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Abstract 
In this thesis, I would like to explore how humans learn about others’ personalities. First, from a 

behavioral perspective, I want to understand the strategies underlying this learning, i.e., find out 

what information people use and how they apply it. To do this, I use reinforcement learning models 

that are commonly used to explain learning across domains. I do not use these models on their own 

but add information structures that humans might use when learning about others. These models 

reveal that humans flexibly use complex knowledge structures when learning about others’ 

personalities. Based on these results, I next extend my focus from behavior to the brain. In recent 

years, developments in analysis techniques of functional brain data have allowed for queries into 

activity patterns rather than plain activations. Such analyses revealed multidimensional structures 

when learning about others’ personalities. I use these techniques to find out whether the cortex also 

codes for even more complex information structures that I found in the behavioral study. In general, 

I find evidence that the brain represents these complex knowledge structures when learning about 

strangers’ personalities. Finally, in the most recent work, I focus on grid-cells, which represent a 

specific way for representing and coding information. First established in navigational space, grid-

like coding patterns have also been found for conceptual spaces in two dimensions. I investigate a 

personality plane based on two trait words that form the axes of this ‘trait space’ but with the used 

analysis methods, I find no evidence for grid-like coding for this trait space. 

  



5 
 

Zusammenfassung (summary in German) 
In dieser Dissertation hab ich untersucht, wie Menschen über die Persönlichkeit anderer lernen. 

Zuerst möchte ich aus einer Verhaltensperspektive die Strategien verstehen, die diesem Lernen 

zugrunde liegen, d. h. ich möchte herausfinden, welche Informationen Menschen nutzen und wie 

sie diese anwenden. Dazu verwende ich "Reinforcement Learning" Modelle, die häufig verwendet 

werden, um Lernen in verschiedensten Bereichen zu erklären. Diese Modelle verwende ich nicht 

isoliert, sondern ergänze sie um Informationsstrukturen, die Menschen beim Lernen über andere 

möglicherweise nutzen. Durch diese Modelle wird sichtbar, dass Menschen flexibel komplexe 

Informationsstrukturen gebrauchen, wenn sie über die Persönlichkeit anderer Personen lernen. Auf 

der Grundlage dieser Ergebnisse erweitere ich meinen Fokus vom Verhalten auf das Gehirn. In den 

letzten Jahren haben die Entwicklungen der Analysetechniken für funktionelle Hirndaten die 

Möglichkeit eröffnet, Aktivitätsmuster und nicht nur einfache Aktivierungen zu untersuchen. 

Solche Analysen enthüllten mehrdimensionale Strukturen beim Lernen über die Persönlichkeiten 

anderer. Ich nutze diese Techniken, um herauszufinden, ob das Gehirn auch für noch komplexere 

Informationsstrukturen kodiert, wie solche die ich in der Verhaltensstudie gefunden habe. 

Grundsätzlich gibt es Hinweise darauf, dass das Gehirn diese komplexen Wissensstrukturen 

repräsentiert, wenn man über die Persönlichkeit Fremder lernt. Schließlich konzentriere ich mich 

in meiner letzten Studie auf sogenannte Grid-Cells, die eine besondere Art der Repräsentation und 

Kodierung von Informationen darstellen. Diese Art der Darstellung wurde zunächst für den 

Navigationsraum entwickelt, doch wurden solche "Grid-Like" Kodierungsmuster auch für 

zweidimensionale konzeptuelle Räume gefunden. Ich untersuche eine „Persönlichkeitsfläche“, die 

auf zwei Eigenschaftenwörtern basiert, die die Achsen dieser Fläche bilden. Mit den verwendeten 

Analysemethoden finde ich keinen Hinweis auf eine "Grid-Like" Kodierung für diesen 

konzeptuellen Persönlichkeits-Raum.  
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1.    Introduction 

1.1 General Overview 

To make sense of an ever changing world, humans must be able to learn quickly and accurately. 

To do so, they need to take advantage of any structure there is in this often seemingly random 

world. Luckily, the world we inhabit is not completely random, statistical patterns (e.g., similarities 

between items within a category or similar behavior exhibited by a person across situations) allow 

for generalizations that can greatly aid learning. These generalizations exist across all domains of 

knowledge and learning and can very often be abstracted to similar shapes or structures (hereafter 

named knowledge structures). 

It is these knowledge structures that allow for generalization during learning that I want to 

explore in this thesis. The domain in which this learning will take place is personality learning, 

even though the scope of this work expands beyond personality learning to (social) learning in 

general. The overarching question I try to answer in this thesis is if humans use knowledge 

structures when learning about other’s personalities, and if so, how exactly they are applied both 

in behavior and within the brain. Over the course of three studies, I investigate multiple knowledge 

structures and their specific applications during personality learning. 

The knowledge structures we are interested in all capture personality traits in a varying 

degree of detail and are based on decades of personality research. From this research there is the 

consensus that personality traits are a person’s typical tendency to behave across a wide range of 

situations, that is relatively stable over time. Personality traits have been researched extensively 

and have been found to largely constitute a multidimensional structure where items within each 

dimension are more related than those between dimensions. It is these relations that I try to capture 

in the proposed knowledge structures. 

The framework I largely follow in this thesis is that of David Marr, who proposed that in 

order to understand an information processing system it must be described at three levels of 

analysis. The first level, called “computational,” is the problem the system is trying to solve i.e., 

the main question of this thesis. The other two levels then focus on how the system is solving this 

problem. Most of the work in this thesis focuses on the second level, algorithmic, which questions 

which processes or algorithms are at play to solve the problem posed at the first level. In the context 

of the third level, implementational, the question arises as to how the algorithm can be implemented 
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in a physical system, with the brain's neurons, their firing, and their network of connections playing 

a crucial role (more details on Marr’s framework are provided in the next section). 

Even though the questions of how personality learning is achieved are not novel, I, together 

with my coauthors, push the boundaries of recent methods and create novel paradigms based on 

already established methods. For example, in the first study, we use the very established 

reinforcement learning models. But instead of just using these models as they are, we add on the 

knowledge structure component which gives us new insights into learning as well as modeling. In 

the second study, we use a relatively new method called representational similarity analysis (RSA). 

This method uses representations of different types of data so that they get similar shapes and can 

thus be compared and analyzed. With this analysis we look for evidence for these knowledge 

structures in cortical activity patterns. The structures we model are some of the most complicated 

to date in the area of personality learning. Finally, in the third study, we use a very recent research 

topic and we go down to the third level of Marr’s framework and take a look at a specific type of 

cell, namely, the grid-cell. We take this analysis one level of abstraction deeper than previous 

research and look for evidence for a conceptual personality trait space represented by these grid-

cells. 
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1.2 Theoretical Background 

1.2.1 Marr’s Tri-Level hypothesis 

In his 1982 book Vision, cognitive scientist David Marr (Marr, 2010) introduced his Tri-Level 

hypothesis that states that in order to understand an information-processing task three 

complementary levels of explanation have to be understood. These three levels are: 1) 

computational, what is the goal this computation should solve (e.g., in this thesis: how does the 

brain solve the personality learning problem), 2) algorithmic, what algorithms can implement 

these computations (e.g., an algorithm that uses prior personality information together with current 

experiences), and 3) implementational, how can hardware/ neurons carry out the computation 

(e.g., specific cells or a network of cells that perform these computations). This framework has 

been quite influential in the cognitive sciences (Lockwood et al., 2020; Love, 2015; Mitchell, 

2006), and I will use it as well to structure my work in this thesis. 

In this thesis, I take the information-processing system to be the brain. The first level (i.e., 

computational) encompasses the main hypothesis I try to answer in this thesis: How do humans 

learn about the personalities of others? The subsequent second and third levels are then explored 

from several perspectives. That is, I use multiple methods to investigate how the brain might solve 

the personality learning problem. The second level (i.e., algorithmic) is investigated in the first two 

studies and the third level (i.e., implementational) in the third and final study. 

First, in study 1, I explore human personality learning using computational models based 

on reinforcement learning. Second, in study 2, I explore the neural underpinnings of the 

representations used in these models i.e., I will look at the activity patterns in the cortex during 

social learning. For the third level I shift my attention towards grid-cells (Bellmund et al., 2018). 

Grid- and place-cells have in recent years captured scientists’ attention because of their specific 

coding patterns. In the third study, I will explore if personality is cortically represented on such a 

conceptual plane.  

However, first I will have a look at personality psychology and the generalizations 

discovered in this research. 
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1.2.2 Personality Traits and its generalizations 

Generalizing experience to guide novel decision making is a hallmark of intelligent behavior 

(Miller et al., 2002). In order to generalize one has to make use of statistical structures (e.g., 

generalizations). Because this thesis focuses on personality learning, the statistical structures that 

are used and investigated will all revolve around personality traits. Personality traits capture the 

differences between individuals in their typical tendency to behave. This behavior extends across 

a wide range of situations and over a relatively long period of time (Ashton, 2018; R. McCrae & 

Costa Jr., 2008). Knowledge about others’ personality allows humans to make accurate predictions 

about their future patterns of behavior (Epstein, 1979). This predictive ability is automatic and is 

supported by the brain's representation of others' current mental states, which also includes their 

likely future states (Tamir & Thornton, 2018). 

One of the main goals in personality research is to find accurate representations of 

personality traits that still capture its most important components. That is, to find some factors or 

dimensions that best represent the whole of personality in a distilled form. Most of the work in this 

regard has been the lexical approach (Ashton, 2018). In the lexical approach one takes all words 

that describe a person’s personality (for a specific language) and, through questionnaires, find 

which of these words (or traits) correlate together. Throughout the years of research, there have 

been a multitude of ways of categorizing and ordering personality traits, what started with 12 

factors (Cattell, 1943) was quickly whittled down to more manageable numbers. In the end, most 

studies found five personality factors. These Five-Factor Models (FFM) were introduced in the 

early 1960’s (Tupes & Christal, 1992), and repeatedly found again by different researchers in the 

English (Goldberg, 1990; R. R. McCrae & Costa, 1987) and foreign languages (Peabody & De 

Raad, 2002). The five dimensions (also called the Big-5) that can summarize a person's personality 

are: Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness to experience. 

Even though later research with newfound computational power and in languages other than 

English revealed six factors (Ashton & Lee, 2007; K. Lee & Ashton, 2004; Saucier, 2009), the Big-

5 has been widely accepted as the foundation of personality (Soto et al., 2015). 

Based on these studies, I formulated several possibilities of personality generalizations that 

can potentially be used during personality learning. From these generalizations computational 

models are created that allow me to investigate which of these generalizations (or combinations of 
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generalizations) humans might use during personality learning. For this, I will use computational 

models, at which we will look next. 

 

1.2.3 Computational Modeling 

The need for computational models in psychology and neuroscience alongside more common 

statistical methods (e.g., t-tests and ANOVAs) has been proselytized in recent years (Farrell & 

Lewandowsky, 2018; Forstmann & Wagenmakers, 2015; Lockwood & Klein-Flügge, 2020; 

Wilson & Collins, 2019; L. Zhang et al., 2020). The main argument is that computational models 

offer conceptual clarity, i.e., when using math to communicate these often abstract ideas and 

theories, there is a lot less ambiguity than when only using words (Cushman, 2024). These models 

come in many different shapes and sizes and are really only limited to the researchers’ imagination 

(and maybe the computational power they have available). 

The goal of computational models in the domain of this thesis is to explain behavior. That 

is, I have an agent (animal or human) that exhibits a behavior (e.g., learning in a task) that I want 

to understand better. Computational models are then the mathematical equations that link the 

experimentally observable variables (e.g., task difficulty) to the agent’s behavior (e.g., how quickly 

they learn or react) (Wilson & Collins, 2019). Most often multiple models are created, each of these 

models becomes an algorithmic hypothesis that explains the agent's behavior in a slightly different 

way. Finding which model explains the behavior best provides us with insights into the underlying 

processes of the behavior. 

In this thesis, I focus on reinforcement learning (RL) models (Collins & Shenhav, 2022; D. 

Lee et al., 2012; Sutton & Barto, 1998). Based on classical conditioning (Pavlov, 1927), these 

models look at trial-by-trial variations in behavior to understand cognitive processes. This 

dependence on history (i.e., the experience on previous trials) makes them especially useful for 

modeling and understanding learning (Daw & Tobler, 2014). In detail, RL models use a prediction 

error (i.e., the difference between expectation and outcome) generated on each trial to update future 

estimates and thus reduce future prediction errors. This process can be described with a simple 

mathematical formula (see chapter 2.1) and encapsulates learning across a wide range of tasks 

(Dayan & Niv, 2008; Dunne & O’Doherty, 2013; Niv & Langdon, 2016; Ruff & Fehr, 2014). 

Reinforcement learning models have been used to explain how humans learn from others 

(Diaconescu et al., 2017; Hill et al., 2016; Najar et al., 2020) and for others (Garvert et al., 2015). 



17 
 

Furthermore, studies have shown they can also model how humans learn about specific 

characteristics such as generosity,  emotional states (Fareri et al., 2015; Jones et al., 2011; Zaki et 

al., 2016), single traits (Hartley & Somerville, 2015) or aspects of personality (i.e., trustworthiness) 

(Delgado et al., 2005; King-Casas et al., 2005). These studies only look at the current situation or 

a single dimension. However, as research into personality has shown (see section 1.2.2) human 

personality is everything but one-dimensional, the multidimensionality inherent in human 

personality (i.e., all five factors) should thus be captured in these computational models when one 

wants to accurately model learning (Jolly & Chang, 2019). 

We therefore deemed it important to create models that exactly capture this 

multidimensionality in personalities and could thus use this factor information on different levels 

of detail during learning. We introduce a novel modeling paradigm that captures this. These models 

are based on the Rescorla-Wagner learning rule (Rescorla & Wagner, 1972) and are expanded to 

work with several knowledge structures (i.e., structures that represent personality traits at different 

levels of detail). The models and our additions are given a simple introduction in chapter 2.1, and 

are discussed and applied in detail in chapter 3. 

Explaining the behaviors during learning is only one side of the story. To get a full picture 

of human learning we also need to understand what processes are going on in the brain. Therefore, 

next, I want to have a look at the cortical processes during social learning and the regions I expect 

to be implicated. 

 

1.2.4 Neural Representations of social learning 

On a neural level the questions in this thesis are twofold. First, staying in the second level of Marr 

(i.e. algorithmic) I expect to find evidence for the brain resolving personality learning on the scale 

of representations. Specifically, the knowledge structures representing personality traits on 

different levels of detail (chapter 4). Second, descending to the third of Marr’s levels 

(implementational) I want to explore grid-cells, specifically, in the light of this thesis whether there 

is grid-like encoding of personality trait space (chapter 5). 

The regions I am most interested in are those implicated in the social brain (Frith, 2007). 

The areas of the social brain include the medial prefrontal cortex (mPFC) (Kanske, 2018; Saxe & 

Powell, 2006), medial parietal cortex, temporo-parietal junction (TPJ) and the superior temporal 

sulcus (STS) (Mitchell, 2006; Van Overwalle & Baetens, 2009). The social brain, particularly the 
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medial prefrontal cortex (mPFC), plays a crucial role in self-directed thinking and processing social 

information about others (Meyer et al., 2019; Mitchell et al., 2005; Van Overwalle, 2009). 

Furthermore, the mPFC is involved in inferring the mental states of others based on self-reflection 

(Meyer & Lieberman, 2018; Mitchell et al., 2005), and in integrating social information across 

time, allowing for reflection and representation of traits and norms (Van Overwalle, 2009). These 

findings highlight the importance of the mPFC in social cognition and its role in understanding and 

processing social information. For both studies the mPFC will therefore be the main region of 

interest. 

 

1.2.4.1 Activity patterns of personality 

The next study builds on the findings from the computational modeling. That is, the hypothesis that 

humans use knowledge structures of different granularities based on the Big-5 personality 

dimensions. Next, I want to expand on this research by exploring whether these knowledge 

structures are also represented in the cortex during a personality learning task. 

As mentioned above, the main region of interest (ROI) for this experiment is the mPFC. 

The mPFC is instrumental in decoding mental states (Saxe et al., 2004) and in learning about these 

states through trial-by-trial feedback (Behrens et al., 2008; Gläscher et al., 2010; Joiner et al., 

2017a; Korn et al., 2012; Korn, Fan, et al., 2014). Specifically, personality trait learning and social 

network structures have been implicated in the mPFC (Mitchell et al., 2004; Parkinson et al., 2017; 

Tamir et al., 2016; Thornton, Weaverdyck, Mildner, et al., 2019). Furthermore, there is strong 

evidence for different areas of the mPFC being responsible for self and other processing. Where 

the ventromedial prefrontal cortex (vmPFC) handles self-referential processing (Amodio & Frith, 

2006; Sul et al., 2015; Wagner et al., 2012), the dorsomedial prefrontal cortex (dmPFC) handles 

other-referential processing (Saxe, 2006; Sul et al., 2015).  

To investigate the existence of these knowledge structures in the cortical activity patterns, 

I use representational similarity analysis (RSA). RSA forms a subclass of multivariate pattern 

analysis (MVPA) (Kriegeskorte, Mur, & Bandettini, 2008) and is very commonly used in social 

neuroscience research (Freeman et al., 2018; Parkinson et al., 2014; Peer et al., 2021; Riberto et 

al., 2022; Stolier et al., 2020; Tamir et al., 2016; Thornton, Weaverdyck, Mildner, et al., 2019; 

Thornton, Weaverdyck, & Tamir, 2019; Thornton & Mitchell, 2017, 2018; Weaverdyck et al., 

2021). Compared to standard fMRI analyses, which focus on mean levels of activity within a 
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region, MVPA examines patterns of activity across voxels within the population (Haxby et al., 

2001). RSA, specifically, measures the degree to which these voxel patterns are similar across 

different experimental conditions (Kriegeskorte, Mur, & Bandettini, 2008). The biggest advantage 

of RSA is that it can compare different modalities (e.g., results from behavioral data with neural 

activity patterns (from different species)) (Kriegeskorte, Mur, Ruff, et al., 2008). It does this by not 

directly comparing the stimuli but rather a higher-order representation of each stimulus. Each 

stimulus’ correspondence to the others is determined with a distance measure (Dimsdale-Zucker & 

Ranganath, 2018; Popal et al., 2019), which reveals how close each stimulus’ representation is to 

the others. 

There has been plenty of research using MVPA to look at representations (knowledge 

structures) of personality traits. Hassabis and colleagues gave participants four fictional characters 

who could be reliably classified based on two dimensions (agreeableness and extraversion) and 

found distinct regions that coded for these personality traits (Hassabis et al., 2014). Thornton and 

Mitchell (Thornton & Mitchell, 2017) used RSA to look at five different models of personality, 

ranging from two to five dimensions, and found evidence for their representations for all of them. 

However, based on our recent work (Frolichs et al., 2022) I expect humans to represent personality 

at even finer levels of detail than those found in this previous research. I therefore created several 

models of differing granularity (i.e., level of detail) to test whether the human cortex indeed 

represents these detailed representations of human personality when learning about others. 

 

1.2.4.2 Grid-like encoding of personality space 

In the first two studies, I look at behavioral and cortical generalizations based on the second level 

of Marr (algorithmic). That is, what algorithms or computations underlie the solving of the 

personality learning problem. In the final study I would like to take a look at a potential neural 

implementation (level 3 of Marr) of these generalizations in the form of grid-cells. 

Grid cells and the accompanying place cells located in the entorhinal cortex (EC) and 

hippocampus have intrigued scientists for a number of years. Their firing patterns, revealed by 

single cell recordings, that tile arenas as rats move through them (Hafting et al., 2005; O’Keefe & 

Nadel, 1978) was first suggested by Tolman (Tolman, 1948) who hypothesized about their 

existence based on latent learning in the rats. That is, the grid- and place-cells represent the rat’s 

current position in the arena and provide a context-invariant code to localize across similarly 
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structured environments (Behrens et al., 2018; Bush et al., 2015). This means that after creating a 

cognitive map of these arenas, the rats could find novel shortcuts within them. First evidence for 

grid-cells in the human entorhinal cortex came from an indirect analysis of fMRI data (Doeller et 

al., 2010) and later single cell recordings in the human entorhinal cortex confirmed their existence 

decisively (Jacobs et al., 2013). 

Along with evidence for spatial representations, research has found that the mPFC, together 

with the hippocampus, generalizes knowledge for the task at hand (Mack et al., 2016). That is, the 

(v)mPFC updates existing knowledge representations during learning (Mack et al., 2020; Park et 

al., 2019) and the orbitofrontal cortex keeps track of currently relevant information in a cognitive 

map-like manner (Schuck et al., 2016). This means that potentially any type of information that 

can be projected on two dimensions can be represented by grid-cells in the mPFC (Behrens et al., 

2018; Bellmund et al., 2018). Evidence for these representations has been bountiful with evidence 

ranging from pure abstract conceptual spaces (Constantinescu et al., 2016) to visual field (Nau et 

al., 2018) and olfactory (Bao et al., 2019) representations. Grid-like social representations were 

also suggested (Schafer & Schiller, 2018) and first evidence has been found (Liang et al., 2023; 

Park et al., 2021). 

Because I hypothesized that the mPFC is the main region implicated in the generalizations 

from the personality literature in the previous chapter and evidence points towards the mPFC 

displaying grid-like coding for social representations, I hypothesize that a grid-like encoding of 

personality space exists in the mPFC. In detail, I expect this map to generalize along the dimensions 

from the Big-5. The conceptual personality trait space (hereafter called trait space) for this study 

consists of two dimensions along which people can be organized. 
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1.3 Thesis structure 

My exploration of the above questions is executed in three separate studies. First, in chapter 2, I 

will pay specific attention to the three main methods used throughout my thesis. That is, 

computational modeling with a focus on the Rescorla-Wagner learning rule, representational 

similarity analysis, and grid-cell analysis. My goal is to give a non-exhaustive introduction to each 

method. To achieve this, I will give a high level overview of each of these methods accompanied 

by some code examples and figures. Chapter 3, will explore the strategies humans employ when 

learning about others’ personalities. I introduce a novel modeling paradigm based on reinforcement 

learning to understand social learning across a wide range of tasks. Chapter 4, uses 

representational similarity analysis to examine neural firing patterns that we expect to reflect 

conceptual patterns about personality. I dive deeper into specific firing patterns in Chapter 5 where 

we explore grid-like coding specifically for a personality trait space. Finally, the results and their 

implications are discussed in broad terms relating to current psychology, and (computational) 

neuroscience research in Chapter 6. 

The perspective of this thesis is written in both singular and plural perspectives. Single for 

the sections specific for this thesis (i.e., chapters 1 (introduction), 2 (methods overview), and 6 

(conclusion) and plural for the remaining chapters (i.e., chapters 3-5) which describe the studies. 

Because I can, in no good conscience, write these chapters from a singular perspective when the 

work in it comes from purely a collaborative effort. 
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2.    Overview of the Methods – all studies 
Significant portions of my time I have devoted to understanding and, in some cases, explaining 

specific methods that I have used in my research. This chapter is intended as a short primer on the 

three main methods that I have used and that will be used in the next three chapters of this thesis. 

First, I will focus on computational modeling of human behavior, in specific, the models that fall 

under the Rescorla-Wagner rule (Rescorla & Wagner, 1972) and the additions we have made to 

these models (Frolichs et al., 2022; Rosenblau et al., 2021). After that I will discuss representational 

similarity analysis (RSA) (Kriegeskorte, Mur, & Bandettini, 2008), that aims to compare 

representations among different methodologies (e.g., behavioral, computational, and neural). 

Finally, I will look at a relatively new question in the cognitive sciences, namely the search for 

Grid-Cells (Hafting et al., 2005), specifically for tasks that are not in physical space (i.e., conceptual 

spaces) (Constantinescu et al., 2016), using functional magnetic resonance imaging (fMRI) 

(Doeller et al., 2010). 

 My intention for this chapter is to give someone a head-start that I sometimes wish I had 

on some of these topics. 

Code for all the examples and figures has been written in Matlab and has been uploaded to 

Github (https://github.com/kFrolichs/Thesis). In some cases these figures have animations and thus 

add a bit more information when run from Matlab compared to the non-animated (digital) paper 

versions presented in this thesis. 
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2.1 Computational Modeling 

The success of mathematical models to explain phenomena in our environment cannot be 

overstated. Take the Copernican model of our solar system with the sun in the center and the planets 

revolving around it. The exact movements of which would later be described by applying Newton’s 

laws. By now mathematical models are ubiquitous to describe and predict anything from today’s 

weather to tomorrow’s stock market. When using computers to calculate and fit these often 

complex mathematical models it becomes computational modeling. In the cognitive sciences we 

use these computational models to describe and predict people’s behavior (Farrell & 

Lewandowsky, 2018). In short, computational models add another tool in our toolbox that grants a 

new perspective separate from traditional statistics, especially because we can look at how behavior 

functions in time, that is, figure out the algorithms that underlie behavior (Wilson & Collins, 2019). 

There are numerous modeling frameworks out there, in our work we have focused on reinforcement 

learning models, and thus only these will be described briefly below. 

 

2.1.1 Reinforcement Learning Models 

Introduced by Sutton & Barto (Sutton & Barto, 1998), Reinforcement Learning (RL) models, that 

learn by trial and error feedback from their environment, have quickly grown to be in use for many 

functions. Most famously used by artificial agents in Deepmind’s AlphaGo (Silver et al., 2016) 

and Protein folder (Senior et al., 2020). Maybe slightly less well-known, these models have been 

used widely in the cognitive sciences in an attempt to explain learning and decision making (Dayan 

& Niv, 2008; Dunne & O’Doherty, 2013; L. Zhang et al., 2020). Most strikingly, these algorithms 

correspond well to the firing patterns of dopaminergic neurons in the midbrain (Daw & Doya, 

2006; P. Montague et al., 1996; Schultz et al., 1997). Since these first seminal studies these 

algorithms have found wide use in the cognitive sciences. In this chapter I will only focus on a 

specific learning rule, namely, the Rescorla Wagner rule (Rescorla & Wagner, 1972). Furthermore, 

I will only look at model comparison i.e., figure out which of a set models best describes the 

behavioral data. 
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2.1.1.1 The Rescorla-Wagner learning rule 

The Rescorla-Wagner learning rule (Rescorla & Wagner, 1972) was invented to explain blocking, 

a specific phenomenon observed in classical conditioning. Blocking happens when multiple stimuli 

are presented. The first stimulus, who’s relationship with the reward was learned first, blocks the 

learning about any of the new stimuli’s relationships with the reward. 

Let’s first have a look at how the RW-rule can explain classical conditioning (i.e., Pavlov’s 

dogs) (Pavlov, 1927). In the most well-known experiment, Pavlov measured dogs' salivating 

response to hearing a bell. Interestingly, this bell was paired with the dogs receiving food shortly  

afterwards. Normally, dogs salivate when receiving food but after repeated exposure the dogs 

already began salivating at the sound of the bell (they had become conditioned). 

The RW-rule captures this process in a simple algorithm that updates its estimate about the 

environment based on feedback from this environment. In the case of the dogs there is an estimate 

(hearing a belling sound means nothing) and an outcome (after the belling sound I received food). 

In numbers we could express this in the following way. The expectation of food can be expressed 

from 0 to 1 (0 meaning not expecting food at all and 1 indicates that one expects food 100% of the 

time). Furthermore, we need a value (between 0 and 1) that represents how fast the dog will learn, 

conveniently named the learning rate. A standard value for this is 0.05, so we will stick with this 

as well as with its commonly used symbol, the Greek letter 𝛼. What the RW-rule will explain is 

how the expectation of food changes over time after repeated pairing of the belling sound together 

with receiving food. One small detail to add is that we will treat time as if it was discrete i.e., as if 

it was made of steps in time, where each step in time is indicated with 𝑡, where 𝑡 means the first 

time step, 𝑡 + 1 the second, 𝑡 + 2 the third, and so on. Every trial will be a new time step. 

First we need to calculate the prediction error (PE, equation 1), that is the difference 

between the expectation and the outcome. Initially the dog expects nothing but then receives food. 

This results in a prediction error of 1: 1 − 0 = 1. Next, the expectation gets updated for the next 

trial, this takes the current expectation and adds the PE multiplied by the learning rate (equation 2). 

Resulting in a new expectation of 0.05 =  0 +  1 ⋅ 0.05. This means that for the next trial, when 

hearing the bell, the dog has a small expectation of food (Figure 2.1A). 

