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Abstract

Monte Carlo simulations are an important tool in high-energy physics, e.g. to test the
predictions of theory models or to infer a priori unknown parameters of the models.
However, these simulations demand a substantial amount of computational resources.
Thus, this thesis explores the viability of neural-network-based generative models
for the CMS experiment at the LHC. The upcoming upgrades of the LHC further
challenge the available computing budget of the collaboration in the near future,
as these upgrades are expected to substantially increase the number of recorded
collisions, necessitating a corresponding expansion in Monte Carlo simulation. For the
CMS experiment, the simulation of a single event currently requires approximately
two minutes. However, the required time is further expected to at least double,
due to upgrades of the CMS detector. This increase is mainly owed to the upgrade
of the endcap calorimeters, where the resulting number of channels that need to
be simulated will be significantly higher. First, studies on the high-energy physics
community JetNet dataset are extensively discussed, and the performance of different
generative models is compared. An attention-based information aggregation, which
scales linearly with the number of particles in terms of computational complexity,
is proposed. Not only does this lead to state-of-the-art results on the JetNet
datasets, but also promising results on the CaloChallenge. Finally, the viability of
an end-to-end generation approach is studied in a search for Supersymmetry. The
semi-leptonic decay of gluinos, produced via pair production, to neutralinos with an
intermediate chargino in the decay chain is investigated. In this search, three a priori
unknown parameters need to be scanned, which correspond to the masses of the
superpartners. Typically, the mass of the intermediate particle is not scanned, since it
is not feasible to generate Monte Carlo simulated data for all parameter combinations.
The consequences of not scanning the chargino mass when a neural-network-based
classifier is used to identify a signal pure region of the phase space for the statistical
inference are investigated. Instead of fixing the mass to an arbitrary value, it is
explored whether synthetic data from a generative model, which transforms the
distributions from different values of the chargino mass into another, improves the
statistical significance of the search. In this study, the required integrated luminosity
to reach a similar statistical significance is reduced by 20± 12%.
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Zusammenfassung

Monte-Carlo-Simulationen sind in der Hochenergiephysik weitverbreitet, benötigen
aber viele Rechenressourcen. In dieser Arbeit wird untersucht, ob generative Modelle
auf Basis neuronaler Netze für das CMS-Experiment am LHC verwendet werden
können, um die Rechenzeit für die Simulationen zu reduzieren. Die bevorstehenden
Erweiterungen des LHC erhöhen die Anforderungen bezüglich Rechenressourcen und
Datenmenge. Aktuell dauert die Simulation einer Kollision etwa zwei Minuten, aber
es wird erwartet, dass sich diese Zeit durch die geplanten Aktualisierungen verdoppeln
oder verdreifachen wird. Eine schnellere Simulationstechnik wird daher benötigt.
Die Arbeit konzentriert sich zunächst auf die Untersuchung des JetNet-Datensatzes
und vergleicht die Qualität und Geschwindigkeit verschiedener generativer Modelle.
Eine Informationsaggregationstechnik, die auf Attention basiert und linear mit der
Anzahl der Teilchen skaliert, bildet das Herzstück des Modells. Weiterhin kann das
Modell mit minimaler Veränderung dazu verwendet werden, die Energieeinträgen
aufgrund elektromagnetischer Schauer in Kalorimetern konditioniert zu modellieren.
Abschließend wird die direkte Generierung von rekonstruierten Analysedaten am
Beispiel einer Suche nach Supersymmetrie untersucht. Hier wird der Zerfall von
Gluinos, produziert via Paarproduktion, mit einem intermediären Chargino in der
Zerfallskette untersucht. Dabei müssen drei unbekannte Massenparameter gescannt
werden. Normalerweise würde in diesem Fall nur Monte-Carlo Datensätze für
verschiedene Kombinationen von zwei der drei Parametern generiert, während der
Dritte auf die Hälfte der Summe der anderen beiden gesetzt wird. Es wird geprüft,
ob ein generatives Modell die Abhängigkeit der Daten auf den letzteren Parameter
lernen kann, und ob Samples von dem Modell die statistische Signifikanz der Suche
verbessern können. Diese Studie zeigt, dass die notwendige integrierte Luminosität
um 20± 12% reduziert werden kann durch die Verwendung der synthetischen Daten.
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Introduction

The Standard Model of particle physics tries to explain and predict the interactions
between the fundamental building blocks of the Universe, and is arguably the most
precise theoretical framework that science has come up with so far. Nevertheless,
there are still phenomena in the Universe, which the Standard Model cannot ex-
plain. Supersymmetry tries to extend the Standard Model to address multiple of its
shortcomings simultaneously. However, independently of how plausible and aestheti-
cally pleasing a theory is, it is fiction unless it can accurately predict experimental
outcomes. The Large Hadron Collider (LHC) together with the Compact Muon
Solenoid (CMS) experiment allows experimentalists to investigate and test such
extensions of the Standard Model. In this thesis, signatures left by gluino pair
production are investigated and simultaneously the importance of the computational
methods associated with high-energy physics are highlighted. In particular, the
upcoming technical upgrades of the LHC and the CMS experiment pose challenges
for the available computing budget. Not only is the number of recorded collisions
expected to increase significantly, but also, the amount of recorded data per event
will grow, leading to a rise of the computational costs due to the simulation-based
inference, since the increase in measured data should be mirrored in the simulation.
To replace or assist the simulation, machine learning-based generative models provide
a promising candidate. Recently, these methods have proven to be capable of solving
tasks, which were unimaginable previously, e.g. the generation of images based on a
provided query or the generalising capabilities of large language models. Thus, in this
thesis, both these fascinating topics, high-energy physics and generative modelling,
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are discussed.
First, an overview of the underlying fundamental physics investigated at the LHC
is provided by discussing the SM, its shortcomings and possible extensions. A su-
persymmetric extension of the SM is discussed in more detail. Subsequently, the
experimental apparatus of the LHC and the CMS are briefly discussed, before diving
into the fundamental principles of machine learning. In the following chapter, the
main classes of different generative models are discussed, and their performance on
a two-dimensional toy example is compared. Then, a more particle physics-related
problem is studied concerning the generation of highly energetic sprays of particles,
referred to as jets, which are abundant in hadron colliders. These jets are represented
as point clouds, which are unordered sets that yield complex correlations between the
different constituents. This higher-dimensional problem draws attention to the limits
of the previously best performing discrete normalising flows. To overcome these
issues, the training paradigm is switched to the interplay of two models that are in a
constant competition. To generate point clouds with hundreds of constituents, the
computation, and memory requirements of these models need to linearly scale with
the number of points in the cloud, as a fivefold increase in the point cloud cardinality
makes the previously working models virtually untrainable. Thus, a linearly scaling
information aggregation is introduced, motivated by a physics inspired approximation.
Although, the model employing this aggregation yields competitive performance, its
training is unstable and thus impractical for a more general application. Even worse,
effects observed previously in the study in low dimensions hint at worse problems.
Luckily, continuous normalising flows that are trained with conditional flow matching
prove to perform even better than the previous models. Still, the JetNet datasets
are extended toy examples, as little interest lies in the replacement of PYTHIA
with a generative model. Thus, the previously mentioned problem associated with
the computing budget is approached from a more practical perspective, namely
the computationally expensive modelling of energy deposits left by electromagnetic
showers in a calorimeter is investigated. In this example, the generalising capability
of the previously studied information aggregation proves its value, as with only minor
modifications, the model that was designed for the unconditional generation of point
clouds, also performs well in the conditional generation of energy deposits left by
electromagnetic showers. Notably, the latter task carries another ∼ 80-fold increase

4
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in the number of constituents. Finally, another light is shed on generative modelling.
Instead of seeing the generative models as black-boxes that generate samples from a
desired distribution from noise, they can be considered models that reshape a stan-
dard Gaussian distribution into the unknown data distribution. A problem present
in searches for supersymmetric signatures in experiments is the dependence of the
distribution of the traces left in the detector on a priori unknown parameters. As it
is not possible to generate Monte Carlo simulations for all parameter combinations,
a potential alternative is given by continuous normalising flows, that are trained
to transform one distribution into the other with minimal transport cost. Thus, it
is investigated whether synthetic data drawn from such a continuous normalising
flow can benefit the search for gluino production in data simulated for the CMS
experiment.

Notational Convention In this thesis, vectors are denoted by bold symbols v,
whereas scalars s are represented as small letters and matrices W as capital letters.
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CHAPTER1
The Standard Model and its
Extensions

In this chapter, a minimal theoretical background for the physical processes that
are investigated in the LHC experiments is discussed. First, a brief description of
the Standard Model (SM) of particle physics is given before highlighting some of
its shortcomings and discussing possible extensions. Finally, a promising candidate
called Supersymmetry (SUSY) is discussed in more detail.

1.1 Standard Model of Particle Physics

The SM of particle physics is a theory describing the interactions between the
fundamental particles, which are the smallest building blocks of the universe with no
in structure. The SM postulates that the Universe is made up of spin-1

2 fermions
that interact through the exchange of integer spin bosons.
For fermions, the free Lagrangian density (abbreviated in the following as Lagrangian)
is given as:

Lfermion = ψ̄(iγµ∂µ −m)ψ, (1.1)

where ψ is the fermion field, m is the mass of the fermion and γµ are the Dirac
matrices that encode the anticommuting behaviour of fermions, i.e. the Pauli exclusion

7
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principle. For bosons with no spin, the Lagrangian is given by:

Lboson,0 = 1
2∂

µϕ∂µϕ−
1
2m

2ϕ2, (1.2)

where ϕ is a scalar field.
For spin-1 bosonic vector fields Aµ, the Lagrangian is given by:

Lboson,1 = −1
4F

µνFµν + 1
2m

2AµAµ, (1.3)

where F µν = ∂µAν − ∂νAµ is the field strength tensor.
In nature, four types of interactions are known that need to be included in the field
theory:

1. The electromagnetic field; charged particles interact via the electromagnetic
force, which is mediated by spin-1 photons.

2. The strong field; the strong force is mediated via spin-1 gluons, which cannot
be directly observed due to the colour confinement, as further discussed in
Section 1.5. The strong force is the reason the nuclei of atoms hold together,
although they consist of multiple positively electrically charged protons that
repel each other via the electromagnetic force. The first evidence for the
existence of the mediator of the strong force, the gluon, has been discovered by
events with 3 jets observed at DESY in 1978 [1].

3. The weak field; the mediators of the weak interaction between fermions are
spin-1 bosons that were discovered at CERN in 1983 [2, 3]. The weak force
was first proposed as an explanation for the beta decay by Enrico Fermi [4] in
1933.

4. The gravitational field; the interaction is postulated to be mediated by spin-2
particles, referred to as gravitons. However, as of now, there exists no quantum
field theory of gravity that is compatible with the framework of the SM.
Fortunately, on the small scales of particle physics, the effects of gravitational
forces are insignificant. Thus, for the description of the processes taking place
in a collider, excluding gravity does not deteriorate the predictive quality of
the theory.
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The elementary fermions of the SM are further grouped into leptons and quarks.
The former interact through the weak force and also the electromagnetic interaction
if they carry an electromagnetic charge. The latter additionally interact via the
strong force.
The beauty of the SM lies in its construction, which is guided by principles of
symmetry, and its completion by the symmetry breaking which is further discussed
in Section 1.6.1.

1.1.1 Natural Units

In particle physics, natural units are used to simplify equations by using units in
which the speed of light c and the reduced Planck constant ℏ are set to one1. The
basic unit, the electron Volt (eV) and its derivatives —MeV, GeV, and GeV — are
commonly used. Setting c = 1 also has the consequence that the units of mass,
energy, and momentum are equivalent, which is illustrated by Einstein’s famous
equation relating mass and energy:

E2 = p2c2 +m2c4 =︸︷︷︸
c=1

p2 +m2. (1.4)

1.2 Leptons

Three families, also referred to as flavours, of leptons are recognised in the SM, each
member consisting of an electrically charged particle and a massless, electrically
neutral neutrino2. The Dirac equation predicts the existence of an antiparticle of
the same mass but opposite electrical charge for every fermion. Of the charged
leptons, only the electron e− and its antiparticle, the positron e+, are stable. The
other known leptons are the muon µ− and the tau lepton τ−, which only differ from
the electron in their masses and lifetimes. The same holds for the corresponding
anti-leptons, which are the µ+ and τ+. The associated electrically neutral neutrinos

1Additionally, the relative permittivity ϵ0 can be set to 1, leading to the electric charge of an
electron to be 1. Rarely, the Boltzmann constant can also be set to one such that temperature is
also in units of eV.

2In the SM the neutrinos are massless. However, observations of neutrino oscillations [5, 6],
imply that neutrinos have mass and that lepton flavour is not conserved. These findings make an
extension of the SM necessary, as discussed in Section 1.8.2.
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νe, νµ, ντ are similarly matched by their antiparticles ν̄e, ν̄µ, ν̄τ . The electric charge is
conserved in all interactions in the SM and similarly, the lepton flavour is conserved,
exemplified by the decay:

µ− → νµ + e− + ν̄e. (1.5)

The leptons and their most important properties are summarised in Tab. 1.1.

Table 1.1: Masses, charges, and generations of leptons, organized by generation,
taken from the fit in Ref. [7]. Neutrino masses are given as upper limits at 90%.
For the masses of electrically charged leptons, the mass is given up to the first two
significant digits of the associated uncertainty.

Lepton (Flavour) Mass (GeV) Electric Charge Generation
Electron (e) 0.51099895000× 10−3 −1 1st
Electron Neutrino (νe) < 0.8× 10−9 0
Muon (µ) 0.1056583755 −1 2nd
Muon Neutrino (νµ) < 0.19× 10−3 0
Tau (τ) 1.77686 −1 3rd
Tau Neutrino (ντ ) < 18.2× 10−3 0

1.3 Quarks

The quarks are grouped into three generations as well, each consisting of two spin-1
2

fermions. They are different from leptons as both family members carry an electrical
charge of either 2/3e or −1/3e, where e is the absolute value of the electric charge of
a lepton. The different flavours of quarks are not individually conserved and can be
changed under weak interactions. Quarks carry a colour charge, but connected to
this is colour confinement, which is further discussed in Sec. 1.5. Colour confinement
makes the observation of individual quarks at low energies impossible and only bound,
colourless states are observable.
These bound states are referred to as hadrons and are further grouped in baryons,
which are systems of 3 quarks, and mesons containing a quark and an anti-quark.
While there exists no stable meson, the lightest baryon with an invariant mass of
∼ 938 MeV is the only stable hadron. This is the proton, comprising two up quarks
and one down quark. The neutron is ∼ 1.3 MeV heavier and decays in free space
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through the β-decay: n→ p+ e− + ν̄e with a lifetime of about 978 s. The lightest
meson with 135 MeV is the pion π0. The electrically charged pions π+ and π− are
made of an up and a down quark and are 4.5 MeV heavier. The neutral π0 is a
superposition of the uū and dd̄ states. Due to colour confinement, the quark masses
depend on the energy and the M̄S scheme [8] is used to define the mass3. Instead,
they are inferred from various indirect measurements and theoretical calculations.
The top quark is an exception because it decays before it can form bound states
and, hence, its mass can be inferred from its decay products. The quarks and their
properties are listed in Table 1.2.

Table 1.2: Masses, charges, and generations of quarks, organized by generation.
Quark masses are given within current experimental constraints and uncertainties,
and the values together with the confidence intervals from the fit given in Ref. [7]
are quoted.

Quark (Flavour) Mass Electric Charge Generation
Up (u) 2.16+0.49

−0.26 MeV +2/3e 1st
Down (d) 4.67+0.48

−0.17 MeV −1/3e
Charm (c) 1.27± 0.02 GeV +2/3e 2nd
Strange (s) 93.4+8.6

−3.4 MeV −1/3e
Top (t) 172.69± 0.30 GeV +2/3e 3rd
Bottom (b) 4.18+0.03

−0.02 GeV −1/3e

1.4 Gauge Symmetries and Interactions

The interaction terms of the Lagrangian are derived by promoting the global gauge
symmetries θ of the Lagrangian to local symmetries θ(x). The derivative present in
the Lagrangian then demands the introduction of the covariant derivative based on
a gauge field Akµ to maintain local invariance:

Dµ = ∂µ − igAkµ, (1.6)

3An exception is the top quark, for which in the following the pole mass is given. For the others,
the masses are given im the M̄S scheme.
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where g is the coupling constant and the gauge field Akµ, which transforms as:

Akµ → Akµ + 1
g
∂µθ(x). (1.7)

For a Lagrangian, which is invariant under a symmetry group, the fields transform
as:

ψ → eigθ
k
τ

k

ψ. (1.8)

Here, τ k are the generators of the symmetry group satisfying the following commuta-
tions relations:

[τ i, τ j] = if ijkτ k. (1.9)

For every gauge field Akµ the covariant derivative introduces, a free Lagrangian as in
Eq. 1.3, but with a field strength tensor F k

µν , arises:

F k
µν = ∂µA

k
ν − ∂νAkµ + fklmAlµA

m
ν (1.10)

Equation 1.10 reveals the fundamental connection between physics and the underlying
symmetries, since it relates the field strength tensor to the structure constants of the
symmetry group.
The symmetry group of the SM is SU(3)C × SU(2)L × U(1)Y , where the indices
indicate the charge that is conserved under each symmetry. Demanding local
invariance of SU(3)C leads to the mediators of the strong interaction, and the
breaking of SU(2)L × U(1)Y symmetry leads to the electromagnetic and weak
interaction. Without the symmetry breaking, which is discussed in Section 1.6.1,
there would be one unified electroweak force with four massless bosons.

Boson Mass (GeV) Electric Charge Role/Mediated Force
Photon (γ) 0 (massless) 0 Electromagnetic force
W boson (W±) 80.377± 0.012 ±e Weak nuclear force
Z boson (Z0) 91.1876± 0.0021 0 Weak nuclear force
Gluon (g) 0 (massless) 0 Strong nuclear force
Higgs boson (H) 125.25± 0.17 0 Higgs mechanism/field

Table 1.3: Masses, charges, and roles of the gauge bosons and the Higgs boson in
the Standard Model as given in Ref. [7]. The W mass fit excludes the Tevatron [9]
results of the W mass measurement from 2022.
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The gauge fields that emerge from the local gauge invariance requirement are referred
to as gauge eigenstates. Note that the observable states are in a different basis and
referred to as mass eigenstates. For the electroweak interaction, the gauge eigenstates
are denoted as (Bµ) and (W iµ, i = 1, 2, 3). The Bµ and W 3µ are mixed to form the
physical Z0 boson and the photon γ. This mixing is parameterised via the Weinberg
angle θW : Aµ

Zµ

 =
 cos θW sin θW
− sin θW cos θW

Bµ

W 3
µ

 . (1.11)

The remaining (W iµ, i = 1, 2) gauge eigenstates form the W±
µ bosons:

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) (1.12)

1.5 Quantum Chromodynamics

During the late 1960s, particle physicists coined the term particle zoo, due to
measurements of hundreds of strongly interacting particles that were believed to
be elementary particles. The introduction of light quarks with flavours (up, down,
strange) provided a framework to classify these particles and even foresaw the
existence of the Ω− resonance.
However, the ∆++ particle posed a problem. Its configuration |uuu⟩ of three fermions
in the same state is forbidden by the Pauli principle4. To resolve this, colour charge
was introduced, and similarly to the electromagnetic charge, is the quantum number
that is preserved in strong interactions.

Colour Conservation and Confinement

The colour charge, which is conserved under SU(3)C , can take three different values,
denoted by red, green, and blue. Quarks carry one colour (R,G,B), while antiquarks
carry an anti-colour (R̄, Ḡ, B̄). Since the underlying symmetry is non-Abelian, gauge

4Note that for particles in the form of two up-type quarks and one down-type quark or
equivalently two down-type quarks and one up-type quark, the individual quarks can be in different
spin states.
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bosons carry charge5.
To conserve the charge at a quark-quark-gluon vertex, the gluons carry a colour and
anti-colour. Note that the charged gauge bosons also lead to self-interaction between
gluons.
After thorough experimental searches, colour confinement was proposed to explain
why no individual quarks were ever observed. Colour confinement postulates that
free particles must be colour-neutral, i.e. they must be colour singlets. This is a
consequence of the renormalisation of the gauge theory, which for QCD implies that
the coupling constant of the strong force αS increases at larger distances or more
commonly6; at a low-energy scale Q2:

αS(Q2) = 12π
(11Nc − 2nf ) log Q

2

Λ2
QCD

, (1.13)

where Nc is the number of colours, nf the number of quark flavours and Λ2
QCD the

infrared cut-off that sets the validity of the perturbative approximation. This results
in two effects at the different ends of the energy scale Q2:

1. At low Q2: quarks are not observed as isolated particles, and extracting them
from a proton is not possible. This is referred to as confinement.

2. At high Q2: in colliders, the running coupling implies that the strength of the
strong force goes to zero when Q → ∞. This leads to asymptotic freedom,
where quarks (and gluons) behave as free particles and scatter as free particles,
leading to deep inelastic scattering.

Another consequence is hadronisation, which describes a process that occurs
when two quarks are pulled apart. In contrast to an electromagnetic potential, the
potential associated with the strong interaction between two quarks increases with
distance. It increases to the point where the potential is high enough to create a

5From the requirement of invariance under local gauge transformations, the gauge fields given in
Equation 1.10 are introduced. The non-zero structure constants f ijk lead to terms in the associated
free Lagrangian for the gauge boson field, where only the gauge bosons are involved. This implies
that gluons must carry charge.

6Note that the energy scale Q is related to the spatial distance λ via the de Broglie relation
λ = h

p , where λ is the wavelength of the particle which is used as probe and p is the momentum of
this particle.
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new quark anti-quark pair, which is favourable in terms of energy. This leads to
sprays of particles, which are abundant in hadron colliders. These sprays of particles
are clustered into jets, typically with the anti-kT [10] algorithm, simplifying their
analysis. The anti-kT algorithm iteratively constructs the jet, favouring the addition
of hard particles.

Confinement also implies that from the 9 possible colour/anti-colour combinations
for gluons, only eight are physical. This is because the colour singlet ( (RR̄+GḠ+BB̄)√

3 )
is colourless and hence not confined. The existence of this gluon would result in a
long range of the strong force, which does not hold from an experimental viewpoint.
Since the SU(3)C symmetry is exact, gluons are massless7.

1.6 Electroweak Interaction

Every fermion in the SM interacts via the weak interaction and as such carries a weak
charge, which is referred to as weak isospin I3. Weak interactions are characterised
by long lifetimes (10-8– 10-6 s), which are significantly longer than for the strong
(∼ 10-23 s) or electromagnetic (∼ 10-19– ∼ 10-18 s) force8. The effects of the weak
interaction are particularly visible in processes where the other interactions are either
suppressed or forbidden, e.g. when neutrinos are involved since they carry neither
electric nor colour charge. The weak force only couples to so-called left-handed
particles (and right-handed anti-particles). The handedness describes the behaviour
under parity transformations and is a purely quantum mechanical property referred
to as chirality.
From demanding local gauge invariance, three gauge bosons emerge for the weak
interaction9 and were predicted in the 1960s by Glashow [11], Salam [12] and
Weinberg [13]. These gauge bosons comprise the W± and Z bosons, which were
measured in the 1980s at CERN [2, 3]. However, these measured gauge bosons are not

7For an exact symmetry the bosons arising from requiring local symmetry are massless, as mass
terms induce terms, which are not cancelled by the covariant derivative in the Lagrangian.

8But note that the lifetime is also inversely proportional to the fifth power of the mass, which
explains the short lifetime of the top quark.

9Note that the covariant derivative regarding the SU(2)L × U(1)Y symmetry is given by
Dµ = ∂mu + igT iW i

µ + i 1
2 g′Bµ, where W i

µ and Bµ are the gauge bosons arising from SU(2)L and
U(1)Y symmetry and g, g′ are the corresponding coupling constants.



16 Chapter 1. The Standard Model and its Extensions

massless, as expected from demanding local gauge invariance10. This inconsistency is
resolved by the electroweak symmetry breaking, discussed in the following Section.
The electroweak theory unifies two of the four fundamental forces of nature, namely
the weak and electromagnetic forces. The unification is based on the SU(2)L×U(1)Y ,
where L refers to the left-handed and Y to the hypercharge. The hypercharge Y is
conserved in electromagnetic and weak interaction and is defined as Y = 2(Q− I3).
In the electroweak theory, the electromagnetic and weak force are considered two
different aspects of a single force. However, this unification is only valid at energies
above ∼ 100 GeV.

1.6.1 Electroweak Symmetry Breaking

At low energies, the SU(2)L×U(1)Y symmetry is broken via the Spontaneous Symme-
try Breaking (SSB), which is explained by the Brout-Englert-Higgs [14, 15] mechanism.
This mechanism introduces a complex field, referred to as the Higgs field Φ, that

permeates all space and is a doublet Φ =
ϕ+

ϕ0

 under SU(2) symmetry. The doublet

has hypercharge Y = 2 and isospin I3 = ±1
2 . The first component is electrically

charged, whereas the second one is electrically neutral. The Lagrangian for this field
is given by:

LHiggs = (DµΦ)†(DµΦ)− V (Φ). (1.14)

The potential V (Φ) is given by:

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2. (1.15)

Depending on the sign of the parameters µ2 and λ the Higgs potential has different
shapes:

• If λ < 0, the potential has no stable minimum and as such is not physical.

• If λ > 0, and µ2 > 0 the only solution is given by Φ = 0. This is referred to as
the zero vacuum expectation value.

10However, them being massive explains the short range/long lifetimes of the weak force.
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Figure 1.1: Visualisation of the Higgs potential for the case where λ > 0 and µ2 < 0
taken from Ref. [16]. There are infinitely many possible minima for the Higgs
potential. The symmetry breaking refers to that only one specific point on the circle
is chosen as a minimum.

• If λ > 0 and µ2 < 0, there is a whole circle of minima at non-zero values of the
field Φ where Φ†Φ = −µ2

2λ . This case is illustrated in Fig. 1.1.

The symmetry is broken in the sense that from a set of infinitely possible minima, one
specific point is chosen as a minimum and the Higgs field is approximated through a
taylor expansion as ϕ = v√

2 + h(x), where v is the vacuum expectation value and h

the Higgs boson. The Goldstone theorem [17] states that the breaking of a continuous
symmetry leads to the appearance of new massless scalar particles, one for every
generator of the broken symmetry. These are referred to as Goldstone bosons. In the
breaking of the electro-weak SU(2)L × U(1)Y symmetry and reducing it to a U(1)em

symmetry, it is more nuanced. From the breaking of SU(2)L, three Goldstone bosons
arise. These three degrees of freedom are absorbed by the existing gauge bosons of
the electroweak interaction, granting them mass. This leaves a scalar Higgs field
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with the following Lagrangian:

LHiggs = (Dµϕ)†(Dµϕ)− (µ2ϕ†ϕ− λ(ϕ†ϕ)2). (1.16)

Excitations of the Higgs field manifest as particles, and as such the existence of the
Higgs field can be indirectly confirmed by measuring a particle that is compatible with
the properties of the Higgs boson. The existence of the Higgs boson was postulated
in 1964, yet its discovery took place 48 years later at the Large Hadron Collider at
CERN. The discovery took its time because although the theory predicts the mass
of the Higgs to be

mH =
√
−2µ2, (1.17)

the mass is a priori not known, since µ2 is a free parameter of the theory. Although the
Higgs mechanism allows the gauge bosons to acquire mass, an additional mechanism
is necessary to give masses to fermions. This mechanism is referred to as the Yukawa
interaction between the scalar Higgs field ϕ and the fermion field ψ:

LYukawa = −yψ̄LϕψR, (1.18)

where y is the Yukawa coupling constant.

1.7 Lagrangian of the Standard Model

The Lagrangian of the SM is fairly complicated and for brevity, the simplified,
more memorable form is given in the following11. The interested reader can consult
Ref. [18] for its explicit form and full derivation.

LSM = Lgauge + Lfermion + LYukawa − V (ϕ), (1.19)

where:

• Lgauge = −1
4FµνF

µν includes the kinetic terms of the gauge bosons and their self-
interactions, responsible for the electromagnetic, weak, and strong forces. Note

11Which is conveniently available on at least one of all the coffee mugs available at the local
HEP institute.
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that the field strength F µν here takes all gauge bosons from the electroweak and
strong forces arising from the demand of local gauge invariance with respect to
SU(3)C × SU(2)L × U(1)Y .

• Lfermion = iψ̄γµDµψ includes the kinetic terms for the fermions (quarks and
leptons) and their interactions with gauge bosons.

• LYukawa = −yijψ̄iϕψj + h.c., where y are the Yukawa coupling constants. Note
that the h.c. stands for the hermitian conjugate of the term. This term describes
the interactions between fermions and the Higgs field, leading to fermion masses
after symmetry breaking.

• V (ϕ) describes the Higgs potential.

1.8 Open Questions in the Standard Model

The Standard Model is arguably the most precise and successful theory of fundamental
physics. A prime example is the anomalous magnetic dipole moment of the electron,
which is precisely predicted by the SM and measurements agree to an accuracy of
10−10. Nevertheless, there are still open questions the SM cannot answer. A prime
example is that gravity is not included in the SM, since quantising gravitation leads
to a non-renormalisable theory. In the following, other shortcomings of the SM are
highlighted and briefly discussed.

1.8.1 Charge Parity Violation

Baryons are significantly more abundant in the observable universe than antibaryons,
this circumstance is referred to as baryon asymmetry. Neither the SM nor general
relativity provides an explanation for this. Note, however, that this problem follows
from the natural assumption that the universe is neutral to begin with. Based on this
assumption, a possible cause comes from a charge parity (CP)-violating process12,
as otherwise an equal number of left-handed baryons and right-handed antibaryons
are produced by this process. The SM contains a CP-violating process due to the

12A CP symmetric theory remains unchanged if particles are swapped with their antiparticles,
and left-handed and right-handed particles are interchanged.
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complex phase present in the Cabibbo-Kobayashi-Mashkawa (CKM) flavour mixing
matrix. The CKM matrix describes the mixing between the mass eigenstates of
quarks under the weak interaction, which allows quark flavour to change under weak
interactions13. The CP-violating effects observed in SM experiments involving neutral
kaons and B mesons are explained by this complex phase. However, the amount of
CP violation predicted by the SM is not enough to account for the observed baryon
asymmetry in the universe.

1.8.2 Neutrino Oscillations

Neutrinos are postulated to be massless in the SM; however, neutrino oscillations
have been measured, in e.g. Ref. [19], where the flavour of a neutrino changed
during its propagation. If neutrinos were massless like photons, no shift in the mass
eigenstates leading to oscillations of the flavour would be measurable14.

1.8.3 Dark Matter & Dark Energy

Results from astrophysics and cosmology imply that only around 5% of the energy
density of the universe is accounted by ordinary matter. Around five times more of
the matter in the universe is referred to as dark matter, as it does not interact with
electromagnetic radiation and hence can only be observed astronomically by indirect
methods. Dark matter was first postulated in 1937 [20] to explain deviations of
measured rotation curves of galaxies. Further confirmation is given by studies of the
microwave background [21]. But even more, the dark matter with the baryonic matter
combined only accounts for ∼ 32% of the energy density of the universe needed
to explain the accelerated expansion of the universe. The remaining discrepancy
is termed dark energy, for which the first evidence came from the measurement of
supernovae [22]. While some extensions of the SM, as Supersymmetry introduced in
Section 1.10, provide a candidate for dark matter, no extension provides a compelling
explanation of dark energy at the moment.

13Similarly, the Pontecorvo-Maki-Nakagawa-Sakata matrix is constructed for neutrinos to de-
scribe neutrino oscillations.

14Note that the neutrino oscillations would also not be present if the masses were degenerate.
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1.8.4 Aesthetic Shortcomings

Another argument for the expansion of the SM is based on some aesthetic shortcom-
ings of the SM, which are based on the concept of naturalness. Naturalness imposes
that the parameters of the theory should all be in the same order of magnitude, or
differently put, that the dimensionless ratio between free parameters should take val-
ues around 1. Furthermore, the parameters should not need an extensive fine-tuning,
which refers to the need to adjust the parameters precisely to fit certain observations.
A prime example comes from the neutron electric dipole moment, which is measured
to be below 0.18−25 e cm [23]. In principle, QCD can violate CP symmetry by a term
in the QCD Lagrangian (θ̄), which contributes to a non-zero electric dipole moment
for the neutron. But to fit the small experimental observations of the neutron electric
dipole moment, this requires to tune the θ̄ parameter of the theory to a value smaller
than 10−10, which is unnatural.

Hierarchy Problem

In Equation 1.17, only tree-level contributions to the Higgs mass are accounted
for. Every particle that couples to the Higgs boson (i.e. every massive particle) will
contribute with a radiative contribution. These terms produce a correction to the
Higgs mass with a divergent integral that can be regularised with a cut-off Λ2

UV

where the validity of the SM breaks down. If one assumes that no Beyond Standard
Model (BSM) theory is present up to ΛPlanck, the corrections require a fine-tuning of
the order of 10−17 to explain the low Higgs mass.

Unification of Coupling Constants

All coupling constants of the underlying symmetry groups of the SM have a different
evolution, but the extrapolation at very high energies suggests that they unify at an
energy scale of MGUT ≈ 1015 − 1016 GeV. However, if no BSM particles are involved,
there is no exact crossing point of the three trajectories.
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1.9 Beyond Standard Model Extensions

Before discussing supersymmetry, some other extensions of the SM are briefly
discussed here. These extensions usually introduce new symmetries, particles, or
degrees of freedom to account for some shortcomings of the standard model.

• Extra Dimensions: to unify General Relativity and Quantum Field Theories,
more than four space-time dimensions are required, as otherwise the theory
is non-renormalisable. A non-renormalisable theory cannot make precise pre-
dictions, as infinitely many parameters are needed to account for divergences
arising from quantum loop corrections. Many signatures from extra dimensions
were proposed that could be found in the LHC experiments. One of them
is to discover heavier versions of SM particles, referred to as Kaluza-Klein
recurrences [24], that must exist in higher dimensions. Another possibility
arises from the missing energy signature left by gravitons, since gravity can
probe these extra dimensions and hence, the graviton disappears into them.

• Little Higgs: this extension is based on the idea that the Higgs boson is a
pseudo-Goldstone boson arising from a breaking of a global symmetry at a TeV
scale. The mechanism then serves as an explanation of the low mass of the
Higgs boson of the SM.

1.10 Supersymmetry

Supersymmetry (SUSY) introduces a novel symmetry between fermions and bosons.
For every fermion and boson, there exists a bosonic respectively fermionic superpart-
ner, referred to as bosinos and sfermion. The superpartners are denoted by the same
symbol as the particles (and antiparticles) but have a ∼ on top of them.
The conservation of R-parity is introduced add-hoc to keep the baryon and lepton
number conserved15. The new quantum number R is defined as:

R = (−1)3B+L+2s, (1.20)

15Additionally, this prohibits rapid proton decay.
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where B is the baryon number, s the spin, and L the lepton number. If R-parity
is conserved, the lightest supersymmetric particle is stable and thus a good dark
matter candidate. If SUSY was an exact symmetry, the SM particles and their
corresponding superpartners would be mass degenerate. Since none of such particles
have been observed, SUSY needs to be a broken symmetry. Multiple mechanisms
have been proposed for the breaking of supersymmetry. For completeness, the three
most common mechanisms are listed in the following:

1. Gravity-mediated breaking: this method was first proposed and postulates
that SUSY breaks through gravitational interactions. The gravitino acquires
its mass through the supersymmetric version of the Higgs mechanism.

