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Chapter 1

Introduction

This thesis deals with independence phenomena in set theory of the reals. It is a well-
known phenomenon that statements about the well-behaviour of sets of reals, especially at
the second and higher levels of the projective hierarchy, are independent of the standard
Zermelo-Fraenkel axioms of set theory ZFC. Usually, very simple sets of reals can be
proved to be well-behaved, but the statement of well-behaviour of more complex sets are
usually false in the smallest transitive model of set theory, Gödel’s constructible universe
L, and can be made true in larger models by adding generics.

One particular example of well-behaviour is the property of being Lebesgue measur-
able: non-Lebesgue measurable sets tend to be ill-behaved (e.g., they are used in the
famous Banach-Tarski decomposition of the sphere that leads to the Banach-Tarski para-
dox [33]), but we know that these cannot be very simple: Borel sets are by definition
Lebesgue measurable and it can be shown that sets at the first level of the projective
hierarchy are as well [23, Theorem 12.2], but in L, not all sets at the second level of the
projective hierarchy are [23, Corollary 13.10].

In general, regularity statements at the second level of the projective hierarchy are
independent of ZFC, and statements of this type form a complex implication diagram of
different logical strengths. This implication diagram has been studied in the past decades
and is reasonably well understood at the second level of the projective hierarchy. (Details
will be given in Chapter 2.) The theory of these statements is intricately interwoven with
that of the existence of particular combinatorial objects (e.g., generic real numbers, quasi-
generic real numbers, or real numbers with other combinatorial properties) and therefore
often involves a detailed analysis of particular models of set theory obtained by forcing
with a given forcing partial order over L. Among statements of this type, the strongest is

“for all x P R, ℵLrxs

1 ă ℵ1”

also known as “ℵ1 is inaccessible by reals”. This statement implies the existence of
an inaccessible cardinal in L and therefore is strictly stronger in the sense of consistency
strength than ZFC. It implies all regularity statements at the second level of the projective
hierarchy and can therefore be seen as the strongest such principle (cf. § 2.7.)

The results in this thesis will contribute to the mentioned implication diagram and
identify a number of additional regularity properties that have the maximal logical strength,
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i.e., are equivalent to “ℵ1 is inaccessible by reals”.
In particular, in Chapter 2, we shall provide the general framework with definitions and

a list of established results and techniques that will be used in the thesis. Due to a general
theorem known as Ikegami’s Theorem (Theorem 2.6.1), we can prove a non-implication
between regularity statements by showing that forcing with one forcing notion does not
add quasigenerics for the other.

In Chapter 3, we use this technique to separate Laver and Silver regularity, answering
two open questions from the published literature (cf. p. 24 for a discussion of the open
questions).

In Chapter 4, we prove that a number of regularity properties are all of maximal
strength at the Σ1

2 level: they imply that ℵ1 is inaccessible by reals. The forcings discussed
are amoeba forcing, amoeba forcing for category, and localisation forcing. Definitions of
these forcing notions will be given in § 4.2.

Finally, in Chapter 5, we shall consider the less well-known forcing notions Matet and
Willowtree forcing and separate their regularities from the others.

The following theorems are considered to be the main contributions of this thesis
(all mentioned forcings, regularity properties, and the corresponding notation will be
introduced in Chapter 2).

1. In the Laver model, Σ1
2pLq holds and ∆1

2pE0q and ∆1
2pVq fail (Corollary 3.4.2).

2. In the Laver model, ∆1
2pVq fails, but for every real r, there is a splitting real over

Lrrs (Corollary 3.4.4).

3. The statement Σ1
2pAq is equivalent to the statement “ℵ1 is inaccessible by reals”

(Corollary 4.3.5).

4. The statement Σ1
2pUMq is equivalent to the statement “ℵ1 is inaccessible by reals”

(Theorem 4.4.2).

5. The statement Σ1
2pLOCq is equivalent to the statement “ℵ1 is inaccessible by reals”

(Theorem 4.5.2).

6. In the Matet model, ∆1
2pVq fails (Corollary 5.3.8).

7. In the Sacks model, ∆1
2pWq fails (Corollary 5.4.3).

The thesis assumes that the reader is familiar with the theory of forcing as well as the
basic theory of the constructible universe. The background can be found in the standard
textbook literature such as the monograph [21].
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Chapter 2

General Framework

The main object of study in set theory of the reals is the set of real numbers, but it is often
customary to work with slightly different topological spaces. Traditionally, the set of real
numbers R is defined as the Dedekind (or Cauchy) completion of the rational numbers Q.

A topological space is called Polish if it is separable and completely metrisable. Ex-
amples of Polish spaces are the classical real numbers R as well as Cantor space 2ω and
Baire space ωω. The two latter examples are topologised with the product topology of
the discrete topology on 2 and ω, respectively. Equivalently, the basic open sets are of
the form rss “ tx | x Ě su, for s P Zăω and x P Zω where Z P t2, ωu.

The three mentioned examples are not homeomorphic to each other: Cantor space is
compact whereas the other two are not; R is connected whereas Baire space has a basis
of clopen sets. However, Baire space is homeomorphic to the irrational numbers RzQ [21,
p. 42] and many of the properties we shall be investigating in this thesis hold for one of
the three spaces if and only if they hold for the others.

As a consequence, it has become customary in the field of set theory of the reals to
work mostly over Baire space and to refer to the elements of all three topological spaces
as real numbers or reals.

2.1 Complexity of sets of reals

If X is a Polish space, then the products of the form pωωqkˆX with the product topology
are also Polish spaces.

A σ-algebra on a Polish space X is a collection of subsets of X closed under countable
intersections and unions and complements. A σ-ideal on X is a collection of subsets of
X closed under subsets and countable unions.

The elements of the smallest σ-algebra containing the open subsets of such a space are
its Borel sets. Borel sets can be described by specifying how they were obtained from basic
open sets by the operations of countable union and complementation: such a description
is a well-founded tree T Ď ωăω (cf. § 2.2) that can be encoded as a real number; this is
known as a Borel code and we denote the function that obtains the Borel set from its code
by B, i.e., if c is a Borel code, then Bc is the Borel set coded by c; the details of how to
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do this precisely do not matter for this thesis; they are given, e.g., in [21, pp. 504–507].
If A Ď ωω ˆX, we write

ppAq :“ tx P X ; Dypy, xq P Au

for the projection of A. We define the projective hierarchy of sets by recursion on n: if
B P pωωqk ˆX, then

B P Σ1
1 ðñ there is a Borel set A such that B “ ppAq,

B P Π1
n ðñ ppωω

q
k
ˆXqzB P Σ1

n,

B P Σ1
n`1 ðñ there is a set A P Π1

n such that B “ ppAq, and

B P ∆1
n ðñ B P Σ1

n XΠ1
n.

We refer to the sets ∆1
n, Σ1

n, and Π1
n as the nth level of the projective hierarchy. The

projective hierarchy is proper in the sense that ∆1
n Ř Σ1

n, ∆1
n Ř Π1

n, Σ1
n Ř ∆1

n`1, and
Π1

n Ř ∆1
n`1 and it measures the descriptive complexity of sets of reals in second-order

arithmetic: roughly, sets on the nth level of the projective hierarchy need an alternating
quantifier sequence of length n to be defined. We call a pointclass projective if it is one
of these pointclasses. For details, cf. [23, Section 12].

2.2 Trees and arboreal forcing notions

We use the usual notation for sequences, i.e., if s, t P ωăω and k P ω, we write s⌢t for the
concatenation of s and t and sk for the unique sequence that has s as initial segment and
continues with the value k.

As usual, a tree on X is a subset of Xăω closed under initial segments. In our case,
X is either 2 or ω. If T is a tree on X, we write rT s :“ tx P Xω | @npxæn P T qu for the
set of branches through T .

If T is a tree and t P T , we say that t splits in T if there are at least k ‰ ℓ such that
t⌢k P T and t⌢ℓ P T ; we say that t splits infinitely in T if there are infinitely many k such
that t⌢k P T . Each tree T has a unique element of minimal length that splits in T ; we
call this the stem of T , in symbols, stpT q. A tree T is called a Sacks tree or perfect tree
if for each t P T there is an n s Ś t such that s P T splits in T .

Other notions of tree that will play a prominent role in this thesis are Miller and Laver
trees: a tree T is called a Miller tree or superperfect tree if for each t P T there is a s Ś t
such that s P T splits infinitely in T ; a tree T is called a Laver tree if it has a splitting
node and for each t P T such that stpT q Ď t, the node t is infinitely splitting.

A forcing notion P is called arboreal if each condition is a perfect tree on either 2 or
ω, for each T P P and t P T , we have that Tt :“ ts P T ; s Ď t or t Ď su P P, and we have
that T ď T 1 implies that rT s Ď rT 1s. We have that rT s is a closed subset of either Cantor
or Baire space. We write T ď0 T

1 if rT s Ď rT 1s and stpT q “ stpT 1q.1

1This notation will coincide with the relations ďn and ďA
n for fusion sequences, defined in § 2.9.
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As mentioned in Chapter 1, we shall refer to [21, Section 14] for the basics of forcing.
In this section, we provide the basic definitions needed for the results in this thesis. If
G is a generic filter for P, then

Ş

TPGrT s “ tgu is a singleton where g is an element of
Cantor or Baire space. We identify the generic filter with that real.

Sacks forcing, denoted by S, consists of all perfect trees ordered by inclusion. Note
that if P is arboreal, then P Ď S.

Miller forcing M and Laver forcing L, consist of all Miller or Laver trees, respectively,
ordered by inclusion.

Hechler forcing, denoted by D, consists of pairs ps, fq, where s P ωăω and f P ωω, such
that s Ď f . We say that pt, gq ď ps, fq iff s Ď t and for all k ě lhpsq, gpkq ě fpkq.

Silver forcing, denoted by V, consists of partial functions f from ω to 2, such that
|ωzdompfq| “ ω. For g, f P V, we say that g ď f if and only if f Ď g.

Matet forcing, denoted by T, consists of pairs ps, Aq, where s P ωăω is strictly increasing
and A Ď rωsăω is infinite, and for all a P A, maxpranpsqq ă minpranpaqq. We order it by
pt, Bq ď ps, Aq if and only if

s Ď t@b P BDA1
Ď Ap|A1

| ă ω ^ b “ YA1
q ^ DA2

Ď Apranptqzranpsq Ď A2
q.

One can focus only on the Matet conditions which are of the form ps, Aq such that there
is an enumeration panqnPω of A, such that for all n P ω, maxpanq ă maxpan`1q.

Note that every Matet condition defines a Miller tree, since for a Matet condition
ps, Aq, we can define a tree T on ωω as follows:

stpT q “ s and @t P T, succptq “ ta P A : maxptq ă minpaqu

where succptq denotes the set of successors of t.
However, the ordering on T is not the same as the inclusion on Miller trees. Matet

forcing was introduced by Matet in [29].

Willowtree forcing, denoted by W, consists of pairs pf, Aq, where f is a partial function
from ω to 2, such that ωzdompfq “

Ť

A, where A Ď rωsăω is infinite, and maxpanq ă
minpan`1q where panqnPω is an enumeration of A. We order it by pg,Bq ď pf, Aq if and
only if

f Ď g and @b P BDA1
Ď Apb “

ď

A1
q and @a P Apa Ď dompgq ùñ gæa is constant q.

This forcing notion was introduced and studied in [4].

The forcing notions W and V, T, and R are uniform versions of S, M, and L, respectively
and were studied in Brendle’s [4] where the following implication diagram is given:

S Ě M Ě L

Ě Ě

W Ě T

Ě

Ě Ě

V Ě R
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We shall call this diagram the Uniform Forcings Diagram; it and its consequence for
regularity properties will be the main topic of Chapter 5.

A tree p Ď 2ăω is an E0-tree if and only if it is perfect and for every splitting node
s P p, there are s0 Ě s⌢0 and s1 Ě s⌢1, of the same length, such that

!

x P 2ω
| s⌢0 x P rps

)

“

!

x P 2ω
| s⌢1 x P rps

)

.

The partial order consisting of E0-trees is called E0-forcing, denoted by E0. The notions of
E0-trees and E0-forcing were introduced by Zapletal [36, § 2.3.10] and are closely connected
to the equivalence relation E0, the minimal non-smooth Borel equivalence relation on Baire
space. We call an E0-tree a Silver tree if s0 “ s⌢0 and s1 “ s⌢1. The partial order of all
Silver trees is naturally isomorphic to Silver forcing V.2

Definition 2.2.1. An arboreal forcing notion P has the pure decision property if and
only if for every p P P and every sentence φ there exists q ď0 p such that q decides φ.

Fact 2.2.2. Sacks forcing S, Silver forcing V, Miller forcing M, Laver forcing L, and
Matet forcing T have the pure decision property.

Proof. The cases for Sacks, Silver, Miller, and Laver are classical; the case for Matet
forcing will be proved in Theorem 5.2.3.

If P is any of our forcing notions, we call the generic extension obtained from L by a
length ω1 iteration of P with countable support the P-model, i.e., the Sacks model, Miller
model, Laver model, etc. Similarly, the generic extension obtained from L by a length ω2

iteration of P with countable support is called the ω2-P-model. If P is a forcing notion
that preserves ℵ1, even in an ω2-iteration, then the ω2-P-model is a model of ␣CH and
contains ℵ2 many P-generic reals.

Fact 2.2.3. In the P-model, the following statement is true: “for every x P R, there is a
P-generic over Lrxs”.

Cf. § 2.5 for forcing notions living on other Polish spaces.

2.3 Regularity properties

At the highest level of abstraction, a regularity property is just any property of sets of
reals. However, we shall consider only regularity properties that are derived from forcing
notions. In this, we follow Zapletal’s framework of idealised forcing [36, 37] as discussed
in [25, Chapter 2] and [34, §§ 3 & 4].

2In his “historical remark”, Zapletal traces this identification to a conversation with Löwe at the Very
Informal Gathering in Los Angeles in 2003 [36, p. 30].
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Getting an ideal from a forcing notion. If P is an arboreal forcing notion, then we
say that A Ď ωω is P-null if for each T P P there is some S ď T such that rSs X A “ ∅.
We denote the set of all P-null sets by NP and the σ-ideal generated by NP by IP. We say
that A P I˚

P if for each T P P there is some S ď T such that rSs X A P IP. Furthermore,
we say that A is P-measurable if for every T P P there is some S ď T such that either
rSszA P IP or rSs X A P IP.

Getting a forcing notion from an ideal. If I is a σ-ideal over a Polish space X,
then we define PI as the partial order of Borel sets not in I, ordered by inclusion. A set
A Ď X is said to be I-regular if for every set B P PI there exists C ď B, such that either
C X A “ ∅ or C Ď A.

If P is an arboreal forcing notion and I is a σ-ideal, both P-measurability and I-
regularity are examples of regularity properties. It turns out that for well-behaved arboreal
forcing notions, these notions coincide.

Fact 2.3.1. Let P be one of the arboreal forcings listed in § 2.2. Then a set A is P-
measurable if and only if it is I˚

P-regular.

Proof. Cf. [34, Theorem 4.3.8] where this is proved for all proper and strongly tree-like
forcing notions P [34, Definition 4.2.17].

In general, sets on the first level of the projective hierarchy are regular whereas sets
on the second level of the projective hierarchy are not in L.

Fact 2.3.2. Let P be one of the arboreal forcings listed in § 2.2. Then all Σ1
1 and Π1

1 sets
are P-measurable. Furthermore, in L, there is a ∆1

2 set that is not P-measurable.

Proof. Cf. [25, Propositions 2.2.3 & 2.2.4] where this is proved for all σ-ideals I such that
PI is proper.

If Γ is one of the projective classes, i.e., ∆1
n, Σ1

n, or Π1
n and P one of our arboreal

forcing notions, we write ΓpPq for “any set in Γ is P-measurable”. Fact 2.3.2 implies that
those statements for n ě 2 imply V‰L.

It is one of the aims of the area of set theory of the reals to determine the implications
between statements of the form ∆1

2pPq and Σ1
2pPq for our arboreal forcing notions P. These

statements are usually characterised in terms of transcendence over L, i.e., an equivalence
between ΓpPq and the existence of certain objects that cannot exist in L.

Topologies and category bases. Some regularity properties are not defined in terms
of I-regularity or P-measurability; e.g., the Baire property was originally defined in topo-
logical terms. In [35, § 2.2] provides a general framework for these and links them to the
combinatorial regularity properties.

Let X be a set and C Ď PpXq. We call pX,Cq is a weak category base if and only if

(i) X “
Ť

C and
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(ii) for every A,A1 P C, A X A1 contains an element of C or for every c P C, there is
some c1 P C, such that c1 Ď c and c1 X pAX A1q “ ∅.

We call pX,Cq a category base if in addition for every c P C and every C 1 Ď C consisting
of pairwise disjoint sets with |C 1| ă |C|, we have

(i) if c X
Ť

C 1 contains an element of C, then there is some element c1 P C 1 such that
cX c1 contains an element of C and

(ii) if c X
Ť

C 1 does not contain an element of C, then there is some c1 Ď c such that
c1 P C and c1 X

Ť

C 1 “ ∅.

