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Abstract

In this dissertation two-dimensional buoyancy-driven flows are investigated.
While usually the Navier-Stokes equations are equipped with no-slip bound-
ary conditions here we focus on the Navier-slip conditions that, depending on
the system at hand, better reflect the physical behavior. In particular, we study
two systems, Rayleigh-Bénard convection and a closely related problem without
thermal diffusion. In the former, bounds on the vertical heat transfer, given by
the Nusselt number, with respect to the strength of the buoyancy force, char-
acterized by the Rayleigh number, are derived. These bounds hold for a broad
range of applications, allowing for non-flat boundaries, any sufficiently smooth
positive slip coefficient, and are valid over all ranges of the Prandtl number,
a system parameter determined by the fluid. For the thermally non-diffusive
system, regularity estimates are proven. Up to a certain order, these bounds
hold uniformly in time, which, combined with estimates for their growth, pro-
vide insight into the long-time behavior. In particular, solutions converge to the
hydrostatic equilibrium, where the fluid’s velocity vanishes and the buoyancy
force is balanced by the pressure gradient.



Zusammenfassung

In dieser Dissertation werden zweidimensionale auftriebsgetriebene Fliisse unter-
sucht. Wahrend die Navier-Stokes-Gleichungen normalerweise mit Haftrandbe-
dingungen versehen sind, fokussieren wir uns hier auf Navier-Randbedingungen,
die abhéngig vom betrachteten System, das physikalische Verhalten besser wider-
spiegeln. Insbesondere untersuchen wir zwei Systeme, Rayleigh-Bénard Konvek-
tion und ein eng verwandtes Problem ohne Wérmediffusion. Im ersten Modell
werden Grenzen fiir den vertikalen Wérmetransport, welcher durch die NuBelt-
Zahl gegeben ist, beziiglich der Stérke des Auftriebskraft, charakterisiert durch
die Rayleigh-Zahl, hergeleitet. Diese Abschitzungen gelten fiir einen grofien
Anwendungsbereich, der gekriilmmte Rédnder und beliebige, ausreichend glatte,
positive Gleitkoeffizienten zuldsst, und sind fiir alle Prandtl-Zahlen, einem durch
das Fluid bestimmten Systemparameter, giiltig. Fiir das System ohne Wér-
mediffusion werden Regularititsabschétzungen bewiesen. Diese halten bis zu
einer gewissen Ordnung gleichméfig beziiglich der Zeit, was zusammen mit Ab-
schitzungen fiir deren Wachstum Einsicht in das Langzeitverhalten gibt. Ins-
besondere konvergieren Losungen zum hydrostatischen Gleichgewicht, in dem
das Geschwindigkeitsfeld verschwindet und die Auftriebskraft durch den Druck-
gradienten ausgeglichen wird.
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Chapter 1

Introduction

1.1 Motivation

Buoyancy describes the force arising from density variations in a gravitational
field, usually due to differences in heat, salinity, or composition. Typical ex-
amples range from everyday life, such as heating water in a pot, to engineering
challenges like designing a cooling system, and geophysical phenomena such as
atmospheric convection, oceanic, or earth mantle currents to large scales as in
solar convection layers.

In equilibrium, the net energy that is induced by the forcing has to be
balanced by the dissipation in the fluid and on the boundary. It is apparent
that the latter plays a significant role. In fact, imagine a horizontal periodic
channel where the fluid can freely move along the boundary. If there is no
forcing, a constant horizontal flow is expected to move indefinitely. In contrast,
if the fluid exhibits friction on the walls then this flow will be slowed down and
kinematic viscosity induces a decay in energy.

Naturally, also the geometry of the system plays a crucial role in the dy-
namics of the fluid. Heat might get trapped in a pocket, and walls constrain
the flow to follow a certain path.

Due to the variety of applications, it is of immense interest to understand
how these system parameters change the dynamics of the flow. While small-
scale experiments and simulations might provide insight, large-scale problems
and in particular extreme conditions require mathematical theory to answer
these questions.

In this thesis, we want to investigate two systems. The first one is Rayleigh-
Bénard convection, where a fluid is trapped in-between a heated bottom and
a cooled top plate. The main focus lies on rigorously deriving bounds for the
vertical heat transport, measured by the Nusselt number, with respect to the
strength of the buoyancy forcing, given by the Rayleigh number. In particular,
we allow non-flat boundaries and capture the influence of the geometry and
the friction at the walls. The second problem is concerned with a thermally
non-diffusive system, which can be interpreted as a specific limit of the former
problem. Here the objective is to capture the dynamics by deriving regularity
estimates and showing convergence to the hydrostatic equilibrium, where the
buoyancy force is balanced by the pressure.

In what follows we will always work in a two-dimensional domain €.



1. Introduction

1.2 Rayleigh-Bénard Convection

In the case of Rayleigh-Bénard convection the top and bottom boundary are
given by 7+ and v, which are additionally restricted to be functions of the
horizontal variable. In the horizontal direction, we assume periodic boundary
conditions. The domain and vertical boundaries are given by

Q= {(1‘1,172) S RZ | 0 S X1 S I‘,hf(xl) S X9 S th(;El)} (11)
v ={(z1,22) €R? | 0 <y <T, 2y = h*(a1)} (1.2)
7" = {(z1,2;) € R? |0< @y <T,z3=h" (1)} . (1.3)

By that, we also introduce the domain width I' > 0. Additionally, we will assume
that h*(x1) > h™ (1) so that the top and bottom boundary are separated from
each other and that the domain size is given by |Q| = I'. Hence, the average
height is set to 1. In the classical Rayleigh-Bénard problem, the boundaries are
flat and the non-dimensionalization leads to a domain height of 1, so the domain
considered here is a generalization thereof.

In Rayleigh-Bénard convection the buoyancy force is a consequence of tem-
perature differences. Specifically, there is a temperature gap between the hotter
lower and the colder upper boundary. Accordingly, the hot fluid near the bottom
expands and becomes less dense than the cold fluid at the top. Due to gravity,
the hot fluid experiences an upward force, resulting in a dynamical system.

The main feature of such fluids is the forcing due to density variations,
which are therefore described by the compressible Navier-Stokes equations.
Under the assumptions that the density of the fluid varies linearly with the
temperature and that density variations except for the forcing due to buoy-
ancy can be neglected, the Boussinesq approximation leads to the following in-
compressible system (Goluskin 2016). After non-dimensionalizing the velocity
u = (uy,us)(x1, T2,t), the scalar pressure and temperature fields p = p(x1, x2,t)
and ¢ = ¥(x1,x9,t), satisfy

Pr!(us +u - Vu) + Vp — Au = Rade, (1.4)
V-u=0 (1.5)
e +u-Vi— A9 =0, (1.6)

where es = (0, 1) is the unit vector in upward direction. Here, we also introduced
the Prandtl number Pr and the Rayleigh number Ra, defined by

Pr=— (1.7)

P

Ra = M’ (1.8)
nv

where v is the kinematic viscosity, s is the thermal diffusivity, g is the gravita-

tional constant, ¢ is the thermal expansion coefficient, d is the height gap of the

boundaries, and T~ and T is the temperature on the respective boundaries in

the original system. This non-dimensionalization results in a temperature gap

of 1 at the boundaries, i.e.

¥=0 on yT
¥=1 on vy .



1.2. Rayleigh-Bénard Convection

Fluid Pr | System Ra
Solar Convection Plasma® 1075 | Solar Convection Zone®® 1020 — 1023
Aire¢ 0.71 | Experiments® up to 107
Water® 7.0 | Ocean’ 1020
Earth Mantle Rock? 1023 | Earth Mantle%c 107 — 109

%Schumacher and Sreenivasan 2020
Niemela et al. 2000

¢Admiraal et al. 2007

dSchubert, Turcotte, and Olson 2001
“Wolstencroft, Davies, and Davies 2009

Table 1.1: Typical values for the Prandtl and Rayleigh number in selected
systems.

The Rayleigh number describes the strength of the buoyancy forcing and
depends on the underlying setup at hand due to its dependency on d, T~, and
T+, while the Prandtl number is an intrinsic property of the fluid. Typical
values for these parameters are given in Table 1.1.

The third non-dimensional number, the Nusselt number Nu, is of particular
interest in the realm of Rayleigh-Bénard convection. It measures the excess of
upwards heat transport over the purely conducting state and we will define it
later in (3.11). For increasing Rayleigh numbers, the fluid is expected to be-
come more turbulent increasing the energy transfer from the bottom plate to
the top one. This is illustrated in Figure 1.1, where for Ra = 102 the solu-
tion is purely conductive, and for the subsequent increasing Rayleigh numbers
it becomes more and more advection dominated. Many works, experimental,
numerical, and of theoretic nature, are dedicated to showing the scaling of this
number with respect to Pr and Ra, see Plumley and Julien 2019 for a review.
While for moderate Rayleigh numbers experiments and simulations might solve
this question, extreme cases demand rigorous mathematical bounds. In fact,
Table 1.1 indicates that the solar convection zone exceeds the capabilities of ex-
periments. With higher temperature differences and larger height gaps in other
stars (1.8) implies more extreme Ra values, demanding theoretical results. In
Section 3.2 we will discuss some of the results and explain the findings of this
thesis in the context of these works.

Here, we only want to mention some results that show the influence of the
boundary conditions and Prandtl number for the fluid in this limit. The top
and bottom boundaries are expected to be solid, implying the no-penetration
boundary condition in the normal direction, i.e.

n-u=>0,

where n is the unit normal vector. In the tangential direction, the situation is
less clear. While usually the equations are equipped with no-slip boundary con-
ditions, where the fluid sticks to the wall, there has been a long debate including
Bernoulli, Couette, Coulomb, Helmholtz, Navier, Poisson, Stokes (Priezjev and
Troian 2006) whether or not slip occurs. Physical experiments show that de-
pending on the materials slip is expected (Uthe, Sader, and Pelton 2022; Neto
et al. 2005; Admiraal et al. 2007). Additionally, theoretical results (Miksis and

3
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Figure 1.1: Snapshots of finite element simulations of the temperature field for
Rayleigh-Bénard convection with Pr = 1, a = 1, Kk = 0, and I' = 2. Red
corresponds to hot regions, cold regions are colored in blue and the Rayleigh
numbers are 102 (top left), 10* (top right), 105 (bottom left) and 108 (bottom
right). The simulations were created with Firedrake (Ham et al. 2023) and
visualized in Paraview (Ahrens, Geveci, and Law 2005).

Davis 1994; Bolafos and Vernescu 2017) show that imperfections and roughness
on the boundary for fluids subject to no-slip boundary conditions lead to slip.
Here we consider the Navier-slip boundary conditions, first proposed in Navier
1823 and given by

7 (Du n+ au) =0,

where 7 is the unit tangent vector, Du = (Vu+Vu”) is the symmetric gradient
and a = a(x) > 0 is the slip coefficient. Note that in the av — oo limit these
conditions resemble the no-slip case. In fact Amrouche, Escobedo, and Ghosh
2021; Kelliher 2006 show that also solutions converge to those with no-slip
boundary conditions as @ — oco. On the other hand, setting o = 0 yields
free-slip boundary conditions, implying that Navier-slip boundary conditions
interpolate between the two extreme cases.

To see how the boundary conditions influence the scaling laws we want to
discuss some results. For no-slip, flat boundaries Doering and Constantin 1996
showed Nu < RaZ uniform in Pr, even in three spatial dimensions. In contrast,
in the two-dimensional free-slip setting Whitehead and Doering 2011 proved
Nu < Ra%, again uniform in Pr. For the flat infinite Prandtl setup with no-
slip boundary conditions Constantin and Doering 1999 proved Nu < Ra%(l +
In Ra)g, for which the logarithmic exponent has been improved (Doering, Otto,
and Reznikoff 2006; Otto and Seis 2011) since then. The gap between the free-
and no-slip results was studied in Drivas, Nguyen, and Nobili 2022, where the
authors showed Nu < a’Ra? + Ra™® for flat boundaries with constant slip
coefficient in the high Pr regime.

For rough boundaries, results are more limited. Goluskin and Doering 2016

4
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proved Nu < Ra? uniformly in Pr for no-slip boundary conditions when the
profile functions At,h™ are in H'.

These findings inspired the study of the problem with full Navier-slip bound-
ary conditions on curved domains. Nobili and the author of this thesis proved
(Bleitner and Nobili 2024a)

Nu < o+ ffH%,Vl,wRa% +Ra'z,

where £ is the curvature of the boundary, generalizing the result of Drivas,
Nguyen, and Nobili 2022, and Nu S, Ra%, where the implicit constant hides a
complex dependency on « and k. Both results only hold in the case of sufficiently
big Pr and small o, k € W1, The proofs of these results will be given in Section
3.7.

A refined pressure estimate yields

1,1 5
Nu g Pr sRa? + Ra2.

The exact statement is given in Theorem 10 and proven in Chapter 3. In the
case of flat boundaries, constant slip coefficient, and sufficiently large Ra, the
bound is given by
Nu < Ra®? + q12Pr sRa?

for <1 and

Nu < a%Ra% + Q%Ra% + Ra% + a%Pr*%Ra%
for a > 1, similar to the results of Bleitner and Nobili 2024b that only vary
in the o exponent in the Pr terms. These bounds significantly improve the
previous findings. Apart from their improved estimates, these bounds hold in
a much broader range of physically relevant settings. They allow any Prandtl
number, even showing a crossover at Pr = Ra?. Additionally, they hold for any,
sufficiently smooth, slip coefficient, which in particular allows close to no-slip
setups, that might seem physical more realistic. However in Section 3.3 we will
provide an argument showing that a and x can scale with respect to Ra. In
Section 3.2 we will discuss the Nusselt number scaling in more detail.

Finally, we want to discuss the different approaches that lead to these bounds.
The Constantin and Doering background field method (Doering and Constantin
1994; Doering and Constantin 1996) led to numerous of the previously men-
tioned results. The main strategy here is to decompose the temperature field
into a steady profile, approximating the expected long-time boundary layer and
bulk behavior of the fluid, and fluctuations around it. This method is illustrated
in Section 3.7. Contrary in Sections 3.5 and 3.6 the direct method (Seis 2015) is
employed, which solely relies on a localization principle of the Nusselt number.

1.3 Thermally Non-Diffusive System

Further, we want to investigate a closely related system without thermal diffu-
sion, given by

ug +u-Vu+ Vp — Au = ey (1.9)
V-u=0 (1.10)
Oy +u- VI =0. (1.11)
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This set of equations is an immediate consequence of (1.4)- (1.6) when setting
Ra = Pr = 1 and disregarding the diffusive term in the advection-diffusion
equation. However, it can also be seen as a limit of these equations. In fact
consider solutions (z,t), p(x,t),d(z,t) of

PrY(i; + @ - Vi) + Vp — Ad = Radey
V-a=0
Vi + -V — AD =0

and rescale them according to

u(z,t) = Prf%Raféﬂ(x,tN) p(x,t) = Ra™'p(x, 1)
t

Dz, t) = 0(x,1) PriRa?f.

Then u, p, ¥ solve

us +u-Vu+ Vp — Pr:Ra”2Au = Jeq
V-u=0
By +u- VI —Pr2Ra 2 A9 = 0,

which are the equations, rescaled according to free-fall time (Schneide et al.
2018). The previous discussion showed that the limit Pr, Ra — oo is of particular
interest for this problem. Setting Pr = v?Ra for some v > 0 and taking the
limit Ra — oo yields (1.9)-(1.11) with an additional viscosity parameter v, the
system studied in Bleitner, Carlson, and Nobili 2023. Here we set v = 1 in order
to simplify the notation but remark that all results hold for any v > 0.

Note that due to the absence of thermal diffusion, the governing equations
are only equipped with the velocity boundary conditions

n-u=0
7-Dun+au)=0

and instead of a horizontally periodic strip, we assume a bounded Lipschitz
domain Q C R2. Note that Hu et al. 2018 showed global well-posedness for the
problem.

As a consequence of the absence of thermal boundary conditions, no mech-
anism in this system provides an influx of energy. Therefore, over time, the
velocity is expected to decay due to the viscosity term, resulting in a steady
state

u=0
Vp:ﬁeg.

The state, where the velocity vanishes and the buoyancy force is balanced by
the pressure gradient is called the hydrostatic equilibrium.

Figure 1.2 shows this behavior. Over time the temperature field becomes
vertically stratified and the velocity field decays. Note though that the rectan-
gular domain of the simulation does not satisfy the regularity assumptions of
Theorem 41.



Figure 1.2: Snapshots of a simulation of the thermally non-diffusive system with
a = 10*, where hot regions are colored in red, and cold regions in blue. The
individual pictures correspond to times 0, 12, and 25 in the top row and 50, 100,
and 200 in the bottom row. The simulation was created with Firedrake (Ham
et al. 2023) and visualized in Paraview (Ahrens, Geveci, and Law 2005).

Doering et al. 2018 studied the system with stress-free boundary conditions

n-u=0
w =0,
where w = —douy + OJrus is the vorticity. After proving global well-posedness

with regularity estimates

ue L™ ((0,7); H*(Q)) N L* ((0,T); H*(Q))
¥ € L™ ((0,T); H*())

for any 7" > 0, provided that the boundary and initial data are sufficiently
smooth, they showed

lu(®)lm> < C

t
/ lu(s)|2nds < C,
0

for constants C' > 0 independent of time. With a slight abuse of notation, we
write the bounds as

u € L™ ((0,00); H*(Q)) N L? ((0,00); H'()) .

These uniform in time estimates imply that the velocity decays and solutions
converge to the hydrostatic equilibrium. In particular, their analysis shows

(@)1 — 0
1(Vp = dea) )]+ — 0

for ¢ — oo. Additionally, Doering et al. 2018 studied the linear stability of the
system.
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Inspired by these findings Elizabeth Carlson, Camilla Nobili and the author
of this thesis (Bleitner, Carlson, and Nobili 2023) proved the regularity estimates

we L2 ((0,T); H3(Q)) n L7z ((0,T); W(Q))
¥ e L*®((0,T); Whi())
u € L™ ((0,00); H*(Q)) N LP ((0, 00); WHP(Q))

forany T > 0, 2 < p < oo and 1 < ¢ < oo, provided that the domain and
initial data are sufficiently smooth. Again the uniform in time bounds result in
convergence to the hydrostatic equilibrium in H' x H~!. The explicit statement
of the results, the proof thereof, as well as a further discussion, will be given in
Chapter 4.

1.4 Well-Posedness

In what follows we will focus on a-priori estimates. The analysis will provide suf-
ficient regularity estimates for the solutions, which subsequently allow Galerkin
approximation techniques to prove the existence of solutions. For general flows
with Navier-slip boundary conditions, the reader is referred to Clopeau, Mikelic,
and Robert 1998; Kelliher 2006. The well-posedness of the Rayleigh-Bénard
problem with no-slip boundary conditions is covered in Foias, Manley, and
Temam 1987, which also includes remarks for other boundary conditions. In
particular, a combination of their techniques with the functional analysis prop-
erties of Navier-slip boundary conditions discussed in Amrouche, Escobedo, and
Ghosh 2021 yields the desired result. Similarly, the well-posedness of the ther-
mally non-diffusive system with no-slip boundary conditions is studied in Hu,
Kukavica, and Ziane 2013, and again combining their approach with the re-
sults of Amrouche, Escobedo, and Ghosh 2021 leads to existence results. The
uniqueness of solutions to the thermally non-diffusive system with Navier-slip
boundary conditions is studied in Hu et al. 2018.

We remark that although the approximation techniques only yield the exis-
tence of solutions on bounded time intervals we will use L? ((0,00); W*4(Q))
to indicate that the corresponding bounds hold uniformly in time.

1.5 Structure of the Thesis

In Chapter 2 general results and technical properties of fluids subject to Navier-
slip boundary conditions are proven. In particular, estimates regarding gradi-
ents on the boundary are derived in Section 2.3.

Chapter 3 is dedicated to Rayleigh-Bénard convection, where in Section 3.2
the main results are provided, that are proven in Section 3.5, Section 3.6 and
Section 3.7 for the general system, the system with flat boundaries and con-
stant slip coefficient, and the system with the same boundary profile function,
respectively.

Chapter 4 is devoted to the non-diffusive equations, where the main findings
regarding regularity and convergence are given in Section 4.2, which are proven
in Section 4.3 and Section 4.4, respectively.

8



1.6. Notation

1.6 Notation

Throughout the thesis, the following notation is used.

Q Q) is a two-dimensional at least Lipschitz domain, either
bounded as throughout Chapter 4 or a potentially curved
periodic channel as specified in (1.1) with top boundary 7,
described by the height function h™ and bottom boundary
v~ described by the height function h~.

U The fluid’s velocity and its components are denoted by u =
u(x,t) = (ulv u2)(1’1a T2, t)'

at For a vector a = (a1, a2) we use the convention of defining
the perpendicular direction as at = (—ag, ay).

n,n* The unit normal vector in outward pointing direction. In
case no outward direction is specified, nt is the upward-
pointing unit vector, while n~ is the downward-pointing
one.

T The unit tangent vector is defined by 7 = n*.

Ur The tangential velocity u, = u - 7.

w The vorticity is defined as w = V* - 4 = —8ouq + O1us.

Du The symmetric gradient Du = 2 (Vu+ VuT), which in com-
ponents is given by (Du);; = 3(diu; + dju;)

« The slip coefficient «, which can vary in space.

K The boundary curvature is defined by kK =n - (7 - V)7.

|“Ilps || ller  These norms denote the spatial LP, respectively W¥*P-
norms defined by | f||5 = [, |fI?, respectively | f|I7.., =
2jal<k VLI

() For any domain X the large time and spatial average is

. T
defined by (f)x = limsupy_,. % [, ﬁfx f(xz,t) dz dt.
Note that the convention is used to always divide by |Q]
instead of |X| and we omit the index if X = Q, ie. ()=
(e
SR We write f < g if there exists a constant C > 0, poten-

tially depending on ||, the Lipschitz constant of € and
the Lebesgue norm parameter such that f < cg. Similarly
f < g, where the constant potentially also depends on «, &
and 2 in general.

Additionally, the Einstein summation convention is used, implying summa-
tion over identical indices appearing twice, i.e. u;v; =Y, u;v;.

In the partially periodic domain, the cancellation of boundary terms is used
without explicitly mentioning it. With a slight abuse of notation in Chapter
2 the relevant boundaries are always referred to as 0€), while in the case of
the Rayleigh-Bénard domain only the top and bottom boundaries v~ U~ are
implied.






Chapter 2

Navier-Slip and Curved
Domains

In this chapter, we illustrate how boundary roughness, measured by the curva-
ture, influences fluids with slip boundary conditions. As we will see the cur-
vature and slip coefficient are closely related to each other. Additionally, the
estimates derived here will later be used to prove the corresponding results.

While most of this chapter’s results can be adapted to other two-dimensional
domains we will always assume that the domain is either the partially periodic
one given in (1.1) or a bounded Lipschitz domain and only specify the needed
regularity of the boundary in the statements. A Lipschitz domain is of class
C*1 if locally there exist bijections to the half plane, whose derivatives up to
order k are Lipschitz continuous. For the partially periodic domain (1.1) these
bijections are given by h™ and h~.

The curvature is defined as

k=mn-(r-V)T (2.1)

and if  is a C*! domain then the curvature satisfies k € W*=1:°(9Q).

While for the fluid we have the solution of either Rayleigh-Bénard convection
or the thermally non-diffusive system in mind, in this chapter the fluid only
needs to satisfy

V-u=0 in Q (2.2)
n-u=0 on 09 (2.3)
T-(Dun+au)=0 on 0N.

2.1 Gradients and Vorticity

This section is devoted to finding estimates that allow us to exchange the gra-
dient Vu, the symmetric gradient %(Vu + VuT) and the vorticity w = V+-u =
—0Osu1 + O1us.

The first estimate in that direction yields a result for the L?-norm of those
quantities, in exchange for a boundary integral. Note that the boundary terms
vanish and the bulk integrals coincide for flat domains.

11



2. Navier-Slip and Curved Domains

Lemma 1
Let Q be CY1, w € HY(Q) satisfy (2.2)-(2.4) and v € HY(Q) satisfy n-v = 0.
Then

2/(Du)ij(ID>v)ij—/ numz/@iujaivj:/VL~uVL-v+/ KU - .
Q a0 Q Q o0

(2.5)

and in particular

2Dl / w2 = |Vl = ]2 + / 2.
o0 o0
Proof

Assume at first u is smooth and note that

/Q(]Du i (Dv); / 0;u;0;v; / 0;u;0;v;. (2.6)

For the second term on the right-hand side of (2.6) integration by parts yields

/ Oiu;05v; = / n-(v- V)u+/ 0;0ju;v; = / n-(v-Vu, (2.7)
Q a9 Q o9

where the second-order term vanished due to the incompressibility condition.
In order to calculate the first term on the right-hand side of (2.7), notice that
u=u,7 as u-n =0 on I and therefore

n-(t-Viu=n-(1-V)(u,7)=un-(7-V)r+n-7(7-Viu, = ku,,(2.8)

where in the last identity we used (2.1). As analogously v = v, 7 one finds

/89n~(v-V)uZ/BQUTTL'(T'V)U:/QQ}WTUT. (2.9)

The second term on the right-hand side of (2.7) vanishes by the divergence-free
condition. Therefore, combining (2.6), (2.7), and (2.9) yields

2/ (Du);j(Dv)i; = | Ou,;0iv; + / KUr Uy, (2.10)
Q Q a0
proving the first identity of (2.5).
In order to show the second identity of (2.5), notice that
2(Du);j(Dv);j + (V- u)(VE - v)
= 0;u;0;vj + 0;u;0;v; + (—O2u1 + D1ug)(—02v1 + O102)
= 0;u;j0;vj + O1u101v1 + O1u202v1 + Oou1 012 + Oouadovo
+ Oou102v1 — Oou101v2 — D U001 + O1u01 Vs
= 20;u;0;v;
and therefore integrating and using (2.10) yields

/(vl. _2/ dyu;dv; — /(Du)ij(Dv)ij
0 Q
:/&uj&vj—/ RU+VUr.
Q o0

By approximation, the assumption of v being smooth can be dropped. O

12



2.1. Gradients and Vorticity

For second-order derivatives, one has the direct identity
Au = V+w (2.11)
if u satisfies (2.2). This follows from the immediate computation

Ay — 8%u1 +6§u1 . (92(—(91U2+(92U1) —viy
6%U2 + 8%’&2 5] (81U2 — 82’&1) ’

The next estimate generalizes the previous two results to arbitrary Sobolev
norms of order one and two. It is a slight deviation of Lemma 3.6 in Bleitner
and Nobili 2024a.

