11. Summary

This thesis is focused on the effect of quaternary ammonium ions on *super*-Prussian-bluederivates as structure directing agents. *Super*-Prussuian-blue-derivates are coordination compounds of the typ $[(Me_3Sn)_xM(CN)_6]$ (x = 3, 4; M = Fe^{III}, Fe^{II}, Co^{III}, Ir^{III}).

The three-dimensional coordination compounds $[(Me_3Sn)_3M(CN)_6]$ with M = Co (5), Fe (3) react in "exchange"-based remodeling and co-precipitation, respectively with R₄N-cations (R = Et, *n*Pr, *n*Bu, *n*Pen, *n*Hex):

remodeling

$$[(Me_{3}Sn)_{3}M(CN)_{6}]_{fest} \xrightarrow{+ R_{4}N^{+} / H_{2}O}_{- Me_{3}Sn^{+}} [(R_{4}N)(Me_{3}Sn)_{2}M(CN)_{6} \cdot xH_{2}O] \downarrow$$

$$R_{4}N^{+} + 2 Me_{3}Sn^{+} + [M(CN)_{6}]^{3-} \xrightarrow{H_{2}O} H_{2}O$$

co-precipitation

An elongation of the alkyl groups, and the concomitant decrease of the hydrophilic properties, results in host-guest compounds of different structures and H₂O-contents. As the Et₄N-cation exerts no effect on $[(Me_3Sn)_3M(CN)_6]$ (5), with *n*Pr₄N two isomeric, new 3D-frameworks of the compound $[(nPr_4N)(Me_3Sn)_2M(CN)_6 \cdot 2 H_2O]$ (6 resp. 7) result. Both modifications contain anionic $[(Me_3SnOH_2)_2M(CN)_6]$ -units, connected only by electrostatic and hydrogen short-range forces and stabilized by C-H…N-hydrogen bonds (E = O resp. N) between the non disordered *n*Pr₄N-cation and terminal cyanide N atoms. The shortest observed E-H…N-distances (E = O resp. N) are for d(O…N) = 268 pm and for d(C…N) = 313-337 pm.

The essential difference between both modifications is the orientation of the two Me_3SnOH_2 fragments. While the remodeling reaction leads to the cis-isomer **6**, co-precipitation affords the trans-isomer **7** (Picture 11.1).

Contrary to previous publications ^[14, 16, 25, 67] the structure of the already known host-guestcompound [$(nBu_4N)(Me_3Sn)_2M(CN)_6 \cdot H_2O$] (4 ^[14, 16, 25, 67] resp. 4a) must be considered as a similar β -pleated sheet network with the guests between the sheets. The structure is also stabilized by hydrogen bonds (d(O···N) about 270 pm and d(C···N) about 317 pm).

Picture 11.1: ORTEP-Plots of the [(Me₃SnOH₂)₂M(CN)₆]-units of the cis-isomer **6** and the trans-Isomer **7**.

The largest of the structure directing agents adopted is the $nPen_4N$ -cation which leads with M = Fe vis. Co to $[(nPen_4N)(Me_3Sn)_2M(CN)_6]_2 \cdot H_2O$ (8 resp. 9) a 3D-framework with cavities of 2 nm³. In each cavity, two $nPen_4N$ -cations and one H₂O-molecule are located, and fixed via E-H…N-short-range forces (E = O resp. N) to the framework (d(O…N) about 298 pm and d(C…N) about 333 pm).

The host-guest compounds **4a**, **6**, **7** and **9** were also analysed by DSC or DTA/TG. Like $[(Me_3Sn)_3M(CN)_6]$ (**5**), they finally decomposed to Co_2SnO_4 and SnO_2 .^[27]

In contrast, the quaternary ammonium ions show no structure directing effect towards the compound typ $[(Et_3Sn)_3M(CN)_6]$ with M = Co (10), Ir (12).

Corresponding to **5**, the quaternary ammonium ions R_4N^+ with R = nPr and *n*Bu show a structure directing effect also in "exchange"-based remodeling reactions to the heavier homologue [(Me₃Sn)₃Ir(CN)₆] (**11**). Thus, reaction of **11** with *n*Pr₄N-cations affords the cisisomer [(*n*Pr₄N)(Me₃Sn)₂Ir(CN)₆·H₂O] (**13**), which is also stabilized by hydrogen bonds (d(O-H…N) about 265 pm and d(C-H…N) about 354 pm). [(*n*Bu₄N)(Me₃Sn)₂Ir(CN)₆·H₂O] (**14**) which is not isostructural with **4** resp. **4a** displays nevertheless stoichiometric similarity with the latter systems.

With the heavier nPr_4P -cation, both "exchange"-based remodeling (with 5) and coprecipitation leads to the trans isomer $[(nPr_4P)(Me_3Sn)_2M(CN)_6:2 H_2O]$ (15 resp. 16) which resemble 7. As co-precipition clearly affords the trans-isomer 16, crystals for the structure determination were obtained from the mother liquor of the remodeling reaction. As for 7, the resulting structure was stabilized by hydrogen bonds with d(O-H…N) about 270 pm and d(C-H…N) about 340 pm.

