
Complete electroweak O
(
N 2

c

)
two-loop contributions

to the Higgs boson masses in the MSSM

and aspects of two-loop renormalisation

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik,

Informatik und Naturwissenschaften

Fachbereich Physik

der Universität Hamburg

vorgelegt von

Daniel Meuser

aus

Heinsberg, Deutschland

Hamburg

2023





Gutachter/innen der Dissertation: Prof. Dr. Georg Weiglein
Prof. Dr. Geraldine Servant

Zusammensetzung der Prüfungskommission: Prof. Dr. Georg Weiglein
Prof. Dr. Geraldine Servant
Prof. Dr. Michael Potthoff
Prof. Dr. Timo Weigand
Prof. Dr. Christian Schwanenberger

Vorsitzende/r der Prüfungskommission: Prof. Dr. Michael Potthoff

Datum der Disputation: 23.08.2023

Vorsitzender Fach-Promotionsausschuss PHYSIK: Prof. Dr. Günter H. W. Sigl

Leiter des Fachbereichs PHYSIK: Prof. Dr. Wolfgang J. Parak

Dekan der Fakultät MIN: Prof. Dr.-Ing. Norbert Ritter





Zusammenfassung

Das MSSM ist eine der vielversprechendsten Erweiterungen des SM. Im MSSM kön-
nen die Massen der Higgs-Bosonen in Abhängigkeit der anderen Modellparameter
vorhergesagt werden. In dieser Arbeit untersuchen wir zum ersten Mal die vollen
elektroschwachen Zwei-Schleifen-Beiträge der O

(
(αem + αq)2N2

c

)
zu den Massen der

MSSM Higgs-Bosonen unter Benutzung eines Feynman-diagrammatischen Ansatzes
und unter voller Berücksichtigung der Abhängigkeit vom externen Impuls. Wir
erwarten, dass diese Korrekturen den dominanten Anteil der noch fehlenden Zwei-
Schleifen-Korrekturen ausmachen. Da wir auf O

(
N2
c

)
arbeiten, zerfallen die rele-

vanten Zwei-Schleifen-Selbstenergien in Produkte von Ein-Schleifen-Integralen, was
es uns erlaubt, die analytische Struktur der Selbstenergien detailliert zu studieren.
Um endliche Werte für die Vorhersage der Higgs-Boson-Massen zu erhalten, renor-
mieren wir den Higgs-Eich-Sektor des MSSM auf dem Zwei-Schleifen-Niveau und
den Quark-Squark-Sektor auf dem Ein-Schleifen-Niveau für den allgemeinen Fall
komplexer Modellparameter. Wir erweitern eine häufig verwendete Relation zwis-
chen Zwei-Schleifen-Massencountertermen von skalaren Bosonen und Vektorboso-
nen auf den Fall nicht verschwindender elektroschwacher Eichkopplungen und zu
allen Ordnungen der Störungstheorie. Dies ist ein wesentlicher Bestandteil für die
Renormierung der neutralen und geladenen Higgs-Boson-Selbstenergien.
Wir vergleichen OS und DR Renormierungsschemata für tan(β), das Verhältnis
der Vakuumerwartungswerte. Wir untersuchen, wie die Wahl des Renormierungss-
chemas das Auftreten von O(ε)-Teilen von Schleifenintegralen in der Vorhersage für
die Higgs-Boson-Masse beeinflusst. Aus dieser Analyse können wir ableiten, unter
welchen Bedingungen Berechnungen mit unterschiedlichen Renormierungsschemata
mittels einer einfachen Reparametrisierung miteinander verglichen werden können.
In unserer numerischen Analyse vergleichen wir die neuen Korrekturen mit bereits
bekannten Zwei-Schleifen-Beiträgen und der experimentellen Unsicherheit der Masse
des beobachteten Higgs-Bosons. Wenngleich die neu berechneten Beiträge kleiner
als die bereits bekannten Zwei-Schleifen-Anteile sind, so sind sie in ihrer Größe
mit der experimentellen Unsicherheit vergleichbar. In einem Szenario mit starker
Teilchen-Mischung können die Effekte von generationsmischenden Beiträgen sogar
die experimentelle Unsicherheit um eine Größenordnung übersteigen. Dies unter-
streicht die Relevanz der bisher noch nicht bekannten Terme der elektroschwachen
Zwei-Schleifen-Beiträge.





