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Und an seines Hauses Schwelle

Wird ein jeder festgebannt;

Aber Liebesfäden spinnen

Heimlich sich von Land zu Land.

– Theodor Storm
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Abstract

This thesis focuses on the numerically exact computation of the nonequilibrium quan-

tum dynamics of several instances of the Caldeira-Leggett model. It begins with a de-

tailed derivation of the quasi adiabatic propagator path integral method, along with a

minor improvement of the original iteration scheme. Additionally, the small matrix de-

composition of the path integral expression is derived, and the approximation it intro-

duces is systematically analyzed. Next, an introduction to the tensor network formal-

ism is provided, followed by a derivation of the time-evolving matrix product operator

(TEMPO) technique that is significantly simpler than what is given in the original lit-

erature. TEMPO is benchmarked on a trivially solvable model, revealing its quadratic

computational complexity with respect to the inverse discretized time step. By utilizing

TEMPO, a novel dynamical phase of the (sub-)Ohmic spin-boson model at zero temper-

ature is discovered, and a corresponding phase diagram is obtained. Furthermore, the

dephasing rate at weak system-bath coupling in the (sub-)Ohmic and the 1/ f regime is

studied. The TEMPO method is then generalized to the case of multiple baths acting on

the central system, and subsequently used to study the disruption of the quantum Zeno

effect in the Ohmic spin-boson model. Finally, the hierarchical equations of motion tech-

nique is summarized and used to demonstrate that a spectroscopic technique known as

transient redistribution of ultrafast electronic coherences in attosecond Raman signals is

robust against environmental dissipation at room temperature.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der numerisch exakten Berechnung verschiedener In-

stanzen des Caldeira-Leggett-Modells. Sie beginnt mit einer detaillierten Herleitung des

quasiadiabatischen Propagator-Pfadintegrals (QUAPI) und einer geringfügigen Verbesserung

des ursprünglichen Iterationsschemas. Darüber hinaus wird die kleine Matrixzerlegung

des Pfadintegralausdrucks (SMatPI) hergeleitet und die dadurch eingeführte Näherung

systematisch analysiert. Daraufhin wird der Tensornetzwerk-Formalismus eingeführt,

gefolgt von einer Herleitung des zeitlich sich entwickelnden Matrixproduktoperators

(TEMPO), die wesentlich einfacher ist als die in der ursprünglichen Literatur beschriebene.

TEMPO wird an einem trivial lösbaren Modell getestet, wobei gezeigt wird, dass dessen

Rechenkomplexität quadratisch im inversen diskretisierten Zeitschritt ist. Durch den

Einsatz von TEMPO wird eine neue dynamische Phase des (sub-)ohmschen Spin-Bosonen-

Modells bei Nulltemperatur entdeckt und ein entsprechendes Phasendiagramm erhal-

ten. Außerdem wird die Dephasierungsrate bei schwacher System-Bad-Kopplung im

(sub-)Ohmschen und im 1/ f -Regime untersucht. Die TEMPO-Methode wird dann auf

den Fall verallgemeinert, dass mehrere Bäder auf das zentrale System einwirken, und

anschließend verwendet, um die Störung des Quanten-Zeno-Effekts im Ohmschen Spin-

Boson-Modell zu untersuchen. Schließlich wird die Methode der hierarchischen Bewe-
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gungsgleichungen (HEOM) zusammengefasst und angewandt, um zu demonstrieren,

dass eine spektroskopische Technik, die als transiente Umverteilung ultraschneller elek-

tronischer Kohärenzen in Attosekunden-Raman-Signalen bekannt ist, bei Raumtemper-

atur robust gegenüber Störungen durch die Umgebung ist.
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1 Introduction

Aristotle postulated that a particle could only maintain its velocity if a force is applied,

corresponding to ẋ ∝ F [1]. Two millennia later, Isaac Newton recognized that this ap-

plies only in the special case where significant friction is present. He proposed the more

general equation of motion F = mẍ. Centuries later, physicists realized that the idea of a

particle having a fixed location and momentum simultaneously is an approximation that

breaks down at small scales or low temperatures due to quantum effects. To account for

these effects, they introduced the concept of a state vector in a Hilbert space as a com-

plete description of a particle’s state. Neglecting relativistic effects, the time evolution of

this state is governed by the Schrödinger equation, which is the fundamental equation of

motion this thesis is based upon.

Quantum mechanics allows for phenomena with no classical equivalent. An example

is the directly observable kaon oscillation [2]. Neither the neutral kaon K0 nor its an-

tiparticle K̄0 is an energy eigenstate due to the weak interaction, resulting in coherent

oscillations between these two particles. Another example is given by qubits in a quan-

tum computer, where interaction with the environment is a critical issue. While isolated

to preserve quantum coherence, qubits also need to be controllable, which inevitably in-

troduces environmental noise [3]. Other examples of these coherent oscillations are ubiq-

uitous in quantum mechanics, including tunneling between different molecular configu-

rations, chemical reaction dynamics, and the transport of excitations within molecules.

To study environmental effects on these oscillations, the Caldeira-Leggett model [4] mod-

els the environment as a set of uncoupled harmonic oscillators that are bilinearly coupled

to the system of interest. The oscillator bath, typically initialized in thermal equilibrium,

is integrated out as only the system dynamics is of interest. Due to the response of the

bath, the system dynamics generally becomes non-Markovian, as the bath retains a mem-
ory of the system’s past interactions. As an analogy, imagine the system being like a ship

being influenced by waves it has generated itself.

The influence of the bath on the system can be fully characterized by specifying its tem-

perature and spectral density J(ω), which corresponds to the coupling strength density to

the bath modes of frequency ω. Unsurprisingly, the bath generally introduces tremen-

dous complexity to the model. Even for a simple two-level system (this case is also

known as the spin-boson model), no general solutions exist for all temperatures and spec-
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tral densities.

While in many cases where the coupling between the central system and the bath is weak,

a Markovian approximation leading to a master equation for the reduced density matrix

(which is the density matrix of the central system only) is justified [5], this work focuses

on a numerically exact treatment. The path integral formalism allows analytically inte-

grating out the environment [6]. The system dynamics can then be represented as a path

integral over all system paths only, with the entire influence of the bath on each path be-

ing encoded in the Feynman-Vernon influence functional. Quantum Monte Carlo meth-

ods tackle this in general exponentially complex problem by sampling these paths [7].

The quasi adiabatic propagator path integral (QUAPI) method is based on directly eval-

uating a path sum, which is the discretized version of the path integral. Originally, a

controlled cutoff of the bath memory was employed to make the summation tractable,

leading to an iterative tensor multiplication scheme [8, 9]. The small matrix decomposi-

tion of the path integral (SMatPI) [10] eliminates the large memory requirements of this

scheme. Both QUAPI and SMatPI will be covered in detail in chapter 2.

Using the QUAPI formalism, the path sum can be calculated in terms of contracting a

tensor network, which is then referred to as the time-evolving matrix product operator

(TEMPO) method [11]. This method will be derived in a novel simplified fashion in

chapter 3. The hierarchical equations of motion (HEOM) technique [12] has also been

derived from the Feynman-Vernon influence functional. It yields a temporal differential

equation for the reduced density matrix coupled to differential equations for nonphysi-

cal auxiliary density matrices that encode the bath dynamics. A similar set of differential

equations is obtained in the hierarchy of pure states (HOPS) [13] method. While HEOM

was originally limited to the Ohmic case J(ω) ∝ ω, it has been generalized to handle the

super-Ohmic (J(ω) ∝ ωs with s > 1) and sub-Ohmic (J(ω) ∝ ωs with s < 1) cases [14, 15].

The advantages of HEOM include its straightforward generalization to multiple baths

and superior efficiency compared to QUAPI for some specific spectral densities. On the

other hand, it offers less flexibility with respect to bath temperature and the specific form

of the spectral density, which are both strengths of QUAPI.

Among the numerically exact methods applicable to the spin-boson model that are not

based on the Feynman-Vernon influence functional is the multiconfiguration time-

dependent Hartree (MCTDH) technique [16, 17]. Its efficiency has been improved using

a multi-layered recursive approach (referred to as ML-MCTDH) [18] and a matrix prod-

uct state representation [19]. Finally, the numerical renormalization group is mentioned,

which involves a mapping to a semi-infinite chain and subsequent iterative numerical

diagonalization [20].

At low temperatures and weak system bath coupling strength, the spin-boson model
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typically exhibits damped coherent oscillations between the two central system states

with decreasing amplitude due to the influence of the bath [2]. Stronger dissipation or

high temperatures generally lead to incoherent decay towards a delocalized state. At zero

temperature and strong dissipation, the system can even become localized, trapped in its

initial state due to the constant influence of the environment acting like a measurement.

For the sub-Ohmic spin-boson model without a high-frequency cutoff of the spectral den-

sity, the system always localizes at zero temperature regardless of the coupling strength [2].

However, in experimentally realistic settings with sub-Ohmic noise, encountered for ex-

ample in some nano-mechanical devices [21] and amorphous solids [22], the bath always

has a high-frequency cutoff as its energy has to be finite. While all subsequent numerical

studies found damped coherent oscillations at weak coupling, they have been inconclu-

sive about the fate of the coherence at strong coupling [15, 23, 24]. Chapter 4 (published

in Ref. [25]) resolves this issue by identifying a novel pseudo-coherent phase. This phase

occurs at strong coupling and is solely a consequence of the finite bath reaction time due

to the high-frequency cutoff. It causes an initial shallow, non-coherent minimum in the

dynamics, effectively overdamping the system in this regime. A subsequent study has

also shown this phase for a super-Ohmic spectral density [26].

While originally considered to be pathological [2], the case of 1/ f quantum noise with

spectral exponents s < 0 has been recognized as a major factor in the loss of coherence

(dephasing) of superconducting qubits due to magnetic flux noise [27]. Additionally, the

electronic spin of a color center that couples to the vibrational motion of hexagonal boron

nitride membranes has been addressed in terms of the spin-boson model with s = −1 us-

ing approximate numerical tools [28]. Due to its notorious difficulty, a numerically exact

investigation of the corresponding highly non-Markovian and strongly damped quan-

tum dissipative dynamics had remained elusive. In chapter 5, the quantum 1/ f noise

regime is investigated numerically exactly.

In chapter 3.4, the TEMPO method is generalized to handle cases where the system inter-

acts with multiple baths through operators that do not commute with each other. Phys-

ical realizations of such cases include voltage fluctuations in quantum dot qubits [29],

magnetic field fluctuations in nuclear magnetic resonance spectroscopy [2], and molecu-

lar vibronic dynamics [30, 31]. The novel method is used to demonstrate how a second

bath can suppress the localization transition in the Ohmic spin-boson model.

In molecules, the electronic energies generally depend on the configuration of the nuclei,

giving rise to the electronic potential energy surfaces. The existence of conical intersections is

crucial for many photochemical processes [32–35]. These intersections occur when two

or more electronic potential energy surfaces intersect, allowing for rapid radiationless

transitions between electronic states. In this regime, electronic and nuclear motion be-
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comes strongly coupled, rendering the Born-Oppenheimer approximation invalid [36].

Due to the significant change in the energy gap between the electronic states near conical

intersections, which is traversed by the wavepackets on a short femtosecond timescale,

directly observing this process requires both high temporal and spectral resolution [37].

Consequently, conical intersections have only been observed indirectly through decay

rates [38] or rapidly changing optical spectra [37].

The transient redistribution of ultrafast electronic coherences in attosecond Raman sig-

nals (TRUECARS) technique utilizes a combination of broadband and narrowband X-ray

pulses to achieve the necessary resolution for directly measuring a wavepacket moving

through a conical intersection [39]. Since the off-resonant X-ray pulses do not directly

excite the molecule’s core electrons, the signal is not influenced by the electronic pop-

ulation dynamics and thus provides a background-free measure of coherences. While

implementing TRUECARS is experimentally challenging due to the precise phase con-

trol required between the X-ray pulses, recent advancements in free-electron lasers have

made it potentially achievable. So far, TRUECARS has only been studied theoretically

for isolated quantum systems [39–42], leaving the open question to what extent strong

electronic or vibrational dissipation smear out such quantum coherences on ultrashort

times. In chapter 6, the effect of dissipation on the TRUECARS signal is investigated in a

model system with two molecular electronic states and two vibrational modes. An oscil-

lator bath coupled to the electronic states models the fluctuating electric fields produced

by surrounding solvent molecules, while additional oscillator baths coupled to the vi-

brational modes model the fluctuating nuclei of the host molecule. It is concluded that

TRUECARS should be sufficiently robust to be measurable in a future spectroscopic ex-

periment.

Throughout this thesis, natural units are used, where the reduced Planck constant h̄ and

the Boltzmann constant kB are both set to 1.
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2 Quasi Adiabatic Propagator Path Integral
(QUAPI)

As a discretized form of the real-time path integral for a multilevel quantum system bi-

linearly coupled to a bath of uncoupled harmonic oscillators, QUAPI [8, 9] enables the

numerically exact evaluation of non-Markovian quantum dissipative dynamics in terms

of a path summation.

In this chapter, the QUAPI-algorithm is re-derived. Following the presentation of Ref. [43],

we start with the Schrödinger equation and derive the Feynman-Vernon influence func-

tional. Following the work of Ref. [29], we discretize the path integral in time, which is

the essence of QUAPI. Then, its generalization to polarized bath initial conditions as used

in Ref. [23] is introduced. While the rest of the chapter has not been used in generating

the results of this work, a few additional insights into QUAPI are presented. Section 2.6

summarizes the blip decomposition of Ref. [44] as an example of a non-tensor network

approach to speed up path summation. Then, a version of the original iteration scheme

of QUAPI is presented in Section 2.7 where the Trotter splitting used in Ref. [45] is em-

ployed. The modified Trotter splitting slightly simplifies and reduces the computational

cost of the original iterative QUAPI scheme and of the algorithms presented in the fol-

lowing sections. The iterative QUAPI algorithm has been used in many publications

over the last decades, including in the investigation of dissipative effects in quantum

bits [46, 47], Landau-Zener transitions [48], and exciton transfer dynamics in a photosyn-

thetic complex [49]. In section 2.8, a novel (however, due to other recent advancements

less relevant) improvement of this scheme is introduced. In the final sections, the small

matrix decomposition of the path integral expression (SMatPI) [50] and its extension [51]

is presented and the approximations they introduce are analyzed beyond what is given

in the literature.

Naturally, there is some overlap with Ref. [52] throughout this chapter.

2.1 Propagators

The subsequent standard derivation follows the presentation of chapter 2 in Ref. [43].

The Schrödinger equation is given by

i∂t |ψ⟩ = Ĥ |ψ⟩ . (2.1)
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If Ĥ is time-independent, its formal solution reads

|ψ(t)⟩ = exp
(
−iĤt

)
|ψ(0)⟩ . (2.2)

The Hamiltonian of a particle in a potential V(x̂) is given by

Ĥ =
p̂2

2m
+ V(x̂). (2.3)

In the completeness relation in position space

1(k) =
∫

dxk |xk⟩ ⟨xk| , (2.4)

we will use the index k to discriminate between multiple insertions of the completeness

relation. As in Eq. (24) of Ref. [43], the propagator in coordinate representation can be

written as

U(xN , tN ; x0, 0) =
〈

xN
∣∣ exp

(
−iĤtN

) ∣∣ x0
〉
=
〈

xN

∣∣∣ exp
(
−iĤ∆t

)N
∣∣∣ x0

〉
(2.5)

=
∫ (N−1

∏
k=1

dxk

)
N

∏
k=1

〈
xk

∣∣∣ e−iĤ∆t
∣∣∣ xk−1

〉
,

where tN = N∆t. As in Eq. (21) of Ref. [43], we make use of the Baker-Campbell-

Hausdorff formula:

exp
(
−iĤ∆t

)
= exp

(
−i

p̂2

2m
∆t
)

exp (−iV(x̂)∆t) +O
(
∆t2) . (2.6)

Thus, the short-time progator U(xk, tk; xk−1, tk−1) can be expressed as〈
xk

∣∣∣ e−iĤ∆t
∣∣∣ xk−1

〉
=
∫

dpk ⟨xk | pk⟩
〈

pk
∣∣ exp

(
−iĤ∆t

) ∣∣ xk−1
〉

=
∫

dpk ⟨xk | pk⟩
〈

pk

∣∣∣∣ exp
(
−i

p̂2

2m
∆t
)

exp (−iV(x̂)∆t)
∣∣∣∣ xk−1

〉
+O(∆t2)

= exp (−iV(xk−1)∆t)
∫

dpk exp

(
−i

p2
k

2m
∆t

)
⟨xk | pk⟩ ⟨pk | xk−1⟩+O(∆t2)

= exp (−iV(xk−1)∆t)
∫

dpk
1

2π
exp

(
−i

p2
k

2m
∆t + ipk(xk − xk−1)

)
+O(∆t2)

=

√
m

2πi∆t
exp

(
i

m
2∆t

(xk − xk−1)
2
)

exp (−i∆tV(xk−1)) +O(∆t2),

(2.7)
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where the completeness relation in momentum space has been used in the first step and

the eigenstate of the momentum operator in position space

⟨x | p⟩ = 1√
2π

exp (ipx) (2.8)

has been used in the third step. Using Eq. (2.7), we rewrite Eq. (2.5) as

U(xN , tN ; x0, 0) = lim
N→∞

∫ (N−1

∏
k=1

dxk

)( m
2πi∆t

)N/2

· exp

(
i∆t

N

∑
k=1

[
m
2

(
xk − xk−1

∆t

)2

− V(xk−1)

])
(2.9)

to yield Eq. (26) of Ref. [43]. As a shorthand notation, the real time path integral is defined

as

∫ (xN ,tN)

(x0,0)
D [x(t)] := lim

N→∞

∫ (N−1

∏
k=1

dxk

)( m
2πi∆t

)N/2
. (2.10)

By use of

xk − xk−1

∆t
=

x(k∆t)− x((k − 1)∆t)
∆t

= ẋ((k − 1)∆t) +O(∆t2) (2.11)

and

lim
N→∞

(
∆t

N

∑
k=1

f [x((k − 1)∆t)]

)
=
∫ tN

0
dt f (x(t)) , (2.12)

Eq. (2.9) becomes

U(xN , tN ; x0, 0) =
∫ (xN ,tN)

(x0,0)
D [x(t)] exp (iS [x(t)]) , (2.13)

with the action

S [x(t)] =
∫ tN

0
dt L (x(t)) (2.14)

and the Lagrange function

L (x(t)) =
m
2

ẋ2(t)− V (x(t)) . (2.15)
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2.1.1 Free Particle

As in Section 2.3 of Ref. [43], consider a free particle of mass m with Ĥ =
p̂2

2m
. Due to

V = 0, the O
(
∆t2) terms in Eq. (2.7) vanish and therefore

U(x f , t, xi, 0) =
〈

x f

∣∣∣∣ exp
(
−i

p̂2

2m
t
) ∣∣∣∣ xi

〉
=

√
m

2πit
exp

(
i
m(x f − xi)

2

2t

)
. (2.16)

Note that the exponent is given by iScl with the classical action Scl:

Scl [xcl(s)] =
∫ t

0
dsL(xcl(s)) =

m
2

∫ t

0
dsẋ2 (s) =

m(x f − xi)
2

2t
(2.17)

with the classical path xcl(s) = xi + (x f − xi)
s
t , which is the path that solves the Euler-

Lagrange equation.