Lemma 2
Let Q be the partially periodic domain defined in (1.1). Assume it is of class
CH1 and let w e WHP(Q) for 2 < p < oo satisfy (2.2) and (2.3). Then

1422
[ullwre S llwllp + (1 + [l&lloo * ) [ellg: (2.12)

where the implicit constant only depends on p, |Q] and the Lipschitz constant of
the boundary. If additionally 2 is C*1 and u € W29(Q) for 1 < q < oo, then

lullwzs S lwllwre + [Klloolwllp + (1 + K llwr.ee + [Kl13)ullp-  (2.13)

Proof

For most of the proof, we follow the approach of Section 6.3.2, Theorem 4 in
Evans 1998 and provide it in detail here to capture the explicit dependency on
k. We first provide an overview of the strategy for the proof of (2.12) and (2.13)
and prove these individual steps afterward.

1. First order estimate

) Derive the PDE for the stream function

) Remove the boundary conditions by redefining the stream function
(c) Establish a change in variables that straighten the boundaries
(d) Derive the PDE in the straightened variables

) Derive the estimates for the straightened system

) Translate the bounds back to the original system

)

Generalize the lower order term
2. Second order estimate

a) Derive a PDE for the horizontal derivative of the straightened system

(b) Derive bounds for the horizontal derivative
(¢) Derive an equation for the remaining derivative
)

(d) Get bounds for the full norm

Now we will prove the steps outlined before.

13



2. Navier-Slip and Curved Domains

(1a)

(1b)

Derive the PDE for the stream function

Let ¢ be the stream function of u, i.e. u = V+p. Then
Ap=V+ . Vip=V!t. u=w.

Additionally, the stream function is constant along the individual bound-
aries v~ and v as

T~V<p:nL~V<p:—n-VlgO:—n'UZOa

where we used the non-penetration boundary condition (3.4). As ¢ is only
defined up to a constant we choose it such that ¢|,- = 0. Stokes theorem

implies
1 1
][ ur = —][ Oap = —*/ n2g — */ n2p = —¢ly+,
Q Q r ~t r v

where §,, = TI [ is the averaged integral and we used that since n(z) =

1 (—h+1/(331)) on 4+

1+(ht(21))?

\/1+ (Rt
/ N9 dx:/ / dx1
vt 1+ h+ 0

1+ hJr

Therefore, the stream function satisfies

Ap=w in

ap:—][ul on vt
Q

p=0 on vy .

Remove the boundary conditions by redefining the stream function
We define

. ry —h™ (1) U
<p—g0+h+(x1)_h7(x1)]{2 1 (2.14)

and omit the argument of the height functions to improve the readability.

Then (,5 fulfills
A(p A(p + A —h ][ u
h —h~ Q !

and as on the top boundary

cﬁ:goJr][ul:O
Q

and on the bottom boundary



2.1. Gradients and Vorticity

its system can be written as

Apg=f inQ (2.15)
=0 on~y U~T, (2.16)
where
N = (2,17
Also note that
s R
= IR L

Additionally by Poincaré’s inequality as ¢ vanishes on the boundary
lellp < 18l + llulls < IVEly + llully S Vel + llulls < llullp, (2.18)

where in the last estimate we used Holder’s inequality.

(1c) Establish a change in variables that straighten the boundaries

Next, we establish the change of variables to a system with straightened
boundaries. Let z be the coordinates of the original domain 2 and y be
the ones of the straightened system, defined by

re) = {({El,(EQ) ’ O<zi <T)h (z1) <2 < h+(m1)}
Q7 ={(y1,92) | 0<y1 <T,0< yp < 1}.

We denote the Sobolev spaces in the different coordinate systems by

LP = LP(Q) LY = LP(Q7)
Whr = wkr(Q) WP = Whr(Q~)

and the corresponding change of variables by

y=o(z) = (jlh— )
hT—h—

z=V(y) = (h + (hgl— h)y2)




2. Navier-Slip and Curved Domains

with derivatives

1 0
I S € S O [ 0 1
h¥t—h— (hT—h—)2 Rt —h—

1 0
'+ (Y —h ")y, AT — h—)

1 0
V. @(¥(y)) = (_ R (T T 1 )

ht—h— ht—h~—

1 0
'+ 4(h+’_g;i)7}(ﬁ2_hi) ht — ff)

V,U(y) Vo @(T(y)) = (é (1)>

|
V() - V,U((z)) = (0 (D : (2.19)
Note that
[®zee 1 [Vl <1
[Va®|[re S 1 [Vy¥llre S 1
IV2®lLee S 14 [I5]loo V2L S 1+ [I6lloo
V3| e S 1+ [IKflwree IVeWree S 1+ [[5llwree

and by chain rule

IVapllze S IVyplles
IVyplir S IVapllre
IV2allee S IVl +
IV3olley S IV3AllLe +
IV3alle S IVl +
IVyolley S VAl +

L+ [|# ][
L4 [|# ]l
L [[&]l oo
1+ [|5lloo

IVypllLz

IVapl L (2.20)
IV3nll Ly + (1 + [[6llwre) IV yll Ly
IV2all e + (1 + [[Kllwree) [ Vapl 2

o~ o~ o~~~
~— ~— ~— ~—

for any p € WP, respectively p € W2P and p € W2P and p(y) =
p(¥(y)) = p(x).
(1d) Derive the PDE in the straightened variables

Next, we want to derive the straightened system corresponding to (2.15),
(2.16). We define the corresponding stream function in the straightened
system by

o(y) = #(¥(y)) = o(x) (2.21)

and the operator by



2.1. Gradients and Vorticity

where
ar(y) = | det Vo @ (U ()|~ 6p,500, Pr(¥ ()00, 21(T(y)), (2.22)
ie.
@y =ht —h, a1o = —h~" + (Wt = h Yy,

2
L (h" 4+ (0 = 1))
W —h-

Similarly to (2.21) we define f(y) = f(¥(y)) = f(z) and for any p €
HYOQ7) let p(¥(y)) = p(x) = p(y) = p(®(z)). To derive the PDE notice
that by partial integration, the previous definitions and chain rule, it holds

- / et Vo @ (T (y)| s, B4 (T (1))Dy, B1(T ()00 2(0)0y 5(1) dy

= [ 1det Vw0, (W00, B (Y1)
00, BV (1)), Vi (1), H(W (1)), ¥ (1) dy,
which according to (2.19) simplifies to
—/Q:i(y)ﬂy)ﬁ(y) dy
= [ 14 TR 500 AV ()00, V)
= [ 1ot T )| 0 B2, A )

/8% Oz, p() dz. (2.23)

Integration by parts and (2.15) yields

[ 0., 6(w)0., ) do =~ | Ap(a)j(r) d

/f
= /_( BV W)a) dy. (2:24)

Combining (2.23) and (2.24) one finds that @ fulfills
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and on the boundaries

i.e. @ solves

Ly

(bt —h7)f inQ~ (2.25)
0 on 90~ (2.26)

A
Il

(le) Derive the estimates for the straightened system

L is an elliptic operator as according to (2.22) for any & € R?

;€& = (BT = h7)0, ®i(V(y)) 0, ©;(V(y))EiE;
0., 2(¥(y)) - £V, P ()2

_ + _ =
= (" =h7) NAIOIE
Ve (©)0., (T (y)) - £
S N AT E
_ W= €2
L4 (Wt —h)2+ (b + (b — b )y)®
> C|¢)?

for some constant C' > 0, depending on min(h* —h™), max(h*t —h™), the
Lipschitz constant of Q and I'. Therefore elliptic regularity for the system
(2.25), (2.26) implies

I1@lwzr S NAF =07) flly < I ley, (2.27)

where the implicit constant only depends on min(h™ —h™), max(ht —h™)
and the Lipschitz constant of Q and T'.

(1f) Translate the bounds back to the original system
By the definition of ¢ and @, i.e. (2.14) and (2.21), (2.27) implies
lellwzr S N@llwze + 1+ l5lloo)JurllLy
< lhyzo + (1 + llloo) @l + 1+ [6lloo) s 12
S llzy + A+ lIslo) lBllyer + (14 lllloo) luall 2
S IAllze + (L4 8lloo) 1Bl + (1 + l18lloo) 2t
S llee + U+ llslloo) 1 @llrr + (1 + llslloo) ]l s
+ (L + [l lellyar + (1 + [[£lloo) [[urllLy (2.28)

S llwllzy

where we used (2.20) and the definitions of f and f. By the definition of
¢ (2.28) yields

lullwzr < llellwze
S llwllze + 4 fIxllco) lellwz > + (14 lIxlloo)l[uall Ly
S llwllze + (4 [15lloo) lull £z, (2.29)

where in the last estimate we used (2.18).

18



2.1. Gradients and Vorticity

(1g) Generalize the lower order term

Gagliardo-Nirenberg interpolation for the straightened domain and Young’s
inequality imply

1—
lullzy < IVullze lulls" + llullzg
S el Vull g + (14777 ) llulg (2.30)
forany5>0,where0<u:2(i(fﬁ<1for1§q<p<oo.
Combining (2.29) and (2.30)

lullwzr S llwlizy + (14 l5floo) 2z
S llwllzy + (U llslloo) el g
S llwllpy + e+ [[£lloo) I Vully

w

(1) (1 sl g
S lewllzg + 811Vl g

(1 (U IAlloe) ™7 ) (14 l1lloo) ull g
S lewllzg + 01l Vul g

(1 (U I0lloe) ™7 ) (1 ool g, (2:31)

where we chose € = (1+]||o) 10 for any § > 0. Note that sincep > ¢ > 1

and 0 < p = % < 1 Young’s inequality implies

K _1
(14 1+ 1lloe) ™7 ) (1 1) = 1+ Ililloo + (14 I5l]oc) 7
1
S+ RIS (2.32)

Choosing ¢ sufficiently small in order to compensate the gradient term in
(2.31) and using (2.32) results in

K
ez S leollze + (14 (U4 o) =7 ) (1 l6lloo) ] 2
14+2-2
Stz + (14 I ) e

proving (2.12).
Next, we focus on (2.13).

(2a) Derive a PDE for the horizontal derivative of the straightened system
Calculating the horizontal derivative of (2.25) one finds

Oy, (W =h7)f) =0y, (Lo)
= a?!z (ay1dklayk @) + ayz (@klayk 8.1/1 95)
= ayl (ay1 a‘klayk 95) + Layl@

19



2. Navier-Slip and Curved Domains

and on the boundaries by (2.26)
Oy, = 0.
Therefore ¢ = 0, ¢ solves
Ly = f inQ=

¢=0 on{y: =0} U{y =1},

Wheref Oy, ( f) 0y, (Oy, @r1 0y, P).
(2b) Derive bounds for the horizontal derivative

As in (2.27) elliptic regularity implies

10y @lyzs = 1902s S 1F1cs, (2.33)

where the implicit constant only depends on min(h™ —h™), max(h*t —h™)
and the Lipschitz constant of 2 and I". Note that this implies bounds for
every third order derivative of ¢ except for 85’235

(2¢) Derive an equation for the remaining derivative

In order to derive bounds for 85’295 notice that

Oy, [ =0y, L
= ayz ayz (szlayk @)
= 0y, 0y, (@110y, @) + 0y, 0y, (@120y, §) + 0y, Oy, (G210y, )
+ 352 220y, + 20y, a223y2<p + aggé‘yzgo,

implying
03,0 =gy (0y, [ — 03, 0220,,p — 20,0200, @ (2.34)
—5y28y1 (dllayl ) ay2ay2 (al?a 95) a?JQayl (‘_121824295))
as ago # 0.

(2d) Get bounds for the full norm
Taking the norm of (2.34)

yllzee [Vye

Y2

v S llaz e (|
¥yl 1922 + ]2 920, 2123
< 18 flsg + 193l

16,4

Pl
r+ Vo0, ol (2.35)

where we used

laxs llog S 1
lallre S 1.

20



2.1. Gradients and Vorticity

Combining (2.35), (2.33) and the definition of f, we obtain

1@l < 190 Bllwzr + 105,81 g + 18lly20
S ||8y195||wy2'1’ + ||‘15||er1’ + HayszLg
+IVial e IVy@lioy + IVyalze IV5el oy
Sy + 18llwzr + 118y Flles
+IValoe IVy@lioy + IVyaloe Vel oy
S lwrr +1V3alle V@l + @+ 1Vyal o) 19]l 20
e A e o [ [P
+ (L 5l @l wzr (2.36)

where in the last estimate we used
@l ST+ llKlloe
lallyze S 1+ [I6lwre + ll5]12%.
Using (2.20) for (2.36) we find
I18lwzr S I@llwse + L+ 61Vl + 1+ llxllwe )| Vyo|
< il + (1 + o) 1]z
+ (L + [[8llwree + (18]35 1@y

S lwzr + 1+ 16l Gl
+ (L [[6llwee + 1813 Bl 20

Ly

and by the definition of ¢ and f, i.e. (2.14) and (2.17)
IV2ullyyzr < Il

S ellwse + L+ lI&llwro)ull 2y

S Iz + @+ sllwre)llullzy + 1+ 5l 1@l
+ (14 6llwree + [1KI13) 1y »

S lwllyz e + O+ lIsllwree)llullzy + (1 + [[£]loo)[|@llyzr
+ (L [Isllwree + K131 Bll 20

Slwllwze + A+ llslo) [Vael e
(1t sl + 112 (el + lullzy)

S lwllwre + lllcollwl 2y

+ (1 llwns + %) (lellwas + ey ), (2:37)

where in the last inequality we used (2.28). Finally, u = V=+¢, (2.37),
(2.18) and Holder’s inequality imply

IV2ullyzr < llwllyze + I6llscllwllze + 0+ lIsllwee + 603 lul £z

proving (2.13). O
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2. Navier-Slip and Curved Domains

We need a similar estimate for the standard domain. Since in this case,
the results are qualitative, we can use a more abstract approach allowing for a
simpler proof and a more general result. The following Lemma corresponds to
Lemma 5.3 in Bleitner, Carlson, and Nobili 2023.

Lemma 3

Let 1 < g < o0, 1 <7 < 00, k € Ny, Q be a bounded C**t11-domain and
u € WFtLa(Q) satisfy (2.2) and (2.3). Then there exists a constant C' > 0
depending on (2, q, k, r such that

IVullwe.a < C(llwllwr.a + llullr).

If additionally u € W*+39(Q) satisfies (2.4) with a € WF+2:°(9Q) and Q is a
CF+3:1_domain, then

IVullwers < C (1Awlwra + (1 + fllwssss)ullwesd)

Proof

The proof follows a similar strategy as the one of Lemma 2. As here we are not
interested in the explicit dependency on k we are able to use general results,
significantly simplifying the proof.

As before, one first needs to find the PDE for the stream function ¢, which,
up to a constant, is given by V4 = u. Taking the curl, we find Ap = V+.u =
w. To derive boundary conditions, let A be the parametrization of a portion I';
of the boundary by arc length. Then

d

NG (N -Vo=71-Vo=7--V+tp=-n-u=0

(210, 22() = 5o

and therefore ¢ is constant along connected components of the boundaries.
Combining these one finds
Ap=w in
©=1; onI;
with constants ¢;, where I'; are the connected components of 0f). By elliptic
regularity ¢ > (—Ap, p|sq) is an isomorphism from Wk +24(Q) onto Wk (2) x

Wk+2_%’q(8§2). For details see Remark 2.5.1.2 in Grisvard 1985. This implies
that

lellwrse S lwllwee + [l xre-s (2.38)

100)’

where the implicit constant depends on €2, ¢ and k. In order to estimate the
boundary term note that for any s > 0

I0yeaqom = 2 0l = S 183050y = 1ol Eagony (239

i

Since ¢ is only defined up to a constant we can choose it such that ¢ has
vanishing average in 2 and Poincaré’s inequality holds. Therefore, (2.39), trace
theorem, Poincaré’s inequality and the definition of ¢ yield

||S0||?/Vs.,q(ag) = ”SOH%q(aQ) < H‘PH%{/Lq(Q) S ||V<PHqu(Q) = ||u||%q(Q)' (2.40)

22



2.1. Gradients and Vorticity

Combining (2.38) and (2.40) and using the definition of ¢ one gets
S lwlwea + llullg:

(2.41)

IVullwea < llllwerea S lollwes + 101t 0

Finally, in order to change the norm on the zeroth order term on the right-hand
side, Gagliardo-Nirenberg interpolation and Young’s inequality imply

1— __r_
lullg < Vullglully™ + llulls < epllVullg + (1 +(1—p)e 1‘*’) [ully (2.42)

for any € > 0 where p = gg—:g. Combining (2.41) and (2.42) we obtain

—_Pr
IVullwrs S lollwns + llully S lwlhwes + el Faly + (142777 ) full

and choosing ¢ sufficiently small one can compensate the third term on the
right-hand side implying

IVullwea S llwllwea + llulls < lwllws.o + [l (2.43)

where the last inequality is due to Hélder’s inequality, proving the first state-
ment.

The proof of the second statement follows a similar strategy. In order to get
boundary conditions for w, note that by (2.2) and (2.3)

—2(a+kK)ur =27-Dun—-2n-(7-Vju=7-(n-Viu—n-(1-V)u
= (mnj — 7jn;)05u; = (Ting — Tany)Oaus + (Tong — Ting)O1us
= (—n2 —n})Oouy + (n? 4+ n2)o1uy = w.
Again by elliptic regularity, details can be found in Remark 2.5.1.2 of Grisvard
1985, w = (—Aw,w|sn) is an isomorphism form W#*+2:4(Q) onto W*4(Q) x
W’H'Q_%’q(aQ), implying

[wliwssao S I1Awlwes + 1@l rrdaon,

= llAwllwra +2[(a + &)ur]| s (2.44)

’q(BQ)'

The boundary term can be estimated using Holder’s inequality and trace theo-
rem, for which details can be found in Theorem 1.5.1.2 in Grisvard 1985, by

It myr ]l rsa g o) & (L ladlwere oo)llullwerza). (2.45)

Combining (2.44) and (2.45) yields
leollwesza S 1AW wrs + 20+ m)urll ra-ta o0
S 1Awllwrs + (1 + lallwerzce) lullwere.

and using (2.43) we arrive at

IVullwrsaa S llwllwreza + [l

S 1Awllwsa + (1 + [[allwrezs) [ullw+2.q,

proving the second statement. O
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2. Navier-Slip and Curved Domains

2.2 Diffusion and Navier-Slip

In this section, we discuss the interplay between the diffusion term and Navier-
Slip boundary conditions. Naturally, the boundary conditions enter the system
when testing the equations with the corresponding velocity field. Lemma 5 will
show that the symmetric gradient and the boundary conditions arise organically
when doing so. In order to prove the statements, we first need estimates for
terms on the boundary. In particular, we need to extend functions that are only
defined on the boundary to the whole domain.

The following inverse trace result will provide this. We will not state a proof
here and refer the reader to Theorem 18.40 of Leoni 2017. More details can also
be found in Theorem 1.5.1.2 of Grisvard 1985.

Lemma 4 (Inverse Trace Estimate)
Let Q be OV and 1 < g < co. Then for every g € WH2°(9Q) there exists some
¢ € WH4(Q) such that

Cloa =g, [<llwr.a) < Cllgllwre o)
where the constant C' > 0 only depends on q and ).

With this extension at hand, we are able to derive the identity and bounds
that arise when testing the diffusion term with a vector field.

Lemma 5
Assume Q is CT, u,v € HY(Q). Let u satisfy V -u = 0 and the boundary
conditions n-u =0 and 7 - (Du n+ au) = 0 with o € L>(0). Then

[(Aw, v)| < jul| g l|v]la (2.46)

and if additionally n-v =0 on 0, then

—(Au,v) = Q/Q(]D)u)ij(]]])v)ij +2/8 QU V.

Q

Proof
Assume at first v € H?, then integration by parts and projecting v onto its
tangential and normal part on the boundary, i.e. v = (v-n)n+ (v- 7)7 yield

—/ Au-v = —/ 'aniaiu]‘ +/ &-ujé)ivj
Q oN Q
= —/ vaijniBiuj — / vknknjniaiuj +/ (r“)inai’Uj
o o Q
= —/ vaijni(ﬁiuj + 6Ju2) —‘r/ vaijniajui
oQ o0

—/ vknknjmaiuj—i-/ &»ujaivj. (247)
o0 Q

Note that, using the boundary condition 7 - (Du n+ au) =0 and v = u- 77 +
u-nn =u- 77 since u - n = 0, the first term on the right-hand side of (2.47)
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2.2. Diffusion and Navier-Slip

satisfies

—/ vaijni((')iuj + 3juz) = —2/
o0

o0

(U-T)(T-Dun):2/ afv-7)(u- 1)

o0

= 2/ au - v. (2.48)
o0

For the second term on the right-hand side of (2.47) (2.8), i.en-(7-V)u = ku-7
yields

/BQ VRTET 05Uy = /{m(v T (1 V)u = /39 kv-T)(u-7) = /(m -
(2.49)

In order to estimate the third term on the right-hand side of (2.47) we need to
extend n to a function in . By Lemma 4, there exists ¢ € W14(Q) satisfying

Clag = n, ICwra) S lInllwiee @) S (1 4+ [K]oo) (2.50)

and therefore Stokes theorem yields
—/ vknknjni&»uj = —/ Ukck’njciaiu]'
o0 o0
— - [ B0aGdi)
Q
= —/ ajvk(k(i@uj - / vkajckgaiuj - / vkg‘kaj(i&iuj
Q Q Q

- [ wogorou,
Q

_ / e / ks Culidhuy — / k(s Cidhus,
Q Q Q

where in the last identity we used that V - u = 0. Consequently, using Holder’s
inequality and Sobolev embedding

/ VRN 03U
onN
< / 10,0 Ce G | + / [0, GG | + / [0 G, G|
Q Q Q

< vl 1B lullzr + 20ollall¢ w1l oo ull 21
SISy alloll e el e
S (L [[lloo) el ol a, (2.51)

where in the last estimate we used (2.50). Combining (2.47), (2.48), (2.49), and
(2.51) and using Holder’s inequality and trace theorem

/Au~v
Q

5/89(|a\ +|sDw - of + (14 [|&lloo) el [0 221

S (U llalloo + [ lloo) lull zt [[0] -
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2. Navier-Slip and Curved Domains

By approximation, this holds for v € H!, proving (2.46). If v-n = 0 on 0%,
then the third term on the right-hand side of (2.47) vanishes, which according
to (2.48) and (2.49) implies

—/ Ay-v= —/ VTR (O + Oju;) —|—/ VR Ti TN 05 U; —I—/ 0;u;0;v;
Q o9 o9 Q
= / Qa+r)u-v+ [ Ou;ov;.
a9 Q

Finally, using Lemma 1 one finds

—/ Au-vz/ (2a+ﬁ)u~v+/ 0;u;0;v;
Q o9 Q
= 2/ (D’U,)U (]D)’U)ij + 2/ au - v.
Q X9)

Note that by Lemma 1 and Lemma 5
— (Au, u) = 2||Dul2 +2/ oni?
o0
—vul+ [ (20
o0

— ol +2 [ (@,
o0

so a and k are strongly related to each other. In fact, the stress-free boundary
conditions

w =0,
as investigated for example in Doering et al. 2018 could be translated to
a=—K (2.52)

as can be seen in the boundary conditions for the vorticity that we will derive
in (3.10) and (4.23). However, throughout this thesis, we will assume o > 0,
and therefore (2.52) is only reasonable in our scenario if € is a convex domain,
since then k < 0. In the case of Rayleigh-Bénard convection, we are working in
a domain that is periodic in z1, implying that convexity can only be achieved
if kK =0, i.e. the boundary is flat.

The next estimate, together with Lemma 5, shows —(Aw, u) is actually com-
parable to [|u|%:.

Lemma 6 (Coercivity)
Let Q be CYt and u € HY(Q) satisfy (2.2)-(2.4) with 0 < a € L>(9Q). Then

D7 + /m au 2 (L4 o™ (1 + 6] lloo) ~lullZn (2.53)
Dl +/ au? 2 (1+[la™ loo) ™ ull?s, (2.54)
oN

where the implicit constant only depends on || and the Lipschitz constant of
the domain.

26



2.2. Diffusion and Navier-Slip

Proof
Although the proofs are similar, we split them depending on the considered
domain due to technical reasons.

e The Lipschitz domain
For x € Q let (Z1(x1,22),x2) be a point on IQ such that the horizontal
line Q- connecting x with (&1, z2) lies in £, i.e.

Z1(z1,20) = ax Y1,

m
y1<x1,(y1,22)EON

Q- (z1,22) = {(y1,12) € Q| F1(x1,20) < y1 < T1,y2 = T2}
and let -- be all the points in 2 at height x5, i.e.
QO (22) = {(y1,y2) € Q| y2 = z2}.

The definition of these sets is illustrated in Figure 2.1 for the partially
periodic domain. Then the fundamental theorem of calculus yields

2
uf(@) = |ui(Z1,22) + ; Oru1(y1, r2) dy
< 202 (Z1,22) + 2[|0vur (-, 22) [ T2 (0- -2 (2.55)
and similarly for
Zo(z1,22) = max Y2,

y2<wa,(x1,y2)€00Q
Nz, 22) = {(y1,92) € Q| y1 = @1, ZT2(x1,22) < Y2 < T2}
(1) ={(y1,92) € Q| y1 = 21}

one has
2
uz(w) = |ug(x1,%2) + | Oauz(w1,y2) dys
Q\
< 2“72—(1'17 i‘2) + 2||82u2($1a ')Hiz(g:(zl)) (2-56)
and integrating (2.55) and (2.56) over € implies
Julffs S [ o+ IDul (257
o0

e The partially periodic domain
Fix some =z € 2. We first focus on u; and divide our analysis depending
on the value of zs.