2. Gauge-mediated breaking: here, the symmetry is broken via gauge interactions.

3. Anomaly-mediated breaking: this is again a special case of gravity-mediated
SUSY breaking through the super-Weyl anomaly, which means that quantum
corrections break SUSY.

Many Grand Unified Theories (GUTs) yield supersymmetry as a property, further
motivating it as an extension of the SM. Introducing SUSY requires doubling the
number of particles, which leads to many new possible signatures. In practice,
experimentalists often test a minimal supersymmetric expansion of the SM.

1.10.1 Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is an extension of the SM,
that introduces only the minimum number of new particles and new interactions.
However, supersymmetric theories require at least two Higgs SU(2) doublets to give
mass to up-type (down-type) quarks via Hu (Hd). This leads to a total of eight
degrees of freedom, where three of them are needed to give masses to the gauge
bosons of the weak interaction. The other five become observable particles:

• Two charged Higgs bosons H±,

• Two CP-even neutral Higgs bosons h0, H0,

• A CP-odd neutral Higgs boson A0,
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Table 1.4: Summary of the postulated supersymmetric particles (sparticles)

Sparticle R-parity Spin
Slepton (ℓ̃) -1 0
Squark (q̃) -1 0
Gluino (g̃) -1 1/2
Neutralinos (χ̃0

1, ..., χ̃
0
4) -1 1/2

Charginos (χ̃±
1 , χ̃

±
2 ) -1 1/2

In Tab. 1.4 the superparticles postulated in this framework are listed, note that
the charginos (neutralinos) are mixtures of the superpartners of the Higgs bosons,
referred to as higgsinos, and the W± (Z0, B0) bosons, referred to as winos (binos)16.
One of the original motivations for supersymmetry comes from the hierarchy problem
mentioned in Sec. 1.8.4, as for every radiative correction of a particle from BSM
physics an identical but opposite signed term arises from the superpartner17. Similarly,
if the superpartners of the SM are near the TeV scale, the coupling constants unify
at around 1016 GeV. Finally, if R-parity is preserved in the MSSM, the Lightest
Supersymmetric Particle (LSP) of the MSSM is stable and weakly interacting. This
makes the LSP a good dark matter candidate. However, the MSSM model still
yields over 100 free parameters, making it difficult to test in an experiment. The
phenomenological MSSM (pMSSM) [25] reduces the number of free parameters even
further to 19 through the following experiment-inspired assumptions:

1. No flavour changing neutral currents

2. No new CP-violating processes

3. Mass degenerate first and second-generation squarks.

Thus, 15 a priori unknown parameters are the masses of the newly postulated
particles. Additionally, there is tan β which is the ratio of the vacuum expectation
values of the two Higgs doublets and three trilinear couplings of the third generation
(At, Ab, Aτ ).

16Note that for simplicity the graviton and its superpartner, the gravitino, have not been
included.

17The opposite sign arises from Fermi-statistics
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1.10.2 Simplified Model for Gluino Pair Production

The many free parameters of supersymmetric extensions of the SM pose a problem
for experimentalists. To infer parameters from observed data, particle physicists
often scan different parameter ranges. But for the MSSM, where there are over
100 free parameters, it is not feasible due to the curse of dimensionality. Even
in the pMSSM, where the number of free parameters is significantly reduced, this
remains impossible. To illustrate this, consider a search, where only 3 possible
values per parameter are scanned. This leads to over a billion possible parameter
combinations, each leading to individual kinematics signatures. Thus, experimental
searches investigate simplified models [26, 27], where only the existence of even fewer
sparticles is considered. Usually, the allowed decays of the newly postulated particles
to already existing particles is limited, and a specific signature is investigated. This
simplification also benefits theorists, as the results from multiple simplified models
can be scaled to check whether a more comprehensive model can be excluded or not.
In the simplified model T5qqqqWW studied in this thesis, where the naming follows the
CMS convention, two gluinos are produced via pair production and then decay to a
pair of quark anti-quark of different flavours (qq̄′) together with a chargino (χ̃±

1 ). The
chargino then further decays to a W± boson and a neutralino (χ̃0

1), which is the LSP.
The diagram corresponding to this process is shown in Figure 1.2. An experimental
search for the signatures of this model in Run 2 data of CMS has recently been
published in Ref. [28]. In the analysis, the gluino and neutralino masses are scanned,
excluding gluino masses up to 2050 GeV and neutralino masses up to 1070 GeV.
But note, that the chargino mass is set to the neutralino mass plus half of the mass
difference between the gluino and neutralino mass. This is an arbitrary choice, and
its impact will be further illustrated and discussed in Section 7.2.
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Figure 1.2: Diagram of the simplified model spectra for gluino pair production
(T5qqqqWW). Due to R-parity, the gluinos are produced in pairs only. The LSP
escapes detection, which is a key signature of the signal.
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Experimental Apparatus

The LHC [29] is a 26.7 km long particle collider ring for protons and heavy ions
located at the “Conseil Européen pour la Recherche Nucléaire” (CERN), located in
between 45 and 170 m below the surface of Switzerland and France. The colliding
particles travel in opposite direction in two beam pipes. Each beam consists of up
to 2808 bunches spaced by 25 ns in time. The two beams cross at four interaction
points1. In its first run from 2010 to 2013, which already led to the discovery of the
Higgs boson, the center-of-mass energy was

√
s = 7 TeV. In the following Run 2, it

was then raised to
√
s = 13 TeV. In Run 3, a center-of-mass energy of

√
s = 13.6 TeV

is reached. To bend the beams, over 1200 dipole magnets in cryostats that host both
beam pipes are used. The required field strength is over 8 T, which is not reachable
with conventional conductors. Thus, the magnet coils consist of niobium-titanium
(NbTi) that is cooled to 1.9 K, which is below their critical temperature to acquire
superconductivity, allowing for a significantly stronger magnetic field. The LHC is
the final step in a chain of pre-accelerators to prepare the necessary beam quality
and energy. At the LHC, the protons are accelerated by superconducting radio
frequency cavities to their final energy, where each bunch contains more than 1011

protons. The LHC had been designed for a luminosity of 1034 cm−2s−1 but in 2018
twice the design luminosity was reached [30]. Due to the high proton density in each
bunch crossing, multiple proton collisions take place simultaneously, but typically

1The four bigger experiments (CMS, Alice, Atlas, LHCb) of the LHC are located at these
points.

27
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only the most energetic ones are of interest. The additional collisions are referred to
as pile-up.
The expected luminosity specifies the number of collisions per unit of time together
with the cross-section of the underlying processes, can be computed at the interaction
points as:

L = N2nbf

4πσxσy
· F, (2.1)

where N is the number of particles per bunch, nb is the number of bunches, f the
revolution frequency, σx, σy the horizontal, and vertical beam sizes and F accounts
for a reduction in luminosity due to the slight tilting of the beams at the crossing.

Experiments at the LHC There are four larger experiments located at the four
interaction points. ATLAS [31] and CMS [32] are the general purpose experiments
which allow precision measurements of the SM as well as searches for various kinds
of new physics. ALICE [33] and LHCb [34] are more specialised experiments, for
which the luminosity is intentionally lowered to reduce pile-up and prevent detector
damage by slightly displacing the beams.
ALICE focuses on heavy ion physics to study the quark-gluon plasma. LHCb
was designed to study the difference between matter and antimatter by examining
particles that contain the bottom quark.

2.1 Compact Muon Solenoid

The CMS apparatus [32] is a multipurpose, nearly hermetic detector, designed to
trigger on [35] and identify [36] electrons, muons, photons, and (charged and neutral)
hadrons [37, 38, 39]. A global Particle-Flow (PF) algorithm [40] aims to reconstruct
all individual particles in an event. It combines information provided by the all-silicon
inner tracker and by the lead tungstate electromagnetic and brass-scintillator hadron
calorimeters, operating inside a 3.8 T superconducting solenoid. Additionally, the
algorithm includes data from the gas-ionisation muon detectors embedded in the
flux-return yoke outside the solenoid. The strong magnetic field of the solenoid
is fundamentally important for the operation of the detector because it allows to
accurately and precisely measure the transverse momentum of charged particles. As



2.1. Compact Muon Solenoid 29

Figure 2.1: Schematic view of the detector taken from Ref. [41]: The innermost layer
is composed of the silicon tracker and pixel detectors. The subsequent layer consists
of the electromagnetic and hadron calorimeters, each partitioned into barrel and
endcap regions. All detectors are enclosed within the superconducting solenoid. The
outermost layer is composed of the muon system.

the name suggests, the detector was designed to efficiently detect muons and to
accurately and precisely measure their transverse momentum. The resolution of the
momentum when using combined information from the tracker and muon system
is below 1.5% for a muon of approximately ∼ 100 GeV. In Figure 2.1 a schematic
overview of the detector is shown.

2.1.1 Coordinate System

The origin of the CMS coordinate system is centred at the nominal collision point
inside the detector. The z-axis points in the beam direction, the y-axis points
upwards, and the x-axis points inwards to the LHC detector ring. The azimuthal
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Figure 2.2: Correspondence of η to different values of θ. The forward region of the
detector usually refers to η > 1.4, whereas the very forward region refers to η > 3.

angle ϕ ∈ [0, 2π] is defined in the x-y plane and measured from the x-axis. The
polar angle θ ∈ [0, π] is measured from the z-axis. The pseudorapidity, defined as
η = − ln tan θ/2, is more practical to work with in HEP, as differences in η are
Lorentz invariant. Figure 2.2 illustrates the correspondence between η and θ. The
momentum transverse to the beam direction is denoted by pT. Another important
variable is the missing transverse momentum pmiss

T , which is the negative of the
vectorial sum of the reconstructed particles pT:

pmiss
T = −

∑
part.

pT. (2.2)

2.1.2 Tracker

The CMS tracker, the largest silicon tracker ever built, spans over 200 m2 of active
sensing area, it is 5.8 m long and has a diameter of 2.6 m. The tracker can be
conceptually divided into two main components:

• Pixel Detector: Closest to the interaction point, the pixel detector consists
of 124 million silicon pixels in four layers since its upgrade in 2018. Given its
proximity to the collision point, it is designed to handle the highest particle
densities and provides precise hit information crucial for determining particle
trajectories.

• Strip Detector: Surrounding the pixel detector, the strip detector comprises
microstrip modules arranged in ten layers. There are also four endcaps on
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every side, consisting of two inner endcaps and two outer ones. The inner
endcaps contain 3 concentric layers, the outer endcaps have their silicon modules
optimised differently for their place within the detector. The strip detector
extends the tracking coverage and assists in the complete reconstruction of
charged particle paths.

The tracking system was designed to accurately measure the trajectories of charged
particles. The high granularity of the tracker ensures efficient and precise tracking,
which is indispensable for many physics analyses. From the curvature of the trajectory
and the magnetic field, the momentum, and charge of the incident particle can be
inferred. The precision of the CMS tracker allows for an excellent momentum
resolution. Moreover, the tracker plays a crucial role in the reconstruction of the
primary and secondary vertices, aiding in the identification of long-lived particles,
such as those resulting from the decay of b hadrons.
The tracker faces high levels of radiation, especially the innermost layers of the pixel
detector. To ensure longevity and functionality, the materials and electronics of the
tracker are chosen for radiation hardness. Additionally, an efficient cooling system is
in place to manage the heat produced by the electronics and radiation exposure.

2.1.3 Electromagnetic Calorimeter

The Electromagnetic CALorimeter (ECAL) uses ∼ 760′00 lead tungstate (PbWO4)
crystals to measure the energy of incoming electrically interacting particles. It can
measure the pseudorapidity up to |η| < 3. Figure 2.3 depicts a schematic overview
of its design. It consists of the Barrel (EB) in the central region and two Endcaps
(EE). The EB covers up to |η| < 1.4 and comprises ∼ 61′000 crystals. The EE cover
from 1.4 < |η| < 3 and both contain ∼ 7500 crystals each.
When an electron or photon enters the ECAL, it interacts with the dense material.
Highly energetic photons can convert into electron-positron pairs, whereas electrons
emit photons through bremsstrahlung. These processes are responsible for the
showering of electromagnetic particles.
The lead tungstate crystals act as scintillators and emit light proportional to the
energy of the incident particle. This scintillation light is converted by a photodetector
into an electrical signal. Apart from measuring the energy of the incoming particle,
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it also measures the position where the particle hit, which is vital information when
reconstructing the kinematics of the event. The ECAL thickness is chosen to be larger
than 25 radiation lengths. The radiation length describes a material characteristic
related to the energy loss of highly energetic particles interacting electromagnetically
with the material. It is defined as the mean length at which the energy of an electron
is reduced by a factor 1/e. The energy resolution has been measured in test beams
for energies between 20 and 250 GeV and the resolution is parameterised in Ref. [42]
as: (

σ

E

)2
=
 2.8%√

E/GeV

2

+
(

0.12%
E/GeV

)2

+ (0.3%)2 . (2.3)

This means that for an electron of about 100 GeV the resolution is ∼ 0.4%. For
higher energies, shower leakage becomes significant and the resolution degrades.

Preshower System

The Preshower System (PS) is located in front of the endcaps of the ECAL, consisting
of two layers of silicon strip detectors interleaved with a lead radiator. The primary
role of the PS is the identification and distinction between neutral pions π0 and
photons γ. This is crucial because most of the time the neutral pions decay to two
photons in proximity. The finer granularity of the PS allows distinguishing between
these two signatures.

2.1.4 Hadronic Calorimeter

The ECAL is surrounded by the Hadronic CALorimeter (HCAL) with coverage
up to |η| < 3, comprising the Hadron Barrel (HB), Hadron Endcap (HE), Hadron
Outer (HO) and Hadron Forward (HF). The HCAL is a sampling calorimeter made
of alternating layers of brass and plastic scintillator. As the particles traverse the
detector, they interact with the brass, creating showers. The particles in these
showers then interact with the scintillators, causing them to produce light, which is
converted by wavelength-shifting wires and channelled to photodetectors via optical
fibres to create an electrical signal. Outside the magnet in the barrel region, there
is the HO, which extends the covering of ∼ 5 interaction lengths by the HCAL to
11 hadronic interaction lengths λ. The hadronic interaction length, similarly to the
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Figure 2.3: The ECAL barrel comprises 36 Super modules (one highlighted in green).
The ECAL endcaps (blue) are divided into four dees, two on every end. The pre-
shower systems (red) are located before the dees on each side. Figure from Ref. [43].
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Figure 2.4: Schematic of the HCAL adapted from Ref. [45]. The HCAL barrel (green)
comprises 36 identical azimuthal wedges. The HCAL endcaps (blue) contain 17
alternating layers of brass absorbers and plastic scintillator on each side. Shown in
light blue is the outer hadron calorimeter placed outside the solenoid. This makes the
HCAL cover a region |η| < 3 with a minimum of 11.8 interaction lengths, except for
the transition region between barrel and endcap located at |η| ∼ 1.3. An additional
forward calorimeter is located 11.15 m away from the nominal interaction point to
extend the coverage to a range of |η| < 5.2.

radiation length, defines the distance a hadron travels before it interacts with a
nucleus, and is significantly larger than the radiation length. To cover the forward
region (|η| < 5) an iron/quartz detector is placed at the end of the HE. The energy
resolution of HCAL modules was measured in Ref. [44] with pion beams with an
energy of 20− 300 GeV as

(
σHB+HE

E

)2
=
 115%√

E/ GeV

2

+ (5.5%)2, (2.4)

which is significantly lower compared to the ECAL and leads to a resolution of 12%
on a 100 GeV pion.
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2.1.5 Superconducting Magnet

The heart of the CMS is a superconducting magnet which was designed to reach a 4 T
field resulting in a stored energy of 2.6 GJ at full current2. Due to the large number
of turns required to generate such a strong magnetic field, the winding is composed
of 4 layers. As mentioned before, the strong magnetic field bends the trajectories of
charged particles providing an accurate measurement of the momentum of charged
particles, since the curvature of the track together with the magnetic field strength
and charge of the particle is related to the transverse momentum. The magnet
coils also consist of NbTi, which is cooled to 4 K to acquire superconductivity. The
magnetic flux is returned through a 10′000 t steel yoke, primarily consisting of iron
because of its high magnetic permeability. Additionally, this heavy construction serves
as structural support for the detector and provides shielding against background
radiation. Outside the yoke, the field strength is still 2 T, which is necessary for
precise momentum measurement of the muon systems.

2.1.6 Muon Systems

As the name Compact Muon Solenoid suggests, the detector is optimised to accurately
and precisely measure muons, which is crucial for the identification of various SM
processes. The muon chambers are located as the outermost detector of CMS. In the
barrel region drift tubes are used, as the muon flux is relatively low, in the endcaps
cathode strip chambers are thus used. Complementary, resistive plate chambers
are installed in the barrel and endcaps. Generally, the working principle of these
detector parts is based on the ionisation of gases, where the freed electrons leave an
electric pulse behind. This pulse is then read out to localise the trajectory of the
muon. The target dimuon mass resolution was ∼ 1% at 100 GeV and measured to
be ≤ 1% in the barrel region and ≤ 3% in the endcap for a muon of ∼ 100 GeV [38]
when the measurement is combined with the measurements from the tracker. As
depicted in Figure 2.5, the tracker contributes essentially to the precision of the
muon transverse momentum measurement, especially for low and medium transverse
momentum. This is due to the significantly higher spatial resolution of the tracker
compared to the muon chambers.

2In practice the field strength was then reduced to a central magnetic flux density of 3.8T.
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Figure 2.5: Muon transverse momentum resolution from Ref. [32] as a function
of the transverse momentum. The left panel is for |η < 0.8|, the right panel for
1.2 < |η| < 2.4. The resolution of the tracker is significantly higher than the one
from the muon detector, however, the combination of the two measurements has a
high importance to the resolution of highly energetic muons.
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2.2 Data Acquisition System

To handle, process, and store the vast amount of data measured in the CMS
experiment, a sophisticated data acquisition system is used. A two-tiered trigger
system is employed to select potentially interesting collisions. The first level is called
Level-1 (L1) Trigger and is a hardware-based system with a latency of ∼ 3.2 µs and
reduces the rate from 40 MHz to 100 kHz. The software-based high-level trigger
(HLT) then further reduces the rate to around 1 kHz. This means that per year,
multiple Petabytes of data are stored.

2.3 Monte Carlo Simulation Chain

Although there is a solid theoretical basis to understand the physics processes that
take place in a collider like the LHC, it is not possible to directly infer theory
parameters from measurements. Not only are higher orders of the matrix element
getting rapidly more complex, but there are also non-perturbative effects, which are
extremely challenging to calculate. Some phenomena, such as hadronisation, are
not even calculable from first principles. Monte Carlo (MC) simulations provide
a means to compare theoretical predictions with measured data. The underlying
physical processes and detector responses are simulated, which allows interpreting
experimental results.
The MC simulation chain is grouped in the following steps:

1. Matrix Elements & Parton Shower : The MC simulation chain starts with
modelling the physical process of interest, including parton density, hard
matrix element, initial and final state showers, matching between higher order
calculations if required, and finally hadronisation and decay of short-lived
particles. This comprises the GEN step of the simulation chain.

2. Detector Simulation: from here onwards, these final state particles are prop-
agated through the different detector layers, which is referred to as the SIM
step. The interactions between detector and particles is usually simulated with
the GEometry ANd Tracking version 4 [46] (GEANT4) package in CMS. Note
that this also simulates the hardware triggers and the digitisation, referred
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to as DIGI, of the measured signal. The CMS GEANT4 simulation includes
the shape and position of the detector materials. It also considers details like
the atomic composition and radiation length of the materials through which
the particles propagate. In the jargon of CMS, this is referred to as the full
simulation, which is centrally produced for all SM processes. Since this full sim-
ulation takes ∼ O(100 s) per event, searches usually rely on the CMS internal
FastSim [47] package for the simulation of the signal. The FastSim package
speeds up the simulation and reconstruction3 by a factor ∼ 20, by using a
simplified geometry with infinitely thin material layers. The interactions with
the detector materials are described with simple analytical models.
After the SIM and DIGI step, additional low-energetic secondary collisions are
overlaid with the signals of the primary collision. This serves to model the
pile-up.

In Fig. 2.6, the distribution of the CPU usage for the major processes of the CMS
experiment is depicted.

2.3.1 Event Weights

Another important feature of the MC simulation are event weights. In the simplest
approximation, they are defined as the ratio of the expected number of events divided
by the number of generated MC events. The weights can be used to upweight
extreme regions of the phase space or to implement higher order corrections where
even negative weights may occur. Thus, instead of being interested in the number of
events from the MC simulation, the sum of the weights is considered. The associated
uncertainty is then given as:

σ =
√ ∑

Events
w2
i (2.5)

2.3.2 Computational Costs of the MC Simulation Chain

Although these simulations played a key role in the successful history of HEP, their
computational need has become a relevant issue. As described in Ref. [48], the

3The reconstruction is almost the same, but there are some differences in the tracking. Not
only is a simplified geometry used, but also the track reconstruction is sped up by mixing already
reconstructed tracks from the primary collision and minimum-bias events.
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Figure 2.6: Pie chart from Ref. [48] of the fractional CPU resources needed, split up
for the different processes. The MC simulation (GEN+SIM+DIGI+RECOSim) uses
over 50% of the available resources.
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projected computing needs for the coming years could exceed the available resources
without major improvements from R&D side. Figure. 2.7 illustrates this potentially
detrimental problem for the experiment.
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Figure 2.7: Projection of the needed CPU into the era of the HL-LHC, taken from
Ref. [48]. The grey band represents the projected availability of the CPU resource
with no significant budget increases. The solid line shows the projected computational
needs with the current setup, while the dashed line depicts them with significant
R&D improvements, like a double as fast detector simulation.

2.4 Upcoming Upgrades

This is increased demand for computing resources is mainly caused by the detector and
collider upgrades during the Long Shutdown 3, starting after the end of Run 3. The
upgrades are conducted to prepare the detector and collider for the High-Luminosity
LHC (HL-LHC) phase, during which the luminosity of the LHC will be increased by
one magnitude [49] over the design value of the LHC.

This not only demands an extremely radiation-tolerant detector, but also the pile-
up in the detector is increased significantly. To account for this, the High-Granularity
Calorimeter (HGCAL) [50] was proposed and is partly being constructed at DESY
during the time of writing this thesis. The HGCAL is foreseen to read out more
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Figure 2.8: Schematic of the HGCAL, taken from Ref. [52]. The right shows the
longitudinal cross-section of one half of the HGCAL endcap, the top left shows a layer
of the fully hadronic calorimeter and the bottom left a layer of the electromagnetic
calorimeter.

than six million channels, which increases the cost of simulation significantly. A
schematic of the HGCAL detector is shown in Fig. 2.8. Currently, the simulation of
a single collision requires approximately two minutes. With the incoming upgrades
after Run 3, the simulation is expected to be two to three times slower [51]. The
HGCAL contains two compartments:

1. The electromagnetic compartment (CE-E) comprises 28 silicon-based layers,
covering over ∼ 25 radiation lengths X0.

2. The hadronic compartment consists of 22 silicon-based layers and 22 scintillator-
based layers covering about 8.5 hadronic interaction lengths λ, which together
with the electromagnetic compartment (1.3λ) covers almost 10λ.

The Silicon-based layers consist of hexagonal sensor cells, leading to a complicated
detector geometry. In Sec. 6, a point cloud-based model for calorimeter simulation
is introduced, and its performance on a highly granular detector is discussed. The
irregularity of the HGCAL is another reason for using a generative model based
on point clouds. The reconstruction of the detector simulation also contributes
significantly to the CPU usage with 24% of the total CPU resources. This means
that even if a generative model is used to speed up the detector simulation, the CPU
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costs of the synthetic events are still significant. In this thesis, an even more efficient
approach is investigated. Instead of replacing parts of the classical generation chain,
the viability of directly generating analysis level data with an end-to-end surrogate
model is explored. This is discussed in Chapter 7.

2.5 Statistical Analysis

In the following, a highly simplified outline of a search is used to highlight the
importance of such MC simulation. In a search, the presence of a new physical effect,
e.g. a new particle, is investigated. The search is usually guided by a theoretical
framework which predicts the existence and properties of the effect in the form of a
cross-section σ for the new process. The cross-section σ is directly related to the
number of collisions N that are produced by this process in the experiment, together
with the integrated luminosity Lint, which is a specific property of the collider:

N = Lintσ. (2.6)

To confirm the existence of a new process, a hypothesis test is conducted where the
null hypothesis only contains processes from the SM, associated with the cross-section
σSM. The alternative hypothesis additionally includes the cross-section of the signal
process σS. For both hypotheses, the experimental outcomes are simulated. With
these simulated samples, the region of phase space is identified, where the predictions
of these two hypotheses differ the most. This is the region, which is most pure in
signal events and contains as few background events as possible. In this region, the
measured data is then compared to the simulation.

The MC simulation is not only used to set up the experimental analysis, but it
also serves to determine the expected statistical significance, which is referred to
as the sensitivity, of an analysis. The sensitivity is computed by using the Asimov
dataset [53], which is an idealised dataset. On the Asimov dataset, the observed
outcomes are set to the expected ones, e.g. in a counting experiment the observed
number of events n is set to the expected ones. In the case of discovery, where the
goal is to reject the null hypothesis of background only, the Asimov data set is given



2.5. Statistical Analysis 43

as:
n = s+ b. (2.7)

In Chapter 7 this will be used and discussed in more detail.
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CHAPTER3
Machine & Deep Learning

Machine Learning (ML), a key pillar of artificial intelligence, has revolutionised many
fields, including computer vision, voice recognition, Natural Language Processing
(NLP) and many more. Recently, ML has become an essential tool in the domain
of experimental particle physics, outperforming classical approaches in many tasks,
e.g. event reconstruction [54], particle identification [55], and the search for new
particles [56]. A comprehensive review of the application of ML in HEP is given
in Ref. [57]. Deep learning, a subset of machine learning, has emerged as a potent
tool for handling complex, high-dimensional data. It relies on Neural Network (NN)-
based algorithms, which have been remarkably successful in various tasks, surpassing
conventional machine learning algorithms in numerous instances [58]. The strength
of deep learning lies in its capability to learn from unstructured low-level data and
extract discriminative high-level features. This alleviates the manual, time-consuming
design and selection of high-level features present in conventional machine learning.
This thesis places a primary emphasis on employing NN-based architectures within
the realm of high-energy particle physics.
The landscape of NN-based algorithms is vast and rapidly evolving. It comprises a
wide variety of model classes, e.g.

• Multi-Layer Perceptrons (MLPs)

• Convolutional NNs (CNNs) [59]

• Recurrent NNs (RNNs) [60]

45
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• Transformer models [61]

These architectures have unique strengths and weaknesses and were designed to match
particular symmetries present in the corresponding tasks. Given the breadth and
depth of this field, this chapter focuses on the most essential foundational knowledge
and research in NNs that have had a direct impact on the studies presented here.
This includes the following fundamental concepts of NNs:

• the architecture of a basic NN,

• activation functions,

• loss functions,

• backpropagation,

• optimisation algorithms,

• regularisation techniques,

• and weight initialisation.

While striving to provide a comprehensive overview of the relevant topics, the
provided coverage is by no means exhaustive. Interested readers are encouraged to
explore this exciting field beyond what is covered in this thesis, some useful starting
points are given in Refs. [58, 62], or Ref. [63] especially for physicists.

Among the first proposed architectures are Multi-Layer Perceptrons; they com-
prise a class of feed-forward NNs that includes at least three layers:

• An input layer, containing as many nodes as input features.

• One or multiple hidden layers, containing an arbitrary number of nodes.

• One output layer, comprising as many nodes as desired outputs, e.g. one single
node in a binary classification task.

In a fully connected NN all nodes between neighbouring layers are connected via
learnable weight matrices (Wij)(1<i<n,1<j<m), where the former index corresponds to
the n features of the previous layer and the latter to the m features of the following
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layer. Additionally, a bias vector b = (bj)(1≤j≤m) is used for each neuron in a layer.
The value of a node in a hidden layer is determined by the values of the nodes in the
previous layer and the weights connecting the nodes:

yi = Wijxj + bj (3.1)

For notational convenience, this is written as a matrix multiplication:

y = Wx+ b. (3.2)

The resulting vector y is then passed through an activation function. There are
various activations to choose from1, e.g.:

• Sigmoid σS = (1 + e−x)−1 function,

• Rectified Linear Unit ReLU(x) = max(0, x),

• Leaky Rectified Linear Unit LeakyReLU(x|α)) =

x if x > 0

αx otherwise.

Thus, for an MLP comprising l layers, the output is given by:

F (x) = σl (bl +Wl (σl−1 (... (σ1 (b1 +W1x))))) , (3.3)

where the input is a vector x ∈ Rn, the weight matrices are given by Wk ∈ Ri,j, k ∈
{1, .., l} for the l layers and bk ∈ Ri are the biases corresponding to the layer k. The
biases and weight matrices are referred to as weights or parameters in common NN
literature. This creates a complex web of relationships and processing pathways that
give MLPs their notable computational power. In the infinite capacity limit [64],
i.e. number of hidden nodes N →∞, even a basic MLP with one hidden layer is a
universal function approximator, which means that the MLP can approximate any
imaginable function2.
Note that the choice of the weight dimensions already offers significant flexibility in
designing an architecture, as even a simple MLP with l layers has l−2 hyperparameters

1Note that these functions are applied element-wise, hence no vector formalism.
2To be precise: every continuous on a compact subset of Rn



48 Chapter 3. Machine & Deep Learning

from its number of nodes per layer only3. It is worth noting that over-optimising
these hyperparameters is a common pitfall in the development of machine learning
solutions, as such optimisations can be extremely time- and computation-consuming.

3.1 Training of Neural Networks

Neural networks learn through iterative adjustments of their weights. In supervised
training, labelled training data (x,y) is available, and the weights are adjusted
such that the discrepancy between the prediction ŷ = NN(x) and the target values
y is minimised. The function which quantifies this discrepancy between target
and prediction is referred to as the loss function. To determine the adjustments
for the weights to reduce the loss, an algorithm called backpropagation [65] is
employed. Backpropagation computes the gradients of the loss function concerning
the parameters of the model. This is a significant benefit of NNs, which allows
training them with gradient descent.

3.1.1 Common Loss Functions

First, some frequently used loss functions are discussed. The loss functions are
usually averaged over a batch of predictions containing n training samples.

Mean Squared Error The Mean Squared Error (MSE) is often used in regressions,
where the target y is a real number:

LMSE = 1
n

n∑
i=1

(ŷi − yi)2. (3.4)

Binary Cross-Entropy Binary Cross-Entropy (BCE) is used in binary classifica-
tion tasks, where the target are two possible classes y = {0, 1} and the prediction4

3Generally, hyperparameters denote parameters that are chosen during the design of the NN
and remain unchanged.

4Note that a Sigmoid activation is used after the output layer to obtain a number between 0
and 1.
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ŷ ∈ [0, 1]:

LBCE = − 1
n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]. (3.5)

The BCE is used for classification, as it punishes confident wrong predictions,
i.e. y = 0, ŷ = 0.9, significantly stronger than less confident ones, i.e. y = 0, ŷ = 0.01,
due to the properties of the negative logarithm5.

Cross-Entropy For multiclass classification tasks between M different classes, the
cross-entropy loss is used:

LCE = −
n∑
i=1

M∑
c=1

yic log(ŷic). (3.6)

Note, now the prediction of the model and the target are vectors ŷ ∈ RM ,y ∈ RM .
The target label yic of class i is zero everywhere except for coordinate i, where it is
one. For two classes, this is identical to BCE, since for a prediction ŷ on class 0, the
prediction on class 1 is given by 1− ŷ.

Focal Loss For notational convenience only BCE is considered in the following
and the prediction on the true class pt is defined as:

pt =

p if y = 1

1− p otherwise.
(3.7)

Binary cross-entropy has two weak spots:

1. Class imbalance: if there is a large imbalance between the number of samples
from different classes, pure cross-entropy will lead to a model that predicts the
majority class more accurately, and disregards its accuracy on the minority
class. This can be fixed by adding class weights to the loss terms arising from
different class samples.

5Note the subtlety, although the prediction ŷ can be arbitrarily close to zero, it is always a
wrong prediction! A common misconception is to assume that everything below 0.5 would count as
a correct prediction for the label y = 0.
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2. No extra emphasis on hard examples: since BCE leads to a non-zero loss
for terms that are easily classified, i.e. pt ≫ 0.5, simple examples lead to a
significant contribution to the training loss. Thus, the optimisation can focus
too much on easy examples, which comes as a trade-off for the performance
on harder example. This can lead to a model that makes confident incorrect
predictions, i.e. pt ≪ 0.5.

Lin et al. [66] propose the Focal loss to account for both of these weaknesses at the
same time. Their proposed loss takes the form:

FL(pt) = −αt(1− pt)γ log pt, (3.8)

where αt ∈ [0, 1] and γ ≥ 0 are parameters to account for the two problems mentioned
previously. The former weights both classes such that over all samples they contribute
on average the same loss at initialisation. It is defined similarly to pt as:

αt =

α if y = 1

1− α otherwise,
(3.9)

where α = n0
n0+n1

with n0/1 being the number of samples per class. The latter param-
eter γ down-weights the loss arising from confident correct predictions (pt ≫ 0.5).
Figure 3.1 illustrates the effect on different choices of γ. This modification of the
BCE loss is especially useful when used in HEP searches, where the goal is to identify
a region of phase space pure in signal. For this, a binary classifier discriminating
between signal and background events can be used. After its training, the signal
region is defined as the region where the classifier prediction is high, e.g. ŷ > 0.9.
Thus, there should be as little background as possible in this region, implying that
there should be no confident incorrect predictions. If BCE is used, it can happen
that the classifier enriches this supposedly signal pure region with background events.
Note that in this thesis, the balancing parameter is set to αt = 0.5 everywhere. If
there is an imbalance between the two classes, this is accounted for by oversampling
the minority class with repetition.
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Figure 3.1: Comparison of the Focal loss for different choices of the parameter γ.
Note that for γ = 0, Focal loss is equal to BCE. The left of the figure shows that
confident correct predictions contribute a non-zero contribution to the loss. On the
right, the loss is visualised on a log-scale to allow a comparison of different choices
of γ.

3.1.2 Backpropagation

At its essence, backpropagation employs the chain rule to compute gradients of the
loss function regarding the weights. The simple building blocks allow computing the
derivatives analytically for each node, making this process feasible. The calculation
starts from the output layer and propagates backwards through the network, hence
the name backpropagation.
In the following, back propagation is described for a simple NN with a single hidden
layer. The input is represented by x, the hidden layer activations by h, and the
output6 ŷ. The weight matrix connecting the input to the hidden layer is represented
as W and the weight matrix connecting the hidden layer to the output as V . To
abbreviate, the loss L(ŷ, y) is referred to as L. The NN can be expressed as follows:

6ŷ can also be a vector in general, but for simplicity, a scalar is chosen here.
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h = σ(Wx+ b) (3.10)
ŷ = V h+ c (3.11)

In this context, b and c are bias vectors7, and σ is an element-wise activation function.
Backpropagation computes the gradients of the loss function L(y, ŷ) regarding the
NN parameters (W , V , b, and c) by using the chain rule starting from the output
layer. The gradients of the loss function regarding the output layer parameters are
given as:

∂L
∂V

= ∂L
∂ŷ
· hT (3.12)

∂L
∂c

= ∂L
∂ŷ

(3.13)

To compute the gradient with respect to the parameters W of the hidden layer, it is
necessary to compute the derivative of the loss with respect to h:

∂L
∂h

= V T · ∂L
∂ŷ

(3.14)

Finally, the partial derivatives of L with respect to W and b are determined.