 

𝑃𝐸 =  𝑂𝑢𝑡𝑐𝑜𝑚𝑒 −  𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛    (1)  
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𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛௧ାଵ =  𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛௧ + 𝑃𝐸 ×  𝛼  (2) 

 

On repeated exposure to the bell and food, the expectation of food will slowly increase (Figure 

2.1B). When the food does not show up the expectation will decrease a little bit (Figure 2.1C). 

Since this is a simple equation with only one free parameter (the learning rate), we can only 

make it change its “behavior” a little bit. That is, we can only change the value of the learning rate 

(Figure 2.1D). Doing so changes how quickly the dog will learn. This can also help us distinguish 

dogs based on their learning rate. 

The example of the dog and the bell can, of course, be exchanged for any repeated learning 

paradigm such as: playing on slot machines (e.g., bandit tasks) (Daw et al., 2006; Lau & Glimcher, 

2005; Sugrue et al., 2004), social interactions (FeldmanHall et al., 2018) and preference learning 

(Rosenblau et al., 2018, 2021). 
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Figure 2.1. Exploration of the Rescorla-Wagner learning rule. 

a) Starting with no reward expectation (i.e., 0) and a learning rate (ɑ) of 0.05 this agent slowly updates to start expecting 

rewards. b) Shows the increase in reward expectations over a longer time. c) When an agent is not continuously 

rewarded their expectations can also lower again. d) The learning rate determines how quickly an agent updates. The 

higher the learning rate the quicker the updating. 

 

2.1.1.2 Increasing the complexity of the models 

Having the standard RW-rule is great, as shown before it can explain varying phenomena. 

However, we would like to dig a little deeper and test more complex behavior. In this case, how 

humans learn about others’ personalities. Specifically, what knowledge structures they use when 

learning about others. That is, we present participants with a task where they have to learn about 

strangers’ personalities, by repeatedly asking them to estimate how they would score on a certain 

trait word (e.g., diligent). To do this we can keep the RW-rule as our foundation but add variables 

and data to these standard equations. This way, every model will become a specific hypothesis of 

strategies that humans can employ when learning about others. 

Adding these complexities is relatively straightforward. A lot of research points towards a 

5 factor model of personality traits (Goldberg, 1990; R. McCrae & Costa Jr., 2008). That is, 

personality traits can be grouped into 5 separate factors that contain trait words that are connected 

to each other. For our first model we hypothesize that people only learn by updating a single value 

for each factor. That is, they have 5 values in memory, one for each factor, and only update these 

values during learning. So for each trait word they get presented, they first categorize it into the 

correct factor and then get that factor’s value, when receiving feedback they also only update this 

factor value (equation 3). Where 𝐹 indicates the factor the current trait word belongs to. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(௧ାଵ,ி) = 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(௧,ி) + 𝛼 × 𝑃𝐸  (3) 

 

However, usually when we learn about someone we do not start from a blank slate. We have already 

encountered numerous people before and therefore have opinions or ideas about others available. 

In this case we expect people to already have formed ideas about the population (students) they are 

learning about. We took a separate sample of people and asked them about the personality traits of 

the average student. We can now expand the model from equation 3 by adding this new source of 

information hereafter named the reference point (RP). Furthermore, we want to find out how 
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humans integrate the information gained from their environment with their preconceived 

knowledge. We thus add a weighting between the standard factor learning and the RP in our new 

equation (equation 4). This weighting is indicated by the Greek symbol: 𝛾. Thus, if the 𝛾 is 1, one 

will only use the RP, if it is 0 one will just be using equation 3. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(௧ାଵ,ி) = 𝛾 × 𝑅𝑃 + (1 − 𝛾) × (𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(௧,ி) + 𝛼 × 𝑃𝐸)  (4) 

 

2.1.1.3 Applying the model to real data 

Now that we have some models that represent possible strategies that humans can use. We want to 

apply it to real-life data. This works using model fitting. Model fitting means we change the free 

parameter(s) to get the best fit of the model to the data. First, we need to know what fit is. In this 

case, we want to fit our model to our participant data. Let’s assume participant data are ratings and 

our model also outputs ratings, we can visualize this as two separate lines (Figure 2.2A, B), the 

more closely they resemble each other the better their fit is i.e., Figure 2.2A shows a bad fit 

between the lines and Figure 2.2B a good fit. 

We would like more than just visually comparing lines so we use a metric called the sum 

of squared errors (SSE, equation 5). The sum of squared errors looks at the difference (errors) 

between the two lines at every point on the axis, squares them, and then adds them up (Figure 

2.2C, D). The squaring is done for two reasons, first it changes all values to positives, second, it 

punishes more for larger errors. With the SSE we can now capture the fit of the model to 

participants’ behavior in one number. The SSE is just one of many metrics that can be used, each 

with their own pros and cons. 

 

𝑆𝑆𝐸 =  ∑ (𝑑𝑎𝑡𝑎௧ − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠௧)ଶ௡
௧ୀଵ    (5) 

 

Now we can determine what value of the free parameter(s) result(s) in the best fit by stepwise 

changing the value of the free parameter and seeing its effects on the fit (Figure 2E). In these simple 

models with simulated data that has no noise, this can be done by hand but when working with real 

life data we usually use an algorithm to do it for us. In our case we use the Nelder and Mead simplex 

algorithm that is already implemented in Matlab (fminsearch). When we run our model on this we 

get the following result (Figure 2.2F). 
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Furthermore, we can compare different models’ fit with the SSE to see which of these 

models best explain the analyzed data. 

 

 

Figure 2.2. Overview of model behavior and model fitting 

The black line always shows choices from a simulated participant. a) Shows a bad fitting model (red line). b) Shows 

a better fitting model (green line). c) and d) Show how well the models fit to the data using the sum of squared errors 

(SSE). e) in a model with two free parameters (α and γ) the model can show a lot of different “behaviors” i.e., the 

different colored lines all originate from the same model but with different free parameters. f) The fitting algorithm 

will systematically look through different free parameter values to iteratively find the parameters that produce the best 

fit. 
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We can now create and determine the fit of any model we can think about, but one last step still 

remains. It is unfair to just compare the models’ fit like this because the models are not equal in 

their complexity. When we compare the models from equation 3 and 4 we see that model 4 has 

more free parameters. We need to punish for this, luckily there are also algorithms for this, in our 

case we will use the Bayesian Information Criterion (BIC) (equation 6). That uses the SSE we 

calculated before but also the number of free parameters (𝑘) and the number of trials (𝑛). 

 

𝐵𝐼𝐶 =  𝑛 × 𝑙𝑛(
ௌௌா

௡
) + 𝑘 × 𝑙𝑛(𝑛)   (6) 

 

This BIC value gives us a fair estimate of the fit of the model controlled for its complexity. This 

means we can compare models fairly now using their BIC values. 

 

2.1.1.4 Model Validation 

With the modeling hopefully a little bit clearer we can now focus on some extra steps that are wise 

to take during the whole procedure. These steps are discussed in more detail in the following papers 

(Palminteri et al., 2017; Wilson & Collins, 2019; L. Zhang et al., 2020). Here we will focus in 

particular on the confusion matrix and parameter recovery. In both cases we want to make sure our 

models behave the way we expect them to behave. To do so we will simulate data, this way we 

know exactly what data the models receive and thus how it is processed. 

We calculate the confusion matrix to make sure our models are distinguishable, that means, 

we determine if their behavior is different enough so that we can differentiate them from another. 

If we cannot do this our whole modeling procedure is invalidated since we could be drawing 

conclusions based on one model even though another (that stands for a completely different 

hypothesis) would give us the same results. The end result of the confusion matrix looks like Figure 

2.3D, this symmetrical matrix shows how often data that was simulated by one model was also 

determined as the best fit by our modeling procedure (0 being never, 1 always). Ideally this will 

result in an identity matrix (i.e., a diagonal of 1’s, which indicates that the model that simulated the 

data was also the one that fitted it best). However, in reality these numbers are never perfect so we 

are usually happy with numbers in the high 0.90’s. 

We simulate the data by doing the opposite from what we normally do. That is, we give the 

models data from a task we created ourselves together with some values for the free parameters. 
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To get the parameter values we can simply use a random number generator to either give us 

numbers between the bounds of the parameter or between the observed bounds if we have already 

fitted models on participants’ data. The model output is then regarded as our data (i.e., you can see 

this as if we have a participant (the model) for which we know the exact strategy and free parameter 

values). We do the same procedure for every model that we have and subsequently fit all the models 

on this generated data to create the confusion matrix. 

For parameter recovery we want to know how well the models can retrieve the correct 

parameters from data. This largely follows the same procedure as the confusion matrix where we 

know what we gave as input and can therefore check it with the output, in an ideal situation 

recovering the same parameters as those that we used to generate the data. Similar to the confusion 

matrix we simulate data by pretending the models are participants. Now we keep track of the 

parameters that were used to simulate the data and we only fit the models on their own generated 

data. We visualize the parameter recovery with a scatter plot, where ideally inputted and generated 

parameters fall on a straight line (Figure 2.3A-C). 
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Figure 2.3. Parameter recovery and confusion matrix on three different models. 

a-c) Shows the parameter recovery results from three different models. Models 1 and 2 are exemplary and model 3 

would be acceptable. d) Shows results from the confusion matrix. Again, models 1 and 2 are exemplary. The results 

from model 3 show that this model frequently gets confused with model 1. 
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Resources 

Matlab code for all examples has been uploaded to Github: 

https://github.com/kFrolichs/Thesis/tree/main/2.1-Computational_Models 

 

A Python notebook hosted in Google Colab from a 3-day course on computational modeling we 

taught in the summer of 2022 can be found here: https://tinyurl.com/5n6ep8md 
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2.2 Representational Similarity Analysis 

In this section, I would like to give a short overview of the base ideas of representation similarity 

analysis (RSA). Similar to the previous section the text will be accompanied by MATLAB code 

including toy problems to further illustrate the specific steps in this analysis pipeline. 

Representational Similarity Analysis is a subcategory of multivariate pattern analysis (MVPA). 

MVPA in fMRI makes use of the fact that activity patterns in voxels carry information that can be 

en- and decoded (Haxby et al., 2001). By converting these activity patterns to high-dimensional 

representational vector spaces we can use machine learning methods to define decision boundaries. 

These decision boundaries allow us to answer questions such as what information is represented in 

a specific region i.e., distinct patterns of activity that allow distinctions among brain states (Haxby 

et al., 2014). 

RSA analyzes the similarity between response patterns as distances in the aforementioned 

representational space. That is, it is a statistical technique based on analyzing second-order 

isomorphisms (i.e., similarities). That means instead of directly measuring the relationship between 

two measures it first computes similarity measures within measures and then compares these 

similarities to each other. These distances can be calculated using varying methods such as 

Euclidean, correlation, or Cosine (Walther et al., 2016). Because it relies on these computed 

similarities and not direct measures it is a very flexible analysis that can compare vastly different 

measures (e.g., brain activity and behavior, even between different species) (Kriegeskorte, Mur, & 

Bandettini, 2008). 

In our case we want to find out what knowledge structures are employed by the cortex when 

learning about others personality traits. That is, we want to compare similarities between patterns 

of neural activity with multiple conceptual models - representing different knowledge structures - 

to find which of these structures are represented in the cortical activity patterns. 

 

2.2.1 RSA step-by-step 

In the following sections we will create and analyze a toy dataset. Illustrating some parts of the 

analysis we have performed for study 2. In brief, we want to find-out what personality 

representations are represented in the cortex during personality learning. Specifically, we look at 

two different granularities of the personality representations. First, a coarse representation that only 
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reflects the Big–5 factors that each trait can belong to. Second, a fine representation that represents 

each trait word separately together with its similarities to all the other trait words. Furthermore, we 

will only use correlations as the distance metric but this can easily be substituted by any of the 

other common distance metrics mentioned above. 

 

2.2.1.1 Creating Toy Data - Model & Data RDM 

First, we want to create some artificial data to work with. For the “task”, we will present 50 trait 

words to each participant. These 50 trait words can be subdivided into 5 (Big-5) factors (Goldberg, 

1990; R. R. McCrae & Costa, 1987) and we want the 10 items within the factors to correlate higher 

than between the factors (Figure 2.4A). 

These similarities should be reflected in the model representational dissimilarity matrices 

(RDMs) that we are creating. These are square matrices that compare the dissimilarities between 

items. The dissimilarity is used because this makes more intuitive sense from a distance perspective 

(i.e., a dissimilarity of 0 means “no distance” and thus “the same”, whereas a similarity of 1, which 

carries the same meaning, does not give this intuitive advantage). The coarse model (Figure 2.4B), 

which consists of zeros and ones, only takes into account what factor the trait word is part of. In 

the perspective of our RSA analysis this means that we expect the activity patterns within factors 

to be very similar (i.e., 0’s: no distance) and between factors very dissimilar (i.e., 1’s: maximum 

distance). The fine model in this case is the previously created correlation matrix subtracted from 

1 to create a dissimilarity matrix (Figure 2.4C). 

These model RDMs are our hypotheses i.e., these are the expectations we have for the 

patterns of activity in the cortex. We will compare these model RDMs with the data RDMs to see 

which of these models can describe the data well. 

The final step in creating artificial data is to create the neural activity patterns. We will keep 

it very simple and will not add any noise specific to fMRI outside of some normally distributed 

random noise. The activity patterns of some of these neurons are displayed and already show some 

overlap between neurons for some factors (Figure 2.4D). 

 

2.2.1.3 Calculate data RDM’s 

To calculate the data RDMs we first need to calculate beta maps using a standard general linear 

model (GLM). This would normally also correct for the many variations of noise present in fMRI 
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data (e.g., movement). Our data is kept pretty clean though so we will only include an intercept 

and a single regressor for each stimulus separately for our GLM. This GLM will return a beta map 

for each stimulus. That is, the corrected activity for each voxel for each stimulus. From these beta 

maps we can calculate the representational space of how this region of cortex responds to each 

image (Figure 2.4E). That is, each value within the data RDM represents the correlation between 

activity patterns for two stimuli. For example, we would expect that the activity patterns of two 

trait words that are more related such as generous and kind are more correlated than the activity 

patterns of two unrelated trait words such as generous and diligent. 

 Usually this is not done for the whole brain but rather within a region of interest (ROI), you 

specify beforehand what regions of the brain you are interested in and only look at the voxels within 

this specific area. So look at a specific ROI, take only the voxels from within this ROI and calculate 

the RDM from here. 

 

2.2.1.4 Calculate model and data similarities 

Now that we have both the data (Figure 2.4E) and model RDMs (Figure 2.4B,C) (and they have 

the same shape i.e., square matrices the size of the number of stimuli) we can calculate if the brain 

might process information like we expected based on the model RDMs. To compare these RDMs 

(the data RDM with each of the model RDMs) we calculate the Spearman’s correlation coefficient. 

We use Spearman over Pearson’s coefficient because the stimuli might not have linear 

relationships. Other methods for determining the similarity between RDMs are Kendall’s Tau alpha 

(Walther et al., 2016) or permutation testing (Dimsdale-Zucker & Ranganath, 2018; Etzel & 

Braver, 2013). But since the Spearman correlation is native in Matlab we will use that for 

simplicity’s sake. After receiving the correlation coefficients we standardize the coefficients using 

a Fisher’s F-to-z transformation. These standardized values will then be subjected to a one-sample 

t-test (over participants) (Figure 2.4F-H). 

 

2.2.1.5 Searchlight analysis 

Another option is to use a searchlight, this is when one creates a specific shape (usually a sphere) 

and moves it through the brain. At each position you calculate the RDM from that specific set of 

voxels and compare it with one (or more) model RDM(s) using any of the above-mentioned 

distance metrics, this value gets assigned to the center voxel of the sphere. This way, you create a 
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whole brain map where each voxel is a correlation coefficient with regard to a specific model RDM. 

This brain map then reflects where in the cortex (if anywhere) patterns of activity correlate with 

the tested model RDM. 

 

 
Figure 2.4. Overview of some of the main components of an RSA analysis. 

All data represented in this figure is simulated for illustrative purposes. 

a) The similarity matrix that was simulated for this figure. Items within a factor are more correlated than between. b) 

The coarse RDM assumes that activity patterns from items within a factor are exactly the same and the patterns between 

factors completely dissimilar. c) The fine RDM is like the similarity matrix (a) but then subtracted from 1 to create a 

dissimilarity matrix. d) Some selected neurons’ activity patterns. These neurons show similar activity for the items 10-

20. The gray patch highlights the different factors. e) The data RDM we calculated from our data. There is a very clear 

pattern here that normally would not be so obvious. f) Results from the comparison between the data RDM and three 

model RDMs. We normally would use a one-sample t-test compared to 0 to test for significance. First, a model RDM 
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with random numbers, shows low to no correlations as expected. The coarse model explains the data very well. This 

is of course expected from our simulated data with very little noise. Similarly to the coarse model, the fine model also 

explains the data well. These results would lead us to conclude that both the coarse and fine model explain patterns of 

activity significantly well in this data. 

 

Resources 

Code examples, and all the code for the figures can be found on Github: 

https://github.com/kFrolichs/Thesis/tree/main/2.2-Representational_Similarity_Analysis 
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2.3 Grid-Cell Analysis 

In the 50s, Tolman (Tolman, 1948) suggested that rats might possess something like a cognitive 

map of their environment. He hypothesized this because rats showed latent learning (i.e., learned 

about an arena even when not directly interacting with everything). Later, work by O’Keefe and 

Nadel (O’Keefe & Nadel, 1978) suggested that this could take place in the hippocampus by so-

called place cells. These place cells were named for their property of firing only in a specific 

location in the arena. Later work using single cell recordings from the rat entorhinal cortex as they 

were exploring an arena (Hafting et al., 2005). Found grid cells that showed activity in a grid like 

fashion, tiling the floor in hexagonal patterns. Concrete evidence for human grid-cells came from 

invasive recordings during virtual arena walking (Jacobs et al., 2013), this was after a method was 

developed that allowed the search for grid-like activity using fMRI also when engaged in virtual 

arena walking (Doeller et al., 2010). Since humans not only navigate actual space but also 

conceptual spaces, this was explored next (Constantinescu et al., 2016). Since then there has been 

a steady supply of evidence for grid-like activity in several domains (Bellmund et al., 2016; Nau 

et al., 2018; Park et al., 2021). In this primer I will focus on explaining the original methods used 

to find grid-like activity using fMRI. 

We can find grid-cells with fMRI because of two main reasons. First, the orientation of the 

grid-cells seems to be constant across cells. The second reason has to do with the so-called 

conjunctive cells. These show modulation of their activity based on the direction in which one is 

moving. Because of this there are noticeable changes in activity patterns based on whether one is 

aligned (i.e., hitting the cells consistently) or misaligned with the grid (not hitting the cells 

consistently) (Figure 2.5A,B). 

However, the origin (grid angle) is different for everyone, so we first have to determine that 

before we can look for the grid-like activity in the cortex. In this short primer I will only look at 

the main fMRI analysis that we used in our project. 

 

2.3.2 Grid-Cells in fMRI data step-by-step 
The scanner task should have some form of movement (i.e., real or conceptual). If there is grid-

like coding, movement through this space will evoke it. The activity will depend on the angle the 
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movement is in relative to the arena. That is, we expect differences in response magnitude based 

on the angle of the movement. 

The normal analysis procedure is to split the data in two. With the first half of the data we 

find the individual grid-angle of each participant (i.e., the baseline 0° angle that is different for each 

person). We then use the second half of the data to confirm the accuracy of this grid-angle. This 

procedure is done with two separate GLMs explained in further detail below. But first we will 

generate some data that has activity patterns that reflect grid-like coding. 

 

2.3.2.1 Create toy data 

We want to create artificial neural data that reflects grid-like coding. That is, a signal that has 6 

peaks spaced at equal intervals (i.e., every 60°) (Figure 2.5A, B). In our case we will give it a peak 

angle of -8° so we can see if our next analysis steps correctly return this peak angle (Figure 2.6A). 

Figure 2.6B shows the same pattern as in A. This was added to show that it contains the same (type 

of) information as the design matrix. Normally the exact angle for these peaks differs for each 

person, it is thus important to know we can accurately estimate it. We attempt to find this peak 

angle with the first GLM. 

 

 
Figure 2.5. Grid-like coding. 
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a) the grid-cell as white dots tiling the arena. The overlaid colors indicate whether one would be aligned with the grid 

(red) or misaligned (blue). b) the black line indicates what the potential activity could look like for running aligned vs 

misaligned. 

 

2.3.2.2 First GLM - determining the grid-angle 

We attempt to find the individual grid angle by creating two parametrically modulated regressors. 

These parametric modulators contain the sine or cosine for the angle of each specific trial (𝜃௧) 

respectively [𝑠𝑖𝑛(6 ⋅ 𝜃௧) and 𝑐𝑜𝑠(6 ⋅ 𝜃௧)]. We multiply times six because we expect the signal to 

be sixfold. That is, have six peaks in the data. Since sine and cosine are orthogonal we can create 

any signal by combining these two. We create a design matrix with the sine and cosine of the trial 

angles together with an intercept (Figure 2.6C) and calculate the resulting betas with a standard 

GLM. From these beta’s we can calculate the personal grid angle 𝜑 with the following formula: 

𝑎𝑟𝑐𝑡𝑎𝑛(𝛽௦௜௡ + 𝛽௖௢௦)/6. In this case it returns a 𝜑 of -8.3246°, which is very similar to the angle 

used to create the data (Figure 2.6D). This indicates that our first analysis functioned as intended. 

 

 
Figure 2.6. Grid-like coding and first GLM to find the personal grid-angle. 
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a) The neuronal activity pattern that we simulated has a phase shift of -8°. That is, it has peaks at 52°, 112° and the 

following intervals of 60°. b) Shows the pattern in (c) in a different view that’s more alike that of the design matrix. 

c) The design matrix consists of an intercept (white) and two parametrically modulated regressors one for each the sine 

and cosine of the trial angles. d) From the beta’s we receive for the two parametrically modulated regressors we can 

calculate this participants’ individual grid-angle. This grid-angle is calculated to be -8.3246° which is pretty close to 

our original -8°, indicating that our methods worked successfully. 

 

2.3.2.3 Second GLM - Consistency check 

Now that we have the personal grid-angle we can check if we find this same angle on the second 

half of the data. There are a number of methods of doing this and I will highlight three related 

analyses. 

In method one we create two regressors, one regressor contains the aligned and the other 

the misaligned trials (Figure 2.5A,B). Whether a trial is aligned or misaligned is determined by 

taking the participants’ unique grid-angle calculated in the first GLM and adding ± 15° (i.e., a bin 

of 30° for both aligned and misaligned trials, together making up 1/6th (60°) of the available 

movement angles). These angles along with the 60° multiples will be the aligned trials (Figure 

2.5A, red patches), the other trials will be the misaligned trials (Figure 2.5A, blue patches). In our 

example the trials are ordered from 1°-360° which creates a checkered pattern in the design matrix 

(Figure 2.7A). Figure 2.7B shows how these two regressors function in an ideal situation on the 

neural data, resulting in very clear evidence for grid-like activity in Figure 2.7C. 

In the second method we will take the same steps as in the first method. That is, determine 

which trials are aligned and which misaligned based on the participants’ unique grid-angle. 

However, instead of lumping all aligned and misaligned trials together we keep them separated. 

This results in 12 regressors (6 aligned and 6 misaligned) (Figure 2.7D,E). Figure 2.7C, shows 

how results would look from near perfect data, in reality it will be a lot more noisy. 

In the third method we will create one parametrically modulated regressor with values 

based on the grid-angle (𝜑) from the first GLM along with every trial angle (𝜃௧): 𝑐𝑜𝑠(6 ⋅ [𝜃௧ −

𝜑]). That is, if we calculated the grid-angle correctly and the grid-angle is consistent among the 

data this regressor will mirror the neural data (Figure 2.7H). A higher value for this regressor thus 

indicates a better fit (Figure 2.7I). 
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Figure 2.7. Results from GLM 2 for different regressors 

There are a couple of standard analyses that one can do. Here we highlight three related but slightly different methods. 

a-c) Show the process of creating two regressors: one for the aligned trials and the other for the misaligned trials. d-f) 

We treat every possible movement direction for aligned and misaligned as a separate regressor. Resulting in 12 total 

regressors. g-i) Create one parametric modulator that fits the data based on the pattern it is supposed to show based on 

the grid-angle. 
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Resources 

Github: https://github.com/kFrolichs/Thesis/tree/main/2.3-Grid-Code_Analysis 
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3.    Study 1 - Finding social knowledge 

structures using computational models 

3.1 Introduction and Hypotheses 

In this first study we aimed to elucidate what strategies humans use when learning about others’ 

personalities. Strategies are meant here as the largely unconscious processes at play during learning 

(Lockwood & Klein-Flügge, 2020). We use Rescorla-Wagner models (Rescorla & Wagner, 1972), 

that are a subset of general reinforcement learning (RL) models (Dayan & Niv, 2008; Dunne & 

O’Doherty, 2013; Joiner et al., 2017a; Niv & Langdon, 2016), as the foundation of the learning 

processes we aimed to unravel (see chapter 2.1 for a light introduction to these models). 

However, it is clear that these models alone do not suffice in explaining any social learning 

process. Social learning is fast and intuitive, for example, when you see someone being mean you're 

quick to paint a picture of this person as not just being unkind but also as possessing other 

unfavorable traits. Sometimes we do not even need to see someone’s behavior but just know that 

they are part of a specific group we have preconceptions about i.e., stereotypes (Kang et al., 2021; 

Mayer & Bower, 1986), to have an idea about their personality. The simple RW-rule cannot explain 

these more complex processes. Therefore we expanded on these models with knowledge structures. 

These knowledge structures are specific ways of representing information used during personality 

learning. 

Research in personality established a multi-dimensional structure to human personality 

traits (Goldberg, 1990; R. McCrae & Costa Jr., 2008). Most commonly five independent 

dimensions are found. These so-called Big-5 factors (neuroticism, extraversion, openness to 

experience, agreeableness, and conscientiousness) can be used to describe people’s personalities 

across the world (R. R. McCrae et al., 1999; Wiggins & Trapnell, 1997). Furthermore, people have 

been shown capable of abstracting from concrete examples to more general personality traits and 

the relations between them (Klein et al., 1992). 

In this study, we want to find out if humans use these multi-dimensional structures during 

personality learning. We construct two knowledge structures that capture different granularities of 

these structures and add them to standard RW models (Figure 3.2A). This granularity reflected the 
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detail with which humans can represent others’ personalities. First, coarse grained means 

participants only take the factors of the Big-5 into account i.e., they only keep track of 5 values, 

each for one factor of the Big-5. Second, fine granularity meant looking at trait words individually 

but also their relatedness with the other trait words. That is, participants not only update the current 

trait word they are learning about but also all the other trait words based on how related (i.e., 

correlated) they are to the current trait word. For example, “this person seems nice. I also expect 

them to be generous and kind (because these are related to nice) and not aggressive”. 

Another knowledge structure we wanted to capture was that of previously acquired 

knowledge or preconceptions. We named this knowledge structure Reference Point (RP), where 

the RPs are average expected values that one expects the person who is being learned about to 

possess. For example, “this person seems nice. I also expect them to be generous and kind and not 

aggressive”. 

We expect that both the granularity and the reference point knowledge structures underlie 

human personality learning. Where different granularities are used based on the circumstances in 

which the learners find themselves. For example, when information is sparse during learning, using 

coarse granular representation is a better use of resources than an unnecessary fine grained 

representation. In five different experiments we tested multiple variations of RW-models combined 

with the above mentioned knowledge structures. These models were compared to participant data 

to find what strategies might underlie human personality learning. Next to our main method of 

model comparison, we also conducted standard statistical analyses (e.g., regressions and 

correlations), model simulation and model validation to further support our findings. 

 

  



46 
 

3.2 Methods 

3.2.1 Participants and task 

In this study we conducted 5 experiments, each with the aim of elucidating a specific component 

of our computational models. All experiments were conducted in accordance with the declaration 

of Helsinki and approved by the local ethics committee (Ethik–Kommission der Ärtzekammer 

Hamburg, Number: PV5746). Participants gave written informed consent and were compensated 

the regular hourly fee. All experiments were of equal length taking approximately 30 minutes each. 

