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1. Introduction 

1.1. Lung Cancer 

Lung cancer is the leading cause of cancer-related deaths worldwide with an estimated 1.8 

million deaths, accounting for 18% of total cancer deaths. In men, lung cancer represents the 

most frequently diagnosed cancer (14.3%) with also the highest mortality rates (21.5%). In 

women, it is the third most diagnosed cancer (8.4%) and the second in mortality (13.7%) (Figure 

1) [1].  

 

Despite improvement in patient outcomes in most cancer types in the last decades, the overall 

survival rate among lung cancer patients is still dismal (19%). This is mostly because lung 

cancer is often diagnosed at a later stage of the disease when it is disseminated to other organs 

Women 

Men 

Incidence Mortality 

Figure 1: Distribution of cases and deaths for the top 10 most common cancers in 2020 for men and women. 

(Source: GLOBOCAN 2020 [1] with modification). 
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and is harder to treat [4]. Hence, the 5-year survival rate drops from 65% when detected at Stage 

I to only 5% for Stage IV [5]. 

While smoking remains the main risk factor for lung cancer, with approximately 80% mortality 

rate caused by tobacco consumption [6], up to 25% of lung cancer patients are passive smokers 

[7]. Other risk factors include exposure to radon and other carcinogenic chemicals or ionizing 

radiation and air pollution [8]. The resulting alterations can be inherited or obtained through 

DNA copying errors known as “somatic genomic alterations” which are necessary for 

oncogenesis [9]. The impact of these risk factors differs based on geographic location, gender, 

age, lifestyle, and race characteristics as well as their combined effects [10]. 

1.1.1. Non-small cell lung cancer (NSCLC) 

Lung cancer is divided into two main types: non-small cell lung cancer (NSCLC) and small-

cell lung cancer (SCLC). NSCLC represents approximately 80-85% of all cases and can be 

further classified based on its histology. The most common subtypes of NSCLC include 

adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large cell carcinoma (LCLC). 

LUAD originates from alveolar/bronchial cells and represents 40% of NSCLC cases. LUSC 

arises from the bronchial epithelium of the larger, more central airways and is associated with 

a higher aggressiveness and a stronger correlation with smoking, constituting 25% of NSCLC 

cases. LCLC is diagnosed by excluding the other subtypes mentioned above and accounts for 

approximately 15% of NSCLC cases (Figure 2) [4, 11, 12]. 

 

                 Figure 2:  Histological classification of lung cancer. (Source: Schabath and Cote [4]) 

1.1.2. TNM staging and treatment strategies 

The TNM system established by the Union for International Cancer Control (UICC) is used to 

stage different types of cancer including lung cancer, which helps guide treatment decisions 
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and predict prognosis [13]. This system is continuously reevaluated and the 8th edition of TNM 

staging was published in January 2017 [14]. 

TNM stands for “Tumor-Nodes-Metastasis”, where (T) describes the size and extent of the 

primary tumor ranging from T1-T4, which can be further subdivided based on its dimension 

and location. The (N) describes the involvement of regional lymph nodes, classifying the degree 

of spread from N1-N3 based on location and metastatic nodes. Whereas (M) staging is defined 

by the absence (M0) or presence of distant metastases (M1) which is subdivided into M1a-c 

based on the extent and number of sites or organs involved. Moreover, the term Tis used for 

tumor in situ and T1mi refers to minimally invasive, while Tx and Nx are used to indicate when 

the primary tumor or lymph nodes cannot be accessed [13]. After determining the TNM 

descriptors, their combination can serve to define the overall stage grouping ranging from stage 

0 (carcinoma in situ) to stage IV (metastatic disease) which is the most severe stage [15] (Table 

1). 

Table 1: Stages of lung cancer 

Stage Description 

Stage 0 The earliest stage where cancer is confined to the innermost layer of the lung or bronchus. 

Stage I 
Divided into two sub-stages: 1A and 1B, based on the tumor size.  

Cancer is localized within the lung and has not extended to lymph nodes or distant sites. 

Stage II 
Divided into two sub-stages, IIA and IIB, each with further sub-types based on tumor’s size, location and spread. 

Cancer remains within the lung but may involve nearby lymph nodes, or multiple tumors may appear in the same lung lobe.  

Stage III 
Divided into stages IIIA, IIIB, or IIIC, based on tumor size, location, and spread. 

Cancer has spread to lymph nodes, or multiple tumors are detected in different lobes of the same lung. 

Stage IV The most advanced stage, where cancer has metastasized to the opposite lung, distant organs, or tissues. 

1.1.3. Treatment approaches 

Due to the heterogeneous nature of NSCLC, treatment options vary depending on the 

histological type, stage of the tumor, patient’s performance status (PS), and presence of certain 

molecular aberrations. These options usually include surgery, chemotherapy, radiotherapy, 

immunotherapy, and molecular targeted therapy, either alone or in a combined modality (Figure 

3).  

Patients diagnosed with early stages of NSCLC (stage I, II, and IIIA) typically undergo surgical 

resection as first-line treatment, depending on the patient’s physical condition and whether the 

tumor is resectable. Additionally, adjuvant chemotherapy is recommended for stages II-IIIA to 

eliminate any remaining cancer cells and enhance the survival rate. Other adjuvant therapies 

might include radiation and targeted therapy (see Chapter 1.1.4.) [16, 17]. For non-surgical 
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patients with stage III disease, concurrent chemoradiotherapy followed by immunotherapy is a 

common treatment approach [18]. 

For advanced and metastatic disease, evaluating genetic alterations or protein expression in 

specific genes such as EGFR, ALK, BRAF, KRAS, ROS1, and PD-L1 has significantly 

contributed to the effectiveness of additional treatment options, including targeted and immune 

checkpoints inhibitor (ICI) therapies [19, 20]. In some advanced-stage cases, ICI can also be 

considered as a first-line treatment [21]. For selected patients with stage IV oligometastatic 

disease localized in the brain or adrenals, surgery may also be a consideration [22]. 

The treatment landscape of NSCLC is rapidly evolving, with ongoing research and clinical 

trials aiming to uncover new insights into the disease and develop more effective therapies.  

1.1.4. The genetic landscape of lung cancer  

Lung cancer is a molecularly heterogeneous disease characterized by extensive genomic 

instability occurring at different levels, ranging from mutations in single or few nucleotides to 

gains or losses of entire chromosomes [23]. In the management of lung cancer, treatment 

decisions have been determined based on histology classification and genetic aberrations [24]. 

Figure 3: Lung cancer treatment options 

SBRT: Stereotactic body radiation therapy, EBRT: External Beam Radiotherapy (Created with 

BioRender.com) (adapted from [3]) 

 

https://biorender.com/
https://biorender.com/
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Importantly, lung cancer is known to have one of the highest mutational burdens, which is 

largely associated with smoking history [25]. This elevated mutational burden observed in 

tumors presents a challenge in clinical practice and limits the available treatment options [26]. 

However, recent clinical trials have suggested tumor mutational burden (TMB) could serve as 

a potential biomarker for immunotherapy. These trials have shown that patients with a high 

TMB (>10 mutations/Mb) treated with ICIs exhibited higher objective response rates and 

longer progression-free survival (PFS) compared to those with a TMB of <10 mutations/Mb 

[27]. Furthermore, somatic mutations in specific genes have shown to drive mutation 

progression. Consequently, an increase in somatic mutations would likely be accompanied by 

an increase in driver mutations. Once these genes mutate, they stay in all stages as cancer 

develops. As a result, the gene expression levels change in the bloodstream, affecting protein 

and metabolite levels [28].  

NSCLC is characterized by high frequencies of certain genetic alterations or “hotspots”, which 

may play important roles in tumor initiation, development, or metastasis [29]. Notably, there 

are distinct genetic differences among NSCLC subsets, but there are also shared genetic 

alterations between them. For example, the tumor suppressor gene TP53 is the most frequently 

mutated gene in lung cancer. Inactivation mutations of TP53 are observed in roughly 50% of 

LUAD and 80% of LUSC [30, 31]. In addition, NFE2L2/KEAP1 pathway which plays a critical 

role in responding to oxidative and toxic stresses, is frequently altered in both subtypes [32]. 

Mutations in NFE2L2 or KEAP1 occur in approximately 10% of LUAD and 17% of LUSC 

cases [33].  

In LUAD, several targeted therapy options have emerged for patient treatment. The most 

prominent targetable mutations with oncogenic features in LUAD include EGFR and KRAS 

gene mutations, ALK and ROS1 genes rearrangements (occurring in approximately in 1% of 

patients, and BRAF point mutations [25, 34-36]. These oncogenic drivers can control critical 

functions in cancer cells, such as tumor growth, cell proliferation and survival. Targeting these 

specific mutations has the potential to suppress tumor growth [37]. For example, several EGFR-

specific tyrosine kinase inhibitors (TKIs) have been developed in recent decades targeting 

different EGFR mutations [25, 34]. Moreover, the most recently approved targeted drug in the 

EU was for tumors with KRAS G12C mutation [38]. 

Unfortunately, despite the initially promising outcomes, the development of drug resistance is 

almost inevitable following these treatments, and disease progression is frequently observed 

within a year [39-41]. Multiple mechanisms of acquired resistance have been identified. For 
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instance, in case of EGFR, the most common cause of resistance is the emergence of an 

additional mutation in EGFR known as T790M in more than 50% of patients [42-47].  

On the other hand, the genomic landscape of LUSC exhibits distinct differences [30]. In contrast 

to LUAD, LUSC rarely harbors EGFR and KRAS mutations, as well as ALK rearrangement. 

Instead, ERBB genes, FGFR1, the tyrosine kinase DDR2, SOX2 and JAK/STAT pathway are 

more frequently altered by mutations or amplifications [48, 49]. LUSC displays a higher genetic 

complexity, which has presented challenges for targeted therapy, and early-phase studies have 

shown negative outcomes [50]. Therefore, to date no approved target therapies exist for LUSC, 

leading most patients to be treated with immunotherapy. However, it's important to note that 

only a small proportion of patients (~30%) with NSCLC benefit from immunotherapy [51].  

In summary, despite the clinical advancements and improved survival rates in NSCLC, less 

than 25% of patients benefit from targeted therapy, and drug resistance commonly emerges 

during treatment [52]. Therefore, the discovery of new therapeutic targets is of utmost 

importance in order to enhance treatment outcomes and overcome drug resistance. 

1.2. Metastases in NSCLC 

Metastasis is a hallmark of malignant tumors, causing around 70% of cancer-related deaths [53, 

54]. Since lung cancer is mostly asymptomatic or lacks specific symptoms at earlier stages, it 

is mainly discovered after its spreading [55]. Research has indicated that >40% of NSCLC 

patients have metastasis at the time of diagnosis [56].  

Metastatic cancer involves a heterogeneous collection of cells with different genetic and 

phenotypic characteristics, which drive progression, metastasis, and drug resistance [57]. 

Primary tumor dissemination is promoted by significant processes such as epithelial-

mesenchymal transition (EMT), angiogenesis, immune evasion, tumor microenvironment 

(TME) remodeling, chromosomal instability, and somatic mutations [53, 58].  

NSCLC exhibits preferences when metastasizing to distant organs. Previous studies provided 

approximate frequencies of metastasis, although these rates display variation among studies and 

are not absolute, as the reported frequencies may be influenced by factors such as sample size, 

patient selection, and study design. However, bone metastasis for instance is prevalent in 

advanced NSCLC patients at initial diagnosis, followed by brain or lung, liver, and adrenal 

glands [59-61]. Furthermore, the number of affected organs also influences the metastatic 

pattern. Brain and bone metastases were more commonly observed in metastasis to a single 
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organ, while in the case of three or more organs, liver metastasis was more frequently involved 

[62].   

1.2.1. Seed and soil theory 

The concept of organ-specific metastasis was first proposed by Stephan Paget with the so-called 

“seed and soil” theory [63]. He suggested that successful metastasis requires two factors: tumor 

cells with a metastatic ability (seed) and a suitable host organ (soil). Hence, primary tumors 

selectively modify a permissive microenvironment of a target organ to promote metastasis by 

establishing a pre-metastatic niche (PMN) [64, 65]. For instance, the bone marrow has been 

implicated as a favorable metastatic niche, harboring often disseminated tumor cells that can 

later disseminate further to other organs [66].  

An alternative hypothesis was introduced by James Ewing in 1928, suggesting that the site of 

metastasis is determined by the circulatory pattern between the primary tumor and the target 

secondary organ [67]. Although the so-called tumor draining blood can explain much of 

preferential metastasis sites, still different types of tumors have different metastatic patterns 

that cannot be explained by blood flow alone. Duda et al., presented a newer theory, proposing 

that metastatic cells can bring their own “soil” (stromal component including activated 

fibroblasts) from the primary site to the secondary site [68]. Consequently, ongoing research 

attempts to understand the molecular and genetic features of primary and secondary lesions, as 

well as the tumor microenvironment and pathways that influence cancer dissemination. 

Obviously, both tumor-intrinsic factors, as well as host factors, play important roles in this 

process. Moreover, specific mutations have been found to be associated with distinct patterns 

of metastatic spread in NSCLC [69]. For example, EGFR mutations were linked to a higher 

incidence of developing brain metastasis [70, 71]. 

1.2.2. Brain metastasis in NSCLC 

Brain metastases (BrM) are the most frequently accruing intracranial tumors in adults which 

are associated with an extremely unfavorable outcome [72]. They are often accompanied by 

disabling neurological complications that significantly impact the patient’s quality of life [73]. 

Symptoms, such as headaches, altered mental status, focal motor or sensory deficits, and ataxia, 

can manifest, with variations depending on factors like size, location, and the degree of edema 

linked with BrM [74]. The median survival rate of untreated patients with BrM ranges from 1-

6 months [75, 76]. This rate can be significantly extended depending on various factors, 

including the disease stage and therapy effectiveness. Nevertheless, despite the advanced 
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treatment strategies of BrM, the prognosis remains poor, especially in the advanced stage of 

NSCLC [77, 78].  

A key event in the development of BrM is the migration of tumor cells passing through the 

Blood-brain barrier (BBB), which ultimately leads to its partial damage [79]. The BBB is a 

unique feature that acts as a selective barrier separating systemic circulation and the brain. It 

regulates the flow of ions and nutrients, provides protection from infections, harmful 

substances, and cancer cells [2], and plays a crucial role in the immune response [80]. As a 

result of metastasis, the BBB might change its function from inhibiting cancer to becoming a 

barrier against therapy, thereby limiting the chemotherapeutic drug delivery [81].  

The vast majority of BrM cases are observed in lung cancer, with approximately 40% of 

occurrences reported in NSCLC patients throughout the disease course [76, 82, 83]. The 

presence of BrM significantly worsens the prognosis of patients [84]. Among NSCLC subtypes, 

adenocarcinoma (LUAD) exhibits a notably higher propensity for BrM compared to other 

histological subtypes [85]. 

The estimated incidence rates of BrM between 1973 and 2001 ranged from 8.3 to 11 per 

100,000 persons [82]. However, in 2021, Habbous et al. reported a higher rate of 24.2 per 

100,000 persons per year [86]. The observed increase in BrM incidence may be attributed to 

the longer lifespan of cancer patients resulting from improved treatments of extracranial 

metastases and the growing number of diagnosed lung cancer cases [84, 87]. On the other hand, 

the rising frequency of diagnosed BrM may not necessarily be caused by an increase in the 

number of cases, but rather due to improved imaging techniques that facilitate their detection 

[88].  

1.2.2.1. Oligometastasis and polymetastasis in NSCLC 

NSCLC patients with BrM exhibit a significant heterogeneity [89]. Treatment is chosen based 

on the number of BrM and other extracranial metastases, as the extent of the disease affects 

survival rates. In general, the term “oligometastasis” refers to patients with a limited number of 

metastases involving a single or few organs [90, 91]. However, defining an oligometastatic state 

is still controversial, concerning the maximum number of detected metastatic lesions, their 

maximum size, and their distribution among other organs [92]. On the other hand, 

“polymetastasis” refers to patients with widespread metastatic dissemination to multiple sites 

[93]. Approximately 30 – 45% of NSCLC patients develop BrM as the only affected organ [94-

96]. Within oligometastasis, two different cohorts have been identified: patients who present 

with oligometastatic disease at initial diagnosis of the primary tumor (“synchronous” 
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oligometastasis), and those who induced oligometastasis after treatment of primary tumor 

(“metachronous” oligometastasis) [97]. In NSCLC, 5-10% of patients present with synchronous 

oligo brain metastasis at initial diagnosis, and 20-40% of patients develop BrM oligometastasis 

during the course of the disease (metachronous) [78, 98]. 

Patients with oligometastasis generally have a longer lifespan than those with polymetastasis 

[90]. Previous data have shown that patients with oligometastasis who received radical 

treatment have better survival rates [89, 99], while patients with polymetastasis are often limited 

to palliative systemic therapy [100]. Furthermore, the differences between oligo-synchronous 

and oligo-metachronous have not been clearly defined overall in terms of biology and clinical 

outcome. While certain studies have reported a longer survival for selective metachronous BrM 

patients compared to synchronous cases [75, 101], these results have not been consistently 

observed [102-105].  

Two hypotheses have been proposed to explain the clinical significance of oligometastatic 

disease. The first indicates that oligometastasis and polymetastasis are two distinct phenotypes, 

with different molecular characteristics and metastatic potentials [106]. The second hypothesis 

suggests that oligometastasis represent an intermediate state between the primary tumor and the 

poly-metastatic phenotype on a spectrum of disease progression (Figure 4). This difference 

between these classifications can be pivotal in determining predictive and prognostic markers 

of metastatic disease and establishing new therapy targets [90, 91, 106, 107]. 

Molecular and genomic investigations comparing different oligometastasis and polymetastasis 

diseases remain even more limited. Some studies have indicated molecular differences, such as 

miRNA expression, among these metastatic types [99, 106-108]. However, additional data is 

required to enhance our understanding of these metastatic patterns.  
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Figure 4: The two hypotheses of Oligometastatic Disease: Hypothesis 1 Oligometastasis and Polymetastasis 

may originate from clones with different molecular and phenotypic features. Hypothesis 2 oligometastasis may 

be an early phase of polymetastatic disease (Created with BioRender.com) 

1.3. Analysis of host- and tumor-related factors in BrM 

The biology behind BrM is highly complex and is influenced by various host and tumor-related 

factors that affect tumor dormancy, development, and progression. Although previous studies 

have reported significant heterogeneity in the immune microenvironment of BrM, it is still 

unclear if specific genetic profiles are associated with distinct immune states, and their 

correlation with metastatic patterns requires further investigation [108, 109]. Therefore, 

characterizing both the genomic and immune profiles can provide more comprehensive insights 

into this disease and its diverse patterns of development in lung cancer. 

1.3.1. Genomic profile of lung cancer with BrM  

The development of BrM from lung cancer is a complex multi-step process. Genomic 

characterization of BrM has been instrumental in identifying potential driver mutations and 

therapeutic targets [110, 111]. In lung cancer, certain driver mutations, such as EGFR and ALK, 

have been shown to be homogeneous among primary tumors and BrM. Patients with these 

mutations tend to have a better survival rate compared to those without these alterations [112]. 

Additionally, it has been observed that some genes exhibit a higher frequency of mutations in 

BrM compared to primary tumors in LUAD such as TP53, ATR, and APC [113]. However, 

https://biorender.com/
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significant heterogenicity and genomic complexity have been reported between BrM and 

matched primary tumors in terms of somatic mutations and copy number events [114-116]. This 

heterogeneity may arise due to the independent genetic events occurring in both the lung and 

the brain [117], indicating novel and unique alterations in the metastatic site that may facilitate 

the metastatic process.  

While numerous mechanisms and genes/proteins were suggested to be involved in the process, 

it is still unknown if there are specific additional genetic alterations that contribute to the 

development of BrM. Therefore, there are ongoing efforts to discover new possible biomarkers. 

Some studies by Stella et al. have indicated that proto-oncogene MET activation may play a 

substantial role in BrM from lung cancer [118, 119]. Another sequencing study on BrM-LUAD 

identified potential metastatic drivers in three regions with higher amplification frequencies, 

including MYC, YAP1, and MMP13 [110]. Furthermore. PI3K and WNT/TCF signaling 

pathways have been linked to an increased risk of developing BrM [120, 121].  

Many studies have investigated the mechanisms of BrM-NSCLC by comparing the tumor from 

the BrM site with the primary tumor of the same patient [116, 117, 122]. This approach can be 

useful in identifying important genes and pathways involved in the metastasizing process. 

However, it does not help determine patients with a high risk of developing a distinct metastatic 

pattern. Therefore, to enhance the management of BrM-NSCLC, it is important to find novel 

prognostic biomarkers that can predict an oligo-brain metastatic disease. This would enable the 

identification of high-risk patients, who would benefit from a regular brain imaging schedule 

to detect the metastatic disease earlier. Such a possibility holds tremendous importance in 

delineating the patients deemed suitable for preventive or radical treatments, especially for 

individuals who are not eligible for targeted therapy. 

1.3.2. The immune system 

The immune system is a complex network of cells, tissues, and organs, comprising two distinct 

compartments: the innate and the adaptive immune systems. They work together to defend the 

body against infections, pathogens, toxins, and cancer cells. The innate system is the body’s 

first line of internal defense, carrying out nonspecific immediate immune responses. It consists 

of dendritic cells (DC), macrophages, neutrophils, basophils, eosinophils, and natural killers 

(NK). The adaptive system is the second line of defense, responsible for antigen-specific long-

term responses, it includes B and T lymphocytes as well as NK-T cells, which are a population 

of cells that share properties from both T-cells and NK cells [123, 124]. 
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The initial adaptive immune responses are typically slower than the innate immune responses. 

This is primarily because lymphocytes require time to proliferate and differentiate into effector 

cells capable of fighting the invading antigen during the first encounter. Once the antigen has 

been successfully eliminated, a small population of lymphocytes differentiates into long-lived 

memory cells. These memory cells can respond specifically and more rapidly upon subsequent 

exposure to the same antigen [125, 126].  

1.3.2.1. Role of the immune system in NSCLC cancer 

The main role of the immune system in cancer is to inhibit tumor progression and maintain 

cellular homeostasis in a process called cancer immune surveillance, where the tumors produce 

antigens that in turn evoke an immune response. However, avoiding immune destruction is one 

of the cancer hallmarks [127]. In fact, the immune system has a dual role in cancer, known as 

cancer immunoediting, where it can either restrain or promote tumor progression. This process 

progresses from immune surveillance to immune escape and involves three main phases: 

elimination, equilibrium, and escape [128, 129].  

In the elimination phase, both innate and adaptive immune systems collaborate to identify the 

transformed cells and protect the host from cancer cells before they develop clinically 

detectable tumor lesions, yet some tumors manage to survive this phase and progress into the 

equilibrium phase, where the adaptive immune system is not capable of clearing the tumor cells 

completely, but still limits the tumor invasion and outgrowth [130, 131]. This incomplete 

elimination process is caused by the balance between anti-tumor and pro-tumor cytokines, 

leading to reduced cellular immunogenicity in the tumor, forcing the tumor itself to stay in this 

intermediate phase between elimination and escape [132]. However, if the immune system can 

no longer control tumor outgrowth, resistant cancer cells can escape and continue to grow 

uncontrollably into a visible disease with an immunosuppressive microenvironment [133]. 

1.3.2.2. Interaction of the host immune system and BrM 

The brain is a special organ when it comes to interaction with immune cells. For a long time, 

the brain was considered “immune-privileged” due to the presence of BBB, which could block 

the immune cells coming from the blood circulation system. However, with later investigations 

of the lymphatic system in the brain and the discovery of lymphatic ducts in the meninges, this 

concept was revised [134]. In general, the more accurate description of the central nervous 

system (CNS) including the brain is rather “immune distinct” as approximately 80% of its 

immune cells are microglia [135-137]. These microglia with other immune cells from the 
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circulatory system keep the CNS under continual immune surveillance in a healthy brain, which 

primarily occurs within the meningeal compartment [136, 138]. During brain metastasis, tumor 

cells engage in continuous interaction with resident cells, such as microglia, to exploit their 

function and evade antitumor responses [139]. In such scenarios, microglia can undergo a 

transformation towards a pro-invasive and immunosuppressive phenotype to counterattack the 

anti-tumor immunity and develop resistance to treatments, thereby aiding tumor progression 

across various metastatic stages [140]. Recent experimental investigations have illuminated the 

presence of tumor-infiltrating macrophages, T lymphocytes, and other immune cell populations 

within BrM in addition to the brain residential glial cells [141]. 

During the metastatic cascade, cancer cells interact closely with the immune system in a 

complex and dynamic manner, exerting mutual influence, both in the tumor microenvironment 

(TME) and throughout the systemic circulation. This interaction between tumor and immune 

cells plays an important role in BrM initiation and immune escape. However, it also presents 

new therapeutic approaches for cancer patients [142, 143]. Furthermore, cancer development 

and its response to treatment are also influenced by the peripheral immune system of the host 

through circulating blood and lymphatic vessels. 

The TME is a dynamic network that contains cancer cells and the surrounding environment, 

including cellular and non-cellular components, such as extracellular matrix, signaling 

molecules, blood vessels, fibroblasts, and immune cells [144]. Notably, the TME in the brain 

is unique and different from elsewhere, due to the presence of specialized resident immune cells 

such as microglia and astrocytes [145, 146]. Microglia, which belong to the monocyte-

macrophage system, are highly dynamic innate immune cells. Apart from their roles in antigen 

presentation and cytokine production, microglia perform various other functions [147]. 

Whereas astrocytes, another type of glial cells in the CNS, become activated in response to 

stimuli such as injuries or tumors [148].  