Abstract

The MSSM is one of the most promising extensions of the SM. In the MSSM, the
masses of the Higgs bosons can be predicted in terms of the other model parameters.
In this thesis, we calculate for the first time the full electroweak two-loop contri-
butions of O

(
(αem + αq)2N2

c

)
to the MSSM Higgs boson masses using a Feynman-

diagrammatic approach including the full dependence on the external momentum.
These corrections are expected to constitute the dominant part of the two-loop cor-
rections that were still missing up to now. As a consequence of working at O

(
N2
c

)
,

the relevant two-loop self-energies decompose into products of one-loop integrals,
allowing us to study the analytic structure of the self-energies and their renormali-
sation in detail.
In order to get finite values for the Higgs boson mass prediction, we renormalise
the Higgs-gauge sector of the MSSM at the two-loop level and the quark-squark
sector at the one-loop level for the general case of complex input parameters. We
extend a well-known relation between two-loop mass counterterms of scalar and
vector bosons to the case of non-vanishing electroweak gauge couplings and to all
orders in perturbation theory. This is a crucial ingredient for the renormalisation of
the neutral and charged Higgs boson self-energies.
We compare OS and DR renormalisation schemes for tan(β), the ratio of the vacuum
expectation values. We examine how the choice of renormalisation scheme affects the
appearance of O(ε) parts of loop integrals in the Higgs boson mass prediction. From
this analysis, we infer under which conditions calculations with different renormali-
sation schemes can be compared with each other using a simple reparametrisation.
In our numerical analysis, the new corrections are compared against already known
two-loop contributions and the experimental uncertainty of the mass of the observed
Higgs boson. While smaller than the already known two-loop parts, the new terms
are comparable in size to the experimental uncertainty. In a scenario with strong
particle mixing, the effects of generation-mixing contributions can exceed the exper-
imental uncertainty by an order of magnitude. This underlines the relevance of the
so-far unknown electroweak two-loop contributions.
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1 Introduction

In 2012, a scalar particle with a mass of approximately125GeV has been discovered

at the Large Hadron Collider (LHC) at the European Organisation for Nuclear

Research(CERN) [1�3]. The observed properties of this particle are in agreement

with the properties of the Higgs boson predicted by theStandard Model of Particle

Physics (SM) within the current experimental and theoretical uncertainties [4�6].

The combination of most recent measurements yields an observed Higgs boson mass

of M h = 125:25 � 0:17 GeV [7]. While this observation elucidates the mechanism

through which the massive vector bosons and charged fermions obtain a mass, there

are still many open questions with respect to the nature ofelectroweak symmetry

breaking(EWSB) that are left to be answered.

Despite its great success, the Standard Model is not without shortcomings; it e.g.

fails to provide a suitableDark Matter (DM) candidate. The existence of Dark

Matter, while not proven by direct-detection experiments, is widely accepted. It is

therefore desirable that a more complete theory of Nature should provide a candidate

particle for Dark Matter.

Moreover, the Standard Model describes neutrinos as massless, weakly interacting

particles. It has been experimentally observed that neutrinos oscillate whilst prop-

agating through space-time. For neutrinos to be able to oscillate, they need to be

massive. As we know from experimentally determined upper bounds, their masses

are much smaller than the masses of the other SM particles. So far, the origin of

neutrino masses is unclear.

The Standard Model also fails to explain thebaryon asymmetry of the Universe,

the observed overabundance of matter over antimatter in the Universe. For a model

to be able to explain the baryon asymmetry, baryon number violation andCP-

symmetry violation must be present, and the Universe must have been out of thermal

equilibrium for the period of baryogenesis. While the SM provides sources for baryon

number violation as well asCP-symmetry violation, the latter is far too weak to

describe the observations correctly. The SM also lacks a strong �rst-order phase

transition for the observed value of the Higgs boson mass, which could otherwise

put the early Universe out of thermal equilibrium.
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From a theoretical point of view, it is appealing to regard the Standard Model as a

low-energy version of a more fundamental theory, like for instance aGrand Uni�ed

Theory (GUT). A GUT is a theory which combines the electroweak and the strong

force into a single, uni�ed force. In a GUT, the gauge couplings take the same value

at a high energy scaleMX , the GUT scale. This feature is called thegauge coupling

uni�cation . In the SM, the running gauge couplingsg, g0 and gs do not unify at a

high energy scale.

The fermion and gauge boson masses of the Standard Model are protected from

receiving large radiative corrections by chiral and gauge symmetry, respectively.