- At first assume that either o < maxh™ or z» > minht. If it exists,
we define

Z1(x1,20) = max Y1
y1<z1,(y1,22) €N

as before and otherwise

Z1(z1,22) = min
x1<y1,(y1,22)€E0Q
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2. Navier-Slip and Curved Domains

(Z1,22) QO (2) & Q- ~(z2)

Figure 2.1: Illustration of the definitions of Z1, Q-(z) and Q--(z2).

and again set

Q- -(22) = {(y1,y2) € Q| y2 = 22},

as illustrated in Figure 2.1. Then the fundamental theorem of calcu-
lus yields

T
|31u1\2(57932) ds

(@) < Jus (31, 22) + /

x

S |u7'|2(-;i;1) I‘2) + ||DU(7 m2)||%2(9,,) (258)

- If maxh™ < x5 < minh*, define Q~(x2) = {(y1,92) € Q | y2 < z2}
and notice that

r
/ Ui (y1, 1172) dyl

0

I T2
=/ <U1(y17h(y1))+/ Ozu1 (Y1, 92) dy2> dy:
0 h=(y1)

- / wr (g1, k™ (52)) dn
0

I 2
+/ </ (O2uy + Oruz — Oru2)(y1,Y2) dy2> dy
0 h

~(y1)

T T2
:/ <u1(y1,h(y1)) +/ (O2uq + O1u2) dy2> diyr
0 h=(y1)

- / 81“2. (259)
O~ (x2)

Note that by periodicity the Q~-integral on the right-hand side of
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2.2. Diffusion and Navier-Slip

(2.59) can be estimated by

—/ 81U2 dy = —/ 8111,2 dy
Q~(z2) Q~(maxh~)
= 7\/ niug
-

< A s . (2.60)

Combining (2.59) and (2.60) one has

r
/ ui(s,x9) ds
0

Again, using the fundamental theorem of calculus, we find

5/ qul+/ |Oaus + Oyus| dy. (2.61)
v Q= (z2)

r r
lui)?(x) = |ug (1, 22) —]é ui(s,x2) ds —I—]é ui(s,x2) ds
r 2 r 2
< ]l (uy(z1,2) — ui(s,x2)) ds| + ]Z uy (s, x2) ds
0 0
r 2 r 2
< / [Orur|(L, z2) dI| + ][ ui(s,22) ds
0 0
r 2
< ||81u1(~,x2)H%2(0)F) + ][ ui(s,xa) ds| (2.62)
0

where in the last estimate we used Hélder’s inequality. Combining
(2.61) and (2.62)

fun () < 100 (- 2) 2y + / s
3
+/ |Oouy + 31uQ|2 dy
Q~(x2)

< IDuCs 22 rgory + [ furl? + DUl (@m ey (263)

Y

So regardless of the value of x5, we can bound w; in terms of the symmetric
gradient and the boundary values. To get bounds for us, notice that by
the fundamental theorem of calculus

2
z2

uz(x1,h™ (x1)) +/ Oquz (1, 2) dz
h=(z1)

uz|*(2) <

ht (1)

2
< |uT|2(x1,h_(x1)) + </ |O2ug| (21, 2) dz)
h=(z1)

< Jur (@1, h7 (21)) + IDu(@ 1, T2 (0 o)t @ry)r - (2:64)
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2. Navier-Slip and Curved Domains

where in the last estimate we used Holder’s inequality. Finally, combining
(2.58), (2.63) and (2.64)

[ul*(@) < Jur[* (21, 22) + [Dul, 22) 12 0ngyomasy) + DU 22) 1220 1)
b [ e Il ey + e, )
gl
+ IDul@r, M2 (o)1t (1) (2.65)
and integrating (2.65) over {2 yields
Julffs S IDul+ [ a2, (2.60
o0
Smuggling in a factor of & in (2.57) and (2.66), one gets

Jul2 < [Duf2s + /a a2 < Dulfs + o~ /a o,

which implies (2.54). In order to estimate the full H!-norm Lemma 1 and (2.66)
yield

lullf = IVullZs + llulZ:

— 2|Dul2; - / s+ 2,
o0

1 0, —
< |Dul2. +/ awug
0 @

S0+ a1+ ) (1Dl + [ an2).
o0
O

Note that we estimated max{0, —x} < |k| in order to simplify the terms.
This is suboptimal. Imagine for example the domain to be a rectangle with an
elliptic hole on the inside. Then x = 0 almost everywhere on the outer boundary
and k > 0 at the boundary where the hole is. So, in that case the curvature
would not influence the estimate, which could therefore be improved to

IDullZ> + /BQ auz 2 (14 o™ o) ™ lullz-

2.3 Boundary Gradients

Naturally, when deriving H? estimates for the velocity, terms of type

/ u-Vp
oQ

will arise as in the proof of Lemma 21 for example. Note that if this was a bulk
integral, then integration by parts would imply that it vanished as

/u~Vp:f/ u~npf/pV-u:O
Q o0 Q
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2.3. Boundary Gradients

due to (2.3) and (2.2). In Drivas, Nguyen, and Nobili 2022 the authors bound
this term using the periodicity of the boundary and trace theorem in the case
of flat boundaries as

/ w-Vp = / W = — / rurp < Ilull 2 lpl
o0 o0 o0

We will use an analogous estimate in the case of curved boundaries in (3.162).
The following Lemma will show that this term can be estimated by

[ p Sl ol
o0

reducing the norm on the right-hand side. This is the crucial improvement of
Bleitner and Nobili 2024b over Bleitner and Nobili 2024a and Drivas, Nguyen,
and Nobili 2022. The Lemma is a slight deviation of Lemma 5.4 in Bleitner,
Carlson, and Nobili 2023.

Lemma 7
Let Q be CM', f € Wh>(09), p € WH(Q) and u € WH9(Q) with  + 5 =1
satisfy (2.2) and (2.3). Then

\ IR Vp] < I fnllwam o [plwes,
onN

where the implicit constant only depends on || and the Lipschitz constant of
the domain.

Proof

Note that connected components of the boundary are closed curves and 7 -V
is the derivative along the boundary parameterized by arc length. Therefore,
due to the periodicity of these boundary components, we find the integration
by parts formula

[ puvo= [ furVo== [ prvifu)

which by product rule yields

/(9qu~sz—Aﬂpr-VuT—AquTT-Vf, (2.67)

The second term on the right-hand side of (2.67) can be estimated by trace
theorem and Holder’s inequality as

[ e V1| Wt Iudiwnon < 1= Dolhwno o (269
Q

In order to estimate the first term on the right-hand side of (2.67), notice that
since 7+ (7 V)7 = 37 - V(72) = 0 due to 7% = 1 one has
T-Vu,=7-Vu-7)=7-(7-Vu+tu7-(r-V)r=7-(7-V)u. (2.69)

1

As 7 =n~ one has 7,7; + n;n; = J;; and therefore (2.69) implies

T Vu, = 1;7;0;u; = 0;0;u; —ninj0ju; =V-u—n-(n-Viu=-n-(n-Vu,
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2. Navier-Slip and Curved Domains

where in the last inequality we used (3.2). Accordingly, the first term on the
right-hand side of (2.67) can be written as

- fpr-Vu, = / fon-(n-Vu. (2.70)
r9) 0

To use Stokes theorem we need to first extend fn to a function defined on €.
By Lemma 4 there exists ¢ € W14(Q) such that

Claa = fn, [Cllwra) < Cllfnllwre- o) (2.71)

and therefore Stokes theorem for (2.70) yields

—/(mpr'VuT:/Emfpn-(n-V)u:/é‘Q,Oﬂ'(C'V)U:/QV'(P(C'V)u)~
(2.72)

In the case of the partially periodic domain, an explicit example of such an
extension is given by
h+ (J)l) — T2

(w1, 2) = ) — h,(xl)f_(l‘l)”_(xl) +

To — h_(xl)
ht(z1) = h=(21)

f+(331)n+($1),

where f~(z1) = f(x1,h (z1)) and fT(x1) = f(z1,h*(21)), which fulfills

1<l Lo @) < 2 fllLe= (09 [<llwre() < Cllfnllwee o)

where C' > 0 depends only on the Lipschitz constant of € and the minimal
distance of the boundaries in the vertical direction, i.e. min;<g, <r h+(:v1) —
h~(x1). Using product rule (2.72) yields

[ tor = [ V- Gotc- )

o0

:/Q<<~V>u~vP+/Qpaicjajui+/Qp<g.V)v.u
:/(§~V)U-Vp+/ p0;;05us, (2.73)
Q Q

where the last term vanished due to (3.2). Hoélder’s inequality with

r:;—_qq,s:2 if g <2
r=4, s=4 ifg=2

r=2q s=2q ifg>2

we can estimate the right-hand side of (2.73) by

= ‘/Q(C'V)U‘VPJF/QP@CJ'@%

S Illollwllyprar Il + 11K s Mol l[ullyro

pr ! VUT
o0
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2.3. Boundary Gradients

and with these values of r and s the Sobolev embedding implies

‘/ pr'VUT
o

S Illollullwrar ol + ISy ol llullyro

S+ Jullya ol e
Sl nllwre o) lully e [ ollwra, (2.74)

where in the last estimate we used (2.71). Combining (2.67), (2.68) and (2.74)
yields

+

wap‘S

/ PULT * Vf‘
o0
S fllwree + L nllwre) [ullyro llpllwra. (2.75)

pr -Vu,
o0 [2]9)

Finally, to unify the boundary terms notice that as [n| =1 and 2n - (7 - V)n =
7-V(n-n) =0 one has

[flloe = [lf7- nlloc < [[f7]loo
17 Voo = lI7-V(fr-n)lloc < In- (7-V)(f1) oo + [ f- (7 - V)1l
<|lm- V(1) lleo

implying
[fllwree < Ilfnllwre,

which combined with (2.75) yields the claim.

33






Chapter 3

Rayleigh-Bénard
Convection

3.1 The Model

Here we study the following system, motivated in Section 1.2.

%(ut +u - Vu) + Vp — Au = Radey in Q (3.1)
Vou=0 in Q (3.2)
Ytu-Vo—A9=0 in Q (3.3)
n-u=0 ony~ U~T (3.4)
7 -Dun+au)=0 onvy~ U~T (3.5)
+
o={} - (36)
(u, 9)(+,0) = (ug, Vo) in (3.7)

with periodic boundary conditions in the horizontal direction, where

0 = {(1’1,1’2) (S Rz | 0 S T S F, hi(fﬂl) S T S h+($1)}
v ={(z1,22) €R* | 0 < 2y <T, 20 = h'(a1)}
77 = {(z1,22) ER? ‘ 0<az <T,z5=h"(z1)}
for sufficiently smooth A, h~, which we also assume to not intersect and on
average to be separated by distance 1, such that the domain size is given by
|2 =T. An overview of the general system is given in Figure 3.1.

Additionally, we impose that 0 < ¥y < 1 almost everywhere in 2, and
therefore, the maximum principle implies that

0<d(x,t) <1 (3.8)

for almost every x € Q and t > 0 and 9(t) € H?(Q) for t > 0 (Foias, Manley,
and Temam 1987), which from now on we will always assume without explicitly
mentioning.
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3. Rayleigh-Bénard Convection

Prt(uy +u - Vu) — Au + Vp = Ravdey
V-u=0
H4u-Ve—A9=0

T-Dun+au)=0, n-u=0, =1

Figure 3.1: Overview of the system considered in Section 3.5.

The following vorticity formulation is extensively employed during the up-

coming analysis. The vorticity w = V+ - u = —0ou; + 01 uy satisfies
1
ﬁ(wt +u- Vw) — Aw = Rad ¥ in (3.9)
w==2(a+ K)u, onyT Uy, (3.10)

(3.9) is an immediate consequence of applying V*- to (3.1) and using
Vi (u-Vu)=u - Vw+wV-u=u-Vw
due to (3.2). The boundary condition follows from (3.5) and (2.8) as

—2a+k)u =27-Dun—-2n-(7-Viu=7-(n-VIu—n-(7-V)u
= (Tinj — Tjni)ajui = (7'1712 — T2711)82U1 + (Tgnl — 7'1712)81’&2

= (—n% — nf)agul + (n% + n%)@luQ =w

In particular for this system, one is interested in bounds for the Nusselt
number, which is defined as follows.

Definition 8 (Nusselt Number)
The Nusselt number is defined as

Nu = (n-Vd),-, (3.11)

where (f)x = limsupp_, ., = fOT £ [x f(z,t) do dt.
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3.2. Main Results

3.2 Main Results

The first, most general result is the following Theorem.

Theorem 9
Let Q be CY1, Ra > 1, d = ming<y,<r(h™(z1) — h™(21)) > 0, ug € L*(Q) and
0<ae L™y~ U~T). Then the Nusselt number is bounded by

Nu < C()CQ%Ra%

uniformly in Pr, where Co(a, k) = 1+ ||a™1(1+]#])| s and Co > 0 only depends
on d, the Lipschitz constant of the domain and I'. If Ra is sufficiently large, i.e.
Ra > d~2, Cy is independent of d. If additionally |k| < 2a, the bound improves
to

Nu < CyRa?. (3.12)

The proof of Theorem 9 is given in Section 3.5.3.

We first remark that Theorem 9 holds in a broad class of applications. It
also shows the same scaling as the results of Doering and Constantin 1996, who
proved Nu < Ra? for no-slip boundary conditions in three spatial dimensions.
In the two-dimensional setting Goluskin and Doering 2016 generalized this result
to rough boundaries, where the height functions solely satisfy h=, h* € H(0,T).
Although, in the assumptions of Theorem 9 more regularity on the boundary
functions is assumed, the bound resembles the one of Goluskin and Doering
2016 if the slip coefficient is sufficiently large, i.e. close to no-slip.

If one further assumes more regularity, the following Theorem provides a
stricter bound.

Theorem 10 (Main Result)
Let Q be C*1, Ra > 1, d = ming<y, <r(h™(x1) — h™(z1)) > 0, uy € WH4(Q),
0<aeWh®(y=uxt). Then

o

2
3

Nu < o0 5 (1+Ped luollfr.s ) Ra¥ + CoCJ G Rat

w0l

1 1 1
+ CyCiRa™s + CyCFCEPr sRa?,
where

Ci(a, k) = 1+ [lallwre + 6w + ol + 5%
Ca(a, k) =1+ la™ (1 + |k])]|o
Cs(a, k) = [lo+ Kl

and Cy > 0 only depends on d, the Lipschitz constant of the domain and T'.

The proof of Theorem 10 is given in Section 3.5.3.

Because of the more tailored approach used in deriving the bound, i.e. using
the H2?-norm of v instead of the H'-norm, one needs slightly more regularity
assumptions, which in turn provide a stricter bound. These bounds yield a rich
description of different scaling regimes.

If Ra is sufficiently large, i.e. Ra > ||ug|ly 1.4, the bound holds independent
of the initial values. Due to the energy dissipation and the fact that we are
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3. Rayleigh-Bénard Convection

investigating long-time averages, this is not surprising. The reason for the initial
value to be present in the bound is that to bound the H?2-norm one needs bounds
on the pressure gradient for the boundary conditions at hand, which in turn
requires estimates on the nonlinearity, where one uses uniform in time bounds
for the velocity. In fact, if one could directly obtain bounds on the long-time
averages of the term arising from the nonlinearity, either in the pressure bound
or when testing the gradient of (3.1) with Vu, one could potentially improve
the Ra exponent in the Pr sRaZ term.

If @« = oo or k — o0, the coefficients C; and C3 blow up, indicating that
similar bounds can not be expected to hold for no-slip boundary conditions.
Similarly, if « — 0, the coefficient C5 diverges. In contrast for k = 0, i.e.
straight boundaries, the bounds hold true. However, they are suboptimal as
can be seen in the bounds derived for the flat system in Theorem 11. There, a
more detailed description of scaling laws with respect to « is given. Additionally,
in Section 3.3, we will give an argument as to why the slip coefficient and the
curvature can scale with respect to the Rayleigh number.

Assuming constant a and k, the bound can be simplified to

Nu g Pr 5RaZ? 4 Rai®

and for Pr > Ra? this recaptures the Nu < Ra® bound derived by Whitehead
and Doering 2012 for the infinite Prandtl number, free-slip setting in three
dimensions. Note that the authors also proved the same bound in the two-
dimensional free-slip setup, where the bound holds uniform in Pr (Whitehead
and Doering 2011).

The next result covers the case of flat boundaries, i.e. K =0 and h~ = 0,
hT = 1. In that case, the analysis and also the bounds simplify significantly.

Theorem 11 (Flat System)
LetRa>1, k=0, a(z) = ﬁ > 0 be constant on the boundaries and uy € L2.
Then there exists a constant Cy > 0, only depending on I, such that

Nu < CoRa? (3.13)

holds uniformly in Pr.
Assume additionally ug € W14, then

Nu < CoLs ®|fug||é1 . Pr-$Ra’ + CoRa™® + CoLs ?Pr-#Ra?  (3.14)

if Ls > 1 and

2
3

Nu < CoLs *Ra + CoLs ? |[uo||&,..Pr~#Ra¥ + CoLy ™ Rais
5 _1
+ CoRa™? + CyL; *Pr sRa? (3.15)
if Ly < 1.

The proof of Theorem 11 is given in Section 3.6.3. The bound in (3.13) is
already included in Theorem 9 and we state it here for the sake of completeness.
Similarly to before, if Ra > (1 + Lé) |lwol|lwr.a the initial value terms can be
absorbed in the other terms.
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Assumptions Bound
_1 5
L;’Ra? <Pr Nu<Ra®
1< L 1 _ 1 1 1
Pr<Ls;*Ra? Nu<Lg;"™Pr cRa?
; L73Ra® <Pr Nu<Raiz
Ra % < L, <1 s AT =L Ao ha

Pr< L %Ra®} Nu<L,?Pr #Ra}
. L, %Ra® <Pr Nu<L, ®Rais
Pr<L;%Ra® Nu<L;®Pr #Ra?
L;'Ra<Pr Nu< L, Ra’
Pr<L;'Ra Nu<L,’Pr ¢Ra?

1
Table 3.1: Overview of the scaling laws in Theorem 11 for Ra > (14+L2)||uo||w1.4
in the regimes Ls(Ra), Pr(Ls, Ra).

Note that the results in Bleitner and Nobili 2024b read
Nu < Ra™ + L, Pr sRa?

if Ly > 1 and

Nu< L *Rab + Ly Ra + Ra® 4+ L; "Pr tRa?

if Ly < 1. The results only differ slightly in the L, exponent in the Pr term. The
reason for the different estimates will be discussed in Remark 19. Accordingly,
using p > 4 in (3.89) would further alter this exponent.

If Ly > 1, (3.14) shows that if either Pr — oo or Ly — 0o one recaptures the
previously mentioned Nu < Ra? results of Whitehead and Doering 2011 and
Whitehead and Doering 2012.

Assuming L scales with Ra, i.e. Ly = Ra’® for some & > 0 in order to match
L > 1, (an argument why this is reasonable will be given in Section 3.3) the
bound reads

Nu < Rat? if Pr > Ra?~?

s
Nu < Pr sRa?~ 6 if Pr < Ra?~*

A similar crossover behavior was shown in Choffrut, Nobili, and Otto 2016 for
the no-slip setup, where, up to logarithmic corrections, the bounds change from
Nu < Ra? when Pr > Ra? to Nu < Pr-2Ra? when Pr < Ra?.

If instead L < 1, the scaling with respect to L is not that obvious. Formally
setting Pr = oo and looking at the no-slip limit (3.15) indicates a Nu ~ Ras
scaling, which would, again up to logarithmic corrections, match results of Con-
stantin and Doering 1999; Doering, Otto, and Reznikoff 2006; Otto and Seis
2011. Note though, that this argument is not rigorous and one could make any

1
term dominate in that limit by multiplying it with L 3.
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3. Rayleigh-Bénard Convection

Assumptions Bound
Ra 21 < L, Nu < Ra™®
5 2 5
Ral <P Ra~7 <Ly;,<Ra 24 Nu < Ls ®Ra13
a7 < Pr _1
Pri'Ra<L,<Ra 7 Nu<L,’Ra’
_1
L, <Pr'Ra Nu < L, ?Pr sRa?
Ra™ 2 < L, Nu < Ra®®
: 5 2 5
Ra’ <Pr<Ra* Pr #Ra’ <L,<Ra 2 Nu<L,“Ra'
: _1
L, < Pr 2 Ra? Nu < L, ?Pr sRa?
T T 5
Pr 3Ras < L Nu < Raiz
Ra? <Pr< Ras o ~ 11
L, <Pr 3Ras® Nu < Ls 2Pr 6Ra?
Pr*Ra < L, Nu < Ra™?
1
Pr < Ra? 1< L, <Pr’Ra Nu < L, ?Pr 6Ra?
_1
L,<1 Nu < L, ?Pr sRa?

Table 3.2: Overview of the scaling laws in Theorem 11 for Ra > (1+L§ )Mol wia
in the regimes Pr(Ra), Ls(Pr,Ra). The color reflects the slip length cases, i.e.
Ly < 1,1 < L, and uncolored if there exist Ly < 1 and L; > 1 satisfying the
assumptions.

The different regimes of both (3.14) and (3.15) are shown in Tables 3.1 and
3.2. Note that Table 3.2 corresponds to defining the ranges of L, with respect
to Pr while Table 3.1 does the opposite.

Assuming again that L, scales with Ra, as argued in Section 3.3, then Ta-
ble 3.1 shows the corresponding scaling law. Table 3.2 corresponds to the more
direct approach of having a specific fluid in mind, i.e. fixing Pr and then investi-
gating how the scaling law changes when varying the slip length by for example
adding a lubricant or changing the boundary material.

The final results cover the system with identical, potentially curved bound-
aries. These findings are published in Bleitner and Nobili 2024a. For this
system, the most general result is given in the following Theorem.

Theorem 12
Let Q be CYt with ht = h™ + 1, ug € L*(Q), 0 < a € L=®(y~ U~T). Then

Nu < Ra® + ||5]j
if |k] < 2a and
Nu S (1+ ™! 4) Ra + f1k]lac

. 1 . . ..
if k| < 20+ ey min {1,v/a}. In both cases, the implicit constant only
depends on T' and the Lipschitz constant of the boundary.

The proof of Theorem 12 is given in Section 3.7.2.
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3.2. Main Results

Similarly to before, assuming more regularity one can prove a refined state-
ment given below.

Theorem 13
Let Q be C*1, Wt =1+h™, up € WHH(Q) and 0 < a € WH>°(y~ U~y™). Then
there exists a constant 0 < C < 1 such that for all a and k satisfying

la+ Kl < C
one has

3
o for |k| <aony  U~NT, Pr> ||oz_1||§oRa% and |la™ |- < Ra

Nu < ||Oé+/€||W1 oo a2 + CiRa %

o for |k| <2a+ %1/1+(h,)2, Pr > |la~ 1H§oRa4 and |la™ | < Ra

—1-3 2 1 1 Tn.S
Nu S fla™ [[o® [l + £[ljy1.~Ra? + Cifla™" |32 Ra™2

e for|k| <2a+ 1,/ oz and Pr> Ra?

Nu < CgRa%
where
1 1 2
Ci (o, ) = C (Il r.s + llfys. + 15l +1)
1 1
Caluo, k) = o™ | la+ ks~ + lla™ & + Cu (o, @ m) o~ I

and the implicit constant only depends on T', the Lipschitz constant of the do-
main.

The proof of Theorem 13 is given in Section 3.7.3.

The bounds of Theorem 12 and 13 demand more assumptions and yield less
strict bounds than the ones given in Theorem 9 and 10, with the one exception
that the Theorem 13 yields a better result if & > || in the limit ||+ &||w1.0 —
0. As the curvature vanishes in this limit, Theorem 11 yields a more strict
description of the scaling behavior. Therefore, we refrain from interpreting the
results further.

An overview of the results is given in Table 3.3. As indicated in the table,
to the best of the author’s knowledge no result for free-slip boundary conditions
on curved domains is known. The approach given in Theorem 10 fails in the
limit @@ — 0, due to the lack of control of the energy. This can be seen in the
energy balance

1 d

spr e+ 1Vulte s [ atmud

YUyt

1 d
— o gl +2Dule v2 [ o
2Prdt" L Uyt
:Ra/ ugd, (3.16)
Q
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3. Rayleigh-Bénard Convection

proven in (3.51). If @ = 0, then the convex portions of the boundaries imply
k < 0, and therefore, no bound on the energy can be inferred from (3.16), at
least directly. Note, that if the problem was set on a non-periodic domain (2,
then the computation

/uz/]lu:/u~V$c:/ u-n:c—/a:V-uzO, (3.17)
Q Q Q l9) Q

where 1 is the identity matrix, shows that the incompressibility and no-pene-
tration conditions are sufficient to show that u is average free. Therefore
Poincaré’s inequality together with (3.16) would yield control over the energy.
In the partially periodic domain, the computation (3.17) only works for the
second component, i.e. showing us has vanishing average.

Finally, we want to discuss the different methods used to prove the above re-
sults. Theorems 9, 10, 11 and 12 are proved using the direct method introduced
in Seis 2015. In this method, one localizes the Nusselt number in a strip of
width § at the boundary. Using the boundary conditions and the fundamental
theorem of calculus, together with the long time bounds for the corresponding
norms of the solution yields estimates depending on §. The desired result is
then obtained after optimizing in 4.

In contrast, the Background field method, described in Doering and Con-
stantin 1994; Doering and Constantin 1996, is used to prove Theorem 13. In this
method, one splits the temperature into a steady profile and fluctuations around
it. Here this profile is a piecewise linear function in xo with slope 6! near the
boundary, while in z; it matches the boundary height functions. Defining a
variational quadratic functional, that is motivated by the long time bounds, re-
sults in a variational problem that when solved determines § and therefore the
scaling law for the Nusselt number.

As indicated by the same choice of parameter J, the methods are strongly
connected. In fact Chernyshenko 2022 showed that the background field method
is a special case of the auxiliary functional method. The study shows that
bounds derived by the auxiliary functional method can be proven using the
direct method, while under certain assumptions the converse is also true.

3.3 Scaling of the Curvature and Slip Coefficient

This section is devoted to providing an argument (see Bleitner and Nobili 2024a,
A.2) as to why the curvature and slip coefficient might scale with respect to the
Rayleigh number.

At first, we focus on the curvature. The original system, i.e. the system that
is not non-dimensionalized yet, can be given by

ut+u-Vu+Vp£—l/Au:—gg(T—T_)
0

T —T ) +u-V(T—T )= AT —-T")=0

where v is the kinematic viscosity, s is the thermal diffusivity, g is the gravita-
tional constant, ¢ is the thermal expansion coefficient. Additionally, the average
height gap is denoted by d and 7'~ and T is the fixed temperature on the lower,
respectively upper boundary in the original system, which are described by the
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3.3. Scaling of the Curvature and Slip Coefficient

no-slip Navier-slip free-slip
Flat
Pra> Rat | Nu S Ra%(ln Ra)3® Nu < Ratz’ Nu < Raiz®
Flat Nu < Pr 2Ra? (nRa)z® Nu < Pr cRa? + Raz’ Nu < Rac

Nu < Raz 4 Nu < Razte Heha

Nu < Pr ¢Ra? + Ra2¢
< Raz/ ~

Cuved Nu < Ra?2 Nut < Raih

%Choffrut, Nobili, and Otto 2016
bTheorem 11, Bleitner and Nobili 2024b
“Whitehead and Doering 2011

4Doering and Constantin 1996

¢Drivas, Nguyen, and Nobili 2022
fGoluskin and Doering 2016

9Theorem 10

hTheorem 9, Bleitner and Nobili 2024a,

Table 3.3: Overview of Nusselt number bounds for the specific systems. For
Navier-slip the results are given for some fixed slip coefficient.

boundary height functions A~ (z1) and h*(z1). Non-dimensionalizing by intro-
ducing the variables

! P %, . d G T-T" N
the system is given by
Pr (i, + @ - Vi) + V) — Ad = Rades
Oy + 4 VI —AJ =0,
where
BT -1t
Pr=— Ra = SCT =T7) (3.18)
Ve v

Accordingly, the boundary height functions A~ and AT are rescaled as

L1 1
bt =Znt h™=-h"
d d

Note, that varying the temperature gap 01T = T+ — T~ of the original sys-
tem changes the Rayleigh number, while ht and h~ stay the same. On the
other hand, varying the average boundary gap d leads to a change in the non-
dimensional boundary height functions ht and if, without changing the profile
in the original system. As

Ao~ iL:ﬁ://
on the respective boundaries, the scaling yields

k= dr, & =d?k, &l 1.0 ~ d? +d. (3.19)
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3. Rayleigh-Bénard Convection

Comparing two systems with different boundary temperature gaps 677 and 675
and boundary height gaps d; and ds, that otherwise coincide, one can achieve
any desired scaling of ||k||y 1.0 with respect to Ra, i.e.