Experiments 1-3 were conducted on independent samples, whereas experiments 4 and 5 were tested 

on the same sample during the same session. Participants were only allowed to partake in one of 

the experiments 1-3 or the combination 4 and 5, and had to meet the following inclusion criteria: 

(1) age between 18 and 40 years, (2) German native speakers, (3) normal or corrected to normal 

vision, and (4) no history of neurological or psychiatric disorders. More participant details can be 

found in supplementary table 9.4.  Experiments 4 and 5 were preregistered on the open science 

framework (OSF) (https://osf.io/8r6gv). 

 All experiments had the same task but differed in their content (trait words and profiles).  

In each experiment participants were asked to learn about 4 or 5 profiles, these profiles were either 

from independent self-ratings or constructed (see supplementary table 9.5). All participants were 

told was that the profiles were from a real person they had never met before. Learning happened 

on one profile at a time and profiles were counterbalanced between participants. For each profile 

participants saw 50 or 60 trials (depending on the experiment) in random order. Each trial started 

with a trait word (e.g., diligent), participants had four seconds to rate (on a scale of 1-8) what self-

rating this particular profile had given themselves. After this rating phase they received immediate 

feedback about the actual self-rating for two seconds duration (Figure 1). This meant we expected 

participants to learn over time. After the learning task, participants were asked to give their own 

self-ratings on the same items as the ones used for the profiles they learned about. 

 As mentioned each experiment was slightly different from the previous to understand 

specific parts of each computational model. Experiment one was conducted on 4 real profiles, with 

60 items in accordance with the Big-5. This experiment was used as a baseline for our models. In 

experiment two we wanted to test whether people would change their granularity if information 

got more sparse. Therefore we constructed profiles to have, on average, equal trait ratings but 
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without the similarities between items (i.e., the correlations originally found between items in 

behavioral data were absent from these profiles). Furthermore, only trait words from the factors 

agreeableness and conscientiousness were included. In experiment three, we again used real 

profiles but now, like experiment two, also using only trait words from the two Big-5 factors 

agreeableness and conscientiousness. In experiment four, we wanted to test the reference point in 

our models. To do so we changed the population of the profiles we tested from students to fashion 

models, expecting that participants would change their reference points to a more stereotypical one 

for the fashion models. Finally, in experiment five we wanted to test our models on a different set 

of items, to see if they were robust to this change. We therefore changed our stimuli from 60 trait 

words to 50 trait sentences taken from the German translation of the International Personality Item 

Pool (IPIP). 

 
Figure 3.1. Overview of the experiment tasks. 

In this study, we tested computational models of how humans learn about others. In five distinct experiments 

participants performed a social learning task on several profiles of other persons (with every profile being presented 

in a separate run). General overview of the learning task: Two trials for Experiment 1 (left) and Experiment 5 (right) 

are shown. During the learning task, participants estimated which self-ratings a person (here called profile) had given 

for specific traits (on a Likert scale from 1 does not apply at all to 8 does apply very much). After each estimate, 

participants received direct feedback in the form of the actual self-rating of that person. This process continued for all 

traits (in random order). 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 
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3.2.2 Statistical Analysis 

We performed some standard statistical analyses to test whether participants were learning over 

time and what information they were using during learning. First, we calculated if there was a 

decrease of the average prediction error over time (i.e., an indication of learning). First, the average 

of the absolute PE per profile per trial was calculated. We then calculated the Pearson correlation 

coefficient on these averages together with the trial number to determine whether there was a 

decrease over time. That is, a negative correlation indicates an overall decrease of the PE over time. 

The same procedure was applied to real as well as simulated data. 

 Furthermore, we performed a GLM with three distinct regressors on the prediction errors. 

Each regressor represented a distinct property of our computational models. Briefly, these 

regressors were: 1) total number of previous trials seen for each item, (this assesses the relationship 

between the decrease of the PEs and the number of items seen previously and thus represents 

learning in the standard Rescorla-Wagner model), 2) total number of previous trials that are from 

the same factor as the current item (this assesses the relationship between the decrease of PEs and 

the number of items encountered from a specific factor and thus investigates the behavior captured 

by the coarse granularity models), 3) the summed absolute correlations of the previous items with 

the current item (this assesses the fine granularity models where the information content of all the 

previous items is weighted by their correlation to the current item). In a second-level analysis, 

participants’ individual parameter estimates were subjected to a one-sided one-sample t-test to test 

if the slope was significantly different from zero in the negative direction (indicating a decrease of 

the absolute PE over time). 
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Figure 3.2. Overview of the models and knowledge structures 

To explore participants’ behavior we constructed five main computational models that made use of two main 

knowledge structures: Reference Points (RPs) and Granularity (G). a) The Reference Points represent what participants 

can use as a basis for estimating an average person (shown is a selection of student personality trait averages). 

Participants can use these RPs on each trait to compare this average rating with their current estimate for a specific 

person. Traits are ordered based on the Big-5 Factors (different shades of gray). Granularity (G) refers to the level of 

detail in the represented structure of others’ personality traits. The granularity matrix generalizes the PEs across similar 

items in two distinct ways: for coarse granularity it generalizes per Big-5 factor, and for fine granularity it updates 

every individual trait based on how correlated they are to the current trait. b) Using both RPs and granularity the 

models can be divided into three sets, which are depicted in three different colors. First, No Learning (blue), consists 

of a single regression model, Model 1 [No Learning] that functions as a baseline model. Second, Coarse Granularity 

(pink), updates based on the (Big-5) factor to which the current adjective belongs. Model 2 [Coarse Granularity] uses 

the standard Rescorla–Wagner (RW) function to update the factor estimates and Model 3 [Coarse Granularity & 

Population RP] combines Model 2 with information from the RP. Third, Fine Granularity (orange), consists of two 

models that update all adjectives based on their correlation with the current trait. Model 4 [Fine Granularity] updates 
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all items according to the Fine Granularity and Model 5 [Fine Granularity & Population RP] combines model 4 with 

information from the RP (see Supplementary Fig. 1 for details on the models).  

P prediction, Int intercept, RP reference point, α learning rate, PE prediction error, γ weighting parameter, F 

(generalizes over Factor) coarse granularity, All (generalizes over All items) fine granularity, SIM similarity matrix. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 

 

3.2.3 Computational Models 

We created several computational models based on the Rescorla-Wagner learning rule (see chapter 

2.1 for a more detailed explanation together with code examples). These models made use of two 

knowledge structures, first, granularity represented the level of detail with which one represents 

the data (Figure 2A, middle and right). For this we constructed two levels of detail, coarse 

granularity, which only takes into account the levels of the Big-5 factors. That is, instead of tracking 

each trait word, it tracks the factors the trait word belongs to. Fine granularity, tracks each trait 

word separately and updates all trait words based on their correlation to the current trait word (e.g., 

if you learn someone is more generous than expected you will most likely also update how kind 

you expect them to be). The second knowledge structure was named reference point and represents 

prior knowledge one might have about (groups of) people (e.g., most people already have an idea 

of what the average student will be like and thus start with some expectations) (Figure 2A, left). 

We combined these knowledge structures with the RW-rule to create 5 distinct models. 

 

Model 1, was created as a baseline model that represented No Learning. This was simply a linear 

regression on the reference points, where 𝑏଴ represents the intercept and 𝑏ଵ the slope. 

𝑃 =  𝑅𝑃 × 𝑏ଵ + 𝑏଴   (6) 

 

Model 2, uses only the coarse granularity during learning. That is, it updates an average factor 

value for each of the 5 factors trait words can belong to. This model uses two free parameters, the 

first, 𝛼, is the learning rate [0-1] and the second, 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒, determined the value at which 

each factor was initialized [1-8] (the starting value cannot be found in the equation). 

𝑃(௧ାଵ,ி) =  𝑃(௧,ி) +  𝛼 × 𝑃𝐸  (7) 
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Model 3, combines the coarse granularity from model 2 with the reference points. That is, it updates 

its learning like model 2 but also adds information based on the reference points i.e., each item is 

updated based on the factor average but part of the trait word value is determined by the reference 

point. How much is relied on the learning from model 2 and how much based on the reference 

point is determined by the weighting parameter 𝛾 [0-1], Like model 2 it also uses the 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 and 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒. 

𝑃(௧ାଵ,ி) = 𝛾 × 𝑅𝑃 + (1 − 𝛾) × (𝑃(௧,ி) + 𝛼 × 𝑃𝐸)  (8) 

 

Model 4, uses only the fine granularity during learning. That is, it updates each trait word based 

on how correlated they are to the current trait word. The correlations between items (similarity) 

was calculated from a separate sample. This model has two free parameters, 𝛼, that determines the 

learning rate and 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 that initializes all items at the beginning of learning. 

𝑃(௧ାଵ,஺௟௟) = 𝑃(௧,஺௟௟) +  𝛼 × 𝑃𝐸 × 𝑆𝐼𝑀  (9) 

 

Model 5, combines the fine granularity from model 4 with the reference point, in a similar way to 

model 3. That is, it uses the weighting parameter 𝛾 to determine how much of model 4 is used and 

how much to rely on the reference point. Like model 4, this model also uses the free parameters 𝛼 

and 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒. 

𝑃(௧ାଵ,஺௟௟) = 𝛾 × 𝑅𝑃 +  (1 − 𝛾) × (𝑃(௧,஺௟௟) +  𝛼 × 𝑃𝐸 × 𝑆𝐼𝑀)  (10) 

 

3.2.2.1 Additional Models 

Our standard models use the average of a student population as the RP. For experiment 4 we added 

three additional models that use a stereotypic RP based on expected self-ratings from fashion 

models. These models are functionally the same as models 1, 3, and 5 except for the stereotypic 

RP (𝑆𝑇𝐸). 

Model 1-STE:  𝑃 =  𝑆𝑇𝐸 × 𝑏ଵ + 𝑏଴       (11) 

Model 3-STE: 𝑃(௧ାଵ,ி) = 𝛾 × 𝑆𝑇𝐸 + (1 − 𝛾) × (𝑃(௧,ி) + 𝛼 × 𝑃𝐸)    (12) 

Model 5-STE: 𝑃(௧ାଵ,஺௟௟) = 𝛾 × 𝑆𝑇𝐸 +  (1 − 𝛾) × (𝑃(௧,஺௟௟) +  𝛼 × 𝑃𝐸 × 𝑆𝐼𝑀)  (13) 
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Similar to the use of the stereotypic RP we created 3 models that use participants’ self-ratings as 

the RP (𝑆𝐸𝐿𝐹). 

 

Model 1-SELF:  𝑃 =  𝑆𝐸𝐿𝐹 × 𝑏ଵ +  𝑏଴       (14) 

Model 3-SELF: 𝑃(௧ାଵ,ி) = 𝛾 × 𝑆𝐸𝐿𝐹 + (1 − 𝛾) × (𝑃(௧,ி) + 𝛼 × 𝑃𝐸)   (15) 

Model 5-SELF: 𝑃(௧ାଵ,஺௟௟) = 𝛾 × 𝑆𝐸𝐿𝐹 +  (1 − 𝛾) × (𝑃(௧,஺௟௟) +  𝛼 × 𝑃𝐸 × 𝑆𝐼𝑀)  (16) 

 

To explore whether participants learned differently from positive and negative feedback we created 

models that use two free parameters for the learning rate. One for positive feedback (i.e., where the 

participants’ estimate was too low) and the other for negative feedback (i.e., where the participants’ 

estimate was too high). All models, except for model 1 (which does not update via the learning 

rate), were adapted to use these two learning rates. 

 

𝛼 = 𝛼ି𝑖𝑓 𝑃𝐸 < 0  (17) 

𝛼 = 𝛼ା𝑖𝑓 𝑃𝐸 ≥ 0  (18) 

 

3.2.4 Model Fitting and Comparison 

Model fit was determined with the sum of squared errors (SSE), all models were initialized with 

their free parameters at the midpoint of their respective boundaries. Optimal parameters were 

searched using the non-linear Nelder-Mead simplex search algorithm (implemented as fminsearch 

in MATLAB), to minimize the SSE. To fairly compare models based on the lowest SSE achieved 

we used the Bayesian Information Criterion (BIC). This BIC punishes models for their complexity 

(i.e., number of free parameters). Because more complex models can achieve better fits purely 

through this complexity. 

 

𝑆𝑆𝐸 =  ∑ (𝑂𝑢𝑡𝑐𝑜𝑚𝑒௜ − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛௜)ଶ௡
௜ୀଵ    (19) 

𝐵𝐼𝐶 =  𝑛 × 𝑙𝑛(
ௌௌா

௡
) + 𝑘 × 𝑙𝑛(𝑛)    (20) 

 

Where n is the number of trials and k the number of free parameters. Models were compared using 

fixed-effect analysis using the log-group Bayes factor. That is, the BIC scores across all participants 

are summed for each model separately and then subtracted from the worst scoring model, the best 
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model has the lowest score and is thus chosen as best at explaining the data it was fit to. For random-

effects analysis we calculated the posterior exceedance probability. This comparison was 

performed using the Bayesian Model Selection (BMS) procedure implemented in the MATLAB 

toolbox SPM12 (http://www.fil.ion.ucl.ac.uk/spm/; spm_BMS). 

 

Best Performing Models 

Regular model fitting procedures fit the models to participants’ data. This provides information on 

participants’ behavior, that is, the models give us an insight into the strategies that the participants 

are using. However, we can also look at the models themselves and find which of these strategies 

is best for the task at hand. We do this by fitting the models on the same task as the participants 

and then evaluate how well they perform. Ideally, this best performing model is the same as the 

model that fits participants data best, indicating that participants use the best strategy (out of those 

that we test). 

 

3.2.5 Model Checks 

Confusion Matrices 

Model comparison wants to compare models that are different from each other. That is, exhibit 

different behavior when fit on the data. This allows us to determine what strategies participants 

likely use. This is all performed around the assumption that models are different from each other, 

but also exhibit different behavior. The confusion matrix tests this assumption. To do so, we first 

simulate data with each of the models and subsequently fit all models on this simulated data. 

Ideally, the models that were used to create the data will also fit that data best. If this is not the case 

(i.e., there is confusion) we have to take models out of our sample or adapt them to avoid confusion. 

We calculated a confusion matrix for every experiment separately. First we randomly drew 200 

parameter values for each model to simulate data with. The parameter values were always between 

the values [0.2 0.8]. These values were chosen because the complex models  were based on simpler 

models who’s use within these models depended on a weighting parameter. A weighting parameter 

at one of the extremes [0 or 1] would mean a simpler model would be used, thus causing confusion. 

After creating the simulated data we added random normally distributed noise and all models were 

fit on this simulated data. Ideally the model that simulated data is also the best  fitting model thus 

resulting in an identity matrix. 
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Parameter Recovery 

One of the goals of the model fitting procedure is to find the parameter values coupled to the 

strategies (i.e., models) from the participants’ data. To make sure that the parameter values we find 

in our modeling procedure are also the ones used to create this data, we use parameter recovery. 

We therefore simulate data with known parameters and recover these with the normal fitting 

procedure. Ideally, the fitted parameters (i.e., output) match the inputted parameters, this would 

mean the parameters get recovered accurately. 

In a similar vein to the confusion matrix, we simulate data 200 times with randomly 

sampled parameters between [0 1] and add noise drawn from the normal distribution. After this we 

fit all models on their simulated data and compare the actual parameters with the retrieved 

parameters. In an ideal situation one would retrieve the parameters with a perfect correlation to the 

ones used to simulate the data. 
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3.3 Results 

Results from all five experiments will be described separately. Each experiment built on the 

previous.  

3.3.1 Experiment One 

In the first experiment we wanted to set a baseline for the other experiments. We therefore tested 

our models on regular data i.e., 60 trait words spread over five factors, for four different profiles 

that were based on real self-ratings. Using standard statistics we found that participants learned 

over time. That is, a Pearson correlation of the average absolute prediction error and the trial 

number was negative indicating learning (r(58) = −0.523, p < 0.001). The same analysis on 

simulated data indicated similar learning (r(58) = −0.563, p < 0.001) (Figure 3C). 

Further evidence of learning came from a GLM with three regressors each aimed at a 

specific part of our models. For this GLM, the third regressor (summed absolute correlations) was 

significant (t(34) = −1.7109, p = 0.0481), showing participants’ use of similarities between traits. 

Results from model comparison showed that model 5 (Fine Granularity and Population RP), 

was the winning mode (Figure 3A)l. Further cementing our belief that participants use trait 

similarities together with the RP during learning. Model comparison of simulated data showed 

model 5 to be the best performing model i.e., out of the 5 possible models this was the most optimal 

model to use for this task (Figure 3B). 

Having gathered some evidence for participants’ use of the fine granularity, we 

hypothesized they would switch to coarser granularity when presented with less informative 

profiles. This was investigated in experiment two. 
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Figure 3.3. Overview of the main analyses for experiment 1. 

In this experiment, participants learned about the personalities of four strangers. Results indicate that participants used 

fine-grained correlation structures during learning. a) Model comparison results using fixed-effects analysis (losing 

model as reference) indicate Model 5 [Fine Granularity (FG) & Population Reference Point (RP)] as the best fitting 

model (n = 35). b) Simulated data (n = 35), the best performing model indicates which of the models performs the task 

most optimally. The best performing model (Model 5) demonstrates that participants used the best strategy. c) A 

decrease of the prediction errors (PEs) over time can be interpreted as learning. Both plots display the average absolute 

PEs over time ± SEM. We calculated a pairwise Pearson correlation between trial number and the mean absolute PEs 

to determine if the PEs decrease over time. Top) Participants’ data shows a decrease in the PEs over time (ρ:−0.523, 

least squares line (red)). Bottom) Simulated data using Model 5 shows a similar decrease in PEs over time (ρ: −0.563). 

d) General linear model (GLM) on three core model features: (1) Rescorla–Wagner RL, 2) coarse models, and 3) fine 

models that predict the accuracy per trial per participant. Only the third regressors was significant (n = 35), indicating 

participants’ use of fine granularity: (one-sided t-test) regressor 1: t(34) = 0.927, p = 0.8198, regressor 2: 

t(34) = 1.2915, p = 0.8974, regressor 3: t(34) = −1.7109, p = 0.0481.  
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Individual data points are participants’ parameter estimates which are summarized by boxplots (median (middle line), 

25th, and 75th percentile (box), the whiskers extend to most extreme data points not considered outliers (1.5 times 

interquartile range), outliers are indicated with + signs). Conclusions based on this GLM should take into account that 

all three regressors are highly correlated (ρ between 0.76 and 0.92). [One-sided t-test; * indicates p < 0.05, ** indicates 

p < 0.001, no correction for multiple comparisons]. CG coarse granularity, FG fine granularity, RP reference point, # 

number of, PEs prediction errors, SEM standard error of the mean, LSLine least squares line. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 

 

3.3.2 Experiment Two 

In the second experiment we presented participants with constructed profiles. That is we kept 

everything the same but instead of using profiles with real self-ratings we created them. 

Importantly, these constructed ratings still had the same mean and standard deviation as the real 

factor ratings but the similarities inherent in real ratings were absent. Like experiment one, 

participants were asked to rate four profiles on 60 trait words, however the number of factors was 

decreased to two (agreeableness and conscientiousness). 

 A Pearson correlation coefficient of the absolute PE and the trial number was negative, this 

decrease over time indicated learning r(58) = -0.564, p<0.001 (Figure 4C). Model simulations also 

showed a decrease over time (r(58) = −0.489, p < 0.001). 

Next we calculated a GLM with three regressors that showed participants’ use of both coarse and 

fine granularities as well as learning over trials (Figure 4D). 

Results from model comparison confirmed our hypothesis that participants would use a coarser 

granularity during learning i.e., Model 3 [Coarse Granularity and Population RP] was the best 

fitting model for both fixed- and random-effects analyses. Model simulations found Model 2 

[Coarse Granularity] to be the best performing model, indicating that participants could have 

improved their performance if they would not have used the reference point. 

 In this experiment we not only changed the profiles from real self-ratings to constructed but 

we also used less factors. To make sure this narrower item set was not the cause of participants’ 

change in strategy we conducted a third experiment with real self-ratings on two factors. 
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Figure 3.4. Overview of the main analyses for experiment 2. 

In this experiment participants learned about artificial profiles which did not have the trait similarity structures. Results 

indicate that participants use a coarse granularity structure when less social information is present. a) Model 3 [Coarse 

Granularity & Population RP] is the best fitting model (n = 41). This model uses the average population as a reference 

point and coarse granularity for generalization. b) Simulated data for the best performing model (n = 41). Unlike 

participants’ data, Model 2 [Coarse Granularity] was the best performing model, demonstrating that participants could 

have used a more optimal strategy. c) Both plots display the average absolute PEs over time ± SEM. Top) Participants’ 

data shows a decrease in the PEs over time (ρ:−0.546, least squares line, red), this indicates participants were learning 

over time. Bottom) simulated data from the best fitting model (Model 3) shows a similar decrease in PEs over time, 

indicating that the models learned in a similar way to participants. d) All three regressors (representing: 1 RW learning, 

2 Coarse granularity, 3 Fine granularity), were significant (one-sided t-test), regressor 1: t(40) = −5.4617, p < 0.001, 

regressor 2: t(40) = −5.7377, p < 0.001, regressor 3: t(40) = −7.7059, p < 0.001, indicating that participants (n = 41) 

learned over time but also made use of both coarse and fine granularity. However, these regressors were correlated and 

conclusions regarding this GLM should thus be drawn with caution. Participants’ parameter estimates (for each 
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regressor) are indicating by the individual data points, which are summarized by the adjacent boxplots of the same 

color. 

The boxplots indicate the median (middle line), and the box is formed by the 25th, and 75th percentile. The whiskers 

extend to most extreme data points not considered outliers (1.5 times interquartile range), outliers are indicated with + 

signs. [One-sided t-test; * indicates p < 0.05, ** indicates p < 0.001, no correction for multiple comparisons]. CG coarse 

granularity, FG fine granularity, RP reference point, # number of, PEs prediction errors, SEM standard error of the 

mean, LSLine least squares line. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 

 

3.3.3 Experiment Three 

Experiment 3 combined parts from both previous experiments, like experiment one, it used real 

self-ratings. However, like experiment two, these items were on only two factors (agreeableness 

and conscientiousness). Like both experiments each of the four profiles consisted of 60 trait words 

(30 for each factor). We hypothesized that with these real self-ratings participants would once again 

use the fine granularity. 

 First, we calculated the Pearson correlation coefficient for the trial number and absolute 

PE. This revealed a negative correlation (r(58)=-0.42,p<0.001, Figure 5C top) which indicates 

participants learned over time. Similarly, the Pearson correlation for trial number and the absolute 

PE for simulated data was negative (r(58) = −0.764, p < 0.001, Figure 5C bottom). This indicates 

the simulations captured some of this learning. 

Next, a GLM with three regressors that each capture an important part of our models found all 

three regressors to be significant, showing participants learned over time but also used both coarse 

and fine granularity during learning (Figure 5D). 

Model comparison confirmed our hypothesis, both fixed- and random-effect analyses showed 

Model 5 [Fine Granularity & Population RP] to be the best fitting model (Figure 5A). Model 

simulations showed that Model 5 was also the best performing model of the models in our set 

(Figure 5B). 

 The first three experiments all found evidence for the flexible use of granularity based on 

information from the environment. Having found this we next wanted to test whether participants 

would also change their reference point. To do this we changed the profiles from students to fashion 
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models, expecting participants to perceive fashion models as having different personalities from 

students. 

 

 
Figure 3.5. Overview of the main analyses for experiment 3. 

In this experiment participants learned about real profiles on two Big-5 factors. Results indicate participants’ use of a 

fine correlation structure. a) Similar to experiment 1, Model 5 [Fine Granularity & Population RP] is the best fitting 

model for experiment 3 (n = 59). This model uses the average population as a reference point and fine granularity for 

generalization. b) Simulated data to find the best performing model (n = 59). In line with results from the participants, 

model 5 [Fine Granularity & Population RP] was the best performing model, demonstrating that participants used the 

best possible strategy. c) Both plots display the average absolute PEs over time ± SEM. Top) Participants’ data shows 

a decrease in the PEs over time (ρ:−.42, least squares line (red)), which indicates that participants learned over time. 

Bottom) Simulated data from the best fitting model (Model 5) also shows a decrease in PEs over time (ρ:−0.764), 

showing that the models learned in a similar way to participants. d) All three regressors (representing: 1 RW learning, 
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2 Coarse granularity, 3 Fine granularity), were significant (one-sided t-test), regressor 1: t(58) = −3.414, p < 0.001, 

regressor 2: t(58) = −3.6269, p < 0.001, regressor 3: t(58) = −9.4348, p < 0.001, showing participants (n = 59) learned 

over time but also made use of both coarse and fine granularity. 

Individual parameter estimates are indicated by the colored dots, which are summarized by the adjacent boxplots 

(median (middle line), 25th, and 75th percentile (box), most extreme points not considered outliers (whiskers), outliers 

(1.5 times interquartile range) indicated with + signs). Due to high correlations between these regressors, conclusions 

regarding these regressors should be drawn with caution. [One-sided t-test; * indicates p < 0.05, ** indicates p < 0.001, 

no correction for multiple comparisons]. CG coarse granularity, FG fine granularity, RP reference point, # number of, 

PEs prediction errors, SEM standard error of the mean, LSLine least squares line. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 

 

3.3.4 Experiment Four 

In experiment four we changed the profiles from a student population to fashion models. We 

expected participants to perceive fashion models’ personalities as different from students and to 

accommodate for this change by using a different (stereotypical) RP. To test for the stereotypical 

views we added three computational models to our existing set of five. These additional models 

used a stereotypical RP (i.e., indicated by the -STE extension) which we gathered by asking 

participants to rate the expected fashion model self-ratings before the start of the experiment. We 

conducted a paired sample t-test on the average student (M: 6.01, SD: .69) and fashion model (M: 

5.13, SD: .32) reference points which indicated a significant difference between them t(59) = -

9.7137, p<0.001. 

 First, to investigate whether there was learning, we calculated a Pearson correlation 

coefficient between the trial number and the absolute PE. This produced a negative correlation 

r(58) = -0.307, p<0.001, which indicated learning over time (Figure 6C, top). The same analysis 

for simulated data also found indications for learning (r(58) = −0.788, p < 0.001, Figure 6C, 

bottom). 

A GLM with three regressors, each representing a significant part of our models, showed 

participants’ use of fine granularity (Figure 6D). That is, the third regressor which contained the 

sum of all previous correlations, was significantly different from zero (t(28) = −2.6794, 

p = 0.0061). 
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Model comparison confirmed our hypothesis: Model 5-STE [Fine Granularity & Stereotype 

RP] was the winning model for both fixed- and random-effects analysis. However, model 

simulations showed Model 1 [No Learning] to be the best performing model. Indicating a 

discrepancy between the best strategy and those used by participants. 

 These final results concluded evidence for our models usefulness in explaining the use of 

both granularity as well as the reference points. In our final experiment we wanted to explore 

whether different stimuli could be used successfully as well. 

 

 
Figure 3.6. Overview of the main analyses for experiment 4. 

In this experiment participants learned about an out-group (i.e., fashion models) instead of the regular in-group (i.e., 

students). Additionally, three models were added to our original set of five models to capture stereotypic inclinations 

(STE). These stereotypic models have a darker color in the figures and are indicated by STE in the model names. a) 
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As hypothesized, the best fitting model was Model 5-STE [Fine Granularity & Stereotypic RP] (n = 29). This model 

uses the expected stereotypical self-ratings from models as a reference point and fine granularity for generalization. b) 

Simulated data for the best performing model (n = 29). Contrary to participants’ data the best performing model was 

model 1 [No Learning]. This indicates that participants used too complex a strategy for learning about the fashion 

models. c) Both plots display the average absolute PEs over time ± SEM. Top) Participants’ data show a decrease in 

the PEs over time (ρ:−0.307, least squares line (red)), an indication of learning over time. Bottom) Simulated data from 

the best fitting model (Model 5-STE) show a large decrease in PEs over time (ρ:−0.788). d) Of the three regressors 

(representing: 1 RW learning, 2 Coarse granularity, 3 Fine granularity), only the third regressor was significant (one-

sided t-test), regressor 1: t(28) = 2.0906, p = 0.9771, regressor 2: t(28) = 4.3546, p = 0.9999, regressor 3: 

t(28) = −2.6794, p = 0.0061, indicating participants (n = 29) used fine granular representations during learning. 

