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Abstract

Feynman integrals are central to the calculation of scattering amplitudes both in particle and grav-
itational wave physics. This thesis presents advancements in both the analytical and algebraic
structure of these integrals and shows how this can be used for efficient evaluation of these inte-
grals.

Paper I. In this paper the focus is on one-loop integrals. The singularities of these integrals are
fully described and used to derive the full symbol alphabet and canonical differential equation for
any number of external particles. It is proven that a large family of one-loop integrals satisfy the
Cohen-Macaulay property.

Paper II. Two infinite families of Feynman integrals satisfying the Cohen-Macaulay property
are classified. This property implies that both the singularities and the number of master integrals
is independent of space-time dimension and propagator powers.

Paper III. In this paper the singular locus of a Feynman integral is defined as the critical points
of a Whitney stratified map. Explicit code and calculations are provided which show that this
method captures singularities otherwise hard to detect.

Paper IV-V. The algebraic properties of the integrand, especially that of its Newton polytope
being a generalized permutohedron, is leverage together with tropical sampling to provide effi-
cient numerical evaluation of Feynman integrals with physical kinematics. The connection be-
tween the generalized permutohedron property and the Cohen-Macaulay property is also dis-
cussed.
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Zusammenfassung

Feynman-Integrale sind von zentraler Bedeutung für die Berechnung von Streuamplituden sowohl
in der Teilchen- als auch in der Gravitationswellenphysik. In dieser Arbeit werden Fortschritte
sowohl in der analytischen, als auch in der algebraischen Struktur der Integrale vorgestellt und
gezeigt, wie diese für eine effiziente Auswertung dieser Integrale genutzt werden können.

Paper I. In dieser Arbeit liegt der Schwerpunkt auf Ein-Schleifen-Integralen. Die Singularitäten
dieser Integrale werden vollständig beschrieben und zur Herleitung des vollständigen Symbolalp-
habets und der kanonischen Differentialgleichung für eine beliebige Anzahl von externen Teilchen
verwendet. Es wird bewiesen, dass eine große Familie von Ein-Schleifen-Integralen die Cohen-
Macaulay-Eigenschaft erfüllt.

Paper II. Zwei unendliche Familien von Feynman-Integralen, die die Cohen-Macaulay- Eigen-
schaft erfüllen, werden klassifiziert. Diese Eigenschaft impliziert, dass sowohl die Singularitäten,
als auch die Anzahl der Basisintegrale unabhängig von der Raumzeitdimension und den Propa-
gatorpotenzen sind.

Paper III. In dieser Arbeit wird der singuläre Ort eines Feynman-Integrals als die kritischen
Punkte einer Whitney-stratifizierten Abbildung definiert. Es werden explizite Codes und Bere-
chnungen bereitgestellt, die zeigen, dass diese Methode Singularitäten erfasst, die sonst nur schwer
zu erkennen sind.

Paper IV-V. Die algebraischen Eigenschaften des Integranden, insbesondere die Tatsache, dass
sein Newton-Polytop ein verallgemeinertes Permutaeder ist, werden zusammen mit tropischem
Sampling genutzt, um eine effiziente numerische Auswertung von Feynman-Integralen mit phy-
sikalischer Kinematik zu ermöglichen. Die Verbindung zwischen der Eigenschaft des verallgeme-
inerten Permutaeder und der Cohen-Macaulay-Eigenschaft wird ebenfalls diskutiert.
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Introduction
1 Background

As students of physics we learn early on that physical phenomena can be described by differential
equations. In classical mechanics we use Newton’s second law, a second order differential equa-
tion, to describe the evolution of systems. Similarly, electromagnetism is described by Maxwell’s
equations, fluid dynamics by the Navier-Stokes equations, general relativity by Einstein’s equa-
tions and quantum mechanics by the Schrödinger equation [1]. The list goes on and on with too
many equations to mention. However, the diligent student will eventually notice that there is no
differential equation for quantum field theory, well at least not as neatly packaged as the other
ones. Even though you can find the short “Standard Model formula” on both coffee mugs and
T-shirts in CERN’s gift shop, this formula is still a textbook of work away from providing real
predictions. With no PDE to write down and solve, quantum field theory and particle physics
needed another approach, this was provided by Richard Feynman in 1949 [2]:

”The main principle is to deal directly with the solutions of to the Hamiltonian differential equations rather
than the equations themselves.”

What this quote alludes to is the usage of perturbation theory and the introduction of what we
now call Feynman integrals. It is ironic however, that one of the most powerful methods we have
today to calculate these integrals is to derive a PDE for it and then solve that.

In Feynman’s space-time approach to quantum theory [3, 4], the way to describe the time
evolution of a system is to sum over all, infinitely many, possibilities. Most famously this can be
applied to the double slit experiment where shooting a beam of particles, say electrons, towards
two tightly spaced slits in an absorber, shows an interference patter as if the particle beam was a
wave. By democratically summing over all possible ways the electron can go

∑
every path

ei(phase)/h̄ (1)

the interference between the phases will recover the observed interference pattern! This is the
basis of Feynman’s path integral. The idea of summing over all possibilities does not only work
for shooting electrons at a target but also for shooting electrons at each other in a particle collider.
A generic scattering event with two particles entering and two particles exiting is depicted to
the left in Figure 1, where the dashed circle represents the actual interaction. Now following
Feynman’s idea we write down all possible events where two particles enter and two particles
leave. What “all possible” means in this context is dictated by the physics we want to model.
Let’s say we want to calculate the scattering of two electrons and assume they only interact via the
electromagnetic field, i.e. the photon. This restricts us to only being able to draw two type of lines;
electron and photon lines and only one type of vertex where two electron and one photon line
meet. This framework is called quantum electrodynamics (QED) and the observed corrections to
the magnetic moment of the electron [5, 6] and the explanation [7, 8, 2] provided by QED was the
first major success of quantum field theory.

These diagrams are called Feynman diagrams or Feynman graphs and the rules of how to draw
them and what exactly they correspond to are called the Feynman rules. One such rule is that four
momentum is preserved at each vertex, just like Kirchhoff’s current law, everything that enters
must also exit. What this means when we have a closed loop is that there is a four momentum
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Figure 1: A generic 2→ 2 scattering process where the full matrix element on the left is expanded
in a sum of Feynman graphs according to the Feynman rules.

that is not fixed by the external momenta, and there is one such un-fixed momentum for each
loop. Following the idea of taking all possibilities into account, we have to integrate over this
momentum, and to no ones surprise at this point, these integrals are called Feynman integrals.

Quantum field theory not only provides the tools for calculating observables in scattering ex-
periments but is the language in which all microscopic interactions can be described, and it is
truly one of physics greatest successes. Solving QFTs exactly is impossible for all realistic cases
and we therefore have to rely on approximate perturbation theory. For over half a century the
main method for these calculations have been to sum Feynman integrals. Recent developments
like generalized unitarity [9], recursion relations [10], double copy [11] and the amplituhedron
[12], show that there is much more to amplitudes than can be seen directly from the sum of Feyn-
man integrals. However, this does in no way mean that Feynman integrals are outdated, for as
deep as some of these concepts seem to pierce reality, when it comes to calculate actual observables
at for example the Large Hadron Collider (LHC) [13] or gravitational-wave observables [14, 15],
Feynman integrals stand supreme, at least for now.

From the mathematical side, Feynman integrals are a great vehicle for many different areas
and especially unites analysis and algebra beautifully [16]. The following are the relations most
relevant for my own research. Feynman integrals are solutions to linear systems of partial differ-
ential equations, these may for example be understood in the language of D-modules [17, 18, 19]
or generalized hypergeometry in the sense of Gel’fand, Graev, Kapranov and Zelevinskiı̆ (GKZ)
[20, 21, 22]. This relates Feynman integrals to toric geometry [23], polytopes and also tropical ge-
ometry [24]. These integrals are defined from graphs, meaning that graph theory and matroids
play a central role [25]. Certain families of Feynman integrals also evaluates to interesting type of
numbers that are of interest from number theory [26, 27].

In this thesis I will show how to harness results from many of these different fields of math-
ematics and apply them to obtain concrete results about Feynman integrals and their physical
applications. In Section 2, I will give background on Feynman integrals from both physics and
mathematics and show how they are related to generalized hypergeometry. This is a large frame-
work containing much more than needed for Feynman integrals, it is therefore natural to ask if
these integrals have any special properties within this framework. I show in Section 3 that Feyn-
man integrals are often normal or satisfy the Cohen-Macaulay property. This in particular implies
that the dimension of the solution space of the associated GKZ system and its singularities are
independent of the space-time dimension. Understanding the singularities of Feynman integrals
is a longstanding problem and in Section 4 I provide two different way of obtaining these sin-
gularities. Knowing the singularities is a crucial ingredient in the modern canonical differential
equation approach. Finally, in Section 5 I show how a very special geometric property of the inte-
grand, the generalized permutohedron, can be used together with tropical integration can be used for
very efficient direct evaluation of Feynman integrals.

2



2 Feynman integrals and GKZ systems

Let us consider a general scattering processes, such a process is described by the S-matrix taking
the initial state |i⟩ to the finial state ⟨ f | with probability ⟨ f | S |i⟩. Looking at the 2 → 2 process in
the introduction, Figure 1, the circle of ignorance on the left hand side does not really correspond
to the S-matrix, because there is the trivial scattering event when nothing happens, the particles
just passes by each other. This is separated by S = 1 + iT where T is the transfer matrix. Since
four-momentum is conserved we can factor out a δ-distribution:

⟨ f | T |i⟩ = (2π)4δ4(∑ p)M. (2)

This matrixM contains all the interactions of the theory and when particle physicists calculate or
measure “matrix elements” this is what they mean. For the simple 2 → 2 process this is all you
need to get the differential cross section:

(
dσ

dΩ

)

CM
(12→ 34) =

1
64π2E2

CM

|p f |
|pi|
|M|2H(ECM −m3 −m4) (3)

where H is the step function. This is something that can be measured in experiments [28].
The calculation of the matrix elementsM is by perturbation theory, and it is here the Feynman

integral comes into play. A fundamental assumption in scattering is that the interaction takes
place during a finite time period −T < t < T and that as t → ±∞ the states are on-shell one-
particle states with a given momenta, called asymptotic states. The S-matrix elements ⟨ f | S |i⟩ for n
asymptotic states can be expressed as a time-ordered product using the LSZ-formula [29]:

⟨ f | S |i⟩ ∼ ⟨Ω| T{ϕ(x1) · · · ϕ(xn)} |Ω⟩ (4)

where |Ω⟩ is the vacuum ground state of the interacting theory. In order to calculate the the time-
ordered product, let us start with the free theory where the field is:

ϕ0(t, x) =
∫ d3k

(2π)3
1√
2ωk

(
ake−ikx + a†

keikx
)

. (5)

with ωk =
√

m2 + |k|2. The time-ordered product for two of these fields is simply

⟨0| T{ϕ0(x1)ϕ0(x2)} |0⟩ =
∫ d3k

(2π)3
e−iωk|t1−t2|+ik·(x1−x2)

2ωk
. (6)

This object is the Feynman propagator, denoted DF(t1 − t2, x1 − x2) = DF(x1 − x2), and can be
written as the sum of two oscillatory integrals, as defined by Hörmander [30] cf. [31, Theorem 7.8.2]

H(t1 − t2)
∫ d3k

(2π)3
e−iωk(t1−t2)+ik·(x1−x2)

2ωk
+ H(t2 − t1)

∫ d3k
(2π)3

eiωk(t1−t2)−ik·(x1−x2)

2ωk
. (7)

Each term in this sum is the product of two distributions, a step function and the oscillatory
integral, this product is well-defined by [31, Theorem 8.2.10] since the wave front sets do not
collide.

The Feynman propagator is perfectly well-defined mathematically and below we list some of
its most important properties

Theorem 2.1. The Feynman propagator DF(t, x) defined in (6) satisfies:

3



(i) DF is a fundamental solution to the Klein-Gordon equation: (∂2
t −∇2

x + m2)DF = −iδ.

(ii) The full space-time Fourier transform of DF is

D̂F(k) = lim
ε→0+

i
k2 −m2 + iε

, (8)

where the limit is taken in the weak topology of temperated distributions.

(iii) DF is Lorentz invariant

(iv) DF is a C∞ function away from the light cone and its support is R4.

(v) The (smooth) wave front set of the Feynman propagator is given by

WF(DF(t, x)) = {(0; k)|k ̸= 0} ∪
{
(x; k) | t2 − |x|2 = 0, t ̸= 0, k0 = λt, k = −λx

}
, (9)

where λ > 0.

The proof of this theorem is elementary, see e.g. [32, 33, 34, 35]. When people say ”Feynman
propagator”, it is usually the momentum space representation D̂F in (8) that they refer to.

Before moving on with the calculation of matrix elements, I will describe another representa-
tion of the Feynman propagator D̂F. Physicists often rely on a generalization of the definition of
the Γ-function they refer to as the Schwinger trick. This writes the momentum space propagator as
an integral over new parameters called Schwinger parameters:

(
i

q2
e −m2

e + iε

)νe

=
1

Γ(νe)

∫ ∞

0

dxe

xe
xνe

e exp
(
ixe(q2

e −m2
e + iε)

)
(10)

which is absolutely convergent when ε > 0 and the real part of νe is positive, Re(νe) > 0, but can
be analytically continued to all νe ∈ C. In the language of distributions, the limit ε→ 0+ can often
be taken.

Let X be an open set in Rn, f ∈ C∞(X) and Im( f ) ≥ 0. Assume that d f (x) ̸= 0 whenever
f (x) = 0. Then the limit ε→ 0 with convergence in D′(X) for Re(ν) > 0 is:

(
i

f (x) + i0

)ν

:= lim
ε→0+

(
i

f (x) + iε

)ν

=
1

Γ(ν)

∫ ∞

0

dτ

τ
τν exp (iτ( f (x) + iε)) . (11)

For this distribution we also know the wave front set:

WF
(

1
( f (x) + i0)ν

)
⊂ {(x, λ · d f (x)) : f (x) = 0, λ > 0}, Re(ν) > 0. (12)

After this mathematical interlude, let us continue our calculation of matrix elements. There
are several ways to calculate the time ordered expectation for an interacting theory, one way is to
use the Gell-Mann-Low formula [36]:

⟨Ω| T{ϕ(x1) · · · ϕ(xn)} |Ω⟩ =
⟨0| T

{
ϕ0(x1) · · · ϕ0(xn)ei

∫
d4xLint[ϕ0]

}
|0⟩

⟨0| T
{

ei
∫

d4xLint[ϕ0]
}
|0⟩

, (13)

where Lint is the interaction terms in the Lagrangian. Take for example Lint[ϕ] =
g
3! ϕ

3 and ex-
pand the two-point function in the coupling constant g and only consider fully connected and
amputated contributions [28, 35, 37]:

⟨Ω| T{ϕ(x1)ϕ(x2)} |Ω⟩ = DF(x1 − x2)− g2
∫

d4x
∫

d4y
(

1
2

DF(x1 − x)DF(x− y)2DF(y− x2)

)
+O(g3)

4



Writing the propagators in Fourier space and using the LSZ formula to go back to the S-matrix
contribution of the g2 term we obtain

⟨ f | S |i⟩ = −(2π)4δ4(pi − p f )
g2

2
lim

ε→0+

∫ d4k
(2π)4

i
(pi − k)2 −m2 + iε

i
k2 −m2 + iε

. (14)

This identifies the order g2 contribution to the matrix element as

iM = − g2

2
lim

ε→0+

∫ d4k
(2π)4

i
(pi − k)2 −m2 + iε

i
k2 −m2 + iε

. (15)

This is what is called a scalar (momentum space) Feynman integral and is the main protagonist of
this thesis. This particular integral can be considered as the convolution

(D̂F ∗ D̂F)(pi) =
∫

d4k D̂F(pi − k)D̂F(k). (16)

Since a convolution in Fourier space corresponds to a product in spatial space, this is the same as
asking for the product DF ·DF. Using Hörmander’s product theorem, [31, Theorem 8.2.10], and the
explicit wave front sets from (v) in Theorem 2.1 one sees immediately that this is not guaranteed to
be a well-defined object. However, with detailed microlocal analysis of the integrand this seems to
partially be resolved, especially within the D-module framework [38]. To get around this problem
in general, physicists have developed an ingenious method of renormalization [39, 40, 41]. Making
sense of this process is a challenging but fascinating task [42, 43, 44, 45].

We now proceed by giving different representations of the Feynman integral, each with its
own features and draw-backs.

Schwinger parameterization

Consider one-particle irreducible Feynman graphs G := (E, V) with edge set E, vertex set V and
loop number L = |E| − |V|+ 1. Every edge e ∈ E is assigned an arbitrary direction with which
we define the incidence matrix ηve of G to satisfy ηve = 1 if e ends at v, −1 if e starts at v, and 0
otherwise. The vertex set V has the disjoint partition V = Vext ⊔ Vint where each vertex v ∈ Vext
is assigned an external incoming D0-dimensional momentum pv ∈ R1,D0−1 and we put pv = 0
for all v ∈ Vint. Using dimensional regularization with D := D0 − 2ϵ and Feynman’s causal iε
prescription, scalar Feynman rules assigns the following integral to G1:

I =

(
1

iπD/2

)L

lim
ε→0+

∫
∏
e∈E

dDqe

( −1
q2

e −m2
e + iε

)νe

∏
v∈V\{v0}

δ(D)

(
pv + ∑

e∈E
ηveqe

)
(17)

where νe ∈ Z are integers and qe is the total momentum flowing through the edge e. Momentum is
conserved at each vertex v ∈ V, but only |V| − 1 of these constraints are independent, we therefore
remove an arbitrary vertex v0 from V in (17) to avoid carrying through the overall momentum
conservation δ(D) (∑v∈V pv) in every following expression.

To evaluate this integral we combine the propagators into an exponential function by intro-
ducing the Schwinger parameters (10). The δ-functions can also be lifted to an exponential using
the mathematical physicists version of Fourier’s inversion formula:

δ(D)(k) =
∫ dDy

(2π)D eiky, (18)

1Observe that the normalization is slightly different compared to (15).

5



which should be thought of as an oscillatory integral (c.f. [31, Equation (7.8.5)]).
We now have an integral over three sets of variables qe, yv and xe. The qe integrals are per-

formed as Gaussian integrals after a shift of integration variables and Wick rotation to Euclidean
space. The yv integrals are performed in a similar manner. Denote by L the |V| − 1 × |V| − 1
Laplacian matrix

Lvv′ := ∑
e∈E

ηveηv′e

xe
(19)

and define p = (p1, . . . , p|V|−1)
T. The integral (17) can now be written as

I = (i)ω lim
ε→0+

∫ ∞

0
∏
e∈E

(
xνe dxe

xeΓ(νe)

)
1

((∏e∈E xe)det L)D/2 exp

(
i

[
pTL−1p−∑

e∈E
(m2

e − iε)xe

])
(20)

where ω is the superficial degree of divergence ∑e∈E νe − LD/2. We label the constituents of the
integrand as

U :=

(
∏
e∈E

xe

)
det L, F0 := −U ·

(
pTL−1p

)
, Fm := U ·∑

e∈E
m2

e xe

F := F0 +Fm (21)

so the integral can now be written as

I = (i)ω lim
ε→0+

∫ ∞

0
∏
e∈E

(
xνe dxe

xeΓ(νe)

)
1
UD/2 exp

(
i

[
−F
U + iε ∑

e∈E
xe

])
. (22)

The form (22) is called the Schwinger parameterization of the Feynman integral.
The two polynomials U and F are traditionally referred to as the first, respectivly, second

Symanzik polynomial. This is most likely in reference to the paper [46] even though they were
published one and a half year earlier in the same journal by Nakanishi [47]. These polynomials
have a simple combinatorial description in terms of the underlying graph [48]:

U = ∑
T a spanning
tree of G

∏
e ̸∈T

xe, (23)

F = Fm +F0 = U ∑
e∈E

m2
e xe − ∑

F a spanning
2−forest of G

p(F)2 ∏
e ̸∈F

xe. (24)

The matrix definition is more suitable for numerical evaluation, see Section 5, while the com-
binatorial description will be fruitful in proving algebraic properties of these polynomials, see
Section 3.

Feynman parameterization

In order to derive the so called Feynman parameterization, we start from the Schwinger parameter-
ization (22). Let H(x) be a homogeneous function of degree one such that H : R|E| → R+. Then
we use 1 =

∫ ∞
0 δ(t− H(x))dt and by rescaling the variables xe → txe, t ∈ R+ we get

I = Γ(ω) lim
ε→0+

∫ ∞

0
∏
e∈E

(
xνe dxe

xeΓ(νe)

)
δ(1− H(x))
UD/2

(
1

F/U − iε ∑e∈E xe

)ω

. (25)
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Projective representation

The δ-distribution in the integrand (25) can be thought of as specifying an affine chart of the pro-
jective space. In this sense the entire integral can be lifted to a projective one since the integrand
is scale-invariant. The integral is now

I = Γ(ω)
∫

PE
+

ϕ with ϕ =

(
∏
e∈E

xνe
e

Γ(νe)

)
1

U (x)D/2

(
1

V(x)− iε ∑e∈E xe

)ω

Ω . (26)

Where the integration domain is over the projective simplex PE
+ = {x = [x1 : · · · : x|E|] ∈ RPE−1 :

xe > 0} with respect to its canonical Kronecker form

Ω =
|E|
∑
e=1

(−1)|E|−e dx1

x1
∧ · · · ∧ d̂xe

xe
∧ · · · ∧ dx|E|

x|E|
. (27)

We write V(x) in (26) for the quotient of the two Symanzik polynomials, this will be the main form
of the integral used in Section 5.

Lee-Pomeransky parameterization

The final representation of the Feynman integral (17) we will define here is the so called Lee-
Pomeransky parameterization [49]. The easiest way to ”derive” it is to just write it down as an
ansatz and prove that we can recover the Feynman parameterization (25). The Lee-Pomeransky
parameterization of the integral is

I =
Γ(D/2)

Γ(D/2−ω)
lim

ε→0+

∫ ∞

0
∏

xνe dxe

xeΓ(νe)

1
(U +F − iε · U ∑e∈E xe)D/2 (28)

where it is common to introduce the Lee-Pomeransky polynomial G := U +F .
The trick we use here is the same as when going from the Schwinger to Feynman parameter-

ization; 1 =
∫ ∞

0 δ(t − H(x))dt. Rescaling the variables xe → txe with t ∈ R+ we get back the
Feynman parameterization (25). The Lee-Pomeransky representation is central for the connection
to generalized hypergeometry [50, 51] and therefore central in the sections that follow.

2.1 Generalized hypergeometry

Hypergeometric functions are classical and very well-studied objects in mathematics. The most
recognized example is probably Gauss’ 2F1(a, b, c; z) with series expansion

2F1(a, b, c; y) =
∞

∑
n=0

(a)n(b)n

(c)n

yn

n!
(29)

where (a)n := a(a + 1) · · · (a + n− 1), this series is convergent for |y| < 1 and c /∈ Z−. There are
many different representations of this function, for example we have the Euler integral

2F1(a, b, c; y) =
Γ(c)

Γ(a)Γ(b)

∫ 1

0
sa−1(1− s)c−a−1(1− ys)−bds (30)

convergent on |Arg(1− y)| < π. We can restore the symmetry in a and b by introducing a new
variable

2F1(a, b, c; y) = G(a, b, c)
∫ 1

0

∫ 1

0
sa−1tb−1(1− s)c−a−1(1− t)c−b−1(1− zst)−cds dt (31)
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where G(a, b, c) = Γ(c)2/Γ(a)Γ(b)Γ(c − a)Γ(c − b). Introducing the new variables x1 = s/(1−
s), x2 = t/(1− t) and z = 1− y we can write the double integral as

∫ ∞

0

∫ ∞

0

xa
1xb

2
(1 + x1 + x2 + zx1x2)c

dx1 dx2

x1x2
. (32)

Ignoring the iε in (28), the Lee-Pomeransky representation is clearly the same type of integral as the
above one. The authors of [52] and [53] introduced these integrals as Euler-Mellin integrals. View-
ing Feynman integrals in the Lee-Pomeransky representation provides us with a rich and solid
mathematical ground to stand on as we venture into the murky but exciting waters of physics. We
start with a theorem showing when the integral is absolutely convergent.

Theorem 2.2 ([52, Theorem 1] and [53, Theorem 2.3]). If the polynomial G is completely non-vanishing
on the positive orthant R

|E|
+ , then the Euler-Mellin integral I in (28) converges and defines an analytic

function on the tube domain

{(D, ν) ∈ C1+|E| | τ := Re(D/2) ∈ R+, σ := Re(ν) ∈ int(τN[G])}. (33)

A simple way of guaranteeing the the assumptions for this theorem are satisfied for a Feynman
integral is to assume that the kinematics is in the Euclidean region, i.e. − (∑v∈V′ pv)

2 > 0 for all
subsets V ′ ⊂ Vext. This implies that all coefficients of G are positive and thus neither G nor any
of the restrictions can vanish on the positive orthant. As a function of D and ν, this function has
a simple and explicit analytic continuation into all of C1+|E| completely described by the Newton
polytope N[G]. Expressing N[G] in the half-space representation

N[G] =
N⋂

i=1

{
y ∈ R|E| | ⟨µi, y⟩ ≤ ci

}
(34)

we can simply formulate the meromorphic continuation in terms of the normal vectors µi and
bounds ci.

Theorem 2.3 ([52, Theorem 2] and [53, Theorem 2.5]). Suppose the polynomial G is completely non-
vanishing on the positive orthant R

|E|
+ and the Newton polytope N[G] is of full dimension |E|. Then the

Euler-Mellin integral (28) has the meromorphic continuation

I(D, ν; z) = Φ(D, ν; z)
N

∏
i=1

Γ(ciD/2− ⟨µi, ν⟩) (35)

where Φ is an entire analytic function in D and ν.

This type of extension of domains of definition goes back to Hadamard (as cited in [31]) and
Marcel Riesz [54, 55]. The modern algebraic approach was developed by Bernšteı̆n and Sergei
Gel’fand [56, 57]. A very general version of this, applicable to real analytic functions was proven
by Atiyah [58].

Going back to the example of 2F1 from the beginning of this section, assuming that z > 0 we
can now write the double integral as

∫ ∞

0

∫ ∞

0

xa
1xb

2
(1 + x1 + x2 + zx1x2)c

dx1 dx2

x1x2
= Φ(a, b, c; z)Γ(a)Γ(b)Γ(c− a)Γ(c− b) (36)

8



and by comparison we find

Φ(a, b, c; z) =
1

Γ(c)2 2F1(a, b, c; 1− z). (37)

We have now understood how Feynman integrals, or Euler-Mellin integrals, depend on the
parameters D and ν1, . . . , ν|E|, but how about the dependence on z, i.e. the kinematic dependence?
It is easy to show that the function z 7→ Φ(D, ν; z) is an A-hypergeometric function in the sense of
Gel’fand, Graev, Kapranov and Zelevinskiı̆.

Using multi-index notation we may write the Lee-Pomeransky polynomial as G = ∑r
i=1 zixαi

with zi ̸= 0 and αi ∈ Z
|E|
≥0 for all i = 1, . . . , r. We define the two matrices

A := {1} × A− =

(
1 1 · · · 1,
α1 α2 · · · αr

)
∈ Z

(|E|+1)×r
≥0 , and (38)

β :=
(−D/2, −ν1 , . . . ,−ν|E|

)T ∈ C|E|+1, (39)

from which we construct the GKZ hypergeometric system HA(β) as the sum of two ideals:

IA :=
〈
∂u − ∂v | u, v ∈ Zr

≥0 s.t. Au = Av
〉

, and (40)

ZA(β) :=

〈
Θi(c, ∂) | Θ = A ·




c1∂1
...

cr∂r


− β

〉
. (41)

The ideal IA is actually an ideal in the commutative polynomial ring Q[∂1, · · · , ∂r], and as such has
a finite generating set IA = ⟨h1, . . . hℓ⟩ with hi ∈ Q[∂1, · · · , ∂r] being a binomial. This ideal IA is a
toric ideal and it gives the defining equations of the projective toric variety

XA = {z ∈ Pr−1 | h1(z) = · · · = hℓ(z) = 0}

associated to the matrix A, see e.g. [59] and [60, Chapter 5].
The ideal HA(β) is an ideal in the Weyl algebra W := Q(β)[z1, . . . , zr] ⟨∂1, . . . , ∂r⟩, this is a

non-commutative algebra with [∂i, zi] = 1, for a general introduction see e.g. [61] and [62]. In the
general theory of Weyl algebras, Q(β) can be replaced with any commutative field k of character-
istic zero. We say that an element p ∈ W is normal ordered if all differential operators are to the
right of the variables:

p = ∑
(α,β)∈E

cαβzα∂β, cαβ ∈ k∗.2 (42)

Moreover, the normal order is unique. This means that there is a natural k-vector space isomor-
phism between the polynomial ring k[z, ζ] of 2r variables and the Weyl algebra:

k[z1, . . . , zr, ζ1, . . . , ζr]→W : zαζβ 7→ zα∂β. (43)

We can now generalize the commutative Gröbner basis theory to the Weyl algebra. Generalizing
the notion of initial ideal, we define the principal symbol of an element p ∈ W as its initial ideal
with all zi having weight 0 and all ∂i having weight 1:

σ(p) := in(0,1)(p) = ∑
(α,β)∈E
|v|=m

zαζβ ∈ k[z, ζ]. (44)

2This β is not the same as the homogenity parameter in the hypergeometric system, it is just a multi-index.
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For any left-ideal I in a Weyl algebra we can similarly define the initial ideal as the ideal con-
taining all initial forms of elements in I. The singularities of a system of PDEs are described by
the zero locus of the characteristic ideal called the characteristic variety. For a left-ideal I in W this is
the characteristic ideal is:

in(0,1)(I) := {σ(p) | p ∈ I} ⊂ k[z, ζ] (45)

and the characteristic variety is simply Char(I) := V(in(0,1)(I)). It is a theorem of Ōaku [63] that
this definition coincides with the D-module definition.

The singular locus of an ideal in a Weyl algebra is given by removing the zero section from
the characteristic variety and projecting onto the base variables z. This is done in practice by the
saturation and elimination:

(
in(0,1)(I) : ⟨ζ1, . . . , ζr⟩∞

)
∩ k[z1, . . . , zr] (46)

which is carried in the commutative ring k[z, ζ].
In the special case that I is a generalized hypergeometric system HA(β) the singular locus is

given by the principal A-determinant EA, see [64, 60] and especially Section 4. For Euler-Mellin
integrals, the principal A-determinant precisely keeps track of when z 7→ Φ(β; z) fails to be an
analytic function:

Theorem 2.4 ([52, Theorem 5] and [53, Theorem 4.2]). Let z ∈ Cr \ EA(G), and let Σ be a connected
component of R|E| \ A′G . Then for any σ ∈ Σ, the analytic germ ΦΣ

G(β; z) has a (potentially multivalued)
analytic continuation to C1+|E| × (Cr \ EA(G)) that is everywhere A-hypergeometric in the variables z
with homogenity parameter β.

Where A′G is the co-amoeba (see [52, Section 2]) which keeps track of when G = 0 and EA(G) is
the principal A-determinant of the (Lee-Pomeransky) polynomial G.

3 Cohen-Macaulay rings

It may well be said that the genesis of modern commutative algebra was David Hilbert’s landmark
papers in 1890 and 1893 [65, 66]. In these papers four cornerstones were proven:

(i) the polynomial behaviour of the Hilbert function,

(ii) the Nullstellensatz,

(iii) the basis theorem,

(iv) the syzygy theorem.

In any modern work on algebra, it is fair to say, that all four of these results play an important
role, even if it may be in the background. The title of this section “Cohen-Macaulay rings” refers
to result (iv), the syzygy theorem. Cohen-Macaulay rings have exceptionally simple syzigies,
this propagates through the mathematical framework of GKZ systems, where it tells us that the
characteristic ideal of a Feynman integral (i.e. the singularities) and the holonomic rank of the
associated D-module are independent of β.

Let k be a field and S = k[y1, . . . , yn] a polynomial ring. By Hilbert’s basis theorem, result (iii)
above, any ideal I ⊂ S has a finite number of generators. However, these generators need not be
S-linearly independent. Meaning that if I is generated by { f1, . . . , fn}, then if there exists elements
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gi ∈ S such that f1g1 + · · ·+ fngn = 0, the elements {gi, i = 1, . . . , n} are called a syzygy relation.
This process may be continued, for the list of polynomials {gi} there might exist polynomials {hj}
providing a relation between the relations, etc. The point of Hilbert’s syzygy theorem is that this
process must terminate:

Theorem 3.1 (Hilbert’s syzygy theorem). Let S be as above. Then every finitely generated S-module has
a free resolution of length at most n.

The free resolution is the sequence of maps given by the syzygies. If I is an ideal in S, then a free
resolution of S/I of length l is a degree-preserving exact sequence of finitely generated S-modules:

0←− S/I ←− S = F0 ←− F1 ←− · · · ←− Fl ←− 0 (47)

such that every Fj is a free S-module. A free resolution is minimal when the ranks of Fj are taken
to be as small as possible.

Example 3.2. Let I ⊂ S = k[y1, . . . , y4] be the toric ideal associated to the ”twisted cubic”:

A =

(
3 2 1 0
0 1 2 3

)
, IA =

〈
y2y3 − y1y4, y2

2 − y1y3, y2
3 − y2y4

〉
. (48)

A simple syzygy is for example

−y3(y2
2 − y1y3) + y2(y2y3 − y1y4)− y1(y2

3 − y2y4) = 0 (49)

and the minimal free resolution is

0←− S/IA ←− S

(
y2

2 − y1y3 y2y3 − y1y4 y2
3 − y2y4

)

←−−−−−−−−−−−−−−−−−−−−−−−−− S3




−y3 y4
y2 −y3
−y1 y2




←−−−−−−−−− S2 ←− 0 (50)

For future notice, remark that the length of this resolution is the number of columns minus the
number of rows of A, i.e. 4− 2 = 2. ⋄

Just as the minimal free resolution cannot be arbitrarily long, the Auslander-Buchsbaum for-
mula [67] restricts it from being arbitrarily short. Let A be an integer d× n-matrix such that the
row of ones is contained in its row span. We denote its toric ideal IA ⊂ k[y1, . . . , yn] where the
row-span condition guarantees that IA is homogeneous. In this context the length l of the minimal
free resolution of S/IA satisfies

n− d ≤ l ≤ n. (51)

When the lower bound is an equality, the ideal IA is said to be Cohen-Macaulay:

Definition 3.3 (Cohen-Macaulay ideal). An ideal IA in S is said to be Cohen-Macaulay if the length
of the minimal free resolution of S/IA equals n− d.

From this definition we see that the previous example is Cohen-Macaulay. The important
role of Cohen-Macaulay rings in connection to GKZ systems was realized by Adolphson in [64]
leading to the correction [68]. In the hypergeometric case there is an equivalence between Cohen-
Macaulayness and the rank of HA(β) being independent of β [69]:

rank(HA(β)) = vol(conv(A)) ∀β⇐⇒ IA is Cohen−Macaulay. (52)
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Another important effect of the Cohen-Macaulay property is on the structure of the characteristic
ideal, defined in Equation (45). If IA is Cohen-Macaulay then

in(0,1)(HA(β)) =
〈
ζu − ζv | u, v ∈ Zr

≥0 s.t. Au = Av
〉
+

〈
A ·




z1ζ1
...

zrζr



〉

. (53)

Example 3.4. Let HA(β) be the GKZ system defined by:

A =

(
4 3 1 0
0 1 3 4

)
, β =

(
a
b

)
. (54)

We have #(rows)− #(cols) = 4− 2 = 2, while from explicit calculation the minimal free resolution
has length three, meaning that IA is indeed not Cohen-Macaulay. This means that the characteristic
ideal is not just generated by (53) but has more generators. In total the characteristic ideal of HA(β)
has seven generators:

ζ3
2 − ζ2

1ζ3, ζ2ζ3 − ζ1ζ4, −ζ1ζ2
3 + ζ2

2ζ4, ζ3
3 − ζ2ζ2

4 (55)
z1ζ1 + z2ζ2 + z3ζ3 + z4ζ4, z2ζ2 + 3z3ζ3 + 4z4ζ4 (56)

(b− 2)z1ζ2
2 + (b− a− 1)z2ζ1ζ3 + (b− 3a + 1)z3ζ2ζ4 + (b− 4a + 2)z4ζ2

3 (57)

The characteristic ideal therefore depends on a and b while the characteristic variety is still inde-
pendent of a and b since the radical of the ideal generated by the above three sets of equations is
the same ideal as the radical of just the first two.

For any choices of a and b such that (a, b) ̸= (1, 2) the system HA(β) has holonomic rank
4 while for (a, b) = (1, 2) the rank jumps to 5. Preparing for things to come in Section 4, let
f (x0, x1) = c1x4

0 + c2x3
0x1 + c3x0x3

1 + c4x4
1 and let Xh be the projective variety Xh = V(x0x1 f (x0, x1)).

We can now calculate the Euler characteristic

|χ(C∗ \V( f (1, x1)))| = |2− χ(Xh)| = |2− 6| = 4 (58)

which is the same as the rank for generic β while also clearly being independent of β. ⋄
As presented here, proving that families of rings or ideals are Cohen-Macaulay is not always

easy. It might therefore be useful to rely on stronger and more explicit combinatorial properties
that imply Cohen-Macaulayness. One such property is normality, the semigroup ring C[NA] ∼=
C[∂]/IA is said to be normal if

NA = ZA ∩R+A. (59)

By a result of Hochster [70], every normal semigroup ring is Cohen-Macaulay. In the context
above, A should really be thought of as a collection of lattice points rather than a matrix, but
throughout the text the two will not be distinguished. The geometric meaning of (59) is that the
lattice NA contains no holes, take e.g. the A-matrix from Example 3.4, then NA is not normal
since (

3
1

)
−
(

1
3

)
+

(
0
4

)
=

(
2
2

)
/∈NA, (60)

i.e. the lattice has a ”hole” at
(

2
2

)
. There are many properties of A and its polytope conv(A) that

imply normality:
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• conv(A) has a regular unimodular triangularization,

• there exists a monomial order ≺ such that the initial ideal in≺(IA) is radical,

• conv(A) is a matroid polytope.

In Figure 5 of [P1] the relation between many algebraic and combinatorial properties is summa-
rized.

Matroids are classical objects, first introduced by Whitney (a name that will come back later)
in 1935 [71], defined to be a generalization of the notion of linear independence. As such they are
ubiquitous in modern mathematics and have at least ten equivalent definitions, each appearing
more naturally in different branches of mathematics [72]. A matroid is a pair of two sets, a finite
set E called the ground set and a family of subsets of E called independent sets. With respect to
inclusion we can define the family of maximally independent sets B whose elements are called
bases.

Definition 3.5 (Matroid). A matroid is a pair (E, B) , where E is a finite set and B a collection of
subsets of E satisfying

(B1) B is non-empty,

(B2) if A and B are distinct elements of B and a ∈ A \ B, then there exists b ∈ B \ A such that
(A \ a) ∪ b ∈ B.

The last property, (B2), is known as the basis exchange property. It follows that every element in
B has the same cardinality. If we identify E = {e1, . . . , en} as the vector space basis of Rn, then
each element of B corresponds to a lattice point in Rn, and we can define the matroid polytops
as the convex hull of these points, P[B] := conv(B). Actually, any polytope with vertices in
a hypersimplex and all edges being equal to ei − ej for some i ̸= j is a matroid polytope and
matroid polytopes are in bijective correspondence to their associated matroid [73, 74]. The latter
definition will play an important role later as it shows that the matroid polytope is a generalized
permutohedron [75], see Section 5. Both matroids and generalized permutohedra play an important
role in the geometric view of amplitudes via the amplituhedron, a good introduction is [76] and
more details can be found in [77, 78, 79].

Example 3.6 (Matroid polytope). It follows directly from the definition of the first Symanzik poly-
nomial U that the Newton polytope N[U ] is a matroid polytope. For a mathematician this would
be the matroid polytope of the co-graphical matroid associated to the Feynman graph. ⋄

The main result of the publication [P2] is the classification of two infinite families of Feynman
integrals such that NA is normal. This may be summarized in the following theorem:

Theorem 3.7 ([P2, Theorem 1.1]). Let G = (V, E) be a Feynman diagram with associated Symanzik
polynomials U and F . Set G = U +F , then the Newton polytope PG = N[G] is normal if either

(i) me ̸= 0 for all e ∈ E, or

(ii) me = 0 for all e ∈ E and every vertex is connected to an external off-shell leg, i.e. p2
v ̸= 0 for every

v ∈ V = Vext.

At the writing of [P2] we were unaware of the existence and theory around generalized per-
mutohedra. From the proof in [P2] we obtain the following corollary, with the same numbering as
in Theorem 3.7:
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Corollary 3.8 ([P1, Proposition 5.10]).

(i) Assume me ̸= 0 for all e ∈ E, then N[F ] is a generalized permutohedron for all possible choices of
external kinematics.

(ii) Assume that every two-forest of the Feynman graph G comes with a non-zero coefficient, that is,
V = Vext and that p(V ′)2 ̸= 0 for all V ′ ⊂ V where p(V ′) = ∑v∈V′ pv. Then setup N[F ] is a
matroid polytope and hence a generalized permutohedron.

These results were later generalized by Uli Walther in [80] where he showed that normality
can be preserved in case (i) even when internal masses me are set to zero and that V = Vext can be
relaxed in (ii).

From the point of GKZ, the one-loop case is special since very often the degrees of freedom of
the Feynman integral coincides with the number of variables in the GKZ system HA(β) meaning
that this system of PDEs is precisly the system describing the Feynman integral. For this special
case it is possible to write down a necessary and sufficient statement for normality in terms of the
kinematics:

Theorem 3.9 ([P1, Theorem 5.4]). Let Gh = Ux0 +F be the Symanzik polynomial of a one-loop Feynman
diagram G. Then NA with A = supp(Gh) is normal if and only if

p(Fij)
2 −m2

i −m2
j ̸= 0 (61)

for all edges i, j where both mi ̸= 0 and mj ̸= 0.

The proof of this theorem relies on the odd-cycle condition constructed by Ohsugi and Hibi
[81]. For example, this theorem proves that the massless on-shell one-loop box is normal, a case
that is not captured by [P2] nor [80]. At the time of writing, it seems very likely that every massless
on-shell integral is not only Cohen-Macaulay but also normal, but this is left as a conjecture for
the time being.

4 Landau singularities

As was seen in Section 2 the matrix element for cross section calculations can be expanded as a
series in the coupling constant g:

iM =
∞

∑
n=0

gnMn =
∞

∑
n=0

gn ∑
Gn

IGn (62)

where Gn denotes all Feynman graphs with n vertices with coupling constant g. This series is
hard to make rigorous, in QED the coupling is very small, around 1/137, while for low-energy
quantum chromodynamics (QCD) it might be of the order 10. Moreover, the number of graphs in
Gn grows roughly as ∼ n! and as discussed before, the Feynman integrals IGn can be divergent
before renormalization.