We refer to the elements of C as regions and say that A Ď X is C-singular if and
only if for every region c there is a region c1 Ď c such that c1 X A “ ∅; a subset A Ď X
is C-small if it is a countable union of C-singular sets; finally, A Ď X is said to be C-
measurable if and only if for every region c, there is a region c1 such that c1 Ď c and either
c1zA or c1 X A is C-small.3 The collection of all C-small sets is denoted by IC ; this set
forms a σ-ideal.

Similarly, for a region c, we say that A Ď X is C-not small in c if cXA is not C-small
and that it is C-not small everywhere in c if c1 X A is not C-small for any region c1 Ď c.
The ideal I˚

C is defined to be the collection of all subsets of X such that there is no region
c for which A is C-not small everywhere in c.4

The set C is a partial order with the ordering Ď; we say that the weak category base
pX,Cq has the countable chain condition if the partial order pC,Ďq does. A weak category
base pX,Cq is called proper if pC,Ďq is a proper forcing notion, IC is a proper σ-ideal,
and every region is not C-small.

Proposition 2.3.3 (Wansner).

(a) For each of the forcing notions P listed in § 2.2, the set CP :“ trT s ; T P Pu forms a
weak category base. Furthermore, the notions of P-measurability and CP-measurability
are equivalent.

(b) If the regions of a weak category base pX,Cq with the countable chain condition form
a basis for a topology on X, then the notions of the Baire property in that topology
and being C-measurable are equivalent.

Proof. Cf. [35, Proposition 2.2.10 (a) & (d)].

Proposition 2.3.4. If pX,Cq is a proper weak category base that has the countable chain
condition, then IC “ I˚

C.

Proof. Cf. [35, Proposition 2.2.17].

Definition 2.3.5. If X is a Polish space and pX,Cq is a weak category base, we say that
C is Borel compatible with X if every region is Borel and every Borel set is C-measurable.

3Wansner uses the terms “C-meagre” and “C-Baire” for “C-small” and “C-measurable”, respectively.
4Wansner uses the term “C-abundant” for “C-not small”.
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Definition 2.3.6. Let pX,Cq and pY,Dq be weak category bases. A function f : C Ñ D
is called a projection if

(i) whenever c Ď c1, then fpcq Ď fpc1q and

(ii) for every c P C and d ď fpcq there is a c1 Ď c such that fpc1q ď d.

The following rather technical lemma is the main tool in Chapter 4.

Lemma 2.3.7 (Wansner’s Implication Lemma). Let X and Y be uncountable Polish
spaces and pX,Cq and pY,Dq be proper weak category bases such that pX,Cq and pY,Dq
are Borel compatible with X and Y , respectively. Assume that I˚

D is Borel generated, let
α ą 0 be an ordinal, that xhβ : β ă αy is a sequence of Borel functions from X to Y , and
that xh̄β : β ă αy be a sequence of projections from C to D such that

(a) for every β ă α and every c P C, there is some region c1 Ď c such that hβrc
1s Ď h̄βpcq

and

(b) for every d P D, there are β ă α and c P C such that h̄βpcq Ď D.

Then for every projective pointclass Γ, we have that if every ΓpXq set is C-measurable,
then every ΓpY q set is D-measurable.

Proof. [35, Theorem 2.2.46]

2.4 Quasigenerics

As mentioned in § 2.3, one of the central aim of set theory of the reals is the characterisa-
tion of statements of the form ∆1

2pPq and Σ1
2pPq by means of transcendence over L. The

first such transcendence result was in terms of generics:

Theorem 2.4.1 (Solovay; [21, Theorem 26.20]). Every Σ1
2 set is Lebesgue measurable if

and only if for every x P R, the set of random reals over Lrxs has measure one.

Results of this form are known as Solovay-type characterisations. Similarly, the char-
acterisations of ∆1

2pPq in terms of the existence of generics are called Judah-Shelah-type
characterisations. In general, the existence of generics is enough to prove regularity at
the ∆1

2-level [25, Proposition 2.2.5] and existence of many generics is enough to prove
regularity at the Σ1

2-level [25, Proposition 2.2.6].
However, in general, the existence of generics is too strong for proving the equivalence.

In [6], Brendle, Halbeisen, and Löwe introduced the crucial notion of quasigenerics for this
purpose. If I is a σ-ideal and M any model of set theory, we call a real x I-quasigeneric
over M if for any Borel set A P I with Borel code in M , we have that x R A. For an
arboreal forcing notion P, we call x P-quasigeneric over M if it is I˚

P-quasigeneric over
M .

Lemma 2.4.2. For our arboreal forcing notions, a P-generic over M is a P-quasigeneric
over M .
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Proof. Cf. [37, Proposition 2.1.2].

Lemma 2.4.3. If P has the countable chain condition, then the notions of being P-generic
over M and being P-quasigeneric over M coincide.

Proof. Cf. [25, Lemma 2.3.2].

We say that P has the Ikegami property if ∆1
2pPq is equivalent to “for all x P R, there is

a P-quasigeneric over Lrxs” and Σ1
2pPq is equivalent to “for all x P R, there is a I˚

P-positive
set of P-quasigenerics over Lrxs”.

Proposition 2.4.4. If P has the Ikegami property, then the P-model satisfies ∆1
2pPq.

Proof. Fact 2.2.3 gives P-generics over each Lrxs. Lemma 2.4.2 shows that they are P-
quasigeneric; then the Ikegami property gives the desired conclusion.

2.5 Some topological spaces

If X is a Polish space, we say that a forcing notion P lives on X if there is a map

r¨s : P Ñ PpXq

such that p ď q implies rps Ď rqs and a generic filter G yields a singleton
Ş

pPGrps “ txu
such that x P X. Our arboreal forcing notions from § 2.2 all live on ωω, assigning to
the tree p the set of branches rps. In Chapter 4, we shall consider forcing notions that
live on the spaces defined in this section. Note that the definitions of the notions of
quasigenerics and the Ikegami property transfer without any problems to the setting of
forcings living on a Polish space X, as long as the definition of the Polish space and the
ideal are sufficiently absolute.

The set of pruned trees of half measure. We denote Lebesgue measure on 2ω by
µ. We define R to be the set of all pruned trees T Ď 2ăω such that µprT sq “ 1

2
. Via a

bijection between ω and 2ăω, we can think of the elements of R as elements of Cantor
space, so R Ď 2ω, topologised with the subspace topology.

Proposition 2.5.1. The space R is a Polish space.

Proof. Cf. [35, Proposition 2.3.3]

The set of open sets. We consider the standard real line R with Lebesgue measure also
denoted by µ (since no confusion is possible); as usual, we write R` :“ tx P R ; x ą 0u.
We write O for the set of all open subsets of R and fix a computable coding of the basic
open sets of R (the open intervals with rational endpoints), i.e., a function C : ω Ñ O
such that Cpnq is the nth basic open set. We define c : O Ñ 2ω by cpOqpnq “ 1 if and
only if Cpnq Ď O. We topologise the set O with the initial topology of the map c (with
respect to the standard topology on Cantor space).

Proposition 2.5.2. The space O is a Polish space.

Proof. Cf. [35, Lemma 2.3.22]
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The universally meagre topology. For our second space, we shall consider the partial
order 2ăω. As usual, a subset E Ď 2ăω is called dense if for any s P 2ăω, there is a t P E
such that s Ď t; it is called open if extensions of elements of E are elements of E.

We also define the set U as follows: a sequence x P p2ăωqω is in U if and only if for
every s P 2ăω there are infinitely many n P ω such that s Ď xpmq. Via a bijection between
2ăω and ω, we can consider U as a subset of Baire space. As a Π0

2 subset of Baire space,
U with its subspace topology is a Polish space.

Let σ “ pσp0q, ..., σpn´ 1qq be a finite sequence of elements of 2ăω and E be an open
dense subset of 2ăω. We define

rσ,Es :“ tx P U : σ Ď x and @n ě lhpσqpxpnq P Equ

and let U be the collection of those sets.

Proposition 2.5.3. Every element of U is clopen in the Polish space U. Furthermore,
the set U forms a topology basis on U.

Proof. It is easy to see that the sets rσ,Es are closed in the Polish space U. To see that
they are clopen, one just checks that

Uzrσ,Es “
ď

trσ1, 2ăω
s : pσ Ę σ1 and σ1

Ę σq or Dn P dompσ1
zσqpσ1

pnq R Equ.

In order to see that C is a topology base, let rσ,Es and rσ,E 1s be two elements of CU.
We assume without loss of generality that σ Ď σ1, then if x P rσ,Es X rσ,E 1s, we have
σ1 Ď x and for every n ě lhpσq, xpnq P E. Hence for every n P dompσ1zσq, σ1pnq P E and
so pσ1, E X E 1q ď pσ,Eq, pσ1, E 1q. Therefore, rσ1, E X E 1s “ rσ,Es X rσ,E 1s.

The topology generated by U is called the universally meagre topology. It is not a
Polish topology. We shall see in Proposition 4.2.5 that L forms a proper weak category
base that is Borel compatible with U.

The localisation topology. Finally, we say that a function f : ω Ñ rωsăω is a slalom
if every n P ω, |fpnq| ď n ` 1. The set of slaloms is denoted by Loc. Using canonical
bijections from ω to rωsďn`1, Loc is in bijection with Baire space, so we can consider it
as a homeomorphic copy of Baire space.

Let F be a finite subset of Baire space and σ “ pσp0q, ..., σpn´ 1qq a finite sequence
of elements of ωăω such that |σpkq| “ k ` 1 for all k ă n and |F | ď n` 1. Define

rσ, F s :“ tf P Loc ; fælhpσq “ σ and @x P F@n ě lhpσqpxpnq P fpnqqu

and let L be the collection of those sets.

Proposition 2.5.4. Every element of L is clopen in the space Loc (i.e., Baire space).
Furthermore, the set L forms a topology basis on Loc.
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Proof. It is easy to see that sets of the form rσ, F s are closed. Let us show that they are
clopen:

Loczrσ, F s “
ď

trσ1,∅s : pσ Ę σ1
^ σ1

Ę σq ^ Dx P FDn P dompσ1
zσqpxpnq R σ1

pnqqu.

In order to see that L is a topology basis, let rσ,Es X rσ1, E 1s ‰ ∅. Then, we let
m “ |E|`|E 1|. We show that rσ,EsXrσ1, E 1s “ A “

Ť

trfæm,EYE 1s : f P rσ,EsXrσ,E 1su.
Clearly, rσ,Es X rσ1, E 1s Ď A. On the other hand if f P A and f 1 P rσ,Es X rσ1, E 1s such
that f P rf 1æm,E YE 1s, then for every x P E YE 1, for every n ě lhpσq, xpnq P f 1pnq and
for every n ě lhpσ1q, xpnq P f 1pnq. Also fæm “ f 1æm and for every x P E Y E 1 and every
n ě m, xpnq P fpnq. Hence, f P rσ,Es X rσ1, E 1s.

The topology generated by L is called the localisation topology. It is not a Polish
topology. We shall see in Proposition 4.2.7 that it is a proper weak category base that is
Borel compatible with Loc.

2.6 Ikegami’s Theorem

Ikegami’s theorem is the main structural theorem of the field, connecting regularity prop-
erties to quasigenerics. It was originally proved in Ikegami’s doctoral dissertation [20] and
then streamlined by Khomskii [25] and generalised by Wansner [34].

Theorem 2.6.1 (Ikegami, 2010). Let P be one of the arboreal forcings listed in § 2.2.
Then P has the Ikegami property.

Proof. Cf. [25, Theorem 2.3.7] where this was proved for a class of forcings that includes
all of the mentioned ones.

Our main use of Ikegami’s theorem is to separate regularity properties from each other.

Corollary 2.6.2. If P and Q are two forcing notions with the Ikegami property, then if
an ω1-iteration of Q does not add P-quasigenerics, then the Q-model satisfies ∆1

2pQq ^
␣∆1

2pPq.

Proof. Since Q has the Ikegami property, the Q-model satisfies ∆1
2pQq by Proposition

2.4.4. Since the ω1-iteration that produced the Q-model added no P-quasigenerics, there
is no P-quasigeneric over L in the Q-model. Since P has the Ikegami property, this means
that ∆1

2pPq must fail and we have separated the two regularity properties.

Ikegami’s Theorem 2.6.1 will be used extensively in Chapters 3 & 5; in Chapter 4, we
shall need generalisations of Ikegami’s Theorem due to Wansner in the context of weak
category bases.

Theorem 2.6.3 (Wansner). Let X be an uncountable Polish subspace of ωω and pX,Cq
be a proper weak category base that is Borel compatible with X and such that the set of
Borel codes of elements of I˚

C is Σ1
2. Then:
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(a) Every ∆1
2pXq set is C-measurable if and only if for every r P ωω such that X is coded

in Lrrs there is an I˚
C-quasigeneric over Lrrs.

(b) Every Σ1
2pXq set is C-measurable if and only if for every r P ω such that X is coded

in Lrrs, the set tx P X ; x is not I˚
C-quasigeneric over Lrrsu is I˚

C-small.

Proof. Cf. [35, Corollary 2.2.29].

2.7 Inaccessibility by reals

The statement “for all x P R, we have ℵLrxs

1 ă ℵ1” is known as ℵ1 is inaccessible by reals.
It means that each of the models Lrxs is wrong about the value of ℵ1 and in particular
implies that the true ℵ1 is inaccessible in all of these models.

Theorem 2.7.1. If ℵ1 is inaccessible by reals, then for each x P R, there is an inaccessible
cardinal in Lrxs.

Proof. As mentioned, we shall show that ℵ1 is inaccessible in Lrxs. By downwards ab-
soluteness of regularity and GCH in Lrxs, if ℵ1 is not inaccessible in Lrxs, it must be a
successor cardinal, i.e., there is some ξ ă ℵ1 such that Lrxs has surjections from ξ to
any countable ordinal. But since ξ is countable, there is some y that codes a wellorder of
length ξ. Then Lrx, ys is a model of “ξ is countable” and every countable ordinal has size

at most ξ, so ℵLrx,ys

1 “ ℵ1.

This is a transcendence property over L which implies all others at the second level of
the projective hierarchy in the presence of Ikegami’s theorem.

Proposition 2.7.2. If P has the Ikegami property, then ℵ1 being inaccessible by reals
implies Σ1

2pPq.

Proof. There are ℵLrxs

1 many Borel codes in Lrxs, so if ℵ1 is inaccessible by reals, countably
many; thus

Nx :“ tA ; A P I˚
P is a Borel set with code in Lrxsu

is countable. Every real that is not P-quasigeneric over Lrxs must be in some set in Nx,
so contained in

Ť

Nx which is a countable union of elements of I˚
P, and therefore itself in

I˚
P. By the Ikegami property, this is equivalent to Σ1

2pPq.

Most of the regularity statements are strictly weaker than inaccessibility by reals; in
fact, they have the consistency strength of ZFC. Some regularity statements have large
cardinal strength at the third level of the projective hierarchy; the most famous example
is Lebesgue measurability [31]. Very few properties already have large cardinal strength
at the second level of the projective hierarchy. This was proved for Hechler forcing and
eventually different forcing by Brendle and Löwe [9, 10]. The result about Hechler forcing
will be relevant in Chapter 4.

Fact 2.7.3 (Brendle-Löwe 1999; [9, Proposition 5.13]). If every Σ1
2 set is Hechler mea-

surable, then ℵ1 is inaccessible by reals.
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2.8 Brendle- Labȩdzki lemmas

One way to prove inaccessibility by reals from regularity properties is with the help of
Brendle- Labȩdzki lemmas. In this section, we shall give a very abstract definition.

Definition 2.8.1. An assignment is a pair of formulas pΨ,Φq such that in every transitive
model of set theory M , we have that if A PM and M |ù ΨpAq, then, in M , Φ defines an
injection a ÞÑ cAa with domain A, i.e.,

M |ù Φpa, c, Aq ðñ a P A^
`

a P A^ b P A^ a ‰ b^ Φpa, c, Aq ^ Φpb, d, Aq
˘

ñ c ‰ d

where we let cAa be the unique c such that Φpa, c, Aq.

We fix an ideal I on some Polish space X.

Definition 2.8.2. An assignment pΨ,Φq is called I-canonical if for each transitive model
M of set theory, we have that

M |ù DApΨpAq ^ |A| “ 2ℵ0q

and if M |ù ΨpAq and a P A, then cAa is a Borel code in M such that the Borel set BA
a

coded by cAa is in I.

In the following, we shall say that an ideal I satisfies a Brendle- Labȩdzki lemma if
there is an I-canonical assignment pΦ,Ψq such that for each Z P I and any set A we have
that

tBA
a ; a P A^BA

a Ď Zu

is countable. A forcing notion P satisfies a Brendle- Labȩdzki lemma if the ideal I˚
P does.

The name derives from the fact that the first lemma of this type was implicitly used
in an argument about eventually different forcing by Brendle and subsequently written
up and published by  Labȩdzki in [26, Theorem 4.7] who also proved a similar lemma for
Hechler forcing [27, Theorem 6.2].5 These two lemmas were then used to prove that ℵ1 is
inaccessible by reals in [9, Theorem 5.9] and [10, Theorem 2], respectively. The abstract
proof below of the following theorem follows precisely the lines of these two proofs.

Theorem 2.8.3. Let P be a forcing notion with the Ikegami property that satisfies a
Brendle- Labȩdzki lemma, then Σ1

2pPq implies that ℵ1 is inaccessible by reals.