For the scalar SM Higgs boson, however, no such symmetry exists. While not a

problem within the Standard Model itself, we know that it can at most be valid up

to the Planck scale (MP � 1019 GeV) since it does not incorporate gravity. Once a

more complete theory introduces new physics at e.g. the aforementioned GUT scale

or the Planck scale (both considerably larger than the observed Higgs boson mass),

the lack of symmetry protection for the Higgs boson becomes an issue. Quantum

corrections will drive the unprotected Higgs boson mass to the highest energy scale

in the theory. This discrepancy between the Planck scale and the observed value of

the Higgs boson mass, which is of the same order of magnitude as the electroweak

scale, is known as thehierarchy problem.

A commonly studied extension of the SM is theMinimal Supersymmetric Standard

Model (MSSM) [8,9]. Supersymmetry(SUSY) is a space-time symmetry whose gen-

erators transform bosons into fermions and vice versa. As a consequence, the MSSM

contains a SUSY partner for each SM particle, di�ering in spin by1
2 . If supersym-

metry was an exact symmetry of Nature, the SM particles and their superpartners

would be mass degenerate. No superpartners of known particles have been observed

so far, so supersymmetry cannot be exact. In the MSSM, the supersymmetry break-

ing is soft and explicit.

The MSSM addresses many of the aforementioned problems of the SM. IfR-parity

is conserved, thelightest supersymmetric particle(LSP) is stable and can hence

provide a candidate for Dark Matter. The introduction of additional particles alters

the running of the gauge couplings in such a way that they take a very similar value

at the same energy scale, hinting at the MSSM arising from a GUT. Furthermore,

supersymmetry protects the Higgs boson mass from obtaining large loop corrections

due to a cancellation taking place between bosonic and fermionic degrees of freedom.

Naturally, the MSSM cannot address all of the aforementioned problems of the SM.

It should also be noted that the issues listed above are not a full account of the

Standard Model's shortcomings.
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The MSSM is atwo-Higgs-doublet model(2HDM) with �ve physical Higgs bosons,

three neutral ones and a charged pair. At the tree-level, the Higgs boson masses

are fully determined by (experimentally known) SM parameters and two additional

parameters, one of which is a Higgs boson mass. The remaining MSSM Higgs boson

masses can therefore be predicted. In the SM, on the other hand, no such prediction

is possible as the Higgs boson mass is an input parameter of the theory.

The tree-level mass of the lightest MSSM Higgs boson is bounded from above by

the mass of theZ boson [10] (MZ � 91 GeV), and it is therefore not in agreement

with the observed value. The large size of the quantum corrections shifts the pre-

dicted value closer to the observed one, rendering a precision calculation crucial in

order to pro�t from the high experimental accuracy. Predicting the masses of the

MSSM Higgs bosons and restricting the parameter space of the theory to match

experimental observations provides an important test of the model. For this reason,

the prediction of the MSSM Higgs boson masses is the focal point of this thesis.

In an interacting, four-dimensional theory, the full pole mass of a particle cannot

be calculated without approximations. For this reason, di�erent limiting cases and

methods have to be used in order to make a prediction for the MSSM Higgs bo-

son masses. For a SUSY scaleMS not much larger than the electroweak scale, the

calculation of Higgs boson self-energies in terms ofFeynman diagrams(FD) in a

(su�ciently high) �xed order of perturbation theory yields a reliable result [11�80].

For a large SUSY scale, the appearance of large logarithms spoils the accuracy of the

prediction. These large logarithms are resummed by making use of therenormal-

isation group (RG) in a so-callede�ective �eld theory (EFT) [31, 32, 81�127]. The

hybrid approach combines the FD ansatz with the EFT method by interpolating

the predictions for intermediate values ofMS [90,111,115,128�139]. An overview of

the di�erent approaches is given in Ref. [140].

In this thesis, we pursue a Feynman-diagrammatic approach with focus on elec-

troweak two-loop terms of the form O
�
(� em + � q)

2N 2
c

�
, where � em is the �ne-

structure constant, and� q is any product of the top and bottom Yukawa couplings.