Isallwie <R> 520

[k1llwie  \Ra

di  \ 6Ty
and using (3.19) one has

[kollwie _ d3 d\* (7T (do\ [T\
7N72: = = — = P
[k1llwre — d2 dy dy dy 6Ty
_ (BT _ (Ran)
dil))(STl Ral

for sufficiently large boundary height gaps d; > 1, where in the last inequality
we used (3.18). The cases p =0and p = % are covered with dy = d;, respectively
0Ty = 6Ty, concluding the argument for (3.20).

In order to show the scaling of o with respect to Ra, we note that the slip
coefficient can be derived as a highly oscillating, small amplitude limit of the
boundary roughness (Miksis and Davis 1994), where it is proportional to the
average height function of the roughness, i.e. & ~ h*. Therefore, an analogous
argument for the curvature shows the scaling.

for any p € R. In fact, setting

3.4 Nusselt Number Representations

Lemma 14
Let Q be C*t and ug € L*(Q2). Then for any 0 < z < min h* — maxh~

Nu= (n"-(u—V)9),- . (3.21)

= (IVo]3)a (3.22)

> (maxh™ —minh™) " {(ug — 92)9)q, (3.23)

where v~ + z = {(z1,22) | 0 < 2y < T,x9 = h™ (x1) + 2} is the shifted bottom

boundary.
Proof

e Argument for (3.21).
Without loss of generality let z > 0 as for z = 0 it matches the definition
(3.11) because of (3.4). Define Q¥ = {(z1,22) | 0 < z1 < T h™(11) <
x2 < h™(x1)+z} as illustrated Figure 3.2. Then by (3.3), (3.2) and Stokes’
theorem
d

° Q%ﬁ:—/%(wVﬁ—Aﬂ):— [ V(=)

:_/mmn.(u_v)ﬁ:_/w+zn+~(u—V)ﬂ+Ln-Vﬁ,
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3.4. Nusselt Number Representations
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Figure 3.2: Illustration of the definitions of 2% and 7.

where in the last equality we used (3.4). Taking the long time average and
using (3.8) we find

T—o0

0 = limsup 7~ }Q|~* ( Iz, T) dx — Po(x) dm)
Q%

Q=

’ d
= limsup][ QI — 9 dx dt
; dt Jo~

T—00

T
:—limsup][ Q! (/ nt e (u—V)d dx—|—/ n - Vi da:) dt
T—oo JO Y4z -

=—(n"(u—V)9),- 4, +Nu

e Argument for (3.22)

Testing (3.3) with ¥ and using integration by parts we find

1d
——|¥ 22:—/19u-V19+/19A19
5l = | i

:—/ﬁu-Vﬁ—i—/ In VY — |[VOl%.  (3.24)
Q YUyt

Note that the first term on the right-hand side of (3.24) vanishes by (3.2),
(3.4) and integration by parts as

72/19u'V19:—/u~V192:7/ u~m92+/V~m92:().
Q Q y—uyt Q (325)

Taking the long time average of (3.24), using (3.8), (3.6) and (3.25), yields
0 = limsup(2T10) " (IX(DIIZ> — [19ol172)
— 00

imsup 01 24 e,
= 111m -
Tone 0 Jo 2ae"e

T
zlimsupm\*l][ (/ In - Vi — ||V19||%2> dt
T— 00 0 y—uyt
= (n- V), —([IVI|12)e,

which according to definition (3.11) proves the claim.

45



3. Rayleigh-Bénard Convection

e Argument for (3.23). Formin A~ <y < maxh* define Q7 (y) = {(z1,22) €
Q | 23 < y}. Then similar to the proof of (3.21) one finds

4 0:—/ (u~V19—A19):—/ V- ((u—V)9)
dt Jo=(y) Q~(y) Q~(y)

= —/ n-(u—V)d
00~ (y)
:/ n+~Vz9+/ n~ - VY
ytn{z2<y} v~ {z2<y}

- / (u2 - 82)?9’
Qn{z2=y}

where we split the non-canceling parts of the integral into three relevant
boundary terms and used (3.4). As for z € Q we have 0 < d(x) < 1 by
(3.8) and ¥ = 0 on v* one has n™ - V¥ < 0 on 4+ and therefore

/ nt VY <0,
ytn{z2<y}

implying

d
7/ 9 S n~ -V — (’LL2 - 82)19 (326)
dt Q~(y) v~ M{z2<y} Qn{z2=y}

Integrating (3.26) in y yields

d max ht

— ¥ dzr dy
dt Jin n- /~(y)

max ht
< / n~ - V9 dr dy
minh= JyTn{z2<y}
max ht
- / (ug — 02)9 dx dy
min h— QN{z2=y}
max hT
= / n~ - V9 dx dy
min h— v
max ht
— / n~ - V9 dz dy
minh~  Jy~n{z2>y}
max ht

- / (ug — 02)9 dz dy
min h~ QN{z2=y}

= (maxht — minhf)/ n~ - Vi dS

7
max ht
— / n~ - V9 dz dy
min h~ vy~ N{z2>y}
- / (UQ - 82)'[9 dx (327)
Q
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3.5. General System

Similar to the top boundary, since ¥ = 1 on v~ and 0 < J(z) < 1 for
x € €, one has n™ - VY > 0 as n~ is the outwards pointing unit normal
vector. Therefore (3.27) yields

max hT
/ ¥ dx dy
min h— ~(y)

< (maxh® — minhf)/ n= - VU — [ (ug — 02)Y dz.

v Q
Again taking the long time average and and using (3.8)

max hT
0 = limsup(279|)~ / / —Yo(z)) dz dy

T—o0 min h—

d max hT
= limsup ||~ 1][ / / Y dx dy dt
T—o0 0 dt min h— Q~(y)

T
< lim sup |Q\*1][ ((maxh+ - minh*)/ n~ - Vi dS
0 v

T—o0

— /ﬂ(uz — 0o)¥ da:) dt

= (maxh® —minh”)(n~ - V), - — ((us — 82)9)q,
which by the definition (3.11) yields the claim.

3.5 General System

This section is devoted to proving the results given in Theorem 9 and Theorem
10. In Section 3.5.1, estimates for the Nusselt number with respect to long-
time bounds for the fluid velocity are provided. These long-time averages are
estimated with respect to the system parameters in Section 3.5.2, which in
Section 3.5.3 yields the final proofs by optimizing the boundary layer depth.

3.5.1 The Direct Method

The following Lemma together with the regularity estimates proven later de-
scribes the direct method, where we use the localization principle of the Nusselt
number close to the boundary. For the second order Poincaré type estimate
a generalization of the argument given in Drivas, Nguyen, and Nobili 2022,
Lemma 3.5 is used.

Lemma 15

Let Q be C11, d =min(h* — h™) >0 and up € L*(). Then
1
3

Nu < 62 (||[Vu|2)? 4+ 6 2Nu
for every 6 < d and if Q is C*' and ug € WH*(Q)

(3.28)

Nu < 8(1+d 2 ([Jul ) T {||ull%2) T + 62 Nu?

d
for every 6 < 3.
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3. Rayleigh-Bénard Convection

nt s @
Y 40
——\/\/\_/V\/\/
v

Figure 3.3: Illustration of the definitions of Q% and n™. Note that nt is a vector
field defined in the entire 2.

Proof
We define Q° = {(z1,22) € Q| 22 < v~ (21) + &} as illustrated in Figure 3.3.
Then averaging (3.21) over z € [0,0] one finds

4
u= nt - (u— - z
Nu= (=)o), d

o 4
_ ][ (n* - ud), -y, dz— ][ (nt V), . de, (3.29)
0 0

where n™ (x1, z2) is the upwards pointing unit normal vector of v~ shifted in to
Ta, i.e. nt(z1,22) = —n(x1) where n is the unit outward normal vector of  on
~v~, see Figure 3.3. Using Holder’s inequality the second term on the right-hand
side of (3.29) can be estimated as

5
0 99 dz <7 [ 90 <6Vl
0
<5 (||VI) 20 qs))® < 072 Nu2. (3.30)

By (3.8) the first term on the right-hand side of (3.29) satisfies

)
][ (nt - wd), . dz <5 HInt - ul)os. (3.31)
0

Note that since nt -u = 0 on vy~ and n* is constant in x5 in Q° we find for
x € Q9 by the fundamental theorem of calculus

s
Int - ul(xy,20) < |0t - ul(z, b (21)) —|—/ In™ - Ooul(xq,2) dz
0
< 8)|(n - dou) (a1, ML @s), (3.32)

where Q9(z1) = (h™(x1),h~ (z1) +9). Next, we extend n* to the whole domain
Q by a smooth function such that it matches the normal vector on y*. In
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3.5. General System

order to provide such an explicit extension let njy', (1) be the upwards pointing
normal vector of v~ in xq, njy'+ (z1) be the upwards pointing normal vector of
~T in 21 and define the transition function G as

1

z2 (227;#(11)7;1*(11)75)271
G(x2) = / e\ htEn-h(@1)=s dz
h(21)45

and the extension ( as

njy'_ if zo <h™(x1)+46
((z) = (1 %) gt i (e) + 8 < xa < I (a1)
nfyﬂ if zo = ht(z1),
where nfyl = nfyr, (z1) and nfyﬂ = nfyﬁr (z1). Note that
¢l Loe ) S 1 (3.33)
102¢ | o= 0y S N(AF (21) = B (21) = 8) oo < d 7 (3.34)
193¢ L= () S N(HF (21) = h™ (21) = 8) " [loc < d 7% (3.35)

Additionally, since for every x; € (0,T)
h+(I1)
/ OQ(C-u)dz:nj+~u—nj,-u:0

h= (1)

there exists Zo(z1) such that
92(C - u)(z1, T2(21)) = 0.

By the fundamental theorem of calculus
T2

B(C - w) (1, Fal)) + / 0y (B2(C - w))?) da

ig(rl)

102(C - w)*(2) =

§2/2 10a(C - w)OR(C - )| d

Zo(x1)

< 2005(C )| 20 193(C - )l (3.36)

for any x € Q, where Q!(z1) = (h™(z1),h" (z1)). Combining (3.32) and (3.36)
one has for z € Q°

" - ul(2) < 8llnt - Oaull e as)

= 6]|02(n™ - u)|| Lo (3
< 6[192(C - W)l oo )

< 20102(C - )HLZ(Q 193(¢ - )IILzQ (3.37)
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3. Rayleigh-Bénard Convection

and therefore for the spatial and long time average, using Holder’s inequality, it
follows that

5~ Hn* - ulygs < 81902 (102(C - w)l| L 102(C - w)]|2.)
<O+ d ) (fulZ) ¥ ([lull%:)F, (3.38)

where we used (3.33)-(3.35) and Young’s inequality in the last estimate. Com-
bining (3.29), (3.30), (3.31) and (3.38)

) )
Nu :][ (nt - ud),- . dz —][ (nt V)., -, dz
0 0

5
S][ (n* cul) -y, dz + 6~ :Nu?
0

<6 |t - ul)gs + 6~ ENu?

<01+ d ) (lulFn) *(lulfe) * + 6 FNus.
Analogously for 2 € Q7 one could have estimated
To

(n* ) (21, h™ (1)) +/ o(n*t - u) d

h=(z1)

It - ul(z) =

h_(11)+6 .
< / ol S0l e
h—(x1

instead of (3.37), which would have resulted in
s s
Nu :][ (n* - uwd),- . dz —][ (nt- V), -, dz
0 0

)
S][ (nt - ud),- . dz + 5~ 2Nu?
0

<5 HInT - ul)gs + 572 Nu?
<S03 (||Vul2)? + 4§ 2Nu?,
proving (3.28). O

3.5.2 A-Priori Estimates

With Lemma 15 at hand one needs regularity estimates for the velocity to get
bounds on the Nusselt number. The first such estimate is an energy bound,
which in turn implies a long-time bound for the corresponding H'-norm. In
particular, using the symmetric gradient instead of the full gradient removes
the assumption of small curvature with respect to the slip coefficient in the
corresponding estimates (see Lemma 3.1 - Corollary 3.4 in Bleitner and Nobili
2024a), which we will handle in Section 3.7.

Lemma 16 (Energy Bound)
Let Q be C*t, 0 < € L®(y~ U~t) and ug € L?. Then

lull3 < lluoll3 + (1 + [la™ |3 Ra® (3.39)
(lullF) < 1+ lla™ (1 + |5 o) NuRa, (3.40)
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3.5. General System

where the implicit constant only depends on |I'| and the Lipschitz constant of
the boundary. Additionally, if |k| < 2«

(IVull3) < NuRa. (3.41)

Proof
Testing (3.1) with u yields

1d, ., 1
ﬁ%”’“”m**ﬁ/ﬂu‘(u'V)U*/QU'VPJF/QU'AUJFRSL/QWﬁ'
(3.42)

Note that the first term on the right-hand side of (3.42) vanishes by (3.2) and
(3.4) as

1 1 1
/u-(u~V)u:f/u~V|u|2:—7/V-u|u|2—|—f/ u-nju* =0,
Q 2 Q 2 Q 2 y—uyt
(3.43)

where we use integration by parts in the second identity. Similarly, the second
term on the right-hand side of (3.42) vanishes as

/u-Vp:/ pu-n—/pV-u:O. (3.44)
Q y—uUyt Q

Applying (3.43), (3.44) and Lemma 5 in (3.42) yields

1 d
lull22 + 2 Dul2, + 2 /

2
—_— auz = Ra | uo?. 3.45
2Pr dt T /Q ? (3.45)

Using Hoélder’s inequality in order to estimate the right-hand side of (3.45) and
Lemma 6, i.e. (2.54), one finds

72+ (14 a7 o) HlullZe < Ralluz||r2l|9]l 2
£
< i”u”%? + E_lRaQ.

for some ¢ > 0 depending only on I' and any € > 0, where in the last inequality
we used Young’s inequality and (3.8). Choosing € = ¢(1 + [|a™1||o)~! in order
to absorb the first term on the right-hand side yields

d c _ _ _
ﬁ\IUIliz < -5+ Yoo) "' Prllufl72 + (1 + o™ || )PrRa”

and Gronwall’s inequality results in
lullfe < luollze + (1 + [la™ |5 )Ra?, (3.46)

proving (3.39).
Applying Lemma 6, i.e. (2.53), to (3.45) implies that there exists a constant
¢ > 0 depending only on I' such that

1 d - -
o arllulz + e+ lla (U [i])loo) ™ el
1 d 2 2 2
< 2|D 2
— 2Pr alt”uHL2 T 2Pulz: + LU’Y+ o
~Ra / 9. (3.47)
Q
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3. Rayleigh-Bénard Convection

The integral on the right-hand side of (3.47) can be rewritten as

/’U,219=/(UQ—62)19+/8219
Q Q Q

r h+($1)
= / (UQ — 62)19+/ / (9219 dwg dl‘l
Q 0 h=(x1)

T T
:/Q(ug—ag)w/o 91, (1)) dxl—/o 91, b= (21)) dax

= / (UQ — 82)’[9 — F, (348)
Q

where we used the boundary condition (3.6), which combined with (3.47) yields

1 d

5pz g tlze + e+ o™ (1 + [KDlloo) T lullfr < Ra/ﬂ(uz —d2)9  (3.49)

Note that the first term on the left-hand side of (3.49) vanishes in the long-time
average as

T 2 2
d —
lim sup][ — ||lul|2: dt = limsup ez = lwollze =0, (3.50)
T—oo JO dt

T—o00 T

where we used that ||u||%, is uniformly bounded in time due to (3.46). Taking
the long-time and spatial average of (3.49) and using (3.50) results in

(lullFn) S @+ lla™ (1 + |KD o) {(u2 — 82)0)oRa
(1+ | (1 4 |£])||oo) (max AT — min A~ )NuRa
(1+ la™' (1 + |k])|c)NuRa

due to (3.23) in Lemma 14.
In order to prove (3.41) note that if |k| < 2a Lemma 1 and (3.47) imply

<
S

1 d 1 d
E%HUH%Q + [[Vulli. < E&HUH%2 + [IVuli- + /W_Uﬁ(?a + K)uZ
1 d

lull22 + 2/|Du22 + 2 / o

YUyt

T 2Pradt
zRa/ ug¥ (3.51)
Q

and estimating the right-hand side similar to before and taking the long-time
average yields

(IVull3) < NuRa.
O

These bounds are already sufficient to establish the bounds of Theorem 9.
In contrast the more tailored results of Theorem 10 request for second-order
bounds on the velocity. Therefore we first prove bounds for the vorticity that
will afterwards be used to bound the excessive term arising from the nonlinearity.
The following estimates can be found in Bleitner and Nobili 2024a, Section 3.2
and we reprove them here for the convenience of the reader.
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3.5. General System

Lemma 17 (Vorticity Bound)
Let2 <p€?2N, Q be C11 ug € WP and 0 < a € L=(y~ U~T). Then

[uollz + (1 + Carp)(1 + a7 o) Ra,

[wllp S llwollp + Corp

_p_
wnere Cuy op = + ||R|loo + [0 + K||a0 @+ Koo QN e implicit constan
here Co rop = (1 %7 d the implicit tant

depends only on p, T' and the Lipschitz constant of the boundary.

Remark 18 (||u||w1.» is Uniformly Bounded in Time Bound)
Note that by (2.12) and Hélder’s inequality, Lemma 17 and Lemma 16 yield a
uniform in time bound for the full W P-norm of u.

Proof
Fix some arbitrary time 7" > 0, define A = 2|[(a + £)ur|| Lo ([0,7)x {y~U~y+}) and
let &* solve

1
pr (@ +uVoT) - AG* =Radyd  in Q
Of = +jwg] I Q
oF =+A ony~ U~yt.

Then by (3.9), (3.10) @* = w — &% solves

1

ﬁ(c:;}+u-Vazi)—Aazi:0 in Q
(:]3::(.&)0:':|w0| in
ot = 2+ru, FA ony UyT.

As the initial and boundary values of @™ and &~ are non-positive, respectively
non-negative, the maximum principle shows @ (z,t) < 0 and @~ (z,t) > 0,
implying

lw| <@~ + @) (3.52)

Therefore it is sufficient to get bounds on @*. Next, we define @ = &% F A to
remove the boundary condition. The following estimates work analogously for
@T and ©~. Hence we will focus on &1 and omit the T to simplify notation.
With this definition @ satisfies

1

r
AO = |WQ| —A in (354)
w=0 ony~ U~yT. (3.55)

Testing (3.53) with @P~!, where 2 < p € 2N, yields

1 d 1

w”flAderRa/de*lalﬂ. (3.56)
Pr Q Q

Q

Note that when integrating by parts the first term on the right-hand side of
(3.56) vanishes as

p/w”—lu-va:/u-vw):/ wpn-u—/wpv-uzo (3.57)
Q Q YUyt Q
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3. Rayleigh-Bénard Convection

by (3.4) and (3.2). For the second term on the right-hand side of (3.56) inte-
gration by parts and the boundary condition (3.55) yield

/ d}p—lAd):/ a}pfln,vaf/ deV(de*l)
Q YUyt Q
=—(p— 1)/ WPVl (3.58)
Q

and similarly for the third term on the right-hand side of (3.56)

Ra/ WPro = Ra/ ni@P~ ' — Ra | 90 (&P71)
Q

YUyt Q

=—(p— 1)Ra/ IOP 2010
Q

~ B ~P=2 ~
< —1)Ra||19\|oo\|w 7 l2flo™= Va2

P@A

R8L2H19|| o213 +e(p — D™= [Volll3

o Ra/”’g—i-i/wp 2Val?,
2 0

where in the second to last estimate we used Holder’s inequality and in the last
estimate we used Young’s inequality and (3.8). Therefore, combining (3.56),
(3.57) and (3.58) yields

G ~Ap— QV 2 Ap—2
ety < I [ orvap+ 2trat [ o

2p— AP - Ap—
:—(pz)lv(W)II%JrQRaQ/QW” 2.

<

| rlk

As & vanishes on v~ U ~™", Poincaré’s inequality implies the existence of a
constant C' > 0, depending on p, || and ||h]|s such that

,_1.d

p
212 5 il
< —Clo |2+ Ra /aH
Q
—C||@|/® + Ra? IIwHZ‘Q, (3.59)

where we estimated the second term on the right-hand side by Holder’s inequal-
ity. Dividing (3.59) by [|@||2 we find

%Han; + CPr||@[% < PrRa’
and therefore Gronwall’s inequality and (3.54) results in
117 < lloll +Ra® < llwollf + A + Ra®.
Applying the analogous steps for w™ implies

IoF 15 < llwoll + A% + Ra®. (3.60)

54



3.5. General System

In order to estimate A notice that

A = 2[[(a + &)ur | Lo jo,71x fy- Ut
S e+ Ellollwr | Lo (0,725 (v=uvy+))
S e+ &lloo llull oo (0,72 (92)) 5 (3.61)

(see for instance Emmrich 2004, Satz 7.1.26, respectively Troltzsch 2009, Exer-
cise 4.1) and as p > 2, (3.61) and Gagliardo-Nirenberg interpolation yield

A S o+ Klloollullnge; pee

< Jla+ nuoouun;‘; i Ml 22 22

p—2
S lle+ HHOOHij(:; Lr IIUIIE}‘Z& + (L [l5lloo) lla + KllollullLge 22,

with L°°; L4 = L>(0,T; L4(Q)) and L>®;WLP = L>(0,T; WHP(Q)), where in
the last inequality we used (2.12). Next, Young’s inequality yields

AS fle+ %\loo\leZi’l ollu IIZ(fe i)z + (1 +[[lloo) lla + Klloolull Lge; 2

P
< ellwllze e + (14 Inloo + &7 flat KIIET) o+ Ko ulleizz (362)
for any € > 0. With this estimate at hand, we can proceed bounding the

vorticity. Combining (3.52), the definition of @, i.e. @ = & — A, (3.60) and
(3.62) and the analogous estimates for @~ we find

T -l Ay -
5 ||w_||%$°,L£ + H(’:]+||%,f°,Lg + A2
< llwolly + Ra® 4 A
< llwolly + Ra® + &2 [|wlF e, 0 (3.63)
-2 23)° 2 2
+ (14 Ikl +67 72 lla+ /127 ) o+ sl ulF e, o
Choosing ¢ sufficiently small, we can compensate the third term on the right-
hand side of (3.63) implying
2 < 2 | Ra? 1 75\ 2 2
[wlizee;p S llwolly +Ra” + (14 [|K]loc + [+ Kll2c™ ) o+ &]I5 Null g0, 2
< llwoll2 + Ra? + G2, Jull3e 1
P
where Cy s p = (1 + |6l + |l + fi||§52) [l + £|loo and finally using (3.39)

yields

|wll Lo 0,750 (0)) S llwollp + Ra+ Ca e pllull ;L2
< lwollp 4+ Carplluollz + (14 Caxp) (1 + [l o) Ra

Note that this bound holds independent of T' concluding the proof. O
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3. Rayleigh-Bénard Convection

As remarked in Section 2.3, boundary terms of type fv‘U"ﬁ u - Vp, naturally
arise when deriving second order estimates for fluids with Navier-slip boundary
conditions. These terms can be bounded using Lemma 7, which demands esti-
mates on the pressure gradient. The following Lemma provides such a result. In
contrast to the results in Bleitner and Nobili 2024a we are not deriving a Pois-
son equation and Neumann boundary conditions for the pressure, but rather
directly prove the results by testing (3.1) with Vp. Both methods yield the
same results after integration by parts.

Remark 19 (Difference to Bleitner and Nobili 2024b)

The difference in the result of Theorem 11 and Bleitner and Nobili 20240 lies in
the variation of estimating the nonlinear term in the following pressure bound.
Here, in essence the argumentation is Hélder’s inequality and Gagliardo-Nieren-
berg interpolation imply

/Q V- (u- V)u < [plla ulloo [ Vul

1—
< lpller (IFullglalls™ + ull2)) 1Vul2,

while, for the flat system, the same term could be estimated using integration by
parts, Hélder’s inequality, and Sobolev embedding as

/Vp-(u-V)uz—/qu:VuT+/ pn - (u-Vu
Q Q o9

:f/qu: VUT+/ pnouy 01 us
Q o0

__ /Q pVu: i < pllallVallal| Va2

S Iplla [Vullaf[ Va2,

where : denotes the tensor contraction, i.e. Vu: Vul = Oiyu;0ju;, which re-
flects the approach in Bleitner and Nobili 2024b. The reason for opting for the
former estimate is twofold. The first reason is to demonstrate that these esti-
mates are flexible and the analysis can be tuned to the regime of interest. The
second reason for using this approach is the exchange of higher-order bounds for
lower-order ones, which is better suited in the regime of big . Note that using
p > 4 on the right-hand side results in smaller p, which is even more suitable
for the regime of big slip coefficientsm.

Lemma 20 (Pressure Bound)
Let Q be C*1, ug € WH4(Q) and 0 < o« € WH°(y= U~T). Then

1
ol (5l + e+ Wl )l + R,

where the implicit constant only depends on I' and the Lipschitz constant of the
boundary.