Proof. Fix any x P R. By the Ikegami property, the assumption gives us that the set

Nx :“ tz P X ; z is not I˚
P-quasigeneric over Lrxsu

is in I˚
P. By definition of quasigenericity, every Borel set B with Borel code in Lrxs

satisfies B Ď Nx. By the canonicity assumption, we find a particular A in Lrxs such that

Lrxs |ù ΨpAq and |A| “ ℵLrxs

1 and for all a P A, we have BA
a Ď Nx. But by the Brendle-

 Labȩdzki lemma, the set tBA
a ; a P A^BA

a Ď Nxu is countable, so ℵLrxs

1 is countable which
is what we aimed to show.

5In the first mentioned result on E, Ψ was “is a family of pairwise eventually different functions fa”
and BA

a was the set tx ; x and fa agree on infinitely many valuesu. In the second result on D, Ψ was “is
an almost disjoint family” and BA

a was the set tx ; ranpxq does not contain any elements of au.
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2.9 Fusion sequences

The conditions of arboreal forcings consisting of perfect or superperfect trees can be
identified with 2ăω or ωăω, respectively. In this section, we provide the necessary notation
for this and introduce fusion sequences.

Trees on 2. Let p P P Ď 2ăω. We start by identifying the nodes of p with that of the
full tree 2ăω, defining an injection σ ÞÑ σ ˚0 p between 2ăω and p by xy ˚0 p :“ stpT q and
if σ ˚0 p is defined, there is a splitting node in T above σ ˚0 p, i.e., some τ such that both
τ⌢0 and τ⌢1 are in T ; let pσ⌢0q ˚0 p :“ τ⌢0 and pσ⌢1q ˚0 p :“ τ⌢0. Then, for x P 2ω, we
define x ˚0 p to be

Ť

nPωpxænq ˚0 p. Furthermore, we define

p ˚0 σ :“ tτ ˚0 p | τ Ď σ or σ Ď τu

to be the ˚0-restriction of p to σ.
If we write Lnppq for the set of nth splitting nodes of p (in particular, L0ppq :“ stppq),

then we say that p ďn q if p Ď q and Lnppq “ Lnpqq. A sequence tpn ; n P ωu of perfect
trees such that pn`1 ďn pn for all n P ω is called a fusion sequence. For fusion sequences,
the set q :“

Ş

nPω pn is a perfect tree with q ďn pn for every n P ω.

Trees on ω. The mechanism for trees on ω is very similar but comes with a number
of additional technicalities since we need to talk about frontiers. For this, let P be an
arboreal forcing notion such that every tree p P P is a superperfect tree on ω. Once more,
we identify the nodes of p with the elements of ωăω via an injection σ ÞÑ σ ˚0 p defined
recursively by xy ˚0 p “ stppq and pσ⌢xnyq ˚0 p is the minimal splitting node of p extending
the nth immediate successor of σ ˚0 p, in the lexicographic order (for n P ω). For x P ωω,
we write x ˚0 p :“

Ť

nPωpxænq ˚0 p. Furthermore, we define

p ˚0 σ :“ tτ ˚0 p | τ Ď σ or σ Ď τu

to be the ˚0-restriction of p to σ and

Lnppq :“ tσ ˚0 p | σ P n
n
u

to be the nth ˚0-diagonal level of p.
A set B Ď ωăω is a p-frontier iff for every a P rps, there exist x P ωω and a unique

n P ω such that x ˚0 p “ a, and xæn P B. If σ P ωăω and B is a p-frontier, then
projBpσq “ tτ P B | σ Ď τu is the projection of σ to B. We write Brns for the nth
element in a frontier in a fixed enumeration of ωăω.

A sequence of frontiers A “ tAn ; n P ωu is a p-chain iff for all σ P An`1 there exists a
unique τ P An such that τ Ř σ. Given a p-chain A “ tAn ; n P ωu, we define a technical,
but important operation denoted by ˚1 by recursion:

§ xy ˚1 pp,Aq “ stppq,

§ xny ˚1 pp,Aq “ A0rns, and
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§
`

σ⌢xny
˘

˚1 pp,A) is the nth immediate successor of σ ˚1 pp,Aq, in the lexicographic
order, if |σ| ą 0 is odd; and

`

σ⌢xny
˘

˚1 pp,Aq is the set projA|σ|
pσ ˚1 pp,Aqqrns, if

|σ| ą 0 is even.

As before, this operation is extended to x P ωω by

x ˚1 pp,Aq “
ď

nPω

pxænq ˚1 pp,Aq.

As in the case of ˚0, we write

pp,Aq ˚1 σ :“ tτ ˚1 pp,Aq | τ Ď σ or σ Ď τu and

LA
n ppq :“ tσ ˚1 pp,Aq | σ P n

n
u

for the ˚1-restriction of p to σ and the nth ˚1-diagonal level of pp,Aq, respectively. This
allows us to define

q ďA
n p :ô q ď p and LA

n pqq “ LA
n ppq.

Note that LA
0 ppq does not depend on A (since it just consists of the stem of p) and so ďA

0

does not either. We can therefore write ď0 for ďA
0 .6

A sequence tpn ; n P ωu Ď P such that pn`1 ď
A
n pn for all n P ω is called a fusion

sequence. For fusion sequences, the set q :“
Ş

nPω pn is a superperfect tree with q ďA
n pn

for every n P ω.

Definition 2.9.1. The following recursively defined function j : ωăω Ñ ωăω will be called
the auxiliary map. We let jpxyq “ xy and suppose that jpσq has been defined and jpσ⌢xkyq
has been defined for all k ă n2. Let tkm ; m ă 2n ` 1u be an increasing enumeration of
pn` 1q2zn2 and set

jpσ⌢
xkmyq :“

#

jpσq⌢xmy⌢xkmy, if m ă n and

jpσq⌢xny⌢xkmy, if n ď m ă 2n` 1.

Definition 2.9.2. A map i : ωăω Ñ ωăω is called height-preserving if for each σ P ωăω,
we have that |ipσq| “ |σ|. It is called j-stable if

(a) ipxyq “ xy; and

(b) for every n P ω, there are infinitely many natural numbers kn’s such that

jpipσ⌢
xknyqqæ2|ipσq| ` 1 “ jpipσqq⌢xny.

Note that if i is height-preserving and j-stable, then |jpipσqq| “ 2|σ|.

Lemma 2.9.3. Suppose that i is j-stable and height-preserving. Let p P L and A “

pAnqnPω be a p-chain. Then ranpj ˝ iq ˚1 pp,Aq is a stem-preserving Laver subtree of p.

Proof. Follows from the construction.

6Cf. Footnote 1.
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2.10 Iterations of arboreal forcings

In this section, we shall be providing the main technical tools for dealing with iterations
of arboreal forcings. As mentioned, we are interested in separation results using Corollary
2.6.2, so we should like to prove that all reals in the P-model or ω2-P-model have a certain
property.

For this, let P be any arboreal forcing notion with the pure decision property (cf.
Definition 2.2.1) and α any ordinal. We denote by Pα the countable support iteration
of P of length α. Any element of Cantor space in the generic extension will have some
name 9x and some condition p that forces “ 9x P 2ω”. We fix this name and condition for
the remainder of this section.

Guiding reals and continuous reading of names. The following result shows that
for forcings of our type any real added by the forcing P can be approximated by ground
model reals that we call guiding reals.

Theorem 2.10.1 (Existence of guiding reals). Let P be an arboreal forcing notion with the
pure decision property whose conditions are trees on ω and σ P ωăω be a finite sequence.
For any name 9x for an element of Cantor space and any p P P there exist q ď p and a
ground model real g such that

q ˚0 σ
⌢k , 9xæp|σ| ` kq “ gæp|σ| ` kq

for all k P ω. Such a real g is called a guiding real with respect to 9x, σ, and q.

Proof. The proof is a direct application of the pure decision property and the compactness
of Cantor space; cf., e.g., [13, Claim 3.2.2].

Consequently, if we are working in a generic extension by the generic filter G and
p P G was the original condition that forces “ 9x is a real”, we can extend p to a q P G such
that there is a guiding real for each σ. Without loss of generality, we can assume that
p “ q. In this context, we now write xσ for the guiding real with respect to 9x, σ, p, and
q, suppressing the rest of the notation. Similarly, if T is a tree with stem stpT q, we write
xT :“ xstpT q. In this setting, we define for any r ď p “ q the tree of r-interpretations for
9x by

Trp 9xq “ ts P ωăω
| Dr1

ď rpr1
, s Ď 9xqu.

We can use the guiding reals to define the function f : rqs Ñ ωω by fpa ˚0 qq :“
limnPω xaæn (if the conditions are trees on ω; with the obvious modification if they are
trees on 2). This function is continuous and if 9xgen is a name for the generic real, then
q , fp 9xgenq “ 9x. This is also known as continuous reading of names [37, Definition 3.1.1].7

Fact 2.10.2. If P “ L, then the function witnessing continuous coding of names is injec-
tive.

7Cf. also [13, p. 31].
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Proof. This follows from a result by Gray proved in [8, Theorem 16].8 Cf. also [13, Fact
3.2.3 & p. 32].

The existence of guiding reals can be generalised to the iteration case.

Theorem 2.10.3 (Existence of guiding reals for iterations). Let P be an arboreal forcing
notion with the pure decision property, α any ordinal, and p P Pα. For each β P α
and σ P ωăω, there exists pβσ ď p and a Pβ-name for a real 9xβσ such that for all γ P β,
pβσæγ , pβσpγq “ ppγq and

pβσæβ , pβσpβq ď0 ppβq

and if we define qpσ, βq :“ ppβσpβq ˚0 σ
⌢kq⌢pβσæpβ, αq, then

qpσ, βq , 9xæp|σ| ` kq “ 9xβσæp|σ| ` kq.

Proof. Note that the pure decision property means that for any statement there exists
r ď p such that for all γ P β, ræγ , rpγq “ ppγq and ræβ , rpβq ď0 ppβq and rærγ, αq
decides the statement. This way we get pβσ ď p such that, for every k P ω:

pβσæβ , pβσpβq ˚0 pσ
⌢kq⌢pβσæpβ, αq decides 9xæp|σ| ` kq.

The claim can now be proved with a compactness argument similar to the one used in
Theorem 2.10.1 (cf. [13, Claim 3.2.2] for a proof).

Faithfulness. As mentioned, we try to preserve a property of reals in iterations. For
this, we shall define a notion of faithfulness. We fix some finite subset F Ď α and a
function η : F Ñ ω. For p, q P Pα, we write

q ďpF,ηq p if and only if q ď p and for all γ P F and σ P
ś

γPF ηpγq
ηpγq,

we have that qæγ , q ˚0 σpγq “ p ˚0 σpγq.

For forcings whose conditions are trees on 2 rather than ω, we need to restrict σ to
ś

γPF 2ηpγq for this definition.
We extend the definitions of ˚0 and ˚1 to the conditions p P Pα in a specific situation as

follows. Fix F Ď α finite, η : F Ñ ω, σ P
ś

γPF ηpγq
ηpγq, and Aγ a chain of ppγq-frontiers

for each γ P F (writing A :“ tAγ ; γ P F u). Then we define p ˚0 σ such that

@γ P F ppp ˚0 σqæγ , pp ˚0 σqpγq “ ppγq ˚0 σpγqq

and pp,Aq ˚1 σ such that

@γ P F pppp,Aq ˚1 σqæγ , ppp,Aq ˚1 σqpγq “ pppγq, A
γ
q ˚1 σpγqq .

Definition 2.10.4. Let Aγ a chain of ppγq-frontiers for each γ P F and φpx, yq be a
formula in two free variables. We say that p P Pα is φ-pF, ηq-faithful if for any σ, σ1 P
ś

γPF ηpγq
ηpγq such that σ ‰ σ1, we have that

pæmaxpF q , φpxσ˚1p, xσ1˚1pq.
8Cf. [17].
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Again, for forcings whose conditions are trees on 2 rather than ω, we need to restrict σ
to

ś

γPF 2ηpγq for this definition and instead of ˚1, we need to consider only ˚0, as the
frontiers will just be the splitting levels and the technicalities involved are much simpler.

Also for Matet forcing although it’s conditions are trees on ω, we shall be considering
˚0 instead of ˚1 since the technicalities involved in this are simpler regarding this aspect
but have other intricacies of it’s own which we shall discover in Chapter 5

Definition 2.10.5. A sequence tppn, Fn, ηnq ; n P ωu is called an augmented fusion se-
quence if

(i) Fn is a finite subset of α,

(ii) ηn : Fn Ñ ω,

(iii) Fn Ď Fn`1,

(iv) ηn`1pγq ě ηnpγq for γ P Fn, and

(v) pn`1 ďpFn,ηnq pn.

(vi) for all n P ω and γ P suppppnq there exists m P ω such that γ P Fm and ηmpγq ě n.

We say that q is the fusion of the augmented fusion sequence if for all γ P α, qæγ ,
qpγq “

Ş

nPω pnpγq.

Our objective in Chapters 3 & 5 will be to obtain a fusion sequence such that qn is
φ-pFn, ηnq-faithful. This will guarantee that the fusion of this sequence will be faithful as
well.

2.11 Implications between regularity properties

As mentioned, one of the themes of the research area of set theory of the reals has been the
study of the implication diagram between the regularity properties derived from arboreal
forcings. In Figure 2.1, we give the state of knowledge as it had been established before
this thesis. This diagram is complete in the sense that for any two statements in the
diagram, there is an implication between them if and only if there is an arrow in the
transitive closure of the diagram.

The notable exception was the non-implication between ∆1
2pLq and ∆1

2pVq which had
been open and explicitly listed as an open question by Fischer, Friedman, and Khomskii
[12, Question 6.3], Brendle and Löwe in [10, Figure 1] and by Ikegami in [20, Figure 2.1].
This problem is solved in this thesis; cf. Corollary 3.4.2.

In Figure 2.2, we add some of the regularities for the forcings A, E0, C, T, and W to the
diagram and mark the various implication questions that we tackle in this thesis. Chapter
3 will deal with L, V, and E0; Chapter 4 will deal with A, B, and D; and Chapter 5 will
deal with T and W. In particular, the following implications and non-implications will be
proved:
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Σ1
2pDq “ Σ1

2pEq

��

'/
Σ1

2pBq

t| �&��
Σ1

2pRq “ ∆1
2pRq

��

��

Σ1
2pCq “ ∆1

2pDq

��

v~

∆1
2pEq

t|

∆1
2pBq

{�

∆1
2pCq

��
Σ1

2pLq “ ∆1
2pLq

��

Σ1
2pVq

��
Σ1

2pMq “ ∆1
2pMq

��

∆1
2pVq

rz

((
?

Σ1
2pSq “ ∆1

2pSq

Figure 2.1: Complete implication diagram of regularity properties for the forcings B, C, D,
E, L, M, R, S, and V from [35, Figure 1.1]. Note that the non-implication between ∆1

2pLq
and ∆1

2pVq, marked with a “?” was unknown before the result in this thesis (Corollary
3.4.2).

(1) ∆1
2pLq œ ∆1

2pE0q (Corollary 3.4.2).

(2) Σ1
2pAq ñ Σ1

2pDq, whence Σ1
2pBq œ Σ1

2pAq (Corollary 4.3.5).

(3) ∆1
2pTq œ ∆1

2pVq (Corollary 5.3.8).

(4) ∆1
2pSq œ ∆1

2pWq (Corollary 5.4.3).

For reference, we list some of the results represented in the diagrams that will be used
in this thesis.

Theorem 2.11.1. The statements ∆1
2pLq and Σ1

2pLq are equivalent.

Proof. Cf. [9, Theorem 4.1].

Theorem 2.11.2. If ∆1
2pVq, then ∆1

2pE0q.

Proof. Cf. [7, p. 1350].
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Σ1
2pDq “ Σ1

2pEq

��

&.
Σ1

2pAq

'/

p2q
mm

Σ1
2pBq “ ∆1

2pAq

p2q

nn

rz "*��
Σ1

2pRq “ ∆1
2pRq

��

��

Σ1
2pCq “ ∆1

2pDq

��
lt

∆1
2pEq

rz

∆1
2pBq

w�

Σ1
2pLq “ ∆1

2pLq

��

∆1
2pCq

��
∆1

2pTq

t|

��

jj
p3q & p4q

**

Σ1
2pVq

��
Σ1

2pMq “ ∆1
2pMq

��

∆1
2pVq

px

##

p1q

��
∆1

2pWq

t|

p4q

]]

∆1
2pE0q

nv
Σ1

2pSq “ ∆1
2pSq

p5q
//

Figure 2.2: Implication diagram of regularity properties with open questions that are
solved in this thesis marked by the number in the list of results.
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Chapter 3

Laver forcing

3.1 Introduction

The main result of this chapter is the separation of Laver-measurability and Silver-
measurability by analysing the Laver model. Whether this separation is possible has
been asked several times in the published literature.1

The analysis of the Laver model is closely related to the study of Borel chromatic
numbers of graphs. The systematic study of definable graphs started in [24] as a descrip-
tive set-theoretic approach to concepts and results from graph theory, and this field is
nowadays called descriptive graph combinatorics.

If X be a Polish space, we call G a graph on X if G Ď X ˆ X is irreflexive and
symmetric. Since a graph is a subset of the Polish space X ˆ X, it can be closed, Fσ,
Borel, or analytic. A graph is called locally countable if the set ty P X | px, yq P Gu is
countable, for every x P X.