Nc is the number of quark colours in the theory. The gauge group of the MSSM is

SU(3)c � SU(2)L � U(1)Y and hence identical to the SM gauge group; the number

of colours isNc = 3. We take into account the full momentum dependence of the

self-energies, allowing for a prediction in the case of large mixing between the lowest-

order mass eigenstates as well. For the �rst time, we perform a two-loop prediction

including pure gauge contributions in combination with an on-shell renormalisation

scheme. We expect these contributions to be the dominant electroweak corrections

beyond the ones that are already known.
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To obtain the desired contributions, we have to perform a complete renormalisation

of the MSSM Higgs-gauge sector at the two-loop level under the full inclusion of

electroweak e�ects. This leads to more complicated relations between the two-

loop counterterms in comparison to what has been encountered up to now. These

relations have to be taken into account in order to obtain a �nite result in the general

case where the �ne-structure constant is kept non-vanishing. From our analysis of

the structure of the two-loop self-energies, we can infer under which conditions two

calculations can be compared by employing a simple reparametrisation. We will

also show that our newly calculated contributions are larger than the experimental

uncertainty of the mass of the observed Higgs boson, and hence they should be

included in any prediction in order to further improve the theoretical precision.

This thesis is structured as follows: In Ch. 2, we recall the well-known concepts

of regularisation and renormalisation, and we explain how a minimal subtraction

scheme can consistently be de�ned at the two-loop order. We introduce the most

important quantities appearing in a pole mass calculation at the beginning of Ch. 3.

Subsequently, we de�ne the pole mass also in the presence of particle mixing and for

the case of unstable particles. We conclude the chapter by comparing the �xed-order

method and the �xed-point iteration, which are used to determine a particle pole

mass, in the case of two-particle mixing.

In Ch. 4, we discuss the renormalisation of the quark-squark sector and the Higgs-

gauge sector of the MSSM at the one- and two-loop level, respectively. We provide

an overview of the renormalised expressions for all relevant self-energies and we ex-

plain the renormalisation of each parameter and �eld entering our calculation. In

particular, we derive an on-shell renormalisation prescription for the MSSM param-

eter tan(� ). We discuss the analytical structure of our self-energies at the beginning

of Ch. 5. Subsequently, we give an overview of the programs and codes we used,

and we explain how the computation was performed at each step. We conclude

the chapter by analysing how the choice of renormalisation scheme in�uences which

parts of loop integrals enter the �nal prediction. This is important in understanding

under which circumstances calculations with di�erent renormalisation schemes can

be compared with each other using a simple reparametrisation.

In Ch. 6, we give analytical expressions for the leading one-loopm4
t contributions

to the MSSM Higgs boson masses for the case of complex parameters. In Ch. 7, we

investigate how our newly calculated contributions in�uence the Higgs boson mass

prediction in �ve di�erent MSSM scenarios. We compare their size with already

known contributions as well as with the experimental uncertainty of the Higgs boson

mass. We sum up the results of this thesis and draw our conclusions in Ch. 8.



2 Regularisation and renormalisation

We start this chapter by brie�y summarising the well-established concepts of regu-

larisation and renormalisation. Subsequently, we will motivate a prescription which

allows us to introduce a separate renormalisation scale for each parameter which is

de�ned in a minimal subtraction scheme.

A quantum �eld theory (QFT) is a framework that combines quantum mechan-

ics [141�143] and special relativity [144, 145] with classical �eld theory methods.

Quantum �eld theories in four space-time dimensions cannot be solved exactly, so

di�erent approximations need to be performed in order to carry out a calculation in

the model discussed in the present work. A very common approach is the so-called

perturbative expansion. Thereby, the interaction part of the theory's Lagrangian is

treated as a perturbation to the free, non-interacting theory. As long as the cou-

pling constants in the theory are su�ciently small, this approximation allows for the

accurate prediction of physical observables. Such a calculation is usually organised

in terms of Feynman diagrams, which provide a nice visual representation of the

perturbative expansion. Hence, we also refer to the perturbative approach as the

Feynman-diagrammatic (FD) approach.

Typically, the lowest order prediction for an observable is obtained from a tree-level

amplitude.1 In diagrams contributing to such an amplitude, the momentum of each

internal propagator is fully determined by the momenta of the external particles.

At higher orders of perturbation theory, diagrams contain propagators whose mo-

menta are undetermined; we integrate over these momenta, which potentially leads

to a divergent expression. If these singularities stem from high-energy momenta, we

call them �ultraviolet� (UV) divergence; we call them �infrared� (IR) if they arise

from the integrand's behaviour at the lower bound of integration. While IR diver-

gences drop out in a su�ciently inclusive calculation, UV divergences are treated by

renormalising the parameters (and in general also the �elds) of the theory. To this

end, we distinguish between the �bare� and the renormalised value of a parameter.

