point, and the two-photon gap at k = wy/vf are highlighted for clarity. vg is the Fermi velocity. Additionally, the
complementary gaps wgq — A7 and wq — A, are indicated. The dotted lines indicate the Floquet energies of the first Floquet zone.

Mclver et al.!3, We fix the value of the chemical potential at
u=0.

Electron distribution. As a first observable we display the
momentum-resolved and energy-resolved electron distribution
inspired by Freericks et al.?’

T (T2 iw(t,—t,)
n(k, w) = / / Ok, by, t)————dtydt,  (5)
7, T, (TZ - Tl)
which is manifestly real-valued with

Gk, ty, 1) = (e y(t)a A (1)) + (s (t)eep(t))  (6)

for which its complex conjugate corresponds to the exchange of t;
and #,. We use the time interval [7;, 7,] as the probing interval.
We choose 1; such that the system has reached its steady state.
7, — 71 is a sufficiently long probing time of the order of hundreds
of driving periods 2m/wy4 that is also commensurate with the
probing period 27m/w;. We note that this quantity provides a
prediction for trARPES measurements®’. In Fig. 1 we show
n(k = |k|, w) for the driving field strength Eq =26 Me Vm~1. We
note that a similar result was presented in previous work by some
of the authors!2. The electron distribution of the steady state is
consistent with the effective band structure predicted by Floquet
theory and identifies the non-equilibrium electron occupation of
these Floquet-Bloch bands.

We label the band gaps as A,,, based on their location mwgy/
(2vg) in momentum space for small driving field strength E4 — 0,
as shown in Fig. 1. Due to the periodicity in frequency space of
the Floquet spectrum, there is a complementary gap wq — Ay, for
any given band gap A,,, with m > 0. These complementary gaps

are also visible in the optical conductivity of the system. They
reduce the conductivity at the corresponding frequency, rather
than enhance it. The gap A, at the Dirac point does not exhibit
this behavior, as discussed later.

Optical conductivity. The second observable that we present is
the longitudinal optical conductivity. We propose to measure this
quantity experimentally, to compare to the predictions made
here. In Fig. 2 we show the real part of the total optical con-
ductivity of the system as a function of the driving field strength
E4. This is obtained from our master equation approach as

J (“)L)}
0@ )=Re{ o) || %)
- Ex(wL)
with the longitudinal current and electric field
1+5—Z .
j(w) = ngnevp 2 / Tr(py (t)o, e’  dt, (®)
k Jr

-‘r+%"
E(w) = / "(Eycos(wyt) + E; sin(w t))e“itdt,  (9)
T

where 7 is a point in time where the system has reached its steady
state. ng=n, =2 are the spin- and valley-degeneracies. e is the
electron charge. o.(wy) is obtained for the probing field E; = 10
V m~1. We have verified that the conductivity obtained in this
manner is the linear response and that the sum over k includes
sufficiently many points surrounding the Dirac point.

As we demonstrate in Fig. 2a, 0,(«w;) displays resonant features
that match the band gaps of the Floquet spectrum. The energy
gap A, increases with increasing field strength E4 in a
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Fig. 2 Longitudinal optical conductivity of light-driven graphene. The real
part of the optical conductivity of graphene driven at the frequency
wg=2x%48 THz~ 200 meV as a function of the driving field strength Ey4
(a) and a cut at half the driving frequency w, = wy/2 = 2z % 24 THz (b).
The dashed lines show the various band gaps A, as given by Floquet
theory. The gap Ag becomes clearly visible above values of

o, ~2r %14 THz ~ 60 meV and Eq~ 28 MV m~1. We also see the
complementary resonant features at wq — A, with m>0.

monotonuous fashion. The energy gaps A, with m>0, first
(m)
then

increase with Ey, then reach a maximum at Ey = Ej .,

decrease, and ultimately reach 0 at E; = Eg’:}and. At this driving

strength the gap is located at k =0 and merges with A,.
The magnitude of o (w;) at the resonance A;, ie., the

magnitude of 0,(A;), displays a maximum for Ed<Efil_3n Lo Telative

to its background, and a minimum for E, >E$Znax. The magnitude

of o(wp) at wgq—A;, displays the complementary behavior.

0.(wg — A,) has a minimum for Ed<E(l)

d,ma:
E4 >E(d{:n + Note that this does not happen for A, due to the lack
of a complementary gap wgq — A as can be seen in Figs. 1 and 3.
We note that in the limit of Eq — 0, the optical conductivity
o(wy) approaches the value i% for non-zero frequencies. An
example for this is visible in Fig. 2b, for wy=2mx24 THz.
Additionally, we obtain a peak at w; = 0, which is the Drude peak
broadened by the dissipative terms. We show the real part of the
longitudinal conductivity o,(w;) for E;=0 in Supplementary
Note 2.
We obtain analytical expressions for A, and Eﬁ)an 4 by
considering the Hamiltonian in Eq. (2) at the Dirac point and
without probing, ie, k=0 and E;p =0. This has the time-

dependent Rabi solutions

o and a maximum for

2Q
—iwgt Eq sin(Q¢)
Quw

(10)

|+> ~ ei({ud[/2+7‘[/4)<
e

COS(Qt) _ iwg sin(Qt) >
)
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Fig. 3 Electron distribution at the Dirac point. The electron distribution
n(k =0, w) at the Dirac point as a function of the driving field strength Eg.
The driving frequency is wyq = 27 x 48 THz ~ 200 meV. The scalin
behavior of the gap at the Dirac point is Ag = 24/VEES /w3 + w3/4 — wy,
where v is the Fermi velocity. The vertical dotted line indicates £4 =
Eg_)band. The horizontal dotted lines indicate Floguet zone boundaries. The
dashed lines show the Floquet energies at the Dirac point (See
Supplementary Note 1) that are formally constrained to be inside the first
Floguet zone. The occupations stay confined within the Floquet bands
adiabatically connected to the bare graphene and one replica outwards.
There are no complementary gaps at k= 0.

iwgt Eg sin(Q1)

|—) ~ e—i(wdt/2+rt/4) ( —e ‘de. (Qt)>’ (11)
1wy SIN
cos(Qt) + 55—
where
VvEX  w?
Q= /54+-4 (12)
wy 4

The gap at the Dirac point is given by Ag=2Q — wy. This
expression is also the Aharanov-Anandan phase of this system?.
In the weak driving limit this gap follows the expected
perturbative behavior'!Aj ~ viE3/w} whereas in the strong
driving limit it develops a linear dependence on E4 as
Ao = vpEg/wg. We use the full expression for A, to find the
driving strengths Eﬁ)an 4 since they occur whenever the gap A,
spans a multiple of wq. By setting 2Q — wq = mwq, m € N, we

find

[m  m?

Eﬁ)and =g 5"'7“%21-

We display the Dirac gap in Fig. 3, and compare it to the
electron distribution at k = 0, of the steady state. We observe that
the two maxima of the electron distribution that emerge from
w = 0 follow the prediction of +A, even as A, grows larger than
the Floquet zone boundary at wg4. Therefore, Ay is a more natural
energy scale to predict the resonances at k=0 for large driving
intensities, than the direct band gap that is strictly smaller than
wg. For increasing field strength Eg4, the occupation of the upper

(13)
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Fig. 4 Momentum-resolved optical conductivity of light-driven graphene. The momentum-resolved contributions to the optical conductivity of driven
graphene along the k, (a) and k, (b) momentum directions. The driving frequency is wq = 2z % 48 THz ~ 200 meV and the field strength is £4=34 MV m
~1. For these parameters the gap at the Dirac point roughly matches half the driving frequency such that Ag &~ wy/2. The dashed lines indicate the Floquet

band energy differences Ae(k) and wq — Ae(k) (See Supplementary Note 1).

two bands decreases. The occupation of complementary gaps is
zero throughout Fig. 3.

As visible in Fig. 2a, the conductivity vanishes around the
probing frequency wp =2mx 12 THz~50meV and the driving
field strength of Eg~39 MV m~!. Here the first gap A; decreases
with increasing Eq and creates a negative contribution that
suppresses 0,(wr) to zero. For higher order gaps, e.g., A, and A; in
Fig. 2a, the same phenomenon even leads to a sign change in the
conductivity. Whenever a gap is in the regime of decreasing with
increasing E4, and no other resonance contributes positively and
too strongly to the conductivity, the negative contributions can
cancel the background and result in net negative optical
conductivity. Such a total negative conductivity in the system
amounts to an out-of-phase response to a probing field with a
probing frequency in the regime in which o,(w;) is negative. In
principle this can be utilized to obtain electrical gain out of the
system, where the required energy is effectively taken from the
driving.

Momentum-resolved conductivity. In order to gain further
insight into the origin of the features in the total optical con-
ductivity shown in Fig. 2, we explore the momentum resolved
contributions to the conductivity. In Fig. 4 we resolve the con-
tributions to the conductivity along the k. and k, directions
relative to the Dirac point in momentum space, defined as

snvevF|k| T+“2’_ﬂ

k) = TS [ T (g a (1)

Here, we include the linear scaling with the absolute momenta |k|
in polar coordinates. Direct interband transitions between
neighboring Floquet bands give rise to resonant features in
0,(k, w;) that match the Floquet band energy differences Ae(k)
and wgq — Ae(k) (See Supplementary Note 1). These resonant
features contribute to the conductivity with alternating signs. The
sign changes occur close to the band gap locations, but slightly
shifted towards (away from) the Dirac point in case the gap size
increases (decreases) with respect to the field strength Eq4. For
gaps that do not change with respect to Eg, i.e., gaps at their
maximum, this shift vanishes. Therefore, the accumulated con-
tributions across gaps net either positive or negative conductivity
depending on the change in gap size with respect to field strength
Eq4. This is consistent with the enhancements and reductions in
o(wy) at the gaps Ay, with m >0, and their complementary gaps
wg — Apy, seen in Fig. 2a.

For probing frequencies wy, that are not resonant with a given
band gap, 6,(k, w;) does not vanish in general. This results in a

background conductivity that can obscure the gap A, at the Dirac

(1)

point in particular, as is the case for E4<E, in Fig. 2a. Since

d,max
the band gaps A,,, with m >0, and their complementary gaps
wq — Ay, have a maximum at the field strength E; = Eg"rfl o there

is always a range that no gap A,,, with m >0, reaches that is
centered around w;, = wy/2. In this range, it is the gap A, that is
visible predominantly. The overall behavior of the gaps is self-
similar with respect to the driving frequency wg4. Therefore in this
system, there always exists a reliable range of probing frequencies
where the gap A, can be observed.

The Floquet interband transitions resonant with Ae(k) occur
inside a given Floquet zone. The ones resonant with wq — Ae(k)
occur across Floquet zone boundaries. Hence, we refer to them as
intra-Floquet 6™ (k, ;) and inter-Floquet ™ (k, w;) contri-
butions to the conductivity, respectively. To distinguish the two
we write

Gk, wp) = &M (k, wp) + 5 (k, wp) 4 528k, wp),  (15)

where 6Eg(k, w;) is a remaining background contribution
accounting for the wy — 0 behavior in ¢,(k, w; ). Figure 4b shows
that alfg(ky, w;) ~ 0. We fit a function of two Lorentzians located

at Ae(k) and wgq — Ae(k) with the same fixed width I' =1 THz to
the numerical results of d,(k,, w; ). Specifically, we use

T 6imra ( ky)
T2 + (w;, — Ae)?
T aiﬂter ( ky)

J’_ —
T2 + (w; — wg + Ae)’

ik, wp) =

(16)

as a fitting function.

The conductivity features derive from the transitions between
the Floquet bands, and are therefore related to the occupation of
these bands. We define the relative occupation

An(k) = > n_(k) — nt(k),

(k) > m(k) — ng (k) (17)
where n; (k) is the occupation at momentum k of the mth upper
(lower) Floquet band given by integrating n(k, w) from (m —
I E Dy to (m+1+ Hw,.

Figure 5 shows the momentum-resolved intra-Floquet con-
ductivity ff'r""a(ky) which is determined via fitting as described
above, as well as the effective relative occupation An(k) of the
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Fig. 5 Effective Floquet state occupation and intra-Floquet conductivity.
The effective occupation An(k) (a) and the fitted intra-Floquet conductivity
Erir”“a(ky) (b) as functions of the field strength E4. The solid white lines are
given by the locations in momentum space of the band gaps A, with
m> 0. The dotted white lines are given by the zero-crossings of a type of
comoving band velocity oqAe = 0, where IT= ve(k + Eg/wy) (See
Supplementary Note 1). The dashed line is given by k = de

d

Floquet bands as functions of the field strength E4. They are in
good qualitative agreement with each other. Both quantities
display tongues with alternating signs and zero-crossings
seperating them that agree very well between An(k) and
6ir"tra(ky). The zero-crossings touch the vg k-axis at mwg/2 and

the Eg4-axis at Eg’,?and, m € N. The solid white lines show the
location of the Floquet band gaps, i.e., where the radial band

velocity vanishes, ie., di € =0. They roughly follow the zero-
crossings of An(k) and &;“"a(ky) while showing small, but clear

deviations. We observe that for Efimlfl aX<Ed<E£{4’rgan 4 the steady state
displays an inversion of the Floquet bands, which creates a
negative contribution to the optical conductivity. The dotted
white lines indicate where the comoving radial band velocity ope
with IT = vg(k + Eq/wq) vanishes, i.e., dge = 0. These lines show
improved agreement with the zero-crossings of An(k) and

6ir““a(ky). Further, there is an overall resemblance between

one(k), An(k), and &i"tra(ky) (See Supplementary Note 1).

We summarize that the momentum-resolved optical conduc-
tivity shows two types of interband processes across the effective
Floquet band structure. These resonant processes correspond to
the energy differences Ae(k) and wgq — Ae(k) between Floquet
bands and contribute both positively and negatively. We relate
these conductivities to the effective relative occupation of the
Floquet bands An(k). We find that effective inversions of the
Floquet bands correspond to reductions in the conductivity which
can lead to a sign change in the total optical conductivity. These
band inversions at the Floquet gaps and their reductions of the
optical conductivity systematically occur in regimes of decreasing
gap sizes with respect to the driving field strength.

Conclusion

In conclusion, we have proposed the longitudinal optical con-
ductivity of illuminated graphene as a realistic observable to
detect Floquet band gaps. We have shown that this quantity
displays the Floquet gaps as functions of the driving intensity and
the probing frequency. In particular, we have pointed out a
regime in which the band gap at the Dirac point can be detected.
All band gaps except for the band gap at the Dirac point, first
increase with the driving intensity, approach a maximal value,
and then decrease. For the increasing regime, the optical con-
ductivity displays a positive contribution. For the decreasing
regime, it displays a negative contribution that can amount to a
total negative conductivity at the given frequency. We point out
that this negative contribution derives from an inversion of the
occupation of the Floquet bands. Therefore, the proposed
experiment not only provides an unambiguous detection of Flo-
quet bands, but also demonstrates dynamical control of transport
in solids with light.

Methods

Driven graphene dynamics. We express the driven graphene Hamiltonian in a
four-level description, spanned by the states |0), C;;A|0), cl_Blﬂ) and cLBclvAlo). The
c{z L /p are the annihilation (creation) operators at the momentum k in the sublattice

A/B. The Hamiltonian H is defined in Eq. (1). We factorize the density matrix in
momentum space as p = ITp, and simulate the dissipative dynamics using the
Lindblad-von Neumann master equation

. Lo+
p=ilp. H]+ S q(LpL{ — - {LL;,p)).
j
where the sum over j goes over the momentum-dependent Lindblad operators

L= V(Ci,ACk.A - C:;.Bck,B)VJ(
L= V(Clt,BCk,A)V+
L= V(Clt,Ack.B)V*

0 4., 6, 0
4, 0 0 [

L1 —v 1,1 1,-3 VT
S, O 0 &4

0 &3 Oy 0

with [ = +1, +2, 43, +4. §); is the Kronecker-Delta and V is the transformation into
the instantaneous eigenbasis of h(k) defined in Eq. (2). The dissipation coefficients
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¢ fulfill the conditions

=Y,
o=y ¢, = c_exp{—2¢pB}
€t =V c_; = ¢, exp{+ef}

¢, =g exp{—ef}
3 = ¢c;exp{—ep}
c_y = ¢y exp{+ep}

G Ty =Yg
Gt 3 =V
€yt ey =Yg

with B = (ky T)™'. e are the instantaneous eigenenergies of h(k). This approach is
also detailed in previous work!2.

In order to calculate the electron distribution, we first calculate the two-point
correlation functions <Cl_i(t2)ck.i(t1)>' We do this by acting with ¢; on the density
matrix pi(t;) and continuing the time-evolution with the same master equation
until the time t, at which we act on the resulting density with the operator ¢} .. We
do this for all pairs of times #; and ¢, in the interval [7;, 7,] and calculate the
electron distribution as detailed in Eq. (5).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used to generate the data presented in this study is available from the
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2.8 Publication Ill: Detecting light-induced Floquet band gaps
of graphene via trARPES

L. Broers and L. Mathey — Phys. Rev. Research 4, 013057 (2022)

This work was motivated by the prospect of direct experimental observation of the
light-induced Floquet band gap at the Dirac point of graphene driven by circularly
polarized light, similar to Publication II. While many similar observations have been
made in different materials, the observation of the Floquet gap at the Dirac point of
light-driven graphene has not been achieved due to a set of challenges and limitations
in photoelectron spectroscopy techniques.

In this work, I have studied the numerical predictions of time-resolved angle-resolved
photoelectron spectroscopy (trARPES), which is a state-of-the-art tool for studying ma-
terial band structures. It is also a naturally accessible observable in the numerical
methods devised in Publication I and Publication II. I have demonstrated a particular
regime of parameters that promises to reveal the Floquet band gap, while also being
experimentally feasible. This proposed regime takes the experimental limitations of mo-
bility, Fourier broadening, laser-assisted photoemission, probe-pulse energy resolution,
and space-charge effects into account. In general, the driving frequency needs to be large
enough such that the light-induced Floquet band gaps overcome broadening effects. In
an undesirable compromise, a large driving frequency however necessitates a dispropor-
tionately larger driving field strength, which induces undesired space-charge effects and
laser-assisted photoelectrons that obscure the ARPES signal.