Proof
Testing (3.1) with Vp, one gets

IIVpH%:fi /Ut'VP+/Vp'(u~V)u +/Vp~Au+Ra/82p19.
Pr \Jo Q Q
(3.64)
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3.5. General System

Note that the first term on the right-hand side of (3.64) vanishes under partial

integration as
/ut~Vp:/ ut~np—/pv-ut:0, (3.65)
Q YUyt Q

where in the last equality we used that, after deriving (3.2) and (3.4) with
respect to time, V- u; = 0 and u; - n = 0. To estimate the third term on the
right-hand side of (3.64) notice that due to (2.11) and integration by parts

/vp Au—/Vp Viw
—/ L.vp— /wVL~Vp
"r‘UW Q

= / wt - Vp, (3.66)
YUyt

where the bulk term vanished because of V+ - Vp = 0. Due to (3.10) we can
further estimate (3.66) as

/ Vp-Au= 72/ (o + K)u,7-Vp = 72/ (o + k)u-Vp (3.67)
Q YUyt YUyt

and by Lemma 7 the left-hand side can be bounded by

/Vp-Au
Q

Using (3.65), (3.68), and Holder’s inequality in order to estimate the second and
fourth term on the right-hand side of (3.64) we find

S e+ m)nflwre lull g Ip]l - (3.68)

IVpl3 S fIIUIloollpllHlllullHl + [l + &)nllwroe [[ull [Pl + Rallpll g [[9]]2-
(3.69)

As p is only defined up to a constant, we choose it such that p is average free
and therefore Poincaré’s inequality and (3.69) imply

Ipl3 S 1Vel3

1
S ppllullsclpll e lull e + (e + m)nllwr.ee l[ull [Pl + Rallplla [9]]2,

which after dividing by ||p||g: and using the maximum principle (3.8) for 9,
yields

1
o S (el + N+ ndroe ) o + R

proving the claim. O

Having tools at hand that allow us to cope with the nonlinearity and the
boundary terms we are able to prove the long-time average bound for the H?
norm of w.
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3. Rayleigh-Bénard Convection

Lemma 21 (Long time H? bound)
Let Q be C*1, ug € WH(Q) and 0 < a« € Wh°(y= U~™). Then
(lull3r2) S C3Co (1 +Pr " (Jlugllwrs + CoRa)) NuRa
+ CgCQ%Nu%Ra% + C’Q%NuRa%7
where
Ci(a, k) = 1+ [lallwre + [|Kllwree + llallS + [Ixll3

Ca(a, k) =1+ o™ (1 + [s]) [l
Cs(a, k) = [la + £loo-

and the implicit constant only depends on I' and the Lipschitz constant of the
boundary.

Proof
Testing (3.9) with w one finds
1 d 9 1
ﬁ%“w‘b: Pr Qwu~Vw+ QwAerRa Qw@lﬁ. (3.70)

The first term on the right-hand side of (3.70) vanishes under partial integration

as
Z/wu-Vw:/u-szz/ wzu-n—/wzv-uzo, (3.71)
Q Q vy~ uyt Q

where in the last equality we exploit (3.4) and (3.2). For the second term on
the right-hand side of (3.70) integration by parts yields

/ WAw = —||Vwl|2 —l—/ wn - Vw. (3.72)
Q y~uUyt
In order to estimate the boundary term in (3.72) note that by (3.10) and (2.11)

/ wn-Vw:/ wn~Vw=/ wr - V+w

YUyt YUyt YUyt

:72/ (a4 Kk)u - Au.
YUyt

Inserting (3.1) one finds

1
f/ wn~Vw=—/ (a+ K)u-Au
2 Jy-uyt YUyt

1
:—/ (o +K)u- (m(ut—ku-Vu)—FVp—Raﬁeg)
YUyt

1 d , 1 ,
= = + k) - Vu?
2Pr di /W_Uw(a W =gy ), (@R Ve
- / (o +K)u-Vp+ Ra/ (o + K)ug (3.73)
YUyt v
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3.5. General System

Combining (3.70), (3.71), (3.72) and (3.73) yields
1 d
L (nwnz w2 (e md)+ Il
= (oz—|—f-£)u-Vu£—2/ (a+ K)u-Vp
Pr Uyt Uyt
+ 2Ra/ (o + K)ug + Ra/ woh ¥ (3.74)
v Q

and using Lemma 7, the trace theorem and Holder’s inequality
1 d

2
2 2
e (B +2 [ ae ) + 9
1
S+ Rl (ol -+ ol ) o
+ o+ KllooRalul s + Rallo |2 99
By Lemma 1 and 20, [lw|[2 < [[Vul|2 and Hélder’s inequality one gets

1 d <
Dl + [ aui) Vel
Prdt 2 2

S+ Rl (o102 + ol ) e
(ot slloe + 1 99]12) Rau 1
Sla-+ mnlwros (0 + malhwss + g ol )
+ (o + oo + V9]2) Ralfu] . (3.75)
Note that by Lemma 2

lullzzz < llwllms + I5llocllwllz + (1 + sllwre + [l5]3) ull2
SIVllz + 1+ [[8lloo)llullar + 1+ [[8llwee + [l6]3) [ull2
SIVwll2 + (1 + [[6llwee + 18113 el e, (3.76)

where in the last estimate we used Young’s inequality. Combining (3.75) and
(3.76) there exists a constant C' > 0 depending only on I' and the Lipschitz
constant of the boundary such that

1 d
- D 2 2 C 2
ey (1Dl [ o)+ Clulfe

2
S (L + llallwre + I8l + (e + m)nllwee)” [ulF
1
+ 5 lllet m)nflws flulloo[ullZ:
+ ([l + Klloo + [[VOl2) Rallul| g1 (3.77)
For 2 < p € 2N by Sobolev embedding, Lemma 2, Lemma 17 and Lemma 16

_2
lulloo S lullwrr S lollp + (1+ ||nu2 2 lull:

(1 RIS 4 ot R ) (lwollwen + (1 + o~ oc)Ra) (3.78)
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3. Rayleigh-Bénard Convection

where we additionally used Young’s and Hélder’s inequality to simplify the
prefactors and initial data with the cost of slightly worsening the estimate.
Combining (3.77) and (3.78) yields

1 d
- D 2 2 C 2
ey (1Pl [ o)+ Clulfe

2
S (U llslwree + 118012 + [l + m)nllwe )™ lull 7

1 2p—2 2p—2
gl wnlbwns (1416175 + o+ o 27 )

(luollwrs + (1 + o™ o) Ra) [ullz
+ (la+ klle + [[VOl2) Rallu g2 (3.79)

Note that there are at most quadratic terms depending on time on the right-hand
side of (3.79), allowing us to take the long-time average under which the time
derivative on the left-hand side vanishes as ||ul|%, < [|Dul|3 + fv‘UW au? g
lul|3;; by Lemma 6 and |jul|%,, is uniformly bounded in time by Remark 18.
Therefore, using (fg) < (f2)2(g%)2 due to Young’s inequality, Lemma 16 and
Lemma 14 yield

2
(lullZ2) S (1 + lsllwee + 1612 + e+ B)nllwee )™ (lullFn)

1 2p—2 %
+ e+ m)nllwre (14 s] 77 + o+ sl

(luollwrs + (1 + lla™" floo)Ra) {ull3:)
+ (llo+ rlloo + (199113 ) Ra(llullf)?

1+
S (14 Il + Il + e+ )l ) (14 [ 2222

OO) NuRa

)

2p—2 2p=2
+ I+ m)nw (1 A1 + o+ ) 27 ) (1|

Nuollwre + (1 + Jla” )R
Pr

2 NuRa

3
2

ot oo (14 || 2

+(1+H”—'“‘

«

31
) NuzRa

3 3
) NuRaz

In order to simplify the estimate we use p = 4, the lowest value for which the
analysis works, Young’s inequality in multiple ways and

e+ m)nllwree S lnllcllor+ Kllwree + [la + Alloo [[2]lw.oc

S et wllwre + lla+ &lloo | £l oo
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3.5. General System

to get

3\2 1+|k
ulia) S (1 + lelwsos + Inllwss + lali + %) (1+ ]| 245
| (1  lwollwrs + (14 o~ )Ra

)

Pr ) NuRa

3
2

Oo) : Nu?Ra

+ o+ £lloo (1 + HHTM

+ (1 + HH—‘“‘
SCICy (1+ Prt (J|uolwia + C3Ra)) NuRa
+ 03C2Nu?Ra? + O NuRa?

3 3
) NuRaz2
(o]

concluding the proof. O

3.5.3 Proof of the Theorems

With all this preparation at hand, we are able to combine the results and prove
the Theorms 9 and 10.

Proof of Theorem 9
Lemma 15 and Lemma 16 imply

1

Nu < 67 (||Vu|2)? + 6 2Nu?

)l

1

1
<62 (1 + HH_TM )2 NuzRa? + 6~ *Nu?

for any d > 6 > 0, which after dividing by Nu? and squaring yields

Nu < 6CoRa + 671,

where Cy =1+ HHTW

. Choosing
oo

d= C’Q_% min{Ra_%7d}
results in

1
Ra?z,

N ol

Nu<C
where in the case of d < Ra_% we used
Nu < OF (dRa+d~Y) < C3(Ra? +d~ ') < O(d)Cy Ra?

proving the first claim.
The same proof, using (3.41) instead of (3.40), yields (3.12).
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3. Rayleigh-Bénard Convection

Proof of Theorem 10
The proof follows the same strategy as the one of Theorem 9, but instead uses
the higher order bounds. By Lemma 15 the Nusselt number is bounded by

Nu < 6(fullZ )T (Jul|}2) T + 6~ 2Nu?

for any 0 < 4 and using the long time bounds of ||ul|: and ||ul| =, i.e. Lemma
16 respectively Lemma 21, one gets

where

Nu < 5[01%02% (1+pe (||u0||§vl,4 + cﬁRai)) Nu#Ra?
1
1

3

3 f 3 5
+ O CiNutRal + O Nu%Rag} 4 iNug,

Ci(a,k) = 1+ [lallwre + [|Kllwe + llallS + [lxll3
- 1+]r|
Cola,k) =1+ HT

o}

Cs(a, k) = [la + £loo-

(3.80)

In order to optimize § we distinguish between two cases. Note that by similar

consideration as in the proof of Theorem 9, one can without loss of generality
5

assume Ra1z > % such that the subsequent choices imply § < %.

a) Assume that the third term in the squared brackets is dominating, i.e.

Then (3.80) implies

3 1 5
Nu < 6C5 CANufRa® + §~ 2 Nu?

and optimizing in § by setting

yields

Wi

5 = Nut (G5 CfRat )

1
Nu $ Nutt (G5 CiRa?)” S NuHCFi O Rats

and after division by NuZ and exponentiation

2
3

3
Nu < CF*CE Ra

Blen

1 1 1 1 1 1 1 1 1 1
Ci > Ci 0 (1 yprd (||uo||{§[,1,4 + C;Raz)) NufRa~% + Nut.

b) If instead the third term in the squared bracket is dominated by the others,

i.e.

1 1 1 1 1 1 1 1 1 1
Cf <C205 (1 +prd (||u0||;vl,4 + C;Raz)) NufRa~% + Nuf,
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3.6. Flat System

(3.80) yields

Nl=

Nu < 6Nu? [Cﬁcf (1Pt (Huonéw n céRa%)) Ra

35 1 1
+ C;Rag} 46 Nus.
Again division by Nu? and squaring implies

Nu 582 [CpC; (14 P ¥ (Jluollfr s + C5Rat) ) Rad + CQ%R&%T +67

and optimizing in § by setting

v

5= [cfcé (14 Pt (Jluollipr o + G5 Rat ) ) Rat + C§Ra%} )

results in

o

1 1 1 1 1 1 1 3 5
Nu< [CFcs (1 fprt (||uo||évl,4 + C;Raz)) Ra? + C’;Rag}

S

1 1 1 1 1 1 1 1 5
<0ics (1 +Prd (Huougm +C3 Raé)) Ra® + O Ra's.
Combining the different estimates proves

1 1 1 1 1 1 1 1 1
Nu< CiC (1 L Prd \|u0||5vl,4) Rat + CF CjPr #Ra?

3 2 5 1 5
+CJPCPRa®s + CiRa.

3.6 Flat System

In this section, the special case of flat boundaries, i.e. h~ =0, ht =1, k = 0,
and constant slip coefficient a(z) = 57— > 0 is studied. With these choices, the
Navier-slip boundary conditions are simplified to

1 1
0=7-Dun+oau) = T + §Tln2(81U2 + Dauy)

and using that us = 0 implies d1us = 0 on v~ U~™T, they further reduce to

82U1 = —Ls_lul on ’y+
Oour = Ls_lul on vy~ .
L, can be viewed as an effective slip length (Miksis and Davis 1994; Bolanos

and Vernescu 2017). An overview of the system is given in Figure 3.4. The
subsequent analysis is a slight deviation of Bleitner and Nobili 2024b.
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3. Rayleigh-Bénard Convection

)
O] = —Ls_lul, ug =0, 9=0 +
n gl
Pr'(u; +u - Vu) — Au + Vp = Radey
V-u=0
Ye+u-VIi—AY=0
0+ —
Ooug = Ls_luh ug =0, =1 v
} } x1
0 T
Figure 3.4: Overview of the system considered in Section 3.6, i.e. with flat
boundaries and constant slip coefficient o = ﬁ

3.6.1 The Direct Method

The strategy is the same as for Theorem 9 and Theorem 10 in Section 3.5. Here
we will only state the improvements over the general case and how they affect
the result.

Using ¢ = n* = (0,1) in the proof of Lemma 15, the statement reduces to
the following.

Lemma 22
Let ug € L?(2). Then

Nu < 62 (||Vul|2)? 4+ 6~ 2Nu?

for every § < 1, where the implicit constant only depends on T.
If ug € WH4(Q), then

Nu S 6(]|Vull3) = (IV2ull3) ¥ + 672 Nu
for every § < 1, where the implicit constant only depends on T.
3.6.2 A-Priori Estimates

Compared to Lemma 16, there is a slight improvement in the prefactor of the
Ra term, as stated in the following.

Lemma 23
Let ug € L*(Q2). Then

lull3 < Iluoll3 + (1 + Ls)Ra?
(IIVul3) < NuRa,

where the implicit constant only depends on T.
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3.6. Flat System

Proof
Note that by Lemma 1

2| Dull3 = [[Vul3,
which applied to (3.45) yields

1 d 9 9 1 d 9 9 1/ 9
— = Vul?, < —— \Y —
gl + 19l < g e + 19wl + 7 [ ol

:Ra/ ug¥
Q

S Ra/ﬂ(ug - 62)19, (381)

where in the last estimate we used (3.48). As in (2.64), we find
[ul*(x) < 2furf*(21,0) + 2/|02u(@1, T2 (0,1

which after integrating over €2 yields

ol s [ vl <maxa.n) (5[ vl s
YUyt gl

—Ut
Combining (3.81) and (3.82) there exists a constant C' > 0 such that

1 d

2 . —1 2 —1 2 2
— C 1,L <R 9 < R
s gl + Cmin(1, L)l < Ra [ w0 < =~ R + <l

for any € > 0, where in the last estimate we used Young’s inequality. Choosing ¢
sufficiently small, we can compensate the ||uz||3 term and Gronwall’s inequality
yields

[ull3 < Iluoll3 + max(1, Ly)Ra®. (3.83)

Similar to before taking the long-time average of (3.81), using (3.23) and the
fact that [|u/|3 is uniformly bounded in time due to (3.83) one finds

(IVul3) < NuRa.
O

Again the strategy is to fall back to the vorticity formulation in order to
circumvent the nonlinear term in higher order bounds. Therefore, one needs es-
timates that allow for exchange between Vu and w, which the following Lemma,
corresponding to Lemma 2 for curved domains, provides.

Lemma 24
Let 1 < q < o0, k € Ng and u € WFtL4(Q). Then

[Vullwra S llwllwea,
where the implicit constant only depends on T' and q. Additionally
IV2ull2 < [[Vello.
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3. Rayleigh-Bénard Convection

Proof

The elliptic regularity estimates, Lemma 2, are given by the following, where
we use a similar approach as Drivas, Nguyen, and Nobili 2022, Lemma A.2. As
o satisfies

Ap=w in

ap:—][ul on v+
Q

p=0 on vy .

defining ¢ = ¢ — x2f,, u1 one has

Elliptic regularity implies
I@llwarza < llwllwn.a
for any ¢ € (1,00) and therefore
[Vusllwra = [VOrollwra < [VO1@llwra S [Bllwerza S llwllwra.  (3.84)

In order to get an estimate for the first component of the velocity notice that
by (3.2) and w = —0ouy + Orus

Vuy = ( —Oxu; ) . (3.85)

O1ug — w
Combining (3.84) and (3.85), we obtain
IVullwr.o S IVurllwea + [1Vuellwea S [[Vuellwea + [[wllwee S lwllws.a-

Integrating by parts twice, using n = (0,1) on 4+ and n = (0,—1) on v~
and the cancellation of terms where ¢ = j = 2, one finds

2112
||V qu :/Biajukﬁiajuk
Q
= [ O?upduy — 0?0, i 0;0;up0; ;
= i UkO5 Uk Curpdjugng + 10 UKL UEN;
Q y-uyt YUyt
1w [ Fudwnat [ a0udyumns
YUyt yuyt
2 2
= ||AUH2_/ 31“182%712-1-/ 0201u101u1ng
Yooyt YUt

*/ 8fuz82uQn2+/ 0201 U201 u2N.
YUyt

YUyt

By uz = 0 on v~ U~%, one has djus = 9?up = 0 and therefore the last two
terms vanish. Using the Navier-slip boundary conditions, the identity further
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3.6. Flat System

simplifies to

V202 = || Aull? / 2Dy + / DsDyr sy
YUyt

youyt

= [|Aul3 —/ D71 Oaurna +/ 0102u101u1n2
YUyt YUyt
= [|Auf3 + L / ORuiug — L / O1u101u;.
YUyt YUyt
Finally, using the periodicity and Lg > 0, it holds
IVl = 8+ 2t [ wu— [ oo
YUyt YUyt

— w22t [ (@)?
YUyt
< [ A3
and by (2.11) one gets
IV2ull3 < |Aull = Vw3
O
The estimate matching the one of Lemma 17 is given in the following Lemma.

Lemma 25
Let 2 < p € 2N, ug € WHP(Q). Then
—_r_ _2p=2
19l S el + 25 (14 277 ol + (14 22757 ) R,
where the implicit constant only depends on I' and p and
lulloe S (14 L72) Juollws + (L3 +L:%) Ra,

where the implicit constant only depends on T'.

Proof
Using the same arguments as in the proof of Lemma 17 one finds the analogous
of (3.63), i.e

ol e,z S llwoll; + Ra® + A2, (3.86)

where A = L7 [Ju1 | poc (jo,1)x {r-uny+ ) S Ls tllullpee;no . Estimating similar to
before one finds, using Gagliardo-Nirenberg interpolation, Holder’s inequality

AT Ls_1||u||L°°'L°°

S Ly 1IIVulliifé i)pHulli(ci i)z + L lull oo e

< Lol IIEE‘lpr ||2(5222+L il e

_2(p—1)
Selllimas + (L3470  fulipzy (387
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3. Rayleigh-Bénard Convection

for any € > 0 as 2 < p, where in the last estimate we used Young’s inequality.
Therefore, combining (3.86) and (3.87), one has

_2-1\ 2
wllF .z S llwoll; + Ra® + ||w|F e, 1r + (Ls_l +e PRl P ) [l o012

such that choosing ¢ sufficiently small one finds

p—1)

2
Joll ez Bl + R4 (204 277 ) e
__p \2
< lwoll; + Ra? + L2 (1 + Ls H) (luol3 + (1 + Ls)Ra®)

where we used Lemma 23. As this bound holds uniform in time it implies
__r_ _2p-2
IVl % ol $ ool + 257 (14 2277 ) ol + (14 2 ) Ra (3.59)
where we again used Young’s inequality in order to unify the exponents. Using

again Gagliardo-Nirenberg interpolation as in (3.87) one finds

P p—2

lulloe < IVl [lull3™ ™ + lull2 (3.89)

and choosing p = 4 and plugging in (3.83) and (3.88) results in

2 1
[ulloo S IVullZ flull3 + [lull2

< (lwolla + L7 (1 + L32) Jluolla + (1 + L7?) Ra)®

1 3 1
: (||u0||2 + (1 +L§) Ra)3 +lluollz + (1 +L§) Ra

1
S (U+ L7 luollws + (L3 + L72) Ra,
where we again used Young’s inequality. O

The proof of Lemma 7 simplifies as follows.

Lemma 26
If u,p € HY(Q) it holds

/ u~Vp‘s4||p||H1||w|2.
YUyt

Proof
Define ((z2) = (2x2 — 1)eq, then ((0) = —ez = n, {(1) = e = n and because of
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3.6. Flat System

the periodicity in x;-direction, (3.4) and (3.2) and Stokes theorem yield

/ u-Vp= / w1 01p = —/ pO1uy
YUyt yTUyT YUyt
= / pous = / pn-(C-V)u
YUyt YUyt
AR B0
Q
= / Vp-(C- V)u+/p8jui8igj +/pC-V(V~u)
Q Q Q
= /(23@2 —1)Vp- du+ 2/ pOaua.
Q Q

Therefore Holder’s inequality yields

[ Vp\ < 2(1Vplla + Ipll2)[Vallz < 4llpll s | V]
yTuUyTt

where we additionally used Young’s inequality to unify the norms of the pressure.
O

Next, we derive the result corresponding to the pressure bound of Lemma
20.

Lemma 27
Let ug € WH4(Q). Then

ol S (Pr="lullss + L3Y) [ Vull2 + Ra,

where the implicit constant only depends on T'.

Proof
Starting from (3.64), using (3.65) and (3.67), one has

1
|Vpllz = —= (/ ut-Vp—i—/ Vp-(u-V)u) +/ Vp-Au+Ra/82p19
Pr \Ja Q Q
:—Prfl/Vp(u-V)u—L;l/ u-Vp+Ra/82p19
Q y—uyt
S Pr Il ullocl Vel + L3 ol IVullz + Rallpllis,  (3.90)

where in the last estimate we used Holder’s inequality, Lemma 26 and (3.8). As
p is only defined up to a constant, we can choose it such that it is average free
and Poincaré’s inequality holds. Then (3.90) yields

lpli7r < VD3
S Protpllae lullooIVull 22 + L Ipl e [ Vull2 + Rallpl| a2

and dividing by ||p|| g results in

ol S (Prlullos + L) IVl + Ra.
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3. Rayleigh-Bénard Convection

The equivalent of Lemma 21 is given in the following.
Lemma 28
Let ug € WH4(Q). Then
(Iv2ul3) < (Pr=" (L3 + L37) lluollwr.+ + L3?) NuRa
+ L7 NutRad + NuRad + Pr? (L;% +L;?) NuRa?,
where the implicit constant only depends on T.

Proof
By (3.74) one has

1 d ( 2 -1 2 2
Gzt [ )4 val
2Pr dt 2 Uyt ?
1 / 2 -1
= — w101 (uy) — L / u~Vp+Ra/w8119.
2Pr L, Uyt ! v Ut Q
Note that because of the periodicity of the boundaries
1 1
5/ u181(u%) = / u%@lul = g/ 81(’&:1))) =0
yTuUyt yuyt YUyt

and therefore

1 d 2 71/ 2 2
L + ||V
2Pr dt <||w||2 + S ,qu,y«l» UT || wHQ

:—Ls_l/ u-Vp—i—Ra/w@u?
yT Uyt Q

S LI Vullzllpll + Rallwll2] V92, (3.91)

where we used Lemma 26 in the last estimate. By Lemma 27 and Lemma 1
(3.91) can be further estimated as

1 d < 2 -1 2 2
oo (B2t [ a2) 49w
2Pr dt 2 Ut 2
Prot Lo ullos + L372) Va3 + (L1 + [[V9]2) [[Vull2Ra
. it
Pt (B0 4 17%) uollwrs + (Lo * + L) Ra) [ Vul3
+ L2 Vul3 + (L5 + [ V9l|2) [|Vul2Ra,
where in the last estimate we used Lemma 25. Using Lemma 24 one gets
1 d

e (AT D RN
2Pr dt ( 2 Uyt ?

—1 -1 —3 -3 -3 2
Pt (0 + 127 Juollws + (L5 + L) Ra) Va3

+ L2 Vull3 + (L + [IV9ll2) [IVull2Ra, (3.92)

and taking the long time average of (3.92), using Lemma 23, Lemma 14 and
that [|u||3;: is uniformly bounded in time, we find

(IV2ull3) S (Prt (L5 + Lg?) [luollwrs + L3?) NuRa

S
<

—1Nip.d 3 “1(r-% -3 2
+ L7'Nu®Ra? + NuRa® + Pr (LS L )NuRa .
O
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3.6. Flat System

3.6.3 Proof of the Theorem

Proof of Theorem 11
By Lemma 22 and Lemma 23

Nu < 67 (| Vu|2)? + 6 2Nu?
< 67NuzRa? + 0 2Nu?
for any ¢ > 0, implying
Nu < 6Ra+6!

and setting § = Ra? yields
Nu < Ra?,
proving the first claim. Similarly by Lemma 22, Lemma 23 and Lemma 28

Nu < o(|[Vull3) 3 (|V2ul3) + 6~ i Nu>
_1 —1 —3 1 1 1 -1 1 1
< opr i (Ls 4L, 4) luol|Z,, sNu?Ra? + 6L; ?Nu?Ra?

e

+ 6Ly “NutRat + oNuRat +0Pr 4 (L7 + L77) NulRa
+ 6 3Nuz. (3.93)
As in the general domain we distinguish between two cases because of the Nu®

term.
e At first assume that this Nu® term is dominated by the other terms, i.e.

_1 1 _1 _3 1 1 1 _1 1 1
Lyf<pr i (LS 4L, 4) uol|Z, sNusRa™% + Ly *NusRa ™%
1 1 _1 _3 1 1
4 Nub 4 Pr i (Ls S 4L, 4) Nu®Rat.
Then (3.93) implies
1 _1 _3 1 1 1 1 1 1
Nu < §Pr—4 (LS 4L, 4) uol|Z,, sNuZRa? + 6Ly *Nu?Ra?
1 5 _1 —L -3 1 3 _1 1
+ 6NutRaf 1 opr—i (Ls S 4L, 4)Nu2Ra4 o ENuZ,
which after dividing by Nu? and squaring yields
2 1 _1 _3 1 2 1
Nu S 0?Prd (L% + L5 Juollér Ra+ 6L 'Ra
21 . 8 2 L —1 -3 3 1
+ 6%Rai +6%Pr 2 (LS iy, Q)Raf vt

Setting
1 1 _3 1 1
5= (Pr’i (Ls Py ) luol|Z,...Ra + L; 'Ra

_1
3

+Raf +Pr¥ (L4 + 1% ) Rat)
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3. Rayleigh-Bénard Convection

results in
1 1 _1 1 1 1 1
Nu<Pr s (L0 + L, ) luol| % s Ra? + Ly *Ras
Pr® (L;% n L;%) Ra®.
o If instead

_3
1

-1 1 -1 1 1 1 -1 1 1
Lyt >Ppri (Ls L ) ol s o NuSRa™% + L3 2NusRa ™

Bl

+Nub + Prod (L8 4+ 107 ) NubRad,
Then (3.93) implies

Nu < 6L; *NufRat + 5 i Nu?
and setting § = LE Nu™Ra~ 2 < Ra™ 12 yields

and therefore division by Nuzi

and exponentiation results in
2 5
2 5
Nu < Ls ®Ra’s.