Within brain tumors, most of the immune cells are macrophages and microglia [149], followed 

by astrocytes and in smaller proportions, dendritic cells, neutrophils, and lymphoid cells 

including T-cells, B-cells and NK-cells [2, 145] (Figure 5). These immune cells can promote 

tumor progression by exerting a pro-invasive and immunosuppressive effect [150]. Moreover, 

tumor cells affect their microenvironment by releasing cellular signaling molecules that 

facilitate angiogenesis and induce immune tolerance [151].  
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The systemic immune environment consists of immune cells such as myeloid cell lineages 

(monocytes, neutrophils, basophils, and eosinophils), lymphoid cell lineages (T-cells, B-cells, 

and NK-cells), as well as immune modulators including cytokines and metabolites. It is 

essential for communication between the primary tumor site and distant organs, as well as the 

host immune organs [152, 153]. 

During metastasis formation, tumor cells face the challenge of surviving within the circulation 

system and interacting spatiotemporally with the various immune compartments [143]. By 

extravasation and infiltration, tumor cells can pass through BBB and help infiltrated immune 

cells from the systemic environment to influx to TME, promoting metastasis to the brain [154, 

155] (Figure 6).   

This constant interaction and coordination between cancer cells, TME, and systemic immune 

environment, are involved in shaping the host's response. In BrM, the heterogeneity and 

immunosuppressive nature of TME and systemic tumor immune environment, lower the overall 

efficacy of therapies [153]. Thus, more promising biomarkers for BrM still need to be identified 

[117]. 

Figure 5: cellular components of tumor microenvironment (TME) 

Brain tumors have a unique microenvironment that includes (A) macrophages and microglia, (B) Dendritic cells, 

(c) neutrophils, (d) lymphocytes and (E ) astrocytes  (source: Quail and Joyce [2]) 
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Figure 6: TME and systemic tumor immune environment in brain metastasis.  

Tumor cells from the primary site infiltrate the circulation system and immune cells from the systemic tumor 

immune environment help them to pass through BBB to invade the brain (source: Xu et al., 2022 [153]) 

1.3.2.3. Tumor-infiltrating lymphocytes (TILs) and NK cells 

As mentioned earlier, the TME comprises the innate immune system in BrM, primarily 

microglia and macrophages, and the adaptive immune system represented by tumor-infiltrating 

lymphocytes (TILs) which are the main component of TME involved in the immune response 

and positively correlated with prognosis [145, 156]. TILs mostly consist of T and NK cells, and 

they can either promote or inhibit tumor cell proliferation. In fact, T-cells are considered to be 

the center of immunology. They are functionally subdivided into two main subtypes, which are 

identified by their surface protein expression: CD8+ cytotoxic T-cells which play a crucial role 

in tumor cell-killing through secreting cytokines and cytotoxic enzymes [157], and CD4+ T 

cells which can play both promoting and suppressing roles in tumors. Some CD4+ helper T-

cells can assist with CD8+ T-cell activation and mediate immune responses to eliminate cancer 

cells, while other CD4+ T-cells such as regulatory T-cells (Treg) have an immunosuppressive 

function and hinder CD8+ T-cell function, thus indirectly promoting tumor growth. Depending 
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on their function and secreted cytokines, CD4+ helper T-cells can be classified into Th1, Th2, 

Th17, and T follicular helper cells (Tfh) [158]. 

T-lymphocytes can be further characterized based on their differentiation stage/activation state 

into naïve, effectors, and memory T-cells. Upon antigen stimulation, naïve T-cells which are 

the resting form get activated and differentiate into specific effector T-cells. They migrate to 

the antigen site to attack and kill the infected or transformed cells. After antigen elimination, 

most effector cells undergo apoptosis, and only a small portion turns into memory cells which 

can respond directly when exposed to the same antigen again [159]. Previous studies have 

shown a correlation between the infiltration rate of TILs in TME and patient survival in certain 

cancers, indicating that TIL infiltration may serve as a promising biomarker. In NSCLC, CD8+ 

T-cells are associated with good prognosis [143], while the effect of CD4+ T-cells on prognosis 

showed conflicting results in different studies [160]. This could be explained due to the diverse 

functions of different CD4+ T-cell populations. It can also be influenced by the type of cancer, 

the components of the TME, and the disease stage [161]. 

NK cells belong to the innate immune system since they can function without the need for 

antigen presentation. They play an important role in antitumor immune response, by directly 

killing tumor cells or by enhancing the antitumorigenic activities of other immune cells. NK 

cells have the ability to control tumor growth and the early stages of metastatic dissemination 

[160-162].  

In this thesis, we focused on T-cells and NK cells immunophenotyping using flow cytometry 

to identify and distinguish different cell populations.  

1.4. High throughput tools to analyze host and tumor-related factors 

High throughput tools have transformed the field of cancer research by enabling comprehensive 

analyses of host and tumor-related factors on a large scale. These advanced technologies have 

facilitated the exploration of interactions between the tumor microenvironment and the host 

immune system, shedding light on the complex mechanisms underlying tumor biology, 

tumorigenesis, and tumor progression. In this study, we employed a range of high-throughput 

tools to gain valuable insights into the molecular landscape of our cohort. The tools utilized 

included next-generation sequencing (NGS) for comprehensive profiling of genetic alterations, 

RNA sequencing for transcriptome analysis, and flow cytometry for analyzing certain immune 

cell populations in peripheral blood samples. 
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Additionally, we utilized bioinformatics pipelines and advanced data analysis methods to 

process the vast amounts of data generated by these tools. Together, these high throughput 

approaches helped enhance our understanding of brain metastatic NSCLC. 

1.4.1. Immuno-profiling of peripheral blood 

The process of immunophenotyping involves identifying and quantifying immune cell 

populations using specific antibodies as markers to bind to antigens expressed by these cells. 

Immunophenotyping assay may include the simultaneous use of multiple antibodies to identify 

different cell types by detecting multiple antigens simultaneously [163]. 

In addition, analyzing peripheral blood offers a less invasive and more accessible approach to 

monitor the immune profile of the patient, including immune mediators such as cytokines, and 

immune cells that may infiltrate the TME. 

Flow cytometry is a powerful technique used to identify single cells in a heterogeneous 

population based on multiple parameters such as size, granularity, and protein markers. Flow 

cytometry-based immunophenotyping is commonly used in clinical research to study the 

immune system, including immune cell subsets and protein expression. It is also used in 

diagnostics to monitor various diseases. This method uses a laser as a light source to illuminate 

the cells passing through the laser beam in a fluidic stream, producing scattered and fluorescent 

light signals that are captured by optical detectors. These signals are converted and analyzed by 

computer software to generate numeric data about different cell populations based on their 

fluorescent or light-scattering characteristics. Fluorescently labeled antibodies or dyes are used 

to detect different cell types [163], and it should be noted that multiplexing is easily achieved 

here compared to tissue analysis. 

1.4.2. Next-generation sequencing of DNA and RNA 

Next-generation sequencing (NGS) is a high-throughput sequencing method used for the 

analysis of DNA and RNA. A variety of applications exist, including whole-genome sequencing 

(WGS), whole-exome sequencing (WES), transcriptome sequencing, sequencing of non-coding 

RNA such as miRNA and lncRNA, sequencing of targeted genes, epigenomics sequencing, and 

others [164]. Consequently, NGS can provide specific information on point mutations, small 

indels, copy number alterations (CNAs), structural variations as well as differential gene 

expressions. The advantages of NGS make it the optimal approach for assessing a multitude of 

biomarkers simultaneously in a relatively short time with high sensitivity and specificity, using 

low amounts of samples today at a rather cost-effective price [165]. 
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There are multiple NGS platforms that use different approaches. In this thesis, the Illumina 

sequencing platform was used to produce data from DNA and RNA samples, which is the most 

popular technology in sequencing by synthesis (SBS) method [166]. Prior to sequencing, 

Illumina NGS starts with library preparation by random fragmentation of DNA or cDNA 

samples, followed by ligating adapters to both DNA fragment ends. Subsequently, the library 

is loaded into a flow cell that displays oligonucleotides complementary to adapter sequences, 

and each fragment is amplified into distinct clonal clusters through bridge amplification PCR. 

Sequencing reagents with fluorescently labeled nucleotides (dNTPs) are added in the presence 

of DNA polymerase, and a laser is used to excite the label dyes incorporated into the DNA 

fragments, detecting the location on the flow cell by a camera. The resulting data can then be 

analyzed and assembled to determine the sequence of the original DNA or RNA sample (Figure 

7) [167]. 

 

Figure 7: Overview of Illumina NGS workflow 

It includes four steps: (1) library preparation, (2) bridge amplification, (3) library sequencing and (4) alignment 

and data analysis (source: BioRender.com) 
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1.4.3. NGS Data analysis and their challenges  

NGS techniques have revolutionized cancer research, enabling comprehensive molecular 

profiling and paving the way for enhanced clinical approaches. The decreasing costs and 

improved accessibility of NGS have led to a recent trend towards comprehensive molecular 

profiling, including large-scale analyses such as WGS and WES. These efforts aim to gain a 

better understanding of the genetic basis of cancer biology.  

However, connecting cancer phenotypes or metastatic patterns to molecular alterations 

identified by NGS is a complex process that involves multiple steps, each with its own 

challenges and potential difficulties. One sample-specific challenge is the quality and quantity 

of tumor samples. Conducting such studies requires obtaining a large collection of high-quality 

tumor samples, which can be particularly difficult in biopsy samples and certain cases, such as 

multiple brain metastases or multi-organ metastases, which can lead to loss of sensitivity of 

detection such as signal loss in somatic mutations [168].  

Additionally, comprehensive NGS techniques like whole-genome and whole-transcriptome 

sequencing generate large and complex data that need high-performance computing resources, 

including large data storage as well as longer turnaround times [168-170]. Furthermore, various 

technical and biological challenges exist, such as sequencing error rate, chimeric reads, 

insufficient read length or insufficient or biased coverage, and results interpretation [170, 171]. 

An important example is the determination of driver genes and passenger genes, i.e., cancer-

relevant alterations as well as the phenotypic influence of CNAs in potential driver genes [172]. 

Therefore, there is a great need to develop more efficient and standardized bioinformatical tools 

for filtering, analyzing, and interpreting the resulting variants with less biased databases and 

fewer artifacts. In this project, we aimed to employ the standard bioinformatic workflow, 

employing diverse tools and approaches, to efficiently process and interpret our NGS data.  
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1.5. Aim of the study 

Despite several large-scale investigations on molecular characteristics of BrM in NSCLC and 

numerous studies comparing the primary lung tumors and their metastatic sites in the brain, 

there are very few studies on different BrM patterns. Previous research implicates that oligo-

brain metastatic disease, which often carries a more favorable prognosis represents a different 

form of cancer spread than a rapidly spread disease to many different sites (poly-metastatic) 

[173]. Clinical data have shown that the number of metastatic sites in NSCLC is associated with 

survival [174]. It showed that patients diagnosed with oligometastatic NSCLC who received 

aggressive therapy have demonstrated improved progression-free and overall survival rates 

[175]. Whether there are host-related (immunological) factors or tumor-specific factors 

regulating the extent of the disease spread has not been investigated today in detail yet. 

Therefore, the overall aim of this comprehensive study is to have a better understanding of BrM 

and identify novel markers that can predict an oligo- or poly-metastatic disease. This could 

enable early detection of high-risk patients and help clinicians to define those who would 

benefit most from radical treatment.  

The specific aims are: 

1. To assess the role of mutational and aberration patterns in different cohorts of brain 

metastasis using large-scale NGS approaches. 

2. To investigate gene expression differences at the RNA level between different BrM 

groups. 

3. To identify potential markers that can differentiate tumors in the brain based on their 

specific patterns of metastasis. 

4. To characterize the different immune cell populations in TME including intra-tumoral 

and peri-tumoral lesions and in peripheral blood between NSCLC patients with different 

BrM patterns.  
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2. Materials 

2.1. Laboratory devices 

Table 2: Laboratory devices used in this study 

Device Company Office 

Analytical scale BP610 Sartorius Göttingen, DE  

Analytical scale BP6100 Sartorius Göttingen, DE  

Axioplan2 imaging with AxioCam MRm and light 

sourceHXP120V  
Carl Zeiss  Jena, DE  

Centifuge Multifuge 3 S-R  Heraeus Holding  Hanau, DE 

Centrifuge 5417R Eppendorf Hamburg, DE  

Centrifuge Rotofix 32  Hettich  Villingen- Schwenningen, DE  

CO2-cell culture incubator HERAcell150  Thermo Fisher Scientific  Waltham, MA, US  

Electrophoresis power source 250 V  VWR International  Radnor, PA, US  

Flow cytometry LSR Fortessa  BD Biosciences Franklin Lakes NJ, US  

Gel documentation system GeneGenius  Syngene Cambridge, UK  

Icemaker FM-120 DE Hoshizaki Amsterdam, NL  

Mastercycler gradient Eppendorf Hamburg, DE  

Microwave 800 Severin Sundern, DE  

NanoDrop 1000 spectrophotometer Thermo Fisher Scientific  Waltham, MA, US  

NanoSight LM10instrument NanoSight Technology  Malvern, UK  

Tissue Drying Oven TDO 66 Medite Medical Burgdorf, DE 

Pipette boy  Hirschmann Laboratory equipment Eberstadt, DE  

Pipettes (2,5μl, 10μl, 200μl, 1000μl)  Eppendorf Hamburg, DE  

Qubit 4 Fluorometer Thermo Fisher Scientific  Waltham, MA, US  

Sterile hood Herasafe HS12  Heraeus Kendro  Langenselbold, DE  

TapeStation RNA system Agilent Technologies Santa Clara, CA, US 

Thermomix comfort  Eppendorf Hamburg, DE  

Ventana BenchMark ULTRA Roche Diagnostics Mannheim, DE 

Vi-CELL® XR Cell Viability Analyzer Beckman Coulter Brea, CA, US 

Vortex-Genie 2 Scientific Industries  New York, NY, US  

Water bath GFL-1002/03 GmbH für Labortechnik  Burgwedel, DE  

2.2. Chemicals and reagents 

Table 3: Chemicals and reagents used in this study  

Chemical Company Office 

Agarose LE Genaxxon Bioscience  Ulm, DE  

AmpliTaq Gold polymerase  Applied Biosystems  Darmstadt, DE  

Aqua  B. Braun Melsungen  Melsungen, DE  

Brefeldin A Solution (1000X) Thermo Fisher Scientific Waltham, MA, US 

DMSO (dimethyle sulfoxide) Serva Heidelberg, DE  

DNA-Marker GeneRuler 1 kb DNA Ladder  Thermo Fisher Scientific  Waltham, MA, US  

DNase I from bovine pancreas Roche Diagnostics Mannheim, DE 

dNTPs (desoxyribonucleoside triphosphate set)  Roche Diagnostics  Mannheim, DE  

DPBS (1X),  no calcium, no magnesium Gibco Billings, MT, US 

Eosin Solution Carl Roth Karlsruhe, DE 

Ethanol absolute Merck  Darmstadt, DE  

FcR Blocking Reagent, human Miltenyi Biotec Bergisch Gladbach, Germany 

FCS (fetal calf serum) PAA Laboratories  Pasching, A  



 25 

Fermacidal D2 IC products SA  Gordola, CH  

Ficoll® Paque Plus Sigma-Aldrich St. Louis. MO , US 

Flow-cytometry staining buffer Thermo Fisher Scientific Waltham, MA, US 

IC Fixation Buffer  Thermo Fisher Scientific Waltham, MA, US 

Ionomycin calcium salt Sigma-Aldrich St. Louis. MO , US 

Mayer's hemalum Solution Sigma-Aldrich St. Louis. MO , US 

MgCl2 solution Applied Biosystem Waltham, MA, US 

PCR Buffer (TAE) Sigma-Aldrich St. Louis. MO , US 

Permeabilization Buffer (10x) Thermo Fisher Scientific Waltham, MA, US 

PMA (Phorbol 12-Myristate 13-Acetate) Sigma-Aldrich St. Louis. MO , US 

Primers Eurofins Ebersberg, DE 

Protease Qiagen Hilden, DE 

RPMI 1640 Medium PAN Biotech  Aidenbach, DE  

SeaKem LE Agarose Biozym Hamburg, DE 

X-VIVO 15, serum-free, hematopoietic cell medium Biozym Hamburg, DE 

Xylol Chemsolute Renningen, DE 

Zombie NIR Biolegend San Diago, CA, US 

2.3. Consumables 

Table 4: Consumables used in this study  

Consumable Company Office 

Cryogenic Tubes (2ml) Thermo Fisher Scientific Waltham, MA, US 

Falcon tubes (15ml) Falcon AZ, US 

Falcon tubes (50 ml) Falcon AZ, US 

Flow cytometry tubes  Sarstedt Nümbrecht, DE 

Microscopic slides Langenbrinck GmbH Emmendingen, DE 

Pipette tips  Sarstedt  Nümbrecht, DE 

Plastic Transfer Pipettes Thermo Fisher Scientific Waltham, MA, US 

Safe-lock tubes (0.5ml, 1.5ml, 2ml) Eppendorf Hamburg, DE 

Serological pipettes Sarstedt Nümbrecht, DE  

Sterile Disposable Serological Pipettes Thermo Fisher Scientific Waltham, MA, US 

2.4. Commercially available kits 

Table 5: Commercially available kits used in this study  

Kit Company Office 

All prep® DNA/RNA/miRNA universal kit Qiagen Hilden, DE 

QIAamp® DNA blood mini kit (50) Qiagen Hilden, DE 

RNA TapeStation System (4200) Agilent Technologies Santa Clara, CA, US 

2.5. Antibodies 

Table 6: antibodies used in this study  

Antibody  clone Company Office 

2B4 C1.7 Biolegend San Diago, CA, US 

Antibody diluent green  DAKO, Agilent Technologies Santa Clara, CA, US 

BTLA MIH26 Biolegend San Diago, CA, US 

CCR4 L291H4 Biolegend San Diago, CA, US 

CCR6 G034E3 Biolegend San Diago, CA, US 

https://laborkampagne.de/collections/vendors?q=Chemsolute
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CCR7 G043H7 Biolegend San Diago, CA, US 

CD127 A019D5 Biolegend San Diago, CA, US 

CD161 HP-3G10 Biolegend San Diago, CA, US 

CD25 BC96 Biolegend San Diago, CA, US 

CD27 O323 Biolegend San Diago, CA, US 

CD28 CD28.2 Biolegend San Diago, CA, US 

CD3 UCHT1 Biolegend San Diago, CA, US 

CD3 (M3074) SP7 Zytomed Berlin, DE 

CD39 A1 Biolegend San Diago, CA, US 

CD4 RPA-T4 Biolegend San Diago, CA, US 

CD4 (M731001-2) 4B12 DAKO, Agilent Technologies Santa Clara, CA, US 

CD45RA HI100 Biolegend San Diago, CA, US 

CD45RO UCHL1 Biolegend San Diago, CA, US 

CD56 5.1H11 Biolegend San Diago, CA, US 

CD57 QA17A04 Biolegend San Diago, CA, US 

CD68 (M087629-2) KP1 DAKO, Agilent Technologies Santa Clara, CA, US 

CD71 CY1G4 Biolegend San Diago, CA, US 

CD73 AD2 Biolegend San Diago, CA, US 

CD8 (C1008C01) SP16 DCS Hamburg, DE 

CD8a RPA-T8 Biolegend San Diago, CA, US 

CD95 (Fas) DX2 Biolegend San Diago, CA, US 

CD98 MEM-108 Biolegend San Diago, CA, US 

CRTH2 BM16 Biolegend San Diago, CA, US 

CXCR3 G025H7 Biolegend San Diago, CA, US 

CXCR5 J252D4 Biolegend San Diago, CA, US 

FITC Mouse Anti-Human TCR WT31 BD Biosciences Franklin Lakes NJ, US  

FoxP3 (98377) D2W8E Cell Signaling Technology Danvers, MA, US 

GLUT1 #202915 R&D Systems Minneapolis, MN, US 

HLA-DR L243 Biolegend San Diago, CA, US 

IFNg 4S.B3 Biolegend San Diago, CA, US 

IL-10 JES3-9D7  Biolegend San Diago, CA, US 

IL-17A BL168 Biolegend San Diago, CA, US 

IL-2 MQ1-17H12 Biolegend San Diago, CA, US 

IL-4 MP4-25D2 Biolegend San Diago, CA, US 

Ki67 (275R-15) SP6 Cell Marques Rocklin, CA, US 

KLRG1  2F1/KLRG1 Biolegend San Diago, CA, US 

Mouse Anti-Human CD68 Y1/82A BD Biosciences Franklin Lakes NJ, US  

PD-1 EH12.2H7 Biolegend San Diago, CA, US 

S1PR1 SW4GYPP Thermo Fisher Scientific  Waltham, MA, US  

Tgd 11F2 BD Biosciences Franklin Lakes NJ, US  

TIGIT A15153G Biolegend San Diago, CA, US 

Tim-3 F38-2E2 Biolegend San Diago, CA, US 

TNFa MAb11 Biolegend San Diago, CA, US 

2.6. Software and bioinformatic tools 

Table 7: Software and bioinformatic tools used in this study  

Software Application Source 

ANNOVAR Annotating genetic variants https://github.com/WGLab/doc-ANNOVAR  

Axiovision  Image processing  www.zeiss.de  

BioRender  Online tool for creating scien- tific figures https://www.biorender.com/  

https://github.com/WGLab/doc-ANNOVAR
https://www.biorender.com/
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Burrows-Wheeler 

Aligner (BWA) 

Mapping DNA sequences to reference https://github.com/lh3/bwa  

Control-FREEC Assessing CNAs https://github.com/BoevaLab/FREEC 

DAVID Functional annotation tool https://david.ncifcrf.gov/home.jsp  

DESeq2 RNA sequencing analysis https://bioconductor.org/packages/release/bioc/html/DESeq2.html  

Enricher Gene set enrichment analysis https://maayanlab.cloud/Enrichr/  

FACSDiva Software  Analysis of FACS data  BD Bioscience, Franklin Lakes, NJ, US  

fastp Removing adapters https://github.com/OpenGene/fastp  

FastQC quality control tool https://www.bioinformatics.babraham.ac.uk/projects/fastqc/  

g:Profiler Functional enrichment analysis https://bio.tools/gprofiler  

GraphPad Prism statistical and graphing software https://www.graphpad.com/ 

MutEnricher somatic mutation enrichment analysis https://github.com/asoltis/MutEnricher 

Manta InDels caller https://github.com/Illumina/manta  

NCBI  Database for literature (PubMed)  www.ncbi.nlm.nih.gov  

R program Statistical analysis https://www.r-project.org/  

R Studio  Integrated development environment for R https://rstudio.com/   

Ruby on rails web application framework https://rubyonrails.org/  

samtools Removing low-quality and duplicates https://github.com/samtools/samtools  

snpEff Genetic variant annotation http://pcingola.github.io/SnpEff/ 

STAR Aligner  aligning RNA sequencing data https://github.com/alexdobin/STAR  

Strelka SNVs caller https://github.com/Illumina/strelka  

2.7. Databases 

Table 8: Databases used in this study  

Database Source 

cBioPortal https://www.cbioportal.org/  

Human reference genome, hg38 (GRCh38.100) https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/  

The Cancer Genome Atlas Program (TCGA) https://portal.gdc.cancer.gov/  

UCSC Genome Browser https://genome.ucsc.edu/  
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3. Methods 

3.1. Patient cohorts 

All patients included in this study were operated for lung cancer brain metastases at the 

department of Neurosurgery at University Hospital Hamburg-Eppendorf (UKE) between 2014-

2020. The main clinical characteristics of 74 NSCLC BrM patients are summarized in Table 10 

including tissues and liquid biopsy samples. Of these patients, 61 tissue samples were used for 

NGS analyses, 56 for tissue immune-profiling and 54 blood samples were used for 

immunophenotyping including 34 cases with both tissues and blood available. Figure 8 displays 

an overview of the study design. This study was approved by the local ethical committee of the 

Hamburg chamber for physicians and was performed in accordance with the Helsinki 

Declaration of 1975 under numbers Nr. PV5392 & Nr. PV4954. 

 

Figure 8:  Flowchart of the study design: 74 patients including 61 tissue and 54 blood samples: tissue samples 

were employed to investigate tumor-related factors through for NGS of DNA and RNA. To investigate host 

related factors, immune-profiling was performed on tissue samples via Immunohistochemistry (IHC), while 

immunophenotyping was conducted on blood samples using Flow Cytometry (FACS). 
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3.2. DNA and RNA extraction  

For NGS analysis, 61 fresh-frozen BrM tissue samples were obtained from surgically resected 

BrM of NSCLC patients. Both DNA and RNA were extracted from these samples using the All 

prep® DNA/RNA/miRNA universal kit according to the manufacturer’s instructions. However, 

RNA extraction was successful for only 40 of these samples. Among the total 61 patients, 45 

matching blood samples were available and utilized to isolate germline DNA using the 

QIAamp® DNA blood mini kit, which served as normal controls for mutation analysis. The 

quality of DNA samples was assessed by conducting multiplex GAPDH PCR, and they were 

deemed of sufficient quality if at least one detectable band within the range of 200-400 bp was 

observed. The concentration of DNA samples was quantified using the Qubit 4 Fluorometer. 

Similarly, the quality, quantity, and integrity of the total RNA were evaluated using the 

NanoDrop1000 spectrophotometer and TapeStation RNA ScreenTape assay. Samples were 

considered qualified for sequencing when they obtained a RIN (RNA Integrity Number) score 

greater than 6.0. 