A key result of this work is that my numerics have shown a lack of population in the
vicinity of the Dirac point in lower-order Floquet bands, provided the driving is strong
enough. The population at the Dirac points remains predominantly in the Floquet-Bloch
bands that are continuously connected to the Dirac point as a function of the driving
field strength. As a consequence, the energy difference of populated Floquet-Bloch bands
at vanishing momenta effectively surpassed the size of the Floquet zones and thus the
experimental limitations in resolution. This circumstance makes the gap in principle
visible even in the presence of broadening and resolution limitations in moderately clean
graphene samples.

My contribution to this work consisted of conceiving the project, creating the nu-
merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.

95



PHYSICAL REVIEW RESEARCH 4, 013057 (2022)

Detecting light-induced Floquet band gaps of graphene via trARPES
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We propose a realistic regime to detect the light-induced topological band gap in graphene via time-resolved
angle-resolved photoelectron spectroscopy (trARPES), which can be achieved with current technology. The
direct observation of Floquet-Bloch bands in graphene is limited by low-mobility, Fourier-broadening, laser-
assisted photoemission (LAPE), probe-pulse energy-resolution bounds, space-charge effects, and more. We
characterize a regime of low driving frequency and high amplitude of the circularly polarized light that induces
an effective band gap at the Dirac point that exceeds the Floquet zone. This circumvents limitations due to
energy resolutions and band broadening. The electron distribution across the Floquet replicas in this limit allows
for distinguishing LAPE replicas from Floquet replicas. We derive our results from a dissipative master equation
approach that gives access to two-point correlation functions and the electron distribution relevant for trARPES

measurements.

DOI: 10.1103/PhysRevResearch.4.013057

I. INTRODUCTION

Floquet engineering constitutes a novel approach to con-
trol material properties via light [1-4]. A prominent example
is the proposed light-induced topologically insulating state
of monolayer graphene [5—7]. The resulting anomalous Hall
effect in this system has been observed experimentally [8]
and has been explained as a geometric-dissipative effect [9]
in accordance with Floquet theory. Meanwhile, time-resolved
angle-resolved photoemission spectroscopy (trARPES) has
been established as the prime method for resolving dynamical
changes in effective band structures of solid-state systems
[10-16]. Experimental trARPES setups are constantly im-
proving and being used for investigating the dynamical
electronic processes in two-dimensional Dirac materials such
as graphene [17-21], WSe; [20-24], and Bi,Ses [25-28]. Ap-
proaches related to observing pseudospin textures in ARPES
were discussed in Refs. [29-32]. In Bi,Ses, Floquet replicas
of electronic bands were observed using trARPES setups [33].
However, the direct observation of both the replicas and the
topological gap at the Dirac point has been met with intricate
challenges in graphene and remains unachieved to date.

In this work we determine the regime of trARPES
measurements for observing the topological band gap at the
Dirac point of irradiated graphene. We propose to perform
these measurements in the regime of low driving frequencies
and high driving field strengths. In this previously unexplored

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2022/4(1)/013057(9) 013057-1

regime the dominant Floquet-Bloch band occupations are
spaced farther apart than the driving frequency. They are
therefore outside of the first Floquet zone. We propose to
detect this light-induced energy gap beyond the Floquet zone
in experiment because the different spectral features are well
resolved in this regime. We discuss the dependence of our
predictions on the system parameters, specifically how they
affect the systematic limitations of the energy resolution of
photoemission spectroscopy. These parameters include the
driving frequency and field strength, which determine the
Floquet-Bloch band structure, the dissipation coefficients that
broaden the band signals, and the pulse lengths of drive and
probe lasers. For the pulse lengths we point out a desirable
regime with sufficient energy resolution and high enough
repetition rates. These repetition rates are necessary to avoid
undesired space-charge effects, where the photoemitted
electrons interact and affect each other’s trajectories [23,34—
36]. In particular, it is possible to distinguish the laser-assisted
photoemission (LAPE) replicas from the Floquet replicas
within the gap at the Dirac point in our suggested regime.

We consider a single layer of graphene irradiated by a
circularly polarized infrared laser from a perpendicular di-
rection. We consider a laser pulse with a temporal Gaussian
envelope of pulse length t4. The pulse length is assumed to
be much longer than the driving period, so that it induces
Floquet-Bloch states that vary with the envelope function of
the pulse. The graphene sample is probed by a tunable ex-
treme ultraviolet laser pulse from the same direction. It has
a shorter pulse length and excites photoelectrons out of the
driven graphene over a time span during which the driving
intensity is approximately constant. This is necessary for re-
solving the time-dependent Floquet-Bloch bands, which are
sensitive to the driving amplitude. This is considered the stan-
dard approach to trARPES experiments [37] and is illustrated
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T Probe

Target

FIG. 1. An illustration of the trARPES principle. A circularly
polarized infrared drive pulse (red) hits the graphene target from a
perpendicular direction, exciting a transient state in the illuminated
region. After a time delay of At, an ultraviolet probe pulse (blue)
hits the target and excites photoelectrons. A given electron leaves the
target with a kinetic energy Eyi, at an inclination 6 to the graphene
target and at an azimuthal angle ¢. The momentum component l_c"‘
parallel to the target is that of the preprobe transient state of the
electron bound in the graphene layer.

in Fig. 1. The emitted photoelectrons corresponding to a probe
frequency wj have the kinetic energy

Eyin = hwp — B, — O, (D

where Ej, is the binding energy and @ is the work function
of the material, which is the energy required to remove the
electron from the graphene. In addition, a photoelectron has
momentum k with components

ki = v/ 2mEahi~! sin(8)(cos(¢), sin(¢))" )

parallel to the graphene layer. m is the electron mass, and
and ¢ are the inclination and azimuthal angles of the mo-
mentum with respect to the graphene layer. Measuring the
photoelectron counts at these angles and energies gives access
to the time-resolved Floquet-Bloch bands. The momentum k;,
is the electron momentum prior to the excitation process. For
simplicity this is denoted as k in the following.

II. PREDICTIONS FOR trARPES MEASUREMENTS

We describe the electron dynamics in graphene with the
Hamiltonian

H(t) = cfh(k, 1)y, 3)

k

where ¢k = (cka, ck5)". Here ci), with i € {A, B}, are the
annihilation (creation) operators of the graphene sublattices.

The single-particle Hamiltonian is given by

h(k,t) = hvp[g.(t)o, + Q}*(t)ay]a “

with
(1) =k, + %Ad(t) sin(qt), )
4,(1) = ky + ZAa(t) cos(@at), ©)

where vp ~ 10°ms™! is the Fermi velocity and k, =
|k|cos(¢) and k, = |K|sin(¢) are the momentum compo-
nents. o; are the Pauli matrices. The pulsed vector potential
amplitude is given by

Aq(t) = i—j exp{ — 1’7, ?41n(2)}, @)

where 74 is the driving pulse full width at half maximum
(FWHM). For the pulse length we use the value 74 = 500 fs
as a realistic value for driving frequencies in the range of
tens to hundreds of terahertz. Note that the specific choice of
a temporal Gaussian envelope is not crucial for the results.
However, more quickly varying temporal envelopes may in-
duce transient behavior that potentially obscure band signals.

We consider a product state p = I[Ixpx and evolve the
system using a Lindblad—von Neumann master equation that
includes dissipation. The dissipation channels amount to de-
phasing, decay, and electron exchange with a back gate. The
corresponding coefficients are chosen to be y, = 22.5 THz ~
(44.41s)~", y = 10THz = (100fs)~! and yp, = 25THz =
(40fs)~'. These are the values that were demonstrated to
describe the experimental realization of Ref. [8] in Ref. [9].
Hence, this approach is well suited to describing the dynamics
in realistic solid-state samples, despite the potential intricacies
of material defects [38—41]. These values for the dissipation
coefficients also agree with the relaxation times of 20 to 40 fs
found in Refs. [42-45] and the electron-phonon channel re-
laxation estimated to be on the order of 100 fs [44—46]. This
also gives the timescale of the system to form a steady state
with an effective Floquet spectrum. We include a nonzero
temperature in the system by giving corresponding Boltzmann
factors to complementary dissipation coefficients so that the
equilibrium states realize the desired temperature 7. Through-
out this work we use room temperature 7 = 300 K. For details
of this approach, see Ref. [9] or Appendix A.

Our predictions for the trARPES measurements are based
on the momentum- and energy-resolved electron distribution
calculated as [47]

io(t,—1)

n(k,w):/ / S(Il)S(fz)g(k,fz,t1)4—t2dlzdf1 (8
—lp J —1p 0

with the correlator [48]

Gk, 1o, 1) = D {ep ,(m)ewi(nn)) ©)
i€{A,B}
and the probe pulse envelope
s(t) =exp { — (t — At)’r; ?4In(2)}, (10)

where T, is the probe pulse length (FWHM) and At is the de-
lay time between the incidence of the drive and probe pulses.
For the probe length we use the value 7, = 100fs. 1 is the
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FIG. 2. The electron distribution at the Dirac point n(k = 0, w) for zero delay (At = 0) (a) as a function of the driving field strength
at the driving frequency wq = 27 x 29.8 THz ~ 123 meV/i~' and (b) as a function of the driving frequency at driving field strength Eq =
20MV m~!. The solid lines show the expected Floquet energies :I:\/ (evpEg/wq)? + (hwy/2)? =+ hiwg /2. The dotted lines show the Floquet
energies confined within the first Floquet zone of width 7%w,. The dashed lines indicate the field strength at which Ay = 7wy in (a) and the
driving frequencies €2,,-; 23 in (b). The frequencies €2,,-, 23 are defined in Eq. (14). The examples shown in Figs. 3 and 4 also use these

frequencies.

temporal integration range, for which we choose #p = 374 to
support the probe pulse sufficiently well.

We choose the pulse lengths of the drive and the pump
pulse to fulfill two requirements. First, the probe pulse length
is chosen to be short compared to the drive pulse length, so
that the drive-induced dynamics is resolved. Second, the probe
pulse length is chosen to be large compared to the driving
period. These conditions are expressed as
2

4> T > —
wq

(1D

When the probe pulse length 7, and the driving period 27 /wq
are comparable, Eq. (8) no longer resolves Floquet-Bloch
bands but rather resolves subdriving period electron occu-
pations. We note that increasing the pulse lengths requires
increasing the drive pulse energies, which are experimentally
limited. This also leads to a reduced repetition rate, which re-
sults in undesirable space-charge effects that greatly decrease
the resolution due to electron scattering [34,35,49]. We do
not include this effect in our numerics but acknowledge that
it necessitates a compromise in the pulse lengths, which is
reached with the given values of 7, and 4.

III. NONEQUILIBRIUM ELECTRON DISTRIBUTION
NEAR THE DIRAC POINT

In Fig. 2(a), we show the electron distribution n(k = 0, w)
at the Dirac point at zero delay, i.e., At = 0. We choose
the driving frequency wyg = 2w x 29.8 THz and display the
electron distribution as a function of the driving field strength

E4. We refer to the energy difference of the two distribution
maxima that emerge at k =0 as the energy gap A,. We
see that this gap A grows monotonously as a function of
E4 rather than being confined within the first Floquet zone
of width wy, as also discussed in Ref. [50]. We derive the
Floquet energy gap at the Dirac point from i(k = 0, 7) with a
fixed vector potential amplitude Aq = Eq/wq. Using the Rabi
solution, we obtain the energy (see Appendix B)

Ao/2 = v/ (evpEq/wa)? + (hwa/2)? — hiwa /2. (12)

In the following, we point out the most promising regime in
which this gap can be detected. As we display in Fig. 2(a),
the gap A( grows with increasing driving strength Ej4; in
particular it grows beyond the Floquet zone boundary at wq/2.
We propose to detect the energy gap Ay in this strongly driven
regime in which fiwg & Ay. While the Floquet quasienergies
are confined to the Floquet zone, the maxima of the electron
distribution continue to be shifted to higher frequencies with
increasing Eq4 so that they can be resolved despite broadening
effects and energy resolution limitations. For very large field
strengths with Ag > Riwg, the electrons will predominantly
populate the lower bands at the Dirac point. Therefore, inter-
mediate values of Ey are desirable, such that Ay ~ hwy, as we
discuss throughout this paper.

In Fig. 2(b), we show the electron distribution n(k =
0,w) at zero delay, ie., Ar =0, at the Dirac point
for driving field strength Eq =20MV m~! as a function
of the driving frequency wg. We display the energies
+,/(evpEq/wq)? + (hwg/2)? + hiwg/2, which reproduce the
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maxima of the electron distribution. We see the expected
scaling behavior of the gap at the Dirac point A of Eq. (12)
as well as the spacing between the nearest Floquet replica
Ao + fiwg. We propose to measure the electron distribution
in the regime that is given by wq > y and Ay > Ay. y
isgivenby y =y /2 + 2y, + ypg = 75THz ~ 50meV /hi ~
(13.3fs)~! as an overall metric for the decay rate. This value
for y is comparable to the coherence times of 22 fs found in
Ref. [51]. With increasing wq4 and for fixed Eq4, A( decreases.
This dependence is predicted by Eq. (12). If A is smaller
than 7y, the two maxima of the electron distribution are not
resolved and are not detectable via trARPES. With decreasing
wq, Ao increases and becomes easier to resolve. However,
the driving period 27 /wq needs to be shorter than the char-
acteristic timescale of the dissipative processes, i.e., wg > .
Otherwise, the picture of a close to adiabatically stirred Dirac
cone in equilibrium is more appropriate than that of emerging
Floquet-Bloch bands. Long scattering times have also been
connected to the visibility of Ay in Ref. [52]. The range of
feasible driving frequencies given by these two conditions
decreases for increasing y but increases for increasing Ejy.

In general, the m-photon gaps A,, open up at momenta
of vp|k| = mwq/2, with m > 0, for small field strengths Eq.
These gaps move inwards towards the Dirac point for increas-
ing field strengths. Thus, increasing Eq4 increases the gap at
the Dirac point but at the same time decreases the distance in
momentum space to higher-order gaps. For the driving field
strength [50]

hiwi [m?  m
Eq= eor V4 + > (13)
the mth gap is located at k = 0 and merges with the gap
Ay. The next gap A,,+; is then the gap closest to the Dirac
point with its distance maximized with respect to Eq. This
further enhances the visibility of the gap at the Dirac point
and makes this relation between driving field strength and
frequency desirable. We rewrite Eq. (13) to find the driving
frequency that is necessary for a given field strength E4 to
have the gap A be equal to m times the driving frequency «wyq.

It is
m*  m\
Q= (T + 5) VevphiEy. (14)

The driving frequencies wg = 2,, have the highest dis-
tinguishability and are indicated in Fig. 2(b) as vertical
dashed lines. Additionally, at the frequency wq = Q) =

(%)%\/evph_lEd, the energy of the first Floquet replica at
A¢/2 4 hwq is minimized. This point denotes a regime that

is well suited for trARPES probing, and the conditions for re-

solvability simplify to y < (£)3/evph ™ Eq. For y = 75 THz
and Eq ~ 20 MV m™!, this suggests a driving frequency close
towg = Q1 ~ 27 x 29.8 THz ~ 123 meV7i~' orwg = 2 ~
27 x 23 THz ~ 96 meV5i .

To demonstrate the steady state that emerges for driving
at frequencies wq = 21, 27, and Q3, we show the electron
distribution n(k, w) in Fig. 3. This expands on the steady-
state behavior of the electron distribution n(k = 0, w) that
we displayed in Fig. 2. We choose driving field strength
Eq=20MV m~!. In the vicinity of the Dirac point, band

Bl

ntk,w) O 005 0.10 0.15

Aiw[meV]

-200 -100 0
Aivek[meV]

hw[meV]

-200 -100 0 100 200
fivek[meV]

hiw[meV]

-100 0 100
fivek[meV]

FIG. 3. The electron distribution n(k, w) for zero delay (At = 0)
and driving field strength Eq = 20 MV m~!. The driving frequencies
are (a) wg = 21, (b) wg = 25, and (¢) wyg = 3. The dashed lines
indicate an effective gap A of size fiwq in (a), 2/iwy in (b), and 3fiwqy
in (c). The solid lines indicate the instantaneous spectra obtained
from the Floquet Hamiltonian.
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occupations of the lower Floquet replicas are suppressed. The
Floquet replicas with sizable electron occupation are two up-
per and two lower effective bands at the Dirac point, which
are the four bands shown in Fig. 2. As the gap A, increases,
the population is predominantly distributed among the two
lower bands. Away from the Dirac point, for nonzero Kk, the
additional Floquet bands have sizable electron occupation
and are visible in Fig. 3. The finite values of the electron
distribution inside the Floquet gaps is a consequence of the
broadening that occurs due to dissipative processes.

Having pointed out the regime that we propose to use to
detect the energy gap at the Dirac point in terms of the driv-
ing field strength and the driving frequency, we now present
the time-resolved response of the system. Figure 4 shows
the electron distribution at the Dirac point n(k = 0, w) as a
function of the pulse delay time At for the same driving field
strength and driving frequencies as in Fig. 3, i.e., Q, 2,
and Q3 for Eg = 20MV m~'. This gives an estimate of the
time-resolved Floquet-Bloch band occupations at the Dirac
point. The dashed lines indicate the corresponding Floquet
energies expected from static driving field strengths given by
the drive pulse at the delay time Az, i.e.,

Ar? evad 2 ha)d 2
“A”:i/“p{‘?““@)}< =) +(%5)

4 fre (15)
=3

The electron distributions that we show in Fig. 4 are close
to the instantaneous steady-state distribution for this value of
y. Deviations from the instantaneous steady-state distribution
manifest themselves as features that are asymmetric during
the pulse rise and pulse decay. For this choice of y and of the
pulse lengths, these features are small.