Combining the two cases one has

Nu< (Li% +Pr % (056 + 152 ¢ ) Rab
ug (Ls® +Pr s+ Ls ||U0||W1,4 a

N

4+ L7 PRa® + Rai? + Pré (LS_le +L;%) Ra

and therefore, since Ra > 1

1
2

_1 1 _1 1 5 _1 1
Nu S Ls °|luo|l§.«Pr™¢Ra® + Raz 4 Ls Pr~cRa2
if Ly > 1 and

1 1 1 _2 1
Nu < Ly °Ra% + Ly ? ||ug||3,, sPr Ra® 4+ L; "Ra®s + Ra'? 4+ L; 2Pr~5Ra?
if Ly <1, concluding the proof. O

3.7 System With Identical Boundaries

The following findings are published in Bleitner and Nobili 2024a. Although
the results are suboptimal when compared to Theorem 10, we state the corre-
sponding Lemmas and changes in the proofs in order to discuss the differences
and improvements.
The particular system of interest corresponds to the previously studied gen-
eral system when the boundary profile functions coincide, i.e.
v~ ={(z1,22) | 0 <y <T, 29 = h(x1)}

P ={(z1,22) | 0< 21 <T,m0 =1+ h(x1)}

The setup is illustrated in Figure 3.5.
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3.7. System With Identical Boundaries

To n
T (Dun+ au) =0,

Pr!(uy + - Vu) — Au+ Vp = Rade,
V-u=0
ﬂt+uv19—A19=0

7-Dun+au)=0, n-u=0,

Figure 3.5: Overview of the system considered in Section 3.7, where the bound-
ary profile functions coincide.

3.7.1 Nusselt Number

First, we state the result corresponding to Lemma 14.

Lemma 29 (Nusselt Number Representations)
Let Q be CH1 und ug € L*(Q). Then for any 0 < 2z <1

Nu= (n"-(u—V)9), -, (3.94)
= (IV9[I5)a (3.95)
> (14 maxh —minh) ™ {(ug — 92)9)q,
where v~ 4+ z = {(z1,22) | 0 <21 <T, 29 = h(z1) + 2}.

The proof of Lemma 29 follows the same way as the proof of Lemma 14.

3.7.2 A-Priori Estimates

Lemma 30 (Energy Balance)
Let Q). Then strong solutions satisfy

1 d 9 5 / ) /
Py 7 \4 2 =Ra [ dus. 3.96
eIV [ o= [ o (@09
Proof
Testing (3.1) with u one finds

1 d, o 1
- (- Vu — .V cAu+ (3.
5Pr dt”uH2 Pr/Qu (u-V)u /Qu p—&—/Qu u Ra/QﬁuQ (3.97)

Integrating by parts, the boundary conditions (3.4) and (3.2) yield

Vp-u:/ pn-u—/pV-uzO (3.98)
Q vy~ Uyt Q
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3. Rayleigh-Bénard Convection

and

/Qu~(u~V)u/WUVJru'(u'n)u/Q(twu)Vﬂu/Qu-(u-V)u

=—/Qu~(u~V)u,

implying that the first term on the right-hand side of (3.97) vanishes. Therefore
combining (3.97) and (3.98)

ﬂ%”"qu*/ﬂ“‘AquRa/ﬂﬁuZ (3.99)

For the viscosity term integration by parts and (3.4)yield

/u~Au:/ w-(n-Vu—||Vul3
Q YUyt

= / X Ur TN 05U — HVuH%
YUy

= / uTTinj(ﬁjui + 8iuj) —/ uTijﬁiuj - ||V’U,H§
YUyt

YUyt

:2/ UTT'D’LLH—/ urn - (7 V)u — || Vul3
YUyt YUyt

- _2/ auz—/ w2 — | Vul2, (3.100)
YUyt YUyt

where in the last identity we used (3.5) and (2.8). Plugging (3.100) into (3.99)
we find

1 d 9 9
e gl + IVl + [

YUy

(2a + K)u? = Ra/ Jug.
Q

O

From (3.96) it is not directly clear that energy is dissolved, i.e. a coercivity
bound holds for the gradient and boundary term. If 2« > || one can expect
such an estimate. If however 2a < |k| the following observation motivates
the subsequent lemma, which will provide such a coercivity estimate. Assume
k(z1,h(z1)) < 0 at some point 21, i.e. the bottom boundary is convex. Then as
the boundary profiles are the same the top boundary has to be concave in x1,
ie. k(x1,1+ h(z1)) > 0, and vice versa. The fundamental theorem of calculus
allows us to exchange between these boundary values for u.

Lemma 31 (Coercivity)
Assume  is OV with hT =14+ h~, u € HY(Q), 0 < a € L®(y~ U~T) and
1
kl(x) < 2a(x —&——min{l7 aa:} 3.101
i) < 20(0) 4§ ) SNCRTIY
holds for almost every x € v~ U~™. Then
3 1
v+ [ eak g  Jmin (1o~ 2 el

YUyt
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3.7. System With Identical Boundaries

Remark 32 (Comparison of Lemma 6 and Lemma 31)
Note that under assumption (3.101) one has

-1 1+at+va
L4 a7 (14 el $ 1+ [ 2202 |

~

ST+l S 1+ lla oo
and Lemma 6 yields

IVl + [ (ot ou =2puli+2 [ au,
o o

2 (L fla™ 1+ KD o) ™ lullZre
2 (Lt fla o) ™ 7

2 min{1, o™ S a7

This shows that Lemma 6 is indeed a generalization of Lemma 31. Additionally
Lemma 31 relies on the fact that the boundaries have the same profile function
h and is therefore not applicable to the domain studied in the general Rayleigh-
Bénard system and especially not in the case of an arbitrary Lipschitz domain.

Proof
We will use the following notation

Kk = k(x1, h(z1)), a_ = afzy, h(xr)), u_ = ur(x1,h(x1)),

Ky =Kz, 14+ h(21)), ot =a(z, 1+ h(21)), ugp =ur (21,14 h(z1)),

i.e. the evaluation of the functions on the bottom and top boundary. Note that
since the boundary profiles are the same and n* = —n~

K- = —K4.
By the fundamental theorem of calculus and Young’s inequality

2
T2
lul?(21,29) = [ u_ —|—/ Oau(z1,2) dz
h(z1)

x2

2
<+ +(1+eh) (/h( )62u(y1,z) dz)
< +e)u? +(1+e Y (e — h(m))\l@zu”iz(g:) (3.102)
for any € > 0, where L?(2}) = L?(h(z1),1 + h(x1)) and analogously
[ul?(21,22) < (L+e)ul + (1 +e 1) (1 + h(z1) — x2)||82u||2LQ(Q:). (3.103)
Integrating (3.102) and (3.103) in x2 one gets

||u(9c1, )”iz(g:)

. 2 2 1"‘5_1 2
< (1 +¢)minfuZ,ui} + 5 ||82U(£L'1;')HL2(Q:)
< (14 ¢)max{1,a"", a;l}(min{a_,oz+} 1+ (W)2min{u? ,u3 }
+ (297 Ol ) ) ) (3.104)

(6]



3. Rayleigh-Bénard Convection

where we smuggled in the factor y/1 + (h/)? > 1. Next, we claim that

: 5
min{o—, oy }y/1+ (h)?uf < T6||32HII2L2<Q‘> + (20 + R )V 1+ ()22
+ (204 + £4)V/ 1+ (W) 2uf (3.105)

holds for either ¢ = — or ¢ = 4+. Plugging (3.105) into (3.104) one gets

||u($17 )”iz(Q:)
< (14 ¢)max{1,a"", 04_7_1}(1rnin{oz_7 ap b1+ ()2 min{u? , u? }
+ (22) B, e gy )

< (1+e)max{l,a”!,a;'} ((2@ + k)1 + (W)2u?

+ (204 + £)V/1 + (W)2u2 + <156 + (25)1> [02u(zy, ’)HQLz(Q;))'

Integrating with respect to x; and choosing € = 3 yields

1
Julf < dmax{t. o~ ([ @a+ el + ol
v

-yt

It is left to show that (3.105) holds. In order to prove the claim we distinguish
between two cases.

e Assume |x| < 2a.

Then 2a4 + k4 > 0 and 2a_ + k_ > 0. As Ky = —k_, either k4 > 0 or
k— > 0. If k_ > 0 one has

min{a_, a1/ + (0)2u? < 20 /1 + (h)2u?
< (@o_ +w_)yTT WP
+ (204 + K4 ) /1 + (W)2u2

and if kL >0
min{a_, ay }y/1+ (0)2uf < 2a4/1+ (h)%uf

< (20 4 k_)\/1+ (R)2u?
+ (204 + K4) V1 + (W)2?.

e Assume without loss of generality x4 < 0 and |ky| > 2a4 as the case
k— < 0and |k_| > 2a_ follows by exchanging + and —.

Using (3.102) with xo = 1 4 h(x1), respectively (3.103) with zo = h(z1),
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3.7. System With Identical Boundaries

and observing that K = —k; > 204, it holds
— (20— + 52)V1+ (B)202 — (20 + kg )/ 1+ ()20l
—(20- + K)V1+ (W)2u2 + (=204 + k)1 + (B)2u2
—(2a_ + k)14 (W)2u? + (=204 + K_)\/1+ (h/)?
(e + (142700l )
— (204 + 20 — (k- —2a4)) /14 (W)2u2
+ (k- —2a) (1 4+ Y)/14 (W) |\é12u\|L2(Q

Note that k_ = \mr\ > 2a. Therefore, for the first bracket to be positive
we choose € = == +a+ to get

— (20 + n,)mu% - (2ay + /{+)\/mu2+

< = (g +as) VI+ ()22
+ (ke —2ay)(1 4+~ \/7h’||52u|\p(g

< —(ar +a_)/1+ (W)

_ =2
+ (Ii —2aq + M) V14 (h) HBQUHLZ(Q) (3.106)

a_ +«

The assumption (3.101) implies

1
_ = k| £ 204 + ———=min{l, /o
o] < 20+ s min{l, 7}

L Jostoo } . (3.107)
TR (1 ()

1
§2a++4min{

where (1—|—(h’)2)% < (1+(h’)2)% was used. Combining (3.106) and
(3.107), one gets

— (20— + ko)1 + (W) 22 — (204 + K1)/ 1+ (R)2u3

< —(ay +as) V1+ ()22

2c
+ <KJ —2ay + (+> V14 (W)2]02ull7 g

_ta«
< (o +a) VIT (P2 + o]0l g
proving the claim.
O

Lemma 33 (Energy bound)
Let Q be OVt with T =1+ h™, ug € L?(Q) and 0 < a € L™ satisfy (3.101).
Then

[ull < fluoll3 + 16(1 + [a™"||)*TRa?
(IVull3) + ((2a + &)u2) - r+ < (1 4+ maxh — minh)NuRa
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3. Rayleigh-Bénard Convection

Proof
By Lemma 30, Lemma 31, Holder’s and Young’s inequality

(1+ la= D~ ullF

1
< — 2 2
< 5py dtHu”2 + Va3 + /yU'er( a+ k)us

= Ra/ ’19UQ
Q

1
< 4—€FRa2 + E||u||§

sl +

for any € > 0, where we also used the maximum principle (3.8). Choosing
e=3(1+ ||a_1||oo) one gets

sl 4 S0+ o)l < 201+ o~ o) T Ra?.

Now, Gronwall’s inequality yields
lull3 < Jluoll3 +16(1 + [la™"||o)*TRa%, (3.108)
proving the first claim.
In order to prove the long-time bound, notice that by (30),

1 d )
sy gl IVl [ ot

e
zRa(/ﬂ(uz—ﬁg)ﬂ—F/Qagﬁ)
~ Ra (/Q(“r@?)“[y ng), (3.100)

where Stokes theorem and the boundary conditions (3.6) were used. As ng =

—W < 0 on v~ taking the long time average of (3.109), using that ||u|3

is uniformly bounded in time by (3.108), we obtain
(IVull3) + (20 + £)uZ) oyt < Raf(uz — 02)0)
< (14 maxh — min h)NuRa,

where we used Lemma 29 in the last estimate. O

Lemma 34 (Vorticity Bound)

Let Q be CYY with ht =1+ h™,2 < p € 2N, up € WHP(Q) and 0 < « €
L>®(y~ U~™) satisfy (3.101). Then there exists a constant Cy > 0 depending
only on the Lipschitz constant of the boundary, p and T' such that

loll, < € (llwollp + Causlluollz + (1 + Car) (1 + [la™ ) Ra) , (3.110)

2(p—1)
p—2

where Cy o = 1+ || + K|

0= (|Vw|3) +2Pr " {(a + Kk)u - (u - V)u)y- iyt + 2{(a + K)u - VD)ot
—2Ra((a + k)urn1),- — Ra{wdiv). (3.111)

. Additionally, one has

78



3.7. System With Identical Boundaries

Proof
The proof of (3.110) follows the same approach as the proof of Lemma 17.
Additionally, since here the boundary profiles are the same, we can estimate the
||k]|oo term as follows. Since ki (x1) = —k_(x1) for every x; either sy (x1) or
k—(x1) is non-negative, and as « > 0 one has

[£lloe = [fmax{r_, ki }loo < [max{a— + K, ay + koo = la+ K.

Therefore, the bound of Lemma 17 can be estimated as

_p_
leollp < llolly + (14 slloe + lla+ I ) v+ sl ol

D

(1 (14 Il + =+ K17 ) fla+ Klloo ) (1+ lla™ ) Ra
P
S leolly + (1+ o+ £lloe + lla+ £IZ7) o+ oo o 2

+ (14 (14 o+ Blloe + lla+ AIZT) o+ Kl ) (1+ 0™ |oo)Ra

2(1)721)
< Jlwollp + (1 Tl sl ) ol

2(p—1)

(
+ (1+ o+ £l[od 2 )(1+ ™|~ )Ra, (3.112)

where we used Young’s inequality in the last estimate.
In order to prove the long time bound, note that as in (3.74) one finds

L d 2 / 2) 2
= +2 + +||V
e (2] (aemn) 17wl
1
=—— (a+ﬁ)u~Vu3—2/ (o + K)u-Vp
Pr/y-uyr yTuyt
+ 2Ra/ (o + K)ug + Ra/ w0 ¥
v Q
2
=—— (a+n)u~(u~V)u—2/ (o +K)u-Vp
Pr/y-uyr YUyt
+ 2Ra/ (a + K)urng + Ra/ wh ¥, (3.113)
v Q

where in the last identity we used that
u-Vui=u-V(u-u)=2u-(u-Vu,
and
UrNy = UrTy = Us

on v~ U~T. By Holder’s inequality, trace theorem, and Lemma 2 we find
||w||§+2/ (a+ w)u? S llwll3 + lla + llooullF
YUyt

S (A o+ slloo)lwll3 + (14 lI5l3) o+ slloo ull

S (A o+ slloo)lwlly + 1+ 1613 lor + slloolul3,
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3. Rayleigh-Bénard Convection

which is uniformly bounded in time by (3.112) and Lemma 33. Therefore, taking
the long time average of (3.113) we obtain

(IVwl3) = =2Pr™ {(a + k)u - (u- V)u)y-uy+ = 2{(a + K)u- Vp)y-uy+
+ 2Ra((a + K)ur;n1),~ + Ra(wdrd),
proving (3.111). O
The pressure satisfies
Ap = —Pr 'Vu: VuT + Rady¥ in 0 (3.114)
n-Vp=—Pr'ru 427 - V((a+ k)u,) + noRad  on vy~ U~xT, (3.115)

where : denotes the tensor contraction, i.e. Vu: Vul = Oju05u;.
(3.114) follows immediately by taking the divergence of (3.1) and using (3.2)
and V ((u- V)u) = Vu: Vu?. To show (3.115), dotting n into (3.1) yields

Pr'n-u +Pr'n.-(u-V)u+n-Vp—n-Au=Radny,. (3.116)
Taking the time derivative of (3.4), one obtains
n-u = 0. (3.117)

The second term on the left-hand side of (3.116) can be calculated, using (2.8),
as

n-(u-Vu=umn- (1 Vu=ru. (3.118)
By (2.11), the third term on the left-hand side of (3.116) can be written as
n-Au=n-Vtw=—7-Vu. (3.119)

Taking the derivative of (3.10) along the boundary and using (3.119) it follows
that

—27-V((a+ K)u;) =7-Vw =—n-Au. (3.120)
Combining (3.116), (3.117), (3.118) and (3.120) yields (3.115).

Lemma 35 (Pressure Bound)
Let Q be OVt with ht =h™ +1,r > 2, u € H*(Q) and o € WH°(y~ U~T).
Then

L+ [|5lloo o
Ipll e < (Prlullww et Ao | lullm + o+ &lloollull a2 + Ra,

where the implicit constant only depends on v, I' and the Lipschitz constant of
the boundary.

Remark 36

Note that the bound in Lemma 35 is significantly worse than the one in Lemma
20. The ||u||gz term will later result in the smallness condition on ||a + Kl/co-
In particular, this only allows boundaries that are close to free-slip.
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3.7. System With Identical Boundaries

Proof
Testing (3.114) with p, integrating by parts and using (3.115) it follows that

/ pAp = — | V|2 + / pn-Vp
Q oN

= —||Vpl2 fPrfl/ /@puz+2/ pT~V((a+n)uT)+Ra/ pnad.
o0 o0 o
(3.121)

By (3.114) and integration by parts, the left-hand side of (3.121) also satisfies

/pAp:—Pfl/pvu: VUT+Ra/p8219
Q Q Q
= —Prfl/qu: VUT—l—Ra/ ngpﬁ—Ra/ J0ap  (3.122)
Q Q Q

Subtracting (3.122) from (3.121) yields
Vol =~ [ w2 [ prV((atmun)
o9 o9
+Prt / pVu: Vu® —|—Ra/ Pap. (3.123)
Q Q

Next, we bound the terms on the right-hand side of (3.123) individually.
For the first term on the right-hand side of (3.123), Holder’s inequality, trace
theorem, and Sobolev embedding yield

- / k2 < [l oo P62y
o0

< lslloo (llpu?lls + llpuVully + [w*Vpll1)
S lslloo (lpllsllwllsllulls + l[pllallullal[Vulls + [IVpll2]ullafu])
< lslloo 1Pl ez [l 7o - (3.124)

For the second term on the right-hand side of (3.123), Holder’s inequality,
trace theorem, and Young’s inequality yield

/aQ T -V (@ + K)ur) | < a4 Rlloollpll L2y Uyt lull L2y - Uy

+ [le + Klloo Pl 2 (v~ Uy ) VUl 22 (- U+
S lé+ Ellsslpla llullm + Nl + Kl [Pl e[|l 2
(3.125)

In order to estimate the third term on the right-hand side of (3.123), Holder’s
inequality and Sobolev embedding imply

lpVu: VuT |y < [Ipllg[[Vull2 Vull < Iplla [Vull2lVull. - (3.126)

forany2<r,q<oowith%+%:%.
Using Holder’s inequality and (3.8), the fourth term on the right-hand side
of (3.123) can be bounded by

fRa/ﬂagp < Ralp|| 1. (3.127)
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3. Rayleigh-Bénard Convection

Combining (3.123), (3.124), (3.125), (3.126), and (3.127) one gets

L+ [[lloo

Voli3 <
1913 < Il | (+

el + 1 + kloo> el
T o+ Klloellull 2 +Ra} (3.128)

for any r > 2. As the pressure is only defined up to a constant, we can choose
this constant such that p is average free, and therefore, Poincaré’s inequality
yvields |[pl|3: < [[Vpl3 + [lpll3 < (14 C)||Vp||3, which together with (3.128)
implies

1+ ] L
oW ol | (S =l + 6+ ) el
o+ Kl + Ral

and therefore, dividing by ||p|| g yields the claim. O

Remark 37

We remark that Lemma 15 produces the stricter bound. The main difference is
the estimate (3.30), respectively (3.133), where the latter produces the additional
curvature term.

Proof of Theorem 12

The proof is a slight modification of (3.28) in Lemma 15 using the top boundary
instead of the bottom one and taking advantage of the same boundary profiles.
Averaging (3.94) in Lemma 29 over z € (1 — §,1) yields

Nu=§1n"(u—-V)9g =0 Hnt - ud)gs — 6 H{nt - V)as, (3.129)
where
Q° = {(z1,22) | 0< 2 <T,1+h(xy) =6 < xp <1+ h(z1)}.

In order to estimate the first term on the right-hand side of (3.129), the funda-
mental theorem of calculus implies

xo lJrh(:El)
Int - ul(z) = |0t -uly+ +/ Oa(n™ - u) dz| < / Int - Oul dz
1+h(a:1) 1+h($1)75
< 8% Vulrr, ) 2 (3.130)

for z € O, where we used the boundary conditions (3.4), the fact that n* is
constant in xs-direction, Holder’s inequality and

L*(Q) = L (h(21), 1 + h(21)).
Analogously, for ¢ and z € Q7 it holds that

[9](2) < 82 (IV9(@1, ) 2oy (3.131)
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3.7. System With Identical Boundaries
as ¥ =0 on 4", and combining (3.130) and (3.131), implies
In ™ ud| < 0l Vull 2o VOl L2 ()
which after integration over Q° yields
[t dl < 819 ula] V9, (3.132)

where we used Holder’s inequality for the integration with respect to x7.
In order to estimate the second term on the right-hand side of (3.129), inte-
gration by parts and the boundary condition (3.6) imply

/ n+-V19’§/ |19|+/ |n+-n_19|+/ WV - nt|. (3.133)
Q9 ~t+ y—+1-68 ok

Next, we focus on the divergence of n. The bottom boundary can be parame-
terized by (21, h(z1)), implying that the tangential is parallel to (1,A’), which
yields that the unit tangent and unit normal vectors are given by

= (1+ (0)?) 2 G,) and nF =+ (1+ (1)?) 2 (‘1”) (3.134)

and therefore,

i L |G N

=————n". 3.135
dl'l T 1 + (hl)Zn ( )
Changing the parameterization to arc length A, one gets
z1
Az1) = / V14 (W(s))? dson vy,
0
z1
Mzy) = / V14 (h(s))2 dson~T,
r
implying
L M) =TT W)
dxl
and therefore, (3.135) implies
i_ii_ ’ 2—%ii_ rr N2\ 5 o+
TVt = —1T =F (1+ (K (s))?) 5 ==+ (14 (W'(s)*) * h'n*,
dA dx
which by the definition of the curvature, i.e. (2.1), yields
_3
k=% (1+(h(s)?) *n".
Taking the divergence of (3.134), it follows that
_3
Ven®E =5 (14 (1(s)?) 2 b = -k (3.136)
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3. Rayleigh-Bénard Convection

Combining (3.133) and (3.136), and using that 9 is bounded by (3.8)

/ + w‘ / |19|+/ -n‘ﬁ\—&—/ WV - nt| < C + 6T | oe.
Q? Y +1- 6 Qs
(3.137)

By (3.129), (3.132) and (3.137) we obtain
1 11
Nu < € (SUTa IR + 5 ) + el (3138)

where we used (fg) < <f2) (g )% due to Young’s inequality. By Lemma 31 and
Lemma 33, one gets

Ca IVull3) < (IVull3) + (2 + k)u?)y-uy+ S NuRa,  (3.139)

where

1 if |k| < 2«
Co =14 o if x| <20+

1 mi
Wi rTe min {1, y/a}
and combining (3.138), (3.139) and Lemma (29) it holds

Nu<C <5C§NuRa% + 5_1) + [|% ]l co-

Thus, choosing § = Cq INu~#Ra" ¥ yields

1 1 1 1
Nu < CANu?Rad + ||k]lc < eNu+ e 'C2Ra? + [|k]0o,  (3.140)

for any € > 0, where in the last estimate we used Young’s inequality. Choosing
¢ sufficiently small, one can compensate the Nu term on the right-hand side of
(3.140), concluding the proof. O

3.7.3 Background Field Method Application
We define the background profile by

1 _

W for 14h(z)—6<as<1+h(z1)
n(z) = % for h(z1) +0 < 29 <1+ h(z1) — 6

2 _

W for h(z1) < 29 < h(x1)+6

for any § < % as illustrated in Figure 3.6.
Also, note that

0 1fh(l‘1)+5§ $2§1—|—h($1)—(5
Vn=< 1[N/
25 (_1 else
= 1+ ()2 _ : (3.141)
—_— N else
20
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3.7. System With Identical Boundaries

1) 1)
= =
1__
1 77(51?175172)
i
: ' 2
h(l’l) 1 + h(xl)

Figure 3.6: Illustration of the background field profile. The picture corresponds
to a vertical slice of Q at x.

for almost every x € €2, implying
IVilloe S 677

~

and, because of its support,

T ph(z)+6 1+h(z1)
IVl = [ [ VaP dua [ |VnP dea doy S [Vl S5
0 Jh(z1) 1

+h($1)—5
(3.142)
Additionally, define
s=v—n. (3.143)
Then ¢ fulfills
GtHu-Vnp+u-Ve—An—A¢=0 in Q, (3.144)
¢=0 on~y U~T. (3.145)

Testing (3.144) with ¢ and integrating by parts, one finds

1d
0:**||€||§+/CU‘VTIJr/chcf/gAn*/gAg
2 dt o ; A i

1d
- f—||c||§+/<u-w+/ Ve Vi + Ve,
2dt 0 0

where in the second identity the boundary terms vanish because of (3.145).
Additionally, we used

2/§u~V§:/u~V(§2):/ u~n§27/<2V~u:O,
Q Q a0 Q

85



3. Rayleigh-Bénard Convection

which is due to (3.4) and (3.2). Taking the long-time average, we obtain
(Vs Vi) = —{su- Vn) — (||Vs]3) (3.146)

since [|¢||3 is uniformly bounded in time as both ||J||3 and ||n|3 are uniformly
bounded in time. Because of

IV9lI3 = V(s + 5 = IVs3 +2 /Q Ve Vi + [[Vall3

Lemma (29) yields
= (IIV9l3) = (IV<l3) + 2(Vs - Vi) + ([ Vll3)
= (IVnl3) = 2{cu - Vi) = (| Vs][3), (3.147)
where in the last identity we used (3.146).
Lemma 38
Let Q be CYY with h™ =1+ h~ and w € H*(Q). Then for any a,e > 0 it holds
_ 1
2[(cu - V)| < 6°(ag) " C(|0zull3) + ac(|O5ul3) + 5{1Vsll),

where C' = 4(1 + ||W || 0 )?.

Remark 39
This estimate is the crucial one corresponding to Lemma 15. In fact, the proof
uses a similar argument as in the direct method.