The renormalised parameters can be related to physical observables and so they are

�nite quantities; the bare parameters absorb the in�nities from the divergent loop
1There are exceptions, such as the decay of a Higgs boson into two photons; its lowest order

contribution starts at the one-loop level.
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integrals and are, therefore, divergent quantities themselves. We call the di�erence

between the bare and the renormalised value the parameter's counterterm, which

typically diverges as well.

To obtain meaningful expressions for the aforementioned divergent quantities, the

theory has to be regularised before the renormalisation can be carried out. It is ad-

vantageous in this context if the regularisation prescription respects the symmetries

of the theory. Therefore, several di�erent types of regularisation are used in practice

depending on the theory considered.

2.1 Regularisation

The idea of regularisation is to make the divergent part of an amplitude mathemat-

ically meaningful by introducing aregulator, or �cut-o��. In the case of integration

over loop momenta, this can for example be done by adding an arti�cial upper limit

of integration. We are now able to assign an analytic expression to the divergent

integral, allowing us to perform subtractions and other algebraic manipulations with

it. This is necessary, as otherwise subtracting in�nite expressions from one another

is not a well-de�ned mathematical operation. In the prediction of a physical ob-

servable, all divergences need to cancel. After this cancellation has happened, the

regulator is removed, yielding the �nal expression for the considered quantity.

At �rst glance, this seems to allow for a wide variety of di�erent regularisation

schemes. In most cases, however, it is convenient to choose a regularisation that as

much as possible preserves the symmetries of the theory as it avoids the need for

symmetry-restoring counterterms, resulting in a small set of regularisation schemes

employed in practice. We will introduce the most important ones used in perturba-

tive calculations in the following.

2.1.1 Wick rotation

In a general one-loop integral, we integrate over the four components of a four-

vector (q� ) = ( q0;~q). Each component takes values in the interval(�1 ; + 1 ) and

so the Minkowski inner product q2 � � �� q� q� is inde�nite. To make use of the

well-established techniques of multi-dimensional Euclidean integrals, we perform a

so calledWick rotation. Let us consider the one-loop integral

Z
d4q

f (q2)
q2 � m2 + i�

; (2.1)
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Figure 2.1: The Wick contour integral in the complex q0 plane. The two crosses denote
the location of the complex poles of the integrand in Eq. (2.1).� 0 > 0 is a regulator like �
but with a di�erent mass dimension.

where f is a holomorphic function of the Lorentz scalarq2 and � > 0 is an in-

�nitesimally small quantity that is included to give the correct Feynman propagator

prescription. In the following, the limit � ! 0 is always implied. The Wick rotation

is simply a change of variables

(qm
E ) =

0

@
q0

E

~qE

1

A �

0

@
� iq0

~q

1

A : (2.2)

The Euclidean scalar product

q2
E � qm

E qm
E = ( q0

E )2 + ~qE � ~qE = � (q0)2 + ~q� ~q= � q2 (2.3)

is a positive-de�nite quantity in terms of the new variablesq0
E and ~qE .

Let us consider theq0 direction of the four-dimensional integral in Eq. (2.1). We

close theq0-integration contour in the complex plane as shown in Fig. 2.1. The

contour is chosen such that the poles lie in the exterior of the curve. By virtue of

Cauchy's residue theorem, the contour integral vanishes. Since the integration along
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the two quarter circles does not contribute, we �nd

Z + 1

�1
dq0 f (q2)

q2 � m2 + i�
+

Z � i1

+ i1
dq0 f (q2)

q2 � m2 + i�
= 0: (2.4)

Using the Wick rotation for the integration along the imaginary line, we can write

Z + 1

�1
dq0 f (q2)

q2 � m2 + i�
= � i

Z + 1

�1
dq0

E
f (� q2

E )
� q2

E � m2 + i�
: (2.5)

The propagator poles are located in the vicinity of the real axis, so we are able to

take the limit � ! 0 (which is equivalent to � 0 ! 0 in Fig. 2.1) on the right-hand

side of the equation. Adding the integration over the spatial directions, we get

Z
d4q

f (q2)
q2 � m2 + i�

= i
Z

d4qE
f (� q2

E )
q2

E + m2 : (2.6)

The integral over the Euclidean four-momentum can now be further evaluated using

four-dimensional spherical coordinates.