IV. LIMITATIONS OF RESOLUTION

One common phenomenon that obscures the results of
trARPES is LAPE [53]. The essentially free photoelectrons
emitted in a trARPES experiment respond to the drive pulse
with driving frequency wq4. This may result in the photoelec-
tron energy being shifted by one unit of the photon energy
+hwq. These energy shifts are detected in trARPES mea-
surements as band replicas, whose similarities to Floquet
replicas might hinder identifying the signatures of Floquet
physics unambiguously. However, in contrast to Floquet repli-
cas, these LAPE replicas are not related to band gaps [37]. The
magnitude of the light-induced Floquet band gaps is tunable
via the field strength E4 [see Eq. (12)]. We propose to use
this tunability to distinguish the LAPE and Floquet replicas.
More specifically, the Floquet replicas at the Dirac point are
at £A¢/2 and £(Ao/2 + fiwg), as we show in Fig. 3. The
monotonous behavior of the Dirac gap Ay makes it possible
to distinguish between LAPE and Floquet replicas.

The Floquet-Bloch bands resolved in n(k, w) are broad-
ened due to dissipation. In addition they are Fourier broadened
with the probe pulse length. The combined result is a Voigt

n0,w) O 0.05 0.10 0.15

fiw[meV]

At[fs]

(b)

hiw[meV]

-400 -200 0 200 400
At[fs]

fiw[meV]

-400 -200 0 200 400
At[fs]

FIG. 4. The electron distribution n(k = 0, w) at the Dirac point
as a function of the delay time At for a peak driving field strength
of E; =20MV m~!. The driving frequencies are (a) wq = i,
(b) wq = 2, and (¢) wg = 3. The dashed lines indicate the static
Floquet energies corresponding to the driving field strengths at the
center of the probe pulse.
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profile of approximate width

4

7>
™

M~=<+ +

)/2
T (16)

0=

with y = y1/2 4+ 2y, + we. For our specified values this
is ' = 80 THz = (12.5fs)"! ~ 53 meVA~'. In order to suc-
cessfully resolve the effective bands in n(k, w) it is crucial
that the bands gaps are large compared to I'. For probe pulses
long enough that their contribution to I' can be neglected, the
broadening is y due to intrinsic dissipation. Reducing y can
be achieved by using cleaner graphene samples with higher
mobility, which is technologically challenging.

Furthermore, trARPES experiments are, in general, lim-
ited by a Gaussian pulse energy resolution of the order
(371

AE ~ rp—‘ 1825 meV fs. (17)

The energy resolution of the measurement has to exceed
the band gap Ay, the Floquet replica spacing wq, and the
Floquet-Bloch band Voigt width I". These requirements are
realistically achieved in the proposed regime of Ay > fiwq.
For instance, fulfilling the resolvability conditions I' < wq
and AE < hwyq is not a necessity for identifying signatures
of Floquet physics for this regime.

To determine the minimal probe length that is necessary to
achieve an energy resolution equal to the gap, we insert the
expression for the gap A at the Dirac point into Eq. (17). Itis
min _ 1825 meV fs

? = (18)
\/4€2U12;E§/a)(21 + FPw} — hiwg

An energy resolution several times better is necessary to
clearly identify the Floquet-Bloch bands, which corresponds
to probe pulse lengths several times larger than the minimal
length, e.g., 7, ~ 10rl;“i".

V. CONCLUSION

In conclusion, we have pointed out a realistic regime
for the detection of the light-induced topological gap in
graphene via time- and angle-resolved photoelectron spec-
troscopy. Our proposed regime addresses the limitations of
band broadening, energy and momentum resolution, and
intrinsic limitations of the detection method for realistic es-
timates of dissipative processes. We find that these limitations
are overcome by increasing the driving field strength and
decreasing the driving frequency so that the energy difference
between finitely occupied Floquet-Bloch bands is larger than
the Floquet zone. The timescales associated with the dissipa-
tive processes set the limits of this regime. On the one hand,
the driving frequency has to be large enough that many driving
cycles occur during one characteristic timescale of the dissipa-
tion. On the other, decreasing the driving frequency increases
the gap size at the Dirac point, which has to exceed the band
broadening. As the gap becomes larger than multiples of the
driving frequency, limitations such as band broadening and
inherent energy resolutions no longer obstruct the identifica-

tion of signatures of Floquet physics. This regime also allows
undesired laser-assisted photoemission replicas in trARPES
measurements to be unambiguously identified as such at the
Dirac point and to be clearly distinguished from the Floquet
replicas. The detection of Floquet bands via trARPES would
constitute a profound insight in light-driven solids, which
would complement the measurements of transport reported in
Ref. [8] and thereby advance the field of optical control of
solids.
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APPENDIX A: MASTER EQUATION

‘We base our numerics on the Lindblad—von Neumann mas-
ter equation

P D
p=ilo, H1+ Y cjLipL] = S{LiL;. oD, (AD)

J

where j € {z, +, —, 1, £2, £3, +4}. We consider a product
state in momentum space p = [[, pr and the Hamiltonian
in Eq. (3) in the extended basis spanned by the states |0),
c;A |0}, cl:B |0), and c;Bc;A |0). The transformation V into
the instantaneous eigenbasis diagonalizes the Hamiltonian
at any given time and determines the momentum-dependent
Lindblad operators as

L. =V(cf scka — cppckp)V (A2)
Ly =V geeaV’, (A3)
L =V¢ sV’ (A4)

0 641 b2 0

_ 81’1 0 0 5_3’1 +

L=V Py 0 0 5 s Vi (AS)

0 8351 a4y 0

The coefficients c; are
Cz = Vo (A6)
— _ —2ep

cr+c_ =y, cy=c_e , (A7)
Cj+Coj="Vhg C-123-4=Ci 234", (A8)

with 8 = (kgT)~' and the instantaneous level spacing e.
This four-dimensional description makes two-point correla-
tion functions and therefore the electron distributions via
Eqgs. (8) and (9) accessible.
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APPENDIX B: FLOQUET ENERGIES

At the Dirac point, the graphene Hamiltonian in Eq. (3)
with constant amplitude simplifies to

hk =0,1) = %Ad[sin(wdt)ax +cos(wgt)oy], (B

which is the Rabi-Hamiltonian

wo/2
HR = E(Qe?k/iwdt

Q —iwgt
s /2), (B2)

with wy = 0. In the rotating frame given by exp{—io,wqt/2},

the corresponding dynamics are governed by the static Hamil-
tonian

o _a)d/2 Q
HR—h< Q +a)d/2) (B3)

with eigenenergies

€ =h/Q? + wj/4. (B4)

In the original frame of Eq. (B2) the solutions to the
Schrodinger equation then rotate with the energies

€ = +h(,/Q + wi/4 — wa/2), (B5)

which gives Eq. (12) for Q = evphi™'Eq/wq.

This expression increases monotonously as a function of
E4, and the Floquet energies are given by this expression
modulo the driving frequency wq. Put differently, € + mhwqy
gives the various Floquet replicas at the Dirac point. When-
ever € = mhiwy/2, the expression of € in Eq. (BS5) crosses a
Floquet zone boundary. We solve this condition for Ey4 to find
the driving field strengths at which this occurs for the mth
Floquet zone boundary. This gives us Eq. (13).

In the case of a time-dependent driving amplitude such as
in Eq. (7) and under the assumption that the Floquet states
form instantly, we insert the driving amplitude envelope at
a given point in time At expressed relative to the amplitude
peak, such that

Q(A?) = % i—j exp{ — (A1)’r;*41n(2)}. (B6)

This leads to the expression € (At) in Eq. (15).
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2.9 Publication IV: Non-linear photoconductivity of strongly
driven graphene

L. Broers and L. Mathey — arXiv:2312.13217 (Under review at SciPost Phys.)

This work was motivated by the prospect of obtaining a more detailed understanding
of the non-linear electronic transport properties of strongly driven dissipative graphene.
Non-linear charge transport plays a crucial role in the light-controlled transport with
few-cycle pulses, and coherent electronics. A detailed understanding of driven graphene
is paramount for the development of new devices based on these effects. This work is a
preprint, and potentially subject to changes.

I have studied the non-linear photoconductivity of graphene in the presence of both
linearly polarized strong driving, and a strong direct bias in parallel direction. This
non-linear AC-DC transport setup provides a rich structure in the differential photocon-
ductivity with distinct limits where either the AC field or the DC field outweighs the
other. I have captured the dynamics in these two limits by using distinct descriptions,
that present good agreement with simulated results. In the limit of a dominant DC field,
I have explained the non-linear conductivity using a picture of modulated Landau-Zener
transitions. I have presented an analytical calculation that agrees with the structure of
the non-linear differential photoconductivity as a function of the electrical field strengths.
The DC field leads to a strong anisotropy of the momentum-distribution of currents,
reminiscent of wake-fields of current density in momentum-space emerging at the Dirac
point. Based on this observation, I have provided an analytical calculation of the con-
ductivity of undriven graphene as a function of temperature and DC field strength in
the non-linear regime, which recovers the distinct features of the numerical results. In
the opposite limit of a dominant AC field, I have provided a description rooted in Flo-
quet physics that is reminiscent of the Tien-Gordon effect of photon-assisted tunneling
and qualitatively agrees well with analytical estimates. The differential photoconductiv-
ity displays a checkerboard pattern that emerges from the displacement in momentum
space due to the DC field within the Floquet-Bloch band structure in the presence of
high intensity driving.

My contribution to this work consisted of conceiving the project, creating the nu-
merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.
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Abstract

We present the non-linear DC photoconductivity of graphene under strong
infra-red (IR) radiation. The photoconductivity is obtained as the response to
a strong DC electric field, with field strengths outside of the linear-response
regime, while the IR radiation is described by a strong AC electric field. The
conductivity displays two distinct regimes in which either the DC or the AC
field dominates. We explore these regimes and associate them with the dy-
namics of driven Landau-Zener quenches in the case of a large DC field. In the
limit of large AC field, we describe the conductivity in a Floquet picture and
compare the results to the closely related Tien-Gordon effect. We present an-
alytical calculations for the non-linear differential photoconductivity, for both
regimes based on the corresponding mechanisms. As part of this discussion of
the non-equilibrium state of graphene, we present analytical estimates of the
conductivity of undriven graphene as a function of temperature and DC bias
field strength that show very good agreement with our simulations.
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1 Introduction

Graphene displays a wide range of remarkable properties, which have been the subject
of basic research and of technological interest, since its discovery [1-6]. A key inter-
est have been the electronic transport properties [7—26], as well as the optical proper-
ties [27-34], including the more recent shift of interest towards optical driving [35-41].
As a key example we mention circularly polarized light which generates topological Flo-
quet band gaps leading to an anomalous Hall effect [42-45]. Control of transport has
been demonstrated by driving graphene with short pulses, which leads to charge-envelope-
phase-dependent Stiickelberg interferometrically induced currents [46-49]. The coherent
destruction of tunneling [50-52] has been proposed in strongly driven graphene [53], as well
as photon-assisted tunneling [54]. Given the recent studies of light-controlled phenomena
in graphene, a comprehensive characterization of the non-linear photoconductivity and
coherent dynamics and transport in periodically driven graphene is imperative, and is also
motivated by future technologies based on high-intensity driving.

In this work, we present the non-linear longitudinal DC photoconductivity of mono-
layer graphene driven with linearly polarized terahertz radiation at the charge neutrality
point. The polarization of the driving radiation is parallel to the probing polarization.
We utilize a Master equation approach that explicitly models the dissipative properties of
the material, see [45]. We identify a rich structure in the differential conductivity which
features two limits, in which either the DC probing field strength or the AC driving field
strength dominates. These two limits are separated by a regime in which the two fields
are comparatively strong, and the dynamics display a subtle competition. In the regime in
which the DC field dominates, we describe the dynamics via Landau-Zener (LZ) transitions
that are modulated by the radiation field, and affected by the dissipative properties of the
system. Due to the modulation by the radiation field, dynamical patterns in momentum
space, in the vicinity of the Dirac points, emerge with a periodicity that is equal to the
accumulated momentum shift during one driving cycle. We present an analytical solution
to leading order in the transverse momentum component, i.e. the momentum component
orthogonal to the probing direction relative to one of the Dirac points. This analytical so-
lution reproduces the characteristic patterns in the differential photoconductivity. In the
absence of the radiation field, we estimate this current density pattern analytically and
derive an expression for the non-linear conductivity of strongly biased undriven graphene.
Further, we provide analytical calculations for the dependence on temperature of the un-
driven conductivity. For a weak DC probing field, we find that the conductivity scales
linearly with temperature down to small temperatures at which the conductivity converges
to the analytical minimal conductivity of g—eh? In the regime in which the AC driving field
dominates, we find that the differential photoconductivity displays a type of checkerboard
pattern. The DC field provides a shift in momentum space across the strongly driven
Floquet band structure, such that the conductivity pattern emerges from an interplay of
Floquet and transport dynamics. We note that the checkerboard pattern in the differen-
tial conductivity shows strong qualitative similarities to predictions for this system of the
distinct Tien-Gordon effect [55].

2 Methods

We consider monolayer graphene in the presence of a constant electric field, i.e. a direct
(DC) bias, in addition to continuous terahertz radiation, i.e. an alternating (AC) bias,
which is linearly polarized in parallel to the DC field. We write the linearized Hamiltonian
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Figure 1: Illustrations of the dynamics in the two regimes of either dominating
DC field strength Ey or AC field strength E4. Panel (a) shows the structure of
the modified Landau-Zener quench in the limit of dominating DC field strength
Ey. An electron in the ground state with initial momentum far away from the
gap is accelerated due to Ey and displays quenched dynamics across the gap.
Due to the additional AC field, the quench is modulated. Panel (b) shows the
structure of the Floquet band structure in the limit of large and dominating AC
field strength F4. The DC field Ey accelerates electrons across this effective band
structure.

for a single momentum mode k = (k, k,) near one of the Dirac points, as

%Hk(t) =p (kx + %t + ;fj cos(wdt)> 0z +vpkyoy. (1)
A similar model applies to the other Dirac point, with o, = —o,. Here e is the elementary
charge, A is the reduced Planck constant and vy ~ 10°ms~! is the Fermi velocity of
graphene. Ej is the DC field strength, Fy is the AC field strength and wqy is the driving
frequency. o, and oy are Pauli matrices. We propagate the density operator of the system
using the Lindblad-von Neumann master equation

e = oo B + - ol — (L[ L1 i) @
l

The indices [ of the Lindblad operators describe the dissipative processes of sponta-
neous decay and excitation, dephasing and incoherent exchange to an electronic back-
gate. The associated dissipation rates are v_, v4, 7. and 7g, respectively. The tem-
perature T' of the system enters the model through Boltzmann factors of conjugate pro-
cesses, €.g. Y4 = Y- exp{—kz—eT}, where € is the instantaneous eigenenergy scale of the
driven Hamiltonian. The Lindblad operators L; act in the instantaneous eigenbasis of
the Hamiltonian. For further details of this method we refer to App. C and previous
works [45, 56, 57]. Throughout this work we use the parameters wq = 27 x 12THz,
v, = 11.25THz, v4 +v- = 5THz, 1 = 12.5THz and T' = 80K unless stated other-
wise. We explore values for the electric field strengths Ey and E4 up to a few megavolts
per meter.
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We calculate the total longitudinal current of the system by integrating the momentum-
resolved contributions of the current operator

Jo = €VFOy (3)

over momentum space. Note that the periodicity of the AC field requires integration over
one driving period to obtain the DC component of the total current. It is

T4 2
EVFWq wqd

with the valley- and spin-degeneracy n, = n, = 2. Ak, and Ak, are the numerical
discretization of momentum space. We note that both the two spin states, as well as both
Dirac points give the same contribution for all observables in this paper. D is a sufficiently
large neighborhood in momentum space around the Dirac point K to ensure convergence.
T is a time that is large enough that the system has formed a steady state in the comoving
frame k, — k; — %Eot. We calculate the differential conductivity of the system as

dJy
G = 5
dEo (5)
and in the absence of driving as
Ggm = Gm|Ed=0' (6)

We further introduce the differential photoconductivity with respect to the AC field

strength as
de:p
g i (7)

We obtain the derivatives of Eqs. 5 and 7 numerically as central finite differences. Since
in this model we are considering graphene at its charge neutrality point, i.e. at vanishing
chemical potential, the conductivity we calculate is commonly referred to as the minimal
conductivity of graphene, in relation to the possible enhancement of the conductivity by
increasing the charge carrier density by means of a non-zero chemical potential.

3 Results

We calculate the overall current J, as a function of the DC field strength Ey and the AC
field strength E4 up to values of 4AMV m~! and 20MV m™!, respectively. This range of the
DC probing field includes the nonlinear DC conductivity of driven graphene well beyond
the linear response regime. In Fig. 2 (a) and (b) we show the differential photoconductivity
gz and the change in differential conductivity

respectively. The structure of these observables is rich and there are two distinct regimes
which correspond to the cases of Eq > Ey and Ey > FE4, in which qualitative structural
dependencies can clearly be identified. Depending on whether the DC field or the AC
field dominates, the steady state dynamics change significantly. As we discuss below, the
AC and DC fields are on equal scales when Eq = 27nFEy. This condition is met when the
momentum shift due to the DC field that is accumulated during one driving period is equal
to the momentum displacement amplitude due to the AC field. We indicate this condition



SciPost Physics Submission

b 0 5 10 15 20
EqMVm™]
12,
10
S
=
<
b 4
2
0
Eo[MVm™] Ep[MVm™]

Figure 2: The differential conductivities of strongly driven graphene. Panel (a)
shows the differential photoconductivity g... as a function of the DC field strength
Ey and the AC field strength E4. The diagonal line is given by Eq = 27 FEy and
separates the results into the two regimes where either the DC field strength Ej
or the AC field strength Eq dominates. Panel (b) shows the change in differential
conductivity AGy; as a function of Ey for various values of Ey.

with the diagonal line in Fig. 2 (a). The structure of the differential photoconductivity
gzz in these two regimes is intricate and can be understood from different perspectives
in analyzing the corresponding dynamics. The following subsections discuss these two
regimes.