∂L
∂W

= ∂L
∂h

∂h

∂W
= (∂L

∂h
⊙ σ′(Wx+ b)) · xT (3.15)

∂L
∂b

= ∂L
∂h

∂h

∂b
= ∂L
∂h
⊙ σ′(Wx+ b) (3.16)

Here, the symbol ⊙ represents element-wise multiplication and σ′ denotes the deriva-
tive of the activation function. This basic process is extended for an NN with L

layers by repeating the computations for each layer, starting from the output layer
and working backwards towards the input layer. In the following, the layer index is
denoted with a superscript l, the forward pass is given by:

7Note that c is a scalar because the output was chosen to be one-dimensional.
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h[l] = σ(W [l]h[l−1] + b[l]) (3.17)
ŷ = W [L]h[L−1] + c (3.18)

During the backward pass, the gradient of the loss function with respect to the
weights of each layer is then given by:

∂L
∂W [l] = ( ∂L

∂h[l] ⊙ σ
′(W [l]h[l−1] + b[l])) · (h[l−1])T (3.19)

∂L
∂b[l] = ∂L

∂h[l] ⊙ σ
′(W [l]h[l−1] + b[l]) (3.20)

This process is recursively performed, where ∂L
∂h

[l] is computed for the hidden layers
as:

∂L
∂h[l] = (W [l+1])T · ∂L

∂h[l+1] (3.21)

As this only outlines the case for a simple fully connected MLP, interested readers
should consult the previously mentioned textbooks [58, 62] on for the general case.

3.1.3 Automatic Differentiation Frameworks

The elementary operations used in NNs are simple operations with known derivatives,
making Automatic Differentiation frameworks valuable. Since only the PyTorch [67]
framework is used in this thesis, the focus lies on this framework in the following. In
PyTorch, the computation of gradients is separated into two passes. First, during the
forward pass, each operation that is performed, dynamically creates a computational
graph. The computational graph represents how the input moves through the NN.
It contains two types of nodes:

1. operational nodes representing the mathematical operations,

2. variable nodes representing the inputs and weights on which the operations
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are performed.

The other components of the computational graph are edges, which represent the
dependencies between the operational and variable nodes. During the forward pass,
the intermediate results are stored, as Eq. 3.12 shows that these are needed to
calculate the gradients. The backward pass computes calculates the gradients of
the loss with respect to the parameters of the NN as described above. The value
of these frameworks is precisely that the computations for the gradients are done
automatically and efficiently, which eases the optimisation of NN significantly.

3.1.4 Optimisation

After computing the gradients of the loss function, the optimisation process begins.
In principle, adjusting the weights using a small step size, referred to as the learning
rate η, in the opposite direction of gradients reduces the loss. A widely used algorithm
is Stochastic Gradient Descent (SGD), for which the basic idea has been proposed
already in the 1950s [68]. In SGD, the optimisation is done in batches, over which the
gradients are averaged. This not only accelerates the optimisation, but also reduces
the variance on the effective gradients. Note that NNs became especially popular due
to the emergence of Graphical Processor Units (GPUs), allowing for parallelisation of
matrix multiplications, significantly reducing the training and inference time. SGD
exhibits several limitations, such as slow convergence and a strong susceptibility to
the learning rate. To overcome some of these issues, momentum [65], RMSprop [69]
and Adagrad [70] were proposed. RMSprop, despite its emergence from machine
learning lecture notes by Geoffrey Hinton8, became one of the most popular used
optimisation algorithms. Hinton’s proposal involves adjusting the learning rate based
on the square root of the moving average of the gradients. AdaGrad adjusts the
learning rate for each model parameter individually. It does this by using a factor
that depends on the square root of the accumulated squared gradients9. In 2015,
Knigma et al. [72] proposed the combination of both under the name of Adam,
which stands for Adaptive Moment estimation. There are some additional subtle

8Note that the algorithm corrects the RPROP [71] rendering it suited for SGD.
9Note that this factor goes to zero, as the squared sum of gradients goes to zero. This also

improved in the Adam [72] algorithm, mentioned in the following.
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differences between the individual parts (e.g. Adam uses a bias-corrected estimate
of the moments of the gradients, but these are highlighted in detail in Ref. [72]).
Adam comes with two important hyperparameters additional to the usual learning
rate: β1 and β2, where the former controls the exponential decay of the first moment
of the gradients, and the latter controls the decay of the second moment. The full
algorithm is given in Algorithm 1 for completeness. Most notably, Adam uses the
running mean and variance of the gradients to update the weights. An appealing
interpretation, especially for physicists, of the Adam optimisation is given by the
interpretation of a rolling ball running down a slope with friction; for more details
consult Ref. [73], where the former parameter represents the momentum, and the
latter parameter is the friction of the ball. Crucially, Adam defines different friction
parameters for the different weights. For weights receiving large gradients, the value
of the friction is increased.

Algorithm 1 Adam: Adaptive Moment Estimation
Require: α: Step size
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector

1: m0 ← 0 (Initialize 1st moment vector)
2: v0 ← 0 (Initialize 2nd moment vector)
3: t← 0 (Initialize timestep)
4: while θt not converged do
5: t← t+ 1
6: gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
7: mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
8: vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate)
9: m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)

10: v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
11: θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ) (Update parameters)

12: end while
13: return θt (Resulting parameters)

Linear Warm-up Cosine Annealing Scheduling

Something that proved to improve all models in this thesis was the use of a learning
rate scheduler, which changes the learning rate during the training according to a
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Figure 3.2: The learning rate as a function of the training iterations defined by the
linear warm-up cosine annealing learning rate scheduler.

selected schedule. The linear warm-up cosine annealing schedule [74], which is shown
in Fig. 3.2, is used for every training, unless stated otherwise.

Regularisation

Deep NNs often have a high number of parameters compared to the size of the
available training data. From classical machine learning, one could expect that
the high parameter-to-data ratio results in overfitting, where the model fits the
target function to the training data too excessively and thereby captures noise and
outliers, leading to poor generalisation performance on unseen data. For NNs it is
not exactly as problematic, since some regularising effects arise from the training
and NN structure. Especially interesting is the double descent phenomenon [75],
which demonstrates that the generalisation error first decreases with the model
size, then increases, showing overfitting, and then decreases to lower values than
before. However, to actively counteract overfitting, regularisation techniques can
be employed. Regularisation introduces a penalty for NN complexity into the loss
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function, effectively reducing the number of free parameters in the model. Two
common forms of regularisation are L1 and L2 regularisation. Both add a term to the
loss function that is proportional to the sum of the absolute values (L1) or squares
(L2) of the model weights. The Adam optimiser, a popular choice for training deep
learning models, includes a form of L2 regularisation. Nevertheless, Loshchilov et
al. [76] argue that the regularisation of Adam is not entirely effective, thus proposing
a revised version named AdamW. In the work performed in this thesis, no significant
differences were found between different optimisers, thus, if not stated otherwise,
AdamW is used.
dropout [77] is another common regularisation strategy. During training, dropout
randomly nullifies the output of the nodes in a layer with a probability p at each
update. This forces the NN to encode information redundantly. During evaluation, all
nodes are usually used, and their outputs are scaled by 1

1−p to account for the missing
contributions during training. Goodfellow et al. [62] offer an intuitive explanation of
dropout, describing it as an inexpensive approximation to training and evaluating a
bagged ensemble of exponentially many NNs.
To assess whether a model is overfitting, a common practice is to split the available
data into training, validation, and test sets. The training set serves to train the model,
the validation set to tune hyperparameters and select the top-performing model,
and the test set, often also referred to hold-out set, to measure the performance of
the model chosen from the hyperparameter optimisation. Since the training is not
always stable, the validation set is also used to select the best checkpoint during the
training, i.e. the best configuration of weights, which is used for testing.
If a model exhibits good performance on the training set but performs poorly on the
validation set, it is likely overfitting the training data. This performance discrepancy
suggests that the capacity of the model is excessive, and the regularisation strength
needs to be increased. Conversely, if the model performs poorly on both the training
and validation sets, it is under-fitting the data, indicating that the capacity of the
model is insufficient, or the regularisation strength is too large. Apart from these
techniques, additional strategies for managing overfitting include gathering more
training data, using data augmentation techniques or employing simpler architectures
with fewer parameters.
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3.1.5 Weight Initialisation

While the study of weight initialisation for NNs boasts an extensive history, the
current discussion will primarily focus on what impacted or came up in the work of
this thesis. Fundamentally, a critical objective in weight initialisation is to maintain
the mean at zero and variance around unity across the different layers in the NN.
The variance V of a random variable X is given by:

V = E(X − E(X))2,

where E is the expectation value. The variance should be around unity to prevent
two potential failure scenarios:

1. If the variance consistently diminishes across the layers, a vanishing gradient
problem emerges. In this scenario, the variance of the gradients progressively
approaches zero as the input propagates backwards through the NN.

2. If the variance significantly exceeds 1, its magnitude may escalate uncontrollably,
potentially triggering overflow errors on the computation backend.

The LeCun initialisation [78] was proposed in the late 1990s, where weights are
drawn from a Gaussian distribution with a mean of zero and a standard deviation:

σ = n−1, (3.22)

where n represents the number of nodes in a layer. The LeCun initialisation ensures
that the variance of the input remains around one during the forward propagation, but
it does not address the issue of potential gradient vanishing during backpropagation.
To resolve this, Glorot et al. proposed the Xavier initialisation [79] in 2010, which
initializes the weights from a normal distribution with a standard deviation of:

σ = 2
nin + nout

, (3.23)

where nin and nout denote the number of incoming and outgoing connections10. Tra-
10Although initially proposed for a uniform distribution U , the normal distribution is now com-

monly used. For the uniform distribution, the weights are drawn from U(
[
−
√

6
nin+nout

,
√

6
nin+nout

]
)
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ditionally, sigmoid and tanh functions have been the preferred choice for activations,
but they suffer from saturation. When subjected to high absolute input values,
they saturate and their derivatives approach zero, which also causes the gradient to
vanish. To further address the saturation problem, ReLUs were introduced. However,
considering the strictly positive nature of ReLU, the mean can no longer be assumed
to be zero. Consequently, in 2015, He et al. proposed an initialisation method similar
to Xavier initialisation in Ref. [80], where the weights of each layer are drawn from
a Uniform distribution U(− 1

n
, 1
n
): This is the default that is used in the PyTorch

library [67]. Thus, if not stated otherwise, this initialisation is used.

3.1.6 Preprocessing

Note that a crucial detail that was assumed in the previous discussion is that the
input in the first layer of the NN is normally distributed. This is achieved through
preprocessing, where the data is transformed to follow a Normal distribution. But
note, that preprocessing typically transforms the features independently, hence their
input x and the parameters of the transformation are denoted as scalars. Two
transformations that are commonly used are:

1. Standard Scaling: The mean is subtracted from the data and divided by its
standard deviation:

x→ x− µ
σ

, (3.24)

where the mean and the standard deviation is estimated from the training
data. This is an invertible transformation with the only requirement that the
standard deviation is not zero. It is a good choice if the data already has a
Gaussian distribution.

2. Box-Cox Scaling [81]: this transformation is especially suited if the data is
right-skewed. It is given as a parametric transformation

x→


x

λ−1
λ

if λ > 0

log(x) else,
(3.25)

where λ is determined on the training dataset. It is also invertible, but requires
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that x > 0.

3.1.7 Batch Normalisation

Rather than just applying the preprocessing in the input layer, batch normalisation,
often referred to as BatchNorm, aims to standardise the latent features in the hidden
layers. Note again that this normalisation is done independently for every feature
over a training batch. The hidden representation z of the data is normalised by the
mean µb and the standard deviation σb of the batch. BatchNorm introduces two
trainable parameters, a scale γ and a shift β:

x→ γ

 x− µb√
σ2
b + ϵ

+ β, (3.26)

and ϵ is a small number for numerical stability. For inference, the mean and standard
deviation are set to the running mean that is accumulated during training.

3.1.8 Residual Connections

There is plenty of evidence to suggest [82, 83, 84, 85] why deeper and narrow, i.e. NNs
with a larger number of hidden layers and few nodes per layer, outperform shallow but
wide ones, i.e. with few layers and many nodes per layer. Two possible explanations
are:

1. Hierarchical feature learning: deeper architectures can learn hierarchical repre-
sentations of the input data, e.g. image classification, see Ref. [86].

2. Parameter efficiency: from a theoretical perspective, it can be shown that deep
architectures can provide functions which cannot be approximated by shallow
but wide architectures, given the same number of parameters [85].

As previously mentioned in Section 3.1.5, deeper architectures bring problems of
exploding or vanishing gradients. The initialisation solutions are only valid for the
special case of a fully connected MLP. In general, architectures can be significantly
more complex. To resolve this, He et al. [84]. proposed a deep learning architecture
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known as Deep Residual Networks (ResNets) in 2015. In their study, they demon-
strated that deeper architectures do not necessarily outperform shallower ones, even
when additional techniques are employed to mitigate the vanishing gradient problem
(e.g. intermediate normalisation layers). They demonstrate a degradation property
of deep architectures that is independent of overfitting, as also the training error
increases compared to a more shallow architecture. They conclude that deeper archi-
tectures are more difficult to optimise than more shallow ones. To address this issue,
they introduce residual connections11, which enable the gradients to backpropagate
directly through several layers. Instead of learning the underlying mapping for the
output y = H(x), for a group of layers directly, the residual between the input and
the output, F (x) = H(x)− x, is learned. Therefore, the original function becomes
H(x) = F (x) + x. For a 2-layer block with weight matrices W1,W2, and activation
σ the corresponding equation of the block is given by12:

y = σ(x+W2(σ(W1x))). (3.27)

The authors illustrate the benefit of the residual connection with Fig. 3.3 on the
ImageNet [88] dataset, a visual database containing over 14 million labelled images. In
the left figure, they do not use residual connections, resulting in a higher training error
for the deeper architecture. This is counterintuitive because in principle the shallow
architecture is contained in the deeper architecture, and thus they should perform at
least equally. They conclude that the difference must lie in the optimisation. On
the right, the authors show that the performance significantly improves when the
residual connections are included. Note that residual connections are non-parametric,
and thus no additional parameters are introduced by this method. Starting from
the argument that the residual is easier to learn, it seems counterintuitive that the
activation is applied after the addition. Correspondingly, He et al. [89] then later
proposed to reformulate the residual connection to facilitate the propagation of
information. Apart from finding that an identity shortcut outperforms other gating
mechanisms, their main conclusion is that applying the activation before W1 and

11Residual connections are a specific type of skip connections. In a residual block, the input to
the block is added to the output of the block. Skip connection, on the other hand, can be arbitrary
shortcuts through the NN (e.g. as in the popular architecture U-Net [87].

12The biases are omitted for simplicity



62 Chapter 3. Machine & Deep Learning

Figure 3.3: Training (thin lines) and validation (bold lines) error when comparing
architectures of different depth (18 (blue) vs 34 layers (red). (left) Deeper archi-
tectures have a higher training and validation loss, which is not expected. (right)
Adding residual connections, the performance of the deeper architectures excels the
performance of the more shallow NN. Figure taken from Ref. [84].

not in the main “stream” improves the performance. So in Eq. 3.27 the activation σ
is moved such that the equation yields:

y = x+W2(σ(W1σ(x))) (3.28)

Note, that during backpropagation the additional identity cures the problem of
vanishing of gradients, as its derivative is always at least 1. They illustrate the
supremacy of the new approach with Fig. 3.4, where they study the performance
on CIFAR-10 [90], another image-based dataset. Note that although the references
provided primarily focus on image-based problems, the same conclusions are drawn
in many other fields (e.g. NLP [61], where also a preactivation residual connection is
employed; also empirical findings during this thesis). Thus, in the following, unless
stated otherwise, this setup is used for residual connections.

3.2 Symmetries

In the development of machine learning architectures, a crucial principle is integrating
prior knowledge. Such knowledge is usually manifested as symmetries and invariances
that should be mirrored in the learned representations. The complexity can be
significantly reduced by identifying and utilising such symmetries, which in turn
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Figure 3.4: Performance comparison of a post-activation (green) residual connection,
to the previously proposed pre-activation (blue) setup. Dashed lines represent the
training loss, and the solid lanes represent the performance during testing. They
conclude that it overfits less, and consistently outperforms the initially proposed
setup. Figure taken from Ref. [89]

improves the generalisation performance of the model [91]. Weight sharing is a method
commonly used to introduce symmetries into NN architectures. Convolutional neural
networks (CNNs) provide a primary example of this, wherein the same filter is applied
across all different spatial locations in the input image, resulting in translational
invariance [86]. Intuitively, this is assuming that informative features extracted from
a specific spatial position should also be recognized at other spatial positions, e.g.
a pair of glasses at position x, y in an image, should be treated equally at position
x′, y′.

3.2.1 Invariances and Equivariances

Symmetries can be included in an NN, described as a function f in the following, by
making the NN obey certain invariances or equivariances. A function is considered
invariant under a symmetry transformation when the application of the transforma-
tion to the input of the function leaves its output unchanged. More formally, let f
be a function and T the representation of a symmetry transformation g, then f is
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Input x Transformed Input

Output Transformed Output

Ti

f f

To

Figure 3.5: This flow chart demonstrates the principle of equivariance. When a
function f is equivariant to a symmetry transformation Ti/o, the order of operations
is interchangeable without affecting the outcome. Note that the index denotes the
representation of the symmetry transformation on the input and output space. One
can either apply Ti to the input and then f , or first map the input to the output
using f and subsequently apply To. Both paths yield the same result.

said to be invariant under T if

f(T (x)) = f(x), ∀x. (3.29)

An example from physics is the invariant mass of a jet, which remains the
unchanged under Lorentz transformations. Conversely, equivariance refers to the
output of a function transforming in the same manner as the input under the given
transformation. Formally, f is equivariant to T if

f(Ti(x)) = To(f(x)), ∀x. (3.30)

This concept is illustrated in Fig. 3.5.
Permutation equivariance is a particularly relevant symmetry for HEP. For instance,
jets are naturally represented as point clouds, which are effectively sets of unordered
elements. Given that the underlying physics is independent of the order, permuta-
tional symmetry is crucial. If a permutation equivariant n-dimensional function is
approximated with a NN respecting permutation symmetry, the effective variance
the model needs to explain, is a factor n! smaller. This reduction occurs because
the model already satisfies the requirement of being invariant to the n! possible
permutations of the input by construction.
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3.2.2 DeepSets

For permutation-invariant tasks, i.e. where the input is a set, a simple yet powerful
architecture is introduced in Ref. [92], where the authors propose the DeepSets
aggregation. For the DeepSets aggregation illustrated in Fig. 3.6, every element of
the input set is mapped to a latent representation with the same MLP. These latent
representations, of every element of the input are summed13. The authors of DeepSets
claim that this aggregation makes the NN fulfil a universal approximation theorem
for function on sets. Later, Wagstaff et al. [93], provide a necessary and sufficient
condition such that the universal approximation holds. Namely, the dimension of
the latent space, where the sum pooling is carried out, is equal to the maximum set
cardinality times the features per set element, which for HEP can go to ∼ O(105),
as discussed in Chapter 6. However, this is a theoretical argument, and empirically
models that make use of such a permutation-equivariant information aggregation
method have shown state-of-the-art results [94, 95, 96], even when the latent space
has a smaller dimension than required.

+

Figure 3.6: Visualisation of the DeepSets approach. Every set element is embedded
in a latent space, where a sum pooling is applied. Note that this is permutation
invariant, since the sum is a permutation invariant operation.

13This is referred to as sum-pooling. Generally, pooling operations are a useful tool to achieve
invariances as they abstract away from specific details.
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3.3 Attention

(Self-)attention was popularised in 2017 by Vaswani et al. [61], who demonstrated
that their attention-based Transformer model outperforms the state-of-the-art with
significantly lower training costs. The attention aggregation is primarily inspired by
human cognitive processes, where the brain selectively focuses on certain parts of
its incoming information to process it more efficiently. In the context of machine
learning models, attention enables the model to consider inputs non-uniformly. This
is best illustrated in NLP tasks; in a sequence-to-sequence model featuring attention,
the model uses the attention mechanism to evaluate the relevance of each word in the
input sentence when creating an output, e.g a translated word. Attention allows the
model to focus on words that are more important in the context. Typically, the input
of attention is denoted as query Q, key K and value V 14. In practice, the query, key,
and value are a sequence of embedded tokens. The tokenisation refers to breaking the
input down into its smallest building blocks, e.g. the phrase “I like lollipops.” can
be tokenised as [”I”, ”like”, ”lollipops”, ”.”], but note that the tokenisation is not
unique. Each of these tokens is then transformed into a numerical representation in
some high-dimensional space, a process known as embedding. Self-attention refers
to the special case where the three embedded sequences x, y, z are the same, and
cross-attention to the case with two different sources. The query comes from one
sequence, and the key and value are extracted from another sequence.

3.3.1 Softmax

Before describing the attention mechanism with formulas, the softmax function needs
to be introduced. It takes as input a vector of K real numbers and normalises them
to add up to one. This function is widely used in machine learning algorithms,
especially in the output layers of multiclass classification models, where it serves as
a means for converting raw model outputs, which are real numbers, into values that
can be interpreted as the probability of the classes. The softmax function σ for an

14These names originate from the field of information retrieval, specifically in database indexing
and searches. When data is searched in a database, a query is usually submitted. The system uses
this query to look up a key in its index. The key then maps to a value which contains the data
which is looked for.
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input vector x ∈ RN is defined as follows:

σi(x) = exi∑N
j=1 e

xj
(3.31)

Note that for two classes, the output of the softmax is equivalent to the output of a
sigmoid (respective 1-sigmoid).

3.3.2 Scaled-Dot Product Attention

Formally the query, key, and value are given by different f -dimensional embeddings
x = (xi)ni=1, y = (yi)li=1, z = (zi)li=1 are first mapped to hidden representation15:

Q = xWQ x ∈ Rn×f ,WQ ∈ Rf×d (3.32)
K = yWK y ∈ Rl×f ,WK ∈ Rf×d (3.33)
V = zWV z ∈ Rl×f ,WV ∈ Rf×d (3.34)

where n/l is the number of sequence elements, d the number of features of the latent
representation and f the number of features of the embedding. The formula for the
attention aggregation is then given by16:

Attention(Q,K, V ) = σ

(
QKT

√
d

)
V (3.35)

The scaling with
√
d is introduced to treat the saturation of the softmax as the

variance of the dot product of two d-dimensional normally distributed random vectors
is proportional to d. An illustration of the most general scaled-dot product attention
is given in Fig. 3.7

3.3.3 Multi-Headed Attention

In the same paper [61], the advantages of computing attention across multiple
independent linear representations of the input are demonstrated. Each representation

15Note that the key and value sequence are required to have the same length.
16Note that the latent dimension of the key and query are required to match, but the dimension

of the value can be different but is usually chosen to be the same.
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Figure 3.7: The attention mechanism; given 3 embedded input sequences x, y, z
(note that y, z, need to have the same number of tokens, but x can in principle be
of different length), each sequence is mapped to a (usually) higher dimension and
stacked to form the matrices Q,K, V . Then, the softmax is applied to the scaled
cross product of Q,K resulting in a square weight matrix W where all columns
add up to 1. Multiplying this weight matrix W with V yields the output X of the
attention aggregation.
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is referred to as head. Specifically, rather than applying attention aggregation over
a dimension d, attention is computed over h heads, each with a dimension of17 d

h
.

This approach maintains the total number of trainable weights unchanged due to
the reduced dimension per head, and the computational cost remains comparable.
The outputs from the different heads are then concatenated:

MultiHeadedAttention(Q,K, V ) = Concat(head1, head2, ..., headh)WO (3.36)
where headi = Attention(xWQ

i , yKW
K
i , zW

V
i ), (3.37)

where WO is a projection matrix that unifies the output of the different heads.
Notably, all well-known Large Language Models (LLMs), such as ChatGPT [97]
and LLama [98], are based on the transformer architecture. Recently, attention
mechanisms have expanded into a broader array of applications, including but not
limited to computer vision [99] and reinforcement learning tasks [100].

3.3.4 Permutation Equivariance of Self-Attention

Note that in the previous section the input of the self-attention was always referred to
as a sequence, which was historically motivated. But attention itself is permutation-
equivariant as can be shown as follows. Given a permutation matrix P , applying it
to the input sequence it follows::

Attention(PQ,PK,PV ) = σ

(
PQKTP T

√
d

)
PV (3.38)

Since the softmax is applied row-wise, the (row-)permutation matrices can be pulled
out of the softmax. And since the permutation matrices fulfil P T = P−1, it follows
PP T = I, and thus:

17This requires d mod h = 0.
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Attention(PQ,PK,PV ) = σ

(
PQKTP T

√
dk

)
PV (3.39)

= P · σ
(
QKT

√
dk

)
P TPV (3.40)

= P · Attention(Q,K, V ) (3.41)

□

Thus, the input might as well be a set. This is what makes self-attention well-
suited for tasks in HEP, where the data can be represented as variable-sized sets of
particles18. Furthermore, some elements of the sets are expected to have significantly
more impact in the context of the underlying physics, e.g. high-energetic decay
products carry more information about the parent particle than low-energetic ones.

3.3.5 Masking

Dealing with variable-sized inputs can be difficult with NN, as the matrices require a
fixed input dimension. In the attention mechanism, this is alleviated by a clever use
of the NN. A subtlety in the attention mechanism is that the trainable parameters
of attention layers are applied to the tokens independently, which can be seen by the
dimension of the matrices WQ,WV ,WK .
The interaction between tokens in the attention mechanism is introduced by the dot
product in the softmax and the following multiplication with the value matrix. Thus,
the inputs are padded with zeros to the same length, which allows calculating the
attention weights efficiently. The added zeros are masked by adding a −M · ∞ term
in the softmax calculation. The mask is 1 if a token is padded and not present in
the input. This will result in a zero as the output of the softmax and, as such, not
have an impact on the output of the attention aggregation.

18Indeed in NLP tasks a positional encoding is explicitly introduced to account for the ordering
in the input.
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)( =

Figure 3.8: Connection between attention and DeepSets: considering only one element
of the query (for more than one row in the query, the output is just stacked, but
the principle remains the same). In the figure, the operation inside the softmax is
illustrated: a 1×f matrix times a f×n matrix results in a 1×n matrix. Applying the
softmax normalises the result to sum up to one ∑f

i=1 wi = 1. Now when multiplying
the output of the softmax together with the embedded input set V , it is equivalent
to x′

i = ∑n
j=1 wjvi, which is just a weighted sum of the latent representation of the

input.

3.3.6 Relation to DeepSets

There is a subtle similarity between attention and the DeepSets approach when the
query q contains only one token. This is illustrated in Fig. 3.8, as it is easier to
understand this connection visually. The self-attention aggregation can be identified
as a weighted sum of the individual representations of the value tokens. The weights
are determined by the cosine similarity, i.e. the dot product, normalised by the
magnitude of both vectors, between the query and the keys. Note that the softmax
brings an important stabilisation to the whole aggregation. Since the weights add up
to one, the scale of the output is independent of the number of inputs. Assuming the
input is normally distributed, naive summing of these latent representations leads
to larger variance for sets with high cardinality. This is explained by the Central
Limit Theorem, stating that the variance of the resulting distribution is increased
by a factor of n, where n is the number of elements in the sum. Normalising the
weights to unity counteracts this. However, the normalisation of the weights leads to
attention being agnostic to the cardinality of its input. This is a crucial realisation
that was found during the study of point cloud datasets, which will be discussed in
Chapter 5.
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3.3.7 Linearised Attention in NLP

Since in the attention aggregation, the pairwise interaction between all tokens are
computed, the computational complexity of attention scales quadratically O(n2)
with the number of inputs, as well as the required memory. This quadratic scaling
of attention is also an issue for NLP, where the long-range dependence between
the different words is of large importance for the context. There have been various
propositions to deal with this, e.g. Refs. [101, 102, 103, 104, 105]. In the following,
only FlashAttention [104, 105] is briefly discussed as it raises an important point,
which is easily overlooked. The authors highlight that the quadratic scaling of
attention is not problematic due to the number of Floating-Point Operations Per
Second (FLOPS), which measure the complexity of an algorithm, but rather by
loading and saving intermediate results. The authors clarify the difference between
compute-bound operations and memory-bound operations and conclude that attention
is memory-bound19. In other words, this means that the operations limiting the
speed are simple operations, which are applied element-wise. The authors propose to
fuse these operations to reduce memory use. However, as of the time of writing this,
no ready-to-use implementation is available for the more common GPUs at DESY,
but this certainly is an interesting direction for future work.

19The interested reader should consult [104], where an illustrative explanation is provided.



CHAPTER4
Generative Modelling

This chapter introduces various approaches to Generative Modelling, beginning with
Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs), and
then moving on to more recent methods such as Normalising Flows (NFs), Diffusion
Models, and Continuous Normalising Flows (CNFs) trained with Conditional Flow
Matching (CFM). A personal goal during my thesis was to experiment with every
major class of generative models, to gain a comprehensive understanding. For each
approach discussed, its performance on a simple toy problem, which is introduced
in the following section, will also be presented. The repository to reproduce these
results is available on GitHub [106], and is encouraged to be used as a template for
generative modelling tasks. In the following, real data is used to refer to data from
the target distribution that should be learned. In contrast, data drawn from the
model is referred to as synthetic data.

4.1 Two Moons Dataset

The Two Moons Dataset, depicted in Fig. 4.1, is a two-dimensional dataset that
was used in this thesis to briefly experiment with different approaches to generative
modelling. It consists of two crescent-shaped components that are not connected.
Converting a distribution over a connected support to a distribution over two
disconnected components is not a simple task, as it requires the function to be

73
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non-continuous1. The Two Moons are constructed as:

(x, y) = (cos(θ), sin(θ)) +

(0, 0) θ < π

(1,−0.5) π < θ < 2π
(4.1)

for θ in the range of [0, 2π]. Finally, Gaussian noise N (0, σ2) is added to each point,
where σ was chosen as 0.05 for the following experiments.
One benefit of choosing two-dimensional data is that the learned distribution can
be visualised with a two-dimensional histogram, allowing a visual evaluation of
the model performance, without sacrificing information due to marginalising. All
models in the following are trained for 50 epochs and 1000 iterations per epoch2.
The batch size is chosen to be 256 for all models. All models rely on the same NN
architecture, which is embedded in the different generative models. This means that
there is no architectural difference between a VAE Encoder and a GAN generator,
the only potential difference lies in the output layer, which is defined by the specific
requirements of the different models. All models are constructed such that they have
approximately the same number of parameters3. Due to the unstable training, first a
small hyperparameter optimisation for the GAN was conducted, where the number
of layers and nodes per layer and the learning rate were optimised. These parameters
were then also selected for the configuration of all NNs in the other models.

4.2 Variational Auto-Encoders

VAEs [107], proposed by Kingma and Welling in 2013, represent a significant ad-
vancement in deep generative modelling. To explain their workings, it is best to start
with traditional Auto-Encoders (AEs). The training paradigm of an AE is simple:
first, the data is encoded to a lower dimensional latent space with an NN E(x).

1Usually a simple connected distribution e.g. a standard Gaussian distribution is used as input
for the generative model.

2Except for the Continuous Normalising Flow described in Section 4.5, which only used 100
iterations per epoch, as otherwise, the training takes more than 24 hours. For the CNF, a different
NN architecture is chosen, as its construction is more complicated.

3This is slightly more difficult for NF-based on coupling layers, since they have one NN per
coupling layer. To account for this, the number of hidden features was reduced such that in total
they have the same number of parameters as the other models
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Figure 4.1: Histogram of 100’000 samples of the Two Moons dataset.

Figure 4.2: A VAE consists of an encoder E and a decoder D. The encoder encodes
the input data to a typically lower dimensional latent code z. The decoder produces
the reconstruction x̂ as a function of the latent code.

Then this representation is decoded with another NN x̂ = D(z). To train the two
networks the following loss, usually referred to as reconstruction error, is minimised:

LAE = ||x−D (E(x)) ||2 (4.2)

An AE can also act as a generative model by sampling the lower-dimensional encoding
space and passing it through the decoder. In this case, the encoder is typically not
used after training is complete4. To achieve this, the distribution of the input in the
latent space should be easy to sample from. For an AE, there is no incentive to have
a connected or continuous topology in the latent space. This is where the VAE comes
into play; instead of deterministic encoding, the encoding becomes probabilistic and
the encoder is optimised so that the encoded inputs follow a standard Gaussian

4Note that this is not always the case. For example, denoising images requires both models
after training [108]
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distribution.
The VAE provides a mathematically rigorous methodology for learning complex data
distributions, introduced in the following: The encoder E encodes the input x ∈ Rn

into the latent code z ∼ qϕ(z|x)5 where z ∈ Rm, m < n. The index ϕ highlights
that this is dependent on the parameters ϕ of the encoder NN. In practice, this
is done by using the output of the encoder E(x) as parameters of a probability
distribution, typically a Gaussian with mean Eµ and diagonal covariance matrix6,
where the diagonal is given by Eσ2:

Eµ
Eσ

 = E(x) (4.3)

A point z is then sampled from this distribution using the reparametrisation
trick:

z = Eµ +Eσ ⊙ ϵ, (4.4)

where ϵ is a random noise sampled from the standard Gaussian distribution. This
reformulation makes the sampling process of the latent variable differentiable, and
thus allows the encoder to be trained from the output of the decoder while remaining
probabilistic. The decoder D distribution is given by pθ(x|z), where θ again denote
the parameters of the NN.

The loss function for VAEs is the Evidence Lower Bound (ELBO), which provides
a lower bound on the marginal likelihood of the observed data7. Thus, maximising
the ELBO implicitly maximises the likelihood of the generated data under the model.
To derive the ELBO, first the joint distribution pθ(x, z) is multiplied with 1 = qϕ(z|x)

qϕ(z|x)

and Jensen’s inequality is used. Jensen’s inequality states that if f is a concave
function, it holds that E[f(X)] ≥ f(E[X]). This is used to switch the order of the

5Describing the encoded input as a distribution emphasises the probabilistic nature of the
encoder.