3.3. Next-generation sequencing  

Qualified DNA (≥ 12.5ng/μl) and RNA (≥ 10ng/μl) samples were shipped to BGI (Hong Kong, 

China) and (Copenhagen, Denmark), for library preparation, quality control, and sequencing. 

Subsequently, only samples meeting sufficient quality criteria according to BGI were selected 

for sequencing. Specifically, 61 DNA samples successfully met the quality standards, while 

some RNA samples were degraded, resulting in only 28 viable samples. Whole-genome 

sequencing (WGS) was performed for the qualified DNA samples, and whole transcriptome 

RNA-seq was conducted for the RNA samples. Both sequencing procedures were carried out 

using Illumina platforms, achieving a median coverage of 30X. 

3.4. DNA whole genome sequencing (WGS) 

Whole genome sequencing is a valuable method to detect the complete genome sequence of a 

human sample in a single analysis, providing a comprehensive insight into its genetic variation 

compared to a human reference genome. 

DNA WGS was performed with the DNBSEQ sequencing system by BGI company. Briefly, 

library preparation included DNA random fragmentation with an average size of 200-400 bp. 

These fragments were then end-repaired and 3‘adenylated. Subsequently, adaptors were ligated 

to the ends of these fragments. Following that, the fragments with adapters were amplified by 

PCR, and the double-stranded PCR products were heat-desaturated and circularized by the 
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splint oligo sequence. The final library was prepared in single-strand circular DNA (ssCir DNA) 

format. The qualified libraries were then subjected to sequencing. Every ssCir DNA molecule 

formed a DNA nanoball (DNB) containing more than 300 of the original DNA fragments tightly 

packed together. The DNBs were loaded onto a sequencing flow cell and processed for 150 bp 

paired-end sequencing on the platform. 

Genomic data obtained from WGS process were summarized in FASTQ files, which comprised 

raw genomic information in the form of short sequences referred to as reads. A bioinformatic 

pipeline was established to analyze somatic mutations including single nucleotide variants 

(SNVs), small insertions/deletions (InDels), and copy number alterations (CNAs).  

The initial step of data pre-processing involved quality-control checks by FastQC v0.11.9 and 

adapters trimming from the ends of the reads using fastp v0.20.1[176]. Sequence reads were 

aligned and mapped to the human reference genome (GRCh38) using Burrows-Wheeler 

Aligner (BWA) v0.7.17. The aligned reads were sorted and converted to BAM files using 

samtools v1.10. Low-quality reads and duplicates were marked and discarded, ending with 

high-quality genome sequencing data ready for subsequent analysis. 

3.4.1. Prediction of tumor mutational burden (TMB) and mutational signatures 

For TMB and mutaional signatures analyses, only tumor samples with matched blood samples 

were included. TMB determination was accomplished for each individual sample using SnpEff 

tool. This involved the computation of the mutation count divided by the estimated exome 

length in megabases (mutation/Mb). Specifically, non-synonymous mutations were considered 

for this calculation, ensuring a focused assessment of functionally relevant genetic alterations. 

Mutational signatures profiling performed using the R package “signature.tools.lib” [177], by 

analyzing single base substitution (SBS) mutational signatures v3.3 obtained from the COSMIC 

database. 

3.4.2. Variant calling 

The last part of primary NGS data analysis is known as variant calling, referring to the 

identification of somatic variants in the cancer genome and its distinction from benign (healthy) 

germline. This can be done by aligning the mutational tumor profile and comparing it with the 

existing published databases, or by using a matching non-cancerous sample from the same 

patient as a control [178]. For the unpaired samples in this thesis, a “panel of normals” was 

created by using an assembled mix of available germline DNA reads from the other patients, 

this mix was used as a reference to pair it with tumor samples for variant calling. 
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3.4.2.1. SNVs/InDels calling 

Short somatic variants including single SNVs and small InDels were called for each sample 

using Strelka v2.9.10 and Manta v1.6.0. Variants not passing the tools internal filters were not 

considered for further analysis. The remaining detected mutations were annotated with 

ANNOVAR to observe their functional and clinical significance. The resulting mutation list 

was further filtered to remove common artifacts, synonymous variants were excluded, and 

common single-nucleotide polymorphisms (SNPs) were filtered out if they were present at >1% 

in either 1000genome project or the Genome Aggregation Database (gnomAD). Other 

exclusion criteria included mapping quality ≤40, a read depth <10 in tumor DNA and <20 in 

normal/germline DNA, alternative allele count <4 in the tumor, variant allele frequency (VAF) 

<5% in the tumor and >20 in the normal. The Clinvar and Intervar databases were also used to 

remove the variants marked as “benign” or “likely benign” to narrow down the final number of 

somatic mutations and identify cancer-relevant variations. 

The oncoprint heatmap was generated using the R package “ComplexHeatmap”. The mutation 

frequencies of genes were extracted from the Pan-Lung Cancer TGCA dataset in cBioPortal. 

Additionally, putative driver genes identified by the MutEnricher tool were considered. Only 

variants with high or moderate effected predicted by snpEff in at least one sample were 

considered. 

3.4.2.2. CNA calling 

CNA calling and analyses were performed on the DNA-WGS data using Control-FREEC v11.6 

[179]. This software utilizes aligned reads as input, and subsequently constructs and normalizes 

a copy number profile. These profiles are then segmented, and genotype status is assigned to 

each segment based on copy number. Finally, genomic alterations are annotated as either gains,  

losses or unchanged. 

For this analysis, we used equally sized, non-overlapping windows of 300 kb to compute the 

read-depth ratio for each window and estimate gains, losses, and neutral regions. A focused 

analysis was also conducted to look for amplifications/deletions in genes that frequently harbor 

oncogenic alterations. A gene copy number >5 was considered as high-level amplification, and 

copy number 0 or 1 as deletion. Subsequently, frequencies were calculated along the whole 

genome for each sample group. We considered gains or losses within each group when either 

of them was observed in more than 30% of the samples. The p-values were calculated using 

Fisher's exact test. CNAs were deemed significant when p-values were less than 0.05 for initial 

assessment and subsequently when p-values were less than 0.01 for a more stringent criterion. 
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We identified altered regions by selecting observed alterations with at least five consecutive 

significant p-values in a row when comparing between groups. To visualize CNAs, copy 

number frequency plots were generated for all samples combined and for samples from each 

BrM group.  

In summary, Figure 9 presents the comprehensive bioinformatic pipeline employed for NGS 

analysis. 

 

Figure 9:   Bioinformatic pipeline for NGS analysis, encompassing quality control, alignment, and pre-processing 

of individual samples. Subsequently, NGS sequencing variant calling, which includes SNVs, InDels, and CNVs, 

followed by somatic variant annotation and filtering, leading to the final interpretation of results. 

3.4.3. Transcriptome RNA-sequencing 

RNA-seq is a powerful tool that offers valuable insights into gene expression patterns. It can 

help to investigate the impact of DNA-level gene mutations on gene expression. 
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A total of twenty-eight qualified RNA samples were sequenced using DNBSEQ-G400 platform 

by BGI. In summary, library preparation started with fragmenting RNA into small pieces.  

followed by reverse transcription to generate complementary DNA (cDNA) strands. Similar to 

DNA WGS, adapters were ligated to the ends of these 3’ adenylated cDNA fragments, and PCR 

amplification was performed. Resulting double-stranded PCR products were heat denatured 

and the final library was formatted as ssCir DNA. The DNBs were loaded onto a sequencing 

flow cell and single-end 50 (pair-end 100) bases reads were generated using sequencing by 

synthesis.  

Sequenced RNA data processing and filtering followed the same steps as DNA data. 

Consequently, RNA-seq reads were aligned against the human reference genome (GRCh38) 

with ENSEMBL annotation using STAR Aligner v2.7.3a [180]. To avoid the number of false-

positive differentially expressed genes (DEGs) with low abundance, only transcripts with a 

median read count >10 in at least one group of samples were retained.  

In total, 17478 genes were tested in DE analyses. Principal component analysis (PCA), gene 

expression-based pairwise distances between samples, and plots were performed on regularized 

log transformation (rlog) and transformed data were implemented in DESeq2 [181]. 

Differential mRNA expression between groups was calculated using negative binomial 

generalized linear models implemented in DESeq2. Genes with a Benjamini-Hochberg-based 

false discovery rate (FDR) < 0.05 were considered significant. 

3.4.3.1. Gene ontology and pathway enrichment analysis 

Differentially expressed genes (DEGs) from RNA-seq analysis were subjected to Gene 

Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)  

pathway enrichment analysis using mainly g:Profiler [182], in addition to  DAVID (v6.7) [183] 

and Enricher [184]. The goal of these analyses was to gain insights into the functional 

annotation and biological pathways associated with the DEGs. 

3.5. Immunohistochemistry (IHC) 

Immunohistochemical staining (IHC) was conducted on 2 µm thick sections of formalin-fixed, 

paraffin-embedded (FFPE) tissue samples obtained from 56 BrM cases from the Institute of 

Neuropathology, University Hospital Hamburg-Eppendorf (UKE). The following  antibodies 

were used: CD3 (clone SP7; 1:100; M3074, Zytomed), CD8 (clone SP16; 1:500; C1008C01, 

DCS), CD4 (clone 4B12; 1:50; M731001-2, DAKO), FOXP3 (clone D2W8E; 1:100; 98377, 

Cell Signaling), CD68 (clone KP1; 1:100; M087629-2, DAKO), and Ki67 (clone SP6; 1:750; 
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275R-15, Cell Marques). All staining was performed on a Ventana benchmark XT autostainer 

following the manufacturer’s recommendations. 

TILs scoring was assessed based on the proportion of positively stained cells as a percentage 

within two distinct regions: the intra-tumoral region (within the solid tumor tissue area) and the 

peri-tumoral region (the adjacent area around the tumor tissue). The expression of each marker 

was evaluated semi-quantitatively by a pathologist as previously described [185]. Briefly, for 

CD3, CD8, CD4, CD68, and Ki67, a scoring system was used, with scores of 0 (negative: no 

stained cells), 1 (low: <10%), 2 (moderate: 10-40%), or 3 (high: >40%), based on the estimation 

of positively stained cells relative to the total number of cells in the investigated intra-tumoral 

or peri-tumoral region. To facilitate statistical analysis, the parameters were grouped into high 

(including moderate/high) and low (including negative/low) categories. Due to the relatively 

low number of FoxP3+ cells in all BrM groups, the samples were scored as either negative (0%) 

or positive (≥1%) in both the intra-tumoral and peri-tumoral regions.  

3.6. Immune cell isolation  

Peripheral blood samples were collected from 54 BrM-NSCLC patients using 7.5 ml EDTA-

containing tubes prior to surgical removal of the tumor. PBMCs were isolated within 2 hours 

of blood draw using Ficoll® gradient centrifugation, following the established protocol [186]. 

Subsequently, the isolated PBMCs were stored in RPMI/10% DMSO (P04-17500) at -80°C 

until further use. 

3.7. Multicolor flow cytometry  

Frozen PBMCs were thawed in a water bath at 37°C, washed with 4°C cold 10% FBS in RPMI, 

resuspended in a cold medium (RPMI, 10% FCS and DNAse (1:1000)) (4°C) and cells were 

counted using Vi-CELL® XR Cell Viability Analyzer (383556, Beckman Coulter). Five 

different panels (43 antibodies) were used to analyze the different immune cell states; T-cell 

exhaustion, T-cell differentiation, T helper cell subsets, T-cell metabolism, and cytokines 

secretion (as listed in Table 9).  

Table 9: Antibodies used for the peripheral blood immuno-phenotyping 

Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 

T-cell exhaustion T-cell subtypes Th subsets T-cell metabolism Cytokines 

Epitope Clone Epitope Clone Epitope Clone Epitope Clone Epitope Clone 

CD25 BC96 CD45RA HI100 CD45RA HI100 CD45RA HI100 CD45RO UCHL1 

KLRG1 2F1/KLRG1 CD127 A019D5 CXCR3 G025H7 CD4 RPA-T4 TNFa MAb11 

CD127 A019D5 CD27 O323 CD161 HP-3G10 FAS DX2 CD3 UCHT1 

CD57 QA17A04 CD4 RPA-T4 CD4 RPA-T4 CD3 UCHT1 IL-2 MQ1-17H12 
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CD4 RPA-T4 CD25 BC96 CRTH2 BM16 CD98 MEM-108 CD4 RPA-T4 

BTLA MIH26 CD3 UCHT1 CD3 UCHT1 CD71 CY1G4 IFNg 4S.B3 

CD3 UCHT1 HLA-DR L243 Tgd 11F2 GLUT1 202915 CD56 (surf) 5.1H11 

2B4 C1.7 CD39 A1 CCR4 L291H4 Zombie NIR - IL-4 MP4-25D2 

CD56 5.1H11 CD28 CD28.2 CXCR5 J252D4 CD8 RPA-T8 IL-10 JES3-9D7 

TIGIT A15153G CD73 AD2 CCR6 G034E3 PD-1 EH12.2H7 Zombie NIR - 

Tim-3 F38-2E2 Zombie NIR - Zombie NIR -   CD8 (surf) RPA-T8 

Zombie 

NIR 
- CD8 RPA-T8 CD8 RPA-T8   IL-17A BL168 

CD8 RPA-T8 CCR7 G043H7 S1PR1 SW4GYPP     

PD-1 EH12.2H7         

For cell surface staining, samples were resuspended in flow-cytometry staining buffer 

(eBioscience) containing Fc-block (Miltenyi Biotec) and incubated for 45 minutes in the dark 

at room temperature with the antibody cocktails. For intracellular staining (cytokines), samples 

were incubated for 4 hours at 37°C and 5% CO2. Subsequently, a stimulation mix consisting of 

Phorbol 12-Myristate 13-Acetate (PMA) (1 µg/ml; P1585, Sigma), Ionomycin calcium salt (1 

mg/ml; 10634, Sigma), Brefeldin A Solution 1000X (3 mg/ml; 00-4506, Invitrogen) and X-

Vivo 15 serum-free (881024, Biozym) was added to each sample. These samples were 

incubated for an additional 5 hours under the same previous conditions. After incubation, 

samples were washed, resuspended in flow-cytometry staining buffer, and stained with a 

surface antibody cocktail for 10 minutes followed by the addition of live/dead staining, and 

further incubation for 20 minutes in the dark at room temperature. Subsequently, the cells were 

subjected to additional washing steps and then fixed and permeabilized before staining with the 

cytokine (intracellular) antibody cocktail for 30 minutes in the dark at room temperature. After 

the staining procedure, the cells were washed and resuspended in the flow cytometry staining 

buffer. The analysis was conducted using a BD LSR Fortessa flow cytometer and data were 

exported as .fcs files. Manual gating was performed using the FACSDiva software (version 9.1 

Becton Dickinson). The gating strategies used in the analysis are illustrated in figures 10-14. 
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Figure 10: Flow cytometry gating strategy for T-cell exhaustion markers (panel 1) 

Lymphocytes were gated based on Forward Scatter (FSC-A) against Side Scatter (SSC-A), and single cells were 

selected using FSC-A versus Forward Scatter Height (FSC-H). Live cells were identified based on their negative stain 

for Zombie NIR. T-cells were selected by gating on CD3+ cells, which were further categorized based on markers 

expressions into CD4+ and CD8+ T-cells. NK cells were identified as CD56+ and 2B4+ cells, and Treg cells were 

selected as CD4+ CD25+ CD127-. To assess T-cell exhaustion, various cell surface markers were used on CD4+, 

CD8+, Treg and NK cells; PD1, Tim3, TIGIT, BTLA, CD57, KLRG1 and 2B4. 
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Figure 11: Flow cytometry gating strategy for T-cell differentiation markers (panel 2) 

Lymphocytes were gated based on FSC-A against SSC-A, and single cells were selected using FSC-A versus FSC-H. Live 

cells were identified based on their negative stain for Zombie NIR. T-cells were selected by gating on CD3+ cells, which 

were further categorized based on markers expressions into CD4+ and CD8+ T-cells. Treg cells were selected as CD4+ 

CD25+ CD127-. T-cells populations were defined based on CD45RA, CD27, CD28 and CCR7 marker expression as 

follows: naïve (CD45RA+ CD27+ CD28+ CCR7+), T effectors type RA+ (CD45RA+, CD27−, CD28−, CCR7−), Early 

memory (CD45RA-, CD27+, CD28+, CCR7-), Early-like memory (CD45RA-, CD27-, CD28+, CCR7+), Intermediate 

(CD45RA-, CD27+, CD28-, CCR7-), Central memory (CD45RA−, CD27+, CD28+, CCR7+), and TeffRA- (effector 

memory cells: CD45RA−, CD27−, CD28−, CCR7−). CD73+, CD39+ and HLA-DR+ cells were identified using their 

markers expressions on CD4+, CD8+  and Treg. 
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Figure 12: Flow cytometry gating strategy for T helper cell subsets markers (panel 3) 

Specific T-cell subsets were identified based on marker expressions. Gamma delta T-cells (Tgd) were determined 

using the corresponding marker. T Follicular Helper cells (Tfh) were identified by their CXCR5+ expression, while 

Mucosal-associated invariant T (MAIT) cells were characterized as CD4- CCR6+ CD161+. The CD45RA marker 

was employed to differentiate between naïve and memory T-cells, and CCR6 served as a marker for T helper cells 

(Th). Th2 cells were defined as CCR6- CCR4+ CRTH2+, Th1 cells as CCR6- CXCR3+, Th1* cells as CCR6+ 

CXCR3+, and Th17 cells as CCR6+ CD161+. Additionally, the S1PR1 marker was used to monitor T-cell dynamics 

within CD4+, CD8+, and Tgd cell populations. 
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Figure 13: Flow cytometry gating strategy for T-cell metabolism markers (panel 4) 

Lymphocytes were gated based on FSC-A against SSC-A, and single cells were selected using FSC-A versus 

FSC-H. Live cells were identified based on their negative stain for Zombie NIR. T-cells were selected by gating 

on CD3+ cells, which were further categorized based on markers expressions into CD4+ and CD8+ T-cells. PD-

1+, GLUT1+, CD71+, FAS+ and CD89+ expressing cells are identified by their corresponding markers on CD4+ 

and CD8+ cells. 
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Figure 14: Flow cytometry gating strategy for cytokines markers (panel 5) 

Lymphocytes were gated based on FSC-A against SSC-A, and single cells were selected using FSC-A versus FSC-H. 

Live cells were identified based on their negative stain for Zombie NIR. T-cells were selected by gating on CD3+ cells, 

which were further categorized based on markers expressions into CD4+ and CD8+ T-cells. NK cells were identified as 

CD56+ cells. The cytokines markers, including IFNy, TNFa, IL2, IL4, IL10 and IL17 were determined based on their 

corresponding markers expressions on CD4+, CD8+ and NK cells. 
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Samples with a count of less than 1000 living T cells were excluded from the analyses, leading 

to variations in the number of samples included in each panel. Specifically, panel 1 comprised 

45 patients, panel 2 included 44 patients, panel 3 encompassed 47 patients, panel 4 consisted of 

31 patients and finally, panel 5 included 28 patients.  

3.8. Statistical analyses 

Data analysis was performed with In-Silico Online v2.3.1 [187], GraphPad Prism Software 

(v9.5.0, GraphPad Inc., Boston, MA, USA), and R version 4.1.3 [188]. The R-packages 

"ggplot2" and "dakl/oncoprint" were employed to generate graphs. Fisher's exact test was 

utilized to analyze associations between independent nominal data, while McNemar's test was 

used for dependent data. Kruskal-Wallis and Wilcoxon's tests were employed to assess the 

significance of differences between medians, and ANOVA was used to calculate the 

significance of mean differences. A significance level of 0.05 was considered statistically 

significant and was adjusted for multiple testing when necessary. Survival analysis was 

conducted using the Kaplan-Meier formula from the "survival" R package. The visualization of 

the survival curves was achieved through the utilization of the ggsurvplot function from the 

"survminer" R package. The statistical significance of the survival differences was assessed 

using the log-rank test. For the survival analysis, patients were divided into high and low-

expression groups based on median expressions, except for FOXP3, where groups were 

categorized based on positive or negative staining. In the peripheral-blood 

immunophenotyping, 48 patients were included in the survival analysis out of 56, as we 

excluded patients who had no follow-up or were deceased during the perioperative period of 3 

months. Overall survival (OS) was estimated from the date of brain surgery until death or 

censored at the last follow-up. To calculate the correlation between mutational signatures, the 

spearman correlation test was used. Hazard ratios (HR) were estimated with 95% confidence 

intervals using Cox proportional regression model. 

For panel 2 of flow cytometry, UMAP unsupervised clustering analysis was performed. 

Compensated and normalized flow data were used to generate UMAP dimensionality reduction 

(using the R-package “umap”) and PhenoGraph clustering of all groups together (using R-

package “Rphenograph”). The heatmap of marker expression was calculated as the median 

fluorescence intensity of each marker for each phenoGraph cluster. Subsequently, comparisons 

were calculated with the Kruskal-Wallis test. 
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4. Results 

4.1. Clinical characteristics of patients 

The main clinico-pathological features of 74 NSCLC BrM patients are presented in table 10. 

Patients harboring known driver mutation in EGFR, ALK or ROS were excluded from the 

cohort. The samples were categorized into two main groups: patients with oligometastatic 

NSCLC who had metastasis limited to the brain (lymph node dissemination allowed) and 

patients with polymetastatic NSCLC who had metastases in the brain and other extracranial 

organs. The oligometastatic BrM group was further divided into two sub-groups: patients with 

synchronous oligometastasis (only BrM at time of primary diagnosis) and patients with 

metachronous oligometastatic disease (only BrM after primary diagnosis). Regarding the main 

clinical factors considered for the three groups, neoadjuvant treatment was the only variable 

that showed a significant difference between the groups (p< 0.0001, Fisher’s exact test). Among 

the oligo-metachronous patients, the majority had received prior treatment (20/21), while only 

two patients in the oligo-synchronous group (2/27) and ten patients in the poly-metastatic group 

(10/26) were pre-treated before the brain metastasis operation. 

Table 10: Patient characteristics 

Characteristics  All BrM Oligo-synchronous Oligo-metachronous Poly-met Statistical test P-value 

Samples, n (%)  74 27 (36.5) 21 (28.4) 26 (35.1) Kruskal Wallis 0.368 

Gender, n (%) 
F 41 (55.4) 13 (48.1) 11 (52.4) 17 (65.4) Fisher's exact 0.449 

M 33 (44.6) 14 (51.9) 10 (47.6) 9 (34.6)   

Age at PD (y) 
Range 33 – 83 45 – 80 34 – 76 33 – 82 ANOVA 0.333 

Mean 60.7 62.3 61.5 58.3   

Age at BM-OP (y) 
Range 34 – 83 45 – 83 34 – 78 35 – 83 ANOVA 0.238 

Mean 61.6 62.8 63.6 58.8   

Histology, n (%) 
LUAD 70 23 19 26 Fisher's exact 0.141 

LUSC 4 2 2 0   

Time btw PD & 

BM OP (months) 

Range 0 – 94 0 - 94 2 – 70 0 – 30 Kruskal Wallis 0.965 

Mean 11 4.5 24.6 6.8   

Neoadjuvant 

treatment 

none 42 25 1 16 Fisher's exact <0.0001 

IT 8 1 1 6   

RCT 24 1 19 4   

Survival (m) 
alive 23 8 5 10 Fisher's exact 0.568 

dead 51 19 16 16   

FUP after BM OP 

(m) 

Range 0 - 83 0 - 65 0 - 59 0 - 83 ANOVA 0.678 

Mean 16.8 18.5 15.7 15.8   

BrM: brain metastases, PD: Primary diagnosis, BM-OP: brain metastases operation, F: female. M: male, LUAD: 
adenocarcinoma, LUSC: Squamous cell carcinoma, none: treatment-naive, IT: immunotherapy, RCT: Radio-/Chemotherapy 
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4.2. Molecular characterization of BrM tumor tissues in NSCLC tumors 

4.2.1. The mutational landscape of BrM-NSCLC groups 

Surgically resected BrM tumor tissues were collected from 61 NSCLC patients. Among these 

patients, 45 matching blood samples were available as germline controls, while the remaining 

samples with no germline controls were compared to an established “panel of normal” as a 

reference. Raw sequencing data were processed and analyzed using a well-established 

bioinformatic pipeline, to investigate the molecular characteristics and compare the mutational 

landscape in different BrM groups (see Chapter 3.4 and Figure 9). 

Somatic non-synonymous mutations, including high- and moderate-impact SNVs and InDels 

were called and analyzed using Strelka and Manta. After the filtering process, 3821 genes were 

identified to be mutated in ≥3 samples, with 296 of these genes annotated as cancer-relevant in 

cBioPortal data. Figure 15 displays the mutation frequencies of the most commonly found genes 

across all samples.  

We compared the somatic mutation landscape in our BrM-NSCLC (UKE) cohort to the 

published data by The Cancer Genome Atlas (TCGA) on primary NSCLC (Figure 15, left 

panel). The mutation frequencies in our cohort were comparable yet higher than TCGA primary 

tumor data, suggesting that the same mutations occur in metastases but with increased 

frequencies. The majority of identified mutations were high or moderate impact SNVs, while 

only a few were InDels. The most frequently mutated gene was TP53, observed in 72% of 

samples. Of the TP53 mutations, 80% were SNVs, while only 20% were InDels. The 15 most 

frequently mutated genes, along with their respective mutation frequencies, were as follows: 

TP53 (72%), LRP1B (59%), CSMD3 (56%), RYR2 (56%), USH2A (49%), ZNF536 (38%), 

XIRP2 (34%), COL11A1 (34%), OTOGL (34%), HMCN1 (33%), RP1L1 (33%), KRAS (31%), 

SMARCA4 (31%), ERICH3 (28%), CNTNAP2 (26%).  
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In the analysis of mutation frequencies among the three groups of BrM, a total of 241 genes 

were identified as showing significant differences in mutation rates. However, after applying a 

correction for multiple testing using the Benjamini-Hochberg method, these significances were 

no longer observed. To provide an overview of the findings, table 11 presents the top 25 genes 

that exhibited the most pronounced differential mutation patterns. Notably, Hierarchical 

clustering analyses of the top 50 mutated genes did not either show a separation for the three 

BrM groups (Figure 15). 