2.1.2 Driven Harmonic Oscillator

Following section 2.7 of Ref. [43], we consider a particle of mass m in an externally driven

harmonic potential with the Lagrange function

L =
1
2

mẋ2 − 1
2

mω2x2 + x f (t). (2.18)

We decompose the path of the system into a sum of the classical path and quantum fluc-

tuations x(s) = xcl(s) + ξ(s). To compute the propagator U(x f , t, xi, 0), we employ the

boundary conditions xcl(0) = xi, xcl(t) = x f and ξ(0) = ξ(t) = 0.

The classical path is determined by the Euler-Lagrange equation, which has the solution

(which can be obtained by the multidimensional version of variation of constants):

xcl(s) =x f
sin(ωs)
sin(ωt)

+ xi
sin(ω(t − s))

sin(ωt)

+
1

mω

[∫ s

0
sin(ω(s − s′)) f (s′)ds′ − sin(ωs)

sin(ωt)

∫ t

0
sin(ω(t − s′)) f (s′)ds′

]
. (2.19)

The classical action follows as

Scl [xcl(s)] =
mω

2 sin(ωt)

[
(x2

i + x2
f ) cos(ωt)− 2xix f

]
+

x f

sin(ωt)

∫ t

0
ds sin(ωs) f (s) +

xi

sin(ωt)

∫ t

0
ds sin(ω(t − s)) f (s)

− 1
mω sin(ωt)

∫ t

0
ds
∫ s

0
ds′ sin(ωs′) sin(ω(t − s)) f (s′) f (s). (2.20)
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The action of the path x(s) = xcl(s) + ξ(s) may be represented as

S [x(s)] = Scl −
m
2

∫ t

0
ξ(s)

(
d2

ds2 + ω2
)

ξ(s)ds, (2.21)

where we have made use of partial integration, the boundary conditions on ξ(s), and the

Euler-Lagrange equation.

Next, we expand ξ(s) into eigenfunctions ξn(s) of the operator d2

ds2 + ω2:

ξ(s) =
∞

∑
n=1

anξn(s). (2.22)

The eigenfunctions that obey ξn(0) = ξn(t) = 0 and orthonormality

⟨ξn | ξm⟩ :=
∫ t

0
ξn(s)ξm(s)ds = δnm (2.23)

are given by

ξn(s) =

√
2
t

sin
(

nπ
s
t

)
(2.24)

with the eigenvalues λn = −
( nπ

t

)2
+ ω2.

As they are the eigenfunctions of a self-adjoint operator, they form a basis. In this basis,

Eq. (2.21) has the shape

S = Scl −
m
2

〈
∞

∑
n=1

anξn(s)

∣∣∣∣∣ ∞

∑
m=1

λmamξm(s)

〉
= Scl −

m
2

∞

∑
n=1

a2
nλn. (2.25)

According to Eq. (2.13), the propagator is given by the integral over all possible system

paths. Up to a prefactor D caused by the Jacobi determinant of the transformation into

the basis of the ξn, the propagator is therefore given by

U(x f , t, xi, 0) = D
∫ ( ∞

∏
n=1

dan

)
exp

(
i

(
Scl −

m
2

∞

∑
n=1

a2
nλn

))

= D

√
∞

∏
n=1

(
2π

imλn

)
exp(iScl), (2.26)

where we have executed the integral in the second step. Note that the infinite product

is not well-defined, which is due to D also not being well-defined on its own. As the

eigenfunctions ξn do not depend on ω or f (s), D also cannot depend on them. Thus,

we may retrieve it by comparing Eq. (2.26) to the case of the free particle for which we
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already know the result (given in Eq. (2.16)). Therefore, the Jacobi determinant must be

D =

√
m

2πit

√
∞

∏
n=1

(
imλω=0

n
2π

)
. (2.27)

Plugging this back into Eq. (2.26),we finally obtain the propagator of the driven harmonic

oscillator

U(x f , t, xi, 0) =
√

mω

2πi sin(ωt)
exp(iScl), (2.28)

where we have used

∞

∏
n=1

λω=0
n
λn

=
∞

∏
n=1

(
−
( nπ

t

)2

−
( nπ

t

)2
+ ω2

)
=

1

∏∞
n=1

(
1 −

(
ωt
nπ

)2
) =

ωt
sin(ωt)

. (2.29)

2.2 Equilibrium Density Matrix

Following section 2.9 of Ref. [43], the equilibrium density matrix in position representa-

tion of a system with Hamiltonian Ĥ that is coupled to a bath of temperature T = β−1 is

given by

ρ(x+, x−) =
1
Z
〈

x+
∣∣ exp

(
−βĤ

) ∣∣ x−
〉

(2.30)

with the partition function

Z =
∫

dx
〈

x
∣∣ exp

(
−βĤ

) ∣∣ x
〉

. (2.31)

Note that we can retrieve the equilibrium density matrix from the propagator

U(x+, t, x−, 0) =
〈

x+
∣∣ exp

(
−iĤt

) ∣∣ x−
〉

(2.32)

by the substitution t → −iβ.

2.2.1 Harmonic Oscillator

By setting f (t) = 0 and replacing t → −iβ in Eq. (2.28) and Eq. (2.20), we straightfor-

wardly obtain the equilibrium density matrix of the harmonic oscillator:

ρ(x+, x−) =
1
Z

√
mω

2π sinh(ωβ)
exp

[
−mω

2
(x+2

+ x−2
) cosh(ωβ)− 2x+x−

sinh ωβ

]
(2.33)
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with

Z =
∫

dx
〈

x
∣∣ exp

(
−βĤ

) ∣∣ x
〉

=

√
mω

2π sinh(βω)

∫
dx exp

(
−mω

cosh(ωβ)− 1
sinh(ωβ)

· x2
)

=
1

2 sinh
(

ωβ

2

) (2.34)

and therefore

ρ(x+, x−) =

√
mω

π
tanh

(
ωβ

2

)
exp

[
−mω

2
(x+2

+ x−2
) cosh(ωβ)− 2x+x−

sinh ωβ

]
. (2.35)

2.3 System-Bath Model

Following Section 3.2 of Ref. [43], we consider the Caldeira-Leggett model, which consists

of a central system ĤS that is coupled to an environment of harmonic oscillators such that

Ĥ = ĤS + Ĥenv = ĤS + ∑
j

 p̂2
j

2mj
+

1
2

mjω
2
j

(
x̂j −

cj ŝ
mjω

2
j

)2
 = ĤS + ∑

j
Ĥj, (2.36)

where ŝ is a "position" operator that only acts on the central system. Although we are only

interested in the dynamics of the central system, the bath is modeled explicitly because

a time-independent Hamiltonian implies energy conservation. The coupling between

central system and environment takes place through the bilinear term −ŝ ∑j cj x̂j with

coupling strengths cj to the j-th bath mode. To avoid a qualitative change of the central

system potential by the environment, the counter term

ŝ2 ∑
j

c2
j

2mjω
2
j

(2.37)

is added such that if the oscillators are located in their potential minimum

x̂j =
cj ŝ

mjω
2
j

, (2.38)

then the harmonic oscillators do not exert a force upon the central system:

∂Ĥ
∂ŝ

=
∂ĤS

∂ŝ
. (2.39)

Following Refs. [29, 53], we assume that the coupling between central system and bath is

only present for t > 0 such that the initial density matrix W(0) factorizes into a system
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and a bath part:

W(0) = ρ̃(0)⊗ ρenv(0). (2.40)

We further assume that the bath is initially in thermal equilibrium at temperature T =

β−1, i.e.,

ρenv(0) = Z−1
enve−βĤ0

env = ∏
j
Z−1

j e−βĤ0
j (2.41)

with the bare environment Hamiltonian

Ĥ0
env = ∑

j

(
p̂2

j

2mj
+

1
2

mjω
2
j x̂2

j

)
=: ∑

j
Ĥ0

j . (2.42)

To compute the reduced density matrix ρ̃(t), which is the density matrix of the central

system only, we propagate W(0) in time and then trace out the environment:〈
s+f
∣∣∣ ρ̃(t)

∣∣∣ s−f
〉
=
∫

dx f ds±i dx±i U(s+f x f , t, s+i x+i , 0)
〈
s+i x+i

∣∣W(0)
∣∣ s−i x−i

〉
U†(s−f x f , t, s−i x−i , 0)

=
∫

dx f ds±i dx±i U(s+f x f , t, s+i x+i , 0)
〈
s+i
∣∣ ρ̃(0)

∣∣ s−i
〉

·
〈
x−i
∣∣ ρenv(0)

∣∣ x+i
〉

U†(s−f x f , t, s−i x−i , 0), (2.43)

where the vectors x contain all the coordinates of the harmonic oscillators. From Eq. (2.35)

follows that

〈
x+
∣∣ ρenv(0)

∣∣ x−
〉
=

〈
x+
∣∣∣∣∣∏j

Z−1
j e−βĤ0

j

∣∣∣∣∣ x−
〉

= ∏
j

〈
x+j
∣∣∣Z−1

j e−βĤ0
j

∣∣∣ x−j
〉

= ∏
j

√
mjωj

π
tanh

(
ωjβ

2

)
exp

−mjωj

2

(x+j
2
+ x−j

2
) cosh(ωjβ)− 2x+j x−j
sinh ωjβ

 .

(2.44)

In accordance with Eq. (2.13), we rewrite the propagators in Eq. (2.43) as the path integral

〈
s+f
∣∣∣ ρ̃(t)

∣∣∣ s−f
〉
=
∫

dx f ds±i dx±i

∫ s+(t)=s+f

s+(0)=s+i
Ds+

∫ x+(t)=x f

x+(0)=x+i
Dx+ exp(iS[x+, s+])

〈
s+i
∣∣ ρ̃(0)

∣∣ s−i
〉

·
〈
x+i
∣∣ ρenv(0)

∣∣ x−i
〉 ∫ s−(t)=s−f

s−(0)=s−i
Ds−

∫ x−(t)=x f

x−(0)=x−i
Dx− exp(−iS[x−, s−])

=
∫

ds±i

∫
Ds± exp

[
i(SS[s+]− SS[s−])

] 〈
s+i
∣∣ ρ̃(0)

∣∣ s−i
〉

·
∫

dx f dx±i
〈
x+i
∣∣ ρenv(0)

∣∣ x−i
〉 ∫

Dx± exp
[
i(Senv[s+, x+]− Senv[s−, x−])

]
=
∫

ds±i

∫
Ds± exp

[
i(SS[s+]− SS[s−])

] 〈
s+i
∣∣ ρ̃(0)

∣∣ s−i
〉
FFV[s+, s−].

(2.45)
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The Feynman-Vernon influence functional FFV[s+, s−] (see Ref. [6]) fully characterizes the

influence of the environment on the system and is defined as

FFV[s+, s−] =
∫

dx f dx±i
〈
x+i
∣∣ ρenv(0)

∣∣ x−i
〉 ∫

Dx± exp
[
i(Senv[s+, x+]− Senv[s−, x−])

]
=
∫

dx f dx±i
〈
x+i
∣∣ ρenv(0)

∣∣ x−i
〉
∏

j

∫
Dx+j exp(iSj[s+, x+j ])

∫
Dx−j exp(−iSj[s−, x−j ])

(2.46)

due to Senv = ∑j Sj. We may retrieve the results of the last two path integrals, which are

the propagators corresponding to the Hamiltonians

Hj =
p̂2

j

2mj
+

1
2

mjω
2
j x̂2

j − cjxj ŝ +
c2

j ŝ2

2mjω
2
j

(2.47)

by comparing with our results from section 2.1.2. Namely, we interpret the system path

s(t′) as an external driving and identify

f (t′) = cjs(t′). (2.48)

The additional driving term

c2
j s(t′)2

2mjω
2
j

(2.49)

does not enter the Euler-Lagrange equation as it does not depend on xj or ẋj. In fact, it

only enters straightforwardly in the classical action, which becomes

Scl

[
s, xjcl

]
=

mjωj

2 sin(ωjt)

[
(x2

i,j + x2
f ,j) cos(ωjt)− 2xi,jx f ,j

]
+

x f ,jcj

sin(ωjt)

∫ t

0
dt′ sin(ωjt′)s(t′) +

xi,jcj

sin(ωjt)

∫ t

0
dt′ sin(ωj(t − t′))s(t′)

−
c2

j

mjωj sin(ωjt)

∫ t

0
dt′
∫ t′

0
dt′′ sin

[
ωj(t − t′)

]
sin(ωjt′′)s(t′)s(t′′)

−
c2

j

2mjω
2
j

∫ t

0
dt′s2(t′). (2.50)

So we have according to Eq. (2.28)

∫
Dxj exp(iSj[s, xj]) =

√
mjωj

2πi sin(ωjt)
exp(iScl[s, xjcl]). (2.51)
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Inserting Eq. (2.51) and its complex conjugate as well as Eq. (2.44) into Eq. (2.46) yields

FFV[s+, s−] =
∫

dx f dx±i ∏
j

√
mjωj

π
tanh

(
ωjβ

2

)
mjωj

2π sin(ωjt)

· exp

[
−mjωj

2
(xi,j

+2
+ xi,j

−2
) cosh(ωjβ)− 2xi,j

+xi,j
−

sinh ωjβ
+ iScl[s+, x+j cl

]− iScl[s−, x−j cl
]

]

=
∫

dx f dx±i ∏
j

√
mjωj

π
tanh

(
ωjβ

2

)
mjωj

2π sin(ωjt)

· exp

−1
2


x f ,j

x+i,j
x−i,j


⊺

· Aj ·


x f ,j

x+i,j
x−i,j

+ Jj ·


x f ,j

x+i,j
x−i,j


− i

c2
j

mjωj sin(ωjt)

∫ t

0
dt′
∫ t′

0
dt′′ sin

[
ωj(t − t′)

]
sin(ωjt′′)

[
s+(t′)s+(t′′)− s−(t′)s−(t′′)

]
−i

c2
j

2mjω
2
j

∫ t

0
dt′
[
s+2

(t′)− s−2
(t′)
]]

(2.52)

where

Aj = mjωj


0

i
sin(ωjt)

−i
sin(ωjt)

i
sin(ωjt)

coth(ωjβ)− i cot(ωjt)
−1

sinh(ωjβ)
−i

sin(ωjt)
−1

sinh(ωjβ)
coth(ωjβ) + i cot(ωjt)

 , (2.53)

det(Aj) =

2
(
mjωj

)3 tanh
(

ωjβ

2

)
sin2(ωjt)

, (2.54)

A−1
j =

1
2mjωj

coth
(
ωjβ/2

)
cos(ωjt)− i cos(ωjt) + i

cos(ωjt)− i coth
(
ωjβ/2

)
coth

(
ωjβ/2

)
cos(ωjt) + i coth

(
ωjβ/2

)
coth

(
ωjβ/2

)
 , (2.55)

Jj = i · cj

sin(ωjt)

∫ t

0
dt′

sin
(
ωjt′

)
[s+(t′)− s−(t′)]

sin
(
ωj (t − t′)

)
s+(t′)

sin
(
ωj (t − t′)

)
s−(t′)

 . (2.56)

By use of the identity (see Ref. [54])

∫
exp

(
−1

2
x⊺ · A · x + J · x

)
d3x =

√
(2π)3

det A
exp

(
1
2

J · A−1 · J
)

, (2.57)

we are left with

FFV[s+, s−] = exp
(
−ΦFV[s+, s−]

)
, (2.58)
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where

ΦFV[s+, s−] = ∑
j

c2
j

2mjωj

( ∫ t

0
dt′
∫ t′

0
dt′′

[
s+(t′)− s−(t′)

]
·
{

coth
(

ωjβ

2

)
cos(ωj(t′ − t′′))

[
s+(t′′)− s−(t′′)

]
− i sin(ωj(t′ − t′′))

[
s+(t′′)− s−(t′′)

] }
+ i

1
ωj

∫ t

0
dt′
[
s+2

(t′)− s−2
(t′)
])

=
∫ t

0
dt′
∫ t′

0
dt′′

[
s+(t′)− s−(t′)

] [
η(t′ − t′′)s+(t′′)− η∗(t′ − t′′)s−(t′′)

]
(2.59)

and

η(t) = L(t) + iδ(t)
2
π

∫ ∞

0
dω

J(ω)

ω
(2.60)

with the bath autocorrelation function

L(t) =
1
π

∫ ∞

0
dω J(ω)

[
coth

(
ωβ

2

)
cos(ωt)− i sin(ωt)

]
(2.61)

and the bath spectral density

J(ω) =
π

2 ∑
j

c2
j

mjωj
δ(ω − ωj). (2.62)

This notation straightforwardly allows us to take the bath continuum limit by specifying

a continuous spectral density.