If G is a graph on a Polish space X, and α ě 1 is an ordinal, then an α-colouring of
G is a function c : X Ñ α such that cpxq ‰ cpyq, for all px, yq P E. The sets c´1ptβuq for
β ă α are called the maximally monochromatic sets for c. We say that an α-colouring c
is a Borel colouring if all maximally monochromatic sets are Borel.

The Borel chromatic number of G, denoted by χBpGq, is the least cardinality of an
ordinal α for which there exists a Borel α-colouring of G. Since we assumed X to be a
Polish space, all Borel chromatic numbers are bounded by 2ℵ0 . We shall see later that
uncountable Borel chromatic numbers may assume different values in different models of
set theory.2

If E is an equivalence relation over X, we can think of E as a graph by making it
irreflexive, i.e., considering EzIdX where IdX :“ tpx, xq ; x P Xu is the identity on X.
We use the above notation for equivalence relations, i.e., we write χBpEq for the Borel

1Cf. p. 24; [12, Question 6.3], [10, Figure 1], and [20, Figure 2.1].
2For ZFC-results about Borel chromatic numbers, we refer the reader to [24]; for consistency results,

to [15, 14]. At the heart of the field of descriptive graph combinatorics is the G0-dichotomy: it says
that there exists a closed graph G0 which is minimal for analytic graphs of uncountable Borel chromatic
numbers, i.e., if G is analytic and χBpGq is uncountable, then χBpG0q ď χBpGq [24, Theorem 6.6].
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chromatic number of the equivalence relation E.3

If x, y P 2ω, we can consider them as sets of natural numbers and define their sym-
metric difference x△y :“ tk ; xpkq ‰ ypkqu. This operation gives rise to one of the most
interesting relations for us. We define

xE0y : ðñ @
8n pxpnq “ ypnqq

ðñ x△y is finite.

This is an Fσ equivalence relation.
Zapletal connected the equivalence relation E0 to E0-trees and the forcing notion E0.

This will become relevant in our applications of the main result later (cf. § 3.4, in particular
Theorem 3.4.1).

Theorem 3.1.1 (Zapletal). A real is E0-quasigeneric over M if and only if it avoids all
Borel E0-independent sets coded in M .

Proof. Zapletal uses different terminology, but the key lemma is [36, Lemma 2.3.29]; cf.
also [13, Fact 1.3.2].

Gaspar and Geschke asked [14, Question 5.2] whether χBpE0q is consistently smaller
than the bounding number b; we give a positive answer to that question in Corollary
3.2.8. The key technical ingredient in our proof is a preservation theorem for Laver
forcing, Theorem 3.2.7. Theorem 3.2.7 (a) was independently proved by Zapletal, but
for closed graphs instead. His methods rely on the heavy machinery of his idealized
forcing (cf. [37]), as well as iterable properties for “sufficiently definable and homogeneous
ideals”. The approach we take here is completely different and we resort only to classical
combinatorial arguments of the forcings involved.

As an additional consequence, our result proves the separation of Laver and Silver
measurability (the mentioned open question posed by Fischer, Friedman, and Khomskii):
in the Laver model, all Σ1

2 sets are Laver measurable, but not all ∆1
2 sets are Silver

measurable (cf. Corollary 3.4.2).
Furthermore, we apply our preservation theorem to answer a question of Brendle,

Halbeisen, and Löwe: whether the existence of splitting reals (cf. p. 36) implies Silver
measurability [6, Question 2]. The answer is ‘No’ as we show in Corollary 3.4.4.

3.2 Definitions and the main result

Let G be a graph on a Polish space X.

Definition 3.2.1. A set A Ď X is called G-independent if A2 XG “ ∅.

Note that if c be an α-colouring and A is maximally monochromatic for c (i.e., of the
form c´1ptβuq for some β ă α), then A is G-independent. Therefore, we observe that we
can reformulate the definition of Borel chromatic numbers.

3The descriptive graph combinatorics of equivalence relations has been extensively studied in [19, 7]
and other papers.

28



Fact 3.2.2. For every graph G, χBpGq is the least cardinality of a family F of Borel
G-independent sets such that

Ť

F “ X.

If G is a graph, we call C “ pCnqnPω a cover of G if G “
Ť

nPω Cn. Note that each
Cn Ď X2zIdX where IdX :“ tpx, xq ; x P Xu is the identity on X; this space is a Polish
space. We call a cover closed if all its elements are closed subsets of X2zIdX .

Fact 3.2.3. A graph G on a Polish space X is Fσ if and only if there is a closed cover
of G.

Definition 3.2.4. If C “ pCnqnPω is a cover of G, the function defined by

ℓCpx, yq “

$

’

&

’

%

mintn` 1 | px, yq P Cnu, if px, yq P G

0, if x “ y.

ω, if px, yq R GY IdX .

is called the G-locator of C, corresponding to the fixed enumeration pcnqnPω. We shall not
mention the enumeration because in each and every of our proofs the enumeration will be
fixed.

Clearly, the G-locator of C is identically ω on a set A if and only if A is G-independent.
We write

ℓCpA,Bq :“ mintℓCpa, bq | pa, bq P AˆBu

for A,B Ď X.

Definition 3.2.5. Let C be a cover for G. We say that G is ℓC-unbounded iff for every
px, yq P X2 and n natural number such that ℓCpx, yq ą n, there exists an open neighbour-
hood O of y such that ℓCpx, zq ą n` 1, for every z P Oztyu.

As mentioned, the main graph considered here is E0zId2ω . This is an Fσ graph with
the closed cover defined by

Cn “
␣

px, yq P p2ω
q
2
| 0 ă |x△y| ď n` 1

(

and it is ℓC-unbounded.
Note that the locator for this cover is an infinite version of the usual distance on the

set of vertices—i.e., the distance between two vertices is the shortest length of a path
between them—, and this will be further discussed in § 3.5.

Proposition 3.2.6. If C is a cover for G and G is ℓC-unbounded graph, then it is locally
countable.

Proof. Let us consider C0, and let x P X. Then since X is compact ty P X : px, yq P C0u

would have a limit point if the above set is uncountable. Let this limit point be z. Then,
one can never find an open set O, with z P O, such that for all r P Oztzu, ℓCpx, yq ą 1.
This means that C0 is countable. But one can easily notice that there is nothing special
about C0 and that this argument applies to all the C 1

ns. Therefore x has at most countably
many G-edges.
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Theorem 3.2.7. Let G be an Fσ graph on a totally disconnected compact Polish space X
and C be a closed cover of G.

(a) If G is locally countable then, in the ω2-Miller model, every point in the completion
of X is contained in a Borel G-independent set coded in the ground model; and

(b) if G is ℓC-unbounded then, in the ω2-Laver model, every point in the completion of X
is contained in a Borel G-independent set coded in the ground model.

As mentioned before, (a) was proved by Zapletal independently but for closed graphs.

The bounding number b is the smallest cardinality of an unbounded set, i.e., b :“
mint|F | ; F Ď ωω and for all f P ωω there is some g P F such that tn ; fpnq ă gpnqu is
infiniteu.

Corollary 3.2.8. It is consistent with the axioms of ZFC that χBpE0q ă b.

Proof. This happens in the ω2-Laver model: it is well known that in that model b “ ℵ2

[3, Model 7.6.13]. But by Theorem 3.2.7, we have that χBpGq ď |ω
ω X L| “ ℵ1.

For a diagram involving common small cardinal characteristics of the continuum, and
a few Borel chromatic numbers, cf. [14, Figure 1].

3.3 Technical lemmas

The reason why Theorem 3.2.7 can be proved for totally disconnected compact Polish
spaces is that they are the continuous injective image of 2ω when they lack isolated
points:

Claim 3.3.1. Let X be homeomorphic to 2ω, and φ : 2ω Ñ X be one such homeomor-
phism, and G be a graph on X with cover C. Then G is Fσ iff

φ˚
rGs “

␣`

φ´1
pxq, φ´1

pyq
˘

P p2ω
q
2
| px, yq P G

(

is an Fσ graph on 2ω. Moreover,

(a) G is locally countable iff φ˚rGs is locally countable; and

(b) G is ℓC-unbounded iff φ˚rGs is ℓC-unbounded.

In any case, we have that χBpφ
˚rGsq “ χBpGq.

Proof. Follows directly from the fact that φ is a homeomorphism.
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Single step. Now, in order to prove Theorem 3.2.7, we first investigate what happens
when we add only one generic real to the universe. This corresponds to the successor stage
of the forcing iteration. So, let 9x be a name for a real and assume that p is a condition
(either a Miller or a Laver tree) that forces “ 9x is a real” and that is strong enough to
guarantee that all guiding reals are defined (cf. § 2.10).

This gives us the function f witnessing continuous reading of names (cf. 22). In the
case of Laver forcing we know by Fact 2.10.2 that f is injective. This means for any p P L
that f“rps is a Borel set coded in the ground model since f is injective and rps is a closed
set (cf., e.g., [30, Exercise 2E9]).

Lemma 3.3.2. Let G be an Fσ graph on 2ω, with a closed countable cover C.

(a) If G is locally countable and P “ M, then there is a stem-preserving extension q ď p
such that f“rqs is a G-independent set.

(b) If G is ℓC-unbounded and P “ L, then there is a stem-preserving extension q ď p such
that f“rqs is a G-independent set.

Proof. Let us prove (a) first. In the Miller case, we define an order-preserving injection
i : ωăω Ñ ωăω, and a strictly increasing sequence pknqnPω of natural numbers such that,
for all σ, τ P nďn,

(1) ℓC
`“

xipσqæ|ipσq| ` kn
‰

,
“

xipτqæ|ipτq| ` kn
‰˘

ě |σ| ´ |τ |, if τ Ď σ,

(2) ℓC
`“

xipσqæ|ipσq| ` kn
‰

,
“

xipτqæ|ipτq| ` kn
‰˘

ě |σ|`|τ |´2|σXτ |, if σ and τ are distinct
(here σ X τ denotes the longest common initial segment of σ and τ), and

(3) for all σ1 P ppn ` 1q2qďpn`1qzpn2qďn, such that σ Ď σ1 the closure of f“rp ˚0 ipσ
1qs is

a subset of
“

xipσqæ|ipσq| ` kn
‰

.

Once this is done with care, we can ensure that q “ ranpiq ˚0 p is our desired Miller tree.
In fact, if a, b P rqs are distinct, then fpaq and fpbq do not form an edge: in fact, for
every n P ω, there exists σa,n, σb,n such that |σa,n| “ |σb,n| “ n ` 1, ipσa,nq ˚0 p Ď a and
ipσb,nq ˚0 p Ď b. Then

ℓCpfpaq, fpbqq ě ℓC
`

xipσa,nq, xipσb,nq

˘

ě 2pn` 1´ |σa,n X σb,n|q;

and the sequence |σa,n X σb,n| is constant. Hence, ℓCpfpaq, fpbqq “ ω.
This construction can be carried out for Miller forcing if G is locally countable: assume

iænďn has been defined and let ă denote the lexicographic order on ωăω. By induction on
σ, also assume ipτq has been defined, for all τ ă σ. Since f“rp˚0ipσæ|σ|´1qs is uncountable
(because 9x is not in the ground model), there exists a P ωω such that ipσæ|σ| ´ 1q Ď a;
and

`

fpa ˚0 pq, xipτq

˘

R G. In particular, it follows from the closedness of the Cn’s, and
from the continuity of f , that there exists an initial segment of a, which we choose to be
ipσq, such that

ℓC
`

xipσq, xipτq

˘

ą

#

|σ| ´ |τ |, if τ Ď σ; and

|σ| ` |τ | ´ 2|σ X τ |, if τ and σ are incompatible.
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This finishes the inductive construction.

We prove (b); in the case of Laver forcing, we assume that G is ℓC-unbounded: first,
let A “ pAnqnPω a p-chain as in Claim 2.10.2, witnessing the injectivity of f . Similarly to
the case of Miller, we need to construct some order-preserving injection i : ωăω Ñ ωăω,
and a strictly increasing sequence pknqnPω of natural numbers, but we need some changes:

(1) i is height-preserving and j-stable;

for σ, τ P ωăω,

(2) ℓC
`“

xσpi,p,Aqæ|σpi, p, Aq| ` kn
‰

,
“

xτpi,p,Aqæ|τpi, p, Aq| ` kn
‰˘

ě rp|σ| ´ |τ |q{2s, if τ Ď σ;

(3) ℓC
`“

xσpi,p,Aqæ|σpi, p, Aq| ` kn
‰

,
“

xτpi,p,Aqæ|τpi, p, Aq| ` kn
‰˘

ě rp|σ|` |τ |´2|σX τ |q{2s

where σpi, p, Aq is the unique element of ωăω such that

σpi, p, Aq ˚0 p “ jpipσqq ˚1 pp,Aq.

We shall proceed by induction on the set of even natural numbers, that is t2k : k P ωu.
So, assume iæ pn2q

ďn
has been defined for some n ą 0. Moreover, let assume ipτq has been

defined for some σ and all τ ă σ, where σ, τ P ppn` 1q2q
ďn`1

z pn2q
ďn

.
Let σ´ “ σæ|σ| ´ 1 (thus |σ´| “ |σ| ´ 1), a node for which i is defined according to

our induction hypothesis — that is, for each τ ă σ and z P
“

xσ´pi,p,Aqæ|σ
´pi, p, Aq| ` kn

‰

,
we have that

ℓC
`

z, xτpi,p,Aq

˘

ě

#

rp|σ| ´ |τ |q{2s´ 1, if τ Ď σ; and

rp|σ| ` |τ | ´ 2|∆pσ, τq|q{2s´ 1, if τ and σ are incompatible.

Now using ℓC-unboundedness, for each such τ , we let Oτ be an open set around xσ´pi,p,Aq

such that for all z P Oτz
␣

xσ´pi,p,Aq

(

:

ℓC
`

z, xipτq

˘

ě

#

rp|σ| ´ |τ |q{2s, if τ Ď σ; and

rp|σ| ` |τ | ´ 2|∆pσ, τq|q{2s, if τ and σ are incompatible.

Since
Ş

τăσ Oτ is an open neighborhood of xσ´pi,p,Aq, by choosing ipσq such that
“

xσpi,p,Aqæ|σpi, p, Aq|
‰

Ď
Ş

τăσ Oτ we get

ℓC
`

xσpi,p,Aq, xτpi,p,Aq

˘

ě

#

rp|σ| ´ |τ |q{2s, if τ Ď σ; and

rp|σ| ` |τ | ´ 2|∆pσ, τq|q{2s, if τ and σ are incompatible.

In any case, we use the closedness of the Cn’s one more time if necessary to get a
natural number kn`1 such that

ℓC
`“

xσpi,p,Aqæ|σpi, p, Aq| ` kn`1

‰

,
“

xτpi,p,Aqæ|σpi, p, Aq| ` kn`1

‰˘

ě ℓC
`

xτpi,p,Aq, xτpi,p,Aq

˘

.
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Iteration. Our goal now is to prove some version of Lemma 3.3.2 for countable support
iterations of Laver forcing. For an ordinal α ě 1, let Pα denote the countable support
iteration of P (where P is either M or L). Let F be a finite subset of α and η : F Ñ ω.
For p, q P Pα, we say that q ďF,η p iff

@γ P F
`

qæγ , qpγq ďηpγq ppγq
˘

.

For the rest of this section, 9x is a name for an element of 2ω not added by any proper
initial segment of the iteration and p is a condition forcing “ 9x is a real”.

Theorem 3.3.3. Suppose that α is a limit ordinal and p P Pα. Then there is q ď p
such that for every coordinate β P α, and σ, τ P ωăω, there are chains of frontiers Aβ :“
pAβ

n ; n P ωq such that if σ and τ are such that qæβ forces that stpqpβq˚0σq and stpqpβq˚0τq
are immediate successors of nodes of frontiers4 and qpβq ˚0 σ ‰ qpβq ˚0 τ then

qæβ , xqpβq˚0σ ‰ xqpβq˚0τ .

Proof. This is a direct consequence of Theorem 2.10.3, Lemma 3.3.2 and the fact that 9x
is not added by any proper initial segment of the iteration.

Theorem 3.3.4. If α is a successor ordinal say δ` 1 and r P Lα, then there exists p ď r
such that for σ, τ P ωăω, there are chains of frontiers Aα :“ pAα

n ; n P ωq such that if
σ and τ are such that pæδ ` 1 forces that stpppαq ˚0 σq and stpppαq ˚0 τq are immediate
successors of nodes of frontiers and ppαq ˚0 σ ‰ ppαq ˚0 τ then

pæα , xppαq˚0σ ‰ xppαq˚0τ .

For β P δ ` 1 the splitting levels form a chain of frontiers but they do not necessarily
satisfy the above inequality.

Proof. It follows from Theorem 2.10.3 and Lemma 3.3.2 that ræδ ` 1 forces that there is
ppδ` 1q ď rpδ` 1q such that ppδ` 1q has frontiers satisfying the inequality mentioned in
the theorem’s statement.