2.1.2 Cut-o� regularisation

The idea of cut-o� regularisation is to regularise momentum integrals by restricting

the components of the loop four-momentum. A Lorentz-invariant condition, like

q2 � � 2, fails to achieve this, as the 0-component remains unrestricted [146]. We

thus require

q2
E � � 2 , j qE j =

q
q2

E � � (2.7)

after the Wick rotation discussed above. With this, the above integral is replaced

by
Z

d4q
f (q2)

q2 � m2 + i�
! i

Z

jqE j� �

d4qE
f (� q2

E )
q2

E + m2 : (2.8)

The cut-o� parameter � has mass dimension one, and the unregularised expression is

recovered in the limit � ! 1 . This prescription, however, breaks Lorentz invariance

and is thus rarely used in practise.

2.1.3 Pauli-Villars regularisation

This method of regularisation goes back to Wolfgang Pauli and Felix Villars [147]. It

is most commonly applied in the abelian QFT of quantum electrodynamics (QED),
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by replacing the photon propagator

1
q2 + i�

!
1

q2 + i�
�

1
q2 � � 2 + i�

: (2.9)

As in cut-o� regularisation, the parameter � has mass dimension one, and the limit

� ! 1 has to be taken at the end of the calculation. The term with the regulator

can be interpreted as originating from the extra term

L PVR =
1

2� 2 @� F �� @� F�� (2.10)

in the QED Lagrangian. As the �eld strength tensorF �� is a gauge-invariant quan-

tity in a local U(1) theory, this regularisation scheme does not break gauge invari-

ance in QED. On the other hand,F �� is only gauge covariant in a non-abelian

gauge theory, rendering the above approach gauge symmetry violating in the case

of quantum chromodynamics (QCD). A gauge-invariant non-abelian generalisation

of Pauli-Villars regularisation can be useful in the renormalisation of chiral theories,

as it avoids the ambiguity of de�ning 
 5 in D space-time dimensions [148].

2.1.4 Dimensional regularisation

Dimensional regularisation (DREG) was introduced by Gerard 't Hooft and Mar-

tinus Veltman to prove the renormalisability of Yang-Mills gauge theories in 1972

[149]. They also showed that the theory will remain renormalisable even if the un-

derlying gauge symmetry is spontaneously broken. This regularisation scheme is

often used for calculations within the framework of the SM, which utilises the Higgs

mechanism to give mass to its elementary particles.

The idea of DREG is to perform a calculation inD = 4 � 2" 2 C space-time di-

mensions instead of the 4 dimensions of the Minkowski space-time. If a momentum

integral UV-diverges in 4 dimensions, it converges inD dimensions whenRe(D) is

chosen su�ciently small. Allowing D to be complex, we are able to utilise tech-

niques (like analytical continuation) from complex analysis to evaluate Feynman

diagrams. The unregularised expression is obtained upon taking the limitD ! 4

(or, equivalently, " ! 0).

De�ning a theory in D and not in 4 dimensions brings with it some interesting

consequences; as the action

S[' i ] =
Z

dD x L (' i ; @� ' i ) (2.11)

has to be a dimensionless quantity when working with natural unitsc = ~ = 1, the
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Lagrangian L needs to have mass dimensionD. This alters the mass dimension of

�elds and couplings; while gauge and Yukawa couplings are dimensionless quantities

in 4 dimensions, in aD dimensional calculation, they have mass dimension". To

keep working with dimensionless couplings, theregularisation scale� D has to be

introduced. In some cases it is instructive to work with multiple regularisation

scales [150], as it enables us to deal with far-apart physical scales without the need

to use e�ective �eld theory (EFT) methods.

To demonstrate the procedure, let us discuss the one-loop Feynman diagram con-

tributing to a self-energy in � 4 theory with coupling � . In 4 dimensions, it is of the

form

� (1)
4 = �

i�
2

Z d4q
(2� )4

1
q2 � m2 : (2.12)

In D dimensions,� has mass dimension2". In order to work with a dimensionless

coupling, we substitute� ! �� 2"
D , where the new� has mass dimension zero. At

the same time, the mass dimension of the integration variable changes. We write

� (1)
D = �

i�
2

� 2"
D

Z dD q

(2� )D

1
q2 � m2

=
�

32� 2

 
16� 2

i
� 2"

D

Z dD q

(2� )D

1
q2 � m2

!

�
�

32� 2 A0(m2; "; � D ):

(2.13)

The loop integral A0 has an integer mass dimension of 2. When expanding such

an expression around" = 0, all the appearing logarithms will have dimensionless

arguments. For this reason, the de�nition ofA0 encompasses the regularisation scale

� D . The imaginary unit is included so that it can be absorbed when Wick rotating.

As these are both desirable properties, the above logic will be the foundation of

all one-loop integrals de�ned in the present thesis. In what follows, we will almost

always suppress the" and � D dependence in notation. Had we de�ned the above

expression in Pauli-Villars regularisation instead,A0 would depend onm2 and � .