2.4 Discretizing the Path Integral

In order to compute the dynamics of the reduced density matrix in the system-bath model

according to Eq. (2.45), we discretize the central system path integral. The analytical re-

sult for the Feynman-Vernon influence functional in Eq. (2.58) thereby turns into a dis-

crete sum over all possible central system paths that can be evaluated numerically. This

requires ĤS to be either a discrete system of n states or a discretized continuous sys-

tem such that the observable ŝ has eigenvalues {s1, s2, ..., sn}. Following the presentation

of Ref. [29] (but using the modified Trotter splitting of Ref. [45]) of the original QUAPI

method [8, 9], one assumes that Ĥ is time-independent (although time-independence is

not strictly required for QUAPI, it is chosen here for ease of notation) such that its prop-
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agator can be decomposed as:

Û = e−iĤt =
N+1

∏
j=1

e−iĤ∆t ≈ e−iĤS
∆t
2

(
N

∏
j=1

e−iĤenv∆te−iĤS∆t

)
e−iĤenv∆te−iĤS

∆t
2 (2.63)

with t = (N + 1) · ∆t and using the symmetric Trotter splitting:

e−iĤ∆t = e−iĤS
∆t
2 e−iĤenv∆te−iĤS

∆t
2 +O(∆t3). (2.64)

The error introduced in Eq. (2.63) is therefore of order

(N + 1) · O(∆t3) = t · O(∆t2). (2.65)

The completeness relation is given by

1(k) =
n

∑
ik=1

∣∣sik

〉 〈
sik

∣∣ ∫ dxk |xk⟩ ⟨xk| (2.66)

with the eigenstates |si⟩ of ŝ and the eigenstates |x⟩ of all the harmonic oscillators. The

index k will be used to discriminate between multiple insertions of the completeness

relation. Switching to coordinate representation, we separate out the first and last half-

step of the central system dynamics in Eq. (2.63):

U(siN+1 , xN+1; si0 , x0) =
〈
siN+1 , xN+1

∣∣ Û ∣∣ si0 , x0
〉

=
n

∑
iN+1/2,i1/2=1

〈
siN+1 , xN+1|e−iĤS

∆t
2

∣∣∣∣siN+1/2

〉

·
〈

siN+1/2

∣∣∣∣
(

N

∏
j=1

e−iĤenv∆te−iĤS∆t

)
e−iĤenv∆t

∣∣∣∣si1/2

〉〈
si1/2

∣∣∣∣e−iĤS
∆t
2

∣∣∣∣si0 , x0

〉

=
n

∑
iN+1/2,i1/2=1

〈
siN+1 , xN+1

∣∣∣∣ e−iĤS
∆t
2

∣∣∣∣siN+1/2

〉
U(siN+1/2 , xN+1; si1/2 , x0)

〈
si1/2

∣∣∣∣e−iĤS
∆t
2

∣∣∣∣ si0 , x0

〉
.

(2.67)

Next, we insert the completeness relation after every time-step:

U(siN+1/2 , xN+1; si1/2 , x0) =

〈
siN+1/2 , xN+1

∣∣∣∣∣ N

∏
j=1

(
e−iĤenv∆te−iĤS∆t1(N+1−j)

)
e−iĤenv∆t

∣∣∣∣∣ si1/2 , x0

〉

=
n

∑
i3/2,...,iN+1/2=1

〈
siN+1/2

∣∣∣ e−iĤS∆t
∣∣∣ siN−1/2

〉
· ... ·

〈
si3/2

∣∣∣ e−iĤS∆t
∣∣∣ si1/2

〉
·
∫

dxN , ..., dx1

〈
xN+1

∣∣∣ e−iĤenv(siN−1/2
)∆t
∣∣∣ xN

〉
· ... ·

〈
x1

∣∣∣ e−iĤenv(si1/2
)∆t
∣∣∣ x0

〉
. (2.68)

As the only system operator that Ĥenv depends on is ŝ, the |si⟩ can be drawn past the bath

time evolution operators while replacing ŝ by the corresponding eigenvalue si.
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This leads to the discretized path distributions

s̃±(t) =si±1/2
·
(

1 − θ

[
t − 3∆t

2

])
+

N−1

∑
j=1

{
si±j+1/2

(
θ

[
t −
(

j +
1
2

)
∆t
]
− θ

[
t −
(

j +
3
2

)
∆t
])}

(2.69)

+ si±N+1/2
· θ

[
t −
(

N − 1
2

)
∆t
]

,

with the Heaviside function θ(t). It is also useful to define the antisymmetric path distribu-
tion ξ(t) = s̃+ − s̃−. The derivatives of the path distributions are

ξ̇(t) =
N

∑
j=0

[
si+j+3/2

− si−j+3/2
−
(

si+j+1/2
− si−j+1/2

)]
δ

(
t −
(

j +
1
2

)
∆t
)

, (2.70)

˙̃s±(t) =
N

∑
j=0

[
si±j+3/2

− si±j+1/2

]
δ

(
t −
(

j +
1
2

)
∆t
)

. (2.71)

Similarly to Ref. [50], we define the reduced propagator U(N+1/2,1/2)
i±N+1/2,i±1/2

, which has the prop-

erty of relating the reduced density matrix at t = ∆t/2 to the reduced density matrix at

time (N + 1/2)∆t by a matrix multiplication:

ρ̃
(N+1/2)
i±N+1/2

= ∑
i±1/2

U(N+1/2,1/2)
i±N+1/2,i±1/2

ρ̃
(1/2)
i±1/2

. (2.72)

By comparing Eqs. (2.68), (2.43), and (2.45), we find that

U(N+1/2,1/2)
i±N+1/2,i±1/2

=
∫

dxN+1dx±0 U(si+N+1/2
, xN+1; si+1/2

, x+0 )
〈
x+0
∣∣ ρenv

∣∣ x−0
〉

U†(si−N+1/2
, xN+1; si−1/2

, x−0 )

=
n

∑
i±3/2,...,i±N+1/2=1

〈
s+iN+1/2

∣∣∣ e−iĤS∆t
∣∣∣ s+iN−1/2

〉
· ... ·

〈
s+i3/2

∣∣∣ e−iĤS∆t
∣∣∣ s+i1/2

〉
·
〈

s−i1/2

∣∣∣ eiĤS∆t
∣∣∣ s−i3/2

〉
· ... ·

〈
s−iN−1/2

∣∣∣ eiĤS∆t
∣∣∣ s−iN+1/2

〉
FFV[s+, s−]. (2.73)

Partially integrating Eq. (2.59) twice to make it dependent on the derivatives of the path

distributions containing delta functions yields

ΦFV =−
∫ (N+1/2)∆t

∆t/2
dt′
∫ t′

∆t/2
dt′′ ξ̇(t′)

[
Q(t′ − t′′) ˙̃s+(t′′)− Q∗(t′ − t′′) ˙̃s−(t′′)

]
(2.74)

+ ξ(t)
∫ (N+1/2)∆t

∆t/2
dt′
[
Q(t − t′) ˙̃s+(t′)− Q∗(t − t′) ˙̃s−(t′)

]
+ ξ(t)

[
Q(t)s̃+(0)− Q∗(t)s̃−(0)

]
−
∫ (N+1/2)∆t

∆t/2
dt′ ξ̇(t′)

[
Q(t′)s̃+(0)− Q∗(t′)s̃−(0)

]
,
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where we have used the second antiderivative of L(t) as

Q(t) =
1
π

∫ ∞

0
dω

J(ω)

ω2

[
coth

(
ωβ

2

)
(1 − cos(ωt)) + i (sin(ωt)− ωt)

]
, (2.75)

with Q(0) = 0 = Q̇(0), which is very similar to what is referred to as the pair correlation

function in the literature [55]. Plugging Eqs. (2.70) and (2.71) into Eq. (2.74) yields

ΦFV =
N

∑
k=0

k

∑
k′=0

(si+k+1/2
− si−k+1/2

)
(

ηkk′si+k′+1/2
− η∗

kk′si−k′+1/2

)
, (2.76)

with the coefficients

ηkk = Q(∆t) (2.77)

ηkk′ = Q((k − k′ − 1)∆t) + Q((k − k′ + 1)∆t)− 2Q((k − k′)∆t), (2.78)

where k′ < k. While the "local" terms ηkk just depend on Q(t), the remaining "nonlo-

cal" terms depend on the discretized second derivative of Q(t), which is approximately

related to L(t) by

ηkk′ ≈ ∆t2L((k − k′)∆t). (2.79)

As a shorthand notation, we define the forward-backward system propagator:

Gi±j+1/2,i±j−1/2
=
〈

si+j+1/2

∣∣∣ e−iĤS∆t
∣∣∣ si+j−1/2

〉 〈
si−j−1/2

∣∣∣ eiĤS∆t
∣∣∣ si−j+1/2

〉
(2.80)

and the terms contained in the discretized influence functional

F(k+1/2,k′+1/2)
i±k+1/2i±

k′+1/2
= exp

[
−(si+k+1/2

− si−k+1/2
)
(

ηkk′si+k′+1/2
− η∗

kk′si−k′+1/2

)]
. (2.81)

The forward-backward system propagator of Eq. (2.80) can be computed by analytically

or numerically solving the Schrödinger equation.

With this, we arrive at

U(N+1/2,1/2)
i±N+1/2,i±1/2

= ∑
i±3/2,...,i±N−1/2

N

∏
j=1

(
G(j+1/2,j−1/2)

i±j+1/2i±j−1/2

) N

∏
k=0

k

∏
k′=0

F(k+1/2,k′+1/2)
i±k+1/2i±

k′+1/2
(2.82)

for the reduced propagator and from it trivially follows the reduced density matrix

ρ̃
(N+1)
i±N+1

= ∑
i±0 ,i±1/2,...,i±N+1/2

G(N+1,N+1/2)
i±N+1i±N+1/2

G(1/2,0)
i±1/2i±0

ρ̃
(0)
i±0

N

∏
j=1

(
G(j+1/2,j−1/2)

i±j+1/2i±j−1/2

) N

∏
k=0

k

∏
k′=0

F(k+1/2,k′+1/2)
i±k+1/2i±

k′+1/2
.

(2.83)
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To simplify the notation of Eq. (2.82), we rename the indices such that the reduced prop-

agator becomes

U(N0)
i±N ,i±0

= ∑
i±1 ,...,i±N−1

N

∏
j=1

(
G(j,j−1)

i±j i±j−1

) N

∏
k=0

k

∏
k′=0

F(k,k′)
i±k i±k′

. (2.84)

Now, we can in principle already numerically evaluate this expression. Unfortunately,

as the influence functional terms couple each time-step to all previous time-steps as de-

picted in Fig. 2.1, Eq. (2.84) can in general not be evaluated iteratively, but instead requires

summation of n2(N+1) terms (for each of the n4 elements of UαNα0 , a sum of n2(N−1) terms

has to be computed), which makes long-time propagation by direct evaluation of this

expression infeasible. While originally an iterative evaluation of Eq. (2.82) based on a

memory cutoff ηkk′ ≈ 0 for k − k′ > ∆kmax as presented in section 2.7 has been used [8, 9],

this thesis exclusively uses a tensor network approach to evaluate the path sum, which

will be introduced in chapter 3.

2.5 Polarized Initial Conditions

Instead of using the unpolarized initial condition of the bath (Eq. (2.41)), one can also

consider the case where the bath is equilibrated to an initially polarized system such that

ρenv(0) ∝ e−βĤenv(ŝ=1). (2.85)

This density matrix is obtained in complete analogy to Section 2.2.1, but with f (t) = 1

instead of f (t) = 0, and then plugged into Eq. (2.44). After discretization, one obtains the

additional factors

∏
k>0

F̃(k,0)
i±k i±0

= ∏
k>0

exp
[

i
2
(si+k

− si−k
)η̃k0

]
(2.86)

in Eq. (2.84), where

η̃k0 = 2
∫ ∞

0

J(ω)

ω2 [sin (ωk∆t)− sin (ω(k − 1)∆t)]dω. (2.87)

Figure 2.1: Graphical representation of the path sum in Eq. (2.84) for N = 3. System
propagator terms G are colored in red, influence functional terms F are colored
in blue.
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Note the typo in the definition of η̃k0 in Ref. [23], where this calculation has previously

been performed.

2.6 Blip Decomposition

As in Ref. [44], we consider the change of basis

∆sk := si+k+1/2
− si−k+1/2

, (2.88)

s̄k :=
1
2

(
si+k+1/2

+ si−k+1/2

)
. (2.89)

The configuration ∆sk = 0 is referred to as a sojourn and ∆sk ̸= 0 as a blip. In this basis,

Eq. (2.81) becomes

F(k+1/2,k′+1/2)
i±k+1/2i±

k′+1/2
= exp [−∆sk (Re(ηkk′)∆sk′ + 2iIm(ηkk′)s̄k′)] . (2.90)

The advantage of this basis is that only blips are coupled to previous times while sojourns

decouple from all previous times.

Eq. (2.84) then becomes

U(N0)
i±N ,i±0

= ∑
∆s1

... ∑
∆sN−1

∑̄
s1

... ∑
s̄N−1

Gi±N ,i±N−1
· ... · Gi±1 ,i±0

exp

[
−

N

∑
k=0

k

∑
k′=0

∆sk (Re(ηkk′)∆sk′ + 2iIm(ηkk′)s̄k′)

]
.

(2.91)

For example, in the case n = 2 and si±k
∈ {1,−1}, we have ∆sk ∈ {0, 2,−2} and

s̄k ∈

{0} if ∆sk = ±2

{1,−1} if ∆sk = 0
.

Note that therefore the sum over s̄k depends on the outer sum over ∆sk. For each of

the (n2 − 1)N−1 combinations of ∆s1, ∆s2, ..., ∆sN−1, the inner term of Eq. (2.91) may be

written as

exp

[
−

N

∑
k=0

k

∑
k′=0

∆skRe(ηkk′)∆sk′

]
∑

s̄N−1

Gi±N ,i±N−1
ei(∑j>N−1 ωj,N−1)s̄N−1 ... ∑̄

sk

Gi±k+1,i±k
ei(∑j>k ωj,k)s̄k ...

· ∑̄
s1

Gi±2 ,i±1
ei(∑j>1 ωj,1)s̄1 Gi±1 ,i±0

ei(∑j>0 ωj,0)s̄0 (2.92)

with ωk,k′ = −2∆skIm (ηkk′). The evaluation of this inner term is very efficient since

it only requires a maximum of N − 1 sums over n terms. Compared to Eq. (2.84), the

exact blip decomposition enables a reduction of the computational effort by a factor of

∼
(

n2 − 1
n2

)N

and is therefore most useful for systems with few states.
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In Ref. [44], an approximation valid for systems with a strong coupling to the bath re-

duces the computational effort even more dramatically. There, the number of blips that

are summed over in the outer sum is treated as a convergence parameter.

2.7 Iterative QUAPI

In order to tame the exponential scaling of the path sum in Eq. (2.84), Makri and Makarov [8,

9] have introduced a memory cut-off, which is a controlled approximation assuming that

the influence functional terms connecting times far apart from each other become negli-

gible. This leads to the iterative QUAPI method, which will be explained in detail in the

following.

The memory cut-off is justified when the bath autocorrelation function Eq. (2.61) falls

off sufficiently quickly in time. The latter implies ηkk′ ≈ 0 for k − k′ > kmax because of

Eq. (2.79) and thus F(k,k′) ≈ 0 in Eq. (2.84). For notational convenience, we ignore the ini-

tial and final half time-step and omit the subscripts as they follow from the superscripts.

Then, the reduced density matrix at time N · ∆t is given by

ρ̃(N) = ∑
0,1,...,N−1

N

∏
j=1

(
G(j,j−1)

) N

∏
k′=0

k′

∏
k′′=max(0,k′−kmax)

(
F(k′k′′)

)
ρ̃(0). (2.93)

Consider the case kmax = 1. We define the reduced density tensor

A(1) = ∑
0

G(10)F(11)F(10)F(00)ρ̃(0), (2.94)

which coincides with the reduced density matrix ρ̃(1) at time t = ∆t. Note that this is more

complicated in the original publication Ref. [9] as there the Trotter splitting is made such

that the initial and final half time-steps are taken with respect to the bath Hamiltonian.

For the next time-step, we may write

A(2) = ∑
1

∑
0

G(21)G(10)F(22)F(21)F(11)F(10)F(00)ρ̃(0) (2.95)

= ∑
1

G(21)F(22)F(21) ∑
0

G(10)F(11)F(10)F(00)ρ̃(0)

= ∑
1

Λ(21)A(1)

with

Λ(k+1,k) = G(k+1,k)F(k+1,k+1)F(k+1,k). (2.96)

Note that we can perform the summation over the 0-th index in A(1) already and still

compute A(2) from it due to the absence of F(20). Iterating this procedure allows to com-
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pute A at arbitrary times:

A(k+1) = ∑
k

Λ(k+1,k)A(k). (2.97)

The corresponding reduced density matrix is then given by

ρ̃(k) = A(k). (2.98)

Note that setting kmax = 1 allowed us to decompose the summation over n2N terms of

Eq. (2.93) into N matrix-vector multiplications of n2 × n2 matrices with vectors of dimen-

sion n2.

Now consider the case kmax = 2. Similarly as before, we define

A(10) = G(10)F(11)F(10)F(00)ρ̃(0), (2.99)

which allows us to write

A(21) = ∑
0

Λ(210)A(10) (2.100)

with

Λ(k+1,k,k−1) = G(k+1,k)F(k+1,k+1)F(k+1,k)F(k+1,k−1), (2.101)

giving the iterative procedure

A(k+1,k) = ∑
k−1

Λ(k+1,k,k−1)A(k,k−1), (2.102)

and the reduced density matrix

ρ̃(k) = ∑
k,k−1

A(k,k−1). (2.103)

This scheme is straightforwardly extended to arbitrary kmax with the initial condition

A(kmax−1,kmax−2,...,0) =
kmax−1

∏
j=1

(
G(j,j−1)

) kmax−1

∏
k′=0

k′

∏
k′′=0

(
F(k′k′′)

)
ρ̃(0), (2.104)

and the iterative procedure

A(k+1,k,...,k+2−kmax) = ∑
k+1−kmax

Λ(k+1,k,...,k+1−kmax)A(k,k−1,...,k+1−kmax) (2.105)
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with

Λ(k+1,k,...,k+1−kmax) = G(k+1,k)
k+1

∏
j=k+1−kmax

F(k+1,j), (2.106)

and the reduced density matrix

ρ̃(k) = ∑
k−1,k−2,...,k+1−kmax

A(k,...,k+1−kmax). (2.107)

The computational bottleneck of this algorithm is typically the memory required by the

object Λ, which contains n2(kmax+1) complex numbers.

2.7.1 Deviation from the Full Path Sum

By cutting off memory in Eq. (2.93), the i-QUAPI results are based on leaving out the

factors

N−kmax−1

∏
i=0

N

∏
j=kmax+1+i

F(j,i) (2.108)

compared to the full path sum. Due to Eq. (2.79) and (2.81), each of those terms behaves

as

F(j,i) ∼ 1 +O[∆t2L((j − i)∆t)]. (2.109)

The total number of these terms is of order N2 =
( t

∆t

)2. Depending on the decay behavior

of L(t), the number of non-negligible terms is of order N to N2. Since (1 +O[∆t2])N2
=

1 +O[∆t0] and (1 +O[∆t2])N = 1 +O[∆t], the memory cutoff may introduce errors of

order ∆tn for n ≥ 0. Therefore i-QUAPI somewhat surprisingly may not only contain

discretization errors of second order in ∆t due to Eq. (2.64), but also of first order in ∆t
due to cutting of memory. The term of order ∆t0 is of course the intuitive memory cutoff

error that is independent of ∆t.