6A diagonal covariance for the distribution implies that all features in the latent space are
maximally disentangled, i.e. independent. Note that this may be too strict a requirement, and thus
may affect the performance of the model. Kingma et al. [107] also provide the framework for more
general latent space distributions

7Note that marginal in this context refers to the marginalisation over the latent z and not the
marginal distributions of the data.
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logarithm and expectation value.:

log pθ(x) = log
∫
pθ(x, z) dz (4.5)

= log
∫ pθ(x, z)
qϕ(z|x) qϕ(z|x) dz (introduce qϕ(z|x)) (4.6)

= logEqϕ(z|x)

[
pθ(x, z)
qϕ(z|x)

]
(integral as expectation) (4.7)

≥ Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z|x)

]
(Jensen’s inequality ) (4.8)

= Eqϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
Reconstruction Loss

− Eqϕ(z|x)

[
log qϕ(z|x)

pθ(z)

]
︸ ︷︷ ︸

DKL(qϕ||pθ)

, (4.9)

where for the last equality it is used that pθ(x, z) = pθ(x|z)pθ(z) together with the
rules for the logarithm.
The ELBO consists of two parts: a reconstruction term and a regularisation term.
The reconstruction term is the expectation of the log-likelihood of the observed data
given the latent code z and is denoted as Eqϕ(z|x)[log pθ(x|z)]. This term encourages
the VAE to accurately reconstruct the input data from the encoded input, and is
identified with the mean squared error Epθ(z|x)||x−Dz||2. The regularisation term is
the Kullback-Leibler (KL) divergence between the encoder distribution qϕ(z|x) and
a target prior distribution p(z), typically chosen as a standard Gaussian distribution:

DKL(qϕ(z|x)||p(z)) =
∫
qϕ(z|x) log qϕ(z|x)

p(z) dz. (4.10)

Due to the reparametrisation trick, where the latent space distribution of the input
was chosen as a Gaussian with diagonal covariance (i.e. p(E(x)) = N(0,σ)), an
analytical form for the KL divergence between the target N (0, 1) and the distribution
of the latent codes is available:

DKL(qθ|N (0, 1)) = 1
2Eqϕ(z|x)(V(z)− logV(z)− 1 + E(z2

i )), (4.11)
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where V denotes the of variance of the argument along its feature dimension8. Note
that this loss is equal to 0 if the encoder outputs a mean of 0 and a variance of 1
for each input. However, in this case, the latent representation does not contain
any information about the input. Therefore, the KL term should only be seen as a
regularisation, similar to the L1 or L2 regularisation mentioned in Section 3.1.4, which
has its minimum when all model parameters are 0. However, in weight regularisation
techniques, the regularisation term is weighted with a small value, whereas in vanilla
VAE the weight is 1. A detail that is often omitted is that it can be crucial for the
success of the optimisation that the weight of this loss term is ramped up during the
start of the training [109]. In total, the following loss is minimised during training:9:

L(θ, ϕ;x) =
n∑
i=1

(D(Eµ,σ(x))i − xi)2 − 1
2

m∑
i=1

(
Eσ(x)2

i − logEσ(x)i − 1 +Eµ(x)2
i

)
, (4.12)

where m is the dimension of the latent space and n is the dimension of the input space.

4.2.1 Two Moons Dataset

The Two Moons dataset is not the optimal toy example for VAEs because usually the
encoding dimension is chosen to be smaller than the input dimension, as the input
usually contains noise, which is not relevant for the perception of the input. However,
if the latent space dimension is chosen to be 1 on the Two Moons dataset, the model
has only one degree of freedom and is unable to model the spread perpendicular
to the crescents as shown in the left of Fig. 4.3, even when considering only the
reconstructed samples. If the latent dimension is chosen as 2, it is a test of how well
the input variables can be decorrelated with the KL-divergence regularisation10.

8Note that a frequently used extension is the β-VAE, where another hyperparameter β is intro-
duced which balances the two loss terms. This hyperparameter allows controlling the disentangling
of the latent representation, where a higher value of β leads to a more disentangled representation.

9Here the formalism is a bit sluggish, but to fit everything on one line, Eµ(x) +Eσ(x) ⊙ ϵ
is abbreviated as Eµ,σ(x). Furthermore, the derivation of the closed form of the KL divergence
between two Gaussian distributions involves quite a bit of algebra and is therefore omitted.

10In this case the model should learn to transform the data distribution to a standard Gaussian
distribution and then back into the data distribution while remaining in the same dimension. For a
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Embedded Manifolds

The Two Moons dataset illustrate an important concept for synthetic data. If the
dimension l of the latent space is chosen to be smaller than the dimension n of the
training data, undesired consequences arise since the samples drawn from the model
lie on a manifold with dimension l. A classifier that is trained to distinguish a signal,
in this example corresponding to data drawn from the model, from a background,
corresponding to data that does not lie on a smaller dimensional manifold, the
classifier can perfectly distinguish the two classes by testing whether a sample lies on
the lower-dimensional manifold11. When the model is used for inference, i.e. is used
to find a signal in measured data, the measured data contains noise and as such does
not lie on the smaller-dimensional manifold. Thus, the model will not be sensitive to
the signal, even if it is present. To demonstrate that the classifier can use the lower
dimensional manifold, an AE is trained on the Two Moons dataset, as shown on the
left of Fig. 4.3. A discriminator is then trained to distinguish real inputs (target=1)
from inputs the AE reconstructed (target=0). The right of Fig. 4.3 depicts the score
distribution of this classifier on a testing set after training. Although the real and
synthetic data have overlapping support, the model can still distinguish the two
classes perfectly. This is only possible if the discriminative model makes use of the
lower-dimensional manifold of one class. Thus, for all models in this thesis, the
dimension of the noise that is used as input for the models is equal to the dimension
of the modelled data.

Impact of Latent Space Regularisation

Figure 4.4 illustrates why regularisation of the latent space is necessary. In the
middle, reconstructed samples, i.e. real inputs that are encoded and then decoded,
are shown, and their distribution looks near perfect. However, the distribution of
generated new samples, i.e. when latent codes are randomly sampled and then
passed through the decoder, does not resemble the true distribution at all as shown
on the left. The latent representation is shown on the right, which explains why

standard Gaussian distribution, both features are independent, hence the term decorrelate.
11This example may sound a bit too constructed, but this is a project of this thesis discussed in

Chapter 7.
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Figure 4.3: Results of an AE on the Two Moons dataset when the latent dimension
is chosen as one. (left) Reconstructed samples if the encoding dimension is chosen as
1. The model is unable to capture the noise perpendicular to the crescents. (right)
Score distribution of the classifier that is trained to distinguish real and reconstructed
samples. Although the two distributions have overlapping support, a classifier can
perfectly distinguish real and reconstructed samples.

the newly drawn samples do not resemble the target distribution. Introducing the

Upper Moon
Lower Moon

Figure 4.4: Results from training an AE illustrate why the regularisation of the
latent space is crucial. (left) Samples drawn from the trained AE bear little similarity
with the target distribution. (middle) The inputs reconstructed by the AE are near
perfect. (right) The latent distribution of the AE is not connected and does not
resemble a standard Gaussian distribution at all.

regularisation, equivalent to moving from an AE to a VAE, produces the results
shown in Fig. 4.5. The reconstruction of the input is not as perfect any more, however,
generated samples resemble the reconstructed ones.
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Figure 4.5: Results from training a VAE illustrate that the regularisation of the latent
space closes the discrepancy between reconstructed and newly generated samples.
(left) The samples drawn from VAE are different from the ones from the target
distribution. (middle) The inputs that are reconstructed by the VAE are blurred
between the two crescents. (right) The latent distribution of encoded inputs shows
that the two crescents are encoded in different parts of the latent space, but there is
a non-negligible overlap.

4.3 Generative Adversarial Networks

GANs, proposed by Goodfellow et al. [110] in 2014, train a generative model in
competition with a discriminative model, as illustrated in Fig. 4.6. The discriminative
model is optimised to distinguish real data x from synthetic data x̂ generated by
the generative model. In contrast, the generative model is optimised such that the
discriminative model is unable to synthetic data from real data. The training process
is thus given as a minimax game12:

min
G

max
D

V (D,G) = Ex∼prealL(D(x))− Ez∼pN (0,1)L(D(G(z))), (4.13)

where D is the discriminator and G the generator. There is a Nash-Equilibrium
when the generator produces synthetic data, which cannot be distinguished from
real data by the discriminator. Interestingly, the generator learns to produce seem-
ingly real samples without ever being directly exposed to real samples. Note that
Equation 4.13 poses no specific requirements for G and D, which makes this training

12The terminology comes from game-theory; zero-sum games are called minimax games because
their solution involves an inner loop maximisation and an outer loop minimisation
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Figure 4.6: Schematic of a GAN comprising a generator G and a discriminator
D. The generator takes noise z as input and generates synthetic data x̂. The
discriminator distinguishes real inputs x from synthetic ones by predicting a score s
as output.

paradigm so versatile [111, 112, 113, 114, 115, 116]. Training GANs is notoriously
challenging, the performance of the model is usually heavily dependent on the chosen
hyperparameters [117]. The choice of loss function has a major impact on the training
dynamics, further discussed in Section 4.3.1. While solutions have been proposed
to further stabilise the training process, their effectiveness varies with the problem.
Section 4.3.2 discusses some methods that have proven valuable in this thesis to
stabilise the training.

4.3.1 Losses

An overview of different loss functions is presented in Table 4.1 and is discussed in
more detail in the following.

Table 4.1: Summary of common GAN losses. Real data is represented with x, and
synthetic data is represented with G(z), where z ∼ N (0, 1) is the noise input for
the generator. Note the subtle difference between discriminators D and critics C, a
model is referred to as a discriminator only if it outputs a value between 0 and 1.

Name Discriminator/Critc Loss Generator Loss
Minimax L [110] logD(x) + log(1−D(G(z)) log(1−D(G(z))
Non-Saturating LNS [110] logD(x) + log(1−D(G(z)) − log(D(G(z))
Least Squares L2 [118] (C(x)− 1)2 + C(G(z))2 1

2(C(G(z))− 1)2

Wasserstein LWGAN [119] C(G(z))− C(x) −C(G(z))
WGAN w/ Gradient Penalty LGP [120] C(G(z))− C(x) + λ(||∇G(z)C(G(z)||2 − 1)2 −C(G(z))
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Minimax Loss

The original GAN publication is based on the following optimisation objective:

min
θ

max
ψ

V (Dψ,Gθ) = Ex∼pdata(x)[logDψ(x)] +Ez∼pz(z)[log(1−Dψ(Gθ(z)))] (4.14)

where ψ and θ are the parameters of the discriminator and generator respectively,
x are data samples, z are noise samples, D(x) is the estimate of the probability that
a sample x comes from the real distribution by the discriminator, and G(z) is a
sample drawn from the model.

In this framework, D is trained to maximise the probability of correctly identifying
real and synthetic samples, hence the term maxψ. Simultaneously, the generator G
is trained to make the discriminator D misidentify synthetic samples, hence the term
minθ. This results in a dynamic training process where G and D are constantly
adapting to each other.

The minimax game has a global optimum when the generator replicates the data
distribution perfectly and the discriminator outputs a probability of 1

2 for all samples,
indicating that real and synthetic samples are indistinguishable. In practice, this
equilibrium is unlikely to be reached.
Already with this setup, the authors can generate new samples from complicated
high-dimensional distributions (e.g. MNIST [121], CIFAR-10 [90])13. They further
show that during training the Jensen-Shannon divergence between the data and
generator distributions is reduced, and the global optimum of the training loss lies
at14 − log 4.

Non-Saturating Loss

In the same paper, Goodfellow et al. [110] point out that the minimax loss function
has a flaw. When the discriminator assigns a low probability to synthetic data,

13It is subtle to note that there is an important difference in priorities between HEP and the
more common generative modelling literature in ML. In HEP, it is of high importance that the
distribution of samples is similar to the true underlying distribution. However, e.g. for image
generation, more focus is laid on individual samples.

14To see this, evaluate the discriminator loss function, if the discriminator outputs 0.5 for
synthetic and real samples.
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which is usually the case early in training, the loss for the generator saturates, as
shown in Fig. 4.7. A reformulation of the generator loss can take this problem into
account. Instead of minimising log(1−D(G(z))), the generator is trained to minimise
− logD(G(z)). This can be understood as follows: in the minimax formulation,
the generator tries to make the discriminator assign a high probability to synthetic
samples as being real; in the latter formulation, it tries to prevent the discriminator
from classifying synthetic samples correctly. This GAN is referred to as NSGAN in
the following.

4 3 2 1 0 1 2 3 4
Discriminator Output D(G(z))
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Saturating vs Nonsaturating Loss vs Discriminator Output
Original Loss
Nonsaturating Loss

Figure 4.7: The difference between the two losses proposed by Goodfellow et al.
in Ref. [110]. For the saturating loss, the gradient approaches zero when the
discriminator is very confident that a sample is synthetic and therefore assigns a
low value to it. Since this is usually the case at the beginning of the training, the
generator gets little feedback to improve. The opposite is true for the non-saturating
loss. The gradient for the generator is large if the discriminator assigns a low value to
the scores and small if the discriminator assigns a high probability to it. Note, that
it is no problem that the gradient for the generator saturates if the discriminator
assigns a high probability to it, as the Nash equilibrium is at the point where the
discriminator outputs 0.5 for synthetic and real samples.
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Least-Squares GAN

Mao et al. [118] introduced the LSGAN, which uses an MSE to as loss function.
They show that this GAN minimises the χ2 divergence of between the real and
generated distribution. The loss for both the generator and critic15 are given as
|C(x)− y|2. For the generator y = 1 for synthetic samples, and for the critic y = 1
for real samples and y = 0 for synthetic samples.

Wasserstein GAN Loss & Gradient Penalty

Arjovsky et al. show that the Jensen-Shannon (JS) or Kullback-Leibler (KL) diver-
gence are a suboptimal objective to minimise for a generative model in Ref. [119].
They propose that the Wasserstein-1 distance given in Eq. 4.15 is a more suiting
objective:

W (pdata, pg) =
(

inf
π∈Π

∫
Rd×Rd

||x− y||dπ(x,y)
)
, (4.15)

where pdata is the data distribution, pg is the model density, and Π is the set of
joint distributions whose marginals are pdata and pg. Note that the expression is
intractable due to the infimum over the set of joint distributions Π. The authors
propose the Wasserstein GAN (WGAN) setup that minimises the Wasserstein-1
distance between the target and model distributions:

W (pdata, pg) = sup
||C||L≤1

Ex∼pdata [C(x)]− Ex∼pg
[C(x)]. (4.16)

The supremum is taken over all Lipschitz-1 continuous functions, i.e. functions which
fulfils |f(x1)− f(x2)∥ ≤ L∥x1 − x2∥, ∀x1,x2. This is thus a requirement that the
critic C must satisfy16. The Lipschitz constraint is enforced during training by weight
clipping, i.e. limiting the range of values the weights of the NN can take to small
values. They present their results on the image dataset LSUN-Bedrooms [122] and
show that their loss function stabilises the training of a previously unstable model.

15Note that here the naming moves from the discriminator D to the name critic C because there
will be no sigmoid activation at the end of the model. This means that it will no longer output a
value that can be interpreted as probability, since it is no longer normalised to one.

16The reason this Lipschitz constraint is needed is that otherwise, a function f ′ = λf where λ is
a scalar would have an λ times larger distance than when initial f is used. This can be problematic
since the critic minimises the negative of this distance.
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One major benefit of their approach is that the critic loss can be interpreted as
a multiple of the Wasserstein distance17. Gulrajani et al. [120] later proposed an
improved approach to make the critic Lipschitz-1 continuous, to which the authors
refer as Gradient Penalty (GP). They add a term to the loss function of the critic,
that penalises the critic if the norm of the gradient of the critic deviates from 1:

Ex̂∼px̂
[(||∇x̂C(x̂)||2 − 1)2], (4.17)

where x̂ is sampled uniformly along a straight line between pairs of real and synthetic
samples.

4.3.2 Other Approaches to Stabilise Training

Even though the losses discussed claimed to stabilise the training, in practice the
models are still far from robust. In the following, some other measures that stabilised
the training are briefly discussed.

Feature Matching Salimans et al. [123] propose additional ideas to improve the
convergence of GAN training. In this thesis, feature matching proved to be useful.
The objective of the generator is changed. Instead of maximising the output of the
critic or discriminator, it should generate data that matches the expected values
of statistics from real data. Specifically, the statistics are chosen as the activations
from an intermediate layer of the critic.

Weight Normalisation & Spectral Normalisation Kingma et al. [124] pro-
posed a reparametrisation to decouple the direction from the magnitude of weight
vectors18:

w = g

||v||
v, (4.18)

where g is a learnable scalar, w the weight vector used in NN and v is a new
parameter with the same shape as the weight vector w. Thus, the network learns

17Beforehand it was omitted that if the NN is not 1-Lipschitz but k-Lipschitz, Equation (4.16)
results in the Wasserstein distance times a factor k.

18Weight vectors refer to the rows of the weight matrices
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both g and v for each layer. This reparametrisation should stabilise the training,
referred to as weight norm.
Xiang et al. [125] propose a modification to the initial weight normalisation which is
more suited for GANs19. In their study, they show that their modification of the
normalisation performs significantly better than BatchNorm, respective, the absence
of any normalisation. However, their weight normalisation enforces the squared
singular values of the weight matrix to add to d, where d is the minimum of the
number of rows and columns of the matrix. Miyato et al. [126] show that this imposes
a much stronger constraint on the matrix than intended, as this leads to a model
that only uses one feature, and propose another normalisation spectral normalisation
where the weight matrix is normalised by its maximum singular value. This cures
the previously mentioned problem, as the singular values of the matrix are now
decoupled20. However, in this thesis, GANs trained with spectral normalisation
consistently performed worse than GANs trained with weight normalisation.

4.3.3 Two Moons Dataset

In this section, the performance of different GANs on the Two Moons dataset is
evaluated and discussed. The NSGAN and LSGAN were both trained with standard
momentum values for Adam. For the WGAN it is known [119] that momentum can
break the training, and hence it is set to 0 or the RMSprop optimiser is used. In the
studies in this thesis, using any momentum β > 0 for the training of a GAN resulted
in a non-converging training.
As GANs are notoriously unstable, even in this small toy study a hyperparameter
optimisation was conducted. The following architectural choice space21 was searched:

• Batch Norm: [True, False]

• Spectral Normalisation: [True, False]

• Weight Normalisation: [True, False]
19They argue that in its simplest form, the original weight normalisation does not normalize the

mean value of the input and adapt it accordingly.
20Previously they are coupled since their squares add up to d.
21The feature matching loss mentioned previously did not give any acceptable results on this toy

dataset, and hence is left out.
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• Gradient Penalty: [True, False]

In Fig. 4.8 samples drawn from the best-performing model from every training
paradigm are shown. These results of the NSGAN and LSGAN nicely illustrate that
GANs produce good sample quality, as almost all points lie on the two crescents.
However, both models do not cover the entire support of the distribution and prefer
specific modes. This is a known artefact often present in GANs, which is referred to
as mode collapse [127]. For the WGAN, the distribution is slightly smoother, but
the model is still unable to capture the target distribution accurately. This already
points at a major problem with GANs for use in particle physics, since distributions
are more important there than the individual sample quality. It is unusual that
in searches only single events are studied22. Thus, the mode collapse could pose a
detrimental property in HEP.

(a) Non-Saturating (b) Least-Squares (c) WGAN-GP

Figure 4.8: Histograms of samples from different GAN training paradigms. On
the left, results for the non-saturating GAN are shown, in the middle results from
the least-squares GAN and on the right samples from a WGAN that was trained
with Gradient Penalty. For all models, mode collapse is visible, as the samples are
concentrated on certain modes of the distribution..
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Figure 4.9: A NF learns the unknown distribution of the data x to a standard Gaus-
sian distribution of the corresponding latent variables z. The mapping functions of
the NF are constructed such that they are invertible. Samples from the approximated
data distribution can then be drawn by sampling the standard Gaussian distribution
and applying the inverted transformations.

4.4 Discrete Normalising Flows

Although the concept of discrete Normalising Flows23 (NFs) been previously used in
a similar framework before in Refs. [129, 130], NFs have gained popularity mainly
through the works of Rezende et al. [131] and Dinh et al. [132]. Typically, NFs are
defined as a series of invertible and differentiable transformations to transform a
simple probability distribution, e.g. a standard Gaussian, into the complex, unknown
data distribution. The change of variables theorem is then used to compute the
probability of the data, allowing the NNs hidden in the transformation functions to be
trained. To serve as generative models, the invertibility property of NFs is exploited.
New samples can be drawn from the model distribution of the data by sampling
first from the base distribution and then applying the inverse transformations. An
illustration of the training paradigm is shown in Fig. 4.9. Due to the bijectivity
requirement, x and z are required to have the same dimension.
A more precise mathematical formulation is given in the following: Let X,Z ∈ Rn

be two random variables. The goal is to find invertible and differentiable transforma-
tions f that map the known base distribution pZ(z) to the unknown training data
distribution pX(x). To achieve this, the change of variables formula for probability
distributions given in Equation 4.19 provides access to the density of the unknown

22Even when evidence for the gluon in form of a 3-pronged jet was found in 1979 [128] at PETRA,
it was clear that a single event was not enough to claim discovery.

23For notational convenience the discrete is omitted in the following.
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data distribution:
pX(x) = pZ(f−1

θ (x))
∣∣∣det Df−1

θ (x))
∣∣∣ , (4.19)

The functions f contain NNs, and their parameters θ are optimised by maximising
the likelihood of the training data:

max
θ

L(θ|X) = max
θ

∏
x∈X

p(x|θ) (4.20)

In practice, the negative logarithm of the likelihood is minimised for computational
reasons24. The loss function estimated over a batch of M samples is given by25:

LnLL(θ) = −
M∑
i=1

log pX(x(i)|θ) = −
M∑
i=1

log pZ(f−1
θ (x(i)|θ)) + log

∣∣∣det Df−1
θ (x(i)|θ)

∣∣∣ ,
(4.21)

Note that direct maximisation of the likelihood in the input space is not possible,
as there is no access to the data distribution pX(x) in the input space.
The functions attain their invertibility by being element-wise parametrised transfor-
mations, for which the inverse is analytically available. For the loss in Equation 4.21
to be tractable, the determinant of the Jacobian needs to be efficiently calculable.
In general, the calculation of the determinant of a D × D matrix requires O(D3)
computations. However, for triangular matrices, this is significantly faster, since the
determinant is the product of its diagonal elements. Therefore, NFs usually rely on
transformations that have a triangular Jacobian, which are further divided into two
classes:

1. Autoregressive transformation-based model [133, 134]; the transformation
of variable zk = f−1(xk|xk−1, ...x1) is only dependent on previous features
xk−1, xk−2, .., x1, for a chosen order of features. Autoregressive NFs are D times
slower to evaluate in one direction26, where D is the dimension of x. This
is because the NNs in the transformations are always evaluated in the same

24As every term in the product of the maximum likelihood is small, and the multiplication of
many small terms reaches the floating-point precision of the machine.

25For simplicity, only one function to transform the data is used, but for multiple transformations,
the individual terms can be summed to obtain the loss of the composite transformation.

26Note, that the direction which is quick to evaluate can be chosen.
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direction. Thus, when the reverse transformation xk = f(zk|x1, ..., xk−1) is
applied variables x1, ..., xk−1 need to be available, hence for the other direction
in this case f needs to be evaluated D times. This approach is motivated by the
decomposition of a joint distribution p(x1, ..., xD) into conditional univariate
distributions:

p(x1, ..., xD) = p(x1)
D∏
i=2

p(xi|x1, ..., xi−1). (4.22)

2. Coupling layer-based models [135, 136, 137]; only half of the variables are
transformed at a time, leading to an NF that transforms with the same number
of function evaluations in both directions.

The interested reader can consult the comprehensive reviews about NFs in Refs. [138,
139] for further information. In this thesis, coupling layer-based NFs are used, and
thus, they are discussed in the following in more detail.

4.4.1 Normalising Flows with Coupling Layers

To summarise, the NFs must meet the following requirements, in descending order of
difficulty:

1. Invertibility,

2. tractable Jacobian determinant, especially beneficial if it is easy to calculate,

3. and differentiability.

Coupling layers solve the first and most difficult requirement by construction. This
is best understood with the illustration given in Fig. 4.10. During the reverse
transformation (from left to right), the input data X is split along its feature
dimension into two disjoint sets A and B. The split is chosen randomly when the
NF is initialised but remains fixed afterwards. The first set is mapped to itself via
the identity function. The second set is element-wise transformed with an invertible
parameterised function, which gets its parameters for the transformation θA from
an NN. The variables in the latent space are denoted by zi. To invert the coupling
layer (from right to left), the same split is applied to zi to obtain the sets A and
B′. Since A has been transformed only by the identity, its inverse is trivial. Then
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the parameters θA can be calculated again by passing the input through the NN.
With their knowledge, the analytical transformation can be inverted and applied to
B′. For illustration, the invertible transformations are connected by double-sided
arrows. From this construction, it can also be seen that the non-trivial part of the
Jacobian of this transformation (the Jacobian for A is unity) is not dependent on
other elements from B, such that a triangular Jacobi matrix is obtained for which
the determinant is the product of its diagonal. These coupling layers are chained
together to obtain a more expressive transformation, which is necessary. Otherwise,
when using only one coupling layer, half of the variables are not transformed at all.

 

Figure 4.10: Schematic of a coupling layer, explained in the paragraph above.

An illustrative example is affine coupling layers [136], for which the transformation
fθ is given as27:

fθ(x) =

x
A if xi ∈ xA

xB ⊙ s
θ(xA) + t

θ(xA) else
(4.23)

To see why this construction is invertible, consider the inverse direction: starting
from z the same split is applied, and xA is obtained via identity. Then, sθ, tθ are
obtained by evaluating the NN on xA . Finally, zB is found by subtracting tθ and
dividing by sθ. The only condition here is that tθ must be non-zero, which is satisfied
by exponentiation. The determinant for the transformation is simply the product of

27Note the slight misuse of notation; xi ∈ x
A is a condition whether feature xi is part of the

split xA
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the diagonal of the Jacobian, as shown in Equation 4.24:

Df =
 I 0
∂zD/2:D
∂x1:D/2

diag(sθ(x1:D/2))

⇒ det|Df | =
D/2∏
i=1

sθ(x1:D/2)i (4.24)

4.4.2 Monotonic Rational Quadratic Spline Coupling Layers

The affine transformation is illustrative, but in this thesis, more expressive coupling
transformations called piecewise invertible Rational Quadratic Splines (RQS) [140]
proved to be performing best. These coupling layers are conveniently implemented
in nflows [141], a PyTorch framework for NFs. The RQS is defined on an interval
[−B,B], and as the identity function outside this interval. They contain K different
rational-quadratic functions in K bins, of which the boundaries are given by K + 1
knots

{(
x(k), y(k)

)}K
k=0

. The knots are constrained to increase monotonically and each
is paired with a derivative δk, which is constrained to be positive. The derivatives at
the first and last knot are an exception and are set to δ0 = δK = 1 to match the linear
extrapolation. This means that the RQS coupling layers have 3k − 1 parameters per
input dimension, which is significantly larger than the 2 parameters per dimension
of the affine NFs. However, this only affects the dimension of the last layer of the
parameter NNs, and since most of the weights come from the hidden layers, this is
not a major issue. Figure 4.11 from Ref. [140] shows an RQS and its derivative. Since
Equation 4.19 shows that the derivative of the distribution has a direct contribution
to the expressiveness of the mapping, this highlights the expressiveness of the RQS.
A detailed construction of these transformations is given in Ref. [140].

4.4.3 Conditioning for Normalising Flows

Conditional generation refers to the task of drawing samples from the conditional
distribution pdata(x|c), where c is a certain condition, e.g. c = cat, where the training
data distribution p(x) is over images of animals, so a sample of p(x|c) is an image of a
cat. For coupling layers, conditioning is implemented as illustrated by the red dashed
lines in Fig. 4.10. The only difference is that the NN predicting the parameters θA of
the invertible transformation f has an additional arbitrary input c ∈ Rk. This input
can increase the expressivity of the transformation but breaks the full invertibility of
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Figure 4.11: Illustration motivating the expressivity of RQS. (left) A Monotonic
RQS with K = 10 bins (equivalent to 11 Knots) and linear tails outside the [B,−B]
interval. (right) The derivative of the RQS. Together with Equation 4.19 this nicely
illustrates the multimodality of the RQS transformation, as the derivative appears
in the equation defining the transformation of the density of the random variable.
Both figures are taken from Ref. [140].

the NF since the condition needs to be supplied also in the inverted direction. In the
nflows framework, conditioning is implemented by mapping it to the same hidden
dimension as the A split and then a Gated Linear Unit [142] is used to inject the
condition in a residual connection28. This is formalised as follows:

x = x+ Block(x, c)
Block(x, c) = W2(σ2(W1(σ1(x))))⊙ σS(Wcc),

where σS is a Sigmoid activation, σ1, σ2 are arbitrary activations, W1,2,c are weight
matrices and ⊙ is an element-wise multiplication.

4.4.4 Two Moons Dataset

Here, the performance of the affine and RQS coupling NFs is compared on the Two
Moons dataset. In Fig. 4.13, samples from the RQS and affine NF are compared
together with their training loss. For this dataset, NFs with RQS coupling layers

28This is mentioned here because, as will be shown in Section 5.1 this conditioning is quite
effective.
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Figure 4.12: Schematic for conditioned coupling layers. The difference to the standard
coupling layers is highlighted in red.

perform significantly better than affine coupling layer-based ones29. This difference
in performance was also seen in other problems studied during the work of this thesis,
so in the following, all discrete NF results are from RQS NFs unless stated otherwise.

(a) Affine (b) RQS

Figure 4.13: Comparison of Affine and RQS Flows. (left) Samples from the affine NF,
there are artefacts visible where the distribution is not correctly modelled. (right)
Samples drawn from the RQS NF, here the samples are nearly indistinguishable from
samples from the underlying distribution.

In Fig. 4.14 more results of the RQS-based NF are shown. A benefit of NFs is that
they provide access to the probability density function, which the model is sampling.

29Note that this cannot be due to overfitting, as new training samples are generated for each
training step.
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This is visualised in Fig. 4.14a, which illustrates the outstanding performance of the
NF. Since there is no direct access to the probability density function of the data,
it cannot be compared, but judging by eye, it seems excellent. In Fig. 4.14b the
logarithm of the probability density function is visualised, which shows that the NF
is not perfectly modelling the density where it has not seen data, but this is to be
expected. Figure 4.15 shows a histogram of the latent representation of the input,
red represents the image of the upper moon and blue represents the image of the
lower moon when the NF is evaluated in the inverse direction. The figure indicates
that the NF can map the two crescents to non-overlapping regions, which the VAE
discussed earlier was unable to do. If the encoding dimension for a VAE is 2, the
goals of the NF and the VAE are indistinguishable on the Two Moons dataset. Both
models try to transform the data distribution to a standard Gaussian distribution,
but there are two major differences between VAEs and NFs:

1. For the NF, the “decoder” is by design the exact inverse of the “encoder”,
which maps to the latent space. This makes the optimisation significantly
easier.

2. For the VAE, the loss function which should decorrelate the two latent di-
mensions is the KL divergence and only acts as a regulariser. For the NF,
maximising the Jacobi determinant of the transformation acts as a more intu-
itive objective. The determinant describes how a unit of space stretches, or
respectively, is compressed. Note that the largest growth is attained when the
features are orthogonal to each other and hence are not correlated.

The results on the Two Moons dataset might suggest that RQS NFs are all that
are needed to model and sample unknown probability distributions. However, in
Section 5.4.1 it is shown that the performance deteriorates quickly when it comes to
higher dimensional distributions.

Conditioning on the Two Moons Dataset

NFs are constructed to be differentiable, which implies that the connectivity of the
image will be equal to the support of the base density. Thus, since the support of
a Gaussian distribution only contains one connected area, the transformed density,
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(a) pX(x) (b) pX(x) on log scale

Figure 4.14: Visualisation of the NF probability density. (left) Probability density
obtained from the NFs with RQS layers. (right) The connection between the two
crescents is only visible on a log scale of the density (nLLmin = 0.0001).

Figure 4.15: Visualisation of the input distribution in the latent space pZ(f−1(x))
for the Two Moons dataset. The red points correspond to the upper moon, while
the blue points correspond to the lower moon. The model encodes the two crescents
in two regions with almost no overlap.

referred to as push-forward, also contains one connected area. This is visualised
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in Fig. 4.14b and becomes only visible if the density is visualised on a log scale.
Introducing conditioning resolves this. Since the condition ([0, 1]) is not connected,
the image can also be disconnected. The condition then fully determines on which
moon a corresponding z in the latent space lies, implying that the latent space is fully
decorrelated from the choice of the moon as shown. This feature of conditioned NFs
can also be used to decorrelate features, which has been proposed by Klein et al. [143].
Since the latent space is not required to be partitioned any more as previously shown
in Fig. 4.15, the image of the whole latent space can be transformed to on one of the
crescents by choosing the respective condition. This is illustrated in Fig. 4.16, which
shows the latent representation of both crescents, the conditional probability density
function of the lower moon together with samples from the conditioned NF.

(a) pZ(f−1(x)) (b) pX(x|c) (c) Sample from pX(x|c)

Figure 4.16: Results from conditioned Normalising Flow. (left) The latent distri-
butions of the upper moon, shown in red, and the lower moon are shown, in blue,
reveal that the model is not required to map the two crescents to disjoint regions.
(middle) Probability density obtained from the conditional NF when the condition
is set as the lower moon. (right) Sample drawn from the model if the condition is
chosen as the lower crescent.
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4.5 Continuous Normalising Flows

Although physicists generally like to discretise things, Continuous Normalising Flows
(CNFs), proposed by Chen et al. [144] in 2018, are an interesting counterexample30.
For CNFs, the infinitesimal dynamics of the probability density are of interest. Thus,
now the CNF ϕt is dependent on time, denoted in its index. The dynamics are
described with an Ordinary Differential Equation (ODE):

∂ϕt(x)
∂t

= ϕ̇t = ut(ϕt(x)) (4.25)

ϕt=0(x) = x, (4.26)

where ut is a time-dependent vector field. The CNF ϕ describes the change of the
data distribution as:

∂pt(ϕt(x))
∂t

= −div(ut(ϕt(x))), (4.27)

where pt is the probability path, a time-dependent probability distribution:
∫
pt(x)dx = 1 ∀t ∈ [0, 1] (4.28)

The CNF reshapes a simple distribution p = pt=0, e.g. a standard Gaussian, to the
data distribution q = pt=1. However, this is done continuously and as such is defined
for every time t ∈ [0, 1] as:

pt(x) = [ϕt]∗p0(x) = p0(ϕ−1
t (x)) det[∇xϕ

−1
t (x)] (4.29)

To train the CNF, the same Maximum Likelihood-based training as for NFs is used.
But for this, access to the density of the data distribution pt=1(x) is needed:

log p1(x) = log p0(x)−
∫ 1

0
∇ · ut(ϕt(x))dt (4.30)

In practice, an ODE solver is used to compute this integral, which makes the training
of CNFs much slower than other models.

30Note, that CNFs are in practice discretised as well, since the Ordinary Differential Equation
that is being solved is discretised.
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Solving Ordinary Differential Equations

In this thesis, the Midpoint Euler method, which is also one of the simplest approaches,
proved to perform best. It starts at the boundary condition (x0,y0) and iteratively
solves the ODE, as described in Alg. 2. The accuracy of this solver is proportional
to O(h2), where h is the step size.

Algorithm 2 Midpoint Method for Solving ODEs
Require: Initial value (x0, y0), step size h, function f(x, y) representing the deriva-

tive y′, and number of steps N .
1: x← x0
2: y ← y0
3: for i = 1 to N do
4: k1 ← f(x, y) ▷ Slope at the start of the interval
5: ymid ← y + h

2 · k1 ▷ Estimate the value at the midpoint
6: k2 ← f

(
x+ h

2 , ymid

)
▷ Slope at the midpoint

7: y ← y + h · k2 ▷ Update the value of y using the midpoint slope
8: x← x+ h ▷ Move to the next point
9: end for

4.5.1 Two Moons Dataset

The results obtained from the continuous NF are shown in Fig. 4.17. Since the model
trains significantly slower compared to previous models, it was ruled out without
further investigations. However, with a modification to the training objective, CNFs
become a viable option as discussed later in Sec. 4.7.
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(a) pZ(f−1(z)) (b) Latent Codes (c) Sample from pZ(f−1(z))

Figure 4.17: (left) Probability density obtained from a CNF. (middle) Input encoded
in latent space. (right) Sample drawn from CNF.