Figure 15: The Mutational landscape of somatic alterations in BrM groups.  

The top 50 most frequently mutated genes were selected. Each column represents a single sample and each 

row a gene, with samples grouped by BrM subtype (synchronous, metachronous and poly metastasis). On 

the left: somatic mutational landscapes of our BrM-NSCLC (UKE) and TCGA data on primary NSCLC. 
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Table 11: Top 25 differently mutated genes among BrM groups (n=61) 

Gene Detected-in-N-samples Mut % Sync Mut % Meta Mut % Poly p-value FDR 

OBSCN 16 11 60 9 0.0002 0.940 

ATP10A 11 6 45 4 0.0006 0.940 

GPATCH1 6 0 30 0 0.001 0.940 

SLC6A15 5 28 0 0 0.001 0. 940 

EPS8L1 8 0 35 4 0.001 0.940 

GOLGA6L2 21 17 65 22 0.002 0.940 

PEAR1 6 0 0 26 0.002 0.940 

ALMS1 13 17 45 4 0.003 0.940 

DOCK3 5 0 25 0 0.004 0.940 

INPP5B 5 0 25 0 0.004 0.940 

MAGEA10 5 0 25 0 0.004 0.940 

OAS3 5 0 25 0 0.004 0.940 

MYO7B 7 6 30 0 0.004 0.940 

OTOL1 7 6 30 0 0.004 0.940 

TSHZ3 7 6 30 0 0.004 0.940 

MDN1 11 22 35 0 0.004 0.940 

PCLO 16 56 10 17 0.004 0.940 

CDCP2 4 22 0 0 0.005 0.940 

OR1I1 4 22 0 0 0.005 0.940 

SLC4A8 4 22 0 0 0.005 0.940 

PXDN 6 28 5 0 0.005 0.940 

KRAS 19 17 15 57 0.006 0.940 

ZNF229 8 0 5 30 0.007 0.940 

ZNF462 9 17 30 0 0.008 0.940 

BCAS3 6 28 0 4 0.009 0.940 

Mut: mutation, Sync: oligo-synchronous BrM, Meta: oligo-metachronous BrM, Poly: poly-metastasis. 

To investigate the TMB, nucleotide changes, and mutation signatures, only matched tumor-

germline (blood) DNA samples were included (n= 45). Our analysis revealed varying degrees 

of overall mutational load across the different BrM patients, with median total TMB 4.680 

mutation/Mb (range 0.493-31.347 mutation/Mb) (Figure 16, top panel), However, these 

differences did not show significant differentiation between the BrM groups (p= 0.870, 

Kruskal-Wallis test).  

Furthermore, we examined the specific nucleotide changes present in each tumor sample and 

performed mutational signatures analysis of single base substitution (SBS) (Figure 16, central 

and lower panels). The nucleotide changes detected within the tumors predominantly 

manifested as C > A mutations, which are typically associated with smoking-related diseases 

such as NSCLC. Subsequently, C > T mutations emerged as the next prevalent mutational type. 

Therefore, not surprisingly, among the analyzed samples, the most frequently detected 

mutational signatures were SBS4 (related to smoking: 93%), SBS8 (common in cancer but its 

etiology is debated: 87%), SBS18 (reactive oxygen species: 49%), SBS2 and SBS13 (APOBEC 
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signatures: 33% and 42% respectively) and SBS3 (associated with defective homologous 

recombination-based DNA repair: 29%).  

 

Table 12: Mutational signatures in BrM groups  

Signature Sync (%) Meta (%) Poly (%) p_value p-adj 

Signature.1 19 10 5 0.509 0.903 

Signature.2 38 30 32 0.923 1 

Signature.3 44 30 16 0.196 0.902 

Signature.4 94 90 95 1 1 

Signature.5 25 40 21 0.620 0.903 

Signature.6 6 0 0 0.577 0.903 

Signature.8 75 90 95 0.281 0.902 

Signature.9 13 0 5 0.592 0.903 

Signature.12 6 0 11 0.785 1 

Signature.13 44 40 42 1 1 

Signature.16 19 40 5 0.061 0.902 

Signature.17 0 0 5 1 1 

Signature.18 38 40 63 0.260 0.902 

Signature.20 6 0 0 0.577 0.903 

Signature.23 0 10 0 0.222 0.902 

Signature.30 6 0 0 0.577 0.903 

It is expected to find the smoking signature highly enriched in NSCLC patients, as tobacco 

smoking is the main risk factor for this cancer, which originates from epithelia directly exposed 

to tobacco smoke. A strong negative correlation was observed between the smoking signature 

and the APOBEC signatures (SBS2: r= -0.678, p= 2.973e-07, Spearman correlation test) and 

(SBS13: r= -0.719, p= 2.541e-08, Spearman correlation test). This suggests an inverse 

relationship between these mutational processes. Additionally, a strong positive correlation was 

observed between the smoking signature and the reactive oxygen species signature (r= 0.724, 

Figure 16: Tumor mutational burden and mutational signatures profiles of paired Tumor-Germline 

samples (n=45): Top panel illustrates the mutational load (TMB), the central panel shows nucleotide 

changes in individual samples, and the lower panel presents the mutational signatures. 
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p= 1.869e-08, Spearman correlation test), confirming the interplay between these mutational 

processes which are both related to smoking. On the other hand, only a moderate negative 

correlation was observed between smoking signature and homologous recombination 

deficiency (HRD) (r= -0.487, p= 0.0006, Spearman correlation test). Moreover, a moderate 

positive correlation was detected between SBS4 (smoking) and TMB (r= 0.531, p= 0.0001, 

Spearman correlation test). 

One sample exhibited enrichment in the mutational signature SBS6 which is associated with 

DNA mismatch repair (MMR) deficiency. The patient harbored a somatic mutation in the 

MLH1 gene, which is a known driver of MMR. Moreover, upon comparing these mutational 

signatures among the three BrM groups, no significant differences were observed (Table 12). 

Overall, our findings indicate that the landscapes of small mutations and mutational burden do 

not distinguish between the various patterns of BrM in our cohort. 

4.2.2. Copy number analysis 

Copy number alterations (CNAs) occur due to changes to DNA structure that lead to the 

gain/amplification or loss/deletion of copies of DNA sections from a normal genome.  

Our brain metastatic samples displayed typical chromosomal aberrations previously found in 

the primary NSCLC [189, 190]. Among all combined BrM samples, the most frequently 

observed arm-level alterations included gains along chromosomes 1q, 5p, 7p, 8q,12p, 14q, 17q, 

and 20q and losses along 3p, 5q, 8p, 13q, 15p, 15q, 18q and 21q (Figure 17a).  

In our BrM-NSCLC samples, we identified high-level amplification (copy number > 5) at 

seventeen distinct genomic regions in more than five samples, and deletions (copy number ≤ 1) 

at five regions (Table 13). Some of these alterations were consistent with previous findings in 

NSCLC studies, including amplifications in TERT, CCND3, MYC, CCND1, NKX2-1, and 

FOXA1, as well as deletions in CDKN2A/B and PTEN. Additionally, specific high-level 

amplifications were detected in only one sample, including MET (copy number =24) and 

CCNE1 (copy number =8), or in two samples for genes such as MDM2 (copy number =9 and 

39), or in three samples for CDK4 (copy number =11, 21 and 26).  

 

 

Table 13: High-level amplifications and deletions in all BrM-NSCLC samples 

Chr. Cytoband Cytoband size Type No. of samples % of samples No. of genes 
Frequent reported 

genes 
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1 p36.13 600,001 bp amp 9 14.8% 14   
1 q21.3 300,001 bp amp 10 16.4% 16   

1 q22 300,001 bp amp 10 16.4% 26   

1 q23.3 300,001 bp amp 11 18.0% 11   
4 p11 900,001 bp amp 16 26.2% 4   
5 p15.33 1,500,001 bp amp 12 19.7% 40 TERT 

5 
p15.31-

p15.2 
2,700,001 bp amp 12 19.7% 26   

5 p13.2 300,001 bp amp 17 27.9% 6   
6 p21.1 1,200,001 bp amp 5 8.2% 26 CCND3 

8 p23.3 300,001 bp del 11 18.0% 4   

8 p22 300,001 bp del 9 14.8% 15   

8 q21.13  900,001 bp amp  8 13.1% 18   
8 q24.21 1,500,001 bp amp  10 16.4% 17 MYC 

8 q24.3 300,001 bp amp  10 16.4% 16   
9 p11.2 300,001 bp amp  10 16.4% 3   

9 p21.3 900,001 bp del 15 24.6% 10 CDKN2A/B 

10 q23.31 300,001 bp del 5 8.2% 3 PTEN 

11 q13.3 300,001 bp amp  6 9.8% 6 CCND1 

14 q13.2-q21.1 1,800,001 bp.  amp  9 14.8% 24 NKX2-1, FOXA1 

15 q11.2 600,001 bp del 11 18.0% 12   

18 p11.32 300,001 bp amp  15 24.6% 8   
20 p11.1 300,001 bp amp  13 21.3% 1   

amp: amplification, del: deletion 

Furthermore, upon separate analysis of the different BrM groups, we detected significant 

alterations in ten regions across the genome with p-values < 0.05 (Table 14). However, to refine 

our findings, we focused on CNAs with p-values < 0.01 (determined by Fisher’s exact test). 

This stricter criterion provided an enhanced overview of the most pronounced alterations. 

Consequently, we identified significant aberrations in four chromosomal regions that exhibited 

notable differences between the BrM groups (Table 15). Specifically, a substantial segment on 

chromosome 4q31.3-q35.2 (including 359 annotated genes) displayed significant distinctions 

in the oligo-synchronous BrM group, demonstrating losses in half of the cases (50.3%) (Figure 

17b). Conversely, the oligo-metachronous BrM group demonstrated a mix of samples with both 

gains and losses (29% each) (Figure 17c). In contrast, the poly-metastatic group displayed 

minimal aberrations along this specific chromosomal region (9.7% for gains and 10.9% for 

losses) (Figure 17d). For contextual comparison, we turned to the Pan-Lung Cancer dataset 

from TCGA (Nat Genet 2016) and metastatic NSCLC (MSK, Nature Medicine 2022), where 

we identified three annotated genes—FAT1, IRF2, and SFRP2—that were inherently cancer-

relevant. However, alterations in these genes did not exhibit significant differences among the 

three BrM groups. 
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Significant differences were also noted in smaller regions of chromosomes. Loss of 5q13.2-

q13.3 was primarily observed in oligo-metachronous BrM (70%). a significantly higher 

proportion compared to oligo-synchronous (38.9%) and poly-metastasis (28.4%) cases. 

Moreover, the altered pattern of 8 p23.1-p22 was characterized by both loss and gain in the 

oligo-synchronous BrM group (44.4% and 33.3%, respectively), while both oligo-

metachronous and poly-metastasis groups exhibited only loss in this region (55% and 43.5%, 

respectively). Additionally, a combination of loss and gain was observed in oligo-synchronous 

BrM for 12p13.2-p12.1 (33.3% and 44.4% respectively), whereas oligo-metachronous BrM 

showed minor alterations (18.9% loss and 14.5% gain). In contrast, poly-metastasis 

demonstrated gain in 43.5% of the samples, with loss observed in only 4.3% of samples. Figure 

17e shows these four significantly differentiated regions highlighted in dark blue.  

In summary, these findings revealed significant variations in the CNA landscapes among the 

different metastatic patterns, providing novel insights, particularly within the oligo-

synchronous BrM group. 

Table 14: Significant CNA regions between BrM groups (p<0.05) 

Sync: oligo-synchronous BrM, Meta: oligo-metachronous BrM, Poly: poly-metastases 

Description Cytoband Cytoband size 

Frequency                            

Sync  

(n=18) 

Frequency                                 

Meta 

(n=20) 

Frequency                             

Poly  

(n=23) 

p-value 
No. of 

genes 

No. of cancer 

relevant genes 

Loss3p p25.3-p13 7,787,673 bp 39.6% 43.2% 18.3% 0.039 179 11 

Loss4q q31.21-q35.2 43,774,064 bp 45.6% 30.3% 11.0% 0.010 359 4  

Loss5q q12.1-q33.3 42,900,008 bp 36.9% 62.7% 27.4% 0.032 508 10 

Gain7p p22.3-p14.3 29,369,943 bp 59.6% 66.8% 25.1% 0.019 346 14  

Loss8p p23.3-p21.3 19,737,394 bp 42.5% 54.5% 43.1% 0.017 184 3  

Loss10q q22.1 2,719,729 bp 25.6% 40.0% 34.8% 0.036 36 3 

Gain12p p13.31-p12.1 17,087,074 bp 45.1% 16.4% 44.5% 0.018 296 7  

Loss18q q12.2 1,826,081 bp 66.7% 30.0% 40.6% 0.025 4 0 

Loss22q q13.2-q13.31 6,080,623 bp 59.0% 35.2% 20.5% 0.042 1.53 4 
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Table 15: Significant CNA regions between BrM groups (p<0.01) 

Description Cytoband 
Cytoband 

size 

Frequency                            

Sync  (n=18) 

Frequency                                 

Meta (n=20) 

Frequency                             

Poly (n=23) 

p-

value 

No. of 

genes 

No. of cancer 

relevant genes 

Loss4q q31.3-q35.2 37,489,761 bp. 50.3% 29.0% 10.9% 0.004 245 3  

Loss5q q13.2-13.3 6,426,767 bp 38.9% 70.0% 28.4% 0.008 87 1 

Loss/Gain 8q p23.1-p22 3,428,575 bp 44.4%/ 33.3% 55%/ 5% 43.5%/ 0% 0.009 24 1 

Loss/Gain12p p13.2-p12.1 11,578,285 bp 33.3%/ 44.4% 18.9%/ 14.5% 4.3%/ 43.5% 0.011 85 3  

BrM-NSCLC all samples (n=61) a. 

Oligo-metachronous BrM (n=20) c. 

Oligo-synchronous BrM (n=18) b. 
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4.2.3. The RNA expression profile of BrM  

Total RNA was extracted from 40 samples. Good quality RNA samples suitable for NGS were 

obtained from 28 of these samples (see methods chapter 3.4). The Venn diagram (Figure 18) 

shows the intersection among significant differentially expressed genes (DEGs) (FDR< 0.05, 

Wald test). It revealed that there were no common DEGs across the three BrM groups. 

However, a comparison between the oligo-synchronous and oligo-metachronous groups 

identified a total of 41 genes that exhibited significant differential expression. Among these 

genes, 21 were found to be significantly lower and 20 were higher expressed in the oligo-

metachronous group compared to the oligo-synchronous group. Furthermore, a comparison 

between the oligo-metachronous and poly-metastatic samples revealed 105 genes that were 

Poly metastatic (n=23) d. 

Statistical significance e. 

Figure 17: Copy number profiles BrM-NSCLC groups.  

Frequency plots of CNAs distribution in (a.) all BrM-NSCLC samples (n=61), (b.) oligo-synchronous BrM 

group (n=18), (c.) oligo-metachronous BrM group (n=20) and (d.) poly metastatic group (n=23). (Green and 

yellow indicate gain and loss, respectively). (e.) Statistical significance between BrM groups (p<0.01).  
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significantly differently expressed, with 64 genes being lower and 41 genes being higher in 

expression in the poly-metastatic group compared to the oligo-metachronous group. Notably, 

when comparing the oligo-synchronous group with the poly-metastatic group, a total of 200 

genes exhibited significant differential expression, with 111 genes being lower and 89 genes 

being higher in expression in the poly-metastatic group compared to the oligo-synchronous 

group. Gene lists of top 40 DEGs from each comparison are listed in supplement tables 1-5 

(Appendix). These findings emphasize the presence of substantial molecular distinctions 

between the oligo BrM groups and the poly metastatic group. 

 

 

4.2.4. Pathway enrichment analysis  

To understand the potential function and biological significance of the resulting genes, various 

online tools were employed for GO functional annotation, including biological process (BP), 

molecular function (MF), and cellular component (CC), as well as KEGG pathway enrichment 

analysis. We mainly used the g:profiler but for validation of main pathways the data was also 

analyzed by Enricher and DAVID. Through the utilization of these tools, our objective was to 

Figure 18: Venn diagram illustrating the intersections of the DEGs from the three BrM groups. 

The numbers in overlapping arcs indicate the number of genes shared between BrM groups (oligo-sync: 

oligo-synchronous BrM, oligo-meta: oligo-metachronous BrM and poly: poly metastasis). 

Oligo-sync vs. Oligo-meta 

Oligo-meta vs Poly Oligo-sync vs Poly 
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identify pathways and central genes functionally associated with our results. Pathway 

enrichment analysis was performed pairwise between BrM groups. The chapters below shows 

the results for g:profiler, mentioning other tools when similar results were obtained. 

4.2.4.1. Oligo-synchronous vs. oligo-metachronous BrM groups 

GO enrichment analysis (Table 16) revealed significant enrichment of genes related to the 

regulation of cellular processes and inflammatory response, which are known to be involved in 

cancer. Additionally, central nervous system myelination was enriched in the BP category, 

potentially influenced by tumor growth in the brain. Genes were also found to be associated 

with cytoplasm, vesicles, and axons in the cellular CC category, while in the MF category, 

enrichment was observed for protein binding (also in DAVID) and extracellular matrix 

structural constituent (also in DAVID and Enricher). 

Table 16: Pathway enrichment analysis of DESs between oligo-synchronous and oligo-metachronous BrM 

(g:profiler) 

Source Term id Term name Adjusted p-value 

GO:BP GO:0050794 regulation of cellular process 2.83E-22 

GO:BP GO:0022010 central nervous system myelination 1.49E-02 

GO:BP GO:0006954 inflammatory response 3.99E-02 

GO:BP GO:1990961 
xenobiotic detoxification by transmembrane export across the 

plasma membrane 4.40E-02 

GO:CC GO:0005737 cytoplasm 5.98343E-24 

GO:CC GO:0031982 vesicle 9.58277E-05 

GO:CC GO:0030424 axon 7.11E-03 

GO:CC GO:0005583 fibrillar collagen trimer 9.89E-03 

GO:CC GO:0005667 transcription regulator complex 3.10E-02 

GO:MF GO:0005515 protein binding 1.68527E-24 

GO:MF GO:0005201 extracellular matrix structural constituent 4.28E-05 

GO:MF GO:0003824 catalytic activity 2.38E-02 

4.2.4.2. Oligo-metachronous BrM vs. poly-metastatic groups 

Go enrichment analysis (Table 17) using g:profiler and DAVID identified multiple biological 

processes related to metastasis, including cell migration, cell adhesion, cell motility, regulation 

of cell migration, and extracellular matrix organization. The immune system process pathway 

highlighted the interplay between gene expression and the immune system. Interestingly, 

enrichment in the regulation of response to reactive oxygen species was observed, which 

corresponds to an observed mutational signature (SBS18) at the DNA level. Moreover, the 

Enricher tool showed enrichment in the canonical Wnt signaling pathway (GO:0060070) (q-

value= 0.028) and Regulation of angiogenesis (GO:0045765) (q-value= 0.043), both of which 

play roles in cancer progression. In the CC category, genes were primarily involved in the 
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cytoplasm, receptor complex, and Wnt signalosome (according to g:profiler and DAVID), with 

Enricher showing involvement in Collagen-Containing Extracellular Matrix (GO:0062023) (q-

value = 2.10E-10). 

Table 17: Pathway enrichment analysis of DESs between oligo-metachronous BrM and poly-metastasis 

(g:profiler) 

Source Term id Term name Adjusted p-value 

GO:BP GO:0048518*b positive regulation of biological process 1.90E-26 

GO:BP GO:0032501*bc multicellular organismal process 1.69E-19 

GO:BP GO:0016477*bc cell migration 3.27E-11 

GO:BP GO:0030198 extracellular matrix organization 1.12E-10 

GO:BP GO:0007155 cell adhesion 2.97E-10 

GO:BP GO:0019538*b protein metabolic process 9.74E-10 

GO:BP GO:0048870*bc cell motility 1.18E-09 

GO:BP GO:0048585*b negative regulation of response to stimulus 2.86213E-09 

GO:BP GO:0048519*b negative regulation of biological process 1.90572E-08 

GO:BP GO:0030334*b regulation of cell migration 4.55002E-08 

GO:BP GO:0023057*b negative regulation of signaling 6.4459E-08 

GO:BP GO:0001667*bc ameboidal-type cell migration 1.7872E-07 

GO:BP GO:0010648*b negative regulation of cell communication 2.31126E-07 

GO:BP GO:2000145*b regulation of cell motility 2.95E-07 

GO:BP GO:0006066 alcohol metabolic process 1.64141E-06 

GO:BP GO:1901031 regulation of response to reactive oxygen species 0.009820509 

GO:BP GO:0002376 immune system process 0.022825226 

GO:BP GO:0031667 response to nutrient levels 0.031787373 

GO:BP GO:0022010 central nervous system myelination 3.32E-02 

GO:BP GO:0045055 regulated exocytosis 3.69E-02 

GO:CC GO:0005737*b cytoplasm 3.79022E-33 

GO:CC GO:0043235 receptor complex 9.54651E-05 

GO:CC GO:0030424 axon 0.003425881 

GO:CC GO:1903439 calcitonin family receptor complex 0.035099912 

GO:CC GO:1990909 Wnt signalosome 0.037745849 

GO:MF GO:0005515*bc protein binding 1.25997E-21 

GO:MF GO:0005201 extracellular matrix structural constituent 9.37634E-08 

GO:MF GO:0050840 extracellular matrix binding 3.04086E-05 

GO:MF GO:0038024 cargo receptor activity 0.000114278 

GO:MF GO:0098772 molecular function regulator activity 0.008366254 

GO:MF GO:0005539 glycosaminoglycan binding 0.008403064 

GO:MF GO:0001730 2'-5'-oligoadenylate synthetase activity 0.014714746 

GO:MF GO:0003824*b catalytic activity 2.12E-02 

GO:MF GO:0005041 low-density lipoprotein particle receptor activity 2.13E-02 

GO:MF GO:0033218 amide binding 2.67E-02 

GO:MF GO:0030169 low-density lipoprotein particle binding 3.55E-02 

GO:MF GO:0043167*c ion binding 4.70E-02 

*genes of interest: (b) SMURF2, (c) S100A2 
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4.2.4.3. Oligo-synchronous BrM vs. poly-metastatic groups 

In this comparison, similar enriched pathways were observed for biological processes (BP) and 

cellular components (CC), as previously mentioned (Table 18). Additionally, KEGG analysis 

using g:profiler, DAVID, and Enricher showed significant enrichment in pathways related to 

cancer, Wnt signaling, metabolic pathways, and Proteoglycans in cancer. 

Table 18: Pathway enrichment analysis of DESs between oligo-synchronous BrM and poly-metastasis 

(g:profiler) 

Source Term id Term name Adjusted p-value 

GO:BP GO:0050794*ab regulation of cellular process 1.40E-33 

GO:BP GO:0048518*ab positive regulation of biological process 3.04E-31 

GO:BP GO:0048522*ab positive regulation of cellular process 8.31E-25 

GO:BP GO:0007165*b signal transduction 1.86E-15 

GO:BP GO:0010646*b regulation of cell communication 5.93E-15 

GO:BP GO:0007166*b cell surface receptor signaling pathway 1.47E-14 

GO:BP GO:0023051*b regulation of signaling 5.27E-14 

GO:BP GO:0019538*b protein metabolic process 2.091E-13 

GO:BP GO:0030334*b regulation of cell migration 2.09756E-10 

GO:BP GO:0016477*bc cell migration 7.76901E-10 

GO:BP GO:0048870*bc cell motility 1.04087E-09 

GO:BP GO:0009987*abc cellular process 5.88823E-07 

GO:BP GO:0048585*b negative regulation of response to stimulus 1.56729E-06 

GO:BP GO:0086001 cardiac muscle cell action potential 6.52E-04 

GO:BP GO:0006629*a lipid metabolic process 0.001284996 

GO:BP GO:1902305 regulation of sodium ion transmembrane transport 0.002453445 

GO:BP GO:0044419 biological process involved in interspecies interaction between organisms 0.004518603 

GO:BP GO:0002221 pattern recognition receptor signaling pathway 0.015885443 

GO:BP GO:1990778 protein localization to cell periphery 2.00E-02 

GO:BP GO:0086003 cardiac muscle cell contraction 3.27E-02 

GO:BP GO:0006941 striated muscle contraction 0.041747685 

GO:BP GO:0036010 protein localization to endosome 0.048686499 

GO:CC GO:0005737*ab cytoplasm 3.33521E-44 

GO:CC GO:0005667 transcription regulator complex 0.002099935 

GO:CC GO:1990907 beta-catenin-TCF complex 0.008496222 

GO:CC GO:0031528 microvillus membrane 0.026663999 

GO:MF GO:0005515*abc protein binding 2.39353E-39 

GO:MF GO:0016491*a oxidoreductase activity 4.89659E-06 

GO:MF GO:0003824*ab catalytic activity 9.09447E-05 

GO:MF GO:0042802*bc identical protein binding 0.000857528 

GO:MF GO:0003714 transcription corepressor activity 0.001631819 

KEGG KEGG:05200 Pathways in cancer 8.09627E-05 

KEGG KEGG:04310 Wnt signaling pathway 1.23E-02 

KEGG KEGG:01100*a Metabolic pathways 2.01E-02 

KEGG KEGG:05205 Proteoglycans in cancer 2.32E-02 

* genes of interest: (a) AKR1C1 (b) SMURF2 (c) S100A2 
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4.2.4.4. Oligo-synchronous or oligo-metachronous BrM vs. poly-metastatic groups 

According to g:profiler results (Table 19), the BP section showed significant enrichment of the 

developmental process when comparing either of the oligo-BrM groups against the poly-

metastatic group. Multiple regulatory pathways, cellular response to stimulus, cell migration, 

and cell motility were also among the significantly enriched terms. Notably, the interleukin-27-

mediated signaling pathway, which plays a role in the immune system, was enriched. 