Much work has been spent on trying to understand the analytic structure of the S-matrix with-
out using perturbation theory [82], one of the few truly non-perturbative results we have is the
Källén-Lehmann [41, 83] representation of the two-point function

⟨Ω| T{ϕ(x)ϕ(y)} |Ω⟩ =
∫ d4 p

(2π)4 eip(x−y)iΠ(p2), Π(p2) :=
∫ ∞

0

ρ(k2)

p2 − k2 + iε
dk2 (63)
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where ρ(k2) is the spectral density (a polynomially bounded measure). This statement can also be
made rigorous within the Gårding-Wightman axioms [84].

For practical purposes, the full structure ofM is not of concern. Usually we only have access to
the first few terms in the expansion in g and at that level, even the convergence of this expansion is
irrelevant. As seen below, a divergent series can very well be used to approximate a finite number.

Example 4.1 (Approximation by divergent series). Consider the two infinite series

∞

∑
n=0

(−100)n

n!
= e−100 ∼ 10−44,

∞

∑
n=0

n!
(−100)n = ∞. (64)

The first series has partial sums 1, −99, 4901, −485297/3, 4004901, . . . which clearly does nothing
to ”approximate” the actual value e−100. The second series diverges but the first five partial sums
are 1, 0.99, 0.9902, 0.990194, 0.99019424, . . . which approximates the integral

∫ ∞

0

100e−t

100 + t
dt

with increasing accuracy. In fact, summing the first 100 terms in this divergent series provides the
value of this integral to about 42 significant digits! ⋄

The only obstacle left, is the individual terms I , i.e. the Feynman integrals, in the series ex-
pansion ofM. If these are divergent or have poles and branch cuts, this affects even a truncated
perturbative calculation.

The pionering work in understanding the analytic structure of individual Feynman diagrams
was done by Landau [85], Nakanishi [86] and Cutkosky [87]. We begin by the definition of singu-
larity due to Landau. Let Qe = q2

e −m2
e be the denominator of the Feynman propagator, then the

Feynman integral (17) is said to satisfy the Landau equations if
{

xeQe = 0, ∀ e ∈ E,

∑e∈E xe∂Qe/∂kl = 0, ∀ l ∈ L
(65)

where kl is the loop-momenta in loop l. According to Landau, when these equations are satisfied,
the Feynman integral is singular.

Looking at the simultaneous work of Nakanishi, let V = F/U then a necessary condition for
the Feynman integral to have a Landau singularity is that for a subgraph γ ⊆ G :

{
xe = 0, ∀ e ∈ γ,
∂V/∂xe = 0, ∀ e ∈ G/γ.

(66)

Going back to the Euler-Mellin integrals in Section 2, it is clear from Theorem 2.4 that the prin-
cipal A-determinant captures when the integral fails to be an analytic function, i.e. it should also
describe when the Feynman integral (28) has a Landau singularity. The principal A-determinant
for any polynomial G is defined as a product of discriminants:

Definition 4.2 (Theorem 1.2, Chapter 10 of [60]). Let G be a polynomial with support A and let
Q = N[G] = conv(A). Then the principal A-determinant is the polynomial

EA(G) = ± ∏
Γ⊆Q

∆A∩Γ(G)µΓ (67)

where µΓ is a positive integer and where ∆A∩Γ(G) := ∆A∩Γ(G|Γ) and G|Γ is the coordinate restric-
tion of G supported on Γ.
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These descriminants are defined as the Zariski closure of the set where the polynomial G and
all its partial derivatives simultaneously vanish in the algebraic torus.

For this object to give a complete description of the singularities of the Feynman integral, it is
important that the coefficients of G are considered to be generic. This is clearly not the case for
general Feynman integrals, see (23) and (24). For one-loop integrals however, the GKZ perspective
can often be used since Gale duality can be used to reduce the number of GKZ variables to match
the number of physical degrees of freedom. In the paper [P1] we used this perspective to not
only study the singularities of one-loop integrals but also derive the symbol alphabet and canonical
differential equation for one-loop graphs.

In physics a common way of generating the PDEs satisfied by the Feynman integral is by
integration by part identities [88, 89, 90, 91]. These PDEs generate a regular holonomic D-module
and can thus always be written as a system of first order PDEs. An exceptional case is when
this system can be written in canonical form [92], i.e. the dimensional regulator ϵ factorizes in the
equation

df = ϵ dM(z) · f, M = ∑
j

Cj log(Wj(z)). (68)

Knowledge of the symbol letters Wj(z) and the basis f reduces the cosntruction of the PDE to a
numerical problem of finding the Cj. In the paper [P1] the symbol alphabet is derived from the
principal A-determinant by relying on Jacobi identities and the full canonical differential equation
is provided explicitly for all one-loop graphs with generic kinematics.

Going to two loops and beyond, Gale duality is not enough to reduce the number of variables
and actual restrictions [93, 94] have to be used. The principal A-determinant is therefore no longer
guaranteed to provide the correct set of singularities. And there are computational methods that
might provide too many components, like the polynomial reduction due to Brown [27] and imple-
mented in [95] or the recently defined ”principal Landau variety” that misses certain singularities
[96, 97]. A current trend in the community is to use the Euler characteristic of the torus comple-
ment of G = 0 as an indicator for singularities as motivated by [19] and [98]. This means that
one can define a hypersurface in kinematic space where this Euler characteristic changes from its
generic value for points on this surface. This object is hard to calculate directly, so in the paper [P3]
we define an object Landau variety, in accordance to Pham [99], which fully captures the change in
Euler characteristics and is well defined for any kinematic setup at any loop order.

Landau variety

Taking a step back to the S-matrix, unitarity implies that

⟨ f | T †T |i⟩ = ∑
X

∫
dΠX ⟨ f | T † |X⟩ ⟨X| T |i⟩ (69)

where the X denotes a complete set of states. If at an energy E0 a new real intermediate state
becomes accessible, a new contribution appears on the right-hand side meaning that it is non-
analytic for E = E0 as the new term is 0 for E < E0 and non-zero for E > E0. This is a so called
normal threshold and only exists for real particles. Digressing our studies to Feynman integrals with
kinematics in the complex plane, new singularities might appear without this interpretation, but
we still expect them to be characterized by the failure of analyticity. This is incredible ”lucky” that
nature seems to care more about analyticity than smoothness. For example, any closed set (Cantor
sets, Koch snowflakes etc.) E ⊂ Rn admits a C∞ function f : Rn → R such that E = f−1(0).

One way of proving that this type of behaviour is impossible for algebraic and analytic func-
tions is by considering the Whitney stratification [100, 101]. For an algebraic variety X of dimension

16



d we say that a filtration X• of varieties X0 ⊂ · · · ⊂ Xd = X is a Whitney stratification of X if the
connected components of the difference Xi − Xi−1 (called strata) are analytic manifolds of smaller
dimension satisfying the so called B condition. We refrain from giving the exact description here,
see e.g. the original papers by Whitney, Mather’s notes [102] or [P3]. This stratification can be
calculated in Macaulay 2 [103] using [104].

Consider an algebraic map f : X → Y between varieties X and Y. A Whitney stratification of
the map f is a pair (X•, Y•) where X• is a Whitney stratification of X, Y• is a Whitney stratification
of Y and for each strata M of X there is a strata N of Y with f (M) ⊂ N such that the map
f |M : M → N is a submersion, i.e. the differential d f |M is surjective. Just as for a variety, there
exists a unique minimal Whitney stratified map. Given the defining equations of varieties X, Y
and of a map f between them, the stratification (X•, Y•) may be obtained explicitly using the
algorithm of [104, 105] as implemented in the WhitneyStratifications Macaulay2 package.

When the map f is proper then we have, by Thom’s First Isotopy Lemma [102, Proposition 11.1],
that the topology of the fiber f−1(q) is constant over all points q ∈ N for any strata N of Y.

We now describe the Landau variety, which is the locus in the parameter space of kinematic
variables Cm

z where the Feynman integral is singular; the following definition is (a minor rephras-
ing of) that of Pham [99, §IV.5] for Feynman integrals in Lee-Pomeransky form:

Definition 4.3 (Landau variety). Consider a Feynman integral in Lee-Pomeransky form and let Gh
be the x-homogeneous polynomial defining it. Set X = V(x0 · · · xnGh) ⊂ Pn

x × Cm
z and consider

the projection map π : X → Cm
z , then the Landau variety is given by the variety Ym−1 appearing

in the unique minimal Whitney stratification (X•, Y•) of the map π.

A highlight of the usefulness of this definition is the two-loop slashed box with p2
1 = 0 = p2

2
and p2

3 ̸= 0, p2
4 ̸= 0 studied in [P3, Section V.A] This diagram has the singularity p2

4 − s− t = 0
where the Euler characteristic drops and is an element of the Landau variety. However, not every
method captures this singularity.

The final definition of what we should mean by ”Landau singularity” is still open, but it seams
reasonable that the Landau variety, Euler discriminant and singular locus of the associated D-
module have the same codimension-one components. This would mean that either of these three
objects can be promoted to being the Landau singularity. A proof of this is currently a very active
area of research.

In the beginning of this discussion on Landau varieties, we noted that the study of analytic
functions is in some aspects easier than the study of smooth functions. The wave front set that has
made an appearance a few times in Section 2 describes when a distribution u fails to be a smooth
function. This can be refined to the analytic wave front set WFA(u) which describes when u fails
to be an analytic function. In general WF(u) ⊂ WFA(u), but by results of Andronikof [106, 107]
these sets are equal (and also equal to the characteristic variety of the D-module they generate) for
all regular holonomic distributions. By the explicit construction of (38) it follows from a theorem
by Hotta [108] that HA(β) is regular holonomic for Feynman integrals and since this property
is stable under restrictions this holds for every Feynman integral. Thus, for Feynman integrals,
failing to be smooth should be the same as failing to be analytic. So maybe we were not ”lucky”
that nature chose analyticity over smoothness but rather lucky that nature chose functions where
such distinctions do not matter.
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5 Tropical integration

If we think of physics as a phenomenological science, the goal at the end of the day is to actually
evaluate Feynman integrals so that we can obtain the matrix elements that appear in cross-sections
that can then be measured by experimentalists. In this section we will show how tropical integration
together with very special mathematical structures of Feynman integrals, especially the general-
ized permutohedron property, can be used for highly efficient numerical evaluation of Feynman
integrals.

Many modern numerical methods use the canonical differential equation approach [92], see
e.g. AMFlow [109], DiffExp [110] and SeaSyde [111]. Deriving the canonical differential equation is
a potential bottleneck in these calculations which can be sidestepped using direct integration. An-
alytic integration can be performed for certain integrals in HyperInt [95] while numerical Monte
Carlo techniques are for example implemented in pySecDec [112]. The software feyntrop was
introduced in [113] and further developed in [P4]. For example, this software has been used to
integrate Euclidean Feynman integrals with 17 loops. More recently, feyntrop has been used in
[114] to numerically verify the canonical differential equation result for a four-point three-loop
process with one massive leg. It has also been used in [115] to calculate Feynman integrals in
ϕ4-theory to 13 loops and beyond. The tropical way of thinking also sheds light on infrared sin-
gularities [116] and how to calculate entire amplitudes directly without using Feynman integrals
at all [117].

The main thrust of [P4] was to extend the previous implementation to also include kinematics
in the physical (or Minkowski) region. As been discussed at length in Section 4, Feynman integrals
in the physical region have singularities, meaning that an deformation of the integration contour
has to be employed. Using the parametric representation (26), we want a deformation that defines
the integral on the correct analytic branch instead of using the iε perscription. This is done using
a finite contour deformation respecting the projective invariance [118].

The deformation is given by the embedding ιλ : PE
+ ↪→ CP|E|−1 : xe 7→ Xe := xe exp

(
−iλ∂ V∂xe

(x)
)

so the deformed integral is given by the pull-back:

I = Γ(ω)
∫

PE
+

ι∗λ ϕ = Γ(ω)
∫

PE
+

(
∏
e∈E

Xνe
e

Γ(νe)

)
detJλ(x)

U (X)D/2 · V (X)ω
Ω (70)

where X = ιλ(x) and the Jacobian is given by

Jλ(x)e,h = δe,h − iλxe
∂2V

∂xe∂xh
(x) for all e, h ∈ E. (71)

In order to sample this integral efficiently we use tropical sampling. For any polynomial p(x) in
|E| variables we define the tropical approximation ptr as

ptr(x) = max
α∈supp(p)

|E|
∏
e=1

xαe
e . (72)

This is connected to the more standard tropicalization (see e.g. [119]) via

ptr(x) = exp
(

max
v∈N[p]

vTy
)

, (73)

where y = (y1, . . . , y|E|) with ye = log xe, vTy = ∑e∈E veye and we maximize over the Newton
polytope N[p] of p, which is the tropicalization of p. In this sense we can think of ptr(x) as a
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representative of N[p]. The tropical approximation has the important property that it can be used
to put bounds on the integrand. This can be made mathematically precise, see [113, Theorem 8],
for deformed integrals it is at the time of writing just a conjecture:

Conjecture 5.1. There are λ dependent constants C1(λ), C2(λ) > 0 such that for small λ > 0,

C1(λ) ≤
∣∣∣∣∣

(U tr(x)
U (X)

)D0/2 (V tr(x)
V(X)

)ω0
∣∣∣∣∣ ≤ C2(λ) for all x ∈ PE

+ , (74)

where we recall that X = (X1, . . . , X|E|) and Xe = xe exp
(
− iλ ∂V

∂xe
(x)
)
.

Multiplying and dividing with the tropical approximation of U and V and expanding in the
dimensional regulator gives at order ϵk the integral

Ik = Itr
∫

PE
+

(∏e∈E(Xe/xe)νe)detJλ(x)

(U (X) /U tr (x))D0/2 · (V (X) /V tr (x))ω0
logk

( U (X)

V(X)L

)
µtr (75)

where µtr is the tropical probability measure

µtr =
1
Itr

∏e∈E xνe
e

U tr(x)D0/2 V tr(x)ω0
Ω , (76)

with Itr being a normalization factor.
The final task is now to sample from µtr, in principal this amounts to triangulate the Newton

polytopes of U and F . Up to this point, the process described is in principal valid for any integral
with a rational integrand, however, if the Newton polytope of the integrand is a generalizaed per-
mutohedron this costly step may be bypassed. For details on the sampling procedure, see [113]
and [P4]. Since N[U ] is a matroid polytope, it is always a generalized permutohedron according
to the results in Section 3. In this section we also gave Corollary 3.8 which gives to kinematic situ-
ations when N[F ] is a generalized permutohedron. This is discussed in greater detail in [P5] and
interestingly, even though many sufficient conditions for N[F ] to be a generalized permutohedron
are known, there does not seem to be any necessary conditions know at this point.

Finally, the program feyntrop is a C++ program with Python and JSON interface available at
https://github.com/michibo/feyntrop.

Example 5.2 ([P4, Section 6.5]). The following 5-point process with three massive external legs and
a massive loop

1 6

50

2

4

3

can be evaluated to percent precision to five orders in the dimensional regulator ϵ on a laptop in
two seconds. ⋄

6 Outlook

By now it is hopefully clear that theoretical physics and mathematics come together beautifully
in the study of Feynman integrals. Yet one of the most basic questions is still studied: when is
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a Feynman integral singular? And what is the precise meaning of singular in this context? A
satisfactory answer to this question would be if the following holds (at least for the codimension-
one components):

Landau variety
(?)⇐⇒ Singular locus

(Yes)⇐⇒ Euler discriminant (77)

At the time of writing there seems to exist an unpublished proof of the second equivalence for
codimension-one components. If all these objects are the same then the question is settled, at least
for the time being.

These are questions of very analytical nature, and since the very beginning the D-module
school has been studying these questions with their impressive set of tools. For whatever reason,
the the parallel European microlocal analysis school does not seem to have shared these interests,
neither historically nor today. I am looking forward for this to change in the future!

A branch of mathematics that does not lie idle when it comes to Feynman integrals, and es-
pecially amplitudes, is algebraic geometry. This is explored at conferences with hundreds of par-
ticipants and new synergy grants will keep this interplay between mathematics and physics alive
for years to come. We have seen in this thesis how the tropical approach to Feynman integrals
can allow for very fast integration. As the understanding of the loop-amplituhedron and the over-
all tropical nature of amplitudes grow, an exciting future possibility is that these methods might
allow us to integrate full amplitudes!

Analysis, algebra and physics are unified in the study of Feynman integrals and I urge the
student of any of these subjects to also study the other, as the reward will be outstanding. We are
down the rabbit hole now, and I think the best way out is to follow all these exciting threads to
their end.
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Abstract: We provide evidence through two loops, that rational letters of polylogarithmic
Feynman integrals are captured by the Landau equations, when the latter are recast as a
polynomial of the kinematic variables of the integral, known as the principal A-determinant.
Focusing on one loop, we further show that all square-root letters may also be obtained,
by re-factorizing the principal A-determinant with the help of Jacobi identities. We verify
our findings by explicitly constructing canonical differential equations for the one-loop
integrals in both odd and even dimensions of loop momenta, also finding agreement with
earlier results in the literature for the latter case. We provide a computer implementation
of our results for the principal A-determinants, symbol alphabets and canonical differential
equations in an accompanying Mathematica file. Finally, we study the question of when
a one-loop integral satisfies the Cohen-Macaulay property and show that for almost all
choices of kinematics the Cohen-Macaulay property holds. Throughout, in our approach to
Feynman integrals, we make extensive use of the Gel’fand, Graev, Kapranov and Zelevinskĭı
theory on what are now commonly called GKZ-hypergeometric systems whose singularities
are described by the principal A-determinant.
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1 Introduction

Feynman integrals are central objects in theoretical physics, for example, their evaluation is
central for the calculation of any scattering amplitude in high-energy physics [1]. This not
only includes experiments using the Large Hadron Collider at CERN but also amplitudes
in gravitational wave physics [2, 3] or the critical exponent in statistical field theory [4].

Evaluation of these integrals is a challenging problem which has fostered two main
lines of development: advanced numerical schemes have been developed for fast and ac-
curate direct evaluation (see e.g. [5, 6] or [7, 8]) and sophisticated analytical computer
tools have been developed for either direct evaluation or for understanding the analytic
structure, see for example [9–22]. Focusing on the latter, the topic is classical and dates
back to the seminal work of Landau [23], Cutkosky [24] and the S-matrix program of the
1960’s [25]. At that time it was understood by Regge that every Feynman integral is a
solution to a system of partial differential equations (PDEs) of “hypergeometric type” [26],
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and a strong connection with the Japanese D-module school of Sato and Kashiwara was
established [27, 28].

Later in the 1980’s, a completely combinatorial description of a vast family of D-
modules, to which all Feynman integrals belong, was given by Gel’fand and collabora-
tors [29]. D-modules in this family are now commonly referred to as GKZ-hypergeometric
systems. The singularities of these GKZ-hypergeometric systems are described by a polyno-
mial known as the principal A-determinant. When the GKZ-hypergeometric system under
consideration arises from a Feynman integral, the principal A-determinant then describes
the kinematic singularities of the Feynman integral, namely the values of the kinematic
parameters of the integral, for which it may become singular. The zero set of the principal
A-determinant is commonly referred to in physics as the Landau singular locus, in other
words it is the solution to the Landau equations [23], where the presence of kinematic singu-
larities is formulated as a condition for the contour of integration to become trapped. One
important property of GKZ-hypergeometric systems is the Cohen-Macaulay property; when
a GKZ-hypergeometric system has this property its rank is given by a simple combinatorial
formula and series solutions to the system may be obtained in a much more straightforward
manner. In the context of Feynman integrals, the rank of the GKZ-hypergeometric system
bounds the number of master integrals, to be defined below. These connections have been
rediscovered in recent years attracting a lot of interest, see e.g. [30–33].

Parallel to this, analytic evaluation approaches using partial differential equations were
also developed natively within the physics community [34–36], culminating in what is now
called canonical differential equations [37]. When a Feynman integral can be represented
like this it can be expressed as a Chen iterated integral [38] which, when the kernels are ra-
tional, further reduces to the well-studied class of multiple polylogarithms (MPLs) [39, 40].

More concretely, these approaches are based on the solution of integration by parts
identities (IBPs) [41], namely linear relations between any set of Feynman integrals with
integer propagator powers, for example those contributing to a given process. The master
integrals alluded to before are precisely a finite basis g⃗ in this linear space, obtained by
solving the identities in question. Derivatives of the master integrals may then be re-
expressed in terms of this basis. Regularizing the infrared and ultraviolet divergences of
the integrals by setting the dimension of the loop momenta to D = D0 − 2ϵ, the canonical
transformation that greatly facilitates their solution is then a change of basis such that

dg⃗ = ϵ dM̃ g⃗, (1.1)

where we have grouped all partial derivatives with respect to the independent kinematic
variables of the integrals, vi, into the total differential d = ∑

i dvi∂vi . The matrix M̃ is
independent of ϵ and takes the simple dlog-form,

M̃ ≡
∑

i

ãi logWi, (1.2)

where the ãi are constant matrices and the Wi carry all kinematic dependence and are called
letters. The set of all letters is called the alphabet. Evidence suggests that a transformation
to the first equality is always possible, however the particular form of the M̃ matrix given
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by the second equality is expected to exist only when the master integrals live in the
aforementioned class of MPLs. The latter class of integrals will be the focus of this paper.

The merit of the canonical differential equations (1.1)–(1.2) for the integrals g⃗ is that
they can now be easily solved as an expansion1 in ϵ

g⃗ =
∞∑

k=0
ϵkg⃗(k), (1.3)

where at each order g⃗(k) the symbol S [42], capturing the full answer up to transcendental
constants, is given by

S(g⃗(k)) =
n∑

i1,...,ik=1
ãik · ãik−1 · · · ãi1 · g⃗(0) Wi1 ⊗ · · · ⊗Wik . (1.4)

In practical applications, two major bottlenecks that one often encounters in the above
procedure are solving the IBPs analytically so as to find a basis of master integrals, and
finding the transformation that relates this to a new, canonical basis (1.2). However, with
knowledge of the letters Wi it would be possible to avoid doing these two steps analytically
by using the latter equation as an ansatz. The unknown coefficient matrices ãi can then be
fixed by matching the partial derivatives of the ansatz to multiple numerical evaluations
of (1.1) derived through numeric IBP identities (over finite fields if necessary). Similar
approaches have, for example, been used in [43].

Motivated by the great potential benefits of this alternative route, in this paper we
will open a new door to obtaining the symbol alphabet from the Landau equations, when
recast in the form of the aforementioned principal A-determinant, before attempting to
analytically evaluate the integrals. Many crucial results in theoretical physics have been
obtained by analyzing the Landau equations, whose study has recently received renewed
interest, see for example [44–54] for an incomplete list. From eqs. (1.1)–(1.2) it is evident
that values of the kinematic variables where the letters Wi vanish are potential branch
points of Feynman integrals, and it is well known that these values are indeed captured
by the Landau equations. However this information is in general not enough for fixing the
entire functional form of the letters.

Quite remarkably, here we observe that the principal A-determinant of a Feynman
integral, in the natural factorization it is endowed with as a function of its kinematic
variables, coincides with the product of rational letters of the integral in question! We
will provide precise definitions in the following sections, but let us give an idea of this
identification for the one-loop ‘two-mass easy’ box with all internal masses being zero, and

1We assume that the integrals are normalized such that they have uniform transcendental weight zero.
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additionally p2
2 = p2

4 = 0, p2
1, p

2
3 ̸= 0:
p1 p4

p3p2

x1

x4

x3

x2

The principal A-determinant of this Feynman integral is

ẼA = (p2
1p

2
3 − st)︸ ︷︷ ︸

type−I

p2
1p

2
3st(p2

1 + p2
3 − s− t)(p2

3 − t)(p2
3 − s)(p2

1 − t)(p2
1 − s)︸ ︷︷ ︸

type−II

. (1.5)

where s = (p1 + p2)2 and t = (p1 + p4)2 are Mandelstam invariants. The 10 factors above
in fact coincide with the 10 letters in the symbol alphabet of this diagram. In eq. (1.5) we
have also indicated whether each factor describes a type-I and type-II Landau singularity,
associated to the entrapment of the integration contour at finite or infinite values of the
loop momentum, respectively (as also reviewed in section 2.2). In much of the relevant
literature there has been a tendency to focus on type-I singularities, however here we
wish to emphasize that for symbol alphabets the type-II singularities in general cannot be
neglected.

We will also provide two-loop evidence of the connection between principal A-determi-
nants and rational letters, but in this paper we will mainly focus on further extracting
letters containing square roots from them, which is well known that already appear in one-
loop integrals. For these integrals, we will also prove that the Cohen-Macaulay property
holds.

The paper is organized as follows. In section 2 we provide the necessary background for
Feynman integrals and generalized hypergeometric systems. In particular we connect the
Landau singularities to the principal A-determinant. In section 3 we restrict our focus to
one-loop graphs and provide the full principal A-determinant, symbol alphabet and canon-
ical differential equations for all graphs with generic kinematics. The process of starting
with the case of generic kinematics and taking limits to obtain non-generic kinematics, as
well as the connection to previous work, are also discussed. Explicit examples are provided
in section 4. In section 5 we prove that the Cohen-Macaulay property holds for one-loop
graphs for almost all choices of kinematics (in fact we prove a stronger sufficient condition
referred to as normality) and discuss the generalized permutohedron property. Finally in
section 6 we provide conclusions and outlook. Our results on the principal A-determinant,
symbol alphabet and differential equations have also been implemented in the Mathematica
notebook LandauAlphabetDE.nb as Supplementary Material attached to our article.

Note added. While this project was in the process of writing up, we became aware of
the recent preprint [55], which overlaps in part with the results presented in subsection 3.2.
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2 Feynman integrals, Landau singularities and GKZ systems

In this section we establish our conventions on Feynman scalar integrals, and review
how they can be interpreted as GKZ hypergeometric systems when expressed in the Lee-
Pomeransky representation. We also recall how a natural object in this framework, the
principal A-determinant, captures the Landau singularities of these integrals, mostly fol-
lowing [48].

2.1 Feynman integrals in the Lee-Pomeransky representation

In this paper we consider one-particle irreducible Feynman graphs G := (E, V ) with in-
ternal edge set E, vertex set V and loop number L = |E| − |V | + 1. Every edge e ∈ E

is assigned an arbitrary direction with which we define the incidence matrix ηve of G to
satisfy ηve = 1 if e ends at v, −1 if e starts at v, and 0 otherwise. The vertex set V

has the disjoint partition V = Vext ⊔ Vint where each vertex v ∈ Vext is assigned an ex-
ternal incoming d-dimensional momenta pv ∈ R1,d−1 with the mostly minus convention
(pv)2 = (p0

v)2 − (p1
v)2 − · · · and we put pv = 0 for all v ∈ Vint. Using Feynman’s causal iε

prescription, scalar Feynman rules assigns the following integral to G:

I =
(
eγEϵ

iπD/2

)L
lim
ε→0+

∫ ∏

e∈E
dDqe

( −1
q2
e −m2

e + iε

)νe ∏

v∈V \{v0}
δ(D)

(
pv +

∑

e∈E
ηveqe

)
(2.1)

where γE = −Γ′(1) ≃ 0.577 is the Euler-Mascheroni constant, νe ∈ Z are generalized prop-
agator powers and qe is the total internal momenta flowing through the edge e. We are
also employing dimensional regularization with D := D0 − 2ϵ, and while the external and
(integer part of) the internal momenta dimensions are usually taken to coincide, D0 = d,
here we will distinguish between the two. Physically this can be thought of as restricting
one set of momenta to lie in a subspace of the other, and is further justified by the alter-
native parametric representations of Feynman integrals, which we will get to momentarily.
Momentum is conserved at each vertex v ∈ V , but only |V | − 1 of these constraints are
independent, we therefore remove an arbitrary vertex v0 from V in (2.1) to avoid imposing
δ(D) (∑v∈V pv) explicitly.

To evaluate the integrals we rewrite them in parametric form

I = eLγEϵΓ(ω) lim
ε→0+

∫ ∞

0

∏

e∈E

(
xνedxe
xeΓ(νe)

)
δ(1−H(x))

UD/2

(
1

F/U − iε
∑

e∈E xe

)ω
(2.2)

where ω := ∑
e∈E νe − LD/2 is the superficial degree of divergence, H : R|E| → R+

is a homogeneous function of degree one and xe, e ∈ E, are the Schwinger/Feynman
parameters. These are defined by the Γ-function identity

(
i

q2
e −m2

e + iε

)νe
= 1

Γ(νe)

∫ ∞

0

dxe
xe

xνee exp
[
ixe(q2

e −m2
e + iε)

]
(2.3)

which is absolutely convergent when ε > 0 and the real part of νe is positive, ℜ(νe) > 0,
but can be analytically continued to all νe ∈ C. In the representation (2.2) the information
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on the Feynman graph G has been encoded in two homogeneous Symanzik polynomials U
and F , of degree L and L + 1 in the integration variables, respectively. As is reviewed in
e.g. [56], by virtue of the matrix tree theorem these are equal to

U =
∑

T a spanning
tree of G

∏

e ̸∈T
xe, (2.4)

F = Fm + F0 = U
∑

e∈E
m2
exe −

∑

F a spanning
2−forest of G

p(F )2
∏

e ̸∈F
xe, (2.5)

where a spanning tree is a connected subgraph of G which contains all of its vertices but
no loops, and the spanning two-forest is defined similarly, but now has two connected
components. For each spanning two-forest F = (T, T ′) of G we let p(F ) = ∑

v∈T∩Vext p(v)
denote the total momentum flowing through cut.

In this paper we will consistently think of the Feynman integral of a Feynman diagram
G in their parametric representation due to Lee and Pomeransky [57], that is we consider
integrals:

I = eLγEϵ
Γ(D/2)

Γ(D/2− ω)

∫ ∞

0

∏

e∈E

(
xνee dxe
xeΓ(νe)

) 1
GD/2 (2.6)

where
G = U + F (2.7)

and the dependence on iε has been suppressed as it will not play a role in the rest of the
paper. Going from (2.6) back to (2.2) is done by inserting 1 =

∫∞
0 δ(t−H(x))dt, re-scaling

the variables xe → txe, t > 0 and performing the t-integral.
When a Feynman integral is written in Lee-Pomeransky form it is a generalized hy-

pergeometric integral [30, 31] of the form studied by Passare and collaborators [58, 59].
As a consequence it is also a solution to a generalized hypergeometric system of partial
differential equations in the sense of Gel’fand, Graev, Kapranov and Zelevinskĭı (GGKZ,
commonly shortened to GKZ) [29, 60–63]. The singularities of these hypergeometric sys-
tems are described by the principal A-determinant, see [64, §3] and [65, section 9] or [66,
Theorem 1.36] or [48, §3]. We will define the principal A-determinant in section 2.2 below;
in the context of Feynman integrals the zero set of the principal A-determinant contains
all kinematic points where the Feynman integral fails to be an analytic function.

Using multi-index notation we may write the Lee-Pomeransky polynomial as G =∑r
i=1 cix

αi with ci ̸= 0 and αi ∈ Z|E|≥0 for all i = 1, . . . , r. We define the two matrices

A := {1} ×A− =
(

1 1 · · · 1,
α1 α2 · · · αr

)
∈ Z(|E|+1)×r

≥0 , and (2.8)

β :=
(
−D/2, −ν1 , . . . ,−ν|E|

)T
∈ R|E|+1, (2.9)

where A− := Supp(G) is the monomial support of G, that is the matrix whose columns are
the exponent vectors of the monomials appearing with non-zero coefficients in G. From
these two matrices the GKZ hypergeometric system can be defined as a left-ideal HA(β) in
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the Weyl algebra W := Q(β)[c1, . . . , cr]⟨∂1, . . . , ∂r⟩ where ∂i denotes the partial differential
operator associated to ci (cf. [67]). The hypergeometric ideal HA(β) can be written as the
sum of the two ideals

IA :=
〈
∂u − ∂v | u, v ∈ Zr

≥0 s.t. Au = Av
〉
, and (2.10)

ZA(β) :=
〈
Θi(c, ∂) | Θ = A ·




c1∂1
...

cr∂r


− β

〉
, (2.11)

where Θ is a vector containing |E| + 1 polynomials. Note that a Feynman integral I is
annihilated by all polynomials in the left-ideal HA(β) := IA + ZA(β), i.e. HA(β) • I = 0,
hence, from an analytic perspective, HA(β) is a system of partial differential equations. We
also note that by definition the ideal IA is in fact an ideal in the commutative polynomial
ring Q[∂1, · · · , ∂r], (which we consider as a left ideal in the Weyl algebra) and has a finite
generating set IA = ⟨h1, . . . hℓ⟩ with hi ∈ Q[∂1, · · · , ∂r]. This ideal IA is a prime ideal
whose finite generating set consists of binomials and is often referred to as a toric ideal as
it gives the defining equations of the projective toric variety

XA = {z ∈ Pr−1 | h1(z) = · · · = hℓ(z) = 0}

associated to the matrix A, see e.g. [68], [65, II, section 5].

2.2 Landau singularities and the principal A-determinant

In going from the momentum space representation (2.1) to the parametric representa-
tion (2.2) one has the intermediate step

I =
∫ L∏

l=1

dDkl
iπD/2

∫ ∞

0

∏

e∈E
dxe

δ(1−H(x))
Q
∑

e
νe

(2.12)

where the momentum integrals is over the L independent loop momenta and

Q =
∑

e∈E
xe(−q2

e +m2
e). (2.13)

The original Landau analysis [23] involves finding not only when Q is zero but when it has
a stationary point so that the integration contour becomes pinched between poles of the
integrand. These conditions are expressed in the Landau equations




Q = 0
∂
∂kl
Q = 0, ∀l = 1, . . . , L.

(2.14)

If all loop momenta are kept finite the solutions are called type-I singularities while if
all loop momenta are infinite it is referred to as a type-II singularity (first observed by
Cutkosky [24]). In general some loop momenta can be finite while some pinch at infinity
giving a mixed type-II singularity. However, at one-loop there are no such mixed sin-
gularities as there is only one loop momentum. The Landau equations have also been
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studied in the parametric representation (2.2), see for example [69, 70]. After introducing
some machinery from the GKZ-formalism, we will see that solutions of the Landau equa-
tions in the Lee-Pomeransky formalism are associated with the vanishing of the principal
A-determinant (cf. Definition 2.2).

Following the notation in [65] we let A = {a1, . . . , an} ⊂ Zk−1 be a set of lattice points
that generates Zk−1 and let CA denote the finite dimensional C-vector space of all Laurent
polynomials with support A, meaning all Laurent polynomials which can be formed from
the momomials xa1 , . . . , xan , i.e. CA := {∑n

i=1 cix
ai | ci ∈ C}.

Let Z0(A) ⊂ (CA)k be the set of polynomials (f1(x), . . . , fk(x)) for which there is x in
the algebraic torus (C∗)k−1 satisfying f1(x) = · · · fk(x) = 0, i.e.

Z0(A) :=
{
(f1, . . . , fk) ∈ (CA)k |V (f1, . . . , fk) ̸= ∅ in (C∗)k−1

}
. (2.15)

The closure Z(A) of Z0(A) is an irreducible hypersurface in (CA)k over the rational num-
bers.

Definition 2.1 (A-resultant). Since Z(A) is an irreducible hypersurface there is an ir-
reducible polynomial RA in the coefficients of f1, . . . , fk with integer coefficients that is
unique up to sign. This polynomial is called the A-resultant.

A special case of the A-resultant is when fk = f and fi = xi∂f/∂xi for i = 1, . . . , k−1:

Definition 2.2 (Principal A-determinant). The special A-resultant

EA(f) := RA

(
x1

∂f

∂x1
, . . . , xk−1

∂f

∂xk−1
, f

)
(2.16)

is called the principal A-determinant.

A major result in this field [65, section 10] is that the principal A-determinant can be
written as a product of A-discriminants. Let ∇0 ⊂ CA be the set defined as

∇0 :=
{
f ∈ CA | V

(
f,

∂f

∂x1
, . . . ,

∂f

∂xk

)
̸= ∅ for x ∈ (C∗)k

}
(2.17)

and denote by ∇A the Zariski closure of ∇0.

Definition 2.3 (A-discriminant). If ∇A ⊂ CA has codimension 1, then the A-discriminant
is the irreducible polynomial ∆A(f) in the coefficients ci of f that vanishes on ∇A. If
codim∇A > 1 we put ∆A = 1.

Again writing XA for the toric variety associated to A, we have that the projectiviza-
tion of ∇A is the projective dual of XA, see e.g. [65]. The faces Γ ⊂ conv(A) induce a
stratification of XA with strata X(Γ) and projective duals ∇A∩Γ; by A ∩ Γ we mean the
matrix consisting of all columns of A which are also contained in the face Γ. For a variety
X(Γ) ⊂ XA we denote the multiplicity of XA along X(Γ) as multX(Γ)XA, [65, Definition
3.15, section 5], and we have the following factorization theorem.
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Theorem 2.4 (Prime factorization, Theorem 1.2, section 10 of [65]). Let Q = conv(A),
then the principal A-determinant is the polynomial

EA(f) = ±
∏

Γ⊆Q
∆A∩Γ(f)multX(Γ)XA (2.18)

where ∆A∩Γ(f) := ∆A∩Γ(f |Γ) and f |Γ is the coordinate restriction of f supported on Γ.

Calculating the principal A-determinant EA(f) now comes down to three steps: cal-
culating all the faces Γ of Q = conv(A), calculating the multiplicities multX(Γ)XA, which
are lattice indices [65, Theorem 3.16, section 5] and can be computed via integer linear
algebra [71, Remark 2.2], and finally calculating the A-discriminants ∆A∩Γ(f) which can
be obtained via elimination (which can be accomplished using Gröbner basis, see e.g. [72]).

In our discussion we are primarily interested in the zero set of the principal A-
determinant EA(f), hence we may neglect the exponents appearing in (2.18), as these
do not change the zero set. To this end we make the following definition of a reduced prin-
cipal A-determinant, which is the unique polynomial (up to constant) that corresponds to
the zero set of EA(f).2

Definition 2.5 (Reduced Principal A-determinant). Let Q = conv(A), then the reduced
principal A-determinant is the polynomial

ẼA(f) =
∏

Γ⊆Q
∆A∩Γ(f) (2.19)

where ∆A∩Γ(f) := ∆A∩Γ(f |Γ) and f |Γ is the coordinate restriction of f supported on Γ.

Using the homogenized Lee-Pomeransky polynomial Gh := Ux0+F and A = Supp(Gh) 3

in the definition of EA(Gh) we can understand EA(Gh) as a polynomial in the coefficients
ci whose zeros correspond to coefficients such that

Gh = 0, and either xi = 0 or ∂Gh
∂xi

= 0 ∀ i = 0, . . . , |E| in (C∗)|E|+1. (2.20)

Written in this way this is the “third representation” of the Landau equations in [25,
§2.2] with some important differences. In [25] they define the singularities only in terms
of the F -polynomial. Using the full Lee-Pomeransky polynomial, not only do we get all
the Landau singularities from the F -polynomial (the type-I singularities), but also the
singularities only depending on external kinematics (type-II singularities) and the mixed
type-II singularities. For a recent discussion on the relation between discriminants and
Landau singularities see e.g. [48, 49]. In short we get all possible singularities by using the
full Lee-Pomeransky polynomial.

2Mathematically speaking, the exponents in eq. (2.18) do contain important information; in the context
of toric geometry this e.g. pertains to the local geometry in the neighbourhood of a singular point on the
toric variety. The physical meaning of these exponents in the Feynman integral context is something that
certainly merits further exploraton. As a first step in this direction, we have computed these exponents for
several examples of generic 1-loop graphs, finding that they are always equal to 1. We defer a more detailed
investigation to future work.

3This is equivalent to using A = {1} × Supp(U + F), see section 5.
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Using the prime factorization theorem it is easy to associate each of the non-trivial
discriminants appearing in the factorization to certain type of singularities, at least for
generic kinematics at one-loop where contracting edges of the graph G is the equivalent to
going to faces of Newt(G), as also discussed in [48]:

• ∆A(G) is the type-II singularity for the full graph.

• ∆A∩xi=0(G|xi=0) is the type-II singularity for the sub-graph with edge i contracted.

• ∆A∩Newt(F)(F) is the type-I singularity for the full graph (i.e. the leading Landau
singularity).

• ∆A∩Newt(F)∩xi=0(F|xi=0) is the type-I singularity for the sub-graph with edge i con-
tracted.

• ∆A∩Γ(G|Γ) with Γ having vertices both in Supp(U) and Supp(F) are mixed singular-
ities.

Multiple edges can be contracted to get singularities for even smaller sub-graphs. Sub-
tleties with these identifications can appear for specific kinematic configurations, as we will
illustrate in subsection 4.3 in the concrete example of the box with three offshell external
and all massless internal legs. Nevertheless, in subsection 3.4 we will also show that the
principal A-determinant of a non-generic graph may be obtained as a limit of that of a
generic graph, such that subtleties of this sort ultimately do not matter.

One of the main themes of this paper is to show how the principal A-determinant can
be used to determine symbol letters. The argument for why this holds follows from the fact
that every GKZ-hypergeometric system can be written as a system of first order differential
equations, in this context this system is called the Pfaffian system and can be calculated
using Gröbner basis methods [67]. The coefficients of this system depend rationally on the
kinematic variables but polynomially on the parameters in the β-vector, and hence also on
the dimensional regulator ϵ. The singular locus of the Pfaffian system is the product of its
denominators, which may a priori be larger than the principal A-determinant. However if
it is possible to find a transformation that brings it into an ϵ-factorized form (1.1), then
the singular locus of the Pfaffian system coincides with the principal A-determinant. As
shown in [73, 74], this is because the monodromy group has been normalized. Especially
in the case when the denominators of the canonical differential equation factorize into
linear factors, these factors correspond to the symbol letters and are also the factors of the
principal A-determinant.

For our purposes the principal A-determinant is important since it describes the sin-
gularities of a GKZ system Hβ(A), but before concluding this section let us also mention
its relation to the triangulations of the polytope conv(A) = Newt(f) and the Chow form of
the toric variety XA. The relation between these three objects manifests as the following
three polytopes coinciding

Newt(EA(f)) ≃ Σ(A) ≃ Ch(XA). (2.21)
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Here Σ(A) denotes the secondary polytope of A, that is, the polytope that encodes the
regular subdivisions of A, and whose vertices particularly correspond to the regular tri-
angulations of A. Two vertices of Σ(A) are connected by an edge if and only if the two
triangulations are related by a modification along a circuit in A. The similarity between
Σ(A) and the exchange graph (more precisely, the cluster polytope) of a cluster algebra [75]
is too striking to ignore. Specifically, if A ⊂ R2 is the set of vertices of a convex n-gon,
then the secondary polytope Σ(A) is the n−th associahedron, which is indeed isomor-
phic to the cluster polytope of the An−3 cluster algebra. Since Newt(EA) ≃ Σ(A), our
approach for extracting symbol alphabets from the principal A-determinant EA(G) offers
promise for providing a first-principle derivation and extension of the intriguing cluster-
algebraic structures observed in a wealth of different Feynman integrals [76–78], following
similar observations in the context of scattering amplitudes in N = 4 super Yang-Mills
theory [79, 80], see also the recent review [81].

Finally, the third polytope in eq. (2.21), Ch(XA), is the Chow polytope. This is the
weight polytope of the Chow form RXA , which describes all the (n − k − 1)−dimensional
projective subspaces in Pn−1 that intersect XA. Here XA is a toric variety of dimension
k − 1 and degree d. Let B = ⊕Bm be the homogeneous coordinate ring of Gr(n − k, n),
then RXA ∈ Bd. Again this seems to point towards cluster algebras since the homogeneous
coordinate ring of a Grassmanian comes with a natural cluster algebra structure [82].