4.6 Diffusion Models

Although, diffusion models are not employed for any projects mentioned in the
following, this thesis would be incomplete if this class of generative models was not
briefly discussed. However, only denoising diffusion probabilistic models (DDPMs)
are discussed, and score-based generative models are left out. Diffusion models [145]
gained a lot of attention in the 2020s, as they were capable of beating GANs on
image synthesis [146] when considering sample quality.
These models work by adding iteratively a small amount of noise to a data sample,
and an NN is then trained to revert these noise additions. Noise is added until the
transformed data becomes indistinguishable from pure noise31. To draw samples from
the model, standard Gaussian noise is sampled and the NN is iteratively applied to
denoise the sample. Note that this iterative approach, makes sampling significantly
slower, as typically the NN is evaluated up to 200× in this thesis.
More formally, the forward process is described as a Markov Chain:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (4.31)

31Note that a sample itself cannot become noise, it is actually the data distribution that becomes
indistinguishable from a standard Gaussian distribution.
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where {βt ∈ (0, 1)}Tt=1 defines the variance schedule over T time steps. The goal of
training the model is to approximate the reverse process pθ(xt−1|xt), which for small
βt is also Gaussian. However, it is not possible to just apply Bayes theorem to obtain
this posterior32. Thus, an NN should learn to approximate:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4.32)

To reverse the noising process, the joint distribution of the backward Markov Chain
pθ(x0, · · · ,xT ) should match the joint distribution of the forward Markov Chain
q(x0, · · · ,xT ). The ELBO, which is maximised during training is given as33:

E[− log pθ(x0)] ≤ Eq(x0,x1,...,xT )

[
− log pθ(xT )−

T∑
t=1

log pθ(xt−1|xt)
q(xt|xt−1)

]
. (4.33)

The ELBO can be rewritten in terms of KL-Divergences as:

Eq

DKL(q(xT |x0)||p(xT ))︸ ︷︷ ︸
L0

+
T∑
t=1

DKL(q(xt−1|x0,xT )||pθ(xt−1|xt))︸ ︷︷ ︸
Lt

− log pθ(x0|x1)︸ ︷︷ ︸
LT

 .
The LT term is not dependent on the NN parameter and hence can be left out during
the optimisation. The authors of Ref. [145] found that omitting the L0 term benefits
the optimisation. Thus, the only terms that remain are the KL-divergences between
Gaussian distributions, for which an analytical form is available under an assumption.
If the variance of the reverse distribution is assumed to be fixed, minimising this
KL-divergence and as such, maximising the ELBO can be done by minimising the
distance between the means of the two Gaussian distributions q and pθ. However,
the authors also found that predicting the noise, instead of the means leads to better

32As for the VAE, the denominator is not tractable because it would require the whole dataset
for every timestep.

33respectively usually the negative ELBO is minimized for computational reasons as before.
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results34. Thus, the loss is given as:

Lθ := Et∼U(0,1),x0∼q(x0,ϵ∼N (0,1)

||ϵ− ϵθ(√ᾱtx0 +
√

1− ᾱtϵ︸ ︷︷ ︸
xt

, t)||2
 , (4.34)

where ϵ ∼ N (0, 1), ϵθ is the output of the NN, αt = 1 − βt and ᾱt = ∏t
s=0 1 − βs

is defined by the chosen variance schedule, which defines how the noise is added.
Usually, the variance of the noise is increased monotonically: β1 < β2 < .. < βT .
Here, it is worth noting that no constraints are required for the NN, except that the
output dimension of the NN needs to match the input dimension of the NN, similar
to the NF shown in Fig. 4.9. To draw new samples, the algorithm given in Alg. 3 is
used, where σt are time-dependent constants defined by the variance schedule.

Algorithm 3 Sampling the DDPM
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1 else z = 0
4: xt−1 = 1√

αt

(
xt − 1−αt√

1−αt
ϵθ(xt, t)

)
+ σtz

5: end for
6: return x0

4.6.1 Two Moons Dataset

The left of Fig. 4.18 depicts samples drawn from the trained model. Similar to the
samples from the NFs, the samples are nearly indistinguishable from the real samples,
although for this model, there are some samples between the two crescents. The
right of Fig. 4.18 shows the noised data distribution. In red, points corresponding
to the upper moon are shown, in blue the points corresponding to the lower moon.
This illustrates that for a DDPM the latent space, unlike previous models, does not
contain any encoding of the input. Figure 4.19a depicts the reverse diffusion chain pθ
at different time steps t = [0, 20, 40, 60, 80, 100]. This time evolution shows that the

34The informed reader might notice here that the part that the losses at different time steps
have a different weight which was not denoted in the loss formulation. However, Ho et al. also
found that ignoring these terms leads to better results.
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model starts forming the two crescents after 80 steps, before the latent distribution
is indistinguishable from noise.

(a) Diffused inputs (b) Samples

Figure 4.18: Results from the DDPM. (left) The diffused inputs; blue points represent
the lower crescent, red points the upper crescent. (right) Samples drawn from the
trained diffusion model.

4.7 CNFs & Flow Matching

As described in Section 4.5, due to the inefficient simulation-based training requiring
the numerical solution of an ODE, CNFs were not a viable option. Lipman et al. [147]
addressed this inefficiency by introducing a novel method for the training of CNFs,
which they refer to as Flow Matching. They propose to train a NN vθt to learn to
approximate the vector field ut, given before35 in Eq. 4.25. To train this NN, an
MSE is used:

LFM = Et,pt(x)||vt(x)− ut(x)||2. (4.35)

But there is no direct access to pt and ut. Thus, the conditional probability path
pt(x|x1) is introduced, which is conditioned on a particular data sample x1, and

35Note that in the following the superscript for the parameter θ will be omitted, however vt

always refers to the NN.
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fulfils:

pt=0(x|x1) = p(x) (4.36)
pt=1(x|x1) = N (0, σminI), σmin << 1 (4.37)

Thus, at the start the conditional probability path is the base distribution p and at
t = 1 it is a Gaussian concentrated around x1. The conditional probability path is
then marginalised over the distribution of all samples q(x1):

pt(x) =
∫
pt(x|x1)q(x1)dx1, (4.38)

which closely approximates that data distribution q at t = 1. Corresponding to this,
a marginal vector field is defined, which generates the marginal probability path
pt(x):

ut(x) =
∫
ut(x|x1)

pt(x|x1)q(x1)
pt(x) dx1, (4.39)

where the conditional vector field ut(·|x1) corresponds to the conditional probability
path pt(·|x1). Now, the unknown and intractable marginal vector field ut can be
broken down into simpler conditional vector fields ut(x|x1) that depend solely on a
single data sample.
However, the integrals in equation 4.38 and 4.39 are still intractable due to the
integral over dx1 and hence there is no access to ut to train the NN vt. Luckily, the
Conditional Flow Matching objective:

LCFM(θ) = Et,q(x1),pt(x|x1)||vt(x)− ut(x|x1)||2, (4.40)

has the same gradients as LFM given in Eq. 4.35. This means that the CNF can be
trained to generate the marginal probability path pt without having access to either
the marginal probability path or the marginal vector field.
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4.7.1 Conditional Vector Field & Probability Path

The conditional probability path is chosen to be Gaussian:

pt(x|x1) = N (x|µt(x1), σt(x1)2I), (4.41)

where µt=0(x1) = 0 and σt=0(x1) = 1, meaning that all conditional probability
paths converge to the same standard Gaussian distribution at t = 0. As mentioned
previously, at t = 1 the conditional probability path is chosen to be a Gaussian
concentrated around x1 with a tiny variance σmin:

p1(x|x1) = N(x|x1, σ
2
minI). (4.42)

Next, the functional form of the CNF is chosen as:

ϕt(x) = σt(x1)x+ µt(x1), (4.43)

and its corresponding conditional vector field w(x) = ut(x|x1) is derived as follows
starting from Eq. 4.25:

ϕ̇t = wt(ϕt(x)) where wt(x) = ut(x|x1) (4.44)
ϕ̇t(ϕ−1

t (y)) = wt(y) ϕt invertible, x = ϕ−1
t (y) (4.45)

ϕ−1
t (y) = y − µt(x1)

σt(x1)
inverting y = σt(x)x+ µt(x1) (4.46)

ϕ̇t(x) = σ̇t(x1)x+ µ̇t(x1) time derivative of Eq. 4.43 (4.47)

wt(y) = σ̇t(x1)
σt(x1)

(y − µt(x1)) + µ̇t(x1) 4.46 and 4.47 into 4.45. (4.48)

Finally, a choice for the functions µt(x1) and σt(x1) needs to be made. These func-
tions can be chosen such that the deterministic probability flows from diffusion [148]
are obtained36, highlighting that CNFs can be considered a generalisation of diffusion
models. But the benefit of the CFM framework is that these functions can be chosen

36Note, that for this equivalence the variance exploding path, which defines how the noise is
added, was chosen. The choice of probability was skipped in the previous section about DDPMs.
The interested reader can consult [145, 148, 147] for further information on the effect of different
probability paths.
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as:
µt(x) = tx1, and σt(x) = 1− (1− σmin)t, (4.49)

where the mean and the standard deviation change linearly in time. The resulting
vector field is then given by 4.48:

ut(x|x1) = x1 − (1− σmin)x
1− (1− σmin)t . (4.50)

From this, the resulting CNF can be derived with Eq. 4.43 as:

ϕt(x) = (1− (1− σmin)t)x+ tx1 (4.51)

This CNF is, in fact, the Optimal Transport [149] (OT) displacement map between
the two Gaussian p0(x|x1) = N (0, 1) and p1(x|x1) = N (x1, σ

2
min). The advantage

of choosing these OT paths over the diffusion paths is that they are straight and not
curved as the latter. The curvature matters to the ODE solvers as more steps are
needed to approximate the solution of the ODE well enough, signifying that the OT
probability paths can lead to a more efficient generation.

4.7.2 Extending to Different Sources

Tong et al. [150] provide a framework such that the source distribution can be
arbitrary and, more importantly, does not need to be tractable. This is done by the
following modification, where they identify the former condition x1 as an independent
pair z = (x0,x1). They assume once again that the conditionals are Gaussian flows
between x0 and x1, with standard deviation σmin:

pt(x|z) = N (x|tx1 + (1− t)x0, σ
2
min) where q(z) = q(x0)q(x1) (4.52)

ut(x|z) = x1 − x0 this follows from 4.48. (4.53)

Note, that now the conditional probability path at t = 0 is not a standard Gaussian
any more, but a Gaussian with a small variance around x0. Also note that the vector
field now is independent of the time. To be more precise, insert µt = tx1 + (1− t)x0

and σt = σmin into 4.48 to obtain the last equality.
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4.7.3 Optimal Transport CFM

In the same publication [150], Tong et al. also emphasize that although the con-
ditional probability path pt(x|x1) is an optimal transport path, the marginal
probability path is not in general an OT path.

To resolve this, the condition z is not sampled independently from q(z) =
q(x0)q(x1) but from the optimal transport plan π(x0,x1). For this choice, the
marginal path pt and vector field ut solve the optimal transport problem. The
construction of this OT transport plan is out of the scope of this thesis, the interested
reader should consult Ref. [151].

4.7.4 Two Moons Dataset

On the Two Moons dataset, the differences of DDPMs, and CNFs trained with Flow
Matching and OT Flow Matching, can be nicely illustrated. The ODE is solved
with 100 time steps. Note that similarly to the DDPM, this iterative sampling
approach makes CNF slow at generating data37. In Fig. 4.19, the time evolution of
the base density is shown at times t = k × 20, k ∈ [0, 5]. For the Diffusion model,
the distribution of the samples seems indistinguishable from a standard Gaussian.
Similarly, for the CNF trained with CFM model, not a big difference between the
first time steps can be recognized. There is a slight difference visible between these
two models, as there seems to be more structure in step 80 of the CNF trained with
CFM. But, the biggest contrast can be seen for the OT-CFM. Already from the
20th time step, the samples are already split into two separate sections. This hints
at the interpolating capability of CNFs trained with OT-CFM that will be further
investigated in Chapter 7.

37Or in the context of the DDPM: the diffusion process has 100 noising steps.
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(a) Diffusion Model DDPM

(b) Conditional Flow Matching

(c) Optimal Transport Conditional Flow Matching

Figure 4.19: Time evolution of samples from the diffusion model, respective continuous
normalising flow during the solution of the ODE over 100 steps. Going from left to
right, the sample state at t = k × 20, k ∈ [0, 5] is shown.

4.8 Evaluation Metrics

A major problem in generative modelling is the absence of a general metric to evaluate
the performance of the generative model. Here, some options are briefly discussed.

4.8.1 Wasserstein Distances

The Wasserstein distance is a promising candidate to quantify the distance between
two distributions. Given two probability densities pX , pY , the p-Wasserstein distance
is defined as:

Wp(pX , pY ) =
(

inf
π∈Π

∫
Rd×Rd

|x− y|pdπ(x, y)
) 1

p

, (4.54)

where Π denotes the set of all joint distributions on Rd × Rd whose marginals are
pX and pY . Unfortunately, it is not tractable due to the infimum over Π. The
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WGAN introduced in Section 4.3.1 estimates the Wasserstein distance by utilising
an NN to distinguish the two distributions. However, enforcing the classifier to be
a Lipschitz-continuous function is not straightforward. Furthermore, it is only a
precise estimate of the Wasserstein distance if the classifier has enough capacity
and is trained to optimality. There are two special cases for the tractability of the
Wasserstein distance:

1. For distributions over a single dimension, the W1 distance between pX and pY
is given by:

W1(pX , pY ) =
∫ ∞

−∞
|FX(x)− FY (x)|dx, (4.55)

where FX and FY are the cumulative distributions of pX and pY , which are
in practice approximated by the empirical cumulative distribution functions.
This is especially useful if there are summary statistics available, that allow
testing whether the model generates correlations between the features correctly.
However, it should still be noted that information is lost if a high-dimensional
distribution is marginalised to a single dimension.

2. The Fréchet Inception Distance [73] (FID) gained popularity as an evaluation
metric in image generation, and it is currently used as a standard metric to
quantify the performance of image generation models. The FID is motivated
by the tractability of the Wasserstein-2-distance W2 if the distributions under
consideration are Gaussian:

W 2
2 (N1,N2) = ∥µ1 − µ2∥

2
2 + Tr(Σ1 + Σ2 − 2

√
Σ1Σ2), (4.56)

where µi,Σi are the means and covariance matrices of the Gaussian distributions.
The mean µ and variance Σ of the latent distribution inside a NN define a
multivariate Gaussian distribution. Thus, the Wasserstein distance can be
estimated by fitting a multivariate Gaussian to the features of a final layer of a
pre-trained image classifier [152] for real and generated data38. Note, that this
does not influence the training of the generative model at all and only serves

38The classifier which is used is called Inception-v3, hence the name of the metric. Furthermore,
note that this classifier is not trained to distinguish synthetic and real images, but to infer information
about the objects in the image.



4.8. Evaluation Metrics 111

as an evaluation metric.
Chong et al. [153] show that the FID is positively biased for a finite sample
size N . They find that the bias is in a linear relationship with 1

N
and thus

propose the FGD∞ metric, which is computed by linearly fitting the FID as a
function of 1

N
. The value of a FID for an infinite sample size is given by the

intercept of the y-axis and the linear regression fit.

4.8.2 Classifier-based Metrics

NN-based classifiers can also be used to quantify the performance of generative
models. A straightforward approach is to use a binary classifier. The classifier is
trained to distinguish real and synthetic samples and then evaluated by considering
its Receiver Operator Curve (ROC) [154]. The ROC shows the dependence of the
true positive rate vs the false positive rate. For a perfect classifier, the ROC rises
vertically to the top-left corner. In contrast, a classifier that is random guessing is
represented by the diagonal. The Area-Under-Curve (AUC), which is the integral of
the ROC, can then be used to quantify the performance of a model. This method
will be used in Chapter 6 and Chapter 7.
Another option to compare different models is proposed in Ref. [155]. First, a
multiclass classifier, i.e. a classifier that is trained to distinguish multiple different
classes, is trained to distinguish data from multiple generative models.
After training, the multiclass classifier is evaluated on ground truth data. This
assumes that the classifier will assign the highest output to the one model, which
produces the most realistic data. Thus, the best model is then determined by the
model to which the multiclass classifier assigns the highest output ŷ on average over
all samples. This method is applied to the models introduced in this chapter and
will be used in Chapter 5.

Two Moons Dataset

Figure 4.20 visualises the distribution of the different models that are compared in the
multiclass classifier test. Note that evaluation with the multiclass classifier on these
models is not a prime example, since the support of the learned density of all models
is similar. This makes it difficult to obtain an accurate multiclass classifier, which



112 Chapter 4. Generative Modelling

impacts the quality of the evaluation significantly. The multiclass classifier is trained
on 100′000 samples of every model. On the left of Fig 4.21 the confusion matrix of the
multiclass classifier is shown and highlights that the multiclass classifier can recognize
some models to a certain extent39. Each row of the confusion matrix represents the
ground truth class, each column represents the predicted class. The diagonal gives
the correctly predicted classes, and all off-diagonal values are the misclassifications.
On the right of Fig. 4.21, the evaluation of the multiclass classifier on real data is
shown. Although the multiclass classifier can identify the worse-performing models,
it is unable to recognise the mode-collapse present in GANs. In Appendix A, the
same test is evaluated on only three classes to rule out that the multiclass classifier
is unable to recognise mode collapse due to the many classes. An issue of the latter
method is that there are generally no guarantees for the performance of an NN-based
model on data from a distribution unseen during training.

39For a random guessing multiclass classifier, the prediction on all classes would be equally often,
since the sample size is the same for every model.
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VAE AE NSGAN

LSGAN WGAN RQS

CFM OT-CFM DDPM

Figure 4.20: Comparison of samples drawn from all models discussed in this chapter.
These models are then further used to train a multiclass classifier to distinguish them.
From visual evaluation, the RQS model is expected to perform best.
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Figure 4.21: Results of the multiclass classifier test. (left) Confusion matrix of
the classifier, showing that it can distinguish between some classes. (right) The
average probability to come from the different models under test, which the multiclass
classifier assigns to real data.



CHAPTER5
Generative Modelling on Point
Clouds I: JetNet

This chapter describes the studies that were conducted on the JetNet datasets during
this thesis in chronological order. It starts with the introduction of the JetNet [156]
datasets, which had a significant impact on this thesis. They allowed the incremental
growth of the models and their adaptation to increasingly challenging problems. I
was fortunate to start investigating deep-generative modelling of HEP data with
NFs. While their workings are not as intuitively understandable as GANs or VAEs,
their stability offers a strong basis for further investigations.
Since the modelling of variable-sized data is not straightforward, two methods used
in this thesis are briefly discussed in Section 5.2. In Section 5.3, the evaluation
methods, which are employed to compare and quantify the performance of different
generative models, are briefly introduced.
Then, in Section 5.4 follows a larger part containing all studies that were conducted on
the JetNet30 datasets. Mass conditioned and constrained NFs were explored in the
first project of this thesis [157]. In the following, permutation equivariant extensions
of NFs are briefly discussed and the encountered failure modes are highlighted.
Finally, the NF-based model is fused with a GAN1, which led to the second major
result [158]. In Section 5.4.5, the results from the different models are quantitatively
compared on the JetNet30 datasets, together with, the at the time of study, State-

1At this point I was unaware of the mode collapse problems highlighted in the previous chapter.
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of-the-Art (SotA) Message Passing GAN (MPGAN).
The natural next step to move to the higher-dimensional JetNet150 datasets is
discussed in Section 5.5. These datasets include up to five times as many particles,
causing significant difficulties for the previously used models, for which the memory
use and computational complexity scaled quadratically with the number of particles.
Eventually, the stability provided by the NF was abandoned in favour of a solely
GAN-based solution that employed the mean-field aggregation mechanism that scales
linearly with the number of particles. Together with some more minor improvements,
this led to the third major result [159]. The proposed model turned out to be a
versatile, as it is not only performing well on JetNet150, but also in calorimeter
simulation, which will be discussed in Chapter 6.
Finally, instead of a GAN, a CNF trained with CFM is used. It also relies on the
mean-field aggregation as the GAN, but further improves the results on all considered
metrics.

5.1 JetNet Datasets

A point cloud representation, i.e. an unordered set of points, is arguably the most
natural representation of a jet. In the context of the JetNet datasets, a point refers
to a final state particle. These two expressions will be used interchangeably in the
following. The JetNet datasets were first published by Kansal et al. [156] along with
metrics, which are further discussed in Section 5.3.1, to compare the performance of
different models. The authors compared their MPGAN, to different SotA generative
point cloud models. They demonstrated that none of the existing point-cloud-based
models were able to capture the complex correlation between the individual particles.
The JetNet datasets consist of five datasets of the decay of different partons produced
at leading order with MADGRAPH5_aMCATNLO 2.3.1 [160]. These partons have
a high transverse momentum of pT = 1 TeV with a spread of ∆pT

pT
= 0.01. The

parton-level objects are decayed and showered with PYTHIA 8.212 [161]. The
final-state particles obtained from PYTHIA are then clustered into jets using the
anti-kT algorithm with a distance parameter of R = 0.8.
The jet-initiating particle can be either a gluon, a light/top quark or a W/Z boson
and the number of jet constituents can be selected to be up to 150. However, models
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that explore these datasets are typically trained on the reduced datasets (JetNet30),
which contain up to 30 particles, or the full datasets, which contain up to 150 particles
per jet (JetNet150).
The final state particles comprising the jet are assumed to be massless, which is a
valid assumption given that the initiating parton has an energy of 1 TeV. Thus, the
particles are fully described by their 3-momenta or, equivalently, by their transverse
momentum pT, pseudorapidity η and azimuthal angle ϕ. The jets are centred in η, ϕ
and the coordinates of particle i in the jet are given relative to the jet axis2:

ηrel
i := ηparticle

i − ηjet, (5.1)
ϕrel
i := (ϕparticle

i − ϕjet) mod 2π, (5.2)
(5.3)

The transverse momentum of the particles is given relative to the jet momentum:

prel
T,i :=

pparticle
T,i

pjet
T

. (5.4)

The particles are ordered by decreasing relative transverse momentum prel
T,i.

An essential high-level feature for many physical analyses is the invariant mass mjet of
a jet, which contains important physical information about the parent particle. It is
a global variable that depends on the correlations between all individual constituents
of the jet. Therefore, it is an important statistic for evaluating the performance of
different models on these datasets. As it is a one-dimensional variable, the use of
the Wasserstein distance is particularly motivated to quantify the performance, as
discussed in Section 4.8.1. For the relative quantities given above in Eq. 5.1, the
relative invariant jet mass is defined as3:

(
mrel

)2
= m2

jet

p2
T,jet

=
(∑

i

Erel
i

)2

−
(∑

i

prel
i

)2

. (5.5)

2However, note that this centring is done on the PYTHIA level, where the true jet axis is
calculated from all final state particles. The jet axis that comes out of the anti-kT clustering only
considers 150 particles, and as such does not exactly overlap with the PYTHIA-level jet axis. This
means that adding up the ηrel of all particles in a jet does not result in exactly 0.

3In the following, the relative invariant jet mass is abbreviated as the mass.
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For brevity, the JetNet studies presented in this thesis, solely focus on the top
quark dataset [162]. This dataset is chosen due to the complex substructure of top
quark jets. The favoured decay t → bW leads to a 3-pronged jet, for which the
clustering can lead to artificial artefacts, as it can miss the decay products related to
the b quark in the clustering. This leads to a two-peaked mass distribution, that is
particularly difficult to model accurately.
Note that the results presented in this thesis are not identical to those in the
corresponding preprints [157, 158, 163, 159], since all models were combined in the
same framework and retrained from scratch to ensure a fair comparison.
Before training, the data is further pre-processed in two possible ways:

1. For the NF-based models, it proved to be beneficial to use a Box-Cox scal-
ing [81] for prel

T , since the prel
T distribution is strongly skewed and follows an

approximately exponential distribution. The coordinates ηrel, ϕrel are standard
scaled, i.e. the mean of the variable is subtracted and divided by its standard
deviation.

2. The GAN-based models performed worse when a Box-Cox scaling is used;
hence, standard scaling is used on ηrel, ϕrel, prel

T to preprocess the data.

Note that the parameters for these preprocessing transformations are calculated from
the set of all particles and all jets in the training set.

5.2 Modelling Variable Sized Data

Jets can have a variable number of constituents, which means that the generative
model also needs to output a variable number of particles. This is difficult to
implement for most generative models, since NNs are inherently based on matrix
multiplication, which expects a regular shaped input. In this thesis, two strategies
were used to address this.

1. Padding and flattening: to every point cloud 0s are added until they reach the
cardinality of the biggest point cloud. Then the input is reshaped from Rn×p×f

to Rn×(p·f), where n is the number of particles, p is the maximum number of
particles and f is the number of features per point. The latter step is referred
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to as flattening. However, the former step is problematic if the variance in the
number of constituents is high, as the added zeros consume a lot of memory
without adding any information. The flattening removes the particle structure
present in the input4.

2. Pointwise NNs and permutation equivariant aggregations: instead of flattening
the tensor, the NNs are designed to be evaluated on the points independently.
To include interactions, permutation equivariant aggregation operations are
used. Two possible candidates for this are:

(a) The DeepSets aggregation, discussed in Section 3.2.2,

(b) attention-based aggregations, discussed in Section 3.3.4.

A subtlety of this approach is that the input to the generative model must
already have the same cardinality as the desired output. Therefore, the number
of jet constituents must be provided implicitly by the dimension of the noise,
which is given as input to the generative model. Thus, the model does not
sample p(x) directly, but p(x|n) instead. To still sample p(x), first, the number
of constituents p(n) is sampled and then a sample of the conditional probability
density p(x|n) is drawn. Fortunately, sampling a one-dimensional distribution
is fairly simple, as discussed in the following.

5.2.1 Modelling the Number of Jet Constituents

One-dimensional probability densities can be sampled with the use of the Probability
Integral Transform. It states that if X is a continuous random variable with a
cumulative distribution function (CDF) FX , then the random variable Y = FX(X)
follows a uniform distribution on the interval [0, 1]. Since the CDF is a monotone
one-dimensional function, it is fit with a monotonically increasing Piecewise Cubic
Hermite Interpolating Polynomial [164] (PCHIP) provided by SciPy [165], which is
invertible since it is strictly monotone. To draw new samples from the one-dimensional
distribution p(n), samples from the uniform distribution are drawn and evaluated

4An intuitive illustration why this can make it more difficult is provided by images. Flattening
can also be done by concatenating all pixels from left to right, top to bottom. This results in a
representation of the image as a line instead of a rectangle, which loses all the spatial structure.
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with the inverted PCHIP. Note that this method is only usable if the random variable
is continuous, which is not the case for the number of jet constituents. This is
resolved by adding uniform noise U(0, 1) the number of jet constituents becomes
continuous.

Another approach, which is much easier to implement, was proposed in a later
publication by Buhmann et al. [96], where a Kernel Density Estimate (KDE) is fit
and sampled instead5. This approach is also adopted in the JetNet experiments
shown in this thesis. KDE is closely related to histograms, but instead of choosing a
fixed bin width and a step function to calculate the y value, in KDE non-negative
functions, referred to as kernels are used:

f̂(x) = 1
nh

n∑
i=1

K
(
x− xi
h

)
. (5.6)

The bandwidth h is a smoothing parameter that affects the width of the kernel.
The kernel is chosen as a Gaussian in this thesis, and the bandwidth is chosen with
Scott’s Rule [167] :

K(u) = 1√
2π
e− 1

2u
2
. (5.7)

Sampling from the KDE is straightforward; a sample used during the fit of the KDE
is randomly sampled and noise is drawn from the Kernel and added to the sample.
A comparison of samples from the KDE distribution to samples of the underlying
PYTHIA distribution is shown in Fig. 5.16.

5.3 Evaluation

Evaluating the performance of the generative models on this dataset is not as
straightforward as for the Two Moons dataset in Chapter 4, since it is not possible
to visualise a density over more than two dimensions. Still, the marginal histograms
over a single variable of PYTHIA data and data drawn from the generative model

5There is no single definite reference or paper from which the Kernel Density Estimation
algorithm can be cited. However, the interested reader should consult [166] for an in-depth
explanation of the algorithm.

6Note that to obtain the number of constituents for the JetNet30 dataset, the sampled number
is clamped at 30.
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Figure 5.1: Comparison of the KDE (red) and PYTHIA (blue) generated distribution
of the number of jet constituents n on the JetNet150 top quark dataset. The dashed
line marks the mean of the distribution, which is around sixty particles for the top
quark dataset.

are compared. Good candidates are histograms of the features (ηrel, ϕrel, prel
T ) of all

generated particles. As mentioned before, a more sensitive test is provided by the
distribution of the invariant jet mass, since the jet mass is a high-level summary
statistic that depends on all particles in the jet. Further visual tests are provided by
heatmaps of the correlation matrices between the particle features (ηrel, ϕrel, prel

T ) of
the prel

T sorted particles in a jet. In those plots, the x- and y-axes denote the index
of the ith hardest particle. The correlation coefficients are computed with the linear
Pearson correlation, which gives the covariance of two variables normalised by their
individual standard deviations.

5.3.1 Metrics

Judging the performance of the model based on plots is not only tedious when
conducting a hyperparameter scan, but also it is certainly not sufficient to judge
whether the joint distribution is modelled correctly. Thus, Kansal et al. [156] also
provide several metrics to quantify the performance of the generative models in the
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publication of the JetNet datasets. In a later publication [168], Kansal et al. further
discuss different metrics in-depth and conclude that a set of Wasserstein-1 distances
together with the Fréchet Particle Distance (FPD) and Kernel Physics Distance
(KPD) provides a comprehensive set of metrics for the analysis of the generated data.
The Wasserstein-1 variables are calculated on the following three sets of variables:

1. The particle features (ηrel, ϕrel, pT),

2. the invariant relative mass mrel,

3. the Energy Flow Polynomials [169] (EFPs), which comprise a discrete linear
basis for all infrared- and collinear-safe observables. EFPs are used to investigate
the jet substructure.

The FPD is inspired by the FGD∞ metric mentioned in 4.8.1 but adapted for HEP.
To obtain an approximatively Gaussian joint distribution for which the Wasserstein
distance can be calculated analytically, 36 EFPs (all EFPs of degree less than 5)
are computed for every jet. The KPD is the Maximum Mean Discrepancy [170]
calculated on the same EFPs with a polynomial kernel.
Other metrics have also been proposed by Buhmann et al. [171], where the use
of KL-divergences is proposed. The authors argue that the benefit of Wasserstein
distances is that they are bounded if the densities have non-overlapping support,
which should not matter for a well-trained generative model. The authors highlight a
failure mode of the Wasserstein metric and argue that for HEP, the compatibility of
the learned and real density is more important. Leigh et al. [172] proposed to measure
the Wasserstein-1 distance on additional jet substructure variables. Nevertheless,
since the metrics proposed by Kansal et al. are well established, the models in this
thesis will be evaluated on only this subset of metrics.
Note that to obtain a single number, the Wasserstein distance on the particle features
(WP

1 ) and the EFPs (WEFP
1 ) are given as the inverse variance weighted mean given

in Equation 5.8 of the individual Wasserstein distances xi per feature i.

x̄w =
∑n
i=1 xiwi∑n
i=1 wi

, wi = 1
σ2
i

, (5.8)
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where σ2
i is the variance of the metric on feature i ∈ (ηrel, ϕrel, prel

T ). Similarly, the
uncertainty associated with this weighted mean is calculated as:

σx̄w
=
√

1∑n
i=1 wi

, wi = 1
σ2
i

. (5.9)

For all models, the checkpoint for evaluation is selected according to the lowest
Wasserstein-1 distance computed between the mass distribution of 50′000 samples
from PYTHIA, which were also used during training, and 50′000 samples drawn
from the generative model7.

7Due to the limited number of statistics and the susceptibility of the metrics on the sample
size, it was decided not to use a validation set to select the best training checkpoint, but to use the
training dataset. This allows for an independent testing set of 50′000 samples.
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5.4 Studies on JetNet30

In this section, the performance of different models on the JetNet30 datasets is
discussed.

5.4.1 Normalising Flows on JetNet30

For the JetNet30 dataset, the data is padded and flattened, which results in a total
number of 90 dimensions. Given that the generation of seemingly real images of
faces is possible [137, 173, 174], which needs orders of magnitudes more dimensions,
one might expect that this is an easy task8. However, a notable difference is that
these models are usually more concerned with the sample quality rather than how
well they capture the underlying true distribution. The sensitive summary statistics
like the mass make it significantly easier to spot such mismodeling, as will be shown
in the following.

Additional Preprocessing Steps for NFs

A subtlety of NFs is that padding of the clouds causes issues. Since all padded points
lie on the same value, it is impossible to spread these singular values to a standard
Gaussian distribution, which is the training objective of the NF. This is resolved
by adding Gaussian noise with a variance of 10−8 to the padded particles. During
sampling, particles with a prel

T < 0.0001 are set to 0.

Vanilla Normalising Flow

Autoregressive NFs are motivated by the decomposition of a joint probability dis-
tribution into the product of conditional ones. However, either the forward or the
reverse direction of the autoregressive NF is D times slower, where D is the total
dimension of the input space. This means that either sampling or training is 90 times
slower on the JetNet30 datasets. From personal experience, the autoregressive NFs
never outperformed the coupling NFs on this dataset. Therefore, the following results

8The dimension of an image is given by its number of pixel times the number of channels. A
1-megapixel RGB image, which current SotA models like DALL-E3[174] generate, hence has 3
Million features.
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only concern coupling layer-based NFs. The most naive approach is to use RQS NFs
on the flattened point cloud. This model is referred to as the Vanilla Normalising
Flow (VNF) in the following.

Mass Conditioned Normalising Flows

As discussed in Section 4.4.3, NFs are conditioned by including additional variables
for the NNs that predict the parameters of the coupling transformation. Conditioning
increases the expressiveness of the transformation, as more information is given to
the NNs predicting the parameters of the coupling layers. It also allows disentangling
the latent space, as discussed in Section 4.4.4. For this study, the relative invariant
jet mass mrel is used to condition the NF. Note that this makes the NF not fully
invertible any more, as the mass must be supplied when the NF is evaluated in both
directions. However, since the NF is trained only in the forward direction, where
the mass can be calculated from the input, it only needed to draw samples from the
NF. To sample the mass distribution, the first approach from Section 5.2.1 is used,
except the mass distribution is already continuous and hence no dequantisation is
necessary. The mass conditioned NF is referred to as NF(c) in the following.

Mass Conditioned and Constrained Normalising Flows

To further improve the mass modelling, a mass constraint is introduced. This is
implemented by introducing another loss term, which is minimised concurrently to
the maximum likelihood training. The loss is constructed by sampling the NF and
calculating the MSE between the condition mrel

cond supplied to the NF and the mass
that is calculated from the generated jet:

Lmse =
∣∣∣mrel

cond −mrel(xgen(mrel
cond))

∣∣∣2 (5.10)

This loss term is added to the negative log-likelihood loss of the NF with an additional
parameter λm, which allows determining the importance of the constraint during the
optimisation:

Ltot = LnLL + λmLmse (5.11)
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This means that the NF is evaluated in both directions during one training step,
further ruling out the use of autoregressive NFs.

Training

All the three proposed models are trained for 2000 epochs using the AdamW optimiser
with momentum coefficients (β1, β2) = (0.9, 0.999). The hyperparameters for the
different models are given in Table 5.1. The NF has 25 coupling layers, the RQS
is constructed over [−5, 5] with 6 bins. The parameters NNs in the coupling layers
contain 3 residual blocks with 128 hidden features. For the NF and NF(c) λm is set
to zero. For the NF(cc), the best results were obtained with λm = 10.