2.8 Improved Iterative QUAPI

In this section, a novel improvement of the method shown in section 2.7 is introduced.

Consider the case kmax = 3 of Eq. (2.104):

A(210) = G(21)G(10)F(22)F(21)F(20)F(11)F(10)F(00)ρ̃(0). (2.110)
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The iteration of Eq. (2.105) can be rewritten as

A(321) = ∑
0

G(32)F(33)F(32)F(31)F(30)A(210) (2.111)

= G(32)F(33)F(32)F(31) ∑
0

F(30)A(210)

= Ω(321) ∑
0

F(30)A(210)

by using

Ω(k+1,k,k−1) = G(k+1,k)F(k+1,k+1)F(k+1,k)F(k+1,k−1). (2.112)

This results in the iterative procedure

A(k+1,k,k−1) = Ω(k+1,k,k−1) ∑
k−2

F(k+1,k−2)A(k,k−1,k−2) (2.113)

with the reduced density matrix

ρ̃(k+1) = ∑
k,k−1

A(k+1,k,k−1). (2.114)

For arbitrary kmax, we again start with the initial condition given in Eq. (2.104) and then

iterate according to

A(k+1,k,...,k+2−kmax) = Ω(k+1,k,...,k+2−kmax) ∑
k+1−kmax

F(k+1,k+1−kmax)A(k,k−1,...,k+1−kmax) (2.115)

with

Ω(k+1,k,...,k+2−kmax) = G(k+1,k)
k+1

∏
j=k+2−kmax

F(k+1,j). (2.116)

The corresponding reduced density matrix is given by

ρ̃(k+1) = ∑
k,...,k+2−kmax

A(k+1,k,...,k+2−kmax). (2.117)

Note that Ω contains only n2kmax complex numbers, reducing the memory usage com-

pared to Λ of i-QUAPI by a factor of n2. This gain in efficiency is due to drawing more

of the influence functional terms through sums which their indices do not depend on in

Eq. (2.93). Notice that drawing the Ω term in the last line of Eq. (2.111) into the sum ∑0

leads to the original i-QUAPI.

In our implementation for n = 2, a single iteration step shown in Eq. (2.115) for kmax = 14

takes ∼ 14 seconds on a single processor core while using ∼ 6 GB of memory. Given the

resources that are available to us, this makes kmax = 17 feasible.
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2.9 SMatPI

In this section, the small matrix decomposition of the path integral expression (SMatPI) [50],

which has been introduced by Makri, is discussed. SMatPI eliminates the large memory

requirements of the iterative QUAPI while only introducing an approximation that is

small compared to the memory cutoff.

Following Ref. [50], we start with the reduced propagator

U(N0) = ∑
1,...,N−1

N

∏
j=1

(
G(j,j−1)

) N

∏
k′=0

k′

∏
k′′=max(0,k′−kmax)

F(k′k′′). (2.118)

Consider the case kmax = 1 where

U(k+1,0) = ∑
k

M(k+1,k)U(k0) for k ≥ 1, (2.119)

with

M(k+1,k) = G(k+1,k)F(k+1,k)F(k,k) for k ≥ 1. (2.120)

Note that this is analogous to Eqs. (2.96) and (2.97) with the only difference that we do

not fix the initial condition here.

In the case kmax = 2, we write U(20) as the Markovian term from the previous case, which

only contains bath influences that connect adjacent time-steps in the system dynamics,

plus a correction from the two-step memory:

U(20) = ∑
1

M(21)U(10) + M(20). (2.121)

Using Eqs. (2.118) and (2.120), we find

M(20) = (F(20) − 1)∑
1

M(21)U(10). (2.122)

Due to Eqs. (2.79) and (2.81), the magnitude of this term is of O
(
∆t2L(2∆t)

)
, which is

small for two reasons: ∆t should in general be small enough such that |η··| ≪ 1 and

in this case we already neglect O
(
∆t2L(3∆t)

)
-terms implying that O

(
∆t2L(2∆t)

)
-terms

will usually also be small. Further note that F(20) − 1 will only be nonzero for si+2
̸= si−2

due to Eq. (2.81).

At the next time-step, we can write

U(30) = ∑
2

M(32)U(20) + ∑
1

M(31)U(10) + M(30). (2.123)
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In analogy to Eq. (2.122), we have:

M(31) = (F(31) − 1)∑
2

M(32)M(21), (2.124)

and therefore

M(30) = ∑
2

∑
1
(F(31) − 1)(F(20) − 1)M(32)M(21)U(10). (2.125)

This term is of O
((

∆t2L(2∆t)
)2
)

and therefore even smaller than M(20).

The exact decomposition of the reduced propagator can be continued to arbitrary times

and arbitrary kmax. It reads

U(N0) =
N−1

∑
r=1

∑
N−r

M(N,N−r)U(N−r,0) + M(N0). (2.126)

For time-independent Ĥ0 we have

M(N,N−r) = M(r,0). (2.127)

As the magnitude of M(N0) rapidly decreases when N is increased while kmax is fixed, we

may approximate the reduced propagator as

U(N0) =
rmax

∑
r=1

M(N,N−r)U(N−r,0) for N ≥ rmax + 1, (2.128)

introducing a new convergence parameter rmax. Setting rmax = kmax will typically devi-

ate from the i-QUAPI result using kmax less than the error of the memory truncation of

i-QUAPI (see section 2.9.1).

We now give a recipe for the computation of ρ̃(N) for a time-independent Ĥ0 within

SMatPI with parameters rmax and kmax. To get the propagation of Eq. (2.128) started,

we need U(N0) for N = 1, ..., rmax, which are computed by direct evaluation of Eq. (2.118).

Then Eq. (2.126) yields

M(j,0) = U(j,0) −
j−1

∑
r=1

M(j,r)U(r,0). (2.129)

According to Eq. (2.127), the M(N,N−r) are now given by M(r,0) for r = 1, ..., rmax. This then

allows to approximately compute all U(N,0) by use of Eq. (2.128) and from it the reduced

density matrix follows trivially. The most computational demanding part of SMatPI is

the calculation of U(rmax0), which requires summation of n2(rmax−1) terms for each of its

n4 entries. For rmax = kmax, this effort is comparable to a single i-QUAPI time-step.

The computational cost of the SMatPI long-time propagation according to Eq. (2.128) is

negligible as it only requires matrix multiplications of rmax n2 × n2 matrices for one time-
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step. The memory bottleneck of i-QUAPI is eliminated since SMatPI only requires the

storage of arrays that contain n4 complex numbers.

In our implementation for n = 2 using the blip decomposition, the computation time on

a single processor core for rmax = 20 is ∼ 20 hours.

2.9.1 Deviation from i-QUAPI

While in previous works examples have been given where choosing rmax = kmax in

SMatPI leads to sub-percent level accuracy compared to i-QUAPI taking kmax time-steps

of memory into account[10, 50], we will here elaborate more on showing the explicit form

of the errors produced by SMatPI in terms of the small factors (F(kk′) − 1). For rmax =

kmax = 2, the dominant term left out in the truncation in Eq. (2.128) is given by Eq. (2.125)

and contains the two factors (F(31) − 1)(F(20) − 1). By writing H(∆k) := (Fkk′ − 1) with

∆k = k − k′ and not explicitly writing out the summation and the Markovian dynamics

part (which is always incorporated exactly anyway), we get

M(30) ∝ H(2) · H(2). (2.130)

For rmax = kmax = 3, the dominant term M(40) left out in the truncation has the form

M(40) ∝ 2H(3)H(2) + H(3)H(3) +O
(
(H)3) . (2.131)

The number of terms that are of second order in H contained in M(kmax+1,0) for rmax =

kmax = 3, 4, 5, 6 are graphically depicted in Fig. 2.2. Note how M(40) is represented, which

contains two terms of the form H(3)H(2) and one term of the form H(3)H(3).
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Figure 2.2: Color-coded number of second order terms H(∆k1)H(∆k2) contained in
M(kmax+1,0). Top left: rmax = kmax = 3. Top right: rmax = kmax = 4. Bot-
tom left: rmax = kmax = 5. Bottom right: rmax = kmax = 6

We have found that the H(∆k1)H(∆k2) terms in M(kmax+1,0) have the property that ∆k1 +

∆k2 ≥ kmax + 2, which are of O(L(∆k1)L(∆k2)) (see Fig. 2.2 for a few examples). We have

also checked that the terms of third order in H have a similar property. Therefore, the er-

ror introduced by SMatPI with rmax = kmax compared to i-QUAPI while increasing kmax

will decay similarly to the squared bath autocorrelation function. Thus, the error intro-

duced by the SMatPI-truncation will in general be smaller than the memory-truncation

due to the second-order nature of the SMatPI-truncation.

2.10 x-SMatPI

In this section, the extended SMatPI (x-SMatPI) method [51], which has been introduced

by Makri, is discussed. x-SMatPI involves incorporating some additional long-range in-

fluence functional terms to the SMatPI scheme at essentially no computational cost.

Following Ref. [51], the SMatPI procedure is extended to kmax > rmax. Consider U(rmax+1,0)

of Eq. (2.128). Compared to the full path sum, it contains the typical SMatPI errors of

O(H2), but it also does not include F(rmax+1,0). We can simply include it by

U(rmax+1,0) = F(rmax+1,0)
rmax

∑
r=1

M(rmax+1,rmax+1−r)U(rmax+1−r,0). (2.132)
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By use of Eq. (2.126), it follows that

M(rmax+1,0) = (F(rmax+1,0) − 1)
rmax

∑
r=1

M(rmax+1,rmax+1−r)U(rmax+1−r,0). (2.133)

We may even proceed with this procedure to arbitrary kmax at negligible computational

cost as this operation only acts on the small matrices with n4 elements. Note that this

method will include all first order contributions from influence terms that span up to

kmax time-steps.

Including the correct connections to intermediate and end points and also computing the

quantities that are needed for propagation, we extend the propagation of SMatPI and

calculate

U(rmax+j,0) = F(rmax+j,0)
rmax+j−1

∑
r=1

M(rmax+j,rmax+j−r)U(rmax+j−r,0), (2.134)

M(rmax+j,0) =
(

F(rmax+j,0) − 1
) rmax+j−1

∑
r=1

M(rmax+j,rmax+j−r)U(rmax+j−r,0) (2.135)

for j = 1, ..., kmax − rmax. If we decide to cut bath memory after kmax time-steps, for

example to test if cutting extremely long range correlations makes a difference, we can

do so by computing

U(j0) =
kmax

∑
r=1

M(j,j−r)U(j−r,0) (2.136)

for j >= kmax + 1.

2.10.1 Deviation from the Full Path Sum

Suppose we want to compute U(N0) at some arbitrary time N∆t. We may set kmax = N
as this comes at no significant computational effort within x-SMatPI and then start from

a low rmax and increase it until convergence is reached. The second order terms in H
of the error that x-SMatPI introduces are graphically depicted in Fig. 2.3 for the case

N = 6. We again find that the H(∆k1)H(∆k2) terms have the property that ∆k1 + ∆k2 ≥
rmax + 2. Thus, the error introduced by x-SMatPI while increasing rmax will again decay

similarly to the bath autocorrelation function. Of course the number of error terms in an

x-SMatPI calculation with rmax < kmax is far larger than for the corresponding SMatPI

calculation with rmax = kmax as the SMatPI decomposition is truncated earlier. In fact, it

has been numerically shown that x-SMatPI performs similarly to SMatPI in some cases as

the additional influence functional terms taken into account are offset by the additional

approximation [52].
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Figure 2.3: Color-coded number of second order terms H(∆k1)H(∆k2) contained in the dif-
ference between the full path sum U(60) and its approximation using x-SMatPI
with kmax = 6 and different values for rmax. Top left: rmax = 2. Top right:
rmax = 3. Bottom left: rmax = 4. Bottom right: rmax = 5.
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3 Time-Evolving Matrix Product Operator
(TEMPO)

All of the improvements of the original QUAPI method presented in chapter 2 directly

inherit the exponential scaling of the path sum (Eq. (2.84)) with respect to the number of

time-steps without cutting off memory.

A similar fundamental problem is encountered in quantum many-body physics, where

the Hilbert space scales exponentially with the number of particles. The density matrix

renormalization group (DMRG) [56, 57] is a variational technique concerned with finding

the ground state of such many-body problems by compressing their wavefunction into

a matrix product state, which makes use of the fact that such states are typically far from

being fully entangled [58].

A similar strategy is employed by the time-evolving matrix product operator (TEMPO)

technique [11], which efficiently compresses the discretized influence function of QUAPI

into a matrix product state. However, the scopes of DMRG and TEMPO are very differ-

ent. While DMRG compresses the state of many particles into a matrix product state at

a fixed time, TEMPO compresses the history of a single particle immersed in a heat bath

into a matrix product state. Stated differently, the matrix product states used in DMRG

exist in space while the matrix product states used in TEMPO exist in time.

In section 3.1, the formal prerequisites of TEMPO are presented. This is followed by

a novel simplified derivation of TEMPO in section 3.2. In section 3.3, we validate our

numerical TEMPO results on a single mode model, which is trivial to solve using other

methods. However, for the TEMPO approach it presents a significant challenge as it ren-

ders the system dynamics strongly non-Markovian. Furthermore, the scaling of TEMPO

with respect to the Trotter time-step size is analyzed on this model.

The effects of dissipative environments on the electronic dynamics in biomolecules can

be modeled by a more general version of the Caldeira-Leggett model involving multiple

baths [30, 31]. In section 3.4, we introduce a novel generalization of the TEMPO method

to this case. Subsequently, this method is validated by comparing to previous results

and then used to investigate the suppression of the localization transition in the Ohmic

spin-boson model by a second bath.
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3.1 Introduction to Tensor Networks

In this section, the basics of tensor networks required for understanding the TEMPO algo-

rithm [11] are presented by following Refs. [45, 59]. Consider a state in a two-body Hamil-

tonian |ψ⟩ ∈ H1 ⊗H2 with finite-dimensional Hilbert spaces dim(H1) = dim(H2) = d.

Given orthonormal bases {
∣∣nj
〉
|nj ∈ {1, 2, ..., d}} where j ∈ {1, 2}, we can write

|ψ⟩ = ∑
n1,n2

|n1, n2⟩ ⟨n1, n2 |ψ⟩ =: ∑
n1,n2

ψn1n2 |n1, n2⟩ . (3.1)

The standard graphical representation for the matrix ψn1n2 ∈ Cd×d is a rectangle with a

leg for each index and is depicted in Fig. 3.1. If the two-body state |ψ⟩ is separable (i.e.

Figure 3.1: Tensor diagram of the coefficient matrix ψn1n2 of Eq. (3.1).

not entangled), then ψn1n2 factorizes as

ψn1n2 = ψn1
1 ψn2

2 (3.2)

into the two rank-1 tensors ψn1
1 and ψn2

2 , which are depicted in Fig. 3.2. Note that we use

Figure 3.2: Tensor diagram of the rank-1 tensors ψ
n1,2
1,2 of Eq. (3.2) with indices indicated

on top of legs.

the term "rank-k tensor" here to reference a k-dimensional array of complex numbers and

not an object with a specific behavior under some transformation. The matrix product state
(MPS) representation is given by

ψn1n2 = ∑
i
(ψ1)

n1
i (ψ2)

n2
i . (3.3)

Note how the matrix product state is effectively an expansion of the state in Eq. (3.1) into

multiple separable states. The rank-2 tensors (ψ1)
n1
i and (ψ2)

n2
i may be retrieved from
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Figure 3.3: Tensor diagram of the matrix product state ∑i(ψ1)
n1
i (ψ2)

n2
i of Eq. (3.3).

ψn1n2 by applying a singular value decomposition (SVD):

ψn1n2 =
rank(ψn1n2 )

∑
i=1

Ln1
i σiR

n2
i (3.4)

where we identify (ψ1)
n1
i = Ln1

i σi and (ψ2)
n2
i = Rn2

i using the convention to multipy the

singular values σi to the left. Graphically, we represent the sum over the common index

i in Eq. (3.3) by connecting up the corresponding legs into a bond as shown in Fig. 3.3.

The number of terms in the sum that is represented by such a bond is referred to as the

bond dimension. Consider the example of a system consisting of two spin− 1
2 particles, i.e.

|n1,2⟩ ∈ {|↑⟩ , |↓⟩}, which are in the state

ψ =
1√
2
(|↑↑⟩+ |↓↑⟩) =:

1√
2

(
1 0

1 0

)
. (3.5)

Application of a SVD yields

L =
1√
2

(
1 1

1 −1

)
σ =

(
1

0

)
R =

(
1 0

0 −1

)
. (3.6)

As the rank of the matrix in Eq. (3.5) is 1, there is only one non-zero singular value and

thus the MPS consists of only one term ψ = ψ1ψ2 with ψ1 = 1√
2
(|↑⟩+ |↓⟩) and ψ2 = |↑⟩.

Thus, constructing the MPS has automatically revealed the fact that the state in Eq. (3.5)

is separable. More generally, the degree of entanglement of the system is related to the

absolute value of the singular values.

Next consider a many-body state |ψ⟩ ∈ H1 ⊗H2 ⊗ ...⊗HN . In analogy to the two-body

case, we write the state in some orthonormal basis as

|ψ⟩ = ∑
n1,n2,n3,...,nN

ψn1n2n3...nN |n1, n2, n3, ..., nN⟩ (3.7)

and graphically represent the arising rank-N tensor ψn1n2n3...nN in Fig. 3.4. The MPS rep-

resentation in this case has the form

ψn1n2n3...nN = ∑
i

(ψ1)
n1
i1
(ψ2)

n2
i1i2

(ψ3)
n3
i2i3

...(ψN)
nN
iN−1

, (3.8)

which is graphically represented in Fig. 3.5. This case makes the potential for exponential
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Figure 3.4: Tensor diagram of the coefficient rank-N tensor ψn1n2n3...nN of Eq. (3.7).