3 One-loop principal A-determinants and symbol letters

The goal of this section is to present a formula to compute the symbol alphabet of one-
loop Feynman graphs from their principal A-determinant. At this loop order the relevant
principal A-determinant is in turn computed via determinant calculations as described in
subsection 3.1 below. The resulting formulas for the symbol letters of generic Feynman
integrals, where all masses and momenta squared are nonzero and different from each other,
are then given in subsection 3.2. These formulas are then verified by directly constructing
the corresponding canonical differential equations in subsection 3.3, and by comparing with
earlier results in the literature, whenever available. Finally, in subsection 3.4 we provide
evidence that the principal A-determinant and symbol alphabets of non-generic graphs
may be obtained from the generic ones by a limiting process.

3.1 Matrix representation of one-loop principal A-determinants

Let us start by further specializing the mostly general discussion of section 2.2 to one-loop
graphs as shown and labeled in figure 1. In this case the number of external legs coincides
with the number of internal legs and with the number of vertices, and for simplicity from
this point onwards we will denote this number with

n = |E| = |V | . (3.1)

For one-loop graphs U has degree one and F has degree two, so the homogenized
Lee-Pomeransky polynomial Gh = Ux0 + F has degree two. For degree two polynomials
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p1

p2

p3

p4

pn

x2

x3

x4

x1

Figure 1. Generic one-loop Feynman diagram with n external legs.

the discriminant and hence also the principal A-determinant calculation, which we will
consider in this section, can be made very simple.

Let f be a homogeneous polynomial of degree two. The homogeneity means that the
vanishing of all partial derivatives implies the vanishing of f , i.e.

∂f

∂x1
= · · · = ∂f

∂xk
= 0 =⇒ f = 0. (3.2)

And since f has degree two, all partial derivatives are linear homogeneous functions. The
definition of ∇0 now reduces to requiring that the vanishing locus of the partial derivatives
be non-empty with x in the torus (C∗)k.

Writing the zero set of the partial derivatives as



∂f
∂x1...
∂f
∂xk


 =: J (f)




x1
...
xk


 = 0, (3.3)

where J (f) is the coefficient matrix associated to the Jacobian of f , we get that

V
(
∂f

∂x1
, . . . ,

∂f

∂xk

)
̸= ∅ for x ∈ Ck \ {0} ⇐⇒ det(J (f)) = 0. (3.4)

Note that this is an equivalence for x in the punctured affine space Ck \ {0} and not for x
in the torus (C∗)k, we will return to this important point shortly.

For the Lee-Pomeransky polynomial G the coefficient matrix J (G) coincides with the
modified Cayley matrix as defined by Melrose in [83]. To begin with, we define the Cayley
matrix Y to be the n× n-matrix with elements

Yii = 2m2
i , Yij = m2

i +m2
j − p(Fij)2 (3.5)

where
p(Fij)2 = (pi + . . .+ pj−1)2 ≡ sij−1 = sji−1 , (3.6)
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is the total momenta flowing through the two-forest Fij obtained from G by removing edges
i and j. We have also expressed the latter in terms of the Mandelstam invariants in the
labelling of figure 1, where cyclicity of the indices modulo n is implied. For concreteness, in
what follows we will choose conventions where these n(n−1)/2 cyclic Mandelstam invariants
do not contain pn. In terms of the coefficient matrix of the Jacobian, Y = J (F). From
the Cayley matrix the modified Cayley matrix Y is simply obtained by decorating it with
a row and column in the following manner:4

Y :=




0 1 1 · · · 1
1 Y11 Y12 · · · Y1n
1 Y12 Y22 · · · Y2n
...

...
...

...
1 Y1n Y2n · · · Ynn



. (3.7)

The determinant of both the Cayley and modified Cayley matrix can be understood as
Gram determinants, defined in general as

G(k1, . . . , km; l1, . . . , lm) ≡ det (ki · lj) = det




k1 · l1 k1 · l2 · · · k1 · lm
k1 · l2 k2 · l2 · · · k2 · lm

...
...

...
k1 · lm k2 · lm · · · km · lm



, (3.8)

and further abbreviated as

G(k1, . . . , km) ≡ G(k1, . . . , km; k1, . . . , km) , (3.9)

when the two sets of momenta coincide. The determinant of the Cayley matrix is up to a
proportionality factor the Gram determinant of the internal momenta restricted to be on
their mass shell q2

i = m2
i ,

det(Y ) = (−2)nG(q1, . . . qn) . (3.10)

Similarly, the determinant of the modified Cayley matrix is proportional to the Gram
determinant of any n− 1 of the external momenta, for example

det(Y) = −2n−1G(p1, . . . , pn−1) , (3.11)

namely it is independent of the internal masses. In what follows, we will call this particular
determinant the Gram determinant of a Feynman graph/integral, and use the term general
Gram determinant otherwise.

The relation between det(Y ), det(Y) and general m×m Gram determinants is helpful
since the latter can be written as certain (m+ 2)× (m+ 2) Cayley-Menger determinants

4The modified Cayley matrix also appears naturally in the embedding space formalism [84] as applied
to one-loop integrals, see for example [85]. The compactification of the integration domain, which can be
easily carried out in this formalism, also treats type I and II Landau singularities of one-loop integrals on
the same footing.
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according to

G(k1, . . . , km) = (−1)m+1

2m det




0 1 1 1 · · · 1 1
1 0 (k1 − k2)2 (k1 − k3)2 · · · (k1 − km)2 k2

1
1 (k1 − k2)2 0 (k2 − k3)2 · · · (k2 − km)2 k2

2
1 (k1 − k3)2 (k2 − k3)2 0 · · · (k3 − km)2 k2

3
...

...
...

...
...

...
1 (k1 − km)2 (k2 − km)2 (k3 − km)2 · · · 0 k2

m

1 k2
1 k2

2 k2
3 · · · k2

m 0




.

(3.12)
Cayley-Menger determinants have the important property that they are irreducible for
n ≥ 3, see [86]. This means that for a homogeneous polynomial f of degree two a sufficient
condition for

∆A(f) = det(J (f)) (3.13)

is that det(J (f)) can be understood as a Cayley-Menger determinant with n ≥ 3. The
irreducibility of det(J ) removes the need for the distinction between the algebraic torus
and punctured affine space meaning that the determinant is equal to the discriminant; that
is in this case we can replace x ∈ Ck \ {0} with x ∈ (C∗)k in (3.4). An example illustrating
how this identification can fail when the determinant is reducible is given in Example 4.2.

For massive one-loop graphs with generic kinematics the result in [86] means that the
Cayley determinant for n ≥ 3 and the Gram determinant for n ≥ 4 are all irreducible
and thus coincide with the expected discriminant. For the few cases not covered by the
theorem, explicit calculations confirm that the discriminant and determinant coincide.

We will not only be interested in the determinant of the modified Cayley matrix but
also its minors. Let 1 ≤ k < n+1 be an integer, then the general minor of order n+1− k

is denoted as

Y
[
i1 i2 · · · ik
j1 j2 · · · jk

]
, 1 ≤ i1 < i2 < · · · ik ≤ n, 1 ≤ j1 < j2 < · · · jk ≤ n (3.14)

where I = {i1, i2, · · · , ik} and J = {j1, j2, . . . , jk} denotes the rows resp, columns removed

from Y. If both I and J are empty we recover the full determinant det(Y) = Y
[
·
·

]
. It will

sometimes also be convenient to introduce the complementary notation where we index the
rows and columns kept in the minor, this is signified by a parenthesis (·) instead of square
brackets [·]. Let E = {1, 2, . . . , n+ 1}, then

Y
[
I

J

]
= Y

(
E \ I
E \ J

)
.

The identification between discriminants and subgraphs in section 2.2 can now be
carried out for determinants as well:

• ∆A(G) = det(Y),

• ∆A∩xi=0(G) = Y
[
i+ 1
i+ 1

]
,
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• ∆A∩Newt(F)(F) = det(Y ) = Y
[
1
1

]
,

• ∆A∩Newt(F)∩xi=0 = Y

[
i

i

]
= Y

[
1 i+ 1
1 i+ 1

]
,

For one-loop graphs with massive and generic kinematics this means that all non-trivial
discriminants can be expressed as determinants, making the calculation much easier. Es-
pecially, the reduced principal A-determinant now has a simple expression as a product of
minors of Y:

ẼA(G) = Y
[
·
·

]
n+1∏

i=1
Y
[
i

i

]
. . .

n+1∏

in−1>...>i1=1
Y
[
i1 . . . in−1
i1 . . . in−1

]
n+1∏

i=2
Yii . (3.15)

In other words, ẼA is equal to the product of all diagonal k-dimensional minors of Y with
k = 1, . . . , n + 1 (the largest one corresponding to the determinant of the entire matrix),
except for the Y11 element, which is zero. Given that minors of Y where the first row
and column has (not) been removed correspond to the Cayley (Gram) determinant of the
Feynman graph, or its subgraphs where certain edges have been contracted, the above
formula also has the following interpretation: The principal A-determinant of a generic
1-loop n-point graph is the product of the Cayley and Gram determinants of the graph
and all of its subgraphs. From these considerations, we may also easily derive that the
total number of factors in eq. (3.15), i.e. the total number of kinematic-dependent Cayley
and Gram determinants of the Feynman graph and all of its subgraphs, is

2n+1 − n− 2 , (3.16)

namely 1, 4, 11, 26, 57 and 120 factors for n = 1, . . . , 6. In this counting we exclude not
only the element Y11 = 0 but also all two-dimensional minors including the first row and
column, which always yield −1.

3.2 One-loop symbol alphabets

In this subsection we will show how to calculate the symbol alphabet of a one-loop graph by
appropriately re-factorizing its principal A-determinant (3.15). Note that we are going to
distinguish the two cases for the sum of loop integration dimension and number of external
legs D0 + n being odd, respectively, even.

Jacobi identities. As has been seen in the example presented in the introduction, indi-
vidual factors in the natural factorization of the principal A-determinant gives us all the
rational letters for a Feynman graph. It is well known, however, that letters containing
square roots quickly become unavoidable, even at one-loop. In order to construct the letters
containing square roots we will use Jacobi determinant identities to re-factorize the factors
of the principal A-determinant (3.15), namely of minors of the modified Cayley matrix Y,
in pairs. Jacobi determinant identities have played an important role in many areas of
mathematics and physics, including the computation of volumes of spherical simplices [87],
as well as the solution theory of integrable systems [88].
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There will be two types of identities that we need; identities containing the full deter-
minant Y [ ·· ] (of a given graph and of its subgraphs) and those containing the determinant
of the Cayley sub-matrix Y [ 1

1 ]. The identities containing the full determinant are

Y
[
·
·

]
Y
[
1 i

1 i

]
= Y

[
i

i

]
Y
[
1
1

]
− Y

[
i

1

]2

,

Y
[
·
·

]
Y
[
i j

i j

]
= Y

[
i

i

]
Y
[
j

j

]
− Y

[
i

j

]2

, i ≥ 2 ,
(3.17)

where in the first line we have simply separated out the i = 1 case of the second line for
later convenience. As we will get back to shortly, these identities are relevant in the case
when D0+n is odd as it is the modified Cayley determinant that contributes to the leading
singularity, see also eq. (3.31) and the discussion around it in the next section.

The identities containing the determinant of the Cayley submatrix are

Y
[
·
·

]
Y
[
1 i

1 i

]
= Y

[
i

i

]
Y
[
1
1

]
− Y

[
i

1

]2

,

Y
[
1
1

]
Y
[
1 i j

1 i j

]
= Y

[
1 j

1 j

]
Y
[
1 i

1 i

]
− Y

[
1 j

1 i

]2

,

(3.18)

and these will in turn be relevant when D0+n is even, as it is the Cayley determinant that
yields the leading singularity. Note that the first identity in each case is the same.

Symbol letters. We now introduce a procedure for obtaining not only the rational but
also the square-root letters of one-loop Feynman integrals as follows: We assume that the
latter are produced by applying Jacobi determinant identities of the form

p · q = f2 − g = (f −√g)(f +√g) , (3.19)

where

1. p and q are both factors of the principal A-determinant, i.e. rational letters given by
symmetric minors of the modified Cayley matrix.

2. The square-root letters f ±√g thus obtained contain the leading singularity of the
Feynman integral considered in their second term.

This procedure is motivated by the interpretation of one-loop integrals as volumes of spher-
ical simplices [89], and by the role Jacobi identities have played in their computation. Par-
ticularly the second assumption adopts a pattern that has been observed not only in one-,
but also many two-loop computations. In the next subsection, we will validate the correct-
ness of these assumptions by explicitly constructing the canonical differential equations of
one-loop integrals, as well as compare with the existing results in the literature. While the
precise identities and assumptions may differ beyond one loop, we expect that a similar
re-factorization methodology should still apply.
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Given that the rational letters at the very left of eq. (3.19) are already contained in the
rational alphabet, the genuinely new square-root letter that will arise from the procedure
we have described will be the ratio of the factors at the very right of the same equation,

f −√g
f +√g . (3.20)

Furthermore, the subset of Jacobi identities chosen by the assumptions we have stated
above will be precisely eqs. (3.17) and (3.18) for D0 + n odd and even, respectively. The
first and second line of these equations then yields n letters of the first type,

W1,...,(i−1),...,n =





Y

i
1


−

√√√√√−Y

·
·


Y


1 i

1 i




Y

i
1


+

√√√√√−Y

·
·


Y


1 i

1 i




, D0 + n odd,

Y

i
1


−

√√√√√Y

i
i


Y


1
1




Y

i
1


+

√√√√√Y

i
i


Y


1
1




, D0 + n even.

(3.21)

and n(n− 1)/2 letters of the second type,

W1,...,(i−1),...,(j−1),...,n =





Y

i
j


−

√√√√√−Y

·
·


Y


i j
i j




Y

i
j


+

√√√√√−Y

·
·


Y


i j
i j




, D0 + n odd,

Y

1 j

1 i


−

√√√√√−Y

1
1


Y


1 i j

1 i j




Y

1 j

1 i


+

√√√√√−Y

1
1


Y


1 i j

1 i j




, D0 + n even,

(3.22)

respectively, where we remind the reader that Y denotes the modified Cayley matrix (3.7)
of the n-point one-loop integral, and that minors of the latter, obtained by removing some
of its rows and columns, have been defined in eq. (3.14).

Finally, the full determinant and the minor Y
[
1
1

]
should also in principle appear

as rational letters of the n-point graph. However, as we will come back to in the next
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subsection, these in fact always come as a rational combination,

W1,2,...,n =
Y
[
·
·

]

Y
[
1
1

] . (3.23)

Remark 3.1. It is interesting to note that this rational function has an intrinsic meaning in
the GKZ approach to Feynman integrals: It is the value the Lee-Pomeransky polynomial
attains on its critical point. If we solve ∂G/∂xi = 0 for all i = 1, . . . , n and evaluate G at
this unique point we get this fraction up to a numerical factor. This is a special case of a
general property of the principal A-determinant [65, Theorem 1.17, section 10].

So far, we have obtained 1 + n(n+ 1)/2 letters of the n-point graph for general n. To
obtain the remaining letters, we apply the above expressions to each of the subgraphs of the
n-point graph, obtained by contracting some of its edges. That is, we replace Y with the
modified Cayley matrix of the subgraph in question on the right-hand side of eqs. (3.21)–
(3.23), and we only keep the indices labeling its uncontracted edges on the left-hand side.5
The correct Y-matrix for a subgraph is obtained from the original one by removing the
rows and columns corresponding to the contracted edges. This process terminates once the
letters for the tadpoles have been calculated.

In the ancillary Mathematica file as Supplementary Material attached to our article,
we provide code for generating the complete n-point alphabet in principle for any n. As a
benchmark, the runtime for n = 6 is at the order of a minute on a laptop computer.

Remark 3.2. In the n = 1 case, or equivalently the tadpole graph, the modified Cayley
matrix is too small to allow for any Jacobi identities, and hence only the rational letter of
type (3.23) is present. Similarly, for n = 2 or the bubble graph there are no letters of the
type W(i),(j).

Remark 3.3. For n = 3 or the triangle graph and even loop integration dimension D0, one
would expect

(3
2
)
= 3 letters of the type W(i),(j),k:

a− b+ c−
√
λ

a− b+ c+
√
λ
,

a+ b− c−
√
λ

a+ b− c+
√
λ
,

a− b− c−
√
λ

a− b− c+
√
λ

(3.24)

where λ := λ(a, b, c) is the fully symmetric Källén function ,

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ac . (3.25)

However, these have the multiplicative relation

a− b+ c−
√
λ

a− b+ c+
√
λ
· a+ b− c−

√
λ

a+ b− c+
√
λ
= a− b− c−

√
λ

a− b− c+
√
λ
. (3.26)

5Our labeling conventions for the letters also reveal dihedral relations among them, e.g. W1,2 and W2,3

are related by a cyclic shift. Note however that due to our choice of conventions, these relations may come
with additional minus signs or inversions.
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Hence one need only include two out of the three so as to obtain a multiplicatively inde-
pendent set, and here and in the attached ancillary file we will in particular choose them to
be W(i),(j),k and Wi,(j),(k). Note that the special cases of letters we have discussed pertain
also to tadpole, bubble (and for D0 even triangle) subgraphs of n ≥ 4 graphs, hence the
use of generic letter indices.

From the above formulas, we can also obtain a closed formula for the total number of
letters of an n-point graph: the latter has

(n
m

)
m-point subgraphs, m = 1, . . . n, and each

of them yields
m(m+ 1)

2 + δm≥4 + δm,3δD0,odd , (3.27)

letters, where δ denotes the Kronecker delta function, with some abuse of notation to
describe the cases where it equals 1 when its index is greater than a given integer value, or
odd (and zero otherwise). Therefore in total the number of letters is

|W | =





2n−3 (n2 + 3n+ 8
)− 1

6
(
n3 + 5n+ 6

)
, D0 even,

2n−3 (n2 + 3n+ 8
)− 1

2
(
n2 + n+ 2

)
, D0 odd, ,

(3.28)

that is, |W | = 1, 5, 18, 57, 166, 454, 1184 and |W | = 1, 5, 19, 61, 176, 474, 1219 for n =
1, . . . , 7 when D0 even and odd, respectively. These counts correspond to the total num-
ber of multiplicatively independent letters of the generic n-point 1-loop integral shown in
figure 1, provided that n ≤ d + 1, e.g. n ≤ 5 when the external momenta live in d = 4
dimensions. This restriction ensures that all Mandelstam invariants appearing the letters
may be treated as independent variables, given that no more than d vectors can be linearly
independent in d dimensions.

For n > d+1, after choosing the first d momenta of the n-point integral as our basis in
the space of external kinematics, expressing the remaining momenta in terms of them, and
dotting these linear relations with the basis vectors, we may express them as polynomial
relations between the Mandelstam invariants,

G(p1, . . . , pd, pi) = 0 , i = d+ 1, . . . , n− 1 , (3.29)

where G is the Gram determinant, defined in eq. (3.8). In subsection 3.4 we will provide
evidence that the principal A-determinant and hence also the alphabet of any n-point 1-
loop graph, obeying additional restrictions such as (3.29), or such that any of the masses
and Mandelstam invariants become equal to each other or vanish, may be obtained as
limits of the generic cases, eqs. (3.15) and (3.21)–(3.23), respectively. In these cases the
limits will introduce additional multiplicative dependence among the letters, hence our
generic formulas will provide a spanning set for the alphabet, and the counts (3.29) will
correspond to upper bounds. As we will also see in the examples presented in section 4, a
basis within this spanning set may be found immediately in any kinematic parametrization
that rationalizes all resulting letters, or e.g. with the help of SymBuild [90] even in the
presence of square roots.
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3.3 Verification through differential equations and comparison with literature

In this section we show how the letters actually appear in the canonical differential equa-
tions. For our basis g⃗ of pure master integrals as defined in eq. (1.1), we use the fact that
any integral in D − 2 dimensions of loop momenta may be expressed as a linear combina-
tion of integrals in D dimensions and vice-versa, with the help of dimensional recurrence
relations [91, 92]. As these relations are merely a change of basis, this implies that different
cases of spaces of master integrals are simply distinguished by (the integer part of) D being
even or odd, and that within each case we may choose our basis g⃗ to consist of integrals
with different D. To be more concrete, we need to introduce some further notation: We
write the integrals of (2.6) in D = D0 − 2ϵ dimensions and for ai = 1 as I(D0)

E , where
the set E indicates the edges of the corresponding graph. E.g. I(2)

134 denotes the triangle
integral in D = 2− 2ϵ dimensions that is obtained when the second propagator of the box
integral I(2)

1234 is removed.
We then take the basis g⃗ to consist of the following canonical integrals:

Ji1...ik =





ϵ⌊ k2⌋I(k)
i1...ik

ji1...ik
for k +D0 even,

ϵ⌊ k+1
2 ⌋I(k+1)

i1...ik

ji1...ik
for k +D0 odd ,

(3.30)

where the leading singularities are

ji1···ik =





2− k
2 +1

[
(−1)⌊ k2⌋Y


i1 + 1 i2 + 1 · · · ik + 1
i1 + 1 i2 + 1 · · · ik + 1



]−1/2

, for k +D0 even ,

2− k+1
2 +1

[
(−1)⌊ k+1

2 ⌋Y

1 i1 + 1 i2 + 1 · · · ik + 1
1 i1 + 1 i2 + 1 · · · ik + 1



]−1/2

, for k +D0 odd .

(3.31)
These integrals have been observed to be pure integrals [93, 94] for D0 even, see also [95–
97] for earlier results with ϵ = 0. Note that both the overall sign of the above equation,
as well as the choice of branch for the square root, are a matter of choice of conven-
tion. As is discussed in e.g. [97], the former stems from the fact that as multidimensional
residues, leading singularities are intrinsically dependent on the orientation of the integra-
tion contour; whereas the latter stems from the fact that while scalar Feynman integrals
are positive definite in the Euclidean region, their pure counterparts need not be. In
eq. (3.31), we have fixed this freedom, together with the overall kinematic independent
normalization that we are also free to choose, such that the differential equations take a
convenient form. This choice of pure basis also specifies how square roots of products of
modified Cayley (sub)determinants should be replaced by the product of the square roots
of the (sub)determinants in question in our basis of letters (3.21)–(3.23).
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By explicit computation up to n = 10, we observe that the differential equations for
the canonical integrals are then as follows: for even n+D0 we have6

dJ1...n = ϵ d logW1...n J1...n

+ ϵ
∑

1≤i≤n
(−1)i+⌊n2 ⌋d logW1...(i)...n J1...̂i...n

+ ϵ
∑

1≤i<j≤n
(−1)i+j+⌊n2 ⌋d logW1...(i)...(j)...n J1...̂i...̂j...n,

(3.32)

and for odd n+D0 ,
dJ1...n = ϵ d logW1...n J1...n

+ ϵ
∑

1≤i≤n
(−1)i+⌊n+1

2 ⌋d logW1...(i)...n J1...̂i...n

+ ϵ
∑

1≤i<j≤n
(−1)i+j+⌊n+1

2 ⌋d logW1...(i)...(j)...n J1...̂i...̂j...n,

(3.33)

where the hat indicates that the index is omitted, and ⌊x⌋ is the floor function. Note that
we chose to present our formulas in such a way that the latter is irrelevant for to case of
even D0. The matrix M̃ encoding the above differential equations according to eq. (1.2),
together with our choice of basis integrals (3.30) and associated leading singularities (3.31),
may also be easily generated in principle for any n with the code provided in the attached
ancillary file.

As mentioned in the introduction, the knowledge of the letters allows us to derive
the differential equations without the need of any analytic computation. The formulas
in (3.32) and (3.33) are based on following this procedure up to n = 10.7 This confirms our
prediction for the alphabet of one-loop integrals up to this number of external legs. The
IBP reduction was done with a combination of FIRE6 [10] and LiteRed [9] by choosing
values in a finite field for the vi.

For generic kinematics and masses, it is also easy to determine the leading boundary
vector g⃗(0) in eq. (1.4): The integrals in (3.30) are normalized by powers of ϵ to be of
uniform transcendental weight zero. However, it is easy to see that all integrals except I(2)

1
are finite in integer dimensions. Therefore, only the tadpoles have vanishing weight zero
contribution.8 In summary, we find with our normalization

g⃗(0) = (1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
2n−1−n

)T . (3.34)

This in principle allows us to compute the symbol at any order in ϵ from eq. (1.4).
6If we are interested in D = D0 − 2ϵ, with D0 being an odd integer, the case of even and odd n is

exchanged compared to the even-dimensional case. This can easily be seen in Baikov representation [98]
where the integrals on the maximal cut are roughly equal to I ∼ G(n−D)/2C(D−1−n)/2, where G is the Gram
determinant, and C is the Cayley determinant which is obtained from setting all integration variables to
zero in the Baikov polynomial [99].

7In practice, to derive the differential equations, one needs to use dimensional recurrence relations to
translate all integrals of different dimensions into a common dimension. We stress however, that this choice
does not affect the result for the differential equations.

8We thank the referee for pointing this out.
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Finally, let us compare our findings with earlier results in the literature. For D0 even,
explicit expressions for the canonical differential equations and symbol alphabets of finite
n-point one-loop graphs were first derived in [93], based on the diagrammatic coaction [100].
The latter decomposes any one-loop Feynman integral into simpler building blocks, mir-
roring the coaction of the multiple polylogarithmic functions, that these integrals evaluate
to, but conjecturally holds to all orders in the dimensional regularization parameter ϵ. In
this decomposition also cut integrals appear, where some of the propagators have been
placed on their mass shell, and very interestingly it was found that these are restricted to
a small subset where all, or all but one, or all but two propagators have been cut.

Based on the Baikov representation of Feynman integrals, a similar analysis of canon-
ical differential equations and symbol alphabets, also working out the divergent cases in
more detail, was carried out in [94]. The later and original analyses agree on the form of
the letters associated to the maximal cut, and in order to avoid redundant letters coming
from individual determinant factors of the principal A-determinant, for our rational let-
ters (3.23) we have chosen those ratios that coincide with them (up to immaterial constant
normalization factors). For the square-root letters, we will compare with [94], as the ap-
parent presence of up to five different square roots in some of the letters of [93] renders
this comparison more complicated. In the former reference, and in the orientation where
the uncut propagators are those with momenta (pn−1 and) pn for the letters associated to
the (next-to-)next-to-maximal cut, their building blocks are the following general Gram
determinants as defined in eqs. (3.8)–(3.9),

Kn ≡ G(p1, . . . , pn−1) , G̃n ≡ G(l, p1 . . . , pn−1) ,
B̃n ≡ G(l, p1, . . . , pn−2; pn−1, p1, . . . , pn−2) ,
Cn ≡ G(p1, . . . pn−2; p1, . . . , pn−3, pn−2 + pn−1) ,
Dn ≡ G(l, p1, . . . pn−2; l, p1, . . . pn−3, pn−2 + pn−1) ,

(3.35)

where the loop momentum

l2 = m2
1 ,

l · pi =
m2
i+1 − p2

i −m2
i

2 −
i−1∑

j=1
pi · pj ,

(3.36)

is evaluated as a function of the Baikov variables when the latter are set to zero. As a
consequence of (3.11),

Y
[
·
·

]
= −2n−1Kn , (3.37)

whereas we find that the remaining determinants in (3.36) are related to minors of our
modified Cayley matrix Y as follows,

Y
[
1
1

]
= det(Y ) = 2nG̃n , Y

[
1

n+ 1

]
= −(−2)n−1B̃n ,

Y
[

n

n+ 1

]
= −2n−2C̃n , Y

[
1 n

1 n+ 1

]
= 2n−1D̃n .

(3.38)

– 22 –
57



J
H
E
P
1
0
(
2
0
2
3
)
1
6
1

From these identifications, it follows straightforwardly that up to immaterial overall signs
and inversions, for D0 even the next-to-maximal and next-to-next-to-maximal cut letters
in question correspond to our W1,...,n−1,...,(n) and W1,...n−2,(n−1),...,(n), respectively, and sim-
ilarly the differential equations (3.32)–(3.33) agree with those of [93, 94]. To the best of our
knowledge, the odd D0 case has not appeared before. In any case, we find it pleasing that
our formulas are expressed in terms of a single quantity associated to each one-loop graph,
its modified Cayley matrix, making it easy to keep track of both its Landau singularities
and contributions of subgraphs from different minors of the matrix.

3.4 Limits of principal A-determinants and alphabets

So far, we have only considered the generic one-loop n-point Feynman integrals shown in
figure 1, where all m2

i , p
2
j are nonvanishing and different from each other. In this subsection,

we will provide strong evidence that the principal A-determinant and symbol alphabet of
any one-loop integral, i.e. also including configurations where different scales are equal
to each other or set to zero, may be obtained as limits of the generic ones, eqs. (3.15)
and (3.21)–(3.23), respectively.

To this end, we will first prove that the principal A-determinant ẼA has a well-defined
limit when any m2

i , p
2
j → 0, namely that this limit is unique regardless of the order or

relative rate with which we send these parameters to zero. As is argued in [25], see also [48],
this limit of ẼA is defined by removing any of its factors that vanishes as its parameters
approach their prescribed values. This reflects the fact that Feynman integrals converge
in the Euclidean region for certain choices of propagator powers and dimension of loop
integration, and hence they cannot be singular for all values of their kinematic parameters.
In other words, assuming a single parameter x of ẼA takes the limiting value a, the limit
of the former is defined as

lim
x→a

ẼA = ∂lẼA

∂xl

∣∣∣∣∣
x=a

̸= 0 , with ∂l
′
ẼA

∂xl′

∣∣∣∣∣
x=a

= 0 for l′ = 0, . . . , l − 1 , (3.39)

also including the possibility l = 0, and with an obvious generalization to the multivariate
case. However the fact that this limit is uniquely defined in multivariate limits is highly
nontrivial, as can be seen in the following example of the triangle Cayley determinant with
elements as shown in eq. (3.5) for n = 3, in the limit p2

1 → 0, p2
2 → 0, s12 = p2

3 → 0:
Denoting this Cayley determinant as Y3, its Taylor expansion in the limit is

Y3 = 0 + 2
3∑

i=1
p2
i (m2

i −m2
i−1)(m2

i+1 −m2
i−1) +O(p2

jp
2
k) , (3.40)

with j, k = 1, 2, 3, mj+3 ≡ mj . Clearly, the value of Y3 in the limit does depend on the
order with which we set the three momenta-squared to zero. The upshot of our analysis
will be that while the limits of individual factors in ẼA do depend on the rate of approach
to the limit, the limit of ẼA as a whole does not, since different rates of approach produce
factors that are already contained in it.

We start by noting that the only Gram (sub)determinant of a graph with n ̸= 3 that
vanishes as p2

i → 0 is that of a bubble (sub)graph with momentum pi, G(pi) = p2
i . By the
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above definition, the latter gives no nontrivial contribution in the limit. Particularly when
n = 3 we also have a vanishing G(p2

1, p
2
2) ∝ λ(p2

1, p
2
2, p

2
3), where λ is the fully symmetric

Källén function defined in eq. (3.25). In particular we have λ(0, 0, p2) = p4, and therefore
this does not give any nontrivial contribution to the limit (3.39) either. For n > 3 we
have sums of external momenta as arguments of the triangle subgraph, such that the
corresponding Källén function does not vanish. Taking into account the fact that Gram
determinants are independent of the masses, this exhausts the analysis of their potential
ambiguities in the limit we are considering.

By the same token, it is possible to show that the only Cayley (sub)determinants of
any graph that vanish as m2

i → 0 are the diagonal m2
i elements of the matrix, also giving no

contribution to the limit. Finally, we consider the behavior of the Cayley (sub)determinants
when both m2

i , p
2
i vanish. The only vanishing (sub)determinants in this case are the Cay-

ley determinants of bubble and triangle (sub)graphs. The former are proportional to
λ(m2

i ,m
2
i+1, p

2
i ), and by the previous analysis we deduce that they do not affect the limit.

For the triangle Cayley determinant Y3, we have already shown in (3.40) that it vanishes
as p2

1, p
2
2, p

3
3 → 0, and by examining all possibilities we similarly find that up to dihedral

images, the only other minimum codimension limit for which the same is true is the limit
p2
1,m

2
1,m

2
2 → 0. The Taylor expansion around the latter yields

Y3 = 0+2p2
1

2∏

i=1
(m2

3−p2
i+1)+2(p2

2−p2
3)

2∑

i=1
(−1)im2

i (m2
3−p2

i+1)+O(m2
jm

2
k)+O(m2

jp
2
1)+O(p4

1) ,

(3.41)
with j, k = 1, 2, respectively. We see that in both cases the three nonvanishing derivatives
depend on the remaining variables and are not equal to each other, such that the value of
Y3 depends on the relative rate with which we approach the limit, and causing a potential
ambiguity for the limit of the principal A-determinant as a whole. Very interestingly,
however, the factor that Y3 contributes in all different rates of approach is already contained
in ẼA in the limit. Specifically,

lim
p21→0

G(p1, p2)→ −1
4λ(p

2
2, p

2
3, 0) = −1

4
(
p2
2 − p2

3
)2

, (3.42)

accounts for one of the Taylor expansion coefficients in (3.41), and two-dimensional Cayley
subdeterminants λ(p2

i ,m
2
3, 0) of Y3 account for the rest. Similarly, the Cayley subdetermi-

nants λ(m2
i ,m

2
j , 0) take care of all the Taylor expansion coefficients in (3.40).

Along the same lines, inspecting all higher-codimension m2
i , p

2
i → 0 limits where Y3

vanishes reveals that they are all contained in the two aforementioned codimension-3 limits.
Thus they are covered by the previous analysis, and this concludes the proof that the
principal A-determinant has a well-defined limit for any subset of m2

i , p
2
i → 0.

The analysis we have carried out may of course also be repeated in any other multivari-
ate limit, including restrictions on the dimension of external kinematics of the type (3.29).
For example, ẼA remains well-defined for any codimension-two limit where the Cayley de-
terminant of any bubble subgraph of an n-point graph vanishes. As we will also discuss
in the next section, in all cases we have considered this unambiguous limit of the princi-
pal A-determinant of the generic one-loop graph to any specific kinematic configuration
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also matches the direct computation of the principal A-determinant of the non-generic
graph. These findings suggest that, quite remarkably, the space of solutions of the Landau
equations for one-loop Feynman integrals smoothly interpolates between different kine-
matic configurations related by limits, even though the differential equations these integrals
obey, be it of hypergeometric or canonical type, diverge and may not have well-defined such
limits.

This in turn supports the expectation that also the symbol alphabet of non-generic
Feynman integral may be correctly obtained as a limit of the generic one, based on the
re-factorization we have exhibited, of the principal A-determinant in terms of the alphabet.
In the next section we will explicitly confirm this expectation in several examples, further
corroborating earlier observations made in [94]. These are also in line with the observation
that the diagrammatic coaction [93, 100] reduces correctly in the limits of generic to non-
generic and possibly divergent graphs. The conjectured equivalence of this coaction with
the coaction on the polylogarithms these integrals evaluate to, is then also an implicit
conjecture about the relation of their alphabets.

4 Examples

In this section we present a series of examples illustrating the formulas for the principal
A-determinant, symbol alphabet and canonical differential equations of a generic n-point
one-loop Feynman integral presented in section 3, as well as the limiting procedure for
obtaining the first two for any non-generic integral, for various values of n. We will consider
several of these integrals around both even and odd dimensions of loop momenta D0.

4.1 Bubble graph

Let us start with the n = 2 or bubble integral illustrated below.

p

x1

−p

x2

The Lee-Pomeransky polynomial for the latter in generic kinematics is

G = x1 + x2 + (m2
1 +m2

2 − p2)x1x2 +m2
1x

2
1 +m2

2x
2
2 , (4.1)

so the A-matrix is given by

A =



1 1 1 1 1
1 0 1 2 0
0 1 1 0 2


 . (4.2)

As in section 2 we let αi denote the exponents in the G-polynomial. With this we can write
the reduced principal A-determinant as

ẼA(G) = ∆α4∆α5∆α4α5∆α1α2α4α5

= m2
1m

2
2(p4 +m4

1 +m4
2 − 2p2m2

1 − 2p2m2
2 − 2m2

1m
2
2)p2 , (4.3)

– 25 –
60



J
H
E
P
1
0
(
2
0
2
3
)
1
6
1

where we momentarily index the discriminants with the vertices in the corresponding face.
The final expression as a polynomial of the variables m2

1,m
2
2, p

2 indeed agrees with the
general expression (3.15) in terms of the minors of the modified Cayley matrix,

Y =



0 1 1
1 2m2

1 m2
1 +m2

2 − p2

1 m2
1 +m2

2 − p2 2m2
2


 . (4.4)

Applying our general formulas for the alphabet, eqs. (3.21)–(3.23) to this case, we obtain
five letters; one for each possible tadpole subgraph and three for the bubble itself. In even
space-time dimension the letters are:

W1 =
Y
[
3
3

]

Y
[
1 3
1 3

] = −1
2m2

1
, W2 =

Y
[
2
2

]

Y
[
1 2
1 2

] = −1
2m2

2
, W12 =

Y
[
·
·

]

Y
[
1
1

] = 2p2

λ(p2,m2
1,m

2
2)
,

W(1)2 =
Y
[
2
1

]
−
√√√√Y

[
2
2

]
Y
[
1
1

]

Y
[
2
1

]
+

√√√√Y
[
2
2

]
Y
[
1
1

] =
−m2

1 +m2
2 + p2 −

√
λ(p2,m2

1,m
2
2)

−m2
1 +m2

2 + p2 +
√
λ(p2,m2

1,m
2
2)
, (4.5)

W1(2) =
Y
[
3
1

]
−
√√√√Y

[
3
3

]
Y
[
1
1

]

Y
[
3
1

]
+

√√√√Y
[
3
3

]
Y
[
1
1

] =
−m2

1 +m2
2 − p2 −

√
λ(p2,m2

1,m
2
2)

−m2
1 +m2

2 − p2 +
√
λ(p2,m2

1,m
2
2)
,

where we recall that λ denotes the Källén function ,

λ(p2,m2
1,m

2
2) = p4 +m4

1 +m4
2 − 2p2m2

1 − 2p2m2
2 − 2m2

1m
2
2. (4.6)

While the dependence of the bubble on few kinematic variables does not leave much room
for nontrivial limits, we have checked that in all codimension-1 limits where a momentum
or mass squared vanishes, or two of them are set equal to each other, the above alphabet
reduces to harmonic polylogarithms [101] as expected.

Apart from the bubble alphabet, let us also present the canonical differential equation
for the corresponding master integrals. In this case, the choice of basis (3.30) specializes to

J1 = ϵ I(2)
1
j1

, J2 = ϵ I(2)
2
j2

, J12 = ϵ I(2)
12

j12
, (4.7)

with the leading singularities being

j−1
1 =

√√√√−Y
[
3
3

]
= 1, j−1

2 =

√√√√−Y
[
2
2

]
= 1, j−1

12 =

√√√√−Y
[
1
1

]
=
√
λ(p2,m2

1,m
2
2).

(4.8)
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Using the expression for the canonical differential equation in eq. (3.32), the matrix (1.2)
is given by

M̃ =




w1 0 0
0 w2 0

−w1(2) w(1)2 w12


 , (4.9)

where w = logW .
At odd space-time dimension of loop momentum D0, the rational letters W1, W2 and

W12 are the same as in the even D0 case, whereas the square-root letters become

W(1)2 =
Y
[
2
1

]
−
√√√√−Y

[
·
·

]
Y
[
1 2
1 2

]

Y
[
2
1

]
+

√√√√−Y
[
·
·

]
Y
[
1 2
1 2

] =
−m2

1 +m2
2 + p2 −

√
4p2m2

2

−m2
1 +m2

2 + p2 +
√
4p2m2

2

(4.10)

W1(2) =
Y
[
3
1

]
−
√√√√−Y

[
·
·

]
Y
[
1 3
1 3

]

Y
[
3
1

]
+

√√√√−Y
[
·
·

]
Y
[
1 3
1 3

] =
−m2

1 +m2
2 − p2 −

√
4p2m2

1

−m2
1 +m2

2 − p2 +
√
4p2m2

1

(4.11)

For the basis of master integrals and leading singularities we obtain

J1 = I(1)
1
j1

, J2 = I(1)
2
j2

, J12 = ϵI(3)
12
j12

, (4.12)

j−1
1 =

√√√√√√
Y
[
1 3
1 3

]

2 =
√
m2

1, j−1
2 =

√√√√√√
Y
[
1 2
1 2

]

2 =
√
m2

2, j−1
12 =

√√√√−2Y
[
·
·

]
= 2

√
p2
1. (4.13)

Putting this together in the differential equation matrix we get

M̃ =




w1 0 0
0 w2 0

−w1(2) w(1)2 w12


 . (4.14)

Remark 4.1. The Newton polytope of G for the massive bubble is a trapezoid (see figure 2)
with five regular triangulations, meaning that the secondary polytope is a pentagon, see
figure 3. At the same time, the alphabet of the bubble graph may be expressed in terms
of the variables of the A2 cluster algebra, whose cluster polytope is also a pentagon. We
find this match striking, even though the Newton polytope of G for the n-point graph is
n-dimensional, and hence the correspondence with cluster algebras, which typically trian-
gulate two-dimensional surfaces, it not as straightforward for n > 2.
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x2

1

2

x11 2

α3α2

α5

α1 α4

Figure 2. The Newton polytope of the Lee-Pomeransky polynomial G of the bubble. The edges
(a1a4) and (a2a5) correspond to its tadpole or n = 1 subgraphs, and the edges (a1a2) and (a4a5)
are the Newton polytopes of the first and second Symanzik polynomials U and F , respectively. The
former does not contribute to ẼA.

Figure 3. Secondary polytope and regular triangulations of Newt(G) for the 1-loop bubble graph,
with G as in (4.1). It is isomorphic to the A2 cluster polytope.
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Figure 4. The Newton polytope of the Lee-Pomeransky polynomial G of the massive triangle, with
two parallel triangular faces, and three trapezoidal faces from bubble subgraphs.

4.2 Triangle graphs

In our next example, we consider the n = 3 or triangle Feynman graph illustrated in the
diagram below.

p1

p2

p3

x2

x3

x1

The two Symanzik polynomials of this graph with generic kinematics are

U =x1 + x2 + x3,

F =(m2
1 +m2

2 − p2
1)x1x2 + (m2

1 +m3
2 − p2

3)x1x3 + (m2
2 +m2

3 − p2
2)x2x3

+m2
1x

2
1 +m2

2x
2
2 +m2

3x
2
3 (4.15)

which with G = U + F gives the A-matrix:

A =




1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 2 0 0
0 1 0 1 0 1 0 2 0
0 0 1 0 1 1 0 0 2



.