The scale� would simultaneously serve as a regulator and a regularisation scale.

2.1.5 Dimensional reduction

Fully de�ning a theory in D dimensions, however, leads to issues when working with

a supersymmetric theory; a mismatch between the number of degrees of freedom

of a gauge �eld A � and its associated gauginos spoils multiplicative renormalisa-

tion, and supersymmetry-restoring counterterms have to be introduced [151]. This
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problem can be circumvented by modifying the regularisation scheme such that it

respects supersymmetry. This idea led to the introduction ofdimensional reduction

(DRED) by Warren Siegel in 1979 [152]. Unlike in DREG, vector �eldsA � , gamma

matrices 
 � , and � ���� are still treated as four-dimensional tensors in DRED. Only

loop-momenta live inD dimensions in order to regularise divergent integrals. While

this unequal treatment of Lorentz tensors leads to additional mathematical inconsis-

tencies [151], we will use DRED in this �naive� formulation throughout the entirety

of this thesis. A mathematically consistent but more technical formulation is given

in Ref. [151]. The di�erent formulations yield the same results for the quantities

considered in this thesis. Apart from these di�erences, DRED is very similar to

DREG. As the momenta are de�ned inD dimensions, the four-dimensional limit is

obtained by taking " ! 0.

2.1.6 Other regularisation schemes

Of the regularisation schemes mentioned so far, DREG and DREG are the ones used

most commonly in a perturbative calculation.

If the coupling constant, with respect to which the series expansion is performed,

is too large, a non-perturbative approach has to be taken. A regularisation scheme

suited for this kind of calculation is the lattice regularisation, in which the QFT

is de�ned on a four-dimensional grid of lattice points. In this scheme, the lattice

spacinga serves both as a regulator and as a regularisation scale with mass dimension

� 1. The continuum limit is recovered when takinga ! 0. While local gauge

invariance is relatively simple to maintain within lattice regularisation, Poincaré

invariance is reduced to a discrete group [153]. Poincaré symmetry is restored once

the continuum limit is taken.

In curved spacetime [154],zeta function regularisationis used to assign �nite values

to path integrals for �elds [155]. This method introduces a dimensionless regulator

s and an arbitrary parameter � with mass dimension 1, which is necessary from

dimensional considerations [156]. In this regularisation scheme, a generalised zeta

function � (s) is formed from the eigenvalues of a di�erential operator. The deter-

minant of the operator is then de�ned to beexp
�
� � 0(0)

�
.

We close this section with an important statement:The process of regularisa-

tion introduces both a regulator and a regularisation scale into the theory.

Those quantities can be identical as in the case of Pauli-Villars and lattice regulari-

sation, or they can be separate quantities, as is the case in DREG/DRED and zeta

function regularisation. The regulator and the regularisation scale are unphysical

and drop out in the relation between physical observables at any given order.
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2.2 Renormalisation

The idea of renormalisation is to absorb the aforementioned in�nities from the loop

integrals into the parameters of the theory. It is very important to be precise when

specifying the renormalisation procedure, as only then di�erent calculations can be

compared in a meaningful sense. We will introduce the most important renormal-

isation schemes used in practice in what follows. For all purposes, we work with a

multiplicative renormalisation scheme. This means that a theory's bare and renor-

malised parameters are related via

pB = Zp p = p + �p = p +
1X

i =1

� (i )p; (2.14)

wherepB is the bare parameter,Zp is the renormalisation constant,p is the renor-

malised parameter, and�p is the counterterm, which is expanded up to the desired

loop order. Additionally, we renormalise �elds as well. If multiple �elds carry identi-

cal quantum numbers, the renormalisation needs to account for loop-induced mixing.

For the case of two �elds, this is done by a2 � 2 matrix:

0

@
' 1;B

' 2;B

1

A =

0

@

q
Z ' 1 ' 1

1
2 �Z ' 1 ' 2

1
2 �Z ' 2 ' 1

q
Z ' 2 ' 2

1

A

0

@
' 1

' 2

1

A : (2.15)

The diagonal renormalisation constant and the o�-diagonal counterterm have a sim-

ilar loop expansion as the parameters:

Z ' i ' i
= 1 + �Z ' i ' i

; (2.16a)

�Z ' i ' j
=

1X

i =1

� (i )Z ' i ' j
: (2.16b)