Individual data points represent participants’ parameter estimates. Boxplots summarize these parameter estimates 

(median (middle line), 25th, and 75th percentile (box), most extreme points not considered outliers (whiskers), outliers 

(1.5 times interquartile range) indicated with + signs). Due to the high correlations between regressors one should be 

careful when drawing conclusions based on these regressors. [One-sided t-test; * indicates p < 0.05, ** indicates 

p < 0.001, no correction for multiple comparisons]. CG coarse granularity, FG fine granularity, RP reference point, # 

number of, PEs prediction errors, SEM standard error of the mean, LSLine least squares line. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 

 

3.3.5 Experiment Five 

Having found evidence for the use of both levels of granularity as well as different reference points 

based on the information in the task we next wanted to test our modeling paradigm on a different 

set of trait items. This new set of trait items consisted of 50 items from the German translation of 

the International Personality Item Pool (IPIP). These 50 items were equally divided over the 5 

factors from the Big-5, and consisted of sentences such as “I am the life of the party” and ”I 

sympathize with others' feelings”. We expected our models to function just as well on the learning 

data from these traits as they did on the other trait data. 

First we calculated a Pearson correlation coefficient between the trial number and the absolute PE. 

This resulted in a negative correlation r(48) = −0.311, p < 0.001 (Figure 7C, top), showing 

participants learned over time. This same analysis on simulated data also resulted in a negative 

correlation (r(48) = − 868, p < 0.001, Figure 7C, bottom). 

Further, a GLM with three regressors that each represented a part of our models, did not find any 

evidence of participants using these knowledge structures. 
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Both fixed- and random-effects analyses found model 4 [Fine Granularity] to perform best. This 

indicated that participants used fine granular representations but not the reference point during 

learning. Model simulations corroborated with these findings and indicated that  model 4 [Fine 

Granularity] was indeed the best model to use for this task. 

 

 
Figure 3.7. Overview of the main analyses for experiment 5. 

In this experiment participants learned about the German translation of the 50-item International Personality Item Pool 

(IPIP). a) Model 4 [Fine Granularity] was the best fitting model (n = 28). b) Model simulations (n = 28) confirmed that 

Model 4 was the best performing model and thus the best strategy to use for this specific experiment. Showing that the 

Population RP did not add enough information to be useful. c) Both plots display the average absolute PEs over 

time ± SEM. (Top) Participants’ data shows a decrease in the PEs over time (ρ:−0.311, least squares line (red)), 

indicating participants learned over time. Bottom) Simulated data from the best fitting model (Model 4) shows a large 

decrease in PEs over time (ρ:−0.868). Replicating participants’ learning during the task. d) A GLM with three 
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regressors (1 RW learning, 2 Coarse granularity, 3 Fine granularity) resulted in no significant regressors (n = 28, one-

sided t-test) regressor 1: t(27) = 1.3021, p = 0.8981, regressor 2: t(27) = 1.2775, p = 0.8939, regressor 3: t(27) = 1.9446, 

p = 0.9688. 

Participants’ individual parameter estimates are indicated by colored data points. These parameter estimates are 

summarized by the boxplots of the same color. Boxplots indicate the median (middle line), and the box by the 25th, 

and 75th percentile, the whiskers are the most extreme points that are not considered outliers (1.5 times interquartile 

range), outliers are indicated with + signs. [One-sided t-test; * indicates p < 0.05, ** indicates p < 0.001, no correction 

for multiple comparisons]. CG coarse granularity, FG fine granularity, RP reference point, # number of, PEs prediction 

errors, SEM standard error of the mean, LSLine least squares line. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 

 

3.3.6 Model Robustness and Distinguishability 

For every experiment separately we performed analyses to determine if models were both robust 

and distinguishable. That is, we calculated a confusion matrix and parameter recovery for all 

models for all experiments. 

 

3.3.6.1 Confusion Matrix 

The confusion matrices for all experiments were satisfactory: Experiment 1 all models >96.5% 

(Figure 8A), Experiment 2 all models > 99% (Figure 8B), Experiment 3 all models > 98% (Figure 

8C), Experiment 4 all models > 97.5% (Figure 8D), Experiment 5 all models > 92.5% (Figure 8D). 

Indicating that for each experiment our models could be distinguished from each other. 
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Figure 3.8. Confusion matrices for every experiment. 

To test whether data created with a model would also be best fitted by that model, a confusion matrix was created for 

every experiment separately by randomly sampling parameter values 200 times. With these random parameter values, 

data was simulated and noise, sampled from a standard normal distribution, was added. After this, the models were 
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fitted to the simulated data. Ideal recovery is reflected by the identity matrix (i.e., all values on the diagonal being 

100%). Model recovery for all experiments indicated that our models were recovered correctly in most cases (>92%), 

i.e., models were distinguishable. A-E represent experiments 1-5. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 

 

3.3.6.2 Parameter Recovery 

The parameter recoveries were performed on each of the model’s free parameters. Across all 5 

experiments and all models the correlation coefficient for the slope/ learning rate was .74 at its 

lowest (Figure 10). The weighting factor, which was only used in models 3 and 5, never had a 

lower correlation coefficient than .89 (Figure 9). Finally, the lowest correlation coefficient for 

intercept/ starting value was .51 (Figure 11). This showed that all parameters could be recovered 

satisfactorily. 

 

 
Figure 3.9. Parameter recovery for gamma (weighting factor). 

To check whether model fitting returns meaningful parameter values, we performed parameter recovery on all models 

and all experiments separately. We simulated data using random parameter values, to which noise was added. After 

this, all models were fitted to this simulated data and parameters recovered. We measured recovery by calculating the 

Pearson’s correlation coefficient (ρ) where a value closer to 1 indicated better recovery. The Gamma parameter was 
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only used in Model 3 [Coarse Granularity and Population Reference Point] and Model 5 [Fine Granularity and 

Population Reference Point]. Models are ordered along the rows and experiments on the columns. Recovery for all 

models and all experiments is good across the whole range of values. Green boxes indicate when a model was the best 

fit for that specific experiment. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 

 

 
Figure 3.10. Parameter recovery for alpha (learning rate). 
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See Figure 9, for an explanation of how we conducted the parameter recovery. Models are ordered along the columns, 

every row is a separate experiment. For Model 1 (first column, blue dots) we looked at the regression slope and for all 

the other experiments at the learning rate (α). Parameter recovery for all experiments and all models was well within 

acceptable bounds. Green boxes indicate the winning model for that specific experiment. For Experiment 4, we only 

added the standard 5 models, choosing to omit the stereotype models. This was done because the stereotype models 

are functionally the same when it comes to simulated data and thus would not add any information. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 
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Figure 3.11. Parameter recovery for V0 (starting value). 

See Figure 9, for an explanation of how we conducted the parameter recovery. Parameter recovery for the intercept 

(Model 1) and the starting value (Models 2-5) is acceptable for all models. Every row is an experiment and each column 

is a different model, green boxes indicate this was the winning model for that experiment. 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 
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3.3.7 Additional Models 

In addition to the computational models discussed above we performed some exploratory analysis 

on some extra models. First, to see whether participants learned differently from positive and 

negative feedback we ran models 2-5 again but now with separate learning rates for positive and 

negative feedback (Figure 12). These models were worse for all experiments except for experiment 

4 (Figure 12D). In this experiment the Fine Granularity and Stereotypical RP model with positive 

and negative learning rates performed best. The fitted parameters for this model indicated that 

participants learned more from positive feedback. 

 Finally, we tested all models again but with their self-ratings as RPs instead of the standard 

population average (Figure 13). In none of the experiments were these models better than the 

standard models with population based (i.e., average) RPs. Indicating that it was better to use the 

population based RP. 

 

 
Figure 3.12. Positive/ Negative models (P/N) compared with the standard models. 

Positive/ Negative models (Pos/Neg) have two parameters for the learning rate (α) by splitting it up for positive and 

negative PEs. This allowed us to check whether participants learned differently from positive and negative PEs. Each 

plot contains the regular models in standard colors. Below each regular model are those that make use of the positive/ 
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negative learning rates (shown in darker colors, i.e., purple for the coarse models and brown for the fine models). For 

Experiment 4 we also included the stereotype models and their respective stereotype Pos/Neg models (these are 

depicted in light gray for the standard stereotype models and dark gray for the stereotype models that also use the 

Pos/Neg learning rates). CG = coarse granularity, FG = fine granularity, RP = reference point, PEs = prediction errors, 

STE = Stereotypical 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 

 

 
Figure 3.13. Self-ratings models (Self) compared with the standard models. 

Model comparison of all models with additional models that use the participants’ self-ratings as reference point (RP) 

instead of the population RP. The regular models are displayed in their original colors, directly below these are the 

models that use the Self RPs (in colors: light blue [No Learning], purple [Coarse], and brown [Fine]). For experiment 

4 the same order holds but the STE models are added below the Self RP models in their original darker colors (see 

figure 6). Models that use self-ratings as their RP are always a little worse than those that use the population average 

RP. CG = coarse granularity, FG = fine granularity, RP = reference point, PEs = prediction errors, STE = Stereotypical 

 

Figure from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 
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3.4 Discussion 

In this chapter we examined how humans learn about others personality traits. We hypothesized 

through various computational models that humans would flexibly adapt their strategies based on 

the available information. We focus on two knowledge structures: granularity and reference point. 

Granularity indicates the level of detail with which one represents and updates the person they are 

learning about. Coarse grained means you only pay attention to the Big-5 factors and for  fine 

grained, one pays attention to each trait individually as well as the relationships between items. In 

experiments 1-3 we found that participants switched between these two granularities based on the 

information at hand in the task. Evidence for the use of the reference point came from experiment 

four where participants used a stereotypical reference point instead of the regular student average 

which would have been the better option according to our simulations. Finally, in the last 

experiment we extended our models to also run on the learning data of different items. These 

modeling results were supported by standard statistical analyses and model simulations. Where the 

simulations focused both on the data as well as determining model robustness and distinguishability 

(Wilson & Collins, 2019). 

The importance of this study is twofold. First, we discovered more details of how humans 

learn about others’ personalities. That is, they seem to use detailed knowledge structures during 

learning. What knowledge structure gets used is dependent on the situation and the information 

available. Furthermore, the pervasiveness of stereotypes was exemplified in experiment four. 

Second, we introduce a novel modeling paradigm that can, in our opinion, be used for 

understanding more than just personality learning. We first alluded to this broader scope with 

experiment five that used a different set of stimuli but on which our models still fitted fine. 

Furthermore, a similar model space has already been used successfully on a preference learning 

task (Rosenblau et al., 2021). The reference points could be any preconceived information that one 

might have about the subject one is learning about. Similarly, granularity, which in its most detailed 

form is just a correlation matrix, can be calculated on almost any imaginable data. Of which data 

of similar form has been found in the human cortex (Peer et al., 2021; Stolier et al., 2020; Tamir et 

al., 2016). Furthermore, taking into account the brain’s tendency to use the same solution for many 

problems it is not a far cry to assume it will use the same types of structures for other learning 

problems. 
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This does not leave this study without some limitations. First, the total amount of trait items 

per profile was low. In experiment five we only used 50 trait items (10 per factor). Adding more 

items would most likely increase the accuracy of the drawn conclusions. In our current task we use 

integer numbers to show how much of a personality trait a person possesses. Even though using 

numbers for feedback is used in performance evaluations in a real life setting one would more 

likely have verbal feedback and most likely fractional numbers. Future research should thus look 

at how these numbers are translated from numerical to verbal and deal with verbal feedback 

directly. Moreover, often, learning about others is based on actions from ourselves (e.g., 

approaching someone who seems kind) and others (e.g., judging someone who treats another 

unkind). Adding actions to the task would increase the external validity. 

Future work should focus on the reference point and granularity. First, in this study we only 

use the two extremes of granularity (fine and coarse) the use of any other state on the continuum 

between these two should be explored. That is, how is the granularity learned in the first place and 

does it change over time? Similarly with the reference point it would be interesting to see how it is 

learned initially and how it changes over time. Finally, testing the reference point on different 

groups (i.e., different stereotypes) could result in valuable findings. 
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4. Study 2 – Patterns of activation during 

personality representation 

4.1 Introduction 

Humans can quickly learn by abstracting and generalizing information based on previously 

acquired knowledge structures. Such knowledge structures can be mathematically specified and 

understood as an aggregate of learned information. Previous research has found evidence for 

knowledge structures and their use during learning across a wide range of domains: In behavioral 

studies, knowledge structures have been shown to guide natural object perception (Hebart et al., 

2020), language processing (Lenci, 2018) as well as learning abstract non-social (Wu et al., 2020) 

and social information . Neuroimaging studies have provided evidence for the representation of 

knowledge in neural patterns of activity across multiple domains such as language processing 

(Carota et al., 2017), learning abstract information (Garvert et al., 2023; Kahnt & Tobler, 2016), 

and in emotion processing (Skerry & Saxe, 2015). Here, we test whether social knowledge 

structures, i.e., aggregated knowledge of the relationships between personality traits and coarser 

personality dimensions, are neurally represented. 

Personality traits capture a person’s typical behavioral tendencies across a wide range of 

situations, thereby providing relatively stable generalizations of a person’s behavior over time 

(Ashton, 2018). Knowing about a person’s traits allows us to make accurate predictions about that 

person’s future behavior (Epstein, 1979). Abstracting from personality traits to the broader 

multidimensional personality structure has played a large role in personality research. The number 

of dimensions needed to adequately describe personality structures has been a question of much 

debate in personality psychology. Some research findings show that two dimensions suffice to 

describe human personality (Fiske et al., 2002; Gray et al., 2007; Oosterhof & Todorov, 2008), 

while the influential five dimensional personality model, posits that five dimensions are needed 

(Goldberg, 1990; R. R. McCrae & Costa, 1987). This five-dimensional model, coined Big Five, 

encompasses the factors Agreeableness, Extraversion, Conscientiousness, Openness, and 

Neuroticism. Items within each factor are more closely related to each other than items between 

factors. That is, a person who is generally more agreeable will score higher on items of this factor 
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(e.g., helpful, generous, and sympathetic), thereby showing less variability in scores of items within 

that factor than on items within other factors.  

While personality dimensions, lower-dimensional reductions of the personality trait space, 

have been shown to predict behavioral patterns, finer-grained trait structures afford more detailed 

representations of other persons (Frolichs et al., 2022). Such fine-grained structures can be formed 

by the relationships or similarities between single trait items. For example, learning about 

someone’s helpfulness gives you more information about their generosity than their politeness. 

These fine-grained updates about another person may allow us to make more accurate predictions 

about specific characteristics and behaviors. We have previously investigated coarse- and fine-

grained generalizations during personality learning (Frolichs et al., 2022). Akin to other research, 

which has shown that knowledge structures adjust based on their specific use (Thornton et al., 

2023; Thornton, Weaverdyck, & Tamir, 2019) or co-occurrence (Bonner & Epstein, 2021), we 

found that depending on the task demands, participants would employ coarse- or fine-grained 

representations of personality. In line with previous research suggesting low-dimensional 

representations during social learning (King-Casas et al., 2005; Tamir & Thornton, 2018), we 

found evidence for the use of coarse granular representations. Interestingly, we also found evidence 

for the use of fine-grained representations when the task demanded for it. Using fine granular 

representations during personality learning allowed participants to use the similarities between 

individual trait words to leverage learning. 

To summarize, representing social knowledge at different levels of granularity allows for 

flexible generalization during personality learning. We can solely rely on coarse-grained 

dimensions or personality factors to learn about overall tendencies of a person (i.e. coarse-grained 

learning) or take individual items and their fine-grained relationships into account for a more 

detailed representation and updating about the person in question.  

A whole suit of analyses that fall under multivariate pattern analysis (MVPA), allow us to 

question the nature of these representations in cortical activity patterns. Similar to behavioral 

studies, neural evidence for social learning has focused on low-dimensional learning, such as low-

dimensional personality characteristics (Delgado et al., 2005; Fareri et al., 2015; Jones et al., 2011; 

Tamir et al., 2016; Thornton & Mitchell, 2017; Zaki et al., 2016), or one or two dimensions of 

personality traits (Hartley & Somerville, 2015; Hassabis et al., 2014). Social decision making tasks 

recruit a dedicated network of cortical areas (Frith, 2007), which include the medial prefrontal 

cortex (mPFC), medial parietal cortex, temporo-parietal junction (TPJ) and the superior temporal 
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sulcus (STS) (Mitchell, 2008; Van Overwalle & Baetens, 2009). An area of specific interest to us 

is the mPFC, because it has been extensively implicated in computing decision variables in various 

task contexts (Bang & Fleming, 2018; Klein-Flügge et al., 2022), prediction errors (Gläscher et al., 

2010; Joiner et al., 2017b), and accessing conceptual knowledge during decision making (Ghosh 

& Gilboa, 2014; Kumaran et al., 2009; Theves et al., 2021). Furthermore, a gradient within the 

mPFC from ventral to dorsal differentiates between self-versus other-referential processing. The 

ventromedial prefrontal cortex (vmPFC) has been more strongly implicated in self-referential 

processing (Amodio & Frith, 2006; Sul et al., 2015; Wagner et al., 2012) and the dorsomedial 

prefrontal cortex (dmPFC) has been more implicated in other-referential processing (Saxe, 2006; 

Sul et al., 2015). This self-versus other distinction, however, may in part be due to taking on a more 

active or passive decision making role during self and other-referential judgements. 

Here, we aimed to investigate whether mPFC activity encodes finer grained as supposed to 

only coarse social knowledge by using a multivariate representational similarity analysis (RSA) 

(Kriegeskorte, Mur, & Bandettini, 2008). This technique allows us to compare representations from 

behavioral data with the representations from fMRI data. After its introduction, RSA has been 

widely applied in diverse topics and has shown its usability in deciphering neural activity patterns 

during social tasks (Peer et al., 2021; Popal et al., 2019; Riberto et al., 2022; Stolier et al., 2020). 

However, as mentioned above, so far, research on personality learning has only focused on low-

dimensional representations of personality such as two of the Big-5 factors (Hassabis et al., 2014), 

or three general dimensions (Tamir et al., 2016). The finest representations so far found evidence 

for the Big-5 factors along with other lower dimensional representations (Thornton & Mitchell, 

2017, 2018). However, the Big-5 model was the coarsest model we found evidence for in our 

previous study (Frolichs et al., 2022). We therefore hypothesized that, along with coarse, more 

fine-grained knowledge structures to be represented in the cortical activity patterns. Specifically, 

we expected to find these patterns in the mPFC. 

To investigate whether more fine-grained patterns exist in cortical activity patterns we 

analyzed the data from two fMRI studies. Study 1 was a reanalysis of a previous study (Korn et al., 

2012) that has been previously analyzed with a univariate fMRI approach only. The study consisted 

of a naturalistic social decision making task that involved real social interactions before fMRI 

scanning. Consequently, participants were immersed in a rich social context prior to making 

decisions about themselves or another person. The experimental design was conducive to RSA but 

the study was not optimized for this type of analysis. In study 2, we investigated social decision 
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making in a new sample of participants. This time the fMRI paradigm was optimized for RSA 

analysis (with respect to stimulus timing and repetition, and controlled for motor cortex activity) 

but consequently it was a less naturalistic task.  

In both studies we asked participants to rate themselves and others on a number of trait 

words (e.g., generous & diligent). We extracted the neural patterns of activity during these task 

ratings using searchlight (SL) and region of interest (ROI) RSA. Furthermore, for study 2, we also 

got participants’ explicit similarity ratings between items so we could create a model out of these 

idiosyncratic ratings. We hypothesized that the mPFC region contained both coarse and fine 

knowledge representations during personality learning given that we have shown that fine-grained 

trait similarity representations scale the integration of prediction errors on a trait learning task 

(Frolichs et al., 2022). 

To test these hypotheses, we specified four models that varied the level of granularity in 

knowledge representations (from coarse to fine grained). As hypothesized, we found coarse and 

fine-grained social knowledge representation during social decision making in the dorsal medial 

prefrontal cortex (dmPFC). In study 1, we found more robust evidence using the searchlight whole 

brain analysis while in study 2, we found mixed evidence - the searchlight analysis revealed no 

significant clusters of interest, however, the a region of interest analysis revealed significant coarse 

and fine-grained knowledge representations in the dmPFC. This paper examines the validity of our 

results across studies and discusses potential reasons for the observed differences between the two 

studies. 
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4.2 Methods 

4.2.1 Study 1 - Personality learning after previous social interactions 
Data from this study were collected for a previous study (Korn et al., 2012). This study examined 

how humans process social feedback about their own and others’ character traits. Importantly, this 

experiment was conducted in a real-life social setting. That is, the day before the scanner task, the 

participant along with four others played the board game monopoly to get to know each other’s 

personality. Participants were aware during the game that they and the others would be rating each 

other’s personality traits afterwards. Overall, results revealed a positivity bias in social feedback 

processing, more updating from positive as supposed to negative information. 

 In the original publication, data from this study was only analyzed with univariate analyses. 

However, the collected neural data lends itself to be reanalyzed to answer our novel multivariate 

questions using RSA. This analysis can reveal knowledge representations encoded in neural 

activity during this social decision making task. This study’s only focus is the novel RSA analyses. 

 

4.2.1.1 Participants 

In total, 30 right-handed subjects participated. Three participants had to be excluded (one did not 

tolerate the scanner environment, another showed excessive head movement (>8 mm), and data 

from another subject could not be used due to technical problems) leaving 27 subjects for analyses 

(14 female, mean age = 24.3 years, SD = 2.46). All subjects gave written informed consent. 

 

4.2.1.2 Scanner Task 
Participants got to know and interact with four people the day before completing the social 

decision-making task in the scanner. In the scanner task, participants were asked to rate the 

character traits of one of the other four participants that they met on the previous day. On every 

trial, participants first saw a cue indicating whether they had to rate themselves or the other person 

(1 second). After this, they saw one of 80 trait adjectives and they had to imagine how much this 

trait applied to themselves or the other person (4 seconds). Afterwards, participants were prompted 

to rate on an 8 point Likert scale how much this trait applied to themselves or to the other person 

(6 seconds). After submitting their rating, participants received computer-generated feedback on 

their own traits or the trait ratings of the other person in question (Figure 4.1A). 
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4.2.1.3 MRI data acquisition 

MRI data were acquired on a 3 T scanner (Trio; Siemens) using a 12-channel head coil. Functional 

images were acquired with a gradient echo T2*-weighted echo-planar sequence (TR = 2000 ms, 

TE = 30 ms, flip angle = 70, 64 × 64 matrix, field of view = 192 mm, voxel size = 3 × 3 × 3 mm3). 

A total of 37 axial slices (3 mm thick, no gap) were sampled for whole-brain coverage. Imaging 

data were acquired in four separate 349 volume runs of 11 min 38 s each. The first five volumes of 

each run were discarded to allow for T1 equilibration. A high-resolution T1-weighted anatomical 

scan of the whole brain was acquired (256 × 256 matrix, voxel size = 1 × 1 × 1 mm3). 

 

4.2.1.4 Pre-processing 

Image analysis was performed using SPM8 (www.fil.ion.ucl.ac.uk/spm). Echoplanar imaging 

images were realigned, unwarped, and coregistered to the respective participant's T1 scan; 

normalized to a standard T1 template based on the Montreal Neurological Institute (MNI) reference 

brain; resampled to 3 mm isotropic voxels. 

 

4.2.2 Study 2 – Personality inferences in the absence of social 
interactions 
Data for this new study was collected after a preliminary analysis for study 1 with an RSA SL 

analysis. Given that the scanner task in Study 1 was not specifically designed and thus not 

optimized for RSA analysis, in Study 2, we sought to replicate our results in a more controlled task 

that was specifically designed for RSA. To increase the robustness of the task for multivariate 

analyses, we added more scanning sessions (from one session in study 1 to five sessions in study 

2). To keep the total scanning time within a reasonable timeframe, we removed the social feedback 

phase. This meant that participants rated themselves or a fictitious other on trait adjectives and no 

longer received feedback. To reduce unwanted activity in the motor cortex, we also reduced the 

answer options from an 8-point Likert scale to binary options (0: does not apply to me/ the other 

person, 1: applies to me/ the other person). Finally, to reduce the overall time of the experiment, 

participants only gave ratings in the scanner about a fictitious other that corresponds to the 

participant’s notion of an average person (i.e., average person). Importantly, there was no social 

interaction session before or during the experiment. Importantly, we asked participants to rate the 
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similarity of trait words after the scanner task. This provided us with similarity ratings between all 

the trait words, which were used for the RSA model 4. 

 

4.2.2.1 Participants 

We recruited 32 participants through online advertisements. We aimed for a sample size similar to 

study 1 (n=30) (Korn et al., 2012). Participants had to meet the following inclusion criteria: 1) age 

between 18 and 40 years, 2) German native speakers, 3) normal or corrected to normal vision, and 

4) no history of neurological or psychiatric disorders. The study was conducted in accord with the 

Declaration of Helsinki and approved by the local research ethics committee (Ethik-Kommission 

der Ärtzekammer Hamburg, Number: PV5746). All participants gave written informed consent 

using a form approved by the ethics committee and were compensated on an hourly basis. 

 

4.2.2.2 Behavioral data acquisition 

Scanner Task 

The scanner task consisted of five identical runs that were all completed in one scanning session. 

Participants were instructed before placement in the MR scanner. A single run consisted of 100 

trials and during every trial one trait word was presented. In total, there were 40 unique trait words. 

Participants were asked to rate, with “yes” or “no”, if the trait word described either themselves 

(i.e., you-trials, n=40) or an average person (i.e., other-trials, n=40), the remaining 20 trials were 

null trials that only showed the fixation cross for a duration of 5 seconds. Participants were shown 

the same 40 trait words for themselves and the average person. Both the trait words and the trial 

type (i.e., you- and other-trials) were randomized within each run. Each trial lasted exactly 5 

seconds. 

In more detail, every trial started with a 250ms fixation cross, after which the trait word 

(e.g., diligent) was shown for 2750ms (imagination phase). Then two answer options (Yes, No) 

were presented underneath the word on the same height (decision phase). The position of these 

words was counterbalanced on the screen (left and right) and subsequently as an answer option on 

the button box. During this decision phase participants were required to respond within a 1500ms 

time interval otherwise the warning (“Too slow!”) appeared on the screen and no answer would be 

recorded. If participants made a response within this decision phase, they were able to see their 

choice until the full 1500ms duration had elapsed. To make sure participants saw their answer or 
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the warning from the decision phase, the responses remained highlighted on the screen for another 

250ms after the end of the decision period. A final fixation cross of 250ms duration ended each 

trial (Figure 4.1B). 

 
Figure 4.1. Task overview for both studies. 

Both studies had similar tasks where they were asked to rate their own and other’s personalities. For study 1, they rated 

a person they interacted with before and for study 2, an average person they had never met and would never meet. For 

study 1, participants rated on a scale of 1-7 (1 – does not apply at all, 7 – applies completely), whereas for study 2 

ratings were binary (“no” – does not apply, “yes” – does apply) during the scanner task but more detailed (1-7 scale) 

afterwards. In study 1, participants had slightly more time for the imagination and rating phase and ended each trial 

with a feedback phase. The imagination and rating phases in study 2 were a bit shorter and there was no feedback. 

 

Post Scanner tasks 

After scanning, participants performed several rating tasks of the previously seen trait words 

(N=40) and previously unseen trait words (N=85). All ratings were made on a scale of 1-7 (i.e., 1: 

not important/ does not apply, 7: very important/ applies very much). First, they rated how much 

125 traits words applied to themselves as well as to an average stranger that they have never met 

(see the Supplementary Table 1 for a complete list).  

For the 40 trait words that were used in the scanner task (Supplementary Materials table 2), 

participants additionally performed several other ratings. For these trait words they were asked 1) 

to rate how positive they found each trait word, 2) how important it was for themselves or someone 
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else to possess this trait, and 3) how easy it was to rate themselves or an average person on each 

trait. 

Finally, we asked participants to explicitly rate all possible trait pairs (i.e., 780 unique pairs) based 

on their similarity on a scale of 1-7 (i.e., 1: not similar at all, 7: completely similar). For example, 

helpful and polite are similar qualities and should be rated as being similar). There was no time 

limit on these individual ratings and participants were free to take breaks as they needed them. 