Parameter NF
λm 0/10
optimiser AdamW
coupling_layers 25
residual_blocks 3
hidden_features 128
tail_bound 5
num_bins 6

Table 5.1: Hyperparameters for different configurations

Results

The previously discussed NF approaches are compared in Fig. 5.2, which displays
histograms of PYTHIA samples and synthetic samples. Going from left to right and
top to bottom, the figure first depicts the three marginal distributions ηrel, ϕrel, prel

T

of all generated points. These histograms demonstrate the effectiveness of NFs as
already with the simplest approach (red), there is no strong mismodelling directly
apparent in the marginal distributions. Some artefacts are visible when examining
the ratio of yields from PYTHIA samples divided by the yields of samples from the
generative model, shown below the histograms. These discrepancies are especially
visible in the tails of the distributions. The histogram on the bottom-right raises more
problematic issues for the VNF. It indicates that the VNF is unable to learn even
the linear correlations between particles accurately. Conditioning the NF (yellow)
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significantly improves the mass modelling, as now the mass distribution is not of
Gaussian shape any more. It also removes most of the artefacts in (ηrel, ϕrel, prel

T ). As
expected, the mass constraint (violet) further improves the modelling of the mass
distribution.

Figure 5.3 depicts the Pearson correlation between the prel
T ordered particles

for PYTHIA samples and synthetic samples. While in general the correlations
seem comparable to the one in PYTHIA-generated data, there are some spurious
correlations for the VNF in Fig. 5.3b, e.g. in ϕrel close to the diagonal. For the
conditioned NF, the linear correlations mostly remain the same when compared to
the VNF, but the spurious strong negative correlations in ϕrel disappeared, as shown
in Fig. 5.3c. However, in ηrel there are still some artefacts visible, especially for the
6th hardest particle. When using the mass constraint, the linear correlations in ηrel

and ϕrel again slightly improve. As a reference, the results whne not using Box-Cox
preprocessing are given in Appendix B.
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Figure 5.2: Comparison of synthetic samples from the different NF approaches
to PYTHIA samples (blue). Below each plot, the yield ratio of PYTHIA data
to synthetic data is shown. Going from left to right and top to bottom, the first
three histograms depict the relative pseudorapidity, azimuthal angle and transverse
momentum of all particles drawn from the model. The first three figures might
indicate that the VNF (red) is sampling the underlying data distribution accurately.
However, the mass distribution on the bottom right reveals that the VNF is unable
to model the correlations between the particles accurately. Including the mass as a
condition (yellow) improves the mass modelling significantly. Training the model
with the mass constraint (violet) further improves the mass modelling.
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(a) PYTHIA
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(b) VNF
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(c) NF(c)
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Figure 5.3: Heatmaps of the linear correlations between the individual features of the
prel
T ordered particles of the proposed NF-based models. Every square in the figure

represents the correlation between two particles. As a reference, the correlations
calculated in the PYTHIA data are visualised in the top row.
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Critical Dimension for Mass Modelling

In Section 4.4.4 the RQS NFs showed promising results on a fairly complicated
density. To investigate whether the unsatisfying performance is only due to the
higher dimension of the space over which the distribution is modelled, the number
of jet constituents is reduced to nmax and the VNF is retrained. Figure 5.4 depicts
the mass distribution for different choices of nmax. The figure indicates that the NFs
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(f) nmax = 15

Figure 5.4: Mass distribution of jets, where only the hardest nmax particles per jet
are considered in the clustering. For a low number of constituents, the VNF can
model the mass distribution correctly. However, more than 7 particles in the jet lead
to the model being unable to capture the mass distribution accurately.

can model the sharper edges of the mass distribution until 7 particles. Once more
particles are added to the jet, the Gaussian shape, which is also visible as the red
distribution in Fig. 5.2, emerges. This suggests that the higher number of dimensions
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is causing the unsatisfying performance of the NF.

5.4.2 Permutation Equivariant NFs

The NFs that were used previously have no inductive bias designed to work well with
point clouds. Respecting the permutation symmetry would be a beneficial property
for the model. However, with the NF approach discussed here, all structure in the
input, i.e. that there are 30 particles, is lost at the moment where the input is padded
and flattened. Making the NNs in the coupling layer permutation equivariant did not
lead to improved results. This can be understood since when the data is randomly
split in the coupling layer, all structure is lost, even before the NNs are applied.
Splitting the sets particle-wise also did not lead to improved results.
Thus, the permutation equivariance needs to be applied in the construction of the
NF. Three different ideas to introduce permutation equivariance into the NFs were
explored:

1. The most simplistic idea is to apply the NF independently to each particle.
However, treating all points independently results in losing all correlations
present between the points, which are strongly connected to the underlying
physics of interest. Nevertheless, the results of this model are also shown in
the following to give a baseline for comparison. This model is referred to as
Independent Point Flow (IPF). A schematic of the model is given on the left
of Fig. 5.5.

2. The second approach is based on PointFlow [175]. The authors argue that
for a permutation invariant density, there exists a condition z with which the
points are conditionally independent, referring to Finetti’s theorem with the
following lines:

De Finetti’s representation theorem states that any exchangeable
distribution can be written as a factored distribution, conditioned
on a latent variable:

P (X) =
∫
z
pϕ(z)

∏
x∈X

pθ(x|z), (5.12)
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where p(X = {x1, ...,xn}) is a distribution that fulfils
p(X = {xπ(1), ...,xπ(n)}) = p(X = {x1, ...,xn}) for all permutations
π.

To construct such a shape NN that takes a point cloud as input and encodes it
to a lower dimensional z, which is given as a condition to the NF9.

However, while Finetti’s theorem asserts that there exists a z for which Equa-
tion 5.12 holds, it does not make a statement of how to construct such a
condition. Thus, it is left over to the optimisation algorithm to find such a
condition. But it is unclear whether the shape NN can get a gradient from the
loss that is optimised, since the loss is concerned with individual points only.
This model is referred to as Point Flow (PF) in the following. A schematic of
the model is given on the right of Fig. 5.5.

3. To resolve the problem that the shape NN does not get any feedback from the
loss of the joint distribution of all points in the cloud, a natural next step is to
introduce a mechanism to account for that. Since there is no analytical way
to build a loss function for this, one option is to introduce an adversarial loss
term. Hence, a discriminator that distinguishes PYTHIA samples from samples
drawn from the model is introduced. Note that this discriminator is applied
to the whole cloud. The objective of the shape NN is to maximise the loss of
the discriminator. The only way the shape NN can fool the discriminator is if
the provided condition renders the joint distribution conditionally independent.
This approach is referred to as Adversarial Point Flow (APF) in the following10.

Results

In Fig. 5.6, the marginal features and the mass for samples drawn from the IPF (red)
are compared to PYTHIA-generated samples (blue). Note that the first and last

9The name “shape” derives from Ref. [176], where 3D point clouds with certain s shapes
e.g. a chair, are generated. Note that the shape NN in this case has the same architecture as the
discriminator of the TGAN, introduced in the following Section, with the only difference that its
output is 10-dimensional.

10Note that the discriminator that was used has the same architecture as the discriminator of
the TGAN, which is introduced in the Section 5.4.4.
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(a) IPF (b) PF

Figure 5.5: Schematic of the permutation equivariant NFs, for illustrative purposes
only two NF layers are used. (left) For the IPF, the only difference to the VNF is that
the NF is applied to all particles independently. (right) For the PF, a permutation-
invariant encoder Ω (red) is additionally used. It encodes all points to a conditional
variable x̄ (blue), which is used as a condition for all NFs.

bins show the under- and overflow. Although the marginal variables are modelled
accurately, the mass distribution is slightly worse than for the VNF. It appears
that conditioning with the shape NN used in the PF (yellow) slightly worsens the
modelling of the marginal features, which becomes only visible in the ratio below
the histograms. However, the mass distribution remains of the same Gaussian
shape. This finding agrees with Refs. [177, 178], where the authors found that their
model improves when the shape encoder is left away. Unfortunately, introducing
an adversarial loss term to give the shape NN an incentive to encode the points
such that Finetti’s theorem is fulfilled, does not improve the modelling of the mass
distribution either. The histograms of the APF (violet) reveal that the modelling of
the marginal features got even worse.

But when considering the Pearson correlation matrices, shown in Fig. 5.7, even
worse issues become apparent. For the IPF, the linear correlations between the
individual particles are not modelled at all, as shown in Fig 5.7b11. This is problematic

11Note that the correlation structure visible in prel
T comes from ordering of the particles in

descending prel
T .
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Figure 5.6: Comparison of synthetic data drawn from the permutation equivariant
NFs to PYTHIA samples (blue). Below each plot, the yield ratio of PYTHIA data
to synthetic data is shown. Going from left to right and top to bottom, the first
three histograms depict the relative pseudorapidity, azimuthal angle and transverse
momentum of all particles drawn from the model. The figure on the bottom right
depicts the invariant mass distribution calculated from the particles in every jet.
Similar to the VNF, the permutation equivariant NFs excel at modelling the marginal
features. However, the mass distribution reveals that the correlations between the
particles are not modelled correctly for neither the IPF (red), PF (yellow) nor APF
(violet).
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since most of the underlying physics is encoded in the correlations between particles.
But nothing else is to be expected if the particles are drawn independently. For
the PF, the linear correlations shown in Fig. 5.7c slightly improve, in the sense
that the individual particles now exhibit a non-zero correlation. But, note that
the correlations are still not comparable to the ones of the other NF models (VNF,
NF(c), NF(cc)). For the APF, the linear correlations between the particles, shown
in Fig. 5.7d, remain the same as for the PF. Note that for this evaluation, the latent
distribution of the conditions used for the PF and APF was taken from the testing
set, by encoding the jets in the testing set with the shape NN. In practice, the
distribution of the encoded jets would need to be sampled as well, which is expected
to worsen the performance even further.
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(a) PYTHIA
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(b) IPF
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(c) PF
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(d) APF

Figure 5.7: Heatmaps of the linear correlations between the individual features of
the prelT ordered particles of the proposed permutation-equivariant NF-based models.
As a reference, the correlations calculated from the PYTHIA data are visualised in
the top row. The first two plots per row reveal the problem of sampling the points
independently, as is done with the permutation equivariant NF models.
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5.4.3 Discussion on Normalising Flows

The results on the JetNet30 reveal that the RQS NFs are effective at modelling
unknown densities, even in problems where they do not have an inductive bias
tailored to the problem. However, they perform significantly worse than on the
two-dimensional Two Moons dataset. This becomes evident when investigating the
relative invariant jet mass distribution, which provides a sensitive candidate for
measuring higher order and non-linear correlations between particles. It appears that
the capability of NFs to model correlations quickly deteriorates, when the dimension
of the data is increased, as discussed in Section 5.4.1. Conditioning the NF with the
mass, and thus learning to model p(x|m), certainly improves the mass modelling.
Especially if one makes use of bidirectional training. But the mass is a sensitive
statistic that showed that the model is incapable of capturing the correlations entirely.
By adding the mass as an input to the model, this test loses its sensitivity. It remains
unclear, whether the conditioned model can model other correlations which are not
as easily accessible as the mass. In Section 5.4.5, multiple metrics will reveal that
this is indeed the case.
The results from Section 5.4.2 show that the three proposed ideas to make the NFs
permutation-equivariant do not improve the performance, but rather significantly
worsen it. The conditioning capability of NFs is further explored in Section 7.1.2
to investigate whether this conditioning can also be used to interpolate between
distributions.

5.4.4 Flowing into a GAN

The VNF can capture most of the linear correlations between particles; however,
it fails to model the high-level features accurately. To account for this, a post-
processor NN is introduced, which modifies the output of the VNF such that these
high-level correlations are modelled correctly. Since it is difficult to define a loss that
enforces the modelling of those high-level features, the post-processor NN is trained
adversarially with a discriminator.
When it came to designing the post-processing NN a transformer-based model was
chosen because transformers were (and still are) the current SotA in NLP. Eventually,
only the encoder part of a transformer is used, which was inspired by BERT [179],
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a groundbreaking model from NLP12. The main block in the transformer encoder
comprises the following sequential operations illustrated in Fig. 5.813:

1. A particle-wise NN ϕ that maps the individual particles independently to a
latent dimension to a higher-dimensional representation.

2. A self-attention layer that lets the individual representation of all particles
interact with each other.

3. A residual connection, together with an independent normalisation layer (Lay-
erNorm [180]) N for all particles.

4. Another particle-wise NN ψ.

5. A residual connection together with another normalisation layer N .

(a) Main Block (b) Post Processor (c) Critic

Figure 5.8: Schematics of the different parts of the TNF, a detailed description is
given in Section 5.4.4. (left) Main information aggregation block of the post-processor
NN. (middle) The post-processor NN consisting of 4 such blocks. (right) The critic
also consists of 4 blocks. The classification token is marked in blue

12Note that although this has the same naming as the encoder mentioned in Section 4.2, this
encoder does not encode the data to a lower dimension usually.

13As aforementioned in Section 3.3.4, the common positional encoding is left out to make the
aggregation equivariant to permutations.
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This block accepts a variable-sized input and produces an output with the same
size. This means if n particles, or in NLP jargon n tokens, go into the block, its
output also consists of n updated particles.

The output of the NF [x1, ...,xm] is fed to the post-processor NN, which is
depicted in Fig. 5.8. There are two additional layers:

1. The layer α maps every point from its three-dimensional representation to a
higher-dimensional latent representation.

2. Vice versa, the layer β maps the point from the latent dimension down to the
three-dimensional representation.

The critic, which is used to train the post-processor NN, has a nearly identical
architecture. It also accepts a variable-sized input and is based on the same building
blocks. However, since only a one-dimensional output is desired, a classification
token/particle x̄ is introduced. The value of this token is learnable and treated the
same as all other particles in the main blocks. After the main blocks, this artificial
token is fed into a two-layered MLP that maps it to a one-dimensional output ŷ.
The self-attention aggregation is the core of this model that lets the representations
of the different particles interact with each other. All other components in the model
are applied to the particles independently.
Attention allows to adaptively determine the influence of the particles on each other
during the information exchange. This is beneficial for jets, as it is expected that the
harder particles carry more information. A more technical detail is how transformers
allow a variable-sized input during batch-based training. This is done by padding
missing particles, and excluding the influence in the information aggregation step
as explained in Section 3.3.5. In the following, this model is referred to as the
Transformer Normalising Flow (TNF).

Omitting the Normalising Flow

The NF that is used as a prior can be left out without worsening the performance of
the model. This makes the training slightly more unstable, but the model becomes
significantly smaller and faster. The resulting model is referred to as TGAN.



140 Chapter 5. Generative Modelling on Point Clouds I: JetNet

Training

The trained VNF from Section 5.4.1 is used to provide the prior for the post-processor
NN. The weights of the VNF remain frozen, meaning they remain unchanged during
the training of the post-processor NN. The LSGAN training objective performed best
to train the post-processor NN. The AdamW optimiser is used, but if the momentum
coefficient β1 of AdamW is chosen to be greater than 0 for either post-processor NN
or critic, the training does not converge.
The hyperparameters used for the training are given in Table 5.2. The _gen postfix
denotes hyperparameters of the generator part of the GAN; otherwise, they corre-
spond to the critic. The heads parameter denotes the number of heads used in the
multi-headed attention, the hidden parameter denotes the dimension over which
the attention aggregation takes place. This also determines the dimension of the
output of the single layer ϕ, respectively input-dimension of the single layer ψ. The
parameter l_dim stands for the latent dimension to which the input features are
mapped by the embedding NN α. The num_blocks parameter determines how many
blocks from the left of Fig. 5.8 are used in the model.

Parameter Value
heads_gen 16
heads 16
hidden_gen 256
hidden 256
l_dim_gen 16
l_dim 16
lr 0.0001
num_blocks 4
num_blocks_gen 4
opt AdamW
weightdecay 0.01
beta1 0
beta2 0.999

Table 5.2: Hyperparameters for the GAN in the TNF
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Results

Both GAN-based approaches model the tail of the prel
T distribution, even when no

Box-Cox preprocessing is used. The results with Box-Cox preprocessing are given in
Appendix B, which are slightly worse on most of the metrics discussed in Sec. 4.8.
In Fig. 5.10 the histograms of the marginal features and the relative mass are shown
for the TNF (red) and the TGAN (yellow). Both models are capable of generating
samples that model the mass distribution as in data, without relying on the mass as
a condition.

However, the linear correlations shown in Fig. 5.10b still exhibit some differences.
The TNF appears to strongly correlate the features between neighbouring particles,
which manifest as the darker shades around the diagonal.
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Figure 5.9: Comparison of synthetic data drawn from the GAN-based models to
PYTHIA samples (blue). Below each plot, the yield ratio of PYTHIA data to
synthetic data is shown. Going from left to right and top to bottom, the first
three histograms depict the relative pseudorapidity, azimuthal angle and transverse
momentum of all particles drawn from the model. The figure on the bottom right
depicts the invariant mass distribution calculated from the particles in every jet.
With the TNF (red) and TGAN (yellow), it is possible to model mass distribution
accurately without supplying the mass as a condition.
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(a) PYTHIA
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(b) TNF
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(c) TGAN

Figure 5.10: Heatmaps of the linear correlations between the individual features of
the prel

T ordered particles of the GAN-based models. As a reference, the correlations
calculated from the PYTHIA data are visualised in the top row.
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5.4.5 Quantitative Comparison: JetNet30

To not only compare plots, the metrics, which were discussed in Sec. 4.8, are com-
puted between samples from each model and an independent set of 50′000 samples.
The result is given in Table 5.3, where the value of the best-performing model per
score and the scores of models which lie within uncertainties of the best-performing
model are highlighted in bold font. As a reference, the in-sample distance and the
performance of the, at the time of the TNF study, SotA model MPGAN [156] are
shown additionally14.
The permutation equivariant NF models (IPF, PF, APF) are performing significantly
worse than the other models.
The NF models that remove the particle structure by flattening the input perform
worse than the GAN-based models, which are permutation equivariant. When con-
ditioned on the mass, the WM

1 decreases significantly, but the WEFP
1 ,KPD & FPD

metrics still signify a worse performance than GAN-based models. This supports
the claim that conditioning is more of a cure for a symptom, rather than an actual
solution to the problem.
Overall, the permutation equivariant GAN-based models (TNF, TGAN) perform
best. The purely GAN-based model performs best on most metrics and is also the
winner in terms of generation speed and model size.

14To calculate the distances for the MPGAN, the checkpoint provided in their repository was
used to generate a new dataset.
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Multiclass Classifier Test

The multiclass classifier, which was discussed in Section 4.8.2, used for this has
mostly the same architecture as the classifier used for the training of the TNF and
TGAN. The only difference lies in the output layer, where the multiclass classifier
has eight features, one for each model. In Fig. 5.11 the results of the multiclass
classifier test are depicted. The confusion matrix on the left shows that the classifier
can recognise the different model classes, but misidentifies some models within the
individual model class. The evaluation of the classifier on PYTHIA data align with
the claim that the GAN-based models perform best.

Figure 5.11: Evaluation of the multiclass classifier test on the JetNet30 datasets.
(left) The confusion matrix shows that the classifier can recognise the different
model classes. There are some uncertainties within the GAN-based, NF-based and
conditioned permutation equivariant NF models. (right) Since the classifier mostly
assigns the TGAN and TNF labels to PYTHIA data, this test supports the claim
that the TNF and TGAN perform best.
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5.5 Studies on JetNet150

After obtaining a model that is competitive on JetNet30, the logical next step was
to scale it up to 150 particles. At the same conference where I presented the TNF
model, promising results of the Equivariant Point Cloud (EPiC-GAN) by Buhmann
et al. were first shown on the JetNet150 gluon dataset. The authors later became
the first to publish SotA results on the full gluon-, light- and top quark datasets [96].
Their model uses the DeepSets aggregation, along with a global zglobal and local
jet state zlocal. The local states are representations of the individual particles and
update the global state via sum- and mean-pooling. The global state of the jet
updates the individual local states independently. This is an efficient information
aggregation mechanism, as its computational complexity scales linearly with the
number of particles, in difference to the self-attention used in the TNF and TGAN.

5.5.1 Curse of O(n2)

As described in Section 3.3, the attention weights are calculated by multiplying the
query matrix Q ∈ Rn×d with the transposed key matrix KT ∈ Rd×n, where n is
the number of points in the cloud and d the dimension of the latent representation.
The computational complexity of this is O(n2 · d). This is because in self-attention,
the interaction of every input with every other input is considered, as illustrated
in Fig. 5.12. This scaling not only affects the generation speed of the model but is
primarily restrictive due to its memory use, as discussed in Section 3.3.7. When
trying to scale up the TNF and TGAN to the higher cloud cardinality, the large
memory usage makes the training infeasible, since the batch size has to be reduced
to O(1). Therefore, self-attention had to be replaced with an aggregation that scales
linearly with the number of constituents.

5.5.2 Mean-field Approximation of Particle Interactions

When considering the constraints of matrix multiplication and the row-wise applica-
tion of the softmax, it can be concluded that for a linearly scaling attention-based
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Figure 5.12: Illustration of the quadratic computational complexity of self-attention
on Point Clouds. Every point xi is updated with a dynamic contribution of all
points with a weight wi. Note that all four updates happen simultaneously during
one self-attention aggregation step.

aggregation, the query Q should consist of a single token only15. Because when
choosing the key K to have a shape of (1, d), where d is the number of features of
every embedded point, the multiplication of QKT results in an output of shape n×1,
where n is the number of particles. If the softmax is then applied row-wise, every
row becomes equal to one. This leads to an over-engineered method to construct an
identity mapping using cross-attention.
However, using only one token for the query means that the output of the aggregation
also contains only one token. Therefore, cross-attention cannot directly be used to
replace self-attention. Instead, a similar approach to EPiC-GAN is employed to
transform the individual particles. A conditioned, particle-wise NN is applied to all
particles. Its condition is the output of the cross-attention aggregation.
This approach also has an illustrative interpretation when recognising attention as a
weighted sum, as described in Section 3.3. Instead of every particle interacting with
every other particle, the interaction is mediated through a mean field. In the first
step, the particles interact with the mean-field and update it, where the weight of

15Note that this can be considered as cross-attention to a single token only, and is not directly
related to self-attention any more.
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each contribution of the particles is determined dynamically. In the second step, the
mean-field then updates the particles independently. This mechanism is illustrated
in Fig. 5.13 and allows for a more complex information aggregation, compared to an
arithmetic mean or sum-pooling. After the mean-field has been updated, it interacts

Figure 5.13: Schematic of the mean-field aggregation; the left side illustrates the
cross-attention aggregation, where each particle contributes to the mean-field with a
dynamic weight wi. On the right side, the interaction of the updated mean-field with
the particles is depicted, which is mediated by the same NN ψx̄′ for every particle.

with every particle independently. A schematic of the linearly scaling model is
given in Fig. 5.14, where on the left the main block of the architecture is depicted.
The differences to the transformer encoder architecture, which was used before, are
highlighted in red. The most significant modification is in the main building blocks
of the architecture, where self-attention is replaced with the mean-field aggregation.

5.5.3 The Missing Piece

Although the model now scaled linearly with the number of particles, it did not
produce competitive results on JetNet150. This was puzzling since it worked well
on 30 particles16. It was puzzling, why EPiC-GAN can perform so well, although
it uses a much simpler aggregation. What especially stood out is that mean- and
sum-pooling are redundant as they are closely related, the only additional information
is given by the number of constituents. But similarly to an arithmetic mean, the
mean-field aggregation is agnostic to the number of constituents. Since the mean-field

16It even came so far that I scanned the number of jet constituents that are modelled, to see at
which number of particles the model breaks down, which was around 50.
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(a) Main Block (b) Generator (c) Critic

Figure 5.14: Schematic of the architecture making use of the mean-field aggregation.
Parts of the architecture that were modified compared to previously used self-
attention-based architecture are marked in red. Parts associated with the mean-field
are marked in blue. (left) The main building block of the model where the mean-field
is updated with cross-attention with respect to the particles. The mean-field then
updates the particles independently with ψx̄′ . There is a residual connection between
the particles going into cross-attention and the updated particles, which is depicted
by a dashed line. The output of the block is the updated mean-field and the updated
particles. (middle) Schematic of the generator; standard Gaussian noise with three
features for every point is mapped to a higher dimensional representation by α.
Thereafter, the mean-field is initialised by sum pooling these representations. After
multiple mean-field aggregation blocks, the particles are mapped independently to
three dimensions with a fully connected layer β. (right) Schematic of the Critic, the
only difference to generator architecture is that there is a 2-layer MLP after the main
body that takes as input the final mean-field x̄ and outputs a score s.
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aggregation is the only one that allows the exchange of information between particles,
the whole model was agnostic to the number of particles. The reason for this lies in
the softmax normalisation of the attention weights. Introducing this simple piece
of information into the model allowed to make it competitive with the SotA on the
JetNet150 datasets.

5.5.4 Mean-field Matching

Since switching away from GANs made the training significantly more unstable, new
ways to stabilise the training were needed. As mentioned in Section 4.3.2, one that
stood out was the feature matching. In the case of the mean-field, this is also quite
illustrative. The mean-field of a batch should be equal for PYTHIA and data drawn
from the model. Hence, another loss term is introduced:

LMF =
∣∣∣∣∣ ∑
batch

(x̄real)−
∑

batch
(x̄fake)

∣∣∣∣∣
2

, (5.13)

where x̄ is the mean-field after the main body in the critic and the index indicates
whether the mean-field comes from PYTHIA (real) or the generative model (fake).
Additionally, the weights of the critic are normalised, as proposed by Xiang et
al. [125].

5.5.5 Matching Deep Mean-fields Attentive GAN

Implementing all these modifications, the results in a new model, referred to as
Matching Deep Mean-fields Attentive (MDMA)-GAN [163]. The schematic of the
final changes in architecture is shown in Fig. 5.15. While the macroscopic generator
architecture remains the same, the main blocks are modified by introducing a fully
connected layer Ω, which is conditioned on the number of particles. The critic is
also modified to give the mean-field after the main blocks, hence the name Deep
Mean-Field, as output.
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(a) Main Block (b) Critic

Figure 5.15: Schematic describing the novel parts in the MDMA-GAN. Modifications
to the previous model are marked in red. Parts associated with the mean-field are
marked in blue. (left) Main building block of the model. Parts associated with the
mean-field are marked in blue. Compared to the architecture before, the mean-field
is now updated after the cross-attention layer with a fully connected layer which
takes the number of points in the cloud as an additional input. (right) Compared to
before, the critic also outputs the mean-field after the last block in addition to the
score.
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Differences to EPiC Aggregation

Since this setup can seem very similar to the predecessor EPiC-GAN the major
differences are highlighted in the following:

• The MDMA generator does not use additional degrees of freedom for a global
state. Furthermore, the mean-field is transformed by the same particle-wise
NN as the other particles.

• Attention allows masking of particles, which makes the batch generation of
different sized clouds possible.

• The information aggregation with attention is a generalised version of sum-
pooling, where different contributions are weighted adaptively.

• The normalisation of the attention weights is beneficial when moving to prob-
lems, where the number of constituents distribution has a high variance.

5.5.6 Efficient Data Loading with Variable-sized Data

The variance in the number of jet constituents becomes relevant on the JetNet150
dataset, since padding all jets to maximum size per batch becomes inefficient. This is
illustrated in Fig. 5.1, which shows the distribution of the number of jet constituents.
Since the mean of the distribution is around 60 particles, if the clouds are always zero-
padded to 150 particles, the required memory increases by 250%. Note that this is
especially expensive if quadratic scaling is present, since although the particles do not
influence the result of the calculation, they still lead to significantly higher memory
use. To resolve this, bucketing is introduced, where during training the batches
contain similarly sized point clouds. This reduces padding and hence accelerates the
training process.

5.5.7 Matching Flows on MDMA

GANs were the only models that achieved competitive performance on the JetNet
datasets for a long time. Although diffusion models were an upcoming model class,
the early publications [181, 172] with diffusion models all relied on jet variables as
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conditions. But the issues of conditioning as discussed in Section 5.1 remained, and
I was convinced that diffusion models carry the same problems as NFs. However,
Buhmann et al. [171] showed that CNFs trained with Flow Matching, which can be
considered a more general version of diffusion models, also lead to promising results.
The authors show that the main building block of the EPiC-GAN performs well
when used in a CNF. Since the MDMA block can be considered as a more general
version of the EPiC block, it is worth investigating how the model performs with the
MDMA block. The schematic of the model adapted for the CNF training is shown
in Fig. 5.16, where the changes compared to the MDMA-block are highlighted in red.
Note that the cosine encoding for the time is computed as:

temb,i = cos (t · fi · π) , (5.14)

where the frequency fi ∈ [0, d], with d being the dimension of the latent space.

(a) Main Block (b) CNF

Figure 5.16: Schematic describing the CNF, new components are marked in red.
Components associated with the mean-field are marked in blue. (left) The only
change in the main block of the CNF is that it now additionally takes the time,
which passes through a cosine embedding, as input. (right) For illustrative purposes,
only four blocks are drawn in the CNF.

In the following, this model is referred to as MDMA-Flow and its results are
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presented and compared to results of the MDMA-GAN. The training of the EPiC-FM
and MDMA-Flow slightly differ. Buhmann et al. use the Flow Matching proposed
by Lipman et al. [147]. For the MDMA-Flow the CFM training, as described in
Section 4.7, is used. The training with OT-CFM is significantly slower, and does
not lead to improved results on this dataset. The results from the CNF trained with
OT-CFM are given in the Appendix B.6.

Training on JetNet150

The hyperparameters used to train the MDMA-GAN and MDMA-Flow are given
in Table 5.4. The MDMA-GAN is trained with the LSGAN loss. Similarly to the
GAN-based models before, the MDMA-GAN and MDMA-Flow perform better when
no Box-Cox scaling is used to preprocess the training data. The results for Box-Cox
preprocessing are given in the Appendix B.5.

Table 5.4: Hyperparameters of the MDMA-GAN

Parameter MDMA-GAN MDMA-Flow
heads_gen 16 -
heads 16 16
hidden_gen 48 -
hidden 64 256
l_dim_gen 16 -
l_dim 16 128
lr 0.0001 0.0001
num_blocks 2 8
num_blocks_gen 7 -
opt AdamW AdamW
weightdecay 0.01 0.01
beta1 0 0.9
beta2 0.999 0.999

Results

For both models, the marginal distributions are modelled accurately. Some discrep-
ancies are visible in the tails of the distributions, where little data is available. The
two-peaked mass distribution is modelled, although there are minor discrepancies
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visible around the peaks of the mass distribution. To solve the ODE to generate data
with the MDMA-Flow, the midpoint solver is used with 200 iterations. In Fig. 5.17
the histograms of the marginal features and the mass distribution are shown.
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Figure 5.17: Comparison of synthetic data drawn from the MDMA-GAN (red) and
MDMA-Flow(yellow to PYTHIA samples (blue). Below each plot, the yield ratio
of PYTHIA data to synthetic data is shown. Going from left to right and top to
bottom, the first three histograms depict the relative pseudorapidity, azimuthal angle
and transverse momentum of all particles drawn from the model. The figure on the
bottom right depicts the invariant mass distribution calculated from the particles
in every jet. From the figure by itself, it is difficult to judge which model performs
better.
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5.5.8 Quantitative Comparison: JetNet150

The quantitive performance of the models is compared in Table 5.5. Additionally,
the number of parameters of the generative model is given, together with the time
that is needed for the generation of a single jet. The scores of the best-performing
model and models with scores that lie within one standard deviation of the best
model are marked in bold font. Note that for the KPD metric, all models which are
compatible with zero have been marked in bold font. As a reference, the metrics
computed on samples from the EPiC-GAN and the unconditional EPiC-FM are
also listed17. These metrics strongly suggest that the cross-attention-based MDMA
aggregation outperforms the DeepSets-based EPiC aggregation, since on all scores
the MDMA-based models are compatible or better. While the MDMA-GAN is
the winner in terms of model size and generation speed, it cannot keep up with
the performance of the MDMA-Flow. Still, when compared to the EPiC-GAN, it
performs better on every single metric. Since there is a factor of ∼ 30 between the
number of parameters, one might be tempted to conclude that the difference in
performance is due to this. However, increasing the number of parameters of the
GAN destabilised the training to the extent that no convergence was reached any
more. The only drawback of the MDMA-Flow is the inference speed of the model.
But there are methods, like knowledge distillation [182] to significantly increase the
speed of Flow Matching based models. Concerning the high number of parameters of
the MDMA-Flow, one could argue that due to the Double-Descent phenomena [75]
the increased number of parameters makes the model generalise better. In HEP, it is
not necessary to increase the generation speed by a factor of six orders of magnitude,
already one or two orders of magnitude are sufficient. Especially, when considering
that this is still a factor ×10 faster than PYTHIA, as demonstrated in Ref. [172],
for the generation (46′200 µs).

17New samples were drawn from the model with the provided checkpoints in the repository
corresponding to the publication.
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5.6 Conclusions from Modelling Jets

In this chapter, the NN-based generation of jets was extensively discussed with
the JetNet datasets. For all models that are compared, there are still significant
differences between the PYTHIA samples and the generated data. It is not certain
how severe the impact of these differences is when a model would be employed in an
actual analysis, as usually corrections need to be applied to the generated samples
anyway. However, in practice, there is little interest in replacing PYTHIA showering
with a generative model, since PYTHIA is not the bottleneck when it comes to
the computational budget for MC data generation. Still, it is worth exploring and
comparing different generative models on this dataset, as it is an open dataset that
allows the benchmarking of different models. It also remains unclear whether the
100’000 training samples are too few to train a generative model. More data may
reduce the remaining discrepancies between PYTHIA-generated data and the samples
drawn from the model. The main conclusions are:

1. While normalising flows are not only stable to train, they also show very
promising results on the marginal distributions. However, for high-dimensional
data d ≳ 20, their performance deteriorates, especially on high-level summary
statistics like the invariant jet mass.

2. GANs, although being unstable to train, perform significantly better than the
discrete NFs on all considered metrics if they converge.

3. Continuous normalising flows are a promising candidate that brings the best of
both worlds. While they are not only stable during training, they also model
high-level correlations accurately. Their only drawback is the inference speed,
since the ODE that is used to generate data is solver iteratively.

4. When modelling a point cloud, it is crucial that the information aggregation
mechanism scales linearly with the number of points.



CHAPTER6
Generative Modelling on Point
Clouds II: CaloChallenge

After achieving performance competitive with the SotA on the JetNet150 datasets,
the model demonstrated its versatility on another point cloud generation task, i.e.
the generation of energy deposits from a high-granularity calorimeter [159] for the
CaloChallenge [183]. This is a good test the limits of the mean-field aggregation, as
the dimension of the data increases by over 150× compared to JetNet1501.

6.1 Dataset

The data comprises calorimeter images, which can be thought of as three-dimensional
images. Corresponding to the pixel in an image, there are voxels in calorimeter
images, yielding an energy deposit. For the datasets in the CaloChallenge, the energy
deposits left by electromagnetic showers of electrons and pions are simulated in
a toy detector. The more general layout of the toy detector is shown in Fig. 6.1.
The CaloChallenge contains three different datasets with increasing granularity,
corresponding to a difficulty ranging from low to high:

1. Dataset 1 [184] contains charged pion- and photon showers and is based on
the ATLAS GEANT4 open datasets [185], previously used for fast-simulation

1There are up to 20000 hits on dataset 3 of the CaloChallenge, and every hit now has 4
coordinates.