For any condition r P Pα, r decides some (proper) initial segment of the values of the
real with name 9x. We write 9xr for the maximal initial segment decided by the condition
r. If F is any finite set, η : F Ñ ωăω, and σ, τ P

ś

γPF ηpγq
ηpγq, we define

ℓσ,τmax :“ max
γPF

t|σpγq| ` |τpγq| ´ 2|σpγq X τpγq|u and

ℓηmax :“ maxtℓσ,τmax ; σ, τ P
ź

γPF

ηpγqηpγq
u.

Let G be a graph with cover C, q ď p, F a finite subset of α, with a chain of frontiers Aγ

for each co-ordinate γ P F and η : F Ñ ω. We say that q is G-pF, ηq-faithful iff

ℓC
`

r 9xq˚1pσ,Aγqs, r 9xq˚1pτ,Aγqs
˘

ě rℓσ,τmax{2s

for all distinct σ, τ P
ś

γPF ηpγq
ηpγq and γ P F .

4We remind the reader that for the sake of ease of reading, we defined guiding reals of trees as follows:
xT :“ xstpT q.
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Lemma 3.3.5. If α is a successor ordinal say δ ` 1, and σ, τ P ωăω, then pæδ ` 1 forces
ℓCpr 9xppδq˚1σs, r 9xppδq˚1τ sq ě |σ| ` |τ | ´ 2|σ X τ |.

Proof. Follows from the proof of Lemma 3.3.2.

Lemma 3.3.6. Let G be an Fσ graph, C be a closed cover for G, and G be ℓC-unbounded.
Let F be a finite subset of α (containing α ´ 1 if α is a successor ordinal), β P F ,
γ̄ “ maxpF q, ηmax :“ maxtηpγq ; γ P F u, and η1 : F Ñ ω be defined by

η1
pγq :“

$

&

%

ηpγq if γ R tβ, γ̄u,
mint2k : 2k ą ηpβq and k P ωu if γ “ β ‰ γ̄,

mint2k ` 1 ; 2k ` 1 ą ηmax ` ℓ
η
max ` 1u ` 1 if γ “ γ̄.

Let q ďF,η p be a G-pF, ηq-faithful condition. Then there exists a G-pF, η1q-faithful condi-
tion r ďF,η q.

We remark that one can check that the proof for Miller forcing only requires that G
is locally countable (rather than ℓC-unbounded; cf. Proposition 3.2.6).

Proof. Since 9x is not added at a proper initial stage, every stage of the iteration has a
chain of frontiers associated to it that satisfies Theorem 3.3.3 or Theorem 3.3.4 as the case
may be. Let tσ0, ..., σm´1u be an enumeration of

ś

γPF ztγ̄u
ηpγqηpγq. We define η2 : F Ñ ω

such that η2æF ztγ̄u “ η1 and η2pγ̄q “ η1pγ̄q ´ 1.
We define a ďF,η-decreasing sequence ppjqjăm by recursion. Assume we have con-

structed pj´1; using ideas from the proof of Lemma 3.3.2 and Lemma 3.3.5, we define
an order-preserving injection i on ωďη2pγ̄q, a strictly increasing sequence kn of natural
numbers, and a pj ďF,η qj with the following condition:

We denote by τpi, p, Aq the unique element of ωăω such that τpi, p, Aq ˚0 p “ jpipτqq ˚1
pp,Aq and let τ, τ 1 P ωďη2pγ̄q. Then ppj ˚1 σjqæγ̄ forces

(i) i is height-preserving and j-stable,

(ii) τ Ď τ 1, it forces ℓCprxτpi,p,Aqæ|τpi, p, Aq| ` kns, rxτ 1pi,p,Aqæ|τ
1pi, p, Aq| ` knsq ě rp|τ | ´

|τ 1|q{2s, and

(iii) if τ and τ 1 are incompatible, it forces

ℓCprxτpi,p,Aqæ|τpi, p, Aq| ` kns, rxτ 1pi,p,Aqæ|τ
1
pi, p, Aq| ` knsq ě rp|τ | ` |τ 1

| ´ 2|τ X τ 1
|q{2s.

In particular,

ℓCprx
γ̄
ipτq
æ|ipτq| ` kn̄s, rx

γ̄
ipτ 1q
æ|ipτ 1

q| ` kn̄sq ě rpℓη
1

max ` 1q{2s

when |τ | “ |τ 1| “ rηmax ` pℓ
η
max ` 1q{2s, and |τ X τ 1| ď ηmax.

If β “ γ̄, simply let r “ pm´1; if β ‰ γ̄, let tIτ | τ P η
2pβqη

2pβqu denote a partition of
ω into finitely many infinite pieces. Then r ďF,η pm´1 is defined such that

(1) ræγ̄ “ pm´1æγ̄,
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(2) for all coordinatewise extensions σ1 P
ś

γPF ztγ̄u
η2pγqη

2pγq, of the restricted product of

nodes σ P
ś

γPF ztγ̄u
ηpγqηpγq, for all σ̄ P ηpγ̄qăηpγ̄q,

pr ˚1 σ
1
qæγ̄ , succpstprpγ̄q ˚1 σ̄qzt0, ..., ηpγ̄q ´ 1u˚

“ I˚
σ1pβq,

where t0, ..., k´1u˚ denotes the first k immediate successors of the stem of the restric-
tion of rpγ̄q to σ̄, rpγ̄q ˚0 σ̄; for all σ̄ P ηpγ̄qηpγ̄q, I˚

σ1pβq
“ trpγq ˚0 σpγq

⌢k1 : k1 P Iσ1pβqu

and

(3) ræpγ̄ ` 1q , ræpγ̄, αq “ pm´1æpγ̄, αq

3.4 Proof of the main result and applications

We can now prove Theorem 3.2.7 (b).5 With Lemma 3.3.6 and some bookkeeping, we can
construct a fusion sequence ppn, Fn, ηnqnPω such that

(i) for all γ P suppppnq, there is m P ω such that γ P Fm and ηmpγq ě n; and

(ii) pn is pFn, ηnq-faithful.

Let q P Lα be defined recursively such that for all γ ă α, we have pqæγ , qpγq “
Ş

nPω pnpγqq, let pxpγq ; γ P supppqqq be a sequence in pωωqsupppqq, and define a function f
by

f
``

xpγqγPsupppqq

˘˘

:“
ď

nPω

9xq˚0pxpγqæηnpγqqγPFn
.

The function f : pωωqsupppqq Ñ 2ω is a ground model continuous injection mapping the
generic sequence to 9x — i.e., q , fpxgenpγqqγPsupppqq “ 9x. Due to the above property of q
being a fusion of the faithful sequence ppn, Fnq, we have ℓCpfpxq, fpyqq “ ω, for all distinct
x, y P pωωqsupppqq. Hence, f

“

pωωqsupppqq
‰

is a ground model Borel G-independent set. This
finishes the proof of Theorem 3.2.7.

We can now harvest the fruits of our labour and provide the promised solutions of the
two open questions.

Theorem 3.4.1. In the Laver model, if r is a real, then there are no E0-quasigenerics
over Lrrs.

Proof. Let x be any real in the Laver model. Since E0 is ℓC-unbounded, Theorem 3.2.7 (b)
says that x is contained in a Borel E0-independent set coded in the ground model. But
then it cannot be E0-quasigeneric over the ground model (and hence not over any Lrrs)
by Theorem 3.1.1.

Corollary 3.4.2. In the Laver model, Σ1
2pLq holds and ∆1

2pE0q and ∆1
2pVq fail.

5The proof of Theorem 3.2.7 (a) is the same, using the remark after Lemma 3.3.6.
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Proof. Follows from Theorem 2.11.1, Proposition 2.4.4, and Theorems 2.6.1 & 3.4.1.

A set s P rωsω (interpreted as an increasing element of Baire space) is called a splitting
real over M if for every x P rωsω XM , both xzs and sX x are infinite.

Theorem 3.4.3. If ∆1
2pVq, then for every real r, there is a splitting real over Lrrs.

Proof. Cf. [6, Proposition 2.4].

Brendle, Halbeisen and Löwe asked whether the converse of Theorem 3.4.3 holds [6,
Question 2]. Our result implies that the answer is negative.

Corollary 3.4.4. In the Laver model, ∆1
2pVq fails, but for every real r, there is a splitting

real over Lrrs.

Proof. The first part follows from Corollary 3.4.2. Laver forcing adds dominating reals
over Lrrs (cf. [3, Lemma 7.3.28]) and the existence of a dominating real implies the
existence of a splitting real (cf. [18, Fact 21.1]).

3.5 Questions

As said earlier, the notion of C-locator is a generalisation of the graph distance (i.e., the
shortest length of a path between them). If G is a closed locally countable graph on
a Polish space X, let EG be the equivalence relation whose classes are the connected
components of G. Then EGzIdX is a locally countable Fσ-graph with closed cover C “
pCnqnPω defined by

Cn “
␣

px, yq P p2ω
q
2
| 0 ă dpx, yq ď n` 1

(

,

for all n P ω, where d here denotes the usual distance in G (so, G “ C0). Say that G has
unbounded distance if EGzIdX is ℓC-unbounded.

Question 3.5.1. Is there a closed locally countable graph defined on a Polish space that
does not have unbounded distance? More generally, is there an Fσ locally countable graph
that is not ℓC-unbounded for all its closed covers?

Even if the answer to Question 3.5.1 is positive, it could be that Theorem 3.2.7 (b)
still holds for all locally countable graphs. However, this could not be proved with the
method presented here.

Question 3.5.2. Does Theorem 3.2.7 (b) still hold if G is an arbitrary locally countable
graph?

We were not able to find a counterexample for Theorem 3.2.7 when the set of vertices
is not compact, or not extremely disconnected.

Question 3.5.3. Does Theorem 3.2.7 still hold if X is not compact (e.g., X “ ωω)?
What if X is not extremely disconnected (e.g., X “ r0, 1s, or X “ R)?

Finally, we do know what happens for graphs of different complexities, such as Gδ,
Gδσ, Fσδ, etc.

Question 3.5.4. Does Theorem 3.2.7 still hold if G is an analytic graph?
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Chapter 4

Regularity properties and
inaccessible cardinals

As discussed in § 2.7, it is rare that the measurability of all Σ1
2 sets gives the strongest of

the transcendence properties, “ℵ1 is inaccessible by reals”. One of the few examples of
this is Hechler regularity (cf. Fact 2.7.3) which we are going to use in our proofs here.

It had been conjectured since the late 1990s that the same holds for amoeba regular-
ity. However, the fact that amoeba forcing does not live on the reals and that amoeba
regularity was not defined in the usual way, made it difficult to analyse it: the analysis
required the general framework due to Wansner described in §§ 2.3 & 2.6 from [35].

In this chapter, we introduce various notions of amoeba forcing and prove that Σ1
2

measurability for each of them implies that ℵ1 is inaccessible by reals.

4.1 Being an amoeba

If P is a forcing notion with the Ikegami property, one way to obtain Σ1
2pPq is to iteratively

add co-null sets of quasigeneric reals in an iteration of length ω1. In order to do this, we
would like to have natural forcing notions adding these large sets of quasigenerics, usually
called amoebas of the original forcing.

Definition 4.1.1. Let P be an arboreal forcing notion and Q any other forcing notion.

1. We say that Q is a weak Amoeba of P if ∆1
2pQq implies Σ1

2pPq;

2. We say that Q is a quasigeneric Amoeba of P if for any T P P, any Q-generic G,
and any model M Ě V rGs, we have that

M |ù DT 1
ď T@xpx P rT 1

s Ñ x is P-quasigeneric over V q;

3. we say that Q is a quasi-Amoeba of P if for any T P P and any Q-generic G we
have that

V rGs |ù DT 1
ď T@xpx P rT 1

s Ñ x is P-generic over V q; and
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4. we say that Q is a (generic) Amoeba of P if for any T P P, any Q-generic G, and
any model M Ě V rGs, we have that

M |ù DT 1
ď T@xpx P rT 1

s Ñ x is P-generic over V q.

Proposition 4.1.2. Let P be an arboreal forcing notion. Then every Amoeba for P is a
quasi-Amoeba for P and every quasi-Amoeba for P is a quasigeneric Amoeba for P.

Proof. Follows directly from the definitions.

Proposition 4.1.3. If P is an arboreal forcing with the Ikegami property, every quasi-
generic Amoeba (and therefore by Proposition 4.1.2 every Amoeba and every quasi-Amoeba)
is a weak Amoeba of P.

Proof. Follows directly from the definitions.

In general, the various notions of Amoebas do not coincide: for Sacks, Miller, and
Laver forcing, the regularity of all ∆1

2 sets is equivalent to the regularity of all Σ1
2 sets

[9, Theorems 4.1, 6.1, & 7.1]. As a consequence all of these forcings are their own weak
Amoebas. Sacks forcing and Miller forcing are quasi-Amoebas, but not Amoebas for
themselves [5, Theorem 4, Corollary 5, & Proposition 7], and Laver forcing is not even a
quasi-Amoeba for itself [5, Theorem 5]. This situation changes for c.c.c. forcing notions
as the following theorem shows.

Theorem 4.1.4. For c.c.c. forcing notions P, every quasi-Amoeba for P is an Amoeba
for P. (In other words, Amoeba and quasi-Amoeba are equivalent.)

Proof. Cf. [12, p. 712].

In § 4.2, we shall introduce various Amoeba forcings for c.c.c. forcing notions. These
forcing notions do not live on Baire space, but on slightly different Polish spaces that we
shall define in the following section.

4.2 Definitions of amoebas

Using the spaces from the previous section, we now give the definitions of the various
amoebas that we consider in this chapter. We use the spaces O, U, and Loc defined in
§ 2.5. As in § 2.5, the symbol µ denotes Lebesgue measure, either on 2ω or R; it will be
clear from the context which measure is intended.

Definition 4.2.1. Amoeba forcing, denoted by A, consists of the set of all pruned trees
T Ď 2ăω such that µprT sq ą 1

2
, ordered by inclusion.

Amoeba forcing was introduced by Martin and Solovay in [28]. It is an Amoeba for
random forcing B. It lives on the Polish space R in the sense of § 2.5 by means of the
following function:

xT y :“ tS P R ; rSs Ď rT su
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(for details, cf. [35, pp. 55–56]). The collection CA of these sets forms a proper weak
category base on R that has the countable chain condition and is Borel compatible with
the the Polish space R (cf. [35, Proposition 2.3.6]).

We shall also be using a variant of amoeba forcing. For this, we write R`
8 for R`Yt8u.

Definition 4.2.2. Amoeba infinity forcing, denoted by A8 consists of the set of all pairs
pO, εq P Oˆ R`

8 such that µpOq ă εu ordered by pO1, ε1q ď pO, εq iff O Ď O1 and ε1 ď ε.

This forcing notion lives on the Polish space O by means of the following function:

rO, εs :“ tU P O ; O Ď U and µpUq ď εu

for pO, εq P A8. We write CA8
for the collection of these sets.

Proposition 4.2.3. The pair pO, CA8
q is a c.c.c category base which is Borel compatible

with O and the ideal of CA8
-small sets is Borel generated.

Proof. If X is a Polish space and pX,Cq is a proper weak category base which satisfies
c.c.c, then for a C-singular set A, there is a maximal antichain A that is countable and
A Ď Xz

Ť

A. But Xz
Ť

A is Borel. Therefore it follows that I˚
C is Borel generated.

Therefore we need to first prove that it is a category base satisfying c.c.c and is Borel
compatible with O. Clearly, O “

Ť

CA8
. Let c P CA8

and C Ď CA8
be a disjoint family,

with |C| ă |CA8
|. Since A8 satisfies c.c.c, C is countable.

Case 1. The set cX
Ť

C contains some element of CA8

If rO, εs P CA8
. If there isn’t any rO1, ε1s P C, such that rO, εs X rO1, ε1s contains an

element of CA8
, then for every rO1, ε1s P CA8

, µpO Y O1q ě mintε, ε1u. Hence, for
every rO1, ε1s P CA8

, either rO, εs X rO1, ε1s “ ∅ or for every U P rO, εs X rO1, ε1s,
µpUq “ mintε, ε1u. Let U P rO, εs such that µpUq ă ε and µpUq ‰ ε1 for every
rO1, ε1s P C. Such U exists as C is countable. Then U R rO, εsz

Ť

C, which is a
contradiction.

Case 2. The set AX
Ť

C does not contain some element of CA8
.

Hence, rO, εs X rO1, ε1s also does not contain any element of CA8
. Then for every

rO1, ε1s, µpO Y O1q ě mintε, ε1u. Since C is countable, we can find some U P rO, εs
such that µpUq ă ε and for every rO1, ε1s P C, µpU Y O1q ą mintε, ε1u. Then
rU, εs Ď rO, εs and for every rO1, ε1s P C, rU, εs X rO1, ε1s “ ∅.

Now we turn to prove the properness of pO, CA8
q. The partial order pCA8

,Ďq is
proper due to the fact that A8 is c.c.c. We show that every singleton is CA8

-small. Let
U P O and rO, εs P CA8

. Without loss of generality U P rO, εs. Then we can either
decrease ε or increase O to obtain pO1, ε1q ď pO, εq such that U R rO1, ε1s. Therefore tUu
is singular. We now show that every region is CA8

-not small. Suppose that there is rO, εs
such that it is CA8

-small. Then, rO, εs Ď
Ť

nPω Sn where Sn are all singular. Now, due
to singularity, we can find a decreasing sequence pOn, εnqnPω such that pO0, ε0q “ pO, εq
and Sn X rOn`1, εn`1s “ ∅. Let U “

Ť

nPωpOnq. Then for every n P ω, On Ď U and
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µpUq ď εn. Hence, U P rOn, εns for every n P ω. But this is a contradiction, since
rO, εs X

Ť

ną0rOn, εns “ ∅. Therefore rO, εs is not CA8
-small.