 

4.2.2.3 MRI data acquisition 
We acquired T2*-weighted functional images on a 3 Tesla Siemens Magnetom Prisma with the 

following parameters: repetition time (TR): 1313ms, echo time (TE): 30ms, FA: 50°, FoV: 224 

mm, number of volumes: 384, number of slices: 42, slice thickness: 2 mm with 25% (0.5 mm) gap 

for a total acquisition time of: 504.2 seconds. To correct for distortions we acquired a field map 

with the following parameters: TR: 518ms, TE1: 6.12ms, TE2: 8.58ms, FA: 40°, FoV: 224 mm, 

slice thickness: 2 mm. 

We acquired T1-weighted anatomical images using magnetization-prepared rapid gradient 

echo sequence (MPRAGE) with the following parameters: TE: 2.98ms, TR: 2300ms, FA: 9°, FoV: 

256 mm, slice thickness: 1 mm. 

 

4.2.2.4 Pre-processing 
fMRI data were pre-processed using SPM12 software 

(www.fil.ion.ucl.ac.uk/spm/software/spm12/) in MATLAB (version: r2020b). We performed slice 

time correction, corrected for signal distortions using the field map, and realigned functional scans 

to the first image using a six-parameter rigid body transformation to correct for motion. The 

structural image was co-registered to the functional image, and was segmented and normalized to 

MNI space. After this the realigned functional images were normalized using the transformation 

parameters from the structural image normalization, and smoothed using an 6 mm full-width at 

half maximum Gaussian kernel. 

 

4.2.3 Neuroimaging Analysis – Both Studies 
All neuroimaging analyses were conducted using SPM12 and custom code written in MATLAB 

(version r2020b). Within MATLAB we further used the Marsbar toolbox (Brett et al., 2002) for 

creating regions of interest and the RSA toolbox (Nili et al., 2014) for some of their functions. 
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All neuroimaging figures were made using MRIcroGL (version 20-July-2022) with the following 

procedure. Resulting activations were first displayed with SPM using the following cut-off: 

surviving a threshold of p < 0.05 after clusterwise familywise error correction for multiple 

comparisons over the entire brain at a cluster-defining threshold of p < 0.0001 (uncorrected). The 

resulting T-maps were then imported in MRIcroGL and brightness and darkness thresholds of the 

t-values were adjusted to fit those of SPM as close as possible. Finally, the coordinates of the slices 

were taken from SPM’s global or local peak voxel within the cluster of focus. 

 

4.2.3.1 Univariate analyses 
We performed two univariate analyses for Study 2. The first GLM, focused on the broad differences 

in activity between self and other. That is, for each session, the self-imagination-phase and other-

imagination-phase trials were modeled as separate conditions beginning with the trial word onset 

for the duration of the trial (2750ms). Six motion regressors of no interest were added for each 

session as well. Both contrasts for self > other and other > self were tested. 

These analyses intended to confirm that the mPFC was active during this social learning 

task as expected from the social learning literature (Frith, 2007). The second analysis functioned 

as a sanity check for the later RSA searchlight analysis. From the literature, we generally expected 

higher activity during thinking about self, compared with activity during thinking about others. As 

a sanity check, we compared activity in the visual cortex from the univariate and an RSA SL 

analysis. 

 The second GLM functioned as the first part of a sanity check of our later analyses. We 

expected a robust effect in the visual cortex based on the length of the trait words i.e., more activity 

for longer trait words. To do so, we modeled this GLM with a parametric modulator for the length 

of each trait word. That is, for each trait word separately we modeled a parametric modulator on 

the number of letters in that word. Six further regressors of no interest were added to each session 

to model participant motion. 

These same word length differences can also be captured in a model to use with an RSA 

SL analysis (explained in more detail below). Results from the second GLM can then be compared 

with the results from the RSA SL analysis. Because these two analyses are distinct in their setup 

but focus on the same patterns of activity we can compare their results. We take the univariate 

analysis as our ground truth and compare if these two analyses reveal similar areas of activity. 

When they do this supports that our RSA SL analysis functioned as intended.  
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4.2.3.2 Representational Similarity Analysis 
To test to what extent social structures are represented in the brain we conducted representational 

similarity analysis (RSA) using both an ROI and a searchlight analysis. Since the two studies had 

a different set of stimuli, calculation of the parameter estimates (i.e., beta values) will be described 

separately. 

 

Study 1 

The beta values for study 1 were calculated with a standard GLM. We modeled the presentation of 

each trait word as a regressor of interest for 160 total regressors (80 self- and 80 other-imagination-

phase, 4000 ms), together with 6 regressors of no interest to correct for motion. This resulted in a 

single beta image for each trait word. On all these beta images we calculated a contrast, resulting 

in as many contrast images as original betas. These contrast maps were used for further RSA 

analysis. 

 

Study 2 

To calculate the beta values for study 2 from the GLM we modeled the presentation of each trait 

word as a regressor of interest (80 regressors, 40 self- and 40 other-imagination-phase, 2750 ms) 

for each session. Six further regressors of no interest were added to correct for motion. This meant 

that we obtained a single beta image for each trait word in each session separately for the self- and 

other-imagination-phases. To reduce noise we averaged these beta images over the five sessions 

across trait words to create 80 average beta images (40 for self and 40 for other). Each analysis 

described below was run separately for the self and other beta images. 

 For both studies, we first performed a searchlight analysis. Depending on the results of this 

analysis we performed a region of interest analysis thereafter. 

 

RSA - Searchlight 

For this analysis we created a spherical volume (5 voxel radius (similar in size to other social 

learning studies which used a 3 voxel radius: (Peer et al., 2021; Riberto et al., 2022), for a total of 

515 total voxels) that we moved throughout each of the participants’ brains (i.e., beta maps) 

centering on each voxel. From each of these positions we extracted the patterns of activity (i.e., the 

beta values) from all the voxels in the spherical volume. From the activity within these voxels 
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across all trait words we calculated a data RDM using the Pearson Correlation coefficient. The 

resulting matrix was subsequently subtracted from 1 to create a data RDM. Next, we calculated to 

what extent the model RDMs correlated with the data RDM. This correlation between the data 

RDM and each of the models was calculated with Kendall’s Tau alpha. This correlation coefficient 

value was placed on the center voxel after which the SL moved on to the next center voxel and 

repeated the previous steps until there was a whole brain correlation map.  

The correlation coefficient brain maps from all participants were then taken into a group 

comparison (i.e., second level analysis in SPM). All reported activations survived a threshold of p 

< 0.05 after clusterwise familywise error correction for multiple comparisons over the entire brain 

at a cluster-defining threshold of p < 0.001, uncorrected. 

To test the searchlight analysis procedure we created a model RDM that represented the 

letter length of each word that was presented. We visually compared the results from this 

searchlight analysis with the results from a univariate analysis that had word length as a parametric 

modulator. 

 

RSA - Region of Interest 

In the ROI analysis we tested the similarity in activity patterns between two specific brain regions 

(see section Regions of interest) and three dissimilarity models (see section Dissimilarity Models) 

during self- and other-imagination-phases. All analyses were conducted separately for these self 

and other-imagination-phases. 

From each of the beta images (80 for study 1 and 40 for study 2) we extracted the voxels 

within the ROI and calculated the pattern dissimilarity using the Pearson correlation coefficient 

between the neural activity patterns of all trait words to get a correlation matrix that contained all 

correlations between activity patterns for the trait words. This correlation matrix was subtracted 

from 1, which resulted in two matrices (i.e., the data RDMs for self and other-ratings). These data 

RDMs were compared with each of the three model RDMs for each participant using a rank 

correlation (i.e., Kendall’s Tau alpha, from the RSA toolbox (Nili et al., 2014)). To determine if a 

model significantly represented the neural activity pattern we calculated a one-sided t-test against 

zero for these individual rank correlations. All alpha values were Bonferroni corrected for the 

number of models within each analysis. 
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Regions of interest 

To test patterns of activity in specific regions, two regions of interest (ROIs) were created. The first 

was determined from the functional activity of the first univariate GLM analysis from study 2 

(contrast self > other). This GLM revealed a large cluster in the (v)mPFC (see Figure 5, blue 

cluster). The second cluster was taken from the SL analysis of study 1. This searchlight analysis 

revealed a cluster of activity in the dmPFC (see Figure 5, yellow cluster). Both these functional 

clusters were extracted as a mask using the Marsbar software package (Brett et al., 2002; 

marsbar.sourceforge.net/) and any subsequent ROI analyses were performed on these two ROIs. 

 

4.2.3.3 Dissimilarity Models 
Because we are interested in exactly how detailed the personality representations are in the cortex 

during personality learning, we created four distinct models that all represent personality but on 

differing granularities. We hypothesized that the models would explain the activity patterns in order 

from coarse- to fine-granularity. Note that the coarse granularity structure is also present in the fine 

granularity models. We hypothesized that coarse models will significantly explain neural activity 

patterns and we predicted to find neural representations of fine-granularity knowledge structures, 

particularly in the MPFC.  

In brief, Model 1, was the least complex Big-5 model, which assumes that patterns of brain 

activity reflect the coarse grained Big-5 factor structure as previously shown (Thornton & Mitchell, 

2018). Model 2 tested fine-grained similarity representations. Correlations between self-ratings of 

individual items were expected to scale with patterns of neural activity. This model is based on an 

independent group of participants. In a previous study, we found that this fine-grained 

representation was used in personality learning (Frolichs et al., 2022). Model 3, tested fine grained 

similarity representations using explicit similarity ratings, namely participants’ idiosyncratic 

similarity ratings. This model states that activity patterns reflect participants’ own explicit 

conception of how similar items are. We classify this model as finer-grained than Model 2, because 

each participant has their own individual similarity model. For models 1 to 3 we hypothesized that 

the models would significantly explain the activity patterns in order from coarse to fine (i.e., if any 

model is significant, we expect the coarse model 1 to explain the data significantly first followed 

by models 2 and 3). We expected to see this because the coarse information structure from model 

1 is also captured in the more complex models. We additionally tested a non-social visual 

perception model as a control test of our analysis pipeline Model 4, was a word length similarity 
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model, which modeled the absolute length differences of the stimulus words. We expected that 

perceptual differences between trait words, i.e. their length, would be represented in the primary 

visual cortex. We further confirm these results with a standard univariate analysis. 

 

Model 1 - Big-5 

The coarsest of the models, the Big-5 model (Figure 4.2B, E), is a conceptual model that indicates 

what trait items belong to the same factor. That is, it assumes patterns of activity are the same 

within each factor (i.e., if two traits belong to the same factor they will have the same activity 

patterns). This model uses binary options where “1” indicates a trait item is part of a factor and “0” 

indicates it is not. To create the RDM we subtracted the model from 1, this meant that items within 

a factor had a dissimilarity rating of “0” (i.e., not dissimilar) whereas items between factors had a 

dissimilarity of “1” (i.e., completely dissimilar). We created separate Big-5 models for study 1 (size 

80x80) and study 2 (size 40x40). These items were taken from a large list of German trait adjectives 

(also used in previous studies (Korn et al., 2012; Korn, Sharot, et al., 2014)) and were hand-

annotated to fit the Big-5 factors (as in our previous work (Frolichs et al., 2022)). Originally the 

items were not sorted for the Big-5 factors, Figure 4.2F shows the Big-5 model when items are 

sorted for the factors. 

 

Model 2 - Similarity 

We created two similarity models, both these models use self-ratings from a sample gathered for 

the first study (Korn et al., 2012). These models assume that patterns of activity in the cortex show 

a similar relation to the correlations between the trait word self-ratings. 

We created two different models from these self-ratings so we could answer a secondary 

hypothesis. This hypothesis focusses on how the cortex deals with positive and negative trait words. 

Normally, negative items (e.g., cowardly and spiteful) tend to get rated lower than positive items 

(e.g., tidy and respectful) we wondered if this difference in ratings is reflected in the cortical activity 

patterns. That is, does the cortex code differently for positive and negative items or does it code in 

the same scale, disregarding whether the item is positive or negative. The first of these two models, 

similarity model 1-different (Figure 4.2), keeps this difference in ratings between the positive and 

negative items and thus hypothesizes that cortical activity patterns are different for positive and 

negative items. In contrast to this, the second model, similarity model 2-same (Figure 4.2), 

hypothesizes that positive and negative items elicit the same cortical activity patterns that does not 
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take the item valence into account. To achieve this, we reverse-coded all the negative self-ratings 

(e.g., if someone rated themselves to score a “1” on spiteful, the lowest score, this got transformed 

to an “7”, the highest score). This reverse-coding of negative items was reflected in the correlations, 

in that positive and negative items showed more relatedness. 

For both the reverse-coded and the non-reverse-coded self-ratings the procedure was the 

same. First, these self-ratings were Pearson correlated to create a similarity matrix that showed the 

correlation between each trait word pair. These matrices were then transformed into 

representational dissimilarity matrices by subtracting them from 1. This resulted in distances from 

“0” (i.e., perfect correlation) to “2” (i.e., anticorrelated). Because both studies had a different 

number of stimuli we created separate similarity models for study 1 (80x80 similarity matrix) and 

study 2 (40x40 similarity matrix). A comparable similarity matrix based on the same sample has 

previously been calculated and used in another study from our lab (Frolichs et al., 2022).  

 

Model 3 - Explicit Similarity Ratings 

The explicit similarity ratings model (Figure 4.2C), was only used for Study 2 and was based on 

real idiosyncratic similarity ratings. This model assumes that relations between cortical patterns of 

activity are different for each individual and reflect their own specific and idiosyncratic similarity 

ratings. We asked participants to give their explicit similarity ratings [1-8] between all possible 

trait word pairs (i.e., 40 trait words for a total of 780 combinations). For example, participants were 

asked to rate, on a scale of “1” (completely dissimilar) to “7” (the same), how similar they found 

the two trait words “easy-going” and “cold-hearted”. When using this model we tested each 

participants’ own idiosyncratic and explicit ratings between the trait words instead of relying on an 

aggregate model such as the other two models. Thus, this model hypothesizes that each participant 

has distinct activity patterns that show similarities akin to their subjective explicit similarity ratings. 

 

Model 4 - Word Length 

The word length model was created to check our multivariate (RSA) analysis against a more 

standard univariate analysis for the second study. This model focused on the length of the stimulus 

words, this was done by taking the absolute difference between each of the stimulus words. That 

is, for each row in the matrix we took the absolute difference between all trait words and the trait 

word on the identity line. This resulted in a 40x40 matrix where the diagonal was all zeros. This 
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model hypothesized that longer stimulus words would elicit more pronounced activity than shorter 

stimulus words. 

 

 
Figure 4.2. Model RDMs used in this experiment. 

We use five different models in total for both ROI and searchlight analyses. Models colors on the axes correspond to 

the colors in the results for the ROI analysis (Figure 5). Study 1 used three models and study 2 used four. A final model 

(word length) was used to test the correctness of our searchlight procedure. The three models that are both used in 

studies 1 and 2 are conceptually the same but have more items for study 1 (80) than study 2 (40). a- d). The Big-5 

model is a conceptual model (0 not in the factor, 1 in the factor). This model hypothesizes that activity patterns for 

items within the same factor are similar and different between factors. Because items are ordered according to positive 

and negative these factors are shuffled. i) Shows the Big-5 model sorted by factor. b, e). The similarity-1 Different, is 

the Pearson correlations between trait item self-ratings. These ratings have differences between positive and negative 

items which is reflected in the correlations. This model hypothesizes that activity patterns between items correspond 

to the correlations found in behavioral data, and that the patterns between positive and negative items are different. c, 

f). The similarity-2 Same, is the Pearson correlations between trait item self-ratings. However, the negative items from 

these ratings have first been converted to be in the same scale as the positive items. So that this model hypothesizes 

that activity patterns between items correspond to the correlations found in behavioral data, and that the patterns 

between positive and negative items are similar. g). The explicit ratings model, uses the explicit similarity ratings from 

the participant. In the analyses we used each participants’ own ratings as the model. This model assumes that activity 
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patterns reflect those of the idiosyncratic ratings from each participant. h). The word length model uses the absolute 

differences in the trait word length. This model hypothesizes that the differences in word length are reflected in the 

cortex. We used this model to determine if our searchlight functioned as intended. 

  



92 
 

4.3 Results 

4.3.1 Study 1 – Personality learning with social interactions 
For study 1, we ran the searchlight analysis with three model RDMs i.e., a coarse model, the Big-

5 factors (Model 1) and two fine models (similarities) with the individual correlations between trait 

words (Models 2a and 2b) (Figure 4.2). 

 

4.3.1.1 RSA-Searchlight 
We tested the above-mentioned models on two different phases within the scanner task, the self-

imagination-phase, which is when participants were rating their own personality and the other-

imagination-phase, which is when they were rating another person’s personality. We hypothesized 

that we would mainly find regions in the mPFC for models 1-3 and the motor cortex. 

 

Self-imagination-phase 

Results during the self-imagination-phase showed a significant cluster for the Big-5 model in the 

motor cortex extending into the somatosensory cortex. This coarse model assumes activity patterns 

within factors are more similar than between factors. The second similarity model [similarity 2-

same], revealed a cluster in the dmPFC (Figure 4.3A) and two larger clusters in both hemispheres 

of the motor cortex (Figure 4.3B) as hypothesized. This model presumes that the similarity of 

activity patterns between trait words reflects the correlations between trait words and that these 

patterns are similar for positive and negative trait words. For the first similarity model [similarity 

1-different] we found clusters in the motor cortex and the medial temporal lobe. This model 

assumes that activity patterns between trait words reflect those between behavioral correlations and 

that the differences in activity between positive and negative items are larger. 

A final searchlight analysis that focused on the length of the stimulus words [model 4 – 

word length] revealed two clusters in the bilateral visual cortex (Figure 4.3C). This model focuses 

on the visual difference on the screen caused by different stimulus word lengths and was thus 

hypothesized to show activity in the visual cortex. 
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Other-imagination-phase 

We found less patterns of activity during the other-imagination-phase. For the Big-5 model, which 

assumes patterns of activity are similar for items within factors and different between factors, we 

did not find any significant clusters. The searchlight for the second similarity model [similarity 2-

same] revealed two clusters, one in the bilateral motor cortex and the other in the cerebellum. For 

the first similarity model [similarity 1-different] there was a significant cluster in the premotor 

cortex (table 1). These similarity models assume cortical activity patterns reflect the correlations 

between items from behavioral ratings. Model 1-different assumes activity patterns are different 

between positive and negative items and model 2-same assumes these activity patterns are similar. 

 

 
Figure 4.3. Results from the searchlight analysis for study 1 during self-ratings. 

Results for the similarity model during the self-imagination-phase reveal A) a cluster in the dmPFC, where we expected 

to find activity and B) activity in the motor cortex. We tried to prevent this activity by adapting our paradigm in study 

2. Instead of getting ratings on a scale of 1-8, which used four digits on each hand and thus evoked a lot of motor 

activity, we asked participants to rate on a binary scale (“Yes” - applies and “No” - does not apply) and 

counterbalancing the options so less motor activity would be present in the results. C) Results from the searchlight 

analysis for the length of the stimulus words. We expected significant clusters in the visual cortex. 
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Peak voxel MNI coordinates 
(mm) 

      

Side x y z 
Cluster 
size 

p (cluster 
FWE 
corrected) 

Peak z 
Score 

motor cortex L -36 -34 64 779 <0.001 6.04 

motor cortex R 33 -19 67 1325 <0.001 5.4 

mPFC L/R 6 47 28 353 <0.001 5.33 

motor cortex L/R -36 -13 61 4589 <0.001 5.7 
medial 
temporal lobe 

L/R -21 -37 -23 851 <0.001 4.59 

somatosensory L 27 -31 55 273 <0.001 4.25 

motor cortex L/R 6 -31 43 3441 <0.001 5.09 

Cerebellum L -18 -58 -26 218 <0.001 3.84 

Premotor L -45 -37 58 823 <0.001 4.68 
Table 4.1. Results from the searchlight analysis for study 1.  
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4.3.2 Study 2 – Personality learning with no social interactions 
 
4.3.2.1 Neuroimaging Analysis 

 

RSA 

First, like in Study 1, we used a searchlight to find clusters in the brain that code in patterns of 

activity that encoded the model RDMs. We then performed ROI RSA analyses for the hypothesized 

MPFC region. These analyses tested the four different RDM models. 

 

RSA – Searchlight 

The regular searchlight analysis using all four standard models (i.e., the Big-5, both similarity 

models, and the explicit similarity ratings) did not yield any significant clusters. We next performed 

an analysis check to make sure our searchlight analysis functioned as intended. 

Analysis check: Searchlight vs Univariate analysis 

To make sure our searchlight analysis functioned in the way we intended we compared its 

results with a robust univariate analysis. That is, the effect of word length on activity in the cortex. 

So we ran two analyses, first a univariate analysis where we modeled a parametric modulator with 

the length of each stimulus trait word, from this analysis we expected strong activity in the visual 

cortex. Second, we performed a searchlight analysis with model 4 [word length] that modeled the 

absolute differences between word lengths, we also expected visual cortex activity with this model. 

If the clusters of activity between these two models overlap, we take this as evidence for 

successfully implementing the searchlight analysis. Both the univariate analysis (Figure 4.4, red 

shading) and the searchlight analysis (Figure 4.4, green shading), found a large cluster of activity 

in the visual cortex, these clusters showed significant overlap (Figure 4.4, yellow shading) 

confirming that our searchlight analysis worked as we had intended. 
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Figure 4.4, Univariate contrast and searchlight analysis for the length of the stimulus trait words. 

Red shows the results from the univariate contrast, which had a parametric modulator for the length of each stimulus 

trait word. Green shows the results from the searchlight analysis with the word-length model [model 4]. Yellow shading 

shows the overlap between these two analyses. Because the two analyses show a high degree of overlap, we feel more 

confident that our searchlight analysis was performed correctly. 

 

RSA - Region of Interest 

For the ROI analyses we used two clusters that we based on previous analyses from this study. The 

first ROI was created from a univariate analysis from the second study (see Supplementary 

Analysis). In this analysis we ran a standard GLM on the trait word stimuli and contrasted the 

activity for the self-imagination-phase with the activity for the other-imagination-phase. This 

contrast returned a cluster in the mPFC (Figure 4.5, blue region). Because we already hypothesized 

the importance of this region, we used this as our first ROI. We then created a second ROI based 

on the searchlight results in study 1. The searchlight analysis for the model [similarity 2-same] 

during the self-imagination-phase resulted in a cluster located in the dorsal mPFC (Figure 4.5A 

and Figure 4.5, yellow region). Which was also hypothesized as a region of interest. We ran the 

four models (i.e., the Big-5, both Similarity models, and the explicit similarity ratings) on both 

these regions for both the self-imagination-phase (i.e., when participants were rating themselves) 

and the other-imagination-phase (i.e., when participants were rating a stranger). We expected that 
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the first ROI in the ventral prefrontal cortex would show more self-focused results and the dorsal 

ROI to show more other-focused activity patterns. 

 

Self-imagination-phase 

Testing four different models on the activity patterns during self-ratings of personality traits, we 

found that only the Big-5 model significantly explained the data for both ROIs. That is, the vmPFC 

(Figure 4.5, blue box top) and the dmPFC (Figure 4.5, yellow box top). The other models (i.e., 

similarity 1-different, similarity 2-same, and the explicit similarity ratings models) did not explain 

the activity patterns significantly well in both of the ROIs. That is, we only find evidence for the 

use of coarse knowledge structures during self-ratings of personality. 

 

Other-imagination-phase 

We tested the same four models during the personality ratings of strangers. Like during the self-

imagination-phase we found the Big-5 model to significantly explain the patterns of activity. 

Furthermore, we found that both the similarity 1-different and the explicit similarity ratings models 

to also explain the patterns of activity significantly well (Figure 4.5, yellow and blue box bottom). 

Indicating that cortical activity patterns during other-ratings exhibit patterns of fine knowledge 

structures. 
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Figure 4.5. Results from the first ROI RSA analysis for four different models (Bonferroni corrected). 

The main difference we find is between the self- and other-imagination-phases. That is for both ROIs we find that 

during self-imagination-phase only the coarse Big-5 model explains the patterns of activity significantly. The Big-5, 

Similarity 1 (Different), and explicit models explain patterns of activity well during the other-imagination-phase for 

the vmPFC. In the second ROI (dmPFC), we also find that the Big-5, Similarity 1 (Different), and explicit models 

explain the neural activity patterns well for the other- imagination-phases. 
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Individual data points are participants’ parameter estimates which are summarized by boxplots (median (middle line), 

25th, and 75th percentile (box), the whiskers extend to most extreme data points not considered outliers (1.5 times 

interquartile range), outliers are indicated with + signs) 
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4.4 Discussion 

In this study, we set out to investigate social knowledge representations during social decision 

making with two studies and tasks. Study 1 contained naturalistic interactions followed by a social 

feedback task. Study 2 was a simplified and more controlled than Study 1. This task was 

specifically designed for RSA analysis, but also reduced participants’ social context. Across 

studies, we expected to find patterns of neural activity that reflected social knowledge 

representations. This expectation was based on our previous behavioral studies that highlighted the 

use of social knowledge structures in social decision making tasks (Frolichs et al., 2022; Rosenblau 

et al., 2018). We tested both coarse and fine-granularity structures of personality traits. We 

hypothesize that both types of structures are encoded in the cortical activity. Evidence for simpler 

knowledge structures such as the Big-5, which hypothesizes that patterns of activity for trait words 

are similar for trait words within a factor and dissimilar between factors, has been found in previous 

research (Thornton & Mitchell, 2018) but, so far, no evidence has been found for more complex 

knowledge structures. We created four models that represent knowledge structures at different 

levels of granularity and used representational similarity analysis to find which of these models 

could explain the patterns of activity in neocortical areas and within the MPFC.  

 In the first study, we found strong evidence for both coarse and fine-grained social 

knowledge representation in the dmPFC during social decision making, specifically the self-

imagination-phase. This model hypothesizes that patterns of activity are similar to the correlations 

between these items and that the patterns between positive and negative items are similar. That is, 

a high score on a positive item and a low score on a negative item (or vice versa) will evoke similar 

activity patterns. Along with these results we also found large clusters in the motor cortex. We 

know these clusters are evoked because participants answered with four digits from each hand on 

an eight-point scale. 

In the second study, we reduced the answer options from eight to two (i.e., applies and does 

not apply) thereby aiming to reduce motor demands of the task. Contrary to our hypotheses, the 

searchlight, whole-brain analysis did not return significant results for either the self- or other-

imagination-phases. We did however find evidence for coarse- and fine-grained knowledge 

structures in our ROI analysis within the MPFC with two different ROIs.  
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During the self-imagination-phase, the Big-5 model was the only significant model within the 

MPFC ROIs . This model hypothesizes that patterns of activity are similar for items within the 

same factor and different for items between factors. During the other-imagination-phase, we found 

evidence for the coarse Big-5 model and additionally for two models that tested finer-grained social 

knowledge representations. The first similarity model [similarity-1 different] and the explicit 

similarity model could also explain the patterns of activity. These models hypothesize that patterns 

of activity are more complex than the Big-5 model and reflect correlations or ratings between 

individual items.  

Overall, across studies we found evidence that both coarser and finer-grained social 

knowledge structures are represented in cortical patterns of activity during personality learning. 

 

4.4.1 Differences in social aspects of the studies 
Interestingly, the results we got for study 1 (personality learning with social interaction) and study 

2 (personality learning with no social interaction) were slightly different. Specifically, the 

searchlight analysis (i.e., the most sensitive analysis) revealed a cluster in the mPFC for the first 

study during the self-imagination-phase and returned no clusters for the second study. A subsequent 

more robust ROI analysis for study 2 did reveal complex activity patterns exhibited during 

personality learning but only during the other-imagination-phase.  

We expect that the main factor that drives these differences is the fact that study 1 had social 

interactions and study 2 did not. The absence of social interactions in the second study might have 

caused participants to be less engaged in the task, which resulted in less or more noisy cortical 

activity that could not be detected with the sensitive searchlight analysis. Previous research has 

found more pronounced activity patterns for social task compared with non-social tasks (Redcay 

et al., 2010; Rilling et al., 2008). 

 We surmise that the searchlight only revealed significant activity patterns during the self-

imagination-phase for similar reasons. That is, because of the social interactions beforehand 

participants potentially were more occupied with how they were perceived by the others (Schilbach 

et al., 2006). This might have caused more distinct patterns of activity during the self-phase 

compared to the other-phase that were detected with this analysis. 

 In the second study the searchlight analysis did not reveal any significant clusters. We 

hypothesize that due to the non-social nature of the task participants were less engaged in the task 

in general and potentially less occupied with their own personality traits. This is also reflected in 
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the follow-up ROI analysis. This analysis only revealed coarse granular patterns (i.e., Big-5) during 

the self-imagination-phase, indicating participants were not using complex fine grained knowledge 

structures during their self-ratings. 