Proof
By (3.141) it holds

111)-'1-5
/cu Vn—é/ / V1+ ()2u-n~
h

(z1)
1+h(z1)
/ / (h’) su-n~ (3.148)
"3 1+h(z1)—5

andasu-n~ =0on vy U~yT

|u-n~|(z) = u-n_|,yf—|—/ O2(u-n") dz
h(z1)
Sllaz(wn)lpom)/h( : Oo(u-n") dz
— 819 1)l e ey (3.149)

for zo € (h(x1),h(z1) + 0), where Q(z1) = {(y1,92) € Q| y1 = z1}. The
equivalent estimate yields

- I(w) < 302017 g (3150)
for 2 € (1 + h(x1) — 0,1 + h(x1)). Similarly as ¢[,-yy+ =0

[sl(x) < 8219261l 2 0y (3.151)
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3.7. System With Identical Boundaries

for xo € (h(z1),h(z1) +6) U (14 h(z1) — 0,1+ h(z1)). In order to get a further
Poincaré type estimate note that since

14+h(z1)
/ Oz2(u-n") =ngu-n" |+ +ngu-n"|,- =0.
h(z1)

Therefore for every 0 < x; < T there exists T2 € (h(z1),1+ h(z2)) with d2(u -
n~)(x1,%2) = 0. Applying the fundamental theorem of calculus again it holds

(Da(u-n7))%(x) < ‘(ag(u n7))(xy, 20) + [wz Do(02(u-n"))? dz

1+h(x1)

§2/ |0o(u-n")02(u-n")| dz
h(z1)

< 2\\32U||L2(Q;)||3§U||L2(Q;) (3.152)

for any x € ), where in the last estimate we used Holder’s inequality, that n is
constant in zs-direction and |n| = 1. Combining (3.148), (3.149), (3.150) and
(3.151)

2

r
/QW’VW‘ < 255/0 102w - ™) || oo (@) VSl L2y V1 + (R7)? da

T
3 1 1
<@} [ 100l g 080l g IV 2 ) VT (WP i,
0 ' ‘ (3.153)

where in the second estimate we used (3.152). Applying Young’s inequality
twice (3.153) can be bounded by

/Cu-Vn’
Q

r
3 1 3 _
<2680 [ 0l 030l ey o+ 3~ VS

2

3 C 1.8 1.8
< w83 |Oull3 + 6% | 93ul3 + 6% | V|3,

for any p,v > 0 where C' = 4(1 + ||I/||os)?. Finally choosing y = 202 and
v = 2(ag)~14% and taking the long-time average yields the claim. O

Proof of Theorem 13
First note that since || + k|| < 1 and a > 0 one has

la ot = ess infa < ess>ié1f(o¢ + k) < |lat+ k|l <C < 1.
and since k(z1,h(x1)) = —k(z1,1 + h(x1)) and a > 0

[|%]|cc = ess supk < ess sup(a + k) < [|a+ £l <C < 1. (3.154)
k>0 x>0
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3. Rayleigh-Bénard Convection

Additionally, we define
= (||[Vwl|3) + 2Pr™ ((a + &)u - (- V)u)y-uyt + 2((a + K)u - VD)t
—2Ra((a + K)urn1),- — Ra(wdiv),
= (|Vull3) + {(2a + K)uZ),-y+ — (1 +maxh — min h)NuRa,
Q = MRa® + (|[Vnl3) + ([[V<ll3) + 2(cu - V)
+ bRa™ (|| Vul3) + bRa™{(2a + k)ul),- s+ — DRa™ ' B+ aA,
for any 0 < M,a < oo and 0 < b < (1 4+ maxh — minh)~!. First notice that by
the definitions of Q and B it follows that
MRa? + 2(||Vn|3) —
= (IVnl3) = (IV<l3) = 2{cu - Vi) — aA = b(1 + max h — min h)Nu
= (IVnl3) = (IVs||3) = 2(cu - V1)) — b(1 + max h — min h)Nu, (3.155)
where in the last identity we used that A = 0 due to Lemma 34. Using (3.147)
we can substitute the first three terms of the right-hand side of (3.155) and find
(1 = b(1 +maxh — minh))Nu
= (IVnll3) — 2(su - Vi) — (|[Vs]|3) = b(1 + max h — min h)Nu
= MRa’® +2(|Vn|l3) —
< MRa?>+ 0671 - Q, (3.156)
where in the last inequality we used (3.142). The strategy now is as follows.
As b < (1 +maxh —minh)~! if Q > 0 we will get bounds for Nu. Optimizing
M, a,d > 0 with respect to the best Ra exponent either if « and x are small or
in general will yield the results.
By Lemma 33 B < 0 and therefore plugging in .4 one gets
Q = MRa® + (||Vn]3) + ([V<l3) +2(cu - Vi)
+ bRa™ (|| Vull3) + bRa™((2a + k)u2), - uy+ — bBRa™' B+ ad
> MRa® + ([Vnll3) + ([ V<]3) + 2(cu - Vi)
+ bRa™ (|| Vull3) + bRa™ " ((2a + &)u2) -yt + a([|[Vw]|3)
+2aPr H{(a+ k)u- (u- V)u), -y + 2a{(e + K)u - Vp)y- i+
—2aRa((a + K)urny),- — aRa{wd ) (3.157)
Next we estimate the last four terms on the right-hand side of (3.157) individ-

ually, but before doing so we remark that by Lemma 2, Lemma 34 and Lemma
33

3
Jullwra S flwlla + (1 + IIHlléo) lullz < luollwa + [la™ [lcRa,  (3.158)

where we used that ||#| s, || + lloo < 1 and |Ja | > 1.

o By Holder’s inequality and trace theorem

LU7+(a+n)u- (- V)u| < Pr
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3.7. System With Identical Boundaries

which can be bounded using Hélder’s inequality and Sobolev embedding
by

[u*Vulwia < [[u*Vaulr + [[uVuVaulr + [[u* Vil
< lulldllwllm + lullal Vullal[ Veallz + flal3llw] w2

< Nl Nl (3.160)

Due to (3.159), (3.160) and the assumption ||a + £|lcc < 1, Young’s in-
equality yields

oPr—!

[yuw (a+k)u- (u-V)u

S Pra+ filloo lull e llull3n
S ellulldr + e Pr?ul 3
S ellulif + e Pr2(fluollwa + lla ! [looRa)?[fuf 3 (3.161)

for any £ > 0, where we used (3.158) in the last estimate.

e The periodicity on the boundary, Holder’s inequality and trace theorem
imply

/wuw(a + K)u - Vp‘ = /quﬁ pr-V((a + &)ur)

S lle+ sllpee IpVaullwr + [loc+ slwres lpullwr

S (la+ sllsollullzz + lla+ &llwre [[wl ) llpll
(3.162)
The pressure bound, i.e. Lemma 35 and Young’s inequality yield

/ (a+K)u- Vp‘
YUyt

S (la+ Allool[ull g2 + [la+ Kllwoel[ullz) [p]
S (la+ #lloo [[ull 2 + [la + llwr.oe |ull 1)

1
L (Rl + 6+ ) el

Tl + Aol o +Ra}

< (e llo+ K12 ullZre + (1 + e llor+ K[l ~Ra
+ (Pr*(lluollwra + lla™H|ooRa)? + [l + &l[F. + 1) ull 7,
(3.163)
where we also used ||kl < 1 due to (3.154) and (3.158).

e Holder’s inequality and trace theorem as well as Young’s inequality yield

[y (o + K)urnq

2Ra,

S llo+ kllooRallull i S llo + sl|2Ra® + [|ul 71
(3.164)
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3. Rayleigh-Bénard Convection

e Note that by (3.143), Holder’s and Young’s inequality
|aRa{wd¥)| = |aRa{wd: (s + 1))
< [(aRallw[l2([[Vsll2 + [[Vnl[2))]

1
< [{®Ra®[[w[3)] + 7 [((1Vslla + [Vnll2)*)]
1 1
< a”Ra’(|lwl3) + 5 (IVsI3) + (I Vnl)-  (3.165)
Taking the long-time average of (3.161), (3.163), and (3.164), and plugging
the results, as well as (3.165) into (3.157), one finds
Q > MRa’ + ([|Vn]3) + ([V<3) + 2(cu - Vi)
+ bRa™ (|| Vul|3) + bRa™ ' ((2a + &)u2) -+ + a{[|[Vw]|3)
+ 2aPr (o + K)u - (u - V)u) -yt + 2a{(a + K)u - Vp)y-uq+
—2aRa((a + K)urn1),- — aRa(wdr )
1 1
> MRa’ + 2 (| Vnl3) + 5 (IVslI3) + 2(cu - V)

+bRa”™ ([ Vull3) + bRa™ ((2a + £)ud), - uy+ + af[[Ve3)
—aC(e + [la+ w2 ) (lullF) — aC1 +e7) o+ kllf ~Ra?

—aC <(1 +e71)

Al

— a®Ra’(|lwll3)

_ 2
l[uollfyr.a + [lo™ |12 Ra
Pr?

+ l + 5[[Fe + 1)

Choosing M = aCl|a + k||%1.~, using Lemma 38 and 1 (|[Vn||3) > 0

1 1
Q> MRa” + {[|Vn3) + 5 (IVsl3) + 2(su - V)
+bRa™ (|| Vul3) + bRa™ (20 + k)uZ) - uy+ + al]|Vw]|3)
—aCle+ ||a+ H||go)(||u||§{2> — aé’(l + 671)||0z + KH%/VI,ooRaz

—aC ((1 +eh)
(lullZ)
— a’Ra*(||w]3)
> bRa™ (| Vull2) + BRa~" (20 + £)u2)., e — a®Ra%(|Jw]2)

—aC(e + lla+ w3 (lullf2) + al|Vwl]|3) — 6°(ae) ™ C(||0zull3)
2 ~1)|2 Ra2
—aC ((1+51)||U0||W < ] [&Ra

Pr
(lullZn)- (3.166)

Next by Lemma 2 and (3.154)

(lullZr=) < dlwlif) + 612 lwll3) + 1+ lsllwse + sl13)* ()
S AIVwl3) + (1 + 18l ) {lul )

[uollfra + lo” |3 Ra®
Pr?

+ [l + &|[Fre + 1)

+ le+ K2 + 1)
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and by Lemma 31

blla” 15

3 b
L (ulif) < SVl + o2+ )iy

2Ra

which applied to (3.166) yields

5 b
Q> (| Vull) + g=((2a + K)ud)- Uy — a®Ra?(w]3)

+a (1= Cae+lla+sl3)) (IVwl3) = 8°(ae) " C(102ul3)

blla & Cpy luollfas + la |2 Ra®
A= T _ sol 1 W x©
+ { e aCl (1+¢e77) P2

(4 ) (lalBm + I lye) + 1)} (lulZ).

Choosing € = ﬁ one has for ||a + x[|2, < ﬁ

5b _ b
0> ( ~Ca 166) (IVul2) + = (20 + /p2),- s — ?Ra2(w]2)

% 2Ra
[0 (ol + o e
8Ra Pr
Tl + Il + 1)} allZe). (3.167)

Next, we distinguish between the conditions on x. Note though that all the
estimates follow a similar approach.
o Let || < au.

Then by Lemma (1)

Jwll2 = [ Vull2 —/

~

<IVulp+ [ 2atwu,

YUyt

ki <[Vl + [ e

YUyt

Uyt

which after taking the long-time average implies for (3.167)

b b
> 156 2  an.2 2
0> (g = Ca™'o®) (IVulR) + 5z — a*Ra? )l

n blla "I} —uC JuollZy 14 + [lo~ ]2 Ra®
8Ra Pr?

T ol + 8l + 1)} (lalZn). (3.168)

As b has to fulfill b < (1 + maxh — minh)~! in order for the second
round bracket on the right-hand side of (3.168) to be non-negative we set
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3. Rayleigh-Bénard Convection

a = apRa™ 2, which yields
b s b -
Q> (SRa —~ Cag 1Ra266) (IVull3) + <2 - a%) Ra™(Jlwl)

(IUOH%VM + [l [|2,Ra®
Pr?

b —1|—1
+ {|o¢ 3 lee _ agRa"2C

+lallpn e+ Dy + 1) |Ra )
3 p
and the assumption Pr > |a~! ||§oRa% yields

b 1 a b -
0> (SRa — Cag 1Ra256> (IVull3) + (2 - a%) Ra™ (||wl13)

b
+ |5 = a0 (JuolBs o I2Ra™2 41

ol + 16y +1, C1y—lp.—
= il - llo™ oo ) oI Ra™ (llullz)

and since Ra™2 < la=td <1

b _ 3 b _
Q> (- —Cay'Ra26® ) (|Vuld) + ( = — a2 ) Ra™ (||w|3)
SRa 2

8
—1jj—-1p,—1
oM R ([l 7 )
Without loss of generality, we can assume that C' > 1 such that setting

b
8C (Iluollfyra + lledllfyrc + MGy + 1)

b
n { — aoC (o oa + lalZyre + [6lldr + 1)}

ag =

yields

b _ 3
0> (s - Cag'Rata® ) (I 9ul).

. 1p 36 -
Letting § solve ﬁ = Cag 'Ra249, i.e.

(0P
5—(80) Ra™ 12,

it holds @ > 0 and therefore, setting b = m,(&l%) results
in

Nu < 2(1 = b(1 + max h — min h))Nu
< 2MRa?>+C6~ 1 —20
1 5
S afle+ H||%V1,ooRa2 +ay °b”5Ra™
5
2

_1
< aolla + |31~ Ra? + ap *b” S Ral

1 1 2 5
S lla =+ wlfn~Ra? + (ol + ol + ]y +1) Rats
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3.7. System With Identical Boundaries

o Let |k| <2a+

1
44/14(h')? va.
Taking the long-time average of Lemma 2, using ||&|loc < 1,
(lwl3) < (lull),

which for (3.167) yields

5b —1¢6 2
> (2
0> (g~ Ca®) Ivull)

+[“W‘”%i_ﬂfRaQ_aC<luoam4+|a;waRa2

8Ra Pr?

+nﬂ%m+w%w®+ﬁkwm»

and by Lemma 31

Q>>(E”—ckriﬁ)<|Vuﬁ>

8Ra
Moz oo f Nuolus + o~ 2 Ra?
= Hoeo R —aC > oo

+ [ SRa a”Ra a P2
# allyn o + Il + 1) |l (3.169)

— As before setting a = agRa™ 2, the assumptions Ra~" < la= 1oL,
5
Pr> [o~}|&Rai > 1 yield

50 _ 3
0> (g~ Cuy"Rae® ) (|7l

110, _q,_
+ gl - a3

_1
—aglla™ [l € (luollfyyr.a + llalfirce + [l +1)

([lullz)
and, assuming without loss of generality C' > 1, for

1
2(1 4+ maxh — min h)
_1
blla—t|loc?

160 ([[uollfyra + lallf e + ],

b:

agp

8
+
=




3. Rayleigh-Bénard Convection

it holds @ > 0 and therefore (3.156) yields

Nu < 2MRa? +C6 ' — 20
< alla+ sl Ra? + ap b~ Ras
< aplla + k|3 ~Ra? +ay b~ ERa:

< lla Mt o+ 5|21 Rat

+ (Iollfps + ol + 16111 +1) o~ [ ERaTs.

— Setting instead a = aoRa_171 and using the assumption Pr > Ra% >1
in (3.169) yields

5 _ u
0> (g~ Cug "Ra¥ o) (9ul)
—1y-1
e L R

_4
- CL()Ra 7C (HUOH%/VL“ + ||aH%/V1‘oo + ||HH?/V1,0<> + 1)
el3)
and choosing

la= ISt

24C (Jluollfyra + o HZ + lallfe + IKlI% 0~ +1)

ao
one gets

50 - u
0> (3~ Cag"Ra¥ 8 ) (19ul).

1
which after setting 6 = (5ggb) SRa 7 implies @ > 0. Therefore using
(3.156) results in

Nu < 2MRa? 4+ Cé~! — 20
< alla + K%, Ra% 4+ Co !
_1
< (aoller+ wlyee +ag *) Ra?
1
S (la 12 le + £l + o™ &

3
7

1 1 1 2
+ o1& (Huollgyr.s + lalle + Il +1) )Ra
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Chapter 4

Thermally Non-Diffusive
System

4.1 The Model

In the following, we study the system

us +u-Vu+ Vp — Au = ey in Q (4.1)
Y+u-Vi=0 in (4.2)

V-u=0 in Q (4.3)

n-u=0 on 0N (4.4)

7 -(Dun+au)=0 on 90 (4.5)
(u,)(+,0) = (ug, Fo) in Q, (4.6)

as motivated in Section 1.3. The system is illustrated in Figure 4.1.

The subsequent results and analysis are contained in Bleitner, Carlson, and
Nobili 2023. Although some proofs follow a similar strategy as in Chapter 3, we
prove them here for the convenience of the reader and the sake of comprehen-
siveness.

4.2 Main Results

The main focus in the study of this system is devoted to regularity results as
well as the long-time asymptotics of solutions. The findings for the former are
summarized in the following system.

Theorem 40 (Regularity)
Let Q be a bounded C*' domain, ug € H?(), ¥9 € L*(Q) and 0 < «a €
Wte(9Q). Then

u € L ((0,00); H*(Q)) N L7 ((0,00); WH9(€))
up € L ((0,00); L*(Q)) N L? ((0,00); H(Q))

p € L= ((0,00); H(Q))

¥ € L™ ((0,00); L*(Q))



4. Thermally Non-Diffusive System

ur +u-Vu+ Vp — vAu = dey
V-u=0

€2

[

Figure 4.1: Illustration of the thermally non-diffusive system.

T-(Dun—f—au):o

for any 2 < q < 0.
If additionally Q is a simply connected C>' domain, 99 € WH4(Q2) for some
g€ 2N and 0 < o € W2>(9Q). Then

2r
—2

uwe L*((0,T); H*(Q)) N L~
¥ € L™ ((0,7); Wh())

((O’ T)? w2r (Q)>

foranyT >0,2<r<ooandl<q<4q.

These results are proven consecutively in Section 4.3.
Theorem 40 improves the regularity results of Hu et al. 2018 given by

we L™ ((0,7); H' () N L* ((0,T); H*())

for constant o > 0 in multiple ways. The approach used here allows spatially
varying slip coefficients a. The results given in Theorem 40 show higher regu-
larity and the bounds hold uniform in time up to moderate order. In particular,
these uniform in time estimates allow us to infer the long-time behavior of so-
lutions as given in the following Theorem.

Theorem 41 (Convergence)
Let Q be C*1, ug € H*(Q), ¥ € L4(Q) and 0 < a € WH*(9Q). Then for any
1<g< >
[u(®)llwra — 0
lwe@)l2 =0
1(Vp = dea) )|z — 0

fort — oco.

Theorem 41 is proven in Section 4.4.

The long-time behavior described in the Theorem shows convergence to the
hydrostatic equilibrium, where the buoyancy is balanced by the pressure gra-
dient and the velocity field vanishes. This behavior is not surprising, as over
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4.2. Main Results

Figure 4.2: Tllustration of a hydrostatic equilibrium that is not uniformly strat-
ified.

time the diffusion operator is expected to dissipate fluctuations in the velocity
field, while the Navier-slip boundary conditions create drag along the bound-
ary, slowing the velocity field down. Due to the conservation of the temperature
field, the pressure gradient has to balance the buoyancy forces.

Note that no specific profile for the hydrostatic equilibrium is given, and
it could potentially vary in the horizontal direction. Such an z;-dependent
hydrostatic equilibrium is sketched in Figure 4.2.

Finally, we want to remark that linear profiles for temperature field play an
important role in this system. In fact, subtracting the hydrostatic equilibrium
given by

1
Uhe = 07 19}16 = B:L.Q + v Phe = §ﬂl’% + Y2 + 67
where 8 > 0 and 7,0 € R, from the solution, i.e. defining
. 5 . 1
U= 1u, 19:19—5$2—% p:p_ilgx%_rny_év

the new variables satisfy

Gy + - Vi + Vp— Al = ey in Q (4.7)
Dy 41 - VI = —Biiy in Q (4.8)

V-a=0 in Q (4.9)

n-4=0 on 0f) (4.10)
T-(Din+at)=0 on 0 (4.11)

(11, )(-,0) = (ug, 9o — By — 7) in Q, (4.12)

When testing (4.7) with 8i and (4.8) with 9 and adding both results together
the right-hand sides cancel. This observation will be used in parts of the proof
of Theorem 40. Additionally, Doering et al. 2018 show that for 8 < 0 such a
solution in a spatially periodic setting is unstable. For g > 0 and the, there
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4. Thermally Non-Diffusive System

imposed, free slip boundary conditions such a linear profile is linearly stable in
H? x L? under additional assumptions on the domain or boundary conditions
on the temperature field.

For reference, Theorem 41 shows the nonlinear stability of such a hydrostatic
equilibrium in the class Whe x H~1,

4.3 Regularity Estimates

Due to the absence of thermal diffusion, no gain in regularity for the scalar
field can be expected. Note though that all L?-norms of ¢ are conserved if u is
sufficiently smooth, i.e. for any 1 < ¢ < oo

19l = 19ollq (4.13)

for all ¢t > 0 if ¥y € LI(2). In fact for ¢ € 2N, the cases that will be used in the
following analysis, testing (4.2) with 99! shows

%||19||g:—q/19q_1u~V19:—/u-Vﬁq:—/ u-n19q—|—/19qV~u:O7
Q Q o9 Q

which implies (4.13) for these choices of q.
Having that the L?-norm of 9 is conserved, one can directly prove bounds
for the energy of the fluid as given in the following Lemma.

Lemma 42 (Energy Bound)
Let Q be CHY, ug, 99 € L2(Q) and 0 < a € L>(9N). Then

u € L™ ((0,00); L*(2))
and it holds
[ull2 = lluoll2 + [9oll2,

where the implicit constant depends on o and €.

Proof
Testing (4.1) with « one finds

1d
f—||uH§:—/u~(u~V)u—/u-Vp+/u-Au+/19u2 (4.14)
2dt Q ) Q Q

The first term on the right-hand side of (4.14) vanishes due to (4.3) and (4.4)

as
2/u~(u~V)u:/u~V|u|2:7/|u|2V~u+/ lulPn-u=0 (4.15)
Q Q Q 19)

and similarly for the second term on the right-hand side of (4.14)

/u~Vp:/ u~np7/pV~u:0. (4.16)
Q a0 Q
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4.3. Regularity Estimates

By Lemma 5 and Lemma 6 we find
- / w- Au = 2|Dul3 + 2 / a2 2 (14 o o) M ul3. (417)
Q oN

Combining (4.14), (4.15), (4.16), (4.17) and using Hélder’s and Young’s inequal-
ity there exists a constant C' > 0 such that

1d IR
5 g 1ll3 + A+ lla™ o) ™ lull3
< [[ll2flull2

C _ _ _ _
< S+ lla™ o) THlullz + 2O) T A+ llo™ o) 9113
and therefore
d _ _ _
Zlullz + O+ o™ o) Hiuls S (1 + lla floo) 9013, (4.18)
where we used (4.13), which after applying Gronwall’s inequality yields

_C -1 . -1 _
lull3 < emCOFHIe ) g 13+ (1 + [la™ [loo) 19013

Lemma 43
Let Q be C11, ug, 99 € L2(Q) and 0 < o € L*°(0R). Then

u € L*((0,00); H'(Q))

and
oo
/O la(s)Bpr ds S Tuoll? + 9013 + 1,

where the implicit constant depends on o and €.

Proof
Defining

for any 3,7, € R with 8 > 0, (@, p, V) solves (4.7)—(4.12). Testing (4.7) with @
and (4.8) with 9 and adding them together

o (3 1008) =~ [ w5 [ w5 [

+5/919u2f/019u.v79f/9795u2 (4.19)
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4. Thermally Non-Diffusive System

Note that the ﬂz%g terms, originating from the right-hand sides of (4.7) and
(4.8), cancel. Similar to (4.15) and (4.16) the first and second term on the
right-hand side of (4.19) vanish, as does the fifth term since

2/ﬁa-v§=/a-vu§2)=/ ﬁ-m§2—/1§2V~ﬁ:O,
Q Q o0 Q
implying

1d

-2 7112 9112\ — N T NP 42
57 (Bl +1913) =5 [ - a0 = —2pypalg —25 | ai2,

where in the last identity we used Lemma 5. It follows that

DN | =
Q.‘Q‘

S (Bl + 19 = Baz = 113) +280Dul +28 | o2

1d . 5 N .
= 57 (BlGIE + 191) + 281Dl +25 | a2

=0 (4.20)

and integrating (4.20) in time

t
Blu(®)|3 + [9(t) — Ba — 1[2 + 48 / (nDu(s)n% n /a ) au3<s>) ds
— Blluoll2 + 90 — Bz — A1

As by Lemma 6 there exists a constant C' > 0 depending only on « and €2 such
that

Cllulfs < IDulf + | o
oN
one finds

t
cp / ()% ds < Blluol2 + I8 — Bz — 713
0
< Blloll? + [190]12 + B+ 1 (4.21)

and since the right-hand side of (4.21) is independent of time, this bound holds
uniform in time, concluding the regularity result and choosing S =1 and v =0
yields the bound. O

Next we prove L ((0,00); W1¢(€2)) bounds for u. The proof follows the
same strategy as the one of Lemma 17.

Analogous to before we first derive a vorticity formulation. The vorticity,
defined by w = V+ -4 = —0yu; + O1us fulfills

wi+u-Vw— Aw = 019 in Q (4.22)
w==2(a+K)u, on ON). (4.23)

(4.22) follows immediately when applying V1 to (4.1) and using
VE ((u-V)u) =u-Vw +wV -u
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4.3. Regularity Estimates

and (4.3). In order to prove the boundary condition (4.23), note that by (4.5)
and (2.8)

—2(a+kK)ur =27 -Dun—2n-(7-V)u
= (1jn; — n;7;)0u;
= (T1n2 — n172)02u1 + (Ton1 — naT1)O1u2
= —Ou1 + Orug
=w
where in the second to last estimate we used 7 = n' and |n| = 1.

Lemma 44
Let Q be C1', 2 < § € 2N, ug € Wl’q(Q), Yy € Lq(Q) and 0 < a € L>(09).
Then

u € L™ ((0,00); WH(Q))
forany 1 <q<q and
[ullwra S lullwra + ([9ollg:

where the implicit constant depends only on q, ¢, a and Q.

Proof
Fix some arbitrary T > 0, define

A =2[|(a + K)ur || oo (0,11 x09)

and let @F solve

Of +u- Vot — Aot =910 in Q
ot = £A on 90
&t (-, 0) = %|wo| in Q.

Then @*, defined by

ot =w— G)i,
solves
Of +u-Vot - AT =0 in Q
oF = =2(a+kK)u, FA on 0N
@E(-,0) = wo F |wol in .