3.1 Dominant DC Field

We first analyze the regime in which the AC field strength Ej is significantly larger than
the AC field strength Eq4. In this regime, the differential photoconductivity g, in Fig. 2
(a) shows a striped pattern as a function of Eq and Ejy which leads to step-like features in
the change in differential conductivity AG, that we show in Fig. 2 (b). The dynamics of
this case are captured naturally in the comoving frame k, — k; — %t, produced by the
large momentum shift due to the DC field Ey. In this frame, an electron with a momentum
far to one side of the Dirac point and initially in thermal equilibrium accelerates due to
the DC field and eventually passes the Dirac point. These dynamics are a type of Landau-
Zener (LZ) quench across the gap given by the transverse momentum component, i.e.
A = 2hvpk,. The driving term is linearly polarized in parallel with the DC field, such
that the LZ quench is further modified by an undulating motion in k, as depicted in
Fig. 1 (a). As the relative phase of the AC field during the quench depends on the initial
value of k., the transition probability is periodic in momentum with eEOh*IQmugl, which
is the momentum shift induced by the DC field during one driving period. Therefore,
the temporal periodicity of the AC field leads to a periodic current density pattern in
momentum space.
In Fig. 3, we show examples of such patterns in the quantity

w, T+IE
. d wd .
8509 = 30 [ Ao, Q
™ T
which is the time-average of the momentum-resolved photocurrent density
Aja(k) = ju(k) = Jz(K)| £y, B4=0, (10)
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Figure 3: The momentum-resolved photocurrent density in the presence of a
strong DC field of Ey = 3MVm™! and an AC field strength of B4 = 2MV m™!
(a) and Eq = 6MVm~! (b) averaged over one driving period. Here the dissi-
pation coefficients are reduced by a factor of five compared to the values in the
main text, for visual clarity. The dashed lines indicate the momentum shift that
is accumulated during one driving period, which corresponds to the periodic pat-
terns that occurs due to the AC field.

in which we subtract the equilibrium current density which integrates to zero. 7 is a time
large enough that a steady state has formed in the comoving frame k, — k; — %t. In the
case of large values of Fy and comparatively small dissipation, the steady state current
density pattern stretches very far across momentum space before significantly decaying.
Note that for increasing AC field strength E4 the pattern becomes more intricate.

In the picture of modified LZ quenches, the integrated current in Eq. 4 consists of a
contribution close to the gap, and a much larger contribution from the decaying tail of
the current density pattern as is clearly visible in Fig. 3. We neglect the first part and
estimate the current as a product of the periodic current density pattern and exponential
decay with a dissipation rate I' = %’y, + Ybg. We present the details of this calculation in
App. A. We write the total current as

eEp2m

hw _T ko
JL nne”F“’d/ | 2P(kyo + 5 ky)e " <E0 dhpdhydr, (11)
871'3 0 R2 ’
where P(k;, ky) is the transition probability into the excited state of a system initially in
the ground state at momentum k. It is

Plka, ky) = lim | (+]U(1,0)|-) %, (12)

where U (t2, t1) is the time-evolution operator of the Hamiltonian in Eq. 1 from time ¢; to 2
and |£) are the eigenstates of the o, Pauli matrix. &, is an initial momentum component
that is negative and large enough such that the dynamics are initially adiabatic, in order
to capture the quenched dynamics in their entirety. x is an additional momentum offset
in order to average over the periodicity of the density pattern.

We calculate P(ky, k) from the modified LZ problem (See App. A). To leading order
in ky it is

hopk? [t ,
\Hmwwwzm&”Fﬂ/%mwm (13)
€E0 0
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Figure 4: Comparison of the quenched dynamics for Ey = 3MVm™! and Eq =
4.75MV m~! as a function of the initial momentum component k,, at vpky = wq/4.
Panel (a) shows the analytical solution to the modified Landau-Zener quenched
dynamics (See App. A) that lead to the expression in Eq. 13. Panel (b) shows
the numerical results in the presence of weak dissipation. A weak exponential
decay due to the dissipation is visible, and the overall structure agrees well with
the analytical estimate in panel (a). Panel (¢) shows the analytical estimate
for the differential photoconductivity from the modified Landau-Zener quench to
leading order in k, as given by Eq. 17. The striped structure agrees qualitatively
with the numerical results in Fig. 2 (a) for large values of Ey. The black line
is given by Eq = 2nFEy. The black dot indicates the parameters used in panels
(a) and (b). The shaded area indicates the regime in which Eq. 17 is not a valid
approximation.

with the integrated dynamical momentum of Eq. 1,

! Eot’  eE
I(t) = hvp/ (ks + el 4 d cos(wqt'))dt (14)
0 h hwd

such that we find the full transition probability

(15)

rhopk? - 2 o
P(ky, ky) = exp{ — Iy Jn (—4;;£§Ed sin(n 4UZE0 ) oMWz },
for values of k, that are negative and large enough for the initial state to be in equilibrium
prior to the quench transition. J, is the nth Bessel function of the first kind. This
expression explicitly displays the periodicity of eth_127rw;1 in k; that is induced by the
AC field. For the total current we average the transition probability over this periodicity
and to leading order find the expression

eEg2m
S w2 h bkl

D _ ~ 41)F6Ed . hwﬁ
P(ky) = /0 Pk ky)dhs & o+~ Z < sin(ng =) ) (16)
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where we ignore ¢y as it is constant with respect to Eq and does not contribute to the
photoconductivity (See App. A). In Fig. 4 (c), we show the resulting contribution to the
differential photoconductivity for small &,

2 nho? —4upek, Fw?

~L7 F F d . d
. 17
Jex X B dBy 4@rE0Z ( Sm(n4vpeE0)> (17)

In the case of Ey > Ey, §gi% displays a striped structure that is consistent with the
differential conductivity in Fig. 2 (a). For values of 27rEy = FEjq, the prediction starts to
deviate as the contributions from momenta with larger k, component are not captured
by the leading order calculation for the transition probability in the modified LZ quench.
The oscillating terms proportional to £ Lin Eq. 17 result in erratic behavior for small DC
fields, which leads to the chaotic results in the regime of 2w Ey < F4. This demonstrates
that the modified LZ quench is not a good description in the limit of Ey < E4, where
many driving oscillations happen during the transition and dissipation cannot be neglected
as a driven steady state forms.

In Figs. 4 (a) and (b) we show the time-evolution of the current density j,(¢) as a
function of the initial value of k, and for vpky, = wq/4. We show this for Fy = 3MV m~!
and Eq = 4.75MV m~!. Fig. 4 (a) shows the analytical solution of Eq. 13 to leading order
in k,, whereas Fig. 4 (b) shows the numerical simulation in the presence of weak dissipation.
The dashed line indicates the points in time at which the drift of the momentum mode
passes the band gap. Note the periodicity in the transition probability pattern as a
function of k,. The results agree very well with each other and display how dissipation
acts as simple decay when the drift occurs quickly relative to the dissipation time scales.
For larger values of F4, momentum modes with large transversal components contribute to
the current. The patterns at these large values of k, are not captured by the approximation
to leading order in k,. This explains the discrepancies of the striped patterns in Fig. 4 (c)
and Fig. 2 (a) for increasing values of Fjy.

In the limit of vanishing driving, i.e. E4 — 0, the expression in Eq. 15 reproduces
the well-known approximation of the transition probability of the LZ problem P(k,)
exp{—mhvpkle 1 Ey 1. In this limit, we calculate the bare, i.e. undriven, non-linear con-
ductivity of graphene for large Fy (See App. A) and find

2
GEp»o = Helnizo g choor < (18)
dEO (’ng + Q’)/_)QFWFQ h

In the undriven, i.e. Eq — 0, and linear limit, i.e. Ey — 0, we calculate the conductivity
as a function of temperature (See App. A) and find

2
GEo=0 % (F — arctan((

kBT R kBT log(4))
B) .

AR (19)

A linear dependence of the minimal conductivity on the temperature in graphene as we
find here is consistent with the literature [16-24]. In gated graphene this behavior reverses
and the conductivity is found to decrease as a function of temperature [25,26]. In the case
of T'= 0, Eq. 19 recovers the analytical result of the minimal conductivity of graphene

71'62

Eo—0 _
G0 = ST (20)
The minimal conductivity of graphene has been the subject of many studies and theory
commonly produces the values Ee— [7-10] or ;— [10-12], while experiments consistently

4e?
ﬁnd o
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TIK] Eo[MVm™]

Figure 5: The undriven differential conductivity G, of graphene for various tem-
peratures. Panel (a) shows the linear conductivity as a function of temperature.
The black line indicates the analytical solution in Eq. 19 (See App. A). Panel
(b) shows the non-linear differential conductivity as a function of Ey for various
temperatures. In the limit of large Ejy the conductivity becomes temperature-
independent. The black line shows the analytical expression for the conductivity
presented in Eq. 21. The dashed lines indicate the bare conductivity of g%

In Fig. 5 we show the conductivity in the absence of any AC field, i.e. G, as in Eq. 6,
for different temperatures. In Fig. 5 (a) we show the linear conductivity, i.e. Ey — 0,
as a function of temperature. Note that the expression in Eq. 19 is derived in the case
of Ypg = 0. Therefore, we introduce a parameter 7' as v~ — ~y_ + 4 and fit this to
the numerical results of the Lindblad master equation. We find very good agreement
for v/ = ~pg/6. The gray line in Fig. 5 (a) shows this fitted analytical prediction. In
Fig. 5 (b) we show GY, as a function of Ey for different temperatures. For small and
intermediately large values of Ej there is a clear dependency on the temperature. This
is expected, since for large FEy the current is dominated by contributions at momenta
where the level spacing is large enough to suppress any thermal excitation. In general, the
conductivity initially decreases with Ej, reaches a minimal value at some value of Ey which
increases with temperature. The conductivity then increases again while approaching the
asymptotic behavior of Eq. 18. For T' = 300K, the minimum of the differential conductivity
is approximately located at Ey ~ 0.6MV m~!. This qualitative structure is consistent with
recent results [58]. We combine the analytical results of Egs. 18 and 19 into an expression
for the differential conductivity at T' = 0K

2 1—a)?n? 36eEgvR
GO~ (ol g ( + : 21
h < 2 4 (g + 37-)2hm? (21)

where the construction of the parameter o ensures that for vanishing Ey the numerical

and analytical result is recovered, i.e. GO, |g, 0 = g% as in Eq. 20. We find very good

agreement with the numerical results for a = i and show this estimate in Fig. 5 (b) as a

black line. Note that this scaling behavior can in principle be used to determine the scale
of dissipation I' in a given graphene sample. The expression in Eq. 21 for the differential

conductivity is necessary in the context of the Tien-Gordon effect [55] as we discuss later.

3.2 Dominant AC Field

Here we analyze the regime in which the AC field is dominant, and the differential pho-
toconductivity displays a checkerboard pattern as we show in Fig. 2 (a). As the AC field
strength 4 greatly exceeds the DC field strength Ejy, we describe the system as primarily
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Figure 6: The electron distribution n(k,w) (See App. C) as a function of k, for
ky = wa/4vr and for the AC field strengths Eq = 10MVm™! (a) and Eq =
13MVm~* (b). The solid lines show the Floquet spectra of the Hamiltonian in
Eq. 24. Here the dissipation coefficients are reduced by a factor of five compared
to the values in the main text, for visual clarity. For increasing dissipation the
gaps become increasingly indiscernible.

driven periodically and perturbed by the comparatively weak DC field Ey. This naturally
suggests describing the system in the Floquet picture, in which dynamics are captured via
the effective Floquet Hamiltonian

Hp = H_, Hy Hy ; (22)

which has an effective band structure that deviates from the undriven Hamiltonian. Here
H,, is the mth Fourier component of the original Hamiltonian H () such that

o2
H, =% / 4 eimeat B (1)dt. (23)
2T 0

The structure of the Floquet Hamiltonian explicitly includes infinitely many replicas of
the bare bands coupled to each other by the components H,,o and separated by multiples

10
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of the photon energy fiwq. In the case of Eq. 1 it is H,, |;,>1 = 0, and we explicitly write

wd va{ 0 Q 0 0
vpk  wyg Q 0 0 0
ﬁ _ 0 Q 0 UFk 0 Q (24)
h Q 0 wpk O Q 0
0 0 0 Q  —wgqg vrk
0 0 Q 0 wvrk —wqy

with k = k; + ik, and Q = E54

In the case of very large AC field strengths, the Floquet band structure approaches an
increasingly regular pattern in which the Floquet band gaps align with the quasi-resonant
condition of vpk, = mwq/2, m € Z. In Fig. 6 (a) and (b), we show the momentum-
and frequency-resolved electron distributions n(k,w) (See App. C) at vpk, = wq/4 for
Eq = 10MVm™"! and Eg = 13MVm™!, respectively. We also show the eigenvalues of
the Floquet Hamiltonian in Eq. 24 for the same parameters as solid lines. Note that for
E4q = 0 the gap at k, = 0 in this example is A = hwg/2, which is fully suppressed in
the effective Floquet band structure in Fig. 6. We calculate the Floquet energies at the
quasi-resonant conditions in first order of k, (See App. B) and find that the mth Floquet
band gap is given by

E
Aelm) — szkme(z%) +O(k2), (25)

d

where J,, is the mth Bessel function of the first kind. For increasing Fq, the range of
values of k, for which this expression remains valid increases. For those values of Eq for
which the mth Bessel function evaluates to zero, the transition probability becomes unity
as a form of coherent destruction of tunneling [50,53].

Fig. 2 (a) shows that the differential photoconductivity displays a type of checkerboard
pattern in the regime that we consider in this section. The regularity of this pattern with
respect to Ey aligns along values of

gty _ I
0 drevp

(26)

with m € N, as we indicate with vertical lines. These values of E(()m) are the DC field
strengths for which during one driving period i—z, a shift in momentum equivalent to
the difference in location between m resonances is accumulated. In consideration of the
Floquet band gaps in Eq. 25, this translates into a momentum shift that is commensurate
with m Floquet band gaps for small k,.

We demonstrate that the contributions to the photoconductivity are located at these
Floquet band gaps in Fig. 7 (a), where we show the photocurrent density Aj,(k), as de-
fined in Eq. 10, integrated over k, as a function of k., and the AC field strength Ey in
the limit of small Ey. We see a clear structure of dominant contributions to the differen-
tial photoconductivity at momentum components k, = mwq/vp, i.e. at locations of the
Floquet band gaps for small k, as given in Eq. 25. With increasing FEq, contributions
at higher-order resonances start to emerge that are aligned with the locations of Floquet
band gaps. The regularity in the differential photoconductivity g,, with respect to Eq4
emerges as a consequence of these quasi-resonant contributions, which relate to the size of
the Floquet band gaps in Eq. 25. For large values of F4 the roots of the even-order Bessel

11
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Figure 7: The distribution of current contributions in momentum space. In panel
(a), we show the photocurrent density in momentum space integrated over only
the k, component as a function of the k; component, and the AC field strength
E4. The dominant contributions are located at the multi-photon resonances
indicated by the vertical dashed lines. In panel (b), we show the Floquet band
energy differences resolved in k-space for large AC field strength Eq = 10MV m™".
The Floquet gap locations align with the resonance conditions for k, = 0, giving
rise to a striped pattern of Floquet band gaps. The circles indicate the original
resonance conditions in bare graphene. In panel (c), we show the differential
photoconductivity as given by the Tien-Gordon expression in Eq. 28 using the
expression for the bare differential conductivity in Eq. 21. Note the similarities in
the regular checkerboard pattern to the differential photoconductivity in Fig. 2.

functions in Eq. 25 become increasingly aligned, as do the roots of the odd-order Bessel
functions. This results in an odd-even pattern of dominant contributions with respect to
Eém) , i.e. the checkerboard pattern in Fig. 2 (a). In Fig. 7 (b), we show the Floquet band
energy differences for By = 10MV m™!, where it is clearly visible how the Floquet band
gaps for small k, align in the regular pattern along k, at which the dominant contributions
to the photocurrent occur. This is consistent with pulsed two-level systems, in which LZ
transitions across instantaneous Floquet band structures provide an accurate description
of the dynamics [59].

For comparison, we consider the predictions of the Tien-Gordon effect. In semicon-
ducting nanostructures that are AC and DC biased simultaneously, the DC I-V curves
without an AC driving field taking into account photon-assisted tunneling. The original
discussion put forth by Tien and Gordon discussed the dynamics of superconducting junc-
tions in a perpendicular electric field [55]. For a bias voltage V (t) = Vy + Z—i sin(wqt) they
approximate the driven I-V curve as

1) =3 J%(wzj)fo(vo ). (27)

A similar analysis has been put forth for graphene in the presence of an oscillating chemical
potential [60], i.e. an alternating gate bias. The expression in Eq. 27 translates into the

12
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conductivity

mhw?

G =3 <“;Li§d) c, <E0 b ) . (28)
In Fig. 7 (c) we show the differential photoconductivity as it is predicted by Eq. 28 using the
approximate expression for the bare conductivity in Eq. 21. We find that the characteristic
structure shows a similar checkerboard pattern to that in Fig. 2 (a). In particular, the
regularity with respect to Ejy is identical, as in Eq. 28 the same multi-photon offset to the
DC field strength Ey occurs as in Eq. 26. The regularity with respect to Eq agrees with
the results in Fig. 2 (a) and the Floquet band gap scaling in Eq. 25, despite the distinct
nature of the two phenomena. Note that the Tien-Gordon prediction in Eq. 28 becomes
increasingly inaccurate towards the regime where it is 2nEy > FE4, which is where the
checkerboard pattern is lost in the differential photoconductivity in Fig. 2 (a).

4 Conclusion

We have presented the non-linear longitudinal differential DC photoconductivity of light-
driven monolayer graphene. We model the electron dynamics near the Dirac points of
the graphene dispersion, in the presence of a DC probing field and an AC driving field.
The driving field has the same linear polarization as the probing field. The differential
photoconductivity displays two regimes as a function of the AC driving field strength, and
the DC probing field strength, depending on which of these field strengths is dominant.
The dynamics of these two regimes are captured well in two very distinct pictures, which
we have explored analytically, and compared to the numerical result.