161
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Figure 6.1: Illustration of the toy detector from the CaloChallenge and its coordinate
system, taken from Ref. [183]. The detector consists of concentric cylinders. The
particles propagate along the z−axis. The three datasets differ in the granularity of
the detector, which corresponds to a difficulty level from low to high.

studies. The detector model for photon showers contains 368 voxels, and the
one for electron showers contains 533 voxels. For this dataset, the incoming
particles have one of 15 energy levels between 256 MeV to 4 TeV.

2. Dataset 2 [186] contains electron showers from electrons with an incoming
energy from 1 GeV to 1 TeV sampled according to a log-uniform distribution.
The detector consists of 45 layers in z-direction. Each layer has 144 readout
cells, of which 9 are in the radial and 16 in the angular direction. This yields a
total of 6480 voxels to simulate. This detector is simulated according to the
Par04 GEANT4 [187] fast simulation example.

3. Dataset 3 [188] is simulated like dataset 2, but the granularity of the detector is
different. It yields the same number of layers in z direction but has 18 bins in
radial direction and 50 in angular direction leading to a total of 40600 voxels.

Compared to the previously discussed generation of jets, the generation process on
the CaloChallenge datasets is concerned with conditional generation. Each shower
comes with the associated energy of the incident particle. This not only means
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that the model needs to generate seemingly real showers, but that these should also
correspond to the incoming energy that is given as input to the generative model.
This motivates the detector response as a statistic to consider during the evaluation
of the model. The detector response is the ratio between energy deposited in the
detector and the incoming energy of the particle:

response =
∑Ei

Einc
. (6.1)

6.2 Calorimeter Data as Point Clouds

Energy deposits in a calorimeter can be converted to a point cloud by assigning the
spatial coordinates of hits to the corresponding energy deposits. This representation
of calorimeter data as point clouds is beneficial for multiple reasons:

• Memory efficient: in highly granular calorimeters, like the HGCAL [50], the
energy deposits are sparse. The means that many of the 6.5 million channels
will be empty, i.e. have no energy deposits over the detector noise boundary.
The benefit of using a point cloud representation of energy deposits is that these
cells do not need to be simulated. But note that the point cloud representation
only becomes memory efficient if the detector occupancy (e.g. the ratio of hit
cells and total cells is below 25%, as 3 additional coordinates per energy deposit
are needed for the point cloud representation.

• Irregular Geometry: traditional data formats based on regular grids are unre-
alistic, since a real detector rarely has a regular shape. A prime example is
again the HGCAL, which not only has varying cell sizes, but also an irregular
layout consisting of different hexagonal structures.

• More general: a model that is trained to generate a point cloud can be
transferred more easily, as discussed in Sec. 6.3.4. This is not possible for a
voxel-based model that is bound to generate the geometry it was designed for.
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6.2.1 Dequantisation & Preprocessing

Since the data from the CaloChallenge is in a regular grid format, the data needs
to be converted to a point cloud representation before starting the training of a
point-cloud-based model.
The point cloud representation is obtained by assigning to every energy deposit its
indices in the three coordinates (zi, αj, Rk). It is not straightforward for a generative
model to have an integer output. Thus, the coordinates associated with the hits
need to be smeared, which is referred to as dequantisation. To compare the effects
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(a) Uniform Dequantisation
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(b) Linear Dequantisation

Figure 6.2: Comparison of different dequantisation methods on a Gamma distribution
with k = 1, θ = 2. For the dequantised distribution shown in red, samples are
drawn from the Gamma distribution. The sampled value is rounded down and
then dequantised. (left) For uniform dequantisation, artificial steps appear in the
dequantised distribution. (right) When using the linear dequantisation method, the
underlying and dequantised distribution are much more similar.

of different dequantisation methods, first a toy example is studied. The underlying
distribution is chosen to be a Gamma distribution with k = 1 and θ = 2:

f(x; k, θ) = θkxk−1e−θx

Γ(k) for x > 0, k > 0, θ > 0. (6.2)
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The dequantised distribution is obtained by sampling the Gamma distribution,
rounding the sampled value down and then applying the dequantisation. The
simplest form of dequantisation is to add uniformly distributed noise U(0, 1) to the
coordinates. But this leads to artificial steps in the distribution, as shown on the left
of Fig. 6.2. Not only are these steps artificial, but they can also pose difficulties for
the model to learn.
A more sophisticated approach is to linearly interpolate between neighbouring bins.
For this, a linearly increasing or decreasing distribution between neighbouring bins
is defined as:

p(x) = (yi+1 − yi)× x x ∈ [0, 1], (6.3)

where yi is the yield of the bin i of a histogram. This one-dimensional distribution is
then sampled with the use of the Probability Integral Transform to obtain noise that
linearly interpolates between neighbouring bins. The algorithm for this is given in
Alg. 4.

Algorithm 4 Sampling from Piecewise Linear Distribution
1: for each bin pair i and i+ 1 do
2: Define slope s = y1 − y0 ▷ y0 and y1 are values at bins i and i+ 1
3: Define Normalisation k = y0+y1

2 ▷
∫ 1

0 p(x)dx = 1
4: Define linear interpolation distribution p(x) = 1

k
(y0 + sx)

5: Define inverted CDF f(u) =
√
y

2
0+2s·k·u−y0

s

6: Sample uniform u ∼ U(0, 1)
7: Apply inverted CDF to obtain sample: xsample = f(u)
8: end for

Note that the absolute value of the slope s between neighbouring bins can at
max be two, due to the following two requirements for probability densities p:

1. The density needs to be normalised:
∫ 1

0 p(x)dx = 1,

2. The density must be non-negative p(x) ≥ 0.

The right of Fig. 6.2 shows that the linear dequantisation approximates the
underlying density significantly more closely2.

2For the CaloChallenge a subtlety is what the underlying distribution is. One could argue that
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Thus, for the CaloChallenge the linear dequantisation is used. Since there is al-
ready a uniform distribution in the polar angle α, only the coordinates z and R

are dequantised. To compare, Figure 6.3 shows the results of linear and uniform
dequantisation.
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Figure 6.3: Comparison of uniform and linear dequantisation on the CaloChallenge
data. (top) In the layer coordinate z the steps are not visible by eye due to the
high granularity. (bottom) In the radial coordinate R the steps of the uniform
dequantisation are visible, the results from the linear dequantisation are much
smoother.

For the training, the energy of hits is Box-Cox transformed. The hit coordinates

the underlying distribution is the one that is measured, and hence is the quantised distribution.
However, from a physical point of view, the assumption that the underlying distribution should be
smooth between bins certainly holds.
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are first scaled to [0, 1] by subtracting the minimum and dividing by the differ-
ence between the maximum to the minimum (Min-Max scaling). Then the logit
transformation, given in Eq. 6.4 is applied, such that the data lies in (−∞,∞)3.

logit(x) = log x
1− x (6.4)

Finally, the data is standard scaled, as with the JetNet datasets.

6.3 Mean-field Aggregation for the CaloChallenge

Since the goal is to sample the conditional distribution p(x|Einc), the architecture
has to be slightly modified. Instead of only conditioning the mean-field x̄ with the
number of points, now additionally the incoming energy Einc is used. The fully
connected layer Ω used for JetNet150, now only takes the conditions (Einc, n) as
input and maps them to the same dimension as the mean-field x̄. Then, a gated
linear unit is applied:

GLU(x̄,Ω(Einc, n)) = x̄⊗ σ(Ω(Einc, n)), (6.5)

where the σ is a sigmoid function and ⊗ represents element-wise multiplication.
The updated architecture is shown in Fig. 6.4. Other than that, the architecture
remains the same as before. For the training on the CaloChallenge, the size of
the MDMA-Flow was reduced to be in the same order of magnitude as for the
MDMA-GAN, which is done to for two reasons. The former is that the comparison
of the models more fair this way. The latter is that due to the large cloud cardinality
on dataset 3, the training of the model would require a batch size of the order O(1).
Similarly, as on the JetNet150 dataset, the CNF trained with CFM is trained on
the CaloChallenge datasets. The architecture is adapted to conditional generation
identically to the GAN.

3To suppress infinities arising from the logit transformation, the output of the Min-Max scaling
is clamped between (10−5, 1− 10−5).
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Figure 6.4: The main block of the MDMA architecture for the CaloChallenge,
modifications of the previous block are marked in red. The fully connected layer Ω
is replaced by a Gated Linear Unit, and the incoming energy of the electron is used
as an additional condition. Note that the cosine embedding of the time is not shown
in this figure, since it only concerns the MDMA-Flow. However, it is implemented
the same way as shown in Fig. 5.16.
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6.3.1 Sampling Synthetic Data

During the evaluation of the model, it was omitted that for the point-cloud-based
model, not only the energy of the incoming electron is needed as a condition, but also
the number of hits as an implicit input, since the model generates as many points as
it receives noise inputs. In practice, another model would be needed that predicts
the number of points as a function of the incoming energy of the electron. For the
following testing, the number of hits associated with an incoming energy from the
testing set was used. In Appendix C.2, the results are shown when the number of
hits is deduced from the incoming energy of the electron.

6.3.2 Post-processing

When converting the voxel representation to the point cloud representation, an
issue with the conversion in the angular coordinate α was overlooked. The indexing
in angular direction starts from zero and ends in the number of voxels in angular
direction αmax. Thus, in the point cloud representation, the maximum number of bins
is closer in space than the third bin. The model is unable to learn this periodicity
in α as shown in Fig. 6.5, which shows the energy-weighted angular distribution of
samples drawn from the generative model.

A simple way to resolve this, is to rotate generated showers by a random angle,
which is sampled from the uniform distribution between U(0, αmax). Note that the
rotation does not change anything about the structure of the shower, since all hits
in a shower are rotated by the same angle. However, this makes use of the angular
symmetry of the detector, which makes the model less general. But, here it is used
to treat an issue most probably arising from the representation of the dataset.
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Figure 6.5: The effect of neglecting the periodicity in the angular coordinate α
becomes apparent in the energy-weighted histograms of α, especially for the MDMA-
GAN (red). (left) Output of the α coordinates of showers drawn from the model.
The model is unable to learn the uniform distribution. (right) Rotating showers by a
random angle resolves this.
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6.3.3 Results on Dataset 2

In Fig. 6.6 the marginal distributions of samples simulated by GEANT4 and synthetic
samples drawn from the MDMA-GAN and MDMA-Flow are shown. Although the
results of the MDMA-Flow and MDMA-GAN seem similar, the ratio below histogram
of the z coordinate reveals that the MDMA-Flow agrees much better with the
GEANT4 distribution. Note that the energy E is given in units of MeV. Figure 6.7
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Figure 6.6: Comparison of the GEANT4 simulated showers (blue) to synthetic
samples drawn from the MDMA-GAN and MDMA-Flow. The figure depicts the
marginal histograms over all generated showers and all generated hits. From left
to right, top to bottom, the distribution of the energy and the forward-, angular-
and radial coordinates are shown. Below each figure, the ratio between the yields
of GEANT4 and synthetic data generated hits is shown. The MDMA-GAN (red)
models the z-coordinate significantly worse than the MDMA-flow (yellow).
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shows the energy-weighted coordinate histograms, i.e. the energy deposited in the
calorimeter per coordinate direction.
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Figure 6.7: The energy-weighted histograms of the forward-, angular- and radial
coordinates are shown, with the ratio of GEANT4 data yields divided by synthetic
data yields below each histogram. The ratio reveals that there is significant mis-
modelling, especially in energy deposited per layer in the forward z and radial R
direction. However, the MDMA-Flow (yellow) models all distributions significantly
better than the MDMA-GAN (red).

A histogram of the detector response, given as the ratio of the deposited energy
and the incoming energy

∑
Ei

Einc
is shown in Fig. 6.8. The MDMA-Flow also models

the shape of the response more accurately than the MDMA-GAN.
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Figure 6.8: Histograms of the detector response for GEANT4 simulated (blue) and
synthetic showers from the MDMA-GAN (red) and MDMA-Flow (yellow). (left)
The MDMA-Flow models the detector response more accurately on dataset 2. (right)
The MDMA-Flow also models the detector response more accurately on dataset 3.
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6.3.4 Results on Dataset 3

On dataset 2, there are up to ∼ 4500 hits per shower, which already restricts the
model size during training. But for dataset 3 there are up to ∼ 20′000 hits. This
results in a much slower training, since the batch size needs to be reduced by another
factor of 5, making training from scratch not feasible. Luckily, the point-cloud-based
models show an impressive generalising property. The model trained on dataset 2
can be fine-tuned on dataset 3, and after a single epoch it already produces promising
results. The final model is trained for 200 epochs with a reduced learning rate of
10−6. The marginal histograms are depicted in Fig. 6.9 and the energy-weighted
histograms are shown in Fig. 6.10. The response of the detector is shown on the
right of Fig. 6.8. In Fig. 6.10 the energy-weighted histograms are shown.
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Figure 6.9: Results on dataset 3 of the CaloChallenge. The GEANT4 simulated
showers (blue) are compared to samples drawn from the MDMA-GAN (red) and
MDMA-Flow (yellow). The figure shows the marginal histograms over all generated
hits from all generated showers. From left to right, top to bottom, the distribution of
the energy and the forward-, angular- and radial coordinates are shown. Below each
figure, the ratio between the yields of GEANT4 and synthetic data yields is shown.
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Figure 6.10: The energy-weighted histograms of the forward-, angular- and radial
coordinates on dataset 3 are shown. Below each histogram, the ratio of GEANT4
data yields divided by synthetic data yields is shown. The ratio reveals that there is
significant mismodelling, especially in energy deposited per layer z. The MDMA-Flow
(yellow) models all distributions significantly better than the MDMA-GAN (red).
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6.3.5 Mapping Back to the Voxel Representation

As a last step, the point cloud needs to be converted back to the voxel representation.
But here an issue of the point cloud representation arises. Nothing restricts the
model from placing multiple hits in the same detector voxel, especially, since the
model only sees a continuous point cloud space after the coordinates have been
dequantised. To account for this, hits with the same (quantised) coordinates are
moved to neighbouring cells in a post-processing step. Note that the hardest hit per
cell is not moved. Figure 6.11 shows the effect of this post-processing on dataset 2
and 3 for the MDMA-GAN, where histograms of the number of voxels with energy
deposits per shower are depicted. The results for the MDMA-Flow are very similar
and are shown in Appendix C.1.
During the work on the CaloChallenge, this post-processing and further utilities for
dealing with point clouds representation of detectors were published in the caloutils
python library [189] together with M. Scham.
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Figure 6.11: Histograms of the number of hits created by the GEANT4 (blue)
simulation and after the voxelisation of the samples drawn from the MDMA-GAN
(red), together with the effect of the post-processing (yellow). (left) On dataset 2,
the model is unable to generate showers, which hit more than 4000 cells, although
there are showers with up to 5000 hits in the GEANT4 data. The post-processing
effectively lowers the discrepancy between the GEANT4 simulation and MDMA-GAN
(right) On dataset 3, the post-processing improves the agreement between the model
and GEANT4 distribution even more.
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6.4 Quantitative Comparison

The organizers of the CaloChallenge provide a classifier for the evaluation, similarly
as it was used in this thesis in Section 4.8.2. There are two classifiers available:

1. High-level classifier: this classifier takes as input high-level features extracted
from the voxel-based representation of the showers. The following statistics
serve as high-level features:

• Total energy of the shower Etot

• Energies per layer Ei
• Centres of energy in η and ϕ per layer

• Width of centre of energy in η and ϕ per layer

2. Low-level classifier: this classifier takes as input all voxels. It is a fairly simple
fully connected 2-layer classified with 512 hidden features per layer with no
strong inductive bias designed for the problem (i.e. rotational symmetry, strong
correlation between neighbouring cells).

In the following, the AUC of both classifiers are given as a performance measure.
Additionally, the average time to generate a shower is given for every model. As a
reference, the average generation time of the GEANT4 simulation per shower is given
as well. It might seem misleading to quote the average time because the generation
time of GEANT4 scales linearly with the energy of the incoming electron, as shown
in Fig. 6.12. As mentioned previously, the energy of the incoming electron is sampled
from a log-uniform distribution between 1 Gev and 1 TeV for these datasets. But as
Fig. 6.13 reveals, the same approximatively holds for the generative model. Thus,
the mean generation time per shower is quoted4. The number of parameters of both
models are given additionally.

4To estimate the mean generation time, the mean of a log-uniform distribution between 0.1 s
and 100 s is used.
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Figure 6.12: The generation time of GEANT4 (blue) from Ref. [190] for dataset 2
and dataset 3 is linearly dependent on the energy of the incoming electron. The
figure also shows other contributions to the total generation time that are often
neglected in generative models. The contribution related to loading and storing the
generated data (red) is constant as a function of the energy. The mapping of the
generated hits to the cells (green) is linearly dependent on the energy. The total of
these two contributions (yellow) defines the minimum time any generative model
would need in practice.
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Figure 6.13: The generation time of the generative model also approximately scales
linearly with the energy. The left figure shows, that the number of hits per shower is
approximately linearly dependent on the energy of the incoming electron. The right
figure reveals that the generation time depends linearly on the number of cells that
are hit.

Table 6.1: Comparison of the proposed models on dataset 2 and dataset 3 of the
CaloChallenge. For the average time for GEANT4, see text.

Dataset Model AUC (low-level) AUC (high-level) Time [ms] #parameters

Dataset 2
MDMA-GAN 0.94 0.80 1.1 139 k
MDMA-Flow 0.92 0.76 313.6 257 k
GEANT4 - - ∼ 14× 103 -

Dataset 3
MDMA-GAN 0.90 0.93 3.4 139 k
MDMA-Flow 0.84 0.86 1005 257 k
GEANT4 - - ∼ 14× 103 -
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6.5 Discussion

The quantitative results confirm what the qualitative results suggested. The distribu-
tion of the MDMA-Flow samples appears to be more compatible with the GEANT4
distribution, than its GAN counterpart, since a lower AUC means that the classifier
is worse at separating the two distributions. Note, that here the MDMA-Flow was
restricted to a smaller number of parameters, such that it is also trainable on dataset
3. The GAN is in terms of generation speed significantly faster, but in practice,
e.g. to tackle most of the computing requirements of the HL-LHC, a generation time
reduction of a factor 104 is not necessary, one order of magnitude would be sufficient.
Furthermore, that the models are assigning multiple hits to the same coordinates
could be caused by the attention-based aggregation, which allows the models to
disregard less important points in the point cloud. From a physics perspective, these
more important points are expected to be the more energetic hits in the shower.
Therefore, the models could pay less attention to the lower energetic hits in the
shower, and place them wherever in the detector, leading to the many double hits.
However, Figure 6.9 indicates that both models do not learn the high-energy tail
of the energy distribution accurately, which could contradict this argument. How-
ever, considering that the energy-weighted distributions agree much better with the
GEANT4, as shown in Fig. 6.10, the inaccurate modelling of the higher-energy tail
could arise from the low statistics in that region.
Different from the MDMA-GAN, scaling up the number of parameters of the MDMA-
Flow improved the performance on the JetNet150 datasets. Thus, an interesting
direction for future work is to explore the dependence of the performance of model
size and the amount of training data. The most interesting property of the point-
cloud-based model is that it is transferable from dataset 2 to dataset 3 fairly easily.
It is unexpected that there is such a large benefit of fine-tuning a pretrained model,
where the number of hits is that different.
This motivates the stage-wise training of a point-cloud-based model, directly on the
output of GEANT4, without matching the GEANT4 hits to cells. In this context,
the stages refer to different clusterings of the GEANT4 point cloud, with a clustering
radius that gets reduced for later stages. This would circumvent multiple issues, such
as the need to dequantise or the treatment of periodicity in the angular coordinate
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because a different coordinate system can be chosen. The stage-wise training also
makes the training significantly more efficient in terms of training time.
Generally, it is promising to see that the model, which was designed for the generation
of jets, also performs well on conditioned calorimeter simulation. This could further
motivate the use of foundation models in HEP, as already discussed in Ref. [191].
Overall, I think that point-cloud-based models are a promising direction for future
work, especially in calorimeter simulation. Many other models that took part in the
CaloChallenge were working on a grid-based representation. However, I believe that
in practice this is not directly transferable to a realistic detector and that the point
clouds are a more natural representation for calorimeter showers.
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CHAPTER7
Modelling Parametrised
Distributions

The kinematic distributions from the recoreded events left by a beyond SM physics
process, like a supersymmetric extension of the SM, are dependent on a priori unknown
parameters. To search for signatures of the process, samples are generated for many
parameter combinations to trace the likelihood of these unknown parameters by
comparing simulated distributions to data. However, since even for the MSSM there
are too free parameters, simplified models are usually studied by experimentalists to
focus only on a subset of parameters that have an effective impact on the distributions
for a given selection of events. For the simplified model studied in this chapter, there
are three a priori unknown mass parameters that are scanned. These are the masses
of the gluino mg̃, the chargino m

χ̃
±
1

, and the neutralino m
χ̃

0
1
, where the latter is the

LSP. Due to the many possible combinations of these three parameters, the chargino
mass is usually expressed as a function of the gluino mass and the LSP mass:

m
χ̃

±
1

=
m
χ̃

0
1

+mg̃

2 . (7.1)

Otherwise, generating MC samples for every combination is computationally infea-
sible. The impact of this arbitrary choice of the chargino mass on the sensitivity
of a signal versus background classifier is investigated in this chapter. It is further
studied how well a generative model can interpolate between the distributions for

185
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different parameter choices, i.e. learn and model the dependence of the distribution
on the unknown parameter.
First, a toy example of a parametrised two-dimensional Gaussian distribution is dis-
cussed. This two-dimensional example highlights the differences between Continuous
Normalising Flows (CNFs), trained with Conditional Flow Matching (CFM) and
Optimal Transport-based Conditional Flow Matching (OT-CFM), and conditioned
discrete Normalising Flows1 (NFs) to show which model is more suitable to morph
one distribution into another. Then, the potential problems with using an NN-based
classifier to distinguish between a parameterised signal distribution and a background
distribution are explored. Lastly, a search for signatures left by particles arising from
a supersymmetric extension of the SM is introduced. For this, the framework of the
simplified model T5qqqqWW for gluino pair production is used. On this dataset, the
same studies as on the two-dimensional examples are discussed, and it is investigated
whether synthetic data benefits the median statistical significance of the search.

7.1 Rotating Multivariate Gaussian

In the toy example, a family of Gaussian distributions is studied. The distributions
are parametrised by an angle ϕ, which rotates the covariance matrix Σ:

Σ =
 1.0 −0.99
−0.99 1.0

 . (7.2)

The rotation matrix R is given by:

R(ϕ) =
 cosϕ − sinϕ
− sinϕ cosϕ

 . (7.3)

The rotated covariance is then given by:

Σrotated(ϕ) = R(ϕ)ΣR(ϕ)T . (7.4)

1Note that starting from here, the “discrete” is not omitted any more, to reduce the confusion
of the many acronyms and models.
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Figure 7.1: The toy distribution has a free parameter ϕ that rotates the covariance
matrix of the Gaussian. Note that the two dimensions of the Gaussian are strongly
negatively correlated. From left to right, 5 equidistant steps of the rotation from 0
to π

2 are depicted. The second distribution at ϕ = π
8 is defined to be the distribution

chosen by nature.

This rotation of the distribution is illustrated in Fig. 7.1 for 5 different angles ϕ
between 0 and π

2 . This angle ϕ stands in correspondence to the chargino mass from
the SUSY application discussed later, as the distribution is dependent on the value
of this parameter. The range of [0, π2 ] covers all possible distributions.
To further draw the analogy to particle physics, it is assumed that the “true”
distribution in “nature” is realised for one particular choice of ϕ = π

8 . It is then
studied whether an NN-based classifier is sensitive to the true signal distribution, if
it was trained on signal distributions from different choices of the parameter ϕ. The
background in these studies is given by a standard Gaussian distribution N (0, I2),
which overlaps with the signal distribution for all choices of ϕ. It is then investigated,
whether a generative model can capture the dependence of the distribution on the
parameter ϕ. In this example, the generative model is thus trained to transform the
signal distribution from ϕ = 0 to ϕ = π

2 .

7.1.1 Modelling the Dependence on ϕ

As was shown previously, normalising flows and their continuous version, perform best
at modelling unknown low-dimensional distributions. However, here the goal is not
to model a target distribution, but instead to model a whole family of distributions.
Conditioned discrete NFs would provide a suitable candidate, but since in practice
only samples from few choices of the underlying parameter ϕ are available, it is
unclear how well NFs can model this dependence. CNFs trained with (OT-)CFM
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Figure 7.2: The figure depicts samples drawn from a conditioned discrete NF that
was trained on samples of the first and fifth distribution. The condition of the
start- and endpoint are chosen to be −1 and 1. The three figures in the middle are
samples for the condition chosen to be [−1

2 , 0,
1
2 ] respectively. This figure shows that

conditioned discrete NFs are not the optimal candidate.

provide a more suitable inductive bias, since they are directly trained to transform
one distribution into another.

7.1.2 Conditioned Discrete Normalising Flows

The same conditioned discrete NF architecture from Section 4.4.4 is used and trained
on samples from the Gaussian distribution with the rotated covariance matrix
Σrotated(ϕ) at ϕ = 0 and ϕ = π

2 . In this case, the condition in this context is the
angle ϕ which is arbitrarily set to −1 for ϕ = 0 and 1 for ϕ = π

2 . The NF is then
evaluated at 5 different values of the condition [−1,−0.5, 0, 0.5, 1] corresponding to
ϕ = π

2 ·
i
4 , i ∈ [0, 1, 2, 3, 4].

These results are depicted in Fig. 7.2. Although the NF excels at modelling the
distribution at the start- and endpoint, it does not capture the dependence on the
condition as desired, rather it produces a mixture of samples from the start- and
endpoint. However, this should be expected since the NF is not incentivised during
training to enforce a smooth transformation between different values of the condition.

7.1.3 Continuos Normalising Flows

It was shown already in Section 4.7.3 in Fig. 4.19c that CNFs trained with OT-CFM
can smoothly transform a chosen distribution into another. Hence, they are also
a promising candidate for this application. In Fig. 7.3 the results of training a
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Figure 7.3: The figure depicts samples drawn from the trajectory of a continuous NF
that was trained with OT-CFM to transform the Gaussian and ϕ = 0 in the Gaussian
where the covariance matrix has been rotated by an angle ϕ = π

2 . Surprisingly, the
OT path of the CFM seems to go through a Gaussian distribution with a diagonal
covariance matrix.

CNF on the rotating Gaussian example are depicted. At first, one might think
that the results of this are worse than for the NF, but there is a subtle but crucial
detail in this example. The dependence of the distribution as a function of ϕ is
not equal to the optimal transport path. The CNF moves points that are above
the diagonal, which goes from (−∞,∞) to (∞,−∞), to the top right, and points
below the diagonal to the bottom left. This is best illustrated when plotting the
trajectory of individual points during the solution of the ODE, as depicted in Fig. 7.4.
Introducing a midpoint during the training of the CNF, fixes the path of the CNF
to the desired one. Instead of moving the points from the distribution at ϕ = 0 to
ϕ = π

2 , the model is trained to first move the distribution at ϕ = 0 to π
4 and from

there to the distribution at π
2 . The results from training on this setup are depicted

in Fig. 7.5, yielding the desired results.
Note that there is a significant conceptual difference between using conditioned

discrete NF or CNFs to transform a distribution into another. In the NF case, the
model is trained to transform the distribution ϕ = 0 and ϕ = π

2 to a Gaussian. The
condition in this case just helps to disentangle the latent space, as was shown in
Section 4.4.4 in Fig. 4.16. In the CNF trained with CFM, the model is specifically
trained to transform a chosen distribution to the other.
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= 0
Trajectory

= 2

= 0
Trajectory

= 2

Figure 7.4: Trajectories of the points that are moved by the CNF. Due to the
ambiguity of possible paths, the CNF treats points above the diagonal differently
than points below the diagonal. (left) Points above the diagonal, i.e. points for which
the sum of the first and second coordinate is greater than zero, are moved to the top
right. (right) Points below the diagonal are moved to the bottom left.

Figure 7.5: Results of training the CNF with OT-CFM, when constraining the
possible paths by adding a midpoint through which the CNF should transport the
distribution. The results are nearly indistinguishable from the true distribution that
was used to generate the samples.
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To comprehensively compare the different approaches, Fig. 7.6 depicts the results
when training on a dataset that contains the midpoint of a discrete NF and CNFs
trained with CFM and OT-CFM2. Even though the midpoint is added, neither the
CNF trained with CFM, nor the discrete NF do not produce the desired results, since
the distribution at ϕ ∈ [π8 ,

3π
8 ] is significantly different from the underlying distribution,

at these parameter choices. Together with the results from Section 4.7.4, this suggests
that CNFs trained with OT-CFM provide the best candidate to interpolate between
two distributions.

2For the NF the condition corresponding to the midpoint is chosen to be 0.
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(a) NF

(b) CNF with CFM

(c) CNF with OT-CFM

Figure 7.6: Comparison of the different models used to transform one distribution
into another. (top) Adding the midpoint to the training certainly improves the
modelling at ϕ = 0. However, the samples at ϕ = π

8 and ϕ = 3π
8 show significant

differences to the desired distribution. (middle) The CNF trained with CFM also
does not model the 2nd and 4th distribution correctly. (bottom) The OT-CFM
performs best at modelling the dependence of the distribution of ϕ.
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A Different Perspective on Generative Models

In the previous chapters, NFs, GANs and CNFs were used to generate synthetic
data. The generative models were considered black boxes, that create synthetic data
from noise. However, generative models can be seen as transformations that reshape
a standard Gaussian distribution to the distribution of PYTHIA/GEANT4 data.
Using the OT-CFM framework to construct the probability path, further enforces
that this reshaping is done with minimal transport cost. From this perspective, it
becomes clear why discrete NFs are not the best candidates for the transformation
of a chosen distribution into another, since they are usually trained to transform the
data distribution into a standard Gaussian distribution3.

7.1.4 Binary Classification Studies

Here, the parallel to the HEP searches for new particles is explored further. An
NN-based classifier is commonly used to isolate signatures left by potential beyond
SM physics, hidden in the large SM background. On the toy example, a standard
Gaussian distribution N (0, I2) is used to represent the background distribution. Two
training paradigms are compared:

1. Baseline approach: a classifier is trained on signal samples from the underlying
distribution at ϕ = {0, π4 ,

π
2}.

2. Interpolation approach: a classifier is trained on signal data drawn from the
CNF, which was trained to transform the signal distribution from ϕ = 0 to
ϕ = π

2 . Note that the midpoint at π
4 is used during training as discussed

previously. To generate the signal samples, the ODE associated with the CNF
is solved from t = [0, 1] with 200 time steps. Then, the signal samples are
drawn uniformly from all time steps.

Note, that both approaches have access to the equal amount of “real” data drawn
from the ground truth distributions. In this toy example, both models are tested on
a sample of the underlying, unseen “true” distribution at ϕ = π

8 .
3Note that two NFs ϕ1, ϕ2 can transform one distribution (X1) into another (X2) by transforming

to an intermediary Gaussian X2 = ϕ−1
2 ⊙ ϕ1(X1). But this construction will always go through a

standard Gaussian, which is not desired.



194 Chapter 7. Modelling Parametrised Distributions

0.0 0.2 0.4 0.6 0.8 1.0
y

100

101

102

103

104

105

Co
un

ts

Background
Signal

(a) Baseline

0.0 0.2 0.4 0.6 0.8 1.0
y

100

101

102

103

104

105

Co
un

ts

Background
Signal

(b) Interpolation

Figure 7.7: Validation of the baseline and interpolation training paradigm on a
holdout dataset, where the signal samples come from the same ϕ choice as seen during
training. The figure shows the prediction ŷ on signal samples (red) and background
samples (blue). (left) The baseline classifier performs better at recognising signal
samples and is also slightly better at rejecting background samples. (right) For the
classifier that was trained on synthetic signal samples from the CNF, a large portion
of the signal is predicted to be background.

The classifier is a simple fully connected NN, with 4 layers with 128 nodes each. It
is trained with Focal Loss with γ = 1.5, described in Section 3.1.1. As validation of
the training, both models are evaluated on an independent set of samples coming
from the same distribution as seen during training, i.e. the signal distributions
for ϕ ∈ [0, π4 ,

π
2 ]. Figure 7.7 depicts the output of both classifiers ŷ on signal and

background samples. The figure indicates that the baseline classifier is better at
recognising signal samples and also slightly better at rejecting background samples.
However, when testing the classifier on signal samples from the distribution with
ϕ = π

8 , the benefits of the training on the synthetic samples become apparent. The
corresponding results are depicted in Fig. 7.8, which again shows the output of
the classifier ŷ for signal and background samples. On the left, the prediction of
the baseline classifier is depicted, which highlights that the baseline classifier does
not recognise the signal for a different ϕ choice. On the right, the prediction of
the classifier that was trained on synthetic signal samples coming from the CNF is
depicted. This classifier predicts the correct class (ŷ > 0.5) for the majority of signal
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samples, which strongly motivates the idea that the synthetic data can be used to
improve the classifier sensitivity to the signal. It is also interesting to see that it
performs significantly better than on the validation. A possible explanation for this
is that the signal at ϕ = 0 and ϕ = π

2 are at the boundaries of the signal support.
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Figure 7.8: Comparison of the baseline classifier to the one trained on signals samples
drawn from the generative model. The figure shows the output of the classifier ŷ for
signal samples (red) at ϕ = π

8 and background samples (blue). (left) The baseline
classifier does not recognise the signal coming from the signal distribution, as it is
almost identically distributed as the background distribution. (right) The model,
which was trained on the synthetic signal samples from the CNF, recognises the
signal class significantly better.
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Figure 7.9: The figure depicts samples from the background class (blue) and samples
drawn from the generative model (red) that interpolates between the signal distri-
butions at ϕ = 0 and ϕ = π

2 . Note that in this context, a sample refers to a single
point, with two coordinates. By construction, both classes have significant overlap,
which makes it difficult for a classifier to distinguish the two classes.
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Considering the support of the signal and background distribution as visualised
in Fig. 7.9 raises an important point. The signal class not only completely overlaps
with the background distribution, but the density is also similar and only a factor
two higher than the background distribution. To make the distribution of the two
classes more separable, a four-dimensional toy example is constructed. Instead of
drawing one sample x = (x1, x2) from the signal and background distribution, two
samples x,y are drawn and concatenated4, yielding a four-dimensional sample:

z = (x,y) = (x1, x2, y1, y2) ∈ R4. (7.5)

This leads to a different classification problem, which is now over a four-dimensional
space, where a distinctive signature is present in signal samples, which a classifier
can use to distinguish versus the background. Namely, a line connecting the former
and latter two coordinates has a small vertical distance to the origin for signal
samples, which is very unlikely for background samples. The performance of the two
approaches on the higher dimensional problem is shown in Fig. 7.10 and motivate
the training on the synthetic signal samples even further, as now the interpolation
approach gets even better at recognising the signal and does not get significantly
worse at rejecting background samples.