The Newton polytope of G is displayed in figure 4 where there are three facets looking
like figure 2. These facets are obtained from Newt(G) by intersecting it with one of the
coordinate hyperplanes xi = 0. This of course corresponds to contracting edge i in the
underlying Feynman graph, giving us a bubble graph. The discriminant factors making up

– 29 –
64



J
H
E
P
1
0
(
2
0
2
3
)
1
6
1

the principal A-determinant EA as described in (2.18) are:

∆A = p4
1 + p4

2 + p4
3 − 2p2

1p
2
2 − 2p2

1p
2
3 − 2p2

2p
2
3,

∆A∩x1=0 = −p2
2,

∆A∩x2=0 = −p2
3,

∆A∩x3=0 = −p2
1,

∆A∩Newt(F) = −m2
1m

2
2p

2
1 +m2

1m
2
3p

2
1 +m2

2m
2
3p

2
1 −m4

3p
2
1 −m2

3p
4
1 −m4

1p
2
2 +m2

1m
2
2p

2
2

+m2
1m

2
3p

2
2 −m2

2m
2
3p

2
2 +m2

1p
2
1p

2
2 +m2

3p
2
1p

2
2 −m2

1p
4
2 +m2

1m
2
2p

2
3 −m4

2p
2
3

−m2
1m

2
3p

2
3 +m2

2m
2
3p

2
3 +m2

2p
2
1p

2
3 +m2

3p
2
1p

2
3 +m2

1p
2
2p

2
3 +m2

2p
2
2p

2
3

− p2
1p

2
2p

2
3 −m2

2p
4
3,

∆A∩Newt(F)∩x1=0 = p4
2 +m4

2 +m2
3 − 2p2

2m
2
2 − 2p2

2m
2
3 − 2m2

2m
2
3,

∆A∩Newt(F)∩x2=0 = p4
3 +m4

1 +m4
3 − 2p2

3m
2
1 − 2p2

3m
2
3 − 2m2

1m
2
3,

∆A∩Newt(F)∩x3=0 = p4
1 +m4

1 +m4
2 − 2p2

1m
2
1 − 2p2

1m
2
2 − 2m2

1m
2
2,∏

vertices
∆v = m2

1m
2
2m

2
3.

Again, all these discriminants, calculated directly from the GKZ approach, correspond to
minors of the modified Cayley matrix

Y =




0 1 1 1
1 2m2

1 (m2
1 +m2

2 − p2
1) (m2

1 +m3
2 − p2

3)
1 (m2

1 +m2
2 − p2

1) 2m2
2 (m2

2 +m2
3 − p2

2)
1 (m2

1 +m3
2 − p2

3) (m2
2 +m2

3 − p2
2) 2m2

3



, (4.16)

and up to overall factors we have the identification

∆A → Y
[
·
·

]
, ∆A∩xi=0 → Y

[
i+ 1
i+ 1

]
, (4.17)

∆A∩Newt(F) → Y
[
1
1

]
, ∆A∩Newt(F)∩xi=0 → Y

[
1 i+ 1
1 i+ 1

]
, (4.18)

whereas the masses correspond the diagonal elements of Y. As predicted by eq. (3.28),
for D0 even there are 18 multiplicatively independent letters, out of which 12 correspond
to bubble subgraphs and are thus obtained by relabeling the formulas of the previous
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subsection. The remaining six letters are

W123 =
Y
[
·
·

]

[
1
1

] , (4.19)

W(1)23 =
Y
[
2
1

]
−
√√√√−Y

[
·
·

]
Y
[
1 2
1 2

]

Y
[
2
1

]
+

√√√√−Y
[
·
·

]
Y
[
1 2
1 2

] plus cyclic (1)→ (2)→ (3) , (4.20)

W(1)(2)3 =
Y
[
2
3

]
−
√√√√Y

[
·
·

]

Y
[
2
3

]
+

√√√√Y
[
·
·

] plus cyclic (1)(2)→ (2)(3) . (4.21)

In this case the basis integrals of eq. (3.30) read

J1 = ϵ I(2)
1
j1

, J2 = ϵ I(2)
2
j2

, J3 = ϵ I(2)
3
j3

,

J12 = ϵ I(2)
12

j12
, J13 = ϵ I(2)

13
j13

, J23 = ϵ I(2)
23

j23
,

J123 = ϵ2I(4)
123

j123
,

(4.22)

with leading singularities

j−1
1 =

√√√√−Y
[
3 4
3 4

]
= 1, j−1

2 =

√√√√−Y
[
2 4
2 4

]
= 1,

j−1
3 =

√√√√−Y
[
2 3
2 3

]
= 1, j−1

12 =

√√√√−Y
[
1 4
1 4

]
=
√
λ(p2

1,m
2
1,m

2
2),

j−1
13 =

√√√√−Y
[
1 3
1 3

]
=
√
λ(p2

3,m
2
1,m

2
3), j−1

23 =

√√√√−Y
[
1 2
1 2

]
=
√
λ(p2

2,m
2
2,m

2
3),

j−1
123 = 2

√√√√Y
[
·
·

]
= 2

√
λ(p2

1, p
2
2, p

2
3).

(4.23)
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Putting it all together we get the differential equation matrix

M̃ =




w1 0 0 0 0 0 0
0 w2 0 0 0 0 0
0 0 w3 0 0 0 0

−w1(2) w(1)2 0 w12 0 0 0
−w1(3) 0 w(1)3 0 w13 0 0

0 −w2(3) w(2)3 0 0 w23 0
−w1(2)(3) w(1)(2)3 + w1(2)(3) −w(1)(2)3 −w12(3) w1(2)3 −w(1)23 w123




. (4.24)

For the case of odd D0 there are now 19 letters, where again 12 of them are obtained
from the odd D0 bubble by relabeling. Out of the remaining seven, the rational letter W123
is the same as in the even D0 case (4.19), and the rest are

W(1)23 =
Y
[
2
1

]
−
√√√√Y

[
2
2

]
Y
[
1
1

]

Y
[
2
1

]
+

√√√√Y
[
2
2

]
Y
[
1
1

] , plus cyclic (1)→ (2)→ (3), (4.25)

W(1)(2)3 =
Y
[
1 2
1 3

]
−
√√√√−Y

[
1
1

]
Y
[
1 2 3
1 2 3

]

Y
[
1 2
1 3

]
+

√√√√−Y
[
1
1

]
Y
[
1 2 3
1 2 3

] , plus cyclic (1)(2)→ (1)(3)→ (2)(3).

(4.26)

The basis integrals now become,

J1 = I(1)
1
j1

, J2 = I(1)
2
j2

, J3 = I(1)
3
j3

,

J12 = ϵ I(3)
12

j12
, J13 = ϵ I(3)

13
j13

, J23 = ϵ I(3)
23

j23
,

J123 = ϵ I(3)
123

j123
,

(4.27)
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where the leading singularities are explicitly given by

j−1
1 =

√√√√√√
Y
[
1 3 4
1 3 4

]

2 =
√
m2

1, j−1
2 =

√√√√√√
Y
[
1 2 4
1 2 4

]

2 =
√
m2

2,

j−1
3 =

√√√√√√
Y
[
1 2 3
1 2 3

]

2 =
√
m2

3, j−1
12 =

√√√√−2Y
[
4
4

]
= 2

√
p2
1,

j−1
13 =

√√√√−2Y
[
3
3

]
= 2

√
p2
2, j−1

23 =

√√√√−2Y
[
2
2

]
= 2

√
p2
3,

j−1
123 =

√√√√−2Y
[
1
1

]
= 2

√
−∆A∩Newt(F),

(4.28)

and putting it all together we get the differential equation matrix

M̃ =




w1 0 0 0 0 0 0
0 w2 0 0 0 0 0
0 0 w3 0 0 0 0

−w1(2) w(1)2 0 w12 0 0 0
−w1(3) 0 w(1)3 0 w13 0 0

0 −w2(3) w(2)3 0 0 w23 0
w1(2)(3) −w(1)2(3) w(1)(2)3 w12(3) −w1(2)3 w(1)23 w123




. (4.29)

As an independent check of our results, we may also compare the finite part of the D0 = 3
triangle integral I(3)

123, first computed in [102], with our prediction for its symbol based on
eqs. (4.27)–(4.29), together with eq. (1.4). In particular, our prediction reads,

I(3)
123 ∝

1√−Y3
log

W(1)(2)3W1(2)(3)
W(1)2(3)

+O(ϵ) , (4.30)

where Y3 denotes the triangle Cayley matrix with elements as shown in eq. (3.5), and
n = 3. Taking into account that in [102] the Cayley matrix has been defined with an extra
1/2 overall factor, as well as rescaled to become dimensionless by dividing with the masses
associated to each row and column, we indeed find agreement.
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4.3 Box graphs

In our final example with full kinematic dependence, we present the alphabet for the box
graph illustrated below.

p1 p4

p3p2

x1

x4

x3

x2

The two Symanzik polynomials of the box graph with generic massive kinematics are

U =x1 + x2 + x3 + x4,

F =(m2
1 +m2

2 − p2
1)x1x2 + (m2

1 +m2
3 − s)x1x3 + (m2

1 +m3
4 − p2

4)x1x4

+ (m2
2 +m2

3 − p2
2)x2x3 + (m2

2 +m2
4 − t)x2x4 + (m2

3 +m2
4 − p2

3)x3x4

+m2
1x

2
1 +m2

2x
2
2 +m2

3x
2
3 +m2

4x
2
4

and the modified Cayley matrix is given by

Y =




0 1 1 1 1
1 2m2

1 m2
1 +m2

2 − p2
1 m2

1 +m2
3 − s m2

1 +m2
4 − p2

4
1 m2

1 +m2
2 − p2

1 2m2
2 m2

2 +m2
3 − p2

2 m2
2 +m2

4 − t

1 m2
1 +m2

3 − s m2
2 +m2

3 − p2
2 2m2

3 m2
3 +m2

4 − p2
3

1 m2
1 +m2

4 − p2
4 m2

2 +m2
4 − t m2

3 +m2
4 − p2

3 2m2
4.




(4.31)

The symbol alphabet with generic massive kinematics contains 57 letters for D0 even and
61 for D0 odd. These letters are to large to show here but are provided in the auxiliary
Mathematica file.

The M̃ matrices for the case of even and odd D0 are given in (4.32) and (4.33),
respectively. Compared to the bubble and triangle examples, the box is the first case
where we see that a graph only depends on its subgraphs with at most two legs removed.
This is evident in the vanishing of the box-tadpole elements of the differential equation
matrices M̃15,1, . . . , M̃15,4.
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w1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 w2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 w3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 w4 0 0 0 0 0 0 0 0 0 0 0

−w1(2) w(1)2 0 0 w12 0 0 0 0 0 0 0 0 0 0
−w1(3) 0 w(1)3 0 0 w13 0 0 0 0 0 0 0 0 0
−w1(4) 0 0 w(1)4 0 0 w14 0 0 0 0 0 0 0 0

0 −w2(3) w(2)3 0 0 0 0 w23 0 0 0 0 0 0 0
0 −w2(4) 0 w(2)4 0 0 0 0 w24 0 0 0 0 0 0
0 0 −w3(4) w(3)4 0 0 0 0 0 w34 0 0 0 0 0

−w1(2)(3) w(1)(2)3 + w1(2)(3) −w(1)(2)3 0 −w12(3) w1(2)3 0 −w(1)23 0 0 w123 0 0 0 0
−w1(2)(4) w(1)(2)4 + w1(2)(4) 0 −w(1)(2)4 −w12(4) 0 w1(2)4 0 −w(1)24 0 0 w124 0 0 0
−w1(3)(4) 0 w(1)(3)4 + w1(3)(4) −w(1)(3)4 0 −w13(4) w1(3)4 0 0 −w(1)34 0 0 w134 0 0

0 −w2(3)(4) w(2)(3)4 + w2(3)(4) −w(2)(3)4 0 0 0 −w23(4) w2(3)4 −w(2)34 0 0 0 w234 0
0 0 0 0 −w12(3)(4) w1(2)3(4) −w1(2)(3)4 −w(1)23(4) w(1)2(3)4 −w(1)(2)34 w123(4) −w12(3)4 w1(2)34 −w(1)234 w1234




(4.32)




w1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 w2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 w3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 w4 0 0 0 0 0 0 0 0 0 0 0

−w1(2) w(1)2 0 0 w12 0 0 0 0 0 0 0 0 0 0
−w1(3) 0 w(1)3 0 0 w13 0 0 0 0 0 0 0 0 0
−w1(4) 0 0 w(1)4 0 0 w14 0 0 0 0 0 0 0 0

0 −w2(3) w(2)3 0 0 0 0 w23 0 0 0 0 0 0 0
0 −w2(4) 0 w(2)4 0 0 0 0 w24 0 0 0 0 0 0
0 0 −w3(4) w(3)4 0 0 0 0 0 w34 0 0 0 0 0

w1(2)(3) −w(1)2(3) w(1)(2)3 0 w12(3) −w1(2)3 0 w(1)23 0 0 w123 0 0 0 0
w1(2)(4) −w(1)2(4) 0 w(1)(2)4 w12(4) 0 −w1(2)4 0 w(1)24 0 0 w124 0 0 0
w1(3)(4) 0 −w(1)3(4) w(1)(3)4 0 w13(4) −w1(3)4 0 0 w(1)34 0 0 w134 0 0

0 w2(3)(4) −w(2)3(4) w(2)(3)4 0 0 0 w23(4) −w2(3)4 w(2)34 0 0 0 w234 0
0 0 0 0 −w12(3)(4) w1(2)3(4) −w1(2)(3)4 −w(1)23(4) w(1)2(3)4 −w(1)(2)34 w123(4) −w12(3)4 w1(2)34 −w(1)234 w1234




(4.33)
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Massless off-shell box. In the limit m1, . . . ,m4 → 0 the symbol alphabet simplifies
from 57 letters to 25 letters for even D0. We have obtained these letters both from our
limiting procedure and from the canonical differential equation directly as an independent
check. Our limiting procedure only generates a spanning set of letters, using the provided
Mathematica code one obtains 30 letters. By the discussion in Remark 3.3 about letters
containing the Källén function, these 30 letters can be reduced to 25 independent letters.
The reduced principal A-determinant in this case contains 12 factors:

∆A = p4
1p

2
3 − p2

1p
2
2p

2
3 + p2

1p
4
3 − p2

1p
2
2p

2
4 + p4

2p
2
4 − p2

1p
2
3p

2
4 − p2

2p
2
3p

2
4 + p2

2p
4
4 + p2

1p
2
2s

− p2
1p

2
3s− p2

2p
2
4s+ p2

3p
2
4s− p2

1p
2
3t+ p2

2p
2
3t+ p2

1p
2
4t− p2

2p
2
4t− p2

1st− p2
2st

− p2
3st− p2

4st+ s2t+ st2,

∆A∩Newt(F) = p4
1p

4
3 − 2p2

1p
2
2p

2
3p

2
4 + p4

2p
4
4 − 2p2

1p
2
3st− 2p2

2p
2
4st+ s2t2,

∆A∩x1=0 = p4
2 − 2p2

2p
2
3 + p4

3 − 2p2
2t− 2p2

3t+ t2,

∆A∩x2=0 = p4
3 − 2p2

3p
2
4 + p4

4 − 2p2
3s− 2p2

4s+ s2,

∆A∩x3=0 = p4
1 − 2p2

1p
2
4 + p4

4 − 2p2
1t− 2p2

4t+ t2,

∆A∩x4=0 = p4
1 − 2p2

1p
2
2 + p4

2 − 2p2
1s− 2p2

2s+ s2,
∏

vertices
∆v = stp2

1p
2
2p

2
3p

2
4.

Three off-shell legs. If we in addition to taking the masses to zero also impose p2
4 → 0

the symbol alphabet reduces to 18 letters for D0 even. The reduced principal A-determinant
contains eleven factors in this case

∆A= p2
1sp

2
2−p2

1st+s2t−sp2
2t+st2+p4

1p
2
3−p2

1sp
2
3−p2

1p
2
2p

2
3−p2

1tp
2
3−stp2

3+p2
2tp

2
3+p2

1p
4
3,

∆A∩x1=0 = p4
2+p4

3+t2−2p2
2p

2
3−2p2

2t−2p2
3t,

∆A∩x4=0 = p4
1+p4

2+s2−2p2
1p

2
2−2p2

1s−2p2
2s,

∆A∩x2=0 = p2
3−s,

∆A∩x3=0 = p2
1−t,

∆Γ = p2
1p

2
3−st,∏

vertices
∆v = stp2

1p
2
2p

2
3.

We have now reached a level of reduced kinematics such that the identification between
discriminants, determinants and subgraphs discussed in section 3.1 breaks down. The face
Γ of Newt(G) is given by

Γ = conv




1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1



, (4.34)

which should correspond to the box topology since all rows contain non-zero elements.
This face actually corresponds to the box with only two off-shell external legs positioned
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at opposite corners, which also appeared as an example in the introduction. This is clearly
not a subgraph of the box with three off-shell legs.

The mathematical origin of this subtlety is described in the following example.

Example 4.2. Let F = c1x1x3+c2x2x4+c3x1x2+c4x2x3+c5x3x4 where (c1, c2, c3, c4, c5) =
(−s,−t,−p2

1,−p2
2,−p2

3), this is the F -polynomial of the box with all internal masses zero
and three external massive legs. The coefficient matrix of the Jacobian, J (F), is just the
Cayley matrix

Y =




0 c3 c1 0
c3 0 c4 c2
c1 c4 0 c5
0 c2 c5 0



, det(Y ) = (c1c2 − c3c5)2 , (4.35)

whose determinant is clearly reducible. This means that we expect the distinction between
punctured affine space and algebraic torus to matter. To correctly calculate the disciminant
we would work in the algebraic torus and compute
{
c ∈ C5 | ∂F

∂x1
= · · · = ∂F

∂x4
= 0 has a solution for x ∈ (C∗)4

}
= {c ∈ C5 | c4 = c1c2 − c3c5 = 0} ,

which has codimension two, meaning that ∆A∩NewtF (F) = 1 per definition. On the other
hand, from linear algebra, we know that the determinant in (4.35) corresponds to working
in the punctured affine space, where we obtain
{
c ∈ C5 | ∂F

∂x1
= · · · = ∂F

∂x4
= 0 has a solution for x ∈ C4 \ {0}

}
= {c ∈ C5 | (c1c2 − c3c5)2 = 0};

note that the defining polynomial (c1c2 − c3c5)2 is not the desired discriminant. Hence
working over the torus rather than the punctured affine space is essential in this example
(precisely because det(Y ) is reducible).

Despite these subtleties in the kinematic limits of individual discriminants, in sec-
tion 3.4 we have provided strong evidence that the entire principal A-determinant does
remain well-defined in these limits. In practice, therefore, they do not matter.

4.4 Pentagon graphs and beyond

The generic n = 5 or pentagon graph shown below depends on 15 dimensionfull variables,
and as we have mentioned, its principal A-determinant consists of 57 different Cayley and
Gram determinants, one of each associated to the graph itself (leading Landau singularities
of type I and II), and the rest to its subgraphs. For simplicity we will restrict the discussion
to the case of even dimension D0 of loop momenta, but the entire analysis may of course be
repeated also for the odd case. By the process of refactorizing these in pairs as described
in subsection 3.2, we obtain a total of 166 letters, out of which 16 are genuinely new, and
the rest may be obtained by relabeling the letters presented in the previous subsections, as
they are associated to subgraphs with n < 5. As functions of the masses and Mandelstam
invariants, these letters in total contain 26 square roots. Instead of presenting lengthy
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formulas, we refer the reader to the ancillary file for this new result.

p1

p2

p3 p4

p5

x2

x3

x4

x5

x1

Based on the evidence presented in subsection 3.4, we expect that any other pentagon,
where some of its masses or momenta have been identified or set to zero, may be obtained
from the generic one by the limiting procedure we have described. In what follows, we will
apply it to obtain further new results, as well as to check it against previously computed
alphabets.

In particular, we will consider limits where all internal masses, as well as some of the
external momenta have been set to zero. Let us start with the case of three offshell external
legs, which thus now depends on 8 dimensionful variables. We distinguish two cases, based
on whether the all three offshell legs are adjacent (‘hard’) or not (‘easy’), and after taking
the corresponding limits of the generic pentagon and eliminating multiplicative relations
between letters, we arrive at 57 letters containing 7 square roots, and 54 letters containing
5 square roots, respectively. As far as we are aware of, these alphabets have not appeared
in the literature before.

Next, we may continue the limiting process to similarly obtain pentagons where two
external legs are offshell. Choosing for example the ‘easy’ configuration where the offshell
legs are not adjacent, for this 7-variable alphabet we obtain 40 letters depending on 3
square roots, and we have checked that it is indeed equivalent to the one previously com-
puted in [78]. Moving on to send another momentum-squared to zero, we land on the
6-variable alphabet of the massless pentagon with one offshell leg, which consists of 30
letters containing 2 square roots. We have also compared our alphabet to the result for
the latter reported in [43], again finding perfect agreement.

Finally, let us also briefly discuss the n = 6 or hexagon case. As we have mentioned at
the end of subsection 3.2, this integral requires us to be in n > d = 5 dimensions of external
kinematics for all distinct Mandelstam invariants to be algebraically independent, and
hence also for the symbol letters to be multiplicatively independent. We will in particular
be restricting our attention to the limit where all masses and momenta squared are set
to zero, and to the letters exclusively associated to the hexagon graph, and not to its
subgraphs. In this limit, the 15 square-root letters of the second type, eq. (3.22) reduce to
3 multiplicatively ones, which now only depend on one square root, whereas all 6 square-
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root letters of the first type, eq. (3.22), remain multiplicatively independent. Together
with the rational letter (3.23), we thus in total have 10 genuinely hexagon letters, and also
here we establish their equivalence to their earlier determination in [103]. These checks
further solidify the evidence provided in subsection 3.4 on the well-defined nature of the
limiting process for principal A-determinants and symbol alphabets, and also support the
correctness of the new limiting results we have obtained.

5 Normality, Cohen-Macaulay, and generalized permutohedra

In this section we study several mathematical properties of Feynman integrals. In subsec-
tion 5.1, we rigorously prove that the Cohen-Macaulay property holds for a larger collection
of one-loop Feynman integrals9 than was previously known; for one loop integrals this gen-
eralizes previous results of [104, 105]. As discussed in the introduction, and detailed further
below, the physical meaning of the Cohen-Macaulay property is that the number of mas-
ter integrals for a given topology is independent of the spacetime dimension and of the
generalized propagator powers.

In subsection 5.2, we prove that the Newton polytope of the second Symanzik poly-
nomial, as defined in section 2.1, is a generalized permutohedron (GP) for a new class of
Feynman integrals of arbitrary loop order. The practical utility of this property, is that
it facilitates new methods for fast Monte Carlo evaluation of Feynman integrals [7, 8].

The Cohen-Macaulay and GP property are also related to numerous other important
properties in the context of toric geometry and the study of the polytopes associated to
toric varieties. To better orient the reader, we summarize a selection of these properties and
their relations in figure 5. Note that it is in particular the stronger property of normality,
which implies Cohen-Macaulay, that we will prove in subsection 5.1. It would be very
interesting to understand any additional physical implications these properties have for
Feynman integrals, for example with respect to their ultraviolet or infrared divergences,
however we will not attempt this here.

In the rest of this preamble, for the sake of completeness, we briefly recall the definitions
of the properties summarized in figure 5, and further elaborate on the implications of the
Cohen-Macaulay property for GKZ-hypergeometric systems and the associated Feynman
integrals. Since, in this section, we are aiming for mathematical rigor, its content will
inescapably be technical in nature. However, at the beginning of each subsection we will
point the reader to the main results, and explain their physical significance.

Generalized hypergeometric systems HA(β), as defined by the matrix in (2.8) and
vector in (2.9), have many nice combinatorial and analytic properties. The dimension of
the solutions space of HA(β), also referred to as the rank of HA(β), is what physicists would
call the number of master integrals. More precisely, for most one-loop integrals the number
of master integrals and the rank of HA(β) are exactly the same, for higher loop orders or
for special kinematics the rank of the hypergeometric system HA(β) only provides an upper
bound on the number of master integrals. For generic β it is a classical result by GKZ

9More precisely, this is a property of the toric ideal associated to the Feynman integral, as defined
in (2.10).

– 39 –
74



J
H
E
P
1
0
(
2
0
2
3
)
1
6
1

Matroid Polytope

Generalized Permutohedra (GP) Edge Unimodular

Initial Ideal of IP ∩Zn is Radical P has a Regular Unimodular Triangulation

Normality IDP

Cohen-Macaulay rank(HA(β)) = vol(Newt(G)) ∀β

if and only if A−=P ∩Zn

Figure 5. The diagram above considers the relationships between various properties of the hy-
pergeometric system HA(β) arising from the Lee-Pomeransky polynomial G of a Feynman graph
G, with associated semi-group NA and toric ideal IA and the associated polytope P = conv(A−).
The properties in bold teal colored text are properties of the toric ideal IA, the semi-group ring
C[NA] and the hypergeometic system HA(β); the black plain text properties are properties of the
associated polytope. Definitions of a matroid polytope, the Integer Decomposition Property (IDP),
and edge unimodularity are given in subsection 5.2. Note that the equivalence (in red) between
Normality and IDP holds if and only if A− = P ∩ Zn.

that the dimension of the solution space is given by the volume of the Newton polytope
of G, i.e. rank(HA(β)) = vol(Newt(G)) = vol(conv(A−)). However, for actual physical
calculations the vector β is non-generic, for example the choice β = (−D/2,−1, . . . ,−1)T
of space-time dimension and generalized propagator powers is often used. In order for the
equality between the rank and volume of Newt(G) to hold for every β we need IA to be
Cohen-Macaulay. Note that here, and in all other instances, by volume we mean normalized
volume, that is we use the convention that the standard simplex in Rn has volume 1; that
is our volume is n! multiplied by the usual Euclidean volume in Rn.

For our purposes we will define the Cohen-Macaulay property of toric ideals IA in
terms of hypergeometric systems; by doing so we are employing a deep result of [106].
For a definition of the Cohen-Macaulay property for arbitrary polynomial ideals we re-
fer the reader to the book [107]. We say the ideal IA in C[∂] and the semigroup ring
C[NA] ∼= C[∂]/IA are Cohen-Macaulay if the associated hypergeometric system HA(β) is
such that rank(HA(β)) = vol(conv(A−)) for all β. Hence in particular we have the following
equivalence

rank(HA(β)) = vol(Newt(G)) ∀β ⇐⇒ IA is Cohen−Macaulay. (5.1)

In subsection 5.1 we prove that for one-loop graphs the semi-group NA is normal for
almost every kinematic setup. We say the semi-group NA, and the associated semi-group
ring C[NA], are normal if

NA = ZA ∩ R≥0A.
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Showing that NA is normal will in turn imply that the associated toric ideal IA is Cohen-
Macaulay by a result of [108]; hence in particular the relation (5.1) holds.

In the one loop case, with all internal and external masses non-zero and different we
get the simple formula for the number of master integrals:

#(master integrals) = vol(Newt(G)) = 2n − 1. (5.2)

This formula has been quoted before, see e.g. [49].
The properties above, namely normality and the Cohen-Macaulay property, are prop-

erties of the semi-group NA and the ring C[NA], on the other hand the generalized permu-
tohedra property is a property of a polytope P . A polytope P ⊂ Rn is a generalized permu-
tohedra (GP) if and only if every edge is parallel to ei−ej for some i, j ∈ {1, . . . , n}, where
the eℓ denotes the standard basis vectors in Rn. When all lattice points in P = conv(A−)
are contained in A− then properties of the polytope, such as the GP property, have relations
with those of the semi-group ring C[NA]; in particular in this case GP implies normality.
Assuming A− = P ∩ Zn, another property which implies that C[NA] is normal (and hence
Cohen-Macaulay) is if there is some monomial order such that the initial ideal of IA− is
radical; more precisely [109, Corollary 8.9] tells us that this is equivalent to P having a reg-
ular unimodular triangulation, which in turn implies normality. We now briefly recall some
of these definitions. A regular triangulation of a polytope P ⊂ Rn is called unimodular if it
consists only of simplices with volume 1 (recall our convention that a standard simplex has
volume 1); for a definition of a regular triangulation see [110, §5.1]. For a polynomial ideal
I with Gröbner basis {g1, . . . , gr} in a polynomial ring with some monomial order < the
initial ideal is the ideal in<(I) := ⟨in<(g1), . . . , in<(gr)⟩ where in<(f) is the monomial of
a polynomial f which is largest with respect to the ordering <, [111, §1.2]. We say an ideal
I in a polynomial ring R is radical if I =

√
I where

√
I := {f ∈ R | f ℓ ∈ I for some ℓ ∈ N}.

We remind the reader that the key properties defined in the last several paragraphs, and
their relations, may be found in figure 5.

5.1 Normality and Cohen-Macaulay for one-loop Feynman graphs

Throughout this subsection we assume that the Feynman graph G under consideration is a
one-loop Feynman graph, and employ the notations introduced in section 2 with Symanzik
polynomials U ,F giving G = U + F and A = {1} × A− = {1} × Supp(G) as above, see
e.g. (2.8). Note that taking Gh = Ux0 + F we have that the matrix Supp(Gh) is obtained
from A by elementary row operations; hence without loss of generality we may (and will)
assume Supp(Gh) = A.

The main result of this subsection is Theorem 5.4, which proves that the semi-group
NA is normal if and only if we have that

p(Fij)2 −m2
i −m2

j = (pi + · · ·+ pj−1)2 −m2
i −m2

j ̸= 0 (5.3)

for all edges i, j where both mi ̸= 0 and mj ̸= 0; that is, the only cases where normality
does not hold are when either all three terms on the right of the above equation are nonzero
and the entire right-hand side vanishes, or when p(Fij)2 = 0 and the two masses are equal
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to each other.10 Hence this condition is sufficient for the Cohen-Macaulay property to hold,
see figure 5. Note that if only one of the masses are non-zero, cancellation is allowed and
the Cohen-Macaulay property (and even more strongly, normality) will hold. We also wish
to highlight that all individual terms in (5.3) are allowed to be zero; this includes the case
where all internal propagators are massless for any external kinematics, as illustrated in
Corollary 5.6.

For Feynman graphs G of any loop order, but under the assumption of generic (i.e. non-
zero) momenta, so that the momentum flow p(F ) between the two connected components
of any two-forest F of G is nonzero, the Cohen-Macaulay property has been proven in the
fully massive case by [105] and for generic (but some times zero) masses by [104].

Our proof in the one loop case is founded on a result of [112]; we begin with the
relevant definitions. To a graph we may associate a matrix which catalogs which vertices
in a graph are joined by an edge; note that in the discussion which follows this will be a
different graph than the Feynman graph G.

Definition 5.1 (Edge Matrix). Let H = (E, V ) be a finite connected graph with vertex set
V = {0, . . . , d}. If e = {i, j} is an edge of H joining vertices i and j we define ρ(e) ∈ Rd+1

by ρ(e) = ei + ej where ei is the ith unit vector in Rd+1. Let M be the matrix whose
columns correspond to the finite set {ρ(e) : e ∈ E}, then M is called the edge matrix of
H and the convex hull of M is called the edge polytope.

A result of [112] will tells us that if we can associate a certain graph H to A then the
semi-group NA is normal, hence establishing the desired result. This result is based on
verifying the following condition for a graph H.

Definition 5.2 (Odd cycle condition). A cycle in a graph is called minimal if it has no
chord and it is said to be odd if it is a cycle with odd length. A graph H satisfies the odd
cycle condition if for two arbitrary minimal odd cycles C and C ′, either C and C ′ have a
common vertex or there is an edge connecting a vertex of C with a vertex of C ′.

We may now state a result of [112] which we will apply in Theorem 5.4 below.

Theorem 5.3 (Corollary 2.3, [112]). Let B be the edge matrix of a graph H. The semi-
group NB is normal if and only if the graph H satisfies the odd cycle condition.

Using the above result we now prove the main result of this section, which gives a
precise condition for when the semi-group NA is normal for the matrix A associated to a
one loop Feynman graph; recall that normality of NA implies the Cohen-Macaulay property
holds, see figure 5.

Theorem 5.4. Let Gh = Ux0 + F be the Symanzik polynomial of a one-loop Feynman
diagram G. Then the matrix A = Supp(Gh) is the edge matrix of a graph H satisfying the
odd cycle condition if and only if we have that

p(Fij)2 −m2
i −m2

j ̸= 0 (5.4)
10We do not currently have a physical justification for why this is the case, but it would be interesting

to address this in the future.
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0

1

2

j

E − 1

E

Figure 6. The part of H associated to Ux0. The vertex labels in the graph denote the variable
subscript.

for all edges i, j where both mi ̸= 0 and mj ̸= 0. Hence, in particular, the semi-group NA
is normal if and only if (5.4) holds for all edges i, j where both mi ̸= 0 and mj ̸= 0.

Proof. First consider the structure of the matrix A = Supp(Gh) for our one loop Feynman
diagram G. Since we have exactly one loop in the diagram G then the exponent vectors
of U , which correspond to the spanning trees of G, are obtained by removing exactly one
edge from the loop in G, and the exponent records this removed edge giving an identity
matrix obtained from the monomials of U . In other words, this means that the exponents
of U are the indicator vectors of the bases of the co-graphic matroid of M∗(G) of G. The
matrix obtained from Ux0 is then an identity matrix with a row of ones added on top:

(
1 · · · 1

1E

)

where 1E is the E × E-identity matrix.
Hence the matrix A is the edge matrix (as in Definition 5.1) of a graph H. The part of

A arising from U gives E+1 vertices of H and exactly one edge between the central vertex
(corresponding to the exponent of x0 in Ux0). We now construct the graph H in three
steps; the first step adds the vertices and edges arising from Ux0, this step is illustrated in
figure 6.

Now consider the columns of A arising from exponents of F0. The polynomial F0 has
no monomials which contain x0, hence the first entry of all columns of A arising from F0
is 0. In our one loop diagram, to obtain a 2-forest we remove 2 edges, and the monomials
in F0 record these two edges which have been removed, it follows these columns contain
exactly two 1s. Hence the columns of A arising from F0 contain two ones and a zero in the
first entry. This will lead to connected edges between pairs of vertices on the circular arc.
Each such connection will yield a new minimal odd three cycle, as illustrated in figure 7.
It follows that the graph H obtained by this addition will satisfy the odd-cycle condition
(Definition 5.2).

Now we consider the consequences of adding massive particles, that is edges with an
associated mass in the Feynman graph G. In the polynomial Gh the addition of a massive
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0
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2

i

j

E − 1

E

Figure 7. The part of H associated to Ux0 with edges added corresponding to monomials of F0.
One such edge is illustrated connected the vertices i and j below.

0

1

2

i
j

E − 1

E

Figure 8. The part of H associated to Ux0 with edges added from Equation (5.5). The term x2
j

correspond to the self loop and the other terms connect j to every other vertex in H satisfying (5.4).

edge in G corresponds to the following product of polynomials

(x1 + x2 + · · ·+ xE) ·m2
jxj ; (5.5)

this will contain the monomials xixj , i ̸= j and x2
j . The square term corresponds to adding

a loop at vertex j of H. This odd-cycle is connected to vertex 0 by a simple edge and thus
at most separated by one edge from every odd-cycle corresponding to terms xixj , i ̸= j.
Assume now that we have two internal masses, mi ̸= 0 and mj ̸= 0, then the loops they
create at vertex i resp. j have to be connected by an edge for the odd-cycle condition to
hold. This is true if and only if (5.4) holds, i.e. if and only if the corresponding term in
F0 + Fm is non-vanishing.

Since the graph H satisfies the odd-cycle condition it has edge matrix A, the algebra
NA is normal by Theorem 5.3.

We now illustrate this result on an example which is guaranteed to be normal, and
hence Cohen-Macaulay, by the result of Theorem 5.4 but for which the earlier results
of [105] and [104] do not apply.
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0

13

4 2

Figure 9. The edge graph in Example 5.5; as before the vertex labels denote variable subscripts.

Example 5.5. The arguments in [104, 105] rest on the assumption that for every proper
subset V ′ ⊂ Vext we have (∑v∈V ′ pv)

2 ̸= 0. For on-shell massless diagrams this assumption
fails, e.g. since p2

v = 0 for every v ∈ Vext. This means for example that the on-shell massless
box-diagram with homogeneous Lee-Pomeransky polynomial

Gh = x0(x1 + x2 + x3 + x4)− sx1x3 − tx2x4 (5.6)

is not covered by any of the previous results but is still normal due to Theorem 5.4.
The edge graph associated to Gh is shown in figure 9 which clearly satisfy the odd-cycle
condition implying, by Theorem 5.4, that the semi-group NA is normal, and hence the
Cohen-Macaulay property holds (see also figure 5). The number of master integrals can
thus be calculated simply as vol(Newt(Gh)) = 3 which corresponds to the box integral itself
along with the s- and t-channel bubble integrals.

We especially note the following corollary of Theorem 5.4.

Corollary 5.6. If G is a one-loop Feynman graph with me = 0 for all edges e ∈ E, i.e.
Fm = 0, or at most one edge has a non-zero mass. Then NA is normal for all possible
external kinematics.

Even though we have primarily discussed the Cohen-Macaulay property, the result
above as well as the papers [104, 105] focus on proving normality of NA which is a stronger
criteria, see figure 5. Going to special kinematics one may find Feynman integrals with the
Cohen-Macaulay property but which are not normal as well as two-loop integrals where
even the Cohen-Macaulay property fails [104].

5.2 Generalized permutohedra
We again employ the notations introduced in section 2 with Symanzik polynomials U ,F
giving G = U + F . The main contributions of this subsection are Proposition 5.10 and
Theorem 5.11. Reinterpreting earlier results in the literature, in essence they demonstrate
that the polytope Newt(F)11 of a Feynman graph of arbitrary order is a generalized per-
mutohedron (GP) if: 1) all internal propagators are massive for any external kinematics
in the former case; 2) every vertex can be connected to an external vertex by a path of
propagators that are all massive, and the graph is one-particle and one-vertex irreducible,
with all external momenta offshell/massive in the latter case. This enlarges the class of
integrals previously known to be GP [113], as we will also review in what follows.

11It is well-known that Newt(U) is always GP, see the discussion after Proposition 5.9.
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The permutohedron is a classical polytope with many special properties, for example,
it is a simple zonotope, the monotone path polytope of a cube [110] and the secondary
polytope of a triangular prism ∆(1, 2) × ∆(1, n), see [65]. More recently the generalized
permutohedron (GP) was introduced by Postnikov [114], and it was shown by Aguiar and
Ardila that these polytopes are universal combinatorial representatives for a vast class of
Hopf monoids [115]. In the physical context generalized permutohedra have facilitated new
methods for fast Monte Carlo evaluation of Feynman integrals [7, 8].

Simply put, a generalized permutohedron is any polytope whose normal fan is a coars-
ening of a permutohedron’s normal fan. In the context of establishing normality of a
polytope or semi-group, the following classification is more useful.

Theorem 5.7 ([115, Theorem 12.3]). A polytope P ⊂ Rn is a generalized permutohedra if
and only if every edge is parallel to ei − ej for some i, j ∈ {1, . . . , n}.

A matroid polytope is the convex hull of the indicator vectors of all bases of matroid; note
these vectors have entries 0 or 1 only. We will say that a polytope has the GP property if
Theorem 5.7 is satisfied. This especially means that every matroid polytope [116, 117] has
the GP property and that every polytope with the GP property is edge-unimodular, i.e.,
the matrix of edge-directions is unimodular.

As used in this paper, normality of a set of lattice points A = {1} × A− ⊂ Zn+1 is a
property of the semi-group NA while the GP property is associated to a polytope. Even if
P = conv(A−), there is a priori no direct connection between the two properties, however,
if A− is the full set of lattice points in P , i.e.,

A− = P ∩ Zn (5.7)

then GP implies normality. This is because every polytope with the GP property also has
the integer decomposition property (IDP):

Definition 5.8 (Integer decomposition property). A polytope P ⊂ Rn is said to have the
integer decomposition property (IDP) if for every k ∈ Z>0 it satisfies

kP ∩ Zn = P ∩ Zn + (k − 1)P ∩ Zn. (5.8)

By a result of Howard (see, [118], cf. [119]) every edge-unimodular polytope, and
therefore especially every GP, has the IDP property. The significance of the IDP property
in our setting is that it is equivalent to A being normal if A− = P ∩ Zn.

Proposition 5.9. Let P ⊂ Rn be a polytope and A− = P ∩Zn, then P has the IDP if and
only if A = {1} ×A− is normal.

Proof. Assume P has the IDP, then for every integer k > 0 we have that a ∈ kP ∩ Zn

implies there exists a1, . . . , ak ∈ A− such that a = a1 + · · ·+ ak. By the construction of A
we may choose a basis for ZA such that the first coordinate is 1 and the remaining entries
are a basis for ZA−. An arbitrary point in ZA ∩ R≥0A ⊂ Zn+1 has the form (k, a) for
some integer k > 0 and where a ∈ ZA−, but A− = P ∩Zn, so a ∈ kP and the IDP implies
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that a = a1 + · · · + ak for some a1, · · · , ak ∈ A− and thus (k, a) = (1, a1) + · · · + (1, ak).
Therefore normality is proven.

Now, assume that NA is normal, that is, we can write every element (k, a) ∈ R≥0A∩ZA
as (k, a) = (1, a1) + · · ·+ (1, ak) for a1, . . . , ak ∈ A−; this directly implies the IDP.

By definition Newt(U) is the matroid polytope of the dual matroid to the Feynman
graph, meaning that not only does Newt(U) have the GP property but also Supp(U) =
Newt(U) ∩ Zn so the semi-group generated by Supp(U) is normal.

Properties connected to the F -polynomial are much more intricate as they are always
dependent on the kinematic setup and not just on the underlying graph, however, some
general statements are known. For example, Schultka proved in [113] that Newt(F) is a GP
in the Euclidean regime with generic kinematics. Here we provide a slight generalization:

Proposition 5.10. Assume me ̸= 0 for all e ∈ E, then Newt(F) is a GP for all possible
choices of external kinematics.

The proof of this statement is contained in [105] but not in reference to the GP property.
We state it here for completeness.

Proof. When all internal masses are non-zero all vertices of Newt(F ) must always come
from U ·∑e∈Em

2
exe ⊂ F , i.e.

Newt(F) = Newt
(
U ·

∑

e∈E
m2
exe

)
= Newt (U) + Newt

(∑

e∈E
m2
exe

)
. (5.9)

Since Newt
(∑

e∈Em
2
exe
)

is just the standard simplex ∆(1, n), which is a GP, and Newt(U)
is a GP, this means that Newt(F) is a GP since the GP property is closed under Minkowski
addition [115].

Another case is contained in [105], assume all internal masses are zero, i.e. me = 0
for all e ∈ E, and that every two-forest of G comes with a non-zero coefficient. This last
assumption means that V = Vext and that p(V ′)2 ̸= 0 for all V ′ ⊂ V where p(V ′) =∑

v∈V ′ pv. For this setup Newt(F) is a matroid polytope and hence a GP.
This result was generalized by Walther in [104] where he managed to remove the

assumption Vext = V . He showed that Newt(F) is a matroid polytope, and hence GP, if
me = 0 for all e ∈ E and p(V ′)2 ̸= 0 for all V ′ ⊂ Vext. The assumption placed on the
external momenta essentially means that they behave as Euclidean vectors in the sense
that (i) p2

v ̸= 0 for all v ∈ Vext and (ii) (pv + pu)2 ̸= 0 for all u, v ∈ Vext. Neither of these
two assumptions are true in the general Minkowski setting.