In the regime in which the direct bias dominates, the photoconductivity displays a
striped pattern. It derives from the Landau-Zener dynamics of the electrons across the
Dirac cone, driven by the two electric fields. We presented an analytical calculation that
reproduces the formation of the striped patterns in the photoconductivity. We put forth
an analytical prediction for the formation of current density patterns in momentum space
in the limit of large direct biases. From this we have approximated the non-linear conduc-
tivity in the absence of an alternating bias, which shows behavior that is independent of
temperature. Further, in the limit of a small direct bias and no alternating bias, i.e. the
undriven linear case, we have calculated that the minimal conductivity increases linearly
with the temperature and recovers the value of g% for vanishing temperature.

In the regime of the dominant AC driving field, the photoconductivity displays a
checkerboard pattern. In this regime, we use a Floquet picture to describe the dynamics.
The regularity as a function of the direct bias is given by values which during one driving
period accumulate a shift in momentum that is equal to the differences of Floquet band gap
locations. We have shown that for large alternating bias and small transverse momenta, the
Floquet band gaps align along the corresponding values of equal longitudinal momenta at
which the dominant contributions to the photoconductivity are located. Further we have
compared these results to the Tien-Gordon effect. We have used the analytic expression
of the non-linear conductivity to calculate the differential photoconductivity using the
expression put forth by Tien and Gordon, which displays a similar checkerboard pattern.
In particular, the regularity as a function of the direct bias is manifestly identical. The
regularity as a function of the alternating bias is very similar, and agrees with the analytic
expression of the Floquet band gaps to leading order in transverse momentum.

The results we have put forth provide insight into the non-linear electronic transport
properties of strongly driven graphene. The insights presented here support the engineer-
ing of non-equilibrium quantum electronic devices in the future.

13



SciPost Physics Submission

Funding information This work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) — SFB-925 — project 170620586, and the Cluster of
Excellence ’Advanced Imaging of Matter’ (EXC 2056), Project No. 390715994.

A Analytical Approaches to the Differential Photoconduc-
tivity

Transition Probability for Generalized Quenches

We consider a two-level Hamiltonian with energy spacing A and a time-dependent quench
7(t) that we write as
H = Ao, +7(t)o, (29)

such that the second time-derivative of any state is given by

D2 1) = — L0, |9)) = —+(re(t)? + ioi(1)) |8 (30)

: (

St =
St =

~—

where we have used that H? = €2 = A% + 7(t)? in centered two-level systems, i.e. when
Tr(H) = 0. For the components of |¢) = (¢4,9_) it is

1
" h?

~ 2 (m(t)s + i) (32)

Vi = =5 (A 4 w(t)® £ il (1) (31)

Y =
such that for initial conditions 14 (0) we have

D2(0) = —7 (Em () (0) + Av(0)). (33)

We write 14 (t) = exp{£+(t)} such that Eq. 31 yields

A2 7?2 iR

§i+éi:—ﬁ—ﬁ$% (34)
§+(0) = In(y+(0)) (35)
4(0) = - 3 (n(0) + ATE ) (36)

We expand § = >, &nA™ in orders of A and write
é:l:,m + Z é:l:,m—né:t,n = _5m,2 - (5m,0(7r2 + 717T) (37)
n=0

The case m = 0 gives

Ero+E&y=Fin —71° = & 9= Fir (38)
= &0 = In(y+(0)) Fill(2) (39)
with .
(t) = Ndt' 40
(t) /O w(t')dt (40)
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The case m =1 is solved to satisfy the initial condition Eq. 36 such that

Ex1Fi2mér1 =0 = &4 = —iszeﬂ’éH(t) (41)
+
t .
— fﬁ:,l — _Zw:F/ e:l:2%H(t')dt/ (42)
wi 0
The case m = 2 is solved as
EroFi2méiy=—1— (—z’z’z)—jFeﬁﬁn(t))2 (43)
(o
. , L/ A
s fy = M) / W) Yz () gy (44)
0 (Lkt
t : ! t/ . 17 Q]Z)Q t - ! ' - "
S §:|:,2 — _/ e:l:zZH(t)/ eq:zQH(t )dt”dt/—i—;t/ e:l:zQH(t)/ e:tzQH(t )dt”dt/
0 0 Y1 Jo 0
St €l
(45)

We note that &, 5 = £'% 5 such that we define & = Re[¢, 5] = Re[¢’ ,].
Higher orders of m > 2 are solved iteratively by

m—1
Etm Fi2mlim =— Y Crmnin (46)
n=1
t
- é‘:i:,m = _eii2l'[(t)/ e$i2H(t’) Zgﬂ:,m—né‘:ﬁ:,ndt/ (47)
0 n
t t
— = [ [ FOS it (49)
0 0 -

Here, we consider {_ up to second order with the boundary conditions ¢_(0) = 1 and
14 (0) = 0. We calculate the amplitude square

9 A2 - A2 A2 ,
la(t)” = expi(—0 + E-275 )} exp{(§—0 + - 2755)} = exp{255 Rel[&]} (49)
A2 ! 2 / v 2 " " . 2 !/ v . 2 " /! /
=exp{—— [ (cos(=II(t")) cos(=II(t"))dt" + sin(-11(¢")) [ sin(=II(¢"))dt")dt'}
2 J, h 0 h h 0 h
(50)
AQ ! 2 / 12 ! . 2 / 12
=exp{——([[ cos(ZIL(t"))dt']* + [ [ sin(=I1(t"))dt']*)} (51)
noy “C s My
2t
= eXp{—A—| / e I gy |2}, (52)
hJo
We apply this to the explicit case of
E
w(t) = hvpk, + evp Eot + evj d sin(wqt) (53)
d
2
T0(t) = hophgt + SEEOE e”FQEd cos(wat) + e“FQEd. (54)
2 w3 wj

This constitutes a Landau-Zener quench with an additional alternating motion. The con-
struction of the parameters is chosen to invoke the similarities to graphene. In particular,
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we write A = hvpk, to emphasize this connection. Note that the Hamiltonian in Eq. 29
then becomes equivalent to that in Eq. 1 under a simple basis rotation around o,. We
continue by writing the central exponential function as

SevpEg

2evp E,
2 2—+5d —i=—E-d cos(wqt))
exp{zﬁﬂ(t)} —e hwg zZkazt evFEot hwg (55)
izeq;f;gd -n —2€UFEd i(nwq+2vpks )t tevp Egt?
=e d E "I | ——5— | € @)teh . (56)
nez d

We integrate this product of exponential functions for a fixed value of n, which gives

_ih(nwg+2vp kI)Q

devp Eg (57)

t .
ez(nwd+2ka )t' evaot dt' = ith
0 46’UFEO

X (erf <’ / 4Eio (nwq + 2k )) —erf <, / 4Eio (nwq + 2k, + 2E0t)>> (58)

In order to consider the transition amplitude across the quench, we assume that |k;|, with
k; < 0, and t are both large enough such that the error functions approach —1 and 1 for
large times. Then the absolute square of the integral becomes

ifmzwg inhwg kg

o0 h P P N
| / exp{i2lL(t)}atf* ~ — T |Zm< cor d)e TorBoe eho 2. (59)
0

In the undriven case of Fy = 0 we correctly recover the first order correction to
the transition amplitude as predicted in the Landau-Zener problem. In that case it is
Jo(—2Edw;2) =1 and Jn>0(—2Edwg2) = 0, such that

Thu k%

la(t = o0)|> = e Fo . (60)

In the driven case the calculation is more intricate. Remember that the expression
Eq. 59 is periodic in k,. We take the expression for the transition probability and simplify
the absolute squared expression. It is

mho k 2 E ~h"2wd .nhwykaz
’a‘Q — exp{ F y‘ Z ’I’LJ ’UF@ d) Z4UFeE0€ i eEq ’2} (61)
WhUFky TL m 2’UF€Ed 2UF6Ed 71.71(71277712)«)?1 o h(n m)wqkz
= — J J dvpeEq eE
exp 2eE n%Z a2 ————)JIm(— th Je e 0
(62)
ﬂ'hvpky 2upeFEy 2upeky it 2mwd g ko
=exXp 4§ — 26E0 n;gzl Jner hwg )Jm( MQ )6 dvpeEy e eEq
(63)
WhUFk?S dvpeEq niuw? jnfwgke
[ exp { T et ey L (64)
neZ
_rhopky e WhUFk‘ 41}F6Ed n 2 nhwak
—_ 2¢E, _ _ d d 65
‘ ’ ol P { eEy n hw3 S 4vFeEo)) cos( eEy ) (65)
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where we have used that

2F, 2y, _jnint2meg 4By . w3
" (= (=TT = Jy(Ctsin(e ), (66)
meZ “d “d “a 0

which we obtain by invoking the relations

JH(’Z) _ 2i /Qﬁ eiu‘r—iz cos(‘r)d,]_ (67)
T Jo
Ju(2)Ju(2) = 72r/02 Jyu+v(2z cos(t)) cos((n — v)t)dt. (68)

In the following, we use the expression in Eq. 65 to approximate contributions to the
conductivity.

Integrated Contributions from Modulated Quench Transitions

We estimate the conductivity by first integrating the transition probability over momentum-
space, which gives the total current. Afterwards we take the derivative with respect to the
two bias strengths Ey and F4. However, that expression is only finite in the presence of
dissipation which relaxes the excited states after the quench. Therefore, we consider this
calculation in a two-step model, where the transition occurs in full and only afterwards
dissipation starts to act, decaying any population that was excited. This is modeled by
exponential decay by a phenomenological dampening coefficient I'. Note that k, in |a|?
is the initial value of the momentum component. We calculate the transition probability
averaged over this initial value by writing

TFhUFk 4vFeEd . nhw? ks
la|* = exp{ 5oF Z sm(4v eld? )e " eEo (69)
0 nez FeLQ
e (_M)l No> Shoynphwgke L 4 E P2
D D D I | e e
- | ”] 2
P ! ez} e w3 dvpeEy
Jef1,...,1}

and integrating this expression to leading order such that

2meEq

P = e [
2meEy Jy

|af*dkz0 (71)

7Th’UFk

_ l l l 2
26E ) 4UF€Ed . njhwd
—Z e 2 ) [T sm(4vF€E0)) (72)
{n;ez}y =1 j=1
Je{1,...,1}

L Thopk; ﬂhvpk ZJQ 4vFeEd sin( nhw3

2¢E, 2eE0 ) +O(k)).  (73)

dureFEy

In the first step we evaluated the integral and found that the exponential functions lead to
vanishing integration unless the exponent is zero. This condition is expressed through the
delta-function ¢ (Z .1 n;). In the following step we have evaluated the first three terms
of the series. Note that the [ = 1 term is proportional to Jy(0) = 1 and for the [ = 2
term the sum reduces since ny = —ny and a sign change in both the index of the Bessel
function and the sine in the argument of the same Bessel function cancel each other. As
we are interested in the differential photoconductivity, we first notice that the first two
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terms vanish when differentiating with respect to Ey4, such that we can ignore them. We
consider the conductivity in the limit, where the quench occurs fast and dissipation acts
afterwards with a simple exponential decay such that we integrate current contributions
over all k, as

. T [ -rik
s o OOl [ ek, (14)
0
ek
= g, 08, (|a]? hF) (75)
2h? 1 qopeEy ., nhw?
~ AT g0 9 2 (- d 76
v 4o OFa EO;EO n h? Sm(4vFeEo (76)

This expression provides the contributions to the differential photoconductivity as a func-
tion of k, for small values of k. In order to access higher order contributions it is necessary
to evaluate Eq. 48 and then perform the analogous calculation of the conductivity.

Non-Linear Conductivity in the Large-DC-Bias Limit

For large values of evpEgh~! > T'wq, we can approximate the transition probability of
a ground state at ¢ — —oo towards ¢ — oo as a function of k,. We assume that the
transition happens fast enough such that the entire transition process happens and then
decay starts acting. In a comoving frame, time translates into k;-momentum and the
transition probability is proportional to the conductivity density. We take the result for
the transition probability for £q = 0 and multiply this by an exponential decay in k,
starting at k, = 0. It is

2
™R ﬁk:y kg

la(ke, ky)|> =€ B0 e <EoO(k,) (77)

where ©(k;) is the Heaviside function. This integrates over momentum space to

E3
JgC:nSnUGUF/ / 2\a(ky, ky)|2dkydk, \/‘;%g”j (78)

Hence the conductivity from this main contributions is

dJ; eEgvp €2
QY = =64/ 5 — 79
o dEy I2hn? h (79)

This is in agreement with the large Ey limit of Fig. 5 (b) up to some constant offset
provided by the current density close to the Dirac point which we neglected here. This
calculation holds only in the limit where the exponential decay in k,-direction happens
close enough to the Dirac point that a linear dispersion is still a valid approximation.
From the Lindbladian in the 4 X 4 basis it is easy to see, that I' = v4 + y1,5.

Temperature-dependent Conductivity Without Driving

In the limit of small Ey, dissipation acts significantly during the transition and the previous
approximation is no longer valid. Also, temperature starts to become relevant in this limit.
In the comoving frame k, — k, — eEoh~'t, the solution is a stationary state such that
hoip = eEpOk, p. To approach this problem analytically we neglect the expanded sector
of the Hilbert space and only consider the original 2 x 2 system, i.e. 1, = 0. In this case
the Lindblad-von Neumann master equation can be cast into the form

—

10 = 2H x §— hopnf — liyah — liys(5h)h (80)
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for the density operator representation
1 -
p=5(1+p0) (81)
where & = (04, 0y,0) is a vector containing the Pauli matrices. Similarly, it is
H=Héd (82)

and h = ¢ 'H with e = V H.H. For details on and a derivation of this representation of
the master equation we refer to previous work [61]. We invoke this representation in the
comoving frame and write

—

eEody,f = 2H x f— hy1f — hyoh — hys(ph)h. (83)

In the case of finite temperature the dissipation coefficient o depends on the temper-
ature T' as

€
Y2 = Y+ tanh <kBT> 5 (84)

where € = \/(hvpk, + evpEot)? + (hupky)2. We consider this in the expansion in orders
of Ep and find

eakzﬁm—l = 2(1770 X ﬁm + ﬁl X ﬁm—l) - h’Ylﬁm - h’}/Q,mﬁm—n - hz '73(ﬁm—n—l}_in)]_7:l- (85)

n,l

We solve this for m = 0 and find the thermal state

hvpk\ -
po = — tanh ( or ) h. (86)

kgT

We continue to find the solution for m = 1, which expressed in polar coordinates k, +ik, =
ke'?, has the z-component

hopk > 2h2v% cos?(gp) N h*vj sin?(¢) sinh < QZ;I%IC) (87)

e
r — 5 h2
Pla = 55eC ( R2ksT(71 +73) W22 hwpk + AR3v3 k3

In order to obtain the conductivity we have to integrate this expression over momentum
space. This expression integrates angularly to

1 /27r 4o — WhZU%SeChz (ZI;FJ?) thv%’n tanh (ZZF;?) (58)
o P T TR T (v 4 s) HBvpkn? + ARBvEkS
The first term integrates radially to
2,2 2 [Tk
/oo mh*vgsech (,fBifT) e — kT mlog(2) (89)
0 h2kpT(v1 + 73) 2 v+

The second term relies on some approximation of the hyperbolic tangent, we use to good
approximation that

hpk
/ o whitvtanh (i) (ﬂQ 2 kBT)i>> 1 (90)
0

T~ Taret
Wvpy? + 4Bl k2 g g et
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We collect the terms and write the conductivity as

oo 27
GO, :nvnsszZ /O /0 kpr.o(k)dpdk (91)

with the valley- and spin-degeneracy n, = ns = 2. With this we insert the derived
expressions and get the final result

2 kgT . s kpT 2log(2) e?
O ~(Z(1-%arct BT . 92
. (2 ( 7 arctan(( h71)4))+ h vi+v/) h (92)

B Floquet Band Gaps at Small Transverse Momenta

We want to calculate the Floquet band structure in the limit of small &, for the driven
Hamiltonian

1 eE
—H =vp(k, + —d cos(wqt))oy + vrkyoy. (93)
h huwq
We start by going into the time-dependent basis under the transformation
E
V = exp{—ivp(kot + ;7;1 sin(wat)os)} (94)
d

such that the Schrodinger equation becomes
O = —ivpk,Vie, Vi (95)

with the effective Hamiltonian proportional to

E E
Vie,V = sin(2(vrkst + 62‘;2‘1 sin(wqt)))os + cos(2(vpkyt + 6212(1 sin(wat)))oy.  (96)
d d

In this basis the time-evolution operator after one driving period describes the same
transformation as the effective static Floquet Hamiltonian. The formal solution yields

2

2 ~ wq

U <wﬂ> = Tlexp{—ivpk, / Vi, Vdt}], (97)
d 0

where 7" indicates time-ordering. This expression is a formal notation for an infinite series
of nested integrals. We approximate this transformation by the Magnus expansion to first
order in k,. It then suffices to calculate

27
2 wyq
U <7T> - eXP{ika‘y/ " VioyVat}, (98)
wq 0

where the integral in the exponential is now a closed expression that can be integrated by
itself before exponentiation. We calculate the integral by first writing
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i evp By 2vpkat 7 (9 CVF L at—%
Sln(Q(’Uszt-i- hwg sin wdt ZZH 2vp n th ) in(wqt—75)
nEZ
. Eyq
o Z-nefz2vpkztjn(26UF ) (~wat—7%)
2
hwd
= Z T ( sm(2vpk‘xt — nwgqt)
neZ
3’77617 _) 27T Z J (26’UFEd 1 COS(Q'T[‘(QUF’{: n))
and analogously
QUka
evp E evFEd sin(27(=L2 —n))
cos(2(vpkyt + sin(wqt)) —> — Z In( 2ka:Jd
d nEZ wd n

The final transformation in the original basis is

(99)

(100)

(101)

(102)

(103)

(104)

je 2T
which has the eigenvalues AL = eile’wd, where e are the Floquet energies. Hence, the

Floquet energies can be calculated as

huwg
€+ = o log()\i)

In the case in which 2vpkxwgl is integer valued, we simplify

27 Z Jn(QevFEd)l —cos(2n(l —n))

27 =0
wa = hwg l—n
27 evp By sin(2n(l —n 27 evpEy
d neZ d n wd d

and similarly in the case where ZUFkxwgl is half-integer we write

27 evpEq. 1 —cos(2n(l—n)) 2w evpFEq
— E In(2 = —Jy11(2
wd L= ( hw3 ) I—n wq 211 hw3 )
27 evpEq sin(27(l — n))
— In(2 =0
wq Z ( hu)Q ) l—n
neZ d

In either of these case it is V(i—:) x 1 and we therefore find

27rh'u k evp E
27 £ yJ( F2d>‘7y
vy =g

Wd

which has the eigenvalues

:FZ2TrthkyJ ( c'uFEd>

2
)\:l: = e fiwq hwd

and we therefore find the Floquet energies

E
e+ = hvpkyJ <260Fd> .

hwg

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

Note that % < 1 and Ji(z) < 1, such that analytic continuation in the complex plane

does not have to be considered and the eigenvalues take this simple shape.
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C Dissipative Calculations

The model of graphene that we use in this work employs of a Hilbert space that includes
two additional states. We consider fermionic operators C(T) and cl(<)B that annihilate
(create) electrons at momentum k in sublattice A and B, respectlvely The Hilbert space
is then spanned by the states |0), cil |0), CTB |0) and cgcil |0). In particular, the first
and fourth states describe the situation in which either no electrons or two electrons are
occupying a given momentum mode k. In this space we define the dissipation operators
in the instantaneous eigenbasis of the driven Hamiltonian, e.g. L_ describes decay from

the excited single-electron eigenstate to the single-electron ground state. It is

0000 000 0 00 0 0
0000 0010 01 0 0
L==10 10 0 Lv=10 0 0 0 =100 -1 0
0000 0000 00 0 0
(113)

0 &1 0 0 0 0 &2 O

o 0o 0 o0 a0 0 G4
Lii= Sia 0 0 &3 Lvi=1% 0 o o (114)

0 &4 0 0 0 0 &3 0

Ly, ; describe the individual transitions in and out of the single-electron sector. In
the master equation these particular processes are weighted by the dissipation rate vy, =
v, +7 and v+ = 4 +- We weight opposing processes by Boltzmann factors that ensure
a Fermi distribution with temperature 7" in the equilibrium state

- 11

Yt = vp exp{ . T (115)
2¢e

— — . 11

Y4+ = 7—exp{ kBT} (116)

kp is the Boltzmann constant and +e are the instantaneous eigenenergies of the Hamil-
tonian, e.g. Eq. 1. For further details on this dissipative model we refer to previous work
that employ the same model [45,56,57].