Additionally, DAVID software revealed enrichment in angiogenesis and cell-cell adhesion 

(FDR= 0.014 for both pathways) and the apoptotic process (FDR=0.042). 

KEGG analysis indicated involvement in Wnt signaling, metabolic pathways, and pathways in 

cancer, as revealed by both DAVID and g:profiler. Moreover, Enricher showed enrichment in 

the Hedgehog signaling pathway (q-value= 0.023) and Hippo signaling pathway (q-value= 

0.030). 

Table 19: Pathway enrichment analysis of DESs between oligo-synchronous or oligo-metachronous BrM and 

poly-metastasis (g:profiler) 

Source Term id Term name Adjusted p-value 

GO:BP GO:0032502*ab developmental process 1.08879E-34 

GO:BP GO:0048518*ab positive regulation of biological process 1.54388E-33 

GO:BP GO:0050794*ab regulation of cellular process 1.77285E-32 

GO:BP GO:0030154*a cell differentiation 2.19207E-26 

GO:BP GO:0050896*ab response to stimulus 1.99435E-25 

GO:BP GO:0065007*ab biological regulation 2.76847E-24 

GO:BP GO:0051716*ab cellular response to stimulus 9.39E-20 

GO:BP GO:0007154*b cell communication 1.0889E-18 

GO:BP GO:0009893*a positive regulation of metabolic process 1.75065E-16 

GO:BP GO:0016477*bc cell migration 3.66012E-13 

GO:BP GO:0048870*bc cell motility 1.82174E-12 

GO:BP GO:2000145*b regulation of cell motility 2.15E-10 

GO:BP GO:0030198 extracellular matrix organization 9.47E-07 

GO:BP GO:0090257 regulation of muscle system process 0.000527014 

GO:BP GO:0009615 response to virus 0.003743878 

GO:BP GO:0010876*a lipid localization 0.003780289 

GO:BP GO:0002691 regulation of cellular extravasation 0.00458446 

GO:BP GO:0070106 interleukin-27-mediated signaling pathway 0.004646573 

GO:BP GO:0044419 biological process involved in interspecies interaction between organisms 0.007846168 

GO:BP GO:0072577 endothelial cell apoptotic process 0.013894001 

GO:BP GO:0071359 cellular response to dsRNA 0.022210392 

GO:BP GO:0006996 organelle organization 0.025289328 

GO:BP GO:0097435 supramolecular fiber organization 0.031456183 

GO:CC GO:0005737*ab cytoplasm 2.19663E-39 

GO:CC GO:0016020*b membrane 4.74162E-20 

GO:CC GO:0005581 collagen trimer 1.71E-03 

GO:CC GO:0055037 recycling endosome 2.46E-02 

GO:MF GO:0005515*abc protein binding 1.61E-30 
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GO:MF GO:0042802*bc identical protein binding 7.58E-07 

GO:MF GO:0016491*a oxidoreductase activity 9.26E-07 

GO:MF GO:0050839 cell adhesion molecule binding 6.95E-03 

GO:MF GO:0004028 3-chloroallyl aldehyde dehydrogenase activity 4.10E-02 

GO:MF GO:0001730 2'-5'-oligoadenylate synthetase activity 4.10E-02 

GO:MF GO:0016829 lyase activity 4.55E-02 

KEGG KEGG:04310 Wnt signaling pathway 6.00E-04 

KEGG KEGG:05205 Proteoglycans in cancer 7.14E-04 

KEGG KEGG:01100*a Metabolic pathways 9.26E-03 

KEGG KEGG:05200 Pathways in cancer 4.23E-02 

* genes of interest: (a) AKR1C1 (b) SMURF2 (c) S100A2 

4.2.4.5. Oligo-synchronous vs oligo-metachronous BrM or poly-metastatic groups 

Comparing oligo-synchronous BrM against one of the other groups also showed enrichments 

in pathways previously mentioned (Table 20). 

Notably, in CC and MF categories, cytoplasm and protein binding were enriched in all sets of 

comparisons. Moreover, cell motility and cell migration were enriched in all comparisons 

except for oligo-synchronous vs. poly metastasis comparison. Additionally, significant 

enrichment in extracellular matrix-related pathways and different regulatory pathways were 

observed in almost all comparisons. These pathways can indicate different contributions to the 

spread of cancer cells in different metastatic patterns. Moreover, metabolic pathways were also 

enriched especially in the comparison between oligo-synchronous and poly metastatic groups. 

Table 20: Pathway enrichment analysis of DESs between oligo-synchronous and oligo-metachronous BrM or 

poly-metastasis (g:profiler) 

Source Term id Term name Adjusted p-value 

GO:BP GO:0050794*ab regulation of cellular process 1.48E-22 

GO:BP GO:0065007*ab biological regulation 3.85E-19 

GO:BP GO:0007154*b cell communication 4.44454E-15 

GO:BP GO:0050896*ab response to stimulus 1.50263E-14 

GO:BP GO:0051716*b cellular response to stimulus 3.28853E-14 

GO:BP GO:0048523*b negative regulation of cellular process 1.73076E-13 

GO:BP GO:0023051*b regulation of signaling 7.56453E-12 

GO:BP GO:0009893*a positive regulation of metabolic process 3.94033E-11 

GO:BP GO:0031323*ab regulation of cellular metabolic process 7.84E-11 

GO:BP GO:0019538*b protein metabolic process 9.90112E-11 

GO:BP GO:0007165*b signal transduction 1.39014E-10 

GO:BP GO:0019222*ab regulation of metabolic process 5.74286E-08 

GO:BP GO:0031325*a positive regulation of cellular metabolic process 4.16818E-07 

GO:BP GO:0016477*bc cell migration 1.27E-05 

GO:BP GO:0048870*bc cell motility 4.77E-05 

GO:BP GO:0044248 cellular catabolic process 0.000641202 

GO:BP GO:0002028 regulation of sodium ion transport 0.004440799 

GO:BP GO:0086001 cardiac muscle cell action potential 0.008624692 

GO:CC GO:0005737*ab cytoplasm 3.80608E-33 
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GO:CC GO:1990907 beta-catenin-TCF complex 0.004399878 

GO:CC GO:0045334 clathrin-coated endocytic vesicle 0.01473982 

GO:CC GO:0097728 9+0 motile cilium 0.048596878 

GO:MF GO:0005515*abc protein binding 1.97E-30 

GO:MF GO:0003824*ab catalytic activity 2.17E-04 

GO:MF GO:0070566 adenylyltransferase activity 8.29E-04 

GO:MF GO:0043167*ac ion binding 9.91E-04 

GO:MF GO:0003714 transcription corepressor activity 1.03E-02 

KEGG KEGG:04360 Axon guidance 0.00389482 

KEGG KEGG:04390 Hippo signaling pathway 0.009103414 

KEGG KEGG:05200 Pathways in cancer 0.042854973 

* genes of interest: (a) AKR1C1 (b) SMURF2 (c) S100A2 

4.2.5. Candidate gene selection 

In this study, we employed a large screening approach to identify potential candidate genes 

associated with the investigated BrM phenotypes in NSCLC. Due to the limitations of a small 

sample size, it is crucial to acknowledge the possibility of chance findings in such exploratory 

analyses. Therefore, validation of these candidate genes becomes imperative to ascertain the 

robustness and reliability of our findings. 

First, in order to narrow down the potential target genes in the significant CNA regions, we 

combined the CNA results with expression data. To accomplish this, we utilized the UCSC 

Genome Browser database to download the gene annotations corresponding to the identified 

CNA regions. Subsequently, we analyzed the RNA expression levels of the genes located 

exclusively within these specific CNA regions. As a result, 15 significant differently expressed 

genes at three chromosomal locations were only found in the oligo-synchronous BrM vs. poly 

metastasis comparison (FDR< 0.05), while the other comparisons showed no significance. To 

refine our selection further, we applied a log2 fold change cutoff |log2FC|≥2, focusing on the 

most significantly differentially expressed genes (Table 21 highlighted in green). The final 

selection of two candidate genes was based on pertinent literature.  

Table 21: DEG list resulted from integrating CNA and RNA-seq data 

Oligo-synchronous  vs. Poly-metastasis 

Genes with (p<0.05) Log2FC FDR (RNA) Position 

TLR3 2.32 9.29E-04 chr4 (q35.1) 

CPE 2.49 7.75E-03 chr4 (q32.3) 

TRIM61 2.61 3.20E-02 chr4 (q32.3) 

DDX60 1.49 3.92E-02 chr4 (q32.3) 

KLHL2 0.91 3.20E-02 chr4 (q32.3) 

SNX25 1.24 4.61E-02 chr4 (q35.1) 

C4orf47 1.30 3.73E-02 chr4 (q35.1) 

GCNT4 2.26 3.20E-02 chr5 (q13.3) 

CERT1 0.83 3.20E-02 chr5 (q13.3) 
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PDE3A -2.36 3.71E-02 chr12 (p12.2) 

RERG 1.94 3.92E-02 chr12 (p12.3) 

RP11-174G6.5 1.38 3.71E-02 chr12 (p12.3) 

GPRC5D 1.51 4.61E-02 chr12 (p13.1) 

EMP1 1.65 3.20E-02 chr12 (p13.1) 

BCL2L14 4.13 9.60E-05 chr12 (p13.2) 

The first candidate gene identified was TLR3 (Toll Like Receptor 3) located on Chr. 4q35.1. 

TLR3 belongs to the Toll-like receptor (TLR) family, which plays a crucial role in antimicrobial 

proinflammatory immune responses by inducing the secretion of cytokines and chemokines 

[191]. TLR3 showed downregulation at the RNA level, simultaneously to a deletion at DNA 

level in the oligo-synchronous compared to poly-metastatic group (FDR< 0.001) (Figure 19). 

TLR3 was significantly differential expressed also in the whole transcriptome analysis (p= 

0.003, Wilcoxon test). 

On Chr.12p12.2, PDE3A (Phosphodiesterase 3A) was chosen as the second candidate gene for 

validation based on relevant literature connecting its enzymatic functions to cancer progression 

and metastasis [192]. In our study, PDE3A exhibited upregulation in oligo-synchronous BrM 

where gain was observed in 44.4% and loss in 33.3% of cases in the corresponding region of 

chr.12. This increased expression was significantly higher than that observed in poly-metastatic 
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Figure 19: On the left side: a magnified view of the copy number alteration (CNA) frequency plot is shown, 

focusing on the region Chr4:(q35.1) where the TLR3 gene is located, Indicating a loss of this region in the oligo-

synchronous BrM in comparison to poly metastasis. On the right side, a box plot illustrates the RNA expression 

levels of TLR3 in the three groups of brain metastasis (Sync: oligo-synchronous, Meta: oligo-metachronous, 

Poly: poly metastasis) (FDR<0.001).  
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group (FDR= 0.037) (Figure 20). This marked variation in PDE3A expression further 

underscores its potential relevance within the context of the complex molecular landscape of 

BrM. 

 

Among the numerous differently expressed genes evaluated with pathway enrichment analysis 

through whole transcriptome RNA-seq data examination, three target genes warranted 

particular attention. These genes are AKR1C1 (Aldo-keto reductase family 1 member C1), 

SMURF2 (SMAD Specific E3 Ubiquitin Protein Ligase 2) and S100A2 (S100 calcium-binding 

protein A2) stood out in at least two of the mentioned analysis tools (marked with Asterisks ”*“ 

in tables 16-20). These genes exhibited differential expression patterns among BrM groups and 

their involvement in specific pathways suggests their potential relevance to the metastatic 

process. 

AKR1C1 showed frequent enrichment in various pathways in our analysis (see chapter 4.2.4), 

including metabolic pathways like lipid metabolic pathway and NADP+ 1-oxidoreductase 

activity. Additionally, AKR1C1 was associated with regulatory pathways such as regulation of 

the metabolic process, positive regulation of cellular and biological processes and regulations, 

in addition to response to stimulus, cell differentiation, ion binding, and developmental process. 

Among the BrM groups, AKR1C1 expression was significantly upregulated in oligo-

Figure 20: On the left side: a magnified view of the copy number alteration (CNA) frequency plot is shown, 

focusing on the region Chr12:(p12.2) where the PDE3A gene is located. On the right side, a box plot illustrates 

the RNA expression levels of PDE3A in the three groups of brain metastasis (Sync: oligo-synchronous, Meta: 

oligo-metachronous, Poly: poly metastasis) (FDR=0.037). 
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synchronous BrM compared to poly metastatic group (p= 0.046, Wilcoxon test) (Figure 21a). 

Moreover, AKR1C1 was one of the most significant DEGs in oligo-synchronous or oligo-

metachronous vs poly metastasis comparison (adj.p< 0.001, Wald test). According to the 

existing literature, AKR1C1 has shown involvement in cancer development and metastasis in 

different cancer types [193-195], and contribution to cancer chemotherapeutic drug resistance 

[196-198]. Hence, we selected AKR1C1 as a potential candidate for validation. 

SMURF2 was another interesting gene due to its enrichment in cell migration, ameboidal-type 

cell migration, cell motility, as well as its involvement in regulatory pathways such as the 

regulation of cell migration, cell motility, cellular, metabolic, and biological processes, cell 

communication, and signaling. Additionally, SMURF2 was implicated in metabolic pathways 

specifically protein metabolic process. In our RNA expression data, SMURF2 showed 

significant upregulation in the poly metastatic group compared to oligo-synchronous BrM (p= 

0.0002, Wilcoxon test) and oligo-metachronous (p= 0.015, Wilcoxon test) (Figure 21b). 

S100A2, similar to SMURF2, was enriched in cell migration and cell motility pathways, and it 

was also one of the most significant DEGs between oligo-metachronous and poly metastasis 

groups (adj.p= 0.001, Wald test). In our findings, S100A2 exhibited a significant upregulation 

in the poly metastatic group compared to the oligo-metachronous BrM group (p=0.012, 

Wilcoxon test) (Figure 21c). S100A2 captured our attention not only due to its observation in 

various malignancies, but also because of its close association with the tumor immune 

microenvironment. 
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Figure 21: Boxplots of (a) AKR1C1, (b) SMURF2, and (c) S100A2 expression levels in RNA-seq results with 

statistical significance (p-values). On the right, protein-protein interaction (PPI) networks of the three candidate 

genes generated by STRING tool, highlighting the genes present in our gene lists. 

Interestingly, a high expression level of AKR1C1 exhibited a significant positive correlation 

with overall survival rate (p= 0.01, log-rank test) (Figure 22). Moreover, the cox proportional 

hazard regression analysis revealed that low expression levels of AKR1C1 substantially 

increased the risk of death compared to high expression (HR: 11.557, 95% CI: 1.802-74.083, 

p=0.009; Cox proportional hazard ratio). However, no significant correlation was observed 

between TLR3, PDE3A, SMURF2, or S100A2 expression and overall survival (p>0.05, log-rank 

test). 

In summary, genetic, genomic, and transcriptomic analyses have revealed that different 

metastatic patterns exhibited differences on large-scale alteration landscapes but not on single 

mutation levels. And on these CNA regions we could identify genes that have different 

expression on RNA level. 
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Figure 22: Kaplan-Meier curve of AKR1C1 expression (High: expression>median, low: expression<median) 

4.3. Immuno-profiling of NSCLC brain metastasis 

To investigate the immune profile associated with BrM in NSCLC patients, we evaluated the 

percentages of infiltrating immune cells expressing CD3, CD8, CD4, FOXP3, and CD68 in 

peri-tumoral and intra-tumoral regions of BrM tissues obtained from 56 NSCLC patients (60 

samples were used for FOXP3 analysis). Additionally, we assessed tumor cell proliferation 

using Ki67 staining (Figure 23a and c). 

Our study revealed a significantly higher frequency of CD3+ T-cell infiltration and CD68+ 

microglia/macrophages in peri-tumoral lesions (93.3% and 95.7%, respectively) compared to 

intra-tumoral regions (57.1% and 58.9%) (p< 0.0001 for both markers, Fisher's exact test). 

Moreover, within CD3+ T-cell population, the percentage of CD8+ cells was significantly higher 

(>10% positively stained) in both intra-tumoral and peri-tumoral regions (50% and 71.1% 

respectively) compared to CD4+ cells (1.8% and 13.3%, respectively) with p< 0.0001 in both 

markers (McNemar’s test). Notably, the average proliferation rate of the tumors was 44% 

(range 5-90%), and no correlation was found between the proliferation rate and the immune 

cell profiles (Figure 23b). These findings suggest that various immune cell types can infiltrate 

the brain, with a higher prevalence observed in the peri-tumoral compared to intra-tumoral area. 

Further analysis was conducted to compare immune cell infiltrations in oligo- and poly-

metastatic cases. No significant differences were observed in the number of CD3+ or CD8+ cells 

between the groups in either region (Figure 23b). However, in oligo-synchronous BrM group, 
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there was a significantly higher infiltration of CD4+ cells in the intra-tumoral region compared 

to oligo-metachronous BrM and poly metastasis groups (p= 0.044, G-test). Specifically, 87.5% 

of oligo-synchronous cases showed CD4+ T-cell infiltration within the tumor tissues, while only 

60% in oligo-metachronous and 50% in poly metastasis cases had detectable CD4+ T-cells in 

this region (Figure 23b). On the other hand, there were no significant differences observed in 

the proportions of microglia/macrophages (CD68+ cells), or Ki67+ tumor cells among the three 

BrM groups (Figure 23d).  

Given the high presence of CD4+ T-cells in the oligo-synchronous BrM, the frequency of 

regulatory T-cells (Tregs) defined by FOXP3 expression was further investigated (Figure 23a). 

Statistical comparisons between the different BrM groups indicated no significant differences 

in the percentage distribution of positive or negative FOXP3 expression within Tregs, both in 

the intra-tumoral or peri-tumoral region (p= 0.524 and 0.831, respectively, Fisher’s exact test; 

Figure 23d). However, frequency of FOXP3+ infiltrating cells in intra-tumoral area exhibited a 

positive correlation with overall survival (p= 0.045, log-rank test). In contrast, this correlation 

was not observed in peri-tumoral area (p= 0.600, log-rank test) (Figure 23e). In multivariable 

analysis, the presence of intra-tumoral FOXP3-expressing cells was independently associated 

with survival (HR: 0.415, 95% CI: 0.210-0.821, p= 0.011; Cox proportional hazard ratio). No 

significant differences in survival were observed related to the number of CD3, CD8, CD4, or 

CD68 cells in either the intra-tumoral or peri-tumoral regions (p>0.05, log-rank test, Figure 24).  

Taken together, these data indicate that oligo-synchronous BrM exhibits a distinct immune 

landscape in the TME compared to other metastatic patterns, highlighting the potential 

significance of intra-tumoral CD4+ T-cell infiltration in the context of BrM in NSCLC. 
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Figure 23: Immunohistochemical detection and estimation of positive staining for CD3, CD8, CD4, and 

CD68 
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FOXP3 on tumor-infiltration lymphocytes (TILs) in brain metastasis (BrM) tissues. The staining is shown 

for both intra-tumoral (IT) and peri-tumoral (PT) regions. 

Representative IHC staining of CD3, CD8, CD4, and FoxP3 respectively in IT and PT regions (high and low 

infiltration) Magnification: x20. (b.) Comparison of staining scores for CD3, CD8, CD4, CD68 and Ki67 across 

all groups combined. Additionally, a comparison of the staining scores for CD3, CD8, and CD4 between oligo-

synchronous BrM (Sync), oligo-metachronous BrM (Meta), and poly BrM (Poly) individually in both IT and PT 

regions. (c.) Representative IHC staining of CD68 (in IT and PT regions) and Ki67 on BrM tissues (high and low 

infiltration) Magnification: x20. (d.) Comparison of the staining scores for CD68 in both IT and PT regions, and 

Ki67 in tumor tissues between BrM groups. Comparison of the staining scores for FOXP3 (negative and positive) 

between BrM groups in IT and PT regions. (e.) Kaplan-Meier survival curves (24m) of FOXP3 in IT and PT 

regions. Sync: oligo-synchronous BrM, Meta: oligo-metachronous BrM, and poly: poly metastasis), (negative: no 

stained cells, low: <10%, moderate:10-40%, and high: >40%. 

4.4. Peripheral blood immune profiles of BrM-NSCLC groups 

Flow cytometry analyses were performed on peripheral blood samples obtained from patients 

with BrM-NSCLC to assess the T- and NK cell immunophenotypes within the mononuclear 

cell fractions. We utilized five different multicolor antibody staining cocktails to investigate the 

profiles of NK and T-cells, focusing on specific aspects such as T-cell exhaustion, T-cell 

differentiation subtypes, T helper cell subsets, T-cell metabolism, and cytokine secretion. 

Figure 24: Kaplan-Meier survival curves (24m) of CD3, CD8, CD4 and CD68 in intra-tumoral (IT) and peri-

tumoral (PT) regions, and Ki67. 
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When comparing the different metastatic phenotypes, significant findings were observed 

specifically in the T-cell subtypes differentiation based on their activation status. Following 

established flow cytometry guidelines from Cossarizza et al., frequencies of distinct stages of 

T-cell development were assessed. These stages include: Naïve: (CD45RA+, CD27+, CD28+, 

CCR7+), TeffRA+ (T effectors type RA+: CD45RA+, CD27−, CD28−, CCR7−), Early 

memory (Early: CD45RA-, CD27+, CD28+, CCR7-), Early-like memory (Early-like: 

CD45RA-, CD27-, CD28+, CCR7+), Intermediate (CD45RA-, CD27+, CD28-, CCR7-), 

Central memory: (CD45RA−, CD27+, CD28+, CCR7+), and TeffRA- (effector memory cells: 

CD45RA−, CD27−, CD28−, CCR7−) [199].  

Supervised analysis revealed noticeable differences in CD4+ T-cell subsets, while no 

differences were observed in CD8+ T-cells (p> 0.05 in all subsets, Wilcoxon test) (Figure 25a). 

Specifically, oligo-synchronous patients exhibited a higher median percentage of CD4 naïve 

cells compared to the oligo-metachronous group (p= 0.011, Wilcoxon test). Moreover, the 

oligo-synchronous BrM group demonstrated a lower percentage of CD4+ effector type RA+ 

cells (TeffRA+) compared to both oligo-metachronous (p= 0.052, Wilcoxon test) and poly brain 

metastatic patients (p= 0.019, Wilcoxon test). Similarly, the median percentage of CD4+ 

effector type RA- cells (TeffRA-), also known as effector memory cells, was significantly lower 

in oligo-synchronous patients compared to the other two groups (p= 0.021, and p= 0.002, 

respectively, Wilcoxon test). In contrast, no noteworthy distinctions were observed among the 

three brain metastatic groups concerning CD4 early, early-like, intermediate, or central memory 

cells (Figure 25b). 
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On the other hand, no significant differences were observed in the T-cell exhaustion, T helper 

cell subsets, T-cell metabolism, or cytokine secretion profiles between BrM-NSCLC groups. 

To investigate the potential impact of pre-treatment on the T-cell differentiation profiles of the 

BrM groups, a comparison was conducted between untreated samples from the oligo-

synchronous and poly-metastatic groups. The results of this comparison confirmed the 

persistence of the significant differences observed earlier, indicating that treatment did not 

influence the T-cell differentiation patterns between these BrM groups. However, when 

untreated oligo-synchronous samples were compared to pre-treated oligo-metachronous 

samples, the previously observed significant differences were no longer evident. (Figure 26). 
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 Figure 25: Flow cytometric immunophenotyping of T-cells differentiation  

(a.) Spider plots of CD4+ and CD8+ differentiation phenotypes of peripheral blood in BM groups. Populations are 

defined by expressions of CD45RA, CD27, CD28, and CCR7 markers. Naïve: (CD45RA+, CD27+, CD28+, 

CCR7+), TeffRA+: T effectors type RA+ (CD45RA+, CD27−, CD28−, CCR7−), Early (CD45RA-, CD27+, CD28+, 

CCR7-), Early-like (CD45RA-, CD27-, CD28+, CCR7+), Intermediate (CD45RA-, CD27+, CD28-, CCR7-), 

Central Memory: (CD45RA−, CD27+, CD28+, CCR7+), and TeffRA-: effector memory cells (CD45RA−, CD27−, 

CD28−, CCR7−). (b.) Box plots depicting expression of CD4+ naïve, TeffRA+, central memory and TeffRA- 

expressions between BM groups. Sync: oligo-synchronous BrM, Meta: oligo-metachronous BrM and Poly: poly 

metastasis. 

a. 
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This finding reinforces the notion that treatment is not the underlying factor contributing to the 

observed differences among the BrM groups. 
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Wilcoxon test (p-value) naive Teff type RA+ Central memory Teff type RA- 

oligo_untreated vs poly_untreated ns 0.02 ns 0.001 

oligo_untreated vs oligo_pretreated 0.113 0.152 ns 0.059 

poly_untreated vs oligo_pretreated ns ns ns ns 

Figure 26: Treatment impact on T-cell functional differentiation profiles 

(a.) comparing untreated samples from oligo- and poly-BrM groups did not alter the significant differences 

observed between the groups. (b.) comparing untreated samples only with pre-treated samples only in oligo-BrM 

groups causes loss of all significant differences. (c.) comparing pre-treated oligo-BrM samples with untreated 

poly metastasis did not show any significant differences. 