As long as the equality

Newt(F) = Newt
(
U ·

∑

e∈E
m2
exe

)
(5.10)

holds for a Feynman graph (with at least one me ̸= 0), it is clear that Newt(F) is a GP by
the arguments in the proof of Proposition 5.10. This can be rephrased to the statement,
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that a sufficient condition for Newt(F) to be a GP is that Supp(F0) ⊆ Supp(Fm). Since
the terms in F0 come from the two-forests of the graph, one way this can be true is if Fm
contains terms from all two-forests. This is guaranteed if every vertex of G is connected
to an external vertex by a massive path, i.e. a path of consecutive edges all with non-zero
mass.
Theorem 5.11 (Theorem 4.5 in [104]). Let G be a one-particle irreducible and one-vertex
irreducible Feynman graph such that no cancellation between F0 and Fm occurs and p(V ′) ̸=
0 for all V ′ ⊂ Vext. Then every term in F0 also appears in Fm (i.e. Supp(F0) ⊆ Supp(Fm))
if and only if every v ∈ V has a massive path to an external vertex v′ ∈ Vext.
A direct consequence is that Newt(F) is a GP for every Feynman graph satisfying Propo-
sition 5.10 or Theorem 5.11. In addition to the GP property being a desirable property,
see for example the discussion at the beginning of this section, GP also implies the Cohen-
Macaulay property holds, see figure 5, and hence that the number of master integrals
may be calculated from the volume of the associated polytope independent of generalized
propagator powers and space time dimension.

6 Conclusions and outlook

In this paper we have recast the problem of determining the symbol alphabet of a polyloga-
rithmic Feynman integral as the question of factorizing its principal A-determinant, which
encodes its Landau singularities and may be obtained independently of the standard pro-
cedure of its analytic evaluation. We have primarily studied one-loop Feynman integrals.
Our main results are the formulas for their symbol alphabet (3.21)–(3.23) and canonical
differential equations (3.32)–(3.33) together with a Mathematica code for their automatic
evaluation, as well as the proof that normality, and hence the Cohen-Macaulay property,
holds in Theorem 5.4. These results are complimented with the limiting procedure for spe-
cialized kinematics in subsection 3.4, also implemented in Mathematica, and a discussion
of the generalized permutohedron in subsection 5.2.

While the main focus of this paper is on one-loop graphs we are also optimistic that
the approach to obtaining the symbol letters via the principal A-determinant described in
this note will also apply in more generality. To this end we conclude with a simple example
of a two-loop graph where the principal A-determinant gives the symbol alphabet. We
consider the slashed box with two different choices for one off-shell leg.

p1 p4

p3p2

x1

x4

x3

x2
x5
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The first Symanzik polynomial is independent of the kinematics and is therefore the same
in all the following different cases:

U = x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x5 + x3x5 + x4x5. (6.1)

The simplest one-mass case is the off-shell leg being connected to the internal diagonal,
e.g. p2

2 ̸= 0 while p2
1 = p2

3 = p2
4 = 0. This gives the F -polynomial

F = −sx1x3x5 − tx2x4x5 − p2
2x2x3x5. (6.2)

The Newton polytope Newt(F) is not a generalized permutohedron (GP) and Newt(G) is
not edge-unimodular, however, IA has a radical initial ideal and therefore Newt(G) has a
regular unimodular triangulation so NA is normal. At one-loop and with generic kinematics
this means that the number of master integrals equals the volume of Newt(G). This is no
longer true at two loops, since Gale duality is no longer enough to fix all coefficients in
U to be one, as required for Feynman integrals. The physically interesting case now is a
restriction ideal of HA(β). In physical variables (and with all coefficients in U one) we
obtain that the reduced principal A-determinant is:

ẼA(G) = (p2
2 − s− t)(p2

2 − s)(p2
2 − t)stp2

2.

With the three variables z1 = s/p2
2, z2 = t/p2

2 and z3 satisfying z1 + z2 + z3 = 1 we get

ẼA(G) ∝ z3(1− z1)(1− z2)z1z2. (6.3)

These five factors constitute all but one letter in the symbol alphabet for two-dimensional
harmonic polylogarithms [120], known to be the appropriate class of functions for describing
all four-point two-loop master integrals with one offshell leg, and hence also the slashed
box integrals discussed here.

The other one-mass configuration has F -polynomial

F = −sx1x3x5 − tx2x4x5 − p2
1x1x2(x3 + x4 + x5).

Again Newt(F) is not GP and Newt(G) is not edge-unimodular, however, IA has a radical
initial ideal and therefore Newt(G) has a regular unimodular triangulation. So NA is
normal, where A is the support of G,

A =




1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 1 0 1 1 1
0 0 0 1 1 1 0 0 0 1 1 1 1
1 0 0 1 0 0 1 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0 1 0 1 0
0 0 1 0 0 1 1 1 1 1 0 0 1




. (6.4)

As before we use the physically relevant setup and work in physical variables. The reduced
principal A-determinant is:

ẼA(G) = (p2
1 − t)(p2

1 − s)(p2
1 − s− t)(s+ t)stp2

1.
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With the same change of variables as before (but with p2 taking the role of p1) we get

ẼA(G) ∝ (1− z2)(1− z1)z3(1− z3)z1z2, (6.5)

which is the full symbol alphabet for the two-dimensional harmonic polylogarithms.
At this level the discriminants which needed to be calculated are quite sizeable. For

example, not only does the full A-discriminant in this case have degree 14, but the dis-
criminant corresponding to the face

A ∩ Γ =




1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 0 1 1
0 0 1 1 0 0 0 1 1 1
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
0 0 0 0 1 1 1 1 0 0




(6.6)

has degree 20. Even though computational complexity grows quickly at higher loops, and
we have the fact that the physically interesting ideals will be restriction ideals of HA(β),
this nontrivial two-loop example of the two-loop slashed box integral with one offshell leg
not only shows that its principal A-determinant may still be computed directly; but also
that it yields the full symbol alphabet of the integral in question.
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Abstract: The connection between Feynman integrals andGKZ A-hypergeometric sys-
tems has been a topic of recent interest with advances in mathematical techniques and
computational tools opening new possibilities; in this paper we continue to explore this
connection. To each such hypergeometric system there is an associated toric ideal, we
prove that the latter has the Cohen-Macaulay property for two large families of Feynman
integrals. This implies, for example, that both the number of independent solutions and
dynamical singularities are independent of space-time dimension and generalized prop-
agator powers. Furthermore, in particular, it means that the process of finding a series
representation of these integrals is fully algorithmic.

1. Introduction

Much of our understanding of physical amplitudes in quantum field theory is tied to their
perturbative expansion in terms of Feynman diagrams. This makes Feynman diagrams
and their associated integrals central objects in quantum field theory [14,36,42]. The
analytic view of Feynman integrals is as old as the integrals themselves, e.g. to guarantee
causality they are often continued into the complex plane in a predetermined manner.
An algebraic viewpoint is not as common in physics, even though it has been known for
a some time [28], see also [16]. Recently the algebraic methods of Gelfand, Kapranov
and Zelevinski [15–17,19], using what are now called GKZ A-hypergeometric systems,
in tandem with the Lee-Pomeransky representation of Feynman integrals [31] have
attracted interest (see e.g. [5,10,13,29,30] also [27]), partially due to the computational
utility of this perspective. In this paper we focus on the study of Feynman integrals using
this GKZ A-hypergeometric system point of view.

Throughout this paper we will assume that the underlying Feynman graph G is
two-edge connected, or in common physics terminology, G is one particle irreducible
(1PI). This means that at least two edges in the graph have to be cut for the graph to
become disconnected. This is not a substantial restriction from a physical point of view
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as any connected amplitude can be factored into its 1PI components [3,11,14,35,36].
Moreover, all integrals are assumed to be dimensionally regularized with generalized
dimension D.

More precisely we consider scalar Feynman integrals arising from a 1PI Feynman
diagram, i.e. a graph G = (V, E)where each edge is labeledwith amassme, momentum
ke, and propagator 1/(k2e − m2

e) and certain vertices are labeled with a momentum p(v).
This set of distinguished vertices are called external vertices, Vext, and are required to
satisfy momentum conservation

∑
v∈Vext

p(v) = 0. Such integrals can be converted to
the Lee-Pomeransky form, which is the standard form we will use here. For a graph G
we work over R|E | where |E | is the size of the edge set E of the graph G. We will also
define the Symanzik polynomials U and F associated to G, cf. [4]. The polynomial U
is obtained by summing over all spanning trees in G and for each such tree adding a
monomial consisting of all variables whose edge is not in the spanning tree, to obtain F
we sum a polynomial depending onU with one obtained by summing over spanning two-
forests ofG. Given a spanning two-forest F = (T, T ′) ofG set p(F) = ∑

v∈T ∩Vext
p(v).

In symbols the Symanzik polynomials are:

U =
∑

T a spanning
tree of G

∏

e �∈T

xe, (1)

F = Fm + F0 = U
∑

e∈E

m2
e xe +

∑

F a spanning
2−forest of G

|p(F)|2
∏

e �∈F

xe, (2)

where me is the mass associated to the edge e and |p(F)|2 is obtained from the Wick
rotation of the Lorentz form p(F)2 → −|p(F)|2. If the Wick rotation is undone, we
consider the Euclidean reagion s.t. p(F)2 < 0 for every F .

Our main result is a theorem stating that in many cases the Newton polytope P =
Newt(U +F) (cf. (4)) associated to a Feynman integral is normal. This proves a weaker
version of the conjecture about existence of unimodular triangulations proposed in [29]
for our considered classes of diagrams. When working with Feynman integrals from
the GKZ A-hypergeometric system perspective we will also associate an ideal IA to
such a system. Our main result will directly imply that this ideal IA is Cohen-Macaulay;
this in turn has several important theoretical and computational consequences which are
discussed in more depth in Section 1.1.

Theorem 1.1 (Main Theorem). Let G = (V, E) be a Feynman diagram with associated
Symanzik polynomialsU andF . SetG = U+F , then the Newton polytope PG = Newt(G)

is normal if either

• me �= 0 for all e ∈ E, or
• me = 0 for all e ∈ E and every vertex is connected to an external off-shell leg, i.e.
p2v �= 0 for every v ∈ V = Vext.

The second case especially includes all polygon diagrams like the triangle, box or pen-
tagon.

We prove this theorem in two parts, the massive case is treated in Theorem 3.1
and the massless case in Theorem 3.5. In short, this result means that not only can we
expect the hypergeometric systems associated to a Feynman diagram to have desirable
mathematical properties, but additionally we can expect that the associated Gröbner
deformation will be straightforward to compute, allowing us to obtain series solutions
effectively in an algorithmic manner.
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1.1. Feynman integrals and hypergeometric systems. Let b ∈ Z|E |
≥0 be an integral vector,

and D ∈ R; after conversion to Lee-Pomeransky form the Feynman integral associated
to the graph G is the integral IG(D, b) given by

IG(D, b) := �(D/2)

�(D/2 − ς)�(b1) · · · �(b|E |)

∫

R|E |
>0

xb1−1
1 · · · x

b|E |−1
|E |

G(x)D/2 dx1 · · · dx|E | (3)

where G = U +F , and ς := ∑
i bi − L · D/2 with L the number of independent cycles

in the graph G.
Suppose that for a given Feynman diagram G the polynomial G has the form G =∑r

i=1 c̃i xai . Note that the c̃i are explicitly given constants determined by the momenta,
masses and graph structure. To consider this as an A-hypergoemtric system we will
instead take the coefficients as undetermined parameters and consider G = ∑r

i=1 ci xai

as a polynomial in the ring Q(D)[c1, . . . , cr ][x1, . . . , x|E |], this recovers our original
polynomial U + F in Q(D)[x1, . . . , x|E |] when we set ci = c̃i . We abuse notation and
use U , F , and G to denote both the polynomials in Q(D)[c1, . . . , cr ][x1, . . . , x|E |] and
the resulting polynomial in Q(D)[x1, . . . , x|E |] when we set ci = c̃i . The polynomial G
determines an (|E | + 1) × r integer matrix A obtained by adding a row of ones above
the matrix with column vectors the exponents ai of G:

A = A− × {1} :=
(
1 1 · · · 1 1
a1 a2 · · · ar−1 ar

)

∈ N(|E |+1)×r , (4)

where A− = (
a1 a2 · · · ar−1 ar

) ∈ N|E |×r is the matrix whose columns are the
exponent vectors of G. We will refer to the Newton polytope of G, Newt(G) =
conv({a1, . . . , ar }), defined by the convex hull of the vectors as the Symanzik polytope.
We suppose this polytope is given in half-space representation as

Newt(G) =
N⋂

i=1

{
σ ∈ R|E | | 〈μi , σ 〉 ≤ νi

}
(5)

where μi ∈ R|E |, ν ∈ RN .
Now return to considering the Feynman integral IG(D, b; c), which we now take as

a function of c since we consider G as a polynomial in Q(D)[c1, . . . , cr ][x1, . . . , x|E |].
The integral IG(D, b; c) is a special case of a so called Euler-Mellin integral; it is shown
in [2] that such integrals admit a meromorphic continuation, giving

IG(D, b; c) = �(D, b; c)
N∏

i=1

�(νi D/2 − 〈μi , b〉) (6)

for some function � entire in D and b; note ν, μ are as in (5). We will also define a
vector β determined by the vector b and the value D appearing in the Feynman integral
in Lee-Pomeransky form (3), that is
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β =

⎛

⎜
⎜
⎝

−D/2
−b1

...

−b|E |

⎞

⎟
⎟
⎠ . (7)

The function �(D, b; c) is a GKZ A-hypergeometric function of c and satis-
fies the GKZ A-hypergeometric system HA(β), which we now define. Let W =
Q(D)[c1, . . . , cr , ∂1, . . . , ∂r ] be a Weyl algebra with ∂i denoting the differential opera-
tor association to ci (i.e. ∂i acts as differentiation by ci on a polynomial inQ[c1, . . . , cr ])
and let IA = 〈∂u − ∂v | Au = Av〉 be the toric ideal in Q[∂1, . . . , ∂r ] defined by the
matrix A as in (4) above; the toric ideal is a prime binomial ideal and such ideals define
toric varieties, see [40, Chapter 4]. Writing A = [ai, j ], the system HA(β) is a left ideal
HA(β) := IA + Z A(β) in W where

Z A(β) =
〈

r∑

j=1

ai, j c j∂ j − βi | i = 1, . . . , |E | + 1

〉

. (8)

Finding a basis consisting of holomorphic functions for the space of solutions to the A-
hypergeometric system HA(β) gives an expression for�(D, b; c), and hence an expres-
sion for the Feynman integral IG(D, b; c). By the Cauchy-Kowalevskii-Kashiwara
Theorem (see also [38, Theorem 1.4.19]) the dimension of the complex vector space
of solutions to the system HA(β) in a neighbourhood of a smooth point is equal to
rank(HA(β)), the holonomic rank of the ideal HA(β). Results of [1,16], see also [38,
Theorem 4.3.8], tell us that if the toric ideal IA is Cohen-Macaulay for a given A then
rank(HA(β)) = (|E |!) · vol(conv(A)) and the singular points where solutions to the
system HA(β) do not exist are independent of β. In fact an even stronger statement
is shown in [32], in particular in [32, Theorem 1.1] it is shown that the toric ideal IA
being Cohen-Macaulay for a given A is equivalent to rank(HA(β)) being constant and
independent of β.

A basis for the solution space to the system HA(β) may be computed using tech-
niques described in [38, Chapter 3]. An important step in this computation is finding the
Gröbner deformation of HA(β)with respect to a generic weight vector ω ∈ Rr , denoted
in(−ω,ω)(HA(β)). This is also greatly simplified in the case IA is Cohen-Macaulay since
in this case

in(−ω,ω)(HA(β)) = Z A(β) + inω(IA), (9)

[38, Theorem 4.3.8], where the later expression inω(IA) is the initial ideal (or lead term
ideal) of IA. The initial ideal of IA can be computed directly from a Gröbner basis
of IA, which is in turn straightforward to obtain using standard methods. We obtain
the appropriate weight vectors ω by computing the Gröbner fan of IA and choosing a
(generic) representative vector ω from each cone in the Gröbner fan of IA, an efficient
procedure (and accompanying software implementation) for computing this Gröbner
fan of such a toric ideal is detailed in [25]. Gröbner fans can also be computed using
the package Gfan [26], we make use of this implementation via it’s Macualay2 [20]
interface in Section 1.2 below. Note we only need to take a generic weight vector in
one Gröbner cone to obtain a series solution, however each cone in the fan will give
a different series solution with a different domain of convergence meaning it may be
advantageous to consider different cones for physical reasons related to the desired
domain of convergence. We also note that solutions to the A-hypergeometric system
HA(β) can take the form of logarithms, not just power series, see, for example, [37].
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p

x1

−p

x2

Fig. 1. Feynman diagram G for the massive bubble. There are two edges, with mass m1 associated to the edge
x1, and m2 associated to the edge x2 and two vertices with (external) momenta p and −p, respectively

1.2. Example. We illustrate this process on the Feynman diagram G shown in Figure
1. For further reading on the techniques employed in our example we recommend the
book [38].

In D dimensions the classical presentation for the Feynman integral for the diagram
in Figure 1 is

I =
∫

d Dk

π D/2

1

k2 − m2
1

1

(k − p)2 − m2
2

. (10)

After Wick-rotating, introducing Feynman parameters and integrating over the loop
momenta, this integral can be written in the Lee-Pomeransky form (up to some factors
of π and i), as in (3) with b = (1, 1) as

IG(D, b) = IG(D, (1, 1)) = �(D/2)

�(D − 2)

∫

R2
+

(U(x) + F(x))−D/2dx1dx2, (11)

U(x) = x1 + x2, F(x) = (m2
1 + m2

2 + |p|2)x1x2 + m2
1x21 + m2

2x22
(12)

where |p|2 > 0 is the Euclidean norm obtained by Wick rotation: p2 → −|p|2. This
integral is a special case of the Euler-Mellin integral which admits the meromorphic
continuation

∫

R2
+

(U + F)−D/2dx1dx2 = �(2 − D/2)�(D − 2)�(D) (13)

where�(D) is an entire analytic function. Treating all the coefficients of the polynomial
U + F as arbitrary coefficients ci , gives

G(x, c) = U(x, c) + F(x, c) = c1x1 + c2x2 + c3x1x2 + c4x21 + c5x22 .

Then the function �(D; c) associated to the resulting integral

IG(D, 1; c) =
∫

R2
+

G(x, c)−D/2dx1dx2 = �(2 − D/2)�(D − 2)�(D; c) (14)

is A-hypergeometric as a function of c and satisfies the A-hypergeometric system HA(β)

with

A =
⎛

⎝
1 1 1 1 1
1 0 1 2 0
0 1 1 0 2

⎞

⎠ = {1} × Newt(G), β =
⎛

⎝
−D/2
−1
−1

⎞

⎠ . (15)

Now let W be the Weyl algebra

W = Q(D)[c1, . . . , c5, ∂1, . . . , ∂5]. (16)
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Then the A-hypergemoetric system HA(β) = Z A(β) + IA is the left-ideal in W defined
by

IA =
〈
∂23 − ∂4∂5, ∂2∂3 − ∂1∂5, ∂1∂3 − ∂2∂4

〉
(17)

Z A(β) =

⎧
⎪⎨

⎪⎩

c1∂1 + c2∂2 + c3∂3 + c4∂4 + c5∂5 = β1

c1∂1 + c3∂3 + 2c4∂4 = β2

c2∂2 + c3∂3 + 2c5∂5 = β3

(18)

where IA is the toric ideal in ∂i defined by A. Since m1 and m2 are assumed to be non-
zero, Theorem 1.1 guarantees that the polytope conv(A) is normal which in particular
implies that IA is Cohen-Macaulay. For (−ω,ω) ∈ R10 the Cohen-Macaulay property
of IA guarantees that the Gröbner deformation of HA(β) can be decomposed as

in(−ω,ω)(HA(β)) = Z A(β) + inω(IA). (19)

The procedure for constructing a series solutions to HA(β) consists of solving the system
given by the Gröbner deformation in(−ω,ω)(HA(β)) and lifting these solutions to HA(β)

by attaching them to a �-series.
The solutions to in(−ω,ω)(HA(β)) will be monomials cu = cu1

1 · · · cu5
5 , u ∈ C5. The

toric ideal IA has a Gröbner fan consisting of seven top-dimensional cones, meaning
that there are seven distinct initial ideals inω(IA). If we choose weight vector ω =
(0, 0,−2, 1, 1), then IA has the reduced Gröbner basis

{(∂2∂4) − ∂1∂3, (∂1∂5) − ∂2∂3, (∂4∂5) − ∂23 } (20)

where the monomials marked with parentheses generates inω(IA). If cu is a solution of
the initial system, then the exponent vectors must satisfy

u2u4 = u1u5 = u4u5 = 0, (21)

⎛

⎝
1 1 1 1 1
1 0 1 2 0
0 1 1 0 2

⎞

⎠

⎛

⎜
⎜
⎜
⎝

u1
u2
u3
u4
u5

⎞

⎟
⎟
⎟
⎠

=
⎛

⎝
−D/2
−1
−1

⎞

⎠ . (22)

The Cohen-Macaulay property of IA guarantees that the number of solutions to these
equations is the normalized volume of the polytope conv(A), i.e., these six equations
have three solutions:

u(1) = (
2 − D, 0, −1, D/2 − 1, 0

)

u(2) = (
0, 2 − D, −1, 0, D/2 − 1

)
(23)

u(3) = (
1 − D/2, 1 − D/2, D/2 − 2, 0, 0

)
.
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The three monomials cu(1)
, cu(2)

, cu(3)
generate the solution space of in(−ω,ω)(HA(β))

and can be lifted to solutions of HA(β) as

φ(i) =
∑

v∈N (i)

�(u(i) + 1)

�(u(i) + v + 1)
cu(i)+v, with, (24)

N (1) = {v = m(−1, 1, 1, 0,−1) + n(2,−2, 0,−1, 1),

m, n ∈ Z | m ≥ 2n, m ≤ 0, n ≥ m} ,

N (2) = {v = m(−1, 1, 1, 0,−1) + n(2,−2, 0,−1, 1),

m, n ∈ Z | 2n ≥ m, m ≤ 0, n ≤ 0} , and

N (3) = {v = m(−1, 1, 1, 0,−1) + n(2,−2, 0,−1, 1), m, n ∈ Z | n ≤ 0, n ≥ m} ,

where (−1, 1, 0,−1) and (2,−2, 0,−1, 1) span the integral kernel of A and the inequal-
ities guarantee that the quotients of �-functions are always well-defined. A solution
�(D; c) to the hypergeometric system HA(β) can now be written as �(D; c) =
K1φ

(1) + K2φ
(2) + K3φ

(3). The coefficients Ki must be such that the meromorphic
continuation on the right hand side of (14) matches the left hand side on the domain
of convergence of the integral. For example, K1 can be determined by taking the limit
c2, c5 → 0 in (14) where c2 and c5 are picked because their respective exponents in u(1)

are zero. The integral becomes
∫

R2
+

dx1dx2
(c1x1 + c3x1x2 + c4x21 )

D/2
= �(D − 2)�(1 − D/2)

�(D/2)
c2−D
1 c−1

3 cD/2−1
4 , (25)

note the limit is not well-defined for�(D; c) because c2 and c5 appear as denominators,
or more precisely, they will have exponents with negative real part1. However, the limit
is well-defined in the Weyl algebra as the restriction ideal:

HA(β)|c2,c5=0 := (HA(β) + c2W + c5W ) ∩ Q(D)[c1, c3, c4, ∂1, ∂3, ∂4]. (26)

The solution space to this ideal is one-dimensional and spanned by c2−D
1 c−1

3 cD/2−1
4 ,

we thus interpret the limit as �(D; c) → K1c2−D
1 c−1

3 cD/2−1
4 . Equating this with the

explicitly evaluated integral and substituting into (14) yields

K1 = �(1 − D/2)

�(D/2)�(2 − D/2)
. (27)

Similarly we obtain

K2 = K1, K3 = �(D/2 − 1)�(D/2 − 1)

�(D/2)�(D − 2)
. (28)

We have now obtained an explicit series representation for the Feynman integral in
one of the seven Gröbner cones, the same procedure can be used to obtain an explicit
representation in the other cones.

The paper is organized as follows; in Section 2 we review several definitions and
results which will be needed to prove the main theorem, Theorem 1.1. Themain theorem
is proved in Section 3, this proof is separated into two cases, massive and massless. The
massive case is treated in Section 3.1 and the massless case is treated in Section 3.2.

1 Note that the form of N (1) guarantees that the limit is well-defined for φ(1).
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2. Background

In this section we briefly review several definitions and results from different areas
of algebra which will be needed in Section 3. Readers wishing further details should
consult books such as [7,12,19,33] on algebraic geometry and [34] on matroid theory.
As was discussed in Section 1, in the context of computing series solutions to Feynman
integrals, many things become much simpler when the toric ideal IA associated to the
matrix A in (4) has the Cohen-Macaulay property. Since the matrix A in (4) is always
full rank with a row of ones the resulting toric ideal is homogeneous; recall an ideal I
is called homogeneous if it has a homogeneous generating set (equivalently its Gröbner
basis consists of homogeneous polynomials), i.e. I = 〈g1, . . . , gt 〉where all monomials
appearing in gi have the same degree. Hence we will restrict our attention to the case of
homogeneous ideals.

Let I be a homogeneous ideal in a polynomial ring R = k[z1, . . . , zr ] over a field
k of characteristic zero defining a projective variety X = V (I ) ⊂ Pr−1 with d :=
dim(I ) = dim(X) + 1. Then d homogeneous polynomials h1, . . . hd in R/I are called
a homogeneous system of parameters for R/I if dimk(R/I + 〈h1, . . . , hd〉) < ∞. We
say that a subsequence h1, . . . , hν is a (R/I )-regular sequence of length r if R/I is a
free k[h1, . . . , hν] module, or equivalently if the Hilbert series of I , HI (z), is equal to
the Hilbert series of I + 〈h1, . . . , hν〉 divided by the polynomial

∏ν
i=1(1 − zdeg(hi )).

Definition 2.1 (Cohen-Macaulay). A homogeneous ideal I in a polynomial R =
k[z1, . . . , zr ] over a field k with d = dim(I ) is Cohen-Macaulay if there exists a homo-
geneous system of parameters h1, . . . hd such that h1, . . . hd is also a (R/I )-regular
sequence of length d.

Our interest is in homogeneous toric ideals. That is for a full rank (|E |+1)×r integer
matrix with first row the all ones vector (e.g. as in (4)) we wish to consider the ideal
IA = 〈zu − zv | Au = Av〉 in the polynomial ring k[z1, . . . , zr ]; this ideal IA is always a
homogeneous prime ideal generated by a finite set of homogeneous binomials. The toric
ideal IA defines a projective toric variety X A = V (IA) ⊂ Pr−1. We say the semi-group
NA is normal if

NA = ZA ∩ R≥0A.

For toric ideals a result of Hochster’s [22], see also [39, Corollary 1.7.6], gives us a
characterization of the Cohen-Macaulay property of the toric ideal IA in terms of the
normality of the semi-group NA.

Theorem 2.2 (Hochster). If the semi-group NA is normal then the toric ideal IA is
Cohen-Macaulay.

Normality of a configuration of lattice points A = A− × {1} can be characterised by
a combinatorial property of the polytope P = conv(A−):

Definition 2.3 (Normal Polytope). A polytope P is called normal, or said to have the
integer decomposition property2 (IDP), if for any k ∈ N

k P ∩ Zd = (k − 1)P ∩ Zd + P ∩ Zd . (29)

Proposition 2.4 (Remark 0.1 of [8]). A polytope P is IDP if and only if N(P × {1} ∩
Zd+1) = R≥0(P × {1}) ∩ Zd+1.

2 This is sometimes called integrally closed.
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This means especially that if all lattice points in conv(A−) are column vectors in A−
(which correspond to exponents of monomials in G), i.e. the set of column vectors
of A− is conv(A−) ∩ Zd , the toric ideal IA will be Cohen-Macaulay if the polytope
P = conv(A−) is IDP.

Hence when considering the question of if a toric ideal IA is Cohen-Macaulay in
Section 3 we will instead seek to prove the stronger sufficient condition that the polytope
P = conv(A−) is normal. We now recall two standard constructions in polyhedral
geometry.

Definition 2.5. Let P, Q ⊂ Rd be (lattice) polytopes. The Minkowski sum P + Q is

P + Q := {p + q ∈ Rd | p ∈ P, q ∈ Q}.
The Cayley sum P ∗ Q is the convex hull of (P × {0}) ∪ (Q × {1}) in Rd+1.

In Section 3 the notion of an edge-unimodular polytope will play a prominent role.
Recall that a matrix M ∈ Zd×n is said to be unimodular if all d × d minors are either
0, 1, or −1, a matrix is totally unimodular if every square submatrix is unimodular.
A polytope P is called edge-unimodular if there a unimodular matrix M such that the
edges of P are parallel to the columns of M . In Section 3 we employ Corollary 2.7 which
is a direct consequence of the following result of Howard [23,24], see also Danilov and
Koshevoy [9].

Theorem 2.6 (Theorem 4.7 of [24], cf. [23]). Suppose that M is a unimodular matrix
and that P and Q are lattice polytopes with edges parallel to the columns of M, that is
P and Q are both edge-unimodular with matrix M. Then

P ∩ Zd + Q ∩ Zd = (P + Q) ∩ Zd . (30)

From this theorem we immediately obtain the following result which tells us that
to show the projective normality of a toric variety X A it is sufficient to show that the
associated polytope P = conv(A) is edge-unimodular.

Corollary 2.7. If a polytope P is edge-unimodular, then P is IDP.

Proof. Suppose P is edge-unimodular and let Q = (k − 1)P . Since Q is just a dilation
of P , thus Q is also edge-unimodular and the prerequisites of Theorem 2.6 are met.
Hence,

P ∩ Zd + (k − 1)P ∩ Zd = k P ∩ Zd .

��
ToproveTheorem3.5, ourmain result in themassless case,wewill need the following

result by Tsuchiya [41, Theorem 0.4] (see also [21]) where a complete description of
IDP Cayley sums is given.

Proposition 2.8 (Theorem 0.4 of [41]). The Cayley sum P ∗ Q is IDP if and only if P
and Q are IDP and also

(a1P + a2Q) ∩ Zd = (a1P ∩ Zd) + (a2Q ∩ Zd) (31)

for any positive integers a1, a2.

An important class of polytopes, which appear in Section 3, are the hypersimplices.
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Definition 2.9 (Hypersimplex). The hypersimplex �(d, k) ⊂ Rd is the polytope

�(d, k) = {(x1, . . . , xd) | 0 ≤ x1, . . . , xd ≤ 1; x1 + · · · + xd = k}. (32)

InSection 3wewill also employ several ideas frommatroid theory, ourmain reference
for these notions is the book [34]. Belowwe give several definitions and a theoremwhich
will be of particular importance.

Given twomatroids M1, M2 on the same ground set E , we say that M1 is a quotient of
M2 if every circuit of M2 can be written as a union of circuits in M1. A pair of matroids
{M1, M2} on the same ground set E form a flag matroid if M1 is a quotient of M2. In
the proof of our main result we will employ the following standard result which tells us
that quotients are flipped by duality.

Proposition 2.10 (Proposition 7.3.1 of [34]). Let M1, M2 be two matroids on E, then
M1 is a quotient of M2 if and only if M∗

2 is a quotient of M∗
1 .

Given a matroid M we may define the associated matroid polytope PM to be the
convex hull of the indicator vectors of all bases of M . We will also wish to associate a
polytope to a flag matroid {M1, M2}.
Definition 2.11. Let {M1, M2} be aflagmatroid, then the flag matroid polytope is defined
as the Minkowski sum of the constituent matroid polytopes: PM1 + PM2 .

3. Normality of Symanzik Polytopes

In this section we prove the main result, namely we show that the polytope associated to
entirely massive or entirely massless Feynmann integrals is always IDP, and hence the
desirable properties of the associated A-hypergeometric system described in Section 1
hold. Throughout this section G = (V, E) will be a 1PI Feynman graph as described in
Section 1.

3.1. Massive Case. Let G be a 1PI Feynman graph with all internal edges massive, i.e.
me �= 0 for all e ∈ E . We separate the F-polynomial (2) as F = Fm + F0 where F0
is defined by the two-forests and Fm is given by Fm = U · ∑

m2
e xe with U as in (1).

The non-vanishing masses guarantees that every monomial in F0 will be present in Fm ,
i.e. writing span(F) for the k-vector space span of the monomials in a polynomial F
over a field k we have span(Fm) ⊇ span(F0). To see this, note that every monomial in
F0 can be written on the the form ux j where u is a monomial in U and x j corresponds
to one of the edges in the spanning tree defining u. If all masses are non-zero, then every
x j will be in the sum

∑
m2

e xe and thus every monomial in F0 will be in Fm .
This means that the Newton polytope PF := Newt(F) of F satisfies

PF = Newt(Fm) = PU + �E , (33)

where PU := Newt(U) and �E = �(|E |, 1) = conv(e1, . . . , e|E |) is the (|E | − 1)-
dimensional standard simplex in R|E |; note that the final equality in (33) follows from
the definition of Fm = U · ∑ m2

e xe. Let G = U +F and let �̃E = conv(0, e1, . . . , e|E |)
be the standard simplex with 0 added as a vertex, then PG := Newt(G) = Newt(U +F)

can be expressed as the sum
PG = PU + �̃E . (34)

Our goal is then to prove that the polytope PG is edge-unimodular.
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Theorem 3.1 (Main Theorem I). Let PG be the polytope defined in (34); then the polytope
PG is edge-unimodular, and hence is IDP.

Proof. Note that we can construct a co-graphic matroid from U by taking the matroid
whose bases are the complements of the spanning trees of G; PU is the matroid polytope
of this matroid. By a classical result of Gelfand, Goresky, MacPherson and Serganova
[18, Theorem 4.1] the edges of a matroid polytope are parallel to ei − e j , i �= j , where
ek is the kth standard basis in R|E |. Hence PU is an edge-unimodular polytope.

The edges of �̃E are clearly either parallel to ei − e j or ei .
The Minkowski sum PG = PU + �̃E contains two types of edges: edges parallel to

edges of PU and edges parallel to edges of �̃E . This means that PG has edges in the
totally unimodular matrix matrix (I |A) where I is the (|E | × |E |)-dimensional identity
matrix and the columns of A consist of vectors which are the columns of some totally
unimodular matrix. Hence PG is edge-unimodular and, by Corollary 2.7, is IDP.

Remark 3.2. Lemma A.1 in the Appendix below shows that the lattice points in PG are
the same as the columns of A−, (i.e. the exponent vectors of G). Thus PG being IDP is
equivalent to the semi-group NA = N(A− ×{1}) being normal, see Proposition 2.4 and
the surrounding discussion, which also implies that the toric ideal IA is Cohen-Macaulay
by Hochster’s theorem.

The Symanzik polynomials U and F are not only relevant in the Lee-Pomeransky
representation but are also used in other parametric representations of Feynman integrals.
As observed in the proof of Theorem 3.1 PU is a matroid polytope, here we prove a
similar result for PF .

Lemma 3.3. Let PF be as in (33). Then PF is a flag matroid polytope.

Proof. Let C(|E |) be the cycle graph on |E | vertices, i.e. the graph with |E | vertices
connected in a closed chainwith |E | edges.Let MC(|E |) be the associatedgraphicmatroid,
that is the matroid whose independent sets are given by the forests of C(|E |). Then �E
is the matroid polytope of the co-graphic matroid M∗

C(|E |). Note that this is a matroid of
rank one and whose independent sets are I = {∅, {1}, {2}, . . . , {|E |}}, thus we see that
M∗

C(|E |) = U1,|E | where Uk,n is the uniform matroid of rank k on {1, . . . , n}. Let M∗
U

be the matroid with matroid polytope PU , this is a matroid on the same ground set E
as U1,|E | but has rank L where L is the number of independent cycles in the underlying
Feynman graph.

It is a little easier if we proceed with the dual matroids MU (the graphical matroid
on the underlying Feynman graph) and U|E |−1,|E |.

Note that U|E |−1,|E | only contains one cycle: {1, . . . , |E |}. Now, since we have
assumed that the underlying Feynman graph is 1PI then every element in E will be
in some cycle of MU . Thus the union of the cycles in MU will be the cycle in U|E |−1,|E |.
This means that MU is a quotient of U|E |−1,|E |.

We will now employ Proposition 2.10 which tells us that quotients are flipped by
duality; in particular Proposition 2.10 implies that U1,|E | is a quotient of M∗

U and thus
{U1,|E |, M∗

U } is a flag matroid. Since PF = PU + �E , where PU , respectively �E , are
the matroid polytopes of M∗

U , respectively U1,|E |, and {U1,|E |, M∗
U } is a flag matroid,

we conclude that PF is a flag matroid polytope.

From [6, Theorem3.1]we have that the edges of a flagmatroid polytope are contained
in the set of edges of a totally unimodular matrix. This gives us the following corollary.

Corollary 3.4. Let PF be as in (33). Then the edges of PF are parallel to the columns
of a unimodular matrix.
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3.2. Massless case. If all internal edges of a Feynman graph correspond to massless
particles, then the F-polynomial (2) consists only of the sum over spanning 2-forests,
F = F0, while the U-polynomial (1) is independent of the internal masses. In order for
xe to be included in a term of U or F , the corresponding edge e ∈ E must have been
removed. Since an edge can only be removed once, this means that xe can show up at
most once in each term of U or F . In particular this means that the vertices of Newt(U)

and Newt(F) are vectors with elements in {0, 1}.
For a Feynman graph with |E | edges and L independent loops, it follows from their

definition that U and F are homogeneous of degree L and L + 1 respectively. This in
particular means that their Newton polytopes are contained in hyperplanes:

Newt(U) ⊂ {(y1, . . . , yE ) ∈ R|E | | y1 + · · · + yE = L}, (35)

Newt(F) ⊂ {(y1, . . . , yE ) ∈ R|E | | y1 + · · · + yE = L + 1}. (36)

We noted above that the vertices of the Newton polytopes are vectors built of zeros and
ones, this together with the fact the polytopes are contained in hyperplanes yields

Newt(U) ⊆ �(E, L) and Newt(F) ⊆ �(E, L + 1),

i.e. the Newton polytopes are subsets of hypersimplices (Definition 2.9). Moreover, the
fact that PU = Newt(U) and PF0 = Newt(F0) are in different parallel hyperplanes
(which are isomorphic copies of R|E |−1) means that PG is their Cayley sum:

PG = PU ∗ PF0 . (37)

For a Feynman graph G = (V, E) with me = 0 for all edges and with all vertices
connected to an off-shell external momenta, i.e. p2v �= 0, v ∈ V = Vext, we have the
following analog of Theorem 3.1.

Theorem 3.5 (Main Theorem II). Let G = (V, E) be a Feynman graph with me = 0
for all e ∈ E and Vext = V , and let U and F0 be as above. Then the polytope PG =
Newt(U + F0) is IDP.

In light of (37) we will apply Proposition 2.8 to prove that the Cayley sum PG is IDP,
hence proving Theorem 3.5. To employ Proposition 2.8 we need to show three things:

(i) PU is edge-unimodular (with respect to the unimodular matrix M) and hence IDP.
As already discussed, this is clear since PU is amatroid polytope (see the beginning
of the proof of Theorem 3.1).

(ii) PF0 is edge-unimodular (with respect to same unimodular matrix M as in (i)) and
hence IDP, this is considered in Lemma 3.6.

(iii) That equation (31) holds for the pair PU and PF0 , this is considered in Lemma 3.7
(keeping in mind PU and PF0 are both edge-unimodular with the same M).

We now consider (ii) above. For each subgraph g ⊂ G = (V, E)we associate the 0/1
vector in R|E | indexed by the edges removed from G to get g, this association is clearly
bijective. Given a 0/1 vector w in R|E | we will write gw to denote the corresponding
subgraph of G obtained by removing the edges corresponding to entries in w with
coordinate one.

Lemma 3.6. Let F0 be the set of all spanning two-forests where we view the elements
in F0 as 0/1 vectors in R|E |, i.e. F0 is the the set of exponent vectors of monomials
appearing in F0, the part of F in (2) consisting only of the sum over spanning 2-forests.
Then F0 is a set of bases of a matroid. Further the column matrix of the edges of the
polytope PF0 = conv(F0) forms a totally unimodular matrix.
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Proof. Recall that a finite non-empty set B ⊂ Zn≥0 is a base of a matroid if the following
two properties hold:

(B1) all u ∈ B have the same norm,
(B2) if u, v ∈ B with ui > vi , then there exists j ∈ {1, . . . , n} with u j < v j such that

u − ei + e j ∈ B, where e denotes the th standard basis vector.

We now show these two properties hold for the set of exponent vectors of F0; for a
vector u ∈ Zn≥0 we will use the norm |u| = u1 + · · · + un .

(B1) The polynomial F0 is homogeneous of degree L + 1, where L is the number of
independent cycles in G, so every u ∈ F0 satisfies |u| = L + 1.

(B2) Assume u and v are two different elements in F0 such that ui > vi for some i .
Then the graph gu−ei corresponding to the 0/1 vector u − ei can be one of two
types of graphs: (a) a spanning tree or (b) a graph with two components, one a tree
and the other containing one and only one cycle.

(a) By assumption u j < v j for some j , since gu−ei is a spanning tree we know that
gu−ei+e j is a spanning two-forest, i.e. u − ei + e j ∈ F0.

(b) For contradiction, assume that for all j such that u j < v j we have u−ei +e j /∈ F0.
This assumptionmeans that for any edge j we cut in the graph gu−ei corresponding
to the vector u − ei , the cycle in gu−ei will stay intact. Let’s do all these cuts;
then the graph gu−ei+

∑
e j will still contain the cycle. The resulting graph contains

the edge i and all the cuts from u and v, since the edge i is in the graph gv

corresponding to v, this means that the resulting graph is a subgraph of gv . But
by assumption gv is a spanning two-forest and thus can not contain any cycles.
We have a contradiction.

Applying [18, Theorem 4.1] gives us that the column matrix of the edges of PF0 forms
a totally unimodular matrix and in particular are parallel to e j − ei . ��
Lemma 3.7. Let P and Q both be edge-unimodular lattice polytopes with edges parallel
to the columns of the same unimodular matrix M. Then P and Q satisfy (31).

Proof. This follows directly from Theorem 2.6 since edge directions are invariant under
scaling. In particular P and Q have the same edge directions as a1P and a2Q. ��
Proof of Theorem 3.5. As discussed in (i) above PU is edge-unimodular via [18, The-
orem 4.1] since it is a matroid polytope. By Lemma 3.6 PF0 is also edge-unimodular
(again via [18, Theorem 4.1] since it is a matroid polytope). Further we saw in the proof
of Lemma 3.6 that the edges of PF0 are parallel to e j − ei , i �= j , and saw in the proof
of Theorem 3.1 that the edges of PU are also parallel to e j − ei , i �= j . Hence PU and
PF0 are both edge-unimodular lattice polytopes with edges parallel to the columns of
the same unimodular matrix. It follows by Lemma 3.7 that (31) is satisfied for PU and
PF0 . Thus Proposition 2.8 applies and PG = PU ∗ PF0 is IDP.

Remark 3.8. Since PU and PF0 are matroid polytopes they have no interior lattice points
and additionally they lay in parallel hyperplanes; hence the Cayley sum PG = PU ∗ PF0

also has no interior lattice points and PG ∩Z|E | consists only of the vertices of PG . This
means that, if the columns of the matrix A− are the exponent vectors of the polynomial
G = U + F0, then the semi-group NA = N(A− × {1}) is normal, and the associated
toric ideal IA is Cohen-Macualay.
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Appendix A: A Lemma on Lattice Points

Author: Uli Walther Department of Mathematics, Purdue University. E-mail:
walther@purdue.edu
In this section we will consider G = (V, E) as any Feynman graph, not necessarily a
1PI graph, and let Em denote the set of all edges e with me �= 0. In order to rule out
complications from trivialities we assume that G has at least one edge that is not a loop.
In other words, we assume that the rank of the associated co-graphic matroid is greater
than one.