Further, this description allows us to calculate two-point correlation functions using
these fermionic operators, such as <Cif4(t2)CA(t1)> and <cg(t2)03(t1)>. We use these corre-
lation functions to calculate the momentum- and frequency-resolved electron distribution
in the steady state of the driven dissipative system.

ty s
ik, ) / / > (el (t2)ac(h)) =W dndty (117)

L‘f—tl i iZAB

This electron distribution reveals the Floquet band structure of the system and the electron
population in these bands. This quantity is reminiscent of time- and angle-resolved photo-
electron spectroscopy [62]. For further details on this method see previous works [45,56,57].
We use this calculation for Fig. 7 in the main text.
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3 The Floquet-assisted Superradiant Phase

A central result of Publication II was that the longitudinal optical conductivity of
strongly driven dissipative graphene can display a sign reversal at probing frequencies
that are resonant with light-induced band gaps. From this, the question emerged whether
the corresponding optical gain can be utilized to build a gain medium or a coherent light-
source by exploiting the underlying mechanism of population inverted Floquet bands in
solids. A possible construction would consider coupling the material to a single-mode
cavity that is resonant to these population-inverted Floquet states, in order for a coher-
ent light-field in the cavity to be sustained by depleting the population inversion in a type
of laser-like mechanism. This consideration motivated Publication V, and subsequently
Publication VI, in which I have studied a modified driven dissipative Dicke model that is
inspired by the physics of circularly driven dissipative graphene. In this quantum optical
model the same mechanism does occur, leading to a population inversion in the Floquet
states, which in fact culminates in a non-equilibrium superradiant phase, to which I refer
as the Floquet-assisted superradiant phase (FSP). The emergence, characterization, and
robustness of the FSP are the focus of Publication V and Publication VI.

Throughout this chapter I provide an overview of the necessary background in quan-
tum optics, with a focus on the Dicke model and the superradiant phase. This invites
a discussion on non-equilibrium phenomena, superradiance, and different types of laser
mechanisms. I also address the challenges of realizing the Dicke model and how this
connects to a graphene-based setup such as the one that motivates Publication V and
Publication VI. Quantum optics is a large and well-established field of research, and
detailed books as well as extensive reviews of the Dicke model, superradiance, and laser
phenomena are widely available [147-151] and have inspired the content of this chapter.

3.1 The Dicke Model and Superradiance

The Dicke model [152, 153] is one of the quintessential quantum optical models. It
describes N identical two-level systems with level-spacing w, that are placed inside, and
coupled to, a single-mode cavity with frequency w.. The Hamiltonian reads’

N N
H:h;;J§+hwccﬁa+m;(ai+a])(a+aﬁ), (3.1)
where ¢, = %(O’% + i0}) and o}, are the local Pauli matrices of the jth two-level

system. A is the coupling strength and a() are the annihilation (creation) operators

!Note that I use the definition of the Pauli matrices that fulfills 0]2 =1, and not af = %.
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of the cavity mode. Note that the interaction contains four terms of the form Jia(ﬂ.

The two so-called counter-rotating terms o’ a and aiaT are sometimes neglected in the
rotating-wave approximation (RWA), as they describe relaxation and excitation pro-
cesses by two quanta at once and are therefore fast-oscillating compared to the remain-
ing two interaction terms. Applying this approximation recovers the Tavis-Cummings
model [154]. Considering the edge-case of N = 1 of the Tavis-Cummings model recovers
the Jaynes-Cummings model [155]. Considering the case of N = 1, while keeping the
counter-rotating terms produces the quantum Rabi model.

The Hamiltonian in Eq. 3.1 is sometimes referred to as the Dicke-Lieb-Hepp model, as
it was first proposed in this form by Lieb and Hepp [153]? two decades after the original
model of superradiance proposed by Dicke [152], which did not consider the presence
of a cavity. This semantic ambiguity extends into the nomenclature of superradiance,
which refers to the two distinct phenomena of transient superradiant flashing and the
steady-state superradiant phase, which occur in these models. The former, also referred
to as superradiant bursting or just superradiance, occurs in the original Dicke model as
a collective spontaneous emission of N excited emitters in proximity which leads to a
coherent burst of radiation that scales with N? in intensity. I am not concerned with
this phenomenon throughout my work. The superradiant phase on the other hand,
also referred to as superradiance, is an equilibrium phenomenon of the Dicke-Lieb-Hepp
model. It describes a second-order phase transition characterized by the occupation of
the cavity. For coupling strengths that exceed the critical value A > A\, = %\/@ [153,
156, 157] the system displays a new ground state. This ground state consists of a coherent
state in the cavity and substantial component along the o, direction in the two-level
systems, which represents finite polarization in case the model is used to describe atoms
inside an optical cavity. Note that the coherent state in the cavity emerges, while the
two-level systems show no population inversion, i.e. (o,) < 0. For A < A, the system is
in its normal phase where the ground state is trivial and consists of an empty cavity and
all two-level systems in their local ground state. Throughout this section I am concerned
with the Dicke-Lieb-Hepp model as written in Eq. 3.1, to which I refer to as the Dicke
model.

When quantum optical models of this type were first studied, it was noticed that
experimental realizations of the Dicke model are faced with a no-go argument [158-160],
which sparked an intricate discussion about the relevance of gauge-fixing [161] that is still
attracting attention [162, 163]. The outline of the argument goes as follows. Historically,
the Dicke model was derived for a set of atoms inside an optical cavity coupled through
the electric transition dipole moment. In minimal coupling, the electromagnetic vector
potential A couples to momentum as

P i=p—eA, (3.2)

where 7 is the dynamical momentum. In the parabolic kinetic term of non-relativistic

2In fact in the work by Lieb and Hepp, the RWA was used which makes it also a study on the Tavis-
Cummings model.
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Hamiltonians this leads to the transformation

-9 -2

p m [ ST 272

— = — 2epA +e“A“). 3.3

o " 3 = 5y (P PA + ) (3.3)
The quadratic term o A2 may be neglected when it is considered to be small. The
vector potential is then quantized as

o ool o iR
Aty =" m%(aﬂe“kﬂ “it) 4 qf e hmit)), (3.4)
j7>\

where A € {1,2} denotes the index of the polarization vectors €, which describe
transversal modes, i.e. /%E; » = 0. V is the mode volume of the cavity and ¢j is the vac-
uum permittivity. It is w; = C|Ej| with the speed of light ¢. In considering a single-mode
cavity this expression of the vector potential reduces to one operator a with frequency
w, momentum E, and polarization vector €.

At the same time an atomic potential is assumed, which is solved to identify two low-
lying states, |e) and |g) with the level-spacing F. — E, = hw,. Assuming that the spatial
extent of the set of atoms is much smaller than the wavelength of the cavity mode, i.e.
the Dipole approximation, leads to the cross-term of Eq. 3.3

L h L it T
(P 0)l9) =/ 57 (e|pe™™a + pe~*T0qT|g) . (3.5)

Here, 7 is the approximate location of the two-level systems which is chosen to set the
phase of the dipole element deg = € (e|7]g) = 7.5, (€|plg) such that the coupling term
in Eq. 3.3 becomes

e L h -
(16} (elFAT.Dlg) (9] + he) = woy [ 5= ldglon(a+al). (30)
with the polarization vector parallel to the dipole element, i.e. E’J;g = ]cfeg\. The pre-

factors in Eq. 3.6 are collected as the coupling strength A. When this calculation is
performed for N identical systems, this recovers the Dicke Hamiltonian in Eq. 3.1. The
no-go argument then states, that the quadratic term in Eq. 3.3 can in fact not be
neglected in this derivation, as it becomes dominant in the would-be superradiant phase
of the Dicke model. Deriving the model while not neglecting the quadratic term and
quantizing the vector potential results in an additional term  (a + aT)2 that prevents the
superradiant phase transition from occurring in the first place. Note that this argument
addresses the realization of the Dicke model through this equilibrium description of
atoms inside optical cavities and does not immediately extend to other systems or non-
equilibrium setups.

Consequently, experimental realizations of the Dicke model are fairly sparse and solu-
tions to this conundrum usually consist of the light-matter coupling being generated by
intricate pumping mechanisms, such that the Dicke model emerges effectively. Success-
ful realizations include setups utilizing hyperfine states of atoms confined in an optical
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cavity [164-166], circuit QED setups [167], or trapped ion systems [168, 169]. A preva-
lent realization consists of trapping a Bose-Einstein condensate inside a perpendicularly
oriented optical cavity [170-178], where the two-level sector consists of momentum-state
superpositions that form checkerboard patterns and lead to scattering into the cavity.

3.2 Non-equilibrium Models and Laser Mechanisms

Beyond the equilibrium phenomena of quantum optics, such as the Dicke superradiant
phase, lies the introduction of driving terms to study more intricate physics. The non-
equilibrium dynamics of quantum optical models in the presence of additional driving
have been [179-184] and continue to be [185-196] an active field of study. In realizations
of the Dicke model, different driving schemes have been demonstrated to lead to various
non-equilibrium phases [197-203] and time-crystalline phenomena [203-208]. With the
recently growing interest in Floquet engineering and non-equilibrium superradiance, the
distinction between various classes of coherent-light sources becomes increasingly subtle.
It is common practice to consider quantum optical models in the presence of incoher-
ent driving which pumps the population of the excited states. This leads for instance
to the construction of lasing mechanisms, which are approximated analytically in the
form of rate equations, where optical gain is the result of the pump-induced population
inversion and stimulated emission. The quantum theory of regular lasing emerges in its
original manner from the Jaynes-Cummings model in the presence of repeated injection
of population inverted atoms as put forth by Lamb and Scully [209]. There have been
countless realizations of conventional laser mechanism throughout the decades. How-
ever, there are also various unconventional laser mechanisms, such as lasing without
inversion [210-214], counter-lasing [215, 216], dressed-state lasing [185, 217-222], and
more [223-230]. A noteworthy mechanism is superradiant lasing [231-245], which is
achieved by pumping the two-level systems of the Dicke model to engineer continuous
steady-state superradiance? that characteristically displays an ultra-narrow linewidth.
An important distinction between incoherent and coherent driving is that in a system
with coherent periodic driving, the Floquet theorem applies. As previously laid out in
Section 2.3, this leads to the formation of hybridized states of the bare system in the
presence of the interaction with the driving. In quantum optics, these are also referred
to as dressed states, whereas in solid-state systems the term Floquet bands or Floquet
states is often used. Note that the term dressed states is also used to refer to the
corresponding eigenstates of quantum optical models in which quantized light-modes
and orbitals hybridize. Including semi-classical coherent driving in quantum optical
systems has been considered since the early days of the field of quantum optics. The
Rabi model [246] is arguably the most minimalistic quantum optical model in that it
describes a single simplified atom that is coherently irradiated by semi-classical light.

3Superradiant lasing is engineered in the Dicke-Lieb-Hepp or Tavis-Cummings model, and is a steady-
state superradiance phenomenon distinct from the Dicke superradiant phase. It builds on the tran-
sient superradiant flashing phenomenon of the original Dicke model, which did not consider a cavity.
This is one manifestation of the aforementioned semantic ambiguities that surround this topic.
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The Hamiltonian consists of a two-level system in the presence of a periodic driving term
and reads

Hyp = 1925 4 92 J(piet 4 ooty (3.7)
2 2w
E is the electric field of the semi-classical driving term and d is the electric transition
dipole moment of the atom. The conventional approach to solving this system consists
of going into the rotating frame given by V = e""=3% and in the classical rotating-
wave approximation (cRWA) dropping the counter-rotating terms that oscillate at the
frequencies +2w. This approximation is valid in the limit of weak driving, i.e. low field
strengths, and has been widely used to study the behavior of absorption spectra of
driven systems since the early days of quantum optics. However, this approximation
breaks down for strong driving, at which point the counter-rotating term has to be
considered. The details of Floquet states depend on the structure of the driving term,
such that for instance the Rabi model after the cRWA leads to qualitatively distinct
Floquet states compared to the Rabi model prior to this approximation. This is relevant
in the following section, where I motivate a connection from quantum optics to two-band
materials, in particular graphene, which displays a similar expression to that in Eq. 3.7.

3.3 Towards a Graphene-based Dicke model

As discussed in Chapter 2, I have studied a setup of driven graphene in Publication II
that displays optical gain through a mechanism of population inverted Floquet states.
This motivated studying this mechanism in a coherently driven quantum optical setup,
where a single layer of graphene couples to a single-mode cavity. This is also in light of
the more recent interest into engineering non-equilibrium dynamics [247-249], where the
control of population of Floquet states has also been studied in different setups [250—
254]. In Publication V and Publication VI, I have considered a driven dissipative Dicke-
like model that contains a coherent driving term in the two-level systems in a manner
that is inspired by the circularly polarized irradiation of graphene as in Eq. 2.26. The
Hamiltonian reads

H = EN: hwzaj + @(e_iwdta +eilo ) 4 hweala + A iaj (a+al) (3.8)
—2 T e * - ‘ VN &= '

and is locally structurally reminiscent of the Rabi model in Eq. 3.7 in the cRWA. Here (2
is a frequency that represents the intensity of the driving term, agnostic to its realization.
The connection of this coherently driven Dicke model to graphene manifests itself in
different ways and is well-motivated. First, note that in graphene no counter-rotating
driving term exists, due to the nature of the linear dispersion relation and the minimal
coupling, such that the resulting term in Eq. 3.8 should not be confused with the results
of an approximation. This is crucial, since in contrast to the Rabi model in the cRWA,
this term remains valid in the presence of strong driving, such that the two systems
display distinct Floquet physics. However, the structure makes it straight-forward to
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analyze the Floquet states in this system and their population inversion in order to gain
insight into the underlying non-equilibrium physics.

Second, note that due to the linear dispersion relation of graphene, the minimal cou-
pling does not produce any quadratic term oc A2 to begin with. Hence, the interaction
term in Eq. 3.8 is not the result of an approximation that neglects a quadratic term as
the one presumed in the no-go argument of the Dicke superradiant phase. As a side
remark, the linear dispersion in graphene has lead to discussions about a cyclotronic
realization of the Dicke model using the non-equidistant Landau levels of graphene in
a strong magnetic field [255, 256]. The arguments that are put forth as a no-go theo-
rem of this cyclotronic realization [256] do not make statements about other realizations
utilizing graphene, in particular non-equilibrium cases. Graphene has also been pro-
posed as an alternative to realizing the bosonic mode* in the Dicke model, by utilizing
surface-plasmonic excitations [257].

Finally, the connection to graphene is particularly emphasized through the dissipation
that I employ in this model, which is the same as the one used to describe the dynamics
of driven dissipative graphene in Publications I through IV. This dissipative model is
implemented via the Lindblad master equation and is distinct in that the Lindblad oper-
ators act in the instantaneous eigenbasis of the Hamiltonian, as discussed in Section 2.4.
In the description of two-band materials such as graphene, this model reproduces steady
states in the presence of bias fields in a gauge-invariant manner. This choice of dissipa-
tion directly affects the emergence of population inverted Floquet states. The remaining
distinction of this Dicke-like model and graphene consequently lies primarily in the bare
Hamiltonian of the two-level systems in Eq. 3.8, which makes the system more accessible
analytically while still providing meaningful insight. All of these considerations moti-
vate this model as means of studying the behavior of driven two-band materials inside
a cavity.