 The ROI analysis for the other-imagination-phase did reveal complex knowledge structures 

(i.e., similarity models). To our knowledge this is the first time such complex structures have been 

found in cortical activity patterns during personality learning. As hypothesized, we also found 

evidence for the less complex Big-5 model; this model contains all the coarse information found 

in the more complex models and has been found before (Thornton & Mitchell, 2017, 2018). 

Interestingly, we did find evidence for the explicit model. This model hypothesizes that cortical 

activity patterns reflect participants’ idiosyncratic trait word ratings. Recent work already found 

evidence for idiosyncratic activity to potentially be more prominent than the commonly assumed 

universal activity patterns (Nakuci et al., 2022). 

 We did not find evidence for a gradient to exist from ventral to dorsal mPFC as found in 

other work (Amodio & Frith, 2006; Saxe, 2006; Sul et al., 2015; Wagner et al., 2012). Results were 

the same for the two ROIs we tested in the second study. 

Further technical differences between the two studies and potential limitations in study 

design for RSA are discussed below. 

 

4.4.2 Potential technical limitations for RSA 
In this study, we first reanalyzed data from a previous study. The data from this study was not 

optimized for RSA but nonetheless gave us promising results with a searchlight analysis. We next 

collected new data in a similar paradigm but with some changes, aimed at improving the data to be 

more suited for RSA. However, these changes seemed to have had the contrary effect. In the above 

section we already discussed the potential impact the (absence) of social interactions could have 

had on our results. Below, we list in our own judgement of importance, the technical changes we 

made from one study to the next and their possible (adverse) effects on the results. 

 

4.4.2.1 Timing 
In the first study the time distance between trials was 1, 3, or 5 seconds (jittered), whereas the 

distance between trials for the second study was only 500ms. This small distance between trials 

could have had a negative effect on the statistical power. 
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Within the trials there also was a large different in timing. In the first study participants had 

4 seconds to imagine/ think about the trait word and subsequently 6 seconds to rate. Compared to 

the second study where participants had 2.75 seconds for imagination and 1.5 seconds to rate the 

trait word shows a large difference in timing between the two studies. In general, the BOLD signal 

had more time to respond fully and return to baseline in the first study. Furthermore, the jittered 

fixation cross at the end of each trial in the first study would have had a positive effect on the 

statistical power. 

 

4.4.2.2 Answer Options (Binary vs Scale) 
In the original study participants were asked to rate on a scale of 1-8. This allowed for more fine-

grained ratings but also evoked a large response in the motor cortex. To avoid this large motor 

response we opted for a binary response (yes & no, counterbalanced) in the current study. This was 

effective at reducing the functional motor response. However, we also expect this to have had 

adverse effects on the functional results. For example, participant engagement could have been 

decreased by these limited answer options. That is, because they only had to think about whether a 

trait applied or not they didn’t have to engage as much as when thinking exactly how much (or not) 

this would apply. 

 

4.4.2.3 Number of Stimuli 
In study 1 we asked participants to rate both the other and the self on 80 traits total (40 positive and 

40 negative). In the current study this was reduced to 40 total traits (20 positive and 20 negative) 

for both self- and other-ratings. Assuming more stimuli increase power during analysis, there is a 

trade-off between time in the scanner and amounts of necessary power. By decreasing the number 

of stimuli by 50% we might have lost too much power to detect effects with less robust analyses 

e.g., the searchlight, that were effective in the first study. This seems reinforced by the fact that the 

analysis on the ROI revealed by the searchlight of the original study showed significant model 

effects in the current study but an independent searchlight did not find significant results in this 

study. 

 

4.4.2.4 Session Repetition 
In the original study there was only one scanning session in which participants rated themselves 

and others. In the current study we increased the number of sessions to 5 i.e., there was one session, 
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which had the same stimuli but ordered randomly, that was repeated 5 times. In the analysis we 

averaged over these five sessions to reduce noise. Repeating sessions to decrease noise still seems 

like common practice in fMRI analysis, therefore we have put this lowest on our list of potential 

limitations 

 

4.4.2.5 No Feedback 
In the first study participants received feedback after every rating, this feedback phase was absent 

in the second study. Similar as with the answer options this might have influenced participant 

engagement. 
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5. Study 3 – Grid-like encoding in human 

prefrontal cortex during social navigation 

5.1 Introduction and Hypotheses 

In the last two studies we found both behavioral and neural evidence for humans using 

generalizations during personality learning. These generalizations, based on research from 

personality psychology can distill personality in a coarse manner (i.e., 5 factors where items within 

each factor are more alike than those between factors) or on a finer granularity where the 

similarities between all items is considered. Future research might find generalizations on the 

spectrum between these two extremes. However, for this last study we want to focus on a different 

generalization, namely the map-like generalizations as computed by grid-cells. 

It had already been suggested by the 1950’s (Tolman, 1948) that animals might use a map-

like structure to make generalizations in their surroundings (e.g., finding novel shortcuts in a maze 

task). Single cell recordings from rats navigating an arena provided first evidence for these maps 

in the form of place-cells in the hippocampus (O’Keefe & Dostrovsky, 1971) and grid-cells in the 

entorhinal cortex (EC) (Hafting et al., 2005). Grid-cells in the human EC during spatial navigation 

were later also found with direct recordings (Jacobs et al., 2013) as well as non-invasive methods 

(i.e., fMRI) (Doeller et al., 2010) which opened up research on grid-cells to humans. 

Interestingly, the regions implicated in this spatial map (i.e., mPFC, EC, and hippocampus) 

also support abstract reasoning and decision making (Schuck et al., 2016). In recent years evidence 

has formed for such non-spatial navigation on a conceptual map within these regions. This 

conceptual map can, in principle, represent anything that can be projected on two dimensions 

(Behrens et al., 2018). Studies have found evidence of vastly different maps such as conceptual 

(Constantinescu et al., 2016), visual (Julian et al., 2018; Nau et al., 2018), olfactory (Bao et al., 

2019) and semantic (Viganò et al., 2021; Viganò & Piazza, 2020) and in general suggest a domain-

general role for grid-like encoding in the (human) cortex (Bellmund et al., 2018). This would 

include the social domain for which this grid mechanism was also suggested (Schafer & Schiller, 

2018). 
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So far, two studies have provided first evidence for a social map (Liang et al., 2023; Park 

et al., 2021). Both studies use a previously found two-dimensional map (i.e., the stereotype content 

model) (Cuddy et al., 2008; Fiske et al., 2007) with the axes competence & warmth and competence 

& popularity. Similar to the motivations of our previous works we wanted to explore more detailed 

representations than the ones studied so far. Since our previous work focused on generalizations 

derived from the Big-5 and we found evidence for these structures in the cortical activity patterns, 

we wanted to test whether there was grid-like activity for a personality space based on two 

dimensions from the Big-5. 
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5.2 Methods 

This experiment was preregistered on the Open Science Framework prior to data collection 

(https://osf.io/pxs7m). The whole experiment and analysis was conducted accordingly, and 

deviations and exploratory analyses are mentioned explicitly. 

 

5.2.1 Participants 

We recruited 40 participants (27 female, mean age = 25.4 years, SD = 5.0) through online 

advertisements. We aimed for a sample size similar to (Constantinescu et al., 2016) whose 

paradigm we closely followed. No participant reported a history of significant medical illness or 

psychiatric dysfunction. Further inclusion criteria were: 1) age between 18 and 40, 2) Native 

German speakers and 3) normal or corrected to normal vision. We excluded four participants; three 

were excluded because they could not finish the behavioral part within the accuracy cut-off, and 

one because of excessive head movement. This left us with a total of 36 participants who were 

included in the analysis. The study was conducted in accord with the Declaration of Helsinki and 

approved by the local research ethics committee (Ethik-Kommission der Ärtzekammer Hamburg, 

Number: PV5746). All participants gave written consent prior to scanning and were compensated 

on an hourly basis. 

 

5.2.2 Behavioral Tasks 

This experiment was conducted over two days (roughly 6 hours total). The majority of these tasks 

have been adapted from the first study that looked for grid-cells in conceptual space 

(Constantinescu et al., 2016) and other recent publications also used very similar task structure 

within the social domains (Liang et al., 2023; Park et al., 2021). The first day consisted of only 

behavioral training tasks and the second day was both behavioral training and a neuroimaging task 

performed in the fMRI scanner. There were a total of nine tasks of which 1 & 2 were only 

performed on day one, 3-8 were repeated on both days and the 9th task was only performed on the 

second day. Moreover, on day two, task 7 was changed slightly so it could be performed optimally 

in the scanner. 

In general, we wanted participants to learn about the traits “generous” and “diligent” from 

six individuals they had never met before. The level to which these traits applied to each stranger 
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was displayed with the height of two bars (one representing generous and the other diligent), the 

higher the bar the more this trait applied to this person (Figure 5.1A,B). In order to get participants 

well acquainted with these bars and how to control their heights as well as their meaning 

representing personality traits we gave participants multiple tasks to get them familiar with every 

aspect of this task (Figure 5.1C). 

We had two main goals we wanted to accomplish with these tasks. First, for participants to 

learn the task that was intended for the scanner. That is, learn the meaning of the objects (bars) and 

their positions on the screen and how to manipulate them. To achieve this we introduce each 

concept systematically throughout these tasks, with the end goal of teaching participants the 

personality traits of six strangers in this specific paradigm. 

Second, because this was intended to be about social learning but the task itself was rather 

abstract we added several tasks to increase and test participants’ engagement. That is, make sure 

participants engaged in the task in a meaningful manner, making sure they regarded the stimuli as 

ratings on personality traits and associated people with this. 

All behavioral tasks are explained in brief in the following section with details reserved for the 

supplementary materials. 
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Figure 5.1. Overview of the tasks and general look. 

a) The general look for most learning tasks had the sliders on the right and the bars (that represent the personality traits 

generous and diligent) on the left. Participants could manipulate the bars’ heights by changing the slider positions. b). 

The positions of the strangers on the trait map, the axes of the map correspond to the bars’ height. c) In total there were 

nine tasks. Tasks 1 and 2 were only performed on day 1 and task 9 only on the second day. Task 7 was performed on 

the computer in the lab on day 1 and in the scanner on day 2. Tasks can be categorized as learning tasks where 

participants were either taught how to control the sliders and the bars or the position of the strangers and engagement 

tasks where we tested if participants engaged with the tasks in the intended manner. 

 

5.2.2.1 Learning tasks 

All learning tasks had the same aesthetic throughout the study (Figure 5.1A). These tasks were 

aimed at getting participants ready for the neuroimaging task. The goal of these tasks was to get 

participants to learn two personality traits (diligent & generous) of six unknown individuals 

(hereafter called “strangers”). The personality traits are each represented by a colored bar, of which 

the height indicates how much of this trait a stranger possesses. There were no time limits on any 

of the tasks and participants were free to take breaks as they pleased. 
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In all tasks described below, participants could change the height of the bars by setting the 

two sliders (each slider corresponded to the same colored bar) above and below the centerline. The 

settings of the sliders indicate both the movement direction and velocity of the bars. After 

confirming these slider settings the bars would move for 2 seconds total in the direction and with 

a velocity based on the sliders’ distance from the centerline. Setting the slider to the maximum 

would move the bars one-third of their total maximum length. The bars could never exceed the 

maximum or minimum indicated by the horizontal lines. 

In the first task [Task 1 - Match] participants learned to manipulate the bars (Figure 5.1A, 

left) using the sliders on the right (Figure 5.1A, right). They were asked to match the height of two 

transparent bars superimposed on the bars they could move. 

After getting participants familiar with manipulating the bars’ height we introduce the 

meaning of the bars i.e., they represent the personality traits diligent and generous. To make it 

easier for participants to understand this concept we asked them to rate six of their acquaintances 

on these two traits using the bars in the second task [Task 2 – Acquaintances]. That is, they got a 

prompt for an acquaintance (e.g., a colleague you like) and were then asked to rate how generous 

and diligent they found this acquaintance. This procedure was repeated for each of six 

acquaintances (see supplementary table 1 for all prompts). Both tasks 1 and 2 were only performed 

on day one. 

Once participants understood the controls and the personality representations of the bars, 

they were given the freedom to explore the personality space by changing the heights of both bars 

at their will. In this personality space six strangers were hidden where the height of the bars 

corresponded to the coordinates of the personality space (Figure 5.1B). In the third task [Task 3 – 

Explore] participants were asked to find each of these strangers three times (with at least one other 

stranger in between so they could not cheat and repeat finds). 

When participants had found each stranger three times we assumed they were familiar with 

the strangers’ traits. For the fourth task [Task 4 – Collect] we asked the participants to change the 

bar heights from semi-random positions to those of a stranger we indicated. Bar heights were 

always positioned so participants could reach the stranger within one try (i.e., they were never 

positioned more than one-third the maximum length away on both axes). 

The final learning task on day one was the seventh task [Task 7 – Recall]. On the second 

day, this task was performed in the scanner with inputs from a button box instead of a keyboard. 

The scanner task is described in detail below and will therefore be omitted here. 
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5.2.2.2 Engagement tasks 

During the engagement tasks we tested whether participants saw the bars as representing 

personality traits and engaged with them thus. To test whether participants had internalized the 

strangers’ personalities after task 4 we asked them to rate the strangers’ similarity (1: ‘not similar’ 

– 7: ‘very similar’) [Task 5 – Simple Similarities]. That is, they received each pair of names and 

were asked to rate how similar the overall personalities of these two strangers were. 

In the follow-up task we also asked participants for similarity ratings but now between pairs 

of strangers [Task 6 – Complex Similarities]. That is, participants received two possible pairs of 

strangers and were asked to decide which of these two pairs were more similar. 

To explore whether participants saw the strangers as ‘real individuals’ (i.e., as 

multidimensional personalities rather than the 2-dimensional personalities they were presented as) 

we asked them to rate the strangers on five traits related to the ones they learned about (i.e., traits 

from the two Big-5 factors agreeableness and conscientiousness) [Task 8 – IPIP]. Participants 

received different traits on day one and two. 

 

The final task, which was only conducted on the second day, revealed the possibility of 

representing the strangers and acquaintances on a 2-dimensional map. Participants were tasked 

with dragging both their acquaintances and the strangers to the correct position on the map [Task 

9 – Map]. 

 

5.2.3 Neuroimaging Task [Task 7 - Recall] 

After two days of training, where tasks 3 to 6 were repeated before the neuroimaging task, 

participants performed task 7 in the scanner. Task 7 was the same on both days. The only difference 

was that on day one it was performed on a regular computer together with the other tasks and 

subsequently had input from a keyboard and on day two in the scanner with a button box to input 

answers. 

This task was slightly different from the other learning tasks in that participants could not 

control the movement of the bars anymore, instead the bars moved in pre-defined directions and 

velocities. On the screen sliders were absent and subsequently the bars were presented in the center 

of the screen (Figure 5.2). 
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Trial 

At the start of a trial participants were presented with a fixation cross. After the fixation cross the, 

now familiar, bars (representing diligent and generous) were displayed in the middle of the screen 

initialized in a random position from the participants’ perspective. The bars were motionless for 

one second. After one second the bars moved in a specific direction and velocity that could be 

described with a vector on a 2-dimensional plane. After 1.5 seconds of this movement, the bars got 

covered in a semi-transparent veil which also halted their movement. Participants were instructed 

to imagine the movement of the bars if they continued with the same direction and velocity for 

another 1.5 seconds. The passing of these 1.5 seconds was indicated by the border of the veil 

changing its color from black to white. At this point a trial can develop in two ways (both with 

equal likelihood 50%, and equal duration of six seconds). It was either an answer trial or an no-

answer trial. 

During an answer trial, participants were asked to pick one out of three options that were 

presented on top of the veil simultaneously with the switching of the border color to white. These 

answer options were always two strangers and an ‘empty’ option. Participants were tasked with 

determining at whose personality ratings the bars would have ended at the end of this imagined 

movement, for this they had 1.5 seconds to choose, after which a fixation cross was presented for 

.5 second. To make sure answer probabilities stayed equal, correct options were a name option 

two-thirds of the time and empty one-third of the time. 

During a no-answer trial, participants were not presented with any answer options after the 

1.5 seconds of imagination had passed but instead got a fixation cross for 2 seconds. 

Finally, we added several null-trials to help with statistical robustness. During a null-trial a fixation 

cross was presented for a jittered duration, which had been calculated previously to ensure an 

average trial duration of six seconds over all null-trials. 

 

Session 

There were a total of 72 actual trials, of which 36 were answer- and 36 were no-answer trials. 

Furthermore, 14 null-trials were interspersed randomly for a total of 86 trials. With every trial 

taking on average 6 seconds, this resulted in a total session length of 516 seconds (or approximately 

8.5 minutes). Every participant underwent six sessions, which were the same for all participants 

but presented in pseudorandom order. 
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Figure 5.2 Overview of the scanner task 

 

5.2.4 Behavioral data analysis 

Behavioral data analysis served two purposes: first to test whether participants learned the tasks 

and trait space and second to test whether participants engaged with the task in the way we intended 

(i.e., to perceive the bars as representing personality traits). The analyses are explained in detail in 

the appendices. 

 

Learning Tasks 

We analyzed the learning tasks to make sure participants learned how to manipulate the bars’ 

positions and subsequently learned the positions of the strangers based on their traits. To assess 

participants’ learning (tasks 1, 2, 3, 4, and 7) we mainly compared the performance between day 1 

and day 2. Because tasks 1 and 2 were only performed on day one we only plotted these results and 

visually inspected them for inconsistencies. For tasks 3 and 4 we compared both the number of 

tries and the total time taken on the first day with those on the second day with two sample t-tests. 

Furthermore, we visually inspected participants’ movement through the trait space to determine if 

their movement got more localized around the strangers’ positions. For task 7 we tested whether 

participants performed above chance for both days and we compared participants’ accuracies 

between days 1 and 2. We expected an increase in accuracy from day 1 to day 2. 

 

Engagement Tasks 
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Participants’ engagement was tested for tasks 5, 8, and 9. For task 5, where participants rated the 

strangers’ similarities, we performed multidimensional scaling (function ‘cmdscale’ in Matlab) to 

project the similarity ratings onto a Euclidean plane. This Euclidean plane was rotated to the best 

fit with the actual positions of the strangers and visually inspected to determine its fit to the original 

positions. For task 8 we performed correlation analyses between the ratings on the IPIP items from 

the same factor as the two trait axes (i.e., the factor agreeableness for generous and 

conscientiousness for diligent). These correlations were performed for both the strangers and the 

participants’ acquaintances. In a similar vein we performed a correlation analysis for task 9. This 

correlation was calculated between the actual positions of the strangers and acquaintances (taken 

from task 2) and where the participants placed them on the map. 

 

5.2.5 MRI Data Acquisition and Pre-processing 

We acquired T2*-weighted functional images on a 3 Tesla Siemens Magnetom Prisma with the 

following parameters: repetition time (TR): 1212ms, echo time (TE): 29ms, FA: 60°, FoV: 224 

mm, number of volumes: 432, number of slices: 40, slice thickness: 2 mm with 25% (0.5 mm) gap 

for a total acquisition time of: 523.2 seconds.  

To correct for distortions we acquired a field map with the following parameters: TR: 

440ms, TE1: 5.51ms, TE2: 7.97ms, FA: 30°, FoV: 222 mm, slice thickness: 2 mm. We acquire T1-

weighted anatomical images using magnetization-prepared rapid gradient echo sequence 

(MPRAGE) with the following parameters: TE: 2.98ms, TR: 2300ms, FA: 9°, FoV: 256 mm, slice 

thickness: 1 mm. 

 

Pre-processing 

fMRI data were pre-processed using SPM12 software 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in MATLAB (r2020b). We performed slice 

time correction, corrected for signal distortions using the field map, and realigned functional scans 

to the first image using a six-parameter rigid body transformation to correct for motion. The 

structural image was co-registered to the functional image, and was segmented and normalized to 

MNI space.  After this the realigned functional images were normalized using the transformation 

parameters from the structural image normalization, and smoothed using an 6 mm full-width at 

half maximum Gaussian kernel. 
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5.2.6 Grid-Cell Analysis 

Pre-registered analysis 

The preregistered analysis largely followed the steps established in Doeller et al., (2010) and 

Constantinescu et al., (2016). The region of interest (ROI) was defined based on a previous study 

by Korn et al., (2012) and was modeled as a 10 voxel diameter sphere centered at the coordinates 

[0, 56, 28]. Data was split in half based on odd / even sessions where both GLM’s were applied to 

one half. All the fMRI analyses presented in this thesis are performed with the Grid Code Analysis 

Toolbox (GridCAT) (Stangl et al., 2017) with MATLAB r2020b. 

 

GLM one 

The first GLM was used to find participants’ grid angle in the pre-specified ROI. This was achieved 

by creating two parametric modulated regressors and six nuisance regressors (to account for 

motion-related artifacts) that model the movement and imagination phase of the trial (3 seconds). 

The parametric modulators are Sine and Cosine for the trajectory angle 𝜃𝑡 with a periodicity of 60°, 

which results in 𝑠𝑖𝑛(6 ⋅ 𝜃௧) and 𝑐𝑜𝑠(6 ⋅ 𝜃௧). Consequently, the betas from these regressors should 

reflect if a region is modulated by hexagonal symmetry. To calculate the personal grid angle φ the 

betas from sin and cosine are averaged across the voxels in the ROI and these average beta values 

are put into the following formula 𝑎𝑟𝑐𝑡𝑎𝑛(𝛽௦௜௡ ÷ 𝛽௖௢௦) ÷ 6 , which will output the grid angle φ [-

30°, 30°]. 

 

GLM two 

The second GLM, on the second half of the data, functions as an independent consistency check 

for the personal grid angle calculated in the first GLM. We performed two separate but related 

analyses to test for the grid-angle consistency. In the first GLM we create one regressor that uses 

the grid angle calculated in the first half together with 6 nuisance regressors to model motion-

related artifacts. The regressor is modeled in the following way 𝑐𝑜𝑠(6 ⋅ [𝜃௧ − 𝜑]), where 𝜃𝑡 is the 

trajectory angle for that specific trial and φ the grid angle calculated in the first GLM. This function 

assesses whether the grid angle and the trial specific angle align, and if so, assigns high values to 

the regressor. In the second GLM we create two regressors, one for the aligned trials and the other 

for the misaligned trials. We determined the trial alignment based on each participants’ personal 
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grid angle that was calculated on the first half of the data. Each trial ±15° the personal grid angle 

and its multiples of 6 (i.e., 0°, 60°, 120° etc.) was categorized as aligned and the remaining trials 

as misaligned. For example, if a participant’s personal grid angle was 25°, the trials between 10° 

and 40° (as well as those between 70° and 100° etc.) would be categorized as aligned and trials 

between 40° and 70° (and its multiples of 6) as misaligned. 

For all these analyses we expected the sixfold multiples to be significant because the grid 

cells pattern the area in a hexagonal pattern. Nevertheless, we also tested multiples of 4, 5, 7 and 8 

to make sure our analyses only revealed sixfold patterns. 

 

Regions of Interest 

In total we test three ROIs, the first ROI is the one we specified in the preregistration. This is a 10 

voxel diameter sphere that is centered on the coordinates [0, 56, 28], which equates to a part of the 

dorsomedial prefrontal cortex. The second ROI focuses on the ventral part of the mPFC and was 

taken from other researchers who based this ROI on AAL regions (Liu et al., 2016). The third and 

final ROI focused on the bilateral entorhinal cortex and was taken from a ROI that was constructed 

by using ultra high-resolution fMRI (Maass et al., 2015). 
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5.3 Results 

5.3.1 Behavioral 

The majority of behavioral results are provided in the appendices. In general participants learned 

all the tasks well. We specifically saw a significant performance increase for tasks 3 and 4 from 

day 1 to day 2 (Figure 5.3A,B). Furthermore, visual inspection of participants’ movement through 

the trait space revealed their movement patterns to localize more around the strangers’ positions 

from day 1 to 2 for both task 3 and 4 (Figure 5.3C,D). Participant engagement with the bars as 

representing the strangers’ personality traits was positive. That is, for both tasks 8 and 9 we found 

positive correlations between the strangers’ trait ratings and participants’ ratings on related trait 

words (Figure 5.3E,F, task 8) and their placement of the strangers on a trait map (Figure 5.3G,H, 

task 9). 

 

 
Figure 5.3. Overview of the main behavioral results from the learning and engagement tasks 

The top row shows the main results from the learning tasks. a) In task 03 [explore] participants got significantly better 

from day 1 to day 2. b) Participants also significantly improved from day 1 to day 2 for task 04 [collect]. To explore 

participants’ movement through the trait space we projected their averaged movements on the map for day 1 (c) and 

day 2 (d). Visual inspection shows that participants’ movement got more localized around the strangers’ positions on 

day 2. In general we take these results to show that participants learned from day 1 to day 2. The bottom row shows 
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the main results from the engagement task. e) and f) show the correlations between participants’ IPIP ratings of items 

from the same factor as generous (agreeableness) and diligent (conscientiousness) with the 6 actual ratings from the 

strangers on these two traits. The correlations between the ratings for both e) and f) are satisfactorily, indicating 

participant engagement. g) and f) show the correlations between the strangers’ actual ratings on generous and diligent 

and the positions where participants placed them on the map in the final task (09). The correlations for both traits are 

high, indicating participant engagement. 

 

For task 7 we performed a left-tailed paired samples t-test on participants’ accuracies for day 1 (M: 

.587, SD: .142) and day 2 (M: .698, SD: .134). This revealed significant learning from day 1 to day 

2 (t(35) = -6.7164, p<0.001) (Figure 5.4). Furthermore, two right-tailed paired samples t-test were 

calculated to test whether participants performed above chance (33%). For both days participants 

performed above chance, day 1 (M: .587, SD: .142) t(35) = 10.68, p< 0.001 & day 2  (M: .698, SD: 

.134) t(35) = 16.39, p< 0.001, indicating the participants were engaged with the task on both days. 

 

 
Figure 5.4. Accuracy on task 7 for both days 1 and 2. 

During day 1 participants did task 7 on a computer in the lab and on the second day they did this same task in the 

scanner. Participants’ accuracies were significantly above chance (vertical dotted line) for both days and participants’ 

accuracies significantly improved from day 1 to day 2 as tested with a paired samples t-test. 
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5.3.2 Neural 

Having found evidence that participants learned the tasks well and engaged with them in a manner 

that suggested they learned about the personalities of the strangers we next focussed our attention 

on the neural analyses. In our main analysis we performed two similar analyses on three distinct 

ROIs (Figure 5.5A). In them we looked for a hexadirectional modulation of the signal when 

participants moved through a personality trait space where six strangers were placed based on their 

levels of generosity and diligence. 

In none of the ROIs did we find evidence for a hexadirectional modulation of the signal 

(Figure 5.5B,C). This indicated that there was no grid-like encoding of the personality trait space 

for our participants. We next performed a more in depth analysis where we also looked for other 

modulations of the signal (i.e., other than 6 folds) as a control analysis (Figure 5.6). Similarly to 

the previous analyses these also did not return any significant results, except for one 5-folded result 

in the vmPFC. 

 
Figure 5.5. Overview of the regions of interest and the main results for each of these regions 

a) We tested for grid-like encoding in three different regions of interest. The first region (red) was a sphere in the 

vmPFC, the second (green) lay in the dmPFC and the third (blue) captured bilateral entorhinal cortex. We tested for 
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grid consistency with two different analyses both used participants’ personal grid angles calculated on the first half of 

the data. b) In the most common analysis we modeled a parametric modulator on the trials based on the personal grid 

angles. We did not find any signs of grid consistency for any of the ROIs in this analysis. c) For the other analysis we 

sorted the trials based on aligned and misaligned (to the personal grid angle). We also did not find any signs of grid 

consistency for any of the ROIs for this analysis. 