Lemma A.1. Let G = (V, E) be any Feynman graph and let Em ⊂ E be the set of all
edges with non-zero mass, me �= 0. Let U be as in (1), with PU = Newt(U) and let
�Em be the simplex in R|Em | given by the convex hull of the set of standard basis vectors
{e j | j ∈ Em} with �̃Em being the convex hull of this simplex along with the vector
0 ∈ R|Em |. The lattice points contained in the polytope P = PU + �̃Em are exactly those
of the form v + v′ where v is a vertex of PU and v′ is a vertex of �̃Em .

Proof. Let M∗
U denote the co-graphic matroid of the graph G and PU its matroid poly-

tope. The lemma clearly holds if |E | = 1, and more generally in the case where E is the
union of a basis for M∗

U with a set of loops, since then M∗
U has exactly one basis and so

PU is a point and the sum PU + �̃Em is a shifted standard simplex. Let w be a point of
PU + �̃Em . Then w can be written as a real linear combination

w =
∑

ci pi (38)

where the real numbers ci ≥ 0 with |c| = ∑
ci = 1 and where each pi is a vertex of

the polytope PU + �̃Em . Let r := rank(M∗
U ). Note that, for the vertex pi in R|Em | the

entry-wise sum |pi | equals either r or r + 1. It follows that |w| ∈ {r, r + 1}. Now assume
in addition that w a lattice point; we must then have |w| ∈ {r, r +1}. Moreover, in either

108



Cohen-Macaulay Property of Feynman Integrals 1035

case, since r and r + 1 are consecutive integers, the linear combination
∑

ci pi can only
non-trivially involve such pi with |w| = |pi |.
LetMB be the set of basis of a matroidM on ground set E with vB ∈ Z|E | denoting the
indicator vector of a base B ∈ MB ; results of White [43, Theorems 1 and 2] tell us that
the points (1, a) in Z × Z|E | inside the positive cone spanned by all pairs (1, vB), are
precisely the vectors (1, vB) for B ∈ MB . In our case this result tells us that if |w| = r
(in which case each pi with nonzero ci must have |pi | = r and be the indicator vector of
a basis for M∗

U then w is a vertex of PU , and so w = w + 0 ∈ PU + �̃Em is as stipulated
in the lemma. We thus assume from now on that |w| = r + 1, so w ∈ PU + �̃Em .
We consider first the massive case Em = E . Both PE = PU and �̃Em are contained in
the unit cube, so any lattice point w of PU + �̃Em has coordinate value xe(w) in the set
{0, 1, 2}, for any e ∈ E . If xe(w) = 0 then all nontrivial terms in (38) must also satisfy
xe(pi ) = 0. Since the set of exponent vectors in U with vanishing e-coordinate is made
of the indicator vectors of the bases for the submatroid of bases of M∗

U that avoid e (the
cographic matroid to the graph derived from G by contracting e), it follows by induction
on |E | that in this case w is as stipulated in the lemma.
We can therefore assume that there is no e ∈ E with xe(w) = 0 and so |w| ≥ |E | ≥ r . On
the other hand, we know that |w| = r +1, and so |E | ∈ {r − 1, r}. In the latter case, M∗

U
is Boolean where the lemma is straightforward (a Boolean matroid is one whose only
base is the ground set). So we are reduced to checking the case |E | = r +1 which forces
w = (1, . . . , 1). In the massive case Em = E , choose any basis B for M∗

U , necessarily
of size r. Its indicator vector is the difference w − e f for the edge { f } := E − B and
thus w = (w − e f ) + e f ∈ PU + �̃Em is a sum of vertices as required.
In the non-massive case, Em is a proper subset of E . The previous arguments above
show that we are reduced to investigating w = (1, . . . , 1), and |E | ∈ {r, r + 1}. The
Boolean case being trivial, it suffices to show that if |E | = r + 1 then w = (1, . . . , 1) is
either not in PU + �̃Em at all, or equal to the sum of a basis indicator vector of M∗

U with
a suitable e f with f ∈ Em . If the latter fails, none of the bases for M∗

U (all of which
are of size r = |E | − 1) are the complement in E of an element of Em . In other words,
every element of Em is contained in each basis. In that case, M∗

U is the matroid sum of
the Boolean matroid on Em (with unique basis Em) with the co-graphic matroid M∗

Uo
,

of the graph Go, on the ground set E − Em where Go is the graph derived from G by
deleting the edges of Em . The matroid basis polytope of M∗

U is that of M∗
Uo

shifted by
∑

f ∈Em
e f . In other words, we have reduced the problem to the massless case Em = ∅.

Then, however, |w| = r + 1 implies that w cannot be in PU + �̃Em .
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We demonstrate that the complete and non-redundant set of Landau singularities of Feynman
integrals may be explicitly obtained from the Whitney stratification of an algebraic map. As a proof
of concept, we leverage recent theoretical and algorithmic advances in their computation, as well
as their software implementation, in order to determine this set for several nontrivial examples of
two-loop integrals. Interestingly, different strata of the Whitney stratification describe not only the
singularities of a given integral, but also those of integrals obtained from kinematic limits, e.g. by
setting some of its masses or momenta to zero.

I. INTRODUCTION

At the heart of both cross-section calculations at the
Large Hadron Collider and gravitational wave physics lie
the evaluation of Feynman integrals. These integrals are
multivalued meromorphic functions of the kinematic vari-
ables they depend on, and understanding their analytic
structure has been an ongoing quest for theoretical physi-
cists since the late 50’s [1].

Key information on the analytic structure of Feynman
integrals is provided by the values of the kinematic vari-
ables for which these become singular, this study was
initiated in the pioneering work of Landau [2]. A virtue
of these Landau singularities, is that knowing them in
advance may significantly aid the evaluation of the inte-
grals, for example with the canonical differential equa-
tions approach [3]: They may constrain or even fully
predict [4] the analytic building blocks or (symbol) let-
ters [5] of this approach, thereby turning the determina-
tion of the differential equations from a symbolic, to a
much simpler numerical problem. Thanks to their util-
ity, also in other aspects of Feynman integration [6], the
analysis of Landau singularities is currently experiencing
a revival with ever-increasing momentum, see for exam-
ple [4, 7–14].

A mathematically robust definition of what a Landau
singularity is has been provided by Pham [15] as his Lan-
dau variety ; roughly speaking it is characterized by the
critical values of a projection map from the variety de-
scribing the integrand in terms of all integration and
kinematic variables, to the space of just the kinematic
variables. Its direct calculation from this definition has
proven quite challenging, and much of the recent effort
has focused on developing alternative methods that more
simply compute varieties that either contain it [7, 8], or
are contained in it [4, 13, 14]. In other words, these meth-
ods may in general either provide spurious candidates or

∗ mhelmer@ncsu.edu
† georgios.papathanasiou@desy.de
‡ felix@tellander.se

miss certain Landau singularities entirely, and it is not
known when these phenomena do not occur beyond cer-
tain special classes of integrals.
In this work, we demonstrate that the rigorous defini-

tion of Landau singularities can be used to obtain their
complete set, and nothing but their complete set, in a
practical manner. To this end, we apply recent theo-
retical and algorithmic advances on the computation of
Whitney stratifications [16, 17], which enter this defi-
nition. In particular, we leverage their implementation
in the WhitneyStratifications 2.03 package for the
Macaulay2 [18] scientific computation software, available
at http://martin-helmer.com/Software/WhitStrat/
index.html [19], in order to compute the Landau sin-
gularities of several nontrivial two-loop integrals, such as
the two-mass hard slashed box and the parachute. While
this computational route is currently not as efficient as
that of other specialized software for sub- or supersets
of Landau singularities [8, 13, 14], it provides a proof of
concept that paves the way for their fast and accurate
determination in the future.

II. FEYNMAN INTEGRALS AND THEIR
SINGULARITIES

In this article we consider one-particle irreducible
Feynman graphs G := (E, V ) with set of edges and
vertices E and V , respectively, and loop number L =
n − |V | + 1, where we abbreviate n := |E|. The vertex
set V has the disjoint partition V = Vext ⊔ Vint where
each vertex v ∈ Vext is assigned an external incoming 4-
dimensional momenta pv ∈ R1,3, and each internal edge
e is assigned a mass parameter me. Using dimensional
regularization with D := 4− 2ϵ and the Lee-Pomeransky
representation [20] we assign the following integral to G:

I =

∫

Rn
+

(
n∏

i=1

xνi
i dxi

xiΓ(νi)

)
1

GD/2
, G = U + F , (1)

where the νi are propagator powers and U , respectively
F , are the first and second Symanzik polynomials. These
are homogeneous polynomials of degree L and L+1 in the
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xi, respectively, and may be easily obtained from graph-
theoretic data, see e.g. [21]. The polynomial coefficients
of U are just numbers, whereas those of F depend on
the kinematic variables pv,me, and are not necessarily
algebraically independent.

The study of singularities of Feynman integrals was ini-
tially formulated in terms of conditions for their contour
of integration to become trapped between colliding poles
of the integrand. These conditions are known as the Lan-
dau equations [2], which in the representation (1) above
read,

Gh = 0 and xi
∂Gh
∂xi

= 0 ∀ i = 0, 1, . . . , n, (2)

where Gh := Ux0+F is the homogenized Lee-Pomeransky
polynomial.

Due to their generically nonlinear nature, directly solv-
ing the above equations in an efficient and systematic
manner remains a challenge. When the polynomials U
and F are taken to have generic coefficients, then Landau
singularities are alternatively captured by the principal
A-determinant [22], see also [9]. This is a polynomial
in the kinematic variables, which vanishes whenever the
equations (2) have a solution.

Despite the algorithmic character of principal A-
determinant calculations, an issue that arises when spe-
cialising the polynomial coefficients back to their Feyn-
man integral values, is that certain factors of the prin-
cipal A-determinant may vanish identically. Given the
unphysical conclusion this would lead to, that the Feyn-
man integral is singular for all values of the kinematic
variables, one may be tempted to define its Landau sin-
gularities by simply removing these vanishing factors.
However this definition is incomplete, as it has been def-
initely shown to miss singularities e.g. in the case of the
parachute integral [12]. An empirical refinement of this
definition, based on sequential limits of the generic poly-
nomial coefficients, has also been proposed and tested
in many one- and some two-loop integrals in [4], yet
more extensive vetting and/or a proof would be desir-
able. Another closely related refinement of the principal
A-determinant, known as the principal Landau determi-
nant (PLD), has also been recently defined and imple-
mented in the Julia package PLD.jl [13, 14]. Unfortu-
nately, this too appears to miss singularities in certain
cases.

A different approach to singularities of integrals is pro-
vided by the homological study of integrals depending on
parameters. In this setting Pham’s definition of the Lan-
dau variety provides a set describing when the topology
of x0 · · ·xnGh = 0 changes. This naturally probes deeper
than just considerations of singularities of this variety.
An upper bound of the Landau variety is provided by
the polynomial reduction described by Brown [7] and is
also implemented in HyperInt [8]. A simple sufficient
measure for changes in topology is given by the Euler
characteristic, which provides a way of reducing this su-
perset closer to the Landau variety. In the case where the

Landau variety is equal to the zero set of the principal A-
determinant it is a corollary of either [23, Theorem 1.1]
or [24, Theorem 13] that this superset can be reduced
to the Landau variety by only keeping the components
where the Euler characteristic of x0 · · ·xnGh = 0 changes
from its generic value. In the general case these results,
as well as the result of [25, Corollary 37] relating the num-
ber of master integrals to this Euler characteristic, sup-
port such an approach to reduce the superset produced
by HyperInt to the Landau variety, but we are unaware
of any known results which guarantee the correctness of
such reductions.
The Landau variety is defined in Section IV, Defini-

tion 1, in an algebraic form suitable for direct calcula-
tions. In order to do so we require the theory of Whitney
stratification, which we introduce in the next section.

III. WHITNEY STRATIFICATION
BACKGROUND

Let k be a field, for us this will always be either the
real or complex numbers. In the discussion that follows
it will be convenient to employ the following notation for
the algebraic variety defined by polynomials g1, . . . , gr in
a polynomial ring k[x1, . . . , xn]:

V(g1, . . . , gr) := {x ∈ kn | g1(x) = · · · = gr(x) = 0}.

Consider an algebraic variety X of dimension d. We
say a flag X• of varieties X0 ⊂ · · · ⊂ Xd = X is a
Whitney stratification of X if, for all i, Xi − Xi−1 is a
smooth manifold such that Whitney’s condition B holds
for all pairs M,N , where M is a connected component of
Xi−Xi−1 and N is a connected component of Xj−Xj−1.
Such connected components are called strata. A pair of
strata, M,N with M ⊂ N , satisfy Whitney’s condition
B at a point x ∈ M with respect to N if: for every
sequence {pn} ⊂ M and every sequence {qn} ⊂ N , with
lim pn = lim qn = x, we have s ⊂ T where s is the limit of
secant lines between pn, qn and T is the limit of tangent
plans toN at qn. We say the pairM,N satisfies condition
B if condition B holds, with respect to N , at all points
x ∈M . This is illustrated in Figures 1 and 2 below.
Note that a Whitney stratification of a variety is not

unique, however it was shown in [26, Chapter V–VI] that
when X is any complex algebraic (or analytic) variety
there exists a unique minimal (or coarsest) Whitney
stratification, such that all other Whitney stratifications
are obtained by adding strata inside the strata of the
minimal one, see also [27, pg. 736–737].

Consider an algebraic map f : X → Y between vari-
eties X and Y . A Whitney stratification of the map f is a
pair (X•, Y•) where X• is a Whitney stratification of X,
Y• is a Whitney stratification of Y and for each strata M
of X there is a strata N of Y with f(M) ⊂ N such that
the map f |M : M → N is a submersion, i.e. the differen-
tial df |M is surjective. It follows from the existence of the
minimal Whitney stratification of a variety and, e.g. the
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FIG. 1: The Whitney stratification of the Whitney
cusp, X = V(x2 + z3 − y2z2) ⊂ R3, is given by
X ⊃ V(x, z) ⊃ {(0, 0, 0)}.

FIG. 2: Two sequences of points, one on the y-axis and
one along the top of the surface, both approaching the
origin. The limiting secant line is the z-axis, while the
limiting tangent plane is the (x, y)-plane, meaning
condition B fails at (0, 0, 0) for the y-axis relative to the
rest of the surface. Hence, the origin must be placed in
a separate strata from the other points on the y-axis.

algorithm of [17, §2], that there exists a unique minimal
or coarsest stratification of a map as well. Given the
defining equations of varieties X, Y and of a map f be-
tween them, the stratification (X•, Y•) may be obtained
explicitly using the algorithm of [16, 17] as implemented
in the WhitneyStratifications Macaulay2 package.

When the map f is proper then we have, by Thom’s
First Isotopy Lemma [28, Proposition 11.1], that the
topology of the fiber f−1(q) is constant over all points
q ∈ N for any strata N of Y .

Example 1 (Topology of Parameterized Cubic)

Consider the planar cubic curve in R2 defined by the
parametric polynomial

fz(x, y) = (y − 1)2 − (x− z)x2 (3)

in variables x, y with parameter z. For parameter values
z < 0 this is a nodal cubic, with one closed loop, while

for z = 0 it is a cusp, and it is a smooth curve with two
connected components (over the reals) for positive z, see
Figure 3. We may use the stratification of the projection
map onto the parameter space to detect this change in
topology. In particular, if we treat x, y, z as variables,
set X = V((y − 1)2 − (x− z)x2) ⊂ R3, and consider the
projection π : X → Y = R given by (x, y, z) 7→ z we may
compute a stratification (X•, Y•) of π using methods of
[17]. The stratification of Y = R is given by:

V(z) ⊂ Y = R.

Hence we see that in particular the topology of the curve
changes at z = 0, dividing R − 0 into two connected
components, the positive and negative real axis [29].
This example was used in [14, Example 3.9] to illus-

trate that the principal Landau determinant, as defined
in [14, Definition 3.4 ], fails to capture the change in
topology of this curve (and the corresponding change in
Euler characteristic); the authors of [14] also give larger
examples arising from actual Feynman integrals where
the Principal Landau discriminant fails to capture all
topological changes which lead to a singular Feynman
integral, see [14, §3.5].

IV. WHITNEY STRATIFICATION OF MAPS
AND THE LANDAU VARIETY

Consider a Feynman integral specified by a polyno-
mial Gh in the ring C[z][x] := C[z1, . . . , zm][x0, . . . , xn],
which is homogeneous in x, where the zi are parameters
(e.g. masses, momenta) and the xi are variables. For a
fixed vector of constants z the resulting polynomial Gh

is homogeneous and defines a (projective) variety in the
complex projective space Pn. We make no assumptions
on the independence of the parameters, and in particular
allow there to be algebraic relations between them. We
then seek to describe the Landau variety, which is locus
in the parameter space Cm where the Feynman integral
is singular; the following definition is (a minor rephras-
ing of) that of Pham [15, §IV.5] for Feynman integrals in
Lee-Pomeransky form:

Definition 1 (Landau variety). Consider a Feyn-
man integral in Lee-Pomeransky form and let Gh be
the x-homogeneous polynomial defining it. Set X =
V(x0 · · ·xnGh) ⊂ Pn

x × Cm
z and consider the projection

map π : X → Cm
z , then the Landau variety is given by

the variety Ym−1 appearing in the unique minimal Whit-
ney stratification (X•, Y•) of the map π.

Note that the map π in Definition 1 is proper by con-
struction, since the fibers are projective varieties (which
are always compact), hence Thom’s isotopy lemma al-
ways holds for the strata in the map stratification.
Regarding computation, the Whitney stratifications

produced by the WhitneyStatifications package have
been found to be minimal in all tested cases, however
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(a) Setting z = −1 gives a nodal
cubic with one loop.

1

2
y

−1 1
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(b) Setting z = 0 gives a cusp cubic.

1

2
y

−1 1

x

(c) Setting z = 1/2 gives a curve with
two connected components.

FIG. 3: Plots of the curve defined by (3) for different parameter values z; the topology of the curve changes at
z = 0. While the curve in (c) is smooth and has two connected components (of different dimensions) in R2 it is
connected and singular, with singularity at (0, 1), in C2.

there is currently no theoretical guarantee that this will
always be the case. The minimality of a computed
stratification may be checked using the results of [27,
page 751–752] and standard computational tools, e.g. the
SegreClasses Macaulay2 package [30].

It is also interesting to note that the lower dimensional
strata in the stratification of π : X → Cm

z as in Defi-
nition 1 tell us which singular parameter values lead to
further topological changes. Hence, in particular, we also
obtain the Landau variety for integrals corresponding to
kinematic limits which arise from taking parameter val-
ues on the original Landau variety, e.g. if we take pa-
rameter values in Ym−1 which correspond to a kinematic
limit, then the Landau variety of this kinematic limit is
given by Ym−2, and so on.

Hence, more broadly speaking, the stratification in
Definition 1 precisely describes all regions of the param-
eter space such that within each regions any choices of
parameters yield a variety X in Pn with constant topol-
ogy (note we slightly abuse notation here and use X to
refer to both the variety in Pn×Cm, where we treat x, z
as variables, and the variety in Pn arising from the same
equation for a fixed choice of parameter values z).

It is shown in [25, Corollary 37] that the number
of master integrals is given by the Euler characteristic
|n + 1 − χ(V(x0x1 · · ·xnGh))|. Since we have that the
topology is constant for parameter values outside the
Landau variety (this follows from Thom’s Isotopy Lemma
since it is the codimension 1 part of of a stratification of
the projection map), then the Euler characteristic is con-
stant as well, and hence the number of master integrals is
fixed for these parameter choices. Note that in fact our
stratification gives us yet more information than this,
in particular when combined with the Euler characteris-
tic computation we may identify all possible numbers of
master integrals for all choices of parameters, even ones
that yield a singularity.

p

m1

−p

m2

FIG. 4: The singularity structure of the one-loop
bubble is classical and well-known. We show that the
Landau variety not only reproduces these results but
that the full Whitney stratification provides the
singularities of kinematic limits.

V. EXAMPLE COMPUTATIONS

We demonstrate that the Landau variety, Definition 1,
can explicitly be calculated and how the result compares
to other approaches. Interestingly, often the full Whitney
stratification of the map is not needed but it is enough
to calculate the stratification of the map imposing only
that the successive differences of elements in each of the
flags X•, Y• are smooth, which can be done by computing
consecutive singular loci [31]. The latter is not guaran-
teed to provide all singularities, but the correctness has
been verified a posteriori for the cases considered.

A. One-loop bubble

We begin be showing how the full Whitney stratifi-
cation for the generic one-loop bubble, Figure 4, not
only provides the Landau variety but also the singu-
larities in kinematic limits. Let Gh be the homoge-
nized Lee-Pomeransky polynomial for the bubble graph:
Gh = x0(x1 + x2) + (m2

1 +m2
2 − p2)x1x2 +m2

1x
2
1 +m2

2x
2
2.

We have the variety X = V(x0x1x2Gh) ⊂ P2 × C3; also
let Y = C3 be the space of kinematics. Calculating the
(minimal) Whitney stratification (X•, Y•) of the corre-
sponding projection map π : X → C3 gives the following
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p1 p4

p3p2

FIG. 5: The slashed box is one of the simplest graphs
where different approaches to calculating Landau
singularities do not coincide. This is discussed in
Section VB.

expression for Y•,

Y3 =Y = C3,

Y2 =V(m2
1) ∪V(m2

2) ∪V(p2)

∪V(p4 +m4
1 +m4

2 − 2p2m2
1 − 2p2m2

2 − 2m2
1m

2
2),

Y1 =V(p2, m2
1 −m2

2) ∪V(m2
2 − p2, m2

1) ∪V(m2
2, m

2
1 − p2)

∪V(p2, m2
1) ∪V(p2, m2

2) ∪V(m2
2, m

2
1),

Y0 =V(p2, m2
1, m

2
2).

Per Definition 1, the components of codimension one, Y2,
constitutes the Landau variety. As already mentioned,
the lower dimensional strata correspond to the Landau
variety at certain limits. In the limit m1 → 0, the Lan-
dau variety is read of from the components in Y1 con-
taining a single m2

1: V(m2
2 − p2, m2

1), V(p2,m2
1) and

V(m2
2,m

2
1). This means that the Landau variety in this

limit is V(m2
2 − p2) ∪V(p2) ∪V(m2

2).
In this example this is exactly the same as substituting

m2
1 = 0 in the original Landau variety, but unlike the

stratification the latter is not always guaranteed to work.
We also remark that special kinematic configurations

can also be specified in the codomain of the mapStratify
command, e.g. the Gram determinant constraint for a
six-point process may be specified as the space of kine-
matics Y and the resulting Whitney stratification will
only provide strata satisfying this constraint.

The Landau variety gives information of the full an-
alytic structure of the meromorphic function defined by
the integral and not the singularities in the physical re-
gion. However, the methods in [17] are capable of calcu-
lating Whitney stratifications of real semi-algebraic sets,
potentially allowing direct access to the physical singu-
larities as well; we leave this fascinating exploration to a
future work.

B. Slashed box

As a first simple two-loop example, we consider the
slashed box in Figure 5 with all internal edges mass-

less and the external legs satisfying p21 = 0 = p23 and
p22 ̸= 0, p24 ̸= 0. This is a kinematic setup relevant
for the two-loop correction of of certain QCD processes
[32]. The setup for the calculating the Landau variety
is X = V(x0 · · ·x5Gh) ⊂ P5 × C4, with Y = C4. Cal-
culating the Whitney stratification (X•, Y•) of the corre-
sponding projection map π : X → C4 gives the following
expression for the Landau variety

Y3 =V(p22) ∪V(p24) ∪V(s) ∪V(t)

∪V(p22 − s) ∪V(p22 − t) ∪V(p24 − s) ∪V(p24 − t)

∪V(p22 + p24 − s− t) ∪V(p22p
2
4 − st)

Which is the same as obtained with both HyperInt and
the principal Landau determinant.
More interesting is the slashed box with the setup p21 =

0 = p22 and p23 ̸= 0, p24 ̸= 0. The Landau variety now
consists of the 9 components

Y3 =V(p23) ∪V(s) ∪V(st+ t2 − tp23 − tp24 + p23p
2
4)

∪V(t− p24) ∪V(s2 − 2sp23 + p43 − 2sp24 − 2p23p
2
4 + p44)

∪V(t− p23) ∪V(t) ∪V(p24) ∪V(p24 − s− t).

which coincide with the result from HyperInt, mean-
while, the principal Landau determinant contains 8 of
these components, in particular it is missing p24− s− t =
0. That this component is significant can be further
strengthened: the Euler characteristic χ(V(x0 · · ·x5Gh))
changes for kinematics on this component and it is a let-
ter in the symbol alphabet for the double box topology
studied in [32].
We remark that another way of obtaining all 9 com-

ponents is the limiting procedure from [4, §3.4] used on
the “proper” principal A-determinant [33]. That is, us-
ing the monomial support for the slashed box but with
all coefficients treated as generic and then applying the
limit where the coefficients becomes the physical ones.

C. Parachute graph

In [12], Berghoff and Panzer showed that the integrand
geometry {U = 0} ∪ {F = 0} ∪ {xi = 0, i = 1, . . . , 4} of
the parachute graph (Figure 6) has a special non-normal
intersection requiring the sequential blow-up of the pro-
jective point [x1 : x2] and x1 + x2 = 0 to resolve the
geometry. The discriminant of this new hypersurface is
(see [12, Eq. (6.15)])

p23(m
2
4−p22)(m

2
3−p21)+(m2

3−m2
4−p21+p22)(m

2
3p

2
2−m2

4p
2
1) (4)

which is not captured by either direct principal A-
determinant calculation nor the principal Landau deter-
minant [14, Eq. (3.18)]. However, it is an output from
HyperInt and the Euler characteristic of the hypersur-
face complement drops from the generic value 19 to the
value 18 on it, so it should indeed be a part of the Landau
variety. We note that the method of blow-ups to resolve
non-transverse intersections is an equivalent alternative
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p1
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x1

x3

x2

FIG. 6: The full singularity structure of the parachute
graph was first uncovered by Berghoff and Panzer in
[12]. For restricted kinematics we use Whitney
stratifications to find the full Landau variety, including
components missed by other methods.

method to calculate the Whitney stratification, in the
latter cases non-transverse intersections are resolved by
imposing the B condition (see Section III).

Stratifying the map π : P4×C7 → C7 is at the current
stage of the implementation too taxing. Restricting the
kinematics to {m2

1 = 1, m2
2 = 0, m2

3 = 0, m2
4 = 2, p21 =

−1, p22 = 0} keeping only p23 free, the discriminant (4)
reduces to p23 − 1. Direct integration in HyperInt con-
firms that this is a letter of the integral [34]. At this re-
duced kinematic point, calculation of the PLD provides
three singularities, {p23, p23+2, p23−2} while the Whitney
stratification gives five:

Y0 = V(p23)∪V(p23+2)∪V(p23−2)∪V(p23+1)∪V(p23−1).

In particular it gives the discriminant (4) at this kine-
matic point.

VI. CONCLUSIONS AND OUTLOOKS

In this letter we use the Whitney stratification of maps
to calculate the Landau variety as defined by Pham. This
not only yields the complete set of singularities for the
integral at hand but also the singularities for integrals

arising as kinematic limits. As the stratification is a tax-
ing computation, the examples in this letter are restricted
to two-loop graphs, however, the methods are fully rig-
orous and in general applicable to any loop order and
kinematic set-up. Even more, this method is agnostic
to the fact that these are Feynman integrals and can be
applied to calculate singularities of any parameterized in-
tegral of Euler type, that is, every integral with rational
integrand.

In particular, since the Whitney stratification gives the
full Landau variety, we are able to calculate the singular-
ities that the naive principal A-determinant or the prin-
cipal Landau determinant misses.
That discriminant based methods miss certain singu-

larities provokes the obvious question: is anything spe-
cial about these singularities, both from a physical and
mathematical perspective? In forthcoming work we will
expand on this by strengthen the connection between
stratified maps, blow-ups and Euler characteristics.

Finally we note that the current implementation of the
map stratification algorithms is general purpose, being
applicable to any algebraic map between any two vari-
eties, and does not take any special advantage of the
highly structured nature of the input in the Feynman in-
tegral context. Hence, there is hope for substantial per-
formance improvements if more specialized implementa-
tions are developed.
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1. Introduction

Feynman integrals are a key tool in quantum field theory. They are necessary to produce accurate predictions from given theoretical 
input such as a Lagrangian. Applications are, for instance, the computations of virtual contributions to scattering cross-sections for particle 
physics phenomenology [7], corrections to the magnetic moment of the muon or the half-life of positronium [8], critical exponents in 
statistical field theory [9] and corrections to the Newton potential due to general relativity [10]. An entirely mathematical application of 
Feynman integrals is the certification of cohomology classes in moduli spaces of curves or of graphs [11].

In this paper, we introduce feyntrop,1 a new tool to evaluate Feynman integrals numerically. In contrast to existing tools, feyntrop
can efficiently evaluate Feynman integrals with a relatively large number of propagators and with an arbitrary number of scales. Moreover,
feyntrop can deal with Feynman integrals in the physical Minkowski regime and automatically takes care of the usually intricate contour 
deformation procedure. The spacetime dimension is completely arbitrary and integrals that are expanded in a dimensional regulator can 
be evaluated. The main restriction of feyntrop is that it cannot deal with Feynman integrals having subdivergences, that means the 
input Feynman integrals are required to be quasi-finite. Moreover, feyntrop is not designed to integrate Feynman integrals at certain 
highly exceptional kinematic points. Outside the Euclidean regime, the external kinematics are required to be sufficiently generic. It is 
worthwhile mentioning though that such highly exceptional kinematic points seem quite rare and feyntrop performs surprisingly well 
in these circumstances—in spite of the lack of mathematical guarantees for functioning. In fact, we were not able to find a quasi-finite 
integral with exceptional kinematics for which the integration with feyntrop fails. We only observed significantly decreased rates of 
convergence in such cases.

The mathematical theory of Feynman integrals has advanced rapidly in the last decades. Corner stone mathematical developments for 
Feynman integrals were, for instance, the systematic exploitation of their unitarity constraints (see, e.g., [12,13]), the systematic solution 
of their integration-by-parts identities (see, e.g., [14,15]), the application of modern algebraic geometric and number theoretic tools for 

1 feyntrop can be downloaded from https://github .com /michibo /feyntrop.
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the benefit of their evaluation (see, e.g., [16–18]) and the systematic understanding of the differential equations which they fulfill (see, 
e.g., [19,20]).

Primarily, these theoretical developments were aimed at facilitating the analytic evaluation of Feynman integrals. All known analytic 
evaluation methods are inherently limited to a specific class of sufficiently simple diagrams. Especially for high-accuracy collider physics 
phenomenology, such analytic methods are often not sufficient to satisfy the demand for Feynman integral computations at higher loop 
order, which frequently involve complicated kinematics with many scales. Even if an analytic expression for a given Feynman integral is 
available, it is usually a highly non-trivial task to perform the necessary analytic continuation into the physical kinematic regime. On a 
different tack, computations of corrections to the Newton potential in the post-Newtonian expansion of general relativity [10] require the 
evaluation of large amounts of Feynman diagrams in three dimensional Euclidean space. As analytic evaluation is often more difficult in 
odd-dimensional spacetime, tropical Feynman integration is a promising candidate to fulfill the high demand for large loop order Feynman 
integrals in this field.

For this reason, numerical methods for the evaluation of Feynman integrals seem unavoidable once a certain threshold in precision has 
to be overcome. In this paper, we will use tropical sampling that was introduced in [1] to evaluate Feynman integrals numerically. This 
numerical integration technique is faster than traditional methods because the known (tropical) geometric structures of Feynman integrals 
are employed for the benefit of their numerical evaluation. For instance, general Euclidean Feynman integrals with up to 17 loops and 
34 propagators can be evaluated using basic hardware with the proof-of-concept implementation that was distributed by the first author 
with [1]. The code of feyntrop is based on this implementation. The relevant mathematical structure is the tropical geometry of Feynman 
integrals in the parametric representation [21,1]. This tropical geometry itself is a simplification of the intricate algebraic geometry Feynman 
integrals display (see, e.g., [22]). Tropical Feynman integration was already used, for instance, in [23] to estimate the φ4 theory β function 
up to loop order 11. Some ideas from [1] were already implemented in the FIESTA package [24]. Tropical sampling was extended to toric 
varieties with applications to Bayesian statistics [25]. Moreover, the tropical approach was recently applied to study infrared divergences 
of Feynman integrals in the Minkowski regime [26].

The tropical approach to Feynman integrals falls in line with the increasing number of fruitful applications of tools from convex 
geometry in the context of quantum field theory. These include, for example, the discovery of polytopes in amplitudes (see, e.g. [27,28]). 
Further, Feynman integrals can be seen as generalized Mellin-transformations [29–31]. As such they are solutions to GKZ-type differential 
equation systems [32]. Tropical and convex geometric tools are central to this analytic approach towards Feynman integrals (see, e.g., 
[33–37]).

Tropical Feynman integration is closely related to the sector decomposition approach [38–40], which applies to completely general 
algebraic integrals. State of the art implementations of sector decompositions are, for instance, pySecDec [41] and FIESTA [24]. Other 
numerical methods that are tailored specifically to Feynman integrals are, for instance, difference equations [15], unitarity methods [42], 
the Mellin-Barnes representation [43] and loop-tree duality [44,45]. With respect to potential applications to collider phenomenology, the 
latter three have the advantage of being inherently adapted to Minkowski spacetime kinematics. A newer technique is the systematic 
semi-numerical evaluation of Feynman integrals using differential equations [46,47], which is implemented, for instance, in AMFlow [48],
DiffExp [49] and SeaSyde [50]. A similar semi-numerical approach was put forward in [51]. This technique can evaluate Feynman 
integrals quickly in the physical regime with high accuracy. A caveat is that it relies on the algebraic solution of the usually intricate 
integration-by-parts system associated to the respective Feynman integral and (usually) on analytic boundary values for the differential 
equations (see [48,52] for an exception where the boundary values are computed exclusively from algebraic input). We expect feyntrop, 
which does not rely on any analytic or algebraic input, to be useful for computing boundary values as input for such methods.

feyntrop uses the parametric representation of Feynman integrals for the numerical evaluation, which we briefly review in Section 2.1. 
This numerical evaluation has quite different characters in separate kinematic regimes. We propose a new classification of such kinematic 
regimes in Section 2.2 which, in addition to the usual Euclidean and Minkowski regimes, includes the intermediate pseudo-Euclidean
regime. The original tropical Feynman integration implementation from [1] was limited to the Euclidean regime. Here, we achieve the 
extension of this approach to non-Euclidean regimes.

In the Minkowski regime, parametric Feynman integrands can have a complicated pole structure inside the integration domain. For the 
numerical integration an explicit deformation of the integration contour, which respects the desired causality properties, is needed. The 
use of explicit contour deformation prescriptions for numerics was pioneered in [42] and was later applied in the sector decomposition 
framework [53]. (Recently, a momentum space based approach for the solution of the deformation problem was put forward [54].) In 
Section 2.3, we propose an explicit deformation prescription which, in its basic form, was employed in [55] in the context of cohomological 
properties of Feynman integrals. This deformation prescription has the inherent advantage of retaining the projective symmetry of the 
parametric Feynman integrand. We provide explicit formulas for the Jacobian and thereby propose a new deformed parametric representation
of the Feynman integral.

It is often desirable to evaluate a Feynman integral using dimensional regularization by adding a formal expansion parameter to the 
spacetime dimension, e.g. D = D0 − 2ε , where D0 is a fixed number and we wish to evaluate the Laurent or Taylor expansion of the 
integral in ε . We will explain how feyntrop deals with such dimensionally regularized Feynman integrals in Section 2.4. Moreover, we 
will discuss one of the major limitations of feyntrop in this section: In its present form feyntrop can only integrate Feynman integrals 
that are quasi-finite. That means, input Feynman integrals are allowed to have an overall divergence, but no subdivergences. Further 
analytic continuation prescriptions (along the lines of [29,30,56]) would be needed to deal with such subdivergences and we postpone the 
implementation of such prescriptions into feyntrop to a future publication. For now, the user of the program is responsible to render 
all input integrals quasi-finite; for instance by projecting them to a quasi-finite basis [56]. Note, however, that within our approach, the 
base dimension D0 is completely arbitrary and can even be a non-integer value if desired. The applicability in the case D0 = 3 makes
feyntrop a promising tool for the computation of post-Newtonian corrections to the gravitational potential [57].

In Sections 3.1 and 3.2, we will review the necessary ingredients for the tropical Monte Carlo approach from [1]: The concepts of the 
tropical approximation and tropical sampling. In Section 3.3, we review the (tropical) geometry of parametric Feynman integrands and the 
particular shape that the Symanzik polynomials’ Newton polytopes exhibit. We will put special focus on the generalized permutahedron
property of the second Symanzik F polynomial. At particularly exceptional kinematic points, this property of the F polynomial can be 
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lost. In these cases the integration with feyntrop might fail. We discuss this limitation in detail in Section 3.3. The overall tropical 
sampling algorithm is summarized in Section 3.4.

In Section 4.2, we summarize the necessary steps for the efficient evaluation of (deformed) parametric Feynman integrands. The key 
step is to express the entire integrand in terms of explicit matrix expressions. Our method is more efficient than the naive expansion of 
the Symanzik polynomials, as fast linear algebra routines can be used for the evaluation of such matrix expressions.

The structure, installation and usage of the program feyntrop is described in Section 5. To illustrate its capabilities we give multiple 
detailed examples of evaluated Feynman integrals in Section 6. In Section 7, we conclude and give pointers for further developments of 
the general tropical Feynman integration method and the program feyntrop.

2. Feynman integrals

2.1. Momentum and parametric representations

Let G be a one-particle irreducible Feynman graph with edge set E and vertex set V . Each edge e ∈ E comes with a mass me and an 
edge weight νe . Each vertex v ∈ V comes with an incoming spacetime momentum pv . Vertices without incoming momentum, i.e. where 
pv = 0, are internal. Let E by the incidence matrix of G which is formed by choosing an arbitrary orientation for the edges and setting 
Ev,e = ±1 if e points to/from v and Ev,e = 0 if e is not incident to v . The Feynman integral associated to G reads

I =
∫ ∏

e∈E

dDqe

iπ D/2

( −1

q2
e − m2

e + iε

)νe ∏
v∈V \{v0}

iπ D/2δ(D)

(
pv +

∑
e∈E

Ev,eqe

)
, (1)

where we integrate over all D-dimensional spacetime momenta qe and we extracted the δ function that accounts for overall momentum 
conservation by removing the vertex v0 ∈ V . We compute the squared length q2

e = (q0
e )

2 − (q1
e )

2 − (q2
e )

2 − . . . using the mostly-minus 
signature Minkowski metric.

To evaluate I numerically, we will use the equivalent parametric representation (see, e.g., [58])

I = 	(ω)

∫
P E+

φ with φ =
(∏

e∈E

xνe
e

	(νe)

)
1

U(x)D/2

(
1

V(x) − iε
∑

e∈E xe

)ω

�. (2)

We integrate over the positive projective simplex P E+ = {x = [x0, . . . , x|E|−1] ∈RP E−1 : xe > 0} with respect to its canonical volume form

� =
|E|−1∑
e=0

(−1)|E|−e−1 dx0

x0
∧ · · · ∧ d̂xe

xe
∧ · · · ∧ dx|E|−1

x|E|−1
. (3)

Note that in the scope of this article we make the unusual choice to start the indexing with 0 for the benefit of a seamless notational 
transition to our computer implementation. So, the edge and vertex sets are always assumed to be given by E = {0, 1, . . . , |E| − 1} and 
V = {0, 1, . . . , |V | − 1}.

The superficial degree of divergence of the graph G is given by ω = ∑
e∈E νe − DL/2, where L = |E| −|V | + 1 is the number of loops of G .

We use V(x) = F(x)/U(x) as a shorthand for the quotient of the two Symanzik polynomials that can be defined using the reduced 
graph Laplacian L(x), a (|V | − 1) × (|V | − 1) matrix given element-wise by L(x)u,v = ∑

e∈E Eu,eEv,e/xe for all u, v ∈ V \ {v0}. We have the 
identities

U(x) = det L(x)

(∏
e∈E

xe

)
, F(x) = U(x)

⎛⎝−
∑

u,v∈V \{v0}
Pu,v L−1(x)u,v +

∑
e∈E

m2
e xe

⎞⎠ , (4)

where Pu,v = pu · pv with the scalar product being computed using the Minkowski metric.

Combinatorial Symanzik polynomials We also have the combinatorial formulas for U and F

U(x) =
∑

T

∏
e/∈T

xe , F(x) = −
∑

F

p(F )2
∏
e/∈F

xe + U(x)
∑
e∈E

m2
e xe , (5)

where we sum over all spanning trees T and all spanning two-forests F of G , and p(F )2 is the Minkowski squared momentum running 
between the two-forest components. From this formulation it can be seen that U and F are homogeneous polynomials of degree L and 
L + 1 respectively. Hence, V is a homogeneous rational function of degree 1.

We will give fast algorithms to evaluate U(x) and F(x) in Section 4.2.

2.2. Kinematic regimes

By Poincaré invariance, the value of the Feynman integral (1) only depends on the |V | × |V | Gram matrix Pu,v = pu · pv and not on 
the explicit form of the vectors pv . In fact, it is even irrelevant in which ambient dimension the vectors pv are defined. The following 
characterization of the different kinematic regimes that we propose will therefore only take the input of a symmetric |V | × |V | matrix P
with vanishing row and column sums (i.e. the momentum conservation conditions 

∑
v∈V pu · pv = ∑

v∈V Pu,v = 0 for all u ∈ V ), without 
requiring any explicit knowledge of the pv vectors. In fact, we will not even require that there are any vectors pv for which Pu,v = pu · pv .
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Euclidean regime We say a given Feynman integral computation problem is in the Euclidean regime if the matrix P is negative semi-
definite. In this regime, F(x) ≥ 0 for all x ∈ P E+ . We call this the Euclidean regime, because the integral (1) is equivalent to an analogous 
Feynman integral where scalar products are computed with the Euclidean all-minus metric. To see this, note that as −P is positive 
semi-definite, there is a |V | × |V | matrix Q such that P = −QT Q. We can think of the column vectors p̃1, . . . , ̃p|V | of Q as an auxiliary 
set of incoming momentum vectors. Elements of P can be interpreted as Euclidean, all-minus metric, scalar products of the p̃v -vectors: 
Pu,v = −p̃ T

u p̃v = − 
∑

w∈V Qw,uQw,v . Translating this back to (1) means that we can change the signature of the scalar products to the 
all-minus metric if we replace the external momenta with the p̃v vectors which are defined in an auxiliary space R|V | . We emphasize
that this way of relating Euclidean and Minkowski space integrals is inherently different from the typical Wick rotation procedure and that 
the p̃v -vectors will in general be different from the original pv vectors.