Figure 3.5: Tensor diagram of the matrix product state ∑i(ψ1)
n1
i1
(ψ2)

n2
i1i2

(ψ3)
n3
i2i3

...(ψN)
nN
iN−1

of Eq. (3.8).

savings in the amount of memory required to store a quantum many-body state appar-

ent: The MPS represents a rank-N tensor while only consisting of rank-3 tensors. To

accurately represent a maximally entangled state however, the bond dimension of the

respective tensors would be so large that no memory would be saved. In cases where the

system is far from being fully entangled, which is oftentimes fulfilled in many-body sys-

tems [58], the savings in memory will indeed be exponential.While the computation of

a scalar product ⟨ψ | ϕ⟩ has complexity O(dN) for uncrompressed states, the complexity

reduces to O(b3dN) if ψ and ϕ are matrix product states with bond dimension b for every

internal bond. For N = 3, the corresponding tensor diagram is given in Fig. 3.6. The

Figure 3.6: Tensor diagram of the scalar product ⟨ψ | ϕ⟩
with bond dimensions indicated next to bonds.

procedure to contract this tensor diagram is sketched in Fig. 3.7. We start by taking the

tensors ϕ1 and ψ∗
1 and execute the summation of d terms for each of the b2 elements of the

resulting rank-2 tensor, which is an O(b2d) operation. Next, we contract this tensor with

ϕ2, which requires summation of b terms for each of the b2d terms of the resulting rank-3

tensor, which is an O(b3d) operation. This tensor is then contracted with ψ∗
2 , which re-

quires summation of bd terms for each of the b2 terms of the resulting rank-2 tensor, which

is again an O(b3d) operation. The final result for the scalar product is then obtained by

contracting with ϕ3 and ψ∗
3 , which is an O(b2d) operation. Note how this procedure is

straightforwardly generalized to arbitrary N by repetition of the second and third step.

The computational complexity of the scalar product is thus reduced from exponential to
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Figure 3.7: Contraction of the scalar product tensor diagram shown in Fig. 3.6.

linear scaling in N as all the operations are only acting locally. Keep in mind however

that in the case of full entanglement these savings will be counteracted by the bond di-

mension b scaling exponentially in N. In analogy to the matrix product state as in Fig. 3.5,

Figure 3.8: Tensor diagram of a matrix product operator Ô acting on a matrix product
state |ψ⟩.

an operator Ô can be represented as a matrix product operator (MPO)

On1m1n2m2...nNmN = ∑
i

(O1)
n1m1
i1

(O2)
n2m2
i1i2

(O3)
n3m3
i2i3

...(ON)
nNmN
iN−1

. (3.9)

The procedure to compute an MPO acting on an MPS as sketched for N = 3 in Fig. 3.8 is

similar to the scalar product and of crucial importance for the TEMPO algorithm intro-

duced in Section 3.2. As sketched in Fig. 3.9, we start by contracting O1 and ψ1 together,

which is an O(b2d2) operation. Then, we contract O2 and ψ2 together, which is an O(b4d2)

operation. Finally, we contract O3 and ψ3 together, which is again of O(b2d2). General-

ized to arbitrary N, this procedure is thus of O(Nb4d2). Note how the bond dimension

of the resulting MPS is b2 as opposed to b in the initial state, which means that repeated

application of an MPO to an MPS leads to an exponential growth of the bond dimension.

Assuming limited entanglement, this can be significantly slowed by performing an SVD

on all of the bonds and then truncating singular values. Thus we continue our procedure
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Figure 3.9: Contraction of the tensor diagram of a matrix product operator acting on a
matrix product state as shown in Fig. 3.8.

in the third step of Fig. 3.9 by performing an SVD of the two tensors on the left, which

represent a d × b2d matrix. We then truncate all singular values λ, which are smaller than

λc · λmax, where λmax is the largest singular value and λc is a convergence parameter re-

lated to the fidelity of the approximation. This is then repeated for all remaining bonds

as well, which forms a full compression sweep. In order to improve compression, several

sweeps are performed resulting in bond dimensions b̃, which are generally smaller than

b. We remark that in the literature a procedure where one truncates all singular values

that have a sum of squares smaller than a threshold times the sum of all squared singular

values is commonplace [60].

3.2 TEMPO: Computing QUAPI using a Tensor Network

In the reduced propagator of the QUAPI scheme Eq. (2.84), the structure connecting two

adjacent time-steps shows up in both the bare system propagator and the influence func-

tional. Using a simplified notation αk := i±k and leaving out the superscripts as they can

be read off from the subscripts, we define [45]

Iαk1
αk2

:=

Gαk1
αk2

Fαk1
αk2

if k1 − k2 = 1,

Fαk1
αk2

else,
(3.10)

to reach a more compact notation for the reduced propagator

UαNα0 = ∑
α1,...,αN−1=1

N

∏
k=0

k

∏
k′=0

Iαkαk′ . (3.11)

Using this expression as a starting point, a more intuitive derivation than what has orig-

inally been given in Ref. [45] is shown here. We first consider the case N = 1 of Eq. (3.11)
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in Fig. 3.10. We explicitly write the three tensors that the reduced propagator consists

Figure 3.10: Manipulation of Eq. (3.11) for N = 1 with corresponding tensor diagrams
with indices indicated next to legs.

of in that case and arrange them in a tensor diagram in a triangular structure motivated

by the structure of Eq. (3.11). Note that the tensors are not connected in the first step as

there is no summation. In the next step, we introduce a Kronecker delta δα0β0 and a sum

over all β0, which cancel each other out. In the tensor diagram, we now reinterpret the

bottom right tensor marked in blue as δα0β0 Iα0α0 , which is then a (diagonal) rank-2 tensor.

Additionally, we are allowed to replace α0 by β0 in Iα1α0 as the Kronecker delta always

ensures α0 = β0 anyways. The sum over β0 is then automatically incorporated in the

tensor diagram in the bond between the top and bottom right tensor. We then proceed by

introducing the Kronecker delta δα1β1 and a corresponding sum over β1 and replace α1 by

β1 in Iα1β0 . Then, we interpret the bottom left tensor marked in red as δα1β1 Iα1α1 . Notice

that the introduction of Kronecker deltas has allowed us to form a bond out of all the legs

of tensors that are pointed to another tensor in the tensor diagram. In the case N = 2,

the reduced propagator reads Uα2α0 = ∑α1
Iα2α2 Iα2α1 Iα2α0 Iα1α1 Iα1α0 Iα0α0 , which is drawn as a

tensor diagram at the top of Fig. 3.11 with the sum over the index α1 being written explic-

itly. Following our observation in the case N = 1, we connect up all the legs pointed to

another tensor (marked in blue). Then we realize that there are two open legs with index

α1, which by definition form a bond together with the sum over α1 (marked in red). For

N = 3, this procedure results in the tensor diagram given in Fig. 3.12. The generaliza-

tion of this procedure to arbitrary N is now straightforward. The formal definition of the

tensors labeled (k1, k2) in the figures above is given in Fig. 3.13 where tensors with fewer

legs lack the corresponding Kronecker deltas. Finally, the reduced propagator Eq. (3.11) is

computed iteratively by contracting the arising tensor network. We begin with the three
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Figure 3.11: Tensor diagrams for manipulation of Eq. (3.11) for N = 2 with indices indi-
cated next to legs.

Figure 3.12: Tensor diagram of Eq. (3.11) for N = 3 with indices indicated next to legs.

tensors on the lower right and contract the bond between the tensors (1, 0) and (0, 0) as

marked in blue in Fig. 3.14. Then, we store the resulting tensors for the next time-step
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Figure 3.13: Definition of tensors shown in Fig. 3.10, Fig. 3.11, and Fig. 3.12.

and obtain the reduced propagator for N = 1 by summing over the redundant leg β0

and the remaining bond. For the next time-step, we begin with the saved tensors from

Figure 3.14: Tensor diagram for the first Trotter time-step of TEMPO.

the previous step and contract them with the next diagonal row of tensors, as depicted in

Fig. 3.15. Note that this operation closely resembles an MPO acting on an MPS, which we

subsequently handle as discussed in Section 3.1. We once again store the resulting tensors

for the next time-step and obtain the reduced propagator for N = 2 by summing out the

redundant legs β0 and β1, and then contracting the remaining bonds. Thus, the essence

Figure 3.15: Tensor diagram for the second Trotter time-step of TEMPO.

of the TEMPO method is to reformulate the path summation in Eq. (2.84), which is the

central object of the QUAPI method. This reformulation involves expressing it as the con-
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traction of a tensor network. The MPS-MPO contractions are accompanied by a singular

value cutoff denoted as λc. This is treated as a convergence parameter and thus TEMPO

retains the numerical exactness of QUAPI. The primary advantage of TEMPO lies in the

significant extension of the number of time-steps that can be computed without impos-

ing a hard memory cutoff. This extension has proven crucial for the research presented

in chapter 4. Specifically, while the full path sum can be computed up to approximately

N = 20 for a two-level system (see also Section 2.9), the corresponding tensor network

can typically be contracted with negligible error for several hundred or even more time-

steps, depending on the bath spectral density.

3.3 Benchmark of TEMPO on a Single Mode Model

Consider the special case of the Caldeira-Leggett model of Eq. (2.36), where the central

system is a symmetric two-level system

ĤS =
Ω
2

σ̂x (3.12)

with the Pauli matrix σx and the parameter Ω, which is referred to as the tunneling split-
ting. The two-level system is then coupled to a single harmonic mode at frequency ν

via the coupling operator ŝ = σ̂z. Expressing the full Hamiltonian in terms of ladder

operators, we have:

Ĥ = ĤS + Ĥint + Ĥosc =
Ω
2

σ̂x −
g
2

σ̂z

(
â + â†

)
+ νâ† â. (3.13)

Here, we choose Ω = g = ν. Terms proportional to the identity operator are omitted from

the Hamiltonian, as they do not impact the dynamics (including the counter-term, since

σ̂2
z = 1̂). The solution can be straightforwardly obtained by retaining only the lowest N

eigenstates of the harmonic mode, i.e.

Ĥosc =
∞

∑
n=1

ν |n⟩ ⟨n| ≈
N

∑
n=1

ν |n⟩ ⟨n| , (3.14)

and then numerically integrating the Schrödinger equation where N is treated as a con-

vergence parameter. For the two-level system initialized in the |↑⟩ state and the oscil-

lator initialized in the ground state, the polarization dynamics P(t) := ⟨σ̂z⟩ (t) is shown

in Fig. 3.16. As high-energy oscillator states are exponentially suppressed, rapid con-

vergence with respect to N is observed. We use this result to benchmark the TEMPO

algorithm. To recover the model in Eq. (3.13), we choose the spectral density

J(ω) = πg2δ(ω − ν). (3.15)
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Figure 3.16: Polarization dynamics of the single mode model obtained by numerical inte-
gration of the Schrödinger equation for different numbers of oscillator eigen-
states N retained.

The initial preparation of the oscillator in the ground state corresponds to zero tempera-

ture, i.e., coth
(

ωβ

2

)
= 1. Consequently, the bath autocorrelation function becomes

L(t) = g2e−iνt. (3.16)

While this toy model is trivial to solve by direct integration of the Schrödinger equation

as shown before, it poses a formidable challenge for the TEMPO approach. This is be-

cause TEMPO relies on the assumption that the influence functional compresses well.

The rate of compression is related to the amount of long-time entanglement within the

Feynman-Vernon influence functional, which depends on how quickly L(t) falls off due

to Eq. (2.79). As L(t) does not fall off at all in this case, methods imposing a hard memory

cutoff such as i-QUAPI and SMatPI cannot be used and one might think that the execu-

tion of the full path sum in Eq. (2.84) would be the best option. However, it turns out

that TEMPO still performs much better than the full path summation. The correspond-

ing TEMPO result is shown and compared to the direct integration of the Schrödinger

equation in Fig. 3.17. In the TEMPO simulations, we have found that smaller Trotter

time-steps ∆t require a smaller singular value cutoff λc to reach the same level of accu-

racy. Specifically:

• For Ω∆t = 0.4, we choose λc ∈ {10−3.5, 10−4, 10−4.5}.

• For Ω∆t = 0.3, we choose λc ∈ {10−4, 10−4.5, 10−5}.

• For Ω∆t = 0.2, we choose λc ∈ {10−4.5, 10−5, 10−5.5}.

For the smallest Trotter time-step of Ω∆t = 0.2, 50 TEMPO iteration steps have been per-
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Figure 3.17: Polarization dynamics of the single mode model obtained by numerical in-
tegration of the Schrödinger equation at N = 20 (red solid line) and TEMPO
results (markers) with color-coded Trotter time-step ∆t and singular value
cutoff λc markerstyle-coded (from least to most accurate: cross, plus, star).

formed within a few minutes on a laptop with converged λc. In contrast, the summation

of the full path sum would take about 6 orders of magnitude longer than the age of the

universe to compute using the same hardware. In Fig. 3.18, the growth of internal bond

dimension arising in the contraction of the TEMPO tensor network is visualized. Af-

ter the first time-step, there is only one internal bond as shown on the right-hand side of

Fig. 3.14. In the second time-step there are two internal bonds as shown on the right-hand

side of Fig. 3.15, with the number of internal bonds increasing by one for every subse-

quent time-step. The bond dimension grows almost exponentially (see Fig. 3.18 (b)) as a

result of the strong long-time entanglement mentioned earlier.

Notably, the maximum bond dimension remains essentially constant in time for differ-

ent choices of ∆t, as shown in Fig. 3.18 (b). Consequently, TEMPO scales only quadrati-

cally in the number of time-steps taken while keeping the simulation time and the accu-

racy with respect to λc constant. This is another significant advantage over the summa-

tion of the full path sum, which scales exponentially in this respect.

3.4 Generalization of TEMPO to Non-Commuting Baths

In this section, a novel generalization of the TEMPO method that allows to compute

the dynamics of systems that are coupled to two baths via coupling operators that do

not commute with each other. This is done by rephrasing the path sum obtained by

Palm [29], which is based on the QUAPI method, such that it can be computed in terms of

a tensor network contraction. Thereby, a substantial increase in computational efficiency

is achieved.
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Figure 3.18: Growth of bond dimensions within TEMPO as a function of time. (a) Color-
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Each row corresponds to a time-step. (b) Maximum internal bond dimension
for different Trotter time-steps and λc corresponding to a comparable level
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Consider the extension of the Caldeira-Leggett model where the central system couples

to two harmonic oscillator baths with the Hamiltonian

Ĥ = ĤS + Ĥenv, 1 + Ĥenv, 2 = ĤS + ∑
j

 p̂2
1,j

2m1,j
+

1
2

m1,jω
2
1,j

(
x̂1,j −

c1,j ŝ1

m1,jω
2
1,j

)2


+ ∑
j

 p̂2
2,j

2m2,j
+

1
2

m2,jω
2
2,j

(
x̂2,j −

c2,j ŝ2

m2,jω
2
2,j

)2
 . (3.17)

Here, we assume that the first bath is a pure dephasing bath, characterized by the commu-

tation relation
[
ŝ1, ĤS

]
= 0. For the other bath, we allow a general coupling operator,

which typically will be non-commuting, i.e., [ŝ1, ŝ2] ̸= 0. In Ref. [29], QUAPI has been

generalized to this model. The approach involves using a memory cutoff and then itera-

tively computing the path sum, similar to the method presented in section 2.7. Due to the

additional set of oscillators, this approach is significantly more computationally expen-

sive, effectively halving the number of memory steps kmax that can be taken into account.

As opposed to the treatment in section 3.2, it is advantageous for this purpose to con-

sider the system propagator and the influence functional separately, as previously done

in Ref. [61]. This separation allows us to compute the influence functional independently

of the parameters of the central system. Consequently, the influence functional can be

reused for different parameter choices of the central system.
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In the previously considered single-bath case (using the Hamiltonian in Eq. (2.36)), the

reduced density matrix at time N∆t can be expressed as

ρ̃
(N)
αN =

n2

∑
α0,...,αN−1=1

ρ̃
(0)
α0 G(α0, ..., αN)F(α0, α1, ..., αN), (3.18)

where

F(α0, α1, ..., αN) =
N

∏
k=0

k

∏
k′=0

Fαkαk′ (3.19)

and

G(α0, ..., αN) =
N

∏
k=1

Gαkαk−1 . (3.20)

Notice that this directly follows from Eq. (3.11). The influence functional F(α0, α1, ..., αN)

is computed using the TEMPO algorithm (see section 3.2) where Iαkαk′ is replaced by Fαkαk′

in Eq. (3.11). Analogously to the right hand side of Fig. 3.15, TEMPO can be used to obtain

the matrix product state representation of the influence functional, which is depicted in

Fig. 3.19 for the present case. To rewrite the system propagator as a matrix product state,

Figure 3.19: Tensor diagram of F(α0, α1, ..., αN).

we perform a singular value decomposition on each Gαkαk−1 such that

G(α0, ..., αN) =
N

∏
k=1

∑
jk

G̃(k)
αk jk

Ḡ(k−1)
αk−1 jk

. (3.21)

For notational convenience, the initial system state ρ̃
(0)
α0 is absorbed into the matrix prod-

uct state representation of the system propagator (Fig. 3.20).

Figure 3.20: Tensor diagram of ρ̃
(0)
α0 G(α0, ..., αN).

To compute the sum in Eq. (3.18) as a scalar product between the matrix product states
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shown in Figs. 3.19 and 3.20, we introduce a Kronecker delta and an according sum over

the index α̃N , and arrive at

ρ̃
(N)
αN =

n2

∑
α0,...,αN−1,α̃N=1

ρ̃
(0)
α0 δαN α̃N G(α0, ..., α̃N)F(α0, α1, ..., α̃N). (3.22)

This expression is graphically depicted in Fig. 3.21.

Figure 3.21: Tensor diagram of Eq.(3.22) with δαN α̃N F(α0, α1, ..., α̃N) colored in blue and
ρ̃
(0)
α0 G(α0, ..., α̃N) colored in red.

In Ref. [29], the reduced density matrix for the Hamiltonian given in Eq. (3.17) at time

N∆t was shown to be

ρ̃
(N)
αN =

n2

∑
α0,...,αN−1=1
β0,...,βN−1=1

K(α0, ..., αN , β0, ..., βN−1)ρ̃
(0)
α0 F1(β0, β1, ..., βN−1)F2(α0, α1, ..., αN), (3.23)

where F1/2[J1/2(ω)] denote the influence functionals corresponding to the spectral den-

sity J1/2(ω) of the respective bath. The system propagator

K(α0, ..., αN , β0, ..., βN−1) =

(
N

∏
k=1

K(αk, αk−1, βk−1)

)
(3.24)

is given by

K
(
i±k , i±k−1, j±k−1

)
=
〈

s2,i+k

∣∣∣ e−iHS∆t
∣∣∣s1,j+k−1

〉 〈
s1,j+k−1

∣∣∣ s2,i+k−1

〉 〈
s2,i−k−1

∣∣∣ s1,j−k−1

〉 〈
s1,j−k−1

∣∣∣ eiHS∆t
∣∣∣ s2,i−k

〉
(3.25)

where we have used the notation α := i± and β := j±.