Note that the CNF is modelling the dependence of the signal distribution on
ϕ exceptionally well on this toy example. Furthermore, the overlap of the signal
distributions for different choices on ϕ is small, which can explain the observed results.
However, it is still interesting to see how badly the baseline classifier performs on data
for different choices of ϕ than it has seen during training. It is especially interesting
to see that the baseline classifier also performs as badly on the higher dimensional
problem. This indicates that the classifier trained with the baseline approach does
not learn the signal-specific signature, that a line connecting the first two coordinates
with the last two coordinates passes close by the origin. To draw the correspondence
to the SUSY search; the parameter underlying the beyond SM signal distribution,
i.e. the chargino mass, is a priori unknown, similar to the parameter ϕ on this toy
example. However, for the training of the classifier a choice for its value needed

4Note, that these two samples always come from either the signal or background distribution.
Additionally, the signal samples always come from the same choice of ϕ.
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Figure 7.10: Comparison of a baseline classifier to the one that was trained on signals
from the generative model evaluated for the data distribution, where ϕ = π

8 . A
histogram of the predictions ŷ on background samples (blue) and signal samples
(red) is shown, (left) Although the baseline classifier could learn that signal samples
lie close to a line through the origin when projected to a two-dimensional plane, it
does not generalise and does not recognise the signal distribution with ϕ = π

8 at
all. (right) The model that is trained on the synthetic signal samples drawn from
the generative model not only recognises the signal class accurately, but the similar
shapes of the background distribution shown on the left and right suggest, that the
classifier does not get significantly worse at recognising background samples as before
on the two-dimensional classification.
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to be made. But it is very unlikely that the signal distribution for the parameter
choice of nature is identical to the one from the training distribution. The current
approach employed in the search for gluino pair production is similar to the baseline
approach5. However, in this study, this lead to a classifier that did not recognise the
signal from other parameter choices.

5However, instead of samples from three values of the chargino mass, only samples of one choice
are used.
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7.2 Search for Gluino Pair Production

Now that the concepts have been established, the analysis of the simplified model
for gluino pair production (T5qqqqWW) is introduced. The signature left by the
signal process is characterised by a high jet multiplicity, a large missing transverse
momentum pmiss

T and the presence of two W bosons. The analysis focuses on the
case where one of the two W bosons decays leptonically to a muon µ± or an electron
e± together with a neutrino ν. Since the gluino mass is chosen to be in the TeV
range, its decay products are expected to carry a high transverse momentum, which
motivates the use of hadronic transverse momentum, defined as the sum of the
transverse momentum of all jets. Before introducing the signal region, b tagging,
an important concept common in HEP, needs to be introduced, which refers to the
identification of b jets. Due to the long lifetime of b mesons (∼ 1.6 ·10−12), they travel
some distance before decaying. This can can be used to identify jets originating from
b quarks. In this thesis, the deepJet tagger [192] is employed to tag b jets. The
signal region of the simplified model considered here requires the absence of b tagged
jets to suppress background from top pair production, since tops almost exclusively
decay to b quarks together with a W boson. The main selection criteria used to
define the signal region are given in Table 7.16.

Table 7.1: Signal region cuts

Leptons with pT > 25 GeV: nleptons = 1
Hardest jet: pjet,1

T > 80 GeV
Second-hardest jet: pjet,1

T > 80 GeV
LT = pmiss

T + plep
T : LT > 250 GeV

HT = ∑
jets pT: HT > 500 GeV

Number of jets: njets ≥ 5
Number of b-tagged jets: nb = 0

Figure 7.11 shows the signal and the different background contributions in the
signal region. For the signal sample, the gluino and neutralino mass were chosen
as mg̃ = 2200 GeV and m

χ̃
0
1

= 100 GeV respectively. The chargino mass m
χ̃

±
1

is set
6For brevity some aspects are omitted, e.g. the criteria for good and veto leptons, the choice of

the b-tagging working point and more. The detailed signal region definition is given in Ref. [193].
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to the mean of both masses, or equivalently the LSP mass plus half of the mass
difference. Going from left to right, top to bottom, the first nine plots show the
transverse momentum pT, the pseudorapidity η and the azimuthal angle ϕ of the
lepton and the two hardest jets. Next is the HT and then the distribution of the
number of jets is shown. Following are the masses of the two hardest jets, the
magnitude of the missing transverse momentum magnitude p miss

T =
∣∣∣p miss
T

∣∣∣ and its
azimuthal component ϕmiss. The missing transverse momentum is an important
variable for most searches for dark matter candidates. It is based on momentum
conservation in the x-y plane and is defined as the negative vectorial sum of the
transverse momentum of all reconstructed particles. Since the neutralino is stable,
it evades detection, leading to a significant momentum imbalance in the transverse
plane.
The final plot depicts ∆ϕ, which is the angle in the transverse plane between the
lepton and the reconstructed W boson. The W boson is reconstructed assuming
that the pmiss

T comes exclusively from the neutrino arising from the leptonic W decay.
The ∆ϕ variable is especially discriminative versus SM backgrounds, since for signal
events, the p miss

T vector is randomised by the transverse momentum of the LSPs, as
illustrated in Fig. 7.12. Note that it peaks at 0 for the SM background because the
lepton and the W are strongly correlated.
The background is simulated by the full simulation of the CMS detector, and the
signal is simulated with the FastSim package. A striking difference between the two
simulation approaches is that for FastSim the collision point is assumed to be in the
exact middle of the detector, which is not the case in the real experiment, something
that is accounted for in the full simulation. The effect of the collision point not being
in the exact centre of the x-y plane leads to a modulation in ϕ, which is especially
apparent in the azimuthal component of the missing transverse momentum ϕmiss.
This needs to be considered when training the signal versus background classifier by
reweighting the signal samples based on their ϕmiss, as discussed in Section 7.2.4.
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Figure 7.11: Signal and background composition in the signal region of the search
after gluino pair production. The background class “Rare” contains the production
of top quarks in association with vector-bosons and diboson contributions.
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Figure 7.12: Schematic describing the calculation of the ∆ϕ. (left) For background
events, the only source of missing transverse momentum comes from the neutrino ν
coming from the W decay and thus ∆ϕ clusters at small values, since the lepton l
and pmiss

T are strongly correlated. (right) For signal events, the pmiss
T is randomised

by the pmiss
T arising from the two neutralinos that evade detection.

7.2.1 Interpolating the Dependence on the Chargino Mass

Here, the angle ϕ from the previous study on the rotating Gaussian is identified by
the chargino mass m

χ̃
±
1

. This identification also brings important considerations as
for the rotating Gaussian, the choice of path had to be implicitly constrained by
choosing a midpoint, such that points only move in a horizontal direction. Now,
it is difficult to generalise such a constraint to a higher dimensional space, not to
speak of the physical constraints that could be present in physics data. However,
the exploration of such a constraint is an interesting direction for future work, fusing
ML even further with HEP.
For the following, MC samples of the signal are produced at three different values of
the chargino masses determined by the mass mixing ϵ:

m
χ̃

±
1

= m
χ̃

0
1

+ ϵ · (mg̃ −mχ̃
0
1
), ϵ ∈ {0.25, 0.5, 0.75}. (7.6)

Note that the sample at ϵ = 50% mass mixing is not used during training, unless
stated explicitly, and serves to test the generalisation property of the classifiers
trained with the training paradigms included in the following. In Fig. 7.13 the
previously shown histograms are depicted for the different choice of the chargino
mass. They reveal that there are significant differences between the different choices
of the chargino mass. The first 15 histograms depict the variables that go into
the signal versus the background classifier. The last subfigure on the bottom right
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depicts ∆ϕ, which is a discriminating variable between the different chargino masses.
As previously discussed, it is calculated from the lepton pT and pmiss

T . Similar to
the relative invariant mass studied in Chapter 5, it serves as a powerful summary
statistic to test whether the generative model can capture the correlations between
the variables accurately.

For this training, three different kinds of preprocessing are used for the different
groups of variables:

1. Box-Cox scaling was used on the following variables that follow an approxi-
mately exponential distribution: [plep

T , pjet,1
T , pjet,2

T , pmiss
T ,mjet,1,mjet,2, HT ]

2. Standard scaling was used for the approximately Gaussian distributed variables:
[ηlep
T , ηjet,1

T , ηjet,2
T , njets]. Note that the number of jets njets was dequantised first

by adding uniform noise.

3. A Quantile scaling, which makes use of the Probability Integral Transform, to
transform from an approximately uniform distribution to a standard Gaussian
distribution was used for: [ϕlep, ϕjet,1, ϕjet,2, ϕmiss]

A CNF is then trained with OT-CFM to transform the data distribution at
ϵ = 25% mass mixing into the one at ϵ = 75% mass mixing. Note that unlike
previously, the midpoint at ϵ = 50% mass mixing is not used to train the generative
model.

7.2.2 Neural Network Architecture & Training

For the studies on this dataset, it proved that a more complicated information
aggregation method, as used previously in Chapter 5 and 6, does not lead to
improved performance. A possible explanation is that these more sophisticated
methods especially perform well in high-dimensional unstructured data, which is
not the case with the fifteen high-level variables in this study. The hyperparameter
choice for this model is given in Table 7.2.

To quantify the performance, two distance measures are used:
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Figure 7.13: Distribution of the signal for different chargino masses in the signal
region of the search after gluino pair production. The signal is shown for three
different chargino masses.
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Table 7.2: Hyperparameters for the CNF

Parameter Value
activation leaky_relu
batch_size 1024
hidden_dim 1024
layers 4
lr 0.001
max_epochs 5000
weight_decay 0.00005

1. A χ2-distance as used in Ref. [194]:

⟨S2⟩ = 1
2

nbins∑
i=1

(hMC
i − hCNF

i )2

hMC
i + hCNF

i

, (7.7)

which is calculated over a histogram h with nbins bins.

2. Mean distance m between the empirical cumulative distribution functions (ecdf)
c(x):

m = 1
b− a

∫ b

a
|c(x)MC − c(x)CNF| dx, (7.8)

where a and b determine the bounds of the support of the distribution. The
ecdf is approximated by the cumulative sum over the bins of the histogram.
Similarly, the integral in Eq. 7.8 is approximated by averaging the difference
over all bins in the histogram.

These distances are computed and averaged over all marginal distributions on a
testing dataset between the MC data at ϵ = 75% mass mixing and data from the
CNF at ϵ = 75% mass mixing. For the results shown in the following, the model
version used for the testing is chosen based on these two metrics.

7.2.3 Results

In Fig. 7.14 synthetic data drawn from the CNF by solving the associated ODE
from 25% mass mixing to 75% mass mixing is depicted. Since the ODE can be
solved in both directions, it is also possible to go into the reverse direction from
ϵ = 75% to ϵ = 25% mass mixing with the same model. This is done by solving
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the ODE backwards from t = 1 to t = 0. The results from this are shown in
Fig. 7.15. Both figures suggest that the model is capturing the distributions and
their correlations accurately. Some mismodeling is apparent in the invariant masses
of the second-hardest jet and ϕmiss. Concerning the mass distribution, it appears
that it is difficult for the model to learn to convert the two-peaked structure to a
single peak, which is especially visible when sampling in the reverse direction.
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Figure 7.14: Results from modelling the chargino mass dependence from the 25%
mass mixing to 75% mass mixing. The MC sample at ϵ = 75% mass mixing is shown
in blue, the synthetic samples drawn from the CNF are shown as a red line. The
distribution at ϵ = 25% mass mixing is depicted as a grey dashed line. Below the
figure, the ratio between MC and the generated yields per bin is shown, together
with an uncertainty band resulting from assuming Poisson uncertainty. The ∆ϕ
variable serves as a test to check whether the model captures correlations accurately.
Except for the mass of the subleading jet and the azimuthal component of the missing
momentum, no strong mismodelling is apparent in the other variables.
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Figure 7.15: Results from modelling the signal distributions, starting from the 75%
mass mixing to ϵ = 25% mass mixing. The MC sample at ϵ = 25% mass mixing is
represented in blue, synthetic samples at ϵ = 25% mass mixing are shown as a red line.
The distribution at ϵ = 75% mass mixing is depicted as a grey dashed line. Below
the figure, the ratio between MC and the generated yields per bin is shown, together
with an uncertainty band resulting from assuming Poisson uncertainty. The ∆ϕ
variable serves as a test to check whether the model captures correlations accurately.
While the model captures most of the distributions well, in the reconstructed mass
of the subleading jet, significant discrepancies are visible.
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Since the metrics considered in Sec. 7.2.2 only concern marginal histograms,
the binary classifier evaluation previously discussed in Sec. 4.8.2 is additionally
used to determine whether the synthetic data agrees well with the MC simulation.
The results of the binary classification distinguishing MC samples from synthetic
samples at ϵ = 75% mass mixing are shown in Fig. 7.16. The ROC suggests that
the generative model accurately samples the density, since the curve is close to the
diagonal and the AUC is close to 0.5, implying that the classifier is mostly random
guessing.

7.2.4 Binary Classification Studies

The signal distributions shown in Fig. 7.13 vary significantly as function of the
chargino mass, especially in ∆ϕ. As such, it is not directly clear whether a classifier
that is trained only on samples from arbitrarily chosen mass points can generalise to
other mass points. The worst thing that could happen is that the classifier does not
recognise the signal coming from different chargino masses, similar as on the rotating
Gaussian toy. For the training of this classifier, the same preprocessing as for the
training of the CNF is used. Adding ∆ϕ to the variables in the training did not
improve the performance of the classification. Corresponding to the example of the
rotating Gaussian, a baseline and interpolation training paradigm are used. However,
an additional sanity test is introduced, where the training signal distributions contain
the “true” parameter choice:

1. Baseline approach: for this training, the classifier is trained on the MC simulated
signal samples at ϵ = 25% and ϵ = 75% mass mixing.

2. Interpolation approach: for this training, the classifier is trained on samples
drawn from the CNF, which models the chargino mass dependence of the signal
distribution from ϵ = 25% mass mixing to ϵ = 75% mass mixing. Note that the
ODE associated with sampling is solved in both time directions, once starting
from the sample at ϵ = 25% mass mixing and once from the sample at ϵ = 75%
mass mixing. From both directions, the equal number of samples are used for
the training.
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Figure 7.16: The ROC of the classifier distinguishing MC vs samples drawn from
the CNF at 75% mass mixing. The ROC is close to the diagonal, suggesting that
the classifier cannot distinguish the MC generated samples from the synthetic ones
drawn from the CNF.

3. Sanity test: for this training, the MC simulated sample at ϵ = 50% mass mixing
is additionally included in the training.

After training, the three different classifiers are tested on a holdout set of background
events and signal events at 50% mass mixing.

Additional Preprocessing Steps

To account for the absence of the ϕmiss modulation in the signal samples, the signal
events are reweighted. The weights are determined by calculating the ratio for every
bin i over 100 bins from the weighted histogram of ϕmiss:

wi = nib
nb
/
nis
ns
, (7.9)

where nis/b is the yield per bin of the signal respective background histogram and
ns/b is the total number of yields in the signal, respectively background histogram.
After this, another reweighting is applied, such that the total number of expected
events is the same as before the reweighting. The histograms of the reweighted signal
distributions are compared to the background distributions in Fig. 7.17.
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Figure 7.17: The histogram of the training variables after the ϕmiss distribution has
been reweighted to have the same shape as the background distribution.
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Neural Network Architecture & Training

For the studies on this dataset, the same NN architecture is used as for the CNF,
where the only difference is the number of output nodes. The hyperparameters are
given in Table 7.3. Since there is a large imbalance in the sum of weighted signal
events and weighted background events, the training is balanced as follows. Every
training batch contains as many background events as signal events. For the signal
and background class, the events are separately sampled with repetition, where the
event weight is considered during sampling. This is done by sampling them from a
multinomial distribution determined by the individual event weights. Focal loss with
γ = 1.75 is used to obtain a high signal purity in bins with high ŷ.

Table 7.3: Hyperparameters of the binary classifier

Parameter Value
activation leaky_relu
batch_size 1024
input_dim 16
hidden_dim 64
layers 4
lr 0.001
γ 1.75
max_epochs 1000
weight_decay 0.00005

Evaluation

The evaluation procedure follows the approach in Ref. [53], where the discovery
significance is introduced. To quantify the expected statistical significance of the
analysis, the discovery statistic qµ given in Eq. 7.10 is used, which is calculated from
the likelihood ratio of the background-only hypothesis and the composite signal +
background hypothesis:

q0 = −2 log L(0, ˆ̂τ |n) · c(ˆ̂τ)
L(µ̂, τ̂ |n) , (7.10)
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where L is the likelihood, the symbolˆmarks the maximum of the likelihood, the
symbolˆ̂marks the maximum for a fixed value of the signal strength µ and c(τ) is a
constraint on the background scale factor τ . The background scale factor τ is referred
to as a nuisance parameter because it impacts the calculation of the likelihood,
however it is not of direct interest, since the goal is to determine the signal strength.
Note that the signal strength µ and the background scale factor τ are anti-correlated.
This test statistic is computed from the histogram of the NN output ŷ > 0.9, with
three bins.
The Asimov dataset is used to compute the expected statistical significance of
discovering the signal, and as such the following relations hold:

n = bMC + sMC, (7.11)
µ̂ = 1, (7.12)
τ̂ = 1, (7.13)

(7.14)

where bMC and sMC are the expected number of events from the MC simulation. The
likelihood is derived from Poisson statistics:

L(λ = µsMC + τbMC|n) = e−λλn

n! . (7.15)

The following constraint is used for the background scale factor τ :

c(τ) = exp
(
−(τbMC − bMC)2

σ2
b

)
, (7.16)

where σ2
b is the variance associated with the expected number of background events.

The background scale factor τ is to account for the uncertainty on the expected
number of background events. In the denominator, the background scale factor is
set to 1, since on Asimov the observed number of background events is equal to the
ones expected from the MC simulation. The constraint given in Eq. 7.16 is needed,
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as otherwise the profiled best fit value for the background scale factor for µ = 0 is:

ˆ̂τ = n

bMC = sMC + bMC

bMC . (7.17)

However, there is prior knowledge about the uncertainty of the background yield
estimation, given by σb:

σb =
√∑

w2, (7.18)

where w are the weights associated to the background samples. If there is a large
uncertainty on the number of background events, the constraint is small and τ can
take the value given by Eq. 7.17. However, if the uncertainty is small, then the
constraint becomes very negative for a large value of τ . It is most illustrative to
think about the case where the uncertainty on the background approaches 0; any
value of τ different from one leads to the likelihood being 0.
In this study, Equation 7.10 is evaluated over a histogram with three bins, denoted
by n = (n1, n2, n3), with ŷ > 0.9. The highest bin is constructed by scanning the bin
width, until the relative uncertainty on the background is below 30%. The remaining
two bins are chosen to be of equal width to cover the remaining distance to 0.9.
Applying the logarithm in Eq. 7.10 and expanding all terms is summarised as:

q0 = −2 max
τ

3∑
i=1

ni(log(τbMC
i )− log(sMC

i +bMC
i ))−τbMC

i +(sMC
i +bMC

i )−c(τ). (7.19)

Since the statistical significance of discovery is computed, the null hypothesis µ = 0 is
tested. To calculate the statistical significance without using an excessive number of
toys, Cowan et al. [53] proposed that in the large sample approximation, Wilks’ [195]
and Walds’ [196] theorem can be used to obtain an analytical form of the statistical
significance Z:

Z = √q0. (7.20)

This is used to estimate the expected (or median) statistical significance in the
following.
Since the statistical significance is not a very insightful quantity, instead the required
luminosity for a statistical significance of Z = 3 is quoted. This required luminosity
is calculated by replacing s with αs, and b with αb in Eq. 7.15, and scanning α
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Figure 7.18: Histogram of the NN output ŷ > 0.9 of the test set for all three
approaches. The bin width is chosen on the validation set, such that the top-most
bin has a background uncertainty < 30%. The other two bins are chosen to be
equidistant to 0.9.

until an expected statistical significance of Z = 3 is reached. While increasing the
luminosity, the statistical background uncertainty7 σb is reduced by

√
α. Note that

although this uncertainty follows from Poisson statistics, the choice of the number of
generated MC events is a systematic uncertainty for the experiment.

7.2.5 Discussion

To have a fair comparison between the three approaches, the same validation set,
comprising MC simulated data, and the signal distribution from 25% and 75%
mass mixing, is used for all approaches. The classifier checkpoint with the maximal
discovery significance on the validation set is chosen for the evaluation on the test
set. The test set contains an independent signal sample at 50% mass mixing and an
independent background sample. In Fig. 7.18 the results on the test set are shown for
the three different approaches. The figure indicates that the background uncertainty
becomes comparable to the expected number of signal events.
To estimate the uncertainty coming from the training, the classifier is retrained

7The scaling of the uncertainty on the expected background events derives from the fact that
the relative Poisson uncertainty σb

b scales with 1√
N

, where N is the number of MC samples. This
assumes that if more data is recorded, also more MC samples will be available.
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Figure 7.19: Comparison of the different approaches on the signal versus background
classification. The required luminosity for an expected statistical significance of
Z = 3 is shown for the three different approaches. For every category, the model is
retrained ten times and mean, and the error on the mean is estimated over these
ten runs. For the baseline approach, the uncertainty is significantly larger than for
the other two approaches. The result from the interpolation approach is compatible
with the performance of the Sanity test.

ten times with the same hyperparameters. In Figure 7.19 the mean together with
the error on the mean is shown for all approaches. This reveals that the benefit
of training on synthetic samples is significantly smaller than previously with the
rotating Gaussian. Still, the interpolation approach performs significantly better
than the baseline approach and yields a similar mean and error on the mean as the
sanity test.

7.3 Conclusions from Modelling Parametrised Dis-
tributions

In this chapter, first the difference between conditioned discrete NFs and CNFs
trained with CFM and OT-CFM was demonstrated. Then, potential improvements
of a classifier recognising a parameterised signal distribution, for a choice of the
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underlying parameter unseen during training, through the use of synthetic data were
investigated. Two examples were studied:

• The rotating Gaussian; a toy example, where the signal distribution is strongly
dependent on an a priori unknown parameter ϕ. A classifier trained on samples
drawn from a CNF that models the dependence of the signal distribution
performed significantly better than the baseline approach, which only trained
on samples used for the training of the generative model. The baseline approach
performed significantly worse and was agnostic to the signal distribution at
another ϕ choice. However, it is difficult to attribute whether this gain in
performance derives from the quality of the CNF or because the overlap of the
signal at different values of ϕ is small.

• The search for gluino pair production; here, the signal distribution is dependent
on a priori unknown parameters that need to be scanned. For three mass
parameters in the signal, it is not feasible to scan all combinations. Thus,
the chargino mass is set to the LSP mass mLSP plus half (ϵ = 50%) of the
mass difference ∆m between the LSP and gluino: m

χ̃
±
1

= mLSP + ϵ∆m. An
alternative to choosing one mass mixing is to train a CNF trained with OT-
CFM, to transform the signal distribution at ϵ = 0.25% to the distribution at
ϵ = 0.75%. It was investigated, whether a classifier distinguishing Standard
Model background from a signal arising from a SUSY signal benefits from
training on synthetic data compared to training on Monte Carlo simulated
data at ϵ ∈ [25%, 75%] only. To compare the two approaches, the classifier is
evaluated on a testing sample containing signal samples from ϵ = 50%. Training
on synthetic data, results in a higher statistical significance, or equivalently in
a lower required luminosity for a median statistical significance of Z = 3, of
the likelihood-ratio-based hypothesis test of the background-only versus the
signal+background hypothesis. Note that both approaches were constructed
such that the equal amount of MC generated data is used to allow a fair
comparison.

This suggests that if a data distribution is strongly dependent on an underlying
parameter, the training on synthetic data from a generative model strongly benefits
the classification performance. However, in the case of HEP data in the search for



gluino pair production, the baseline approach does not perform as badly. Although
the distributions for different values of the underlying parameters of the signal
seem fairly different, the baseline model can still generalise to different parameter
choices to a certain extent. Still, the baseline approach requires a significantly higher
luminosity (∼ 20 ± 12%) than the interpolation approach to obtain a statistical
significance Z = 3 of discovering the signal from a different chargino mass than seen
during training. However, note that during these studies, no other systematics than
the limited number of MC samples were considered during the computation of the
statistical significance of the hypothesis test.
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Conclusion

In this thesis, different applications of generative modelling to high-energy par-
ticle physics were investigated and discussed. Starting from the low-dimensional
Two Moons dataset, three important conclusions can already be drawn from the
performance of different algorithms.

1. The synthetic data should have at least as many degrees of freedom as real
data, if the data is used as input for neural networks. Otherwise, the neural
networks can make use of this information, which is not intended.

2. The possibility of mode collapse of generative adversarial networks should
always be considered. While it is simple to recognise in two dimensions, this
becomes significantly harder to spot in many dimensions.

3. Generative models should not be seen as black boxes that transform noise
to synthetic data. A much more accurate interpretation is provided by them
reshaping a distribution into another. Continuous normalising flows when
trained with optimal transport-based conditional flow matching can enforce a
path this reshaping should follow.

A more physics inspired toy example is the generation of jets, which was studied
with the JetNet datasets. Although no intent lies in replacing PYTHIA data, its 90
or even 450 dimensions teach three other important lessons:

1. Discrete normalising flows perform excellent on low-dimensional data, but their
capability to model correlations quickly deteriorates with higher dimensional
data.
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2. The computational complexity and the scaling of a point-cloud-based model
with the number of points is crucial. To make the training feasible, the
point-cloud-based model should scale linearly with the number of points.

3. Although attention is more common in natural language processing, it also
proves to be suited for point clouds. To keep the computation complexity
linear, a mean-field approximation of the information exchange in a point cloud
is a powerful tool. However, recognising attention as a normalised weighted
sum, highlights the importance of incorporating the number of constituents
into the aggregation.

Then, the first more practical problem was studied with the CaloChallenge data.
Surprisingly, a model designed for the generation of jets, also performs well at
calorimeter simulation. With minor modifications, the previously found mean-field
aggregation can also be used for conditional generation. The main two conclusions
that should be drawn are:

1. The representation of calorimeter energy deposits as point clouds is not only
more realistic than a grid-based representation. But it also allows arbitrary
detector geometries and is more memory efficient if the detector occupancy is
low.

2. Point-cloud-based model can generalise well, which was shown when a model
trained on dataset 2 was successfully transferred to dataset 3 of the CaloChal-
lenge. This motivates a more efficient training, e.g. where the model is trained
on different clustering stages with different granularity.

Finally, it was studied whether a signal versus background classifier can benefit from
training with synthetic data. This is especially viable if the signal distribution is
strongly dependent on an underlying, a priori unknown, parameter, and there is not
enough Monte Carlo simulated training data available for all combinations of the
underlying parameters. From these studies, the following two conclusions can be
drawn:

1. The transport plan with the lowest cost might not be the most intuitive one.
While it is possible to enforce a certain path by providing samples on the desired
trajectory, this is expected to become more difficult in a higher dimension.
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2. In the search for gluino pair production, a classifier trained on signal samples
corresponding to arbitrarily chosen mass points can generalise to an extent.
However, training on samples of a generative model that interpolates the
dependence of the signal distribution on the underlying parameter, improves
the sensitivity of the statistical hypothesis test of the signal+background
hypothesis versus the background-only hypothesis.

From a more technical view, the following, highly subjective view of different ap-
proaches for generative modelling can be given:

• Generative adversarial models: while they allow for much freedom in designing
the network architecture, their unstable training and mode collapse makes them
my least favourite model class. Although there were multiple solutions proposed
to cure this aspect, from my personal experience, they rarely completely
resolved these issues. However, once such a model actually converges, it is
almost unbeatable in terms of quality and inference speed when the potential
presence of mode collapse is disregarded.

• Discrete normalising flows: their performance is excellent for a low number
of dimensions. In these studies, normalising flows that use rational quadratic
spline coupling layers performed best. The only problem is, once they do not
work as desired, it is difficult to improve their performance.

• Continuous normalising flows: while training them without flow matching is
slow, they became my favourite model to work with. They allow for much
flexibility as the generative adversarial networks when designing the neural
network architecture, but they are also stable to train. They seem to combine
the advantages of both previously mentioned models at the cost of a significantly
slower generation time.

Working with these different models and exploring these various aspects has been
an unimaginably interesting journey, and I strongly motivate further investigations
in this exciting field. There are many interesting pathways to make use of the
versatility of generative models. I think that the largest expected gain comes from a
point-cloud-based generative model for detector simulation.
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APPENDIXA
Two Moons: Multiclass Classifier
Test

To rule out that the classifier is unable to recognise the mode collapse present in
the data drawn from the GANs, here only data from the AE, NSGAN and RQS are
compared. However, the test still does not recognise the mode collapse present in
the NSGAN because it assigns the same probability to real data to come from the
NSGAN and RQS NF.
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Figure A.1: (left) Confusion matrix of the multi-classifier, showing that it can indeed
recognize most of the classes. (right) The average probability the multi-classifier
assigns to real data to come from the different models under test.
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APPENDIXB
Additional JetNet Results

B.1 JetNet150: No Box-Cox Preprocessing for
NFs

When the prel
T is only standard scaled in the pre-processing step, the NF does not

model the tail of the distribution, which is shown in Fig. B.1.
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Figure B.1: Comparison of synthetic data drawn from the NF-based models to
PYTHIA samples (blue), below each plot the ratio of real divided by synthetic data
is shown. Going from left to right and top to bottom, the first three histograms
depict the relative pseudorapidity, azimuthal angle and transverse momentum of
all particles drawn from the model. The first two figures might indicate that the
VNF (red) is sampling the underlying data distribution accurately. Even worse
problems become evident when considering the histogram of the relative invariant
mass, which is calculated from all particles in the jet, shown on the bottom right.
It reveals that the VNF is unable to capture the correlations between the particles
correctly. Introducing conditioning (yellow) improves the mass modelling, adding a
mass constraint enhances it further (violet).
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B.2 JetNet150: No Box-Cox Preprocessing for
Equivariant NFs

Similarly, for the equivariant NF models, the tail of the prel
T is also not modelled if

only standard scaling is used for preprocessing.
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Figure B.2: Comparison of synthetic data to PYTHIA samples (blue), below each
plot the ratio of real divided by synthetic data is shown. Going from left to right
and top to bottom, the first three histograms depict the relative pseudorapidity,
azimuthal angle and transverse momentum of all particles drawn from the model.
The figure on the bottom right depicts the invariant mass distribution calculated
from the particles in every jet. Similar to the VNF, the IPF (red) and the PF (yellow)
excel at modelling the marginal features, except for the tail of the prel

T distribution.
However, the mass distribution reveals that the correlations between the plots are
not modelled correctly. For the APF (violet), the modelling of the marginal features
deteriorates.
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B.3 JetNet150: Box-Cox Preprocessing for GANs
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Figure B.3: Comparison of synthetic data drawn from the TNF (red) and TGAN
(violet) to PYTHIA samples (blue). Below each plot, the ratio of real divided by
synthetic data is shown. Going from left to right and top to bottom, the first
three histograms depict the relative pseudorapidity, azimuthal angle and transverse
momentum of all particles drawn from the model. For this training, Box-Cox
preprocessing was used on prel

T . The figure on the bottom right depicts the invariant
mass distribution calculated from the particles in every jet.
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B.4 Quantitative Comparison without/with Box-
Cox Preprocessing

Here, the quantitative results on the JetNet30 top quark dataset are given, when
no Box-Cox preprocessing is used for the preprocessing of the prel

T coordinate for the
normalising flow-based models, respectively if Box-Cox preprocessing is used for the
GAN-based models.
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B.5 JetNet150: Results with Box-Cox Preprocess-
ing

Here, the quantitative results on the JetNet150 top quark dataset are given, when
Box-Cox preprocessing is used for the preprocessing of the prel

T coordinate.
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Figure B.4: Comparison of synthetic data drawn from the MDMA-GAN (red) and
MDMA-Flow (yellow) when Box-Cox preprocessing is used on prel

T to PYTHIA
samples (blue), below each plot the ratio of real divided by synthetic data is shown.
Going from left to right and top to bottom, the first three histograms depict the
relative pseudorapidity, azimuthal angle and transverse momentum of all particles
drawn from the model. The figure on the bottom right depicts the invariant mass
distribution calculated from the particles in every jet.
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B.6 JetNet150: Results with OT-CFM

Here, the results of the OT-CFM training of the CNF on the JetNet150 dataset are
given.
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Figure B.5: Comparison of synthetic data drawn from the MDMA-Flow (yellow)
when OT-CFM is used to ground truth samples (blue), below each plot the ratio of
real divided by synthetic data is shown. Going from left to right and top to bottom,
the first three histograms depict the relative pseudorapidity, azimuthal angle and
transverse momentum of all particles drawn from the model. The figure on the
bottom right depicts the invariant mass distribution calculated from the particles in
every jet.
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APPENDIXC
Additional Results: CaloChallenge

C.1 Shifting Hits for MDMA-Flow on Dataset 3

Here, the results of the Hit-shifting are shown for the MDMA-Flow. Similarly to the
MDMA-GAN, the distributions agree significantly better if the post-processing is
used, where if multiple hits are assigned to the same cell, the softer hits are moved
to neighbouring cells.

C.2 Predicting Number of Hits

Here, the number of hits is deduced from the incoming energy Einc, by fitting the
dependency with a polynomial of degree 5, as depicted in Fig C.2. The results of the
generative model when sampling the number of hits as a function of E are shown
below, and demonstrate that the performance slightly decreases, which becomes
especially apparent in the energy weight histograms in Fig. C.4. But note, that
fitting the dependency with a polynomial fit is a basic approach. The distribution of
the number of hits does not change significantly, as shown in Fig. C.5
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Figure C.1: Histograms of the number of hits created by the GEANT4 (blue)
simulation and after the voxelisation of the samples drawn from the MDMA-GAN
(red), together with the effect of the post-processing (yellow). (left) On dataset 2
there are significantly more double hits if there are many cells hit in a shower. The
post-processing effectively lowers the discrepancy between the GEANT4 simulation
and MDMA-GAN (right) On dataset 3, the number of double hits is not as high as
on dataset 2. The effect of post-processing again improves the agreement between
the model and GEANT4 distribution significantly.

Figure C.2: Fit of the number of hits as a function of the energy of the incoming
electron Einc.
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Figure C.3: Marginal distributions when deducing the number of hits from the energy
of the incoming electron for the generative models (red, yellow) are compared to
GEANT4 (blue). From top left to bottom right, the energy of the generated hits,
the angular-, forward-, and radial coordinates are shown.
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Figure C.4: Energy-weighted coordinate distributions when deducing the number of
hits from the energy of the incoming electron for the generative models (red, yellow)
are compared to GEANT4 (blue). From top left to bottom right, the angular-,
forward-, and radial coordinates are shown.
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Figure C.5: Distribution of the number of hits of the voxelised point cloud when the
number of hits is determined as a function of the energy. The MDMA-Flow still
maps multiple hits to the same coordinates (red), shifting hits to neighbouring cells
improves the agreement with GEANT4 data significantly.(red, yellow) are compared
to GEANT4 (blue). From top left to bottom right, the angular-, forward-, and radial
coordinates are shown.

242



APPENDIXD
Additional Results: Parametrised
Distributions

D.1 Binary Cross Entropy vs Focal Loss

In Fig. D.1 the results from the classification when training with BCE are compared
to the ones with Focal loss. These plots were made on the validation set, i.e. with
ϵ ∈ [25, 75]% mass mixing. Note that for the BCE classifier, the signal sharply peaks
around 1, and the background peaks sharply around 0. However, also note the model
trained with focal loss, makes significantly less confident incorrect prediction, which
is crucial for the sensitivity to the signal process in the statistical inference.
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(a) BCE (b) Focal loss

Figure D.1: Comparison of a classifier trained with BCE (left) vs results of a classifier
trained with Focal loss (right). Since a region for the statistical inference should be
a signal pure as possible
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