In a mean-field description, the Hamiltonian in Eq. 3.8 separates into two sectors
describing the dynamics of the two-level systems and the cavity, respectively. I write for
the individual two-level systems the locally identical Hamiltonian

H, = %O’Z + ?(e_iwdta_i_ + ety ) 4 \/%Ux (a + al) (3.9)
and for the cavity
H. = hweala + \WN (0,) (a + al). (3.10)

I assume that the cavity hosts a coherent state that is fully characterized by the param-
eter a = (a), such that the equation of motion of the coherent state reads

& = —(iwe + K)a — iAWV Npg, (3.11)

where k is a cavity loss rate that I include to describe a potentially dissipative cavity.
pz = (o) is the o, expectation value of the identical two-level systems. This equation

4At face value, the Hamiltonian in Eq. 3.8 considers a single bosonic mode coupled to N two-level
systems. What type of physical system is used to realize the bosonic mode is in principle unspecified,
although it will relate to the origin of the coupling term.
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Figure 3.1: Schematic overview of the FSP mechanism. The two-level systems inside
the cavity have a transitional frequency w, and are driven with an intensity
of 0 at a frequency wq > w,. The Floquet states change as a function of
() as indicated by the curved arrows, and in the presence of dissipation in
the instantaneous eigenbasis, display population inversion. The single-mode
cavity at w. is resonant to the population inverted Floquet states, which
leads to a depletion of the inversion in order to sustain a coherent state «
inside the cavity. The cavity loss rate k results in a photonic output.

of motion is coupled to that of the density operators
1 -
p= 5(1 + po) (3.12)

of the two-level systems, where & is the vector containing the Pauli matrices. I write this
in the general representation that I provided for the solid-like dissipation in Section 2.4
in Eq. 2.46. It reads

ﬁ: 26(1}_7:‘(1 X p=mp— VQEa - 73(}_7:(1/3»)}_7;(17 (3.13)

where ¢, is the instantaneous level spacing of the Hamiltonian H, = eaﬁ,ﬁ given for
instance by the relation H2 = €2, since Tr(H,) = 0. The dissipation coefficients in this
representation are

_ 0+t

=+ v_
5 2 =7 = yg=ET2 9y (3.14)

4! 5

where 4 . are the coefficients of the processes modeled by the Lindblad operators o4 .
in the instantaneous eigenbasis, see Section 2.4.

Equations 3.11 and 3.13 recover the Dicke superradiant phase correctly, but also dis-
play the emergence of a non-equilibrium superradiant phase for strong driving, i.e. large
), through the mechanism depicted in Fig. 3.1. For strong driving, the Floquet states of
the two-level system become population inverted, in a mechanism analogous to the one
I had identified in graphene in Publication II. This mechanism depends on the relation
between the characteristic frequencies of the system. I have studied the case in which
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wq > w, > we. The cavity is tuned to be resonant to the light-induced Floquet states
and hosts a coherent state with a photonic population that matches the depletion of
the population inversion, in a type of laser-like mechanism. Notably, the complex order
parameter «, given by the coherent state, oscillates at a frequency close to the Floquet
state transition frequency. The two-level systems experience this oscillating order pa-
rameter as an additional driving term which leads to further modification of the Floquet
states and to a type of hole-burning effect in the two-level systems. I refer to this non-
equilibrium phase as the Floquet-assisted superradiant phase (FSP) and it is the focus
of Publication V, where I characterize this phenomenon analytically and numerically.
In Publication VI, I have further studied this model, in particular with respect to the
robustness against environmental factors such as homogeneous broadening, noisy driv-
ing, and increased dissipation, all of which might affect the viability and stability of
the FSP. Inhomogeneous broadening enters this model through normal-distributed de-
tuning of the transitional frequencies of the individual two-level systems. Noisy driving
is included via random phase drift and leads to a finite linewidth in the semi-classical
driving field as well as the light-field inside the cavity. I find that the power spectrum of
the light-field in the cavity experiences drastic line-narrowing across the FSP transition
which overcomes the intrinsic linewidths of the system. Such line-narrowing corresponds
to increased spectral coherence and is characteristic of laser mechanisms. The critical
coupling strength at which the FSP occurs decreases with decreasing dissipation, which
presents the prospect of realizing the FSP in the presence of very weak coupling in suffi-
ciently clean materials and high-finesse cavities. Notably, in the case of large dissipation
coefficients that are on the order of the values that we used to described graphene in
Publication I, the FSP remains reasonably accessible under realistic conditions with a
critical coupling comparable to that of the equilibrium Dicke superradiant phase. The
results of Publication V and Publication VI are promising, and pave the road for demon-
strating the FSP mechanism in a full construction of driven dissipative graphene coupled
to a cavity under realistic conditions.
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3.4 Publication V: Floquet engineering of non-equilibrium
superradiance

L. Broers and L. Mathey — SciPost Phys. 14(2), 018 (2023)

This work was motivated by the observation of a negative longitudinal optical con-
ductivity due to inverted Floquet band populations in graphene driven at terahertz
frequencies in Publication II. The prospect of obtaining optical gain out of driven dissi-
pative two-band materials such as graphene prompted me to try and better understand
the underlying mechanism from a quantum optical perspective. This also raised the
question if this effect could be utilized to construct a type of coherent light-source.

I have introduced a coherently and strongly driven Dicke model as a simplified model
of a two-band material coupled to a single-mode cavity. In particular, I have considered
solid-like dissipation as I had used for graphene in Publication I — IV. I studied this
model numerically and analytically with a focus on the emergence of a non-equilibrium
superradiant phase in the presence of strong driving. I have found that the mechanism
of population inverted Floquet states as in Publication II does appear in this system
as well. Further, I have shown that tuning the cavity into resonance with the Floquet
state energy differences leads to the effective population inversion being depleted in
order to sustain a coherent steady state in the cavity. This leads to a non-equilibrium
superradiant phase to which I refer to as the Floquet-assisted superradiant phase (FSP).
I have characterized the FSP with respect to the coupling strength and the driving
field strength, as well as the dependency on the cavity frequency and the transition
frequency of the two-level systems. The phase diagram of the photonic field in the
cavity shows that the FSP emerges for small values of the coupling strength, compared
to the equilibrium Dicke superradiant phase. I have identified the conditions under which
the FSP emerges in the weak coupling regime, and how this relates to the mechanism of
population inverted Floquet states. Further, the phase diagram displays the FSP within
the analytical boundaries that I have predicted for the regime in which the population
inversion in the Floquet states occurs. The FSP presents an intriguing mechanism for
coherent light-sources that could in future work be studied in driven graphene coupled
to a cavity as a realistic platform.

My contribution to this work consisted of conceiving the project, creating the nu-
merical code, performing the numerical studies, performing the analytical calculations,
analyzing and presenting the results, and writing the manuscript. All of this was done
under the supervision and with the guidance of LM.
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Abstract

We demonstrate the emergence of a non-equilibrium superradiant phase in the dissi-

pative Rabi-Dicke model. This phase is characterized by a photonic steady state that
oscillates with a frequency close to the cavity frequency, in contrast to the constant pho-
tonic steady state of the equilibrium superradiant phase in the Dicke model. We relate
this superradiant phase to the population inversion of Floquet states by introducing a
Schwinger representation of the driven two-level systems in the cavity. This inversion
is depleted near Floquet energies that are resonant with the cavity frequency to sustain
a coherent light-field. In particular, our model applies to solids within a two-band ap-
proximation, in which the electrons act as Schwinger fermions. We propose to use this
Floquet-assisted superradiant phase to obtain controllable optical gain for a laser-like
operation.
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1 Introduction

Driven dissipative quantum systems display a plethora of intriguing phenomena, including un-
conventional coherent light sources and amplification mechanisms. Phenomena such as lasing
without inversion [1-4], lasing with driven quantum dots [5, 6] and population inversion in
strongly driven two-level systems [7, 8], have been proposed or implemented to extend the
conventional lasing mechanism. These examples are based on the non-equilibrium dynamics
of the dissipative Rabi model, which presents a minimal example of driven quantum systems.
Similarly, driven Dicke models [ 9] exhibit rich non-equilibrium dynamics of superradiant phase
transitions and unconventional lasing states [10-19]. Driving the coupling in cavity-BEC se-
tups, which can be mapped onto the dissipative Dicke model, hosts several non-equilibrium
phases [20-25]. Incoherently pumped Strontium transitions have been used to explore the
crossover regime of superradiant lasing [26,27]. Nitrogen vacancy (NV) center spins in di-
amond present a similar platform that has been used to create superradiant lasers [28-30].
In many-body systems, Floquet engineering aims to tune collective properties, such as band
topology [31-35], with coherent driving [36-38]. It has been shown that population inver-
sion of Floquet states can occur in driven systems [39-41]. Floquet theory itself presents a
method to describe the effective dressed states in driven systems and their population, and is
applicable to driven dissipative cavity systems [42,43], in particular.

We present the emergence of a Floquet-assisted superradiant phase (FSP) in the dissipative
Dicke model under the influence of circularly polarized driving of the two-level systems, rem-
iniscent of the Rabi model. This superradiant phase is distinct from other recently explored
dynamical phases and lasing mechanisms in the Dicke model such as the dynamical phases that
emerge under parametric driving of the coupling [20-25], NV room temperature superradiant
lasers [28-30] and the Floquet maser realized using magnetic feedback circuits [44]. The FSP
presents a mechanism for light-amplification and coherent light sources in two-level systems
that is induced by the driven coherences between effective dressed states and is thus not cap-
tured by semi-classical rate equations in which population inversion is impossible. We find
that this mechanism originates from the effective population inversion of Floquet states that is
depleted and transferred into the cavity if the cavity frequency is close to resonance with the
Floquet energy difference. This photonic coherent state saturates quickly, leading to a steady
state of constant magnitude with respect to the coupling strength. We analytically determine
the regime of driving field strengths in which the system displays Floquet state population
inversion and is therefore susceptible to the FSP We further present an analytical prediction
of the parameters at which the FSP first emerges in the limit of small coupling strengths.

This work demonstrates that despite the fact that Floquet states are effective descriptions
with energies that are only defined modulo multiples of a given driving frequency, their popu-
lation inversion can induce and sustain a coherent photonic state in a close-to-resonant cavity.
The connection between this light-amplification mechanism in two-level systems and effective
populations of Floquet states translates into solid-state systems that can be described with two
bands, e.g. monolayer graphene. This suggests the possibility of coherent Floquet engineered
light-amplification in solids, where the dispersion relation leads to a modification of our model
in which the two-level systems are no longer equal and their collective coupling to the cav-
ity becomes more intricate. Such a system would still be susceptible to the mechanisms that
underly the FSP which we describe here.

This work is structured as follows. In section 2, we describe the Rabi-Dicke model and
its dissipative mean-field description. In section 3, we present numerical results for the phase
diagram of the photonic steady state which shows the FSP We also show the photonic steady
state of the FSP in frequency space as a function of the driving field strength. Further, we
present analytical calculations of the Dicke superradiant transition in this model. In section
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4, we extend our results to a Schwinger representation which we use to calculate two-point
correlation functions and Floquet state populations. In this representation we demonstrate
the population inversion of the Floquet states and its depletion in the FSP We then present an
approximation of the Floquet energies of the two-level system in the FSP from an approximate
bichromatic Floquet description. In section 5, we present analytical bounds for the driving
field strengths at which population inversion occurs. Additionally, we demonstrate an accurate
description of the onset at which the FSP first occurs for weak coupling to the cavity. In section
6, we conclude and discuss our findings.

2 Dissipative Rabi-Dicke Model

We consider a system of N identical two-level systems with level-spacing w, coupled to a
single lossy cavity mode with frequency w,, as schematically depicted in Fig. 1. We emphasize
that the dynamical superradiant state can be realized on any set of well-defined two-level
systems, including solids in a two-band approximation, see e.g. [45]. The individual two-level
systems experience Rabi-like driving with frequency wy and effective field strength E4. The
Hamiltonian of this Rabi-Dicke model is

N N

1 w, : E : i i j A Y J

%H=Z[7ZO;+w—i(e_lwdto'i+€l‘°dt<7]_)]+wcaTa+_Nz(a+al)0i’ (D
j=1 j=1

where A is the coupling strength and oi’y’z are the Pauli-matrices of the jth two-level system.
Itisoy = (o, +io,)/2. a'" is the photon annihilation (creation) operator. This Hamiltonian,
that we use as the basis for our analysis, derives from an underlying model such as

1 w,

W o . .
—Hy= 20,4+ —Ed(e "?itg, +e'®itg_ ). 2
B0 2% 2hwy ( * ) @

Here E is the driving field and d is the dipole moment of the transition. Our effective driving
field strength relates to this case as Eq = %wzﬁ di!, where 2Eda)g1 is the Rabi frequency. As
a second model that motivates the Hamiltonian H, we present the model

%Hg =vp(k, + hc;oi cos(wqt))oy +vp(k, + f:;jd sin(wqt))oy, 3
that we used in the context of light-driven graphene [41,45]. Here vy = ¢/300 is the Fermi
velocity with the speed of light c. e is the elementary charge, E is the driving field strength
and k, , are the momentum components. Our effective driving field strength relates to this
case as Ey = evpEl L. In the following we take i = 1.

We use a mean-field approximation of the photon dynamics via the coherent state ansatz
a = a, +ia; = {(a), with the system separating into the two-level subsystem A and the cavity
subsystem C resulting in the approximate Hamiltonian H = ). i Hj\ + H¢, with

: w . Eq . _. ; : i A (a + a"L) ;
H) = ol + —<S(e7'@tg) +e'itg! )+ —F07, 4
A2 wd( " = VN O F ®
He=w.a'a+AVN (o,)(a+ad"), (5)

We include a cavity loss rate x, such that the equation of motion of the photon mode is

a=—(iw.+x)a—iAVN (o,). (6)
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The Lindblad-von Neumann master equation of the two-level system is
wZ

po=ilp, — 0=t (]i—i(.e_i“’dtcnr +el®ito_ )+ 2j%r
where we omit the superscript j, since the two-level systems are all identical, in this approx-
imation. We describe the dissipation of the two-level system in its instantaneous eigenbasis,
which has been shown to accurately describe two-band solids [45]. In particular, the Lindblad
operators are L, = Vo, V', L_=Vo_V'and L, = Vo,V", where V is the unitary transfor-
mation into the instantaneous eigenbasis of Ha(t) = €5(t)Vo,V'. e,(t) is the instantaneous
eigenenergy of the Hamiltonian H,(t). y. and y, are the coefficients of spontaneous decay
and dephasing, respectively. The equation of motion of the two-level system then takes the
form (see App. A)

1.
o]+ Z Yz[LIPLZ—E{LZLz,P}],U)
le{+,—2}

p =ilp, Hy(0]—11 (0 — )~ ZH, (06 (0 - BHpH 0670, ®

with

11=0-+714)/2+27,, Y2 =Y-— V4, r3=0-+r)/2=2r,. (9
2€
Throughout this work we use y_+v, = 1?)%’ Yy = )/_e_’%_j} ~0,v, = 5“(’)—3‘1 and xk = 1“5—5. Due to

these small values of the decay and dephasing coefficients, the Floquet states are well-resolved
in frequency space. The cavity loss rate « is very small compared to «w_. which constitutes the
’good cavity’ regime. We find that the FSP depends on dissipation and is in particular sensitive
to the cavity loss rate. However, the scaling behavior with respect to dissipation is not the focus
of this work. Rather, we point out the existence of a novel superradiant phase, that emerges
in the presence of optical driving. For this purpose we choose a dissipative model. We note
that the Lindblad master equation applied to strongly driven two-level systems with weak
dissipation has been found to show some deviations from more accurate methods [46]. We
understand these deviations to be small enough to not affect the central results of this paper.
The specific choice of the dissipative model in the instantaneous eigenbasis is motivated by
the natural dissipative environment of electrons in solids [45]. The two-level systems that we
consider here can be realized as two electron states, with one electron occupying one or the
other. As we describe below, these two states can be embedded in a four-level system that
includes both states to be occupied or empty, within a Schwinger construction. While this is
the natural Hilbert space for an electronic realization, we emphasize that the results we obtain
here can be generated from the Rabi-Dicke model, i.e. Eq. 1.

3 Floquet-Assisted Superradiant Phase

We determine the steady state regimes of the system. For that purpose, we solve the equations
of motion Egs. 6 and 7 and find the photonic state a(t), which serves as the order parameter
of superradiant phases. In Fig. 2 (a), we show the magnitude of a as a function of the driving
field strength E4 and the coupling strength A, for w, = wy/2 and w. = wy/4, as an example.
We note that no specific ratio between these frequencies is required. We find two phases of
non-zero |a|. The phase for small driving field strengths Ej is related to the Dicke superradiant
phase and approaches it for E4 — 0, which is an equilibrium phenomenon. In this limit, Eq. 1
recovers the dissipative Dicke-model. To capture this state, we write the equilibrium state of
the static two-level system as

1 _—y+H
o= _(1_7’ Y+ p , (10)
2 Y-tV €a

4
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Figure 1: An illustration of the dissipative Rabi-Dicke model (a) and a depiction of
its Hamiltonian as in Eq. 1 (b). A cavity (red) contains a set of identical two-level
systems (blue) which experience circularly polarized Rabi-like driving (purple). v.
and v, denote the coefficients of dissipative processes in the two-level systems, i.e.
spontaneous decay and dephasing. « is the loss rate of the cavity, which determines
the coherent output of the cavity.

which solves Eq. 8. We find the corresponding photonic steady state from Eq. 6 by inserting
a=0and (o,) = p,. Itis

0=—(iw.+x)a, +ia;)—iAvNp,, (11)

with X
_— 470, N2
== ar ’ 12)
T-+7+ /w2 +16A2a2N -1

which we solve to find

a . K Y=Yy Awe 2 w52
— =(1+i— —(==)". 13
VN ( lwc)\J(y_+Y+ w§+K2) (41) (13)

If a is purely imaginary, then p, is zero, because of Eq. 12. This implies that the a = 0 solution
is the state of the system, based on Eq. 11. If a has a non-vanishing real part, i.e. a, # 0, the
system is in the Dicke superradiant state. We determine the critical coupling strength A, of
this transition by setting the expression under the root in Eq. 13 equal to zero. It is

1 _+
o= g\ (e ). (19
2Nr-—7r+ @

In the case of k =0 and v, = y_e_’ss_zT this reproduces the well-known result for the critical
coupling

w, . T-01

- =/ w,w,. 15
2k T) 2V e (15)
We show this transition in Fig. 2 (b) compared to the numerical solution, which show excellent

agreement. Increasing E, initially maintains this transition, but increases the critical coupling

1
Ao = E\J w, w,. coth(



Scil SciPost Phys. 14, 018 (2023)

2 . .- _ _
strength A |g,~o — A, o< Ej. For the parameters in our example it is A, = 4—;5 for Eq = 0.