The initial and boundary values of @™ and @~ non-positive, respectively non-
negative the maximum principle implies @ < 0 and @~ > 0, and therefore, w
can be bounded by

] < 1% + [ . (4.24)
We define

ot =0t FA (4.25)
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in order to remove the boundary condition. The following analysis will hold the
same way for &7 as it does for @™. Therefore, we focus on &~ and omit the ~
to simplify the notation. Note that @ solves

w+u-Vo— AL =00 in Q (4.26)
w=0 on 0N (4.27)
&(,0) = —|wo| +A  in Q. (4.28)
Testing (4.26) with @7~ yields
ld, . q ~g—1 N AG—1 A ~ ~G—1
——ollf=—[ & u-Vo+ [ A0+ | @97700 (4.29)
qadt ) Q 0

and, after integration by parts, the first term on the right-hand side of (4.29)
vanishes as

q/aﬂ—lu-vwz/u-V(a@)z—/w'?V~u+/ Oin-u=0. (4.30)
Q Q Q o0

Note that for the second term on the right-hand side of (4.29), integration by
parts using (4.27) yields

G—

T V|2 (4.31)

/ SIIAG = —(G—1) / STV = —(G - 1)@
Q Q

Again using integration by parts and (4.27) the last term on the right-hand side
can be written as

/ Qo = —(G — 1)/ Y0120y,
Q Q
which, after applying Holder’s and Young’s inequality, yields

/ S99 < (4 1)]|0" T Vo o0 202
Q

G—

G—1,. 4 j—1
< =o' F Vol + L= 10 " 0|3 (4.32)

Combining (4.29), (4.30), (4.31) and (4.32) we obtain
1d g—

- qg—1, . a2

G 1, a=2_ . .
=l + = le® Vol < 5~ loT 93
G—1, .4
= o7 g, 19%] g
g—1 .32
e
and using
. G— 2 Fi 2 4 g
\|@qa2va)||§:/§2(w 20 :/Q(gv(m)) = SIvEhHI;
one gets
td,a, 20-1) o .1 q

N qg—1 . 4=
IV@2)IIz < <~ llellg “o13.
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4.3. Regularity Estimates

Since @ = 0 on 02, Poincaré’s inequality yields

A ~ 4
= @23 S IV(@2)l3

ESIESH

el

and therefore, there exists a constant C' > 0 such that

1 . .5.0d 9 q—l ; 1d q—1 ;
Sl 1l + C ==l = *dtH oli+cC p [l
q G
< Tllwllg~ ?[19113- (4.33)
Dividing (4.33) by ||w||g implies
d . . Gg—1 .
Z1lE + C==l@lF < (@ = DIYIZ = (@ — Dldoll3, (4.34)

where in the last identity we used (4.13). Applying Gronwall’s inequality to
(4.34) yields

oG 117 < llwoll + C*190ll13 (4.35)

for some constant C' > 0 only depending on €2 and §. Next, we estimate A. One
has

A = 2|[(a + K)ur | Lo ([0, 1) x09)
S Ml + Bl ||l Lo (0,72 (09))
S llull Lo 0,7):2 ()5 (4.36)

where the $ hides the additional dependency of the implicit constant on |l +
K|loo- For details the reader is refered to Satz 7.1.26 in Emmrich 2004, respec-
tively Exercise 4.1 in Troltzsch 2009. Using Gagliardo-Nirenberg interpolation
and Young’s inequality one can further estimate (4.36) by

A S lullseee
G—2

Il 2 ol FE T + e

AN

A

_4q
eIVl opg + (1+277) fullzz iz

QA

_aq
el peyg + (142 +77) ullen (4.37)

for any € > 0, where L, L = L* ((0,T); L"(Q)) and in the last estimate we
used Lemma 3. Combining (4.24), (4.25), (4.35) and (4.37) yields

HWHLgO;Lg < ||&7||L;1>0;Lg + H‘DJFHL;?O;Lg
/S ”@Jr”Lfo;Lg' + ||@7||LgO;Lg +A
< g llg + lleg llg + 19ollg + A
S llwollg + [19ollg + A
S llwollg + [1Pollg + A
< llwollg + [[Pollg + A

_q_
% lwollg + 190llg + ellwll e g + (14 +277) Julloe e
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4. Thermally Non-Diffusive System
and choosing ¢ sufficiently small, one can compensate the second term on the
right-hand side implying

lwllpoera < llwollg + IPollg + llullLge;zz -
Note that by Lemma 3, the full Sobolev norm of « is bounded by

||U||L§°7W;‘7 é HWHL;?O;LQ + HUHL?;LE

S llwollg + 190llg + llullLoe;r2 -
Then, using Holder’s inequality and the energy bound, i.e. Lemma 42, one finds
[ull pooswra S 1wl oo sra S llwollg + [1P0llg + lluollz + [9oll2
S lluollwra + [1Yollg,

where in the last estimate we additionally used the definition of the vorticity.
Finally, since the right-hand side is independent of T, it holds uniform in time,
proving the claim. O

Next, we want to derive bounds for the pressure. Instead of first deriving a
Poisson equation and boundary conditions for the pressure as in Section 2.2 of
Bleitner, Carlson, and Nobili 2023 and Lemma 35, here we use the similar but
more direct approach of Lemma 20.

Lemma 45 (Pressure Bound)
Let Q be C*1, ug € WHA(Q), 99 € LA(Q) and 0 < a € WH(99Q). Then

p € L>((0,00); H(Q)).

Proof
Testing (4.1) with Vp yields

IIVpH%:—/Vp-ut—/Vp-(u~V)u+/Vp-Au+/82pﬁ. (4.38)
Q Q Q Q

The first term on the right-hand side of (4.38) vanishes under partial integration

since
/Vp~ut:/ pn~utf/pv~ut:0, (4.39)
Q o0 Q

where in the last identity we used n - u; = 0 and V - u; = 0, which both follow
from taking the time derivative of (4.4) and (4.3), respectively.
For the third term on the right-hand side of (4.38), (2.11) and integration

by parts yield
/Vp'Au:/Vlew
Q Q

= Vp~an7/VJ‘-pr
aQ Q

The term in the bulk vanishes since V+ - Vp = 0 and, using 7 = n* and (4.23),
the boundary term can be written as

Vp-ntw=—2(a+r)Vp-Tu, = —2(a + K)u - Vp.
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4.3. Regularity Estimates

Combining these identities implies

/Vp-Au:—Q/ (a+ Kk)u- Vp,
Q 0

which, together with (4.38) and (4.39), yields

IVpl2 = — / Vp- (u-V)u -2 / (ot R)u-Vp+ / dupd.  (4.40)
Q o0 Q

Note that as p is only defined up to a constant, we can choose it such that p has
a vanishing average and Poincaré’s inequality holds. Therefore (4.40) implies

lplz = VI3 + lIplI3
< Vol

:_/QVp-(u-V)u—2/89(a+n)u-Vp+/Qazp?9~ (4.41)

The first and third terms on the right-hand side of (4.41) can be bounded using
Holder’s inequality, and the second one using Lemma 7, implying

lpl7 = 1Vpllallullallwliws + ol lulla + 1912)Vp]2
< (lullfyra + el + 19l12) o]l

and dividing by ||p||g: one has
1Pl £ (L [lullwra)l[ullwra + [[9]]2.
Finally using Lemma 44, (4.13) and Hoélder’s inequality
Pl & (1 + lluollwra + [9olla)(luollwra + [90lla) S 1+ [[uollfyrea + [190ll3,
where we used Young’s inequality in the last estimate. O

The following Lemma corresponds to Lemma 2.5 in Bleitner, Carlson, and
Nobili 2023.

Lemma 46 (Time Derivative Bound)
Let Q be C11, ug € H2(Q), ¥ € L*(Q) and 0 < o € L>®(9N). Then

uy € L ((0,00); L*(2)) N L* ((0,00); H()) .

Proof
Differentiating (4.1), (4.3), (4.4) and (4.5) and plugging in (4.2) yields the system

U + ug - Vu+u - Vug + Vpg — Auy = —u - Vides in Q (4.42

)
Vou =0 inQ  (4.43)
7 (Dut + au) =0 on 002 (4.44)
n-u; =0 on 0. (4.45)
Testing (4.42) with u; one finds
1d
—— w3 :7/ ut~(ut~V)u—/ut~(u'V)ut—/ut'thJr/ ug - Ay
2dt Q Q Q Q
- / (ug - eg)u - V. (4.46)
Q
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4. Thermally Non-Diffusive System

Note that the second and third terms on the right-hand side of (4.46) vanish
due to

2/ut~(u-V)ut:/u-V(ut~ut):/ u-nuf—/ufv-uzo (4.47)
Q Q o9 Q

and

/ut'th:/ ut'npt—/ p:V -uy = 0. (4.48)
Q o0 o

Note that Lemma 5 also applies to u;, implying

—/ut~Aut=2||]D)ut||§+2/ o2 (4.49)
Q o0

covering the fourth term on the right-hand side of (4.46). Combining (4.46),
(4.47), (4.48) and (4.49), and using integration by parts, one gets

ld 2 2 / 2
——|lue|z + 2||Due||3 + 2 ou;
5 il + 21Dl 42 [
:—/ut-(ut-V)u—/(ut-eg)u-Vﬁ
Q Q

—/Qut-(ut-V)u—/m(ut~eg)u-n19+/ﬂ(ut-eg)ﬁV-u
+/Q19u-V(ut-eg)

:—/ut-(ut-V)u—F Yu - V(ug - ea),
Q Q

where in the last identity we used (4.4) and (4.3). Lemma 6 also applies to u,
implying the existence of a constant C' > 0 depending on {2 such that

1d

3ol + Cllulis < [ Jun (- V)l + [ 9w Ve el
Q Q

Using Holder’s and Ladyzhenskaya’s inequality, we obtain

1d
5 g el + Clluelzn S luelZlullm + 19 allwllal Vel
S IVuell2ffuellzllwll mr + 19 ]lallwell2]le] 2
S ell Va3 + e Huel3llullFr + elluel3 + e O3 ull 7
(4.50)

for any € > 0, where in the last estimate we used Young’s inequality. Choosing &
sufficiently small one can compensate the first and third term on the right-hand
side of (4.50), implying

lue3 + Clluellz < Nluell3llullF + 19113 ulF

= lluell3llullzn + 190131l 71, (4.51)

4
dt
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4.3. Regularity Estimates
where we used (4.13). Gronwall’s inequality and Lemma 43 now yield

(18 S o O)13eC 1 g [T o)1
0
< (e (O[3 + (lluol3 + 196]13 + D)[vo7) eCCMolz+IPolz+1)  (4.52)
For smooth solutions, testing (4.1) with u; one has
luell3 < lluellzllw - Vulla + [luell2lAullz + [luel2]9]l2, (4.53)

where again the pressure term vanishes due to (4.43) and (4.45). Dividing (4.53)
by |lut||2 and using Holder’s and Ladyzhenskaya’s inequality, it follows, that

luelle < llullalllVella + llullaz +[1Polla S (1 + l[ulla)ullaz + [19]2,(4.54)

implying ||u:(0)||2 < (14 |luol|lz1)l|uol| g2 +1|P0||2- Therefore the right-hand side
of (4.52) is uniformly bounded in time, proving

uy € L™ ((0,00); L*(9)) .

Plugging (4.54) into (4.51) yields

d
Zllels + ClluellZ < Collullz (4.55)

with a constant Cy > 0 depending on ||ug| gz, |94, @ and Q. Integrating
(4.55) in time results in

t t
@3+ C [ () ds < Co [l ds < Co
0 0

where in the last estimate we used Lemma 43. As the right-hand side is inde-
pendent of ¢, this bound holds uniformly in time, implying

u; € L? ((0,00); H'()) .

We are now able to prove uniform in time H?2-bounds for the velocity.

Lemma 47 (H?-Bounds)
Let Q be C*1, ug € H2(2), ¥9g € LH(Q) and 0 < o € WH>°(9Q). Then

u € L™ ((0,00); H*(Q2)) N L7 ((0,00); WH9(2))
for any 2 < ¢ < 0.

Proof
Using (2.11), taking the L?-norm of (4.1) and applying Hélder’s inequality we
find

IVwlla = [|Aully = [lus +u - Vi + Vp — desl|
< luellz + lullfyrs + 19l + 9] (4.56)
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Combining Lemma 3 with (4.56), we get
lullmz = [[Vell2 + [ull g
S Nuellz + l[ullfyrs + lullan + [Vpll2 + [[9]]2- (4.57)

By Lemma 46, Lemma 45, Lemma 44 and (4.13), the right-hand side of (4.57)
is uniformly bounded in time, implying

u € L ((0,00); H*()) . (4.58)
Additionally, by Gagliardo-Nirenberg interpolation, we obtain
el fyna S Mol el
for 2 < ¢ < oo, which, in view of (4.58) and Lemma 43, yields
u € L7((0,00); WH(Q)) .
O

Lemma 48 (H3-Bounds)
Let Q be C31, ug € H*(Q), 99 € WhHi(Q) for some ¢ € 2N and 0 < a €
W2°(9Q). Then

27

ue L?((0,T); H*(Q)) N L™= ((0,T); W"(2))
¥ e L™ ((0,T); Wh())

foranyT >0,2<r<ooandl<q<4q.

Proof
Testing (4.22) with Aw one has

/thw—i—/ u- VwAw — ||Awl|3 = / 019 Aw. (4.59)
Q Q Q

For the first term on the left-hand side integration by parts yields

/thw:/ wtn~Vw—/th-Vw
Q o0 Q

:—2/ (a—&—/{)ut-Tn-Vw—liHVwH%, (4.60)
where in the last identity we have used that taking the derivative of (3.10) with
respect to time yields wy = —2(a+ k)ug - 7 on 9Q. Combining (4.59) and (4.60),
using the trace theorem, as well as Holder’s and Ladyzhenskaya’s inequality,
one gets

1d

§£||Vw||§+||AwH§:—2/ (a—&—n)ut-Tn-Vw—l—/u-VwAw—/@lﬁAw
o9 Q )

QA

lwill Vool g + [[Awllz][Vewllaffulls + [[VI[l2]| Aw]l2

3 1
S uellallull s + llwll Fsllull e lull g+ 1V 92|l s
Sellullfs + e Hul B + e ullfellull g+ VI3
(4.61)
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for any € > 0 where in the last estimate we used Young’s inequality. By Lemma
3 we obtain

lullfs £ 1Awl3 + llullz,
which combined with (4.61) yields

1d _
5 71 VWIlE + 1AWIE 5 el Awll3 +ellullz + ™ udllZ
+e P lull e ullfn + VI3

and therefore, choosing ¢ sufficiently small in order to compensate for the Aw-
term one has

d
ZIVels + 1Az = fludllz + (1 + [ull ) JulFre + VI3 (4.62)
Next, we focus on V4. )
Taking the gradient of (4.2) and testing it with |V9|9-2V4

1d

i—HWHg:—/ |V19|‘?_2V19~(V19-V)u—/ IVI|T2V0 - (u- V)VY
qdt Q Q

(4.63)
Note that second term on the right-hand side of (4.63) vanishes due to (4.3) and
(4.4) as integration by parts yields
. 1 - 1 ;
/ VO3V - (u- V)V = / V9|72 VIVI|? = = / w- V|V
Q 2 Ja q.Ja

1 -1 _
= i/ u-n|VI|?— j/ VIV -u =0 (4.64)
q Jon q.Ja

Plugging (4.64) into (4.63) and using Holder’s inequality one finds

1d

E%HWHZ: = —/Q IVO|T2V0 - (VY- V)u < VO Vullso.  (4.65)

To estimate the velocity term note that by the logarithmic Sobolev inequality
(see Lemma 2.2 in Doering et al. 2018 for a proof) we obtain

Vullso & (1+ [[Vul[2) log(1 + [V Aul|z)
and therefore, (4.65) and Lemma 3 yield
= I < VO Vull
S IVONE(L+ [ Vul 1) log(1 + [[ulls)
S IV + [lull =) log(1 + | Aw]z + [lull =) (4.66)
Note that

log(1 + [[Aw|l2 + [|ullz2) < log (1 + [[Aw([2)(1 + [|ull#>))
= log(1 + [|Awll2) +log(1 + [|ul[#=)
<log(1 + [[Awll2) + [lull a2,
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which applied to (4.66) yields

1d

5§||WI|§ S IVOEL+ [lull =) log(1 + | Awllz + [|ul =)

< IVONEL+ uliFgz) + IVOIEL + [full =) log(1 + HAW||2)(7 :
4.67

where we additionally applied Young’s inequality. Adding (4.67) to (4.62) im-
plies

d . .
= (IVwli3 +aHIVolE+1) + Aw]3

d . .
= (Iv@l3 +1vo12) + 1 Aw]3

AN

el o + el llullFre + lalFge + V913 + IVONEL + [l F2)
+ [ VIIZL + [lull2) log(1 + [| Awl|2)
S ez + llullzp lullZre + lullde + 1+ [ VOIIL + [lullF2)
+ (VI + [l r2) log(L + | Awl2), (4.68)

where in the last estimate we used Holder’s inequality. Let us further define

1 .
Y(t) = [Vl + 5IIV19IIZ- +1
Z(t) = || Awll3
A(t) = CU+ @)(lueliF + lull g lelZe + ull +1)
B(t) = C(1+ )1 + [[ullz2),

where C'is the implicit constant of (4.68), the bound

d

ﬁY(t) +Z(t) <AQ)Y (t) + Bt)Y (¢) log(1 + Z(t))

holds by (4.68). Note that by Lemma 46 and Lemma 47 one has A € L'(0,T) for
any T > 0. Further Lemma 47 implies B € L?(0,T). Therefore, the logarithmic
Gronwall’s inequality (see Lemma 2.3 in Doering et al. 2018) implies

Y(t) < o0
t
/ Z(s) ds < o0
0
for any 0 <t < T, which in turn yields
Vi € L™ ((0,7); LI()), (4.69)
Aw € L* ((0,T); L*()) . (4.70)

By (4.13), it holds

191310 = 1903 + IVOIIT = 1901 + IV,
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which combined with (4.69) results in
? e L>® ((0,T); WHi(Q))

for any T' > 0 and due to Holder’s inequality also for any 1 < ¢ < ¢. Similarly,
by Lemma 3

lullfs £ 1Awl3 + [lullz,
which, by (4.70) and Lemma 47, yields
ue L?((0,T); H*(Q)) (4.71)
for any T' > 0. Finally, Gagliardo-Nirenberg interpolation implies

HUH&/Q s ||U||Hs||U||
for any 2 < r < oo, which, by (4.71) and Lemma 47, results in
we Lz ((0,T); W27 ()

for any 2 < r < co, where the limit case is covered by Lemma 47. O

4.4 Convergence

In order to show the convergence to the hydrostatic equilibrium we will exten-
sively use the following Lemma, which is a slight variation of Lemma 3.1 in
Doering et al. 2018.

Lemma 49
Let f >0, f € L'(0,00), and f'(t) < C for some constant C > 0 and all t > 0.
Then
f) =0
ast — oo.

For the proof of this Lemma, we need the following technical result, showing
that for sufficiently large ¢, the function has to approach 0 in every time interval.

Lemma 50
Let f >0, f € L*(0,00) and €,8 > 0. Then there exists some Ty > 0 such that
for all T > Ty there exists some t € [T, T + 8] such that

i) <e.

Proof
We prove this Lemma by contradiction. Assume there exists a sequence Ty — 0o
such that for all t € [Ty, T + ]

f(t) = e
Choosing a subsequence T}, such that the intervals do not overlap one finds
Tk, +5 Ty, +6
oo>/ f dt>Z/ dt>Z/ e dt= 5(5:00
= O
a contradiction. O
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With this, we can prove Lemma 49.

Proof of Lemma 49

We will show that for any ¢ > 0 we can find T > 0 such that for any ¢t > T
one has f(t) < e. By Lemma 50, there exists some Ty > 0 such that for every
T > Ty there exists some € [T',T + § ic) such that

HORES

Then for t € [T+ 5,7 + 5|

t ~ T+
+/f’(t)dt§f(t)+/ Cdt< - +C—_
7 7 2C
So for t > T'= Ty + ;& one has f(t) < € concluding the proof. O

Now, we show that the appropriate norms fulfill the assumptions of Lemma
49 and therefore decay in time. We start with the energy.

Lemma 51
Let Q be CH1, ug, ¥ € L*(Q) and 0 < a € L>°(0R). Then

[u®)]2 =0

as t — o0o. Additionally, for any 8 > 0 and v € R there exists a constant C > 0
satisfying C% < B||luo||3 + |90 — Bra — ||} such that

[9(t) = Baz =42 = C
fort — oco.

Proof
By (4.18)

d _
Sz S A+ lla™ floo) 19013,
and by Lemma 43 ||u(t)||3 € L'(0,0). Therefore, Lemma 49 directly implies
lu(t)ll3 — 0 (4.72)

as t — oo. Next, by (4.20)
1d

5= (Bl + 119 — B2 1)
1
< o (Bl + 19— oo — 718) + 281Dl +25 | au =0

for any 5 > 0 and v € R, implying that
Bllu®)l3 + [19(t) — Bzz — |3 (4.73)

is a non-increasing, non-negative function of time. By (4.72), it holds [Ju(t)||3 —
0 for ¢ — co. Therefore, one obtains

[9(t) — Bz — |5 — C?

for ¢ — oo and some constant C' > 0. As (4.73) is non-increasing in time, the
constant can be bounded by C? < Blugl|3 + [|[9o — Bz2 — I3 O
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Next, we show the decay of the vorticity.
Lemma 52
Let Q be C*1, ug € H*(Q2), ¥ € L*(Q) and 0 < a € WH°(0Q). Then for any
1<g <

lu(®)llwra =0

as t — oo.
Proof
Testing (4.22) with w one has
1d, o
——|wlz=— [ wu-Vw+ | wAw+ [ wdi?. (4.74)

Note that the first term on the right-hand side vanishes due to (4.4) and (4.3)

as
Z/wu-Vw:/u-V(wZ)z/ wQu-n—/wQV-uzo. (4.75)
Q Q o9 Q

For the second term on the right-hand side of (4.74), integration by parts and
(4.23) yield

/wAw:/ wn - Vw — | Vwl|3 :—2/ (a+ K)usn - Vw — Vw3 (4.76)
Q o0 oN

In order to handle the boundary term, note that (2.11) and tracing (4.1) along
the boundary implies

n-Vwo=n"-Viw=7-Au=71-u+7 (u-V)u+7-Vp—97-ey. (4.77)
Combining (4.76) and (4.77), one has
/ wAw = —||Vwl||3 - 2/ (o + K)un - Vw
Q 19)
:fHVngfQ/ (a+/<;)u~ut72/ (a+r)u-(u-Viu
19) o0
—2/ (a+/<;)u~Vp+2/ (o + K)ur 20
o9 G19)
d
—veli -5 [ @roud-2 [ (@rou @ D
dt Joq o
72/ (a+n)u-fo/ WtV (4.78)
o9

For the third term on the right-hand side of (4.74) integration by parts yields

/walﬂ:/ 711(*)197/198160. (479)
Q o Q
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Combining (4.74), (4.75), (4.78) and (4.79), it holds

l1d 2 2 2
3 (Il 42 [ (@t + 9wl

:—2/89(oz+f<a)u-(u-V)u—Z/m(oz—i-/f)u-Vp—/ WV

o0
—I—/ niwd — / Yo w
o0 Q
= 7/ (a+rK)u-V(u-u) 72/ (a+m)u~Vp—/1931w, (4.80)
19]9) o0 Q

where in the last identity we used that the boundary terms cancel as 7 = n*

and therefore 79 = ny. By Lemma 7 and an application of Holder’s and Young’s
inequality

S llullwrallu?ll g < lullys (4.81)

2|

/ag(a—&—/-e)u-V(u-u)

and

/ (v +K)u- Vp' <l llpl g (4.82)
o0

The last term on the right-hand side can be estimated by Holder’s and Young’s
inequality as

[ 9016 < 10lahonsta < IVl + < 191 = <l + e~ ool (4.53)
where we also used (4.13). Additionally, note that by Lemma 1
folg+2 [ = 2|Dulf (1.89)
ro)
Combining (4.80), (4.81), (4.82), (4.83) and (4.84) yields

d
G (wug+ [ o)+ vl
o0

= lulliyrs + lull ol + el Voll3 +e7 10013
and choosing ¢ sufficiently small one has
d d 1
(g [ )< (Dug+ [ o)+ Jivls
Sl + Nl Ipllan + 190l3

Note that by Lemma 44 and Lemma 45, the right-hand side is uniformly bounded
in time and by trace theorem and Lemma 43, it holds

Dl |3 +/ au? S (1+ [lallso)lull € L1(0, 00).
o0
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Therefore, ||[Dull3 + [, cu? fulfills the assumptions of Lemma 49 implying

IDu(t)]3 + / o (t) = 0
o0
as t — oo and due to Lemma 6
()2 S D)3 + / au2(t) = 0
o0

for t — oco. Finally as ||u|| gz is uniformly bounded in time due to Lemma 47,
Gagliardo-Nirenberg interpolation yields

()10 S a5 Il — 0

as t — oo for any 2 < g < oo. The, Holder’s inequality implies the decay for
any 1 < ¢ <2. O

Next, we show that the time derivative of the L?-norm of u; is uniformly
bounded in time, which together with the previous regularity estimates proves
its decay.

Lemma 53
Let Q be C11, ug € H?(Q), 99 € L*(Q) and 0 < a € L>(9N). Then

[[ue(£)]2 =0
ast — oo.
Proof
By (4.51)
d d
el < Sl + Clludl3
S Nuel3 Nl F + 19013 ull 7 (4.85)

and by Lemma 46 and Lemma 44 the right-hand side of (4.85) is uniformly
bounded in time. Additionally, by Lemma 46 |lu:(t)||3 € L'(0, c0), so it fulfills
the assumptions of (49), implying

Jus(B)]13 — 0
as t — oo. O

As u decays, one can now separate the other terms in (4.1) and show their
decay. Note that we do not have decay estimates for ||u| gz. Therefore, the dif-
fusion term is covered by Lemma 5. This has the disadvantage of only achieving
weak convergence.

Lemma 54
Let Q be C%1, ug € H%(Q), 99 € LANQ) and 0 < o € WH°(9). Then

1(Vp = de2) ()l -+ = 0

fort — oo.
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Proof
Let v € H!, then by (4.1)

(Vp —dea,v) = (—u —u - Vu + Au,v) = —(u, v) — (u - Vu,v) + (Au, v)
(4.86)

Note that the first and second term on the right-hand side can be estimated,
using Hélder’s inequality, by

[(ug, v)| < [luell2l|v]l2 (4.87)
and
(u -V, 0) < JJullallwll g lvlla < llullZFlol (4.88)

where, in the last estimate, we also used Ladyzhenskaya’s inequality. Due to
Lemma 5, the third term on the right-hand side of (4.86) satisfies

[(Au, v)| < 2[[Dufj2||Do]]2 + 2/89 law - v S (1+ lefloo)[ull vl ar,  (4-89)

where in the last inequality we used the trace theorem. Combining (4.86),
(4.87), (4.88) and (4.89) yields

IVp — des||g-1 = | ﬁup (Vp — deq,v)
v H1:1

= sup (—(utv) — (u- Vu,v) + (Au,v))

ol g1 =1

S sup ((luellz + llullz + llullz) vl
ol g1 =1

= lluellz + llullzn + llull e (4.90)

Due to Lemma 53 and Lemma 52, the right-hand side of (4.90) vanishes in the
long-time limit, implying

1(Vp = de2) ()|l -+ = 0

for t — oo. O
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