 

 
Figure 5.6. Results for all regions of interest on all tested folds 

We tested for grid-like encoding on three different ROIs (see figure 5.5a), with two different analyses (first, a 

parametric modulator based on participants’ personal grid angle and second two regressors, one for aligned and the 

other for misaligned trials). We tested this on five different folds, that is, peaks in the signal. A grid-like signal is only 

expected for 6 peaks (i.e., hexagonal tiling). We did not find any significant results for any of the analyses but for the 

5 folded signal for the aligned and misaligned analysis in the vmPFC (e). All alpha values are Bonferroni corrected for 

the number of tests (i.e., number of folds tested). 
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5.4 Discussion 

In this study we tested whether humans form and traverse a cognitive map of personality traits 

when learning about strangers’ personalities. Over two days we intensively trained participants to 

get to know our study paradigm (based on (Constantinescu et al., 2016)) and through this paradigm 

six strangers’ generosity and diligence. These two personality traits formed the axes of a two-

dimensional conceptual trait space we hypothesized would form in participants’ mPFC and 

entorhinal cortex. We investigated the existence of this trait space by looking for grid-like activity 

in these regions. 

The behavioral analyses revealed participants learned the paradigm and subsequently the 

strangers’ personalities well. Furthermore it showed participants engaged with the task in the way 

we intended. That is, they learned about the strangers’ personality as a whole and not just the 

positions of the bars representing the two traits (generous and diligent) they were supposed to learn 

about. 

The neural analysis, where we looked for a proxy for grid-like activity in the mPFC and 

EC, revealed no such coding for any of the ROIs we investigated. We propose our paradigm might 

be a level of abstraction too deep for the brain to create a cognitive map. When considering other 

work that investigates grid-like encoding in a social context (Liang et al., 2023; Park et al., 2021) 

we find that they not only used already established two-factor models but also remained on these 

factor levels instead of using items within these factors. Our study not only used a five-factor model 

but traits from within these factors. 

 

5.4.1 Limitations 

One of the major limitations in this study could have been the use of a five-factor model. As 

mentioned above, two other studies within the social domain found grid-like activity for conceptual 

maps created from two-factor models. Using a five-factor model could complicate results in several 

ways. The five factors would form a five-dimensional personality plane which one would traverse 

when learning about others. Such a higher dimensional plane could potentially not be represented 

by grid cells where evidence so far points to 3-dimensional (Ginosar et al., 2021; R. Hayman et al., 

2011; R. M. A. Hayman et al., 2015) as is achievable in spatial navigation. If a five-dimensional 

plane would be possible to represent with grid cells, interaction effects might skew these planes in 



122 
 

potentially unpredictable ways. A skew of this plane is very likely already happening because these 

five factors are not exactly orthogonal to each other. This lack of orthogonality means the axes of 

the maps will not be at 90° which complicates computations. However, we not only used a five-

factor model but items from two factors (i.e., generous from agreeableness and diligent from 

conscientiousness), hypothesizing that a map based on these axes would form during learning. But 

we cannot be sure that an already existing map (with the formerly mentioned issues) was used 

instead. 

As with any experiment there is a trade-off between external validity and experimental 

control. In this experiment we leaned towards experimental control and potentially compromised 

participants’ personality learning by being too abstract. Even though we tried to make sure by 

adding tasks participants did not learn about the strangers in a normal manner.  

Learning about others’ personality is a continuous process. Using strangers with set 

personalities gave us a lot of experimental control but one could argue that using participants’ 

acquaintances would offer more external validity. However, the limitations, such as each 

participant having different maps (because their acquaintances will undoubtedly have different trait 

ratings) and potentially different scales. In extreme cases these ratings could even change from one 

day to the next (e.g., when they find out their partner cheated on them). 

 

5.4.2 (Suggested) Future analyses 

First, we suggest examining lower level representations that could still show that the brain formed 

personality representation. For example, investigating whether the Euclidean distance between the 

strangers’ positions on the map and the distance between the activity patterns is similar (using 

representational similarity analysis (RSA)) would be first evidence of the existence of these 

personality representations. This analysis could be repeated with participants’ placement of the 

strangers on the map task, potentially revealing participants’ erroneous maps of the strangers’ 

positions reflected in their neural activity patterns. 

Second, only a subgroup of our participants might have formed a noticeable traits space. 

We therefore suggest subdividing participants in groups based on their performance in task 7 (e.g., 

an above and below average performance group) and running the analysis pipeline again for these 

separate groups hypothesizing that only the above average group will show evidence of a trait 

space. 
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Third, because the analysis of grid-like coding from fMRI data is such a novel topic, new 

and improved analysis pipelines are suggested constantly. One of the most promising analyses uses  

RSA to explore for grid-like encoding. This analysis foregoes the two GLMs and instead bins the 

trials (in 6 bins for the main or a different amount of bins for control analyses) and tests whether 

activity patterns within these bins are similar and between bins dissimilar as a proxy for grid-cells. 

 

5.4.3 Future studies 

Future studies should focus on determining whether a personality trait space exists and if so on 

what level of abstraction. That is, first, find if a personality trait space exists based on the five-

factor models. Because grid-cells are based on spatial navigation and such navigation only happens 

in a maximum of 3 planes a five-dimensional model might not be possible or be distorted. 

Theoretical work should first prove possible that such computations can be an efficient way of 

representing higher dimensions. If higher (than 3) dimensional representations are not efficient one 

might look at maps that get flexibly updated to represent the two or three most important 

dimensions at that moment in time. Once these factors are sorted one can have a look at the traits 

within the factors. 

Finally, a very interesting study would focus on established representations from 

acquaintances. These representations will have formed over years and might show strong patterns 

of activity. 
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6.    Conclusion 
In this thesis, I set-out to discover what underlying knowledge structures humans use during 

learning (with an emphasis on personality learning). I have tried to answer this question on all three 

levels of Marr’s Tri-level hypothesis framework. That is, approach this question from multiple 

viewpoints to, hopefully, achieve a better understanding of this cognitive process as a whole. The 

main question, whether humans use knowledge structures, and how exactly they apply them during 

(social) learning, was the highest level in this framework (i.e., the so-called computational level) 

and offered the problem that is so elegantly solved in the brain. On the algorithmical level I 

presented a novel modeling framework that implements knowledge structures in the standard 

Rescorla-Wagner learning rule. Furthermore, I investigated if and how these knowledge structures 

are represented in the cortex during learning. I looked at the third level of Marr’s framework 

(implementational) through the lens of grid-cells. The main question here is whether grid-cells also 

code for a personality trait space like they do for physical space. In brief, this thesis tries to answer 

a lot of questions about the use of social knowledge structures during social learning in one go. In 

this final chapter, I will first summarize the results of each chapter. Then I will discuss future 

directions that could be derived from the current thesis and lastly I will draw the overall 

conclusions. 

6.1 Summary 

Social learning and personality learning specifically is of vital importance for healthy social 

functioning. However, as easy and straightforward this task is for most of us during our everyday 

existence. It is a vastly complex and ever changing task riddled sometimes with subtleties and other 

times with generalizations. It is impossible to answer the question of how social learning takes 

place from only a single vantage point. I therefore try to answer this question from a multitude of 

perspectives that are based on Marr’s framework. 

In Chapter 1 (“Introduction”) I look at the literature concerning all perspectives I take in 

this thesis. First, I focus on personality psychology and the generalizations (named knowledge 

structures throughout the thesis) that have been discovered in this field. These knowledge structures 

allow humans to distill personality, where the most common of the generalizations (Big-5) captures 

personality along five dimensions; coarser generalizations on 2 or 3 dimensions also exist, as do 
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more fine grained ones. I argue that when learning about others’ personality humans must make 

use of all these generalizations depending on the task at hand. After personality psychology I turn 

my attention towards computational models, specifically, reinforcement learning models and the 

Rescorla-Wagner learning rule. Over the years these models have proven their worth for explaining 

details about the brain as well as for studying learning. Together with my co authors, we suggest 

adding knowledge structures to these models to deepen our understanding of social learning. Next 

I look at research on the neural processes at play during social learning. With our knowledge from 

the first study, that humans use different and complex knowledge structures during learning, we 

look for these structures in cortical activity patterns using multivariate pattern analysis. Research 

and advantages on multivariate pattern analyses for the work in this thesis is discussed. Finally, I 

discuss the latest literature on grid-cells, since this is a relatively young field of research I give a 

brief overview of its largely non-invasive research in human participants. 

In Chapter 2 (“Overview of the Methods”) my aim was to give a brief introduction to each 

of the three methods used in this thesis. This was not intended in any way to be an exhaustive 

tutorial on each of these topics but rather a stepping stone to a basic understanding of each method. 

My goal was, that after reading about these topics, a motivated person could then go on and fill-in 

the missing information through their own research. Because all these methods rely quite heavily 

on code, each subchapter has figures that are made solely using MATLAB code. This code is shared 

on Github and should help in understanding each of these methods' computational intricacies. Any 

other teaching materials are shared in their respective sections. The topics are ordered based on the 

chapters following the current one. First, I look at the Rescorla-Wagner models and our 

introduction of the knowledge structures. Then I look at how to use representational similarity 

analysis for behavioral and fMRI data. Finally, I give a brief overview of the analysis used to find 

a proxy for grid-like activity in fMRI data. 

In Chapter 3 (“Study 1 - Finding social knowledge structures using computational models”) 

I discuss the first study of this thesis. For five experiments I discuss the findings from both model-

free and those from our modeling procedures. In general I find that participants use different 

granularities of knowledge structure depending on the task (i.e., available information within the 

task or the group the other person belongs to). This is the first evidence that humans use complex 

knowledge structures during social learning. Furthermore, I find that this modeling framework is 

robust across different sets of stimuli. Showing that this framework has the potential to be used 

more widely than just for understanding personality learning. All models are tested for robustness 
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and distinguishability (Wilson & Collins, 2019; L. Zhang et al., 2020). Next, I wondered whether 

these knowledge structures were also represented in the cortex. 

In Chapter 4 (“Study 2 – Patterns of activation during personality representation”) I turned 

towards neural activity patterns. Specifically, those patterns present during social learning in the 

mPFC. I focussed on the mPFC because along with its activity during social tasks it has also been 

found to be implicated in accessing conceptual knowledge during decision making, computing 

decision variables, and prediction errors. That is, all of which was used by participants during the 

previous study. I report about two experiments which were analyzed for this study. Results are 

mixed, where on the one hand I find evidence for fine-grained representations in the cortex for the 

first time but on the other do not find these results consistently. With some evidence for neural 

activity patterns that match patterns found in behavior, I finally turn towards specific encoding of 

knowledge structures in the form of grid-cells. 

In Chapter 5 (“Study 3 – Grid-like encoding in human prefrontal cortex during social 

navigation”) I look at the coarsest knowledge structure in this thesis (i.e., two dimensions in a trait 

space). Regions of interest are the mPFC and entorhinal cortex. I report some but not conclusive 

evidence for grid-like encoding.  

 

6.2 Looking Forward 

As with any thesis, I suppose, I have only looked at a small area of research in mine. The studies 

in this thesis can therefore be improved and expanded in numerous ways to get closer to answering 

how the brain solves the problem of personality trait learning with respect to the knowledge 

structures used during this learning process. Below I will illustrate some future directions for each 

study. 

In the first study, I lay-out a novel modeling framework based on the Rescorla-Wagner 

learning rule. Out of the three studies presented in this thesis, I personally see the most future 

promises for this study. In reality, I have only presented a very small part of the framework, which 

already turned into a rather sizable study. Therefore there are some additions to the current models 

that had to be reserved for future research. These additions of course will allow different questions 

to be asked. I present some likely contendenders. One could model forgetting over the duration of 

the experiment by adding a time decay parameter (Kato & Morita, 2016). This would have the 
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potential of modeling more accurately what participants actually experience during an experiment. 

Differences in processing positive and negative feedback have been found in previous work (Korn, 

Sharot, et al., 2014; Sharot et al., 2011), which could be modeled with separate prediction errors 

for positive and negative feedback. One could then distinguish if learning is different between 

them. The use of the stereotypical reference point could be elaborated further as research has shown 

their influence on learning (Hamilton et al., 1990; Jussim et al., 1995; Kang et al., 2021). Exactly 

when people rely on stereotypical reference points and when they do not might be a fruitful 

endeavor with positive real life consequences. 

From a purely modeling viewpoint the models could be converted to function in a 

hierarchical Bayesian manner (Ahn et al., 2017) which could increase the power of these models. 

In general, adopting Bayesian methods together with the Rescorla-Wagner models could provide 

a best of both worlds scenario (Gershman, 2015). Using a modeling toolbox such as STAN 

(Carpenter et al., 2017) could provide a convenient way of adopting these methods, moreover, it 

could benefit the adoption of this framework by other researchers. 

From an experimental standpoint, one could increase the external validity by framing the 

tasks in a more social context such as telling participants they will interact with these people later 

or even actually interacting with the others such as through a game (Korn et al., 2012). 

Use of a psychophysical measure such as eye tracking could prove further evidence for the 

prediction error. Combining Rescorla-Wagner models together with pupillometry has proven 

effective in understanding cognitive processes of infants (F. Zhang et al., 2019; F. Zhang & 

Emberson, 2020). Furthermore, pupil dilation has been successfully linked to rewards processing 

in noisy tasks (Findling et al., 2019) but also for understanding differences in learning for anxious 

individuals (Browning et al., 2015; Korn et al., 2017).  

A very interesting avenue of research would be to further look into the knowledge 

structures. Right now the granularity is only used at its two extremes, that is, one coarse and the 

other fine. Based on previous research (Klein et al., 1992), I expect a gradient to exist between 

these two and that participants will (unconsciously) use the level of gradient that is appropriate for 

the task. I hypothesize that a model that uses a free parameter to determine the level of granularity 

used by the participant to be very beneficial. Furthermore, more research on how these knowledge 

structures are formed in the first place should still be researched. Research on schemata’s (Franklin 

et al., 2020; Kronenfeld et al., 1978; Mayer & Bower, 1986) might provide a good starting point 

for understanding the granularities. 
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In the work presented in this thesis we only look at healthy human beings i.e., those for 

whom personality learning seems effortless and easy. The true complexity and difficulties attached 

to personality learning become evident in clinical populations. Important research could therefore 

be performed in the field of computational psychiatry (Friston et al., 2014; P. R. Montague et al., 

2012). As described in a recent publication with my coauthors (Rosenblau et al., 2023), we describe 

three patient groups who both have marked struggles with personality learning (i.e., autism 

spectrum disorder ASD, borderline personality disorder BPD, and major depressive disorder 

MDD) (Decety & Moriguchi, 2007; Gunderson et al., 2018; Millan et al., 2014; Roepke et al., 

2013; Yang et al., 2015). We suggest our social-learning framework might be suitable to help 

therapists to understand their patients but also for patients to understand themselves (Rosenblau et 

al., 2023).  

Finally, even though these models are presented in a personality learning framework they 

can be applied in many more situations. The strength of these knowledge structures relies on their 

wide statistical applicability (Roweis & Saul, 2000). That is, they can be applied in many other 

learning domains, as has already been shown for preference learning (Rosenblau et al., 2021). Any 

representation that can be specified as connections or relationship structures (Lynn et al., 2020) 

and their reductions (Hebart et al., 2020) can in principle be applied to our models. 

For the second study, which was based on study 1, all new knowledge structures developed 

in the future for follow-ups of the first study could be tested. That is, the strength of this modeling 

framework is that all granularities can be tested in the cortex with the analysis pipeline created for 

study 2. As suggested above, the newly developed intermediate granularity knowledge structures 

can be directly tested for cortical activity patterns. Furthermore, it would be informative to see the 

switching between granularities within one experiment. This could potentially also be achieved 

with a free parameter that models for the current location on the granularity gradient.  

In terms of analyses, when calculating the betas in the GLM for each stimulus (i.e., 

determine the patterns of activity for each stimulus), one could potentially look at using a separate 

model for each trial (Least Squares Single) instead of estimating all trials within the same model 

(Least Squares All) to reduce the collinearity (Mumford et al., 2012, 2014). Even though this is 

usually suggested for interstimulus intervals below 3 seconds, when the ones in the study are 

around 5 seconds. Similarly, one could change the distance metrics to more reliable metrics. In the 

current study I used correlation as a distance metric because this was also what was used in the 
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computational models but different metrics are available and potentially more reliable (Walther et 

al., 2016). 

External validity seems important to get the cortical activity I hypothesized. This is 

probably coupled to participant engagement. I hypothesize that participants will show more 

engagement when the task is rooted in actual social activity. An initial experiment that tests whether 

participant engagement is linked to greater levels of cortical activity should precede any such 

experiment. 

Even though for both studies 1 and 2 I find evidence for more fine grained knowledge 

structures than have been found so far, I did not find conclusive evidence for a fine-grained 

knowledge structure in study 3. So far the strongest evidence for a social conceptual space comes 

from a lower level knowledge structure than the one used in our study. In their study, Park and 

colleagues (Park et al., 2021) found evidence for grid-like activity for a social hierarchy space 

based on the two axes competence and popularity. In my study reported here, I have a look at two 

traits from the Big-5. If the Big-5 is already a higher level knowledge structure than the 

competence/ popularity one, using its trait words instead of the factors is another level higher. 

Because these activities are already so miniscule it might not be possible to find activity patterns 

on these levels of detail yet. That is, methodologies might have to improve first before one can 

attempt these studies. 

An interesting avenue would be to expand to more than two dimensions. Recent research 

has found three dimensions that fully explain neural representations in humans (Tamir et al., 2016). 

Testing for grid-like encoding for this third dimension in humans would be very interesting. 

However, research into this third dimension for spatial navigation found this third dimension to not 

scale like the other two dimensions for both rats (Grieves et al., 2021; R. Hayman et al., 2011) and 

bats (Ginosar et al., 2021).  
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6.3 Final Remarks 

Uncovering the statistical structures humans use when learning about others has been actively 

studied for many years by many people and so have structured representations of neural firing. 

Understanding human learning takes more than a single thesis but I, nonetheless, have attempted 

to answer a small part of these questions in this thesis. If the findings in this thesis only contribute 

a small part to any of these fields I will be satisfied. Most of my hope goes out to the computational 

framework I developed together with Christoph and Gabriela. This framework together with the 

neural findings allows for a broader understanding of both healthy and impaired social learning in 

humans. From a computational psychiatry viewpoint, it offers most direct benefits to pathologies 

characterized by rigidity such as autism and borderline personality disorder. I also hope that 

whatever teaching I did together with Christoph, which is largely summarized in chapter 2, will be 

of benefit to others so they can go on and make their own small contribution to these fields. 
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Appendices 

Study 1 

Item number German trait word used Approximate English translation 

Factor 1: neuroticism – positive traits 

1 gelassen composed 

2 locker easy-going 

3 selbstständig self-reliant 

4 souverän confident 

Factor 1: neuroticism – negative traits 

5 ängstlich anxious 

6 feige cowardly 

7 launisch moody 

8 unentschlossen indecisive 

9 unsicher insecure 

10 wehleidig whiny 

Factor 2: extraversion – positive traits 

11 enthusiastisch enthusiastic 

12 lebenslustig fun-loving 

13 schlagfertig articulate 

14 tatkräftig dynamic 

Factor 2: extraversion – negative traits 

15 humorlos humorless 

16 kalt cold-hearted 

17 scheu unassertive 

18 unnahbar inapproachable 

Factor 3: openness to experience – positive traits 

19 kreativ creative 
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20 offen open-minded 

21 spontan spontaneous 

22 tolerant tolerant 

23 vielseitig versatile 

24 wissbegierig inquisitive 

Factor 3: openness to experience – negative traits 

25 bieder overly conservative 

26 engstirnig narrow-minded 

27 träge lazy 

28 voreingenommen biased 

Factor 4: agreeableness – positive traits 

29 einfühlsam empathetic 

30 freundlich friendly 

31 gesellig sociable 

32 großzügig generous 

33 hilfsbereit helpful 

34 höflich polite 

35 respektvoll Respectful 

36 vertrauenswürdig trustworthy 

37 zuverlässig reliable 

Factor 4: agreeableness – negative traits 

38 aggressiv aggressive 

39 arrogant arrogant 

40 egoistisch selfish 

41 eitel conceited 

42 gehässig spiteful 

43 großmäulig loud-mouthed 

44 hinterhältig conniving 

45 rücksichtslos inconsiderate 
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46 stur stubborn 

47 unsympathisch unpleasant 

Factor 5: conscientiousness – positive traits 

48 aufrichtig honest 

49 bescheiden modest 

50 diszipliniert organized 

51 effizient efficient 

52 fleißig hard-working 

53 kompetent competent 

54 ordentlich tidy 

Factor 5: conscientiousness – negative traits 

55 chaotisch chaotic 

56 inkonsequent inconsistent 

57 leichtsinnig foolhardy 

58 pedantisch pedantic 

59 unpünktlich tardy 

60 zwanghaft obsessive 

Table 9.1. Stimuli used in Experiments 1 & 4 

The 60 trait adjectives used here were a sub-selection of the 80 trait words used in previous studies (Korn et al., 2012, 

2014). Half of the selected words were positive and half were negative (according to ratings in the earlier study; Korn 

et al., 2012). The trait adjectives were hand-annotated according to the Big-Five categories. These hand-annotations 

were compared to a larger list of German trait adjectives, which relied on a slightly different factorization than the Big-

Five (Ostendorf, 1990). We tried to use English translations consisting of one word. As is often the case for translations, 

a mixture of words could give a better idea of the word meaning (especially in the case of words with rather similar 

meaning). 

 

Table from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 
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Item number German trait word used Approximate English translation 

Factor 4: agreeableness – positive traits 

1 altruistisch altruistic 

2 anständig decent 

3 aufrichtig honest 

4 begnügsam unpretentious 

5 diplomatisch diplomatic 

6 ehrlich candid 

7 fair fair 

8 freigiebig bountiful 

9 generös open-handed 

10 gerecht just 

11 großmütig magnanimous 

12 großzügig generous 

13 hilfsbereit helpful 

14 kollegial like a good colleague 

15 konstruktiv constructive 

16 kooperativ cooperative 

17 loyal loyal 

18 rücksichtsvoll considerate 

19 selbstlos selfless 

20 solidarisch solidary 

21 spendabel generous 

22 treu faithful 

23 unbestechlich incorruptible 

24 uneigennützig disinterested 

25 unterstützend supportive 

26 verlässlich dependable 

27 verständnisvoll understanding 
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28 vertrauenswürdig trustworthy 

29 verzeihend forgiving 

30 zuverlässig reliable 

Factor 5: conscientiousness – positive traits 

31 akkurat accurate 

32 anpackend energetic 

33 arbeitsam industrious 

34 beharrlich persistent 

35 diszipliniert organized 

36 effizient efficient 

37 eifrig keen 

38 engagiert engaged 

39 entschlusskräftig decisive 

40 fleißig hard-working 

41 flink swift 

42 fokussiert focused 

43 geduldig patient 

44 genau meticulous 

45 gewissenhaft conscientious 

46 gründlich thorough 

47 konsequent consistent 

48 leistungsorientiert achievement-oriented 

49 ordentlich tidy 

50 ordnungsliebend orderly 

51 pflichtbewusst dutiful 

52 planvoll tactical 

53 pünktlich punctual 

54 sorgfältig diligent 

55 systematisch systematic 
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56 tatkräftig dynamic 

57 tüchtig strenuous 

58 verantwortungsbewusst responsible 

59 verantwortungsvoll responsible 

60 zielstrebig goal-oriented 

Table 9.2 Stimuli used in experiment 2 & 3. 

Fifteen of the 60 trait adjectives in this list were selected from the list of 80 trait words used in previous studies (Korn 

et al., 2012, 2014). All selected words were positive. The trait adjectives were hand-annotated according to the Big-

Five categories. We tried to use English translations consisting of one word. As is often the case for translations, a 

mixture of words could give a better idea of the word meaning (especially in the case of words with rather similar 

meaning). 

 

Table from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 
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Item number German sentence used English translation 

Factor 1: neuroticism / emotional stability 

1 Ich gerate leicht in Stress. I get stressed out easily. 

2 Ich bin die meiste Zeit entspannt. I am relaxed most of the time. 

3 Ich grüble über Dinge. I worry about things. 

4 Ich fühle mich selten deprimiert (bedrückt). I seldom feel blue. 

5 Ich bin leicht zu beunruhigen. I am easily disturbed. 

6 Ich bin leicht aus der Fassung zu bringen. I get upset easily. 

7 Ich wechsle oft meine Stimmung. I change my mood a lot. 

8 Ich habe häufig Stimmungsschwankungen. I have frequent mood swings. 

9 Ich bin leicht zu reizen. I get irritated easily. 

10 Ich fühle mich oft deprimiert (bedrückt). I often feel blue. 

Factor 2: extraversion 

11 Ich bringe eine Party in Schwung. I am the life of the party. 

12 Ich spreche nicht viel. I don't talk a lot. 

13 Ich fühle mich wohl unter Menschen. I feel comfortable around people. 

14 Ich halte mich im Hintergrund. I keep in the background. 

15 Ich beginne Gespräche. I start conversations. 

16 Ich habe wenig zu sagen. I have little to say. 

17 
Ich spreche mit vielen verschiedenen Leuten auf 
Partys. 

I talk to a lot of different people at parties. 

18 
Ich mag es nicht, Aufmerksamkeit auf mich zu 
ziehen. 

I don't like to draw attention to myself. 

19 
Ich habe kein Problem im Zentrum der 
Aufmerksamkeit zu stehen. 

I don't mind being the center of attention. 

20 Ich bin still unter Fremden. I am quiet around strangers. 

Factor 3: openness to experience 

21 Ich besitze einen großen Wortschatz. I have a rich vocabulary. 

22 
Ich habe Schwierigkeiten abstrakte Ideen zu 
verstehen. 

I have difficulty understanding abstract 
ideas. 

23 Ich habe eine lebhafte Vorstellungskraft. I have a vivid imagination. 

24 Ich bin an abstrakten Ideen nicht interessiert. I am not interested in abstract ideas. 
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25 Ich habe ausgezeichnete Ideen. I have excellent ideas. 

26 Ich habe kein gutes Vorstellungsvermögen. I do not have a good imagination. 

27 Ich verstehe Dinge schnell. I am quick to understand things. 

28 Ich gebrauche schwierige Wörter. I use difficult words. 

29 Ich verbringe Zeit damit über Dinge nachzudenken. I spend time reflecting on things. 

30 Ich bin voller Ideen. I am full of ideas. 

Factor 4: agreeableness 

31 Ich empfinde wenig für andere. I feel little concern for others. 

32 Ich bin interessiert an anderen Menschen. I am interested in people. 

33 Ich beleidige andere. I insult people. 

34 Ich fühle mit anderen Menschen mit. I sympathize with others' feelings. 

35 
Ich bin nicht interessiert an den Problemen anderer 
Leute. 

I am not interested in other people's 
problems. 

36 Ich habe ein weiches Herz. I have a soft heart. 

37 Ich bin nicht wirklich interessiert an anderen. I am not really interested in others. 

38 Ich nehme mir Zeit für andere. I take time out for others. 

39 Ich fühle die Gefühle anderer. I feel others' emotions. 

40 Ich bringe Leute dazu, sich wohl zu fühlen. I make people feel at ease. 

Factor 5: conscientiousness 

41 Ich bin immer vorbereitet. I am always prepared. 

42 Ich lasse meine Sachen herumliegen. I leave my belongings around. 

43 Ich achte auf Details. I pay attention to details. 

44 Ich verursache großes Durcheinander. I make a mess of things. 

45 Ich erledige lästige Routinearbeiten unmittelbar. I get chores done right away. 

46 
Ich vergesse oft, Dinge an ihren Platz 
zurückzulegen. 

I often forget to put things back in their 
proper place. 

47 Ich mag Ordnung. I like order. 

48 Ich drücke mich vor meinen Pflichten. I shirk my duties. 

49 Ich folge einem Plan. I follow a schedule. 

50 Ich bin anspruchsvoll in meiner Arbeit. I am exacting in my work. 
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Table 9.3. Stimuli used in experiment 5. 

We used 50 items from the German translation of the IPIP (International Personality Item Pool, which consists of 

lexical Big-Five factor markers). In the task, sentences were changed to the third person singular (e.g., “she gets 

stressed out easily”). 

 

Table from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 
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Experiment n Tested 
Age 
(mean) 

Age (SD) n Female n Final 
n profiles 
removed 

n sessions 
removed 

1 (Original) 35 24.37 3.66 23 35 0 1 

2 
(Constructed 
profiles) 

42 23.67 3.19 28 42 0 0 

3 (Two 
Factors) 

59 25.37 4.95 30 59 0 2 

4 (Fashion 
models) 

30 25.38 4.91 15 29 1 0 

5 (IPIP 
items) 

30 25.38 4.91 15 28 2 8 

Table 9.4. Overview of the participants for all five experiments 

The same group of participants was used for Experiment 4 and 5. 