To evaluate the path sum in terms of a tensor network, we begin by expressing the

system propagator as a matrix product operator and absorb the initial state, similarly to

the single bath case. The corresponding MPO is depicted in Fig. 3.22. Next, the influ-

ence functionals F1 and F2 are computed using the TEMPO method. The path sum in

Eq. (3.23) can then be represented as a tensor diagram, as shown in Fig. 3.23. It is eval-

uated by first contracting the green tensors into the red tensors, which is an MPS-MPO

operation. Notably, this operation is computationally far cheaper than the computation

of the influence functionals, which each require N MPS-MPO operations. The computa-

tionally most demanding step is subsequently contracting the remaining two MPS-like
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Figure 3.22: Tensor diagram of ρ̃
(0)
α0 K(α0, ..., αN , β0, ..., βN−1).

Figure 3.23: Tensor diagram of Eq. (3.23) with δαN α̃N F2(α0, α1, ..., α̃N) colored in blue,
ρ̃
(0)
α0 K(α0, ..., α̃N , β0, ..., βN−1) colored in red, and F1(β0, ..., βN−1) colored in

green.

structures as each of them has the bond dimension necessary to accurately store the in-

fluence functional of the respective bath. Thus, the contraction of Eq. (3.23), when given

the influence functionals and the system propagator, is approximately 8 times more com-

putationally expensive than the last iterative step of computing an influence functional

as the computational complexity of an MPS-MPS operation scales cubically in the bond

dimension. For simplicity, we use the same value for the singular value cutoff λc for all

tensor contractions involved.

3.4.1 Verification Based on Previous Results

To verify the implementation of our method, we compare our results to those of Ref. [62]

that utilized the direct summation technique. There, the central two-level system

ĤS =
Ω
2

σ̂x (3.26)

is considered. It is initialized in the |↑⟩ state and coupled to two baths by the operators

ŝ1 = σ̂x and ŝ2 = σ̂z. The baths are characterized by the Ohmic spectral densities

Jx/z(ω) =
π

2
αx/zωe−ω/ωc (3.27)

with the coupling strengths αx/z. The high-frequency cutoff, which is set to ωc = 10Ω,

is required to ensure the integral in Eq. (2.75) is finite. The initial bath temperatures are

set to T = 0.2Ω, and the coupling strengths are αx = αz = 1/32. This setup corresponds

to the parameters chosen for the black curve in Fig. 2 of Ref. [62]. We reproduce this
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curve in Fig. 3.24 using the tensor network approach introduced here. We use the Trotter

time-step Ω∆t = 0.6 (as in Ref. [62]) and then converge the singular value cutoff λc.

Similarly to the massive advantage in computational efficiency that the original TEMPO
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Figure 3.24: Polarization dynamics for αx = αz = 1/32, bath initial temperatures T =
0.2Ω, bath high-frequency cut-off ωc = 10Ω, and different values for singular
value cutoff λc as indicated.

provides, the method developed here also offers a tremendous advantage. Specifically,

the computation time required to compute the black curve of Fig. 3.24 is reduced from

about a day using iterative summation [29] to just a few seconds using the tensor network

contraction.

3.4.2 Quantum Zeno Disruption by Non-Commuting Baths

The special case of the model used in the previous subsection, where the system is only

coupled to the σz-bath (i.e., αx = 0), is referred to as the spin-boson model. At an initial

bath temperature of T = 0, the polarization dynamics is particularly well-studied. The

noninteracting blip approximation (NIBA) [2] is based on the Feynman-Vernon influence

functional and the subsequent approximation that a certain type of paths referred to as

blips (see also section 2.6) decouple from each other. In the scaling limit ωc → ∞, NIBA

yields damped coherent oscillations for small coupling strengths αz [55]:

P(t) ≈ 1
1 − αz

cos(ωt)e−γt − αz

1 − αz
. (3.28)

The renormalized oscillation frequency is given by

ω = Ωeff cos
[

παz

2(1 − αz)

]
, (3.29)
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the dephasing rate by

γ = Ωeff sin
[

παz

2(1 − αz)

]
, (3.30)

and the effective level splitting by

Ωeff

Ω
= [Γ(1 − 2αz) cos(παz)]

1/2(1−αz)
(

Ω
ωc

)αz/(1−αz)

, (3.31)

where Γ denotes the gamma function.

At αz = 0.5, the dynamics becomes fully incoherent (i.e., overdamped), and the exact

solution obtained using NIBA is given by [55]

P(t) = exp
(
−π

2
Ω2

ωc
t
)

. (3.32)

Upon increasing the coupling strength further, the decay rate decreases until a phase

transition occurs at αz = 1. At this point, the two-level system remains localized in the

initial state, i.e., P(t) = 1 [55]. This phenomenon can be interpreted as an example of the

quantum Zeno effect [63]. The continuous observation of the central system by the bath

with respect to the operator σ̂z prevents it from leaving the eigenstate in which it was

initially prepared.

For the case where Ω ≪ ωc < ∞, the polarization dynamics exhibits a similar behav-

ior. Specifically, at ωc = 10Ω, the transition to fully incoherent dynamics still occurs at

αz = 0.5 [25]. However, the coupling strength at which the localization transition takes

place is larger than in the scaling limit. For ωc = 5Ω, the critical coupling strength is

approximately αz ≈ 1.25 [11]. By converging the numerical TEMPO results (similar to

the approach in Section 3.3 where for every Trotter time-step ∆t the singular value cut-

off λc is converged and then ∆t is decreased until convergence is reached), we obtain

the polarization dynamics for exemplary coupling strengths αz ∈ {0.1, 0.2, 0.4, 0.8, 1.2}
at ωc = 10Ω (dashed lines in Fig. 3.25). Notably, the initial oscillation observed, for in-

stance at αz = 1.2, is governed by ωc. The timescale 1/ωc can be interpreted as a finite

bath reaction time, causing the dynamics to resemble the undamped case at very short

times.

Finally, we consider the two-bath case from the previous subsection, with coupling

strengths αx = αz = α/2. The corresponding numerical results for the polarization dy-

namics are shown as solid lines in Fig. 3.25. While the quantum Zeno effect slows down

the dynamics upon increasing the coupling strength in the single-bath case (leading to

localization), the continuous measurement of the two-level system with respect to σx by

the additional bath disrupts this effect. Consequently, we observe a rapid decay into

delocalization at strong coupling strengths. It is worth noting that the suppression of

phase transitions by non-commuting fluctuations has also been observed in other mod-
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Figure 3.25: Polarization dynamics for bath initial temperatures T = 0, high-frequency
cutoff ωc = 10Ω, and different coupling strengths α. Solid lines: αx = αz =
α/2. Dashed lines: αz = α and αx = 0.

els [64, 65].

3.5 Summary

In section 3.1, a basic introduction to tensor networks, by following standard literature,

was given. This laid the foundation for a novel, simplified derivation of the TEMPO

method originally developed by Strathearn et al. [11] in section 3.2. In section 3.3, the nu-

merical TEMPO results were validated on a single-mode model, which is trivially solved

by discretizing the harmonic mode and yet poses a challenge to the TEMPO approach

as the bath autocorrelation function does not decay. Furthermore, it was shown that the

computational effort of TEMPO surprisingly scales quadratically with the inverse Trotter

time-step. In section 3.4, a novel generalization of the TEMPO method to the case of two

baths that are coupled to the central systems with operators that do not commute with

each other was introduced. Stated differently, this method corresponds to evaluating

the path sum derived by Palm et al. [62] in terms of a tensor network, which exponen-

tially improves the numerical efficiency. Subsequently, the implementation of the novel

method was validated by comparison with previous results and then used to study the

disruption of the localization transition in the Ohmic spin-boson model at zero tempera-

ture caused by a second bath.

In chapter 6, we will also address vibronic dynamics near a conical intersection in terms

of a spin-boson model with two non-commuting baths that have a structured spectral

density. For reasons of computational efficiency, this case will, however, be treated with

the hierarchical equations of motion technique.
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4 Hidden Phase of the Spin-Boson Model

The sub-Ohmic spin-boson model has been studied extensively in the literature [2, 15,

20, 23, 24, 66, 67]. Despite this, the dynamical phase diagram for a finite bath cut-off

frequency and zero temperature had remained an open problem, particularly for small

spectral exponents s < 0.5 [15, 23, 24]. While the highly non-Markovian dynamics of

the sub-Ohmic regime could not be fully converged for the entire parameter space using

the iterative QUAPI approach in Ref. [23] and the SMatPI approach in Ref. [52], we here

present numerically exact TEMPO results and thereby resolve the issue of the dynamical

phase diagram [25].

In section 4.1, the literature on the dynamical phase diagram of the sub-Ohmic spin-

boson model is discussed. In section 4.2, we follow Ref. [25], which emerged from the

work on this thesis, and consider the spin-boson model

Ĥ = ĤS + ĤB + Ĥint =
Ω
2

σ̂x + ∑
j

 p̂2
j

2mj
+

1
2

mjω
2
j

(
x̂j −

cjσz

mjω
2
j

)2
 (4.1)

with the bath spectral density

J(ω) =
π

2
α

ωs

ωs−1
c

e−ω/ωc (4.2)

and (sub-)Ohmic spectral exponent 0 ≤ s ≤ 1. In order to keep the coupling strength α

dimensionless for all s, an additional factor of ω1−s
c is included in the spectral density.

The bath is initialized at zero temperature in the following. We obtain the polarization

dynamics P(t) by using the TEMPO technique. This involves converging the singular

value cutoff λc for increasingly smaller Trotter time-steps ∆t until convergence is found.

Fig. 4.1 illustrates this process for the numerically challenging case of strong coupling to

a sub-Ohmic bath with a small spectral exponent.

4.1 Previous Publications

In Ref. [23], a phase diagram of the spin-boson model was sketched based on all avail-

able knowledge at the time. This sketch, shown in Fig. 4.2, includes noninteracting blip

approximation (NIBA) results [2] for the Ohmic case (s = 1) in the scaling limit ωc → ∞,

as previously discussed in section 3.4.2. For the sub-Ohmic case (s < 1), the coupling
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Figure 4.1: Polarization P(t) obtained using TEMPO for T = 0, s = 0.3, α = 0.8,
ωc = 10Ω, and various values for the Trotter time-step ∆t. Dashdotted, dot-
ted, dashed, and solid lines correspond to λc = 10−5, λc = 10−6, λc = 10−7,
and λc = 10−8 respectively. Note that the dashed lines are only barely visible
as they almost perfectly align with the solid lines.

Figure 4.2: Sketch of a phase diagram of the sub-Ohmic spin-boson model at T = 0, taken
from Ref. [23]. The circles mark the localization transition while the squares
mark the transition from coherent to incoherent dynamics.

strengths at which the localization transition occurs (for the case of a hard high-frequency

cutoff ωc = 10Ω, i.e., J(ω) = 0 for ω > ωc) are indicated below the circles. The corre-

sponding data was taken from Ref. [67] and is based on quantum Monte Carlo simula-

tions. The transition from oscillatory to overdamped dynamics is commonly defined to

take place when the local extrema in the dynamics vanish. The corresponding data point

for the critical coupling strength at s = 0.75 was taken from Ref. [66] and is based on

a perturbation approach (where also a finite ωc = 10Ω is employed). By use of the the



4.1 Previous Publications 53

iterative QUAPI method, as explained in detail in section 2.7, it was found in Ref. [23]

that oscillatory dynamics still occurs in the localized phase for spectral exponents s ≤ 0.5

and the largest coupling strength where numerical convergence could be achieved. Fur-

thermore, it was speculated that this oscillatory behavior would vanish at even stronger

coupling strengths. However, as will be demonstrated in section 4.2, this is not the case.

Rather, the oscillatory dynamics persists to arbitrarily large coupling strengths for any s,

as it is an artifact of the high-frequency cutoff in the bath spectral density.

In Ref. [24], the transition to incoherent dynamics for s ≥ 0.5 and ωc = 10Ω and

polarized initial conditions (see Section 2.5) was studied in more quantitative detail using

a path integral Monte Carlo technique. This study led to the dashed phase separation line

shown in Fig. 4.3. Additionally, the phase separation line for localization was again taken

Figure 4.3: Sketch of a phase diagram of the sub-Ohmic spin-boson model at T = 0 with
polarized initial conditions, taken from Ref. [24]. Black solid line marks the
localization transition while the pink line marks the transition from coherent
to incoherent dynamics.

from Ref. [67].

However, in section 4.2, we demonstrate that the timescale of the oscillations observed

at small s and strong coupling strength is given by ω−1
c and not by Ω−1. Therefore, it

should not be referred to as coherent dynamics, which commonly refers to the inherent

coherence of the central system. Furthermore, Fig. 4.3 may be misinterpreted to imply a

phase separation line between coherent and incoherent dynamics at s = 0.5, which we

show to be absent in section 4.2.

In Ref. [15], the localization transition and the transition from coherent to incoherent

dynamics were studied for the unpolarized initial condition using an extended hierar-

chical equation of motion technique. The resulting phase diagram is shown in Fig. 4.4.

There, the transition from coherent to incoherent dynamics was defined to occur at the

coupling strength at which the first local minimum of the polarization dynamics van-

ishes. The corresponding critical coupling strength was then calculated for s > 0.5 while

for smaller s it was shown that the minimum does not vanish even at very strong cou-
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Figure 4.4: Sketch of a phase diagram of the sub-Ohmic spin-boson model at T = 0 and
ωc = 20Ω, taken from Ref. [15]. The coupling strengths at which the local-
ization transition takes place are marked by red boxes as obtained from an
extended hierarchical equation of motion technique and blue triangles using
the Quantum Monte Carlo data from Ref. [67]. Solid lines show a fit of the cor-
responding data. Black circles mark the transition from coherent to incoherent
dynamics as obtained from the extended hierarchical equation of motion tech-
nique.

pling.

4.2 Dynamical Phase Diagram

We now consider the unpolarized initial condition given in Eq. (2.41) and high-frequency

bath cutoff frequency ωc = 10Ω. In alignment with previous findings at s = 0.7, we

observe damped oscillatory polarization dynamics with multiple minima and maxima at

weak coupling strength, as shown in Fig. 4.5. Since the timescale of these oscillations is

given by Ω−1, we also refer to this regime as the coherent regime. As expected, the oscil-

lations vanish, and the dynamics becomes incoherent (i.e., overdamped) upon increasing

the coupling strength.

Surprisingly, upon further increasing the coupling strength, we encounter a shallow

local minimum in the dynamics, which is not followed by a maximum. This qualitatively

different behavior suggests the presence of a novel phase. To investigate the phase sep-

aration line implied by Fig. 4.3 at s = 0.5, we vary the spectral exponent for a strong

coupling strength α = 0.8, as shown in in Fig. 4.6. Interestingly, for all the spectral ex-

ponents considered, the dynamics is characterized by a single minimum, and we do not

observe a transition at s = 0.5, contrary to what one might expect from Fig. 4.3.

Next, we investigate how the polarization dynamics changes when varying the cou-

pling strength for a fixed s = 0.3, as depicted in Fig. 4.7. At small coupling strengths, we

find coherent oscillations with minima and maxima on the timescale of Ω−1. At strong
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Figure 4.5: Polarization P(t) for T = 0, s = 0.7, and various coupling strengths α (pub-
lished in Ref. [25]). The arrow intersects the lines in ascending order of cou-
pling strengths. Local minima (maxima) are marked by a red cross (green
diamond).
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coupling strengths, all minima and maxima except for a single shallow minimum vanish.

This behavior resembles what we have observed at s = 0.7 (see Fig. 4.5), except for the

absence of the fully incoherent phase.

To further characterize the novel phase found at the strongest coupling strengths, we

plot the quantity 1− P(t) against the rescaled time ωct for various values of ωc in Fig. 4.8.
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Figure 4.8: Polarization 1 − P(t) for T = 0, α = 0.8, s = 0.3, and various bath cutoff
frequencies ωc (published in Ref. [25]). The arrow intersects the lines in as-
cending order of cutoff frequencies. Local maxima are marked with a green
diamond. Note that the ωc = 10Ω line corresponds to the s = 0.3 line in
Fig. 4.6.

ciently large values of ωc. This indicates that the oscillatory behavior at strongest cou-

pling strength is purely bath-driven and therefore distinct from the coherent oscillations
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on the timescale Ω−1 found at weak coupling strengths. For this reason, we refer to this

novel phase as pseudo-coherent. In the scaling limit ωc → ∞, the oscillatory motion van-

ishes and the dynamics becomes fully incoherent.

In summary, we have observed three distinct phases. At weak coupling strength, co-

herent dynamics takes place irrespective of the spectral exponent. For s = 0.7, we have

observed that the dynamics becomes fully overdamped (referred to as incoherent) at first

and then pseudo-coherent upon increasing the coupling strength. For s = 0.3, the fully

overdamped phase does not exist; instead, the dynamics becomes pseudo-coherent di-

rectly when increasing the coupling strength out of the coherent phase. By examining

the full parameter space of 0 ≤ s ≤ 1 and α, we construct the dynamical phase diagram

shown in Fig. 4.9. For the transition from the coherent to the incoherent domain, we use
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Figure 4.9: Phase diagram of the (sub-)Ohmic spin-boson model at T = 0 and ωc = 10Ω
(similar to figure published in Ref. [25]). The symbols represent coupling
strengths α(s) at which a transition occurs and are linearly interpolated for
better visibility. The localization transition is marked as a dashed red line
with data taken from Ref. [67].

that same criterion as in Ref. [15], and hence track the first local minimum while increas-

ing coupling strength until it vanishes at the critical coupling strength. These critical

coupling strengths are marked as blue crosses in Fig. 4.9.

The coupling strengths at which local minima reappear within Ωt < 8 are marked

as orange diamonds in Fig. 4.9. This choice of timescale is due to computational lim-

itations: the computational complexity of TEMPO scales rapidly with the number of

time steps, and simultaneously, the minima of the pseudo-coherent phase (which first

appear at later times for smaller coupling strengths) become increasingly shallow. This

necessitates smaller Trotter time-steps and larger singular value cutoffs. However, as

the pseudo-coherent minima get rapidly renormalised to later times when approaching

the phase boundary (as seen in Fig. 4.10), the retrieved values for the critical coupling

strengths should not significantly differ from considering all times Ωt < ∞.
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The coupling strengths at which the first local maxima vanish when transitioning di-

rectly from the coherent to the pseudo-coherent domain are marked as green circles in

Fig. 4.9. To contextualize the obtained dynamical phase diagram, we also show the

coupling strengths at which the localization transition occurs (as obtained by Quantum

Monte Carlo simulations in Ref. [67]) as a dashed red line in Fig. 4.9.