Finally, we prove the Borel compatibility part. Let rO, εs be a region. We wish to
show that it is closed. Let U R rO, εs and s a code for U . Then, either O Ę U or µpUq ą ε.

If O Ę U , then there is some n P ω such that pan, bnq Ď O but pan, bnq Ę U . Hence,
rsæpn` 1qs XO is open in O, contains U , and is disjoint from rO, εs.

If µpUq ą ε, then there is some n P ω such that µp
Ť

tpak, bkq : k ă n and spkq “ 1uq.
Hence, rsæns XO is open in O contains U and is disjoint from rO, εs.

In both cases there is an open set containing U and disjoint from rO, εs. Therefore,
rO, εs is closed in R8.

Finally, we need to show that every Borel set in O is CA8
-measurable. One can see

from the definition that CA8
do form a σ-algebra. Therefore it is enough to show that

every open set in O is measurable. Let t P 2ăω and rO, εs a region and let s P 2ω be a
code for O. Then, we are going to make a case distinction:

Case 1. t Ď s. Let ε1 P R be such that for every n ă lhptq with tpnq “ 0, µpOq ă ε1 ă

µpO Y pan, bnqq. Then, pO, ε1q ď pO, εq and rO, ε1s Ď rts X R8.

Case 2. There exists n ă lhptq such that tpnq “ 1 ‰ spnq. Let ε1 P R be such that
µpOq ă ε1 ă µpOYpan, bnqq. Then pO, ε1q ď pO, εq and rO, ε1sX prtsXR8q is empty.

Case 3. There is some n ă lhptq such that tpnq “ 0 ‰ spnq. Then rO, εs X prts X R8q is
empty.

Definition 4.2.4. Amoeba forcing for category, also known as universally meagre forcing
and denoted by UM, consists of the set of all pσ,Eq such that σ “ pσp0q, ..., σpn ´ 1qq is
a finite sequence of elements of 2ăω and E is an open dense subset of 2ăω. This set is
partially ordered as follows:

pσ1, E 1
q ď pσ,Eq iff σ Ď σ1 and @n P dompσ1

zσqpσ1
pnqq P E.

Amoeba forcing for category is an Amoeba for C. It lives on the Polish space U via
the the collection U of sets rσ,Es for pσ,Eq P UM already considered in § 2.5.

Proposition 4.2.5. The pair pU, Uq is a proper weak category base which is Borel com-
patible with U.

Proof. In Proposition 2.5.3, we proved that U forms a topology base on U; thus it is also
a weak category base. It is easy to verify that Baire property in this topology is the same
as U -measurability. We now move on to prove that it is a proper weak category base and
Borel compatible with the subspace topology.

We already have that every region is closed in the subspace topology. Therefore it
remains to be checked only that sets that are Borel in the subspace topology are U -
measurable. Notice that every open set in the subspace topology can easily be written
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as a countable union of regions, they are open in the universally meagre topology, too.
Therefore Borel sets in the subspace topology are Borel in the universally meagre topology,
too, and hence measurable.

Only the properness now remains to be checked. Since, UM is a c.c.c. forcing notion,
pU,Ďq is proper.as a forcing notion. Every singleton is clearly U -singular. So, we need
to only check that every region is not U -small. So, let there be rσ,Es which is U -small.
Then, there is a sequence pNnqnPω of U -singular sets such that rσ,Es Ď

Ť

nPωNn. Now,
one can define a decreasing sequence rσn, Ens such that Nn X rσn`1, En`1s “ ∅. Let
x “

Ť

nPω σn. Then, x P rσn, Ens for every n P ω. Thus x P rσ,Es, but then x P Nn for
some n P ω. But that is a contradiction.

Definition 4.2.6. Localisation forcing, denoted by LOC, consists of the set of all pairs
pσ, F q such that σ “ pσp0q, ..., σpn´ 1qq is a finite sequence of elements of rωsăω and F is
a finite set of elements of ωω such that for every k ă n, |σpkq| “ k ` 1 and |F | ď n ` 1.
The set is partially ordered as follows:

pσ1, F 1
q ď pσ, F q iff σ Ď σ1 and F Ď F 1 and @x P F@n P dompσ1

zσqpxpiq P σ1
piqq.

Again, in § 2.5, we had considered the collection L of sets rσ, F s for pσ, F q P LOC.

Proposition 4.2.7. The pair pLoc, Lq forms a proper weak category base such that it is
Borel compatible with Loc.

Proof. In Proposition 2.5.4, we showed that pLoc, Lq is a topological space; thus, it is
also a weak category base. It is also easy to verify that a subset has the Baire property
in localisation topology if and only if it is L-measurable and that it is meagre in the
localisation topology if and only if it is L-small.

We now move on to the Borel compatibility. Every region is clearly closed in the
subspace topology. Also every Borel set in the subspace topology is also Borel in the
localisation topology. Therefore every Borel set in the subset topology is L-measurable.

We now show that it is proper. Since LOC is c.c.c., pL,Ďq is a proper forcing notion.
Clearly, every singleton set is singular. So, the only thing left to be checked is that every
region is not L-small: Let us assume that rσ,Es is small. Then, there exists Nn for every
n P ω such that rσ,Es Ď

Ť

nPωNn. So, there is a decreasing sequence pσn, Enq, such that
pσ0, E0q “ pσ,Eq and Nn X rσn`1, En`1s “ ∅. Let, x “

Ť

nPω σn. Then for every n P ω,
x P rσn, Ens. Thus x P rσ,Es and therefore there exists n P ω, such that x P Nn. But this
is impossible since Nn X rσn`1, En`1s “ ∅. Therefore every region is not L-small.

The corresponding regularity properties are usually defined in terms of the mentioned
weak category bases (cf. [22]); i.e., Amoeba regularity is CA-measurability, Amoeba infin-
ity regularity is CA8

-measurability, universally meagre regularity is U -measurability, and
localisation regularity is L-measurability, in symbols ΓpAq, ΓpA8q, ΓpUMq, and ΓpLOCq.
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4.3 Amoeba and inaccessibles

We shall prove the following implications:

Σ1
2pAq ùñ Σ1

2pA8q ùñ Σ1
2pDq,

where the last one implies that ℵ1 is inaccessible by reals (Fact 2.7.3), thus proving the
conjecture.

Theorem 4.3.1. For any projective pointclass Γ, ΓpA8q ùñ ΓpDq.

Proof. We apply Wansner’s Implication Lemma 2.3.7 to the weak category bases pO, CA8
q

and pωω, CDq. Note that the latter is a proper category base satisfying the countable
chain condition that is Borel compatible with ωω and the meagre ideal in the dominating
topology is Borel generated. Furthermore, for any dense D Ď A8, we can define CD :“
trO, εs ; pO, εq P Du and obtain that pO, CDq is a proper category base with is Borel
compatible with O and equivalent to pO, CA8

q.
By Lemma 2.3.7, it is therefore enough to find a dense subset D Ď A8, a Borel function

h : O Ñ ωω and a projection h̄ : D Ñ D such that

(i) for every pO, εq P D, hrO, εs Ď rh̄pO, εqs and

(ii) h̄rDs is dense in D.

Let tInk Ď R : n, k P ωu be a recursive family of pairwise disjoint open intervals with
rational endpoints such that for every n, k P ω µpInk q “ 2´2n. Then

hpUqpnq “

#

0 if µpUq “ 8,

mintk P ω : @ℓ ě kpInℓ qu otherwise.

The first job is to show that h is Borel. That is for a hechler condition pm, fq such
that h´1prm, f sq is Borel in R8. Then U P h´1prm, f sq iff µpUq “ 8 and x0 : n P ωy P
rm, f s or µpUq ă 8 and for n ă m fpnq “ mintk P ω : @ℓ ě kpInℓ qu and for all n ě m,
fpnq ď mintk P ω : @ℓ ě kpInℓ qu. Therefore h´1prm, f sq is Borel. Next up we define the
domain of h̄ by

D “ tpO, εq P A8 : Dn P ωp
ÿ

měn

2´2m
ă ε´ µpOq ă 2´2pn´1q

qu.

The task now is to show that D is dense in A8. Let pO, εq P A8zD. Without loss of
generality, ε ď 1. Let n P ω be minimal such that ε´ µpOq ě 2´2pn´1q. Hence

ε´ µpOq ě 2´2pn´1q
ą 2´2pn´1q

{3 “
ÿ

měn

2´2m.

Then pO, ε1q ď pO, εq and pO, ε1q P D. Therefore D is dense.
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The domain of h̄ is supposed to be a subset of D. For every pO, εq, there is npO,εq P ω
such that

ÿ

měnpO,εq

2´2m
ă ε´ µpOq ă 2´2pnpO,εq´1q

We define the domain of h̄ to be

D1
“ tpO, εq P D : @U P rO, εsphpOqænpO,εq “ hpUqqænpO,εqu

Our attempt is to show that D1 is dense. Then, if pO, εq P D. Without loss of generality,
npO,εq ą 0. Let g P ωω such that n P ω, gpnq “ maxtk P ω : µpInk zOq ă 21´2nu. We define

O1
“ O Y

ď

tIngpnq : n ě npO,εqu

Let ε1, ε2 ą 0 such that ε2 ă ε1 ă ε, there is some n P ω such that
ÿ

měn

ă ε2
´ µpO1

q ă ε1
´ µpO1

q ă 21´2n

for every n ă npO,εq and every k ě hpO1qpnq, µpO1 Y Iknq ě ε1. Then, pO1, ε2q ď pO, ε1q ď

pO, εq and pO1, ε2q, pO1, εq P D. We show that pO1, ε2q P D1. Let U P rO1, ε1s and let
n ă npO1,ε2q. If n ă npO,εq, then for every k ě hpO1qpnq, µpU Y Iknq ě ε1 ą ε2. Thus
hpO1qpnq “ hpUqpnq. If n ě npO,εq, then hpO1qpnq “ gpnq. Since n ă npO1,ε2q, ε

2 ´ µpO1q ă

21´2n. Hence for every k ě gpnq µpO1 Y Ink q ą ε2 and so hpO1qpnq “ gpnq “ hpUqpnq. So,
pO1, ε2q P D1. So, D1 is dense.

We now define h̄ : D1 Ñ D as h̄pO, εq “ pnpO,εq,hpOqq. Firstly let us show that h̄ is a
projection. Let, pO, εq and pO1, ε1q be such that pO, εq ď pO1, ε1q. Then for every n P ω,
hpOqpnq ď hpO1qpnq. Since ε1 ´ µpO1q ď ε ´ µpOq, npO,εq ď npO1,ε1q. Since, pO, εq P D1,
hpOqænpO,εq “ hpO1qænpO,εq. Therefore h̄pO1, ε1q ď h̄pO, εq and so h̄ is order-preserving.

Let pO, εq P D1 and pn, fq P D such that pn, fq ď h̄pO, εq. We define O1 “ OY
Ť

tIn
1

k :
n1 ě npO,εq and fpn1q “ k ` 1u. Then pO1, εq ď pO, εq and hpO1q “ f . We can find ε1 ď ε
such that pO1, ε1q ď pO, εq and for every n1 ă n and every k ě hpO1qpnq µpO1 Y In

1

k q ą ε1.
Since D1 is dense in A8, there is some pO2, ε2q ď pO1, ε1q such that pO2, ε2q P D1. Then for
every n1 P ω, fpnq “ hpO1qpn1q ď hpO2qpn1q. Moreover n ă npO2,ε2q and fæn “ hpO2qæn.
Hence, h̄pO2, ε2q ď pm, fq and so h̄ is a projection.

Now, let pO, εq P D1 and let x P hrO, εs. Then there is a U P rO, εs such that hpUq “ x.
Since O Ď U , hpOqpnq ď hpUqpnq for all n P ω. Since, pO, εq P D1, hpOqænpO,εq “

hpUqænpU,εq. Hence, x P rh̄pO, εqs.
Let pm, fq P D. Without loss of generality, m ą 0. We define O “

Ť

tInk : fpnq “ k`1u
and ε “ µpOq ` 2´2pm´1q. Then, pO, εq P D1 and h̄pO, εq “ pm, fq

Now, we show that ΓpAq ùñ ΓpA8q. We fix a recursive family tAn
k : n, k P ωu of

open independent subsets of 2ω with µpAn
kq “ 2p´n`1q. Moreover let Iℓ,n be the set of finite

unions of intervals with rational endpoints with measure ď 4ℓ´n and let tU ℓ,n
k : k, ℓ, n P ωu

be a recursive family of open sets such that for ℓ, n P ω, tU ℓ,n
k : k P ωu enumerates Iℓ,n

and each element of Iℓ,n occurs infinitely often in this enumeration. For every ℓ P ω, we
define functions hℓ : RY A Ñ O and h̄ℓ : A Ñ A8 by

43



hℓpSq “
ď

tU ℓ,n
k : µpAn

k X rSsq “ 0u and

h̄ℓpT q “ phℓpT q, suptµphℓpSqq : S ď T uq

Lemma 4.3.2 (Truss 1988). We define KmpSq “ tpn, kq P mˆ ω : µpAn
k X rSsq “ 0u for

every pruned tree S on 2 and m P ω.

(a) For every ℓ P ω, h̄ℓ is a projection.

(b) For every ℓ P ω, if T P A and µphℓpT qq ă ε, then there is some S ď T such that
h̄ℓpSq ď phℓpT q, εq.

(c) For every S P RY A and every n P ω, the set tk : µpAn
k X rSsq “ 0u has size ď 2n`1.

(d) For every T P A and every n ă m P ω, there is some k P ω such that for every j ě k,
KmpT

1q “ KmpT q Y tpn, jqu, where S ď T is such that rSs “ rT szAn
j .

Proof. Cf. [32, Proof of Theorem 4.3 & Lemmas 4.4, 4.5, and 4.8]. Also consider the
remarks on [35, p. 65].

Lemma 4.3.3. Let T P A, ℓ P ω and let h̄ℓpT q “ pO, εq. Then there is some T 1 ď T such
that for every S P xT 1y, µphℓpSqq ď ε.

Proof. Let m P ω such that

µphℓpT qq `
ÿ

něm

2n`1
{4ℓ´n

ď ε

Now we leave it to the reader to verify that for every T 1 P A and every n ă m, that

limkÑ8µpA
n
k X rT

1
sq “ 1{2n`1µprT 1

sq ą 1{2n`11{2 ě 1{2m`1

Now one can use the last point of the previous lemma repeatedly to obtain T 1 ď T
such that KmpT

1q “ KmpT q and µprT sq´1{2 ă 1{2m`1. Then there are only finitely many
pairs pn,mq P mˆω such that 0 ă µpAn

kXrT
1sq ď µprT 1sq´1{2. One can again use the last

point of the previous lemma repeatedly to obtain T 2 ď T such that KmpT
2q “ KmpT q and

for every k P ω and every n ă m, if µpAn
k X rT

1sq ą 0, then µprT 2s XAn
kq ą µprT 2sq ´ 1{2.

Then for every S P xT 2y, KmpSq “ KmpT
2q “ KmpT q. Hence by the third point of the

previous lemma we have

µphℓpSqq ď µphℓpT qq `
ÿ

něm

|tk : µpAn
k X Sq “ 0u|{4l´n

ď µphℓpT qq `
ÿ

něm

2n`1
{4l´n

ď ε

Therefore, T 2 ď T and for every S P xT 2y, µphℓpSqq ď ε.

Theorem 4.3.4. For any projective pointclass Γ, ΓpAq ùñ ΓpA8q
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Proof. By Wansner’s Implication Lemma 2.3.7, we need to prove the following:

(i) thℓ:ℓPωu is a sequence of Borel functions;

(ii) th̄ℓ : ℓ P ωu is a sequence of projections from A to A8;

(iii) for every ℓ P ω and every T P A, there is a T 1 ď T such that hℓpxT
1yq Ď rh̄ℓpT qs; and

(iv)
Ť

ℓPω h̄ℓrAs is dense in A8

In order to prove that hℓ is Borel, define formulas ψ and ψ1 by

ψpS, iq : ðñ Dk, npµpAn
k X rSsq “ 0^ pai, biq Ď U ℓ,n

k q,

ψ1
pS, xq : ðñ @ipψpP, iq ùñ xpiq “ 1q.

Note that ψ1 is arithmetical. Let c be a code for an element of O. Then

pS, cq P hℓæR Ø ψ1
pS, cq ^ @x P ωω

pψpS, yq Ñ @i P ωpcpiq “ 1 Ñ xpiq “ 1qq

Ø ψ1
pS, cq ^ @i

´

cpiq “ 1 ñ

Dx P ωω
`

@nψpS, zpnqq ^ pai, biq Ď
ď

nPω

azpnq,bzpnq

˘

¯

.

Hence, hℓæR is a ∆1
1 set and therefore hℓ is Borel.