Pseudo-Euclidean regime In fact, F(x) ≥ 0 for all x ∈ P E+ in a larger kinematic regime, where P is not necessarily negative semi-definite. 
If for each subset V ′ ⊂ V of the vertices the inequality(∑

v∈V ′
pv

)2

=
∑

u,v∈V ′
pu · pv =

∑
u,v∈V ′

Pu,v ≤ 0 (6)

is respected, then we are in the pseudo-Euclidean regime. The first two equalities in (6) are only included as mnemonic devices; knowledge 
of P is sufficient to check the inequalities. Equivalently, we can require the element sums of all principle minor matrices of the P matrix 
to be ≤ 0.

By (5) and (6), the coefficients of F are non-negative in the pseudo-Euclidean regime. Our choice of normalization factors ensures that 
(1) and (2) are real positive in this case.

We remark that there is a commonly used alternative definition of a kinematic regime which, on first sight, is similar to the condition 
above. This alternative definition requires the inequalities pu · pv ≤ 0 to be fulfilled for all u, v ∈ V (see, e.g., [59, Sec. 2.5]). This is more 
restrictive than our condition in (6). In fact, it is too restrictive for our purposes, as not even entirely Euclidean Feynman integrals can 
generally be described in this regime. The reason for this is that not all negative semi-definite matrices P fulfill this more restrictive 
condition.

In our case, the Euclidean regime is contained in the pseudo-Euclidean regime. To verify this, we have to make sure that a negative 
semi-definite P fulfills the conditions in (6). Such a P can be represented with an appropriate set of ̃pv vectors as above: Pu,v = −p̃ T

u p̃v . 
For each V ′ ⊂ V we get the principle minor element sum

∑
u,v∈V ′

Pu,v = −
∑

u,v∈V ′
p̃ T

u p̃v = −
(∑

v∈V ′
p̃v

)T (∑
v∈V ′

p̃v

)
≤ 0 . (7)

Minkowski regime If we are not in the pseudo-Euclidean regime (and thereby also not in the Euclidean regime), then we are in the 
Minkowski regime.

Generic and exceptional kinematics Without any resort to the explicit incoming momentum vectors pv , we call a vertex v internal if 
Pu,v = 0 for all u ∈ V and external otherwise. Let V ext ⊂ V be the set of external vertices. Complementary to the classification above, we 
say that our kinematics are generic if for each proper subset V ′ � V ext of the external vertices of G and for each non-empty subset E ′ ⊂ E
of the edges of G we have(∑

v∈V ′
pv

)2

=
∑

u,v∈V ′
pu · pv =

∑
u,v∈V ′

Pu,v 	=
∑
e∈E ′

m2
e . (8)

For example, the kinematics are always generic in the pseudo-Euclidean regime if me > 0 for all e ∈ E or if 
∑

u,v∈V ′ Pu,v < 0 for all 
V ′ � V ext. Note that generic kinematics also exclude on-shell external momenta, i.e. cases where p2

v = P v,v = 0 for some v ∈ V ext as long 
as not all me > 0, for then there exists at least one edge e ∈ E such that p2

v = 0 = m2
e , thus violating (8). Genericity, for instance, guarantees 

that there will be no cancellation between the momentum and the mass part of the F -polynomial as defined in (5).
Kinematic configurations that are not generic are called exceptional.
As above, only the statements on Pu,v are sufficient for the classification. The other equalities are added to enable a seamless compar-

ison to the literature.
The discussed kinematic regimes and their respective overlaps are illustrated in Fig. 1. In contrast to what the figure might suggest, 

the exceptional kinematics only cover a space that is of lower dimension than the one of the generic regime. The Minkowski regime 
is not explicitly shown as it covers the whole area that is not pseudo-Euclidean. Note that Minkowski, pseudo-Euclidean and Euclidean 
kinematics can be exceptional.

feyntrop detects the relevant kinematic regime using the conditions discussed above.

2.3. Contour deformation

In the pseudo-Euclidean (and thereby also in the Euclidean) regime, F(x) stays positive and the integral (2) cannot have any simple 
poles inside the integration domain.

In the Minkowski regime however, simple propagator poles of the integrand (1) and simple poles associated to zeros of F in (2)
are avoided using the causal iε prescription (see, e.g., [60]). This prescription tells us to which side of the pole the integration contour 
needs to be deformed. When evaluating integrals such as (1) numerically, we have to find an explicit choice for such an integration 
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Fig. 1. Partition of kinematics into different regimes.

contour. Finding such an explicit contour deformation, which also has decent numerical stability properties, is a surprisingly complicated 
task. Explicit contour deformations for numerical evaluation were pioneered by Soper [42] and later refined [53,61]. This original type 
of contour deformation has the caveat that the projective symmetry of the integral (2) is lost as these deformations are inherently non-
projective and usually formulated in affine charts, i.e. ‘gauge fixed’ formulations of (2). Experience, e.g. from [1], shows that the projective 
symmetry of (2) is a treasured good that should not be given up lightly.

To retain projective symmetry we will hence use a different deformation than established numerical integration tools. We will use 
the embedding ιλ : P E+ ↪→ CP |E|−1 (recall that P E+ is a subset of RP |E|−1) of the projective simplex into |E| − 1 complex dimensional 
projective space given by

ιλ : xe �→ xe exp

(
−iλ

∂V
∂xe

(x)

)
. (9)

This deformation prescription was proposed in [55, eq. (43)] in the context of the cohomological viewpoint on Feynman integrals (see also 
[62, Sec. 4.3]). As U and F are homogeneous polynomials of degree L and L + 1 respectively and V(x) = F(x)/U(x), the partial derivative 
∂V
∂xe

is a rational function in x of homogeneous degree 0, so ιλ indeed respects projective equivalence.

We want to deform the integration contour P E+ of (2) into ιλ
(
P E+

) ⊂CP |E|−1. The deformation ιλ does not change the boundary of P E+
as each boundary face of P E+ is characterized by at least one vanishing homogeneous coordinate xe = 0. So, ιλ

(
∂P E+

) = ∂P E+ . By Cauchy’s 
theorem, we can deform the contour as long as we do not hit any poles of the integrand φ. Supposing that λ is small enough such that 
no poles of φ are hit by the deformation, we have

I = 	(ω)

∫
ιλ

(
P E+

) φ = 	(ω)

∫
P E+

ι∗λφ , (10)

where ι∗λφ denotes the pullback of the differential form φ. A computation on forms reveals that ι∗λ � = det(Jλ(x)) �, where the Jacobian 
Jλ(x) is the |E| × |E| matrix given element-wise by

Jλ(x)e,h = δe,h − iλxe
∂2V

∂xe∂xh
(x) for all e,h ∈ E . (11)

Thus, we arrive at the desired deformed parametric Feynman integral by making (10) explicit,

I = 	(ω)

∫
P E+

ι∗λ φ = 	(ω)

∫
P E+

(∏
e∈E

Xνe
e

	(νe)

)
det Jλ(x)

U (X)D/2 · V (X)ω
�, (12)

where X = ιλ(x), that means X = (X0, . . . , X|E|−1) and Xe = xe exp
( − iλ ∂V

∂xe
(x)

)
for all e ∈ E .

Although the prescription (9) was proposed before in a more formal context, the deformed formulation of the parametric Feynman 
integral (12) with the explicit Jacobian factor given by (11) appears not to have been considered previously in the literature.

In Section 4.2, we provide fast algorithms and formulas to evaluate ∂V
∂xe

(x) and Xe .

Landau singularities In the formulation (12), the iε prescription is taken care of by the deformation of the rational function V . To see this, 
consider the Taylor expansion of V(X) in λ,

V (X) = V(x) − iλ
∑
e∈E

xe

(
∂V
∂xe

(x)

)2

+ O(λ2) . (13)

The iε prescription in (2) is ensured if the imaginary part of V(X) is strictly negative for sufficiently small λ. This is the case for all x ∈P E+
as long as there are no solutions of the Landau equations

0 = xe
∂V
∂xe

(x) for each e ∈ E , for any x ∈ P E+ , (14)
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whose solutions are the Landau singularities. We will assume that our Feynman integral is always free of Landau singularities.
Even though we require that λ is small enough, we can give it, in contrast to the ε in (2), an explicit finite value. Hence, eq. (12) is 

finally an explicit form of the original Feynman integral (1) that is going to serve as input for the tropical numerical integration algorithm.

2.4. Dimensional regularization and ε expansions

So far, we did not make any restrictions on the finiteness properties of the integrals (1), (2) and (12). We say a Feynman integral is 
quasi-finite if the integral in the parametric representation (2) (or equivalently (12)) is finite. Only the integral needs to be finite. The 	
function prefactor is allowed to give divergent contributions. Note that this is more permissive than requiring that (1) is finite, which is 
already divergent, e.g., for the 1-loop bubble in D = 4 with unit edge weights.

In this paper, we will restrict our attention to such quasi-finite Feynman integrals. If an integral is not quasi-finite, it can be expanded 
as a linear combination of quasi-finite integrals [29,30,56].

Quasi-finiteness allows overall divergences due to the 	(ω) factor that becomes singular if ω is an integer ≤ 0. Such divergences are 
easily taken care of by using dimensional regularization. As usual we will perturb the dimension by ε in the sense that

D = D0 − 2ε , (15)

where D0 is a fixed number and ε is an expansion parameter.2 Analogously, we define ω0 = ∑
e∈E νe − D0 L/2. Using this notation, we 

may make the ε dependence in (12) explicit and expand,

I = 	(ω0 + εL)

∞∑
k=0

εk

k!
∫
P E+

(∏
e∈E

Xνe
e

	(νe)

)
det Jλ(x)

U (X)D0/2 · V (X)ω0
logk

( U(X)

V(X)L

)
�. (16)

If the k = 0 integral is finite, all higher orders in ε are also finite as the logk factors cannot spoil the integrability. The 	 factor can be 
expanded in ε using 	(z + 1) = z	(z) and the expansion

log 	(1 − ε) = γEε +
∞∑

n=2

ζ(n)

n
εn , (17)

with Euler’s γE and Riemann’s ζ function.
Together, eqs. (16) and (17) give us an explicit formulation of the ε expansion of the Feynman integral (1) in the quasi-finite case. In 

the remainder of this article we will explain how to evaluate the expansion coefficients in (16) using the tropical sampling approach.

3. Tropical geometry

3.1. Tropical approximation

We will use the tropical sampling approach which was put forward in [1] to evaluate the deformed parametric Feynman integrals in 
(12) and (16). Here we briefly review the basic concepts.

For any homogeneous polynomial in |E| variables p(x) = ∑
k∈supp(p) ak

∏|E|−1
e=0 xke

e , the support supp(p) is the set of multi-indices for 
which p has a non-zero coefficient ak . For any such polynomial p, we define the tropical approximation ptr as

ptr(x) = max
k∈supp(p)

|E|−1∏
e=0

xke
e . (18)

If, for example, p(x) = x2
0x1 − 2x0x1x2 + 5ix3

2, then ptr(x) = max{x2
0x1, x0x1x2, x3

2}. Note that the tropical approximation forgets about 
the explicit value of the coefficients; it only depends on the fact that a specific coefficient is zero or non-zero. This way, the tropical 
approximation only depends on the set supp(p) ⊂ Z|E|

≥0. In fact, it only depends on the shape of the convex hull of supp(p), which is the 
Newton polytope of p. For this reason, ptr is nothing but a function avatar of this polytope. Indeed, we can write ptr(x) as follows,

ptr(x) = exp

(
max

v∈N[p] vT y
)

, (19)

where y = (y0, . . . , y|E|−1) with ye = log xe , vT y = ∑
e∈E ve ye and we maximize over the Newton polytope N[p] of p. The exponent above 

is the tropicalization Trop[p] of p over C with trivial valuation. It plays a central role in tropical geometry (see, e.g., [63]). For us, the key 
property of the tropical approximation is that it may be used to put upper and lower bounds on a polynomial:

Theorem 3.1 ([1, Theorem 8]). For a homogeneous p ∈ C[x0, . . . , x|E|−1] that is completely non-vanishing on P E+ there exist constants C1, C2 > 0
such that

C1 ≤ |p(x)|
ptr(x)

≤ C2 for all x ∈ P E+ . (20)

2 Note that the causal iε and the regularization/expansion parameter ε are (unfortunately) usually referred to with the same Greek letter. We will follow this tradition, but 
use different versions of the letter for the respective meanings consistently.
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A polynomial p is completely non-vanishing on P E+ if it does not vanish in the interior of P E+ and if another technical condition is 
fulfilled (see [29, Definition 1] for a precise definition).

The U polynomial is always completely non-vanishing on P E+ and in the pseudo-Euclidean regime also F is completely non-vanishing 
on P E+ . We define the associated tropical approximations U tr , F tr and V tr = F tr/U tr.

Our key assumption for the integration of Feynman integrals in the Minkowski regime is that the approximation property can also be 
applied to the deformed Symanzik polynomials.

Assumption 3.2. There are λ dependent constants C1(λ), C2(λ) > 0 such that for small λ > 0,

C1(λ) ≤
∣∣∣∣∣
(U tr(x)

U(X)

)D0/2 (V tr(x)

V(X)

)ω0
∣∣∣∣∣ ≤ C2(λ) for all x ∈ P E+ , (21)

where we recall that X = (X1, . . . , X|E|) and Xe = xe exp
( − iλ ∂V

∂xe
(x)

)
.

In the pseudo-Euclidean regime the assumption is fulfilled, as we are allowed to set λ = 0 and use the established approximation 
property from [1] on U and F . In the Minkowski regime, Assumption 3.2 can only be fulfilled if there are no Landau singularities, 
i.e. solutions to (14). After extensive numerical testing we conjecture that Assumption 3.2 is fulfilled if there are no Landau singularities. 
It would be very interesting to give a concise set of conditions for the validity of Assumption 3.2 and how it interplays with such 
singularities. We leave this to future research.

Another highly promising research question is to find a value for λ such that the constants C1(λ) and C2(λ) tighten the bounds as 
much as possible. Finding such an optimal value for λ would result in the first entirely canonical deformation prescription which does not 
depend on free parameters.

3.2. Tropical sampling

Intuitively, Assumption 3.2 tells us that the integrands in (12) and (16) are, except for phase factors, reasonably approximated by the 
tropical approximation of the undeformed integrand. To evaluate the integrals (16) with tropical sampling, as in [1, Sec. 7.2], we define the 
probability distribution

μtr = 1

I tr

∏
e∈E xνe

e

U tr(x)D0/2 V tr(x)ω0
�, (22)

where I tr is a normalization factor, which is chosen such that 
∫
P E+ μtr = 1. As of Assumption 3.2 and the requirement that the integrals 

in (16) shall be finite, the factor I tr must also be finite. If ω0 = 0, this normalization factor is equal to the associated Hepp bound of the 
graph G [21]. Because μtr > 0 for all x ∈P E+ , μtr gives rise to a proper probability distribution on this domain.

Using the definition of μtr to rewrite (16) results in

I = 	(ω0 + εL)∏
e∈E 	(νe)

∞∑
k=0

εk

k! Ik, with

Ik = I tr
∫
P E+

(∏
e∈E(Xe/xe)

νe
)

det Jλ(x)(
U (X) /U tr (x)

)D0/2 · (V (X) /V tr (x)
)ω0

logk
( U(X)

V(X)L

)
μtr . (23)

We will evaluate the integrals above by sampling from the probability distribution μtr .
In [1], two different methods to generate samples from μtr were introduced. The first method [1, Sec. 5], which does not take the 

explicit structure of U and F into account, requires the computation of a triangulation of the refined normal fans of the Newton polytopes 
of U and F . Once such a triangulation is computed, arbitrarily many samples from μtr can be generated with little computational effort. 
Unfortunately, obtaining such a triangulation is a highly computationally demanding process.

The second method [1, Sec. 6] to generate samples from the probability distribution μtr makes use of a particular property of the 
Newton polytopes of U and F which allows to bypass the costly triangulation step. This second method additionally has the advantage 
that it is relatively straightforward to implement. This faster method of sampling from μtr relies on the Newton polytopes of U and F
being generalized permutahedra.

For the program feyntrop we will make use of this second method. Our tropical sampling algorithm to produce samples from μtr is 
essentially equivalent to the one published with [1].

3.3. Base polytopes and generalized permutahedra

A fantastic property of generalized permutahedra is that they come with a canonical normal fan which greatly facilitates the sampling 
of μtr, see [1, Theorem 27 and Algorithm 4]. Here, we briefly explain the necessary notions. As a start, we define a more general class of 
polytopes first and discuss restrictions later.

Base polytopes Consider a function z : 2E → R that assigns a number to each subset of E , the edge set of our Feynman graph G . In the 
following we often identify a subset of E with a subgraph of G and use the respective terms interchangeably. So, z assigns a number to 
each subgraph of G . We define P[z] to be the subset of R|E| that consists of all points (a0, . . . , a|E|−1) ∈R|E| which fulfill 

∑
e∈E ae = z(E)

and the 2|E| − 1 inequalities
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e∈γ

ae ≥ z(γ ) for all γ � E . (24)

Clearly, these inequalities describe a convex bounded domain, i.e. a polytope. This polytope P[z] associated to an arbitrary function z :
2E →R is called the base polytope.

Generalized permutahedra The following is a special case of a theorem by Aguiar and Ardila who realized that numerous seemingly 
different structures from combinatorics can be understood using the same object: The generalized permutahedron which was initially 
defined by Postnikov [64].

Theorem 3.3 ([65, Theorem 12.3] and the references therein). The polytope P[z] is a generalized permutahedron if and only if the function z is
supermodular. That means, z fulfills the inequalities

z(γ ) + z(δ) ≤ z(γ ∪ δ) + z(γ ∩ δ) for all pairs of subgraphs γ , δ ⊂ E . (25)

Because other properties of generalized permutahedra are not of central interest in this paper, we will take Theorem 3.3 as our 
definition of these special polytopes. Important for us is that for many kinematic situations the Newton polytopes of the Symanzik 
polynomials are of this type.

Let Lγ denote the number of loops of the subgraph γ , then we have the following theorem due to Schultka [31]:

Theorem 3.4. The Newton polytope N[U ] of U is equal to the base polytope P[zU ] with zU being the function zU (γ ) = Lγ . Moreover, zU is super-
modular. Hence, by Theorem 3.3, N[U ] is a generalized permutahedron.

Proof. See [31, Sec. 4] and the references therein. In [21], it was observed that N[U ] is a matroid polytope, which by [65, Sec. 14] also 
proves the statement. �

Because N[U ] is a generalized permutahedron, we also say that U has the generalized permutahedron property.

Generalized permutahedron property of the F polynomial For the second Symanzik F polynomial the situation is more tricky. We need 
the notion of mass-momentum spanning subgraphs which was defined by Brown [22] (see also [31, Sec. 4] for an interesting relationship 
to the concept of s-irreducibility [66] or [67] where related results were obtained or [68] for relations to the R� operation). We use the 
following slightly generalized version of Brown’s definition (see also [1, Sec. 7.2]): We call a subgraph γ ⊂ E mass-momentum spanning if 
the second Symanzik polynomial of the cograph G/γ vanishes identically FG/γ = 0.

Theorem 3.5. In the Euclidean regime with generic kinematics, the Newton polytope N[F ] is a generalized permutahedron. It is equal to the base 
polytope P[zF ] with the function zF defined for all subgraphs γ by zF (γ ) = Lγ + 1 if γ is mass-momentum spanning and zF (γ ) = Lγ otherwise. 
Consequently, this function zF : 2E →R is supermodular, i.e. it fulfills (25).

Proof. This has also been proven in [31, Sec. 4]. The proof relies on a special infrared factorization property of F that was discovered by 
Brown [22, Theorem 2.7]. �

We explicitly state the following generalization of Theorem 3.5:

Theorem 3.6. Theorem 3.5 holds in all regimes if the kinematics are generic.

Proof. The F polynomial has the same monomials (with different coefficients) as in the Euclidean regime with generic kinematics. 
To verify this, note that the conditions for generic kinematics prevent cancellations between the mass and momentum part of the F
polynomial as given in eq. (5). So, the respective Newton polytopes coincide. �

There is also the following further generalization of Theorem 3.5 to Euclidean but exceptional kinematics. This generalization is very 
plausible (see [22, Example 2.5]), but it is a technical challenge to prove it. We will not attempt to include a proof here for the sake of 
brevity. So, we state this generalization as a conjecture:

Conjecture 3.7. Theorem 3.5 holds in the Euclidean regime for all (also exceptional) kinematics.

We emphasize that N[F ] is generally not a generalized permutahedron outside of the Euclidean regime. This was observed in [31, 
Remark 4.16] (see also [69, Sec. 4.2], [70, Sec. 2.2.3] or [1, Remark 35]). Explicit counter examples are encountered while computing the 
massless on-shell boxes depicted in Fig. 2. The F polynomials of the completely massless box with only on-shell external momenta, the 
massless box with one off-shell momentum and the massless box with two adjacent off-shell momenta (depicted in Figs. 2a, 2b and 2c) 
do not fulfill the generalized permutahedron property. On the other hand, the F polynomial does fulfill the generalized permutahedron 
property for the massless box with two or more off-shell legs such that two off-shell legs are on opposite sides (as depicted in Fig. 2d).

Therefore, we have to make concessions in the Minkowski regime with exceptional kinematics.
An observation of Arkani-Hamed, Hillman, Mizera is helpful (see [26, eq. (8)] and the discussion around it): the facet presentation of 

N[F ] given in Theorem 3.5 turns out to hold in a quite broad range of kinematic regimes, even if N[F ] is not a generalized permutahedron.
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Fig. 2. Massless box with different external legs on- or off-shell. On-shell (p2 = 0) legs are drawn as dashed lines and off-shell (p2 	= 0) legs with solid lines. Internal 
propagators are massless.

Fig. 3. Triangle Feynman graph relevant in QED. The two solid propagators have mass m and the solid legs have incoming squared momentum m2. The dashed propagator is 
massless and the doubled leg has incoming squared momentum Q 2.

Observation 3.8. The Newton polytope of F is often equal to the base polytope P[zF ] with the function zF defined as in Theorem 3.5.

This is significant since feyntrop uses the polytope P[zF ] internally as a substitute for N[F ] as the former is easier to handle and 
faster to compute than the latter.

For instance, all massless boxes depicted in Fig. 2 have the property that the Newton polytopes of their F polynomial are base 
polytopes described by the respective zF functions, i.e. N[F ] = P[zF ]. In the first three cases (Figs. 2a, 2b, 2c) the zF function does not 
fulfill the inequalities (25). For the graph in Fig. 2d these inequalities are fulfilled and the associated Newton polytope N[F ] = P[zF ] is a 
generalized permutahedron.

It would be very beneficial to have precise conditions for when P[zF ] indeed is equal to N[F ], we leave this for a future project. 
Empirically, we have observed that it is valid for quite a wide range of exceptional kinematics. We know, however, that this condition 
is not fulfilled for arbitrary exceptional kinematics [71]. An explicit counter example3 is depicted in Fig. 3. For this triangle graph with 
the indicated exceptional kinematic configuration, the polytope N[F ] is different from P[zF ]. We find that F(x) = m2(x2

1 + x2
2) + (2m2 −

Q 2)x1x2 which implies that N[F ] is a one-dimensional polytope. On the other hand, P[zF ] can be shown to be a two-dimensional 
polytope. In D = 4, the Feynman integral associated to Fig. 3 is infrared divergent and therefore not quasi-finite. In D = 6, feyntrop can 
evaluate the integral without problems. Nonetheless, we expect there to be more complicated Feynman graphs with similarly exceptional 
external kinematics, that are quasi-finite, but which cannot be evaluated using feyntrop. We did not, however, manage to find such a 
graph.

Even if N[F ] 	= P[zF ], the Newton polytope N[F ] is bounded by the base polytope P[zF ]. The reason for this is that F can only lose 
monomials if we make the kinematics less generic.

Theorem 3.9. We have N[F ] ⊂ P[zF ].

Efficient check of the generalized permutahedron property of a base polytope Naively, it is quite hard to check if the base polytope P[z] associ-
ated to a given function z : 2E →R is a generalized permutahedron. There are of the order 22|E| many inequalities to be checked for (25). 
A more efficient way is to only check the following inequalities

z(γ ∪ {e}) + z(γ ∪ {h}) ≤ z(γ ) + z(γ ∪ {e,h}) (26)

for all subgraphs γ ⊂ E and edges e, h ∈ E \ γ . The inequalities (26) imply the ones in (25). For (26) less than |E|22|E| inequalities need to 
be checked. So, (26) is a more efficient version of (25).

3.4. Generalized permutahedral tropical sampling

feyntrop uses a slightly adapted version of the generalized permutahedron tropical sampling algorithm from [1, Sec. 6.1 and Sec. 7.2]
to sample from the distribution given by μtr in eq. (22).

The algorithm involves a preprocessing and a sampling step.

Preprocessing The first algorithmic task to prepare for the sampling from μtr is to check in which regime the kinematic data are located. 
The kinematic data are provided via the matrix Pu,v as it was defined in Section 2.1 and via a list of masses me for each edge e ∈ E . 
If the symmetric |V | × |V | matrix Pu,v is negative semi-definite (which is easy to check using matrix diagonalization), then we are in 

3 We thank Erik Panzer for sharing this (counter) example with us.
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Table 1
Table of the necessity of a deformation (def.) and the fulfillment of the generalized permutahedron property of F (GP) in each kinematic regime.

Euclidean Pseudo-Euclidean Minkowski

Generic no def. / always GP no def. / always GP def. / always GP
Exceptional no def. / always GP no def. / not always GP def. / not always GP

the Euclidean regime. Similarly we check if the defining (in)equalities for the other kinematic regimes given in Section 2.2 are fulfilled or 
not. Depending on the kinematic regime, we need to use a contour deformation for the integration or not. Further, if the kinematics are 
Euclidean or generic, we know that the generalized permutahedron property of F is fulfilled (also thanks to the unproven Conjecture 3.7). 
Table 1 summarizes this dependence of the algorithm on the kinematic regime.

If we find that we are at an exceptional and non-Euclidean kinematic point, N[F ] might not be a generalized permutahedron and it 
might not even be equal to P[zF ]. In this case, the program prints a message warning the user that the integration might not work. The 
program then continues under the assumption that N[F ] = P[zF ]. In any other case, N[F ] is a generalized permutahedron and equal to 
P[zF ]. Hence, the tropical sampling algorithm is guaranteed to give a convergent Monte Carlo integration method by [1, Sec. 6.1].

The next task is to compute the loop number Lγ and check if γ is mass-momentum spanning (by asking if FG/γ = 0) for each 
subgraph γ ⊂ E . Using these data, we can compute the values of zU (γ ) and zF (γ ) for all subgraphs γ ⊂ E using the respective formulas 
from Theorems 3.4 and 3.5.

If we are at an exceptional and non-Euclidean kinematic point, we check the inequalities (26) for the zF function. If they are all 
fulfilled, then P[zF ] is a generalized permutahedron and we get further indication that the tropical integration step will be successful. 
The program prints a corresponding message in this case. Also assuming that Assumption 3.2 is fulfilled, we can compute all integrals in 
(23) efficiently.

Note that even in the pseudo-Euclidean and the Minkowski regimes with exceptional kinematics, the integration is often successful. For 
instance, we can integrate all Feynman graphs depicted in Fig. 2 regardless of the fulfillment of the generalized permutahedron property. 
In fact, we did not find a quasi-finite example where the algorithm fails (even though the convergence rate is quite bad for examples in 
highly exceptional kinematic regimes). We emphasize, however, that the user should check the convergence of the result separately when 
integrating at a manifestly exceptional and non-Euclidean kinematic point. For instance, by running the program repeatedly with different 
numbers of sample points or by slightly perturbing the kinematic point. Recall that for generic kinematics N[F ] is always a generalized 
permutahedron by Theorem 3.6 and the integration is guaranteed to work if the finiteness assumptions are fulfilled.

The next computational step is to compute the generalized degree of divergence (see [1, Sec. 7.2]) for each subgraph γ ⊂ E . It is defined 
by

ω(γ ) =
∑
e∈γ

νe − DLγ /2 − ωδm.m.
γ , (27)

where Lγ is the loop number of the subgraph γ and δm.m.
γ = 1 if γ is mass-momentum spanning and 0 otherwise. The prefactor ω of 

δm.m.
γ is the usual superficial degree of divergence of the overall graph G as it was defined in Section 2.1, ω = ∑

e∈E νe − DL/2.
If ω(γ ) ≤ 0 for any proper subgraph γ , then we discovered a subdivergence. This means that all integrals (16) are divergent. Tropical 

sampling is not possible in this case and the program prints an error message and terminates. An additional analytic continuation step 
from (16) to a set of quasi-finite integrals (see Section 2.4) would resolve this problem. Translating a divergent integral into a linear 
combination of quasi-finite integrals is always possible, but we will leave the implementation of this step into feyntrop to a future 
research project.

If we have ω(γ ) > 0 for all γ ⊂ E , we can proceed to the key preparatory step for generalized permutahedral tropical sampling: 
We use ω(γ ) to compute the following auxiliary subgraph function J (γ ), which is recursively defined by setting J (∅) = 1, agreeing that 
ω(∅) = 1 and

J (γ ) =
∑
e∈γ

J (γ \ e)

ω(γ \ e)
for all γ ⊂ E , (28)

where γ \ e is the subgraph γ with the edge e removed. The terminal element of this recursion is the subgraph that contains all edges E
of G . We find that J (E) = I tr, where I tr is the normalization factor in (22) and (23) (see [1, Proposition 29] for a proof and details).

In the end of the preprocessing step we compile a table with the information Lγ , δm.m.
γ , ω(γ ) and J (γ ) for each subgraph γ ⊂ E and 

store it in the memory of the computer.

Sampling step The sampling step of the algorithm repeats the following simple algorithm to generate samples x ∈P E+ that are distributed 
according to the probability density (22). It is completely described in Algorithm 1. The runtime of our implementation of the algorithm 
grows roughly quadratically with |E|, but a linear runtime is achievable. The validity of the algorithm was proven in a more general setup 
in [1, Proposition 31]. The additional computation of the values of U tr(x) and V tr(x) is an application of an optimization algorithm by 
Fujishige and Tomizawa [72] (see also [1, Lemma 26]).

The key step of the sampling algorithm is to interpret the recursion (28) as a probability distribution for a given subgraph over its 
edges. That means, for a given γ ⊂ E we define pγ

e = 1
J (γ )

J (γ \e)
ω(γ \e) . Obviously, pγ

e ≥ 0 and by (28) we have 
∑

e∈γ pγ
e = 1. So, for each γ ⊂ E , 

pγ
e gives a proper probability distribution on the edges of the subgraph γ .
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Algorithm 1 Generating a sample distributed as μtr from (22).
Initialize the variables γ = E and κ, U = 1.
while γ 	= ∅ do

Pick a random edge e ∈ γ with probability pγ
e = 1

J (γ )
J (γ \e)
ω(γ \e) .

Set xe = κ .
If γ is mass-momentum spanning but γ \ e is not, set V = xe .
If Lγ \e < Lγ , multiply U with xe and store the result in U , i.e. set U ← xe · U .
Remove the edge e from γ , i.e. set γ ← γ \ e.
Pick a uniformly distributed random number ξ ∈ [0, 1].
Multiply κ with ξ1/ω(γ ) and store the result in κ , i.e. set κ ← κξ1/ω(γ ) .

end while
Return x = [x0, . . . , x|E|−1] ∈P E+ , U tr(x) = U and V tr(x) = V .

The algorithm can also be interpreted as iteratively cutting edges of the graph G: We start with γ = E and pick a random edge with 
probability pγ

e . This edge is cut and removed from γ . We continue with the newly obtained graph and repeat this cutting process until 
all edges are removed. In the course of this, Algorithm 1 computes appropriate random values for the coordinates x ∈P E+ .

4. Numerical integration

4.1. Monte Carlo integration

We now have all the necessary tools at hand to evaluate the integrals in (23) using Monte Carlo integration. In this section, we briefly 
review this procedure. The integrals in (23) are of the form

I f =
∫
P E+

f (x)μtr , (29)

where, thanks to the tropical approximation property, f (x) is a function that is at most log-singular inside, or on the boundary of, P E+ . 
To evaluate such an integral, we first use the tropical sampling Algorithm 1 to randomly sample N points x(1), . . . , x(N) ∈ P E+ that are 
distributed according to the tropical probability measure μtr . By the central limit theorem and as f (x) is square-integrable,

I f ≈ I(N)

f where I(N)

f = 1

N

N∑
i=1

f (x(i)) . (30)

For sufficiently large N , the expected error of this approximation of the integral I f is

σ f =
√

I f 2 − I2
f

N
where I f 2 =

∫
P E+

f (x)2μtr , (31)

which itself can be estimated (as long as f (x)2 is square-integrable) by

σ f ≈ σ
(N)

f where σ
(N)

f =
√

1

N − 1

(
I(N)

f 2 − (
I(N)

f

)2
)

and I(N)

f 2 = 1

N

N∑
i=1

f (x(i))2 . (32)

To evaluate the estimator I(N)

f and the expected error σ (N)

f it is necessary to evaluate f (x) for N different values of x. As the random 
points x(1), . . . , x(N) ∈ P E+ can be obtained quite quickly using Algorithm 1, this evaluation becomes a bottleneck. In the next section, we 
describe a fast method to perform this evaluation, which is implemented in feyntrop to efficiently obtain Monte Carlo estimates and 
error terms for the integrals in (23).

4.2. Fast evaluation of (deformed) Feynman integrands

To evaluate the integrals in (23) using a Monte Carlo approach we do not only have to be able to sample from the distribution μtr , but 
we also need to rapidly evaluate the remaining integrand (denoted as f (x) in the last section). Explicitly for the numerical evaluation of 
(23), we have to be able to compute Xe = xe exp

( − iλ ∂V
∂xe

(x)
)

as well as U(X), V(X) and detJλ(x) for any x ∈P E+ .

Evaluation of the U and F polynomials Surprisingly, the explicit polynomial expression for U and F from eq. (5) are harder to evaluate than 
the matrix and determinant expression (4) if the underlying graph exceeds a certain complexity. The reason for this is that the number of 
monomials in (5) increases exponentially with the loop number (see, e.g., [73] for the asymptotic growth rate of the number of spanning 
tress in a regular graph), while the size of the matrices in (4) only increases linearly. Standard linear algebra algorithms as the Cholesky 
or LU decompositions [74] provide polynomial time algorithms to compute the inverse and determinant of L(x) and therefore values of 
U(x) and F(x) (see, e.g., [1, Sec. 7.1]). In fact, the linear algebra problems on graph Laplacian matrices that need to be solved to compute 
U(x) and F(x) fall into a class of problems for which nearly linear runtime algorithms are available [75].
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Explicit formulas for the V derivatives We need explicit formulas for the derivatives of V . These formulas provide fast evaluation methods 
for X and the Jacobian Jλ(x).

Consider the (|V | − 1) × (|V | − 1) matrix M(x) = L−1(x) P L−1(x) with L(x) and P as defined in Section 2.1. For edges e and h that 
connect the vertices ue, ve and uh, vh respectively, we define

A(x)e,h = 1

xexh

(
M(x)ue,uh + M(x)ve,vh − M(x)ue,vh − M(x)ve,uh

)
B(x)e,h = 1

xexh

(
L−1(x)ue,uh + L−1(x)ve,vh − L−1(x)ue,vh − L−1(x)ve,uh

)
,

(33)

where we agree that L−1(x)u,v = M(x)u,v = 0 if any of u or v is equal to v0, the arbitrary vertex that was removed in the initial 
expression of the Feynman integral (1). It follows from (4) and the matrix differentiation rule ∂

∂xe
L−1(x)u,v =

(
−L−1(x) ∂L

∂xe
(x)L−1(x)

)
u,v

that

∂V
∂xe

(x) = −A(x)e,e + m2
e ,

∂2V
∂xe∂xh

(x) = 2δe,h
A(x)e,e

xe
− 2(A(x) ◦ B(x))e,h , (34)

where we use the Hadamard or element-wise matrix product, (A(x) ◦ B(x))e,h = A(x)e,h · B(x)e,h .

Computation of the relevant factors in the integrands of (23) We summarize the necessary steps to compute all the factors in the deformed 
and ε-expanded tropical Feynman integral representation (23).

1. Compute the graph Laplacian L(x) as defined in Section 2.1.
2. Compute the inverse L−1(x) (e.g. by Cholesky decomposing L(x)).
3. Use this to evaluate the derivatives of V(x) via the formulas in (33) and (34).
4. Compute the values of the deformed X parameters: Xe = xe exp

( − iλ ∂V
∂xe

(x)
)
.

5. Compute the Jacobian Jλ(x) using the formula in (11).
6. Evaluate detJλ(x) (e.g. by using a LU decomposition of Jλ(x)).
7. Compute the deformed graph Laplacian L(X).
8. Compute L−1(X) and det L(X) (e.g. by using a LU decomposition of L(X) as a Cholesky decomposition is not possible, because L(X)

is not a hermitian matrix in contrast to L(x)).
9. Use the formulas (4) to obtain values for U(X), F(X) and V(X) = F(X)/U(X).

The computation obviously simplifies if we set λ = 0, in which case we have X = x. We are allowed to set λ = 0 if we do not need the 
contour deformation. This is the case, for instance, in the Euclidean or the pseudo-Euclidean regimes. In our implementation we check if 
we are in these regimes and adjust the evaluation of the integrand accordingly.

5. The program feyntrop

We have implemented the contour-deformed tropical integration algorithm, which we discussed in the previous sections, in a C++
module named feyntrop. This module is an upgrade to previous code developed by the first author in [1].

feyntrop was checked against AMFlow [48] and pySecDec [41] for roughly 15 different diagrams with 1-3 loops and 2-5 legs 
at varying kinematics points, in both the Euclidean and Minkowski regimes, finding agreement in all cases within the given uncertainty 
bounds. In the Euclidean regime, the original algorithm was checked against numerous analytic computations that were obtained at high 
loop order using conformal four-point integral and graphical function techniques [76].

Note that our prefactor convention, which we fixed in eqs. (1) and (2), differs from the one in AMFlow and pySecDec by a factor of 
(−1)|ν| , where |ν| = ∑|E|−1

e=0 νe . In comparison to FIESTA [24], our convention differs by a factor of (−1)|ν| exp (−LγEε).

5.1. Installation

The source code of feyntrop is available in the repository https://github .com /michibo /feyntrop on github. It can be downloaded 
and built by running the following sequence of commands

git clone --recursive https://github.com/michibo/feyntrop.git
cd feyntrop
make

in a Linux environment. feyntrop is interfaced with python [4] via the library pybind11 [5]4. Additionally, it uses the optimized 
linear algebra routines from the Eigen3 package [2], the OpenMP C++ module [77] for the parallelization of the Monte Carlo sampling 
step and the xoshiro256+ pseudo random number generator [3].

4 Note added in proof: Due to compatibility issues on some hardware, the newest version of feyntrop available and described at https://github .com /michibo /feyntrop
does not make use of pybind11 anymore. This new version also provides a low-level command-line interface that works without any dependency on python. This interface 
enables the easy use of feyntrop in high-performance computing environments.
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feyntrop can be loaded in a python environment by importing the file py_feyntrop.py, located in the top directory of the 
package. To ensure that feyntrop was built correctly, one may execute the python file /tests/test_suite.py. This script com-
pares the output of feyntrop against pre-computed values. To do so, it will locally compute six examples with 1-2 loops and 2-5 legs, 
some in the Euclidean and others in the Minkowski regime.

The file py_feyntrop.py includes additional functionality for the python interface serving three purposes. Firstly, it simplifies the 
specification of vertices and edges of a Feynman diagram in comparison to the C++ interface of feyntrop. Secondly, it allows for self-
chosen momentum variables given by a set of replacement rules, instead of having to manually specify the full scalar product matrix Pu,v

from (4). Lastly, the output of the ε expansion can be printed in a readable format. To do so, the py_feyntrop.py program uses the
sympy [6] library.

As already indicated in Section 2.1, we employ zero-indexing throughout. This means that edges and vertices are labeled as {0, 1, . . .}. 
This facilitates seamless interoperability with the programming language features of python.

5.2. Basic usage of feyntrop

In this section, we will illustrate the basic workflow of feyntrop with an example. The code for this example can be executed and 
inspected with jupyter [78] by calling

jupyter notebook tutorial_2L_3pt.ipynb

within the top directory of the feyntrop package.
We will integrate the following 2-loop 3-point graph in D = 2 − 2ε dimensional spacetime:

3

1

0

2

p1

p0

p2

1

0

3

2

4
.

The dashed lines denote on-shell, massless particles with momenta p0 and p1 such that p2
0 = p2

1 = 0. The solid, internal lines each have 
mass m. The double line is associated to some off-shell momentum p2

2 	= 0. For the convenience of the reader, both vertices and edges 
are labeled explicitly in this example. feyntrop requires us to label the external vertices (as defined in Section 2.2) before the internal 
vertices. In the current example, the vertices are V = V ext � V int = {0, 1, 2} � {3}.

The momentum space Feynman integral representation (1) with unit edge weights reads

I = π−2+2ε

∫
d2−2εk0 d2−2εk1(

q2
0 − m2 + iε

)(
q2

1 − m2 + iε
)(

q2
2 − m2 + iε

)(
q2

3 − m2 + iε
)(

q2
4 − m2 + iε

) , (35)

where we integrated out the δ functions in eq. (1) by requiring that q0 = k0, q1 = k0 + p1, q2 = k0 +k1 + p1, q3 = p0 −k0 −k1 and q4 = k1. 
We choose the phase space point

m2 = 0.2 , p2
0 = p2

1 = 0 , p2
2 = 1 , (36)

which is in the Minkowski regime because p2
2 > 0 - see Section 2.2. To begin this calculation, first open a python script or a jupyter 

notebook and import py_feyntrop:

from py_feyntrop import *

Here we are assuming that feyntrop.so and py_feyntrop.py are both in the working directory.
To define the graph, we provide a list of edges with edge weights νe and squared masses m2

e :((
u0, v0

)
, ν0 , m2

0

)
, . . . ,

((
u|E|−1, v |E|−1

)
, ν|E|−1 , m2|E|−1

)
. (37)

The notation (ue, ve) denotes an edge e incident to the vertices ue and ve . We therefore write

edges = [((0,1), 1, ’mm’), ((1,3), 1, ’mm’), ((2,3), 1, ’mm’),
((2,0), 1, ’mm’), ((0,3), 1, ’mm’)]
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in the code to input the graph which is depicted above. The ordering of vertices 
(
ue, ve

)
in an edge is insignificant. Here we set νe = 1

for all e. The chosen symbol for m2 is mm, which will be replaced by its value 0.2 later on. It is also allowed to input numerical values for 
masses already in the edges list, for instance by replacing the first element of the list by ((0,1), 1, ’0.2’).