 

Table from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 
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Experiment Stimuli n Factors Profiles n Profiles Scale n Trials 

1 (Original) 60 traits 5 Real (online) 4 1-8 240 

2 (Constructed profiles) 60 traits 2 Constructed 4 1-8 240 

3 (Two Factors) 60 traits 2 Real (online) 4 1-8 240 

4 (Fashion models) 60 traits 5 Real (fashion) 4 1-8 240 

5 (IPIP items) 50 IPIP items 5 Real (IPIP) 5 1-5 250 

Table 9.5. Overview of the stimuli 

In Experiments 1–4, we used personality adjectives (i.e., trait words such as generous, diligent; see Supplementary 

Table 9.1 for Experiments 1 & 4 and Supplementary Table 9.2 for Experiments 2 & 3). Sixty adjectives were presented 

per profile (i.e., for each of the four people about which participants learned). We used traits from all five factors of 

the Big-Five or traits from only two factors (i.e., agreeableness and conscientiousness). In Experiment 5, for each of 

the five profiles, participants saw 50 items from the German translation of the IPIP (International Personality Item 

Pool, which consists of lexical Big-Five factor markers; see Supplementary Table 9.3). Profiles for Experiments 1 were 

selected from self-ratings of people from an unrelated sample of a previous lab study (Korn et al., 2012). Profiles for 

Experiment 2 were constructed by specifying the mean for the two factors and randomly adding noise according to a 

specified SD. Profiles for Experiment 3 were selected from the self-ratings of participants in Experiment 2. Profiles 

for Experiment 4 were selected from self-ratings given by a group of female fashion models for a related online study. 

All four selected persons have worked internationally as fashion models for several years. Profiles for Experiment 5 

were selected from self-ratings of a large online dataset on the IPIP with over 1 million participants (Open Source 

Psychometrics Project; https://openpsychometrics.org/). We selected five profiles with average ratings on 4 out of the 

5 factors (mean within 1 SD) but divergent scores on the remaining factor (mean above 1 SD). That is, each profile 

was divergent on another factor. 

 

Table from: Frolichs, K.M.M., Rosenblau, G. & Korn, C.W. Incorporating social knowledge structures into 

computational models. Nat Commun 13, 6205 (2022), Springer Nature. 
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Study 2 

Supplementary analysis Study 2 – Personality learning with no social interactions 

Univariate 

Because study 2 was a completely new dataset we performed some standard univariate analysis. In 

the first GLM we found a large cluster of activity in the vmPFC for the contrast self>other 

(Supplementary Figure 2.1A). Other clusters of activity are summarized in table 2. The opposite 

contrast, other>self, revealed significant clusters in the bilateral visual cortex (Supplementary 

Figure 1B and Supplementary table 1). The second GLM, which tested the effects of the trait word 

length using a parametric modulator revealed two clusters in the visual cortex as hypothesized. 

 

 
Supplementary Figure 2.1. Main results from the univariate analysis 

a) The contrast self > other reveals a big cluster of activity in the mPFC, b) The contrast other>self has a cluster of 

activity in the visual cortex. 
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  Trait word German 
Trait word 
English 

Big-5 factor 

1 'aufrichtig' Honest Conscientiousness 

2 'bescheiden' Modest Conscientiousness 

3 'diszipliniert' Organized Conscientiousness 

4 'effizient' Efficient Conscientiousness 

5 'einfühlsam' Empathetic Agreeableness 

6 'enthusiastisch' Enthusiastic Extraversion 

7 'fleißig' Hard-working Conscientiousness 

8 Big  Friendly Agreeableness 

9 'geistesgegenwärtig' Quick-witted Extraversion 

10 'gelassen' Composed Neuroticism 

11 'geschickt' Skilled Conscientiousness 

12 'gesellig' Sociable Agreeableness 

13 'großzügig' Generous Agreeableness 

14 'hilfsbereit' Helpful Agreeableness 

15 'höflich' Polite Agreeableness 

16 'kompetent' Competent Conscientiousness 

17 'kooperativ' Cooperative Agreeableness 

18 'kreativ' Creative Openness 

19 'lebenslustig' Fun-loving Extraversion 

20 'locker' Easy-going Neuroticism 

21 'loyal' Loyal Agreeableness 

22 'offen' Open-minded Openness 

23 'ordentlich' Tidy Conscientiousness 

24 'respektvoll' Respectful Agreeableness 

25 'scharfsinnig' Astute Openness 

26 'schlagfertig' Articulate Extraversion 

27 'selbstständig' Self-reliant Neuroticism 
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28 'sorgfältig' Diligent Agreeableness 

29 'souverän' Confident Neuroticism 

30 'spontan' Spontaneous Openness 

31 'tatkräftig' Dynamic Extraversion 

32 'tolerant' Tolerant Openness 

33 'vernünftig' Level-headed Agreeableness 

34 'verständnisvoll' Understanding Agreeableness 

35 'vertrauenswürdig' Trustworthy Agreeableness 

36 'vielseitig' Versatile Openness 

37 'weitsichtig' Perspicacious Openness 

38 'wissbegierig' Inquisitive Openness 

39 'zielstrebig' Goal-oriented Conscientiousness 

40 'zuverlässig' Reliable Agreeableness 

41 'aggressiv' Aggressive Agreeableness 

42 'ängstlich' Anxious Neuroticism 

43 'arrogant' Arrogant Agreeableness 

44 'bieder' 
Overly 
conservative 

Openness 

45 'chaotisch' Chaotic Conscientiousness 

46 'egoistisch' Selfish Agreeableness 

47 'eitel' Conceited Agreeableness 

48 'engstirnig' 
Narrow-
minded 

Openness 

49 'feige' Cowardly Neuroticism 

50 'gehässig' Spiteful Agreeableness 

51 'großmäulig' Loud-mouthed Agreeableness 

52 'heuchlerisch' Two-faced Agreeableness 

53 'hinterhältig' Conniving Agreeableness 

54 'humorlos' Humorless Extraversion 

55 'inkonsequent' Inconsistent Conscientiousness 
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56 'kalt' Cold-hearted Extraversion 

57 'launisch' Moody Neuroticism 

58 'leichtsinnig' Foolhardy Conscientiousness 

59 'nachtragend' Unforgiving Agreeableness 

60 'naiv' Naive Agreeableness 

61 'oberflächlich' Superficial Conscientiousness 

62 'opportunistisch' Opportunistic Agreeableness 

63 'pedantisch' Pedantic Conscientiousness 

64 'rücksichtslos' Inconsiderate Agreeableness 

65 'scheu' Unassertive 2 

66 'stur' Stubborn Agreeableness 

67 'träge' Lazy Openness 

68 'unentschlossen' Indecisive Neuroticism 

69 'ungeduldig' Impatient Agreeableness 

70 'unnahbar' Inapproachable Extraversion 

71 'unpünktlich' Tardy Conscientiousness 

72 'unsicher' Insecure Neuroticism 

73 'unsympathisch' Unpleasant Agreeableness 

74 'verschwenderisch' Wasteful Conscientiousness 

75 'voreilig' Rash Conscientiousness 

76 'voreingenommen' Biased Openness 

77 'wehleidig' Whiny Neuroticism 

78 'zickig' Catty Agreeableness 

79 'zwanghaft' Obsessive Conscientiousness 

80 'zynisch' Cynical Neuroticism 

Table 9.6 Trait words used in the task for the self- and other-ratings for study 1. 
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Trait word 
German 

Trait word 
English 

Big-5 factor Pos/ Neg 

1 aufrichtig sincere Conscientiousness Positive 

2 bescheiden humble Conscientiousness Positive 

3 enthusiastisch enthusiastic Extraversion Positive 

4 fleißig hard-working Conscientiousness Positive 

5 freundlich friendly Agreeableness Positive 

6 gelassen serene Neuroticism Positive 

7 großzügig generous Agreeableness Positive 

8 hilfsbereit helpful Agreeableness Positive 

9 höflich polite Agreeableness Positive 

10 kreativ creative Openness Positive 

11 lebenslustig fun-loving Extraversion Positive 

12 locker easy-going Neuroticism Positive 

13 ordentlich orderly Conscientiousness Positive 

14 schlagfertig quick-witted Extraversion Positive 

15 selbstständig independent Neuroticism Positive 

16 souverän sovereign Neuroticism Positive 

17 spontan spontaneous Openness Positive 

18 tatkräftig energetic Extraversion Positive 

19 tolerant tolerant Openness Positive 

20 vielseitig versatile Openness Positive 

21 ängstlich timid Neuroticism Negative 

22 arrogant arrogant Agreeableness Negative 

23 egoistisch egotistical Agreeableness Negative 

24 engstirnig narrow-minded Openness Negative 

25 hinterhältig conniving Agreeableness Negative 

26 humorlos humorless Extraversion Negative 

27 kaltherzig cold-hearted Agreeableness Negative 



171 
 

28 launisch capricious Neuroticism Negative 

29 leichtsinnig reckless Conscientiousness Negative 

30 pedantisch pedantic Conscientiousness Negative 

31 scheu timid Extraversion Negative 

32 stur stubborn Agreeableness Negative 

33 träge sluggish Openness Negative 

34 unentschlossen indecisive Neuroticism Negative 

35 unnahbar unapproachable Extraversion Negative 

36 unpünktlich unpunctual Conscientiousness Negative 

37 unsympathisch unsympathetic Agreeableness Negative 

38 voreingenommen prejudiced Openness Negative 

39 wehleidig sniveling Neuroticism Negative 

40 zwanghaft compulsive Conscientiousness Negative 

Table 9.7 Trait words used in the task for the self- and other-ratings for study 2. 
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Study 3 

General overview of the tasks 

Gitter consisted of 9 tasks of which 1 & 2 were only performed on day one, 3-8 were repeated on 

both days and the 9th task was only performed on day two. Moreover, on day two, task 7 was 

changed slightly and performed in the scanner. The tasks 1-4 and the behavioral part of task 7 had 

the same set-up, which will be described briefly (Figure 1). On the right side of the screen are the 

sliders, these two horizontal bars (colored blue and red) can be controlled in a vertical direction by 

using the keys ‘k’ and ‘m’ for up and down of the right (red) slider and ‘a’ and ‘z’ for up and down 

for the left (blue) slider. The sliders always initialize in the center and can move until the bigger 

circles at the top and bottom with the smaller circles functioning as rough guidelines. The settings 

of the sliders will indicate both movement direction and velocity of the bars, positioned on the left 

half of the screen. The sliders at the center indicate no movement, above the center indicates the 

bars moving up and below the center indicates downward movement. The distance away from the 

center indicates velocity of movement. Participants are free to move the sliders and can confirm 

their choice using the ‘spacebar’ which will cause the bars to start moving, bars always move for 

2 seconds total. The black horizontal lines indicate the minimum and maximum of the bars’ allowed 

movement. Throughout the experiment (except for task 1) the height of the bars will reflect scores 

on two personality traits (generous and diligent). 

During the behavioral training, our aim is twofold. First, we assess participants’ training 

progress on tasks that are similar to the task performed in the scanner. We want to make sure that 

participants are proficient in navigating the trait space, i.e., in indicating whether and how the bar 

movements relate to the traits of six strangers. Training progress on most tasks is reflected in 

participants’ choice accuracy, reaction time, and number of tries during the training tasks. Second, 

we want to ensure that participants actually learn about and consider the strangers’ personality 

traits (and not just the bar movements independent of their reflection of a personality trait). 

Therefore, there are a number of tasks that evaluate participants’ view of the strangers as a whole 

(e.g., as more than two-dimensional personalities) by comparing them to their acquaintances, rating 

them on different personality traits from the same factors and explicitly placing them on a map. 
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With the exception of task 9, participants were never made aware that the task could be 

represented on a 2-dimensional plane. Furthermore, instructions never used words pertaining to 

navigation or something similar. 

 

Arena and stranger placing 

The “arena” in which the strangers were hidden consisted of a 100x100-pixel grid. That is, there 

are 100 equal steps between the minimum and maximum on both axes. Changing the height of the 

bars meant one was traversing through the arena. The strangers were placed in the arena according 

to a semi-random process. 

 

Task 1 – Match 

In task 1 [match], the goal was to get participants used to the controls. Participants were asked to 

match the length of the colored bars to their respective shadowed counterpart that was slightly 

overlapping on the left. Moving the bars happened in two steps: first, the sliders would be moved 

to a certain position that would indicate the direction and velocity of the bars. Second, the settings 

would be confirmed by pressing the spacebar which would cause the bars to start moving in the 

given direction. Participants got unlimited trials to match the opaque bars, bars didn’t reset between 

tries. A trial was completed successfully when participants got both colored bars to match the 

opaque bars within a 5% error margin. The match task required a total of 25 successful trials. 

 

 
Supplementary Figure 3.1. Overview of the match task and participants’ results 

Left, to get used to the controls participants had to match the colored bars to the transparent gray bars superimposed 

on them. Right, the average number of tries (moving the bars) for each participant to match the colored bars to the 

transparent gray bars. 
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Task 2 – Acquaintances 

After participants learned to manipulate the bars’ positions, task 2 [acquaintances], introduced a 

meaning to the bars’ height. Both bars indicated a personality trait (i.e., generous for the blue bar 

and diligent for the red bar), the height of the bar reflects a person’s rating on the personality traits, 

where a full-length bar reflects a high score on the trait (i.e., fully possessing the trait) and a low 

bar indicated a low score (i.e., not possessing the trait). This coupling of the traits generous and 

diligent to their respective bars was applied throughout the whole experiment. 

To get participants familiar with this meaning of the bars we asked them to rate six 

acquaintances using the bars. Acquaintances roles were given to participants to help them with 

their selection as well as trying to get acquaintances that would be rated differently (e.g., one would 

expect friends to be rated very similar) (Supplementary Table 1). 

The task proceeded as follows for all six acquaintance roles: 1) Participants received written 

instructions where the meaning of the bars was explained. 2) Participants were presented with one 

of six acquaintance roles and had to imagine an acquaintance that fit this role. 3) They could enter 

this acquaintance’s first name using the keyboard. 4) Participants were given control of the sliders 

and were asked to set the bars to the position that reflected this specific acquaintance’s score on 

generous and diligence. They were free to move the bars for as long as they needed. 5) When 

satisfied participants could indicate through button press after which a next trial started or, when 

all six acquaintances were rated, the task ended. 

We made sure participants rated these acquaintances different from the medium i.e., both 

bars at half height. 
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Supplementary Figure 3.2. Participant acquaintance ratings. 

Each circle represents a participant’s rating on the two traits generous (blue) and diligent (red) for six acquaintances. 

Each acquaintance is in a separate plot. 

 

Task 3 – Explore 

After successful completion of tasks 1 and 2, we expected participants to be comfortable with the 

controls as well as with the bars reflecting the personality traits. For task 3 [explore] the participants 

were tasked with finding and remembering 6 unfamiliar people (hereafter called strangers) based 

on their personality ratings on the two traits generous and diligent (i.e., bar height). The strangers 

were hidden, in that participants were initially unaware of their ratings. Participants could find the 

strangers by maneuvering the bars in the correct position i.e., in the same position as a strangers’ 

rating (within 6% error margin in all directions). When a stranger was found their name would pop-

up in the middle of the screen. To keep track, the six names were displayed in the top left of the 

screen and a green checkmark behind the name indicated the participant had found this stranger 
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once. Participants were instructed to find all strangers 3 times on separate occasions i.e., finding at 

least one other stranger in between. 

 

Performance improvements from day one to two 

Participants performed task 3 on both days, we expected participants to improve their performance 

significantly from day one to two. Improvement was measured both on the time taken per trial as 

well as number of tries (i.e., number of times participants had to move the bars until they 

successfully found a stranger). We expected that the number of tries would be significantly less 

from day one to two, and thus computed a right-tailed two-sample t-test for day one (M= 11.94, 

SD= 21.64) vs day two (M= 4.75, SD= 7.11) and found that the number of tries indeed was 

significantly smaller t(1286) = 8.00, p <  .001 on day two. Furthermore, we computed a right-tailed 

two-sample t-test for time (seconds) taken per trial on day one (M= 87.17, SD= 169.21) and two 

(M= 35.72, SD= 51.08) and found that participants needed significantly less time on day two 

t(1280) = 7.37, p < .001. These results show that participants significantly improved their 

performance from day one to two. 

 

Participants’ movement through personality space 

Evaluation of the angles made when moving through the personality space revealed an interesting 

pattern. By far the most movements participants made were in one of four cardinal directions i.e., 

only one bar moving, this was followed by movements made in the four ordinal directions i.e., both 

bars moving with the same velocity. Overall participants’ movements got more focused around the 

6 names in the trait space from day one to two. The borders, where no strangers were positioned, 

were visited a lot less. 
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Supplementary Figure 3.3. Overview for task 03. 

Top, both the number of tries (left) as well as the time taken (right) on each trial (finding a stranger) decreased from 

day one to day two. Bottom, participants’ movement in the trait space concentrated more around the strangers on day 

two. 

 

Task 4 – Collect 

Task 4 [collect] assumed participants roughly learned the strangers’ generosity and diligence in the 

previous task. Therefore, they were now asked to navigate to specific people from randomized start 

positions (i.e., differing bar heights). At the start of a trial one of the strangers’ names was presented 

in the center of the screen, bar heights were semi-random, in that the heights were randomized but 

adjusted so that each name was reachable in one trial (movement of the bars). Like task three, a 
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name was counted as ‘collected’ when participants reached the right bar heights (trait ratings) with 

a 6% error margin. 

 

Performance improvements from day one to two 

To check whether participants’ performance increased from day one to two, we computed a right-

tailed two-sample t-test for both time per trial and total amount of tries per trial. Comparing time 

per trial (seconds) on day one (M= 63.39, SD= 126.73) vs two (M= 31.88, SD= 71.22) we found a 

significant decrease t(686) = 4.02, p < .001. Furthermore, number of tries (i.e., bar height 

adjustments) per trial on day one (M= 11.34, SD= 24.77) vs two (M= 4.81, SD= 12.11) also showed 

a significant decrease t(1287) = 6.01, p <  .001. Indicating that participants’ performance increased 

from day one to two and participants most likely remembered the strangers’ trait ratings more 

accurately on day two. 

 

Participants’ movement through personality space 

Like task 3, participants’ movements got more focused around the actual positions of the strangers. 
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Supplementary Figure 3.4. Overview for task 04. 

Top, both the number of tries (left) as well as the time taken (right) on each trial (finding a stranger) decreased from 

day one to day two. Bottom, participants’ movement in the trait space concentrated more around the strangers on day 

two. 

 

Task 5 – Simple Similarities 

With the previous tasks done, we expected the participants to have internalized the strangers’ traits. 

In task 5 [simple similarities] we asked participants to rate the similarities within and between their 

acquaintances and the strangers. Every trial participants were presented with a pair, from a total of 

12 persons (6 strangers and 6 acquaintances) every person was paired with 11 others for a total 66 
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trials. Every pair was presented only once. During the trial participants were asked to rate the pairs’ 

similarity on a scale from 1 ‘not similar at all’ to 7 ‘very similar’. 

To get an idea of how participants rated the similarities between the strangers we used 

multidimensional scaling (MDS) on averaged similarity ratings per day (i.e., the similarity ratings 

for all six strangers averaged over all participants). The coordinates retrieved from MDS and those 

from the strangers were normalized to get them in the same scale. After this the retrieved MDS 

coordinates were rotated to their closest fit to the strangers’ coordinates. On both days the MDS 

coordinates closely fitted the actual coordinates. 

Next we quantified participants’ accuracy on the similarity ratings by comparing them with 

the actual Euclidean positions of both the strangers and acquaintances. For both groups separately 

we calculated a Euclidean distance matrix between all pairs from their explicit positions (i.e., 

coordinates of the trait space that were determined by us for the strangers and rated by participants 

for the acquaintances). We then calculated the correlations between these distance matrices and the 

similarity ratings for these separate groups for both days. The strength of the correlation indicates 

how well the explicit and rated distances overlap (correlations underwent a Fisher transformation 

before running any statistical tests). Since participants already had a fully formed trait space of 

their acquaintances before the experiment we expected their accuracies to be similar on both days. 

This in contrast with the strangers, where we expected the (accuracy of the) similarity ratings to 

improve from day one to two indicating that participants got to know the participants better. 

A paired-samples t-test was conducted to compare the accuracy between correlations of 

similarity ratings and real positions for participants’ acquaintances on day one (M= .76, SD= .30) 

versus day two (M= .74, SD= .39). The t-test indicated no significant difference between the 

accuracies on day one vs day two, t(35)= 0.60, p = .56. We did expect an increase in accuracy on 

the second day for the strangers, therefore we calculated a left-tailed paired-samples t-test. 

Accuracy on day one (M= .44, SD= .35) was significantly lower than day two (M= .76, SD= .31), 

t(35)= -3.99, p < .001, indicating that participants got better at estimating the strangers’ similarities. 

Moreover, accuracy for strangers on day two was comparable to that for the acquaintances on both 

days indicating participants resembled the trait space of the strangers in a similar manner to that of 

their acquaintances. 
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Supplementary Figure 3.5. Using MDS to represent participants’ similarity ratings 

Participants rated the similarities between all strangers, we used multidimensional scaling (MDS) to project these 

ratings on the trait space. Because this projecting can be in any orientation it was rotated until the best Euclidean fit 

was found with the actual position of the strangers on the trait space, this best fit is shown in the figure. Participants 

were accurate for both day one and two. 

 

Task 6 – Complex Similarities 

Similar to task 5, task 6 [complex similarities] tasked participants with rating similarities between 

people. The difference with task 5 is that similarities of pairs were rated e.g., Julia & Chris vs Anne 

& Lukas and ratings were only performed for strangers, with the explicit question to indicate which 

of the two pairs was more similar. Answers were given by the right or left arrow key. All pairs 

were compared once for a total of 45 trials. 

 

Task 8 – IPIP 

Task 8 [IPIP], was administered to test whether participants learned about the strangers as having 

more than just the two single traits they learned about in the previous tasks. On both days 

participants were asked to rate the strangers and acquaintances on five other traits from 

agreeableness and conscientiousness (i.e., the two Big-5 factors that generous and diligent fall 

under). The five traits used were different for the two days (see supplementary table 2). A trial 

consisted of the name of the person that was rated, preceded by the text ‘acquaintance from another 

person’ when it was a stranger and ‘your acquaintance’ when it was an acquaintance of the 

participant together with an item from the IPIP. Participants were tasked with rating the person on 
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this current item on a scale from 1 (does not apply at all) to 5 (does apply very much). Presentation 

of acquaintances, strangers and the order of the items were randomized for every participant. 

We expected participants to have learned enough about the strangers to have their traits 

somewhat internalized, and thus have these current trait ratings correspond to actual ratings from 

both strangers and acquaintances. In order to test this we computed correlations between the 

‘actual’ ratings on generous and diligent and the mean ratings on their corresponding factors 

(agreeableness and conscientiousness) separately. The correlations for the strangers were 

significant for both agreeableness & generous (rho .53, p < .001) and conscientiousness & diligent 

(rho .63, p < .001). Likewise, correlation for the acquaintances were significant for agreeableness 

& generous (rho .76, p < .001) and conscientiousness & diligent (rho .80, p < .001). Indicating 

participants saw the strangers as more than just two bars and more like humans with multiple traits. 

 

Task 9 – Map Task 

The final task, task 9 [map] was only conducted on the second day and was the last task. In this 

final task, it was revealed that participants could have represented the strangers on a Euclidean 

plane. The scores on both traits (generous and diligent) would then function as the axes. To test 

whether participants could use this type of representation we asked them to drag all 12 people (6 

strangers and 6 acquaintances) onto their respective coordinates on the map. The map was centered 

on the screen with the axes clearly labeled for generous and diligent, the 12 people were ordered 

on either side of the map in two vertical lines of six people each. Participants used their mouse to 

drag every name on the map. They had unlimited time to complete the task and could click on a 

button labeled ‘okay’ to finish the task. 

To test whether participants could use the map representation correctly we compared the 

‘actual’ positions with those from the map task. For the strangers both agreeableness and & 

generous was significantly correlated (rho .83, p < .001) as well as conscientiousness & diligent 

(rho .90, p < .001). Furthermore, the positions for acquaintances were also significantly correlated 

for both agreeableness and & generous (rho .82, p < .001) and conscientiousness & diligent (rho 

.77, p < .001). Indicating that participants could use the Euclidean representation in a meaningful 

manner. 

Finally, we compared the positions from the map task with the ratings on the IPIP factors 

agreeableness and conscientiousness from task 8 (Figure 11). The correlations for both the 

strangers and acquaintances were significant for all comparisons. Strangers: agreeableness: rho .81, 
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p < .001 & conscientiousness: rho .85, p < .001. Acquaintances: agreeableness: rho .83, p < .001 

& conscientiousness: rho .85, p < .001. 

All results combined from task 5, 8 and 9 give us confidence that participants perceived the 

strangers as people. Especially considering that performance was often on similar levels of 

accuracy for both the strangers and acquaintances. 

 

 
Supplementary Figure 3.6. Comparison for tasks 08 and 09 with the actual positions of the strangers. 

Top, participants gave multiple ratings on trait items from the same Big-5 factor. We correlated these item ratings with 

the trait ratings from the strangers and found they correlated well for both agreeableness and conscientiousness. 

Middle, in task 09 participants were asked to drag each participant on a map with the axes generous and diligent. We 
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correlated the place on this task with the strangers’ actual positions and found high correlations for both traits generous 

and diligent. Bottom, here we correlated the results from task 08 and 09, that is, the IPIP scores with the place on the 

map. Correlations were positive but lower than for the tasks correlated with the actual positions. 

 

 

 
Supplementary Figure 3.7. Comparison for tasks 08 and 09 with the actual positions of the acquaintances. 

Top, participants gave multiple ratings on trait items from the same Big-5 factor. We correlated these item ratings with 

the trait ratings the participants gave in task 02 and found they correlated well for both agreeableness and 

conscientiousness. Middle, in task 09 participants were asked to drag each participant on a map with the axes generous 

and diligent. We correlated the place on this task with participants’ ratings from task 02 and found high correlations 
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for both traits generous and diligent. Bottom, here we correlated the results from task 08 and 09 for the acquaintances. 

Correlations were positive but lower than for the tasks correlated with the actual positions. 
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 German English 

1 sich selbst yourself 

2 
einen Kollegen/Studienpartner oder eine 
Kollegin/Studienpartnerin, mit dem oder der Sie gerne 
zusammen arbeiten 

a colleague or study-partner with whom you like to 
work together. 

3 einen Freund oder eine Freundin aus der Kindheit a friend from your childhood 

4 
einen aktuellen Freund oder eine aktuelle Freundin, den 
oder die Sie seit kurzem kennen 

a current friend whom you have known since a short 
amount of time 

5 
einen Kollegen/Studienpartner oder eine 
Kollegin/Studienpartnerin, mit dem oder der Sie NICHT 
gerne zusammen arbeiten 

a colleague or study-partner with whom you do not 
like to work together with. 

6 einen Elternteil (Vater oder Mutter) a parent (father or mother) 

Table 9.8. Role of acquaintances from task 2. 

 

Agreeableness Conscientiousness 

Day One Day Two Day One  Day Two 

Ich mache mir um 
andere Sorgen 

Ich liebe es anderen zu 
helfen 

Ich verstehe es Dinge zu 
bewältigen 

Ich mache mehr, als von mir 
verlangt wird 

Ich glaube an das Gute 
im Menschen 

Für andere nehme ich 
mir keine Zeit 

Ich arbeite hart Ich vertrödele meine Zeit 

Ich habe Mitleid mit 
denen, den es 
schlechter geht als mir 

Ich bin der Meinung, 
dass Leute für sich 
selber sorgen sollten 

Ich tue gerade so viel, 
dass es ausreicht 

In meine Arbeit stecke ich nur 
wenig Zeit und Anstrengung 

Ich misstraue anderen 
Ich glaube, dass andere 
gute Absichten 
verfolgen 

Ich bin stets vorbereitet Situationen schätze ich falsch ein 

Die Gefühle anderer 
sind mir gleichgültig 

Ich zeige Mitgefühl für 
Obdachlose 

Ich schließe Aufgaben 
stets erfolgreich ab 

Aufgaben beginne ich stets 
rechtzeitig 

Table 9.9. German IPIP items for task 8. 
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