Claim (ii) follows from Lemma 4.3.2. We prove (iii):if ℓ P ω and T P A, then there
exists T 1 ď T such that for every S P xT 1y, µphℓpSqq ď ε. Then, hℓrxT

1ys Ď rh̄ℓpT qs.
Finally, to show (iv), let pO, εq P A8. Then there is some ℓ P ω and some x P ωω such

that O “
Ť

ną1 U
ℓ,n
xpnq

. Let T be the tree such that rT s “ 2ωz
Ť

ną1A
n
xpnq

. Then T P A and

hℓpT q “ O. Then there is some T 1 ď T such that h̄ℓpT
1q ď phℓpT

1q, εq “ pO, εq. Thus
h̄ℓpT

1q ď pO, εq.

Corollary 4.3.5. The following are equivalent:

(i) Σ1
2pAq,

(ii) for every r P ωω, tx ; x is not Amoeba generic over Lrrsu is CA-small, and

(iii) ℵ1 is inaccessible by reals.

Proof. The equivalence of (i) and (ii) is Theorem 2.6.3 (using Lemma 2.4.3); the direction
(iii)ñ(i) is Proposition 2.7.2. Finally, if (i) holds, we get Σ1

2pA8q by Theorem 4.3.4
whence we obtain Σ1

2pDq by Theorem 4.3.1 and thus that ℵ1 is inaccessible by reals by
Fact 2.7.3.
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4.4 Amoeba for category and inaccessibles

Following the proof strategy of § 4.3, we shall now prove the analogous result for Amoeba
for category forcing UM.

Theorem 4.4.1. For every projective pointclass Γ, ΓpUMq ùñ ΓpDq

Proof. For every n P ω, let tn denote the sequence with n consecutive 0’s followed by a 1.
We define h : U Ñ ωω and h̄ : UM Ñ D by

hpxqpnq :“ mint|s| : s P ranpsq and tn Ď su and

h̄pσ,Eq :“ pnpσ,Eq,fpσ,Eq
q

where npσ,Eq is maximal such that for every x, x1 P rσ,Es, hpxqæn “ hpx1qæn and fpσ,Eqpnq “
minthpxqpnq : x P rσ,Esu. By Wansner’s Implication Lemma 2.3.7, we prove the following
in order to prove the theorem.

(i) h̄ is a projection;

(ii) for every pσ,Eq, hrσ,Es Ď rh̄pσ,Eqs;

(iii) hrUMs is dense in D; and

(iv) h is Borel.

Evidently, h̄ is order-preserving. Let pσ,Eq P UM and let pn, fq ď h̄pσ,Eq. Then for
every npσ,Eq ď m ă n, there is an sm P E such that tm Ď sm, and lhpsq “ fpmq. We define
σ1 “ σ⌢xsm : npσ,Eq ď m ă ny and E 1 “ ts P E : Dm P ωptm Ď sq and lhpsq ě fpnqu. E 1 is
still dense in 2ăω. So, pσ1, E 1q ď pσ,Eq. By definition, npσ1,E1q ě n, fpσ1,E1qæn “ fæn and
for every m ě n, fpσ1,E1qpmq ě fpmq. Hence, ¯hpσ1, E 1q ď pn, fq.

We prove (ii), by letting pσ,Eq P UM and x P rσ,Es. Then hpxqænpσ,Eq “ fpσ,Eqænpσ,Eq

and for every n P ω, hpxqpnq ě fpσ,Eq. Hence, x P rh̄pσ,Eqs.
We now prove (iii): let pn, fq P D and for every m ă n, sm P 2ăω such that tm Ď sm

and lhpsmq “ fpmq. We define σ “ xsm : m ă ny and E “ ts P 2ăω : Dm P ωptm Ď

s and lhpsq ě fpmqqu. Then npσ,Eq “ n and for every m P ω, fpσ,Eqpmq “ fpmq. Hence
h̄pσ1, E 1q “ pn, fq.

Finally, for (iv), let s P ωăω. Then h´1prssq “
Ş

trσs : s Ď fpσ,Eqænσ,E
u. So, h´1prssq is

closed in U. Hence, h is Borel.

Theorem 4.4.2. The following are equivalent:

(i) Σ1
2pUMq,

(ii) for every r P R, the set tP P U ; P is not an I˚
UM-quasigeneric over Lrrsu is U-small,

and

(iii) ℵ1 is inaccessible by reals.

Proof. The equivalence of (i) and (ii) is Theorem 2.6.3; the direction (iii)ñ(i) is Proposi-
tion 2.7.2. Finally, if (i) holds, we get Σ1

2pDq by Theorem 4.4.1 and from that we obtain
that ℵ1 is inaccessible by reals by Fact 2.7.3.
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4.5 Localisation and inaccessibles

In this section, we shall prove that Σ1
2pLOCq implies that ℵ1 is inaccessible by reals.

However, this proof differs from the proofs in §§ 4.3 & 4.4: instead of using Wansner’s
Implication Lemma 2.3.7, we shall use the technique of Brendle- Labȩdzki lemmas from
§ 2.8.

In order to prove a Brendle- Labȩdzki lemma, we need a formula Ψ such that in each
model of set theory there is a set of size 2ℵ0 with property Ψ and an assignment of Borel
sets coded in the model to that set.

For every real x P ωω, we define Xx to be the set tf P LOC : D8n P ωpxpnq R fpnqqu.
It is easy to see that Xx is Borel in LOC and since Dx “ tpσ,Eq : x P Eu is dense, Xx is
always nowhere dense.

We let Ψ be the property “A is a pairwise eventually different family” and if a P A,
we let cAa be a Borel code for Xa. The following lemma is a Brendle- Labȩdzki lemma for
LOC.

Lemma 4.5.1 (Brendle- Labȩdzki Lemma for LOC). Let E be a pairwise eventually dif-
ferent family and let A Ď Loc be meagre in the localisation topology. Then there are only
countably many g P E such that Xg Ď A.

Proof. There are maximal antichains An such that

AX
č

nPω

ď

trσ,Es : pσ,Eq P Anu “ ∅

Since LOC satisfies the c.c.c., every An is of the form tpσn
m, E

n
mq : m P ωu. For every finite

subset M of ω2, we set EM “ tEn
m : pn,mq PMu. M is said to cover g P ωω if for all but

finitely many k P ω, there is a x P EM such that xpkq “ gpkq. Since E is an eventually
different family, each M can cover at most finitely many g P E . Hence, at most countably
many g P E are covered by some or the other M .

Let g be such that it is not covered by any M . Then we seek to construct a sequence
xτn : n P ωy such that

(i) τn P dompLOCq,

(ii) τn Ĺ τn`1,

(iii) there is some k P dompτn`1zτnq such that gpkq R τn`1pkq,

(iv) for every k ă n, there is an mk P ω such that σk
mk
Ď τn and for every x P Ek

mk
and

every ℓ P dompτnzσ
k
mk
q, xpℓq P τkpℓq, and

(v) (τn, Etpk,mkq:kănuq P LOC.

If xτn : n P ωy satisfies the above properties, then
Ť

nPω τn P Xg X
Ş

nPω

Ť

trσ,Es :
pσ,Eq P Anu. Therefore Xg Ę A. Therefore we just inductively define such a sequence.
Let τ0 “ ∅. Assume that τn has already been defined. Let M “ tpk,mkq : k ď nu.
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Since M does not cover g, there are infinitely many k P ω such that for every x P EM ,
xpkq ‰ gpkq. Let lhpτnq be the minimal such. Then there is some τ 1

n P dompLOCq such
that pτ 1

n, EMq ď pτn, EMq and gpℓq R τ 1
npℓq. Since An is a maximal antichain, there is

some m P ω such that pτ 1
n, EMq ď pτn, EMq and gpℓq R τ 1

npℓq. Since An is a maximal
antichain, there is some m P ω such that pτ 1

n, EMq and pσn
m, E

n
mq. Let pσ,Eq ď pτ 1

n, EMq

and pσn
m, E

n
mq be a witness. We set mn “ m and τn`1 “ σ.

We can now apply Lemma 4.5.1 to obtain the desired result.

Theorem 4.5.2. The following are equivalent:

(i) Σ1
2pLOCq,

1. for every r P R, the set tℓ P Loc ; ℓ is not I˚
LOC-quasigeneric over Lrrsu is L-small,

and

2. ℵ1 is inaccessible by reals.

Proof. The equivalence of (i) and (ii) is Theorem 2.6.3; the direction (iii)ñ(i) is Propo-
sition 2.7.2. Finally, (i)ñ(iii) in the presence of a Brendle- Labȩdzki lemma by Theorem
2.8.3; but Lemma 4.5.1 provides exactly that.
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Chapter 5

Matet and Willowtree forcing

5.1 Implication diagrams

We remind the reader of Brendle’s Uniform Forcings Diagram from p. 10:

S Ě M Ě L
Ě Ě

W Ě T

Ě

Ě Ě

V Ě R

The inclusions in this diagram immediately give rise to implications between the corre-
sponding regularity properties

∆1
2pSq ks ∆1

2pMq ks ∆1
2pLq

∆1
2pWq

KS

∆1
2pTqks

KS

∆1
2pVq

KS

∆1
2pRq

KS

`h

ks

which we shall call the Uniform Regularities Diagram. We believe that the Uniform
Regularities Diagram is complete in the sense of § 2.11. The status of the subdiagram
with Matet and Willowtree forcing removed was known, i.e., that the diagram

∆1
2pSq ks ∆1

2pMq ks ∆1
2pLq

∆1
2pVq

KS

∆1
2pRq

KS

ks
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is complete in the above sense (cf. Figure 2.1). We should like to emphasise that one
component of this completeness is the fact that ∆1

2pLq does not imply ∆1
2pVq which is the

main result of Chapter 3 (Corollary 3.4.2).

Observation 5.1.1. The Uniform Regularities Diagram is complete if the following non-
implications hold:

(a) ∆1
2pTq œ ∆1

2pVq,

(b) ∆1
2pTq œ ∆1

2pLq, and

(c) ∆1
2pLq œ ∆1

2pWq.

Proof. We go through all non-implications that need to be checked.
By the completeness of the subdiagram with Matet and Willowtree forcing removed, we

only need to show the non-implications with the two additional forcings for the forcings
S, M, L, and V. (The forcing R does not have any non-implications in the Uniform
Regularities Diagram.) Sacks, Miller and Laver regularity cannot imply either Matet or
Willowtree regularity by (c) and transitivity. Since Silver forcing does not does not add
unbounded reals (cf. [6, Proposition 4.2]), we have ∆1

2pVq œ ∆1
2pMq; thus Silver regularity

cannot imply Matet regularity by transitivity.
Again, since ∆1

2pVq œ ∆1
2pMq, by transitivity, Willowtree regularity cannot imply

Miller regularity (and therefore not Matet, Laver, or Mathias regularity). Finally, the
Matet non-implications all follow directly from (a) and (b).

In this chapter, we shall prove two of the assumptions of Observation 5.1.1: statement
(a) in Corollary 5.3.8 and a weaker version of (c), viz. ∆1

2pSq œ ∆1
2pWq (cf. Corollary

5.4.3). The combination of Corollaries 5.3.8 & 5.4.3 implies that the following subdiagram
is complete:

∆1
2pSq

∆1
2pWq

KS

∆1
2pVq

6>

∆1
2pTq

`h

Note that statement (a) follows from the fact that Matet forcing preserves p-points which
was proved by [11, Theorem 4]. Our proof is more direct and combinatorial.

5.2 Fusion techniques for Matet forcing

As in Chapter 3, the fusion technique will be at the heart of our argument. In this section,
we shall introduce the special situation and necessary terminology for fusion arguments
for Willowtree and Matet forcing.
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We shall denote by FUpAq the set of all finite concatenations of elements of A. For
A,B subsets of rωsăω, A Ď B (read “A is a condensation of B”) if and only if every a P A
is an element of FUpBq.

For any finite subset t of ω, A past t :“ ta P A ; minpaq ą maxptqu. By abuse of
notation, we shall write t ă a when minpaq ą maxptq.

Lemma 5.2.1. If ps, Aq is a Matet condition and pAnq is a sequence of subsets of rωsăω

such that An`1 Ď An past a0n, where a0n is the first element of An with respect to ă, and
if B “ ta0n : n P ωu, then ps, Bq ď ps, Aq.

Proof. Follows directly from the definition of the ordering.

Definition 5.2.2. Let P be any forcing adding a generic real. We say that P adds a
generic of minimal degree among reals if for every ground model M , every P-generic c
over M , and every real x PM rcs, we have that c PM rxs.

Pure decision and reals of minimal degree. Our first objective is to show that
Matet forcing has pure decision property and adds reals of minimal degree. The proof of
the first can be found in [11, Lemma 2.6] but we include it here as it is an integral part
of the argument. The proofs of the above two shall also illustrate the fusion technique in
detail.

Theorem 5.2.3. Let φ be a sentence and ps, Aq a Matet condition. Then there is an
extension ps, Bq such that for any t P FUpBq, ps, B past tq decides φ.

Proof. We shall by induction define a sequence An of subsets of rωsăω starting with
A´1 “ A, such that

1. An`1 Ď An past a0n and

2. ps⌢a0n, An past a0nq decides φ.

Given An, let’s call the increasing enumeration of An to be paknqkPω we can simply find
an extension of ps⌢a1n, An past a1nq say ps⌢t, A1

nq such that it decides φ. We let An`1 “

A1
n Y ttu.

We now set A1 “ ta0n : n P ωu. Now, either for infinitely many of t P A1, ps⌢t, A1 past
tq , φ or for infinitely many of them ps⌢t, A1 past tq , ␣φ. We set B “ tt P A1 :
ps⌢t, A1 past tq , φu or B “ tt P A1 : ps⌢t, A1 past tq , ␣φu depending on which is
infinite. Therefore, ps, Bq is the required extension.

Theorem 5.2.4 (Eisworth; [11, Lemma 2.7]). Let 9x be a name for a non-ground model
real and ps, Aq be a Matet condition forcing that, then there is an extension ps, Cq such
that for every t P FUpCq, there is a ground model real called the guiding real xt, such that
if ptkqkPω is an increasing enumeration of C past t then for all k P ω we have:

ps⌢t, C past tkq , 9xæk “ xtæk
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Proof. First of all we notice that, it is possible to inductively define a sequence An,
starting with A´1 “ A, such that An`1 Ď An past a0n, and ps, Anq decides 9x up to n.
Now, considering ps, Bq, where B “ ta0n : n P ωu, we have that there is a guiding real
corresponding to s, say xs.

Now, we shall use the above argument repetitively in an inductive manner to arrive
at the required condition. We need to define a sequence Bn, starting with B´1 “ B such
that:

1. Bn`1 Ď Bn past b0n.

2. for all t P FUptb0k : k ď nuq, we have ps⌢t, Bn`1 past tq satisfying the condition
that there is a guiding real corresponding to t, say xt.

Given Bn, we simply enumerate the elements of FUptb0k : k ď nuq as t0, ..., tm. Set
C0 “ Bn past b0n. Given Ci, set Ci`1 Ď Ci past ti`1, such that for ps⌢ti`1, Ci`1q, there is
a guiding real xti`1

. We set Bn`1 “ Cm. Setting C “ tb0n : n P ωu, we have ps, Cq to be
the required condition.

Theorem 5.2.5. Matet forcing adds a generic of minimal degree among reals.

Proof. Let 9x be a name for a non ground model real and ps, Aq a Matet condition. Now
for every t P FUpAq, we shall denote the guiding real corresponding to s⌢t and ps, Aq as
xs⌢t. We choose not to mention ps, Aq since for any extension ps, Bq of ps, Aq, the guiding
real corresponding to ps, Bq and s⌢t and that of ps, Aq and s⌢t are the same.

We are going to build a sequence An, starting with A´1 “ A and for every t P FUpta0j :
j ď nuq, 9xns⌢t denotes the maximal initial segment decided by ps⌢t, pAn`1 Y ta

0
j : j ď

n`1uq past tq and ℓps⌢tq, denotes the largest set according to ă in An`1Yta
0
j : j ď n`1u

which is a subset of s⌢t.
Now, that we have set up the terminology, we can proceed with the proof. We require

that for every n P ω, An`1 Ď An past a0n and for every t P FUpta0j : j ď nuq,

ps⌢t, pAn`1 Y ta
0
j : j ď n` 1uq past tq , 9xns⌢t ‰ xs⌢tæminpℓps⌢tqqæ| 9x

n
s⌢t|

and

ps⌢tæminpℓps⌢tqq, pAn`1Yta
0
j : j ď n`1uq past tq , 9xns⌢tæminpℓps⌢tqq “ xs⌢tæminpℓps⌢tqqæ| 9x

n
s⌢t|.

The set An`1 is actually constructed inductively. Let’s say we enumerate FUta0j : j ď nu
as ptiqiPm, we set B0 “ An past a0n. We form a sequence pBiqiPm, such that Bi`1 Ď Bi,
b0i Ď b0i`1, and for all i P m,

ps⌢t⌢i b
0
i , Bi past b0i q , 9x

Bipastb
0
i

s⌢t⌢i b0i
‰ xs⌢tiæ| 9x

Bipastb
0
i

s⌢t⌢i b0i
|

and
ps⌢ti, Bi past b0i q , 9x

Bipastb
0
i

s⌢ti
“ xs⌢tiæ| 9x

Bipastb
0
i

s⌢t⌢i b0i
|.
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here, 9x
Bipastb

0
i

s⌢t⌢i b0i
denotes the initial segment decided by ps⌢ti, Bi past b0i q.