In this study, we also evaluated the expression of the surface ectonucleotidases CD73 and CD39 

in BrM-NSCLC patients in both CD4+ and CD8+ T-cells using the same flow cytometry panel 

that assessed T-cell differentiation. Interestingly, a significant mean difference in CD73 

expression was observed in CD4+ cells between the oligo-synchronous BrM and poly metastasis 

groups (p= 0.021, Wilcoxon test), while no difference was found in CD73 expression by CD8+ 

T-cells among any of the BrM patient groups. Notably, this difference in CD73 expression was 

even more pronounced in the subset of Tregs between the oligo-synchronous and poly 

metastasis groups (p= 0.023, Wilcoxon test) and between the oligo-synchronous and oligo-

metachronous BrM groups (p= 0.016, Wilcoxon test) (Figure 27a). However, no significant 

difference in the percentage of any T-cell subgroups expressing CD39 was observed between 

the BrM patient groups. Furthermore, utilizing unsupervised UMAP analysis, we identified a 

distinct role of CD73 in the oligo-synchronous group, as indicated by a notable difference in 

the percentage of CD73-expressing cells at the tip of cluster 2 (Figure 27b). This cluster 

predominantly comprised CD4+, CD45RA+, CD127+, and CD73+ cells in the oligo-

synchronous group. 

Taken together, these results strongly suggest that the metastatic phenotype of oligo-

synchronous metastasis is associated with altered T-cell differentiation, particularly involving 

CD73 expression. 
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Figure 27: (a.) Box plots of CD73 expressions between BrM groups in CD8+, CD4+, and Treg cells. (b.) Phonograph 

clustering of different markers in the three groups combined, and individual UMAPs display CD73 expression circled in red 

(cluster2) in Sync, Meta, and Poly. A Heatmap of markers expression in cluster 2: CD4+, CD45RA+, CD127+ and CD73+. 

Values describe population size as percentages. (Sync: oligo-synchronous BrM, Meta: oligo-metachronous BrM, and Poly: 

poly metastasis).  
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5. Discussion 

The intricate process of metastasis development includes multiple complex steps, as illuminated 

in this thesis. Only a few cells can successfully survive all the steps of metastatic cascade and 

evade the host's anti-tumor immune response [200]. Moreover, tumor-related alterations in 

genes play a crucial role in enhancing cancer cell tropism for specific organs and are often 

linked to the cancer cell's ability to overcome specific obstacles such as the Blood-Brain Barrier 

(BBB) in the case of the brain. Additionally, these alterations enable the creation of a permissive 

niche in an unfavorable environment, thereby aiding the progression of metastasis [139, 201]. 

Given the distinct characteristics of the brain—an organ with limited immune cell access due 

to the protective mechanism of the BBB—it becomes a conducive environment for the 

establishment of a tumor niche [202]. 

5.1. A genetic insight into brain metastasis patterns in NSCLC 

Multi-omics approaches including genomics and transcriptomics offer a comprehensive way to 

comprehend the progression of metastasis. Thus, in our investigation, we integrated DNA and 

RNA sequencing data of the brain tumors to have a deeper look into the biology of BrM and to 

pinpoint potential indicators that could distinguish between cases of limited metastasis to the 

brain (oligo-BrM) and more extensive spreading (poly-metastasis). 

Numerous cancers exhibit signs of genomic instability, leading to an increased frequency of 

somatic mutations and copy number alterations [203]. While somatic genetic alterations are 

widely acknowledged for their role in initiating primary tumor formation, there remains a gap 

in our understanding regarding to what extent further genetic mutations play a role in the 

development of BrM in NSCLC. It has been suggested that the evolution of some tumors might 

be confined to mutations in specific driver genes while comprehending other types of cancer 

may require an exploration of large-scale alterations and copy number events [204]. To gain 

insights into tumor evolution, it is crucial to consider both microevolutionary events, such as 

driver gene mutations, and macroevolutionary phenomena, including chromosomal aberrations 

[203]. 

5.1.1. The Mutational Landscape of BrM in NSCLC 

Our findings exhibited good concordance and resemblance in terms of the genomic landscape, 

effectively aligning with previously published data. The presence of known drivers in primary 

NSCLC, including TP53, KRAS, KEAP1, and STK11 indicates that our BrM-NSCLC was 

representative of NSCLC. The most frequent mutation was observed in the TP53 gene (detected 
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in 72% of samples), which is consistent with published data on BrM [98, 117, 205]. Moreover, 

similar to previously reported BrM-NSCLC data, mutations in genes such as KRAS (31%), 

STK11 (20%), KEAP1 (25%), LRP1B (59%), and SMARCA4 (31%) were among the most 

frequently mutated genes. Some of these mutations were similarly identified in the matched 

primary NSCLC samples from these earlier investigations, albeit reported to be with higher 

frequencies in BrM [98, 110, 117, 206, 207]. This observation aligns with our mutation pattern, 

which is also in accordance with the TCGA data on primary NSCLC. The identification of these 

alterations implies their probable retention within the metastatic sites, regardless of the specific 

stages of cancer progression that these mutations facilitated. Consequently, somatic alterations 

driving cancer progression are expected to exhibit elevated mutational frequencies in brain 

metastases. As anticipated, none of the patients in our study had mutations in EGFR, ALK, or 

ROS genes, as these patients were excluded from the study due to the highly specific oncogenic 

nature of their cancers. 

Although the univariate statistical test showed significance in mutations frequency among BrM 

groups, this significance could not be maintained following False Discovery Rate (FDR) 

correction. This is most likely related to the relatively limited size of our cohort due to the 

scarcity of available BrM samples, which emphasizes the need for careful interpretation. As the 

complexities of genetic alterations in BrM continue to unfold, larger cohort sizes will provide 

more robust insights into these complexities. 

In the context of our investigation into tumor mutational burden (TMB), it serves as an indicator 

of the neoantigens of a tumor and can provide insights into tumor heterogeneity and potential 

therapeutic strategies [208]. Specifically, TMB has been associated with immunotherapy 

response in various solid tumors including NSCLC [209-211]. As TMB accumulates, so does 

the abundance of tumor neoantigens, facilitating immune recognition and targeting of the 

tumor, particularly in the presence of immune checkpoint inhibitors (ICIs) [212].  

To explore TMB, in addition to nucleotide changes and mutational signatures, we selectively 

included samples with matching germline DNA obtained from patient blood samples. Our 

findings revealed varying levels of overall mutational load across the different BrM patients, 

ranging from 0.493-31.347 mutation/Mb, with no significant differences observed among the 

BrM groups (medians: oligo-synchronous= 4.213, oligo-metachronous= 4.133, and poly-

metastasis= 4.987). This inter-patient mutational variability within lung cancer BrM cases is 

consistent with recent literature findings [206, 213, 214]. Similarly, in agreement with our 
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outcomes, Song et al. also reported the absence of significant TMB differences between 

synchronous and metachronous BrM groups [117].  

Furthermore, studies comparing TMB profiles between BrM and primary lung tumors have 

yielded heterogeneous outcomes. Some investigations documented heightened TMB levels 

(>10 mutations/Mb) in metastatic NSCLC in comparison to primary tumors, with this 

difference being most pronounced in BrM [98, 215]. In contrast,  Alvarez-Prado et al. observed 

marginally elevated TMB in BrM relative to primary tumors [206]. Conversely, other studies 

have observed greater TMB in primary tumors compared to BrM [117, 213]. Van den Heuvel 

and collogues have noted variations in the median total TMB across distinct disease stages, 

with lower TMB in stage IV tumors compared to earlier disease stages [216].  

Moreover, there is evidence supporting a correlation between specific genetic alterations and 

TMB. For example, PIK3CA mutations exhibit a positive association with TMB, whereas TP53 

and EGFR mutations display a negative correlation [217]. Additionally, BrM-LUAD cases with 

a TMB ≥ 10 mutations/Mb are less likely to harbor STK11 mutations [215]. However, our own 

data did not replicate these correlations (p> 0.05 for all mentioned genes). 

In addition, our analysis demonstrated a moderate positive correlation between TMB and 

smoking signature, which is consistent with observations made by Ernst and colleagues, who 

reported a strong association between TMB and smoking signature [218]. Elevated TMB levels 

have consistently been linked to the smoking history of patients compared to non-smokers in 

the context of NSCLC [219-221]. It is worth noting that the moderate correlation observed in 

our results may be influenced by the inclusion of some patients with missing smoking status, 

categorized as non-smokers in our cohort, which introduces a degree of uncertainty, as some of 

these individuals can be smokers. 

Taken together, TMB levels seem to be influenced by various factors, including disease stage, 

smoking history, and specific somatic mutations. Although TMB has been proposed as a site-

specific marker in NSCLC and its metastases, including BrM, it does not seem to differentiate 

between oligo-BrM and poly metastasis. 

As expected in most lung cancer cases, the most frequently detected single base substitution 

(SBS) mutational signature in our BrM cohort was SBS4 (present in 93% of samples), which is 

characterized by C>A mutations. This signature is strongly associated with tobacco smoking 

[25, 218]. Moreover, SBS2 predominantly characterized by C>T mutations and SBS13 by 

C>A and C>G [222], were also prevalent in our cohort (33% and 42% of cases respectively). 

These two signatures are linked to the activity of AID/APOBEC enzymes [222]. These enzymes 
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induce cytosine-to-uracil conversion in single-stranded DNA, leading to base substitutions and 

strand breaks [223]. Their activation is stimulated by cytokines produced during the body's 

inflammatory response to infections, contributing to infection combat through diverse 

mechanisms. Activation of APOBEC has been noted in various cancers and is often linked to 

tissue inflammation [25, 224, 225].  

Interestingly, SBS2 and SBS13 exhibited a robust negative correlation with the smoking-

associated signature SBS4. This opposing relationship has also been identified in LUAD 

patients, where APOBEC signatures were enriched in nonsmokers, implying that different 

mutation patterns exist depending on tobacco exposure [218, 226, 227]. While our cohort's 

smoking history information is incomplete, this correlation couldn't be verified. Previous 

investigations into BrM-NSCLC have also reported the presence of tobacco signature [205, 

228]. These findings collectively emphasize that lung-brain metastases maintain the mutational 

profile inherited from their primary tumor source. 

In contrast, the reactive oxygen species signature (SBS18) which is related to DNA damage, 

was observed in almost half of the BrM samples, and showed a strong correlation with smoking 

signature. Reactive oxygen species are known carcinogens strongly associated with tobacco 

consumption [229]. This observation aligns with findings by Ernst et al., who identified SBS18 

in smoking-associated NSCLC [218]. Additionally, the SBS3 signature was identified in 29% 

of our BrM cases. This signature is linked to homologous recombination deficiency (HRD) and 

exhibited a moderate negative correlation with the smoking signature within the studied BrM 

groups. HRD arises from specific DNA aberrations and has previously been detected in certain 

lung cancer cases, which can potentially benefit from PARP inhibitor therapy [230]. Moreover, 

SBS3 has been strongly associated with somatic and germline BRCA1/2 variants and BRCA1 

promoter methylation in breast, ovarian, and pancreatic cancers [213]. Elevated levels of 

genomic aberration-based HRD have been observed in breast cancer BrM [231-233], 

suggesting that heightened HRD levels might enhance tumor cells' adaptation to CNS 

microenvironment [232]. In the context of  BrM-NSCLC, SBS3 has been identified as one of 

the prevalent mutational signatures, with higher levels in BrM compared to the primary tumor 

[213, 228].  

Notably, SBS8 signature was found in 87% of our BrM cohort. This signature is common in 

various cancers and tends to escalate during cancer progression. However, its origin and 

underlying causes are not well understood [234]. Some studies have proposed an association 

between SBS8 and genomic instability, including the HRD signature SBS3 [235]. Nevertheless, 
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SBS8 can also be detected in non-HRD-related genomic instability, underscoring the ongoing 

debate surrounding its mechanistic foundation; it could potentially result from uncorrected late 

replication errors during cancer progression [234]. 

Similar to TMB, the mutational signature profile did not show significant differences among 

BrM groups. Despite the absence of distinctive mutational patterns, the overall similarity in 

mutational signatures across the BrM groups underscores the concept that most mutational 

signatures established in the primary tumor are largely conserved in the metastatic lesions or 

acquired prior to metastasis [205]. This retention of mutational signatures suggests that the 

driving genetic alterations initiating primary tumor growth continue to exert their influence 

throughout the metastatic process. 

5.1.2. Copy number alteration (CNA) profile of BrM-NSCLC 

The phenotypes associated with metastases are complex and may not solely result from single 

gene mutations but might rather require significant genomic aberrations [203]. In this study, we 

aimed to explore the CNA profile of BrM-NSCLC and investigate the potential distinctions 

among the studied metastatic patterns.  

Our BrM samples displayed highly altered copy numbers and showed diversity in their CNA 

profiles. The chromosome arm-level copy number events in our BrM samples are closely 

resemble previously published datasets [190, 214]. Many of the genes frequently reported to be 

highly amplified in lung cancer were observed in our BrM-NSCLC cohort [31, 190, 236], 

including TERT (19.7%), MYC (16.4%), NKX2-1and FOXA1 (both 24%), as well as CCND1 

(9.8%) and CCND3 (8.2%). Most of these genes were also detected in prior studies 

investigating Brain metastatic NSCLC [110]. Notably, MYC amplification is associated with 

multifocal regional failure [214], and it has been suggested that MYC overexpression plays a 

role in promoting brain metastasis by mitigating oxidative stress caused by activated microglia 

[237].  

Additionally, our CNA results showed deletions within regions containing CDKN2A, CDKN2B 

and PTEN. These genes are known for their roles in negatively regulating cell proliferation and 

their deletions have been consistently documented in prior studies of BrM [238]. Specifically, 

CDKN2A copy number deletion which has been reported as one of the most frequent events 

[110, 120, 214, 228], was also prevalent in our cohort, affecting 24.6% of BrM samples. 

Overall, the somatic CNAs identified in our study encompass genes with a credible potential to 

act as metastatic drivers. MYC and CDKN2A/B exhibited recurrent genomic amplifications and 
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deletions, respectively, consistent with findings from a previous sequencing study of brain 

metastases originating from various primary cancer types, including LUAD [111]. 

One of the most interesting results of our CNA analysis was the significant alterations found 

among the different BrM groups. Specifically, four chromosomal regions showed significantly 

different alterations among these groups. The largest altered regions were located on 

chromosome 4q31.3-q-35.2 where the oligo-synchronous BrM group exhibited a distinct loss 

compared to the other groups. Within this region of chromosome 4, we identified three genes 

(FAT1, IRF2, and SFRP2) that have been previously associated with cancer-related processes, 

according to published data from cBioPortal and implicated in tumor progression and metastasis 

[239-241]. However, these genes did not exhibit different mutational frequencies among the 

various BrM groups. Nevertheless, when we integrated RNA and CNA data, we identified other 

genes with significantly different expressions on chromosomes 4, 5, and 12, as shown in Table 

21. Among them, we selected TLR3 and PDE3A as potential candidate genes. Additionally, 

smaller chromosomal regions also displayed differences (p<0.05) in CNAs among the BrM 

groups, as detailed in Table 14. 

One paper published by Lee et al., conducted a comparative analysis somewhat similar to ours, 

but focusing on primary LUAD and its relationship with developing BrM. Their study found 

that primary LUAD cases with early BrM development may harbor more CNAs predictive of 

metastatic potential or aggressive transformation compared to those with metachronous BrM 

[242]. Despite the relatively small cohort included in their study, their findings align with our 

own, underscoring the importance of further investigating the CNA landscapes of both primary 

and BrM tumors and comparing them between the two oligometastatic subtypes, synchronous 

and metachronous. 

In summary, our results suggest that metastatic patterns in BrM-NSCLC may be distinguished 

by CNA profiles rather than single mutations. This finding aligns with the theory proposed by 

Gerlinger et al. in their review, suggesting that large genomic aberrations, such as CNAs, could 

play a significant role in driving metastasis in certain tumors more than point mutations [203]. 
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5.2. Candidate genes identified as potential biomarkers 

5.2.1. By integrating CNA and RNA-seq data 

The integration of copy number profiles with RNA-seq data has unveiled two promising gene 

candidates potentially linked to the pattern of BrM. These candidates are TLR3 located on 

Chromosome q435.1 and PDE3A located on Chromosome 12p12.2. 

Our CNA analysis highlighted a notable aberration in the oligo-synchronous BrM group, 

characterized by a loss in a relatively large segment of chromosome 4. Building upon this 

observation, we hypothesize that this genetic aberration may also be reflected in the RNA 

expression level of TLR3, which exhibited lower expression in the oligo-synchronous group 

when compared to the other two groups. However, this expression difference was particularly 

significant in comparison to poly metastasis (p= 0.003, Wilcoxon test) (as shown in Figure 19). 

This observation provides support for exploring the role of TLR3 in the context of brain 

metastasis. 

TLRs are recognized for their presence on immune cells, where they activate the innate immune 

system, promoting an anti-tumor immune response [243, 244]. TLR3 is also expressed on 

epithelial cells, displaying its most prominent expression in the brain, particularly among 

astrocytes, glial cells, and neurons [245]. While TLR3 has been found to be expressed in cancer 

cells of various histotypes and involved in mediating apoptosis through the intrinsic pathway 

[246], recent evidence suggests its association with tumor progression, metastasis, and therapy 

resistance [247]. Alkurdi et al. have proposed TLR3 as a potential therapeutic target for treating 

lung cancer using a combination of paclitaxel chemotherapy and TLR3-ligand, as TLR3 is 

frequently overexpressed in NSCLC in contrast to normal bronchial epithelium [248].  

However, the role of TLR3 can be paradoxical based on cancer type, stage, and immune 

microenvironment context. In the pre-metastatic phase, TLR3 signaling promotes apoptosis in 

lung and breast cancer, as well as head and neck squamous cell carcinoma. Prior research has 

emphasized that TLR3 activation can induce cancer cell apoptosis in both human and murine 

models, or even suppress cancer cell migration depending on the tumor stage. However, post-

initiation of the metastatic process, TLR3 activation takes on an opposing role, enhancing tumor 

migration [249-251]. In mouse models of breast and lung cancer, the activation of TLR3 by 

tumor RNA in metastasis triggers the expression of SLIT2, which subsequently promotes the 

migration of cancer cells toward endothelial cells and facilitates intravasation [252]. In human 

breast cancer, elevated TLR3 expression in tumor cells, as observed through IHC has been 
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significantly linked to a higher rate of distant metastasis [253]. Conversely, in colorectal cancer, 

the absence of TLR3 expression on IHC has been correlated with lymph node metastasis [254]. 

In the brain, TLR3 is also expressed on the surface of microglia, which play a pivotal role in 

clearing tumors and metastatic cells [200, 251, 255]. This indicates the complex nature of TLR3 

and its intricate role in cancer. In our results, we observed different expression patterns of TLR3 

in oligo-synchronous BrM. However, its precise pro- or anti-tumor role in this metastatic 

pattern remains unclear. In conjunction with the previously mentioned insights, these findings 

underscore the significance of investigating into the multifaceted involvement of TLR3 within 

the complex landscape of brain metastasis, making it a strong candidate for further investigation 

in our study cohort. Additionally, including both metastatic and non-metastatic samples in 

future analyses could help provide a clearer understanding of the direction in which TLR3 is 

implicated. 

The other candidate gene was PDE3A, which is a member of the phosphodiesterase 

superfamily. Phosphodiesterases play a crucial role in regulating intracellular concentrations of 

cyclic nucleotides, including cyclic AMP (cAMP) and cyclic GMP (cGMP). Through their 

enzymatic activity, they catalyze the hydrolysis of these second messengers, thereby 

modulating various intracellular signal transduction pathways and cellular activities [256]. 

Furthermore, PDE3A activates inflammatory pathways linked to cancer cell stemness by 

suppressing cAMP/PKA pathway [257]. PDE3A has been implicated in cancer cell invasion 

and cell motility, suggesting its involvement in tumor progression [258]. Notably, upregulation 

of PDE3A has been correlated with metastasis in breast cancer [257] and SCLC [259, 260].  

In NSCLC, De Waal et al. revealed a novel role for PDE3A in cancer maintenance, which its 

function can be modified by a subset of PDE3 inhibitors, resulting in toxicity to lung cancer 

cell lines expressing elevated levels of PDE3A [261]. In NSCLC-LUAD, it emerges as a 

prominent player. Following radiotherapy, PDE3A is one of the most frequently mutated 

cuproptosis-related genes in LUAD. Cuproptosis, a newly described non-apoptotic cell death 

mechanism, holds potential as a therapeutic modality for LUAD patients who develop 

resistance to conventional treatments [262]. 

While no existing publications have directly linked PDE3A alterations to brain metastasis, our 

analysis showed a significant upregulation in PDE3A gene expression within the oligo-

synchronous BrM when compared to the poly metastatic group (FDR=0.037). Despite the 

gene's complex loci, where both loss and gain were observed, PDE3A expression exhibited a 

notable elevation in oligo-synchronous BrM group. This finding suggests that PDE3A could be 
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an interesting candidate gene for further investigation and validation in this context, even in the 

absence of established connections with brain metastasis in the literature. 

Of particular importance is the fact that PDE3A's involvement in a multitude of cellular 

pathways, as elucidated earlier, suggests its plausible implication in biological pathways that 

hold relevance to brain metastasis. Specifically, our results indicate that PDE3A upregulation 

contribute to the metastatic process by enhancing cancer cell invasiveness in oligo-synchronous 

BrM. 

5.2.2. By considering DEGs and pathway enrichment analysis 

Based on the analysis of the top differentially expressed genes across the studied groups, as 

well as pathway enrichment analyses revealing their involvement in critical pathways and 

supported by relevant findings in the published literature, three genes have emerged as 

promising candidates for investigating their potential roles in brain metastasis in NSCLC: 

AKR1C1, SMURF2, and S100A2. 

AKR1C1 gene encodes an enzyme belonging to the aldo-keto reductase 1C protein family 

(AKR1C1-AKR1C4), which catalyzes NADP+-dependent reduction and plays essential roles in 

the metabolism of steroid hormones, prostaglandins, and polycyclic aromatic 

hydrocarbons  [263]. Chien et al. suggested the potential oncogenic function of AKR1C1, 

reporting that upregulation of this gene leads to neoplastic transformation and tumor formation 

in nude mice [264]. Earlier studies have also documented the upregulation of AKR1C1 in 

various cancers, including lung cancer [265, 266].  

Due to AKR1C1 role in the metabolic activation of polycyclic aromatic hydrocarbons (PAH), 

known lung carcinogens, it has been implicated in contributing to smoking-related lung cancer. 

This is especially relevant as its overexpression has been observed in the bronchial epithelial 

cells of tobacco smokers [265, 267, 268]. Furthermore, AKR1C1 has been reported to promote 

cell proliferation and metastasis in NSCLC, where its overexpression in non-metastatic cancer 

cells has been found to notably promote metastasis both in-vitro and in-vivo. Zhu et al. 

demonstrated that this pro-metastatic activity is linked to acetylated AKR1C1's activation of the 

STAT3 pathway [269, 270]. While Fu et al, revealed that targeting AKR1C1 via ALA inhibits 

this pathway, effectively suppressing NSCLC proliferation and metastasis [271].  

Chang et al., on the other hand, presented evidence of AKR1C1's role in promoting cell 

proliferation through crosstalk between hypoxia-inducible factor 1-alpha (HIF-1α) and 

metabolic reprogramming [196]. These results collectively highlight the complex role of 
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AKR1C1 in carcinogenesis and suggest its potential as an important target for cancer therapy 

[271].  

In our investigation of BrM groups, the oligo-synchronous group exhibited a significant 

upregulation of AKR1C1 expression compared to the poly-metastasis group. Furthermore, our 

pathway analysis revealed associations of AKR1C1 with metabolic and enzymatic activities, as 

well as the regulation of biological and cellular processes. These findings underscore the unique 

molecular landscape of oligo-synchronous BrM, indicating a potential predominance of pro-

tumor progression activities in this specific metastatic pattern. 

Notably, we observed an interesting contrast in the case of AKR1C1 expression levels. High 

expression levels of AKR1C1 across all BrM cases were positively correlated with the survival 

rate, which differs from previously published data [270-272]. This discrepancy could be 

attributed to the specific characteristics of our small RNA cohort, emphasizing the necessity for 

including a larger sample size in future studies. 

The candidate gene SMURF2 encodes an E3 ubiquitin ligase pivotal in targeted ubiquitin 

tagging and the regulation of TGF-β signaling. It exhibits diverse effects on various cellular 

processes, including the DNA damage response, preservation of genomic stability, modulation 

of chromatin modifications, and regulation of the cell cycle control [273, 274]. In cancer, 

SMURF2 has been correlated with the development and progression of tumors. However, 

divergent findings in various studies depict its role as either promoting or suppressing tumors 

in different cancers, as Fu et al. explained in their review [275].  