Further, the phase is separated into two regimes by a boundary E g A 0.020)?1 for A > v/2A..
For E4 < E é’ the phase shows similar scaling to the Dicke superradiant phase, i.e. the value of
a matches the case of Eq = 0. For Eq > E g the system experiences heating in this part of the
phase, due to the weak dissipation in the two-level systems.
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Figure 2: In panel (a) we show the magnitude of the photonic field a as a func-
tion of the driving field strength E4 and the coupling strength A. For large E4, the
Floquet-assisted superradiant phase (FSP) emerges and exhibits an oscillating pho-
tonic steady state. In panel (b) we show the E; — 0 limit, i.e. the Dicke superradiant
transition, which is predicted very well analytically. In panel (c) we show the mag-
nitude of the Fourier transform |&|/+/N as a function of the driving field strength E,
for the coupling strength A = A_. In the FSB the steady state frequency of the cavity
is close to the cavity frequency. We also show a zoomed-in version of the regime
in which the FSP occurs. In panel (d) we show the power spectrum |(?t|2A o 1 of
the FSP integrated over the frequencies shown in (c) in order to compensate for the
frequency shift of the FSP as a function of E;. The dashed lines in (a), (c) and (d)
indicate the analytically determined lower bound for the FSPB see Egs. 25 and 26.
The dotted lines in (a), (c) and (d) indicate the driving field strength at which the
Floquet energy spacing is equal to the cavity frequency.

For larger field strengths Eg4, there is a second superradiant phase, the FSB with a non-zero
photon amplitude |a|. The existence and properties of this non-equlibrium state is the central
point of this paper. For weak coupling, i.e. A < A, this phase emerges at the driving field
strength at which the difference of Floquet quasi-energies is resonant with the cavity mode,
as we discuss later. For increasing A, this domain broadens and gives the tongue structure in
Fig. 2 (a). Within this phase, |a| quickly approaches a constant value for increasing coupling
strength A. The dashed line in Fig. 2 (a) indicates the asymptotic lower bound of the FSP
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for increasing A. We calculate and present the driving field strengths that bound the FSP in
section 5. A natural regime of realizing the FSP is given by two requirements. On the one
hand, the instantaneous eigenenergy €,, which is of the order of the driving frequency wy,
needs to exceed the temperature. This derives from the ratio y,/(y; + v3) = tanh(,;—AT). On
the other hand the driving field strengths E4 has to be sufficiently high to drive the system
into the FSB specifically E4/ wﬁ ~ 0.3. For the case of graphene, see Eq. 3, for electric fields
of the order of 18MVm™, and for temperatures of the order of 100K, this results in driving
frequencies around wy ~ 27 x 48THz. Note that for very large E4 beyond the point at which
the Floquet bands cross, there is a further very faint phase, to be discussed elsewhere.

In Fig. 2 (c) we show the magnitude of the Fourier transform &(w) of the photonic steady
state as a function of the driving field strength E4 at A = A, indicated by the solid line in
Fig. 2 (a). We see that the steady state of the cavity in the FSP oscillates with a frequency
close to the cavity frequency w,.. This differs from the Dicke superradiant phase in which
the steady state is not oscillatory. The frequency in the FSP is the effective Floquet energy
difference of the two-level system, which is interacting non-linearly with the cavity mode, as
we elaborate in the following section. This energy is equal to the cavity frequency w, at the
driving field strength indicated by the vertical dotted lines, which is the same as the onset
driving field strength at which the FSP emerges for small A in Fig. 2 (a). In Fig. 2 (d) we show
the power spectrum of the photon mode |6L|2A 0 = f |&(w)|*dew, integrated over the range of
frequencies shown in Fig. 2 (c) in order to compensate for the shifting frequency of the FSP as
a function of the driving field strength E4. In the following section, we show that this profile
of the magnitude of the order parameter is related to the depleted population inversion of the
Floquet states of the two-level system.

4 Floquet State Population Inversion

To understand the underlying mechanism from which the FSP originates, we calculate the
Floquet state population of the driven two-level system. We introduce a Schwinger represen-
tation of the two-level Hamiltonian in Eq. 4, and calculate the population in frequency space.
In this representation the system is embedded into a larger system consisting of two modes b,
and b,. The resulting Hilbert-space is spanned by the creation operators bi and szr of these
two modes. Note that these modes can be understood as hard-core bosons in the atomic case
of the Dicke model, i.e. b% = b% = 0, but also as fermions in two-band models of solid-state
systems, where these are the electrons, cp. [41,45]. Our mean-field results are not affected
by the specific exchange relations, bosonic or fermionic. The Pauli-matrices are written as

oy =Dblby+blby, o, =i(blb,—blby), o, =blb; —blb,. (16)

We calculate the two-point correlation functions (b;(tz)bj(tl)) and determine the fre-
quency resolved population of the two-level steady state as

Ty Ty 2
1 ; .
n(w) = CRaT f f > (b](t2)b;(t1)) e 2" Vdydt (17)

1 j=1

where the time 7, is large enough for the system to have reached a steady state and (7,—7;) is
large enough to contain hundreds of driving periods. Note that in this calculation the operators
b;(t;) and b;(tz) act only on one of the N atoms. For large N, we assume that the remaining
N — 1 atoms maintain their steady state unaltered, such that the steady state a(t) is also not
affected by either action of b;(t;) or b;.r(tz).
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Figure 3: In panel (a) we show the Floquet state population n(w) as a function of
the driving field strength E, calculated in the Schwinger formalism. The dotted line
indicates the Floquet energies 62_ for A = 0, the solid lines indicate the approximate
Floquet energies € for A = A, which we obtain from Eq. 21. In panel (b) we show
the effective population difference An between Floquet states for A = 0 (blue) and
A = A, (red). The regime in which population inversion occurs also contains the FSB
which depletes the inversion. In panel (c) we show the difference AN between the
two populations in panel (b). The dashed lines in all panels indicate the values of
E4 that bound the regime in which population inversion occurs, see Egs. 25 and 26.
The dotted gray lines in (b) and (c) indicate the driving field strength at which the
Floquet energy difference Ae% is resonant with the cavity frequency w..

We show n(w) as a function of the driving field strength E4 in Fig. 3 (a) for A = A.. We use
the same values of w, = wy/2 and w. = wy/4 as for the example in Fig. 2. We see that the
state of the probed two-level system is distributed across frequencies that are resonant with
the Floquet energies of the system and its replicas ie% +mwyg, meZ. For A=0,and a =0,
these Floquet energies are

B} (wq—w,)?
egz%i\J—‘;+—( 4= f (18)
wy 4

In the regime of the FSB the Floquet spectrum is modified due to the additional driving that the
two-level system experiences from the interaction with the oscillating photonic steady state.
We approximate that the FSP oscillates at w. = wqy/4. The integer ratio of w4 and w, is not
required, it merely enables a two-frequency Floquet analysis. For this choice of frequencies
the two-level Hamiltonian in Eq. 4 is

H(t)=e “2tH , +e 't H_| + Hy+ e'“tHy + e'*®<tH,, (19)
with
w Alal Eq4
Hy=—20,, Hq,=—o0,, Hy,=—0-. 20
0 2 zZ +1 m pe +4 (,()d F ( )
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The corresponding Floquet Hamiltonian is

. H H, )
H—l HO + ZO)C Hl H4
H_1 HO + wWe H1 H4
Hy = H, H, H . 1)
H_4 H_]_ HO—COC H]_
H_4 H—l HO —2Cl)c Hl
\ H, Hy o .

It operates on the Floquet representation of the state

W’)) = ( te “J)T,(n—l)wc > wl,(n—l)wc > wT,na)c > wl,nwc R )T . (22)

Inserting the numerical steady state solutions of a that we find using Eq. 6, and show in
Fig. 2 (a), allows us to calculate the Floquet energies e in the FSP using the Floquet Hamil-
tonian Hy. We show these Floquet energies as a function of the driving field strength E4 in
Fig. 3 (a) as gray solid lines. We see that these energies match the dominantly populated
frequencies in n(w) of the two-level system very well. Note that slight mismatches are a con-
sequence of the approximation that the photonic steady state oscillates with the frequency w.,
which we made to justify the expression of Hy.

We sum up the population of all Floquet replicas to calculate the effective relative popula-
tion of the two-level system as

00 (m+3)wg (m+1)wq
An = Z J n(w)dw —f n(w)dw | . (23)
(

m=—o00 mwqy m+%)wd

In Fig. 3 (b), we show this effective relative population An of the two-level system as a function
of the driving field strength E4 for the cases of A =0 and A = A.. We see that there is a regime
in which the system experiences an effective population inversion, bracketed by the vertical
dashed lines. In the case of non-zero coupling, i.e. A = A, part of the population inversion is
partially depleted to maintain the FSB i.e. the non-zero steady state of the photon mode. In
Fig. 2 (a), we see that the range of the FSP increases for increasing values of A, to approach
the entire regime in which population inversion occurs. In general, the FSP regime is smaller
than the inversion regime, because of the detuning of the cavity frequency w,. and the Floquet
quasi-energy difference Aeg.
In Fig. 3 (c), we show the depletion of the effective population inversion of the two-level
system
AN = An|y_g— An[;_y_. 24)

The behavior of AN agrees very well with that of the photonic steady state that we show
in Fig. 2 (d) up to an overall factor. We conclude that the photonic steady state of the FSP
originates from the effective population inversion of the Floquet states which is depleted to
obtain a non-zero a. This explains the constant scaling of the FSP with respect to A. In the limit
of A — 00, the intensity of the photonic steady state is limited by the population inversion of
the Floquet states.

5 Cavity-Resonant Floquet Energies

While the magnitude of the photon amplitude a saturates quickly to a constant value with
increasing A, here we determine the onset of the FSP for small A. For small A, the FSP emerges

9
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Figure 4: The magnitude of the photonic steady state a as a function of the driving
field strength E4, the cavity frequency w. (a) and the two-level energy spacing w, (b).
The coupling is small with A = w4/24, such that the Floquet-assisted superradiant
phase (FSP) appears only close to resonance between the cavity frequency w. and
the Floquet energy difference Aeg, indicated by dot-dashed lines at Egnset. The gray
shaded areas are regimes in which no population inversion of Floquet states occurs.
They are bounded by Eg‘i“ and EZ"™*. The dotted lines indicate the values of w. and
w, of the other subfigure, respectively.

near resonance of the Floquet energy difference Aeg and the cavity frequency w.. We therefore
present the dependence of the magnitude of a on the cavity frequency w., as well as the two-
level energy spacing w,. In Fig. 4 (a) we show the magnitude of a as a function of the driving
field strength E4 and the cavity frequency w, at w, = wy/2 and A = wy/24. We see that the
FSP emerges near resonance of Aeg and . with the lower bound of E4 given by the regime
of the population inversion of Floquet states. For w. — 0, the critical coupling A. decreases
to values smaller than that of A used here, such that we see the Dicke superradiant phase
for small E;. For w. — wyq we see an expected finite population in the cavity as it becomes
resonant with the driving field.

We find the analytical solutions of the driven dissipative steady state for A = 0 (See
App. A) and use them to calculate the driving field strength at which population inversion
occurs (E(rlni“). We also calculate the driving field strengths at which the Floquet state energies
cross (E**) and at which the Floquet energy difference is resonant with the cavity frequency
(Egnset). They are

2 2
. w 1 1
pin = &4 __(__&), (25)
2 \ 4 2 wq
2 2
w
E(rinax:_d 1_(1_&) , (26)
2 \ Wq
: wg w, 2 w, 2
E((imse —_4d (1__) —(1——) . (27)
2 \ wq Wy

We use the regime bound by Eénin and EJ™ to estimate where Floquet state population inver-
sion occurs and therefore the system is susceptible to the FSP E(‘jl’nset indicates where the FSP

10
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first emerges for small A, i.e. the driving field strength at which the Floquet energy difference
is resonant with the cavity frequency. In Fig. 4 (b) we show these regimes and the magnitude
of a as a function of the driving field strength E4 and the two-level spacing w, at w, = w4/4
and A = wq/24. We see that E{"* correctly predicts the initial onset of the FSP for small A
inside the region of Floquet state population inversion.

6 Conclusion

We have demonstrated the emergence of a Floquet-assisted superradiant phase (FSP) in the
dissipative Rabi-Dicke model that is directly related to the effective Floquet state population
inversion of the two-level system. We propose to tune the Floquet energy difference close to
resonance with the cavity, which results in the emergence of the FSP. In the FSBE the popula-
tion inversion is depleted to populate a coherent photonic steady state that oscillates with a
frequency that is close to the cavity frequency. This frequency is the Floquet energy difference
of the effectively bichromatically driven two-level systems.

We have presented the frequency resolved state population of the two-level system, calcu-
lated in a Schwinger representation, and found that the depletion of the population inversion
qualitatively agrees with the magnitude of the photon state. We have characterized the onset
of the FSP with respect to the cavity frequency and the two-level energy spacing in the limit
of small coupling strengths analytically. This analytical result for the regime that experiences
population inversion agrees with the emergence of the FSP with an initial onset for resonant
cavity frequency and Floquet energy difference.

We emphasize that the FSP is conceptually distinct from other recently discussed dynamical
phases in comparable systems. For instance, the dynamical normal phase [21] emerges in
dissipative Dicke models with parametrically driven coupling strength and is characterized
by the periodic emission of pulses with opposite phase. The Floquet maser [44] presents
continuous superradiance by periodically inducing spin polarization inversion in a noble gas
inside a magnetic feedback circuit. This system can be expressed using an undriven Dicke-
adjacent model, albeit with different coupling terms. In NV center spins in room temperature
diamonds [28-30] and in cold Strontium setups [26, 27], incoherent effective driving can
lead to superradiant steady states for cavities that are resonant with the atomic or vacancy
center spin transitions. While all of these non-equilibrium phases are captured by models
related to the Dicke model, they are all substantially different from the FSP and its underlying
mechanism.

The FSP presents a laser-like mechanism using population inverted Floquet states of two-
level systems that are brought into resonance with a cavity mode. The model we have proposed
is in particular applicable to solid-state systems coupled to a cavity, where the identical two-
level systems are replaced by a momentum-dependent two-band model. The master equation
approach that we utilized is well-suited for describing such materials dissipatively. In such
materials, Floquet state population inversion has been observed which provides motivation to
implement this mechanism, with the prospect of creating Floquet-assisted laser systems.
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A Analytical Steady State Solutions

We take a two-level Hamiltonian H = H&, such that Tr(H) = 0. Let V be the transformation
into the instantaneous eigenbasis of H, such that VHV' = eo,, where € sets the energy scale
of the Hamiltonian. In general such a Hamiltonian can be written as

_ cos(6) e sin(0)
H=e (ei¢ sin(6) —cos(0) ) ’ A1)

such that . .
V =el%2¢%:7 (A.2)

We write the Lindblad-von Neumann master equation in the original basis of H, but include dis-
sipation in the instantaneous eigenbasis, such that L, = Vo,V =He ' =hand L, =V'o,V.
Itis

. . " 1 .
p=ilp,H]+ Z ri(LipL; — -{L{L;,p}) (A.3)
. 2
ie{+,—,z}
. 1
=ie[p,h]+7v,(Tr(hp)h—2(p — 5)) (A.4)
1. 1 1. 1 - 1. 1 1. 1 -
—~h—=(p—=)—=Tr(hp)h “h—=(p—=>)==Tr(hp)h A.
+y_( 5 2(;o 2) y t(hg) )+Y+(+2 2(p 2) y t(hg)h), (A.5)
with p = %(1 + 535). We simplify this to
0,(p3) =ie[pd,hd1—11p3 —y2h& —y3(APIRG (A.6)
with
r1=0-+r)/2+2y,, Yo=Y——7Y+, r3s=_—+rs)/2—2y, (A.7)
and further .
p=2e(hx-)=y;—ysh(h,"))p—712h. (A.8)

We find the steady state solution of the dissipative Rabi model by rewriting g(t) with respect
to the basis {Tz,fl,fl X fz}, such that

B() = p1 (O + oD + p3 ()R x ), (A.9)
p1(t)=p(t)h, (A.10)
pa(t) = [RI2B(0)h, (A1)
ps(t) = [RI2B()(R x ). (A12)

Assuming that |71’|2 does not depend on time, the equations of motion become

p1(8) = 8,(hB) = hp + hp = k|20 — (y1 +13)P1 — T2, (A.13)
02(t) = [A[728,(hp) = [h|72(hp + hp) = —2e(t)p3 — y1p2 + [AI2hP, (A.14)
p3(t) = [A[728,((h x h)B) = 2€(t)py — 1103 + A 2(A x h)B . (A.15)

12
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We expand the second derivative of the Hamiltonian vector h in this basis as well and find

S5 S

h(t) = (hh)h + (hh)h + (h(h X h))(h X h) (A.16)
R(OB(0) = py(RR) + po(RR)[RI? + p3(ath x IDIRI> = —py [RI? + p3(h x 1)), (A.17)
(h x R()(t) = pa((h x AR + p3((h x h()(h x )[RI* = —p,(h(h x h)).  (A.18)

We then arrive at the equations of motion

p1(6) =1h1*p5 — (y1 +73)P1 — V2> (A.19)
pa(t) =—2€(t)ps — 112 — p1 + p3lAl>h(h x ), (A.20)
p3(t) = 26(t)p; —11p3 — p2lhI2R(R x ). (A21)

In the Rabi-problem in particular it is H = (— cos(codt) sm(wd t), %)" and therefore

. - . E2 E2 w?
O - | wWawW S
R?hthxh) = ———=—, |hP=—"—, e(O)=4-S+-2, (A22)
2 2 2 2
E2 w2 Ey | w; 4
d

which are all constant in time. We assume a periodic steady state p(t) = p(t+ (20—7;) 