Next we fix the momentum variables. Recall that the external vertices are required to be labeled {0, 1, . . . , |V ext| − 1}, so the external 
momenta are p0, . . . , p|V ext|−1. Moreover, the last momentum is inferred automatically by feyntrop using momentum conservation, 
leaving p0, . . . , p|V ext|−2 to be fixed by the user. A momentum configuration is then specified by the collection of scalar products,

pu · pv for all 0 ≤ u ≤ v ≤ |V ext| − 2 . (38)

In the code, we must provide replacement rules for these scalar products in terms of some variables of choice. For the example at hand, 
|V ext| = 3, so we must provide replacement rules for p2

0, p2
1 and p0 · p1. In the syntax of feyntrop we thus write

replacement_rules = [(sp[0,0], ’0’), (sp[1,1], ’0’), (sp[0,1], ’pp2/2’)]

where sp[u,v] stands for pu · pv , the scalar product of pu and pv . We have immediately set p2
0 = p2

1 = 0 and also defined a variable
pp2 which stands for p2

2, as, by momentum conservation,

p2
2 = 2p0 · p1 . (39)

Eventually, we fix numerical values for the two auxiliary variables pp2 and mm. This is done via

phase_space_point = [(’mm’, 0.2), (’pp2’, 1)]

which fixes m2 = 0.2 and p2
2 = 1. It is possible to obtain the Pu,v matrix (as defined in Section 2.1) and a list of all the propagator masses, 

which are computed from the previously provided data, by

P_uv_matrix, m_sqr_list = prepare_kinematic_data(edges, replacement_rules,
phase_space_point)

The final pieces of data that need to be provided are

D0 = 2
eps_order = 5
Lambda = 7.6
N = int(1e7)

D0 is the integer part of the spacetime dimension D = D0 − 2ε . We expand up to, but not including, eps_order. Lambda denotes the 
deformation parameter from (9). N is the number of Monte Carlo sampling points.

Tropical Monte Carlo integration of the Feynman integral, with the kinematic configuration chosen above, is now performed by running 
the command

trop_res, Itr = tropical_integration(
N,
D0,
Lambda,
eps_order,
edges,
replacement_rules,
phase_space_point)

If the program runs correctly (i.e. no error is printed), trop_res will contain the ε-expansion (16) without the prefactor 	(ω)/(	(ν1) · · ·
	(ν|E|)) = 	(2ε + 3). Itr is the value of the normalization factor in (22). Running this code on a laptop, we get, after a couple of seconds, 
the output

Prefactor: gamma(2*eps + 3).
(Effective) kinematic regime: Minkowski (generic).
Generalized permutahedron property: fulfilled.
Analytic continuation: activated. Lambda = 7.6
Started integrating using 8 threads and N = 1e+07 points.
Finished in 6.00369 seconds = 0.00166769 hours.

-- eps^0: [-46.59 +/- 0.13] + i * [ 87.19 +/- 0.12]
-- eps^1: [-274.46 +/- 0.55] + i * [111.26 +/- 0.55]
-- eps^2: [-435.06 +/- 1.30] + i * [-174.47 +/- 1.33]
-- eps^3: [-191.72 +/- 2.15] + i * [-494.69 +/- 2.14]
-- eps^4: [219.15 +/- 2.68] + i * [-431.96 +/- 2.67]
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These printed values for the ε expansion are contained in the list trop_res in the following format:[(
(re0, σ re

0 ) , (im0,σ
im
0 )

)
, . . . ,

(
(re4,σ

re
4 ) , (im4,σ

im
4 )

)]
,

where re0 ± σ re
0 is the real part of the 0th order term, and so forth.

The ε-expansion, with prefactor included, can finally be output via

eps_expansion(trop_res, edges, D0)

giving

174.3842115*i - 93.17486662 + eps*(-720.8731714 + 544.3677186*i) +
eps**2*(-2115.45025 + 496.490128*i) + eps**3*(-3571.990969 - 677.5254794*i) +
eps**4*(-3872.475723 - 2726.965026*i) + O(eps**5)

If the tropical_integration command fails, for instance because a subdivergence of the input graph is detected, it prints an 
error message. The command also prints a warning if the kinematic point is too exceptional and convergence cannot be guaranteed due 
to the F polynomial lacking the generalized permutahedron property (see Section 3.3).

5.3. Deformation parameter

The uncertainties on the integrated result may greatly vary with the value of the deformation parameter λ from (9) (what was called
Lambda above). Moreover, the optimal value of λ might change depending on the phase space point. It is up to the user to pick a suitable 
value by trial and error, for instance by integrating several times with a low number of sampling points N . In Section 6, this method is 
used to evaluate multiple examples of Feynman integrals in the Minkowski regime. Typical values for the parameter λ can be found there. 
It would be beneficial to automate this procedure, possibly by minimizing the sampling variance with respect to λ, for instance by solving 
∂λσ f = 0 with σ f defined in (31), or by tightening the bounds in Assumption 3.2 (see the discussion after this assumption). We leave the 
exploration of such ideas to future research.

Note that λ has mass dimension 1/mass2. Heuristically, this implies that the value of λ should be of order O(1/�2), where � is the 
maximum physical scale in the given computation.

6. Examples of Feynman integral evaluations

In this section, we use feyntrop to numerically evaluate certain Feynman integrals of interest. The first two examples, 6.1 and 6.2, 
show that feyntrop is capable of computing Feynman integrals at high loop-orders involving many kinematic scales. The four examples 
that follow, 6.4, 6.3, 6.6 and 6.5, demonstrate that feyntrop is capable of computing phenomenologically relevant diagrams. The final 
example, 6.7, is an invitation to study conformal integrals with our code, as they are important for, e.g., N = 4 SYM and the cosmological 
bootstrap.

We have chosen phase space points which are not close to thresholds to insure good numerical convergence, and expand up to and 
including ε2L in all but up the last example.

Each of the following examples can be computed with feyntrop using 108 sampling points within a few minutes on a consumer 
laptop with 16 GBs of RAM. To crosscheck, we used the same machine to evaluate the examples using both AMFlow5 and pySecDec. 
All computations agreed within the indicated error bounds. Our computations using AMFlow and pySecDec did not always terminate. 
Particularly for the Examples 6.1 and 6.6, neither software finished due to memory constraints of 16 GB on our test laptop. After the 
initial version of this article became available, Vitaly Magerya informed us that he was able to reproduce also Example 6.6 and verify our 
numbers using pySecDec with an only slightly more powerful computer. He also found indication that Example 6.1 is reproducible using 
a new version of pySecDec that was made available three months after the initial version of the present article was posted [83].

We emphasize that these additional computations using AMFlow and pySecDec should be seen as a crosscheck and not a benchmark 
comparison. A comparison of feyntrop and AMFlow is difficult as the former directly integrates via Monte Carlo while the latter 
integrates via differential equations. To integrate a Feynman integral using AMFlow an IBP system needs to be solved. Finding this solution 
is a memory constrained problem and a 16 GB laptop is not appropriate to systematically perform computations within this approach. 
If the IBP system is solved, AMFlow provides the evaluated integral at an accuracy which is almost unachievable using a Monte Carlo 
approach. The comparison to pySecDec is similarly flawed as it can also deal with inherently divergent integrals. To do so it has to check 
for divergences in each sector which takes time. Moreover, it can deal with completely general algebraic integrals, whereas feyntrop
completely relies on the inherent mathematical structure of Feynman integrals. We postpone a proper benchmark comparison with the 
new version of pySecDec and updated versions of AMFlow to a future research project.

To further highlight the capabilities of feyntrop, we computed every example on a high-performance machine, namely a single AMD 
EPYC 7H12 64-core processor using all cores. For each example we use 108 sample points to get a relative accuracy of the order of 
10−2 to 10−4. The output for each example includes the total evaluation time that feyntrop needs to compute the respective diagram. 
This evaluation time includes all steps of the computation. The time needed for the preprocessing step is negligible in comparison to the 
sampling time as long as the number of edges is relatively small (i.e. |E| ≤ 15). Hence, for such moderate numbers of propagators, the 
evaluation time is proportional to the number of sample points. The sampling step is completely parallelizable. So, doubling the number 
of CPUs, halfs the evaluation time. As the evaluation is based on Monte Carlo, increasing the relative accuracy is costly: one additional 
digit costs a 100-fold increase in CPU-time.

The code for each example can be found on the github repository in the folder examples.

5 As AMFlow relies on DEQs for Feynman integrals, it is necessary to link it to IBP software. In our examples, we tried the following two options for IBP software: 1) FIRE
[79] combined with LiteRed [80,81], and 2) Blade [82].
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6.1. A 5-loop 2-point zigzag diagram

We evaluate the following 5-loop 2-point function with all masses different in D = 3 − 2ε dimensions

0 1

6

5

4

3

2

corresponding to the edge set

edges = [((0,6), 1, ’1’) , ((0,5), 1, ’2’), ((5,6), 1, ’3’),
((6,4), 1, ’4’) , ((5,3), 1, ’5’), ((5,4), 1, ’6’),
((4,3), 1, ’7’) , ((4,2), 1, ’8’), ((3,2), 1, ’9’),
((3,1), 1, ’10’), ((2,1), 1, ’11’)]

Here we already input the chosen values for masses, namely m2
e = e + 1 for e = 0, . . . , 10.

There is only a single independent external momentum p0, whose square we set equal to 100 via

replacement_rules = [(sp[0,0], ’pp0’)]
phase_space_point = [(’pp0’, 100)]

The value λ = 0.02 turns out to give small errors, which is of order O(1/p2
0) in accordance with the comment at the end of the previous 

section. Using N = 108 Monte Carlo sampling points, feyntrop’s tropical_integration command gives

Prefactor: gamma(5*eps + 7/2).
(Effective) kinematic regime: Minkowski (generic).
Finished in 9.62 seconds.
-- eps^0: [0.0001976 +/- 0.0000016] + i * [0.0001415 +/- 0.0000018]
-- eps^1: [-0.004961 +/- 0.000023 ] + i * [-0.000802 +/- 0.000024 ]
-- eps^2: [ 0.04943 +/- 0.00017 ] + i * [-0.01552 +/- 0.00017 ]
-- eps^3: [-0.25468 +/- 0.00083 ] + i * [ 0.24778 +/- 0.00093 ]
-- eps^4: [ 0.5909 +/- 0.0033 ] + i * [ -1.7261 +/- 0.0038 ]
-- eps^5: [ 1.048 +/- 0.012 ] + i * [ 7.410 +/- 0.013 ]
-- eps^6: [ -14.652 +/- 0.037 ] + i * [ -20.933 +/- 0.038 ]
-- eps^7: [ 65.87 +/- 0.10 ] + i * [ 35.25 +/- 0.11 ]
-- eps^8: [ -190.90 +/- 0.27 ] + i * [ -4.91 +/- 0.26 ]
-- eps^9: [ 393.08 +/- 0.70 ] + i * [ -182.56 +/- 0.59 ]
-- eps^10:[ -558.01 +/- 1.64 ] + i * [ 685.62 +/- 1.29 ]

We have not been able to compute this expansion with AMFlow for the sake of verification. The memory constraints of 16 GB were 
insufficient. pySecDec applied to this example exhausted the available memory while building the sector decomposition library on our 
test laptop, but Vitaly Magerya informed us that he was able to create the integration library on a 32 GB 8-core Intel i7 computer 
in a couple of hours. We again emphasize that, for a proper benchmark comparison, our AMFlow and pySecDec code should be put on 
a machine with more memory. Still, this example illustrates that feyntrop can operate at high loop order with little memory, CPU and 
time resources.

6.2. A 3-loop 4-point envelope diagram

Here, we evaluate a D = 4 − 2ε dimensional, non-planar, 3-loop 4-point, envelope diagram:

21

0 3

The dots on the crossed lines represent squared propagators, i.e. edge weights equal to 2, rather than vertices. The weighted edge set with 
corresponding mass variables is thus
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edges = [((0,1), 1, ’mm0’), ((1,2), 1, ’mm1’), ((2,3), 1, ’mm2’),
((3,0), 1, ’mm3’), ((0,2), 2, ’mm4’), ((1,3), 2, ’mm5’)]

Let us define the two-index Mandelstam variables si j = (pi + p j)
2, which are put into feyntrop’s replacement rules in the form

(sp[i,j], ’(sij - ppi - ppj)/2)’) for 0 ≤ i < j ≤ 2. The chosen phase space point is

p2
0 = 1.1 , p2

1 = 1.2 , p2
2 = 1.3 , s01 = 2.1 , s02 = 2.2 , s12 = 2.3 , (40)

m2
0 = 0.05 , m2

1 = 0.06 , m2
2 = 0.07 , m2

3 = 0.08 , m2
4 = 0.09 , m2

5 = 0.1 .

With additional settings λ = 1.24 and N = 108, we find

Prefactor: gamma(3*eps + 2).
(Effective) kinematic regime: Minkowski (generic).
Finished in 5.12 seconds.
-- eps^0: [-10.8335 +/- 0.0084] + i * [-12.7145 +/- 0.0083]
-- eps^1: [ 47.971 +/- 0.059 ] + i * [-105.057 +/- 0.059 ]
-- eps^2: [ 413.05 +/- 0.23 ] + i * [ 7.29 +/- 0.23 ]
-- eps^3: [ 372.07 +/- 0.65 ] + i * [ 947.82 +/- 0.65 ]
-- eps^4: [-1412.36 +/- 1.45 ] + i * [1325.74 +/- 1.45 ]
-- eps^5: [-2726.00 +/- 2.67 ] + i * [-1295.36 +/- 2.69 ]
-- eps^6: [ 287.25 +/- 4.28 ] + i * [-3982.04 +/- 4.30 ]

We verified these numbers using pySecDec. The test machine’s memory of 16 GBs was exhausted before AMFlow could finish the 
calculation. The examples in [84] indicate that using a computer with more memory might also make this 3-loop diagram accessible using
AMFlow.

6.3. A 2-loop 4-point μe-scattering diagram

We evaluate a non-planar, 2-loop 4-point diagram appearing in muon-electron scattering [85], which is finite in D = 6 −2ε dimensions. 
It was previously evaluated for vanishing electron mass in [86].

25
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0

The dashed lines represent photons, the solid lines are electrons with mass m, and the double lines are muons with mass M (which is 
approximately 200 times larger than m). The edge set is

edges = [((0,1), 1, ’0’), ((0,4), 1, ’MM’), ((1,5), 1, ’mm’), ((5,2), 1, ’mm’),
((5,3), 1, ’0’), ((4,3), 1, ’MM’), ((4,2), 1, ’0’)]

where MM and mm stand for M2 and m2 respectively. With a phase space point similar to that of [86, Section 4.1.2]

p2
0 = M2 = 1 , p2

1 = p2
2 = m2 = 1/200 , s01 = −1/7 , (41)

s12 = −1/3 , s02 = 2M2 − 2m2 − s01 − s12 = 2.49

and settings λ = 1.29 , N = 108, the result becomes

Prefactor: gamma(2*eps + 1).
(Effective) kinematic regime: Minkowski (exceptional).
Finished in 6.53 seconds.
-- eps^0: [1.16483 +/- 0.00083] + i * [0.24155 +/- 0.00074]
-- eps^1: [5.5387 +/- 0.0086 ] + i * [2.2818 +/- 0.0093 ]
-- eps^2: [15.171 +/- 0.058 ] + i * [10.079 +/- 0.064 ]
-- eps^3: [ 28.02 +/- 0.32 ] + i * [ 28.17 +/- 0.28 ]
-- eps^4: [ 38.20 +/- 1.42 ] + i * [ 56.94 +/- 0.85 ]

The momentum configuration is exceptional, so we cannot be sure that the generalized permutahedron property holds - see Section 3.3. 
In spite of that, feyntrop gives the correct numbers, which we confirmed using both AMFlow and pySecDec.

The leading order term differs from [86, eq. (4.20)] by roughly 10% due to our inclusion of the electron mass. We do, however, 
reproduce the computation in this reference if we set this mass to 0 in the feyntrop configuration.
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6.4. A QCD-like, 2-loop 5-point diagram

This example is a QCD-like, D = 6 − 2ε dimensional, 2-loop 5-point diagram:

36

5 4

2

0

1

The dashed lines represent gluons, the solid lines are quarks each with mass m, and the double line is some off-shell momentum p2
4 	= 0

fixed by conservation. The edge data are

edges = [((0,1), 1, ’0’), ((1,2), 1, ’mm’), ((2,6), 1, ’0’), ((6,3), 1, ’mm’),
((3,4), 1, ’0’), ((4,5), 1, ’mm’), ((5,0), 1, ’0’), ((5,6), 1, ’mm’)]

where mm stands for m2. Let us choose the phase space point

p2
0 = 0 , p2

1 = p2
2 = p2

3 = m2 = 1/2 , s01 = 2.2 , s02 = 2.3 , (42)

s03 = 2.4 , s12 = 2.5 , s13 = 2.6 , s23 = 2.7 ,

where again si j = (pi + p j)
2. Finally, setting λ = 0.28 , N = 108, we obtain

Prefactor: gamma(2*eps + 2).
(Effective) kinematic regime: Minkowski (exceptional).
Finished in 8.20 seconds.
-- eps^0: [0.06480 +/- 0.00078] + i * [-0.08150 +/- 0.00098]
-- eps^1: [0.4036 +/- 0.0045 ] + i * [ 0.3257 +/- 0.0035 ]
-- eps^2: [-0.7889 +/- 0.0060 ] + i * [ 0.957 +/- 0.016 ]
-- eps^3: [-1.373 +/- 0.030 ] + i * [ -1.181 +/- 0.034 ]
-- eps^4: [ 1.258 +/- 0.088 ] + i * [ -1.205 +/- 0.036 ]

The kinematic configuration is again exceptional. Nevertheless, feyntrop returns the correct numbers, which we verified with py-
SecDec.6 We were not able to compute this diagram with AMFlow due to our memory constraints. As similarly intricate Feynman 
integrals can be evaluated with AMFlow using more memory (see [84]), these constraints are very likely the only obstruction for a 
crosscheck with AMFlow.

6.5. Diagram contributing to triple Higgs production via gluon fusion

In this example, we evaluate the following diagram contributing to the process7 gg → H H H in D = 4 − 2ε dimensions:

1 6

50

2

4

3

The dashed lines are massless propagators (representing gluons), the single solid lines are propagators containing the top quark mass, and 
the three external double lines are put on-shell to the Higgs mass. In this case, the list of edges reads

edges = [((0,1), 1, ’mm_top’), ((1,6), 1, ’mm_top’), ((5,6), 1, ’0’),
((6,2), 1, ’mm_top’), ((2,3), 1, ’mm_top’), ((3,4), 1, ’mm_top’),
((4,5), 1, ’mm_top’), ((5,0), 1, ’mm_top’)]

6 An earlier version of this article wrongly stated that this computation was not verifiable with pySecDec. We thank both an anonymous referee and Vitaly Magerya for 
pointing this out to us.

7 We thank Babis Anastasiou for suggesting this example.
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with mm_top being the square of the top quark mass, m2
t .

Given si j := (pi + p j)
2, we employ the following kinematic setup:

p2
0 = p2

1 = 0 , p2
2 = p2

3 = p2
4 = m2

H ,

s01 = 5m2
H − s02 − s03 − s12 − s13 − s23 . (43)

The kinematic space is then parameterized by (s02, s03, s12, s13, s23, m2
t , m2

H ).
Let us evaluate this integral at the phase space point

m2
t = 1.8995 , m2

H = 1 , (44)

s02 = −4.4 , s03 = −0.5 , s12 = −0.6 , s13 = −0.7 , s23 = 1.8 ,

which lies in the physical region, and has the physically relevant mass ratio m2
t /m2

H = 1.8995. The remaining Mandelstam invariants are 
then fixed by momentum conservation to

(s01, s04, s14, s24, s34) = (9.4, −1.5, −5.1, 7.2, 3.4).

Setting λ = 0.64 and N = 108, we get

Prefactor: gamma(2*eps + 4).
(Effective) kinematic regime: Minkowski (generic).
Finished in 8.12 seconds.
-- eps^0: [-0.0114757 +/- 0.0000082] + i * [0.0035991 +/- 0.0000068]
-- eps^1: [ 0.003250 +/- 0.000031 ] + i * [-0.035808 +/- 0.000041 ]
-- eps^2: [ 0.046575 +/- 0.000098 ] + i * [0.016143 +/- 0.000088 ]
-- eps^3: [ -0.01637 +/- 0.00017 ] + i * [ 0.03969 +/- 0.00016 ]
-- eps^4: [ -0.02831 +/- 0.00023 ] + i * [-0.00823 +/- 0.00024 ]

We were unable to evaluate this example in reasonable time with AMFlow. Again, adding more memory would likely solve this 
problem. With pySecDec we were able to confirm feyntrop’s numbers within 3 hours8 on a laptop, with relative errors around 10−2. 
Running feyntrop on the same laptop with 108 sampling points, we obtain the same numbers within 2.5 minutes and with relative 
errors of order 10−3.

6.6. A QED-like, 4-loop vacuum diagram

Next we evaluate a QED-like, 4-loop vacuum diagram in D = 4 − 2ε dimensions:

4

5 3

1

0 2

The dashed lines represent photons, and the solid lines are electrons of mass m. No analytic continuation is required in this case since 
there are no external momenta - the final result should hence be purely real. We specify

replacement_rules = []

in the code to indicate that all scalar products are zero.
The collection of edges is

edges = [((0,1), 1, ’mm’), ((1,2), 1, ’mm’), ((2,0), 1, ’mm’),
((0,5), 1, ’0’ ), ((1,4), 1, ’0’ ), ((2,3), 1, ’0’ ),
((3,4), 1, ’mm’), ((4,5), 1, ’mm’), ((5,3), 1, ’mm’)]

where mm stands for m2. Choosing

phase_space_point = [(’mm’, 1)]

and setting λ = 0 , N = 108, we then find

8 Three months after the initial version of this article was posted, a new version of pySecDec became available which is, in some cases, up to four times as efficient as 
the former version [83]. We postpone a systematic comparison of feyntrop with this new version to a future research project.
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Prefactor: gamma(4*eps + 1).
(Effective) kinematic regime: Euclidean (generic).
Finished in 3.58 seconds.
-- eps^0: [3.01913 +/- 0.00047] + i * [0.0 +/- 0.0]
-- eps^1: [-7.0679 +/- 0.0021 ] + i * [0.0 +/- 0.0]
-- eps^2: [20.5399 +/- 0.0074 ] + i * [0.0 +/- 0.0]
-- eps^3: [-27.895 +/- 0.024 ] + i * [0.0 +/- 0.0]
-- eps^4: [62.043 +/- 0.074 ] + i * [0.0 +/- 0.0]
-- eps^5: [-59.46 +/- 0.23 ] + i * [0.0 +/- 0.0]
-- eps^6: [155.27 +/- 0.73 ] + i * [0.0 +/- 0.0]
-- eps^7: [-90.81 +/- 2.26 ] + i * [0.0 +/- 0.0]
-- eps^8: [403.78 +/- 6.71 ] + i * [0.0 +/- 0.0]

We were not able to verify this example with AMFlow or pySecDec within our memory constraints. However, Vitaly Magerya in-
formed us that he was able to verify these numbers with pySecDec in under one hour using an only slightly larger computer.

6.7. An elliptic, conformal, 4-point integral

The final example is a 1-loop 4-point conformal integral with edge weights ν1,...,4 = 1/2 in D = 2 dimensions, the result of which was 
computed in terms of elliptic K functions in [87, Sec. 7.2]:

x0

x3

x2

x1 = 4√
−p2

2

[K (z)K (1 − z̄) + K (z̄)K (1 − z)] (45)

The denominator above differs from [87, eq. (7.6)] because we have used conformal symmetry to send x3 → ∞, thereby reducing the 
kinematic space to that of a 3-point integral. After identifying dual momentum variables xi in terms of ordinary momenta as pi = xi −xi+1, 
the conformal cross ratios, with the usual single-valued complex parameterization in terms of z and z̄, read

zz̄ = p2
0

p2
2

, (1 − z)(1 − z̄) = p2
1

p2
2

. (46)

In feyntrop we specify the associated 1-loop 3-point momentum space integral as

edges = [((0,1), 1/2, ’0’), ((1,2), 1/2, ’0’), ((2,0), 1/2, ’0’)]

where all internal masses are zero and edge weights are set to 1/2.
We choose a momentum configuration in the Euclidean regime:

p2
0 = −2 , p2

1 = −3 , p2
2 = −5 . (47)

Although feyntrop can compute integrals with rational edge weights in the Minkowski regime, it is most natural to study conformal 
integrals in the Euclidean regime.

With λ = 0 and N = 108, we then obtain

(Effective) kinematic regime: Euclidean (generic).
Finished in 1.34 seconds.
-- eps^0: [9.97192 +/- 0.00027] + i * [0.0 +/- 0.0]

The result agrees with the analytic expression (45). This example also illustrates the high efficiency of feyntrop in the Euclidean
regime where very high accuracies can be obtained quickly.

7. Conclusions and outlook

With this article we introduced feyntrop, a general tool to numerically evaluate quasi-finite Feynman integrals in the physical 
regime with sufficiently general kinematics. To do so, we gave a detailed classification of different kinematic regimes that are relevant for 
numerical integration. Moreover, we presented a completely projective integral expression for concretely iε-deformed Feynman integrals 
and their dimensionally regularized expansions. We used tropical sampling for the numerical integration, which we briefly reviewed, and 
we discussed the relevant issues on facet presentations of the Newton polytopes of Symanzik polynomials in detail. To be able to perform 
the numerical integration efficiently, we gave formulas and algorithms for the fast evaluation of Feynman integrals. To give a concise usage 
manual for feyntrop and to illustrate its capabilities, we gave numerous, detailed examples of evaluated Feynman integrals.
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The most important restrictions of feyntrop are 1) it is not capable of dealing with Feynman integrals that have subdivergences 
(i.e. non-quasi-finite integrals) and 2) it is not capable of dealing with certain highly exceptional kinematic configurations.

The first restriction can be lifted by implementing an analytic continuation of the integrand in the spirit of [29,30,56] into feyntrop. 
Naively, preprocessing input integrals with such a procedure increases the number of Feynman integrals and thereby also the necessary 
computer time immensely. However, this proliferation of terms comes from the expansion of the derivatives of the U and F polynomials 
as numerators. This expansion can be avoided, because also the derivatives of U and F (mostly) have the generalized permutahedron 
property, and because we have fast algorithms to evaluate such derivatives. For instance, we derived a fast algorithm to evaluate the first 
and second derivatives of F in Section 4.2. We postpone the elaboration and implementation of this approach to future work.

A promising approach to lift the second restriction is to try to understand the general shape of the F polynomial’s Newton polytope. 
Outside of the Euclidean and generic kinematic regimes, this polytope is not always a generalized permutahedron. In these exceptional 
kinematic situations, it can have new facets that cannot be explained by known facet presentations. It might be possible to explain 
these new facets with the help of the Coleman–Norton picture of infrared divergences [88] (see, e.g., [89] where explicit per-diagram 
factorization of Feynman integrals was observed in a position space based framework). An alternative approach to fix the issue is to 
implement the tropical sampling approach that requires a full triangulation of the respective Newton polytopes (see [1, Sec. 5]).

Besides this there are numerous, desirable, gradual improvements of feyntrop that we also postpone to future works. The most 
important such improvement would be to use the algorithm in conjunction with a quasi-Monte Carlo approach. The runtime to obtain the 
value of an integral up to accuracy δ currently scales as δ−2, as is standard for a Monte Carlo method. Changing to a quasi-Monte Carlo 
based procedure would improve this scaling to δ−1.

Another improvement would be to find an entirely canonical deformation prescription. Currently, our deformation still relies on an 
external parameter that has to be fine-tuned to the respective integral. A canonical deformation prescription that does not depend on a 
free parameter would lift the burden of this fine-tuning from the user and would likely also produce better rates of convergence.

A more technical update of feyntrop would involve an implementation of the tropical sampling algorithm on GPUs or on distributed 
cluster systems. The current implementation of feyntrop is parallelized and can make use of all cores of a single computer. Running
feyntrop on multiple computers in parallel is not implemented, but there are no technical obstacles to write such an implementation, 
which we postpone to a future research project.
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1. Introduction

The evaluation and understanding of Feynman integrals play an important role in many areas of
modern physics, for example in particle accelerator phenomenology [1], gravitational wave physics
[2, 3], calculations of the magnetic moment of the muon [4] and critical exponents in statistical field
theory [5]. Many modern numerical methods uses the canonical differential equation approach
[6], see e.g. AMFlow [7], DiffExp [8] and SeaSyde [9]. Deriving the canonical differential
equation is a potential bottleneck in these calculations which can be sidestepped using direct
integration. Analytic integration can be performed in HyperInt [10] while numerical Monte Carlo
techniques are for example implemented in pySecDec [11]. The program feyntrop [12] is of the
latter type and integrates dimensionally regulated quasi-finite integrals numerically using Monte
Carlo methods. The relevant sectors of integration are not determined using sector decomposition
but relies on special properties of the Newton polytope of the integrand. If these polytopes are
generalized permutohedra, the decomposition into relevant sectors is greatly simplified. Integrable
singularities of the integrand are regulated with the tropical approximation [13] which also makes
the integrand bounded from both above and below. For details on the tropical approximation, see
[12, 14].

The program feyntrop has recently been used in [15] to numerically verify the canonical
differential equation result for a four-point three-loop process with one massive leg. It has also been
used in [16] to calculate Feynman integrals in 𝜙4-theory to 13 loops and beyond. The tropical way
of thinking also sheds light on infrared singularities [17] and how to calculate entire amplitudes
directly without using Feynman integrals at all [18].

2. Feynman Integrals and Generalized Hypergeometry

Feynman integrals have many different equivalent representations, each with its own advantages
and disadvantages. Consider one-particle irreducible Feynman graphs𝐺 := (𝐸,𝑉) with the number
of cycles (loops) given by 𝐿 = |𝐸 |− |𝑉 | +1. The vertex set𝑉 has the disjoint partition𝑉 = 𝑉ext

⊔
𝑉int

where each 𝑢 ∈ 𝑉ext is assigned an external incoming momenta 𝑝𝑢 ∈ R1,𝐷−1. Each edge 𝑒 ∈ 𝐸 is
assigned a non-negative mass 𝑚𝑒.

For the purpose of direct numerical evaluation in feyntrop the following projective represen-
tation is used:

I = Γ(𝜔)
∫
P𝐸+

𝜙 with 𝜙 =

(∏
𝑒∈𝐸

𝑥𝜈𝑒𝑒
Γ(𝜈𝑒)

)
1

U(𝒙)𝐷/2

(
1

V(𝒙) − 𝑖𝜀
∑

𝑒∈𝐸 𝑥𝑒

)𝜔
Ω . (1)

Where the integration domain is over the projective simplex P𝐸+ = {𝒙 = [𝑥1 : · · · : 𝑥 |𝐸 |] ∈ RP𝐸−1 :
𝑥𝑒 > 0} with respect to its canonical Kronecker form

Ω =
|𝐸 |∑︁
𝑒=1

(−1) |𝐸 |−𝑒 𝑑𝑥1
𝑥1

∧ · · · ∧ �̂�𝑥𝑒
𝑥𝑒

∧ · · · ∧ 𝑑𝑥 |𝐸 |
𝑥 |𝐸 |

. (2)

The superficial degree of divergence of the graph 𝐺 are given by 𝜔 =
∑

𝑒∈𝐸 𝜈𝑒 − 𝐷𝐿/2. We write
V(𝒙) = F (𝒙)/U(𝒙) as a shorthand for the quotient of the two Symanzik polynomials that is defined

2
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from the underlying graph 𝐺 by

U(𝒙) :=
∑︁
𝑇

∏
𝑒∉𝑇

𝑥𝑒 , F (𝒙) := F0 + F𝑚 = −
∑︁
𝐹

𝑝(𝐹)2
∏
𝑒∉𝐹

𝑥𝑒 + U(𝒙)
∑︁
𝑒∈𝐸

𝑚2
𝑒𝑥𝑒 , (3)

where we sum over all spanning trees 𝑇 and all spanning two-forests 𝐹 of 𝐺, and 𝑝(𝐹)2 is the
squared momentum running between the two-forest components. By this definition, U and F are
homogeneous of degree 𝐿, resp. 𝐿+1, and henceV is a homogeneous rational function of degree 1.

2.1 Contour deformation

In order to define the integral on the correct analytic branch we need to implement Feynman’s
causal 𝑖𝜀 prescription. This is done using a finite contour deformation respecting the projective
invariance [19].

The deformation is given by the embedding 𝜄𝜆 : P𝐸+ ↩→ CP |𝐸 |−1:

𝜄𝜆 : 𝑥𝑒 ↦→ 𝑋𝑒 := 𝑥𝑒 exp
(
−𝑖𝜆 𝜕V

𝜕𝑥𝑒
(𝒙)

)
. (4)

Since the boundary is characterized by 𝑥𝑒 = 0, 𝜄𝜆 does not change the boundary. Using Cauchy’s
theorem, the integral is independent of 𝜄𝜆 as long as the deformation does not cross any poles of 𝜙.
Set

I = Γ(𝜔)
∫
𝜄𝜆(P𝐸+ )

𝜙 = Γ(𝜔)
∫
P𝐸+

𝜄∗𝜆𝜙 (5)

where 𝜄∗𝜆𝜙 is the pull-back, it can be written with the Jacobian 𝜄∗𝜆Ω = det(J𝜆(𝒙))Ω where

J𝜆(𝒙)𝑒,ℎ = 𝛿𝑒,ℎ − 𝑖𝜆𝑥𝑒
𝜕2V

𝜕𝑥𝑒𝜕𝑥ℎ
(𝒙) for all 𝑒, ℎ ∈ 𝐸. (6)

The deformed Feynman integral can thus be written as

I = Γ(𝜔)
∫
P𝐸+

𝜄∗𝜆 𝜙 = Γ(𝜔)
∫
P𝐸+

(∏
𝑒∈𝐸

𝑋𝜈𝑒
𝑒

Γ(𝜈𝑒)

)
det J𝜆(𝒙)

U (𝑿)𝐷/2 · V (𝑿)𝜔
Ω (7)

where 𝑿 = 𝜄𝜆(𝒙).

2.2 Generalized hypergeometry

Another useful representation is due to Lee and Pomeransky [20]:

I =
Γ(𝐷/2)

Γ(𝐷/2 − 𝜔)
∫ ∞

0

(∏
𝑒∈𝐸

𝑥𝜈𝑒𝑒 𝑑𝑥𝑒
𝑥𝑒Γ(𝜈𝑒)

)
1

G𝐷/2 where G = U + F . (8)

In this form, it is a generalized hypergeometric integral (Mellin transform) [21, 22] of the type studied
by Passare and collaborators [23, 24]. This means that it satisfies a generalized hypergeometric
system of partial differential equations in the sense of Gel’fand, Graev, Kapranov and Zelevinskiı̆
(GGKZ, commonly shortened to GKZ) [25–29].

3
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Figure 1: The first four permutohedra where it is easily seen from the explicit vertex coordinates
(permutations) that all edges are parallel to e𝑖 − e 𝑗 for 𝑖 ≠ 𝑗 .

Using multi-index notation we may write the Lee-Pomeransky polynomial as G =
∑𝑟

𝑖=1 𝑐𝑖𝑥
𝛼𝑖

with 𝑐𝑖 ≠ 0 and 𝛼𝑖 ∈ Z |𝐸 |
≥0 for all 𝑖 = 1, . . . , 𝑟 . We define the two matrices

𝐴 := {1} × 𝐴− =

(
1 1 · · · 1,
𝛼1 𝛼2 · · · 𝛼𝑟

)
∈ Z( |𝐸 |+1)×𝑟

≥0 , and (9)

𝛽 :=
(
−𝐷/2, −𝜈1 , . . . ,−𝜈 |𝐸 |

)𝑇
∈ C |𝐸 |+1, (10)

from which we construct the GKZ hypergeometric system 𝐻𝐴(𝛽) as the sum of two ideals:

𝐼𝐴 :=
〈
𝜕𝑢 − 𝜕𝑣 | 𝑢, 𝑣 ∈ Z𝑟≥0 s.t. 𝐴𝑢 = 𝐴𝑣

〉
, and (11)

𝑍𝐴(𝛽) :=

〈
Θ𝑖 (𝑐, 𝜕) | Θ = 𝐴 ·

©«
𝑐1𝜕1
...

𝑐𝑟𝜕𝑟

ª®®¬
− 𝛽

〉
. (12)

The ideal 𝐼𝐴 is actually an ideal in the commutative polynomial ring Q[𝜕1, · · · , 𝜕𝑟 ], and as such has
a finite generating set 𝐼𝐴 = ⟨ℎ1, . . . ℎℓ⟩ with ℎ𝑖 ∈ Q[𝜕1, · · · , 𝜕𝑟 ]. This ideal 𝐼𝐴 is a toric ideal and
it gives the defining equations of the projective toric variety

𝑋𝐴 = {𝑧 ∈ P𝑟−1 | ℎ1(𝑧) = · · · = ℎℓ (𝑧) = 0}

associated to the matrix 𝐴, see e.g. [30], [31, II, Chapter 5].

3. Generalized Permutohedra

The classical perumtohedron is a polytopal model of permutations, see Fig. 1. For 𝑛 elements
the permutohedron 𝑃𝑛 is the (𝑛 − 1)-dimensional polytope in R𝑛 with vertices (𝜎(1), . . . , 𝜎(𝑛))
where 𝜎 runs over all permutations of [𝑛] := {1, 2, . . . , 𝑛}. Every point in 𝑃𝑛 satisfy

∑
𝑖 𝑥𝑖 =

𝑛(𝑛 + 1)/2, meaning that 𝑃𝑛 lies in a hyperplane and hence dim(𝑃𝑛) = 𝑛 − 1. Note that every edge
in 𝑃𝑛 is parallel to e𝑖 − e 𝑗 for some 𝑖 ≠ 𝑗 where e𝑖 denote the standard basis of R𝑛.

In the theory of GKZ, the permutohedron appears as a secondary polytope Σ(𝐴), where 𝐴

denotes the vertices of the triangular prism 𝑄 = Δ1 × Δ𝑛−1. The vertices (or equivalently, the
top-dimensional normal cones) of Σ(𝐴) correspond to regular triangularizations of 𝑄 and also to

4
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Figure 2: A permutohedron and the three deformations of it into generalized permutohedra, keeping the
edge directions parallel to e𝑖 − e 𝑗 for 𝑖 ≠ 𝑗 .

regions of convergence of series solutions to the generalized hypergeometric system defined by 𝐴

[31].
As remarked above, the permutohedron has the property that all edges are parallel to e𝑖 − e 𝑗 ,

this is the defining property of a generalized permutohedra (GP) [32] (cf. Fig. 2) but can also be
strengthened to define the matroid polytope [33, 34].

Definition 3.1 (Generalized permutohedron). A polytope 𝑃 is said to be a generalized permutohe-
dron if all its edges are parallel to e𝑖 − e 𝑗 for some 𝑖 ≠ 𝑗 .

Definition 3.2 (Matroid polytope). A polytope 𝑃 is said to be a matroid polytope if all its vertices
lie in a hypersimplex and all edges are equal to e𝑖 − e 𝑗 for some 𝑖 ≠ 𝑗 .

We remark that a matroid polytope is bĳective to its associated matroid and that every matroid
polytope is a generalized permutohedra. The geometry of toric varieties are closely connected to
matroids [33, 34]:

Theorem 3.3 ([34, Lemma 1.4]). The torus orbit of a point 𝑝 ∈ Gr(𝑘, 𝑛) is isomorphic to the toric
variety defined by the matroid polytope of the representable matroid defined by the columns of the
matrix of Steifel coordinates of 𝑝.

Another important property that is more on the algebraic side is that of normality.

Definition 3.4. The semigroup N𝐴 is said to be normal if N𝐴 = Z𝐴 ∩ R+𝐴.

Normality is satisfied by all closed torus orbits in a Grassmannian [35]:

Corollary 3.5. The closure of any torus orbit in a Grassmannian is projectively normal in its
Plücker embedding.

The importance of normality in the study of Feynman integrals comes in that it guarantees
that characteristic variety and dimension of the solution space of the generalized hypergeometric
system 𝐻𝐴(𝛽) are independent of the parameters 𝛽 of the integral (that is, space-time dimension
and propagator powers). Normality is in general stronger than this, what is actually of interest is
that the toric ideal defined by 𝐴 should be Cohen-Macaulay [29, 36], by a theorem of Hochster
[37], normality implies the Cohen-Macaulay property.

Normality is connected to the GP property according to following theorem (cf. [38, Fig. 5]).

Theorem 3.6. If 𝑃 is a generalized permutohedron and 𝐴 = Z𝑛 ∩ 𝑃, then 𝐴 is normal.
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(a) Off-shell box (b) Two-mass easy (c) Two-mass hard (d) On-shell

Figure 3: Box diagrams with all internal masses equal to zero and some external legs being off-shell
(𝑝2 ≠ 0, denoted by double lines) and some on-shell (𝑝2 = 0).

Example 3.7. We consider four different kinematic setups for the one-loop box integral with all
internal masses equal to zero, see Fig. 3.

The 𝐴-matrix for the off-shell box is

𝐴 =

©«

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

ª®®®®®®¬
(13)

which is precisely the vertices of the second hypersimplex Δ(2, 5) and the toric variety 𝑋𝐴 = V(𝐼𝐴)
is a Veronese-like embedding of P4. This variety is isomorphic to the orbit closure of a generic
point in the Grassmannian Gr(2, 5) under the natural mapping of (C∗)5. Also note that conv(𝐴) is
the basis polytope of the uniform matroid 𝑈2,5. From this we know that N𝐴 is normal (hence 𝐼𝐴 is
Cohen-Macaulay) and conv(𝐴) is a generalized permutohedron.

The three-mass box and two-mass easy, Fig. 3b, correspond to sub matroid strata and thus
normality and the GP property follows directly.

However, the two-mass hard (Fig. 3c), one-mass and on-shell box (Fig. 3d) do not correspond
to any matroid strata. This means that conv(𝐴) is not a matroid polytope so neither normality
nor the GP property follows directly. From the results in [38, Corollary 5.6] it follows that N𝐴 is
normal, however, conv(𝐴) is not a GP.

Below we summarize some of the known results for GP and normality, we always use 𝐴 =
{1} × Supp(G) with G = U + F and N[ 𝑓 ] = conv(Supp( 𝑓 )) as the Newton polytope of 𝑓 .

• N[U] is a matroid polytope, thus always a GP.

• For 𝑚𝑒 ≠ 0 for all 𝑒 ∈ 𝐸 , then N[F ] = N[U] +Δ(1, |𝐸 |) and thus always a GP. Moreover, if
no cancellation between F0 and F𝑚 occurs, then 𝐴 is normal [39].

• If no cancellation between F0 and F𝑚 occurs, 𝑝(𝑉 ′)2 ≠ 0 for all 𝑉 ′ ⊂ 𝑉ext and every internal
vertex is connected to an external vertex via a massive path, then N[F ] is a GP and 𝐴 is
normal [40] cf. [38].

• When 𝑚𝑒 = 0 for all 𝑒 ∈ 𝐸 and 𝑉 = 𝑉ext, then N[F ] is a matroid polytope and thus GP and
𝐴 is normal [39].
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• When 𝑚𝑒 = 0 for all 𝑒 ∈ 𝐸 and 𝑝(𝑉 ′)2 ≠ 0 for all𝑉 ′ ⊂ 𝑉ext, then N[F ] is a matroid polytope
and thus GP and 𝐴 is normal [40] cf. [38].

4. The program feyntrop

The program feyntrop is available at

https://github.com/michibo/feyntrop

It is a C++ program with Python and JSON interface. It uses the contour deformation from
section 2.1 and the sampling relies on the generalized permutohedron property, section 3.

Example 4.1 ([12, Section 6.5]). The following 5-point process with three massive external legs
and a massive loop

1 6

50

2

4

3

can be evaluated to percent precision to five orders in the dimensional regulator 𝜖 on a laptop in
two seconds.
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