For instance, certain investigations have demonstrated that elevated SMURF2 levels can foster 

invasion, migration, and metastasis in human breast cancer tissues and MDA-MB-231 cell lines 

[276, 277]. Similarly, SMURF2 overexpression has been linked to esophageal squamous cell 

carcinoma and pancreatic carcinoma, with specific implications for tumor invasion and lymph 

node metastasis [278, 279]. In colorectal carcinoma, SMURF2's potential oncogenic role has 

been suggested, as it was found to enhance the invasion and migration of tumor cells [280]. 

However, a contrasting perspective was provided by Fukunaga et al., who demonstrated that 

knockdown of Smurf2 in MDA-MB-231 cells promoted cell migration in vitro and led to bone 

metastasis in vivo, indicating a possible tumor suppressor function [281].  

Notably, SMURF2's functional diversity extends to hepatocellular carcinoma, where it was 

reported to suppress metastasis through the ubiquitin degradation of Smad2 [282]. In 

medulloblastoma, the intricate role of SMURF1 and SMURF2 was demonstrated, as their 

knockdown or overexpression promotes or inhibits cell proliferation, and colony formation 
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respectively, by modulating RNF220 protein levels, thus affecting Shh signaling [283]. 

Additionally, a noteworthy context arises in lung cancer, where the role of SMURF2 as a tumor 

suppressor was highlighted. Depletion of SMURF2 was shown to promote cell proliferation 

and tumorigenesis in-vitro and in-vivo in nude mice [284]. 

Accumulating evidence indicates that SMURF2 regulates a wide spectrum of physiological 

processes, including cell proliferation, invasion, and migration through its regulatory functions 

within various signaling pathways [277, 285, 286]. This observation aligns with our pathway 

enrichment analysis results. 

In our investigation, we observed a significant upregulation of SMURF2 expression in the poly-

metastasis group compared to both the oligo-synchronous and oligo-metachronous BrM groups. 

While the direct link between SMURF2 and brain metastasis remains underexplored in existing 

literature, the multifaceted involvement of SMURF2 in regulating cell migration and invasion 

suggests its potential significance in the poly metastatic process. Thus, despite the limited 

specific studies, our results fostered us to consider SMURF2 as a potential player in BrM, 

encouraging further investigation and validation of its role within this context. 

S100A2 is a member of the S100 family of proteins with a wide expression distribution across 

various organs, and engaging in interactions with a broad spectrum of molecules [287-289]. Its 

presence has been identified in organs such as the lungs, kidneys, prostate, and various glands, 

in addition to being found in mammary epithelial cells [290]. Notably, this protein family has 

been linked to pivotal roles in both physiological and pathological processes, contributing to 

human diseases [291]. 

In the context of cancer, S100A2 plays a significant role in tumor pathogenesis. Research has 

demonstrated that S100A2 is induced by the p53 activator etoposide and positively regulated 

by p53 [292-294]. Furthermore, BRCA1 has been implicated in the interaction with ΔNp63, 

leading to the positive regulation of S100A2 expression and consequent tumor growth [295]. 

Interestingly, there are controversial roles of S100A2 in cancerogenesis, wherein it functions as 

a tumor suppressor in certain cancer types [290], such as breast cancer [296], esophagus 

squamous cell carcinoma [297] and oral cancer [298]. In contrast, it acts as tumor promoter in 

others [290], with instances of S100A2 overexpression observed in epithelial skin tumors [299] 

and ovarian cancer [300]. 

The dual role of S100A2 was specifically observed in lung cancer [301]. Feng et al. proposed 

S100A2 as a tumor suppressor in the early stages of human lung carcinogenesis [302]. 

Conversely, Heighway et al. [303] and Wang et al. [304] reported frequent overexpression of 



 84 

S100A2, which and linked with worst prognosis in NSCLC patients with stage I. Moreover, 

elevated levels of S100A2 mRNA expression have been correlated with unfavorable clinical 

outcomes in patients with NSCLC who have undergone surgical resection [305]. 

The significance of S100A2 expression has been observed in various malignancies, reflecting 

alterations in its expression during the transformation and metastasis of different cell types and 

tumors [306]. Naz et al. reported a protumorigenic action of S100A2 and its involvement in 

EMT and TGF-β-mediated cancer cell invasion in A549 lung cancer cells [307]. Moreover, 

earlier studies have underscored the crucial role of S100A2 as a positive driver of tumor 

development and distant metastasis in NSCLC [305, 308]. In addition, overexpression of 

S100A2 in LUAD tissues has been associated with lymph node metastasis [309]. We found that 

S100A2 was upregulated in the poly-metastasis group when compared to the oligo-BrM groups. 

However, this expression difference reached significance only within the oligo-metachronous 

BrM subgroup. 

Interestingly, S100A protein family has been also implicated to participate in innate and 

adaptive immune responses, cell migration, tissue development, repair mechanisms, and tumor 

cell invasion [287]. These proteins were suggested to function through IL-17 signaling pathway. 

In low-grade glioblastoma, S100A2 was shown to be positively correlated with the infiltration 

of CD4+ T-cells, B-cells, macrophages, neutrophils, and dendritic cells [310]. Similarly, this 

positive correlation between S100A2 and M0 macrophages and activated dendritic cells was 

also observed in pancreatic cancer. However, it showed a remarkable negative correlation with 

CD8+ T-cells and NK cells [311]. These associations highlight the potentially pivotal role of 

S100A2 in orchestrating interactions within the tumor microenvironment and the immune 

response. 

Given these findings, S100A2 emerges as an attractive candidate gene for validation. This could 

potentially shed light on its involvement in the complex mechanism underlying metastasis and 

its interplay with the immune milieu within the brain microenvironment. 

Both SMURF2 and S100A2 showed similar expression patterns, with elevated levels in the poly-

metastatic group. Furthermore, pathway enrichment analysis indicated their involvement in cell 

motility and migration. Despite the conflicting findings regarding their roles in cancer, we 

hypothesize that SMURF2 and S100A2 may contribute to the promotion of multi-metastatic 

dissemination to different organs. 

To our current knowledge and search, there is no published data available for the direct 

comparison between oligo-BrM and poly-metastasis groups. Therefore, the candidate genes we 
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have identified hold the promise of ser ving as novel biomarkers capable of distinguishing 

between these distinct metastatic patterns. However, the specific mechanisms and roles of these 

genes in this process remain unclear and require further investigation. The validation of these 

potential biomarkers is in progress, with ongoing testing of suitable antibodies to confirm their 

utility and reliability. 

5.3. Immune landscapes of BrM-NSCLC 

The immune defense mechanisms in the brain differ from those in most other tissues and play 

a pivotal role in responding to tumors [312]. On a systemic level, tumor cells and the peripheral 

immune system mutually influence each other, giving rise to what is commonly referred to as 

the systemic immune environment [153]. Consequently, conducting a comprehensive analysis 

of local and peripheral immunological characteristics holds the potential to unveil crucial 

insights into immune-related parameters associated with BrM. 

In this part of our project, we aimed to explore the local and peripheral immunological 

characteristics of NSCLC patients with BrM. Within the brain microenvironment, we observed 

that CD68+ cells were the predominant immune cell population both in the peri-tumoral and 

intra-tumoral regions of the brain. Interestingly, our analysis revealed significantly higher 

counts of CD68+ cells and lymphocytes (TILs) in the peri-tumoral regions compared to the 

intra-tumoral areas. Nevertheless, it is noteworthy that, similar to findings from other research 

studies, the abundance of TILs was notably lower than what has been reported for primary lung 

tumors. This observation suggests the presence of an immunosuppressive microenvironment in 

the brain [117, 122, 313, 314]. 

To my knowledge, no prior studies have investigated the immune profiles among different brain 

metastatic patterns. In our tissue immunophenotyping, a specific upregulation in CD4+ T-cells 

was observed in oligo-synchronous BrM compared to the other metastatic groups. This 

difference was particularly pronounced in the infiltration of intra-tumoral CD4+ T-cells. Earlier 

in-vivo data have demonstrated that CD4+ T-cells, including T helpers and Tregs, can influence 

metastatic spreading independently of the presence or absence of CD8+ T-cells, illustrating both 

pro- and anti-metastatic roles of CD4+ T-cells depending on their differentiation [315].  

Therefore, to gain further insights into the role of CD4+ T-cells, we evaluated their expression 

of FOXP3, a marker indicative of Tregs [316]. Our analysis revealed that T-cells expressing 

FOXP3 did not exhibit significant differences among the various BrM groups. This suggests 

that perhaps it's not Tregs but other subsets of CD4+ T-cells, such as T-helpers, that hold 

particular importance for the oligo-synchronous BrM group. Therefore, it is necessary to 
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conduct more in-depth investigations that can help precisely identify and characterize these T-

cell populations. Techniques like spatial single cell sequencing offer the potential to capture the 

exact phenotypes of these cells.  

However, an intriguing finding emerged—there was a positive correlation between the presence 

of infiltrating cells expressing FOXP3 in intra-tumoral regions and overall survival for the 

whole study cohort (p= 0.045). Although limited data exist on the prognostic significance of  

FOXP3 in BrM [141, 317], our findings are in alignment with another study focused on BrM-

NSCLC. This study also reported a positive correlation between overall survival and the density 

of FOXP3-expressing cells within tumor lesions, but not in the peri-tumoral regions [122]. This 

result stands in contrast to the general trend observed in tumors. Therefore, the expression of 

FOXP3 warrants further investigation to elucidate this phenomenon. 

Moreover, metastatic disease has been demonstrated to modulate also the peripheral immune 

response, which can be monitored in the blood of cancer patients [318]. Therefore, we used 

flow cytometry to compare the peripheral blood T- and NK-cell profiles, including their subsets 

in different BrM-NSCLC groups. Consequently, when comparing patients from the three 

different BrM groups, no significant differences emerged regarding the population sizes of 

CD4+ and CD8+ T-cells. However, correspondingly to the results from the BrM tissues, a 

notable shift was identified in the distribution of CD4+ differentiation phenotypes. Exploring 

the expression patterns of T-cell functional differentiation subtypes, exhibited remarkable 

differences in CD4+ subtypes patterns among the BrM groups, whereas CD8+ subtypes showed 

a relative homogeneity. This observed distinctive pattern may potentially imply that metastasis 

triggers different immune responses specifically on the level of peripheral CD4+ T-cells. Our 

analysis showed more CD4+ naïve cells in the oligo-synchronous BrM group, while TeffRA+ 

and TeffRA- cells were significantly less observed. Naïve T-cells function as immune 

surveillance circulating in the blood, promptly reacting to foreign antigens. Subsequently, they 

get activated and differentiate into effector cells TeffRA+ that eliminate or help other immune 

cells to combat the invader. After the peak of effector expansion and the clearance of antigen, 

most activated T-cells die, and only a small population transitions into a memory T-cell pool. 

Part of these memory cells are effector memory cells (TeffRA-), which provide a rapid immune 

response upon restimulation [319-321]. Overall, our results indicate that patients with oligo-

synchronous BrM have a less activated immune system suggesting that a brain metastasis alone 

does not trigger a robust peripheral immune response. 
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Furthermore, our investigation revealed a noticeable increase in CD73 expression, specifically 

in CD4+ and Treg cells in oligo-synchronous BrM compared to the other BrM groups. In human 

peripheral T-cell compartments, CD73 is primarily expressed on naïve CD8+ T-cells and to a 

lesser extent on memory CD8+ T-cells [322, 323]. Conversely, circulating CD4+ T-cells 

expressing CD73 are predominantly memory cells [324]. Moreover, a specific subpopulation 

of effector CD4+ cells enriched in polyfunctional Th1.17 cells has been reported [325]. 

However, CD73 expression on Treg is relatively low [325, 326].  

CD73 is a membrane-bound enzyme expressed on both tumor and immune cells, converting 

AMP into adenosine [322, 327]. Adenosine interacts with A2AR expressed on immune cells, 

inhibiting T-cell activation, proliferation, and cytokine secretion [328]. In Murine models, 

CD73 is mostly expressed by Tregs and involved in suppressing the anti-tumor immune 

response [329]. However, in humans, the role of adenosine-mediated suppression by Tregs is 

still unclear [330, 331]. Tolosa and colleagues suggested that human Treg-derived CD73 is not 

essential for adenosine-mediated suppression of conventional CD4+ T-cells [332]. On the other 

side, Mandapathil et al. reported that inhibition of CD73 reduced human-mediated suppression 

in-vitro [326]. These differences in CD73 expression between murine and human models, as 

well as in-vitro and in-vivo studies make its function unclear. Therefore, it is uncertain whether 

CD73 expression variations observed in Tregs influence metastatic patterns or the immune 

response in our NSCLC patients. 

In our unsupervised analysis, a difference in cluster 2 of oligo-synchronous BrM emerged, 

encompassing CD4+ CD45RA+ CD127+ CD73+ cells (Figure 27b). This population may 

belong to early-memory CD4+ cells that could have migrated from the TME into circulation. a 

previous study has reported a higher proportion of CD73 on circulating CD4+ in patients with 

chronic inflammation [333], indicating that CD73 on CD4+ might be part of an immune 

inflammatory response. Beyond its enzymatic function, CD73 has been identified as a 

lymphocyte differentiation antigen, suggesting its involvement in lymphocyte maturation, 

development, and T-cell activation. Additionally, CD73 serves as an adhesion molecule 

facilitating the binding of lymphocytes to the endothelium [334-336].  

While studies on CD73 in the peripheral immune system are very scarce, its impact on tumor 

progression and anti-tumor responses in NSCLC has been observed in the TME [337, 338].  

Given the complex roles and mechanisms of CD73, caution is needed when interpreting our 

results. While the exact function of CD73 in BrM-NSCLC requires further investigation, our 

data suggest an intriguing difference among BrM cohorts. We observed an elevated presence 



 88 

of CD73+ T-cells in oligo-synchronous BrM, particularly within CD4 and Treg cell populations. 

These findings align with the observed differentiation phenotypes of CD4+ T-cells observed in 

the oligo-synchronous BrM, indicating a more pronounced immune suppressive environment 

in this BrM group. 

In summary, it has been suggested that the differentiation patterns of peripheral CD4 cells can 

serve as an independent predictor of tumor progression in NSCLC [339]. Our data provides 

additional evidence that this approach also yields valuable insights into the pattern of metastatic 

spread among BM patients.   

5.4. Does the tumor’s genomic landscape shape the host’s immune profile or vice 

versa? 

The mutational characteristics of cancer cells can influence the immune phenotype of the tumor 

microenvironment (TME) by initiating immunosuppressive signals that contribute to the 

formation of a tumor-supportive TME. Conversely, TME compartments can also in turn impact 

the genomic landscape of the tumor. This impact is not limited to simply detecting and 

eliminating immunogenic clones but extends to promoting the outgrowth of clones capable of 

evading immune responses [340]. This intricate relationship has been observed in various 

cancer types, including NSCLC [341], pediatric and adult brain tumors [342-344]. 

Interestingly, oligo-synchronous BrM displayed the most pronounced alterations in both 

molecular and immunological aspects. The chromosomal aberrations observed in this group 

might exert an influence on the presence of CD4+ T-cells within the TME or their differentiation 

profile in peripheral blood. For instance, studies have noted that TP53-mutant lung BrMs 

exhibit increased infiltration and activation of CD8+ T-cells, along with a more 

immunosuppressive myeloid compartment [206]. Among our candidate genes, TLR3 and 

S100A2 have been implicated in innate and adaptive immune responses, as mentioned earlier. 

This suggests a possible connection between molecular alterations and immune profiles, 

however, confirming this hypothesis requires further investigation. 

5.5. Conclusion and outlook 

The high mortality rate associated with lung cancer is primarily attributed to early metastasis to 

various organs, including the brain, which occurs in more than 40% of cases [345]. Brain 

metastases pose a significant clinical challenge in the management of lung cancer patients, often 

resulting in a median survival rate of less than six months without treatment [76]. Therefore, 

there is an urgent need to identify reliable markers that can aid in predicting brain metastasis 



 89 

and the extent of tumor spread. Finding such markers would enable clinicians to identify 

patients with a high risk of developing brain metastasis and determine those who could benefit 

from radical treatment. 

In this study, our primary objective was to gain a deeper understanding of the biology 

underlying different patterns of brain metastasis in NSCLC. To achieve this, we conducted a 

novel and comprehensive analysis, including molecular and immunological aspects of our BrM 

cohort. With that, we wanted to find potential biomarkers that could differentiate between oligo-

BrM and poly-metastatic disease. Notably, while numerous studies have recently explored 

BrM-NSCLC, none have delved into this particular aspect of the disease. 

Prior research has suggested that oligometastatic disease might manifest as a distinctive form 

with specific molecular characteristics [106, 346]. To delve deeper into this hypothesis, our 

study included two distinct groups within our cohort: oligo-BrM patients, where brain 

metastasis was the sole affected organ, and patients with multiple distant metastases, including 

brain metastasis, termed the poly-metastatic group. Furthermore, the oligo-BrM group was in 

turn divided into synchronous and metachronous oligo-BrM. It's important to note that our 

cohort is not a purely random selection of samples, as all patients underwent surgery at the UKE 

hospital. Consequently, future investigations may benefit from including samples from diverse 

sources to enhance the robustness of our findings. 

When examining the mutational landscape across various BrM subtypes, we found that small 

somatic mutations (SNVs and InDels), tumor mutational burden (TMB), and mutational 

signatures did not exhibit significant differences among the three BrM patterns. However, the 

profiles of CNA unveiled substantial distinctions, particularly within four chromosomal regions 

on chromosomes 4, 5, 8, and 12. Specifically, the oligo-synchronous BrM group exhibited a 

significant loss in more than half of the samples within a >37Mb segment on chromosome 4q. 

Additionally, this subgroup displayed a notable gain in 8p and a loss in 12p, although these 

regions were comparatively smaller in size. 

From these observations, it can be inferred that the average frequency of the small somatic 

mutations is generally higher across all BrM patterns when compared to published data on 

primary NSCLC, which aligns with previous research findings. However, it's important to note 

that these mutations do not appear to influence the metastatic patterns or distinguish between 

the BrM subgroups. It should be emphasized that one of the limitations of our study was the 

relatively small cohort size, underscoring the need for further confirmation with a larger sample 

pool. Nonetheless, it is evident that chromosomal aberrations play a role in characterizing 
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synchronous brain metastasis in NSCLC. Copy number alterations have previously been linked 

to an increased risk of distant metastases at the time of diagnosis in a prior investigation [347].  

Furthermore, it's worth noting that RNA data faced limitations, with even fewer samples 

included due to degradation issues in some samples during the sequencing process. 

Additionally, the majority of oligo-metachronous BrM samples had received prior treatment, 

potentially impacting the results and making direct comparisons challenging. 

Based on NGS data obtained from DNA and RNA, and the subsequent bioinformatic analyses, 

we have identified five genes that hold promise as potential markers capable of distinguishing 

between the distinct BrM subgroups. These candidate genes have previously been implicated 

in tumor progression and metastasis, offering intriguing avenues for further exploration. 

Validation of these candidate genes is necessary to confirm their impact at the protein level, 

involving IHC staining of the target protein on an extensive set of samples, including both 

metastatic and non-metastatic cases to validate sensitivity and specificity. In addition, in-vitro 

functional experiments on cell lines focusing on these target genes are essential to elucidate 

their functions and assess the feasibility of testing them in different in-vivo models. 

In clinical diagnosis and treatment, identifying predictive or prognostic markers can empower 

clinicians to categorize patients at risk for either oligo- or poly-metastatic disease, thereby 

aiding in the identification of individuals who can benefit from specific treatments. 

Our study provides valuable insights into the immune landscape of brain metastasis in NSCLC. 

Notably, the oligo-synchronous BrM group exhibited specific alterations in the CD4+ T-cell 

population, both within the tumor microenvironment and in peripheral blood. To the best of our 

knowledge, no prior research has explored the relationship between CD4+ T-cells and BrM. 

Therefore, further investigations are warranted to unravel the intricate connection between 

NSCLC and its distinct BrM phenotypes. 

While our project focused on T-cells and NKs, it's essential to acknowledge that other immune 

cell populations likely influence BrM formation. Therefore, future studies should delve into the 

roles of immune cells such as B-cells and macrophages. Additionally, broadening the scope to 

include more samples is imperative to define the biological significance of the observed 

differences, particularly in the context of driving oligo-metastatic disease. 

In conclusion, this thesis sheds light upon the molecular and immunological characteristics of 

different patterns in NSCLC, uncovering novel alterations at both levels. Furthermore, our 

research has identified five potential biomarkers, with two of them implicated in the immune 

system. However, validation of these findings is still essential. Our data represents a significant 
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step forward in comprehending BrM disease, laying the foundation for further investigations 

and advancing our knowledge in this field. 
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6. Abstract 

Brain metastases (BrMs) pose a severe complication in cases of lung cancer, significantly 

impacting both patient prognosis and their quality of life. Approximately 5-10% of individuals 

with non-small cell lung cancer (NSCLC) experience the presence of BrMs at the time of their 

initial diagnosis, and up to 40% will develop BrMs as the disease progresses, resulting in 

significantly reduced overall survival rates. However, patients with oligometastasis (involving 

only the brain) tend to exhibit a more favorable prognosis and may represent a distinct disease 

manifestation compared to patients with multiple metastases affecting distant organs (poly-

metastases). 

The influence of host-related (immunological) factors and tumor-specific variables in 

governing the extent of metastatic spread to the brain has remained relatively unexplored. In 

this thesis, we aimed to gain a better comprehension of BrM in NSCLC. Our objectives were 

twofold: first, to investigate and compare the molecular characteristics and immunological 

phenotypes of patients with three different BrM patterns—oligo-synchronous (BrM at the initial 

diagnosis), oligo-metachronous (BrM occurring later after the initial diagnosis), and poly-

metastasis (involving multiple organs, including the brain); second, to identify new markers 

capable of predicting oligo- or poly-metastatic disease, which could assist clinicians in 

identifying patients who would benefit from more aggressive treatment strategies. 

Tumor-specific factors were investigated through DNA and RNA next-generation sequencing 

(NGS) of brain metastases. While the landscape of copy number alterations (CNAs) showed 

significant variation among the studied groups, point-mutation profiles remained consistent 

across the patient groups. 

Through mRNA-seq analysis, we revealed distinct gene expression patterns among the BrM 

patterns. The comprehensive data analyses identified five potential candidate genes (TLR3, 

PDE3A, AKR1C1, SMURF2, and S100A2) that may contribute to the metastatic process or 

growth patterns. These genes hold promise as biomarkers to distinguish between oligo- and 

poly-metastatic disease.  

To investigate variations in immune phenotypes among our BrM cohorts, tissue samples were 

analyzed for tumor-infiltrated lymphocytes (TILs) and microglia/macrophages within the tumor 

microenvironment (TME). In parallel, blood samples were examined to probe the peripheral 

immune landscape of the studied groups, focusing on T-cells and NK cells. Interestingly, the 

oligo-synchronous BrM group exhibited significant distinctions in CD4+ T-cell populations in 

both TME and peripheral blood when compared to the other groups. Additionally, we detected 
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a higher frequency of CD73-expressing CD4+ T-cell populations in the oligo-synchronous BrM 

group. Taken together, these findings indicate a unique immune profile at the CD4+ T-cell level 

in the oligo-synchronous BrM group. 

Taken together, the current study represents the first comprehensive investigation into the 

distinct patterns of brain metastasis in NSCLC disease. Our findings unveil intriguing 

differences in the molecular and immunological profiles of oligo-synchronous BrM, providing 

essential insights into the complexity of BrM in NSCLC. 
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Zusammenfassung  

Gehirnmetastasen (BrMs) stellen eine schwerwiegende Komplikation bei Lungenkrebs dar und 

beeinflussen signifikant die Prognose der Patienten sowie deren Lebensqualität. Etwa 5-10% 

der Personen mit nicht-kleinzelligem Lungenkrebs (NSCLC) weisen bei ihrer erstmaligen 

Diagnose BrMs auf, und bis zu 40% entwickeln BrMs im Verlauf der Krankheit, was zu 

erheblich reduzierten Überlebensraten führt. Allerdings neigen Patienten mit Oligometastasen 

(nur im Gehirn) dazu, eine bessere Prognose zu haben und könnten eine eigenständige 

Krankheitsmanifestation im Vergleich zu Patienten mit multiplen Metastasen in entfernten 

Organen (Poly-Metastasen) darstellen. 

Der Einfluss von wirtsspezifischen (immunologischen) Faktoren und tumorbezogenen 

Variablen auf das Ausmaß der metastatischen Ausbreitung im Gehirn ist weitgehend 

unerforscht geblieben. In dieser Dissertation hatten wir zwei Hauptziele: Erstens wollten wir 

eine bessere Verständnis für BrM im NSCLC entwickeln. Wir untersuchten und verglichen die 

molekularen Merkmale und immunologischen Phänotypen von Patienten mit drei 

verschiedenen BrM-Mustern: oligosynchron (BrM bei der erstmaligen Diagnose), 

oligometachron (BrM traten später nach der erstmaligen Diagnose auf) und Polymetastasen 

(mit multiplen Organen, einschließlich des Gehirns). Zweitens wollten wir neue Marker 

identifizieren, die in der Lage sind, oligo- oder polymetastatische Erkrankungen vorherzusagen 

und Ärzten bei der Identifizierung von Patienten unterstützen könnten, die von aggressiveren 

Behandlungsstrategien profitieren würden. 

Tumorspezifische Faktoren wurden durch die DNA- und RNA-Sequenzierung der nächsten 

Generation (NGS) von Gehirnmetastasen untersucht. Während die Landschaft der 

Kopienzahlveränderungen (CNAs) erhebliche Unterschiede zwischen den untersuchten 

Gruppen aufwies, blieben die Punktmutationsprofile zwischen den Patientengruppen 

konsistent. 