The case s = 0.45, as depicted in Fig. 4.10, is particularly insightful. There, we observe
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Figure 4.10: Polarization P(t) for T = 0, s = 0.45, and various coupling strengths α (pub-
lished in Ref. [25]). The arrow intersects the lines in ascending order of cou-
pling strengths. Local minima (maxima) are marked with a red cross (green
diamond).

that the first minimum and maximum of the coherent dynamics merge upon sufficiently

increasing the coupling strength. Subsequently, the minimum of the pseudo-coherent

phase appears at a much later time upon further increasing the coupling strength. This

underscores the distinctiveness of the coherent and the pseudo-coherent phases.

Finally, for the polarized initial condition employed in Ref. [24], we find that the os-

cillatory dynamics observed at strongest coupling is governed by the timescale ω−1
c and

is thus fully induced by the bath (i.e., pseudo-coherent), as shown in Fig. 4.11 (a). The

observed maxima in P(t) result from a renormalization of the oscillation frequency due

to the polarized initial condition compared to the unpolarized initial condition. Further-

more, Fig. 4.11 (b) demonstrates that there is no transition occurring at s = 0.5 and strong

coupling, contrary to what one might expect from Fig. 4.3.

Motivated by the work presented in this chapter, the dependence of the phase diagram

on the initial preparation has been studied in more detail in Ref. [68]. However, the phase

diagrams obtained there differs slightly from ours due to a distinct definition of the tran-

sition to the pseudo-coherent phase, which utilizes the oscillatory frequency renormal-

ization induced by the bath. As this definition is more sensitive to the influence of the

bath, the pseudo-coherent phase already appears at slightly weaker coupling strengths
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Figure 4.11: Polarization P(t) obtained using TEMPO for polarized initial conditions at
T = 0 and α = 0.5 (published in Ref. [25]). (a) Spectral exponent s = 0.45
and various bath high-frequency cutoffs ωc. Local minima are marked with
a red cross. (b) Bath high-frequency cutoff ωc = 10Ω, and various spectral
exponents s. Local maxima are marked with a green diamond.

compared to the criterion employed in this work. Qualitatively however, one always

finds the coherent phase at weak and the pseudo-coherent phase at strong coupling with

an incoherent phase in between them for s ≳ 0.5.

4.3 Summary

In section 4.1, an overview of the literature on the dynamical phase diagram of the sub-

Ohmic spin-boson model was given. Crucially, it had been unclear whether coherent

dynamics takes place for s ≲ 0.5 and strong coupling strength. In section 4.2, this issue

was resolved by using the numerically exact TEMPO approach to identify a novel pseudo-
coherent phase characterized by oscillatory dynamics even at strong coupling strengths.

The frequency related to the oscillation in this phase is proportional to the bath cut-off

frequency. Therefore, the oscillatory motion is not generated by the two-level system but

by the bath. Finally, a corresponding phase diagram of the sub-Ohmic spin-boson model

was given and its dependence on the initial conditions was discussed.
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5 1/ f Quantum Noise in the Spin-Boson
Model

Experiments on superconducting qubits have shown that magnetic flux noise has a spec-

trum with strongly pronounced low-frequency modes of the form J(ω) ∝ ωs with s <

0 [27]. With this property, it falls in the category of 1/ f noise, the microscopic origin

of which is not always clear in all systems [69]. A common source of 1/ f noise can

be described by few two-level fluctuators, which cannot be modeled by a spin-boson

model [69]. In this case, the theoretical description is restricted to weak coupling or high

temperature, employing highly non-trivial approximate methods [70] and is thus beyond

the scope of this work. Instead, we consider the continuum limit here, where a treatment

in terms of the spin-boson model is justified. An example of this is the electronic spin

of a color center that couples to the vibrational motion of hexagonal boron nitride mem-

branes, which has been addressed in terms of the spin-boson model with s = −1 using

approximate numerical tools [28].

The purpose of this chapter is to provide numerically exact TEMPO results for the highly

non-Markovian 1/ f quantum noise regime of the spin-boson model, which amounts to

an extension of the work presented in chapter 4 to the case s < 0. To this end, we present

the extended phase diagram in section 5.1 and compute dephasing rates at weak cou-

pling in section 5.2. In section 5.3, we briefly comment on the reorganization energy of

the bath. As it diverges for s ≤ 0, which is the reason why this case had originally been

viewed as pathological [2], we introduce a low-frequency cutoff in the spectral density,

which is justified by experimental evidence [27].

The decisive quantity on which QUAPI and thus TEMPO depend, as previously derived

in Eq. (2.75), is given by

Q(t) =
1
π

∫ ∞

0
dω

J(ω)

ω2

[
coth

(
ωβ

2

)
(1 − cos(ωt)) + i (sin(ωt)− ωt)

]
. (5.1)

The low-frequency cutoff ωir with J(ω) = 0 for ω < ωir ensures that the divergence of

Q(t) for s ≤ 0 at finite temperature and s ≤ −1 at zero temperature is lifted.
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5.1 Extended Phase Diagram

Fig. 5.1 depicts the extension of the sub-Ohmic phase diagram of Fig. 4.9 to the 1/ f
regime down to s = −0.75, which is the smallest spectral exponent where numerical

convergence could be achieved. In the 1/ f quantum noise regime, the dynamics behaves
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Figure 5.1: Phase diagram of the spin-boson model at T = 0 and ωc = 10Ω. The
green line represents the transition from coherent to pseudo-coherent behav-
ior. The blue line represents transition from coherent to incoherent behav-
ior. The orange line represents the transition from incoherent to pseudo-
coherent behavior. Top left inset: Polarization dynamics for s = −0.5 and
α ∈ {0.02, 0.03, 0.04} with minima (maxima) marked by a red cross (green di-
amond) showing the transition from coherent to pseudo-coherent phase. Bot-
tom right inset: Polarization dynamics for s = 0 and α ∈ {0.01, 0.03, 0.08}.

qualitatively similar to the sub-Ohmic regime: it exhibits a transition to pseudo-coherent

dynamics upon increasing the coupling strength out of the coherent phase, as previously

shown for 0 ≤ s ≤ 0.45. Surprisingly, we observe an inflection point in the critical cou-

pling strength α(s) at s ≈ −0.5. As an illustrative example of the characteristic pseudo-

coherent dynamics deep in the 1/ f regime, we show the case s = −0.7 in Fig. 5.2.

5.2 Dephasing Rate

At weak coupling, the polarization dynamics exhibits damped oscillations, with NIBA

yielding Eq. (3.28) in the Ohmic case s = 1. Furthermore, we find that Eq. (3.28) fits our

numerical data well over a wide range of spectral exponents and temperatures in the

weak coupling regime when α, ω, and γ are used as free parameters. Illustrative fits for

the case s = −0.5 and zero temperature are shown in the inset of Fig. 5.3. From these fits,

we extract the dephasing rates γ for weak coupling, resulting in a linear dependence of
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the dephasing rates on the coupling strength (see Fig. 5.3). We then compute γ′(α)|α=0

for various spectral exponents and temperatures by performing linear fits on the function

γ(α), as presented in Fig. 5.4. In the sub-Ohmic regime (s ≥ 0), the temperature depen-
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Figure 5.4: Slope γ′(α)|α=0 as a function of the spectral exponent for temperatures T = 0
and T = 0.1Ω and low-frequency cutoffs ωir = 0 (solid lines), ωir = 10−4
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α=0 = Ωπ/2. Top right inset: relative deviation of TEMPO from NIBA
1 − γ′(α)|α=0/γ′(α)|NIBA

α=0 as a function of high-frequency cutoff for s = 1.

dence is negligible, whereas in the 1/ f noise regime (s < 0), the temperature dependence

becomes significant. Furthermore, despite the divergence of the integral in Eq. (2.75) for

s = 0 at finite temperature, the dynamics is almost independent of the low-frequency

cutoff. However, for smaller values of s, the dephasing rates can become arbitrarily large

by choosing a corresponding small low-frequency cutoff. Thus, the low-frequency cutoff

plays a crucial role in determining the amount of dephasing caused by the environment.

In any measurement, the low-frequency cutoff is a characteristic parameter of the exper-

imental setup, as observed in Ref. [27]. We empirically find the dephasing rate

γ ≈ 14.5αe−2.4s (5.2)

from the data in Fig. 5.4 for α ≪ 1 and ωir = 0. This result is valid for s ≳ 0 at finite tem-

peratures and for s ≳ −0.5 at zero temperature. The deviation of our numerical results

from the NIBA value of γ′(α)|NIBA
α=0 = Ωπ/2 (which directly follows from Eq. (3.30)) for

s = 1 arises from the finite high-frequency cutoff (see top right inset of Fig. 5.4). Thus,

while Eq. (5.2) has been generated from data with high-frequency cutoff ωc = 10Ω, it

also yields an approximation of the dephasing rate for a wide range of different ωc due
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to the weak dependence of the dynamics on the high-frequency cutoff at weak coupling.

5.3 Reorganization Energy
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Figure 5.5: Reorganization energy Λ as a function of ωir/ωc for s ∈
{−1,−0.75,−0.5,−0.25, 0, 1}. Solid lines show exact value for Λ while
dotted lines show approximation given on the right-hand side of Eq. (5.3).
The arrow intersects the lines in ascending order of s

A further quantity to characterize the impact of the environment is the reorganization

energy, which quantifies the energy contained in the bath fluctuations [55]. It is given by

Λ =
∫ ∞

ωir

dω
J(ω)

ω

ωir≪ωc≈ 2αωc ·


− 1

s

(
ωir
ωc

)s
s < 0

− ln
(

ωir
ωc

)
s = 0

Γ(s) s > 0

, (5.3)

as shown in Fig. 5.5, where Γ(s) denotes the gamma function. For s ≤ 0, it diverges in

the limit ωir → 0. Nonetheless, as shown in Fig. 5.4, we find the polarization dynamics

to be well-defined in the limit ωir → 0 for at least some s < 0 at zero temperature.

5.4 Summary

In section 5.1, the dynamical phase diagram computed in chapter 4 was extended to

the regime of spectral exponents s < 0, where no qualitative change in the dynamical
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behavior compared to the sub-Ohmic regime was found. In section 5.2, the dephasing

rate at weak coupling strengths for the entire parameter space −1 ≤ s ≤ 1 for finite

and zero temperature was studied, and an empirical formula for the dephasing rate was

given. For the Ohmic case, it was shown that the deviation of the numerically exact

TEMPO results from the non-interacting blip approximation is due to the finite bath high-

frequency cut-off. Despite the divergence of the bath reorganization energy, as shown in

section 5.3, the dephasing rate was shown to be well-defined for parts of the parameter

space, while in others it was shown to depend on the experimentally realistic choice of a

bath low-frequency cut-off.
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6 Coherent Ultrafast Stimulated X-Ray
Raman Spectroscopy of Dissipative
Conical Intersections

A particularly interesting application of the spin-boson model is the vibronic dynam-

ics around a conical intersection in polyatomic molecules. As it involves a large change

in the energy gap on an ultrashort timescale, its direct spectroscopical observation is

extremely challenging. The transient redistribution of ultrafast electronic coherences in

attosecond Raman signals (TRUECARS) technique utilizes a combination of broadband

and narrowband X-ray pulses to achieve both the required spectral and temporal resolu-

tion. Previously, TRUECARS had only been studied theoretically for isolated quantum

systems [39–42]. The purpose of this chapter is to study the TRUECARS signal under the

dissipative effects caused by the fluctuating charges of solvent molecules and the fluctu-

ating nuclei of the molecular host.

While the novel method presented in section 3.4 had originally been intended to tackle

this problem, the hierarchical equations of motion (HEOM) technique [12] has turned

out to be computationally far more efficient for the parameters chosen, as shown in sec-

tion 6.1. In section 6.2, the two-state two-mode model is introduced and mapped to an

effective spin-boson model, and in section 6.3, the effect of dissipation on the TRUECARS

signal is analyzed.

6.1 Hierarchical Equations of Motion (HEOM)

HEOM is a numerically exact method to compute the dynamics of the reduced density

matrix in the Caldeira-Leggett model (as described by Eq. 2.36), which has originally

been derived by Tanimura and Kubo [12] from the Feynman-Vernon influence functional

given in Eq. 2.46. In this work, we have made use of its implementation in the QuTiP

library [71, 72].

Following the presentation in Ref. [72], we define the superoperators

Â× := [Â, ·] (6.1)

Â◦ :=
{

Â, ·
}

(6.2)
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in terms of the commutator and anticommutator. The Liouvillian is defined by

L := −iĤ×
S , (6.3)

allowing us to write the von-Neumann equation as

ρ̇(t) = Lρ(t). (6.4)

The real and imaginary parts of the bath autocorrelation function (Eq. (2.61))

L(t) = LR(t) + iLI(t) (6.5)

are approximated by

LR(t) =
NR

∑
k=1

cR
k e−γR

k t (6.6)

LI(t) =
NI

∑
k=1

cI
ke−γI

kt (6.7)

using the parameters cj
k and γ

j
k, along with the convergence parameters Nj for j ∈ {R, I}.

Analyzing the temporal derivatives of the Feynman-Vernon influence functional [12]

yields the hierarchical equations of motion [72]

ρ̇n(t) =

(
L− ∑

j=R,I

Nj

∑
k=1

njkγ
j
k

)
ρn(t)

− i
NR

∑
k=1

cR
k nRk ŝ×ρn−

Rk(t) +
NI

∑
k=1

cI
knIk ŝ◦ρn−

Ik(t)− i ∑
j=R,I

Nj

∑
k=1

ŝ×ρ
n+

jk (t). (6.8)

Here, n is a tuple with n = (nR1, nR2, ..., nRNR , nI1, nI2, ..., nINI ) ∈ {0, 1, ..., Nc}NR+NI , where

the hierarchy depth Nc ∈ N is a convergence parameter. The reduced density is denoted by

ρ(0,...,0)(t), while all other ρn with n ̸= (0, ..., 0) are referred to as auxiliary density matrices
that are not directly linked to physical observables. The notation n±

jk refers to the tuple

n where the element njk is raised/lowered by one. A significant advantage of HEOM is

that it - unlike QUAPI - straightforwardly generalizes to multiple baths with different

coupling operators ŝ by adding corresponding additional terms to Eq. (6.8).
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6.1.1 Benchmark

To validate our numerical results, we consider the model studied in Ref. [47], where

effectively the spin-boson model

Ĥ =
Ω
2

σ̂x + ∑
j

 p̂2
j

2mj
+

1
2

mjω
2
j

(
x̂j −

cjσz

mjω
2
j

)2
 (6.9)

with bath spectral density

J(ω) =
4πηg2ωω2

0

(ω2
0 − ω2)2 + (2πηωω0)2

(6.10)

was studied. We consider the parameter set η = 0.014, g = 0.18Ω, and ω0 = Ω (unless

stated otherwise), and set the bath to an initial temperature of T = 0.1Ω.

Following the procedure in Ref. [72], we express the bath autocorrelation function cor-

responding to the spectral density in Eq. (6.10) using the form of Eqs. (6.6) and (6.7) as

L[NR]
R (t) =

g2ω0

2ω̃

(
coth

(
ω̃ + i2πηω0

2T

)
eiω̃t + coth

(
ω̃ − i2πηω0

2T

)
e−iω̃t

)
e−πηΩt

−
NR

∑
k=1

απω2
0ϵkT(

(ω̃ + iπηω0)
2 + ϵ2

k

) (
(ω̃ − iπηω0)

2 + ϵ2
k

) e−ϵkt (6.11)

LI(t) =
g2ω0

2ω̃
i
(

eiω̃t − e−iω̃t
)

e−πηω0t, (6.12)

with the shorthand notation

ω̃ = ω0

√
1 − (πη)2, (6.13)

ϵk = 2πkT. (6.14)

Note that the decomposition of the imaginary part in Eq. (6.12) is exact with only two

terms, while the real part in Eq. (6.11) is only exact in the limit NR → ∞. However,

as shown in Fig. 6.1, convergence is rapid, and even using NR = 0 yields percent-level

accuracy.

Using Eq. (6.8), we compute the polarization dynamics P(t) = ⟨σ̂z⟩ (t) = Tr
(

ρ(0,...,0)(t)σ̂z

)
for different values of NR and NC, as depicted in Fig. 6.2(a). As expected from Fig. 6.1,

changing NR barely changes the dynamics, while a hierarchy depth of at least NC = 3 is

required for complete convergence.

In the case η = 0, the model defined in Eqs. (6.9) and (6.10) is equivalent to [47]

Ĥ =
Ω
2

σ̂x − gσ̂z

(
â + â†

)
+ ω0 â† â, (6.15)

which we have encountered before in section 3.3. Since the harmonic mode is initialized
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Figure 6.1: (a) Real part LR(t) and imaginary part LI(t) of the bath autocorrelation func-
tion according and approximation of the real part L[NR]

R (t) for NR = 0. The
difference between LR(t)(solid blue line) and L[NR=0]

R (t)(dotted blue line) is
small and therefore barely visible. Inset: Bath spectral density Eq. (6.10). (b)
Difference between the approximation L[NR]

R (t) and the exact LR(t) for differ-
ent values of NR as indicated.

at a finite-temperature thermal state, we solve the dynamics here by directly integrating

the von-Neumann equation (as opposed to the Schrödinger equation in section 3.3). The

parameter η corresponds to the coupling strength between the harmonic mode and an

Ohmic bath, resulting in an effective broadening of the mode and thus η is related to the

width of the peaked spectral density given in Eq. (6.10) [30, 47]. In Fig. 6.2(b), we further

validate our HEOM results by showing that it can interpolate between the undamped

dynamics and the dynamics for η = 0.014 by varying η.

In Fig. 6.3, we compare the polarization dynamics obtained by HEOM and TEMPO to

data of Ref. [47], where the iterative QUAPI method (as presented in section 2.7) was

used. As expected, we observe a near-perfect match between the HEOM and TEMPO

results as both are numerically exact methods that have been fully converged. However,

the converged TEMPO simulation employing Ω∆t = 0.25 and λc = 10−5.5 is much more

computationally demanding than the HEOM simulation, taking about 15 minutes for

TEMPO compared to less than a second for HEOM. Furthermore, there is a significant

deviation from the iterative QUAPI results, which can be attributed to a combination of

the three approximations made in Ref. [47]. In that work, the i-QUAPI data was gener-

ated by equivalently considering the harmonic mode as part of the system damped by an

Ohmic bath. The computational effort of QUAPI scales rapidly with system size, so the

oscillator was restricted to the 12 lowest eigenstates. Additionally, a memory cutoff of

kmax = 1 was used, and a cutoff frequency of ωc = 10Ω was introduced into the Ohmic

bath.
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Figure 6.3: Polarization dynamics for η = 0.014 computed using HEOM (orange solid
line), TEMPO (green dashed line), and iterative QUAPI (blue dots). In the
latter case, the data has been taken from Ref. [47].