This is possible because all the guiding reals are ground model and ps, Aq forces that
9x is not ground model. Finally, An`1 “ Bm.

Now, we just let B “ ta0n : n P ωu. Then, we have that the function f : rps, Bqs Ñ 2ω

defined as
fpxq “

ď

kPω

9xs⌢⌢kPωb
nk

where, x “ s⌢ ⌢kPω b
nk , to be a continous injective ground model one, such that ps, Bq ,

fpxGq “ 9x.

Note that the function f in the proof of Theorem 5.2.5 is a continuous function that
lives in the ground model.

Matet forcing and graphs. We shall show how Matet forcing avoids quasigenerics of
closed locally countable graphs. If G is a closed locally countable graph on 2ω, we shall
show that for any real say r added by the Matet forcing, it is contained in a ground model
Borel set B, such that B is G-independent, i.e., any two elements of B do not form a G
edge. As said earlier, this will also be a fusion argument. It is easy to observe that

Tps,Bqp 9xq “ t 9xpt,Cq : pt, Cq ď ps, Bqu

is a perfect tree.

Theorem 5.2.6. Matet forcing does not add quasigenerics of closed locally countable
graphs.

Proof. Now, we look forward to create once again a sequence An as before, starting with
A´1 “ A such that An`1 Ď An past a0n and for every t P FUpta0j : j ď nuq we have

ps⌢t, pAn`1 Y ta
0
j : j ď n` 1uq past tq , pr 9xns⌢ts ˆ rxs⌢tæminpℓps⌢tqqæ| 9x

n
s⌢t|sq XG “ ∅.

Like in the proofs of Theorems 5.2.5 & 5.2.3, given An, we enumerate FUpta0j : j ď nuq
as ptiqiPm and set B0 “ An past a0n and we define a sequence pBiqiPm such that, Bi`1 Ď Bi,
b0i Ď b0i`1, and

ps⌢t⌢i b
0
i , Bi past b0i q , pr 9x

Bipastb
0
i

s⌢t⌢i b0i
s ˆ rxs⌢tiæ| 9x

Bipastb
0
i

s⌢t⌢i b0i
|sq XG “ ∅

This is possible, due to the fact that Tps,Bq is a perfect tree and choosing b0i`1, long
enough, we shall have pxs⌢t⌢i b0i`1

, xs⌢tiq R G, and Bi`1 is then obtained by deleting suffi-

ciently many elements of Bi past b0i`1 in an increasing order, since for sufficiently long
initial segments σ and τ of xs⌢t⌢i b0i`1

and xs⌢ti respectively, we have prσsˆrτ sqXG “ ∅, due

to closedness of G. Bm “ An`1 and we define C to be ta0n : n P ωu. Then, ps, Cq is the re-
quired condition for which rTps,Cqp 9xqs is G independent that is for any two elements x and
y of it, px, yq R G. It is also a ground model closed set. Moreover ps, Cq , 9x P rTps,Cqp 9xqs.
This completes the proof.

53



5.3 Silver regularity in the Matet model

As in Chapter 3, the argument of Theorem 5.2.6 can be generalised to the iteration case.
In essence, we are now going to adapt the general definitions of § 2.9 to the case of Matet
forcing.

Definition 5.3.1. Let α be an ordinal such that α ă ω2. Then, if pspξq, ApξqqξPα P Tα,
and F Ď supppspξq, ApξqqξPα, finite and k : F Ñ ω. We say that ptpξq, BpξqqξPα ďF,k

pspξq, ApξqqξPα iff for all γ P F ptpξq, BpξqqξPαæγ , tpγq “ spγq and pbipγq “ aipγqq for all
i ď kpγq.

Definition 5.3.2. A fusion sequence consists of sequences Fn, kn, snpξq, and Anpξq, for
n P ω and ξ P α such that

1. Fn Ď supppspξq, ApξqqξPα is a finite set,

2. the sequence pFn ; n P ωq is Ď-increasing,

3. kn : Fn Ñ ω,

4.
Ť

nPω Fn “ supppspξq, ApξqqξPα,

5. for every γ P supppspξq, ApξqqξPα and every n P ω, there exists m P ω such that
γ P Fm and ηmpγq ě n,

6. kn`1pγq ě knpγq, for all γ P Fn, and

7. psn`1pξq, An`1pξqqξPα ďFn,kn psnpξq, AnpξqqξPα.

Then ptpξq, BpξqqξPα is the fusion of psnpξq, AnpξqqξPα if and only if ptpξq, BpξqqξPαæγ ,
tpγq “ spγq and Bpγq “

Ş

nPω Anpγq.

We aim to build a fusion sequence psnpξq, AnpξqqξPα, Fn, kn such that if ptpξq, BpξqqξPα

is the fusion of psnpξq, AnpξqqξPα, then Tptpξq,BpξqqξPα
p 9xq is G-independent.

For a Matet condition ps, Aq we shall denote by Tps,Aq the tree on ωω defined by
stpTps,Aqq “ s and for t P Tps,Aq, succptq “ tℓ P A : t ă ℓu. For the sake of notational
convenience we shall be identifying the nodes of a Matet tree with ωăω with the help
of the natural order preserving-bijection. We define recursively ps, Aq ˚0 ∅ “ stps, Aq
and let ps, Aq ˚0 pσ

⌢nq be the nth immediate successor of ps, Aq ˚0 σ according to the
lexicographic ordering on Tps,Aq. We shall be using the notations ps, Aq ˚0 σ and Tps,Aq ˚0 σ
interchangeably. For a condition pspξq, ApξqqξPα P Tα, we shall denote the initial segment
of 9x decided by pspξq, ApξqqξPα as 9xpspξq,ApξqqξPα

.

Definition 5.3.3. We say that a condition pspξq, ApξqqξPα P Tα is an pFn, knq-faithful
condition if and only if for all σ, σ1 P

ś

γPFn
kpγqkpγq, such that σ ‰ σ1, pr 9xpspξq,ApξqqξPα˚0σsˆ

r 9xpspξq,ApξqqξPα˚0σ1sq XG “ ∅.
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Lemma 5.3.4. Suppose that pspξq, ApξqqξPα is pFn, knq-faithful and k1
n is such that k1

npγq “
knpγq`1 and for all β P Fnztγu, k

1
npβq “ knpβq. Then one can find pspξq, BpξqqξPα ďFn,kn

pspξq, ApξqqξPα, such that pspξq, BpξqqξPα is pFn, k
1
nq-faithful.

Proof. Let tσ0, σ1, ..., σku be an enumeration of
ś

γPFn
kpγqkpγq and write γmax :“ maxpFnq.

We inductively define a ďFn,kn decreasing sequence pspξq, BmpξqqξPα, such that for all
natural numbers n, n1 with n ‰ n1:

pr 9xpspξq,BmpξqqξPα˚0pσmpγmaxq⌢nqqs ˆ r 9xpspξq,Bmpξqq˚0pσmpγmaxq⌢n1qsq XG “ ∅.

Suppose that pspξq, Bm´1pξqqξPα has already been defined. Then, due to the fact that
G is closed and locally countable, just as in the single step proof (Theorem 5.2.6),
pspξq, Bm´1pξqqξPα˚0pσmqæγmax forces that for every n P ω, there is a tail tn ď pspξq, Bm´1pξqq˚0
pσmpγmaxq

⌢nqrγmax, αq, such that for any two natural numbers n, n1 with n ‰ n1, we have

pr 9xtns ˆ r 9xtn1 sq XG “ ∅.

Therefore, one can find pspξq, BmpξqqξPα ďpFn,knq pspξq, Bm´1pξqqξPα, such that the condi-
tion

pspξq, BmpξqqξPα ˚0 ppσmqqæγmax

forces that for all n P ω there exists some pn P ω such that pspξq, BmpξqqξPα ˚0 pσmpγq
⌢nq “

tpn and therefore we have that for all n, n1 P ω such that n ‰ n1:

pr 9xpspξq,BmpξqqξPα˚0pσmpγmaxq⌢nqs ˆ r 9xpspξq,BmpξqqξPα˚0pσmpγmaxq⌢n1qsq XG “ ∅.

We let pspξq, BpξqqξPα to be pspξq, BkpξqqξPα. This completes the proof.

Theorem 5.3.5. The Matet model and the ω2-Matet model have no quasigenerics of
closed locally countable graphs.

Proof. Using Lemma 5.3.4, for every α P ω1 for the Matet model and α P ω2 for
the ω2-Matet model, and pspξq, ApξqqξPα P Tα, one can construct a fusion sequence as
psnpξq, AnpξqqξPα as above and define the fusion of it as pspξq, BpξqqξPα such that

@γ P αppspξq, BpξqqξPαæγ , @n P ωpBpγq Ď Anpγqqq.

We now define a function f : pωωqsupppspξq,BpξqqξPα Ñ 2ω with

fpxpγqγPsupppspξq,BpξqqξPα
q :“

ď

nPω

9xpspξq,BpξqqξPα˚pxpγqæknpγqqγPFn
.

Notice that this is a ground model Borel injective map and it maps the generic to 9x.

Corollary 5.3.6. If G is a locally countable graph then χBpGq “ ℵ1 in the ω2-Matet
model.

Corollary 5.3.7. The Matet model does not satisfy ∆1
2pVq.

Proof. There is a graph G1 that is closed locally countable with the property that G1-
quasigenerics are precisely the Silver quasigenerics (cf. [36, Claim 2.3.39]). Now the claim
follows from Theorem 2.6.1.

Corollary 5.3.8. The statement ∆1
2pTq does not imply the statement ∆1

2pVq.

Proof. Directly from Corollary 5.3.7 with Proposition 2.4.4.
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5.4 Willowtree regularity in the Sacks Model

In this section, we prove a weaker version of condition (c) in Observation 5.1.1, viz. that
the Sacks model does not satisfy ∆1

2pWq.

Theorem 5.4.1. Countable support iteration of length ω1 of Sacks forcing does not add
Willowtree quasigenerics.

Fix α P ω1, a name 9x for a real not added at a proper initial stage of the iteration; we
ensure that for every condition p P Sα, one can find an extension r of p, such that Trp 9xq has
all its splitting levels at different heights. The fact that rTrp 9xqs is Borel will ensure that
it is Willow regular, but at the same time for any willow tree T , rT s Ę rTrp 9xqs. We shall
here be assuming that there is a ground model homeomorphism h : p2ωqsuptpqq Ñ Tpp 9xq as
outlined in [16, Lemma 78].

Given a finite set F Ď suptppq and η : F Ñ ω, we say that a condition q ď p is
pF, ηq-faithful if for any two elements σ and τ of

ś

γPF 2ηpγq, | 9xq˚0σ| ‰ | 9xq˚0τ |. Here 9xp
denotes the initial segment decided by p. For any two conditions q and p in Sα, we say
that q ďpF,ηq p, if for all σ P

ś

γPF 2ηpγq, q ˚0 σ “ p ˚0 σ.
Our goal is to build a sequence ppn, Fn, ηnq which satisfies the following properties:

(i) pn`1 ďpFn,ηnq pn,

(ii) pn is pFn, ηnq-faithful,

(iii) Fn Ď Fn`1,

(iv) for every n P ω and γ P suppppnq there exists m P ω such that γ P Fm and ηmpγq ě n,

(v)
Ť

nPω Fn “ suptppq, and

(vi) ηnpmq ď ηn`1pmq for all m P Fn.

To this end, the following lemma plays a crucial role.

Lemma 5.4.2. Suppose that α ă ω1 is an ordinal, p an Sα condition, F Ď α is finite,
η : F Ñ ω, η1 : F Ñ ω are such that ηæF ztβu “ η1æF ztβu and η1pβq “ ηpβq`1. Moreover
let p be pF, ηq-faithful. Then, there exists q ďpF,ηq p such that for all σ, τ P

ś

γPF 2η1pγq,
| 9xq˚0σ| ‰ | 9xq˚0τ |.

Proof. Suppose we have an enumeration tσ1, ..., σmu of
ś

γPF 2ηpγq. Then we shall induc-
tively build a ďpF,ηq decreasing sequence qi.

Suppose that we have already found qi´1. Then, we take qσi,0 and qσi,1 to be such that
and qi´1 ˚0 σiæδ forces the following:

(i) qσi,k ď qpδq ˚0 qpσ
⌢
i kq

⌢qæpδ, αq,

(ii) | 9xqσi,k | ą | 9xqσi |, and

(iii) | 9xqσi,0 | ă | 9xqσi,1 |.
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One can now choose a condition qj ďpF,ηq qj´1 such that

qj ˚0 σjæδ , qjpδq ˚0 σjpδq
⌢k⌢q⌢j qpδ, αq “ qσi,k

Then our required q is simply qm.

Using Lemma 5.4.2, one can construct a fusion sequence ppn, Fn, ηnq, such that it’s
fusion say r, is such that Trp 9xq is a tree with splitting levels all at different heights. This
completes the proof of Theorem 5.4.1.

Corollary 5.4.3. The statement ∆1
2pSq does not imply ∆1

2pWq.

Proof. By Proposition 2.4.4, the Sacks model satisfies ∆1
2pSq. Since Willowtree forcing has

the Ikegami property and the Sacks model does not contain any Willowtree quasigenerics,
it does not satisfy ∆1

2pWq.
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[2] Banerjee, R., Löwe, B., & Wansner, L. Amoebas and their regularities. In prepara-
tion.
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ties and ∆1

3 sets of reals. Archive for Mathematical Logic 53 (2014), 695-729.

58



[13] Gaspar, M. Borel chromatic numbers in models of set theory. Ph.D. Thesis. Univer-
sität Hamburg, 2022.

[14] Gaspar, M. & Geschke, S. Borel chromatic numbers of closed graphs and forcing
with uniform trees. Preprint, 2022 (arXiv:2208.06914).

[15] Geschke, S. Weak Borel chromatic numbers. Mathematical Logic Quarterly 57
(2011), 5–13.

[16] Geschke, S. & Quickert, S. On Sacks forcing and the Sacks property. In: Löwe, B.,
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English summary

This thesis studies implications between regularity properties at the second level of the
projective hierarchy. The results of Chapters 3 and 5 show non-implications between
certain statements of the form “all ∆1

2 sets are regular”; the results of Chapter 4 show
that certain statements of the form “all Σ1

2 sets are regular” are equivalent to “ℵ1 is
inaccessible by reals”, the strongest regularity property. The following theorems are the
main contributions of this thesis:

1. In the Laver model, Σ1
2pLq holds and ∆1

2pE0q and ∆1
2pVq fail (Corollary 3.4.2).

2. In the Laver model, ∆1
2pVq fails, but for every real r, there is a splitting real over

Lrrs (Corollary 3.4.4).

3. The statement Σ1
2pAq is equivalent to the statement “ℵ1 is inaccessible by reals”

(Corollary 4.3.5).

4. The statement Σ1
2pUMq is equivalent to the statement “ℵ1 is inaccessible by reals”

(Theorem 4.4.2).

5. The statement Σ1
2pLOCq is equivalent to the statement “ℵ1 is inaccessible by reals”

(Theorem 4.5.2).

6. In the Matet model, ∆1
2pVq fails (Corollary 5.3.8).

7. In the Sacks model, ∆1
2pWq fails (Corollary 5.4.3).

Result 1. solves an open question mentioned three times in the literature; result 2. solves
a question asked by Brendle, Halbeisen, and Löwe.
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Deutsche Zusammenfassung

Diese Dissertation untersucht Implikationen zwischen Regularitätseigenschaften auf der
zweiten Ebene der projektiven Hierarchie. Die Ergebnisse in Kapitel 3 und 5 liefern Nicht-
Implikationen zwischen bestimmten Aussagen der Form “alle ∆1

2-Mengen sind regulär”;
die Ergebnisse in Kapitel 4 zeigen, daß bestimmte Aussagen der Form “alle Σ1

2-Mengen
sind regulär” äquivalent zu “ℵ1 ist durch reelle Zahlen unerreichbar” ist, der stärksten
aller Regularitätseigenschaften. Die folgenden Theoreme sind die Hauptresultate der Dis-
sertation:

1. Im Laver-Modell gilt Σ1
2pLq und ∆1

2pE0q sowie ∆1
2pVq gelten nicht (Korollar 3.4.2).

2. Im Laver-Modell gilt ∆1
2pVq nicht, aber für jede reelle Zahl r gibt es eine spaltende

Zahl über Lrrs (Korollar 3.4.4).

3. Die Aussage Σ1
2pAq ist äquivalent zu “ℵ1 ist durch reelle Zahlen unerreichbar” (Ko-

rollar 4.3.5).

4. Die Aussage Σ1
2pUMq ist äquivalent zu “ℵ1 ist durch reelle Zahlen unerreichbar”

(Theorem 4.4.2).

5. Die Aussage Σ1
2pLOCq ist äquivalent zu “ℵ1 ist durch reelle Zahlen unerreichbar”

(Theorem 4.5.2).

6. Im Matet-Modell gilt ∆1
2pVq nicht. (Korollar 5.3.8).

7. Im Sacks-Modell gilt ∆1
2pWq nicht. (Korollar 5.4.3).

Resultat 1. löst eine offene Frage, die dreifach in der Literatur erwähnt war; Resultat 2.
löst eine Frage, die von Brendle, Halbeisen und Löwe gestellt wurde.
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