As single crystals had finally become available, the structure of the longer known compound $[(nBu_4N)(Me_3Sn)Cu_2(CN)_4]^{[31]}$ (17) could also be determined. 17 forms a congruent 2D-layered framework with interlayer distances of d(Cu···Cu) about 0.709 nm and d(Sn···Sn) about 0.619 nm. Owing to an eclipsed arrangement of the sheets, hexagonal channels result, wherein the *n*Bu₄N-cations are located. The short-range forces of 17 resulting here are shorter with d(C-H···N) about 357 pm and d(C-H···Cu) about 358 pm than those mentioned for $[(nBu_4N)Cu_2(CN)_3]^{[25, 31]}$ (19). Based on the structural data of 17, it was possible to develop a model of the architecture of $[(nBu_4N)(Me_2Sn(CH_2)_3SnMe_2)_{0.5}Cu_2(CN)_4]^{[18]}$ (20). Owing to the trimethylene containing spacer, {Me₂Sn(CH₂)₃SnMe₂}, a 3D host-guest framework results for 20.

Inspired by the result of the co-precipitation product $[(nBu_4N)(Me_3Sn)_2(\mu-OH)Ni(CN)_4]^{[25,67]}$ (31), the coordination compound $[(Me_3Sn)_2Ni(CN)_4]$ (27) was also reacted with nBu_4N - and $nPen_4N$ -cations, respectively, in remodeling and co-precipitation reactions. Depending on specific details of the synthesis, the following products resulted: $[(nBu_4N)(Me_3Sn)Ni(CN)_4]$ (30; remodeling), $[(nPen_4N)(Me_3Sn)Ni(CN)_4]$ (32; co-precipitation) and in the remodeling reaction the **31** like compound $[(nPen_4N)(Me_3Sn)_2(\mu-OH)Ni(CN)_4]$ (26). All these compounds differ from each other. In contrast to **31**, the Ni₂Sn₄O₂(CN)₈ units in **26** are connected by O-H…N-contacts (d(O…N) about 286 pm) to infinite ribbons, which are stabilized by C-H…N-hydrogen bonds with the $nPen_4N$ -cations (d(C…N) about 331 pm).

It was also possible to isolate the $(CH_2)_3$ -linked spacer {Me₂Sn(CH₂)₃SnMe₂} ^[18] (21) (initially introduced by Schütze) in the supramolecular assembly [{ μ -(CH₂)₃ (Me₂SnBr)₂}·2(H₂O·2,2'-bipyridine)] (22) which holds together only by short-range forces. The intramolecular distance of the Sn-atoms turns out to be d(Sn…Sn) about 0.617 nm.

In analogy to the Me₃Sn-homologue **5**, $[(Me_2Sn(CH)_3SnMe_2)_{1.5}Co(CN)_6]^{[18]}$ (**35**) was also subjected both to "exchange"-based remodeling and co-precipitation with R₄N-cations (R = Me, Et, *n*Pr, *n*Bu, *n*Pen). The "inherent" structure directing effect of the $\{Me_2Sn(CH_2)_3SnMe_2\}$ spacer leads to the product $[(nPr_4N)(L_2)Co(CN)_6\cdot 2 H_2O]$ (**36**) and $[(nBu_4N)(L_2)Co(CN)_6\cdot 2 H_2O]$ (**38**) co-precipitation, which display structures similar to the cis-isomer **6**. The remodeling product $[(nBu_4N)_{0.5}(L_2)_{1.25}Co(CN)_6\cdot H_2O]^{[18]}$ (**37**) and the coprecipitation product $[(nPen_4N)_{0.625}(L_2)_{1.18}Co(CN)_6]\cdot H_2O$ (**39**) differ structurally from the comparable Me₃Sn-homologues.

It was, furthermore, shown that the treatment of $[(Me_2Sn(CH)_3SnMe_2)_2Fe(CN)_6]^{(18]}$ (40) with CH₃CN results in a product whoch compares better with the Me₃Sn-homologue $[(Me_3Sn)_4Fe(CN)_6]^{[11]}$ (3). As for the former compound 35, the spacer L₂ affects the reaction of $[(Me_2Sn(CH)_3SnMe_2)_2Fe(CN)_6]$ (41) and R₄N-cations significantly. Only the host-guest compounds $[(Et_4N)(L_2)_{1.5}Fe(CN)_6]$ (42; co-precipitation) and $[(Et_4N)Cl(L_2)_2Fe(CN)_6]$ (44; insertion) could be isolated. In spite of the different stoichiometry both the X-ray-powder diffraction patterns and the CP/MAS-solid-state NMR features turn out to be surprisingly similar with those of $[(Et_4N)(Me_3Sn)_3Fe(CN)_6]^{[13, 14, 39]}$ (43).

This thesis was completed by a first attemption to solve the structure of the host-guestcompound $[(Et_4N)(Me_3Sn)_3Fe(CN)_6]^{[13, 14, 39]}$ (43) by means of the Rietveld method. The heavy-atom positions could in fact be located with the Patterson method in the space group C2/m.