Durch mRNA-Sequenzierung zeigten sich unterschiedliche Genexpressionsmuster zwischen 

den BrM-Mustern. Die umfassende Datenanalyse identifizierte fünf potenzielle 

Kandidatengene (TLR3, PDE3A, AKR1C1, SMURF2 und S100A2), die zum metastatischen 

Prozess oder den Wachstumsmustern beitragen könnten. Diese Gene bergen das Potenzial als 

Biomarker zur Unterscheidung zwischen oligo- und polymetastatischen Erkrankungen. 

Um Unterschiede in den Immunphänotypen unserer BrM-Kohorten zu untersuchen, wurden 

Gewebeproben auf tumorinfiltrierende Lymphozyten (TILs) und Mikroglia/Makrophagen 

innerhalb des Tumormikroenvironments (TME) analysiert. Parallel dazu wurden Blutproben 
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untersucht, um die periphere Immunlandschaft der untersuchten Gruppen zu untersuchen, 

wobei der Fokus auf T-Zellen und NK-Zellen lag. Interessanterweise zeigte die Gruppe der 

oligosynchronen BrM signifikante Unterschiede in CD4+ T-Zell-Populationen im TME und im 

peripheren Blut im Vergleich zu den anderen Gruppen. Darüber hinaus stellten wir eine höhere 

Frequenz von CD73-expressierenden CD4+ T-Zell-Populationen in der Gruppe der 

oligosynchronen BrM fest. Zusammenfassend deuten diese Befunde auf ein einzigartiges 

Immunprofil auf CD4+ T-Zellebene in der Gruppe der oligosynchronen BrM hin. 

Zusammenfassend stellt diese Studie die erste umfassende Untersuchung der unterschiedlichen 

Muster von Hirnmetastasen in der NSCLC-Krankheit dar. Unsere Erkenntnisse enthüllen 

faszinierende Unterschiede in den molekularen und immunologischen Profilen von 

oligosynchronen BrM, die wesentliche Einblicke in die Komplexität von BrM im NSCLC 

bieten. 
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7. List of abbreviations 

AKR1C1 Aldo-keto reductase family 1 member C1 

ALK Anaplastic lymphoma kinase 

BBB Blood-brain barrier 

BRAF B-raf proto-oncogene 

BrM Brain metastasis 

CNA Copy number alteration 

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4 

DC Dendritic cells 

DEG Differently expressed gene 

EGFR Epidermal growth factor receptor 

EMT Epithelial-mesenchymal transition 

FFPE Formalin fixed paraffin embedded 

FGFR1 Fibroblast growth factor receptor 1 

GO Gene Ontology 

HRD Homologous Recombination Deficiency 

ICIs Immune checkpoints inhibitors 

KEGG Kyoto Encyclopedia of Genes and Genomes 

KRAS Kirsten rat sarcoma viral oncogene homolog 

LCLC Large cell carcinoma 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

MMR DNA mismatch repair 

NK Natural killers 

NSCLC Non-small cell lung cancer 

PBMC Peripheral blood mononuclear cells 

PD-1 Programmed death protein 1 

PD-L1 Programmed death-ligand 1 

PDE3A Phosphodiesterase 3A 

PMN Pre-metastatic niche 

S100A2 S100 calcium-binding protein A2 

SBS Single Base Substitution 

SCLC Small cell lung cancer 

SMURF2 SMAD Specific E3 Ubiquitin Protein Ligase 2 
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TCGA The Cancer Genomic Atlas 

TILs Tumor-infiltrating lymphocytes 

TKI Tyrosine kinase inhibitors 

TLR3 Toll Like Receptor 3 

TMB Tumor mutational burden 

TME Tumor microenvironment 

TP53 Tumor protein p53 

Tregs Regulatory T cells 

UICC Union for International Cancer Control 

WES Whole-exome sequencing 

WGS Whole-genome sequencing 
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8. Appendix 

Supplement table 1: Top 40 DEGs in oligo-synchronous vs. oligo-metachronous BrM 

Gene.symbol EnsemblID log2FoldChange lfcSE pvalue padj 

SCGB3A1 ENSG00000161055 7.181.995.463 1.181.327.334 1.20E-09 2.110E-05 

LINC00942 ENSG00000249628 -5.249.826.575 1.035.214.175 3.95E-07 3.454E-03 

LXN ENSG00000079257 279.123.441 0.568699305 9.20E-07 4.651E-03 

MAST4-AS1 ENSG00000229666 3.564.502.757 0.730528944 1.06E-06 4.651E-03 

BMP5 ENSG00000112175 4.890.127.136 1.026.424.114 1.90E-06 4.686E-03 

SLC26A9 ENSG00000174502 -4.747.995.357 0.99714778 1.92E-06 4.686E-03 

PCSK9 ENSG00000169174 -4.853.378.772 1.022.489.976 2.07E-06 4.686E-03 

TDRD12 ENSG00000173809 478.763.916 1.010.209.045 2.15E-06 4.686E-03 

CYS1 ENSG00000205795 4.339.375.354 0.924987601 2.72E-06 5.273E-03 

MOBP ENSG00000168314 -4.190.720.827 0.900739222 3.28E-06 5.731E-03 

IGFL2 ENSG00000204866 4.530.689.482 0.986257754 4.35E-06 6.915E-03 

AZGP1 ENSG00000160862 5.143.454.353 1.135.583.142 5.92E-06 8.369E-03 

PCSK2 ENSG00000125851 -775.961.914 1.717.263.105 6.23E-06 8.369E-03 

PPEF1 ENSG00000086717 -3.567.108.646 0.799582599 8.15E-06 1.017E-02 

TPSB2 ENSG00000197253 3.850.160.064 0.87821647 1.16E-05 1.296E-02 

GLB1L3 ENSG00000166105 664.306.336 151.717.173 1.19E-05 1.296E-02 

INHA ENSG00000123999 -5.567.018.707 1.274.820.743 1.26E-05 1.296E-02 

TGFBR3 ENSG00000069702 3.018.060.592 0.710725422 2.17E-05 2.039E-02 

GNLY ENSG00000115523 -2.789.606.582 0.657637466 2.22E-05 2.039E-02 

SPTSSB ENSG00000196542 43.136.098 1.020.695.739 2.38E-05 2.077E-02 

H3C10 ENSG00000278828 2.923.278.696 0.693873193 2.52E-05 2.097E-02 

TEK ENSG00000120156 2.477.108.348 0.591428689 2.81E-05 2.232E-02 

OTUD7A ENSG00000169918 -3.247.185.679 0.782736789 3.35E-05 2.519E-02 

TCIM ENSG00000176907 -3.294.626.287 0.795620932 3.46E-05 2.519E-02 

DMBT1 ENSG00000187908 4.374.306.774 1.068.317.046 4.23E-05 2.957E-02 

SFTPA2 ENSG00000185303 4.876.441.215 1.193.691.263 4.40E-05 2.961E-02 

PIPSL ENSG00000180764 -1.440.521.715 0.353850295 4.68E-05 2.974E-02 

DSCAML1 ENSG00000177103 -4.325.716.445 1.063.633.858 4.76E-05 2.974E-02 

NPW ENSG00000183971 3.787.150.698 0.945949033 6.24E-05 3.761E-02 

RASD1 ENSG00000108551 -3.485.190.723 0.87255783 6.49E-05 3.781E-02 

GON4L ENSG00000116580 -1.101.548.387 0.277412269 7.16E-05 4.039E-02 

EYA2 ENSG00000064655 3.193.096.095 0.808652761 7.86E-05 4.117E-02 

MFAP5 ENSG00000197614 4.044.063.792 1.025.339.928 8.01E-05 4.117E-02 

CDK5R2 ENSG00000171450 -2.802.615.646 0.714039872 8.67E-05 4.293E-02 

CBR1 ENSG00000159228 -2.455.250.736 0.626284996 8.84E-05 4.293E-02 

NEFM ENSG00000104722 -4.413.294.017 113.319.309 9.84E-05 4.511E-02 

BOC ENSG00000144857 3.195.195.793 0.821548537 0.00010056 4.511E-02 

FZD10 ENSG00000111432 -3.410.916.247 0.877532776 0.000101516 4.511E-02 

POLRMTP1 ENSG00000266066 -2.116.981.343 0.545214591 0.000103243 4.511E-02 

AKR1B10 ENSG00000198074 -5.515.408.881 1.426.433.661 0.000110376 4.705E-02 
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Supplement table 2: Top 40 DEGs in oligo-synchronous BrM vs. poly-metastases 

Gene.symbol EnsemblID log2FoldChange lfcSE pvalue padj 

FZD10 ENSG00000111432 -5.270.424.696 0.817072079 1.12E-10 0.00000195 

CYP11A1 ENSG00000140459 -4.914.428.604 0.904967036 5.62E-08 0.000491085 

AKR1B10 ENSG00000198074 -700.872.236 1.320.618.497 0.000000111 0.000617892 

SMURF2 ENSG00000108854 1.917.728.895 0.364351261 0.000000141 0.000617892 

PPEF1 ENSG00000086717 -3.785.065.492 0.739781098 0.000000311 0.001088222 

SPINK2 ENSG00000128040 5.197.208.404 1.022.699.658 0.000000374 0.001088799 

BCL2L14 ENSG00000121380 4.128.037.629 0.818649932 0.00000046 0.001147312 

GATA2 ENSG00000179348 -3.441.385.902 0.696526779 0.000000778 0.001699964 

ATP10A ENSG00000206190 3.384.188.028 0.698500786 0.00000127 0.002459655 

HEPHL1 ENSG00000181333 -4.523.212.906 0.943744478 0.00000164 0.002874077 

RP11-964E11.2 ENSG00000258661 3.877.171.504 0.816107105 0.00000203 0.003219151 

MT1E ENSG00000169715 3.055.791.643 0.653781299 0.00000295 0.00394275 

SYT12 ENSG00000173227 3.594.414.599 0.769552915 0.000003 0.00394275 

RP11-705C15.3 ENSG00000257027 2.220.854.762 0.479047139 0.00000355 0.00394275 

ASCL2 ENSG00000183734 -3.439.935.147 0.742433766 0.0000036 0.00394275 

LINC01116 ENSG00000163364 3.959.506.202 0.858554701 0.00000399 0.004070673 

H3P6 ENSG00000235655 -1.130.278.454 0.245626397 0.00000419 0.004070673 

KCNE4 ENSG00000152049 -2.507.782.574 0.548556241 0.00000484 0.004229695 

CBR1 ENSG00000159228 -2.638.409.035 0.579311342 0.00000525 0.004354073 

ACKR3 ENSG00000144476 -282.655.847 0.623485733 0.0000058 0.004354073 

ITGA10 ENSG00000143127 335.077.899 0.739957591 0.00000594 0.004354073 

DIO2 ENSG00000211448 -294.267.881 0.650008775 0.00000598 0.004354073 

RNF150 ENSG00000170153 -3.402.659.693 0.754318896 0.00000646 0.004512967 

SPRR2D ENSG00000163216 6.124.630.305 1.370.138.869 0.00000782 0.004963545 

RSU1 ENSG00000148484 -0.871381966 0.194946371 0.00000783 0.004963545 

GLTPD2 ENSG00000182327 -3.571.765.485 0.799682212 0.00000795 0.004963545 

HLA-G ENSG00000204632 379.666.615 0.854465222 0.00000886 0.005180539 

TLR3 ENSG00000164342 2.315.724.465 0.521266454 0.00000889 0.005180539 

BPIFB1 ENSG00000125999 -5.998.796.164 1.353.264.342 0.0000093 0.00524354 

SEMA3A ENSG00000075213 3.219.128.218 0.729498958 0.0000102 0.005404693 

RARG ENSG00000172819 2.083.424.434 0.474630854 0.0000114 0.005477062 

DNMT3B ENSG00000088305 -2.645.978.474 0.6030847 0.0000115 0.005477062 

ALPL ENSG00000162551 -3.577.638.825 0.815750362 0.0000116 0.005477062 

DNAJC22 ENSG00000178401 26.307.456 0.602935275 0.0000128 0.005692752 

SPATA18 ENSG00000163071 -3.153.625.865 0.722925356 0.0000129 0.005692752 

HS3ST3B1 ENSG00000125430 -3.462.217.082 0.79491391 0.0000133 0.005692752 

SOX7 ENSG00000171056 -2.558.657.541 0.587626935 0.0000134 0.005692752 

ADAMTSL1 ENSG00000178031 -3.518.932.599 0.81452621 0.0000156 0.006486567 

COL26A1 ENSG00000160963 -30.262.734 0.704158267 0.0000173 0.006854784 

KSR1 ENSG00000141068 -2.225.752.935 0.518902369 0.0000179 0.00696006 
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Supplement table 3: Top 40 DEGs in oligo-metachronous BrM vs. poly-metastases 

Gene.symbol EnsemblID log2FoldChange lfcSE pvalue padj 

SCGB3A1 ENSG00000161055 -7.416.251.206 1.129.673.023 5.2E-11 0.00000091 

LXN ENSG00000079257 -2.932.180.295 0.543760336 6.95E-08 0.000607516 

S100A2 ENSG00000196754 3.441.742.575 0.676925993 0.000000369 0.001611678 

FNDC1 ENSG00000164694 -3.428.407.431 0.681464177 0.000000488 0.001706109 

DSCAML1 ENSG00000177103 5.032.498.069 1.020.048.479 0.000000807 0.002351752 

TPSB2 ENSG00000197253 -4.026.914.358 0.839365142 0.00000161 0.004009973 

TGFBR3 ENSG00000069702 -3.190.233.703 0.679603949 0.00000268 0.005845978 

EYA2 ENSG00000064655 -3.597.172.393 0.773720328 0.00000333 0.00647156 

L1CAM ENSG00000198910 383.288.717 0.845134414 0.00000575 0.009384673 

MFAP5 ENSG00000197614 -4.443.907.318 0.981056964 0.00000591 0.009384673 

KLF7 ENSG00000118263 1.406.182.924 0.313796899 0.00000742 0.01031395 

C8orf34-AS1 ENSG00000248801 -6.359.286.513 1.421.338.245 0.00000767 0.01031395 

FCGRT ENSG00000104870 -1.384.766.386 0.311982558 0.00000905 0.011303909 

KCNJ5 ENSG00000120457 -283.461.907 0.642647134 0.0000103 0.011545691 

FMO1 ENSG00000010932 -3.214.506.786 0.729709771 0.0000106 0.011545691 

LYVE1 ENSG00000133800 -3.383.899.161 0.77193752 0.0000117 0.011999215 

TEK ENSG00000120156 -2.460.759.533 0.565146999 0.0000134 0.012075448 

GLT8D2 ENSG00000120820 -2.251.483.655 0.518187197 0.0000139 0.012075448 

NYAP2 ENSG00000144460 3.713.395.246 0.857290731 0.0000148 0.012075448 

MYBPH ENSG00000133055 4.896.114.881 113.304.779 0.0000155 0.012075448 

HLA-G ENSG00000204632 380.671.654 0.883264635 0.0000163 0.012075448 

MYRF ENSG00000124920 2.776.965.386 0.645120546 0.0000167 0.012075448 

CLEC14A ENSG00000176435 -1.626.824.566 0.378376682 0.0000171 0.012075448 

CYP2T1P ENSG00000233622 -2.872.412.006 0.668389051 0.0000173 0.012075448 

STRN3 ENSG00000196792 1.128.813.113 0.265276806 0.0000209 0.012923009 

TMEM156 ENSG00000121895 333.109.813 0.78325188 0.0000211 0.012923009 

TDRD12 ENSG00000173809 -4.067.988.964 0.957863517 0.0000217 0.012923009 

PRDM6 ENSG00000061455 -2.366.315.174 0.558635287 0.0000228 0.012923009 

SPINK2 ENSG00000128040 4.462.312.845 1.053.835.659 0.0000229 0.012923009 

BZW1 ENSG00000082153 1.050.901.471 0.249077996 0.0000245 0.013119979 

LINC02701 ENSG00000250508 -3.754.539.467 0.890361691 0.0000248 0.013119979 

RAMP2 ENSG00000131477 -1.456.848.096 0.347950463 0.0000283 0.014534455 

CPA3 ENSG00000163751 -427.939.442 1.028.327.285 0.0000316 0.015787626 

AJM1 ENSG00000232434 1.709.959.149 0.412698719 0.0000342 0.016616471 

RNF157 ENSG00000141576 2.610.041.084 0.634021497 0.0000384 0.017813461 

PDCL3P4 ENSG00000244119 3.327.625.153 0.809735413 0.0000396 0.017813461 

EXTL1 ENSG00000158008 281.196.151 0.684352637 0.0000397 0.017813461 

CORIN ENSG00000145244 -2.964.117.487 0.723489773 0.0000419 0.01816271 

COL11A1 ENSG00000060718 -3.166.795.637 0.773734245 0.0000426 0.01816271 

LMX1B ENSG00000136944 -391.197.774 0.957688601 0.0000441 0.018357121 
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Supplement table 4: Top 40 DEGs in oligo-synchronous or -metachronous BrM vs. poly-metastases 

Gene.symbol EnsemblID log2FoldChange lfcSE pvalue padj 

SPRR2D ENSG00000163216 5.520896019 0.933668927 3.35688E-09 5.35905E-05 

RSPO4 ENSG00000101282 -5.069386252 0.876322795 7.25818E-09 5.35905E-05 

CDH18 ENSG00000145526 5.21782473 0.908256211 9.19851E-09 5.35905E-05 

AKR1C1 ENSG00000187134 -6.236576792 1.09585562 1.26255E-08 5.51673E-05 

SPINK2 ENSG00000128040 4.805292743 0.87193327 3.56642E-08 0.000124668 

SCGB3A1 ENSG00000161055 -6.351084063 1.174840051 6.44788E-08 0.000187827 

FZD10 ENSG00000111432 -3.925272534 0.7424648 1.24466E-07 0.000310773 

HLA-G ENSG00000204632 3.801475921 0.724185188 1.52666E-07 0.000333537 

C8orf34-AS1 ENSG00000248801 -5.807316623 1.111718437 1.75355E-07 0.000340539 

COL26A1 ENSG00000160963 -2.967535512 0.601322973 8.01462E-07 0.001400796 

ZPLD1 ENSG00000170044 3.570269669 0.751904179 2.05129E-06 0.002987711 

ACKR2 ENSG00000144648 -3.58132342 0.764507641 2.80667E-06 0.003085176 

H3P6 ENSG00000235655 -0.996160581 0.212756015 2.83849E-06 0.003085176 

STRN3 ENSG00000196792 1.022420869 0.218789991 2.96731E-06 0.003085176 

RSU1 ENSG00000148484 -0.779677012 0.167683234 3.32416E-06 0.003085176 

SMURF2 ENSG00000108854 1.51682431 0.32694021 3.4933E-06 0.003085176 

LMX1B ENSG00000136944 -3.685144338 0.794598725 3.52235E-06 0.003085176 

BZW1 ENSG00000082153 0.954478182 0.205827455 3.53035E-06 0.003085176 

ALDH3A1 ENSG00000108602 -4.093984427 0.886142305 3.83725E-06 0.003193692 

FNDC1 ENSG00000164694 -2.768367712 0.603912949 4.56053E-06 0.003623134 

NINJ1 ENSG00000131669 -1.142805721 0.253309125 6.43689E-06 0.004689736 

ACKR3 ENSG00000144476 -2.455859019 0.544365871 6.43973E-06 0.004689736 

S100A2 ENSG00000196754 2.604547852 0.579733796 7.03385E-06 0.004917502 

L1CAM ENSG00000198910 3.141080305 0.706037731 8.63174E-06 0.005802523 

OAS3 ENSG00000111331 1.513388599 0.342500186 9.93191E-06 0.006143497 

ANO3 ENSG00000134343 -3.261955126 0.738305744 9.95433E-06 0.006143497 

CORIN ENSG00000145244 -2.672331863 0.605555115 1.01935E-05 0.006143497 

SLF1 ENSG00000133302 1.051003855 0.238807393 1.07727E-05 0.006276181 

ASCL2 ENSG00000183734 -2.892611289 0.662162 1.2514E-05 0.006625491 

MESP1 ENSG00000166823 -2.146179332 0.491632444 1.26882E-05 0.006625491 

SOX7 ENSG00000171056 -1.780826881 0.408260367 1.28886E-05 0.006625491 

RAMP2 ENSG00000131477 -1.263722697 0.291452492 1.45134E-05 0.00681481 

CLU ENSG00000120885 -2.29018516 0.529308758 1.51328E-05 0.00681481 

MFAP5 ENSG00000197614 -4.185666435 0.96818449 1.53774E-05 0.00681481 

DNAJC22 ENSG00000178401 2.245969221 0.519551724 1.53993E-05 0.00681481 

MT1A ENSG00000205362 3.478766486 0.805060006 1.55234E-05 0.00681481 

AJM1 ENSG00000232434 1.479295886 0.342422198 1.55963E-05 0.00681481 

DLX5 ENSG00000105880 -2.821483457 0.656246822 1.71242E-05 0.007126132 

SPATA18 ENSG00000163071 -2.72668764 0.635076538 1.75895E-05 0.007149523 

PCDHB3 ENSG00000113205 2.740772606 0.642164473 1.97213E-05 0.007833845 

 



 102 

Supplement table 5: Top 40 DEGs in oligo-synchronous vs. oligo-metachronous BrM or poly-metastases 

Gene.symbol EnsemblID log2FoldChange lfcSE pvalue padj 

PPEF1 ENSG00000086717 -3.689.543.155 0.655338374 0.000000018 0.000315004 

AKR1B10 ENSG00000198074 -6.189.483.015 1.194.752.211 0.000000221 0.00193327 

PCSK2 ENSG00000125851 -6.074.722.175 12.208.483 0.00000065 0.002267758 

CBR1 ENSG00000159228 -2.558.443.143 0.51538073 0.00000069 0.002267758 

SP8 ENSG00000164651 448.355.459 0.904305403 0.000000712 0.002267758 

SPRR2D ENSG00000163216 5.670.569.921 1.162.709.595 0.00000108 0.002551215 

LINC00942 ENSG00000249628 -4.218.645.903 0.871351657 0.00000129 0.002551215 

LINC01116 ENSG00000163364 3.729.034.629 0.770918032 0.00000132 0.002551215 

BCL2L14 ENSG00000121380 3.667.327.249 0.763571002 0.00000156 0.002551215 

DMBT1 ENSG00000187908 4.556.932.233 0.952356618 0.00000171 0.002551215 

SFTPA1 ENSG00000122852 514.449.909 1.076.220.284 0.00000175 0.002551215 

UPK3B ENSG00000243566 3.736.164.864 0.786337996 0.00000202 0.002716697 

GLB1L3 ENSG00000166105 5.110.670.986 1.081.580.707 0.0000023 0.002870185 

MAST4-AS1 ENSG00000229666 3.031.540.699 0.652568009 0.00000339 0.003951928 

SCGB3A1 ENSG00000161055 5.945.651.122 1.291.365.479 0.00000414 0.004320699 

RASD1 ENSG00000108551 -330.350.415 0.719758273 0.00000444 0.004320699 

SLC1A7 ENSG00000162383 4.695.709.973 1.025.737.282 0.0000047 0.004320699 

SYT12 ENSG00000173227 317.679.537 0.706446324 0.0000069 0.006021497 

GJB6 ENSG00000121742 4.090.548.794 0.911713885 0.00000723 0.006021497 

CYP11A1 ENSG00000140459 -3.746.482.081 0.840304974 0.00000825 0.006381424 

TMEM100 ENSG00000166292 3.752.895.857 0.843503329 0.00000862 0.006381424 

F5 ENSG00000198734 3.066.974.671 0.689882289 0.00000876 0.006381424 

POLRMTP1 ENSG00000266066 -195.751.192 0.444643895 0.0000107 0.007483871 

GLTPD2 ENSG00000182327 -3.121.683.101 0.71966558 0.0000144 0.009106018 

DDO ENSG00000203797 3.118.566.155 0.719422355 0.0000146 0.009106018 

ATP10A ENSG00000206190 2.871.968.918 0.664139355 0.0000153 0.009214408 

DIO2 ENSG00000211448 -2.542.405.301 0.58918986 0.000016 0.009214408 

KCNE4 ENSG00000152049 -2.148.688.729 0.498563476 0.0000163 0.009214408 

ZNF687 ENSG00000143373 -1.234.010.533 0.287310059 0.0000175 0.009501558 

ACADL ENSG00000115361 43.541.708 1.015.170.961 0.0000179 0.009501558 

SFTPC ENSG00000168484 5.833.424.583 1.375.346.493 0.0000222 0.011417672 

MT1E ENSG00000169715 2.598.491.625 0.615348741 0.0000241 0.012049394 

PIPSL ENSG00000180764 -1.182.320.532 0.280500794 0.000025 0.012124876 

SECISBP2L ENSG00000138593 -1.153.830.257 0.275551948 0.0000282 0.012676677 

SEMA6C ENSG00000143434 -1.499.958.541 0.358248894 0.0000283 0.012676677 

H3C10 ENSG00000278828 2.458.941.391 0.587302375 0.0000283 0.012676677 

CYP4B1 ENSG00000142973 -3.984.807.346 0.955160372 0.0000302 0.013200548 

SMURF2 ENSG00000108854 153.367.507 0.368694628 0.0000319 0.013581908 

LGMN ENSG00000100600 1.325.583.936 0.319208988 0.0000329 0.013672536 

IGFL2 ENSG00000204866 3.641.482.784 0.87840664 0.0000339 0.013778844 
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