In conclusion, HEOM is better suited for the model that will be treated in the next section

due to its rapid convergence for spectral densities of the form given in Eq. (6.10), and its

straightforward generalization to multiple baths, unlike TEMPO (see also section 3.4).
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6.2 Model

Similar to Refs. [31, 73], we consider the Hamiltonian

Ĥ = Ĥel + Ĥel-nuc + Ĥnuc + Ĥenv, (6.16)

where

Ĥel =
ϵ

2
σ̂z +

∆
2

σ̂x (6.17)

describes two molecular electronic states with energy splitting ϵ and tunneling splitting

∆. Additionally, the system consists of nuclear modes with the Hamiltonian

Ĥnuc = ∑
i∈{c,t}

Ω(P̂2
i + Q̂2

i )/2. (6.18)

Here, Q̂2
i = Ωmi q̂i and P̂2

i := p̂2
i / (Ωmi) denote the unitless position and momentum

operators of the tuning (t) and coupling (c) modes, where both modes have identical vi-

brational frequencies Ω. The electronic states are bilinearly coupled to the nuclear modes

via

Ĥel-nuc = κcσ̂xQ̂c + κtσ̂zQ̂t (6.19)

with vibronic coupling strengths κc/t. We employ realistic model parameters similar to

those found in photosynthetic complexes [31, 73]: ϵ = Ω = 300 cm−1, ∆ = 50 cm−1, κt =

150 cm−1, and κc = 75 cm−1. The potential energy surfaces are defined as the eigenenergies

E±(Qc, Qt) of the Hamiltonian Ĥel + Ĥel-nuc(Qc, Qt) + Ĥnuc(Qc, Qt), where the nuclear

mode positions Qc and Qt are treated as parameters, and the nuclear momenta are set to

zero. Therefore, the potential energy surfaces E±(Qc, Qt) are given by the eigenvalues of

the matrix(
ϵ/2 + κtQt + ΩcQ2

c /2 + ΩtQ2
t /2 ∆/2 + κcQc

∆/2 + κcQc −ϵ/2 − κtQt + ΩcQ2
c /2 + ΩtQ2

t /2

)
, (6.20)

which are

E±(Qc, Qt) = ΩcQ2
c /2 + ΩtQ2

t /2 ±
√
(ϵ/2 + κtQt)

2 + (∆/2 + κcQc)
2. (6.21)

The potential energy surfaces exhibit a conical intersection at Qt = −ϵ/(2κt) = −1 and

Qc = −∆/(2κc) = −1/3, as shown in Fig. 6.4. The electronic two-level system is ini-

tially prepared in the excited electronic state, and the nuclear modes are initialized at

thermal equilibrium at room temperature (293 K ∼ 204 cm−1), where it is assumed that

they are initially decoupled from the electronic degree of freedom. The initial probability

density in position space of the nuclear modes on the upper electronic potential surface,
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Figure 6.4: Left: Potential energy surfaces of Ĥel + Ĥel-nuc + Ĥnuc and probability density
of the initial state based on the parameters provided in the text. The region
around the conical intersections is highlighted in orange. Right: The potential
energy surface is depicted with contour lines, and the initial state’s probability
density is color-coded. The conical intersection is highlighted by a blue cross.

graphically depicted in Fig. 6.4, is given by

|ψe(Qc, Qt)|2 := |⟨Qc, e |Trt(W(0)) | Qc, e⟩ · ⟨Qt, e |Trc(W(0)) | Qt, e⟩|2 , (6.22)

where W(0) denotes the initial density matrix, |e/g⟩ denotes the electronic excited/-

ground state, |Qc/t⟩ denotes a position eigenstate of the coupling/tuning mode, and Trc/t

denotes the trace over all states of the coupling/tuning mode.

The environmental effects are described by three sets of harmonic oscillators

Ĥenv = ∑
i∈{c,t,el}

∑
j

 p̂2
i,j

2mi,j
+

1
2

mi,jω
2
i,j

(
x̂i,j −

ci,j ŝi

mi,jω
2
i,j

)2
 . (6.23)

The vibrational damping of the tuning and coupling modes and electronic dephasing

take place via the operators ŝc = Q̂c, ŝt = Q̂t, and ŝel = σ̂z, respectively. For the vibra-

tional damping, we assume pure Ohmic spectral densities with equal damping constants

ηvib such that

Jc,t(ω) = ηvibω. (6.24)

For the electronic bath, we also assume an Ohmic form

Jel(ω) = ηelωγ2/(γ2 + ω2) (6.25)

with the electronic damping constant ηel. Following spectroscopic measurements of pho-

tosynthetic complexes in aqueous solution [74, 75], the electronic damping constant will

be chosen to be an order of magnitude larger than the vibrational damping constant and
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the Drude cutoff frequency is fixed to γ = 4ϵ. The environmental harmonic degrees of

freedom are initialized at thermal equilibrium at room temperature.

6.2.1 Mapping to an Effective Spin-Boson Model

To obtain the electronic dynamics, we map the Hamiltonian in Eq. (6.16) to an effective

spin-boson model. This procedure was originally introduced in Ref. [30] and has subse-

quently been used in Refs. [31, 73] in a setting very similar to our current setup. Both the

nuclear tuning and coupling modes become part of the bath, resulting in the Hamiltonian

Ĥ = Ĥel + Ĥeff
env , (6.26)

where Ĥeff
env is formally identical to Eq. (6.23), but with ŝc = σ̂x and ŝt = σ̂z, and with the

effective spectral densities

Jeff
c/t(ω) =

16ηvibκ2
c/tωΩ2

(Ω2 − ω2)2 + (2πηvibωΩ)2 . (6.27)

Instead of directly coupling the electronic two-level system to the two nuclear modes,

which are then subject to Ohmic vibrational damping, we couple it to effective baths

with spectral densities that have peaks at the nuclear mode frequency Ω and widths

determined by ηvib. For the initial preparation used here, this mapping is exact. As

the structured environment coupled to the electronic system induces non-Markovian dy-

namics, we use the HEOM technique to obtain the reduced density matrix of the elec-

tronic system. The electronic dynamics is shown in Fig. 6.5 for both the undamped case

ηel = 0 = ηvib and the damped case ηel = 0.1 and ηvib = 0.01. The undamped case

corresponds to the Hamiltonian

Ĥ = Ĥel + Ĥel-nuc + Ĥnuc, (6.28)

where the dynamics was obtained by numerical integration of the von-Neumann equa-

tion. For the damped case Eq. (6.26), HEOM was used. The coupling strengths in this case

were chosen to be similar to what has been observed in photosynthetic complexes, where

electronic damping occurs on a much faster timescale than vibrational damping [74–77].

6.3 Dissipative Transient Redistribution of Ultrafast Electronic

Coherences in Attosecond Raman Signals

The transient redistribution of ultrafast electronic coherences in attosecond Raman sig-

nals (TRUECARS) [39] technique uses a combination of a broadband pulse E0(t) and a
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Figure 6.5: Electronic dynamics for undamped (blue lines) and damped case (orange
lines). (a) Coherence dynamics ⟨σ̂x⟩ (t). (b) Population dynamics ⟨σ̂z⟩ (t).

narrow-band pulse E1(t) as a probing field, with

Hspec(t) = σ̂x |E0(t) + E1(t)|2 , (6.29)

and Gaussian field envelopes

E0/1(t) =
1

σ0/1
exp

(
− t2

2σ2
0/1

)
, (6.30)

where we set the pulse durations to σ0 = 7.5 fs and σ1 = 30 fs. The TRUECARS signal is

given by

S(ω, T) = 2ℑ
∫ ∞

−∞
dteiω(t−T)E∗

0 (ω)E1(t − T) ⟨σx(t)⟩ , (6.31)

with Raman frequency ω and delay time T. Due to Eq. (6.31), σ0 is connected to the width of

an envelope function on the TRUECARS signal with respect to ω. Thus, the only require-

ment on σ0 is that it needs to be sufficiently small, i.e., it needs to supply sufficient tempo-

ral resolution for the TRUECARS signal to still be visible (see Fig. 6.6). The requirements

on σ1 are that it has to be significantly shorter than the timescale on which the dynamics

takes place and yet spectrally narrower than the electronic energy splitting [39], which

corresponds to σ1 ⪆ 17.5 fs in the model considered here. The signals S(ω, T) of the un-

damped and damped cases are shown in Fig. 6.6 (a) and (b), respectively. The red and

blue signals show the Stokes and the anti-Stokes components of the Raman spectra. The

oscillatory pattern for later delay times T indicates that the electronic coherence lifetime

is longer than the simulation time and exceeds 2 ps in the absence of dissipation. The

oscillatory pattern in the undamped case becomes more complex at later delay times,

since after the first passage of the conical intersection, the electronic wavepacket returns

and repasses through the intersection, thereby generating new electronic coherences on
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Figure 6.6: TRUECARS Signal S(ω, T), Eq. (6.31) corresponding to the coherence dynam-
ics in Fig. 6.5, for (a) the undamped case ηel = 0 = ηvib, and (b) the damped
case ηel = 0.1, ηvib = 0.01.

a time scale determined by the vibrational frequency.

In the presence of dissipation, the oscillatory pattern fades out on a time scale of a few

hundred femtoseconds. Yet, we speculate that such a signal should still be measurable in

a present-day experimental set-ups.

To quantify the influence of the damping strength on the electronic coherence, we con-

sider the ratio of the TRUECARS signal strength with and without damping for fixed

delay times. In Fig. 6.7, we show the ratio Sηel,ηvib /S0,0, where we take the local max-

ima at the waiting times closest to the two different values T = 200 fs (solid lines) and

T = 2200 fs (dash-dotted lines). At short delay times T = 200 fs, the TRUECARS sig-

0.01 0.02 0.03
ηvib

10−1

100

S
η e

l,
η v

ib
/S

0,
0 ηel = 0.1

ηel = 0.2

ηel = 0.3

Figure 6.7: Ratio of the magnitudes of the local maxima of the damped TRUECARS
signals Sηel,ηvib(ω = 970 cm−1, T) and the corresponding undamped signal
S0,0(ω = 970 cm−1, T) for all (ηel, ηvib) ∈ {0.1, 0.2, 0.3} × {0.01, 0.02, 0.03}.
The solid lines represent the local maxima closest to T = 200 fs, while the
dash-dotted lines indicate the maxima closest to T = 2200 fs.

nal is still sizable even for rather strong electronic damping. At these short times, the
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weaker vibrational damping has essentially no effect. The vibrational damping sets in at

longer waiting times, as seen from the data for T = 2200 fs, where it causes the signal to

be an order of magnitude weaker. Nevertheless, the characteristic signal is still present,

showing that TRUECARS is a versatile tool to uncover time-dependent electronic coher-

ences in the dynamics of an electronic wavepacket near a conical intersection, even in the

presence of electronic and vibrational damping.

6.3.1 Frequency-Resolved Optical Gating (FROG) Spectrogram

The fate of the coherences near the conical intersection may also be revealed by the

frequency-resolved optical gating (FROG) spectrogram [78]

I(ω, T) =
∣∣∣∣∫ ∞

−∞
dt S(t)Egate(t − T)e−iωt

∣∣∣∣2 , (6.32)

of the TRUECARS signal S(t) = S(ω, T = t) with the gating function

Egate(t − T) = θ(t − T)θ(1000 fs − t + T). (6.33)

Thus, the FROG signal corresponds to the Fourier transforms of the TRUECARS signal

for all possible time windows of length 1000 fs. To identify the energies relevant for

electronic transitions, we define the stick spectrum by following Ref. [79]. The energy

eigenbasis of Eq. (6.28) is denoted as |k⟩ with the eigenenergies Ek, and the product basis

consisting of the uncoupled electronic and vibrational states is denoted as |e/g, nt, nc⟩.
There, |e/g⟩ refers to the electronic excited/ground state and |nc/t⟩ refers to the state with

occupation number nc/t of the coupling/tuning mode. The stick height |µk,l |2 associated

with the transition energy Ek − El is then obtained from

µk,l := ⟨k | σ̂x | l⟩ = ∑
nt,nc

[⟨k|g, nt, nc⟩ ⟨e, nt, nc|l⟩+ ⟨k|e, nt, nc⟩ ⟨g, nt, nc|l⟩]. (6.34)

In Fig. 6.8, the FROG spectrogram I(ω, T) of the TRUECARS signal is shown for both

the undamped and damped cases. We observe that a strong FROG component develops

around 250 cm−1, which corresponds to the fundamental energy gap between the two

lowest vibronic states, as indicated by the stick spectrum.

In the absence of damping (see Fig. 6.8 (a)), the signal weakens after about 300 fs,

moves to smaller frequencies, and reappears again around 250 cm−1, before eventually

disappearing. In the presence of damping (see Fig. 6.8 (b)), the FROG signal emerges at

slightly higher frequencies, approximately around 270 cm−1. Although the FROG signal

weakens after a delay time of about 300 fs, it is still clearly present.
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Figure 6.8: FROG Signal I(ω, T), Eq. (6.32), with S(t) = S(ω = 970 cm−1, T = t) for
(a) the undamped case ηel = 0 = ηvib, and (b) the damped case ηel =
0.1, ηvib = 0.01. The green bars mark the stick spectrum of the undamped
vibronic Hamiltonian.

6.4 Summary

In section 6.1, the HEOM technique was briefly introduced by closely following the lit-

erature. Then, the HEOM implementation was validated by comparing the dynamics of

a single-mode model to HEOM results for a corresponding effective spin-boson model

with a peaked spectral density. Furthermore, it was shown that HEOM results on the

latter model very closely match the corresponding TEMPO results and that HEOM is

more efficient on this model by orders of magnitude. Also, it was shown that iterative

QUAPI results from the literature deviate significantly from the exact result on the same

model due to additional approximations made there. In section 6.2, the molecular vi-

bronic dynamics in the presence of dissipation was modeled in terms of a two-state two-

mode model with realistic parameters, resembling experimental observations of photo-

synthetic complexes at room temperature known in the literature. This model was then

exactly mapped to an effective spin-boson model with two non-commuting baths with

a peaked spectral density. In section 6.3, the effect of environmental dissipation on the

TRUECARS signal strength was studied in this model. It was found that on the scale of

100 fs, it barely gets weakened, and on the scale of 1000 fs, it gets weakened by about an

order of magnitude.
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In chapter 2, a detailed derivation of the quasi adiabatic propagator path integral (QUAPI)

Makri and Makarov [8, 9] has been provided. Additionally, a minor (but novel) improve-

ment of the original iteration scheme has been introduced. However, this improvement is

less relevant due to other recent advances, such as the small matrix decomposition of the

path integral expression (SMatPI) [50] and its extension [51]. These advancements make

the computational effort for propagation after a memory cutoff negligible and have been

presented here in a simplified version employing the Trotter splitting used by Strathearn

et al. [45]. Additionally, the approximation introduced by SMatPI has been systematically

analyzed, and an argument has been made that it serves as a complete replacement of the

original iteration scheme.

In chapter 3, a concise introduction to the tensor network formalism has been provided.

The time-evolving matrix product operator (TEMPO) technique by Strathearn et al. [11],

which evaluates QUAPI in terms of the contraction of a tensor network, has been derived

in a much simpler fashion compared to the original presentation. Subsequently, TEMPO

has been benchmarked on a single-mode model consisting of a two-level system coupled

to a single harmonic oscillator. Although this model is trivial to solve in general, it poses

a formidable challenge for the TEMPO method due to the oscillator turning the dynamics

of the two-level system highly non-local. Nonetheless, it has been shown that TEMPO is

applicable to the single-mode model. Additionally, the surprising property that the com-

putational cost of TEMPO scales only quadratically with the inverse time discretization

step has been uncovered. Furthermore, the TEMPO approach has been generalized to

the case of two baths acting on the central system with coupling operators that do not

commute with each other. This novel method essentially rephrases the method of Palm

et al. [62], where QUAPI was generalized to multiple baths, in terms of the contraction

of a tensor network. Thereby, the computational efficiency is increased substantially, re-

ducing the computation time from days to seconds in a specific case. Subsequently, the

method has been used to demonstrate how a second bath disrupts the quantum Zeno

effect in the Ohmic spin-boson model at zero temperature. A further direction of study

could be a more detailed analysis of the dephasing rates in this case.

In chapter 4, by utilizing TEMPO, a novel dynamical phase of the spin-boson model at

zero temperature has been discovered at strong coupling strength. It has been shown that

no coherent dynamics occurs at strong coupling strength. This pseudo-coherent dynamics
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is characterized by a single oscillatory minimum in the polarization dynamics and is

induced entirely by the bath. Subsequently, a dynamical phase diagram at zero temper-

ature for the spin-boson model in the (sub-)Ohmic regime has been obtained. Based on

this, the phase diagram has been extended to the super-Ohmic regime in Ref. [26]. A

further direction of study could be investigating the critical coupling strengths of the lo-

calization transition for the full parameter space. This may be achieved by the TEMPO

contraction strategy recently developed in Ref. [80], which makes propagation to infinite

times feasible. Another direction could be studying the effect of the bath high-frequency

cutoff. However, these topics were beyond the scope of this work.

In chapter 5, the phase diagram of the spin-boson model has been extended to the 1/ f
quantum noise regime. Furthermore, the dephasing rate at weak coupling strengths in

the (sub-)Ohmic and the 1/ f regime, and its dependence on both temperature and an in-

frared bath frequency cutoff, has been studied. An empirical formula for the dephasing

rate has been given, which is valid at zero temperature in the full parameter space and

valid at finite temperature for most of the parameter space studied. Potentially, this work

may provide designing guidelines for the optimization of superconducting qubits.

In the final chapter 6, the hierarchical equations of motion (HEOM) method of Tanimura

and Kubo [12] has been summarized, and its numerical results have been verified by com-

paring to TEMPO on a single-mode model where the oscillator mode is subject to Ohmic

damping. The reason HEOM has been chosen over TEMPO is its straightforward gener-

alization to multiple baths and superior efficiency for the specific spectral densities that

were considered. The transient redistribution of ultrafast electronic coherences in attosec-

ond Raman signals (TRUECARS) [39], which is a spectroscopic technique for measuring

conical intersections, has subsequently been studied using HEOM. By employing a toy

model with parameters motivated by experimental measurements from photosynthetic

complexes, the effect of environmental dissipation at room temperature on the TRUE-

CARS signal strength has been studied. It has been concluded that TRUECARS should

be sufficiently robust to be measurable in a future spectroscopic experiment.
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