In the subsequent chapters, we will express the relation between bare and renor-

malised quantities in the form of a renormalisation transformation

p ! p + �p (= pB ): (2.17)

2.2.1 On-shell renormalisation

The on-shell renormalisationscheme (OS) directly relates parameters to physical

observables. If a mass parameter is renormalised in the OS scheme, its renormalised

value is identical to the pole mass of the particle. The pole mass of a particle is
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de�ned via the equation

p2 � m2 + �̂ e� (p2) = 0 at p2 = M 2 � M 2 � iM � ; (2.18)

wherem is the tree-level mass,M is the physical pole mass, andM 2 is the complex

pole. �̂ e� is the renormalised e�ective self-energy. We will derive this equation

in Ch. 3. At the one-loop level, the e�ective self-energy is identical to the usual

self-energy�̂ . The renormalised one-loop self-energy is of the form

�̂ (1) (p2) = � (1) (p2) + � (1) Z(p2 � m2) � � (1) m2; (2.19)

where� (1) Z is the �eld counterterm and � (1) m2 is the mass counterterm. To demon-

strate the renormalisation procedure, we give an example with a scalar one-loop

self-energy. Let

� (1) (p2) = �A 0(m2) + �p 2B0(p2; m2
1; m2

2); (2.20)

where� and � are real, dimensionless constants. The one-loop integralsA0 and B0

are de�ned in Eqs. (D.1). In a general self-energy, other loop functions might appear

and, in the case of a charged self-energy, the coe�cients can be complex.

The on-shell scheme is now de�ned by requiring that the squared tree-level mass

m2 coincides with the real part of the complex poleM 2. At the one-loop level, this

leads to the renormalisation condition

Re�̂ (1) (m2) != 0: (2.21)

The one-loop mass counterterm is then

� (1) m2;OS = Re � (1) (m2)

= �A 0(m2) + �m 2 ReB0(m2; m2
1; m2

2):
(2.22)

A mass counterterm de�ned in such a way typically has both a divergent and a �nite

part. Additionally, there are also parts proportional to higher powers of" (when

working with e.g. DRED, which we will always assume from here on). While this

part vanishes in the limit " ! 0 and does not contribute in any one-loop calculation,

it becomes very important in a two-loop calculation and has to be included.

Just like mass parameters, �eld counterterms can be de�ned in an OS way as well.

To this end, we require the propagator to have unit residue, which gives us the
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renormalisation condition

@
@p2

�̂ (1) (p2)

�
�
�
�
�
p2= m2

� @̂� (1) (m2) != 0: (2.23)

From this, we infer the OS counterterm

� (1) Z OS = � @� (1) (m2)

= � �m 2@B0(m2; m2
1; m2

2) � �B 0(m2; m2
1; m2

2):
(2.24)

Let us now check the structure of̂� (1) with OS counterterms as above. Its divergent

part is

�̂ (1) (p2)
�
�
�
�
div

= � (1) (p2)
�
�
�
�
div

+ � (1) Z OS
�
�
�
�
div

(p2 � m2) � � (1) m2;OS
�
�
�
�
div

=
�m 2 + �p 2

"
+

� �
"

(p2 � m2) �
�m 2 + �m 2

"
= 0:

(2.25)

We see that the �eld counterterm is necessary to get a �nite self-energy also for

o�-shell momenta p2 6= m2. To analyse the �nite structure of the renormalised

self-energy, we setm2
1 = m2

2 = 0 for simplicity. We use

A �n
0 (m2)=m2 = 1 + log(4 � ) � 
 E + log

 
� 2

D

m2

!

; (2.26a)

B �n
0 (p2;0;0) = 2 + log(4 � ) � 
 E + log

 

�
� 2

D

p2

!

: (2.26b)

For the renormalisation constants we �nd

� (1) m2;OS;�n = �m 2

"

1 + log(4� ) � 
 E + log

 
� 2

D

m2

!#

+ �m 2

"

2 + log(4� ) � 
 E + Re log

 

�
� 2

D

m2

!#

;

(2.27a)

� (1) Z OS;�n = � �m 2
�

�
1

m2

�

� �

 

2 + log(4� ) � 
 E + log

 

�
� 2

D

m2

!!

: (2.27b)

Putting everything together, we get

�̂ (1) (p2) OS= �p 2

"

1 + log

 

�
� 2

D

p2

!

� log

 

�
� 2

D

m2

!#

� �m 2

"

1 + Re log

 

�
� 2

D

m2

!

� log

 

�
� 2

D

m2

!#

+ O("):

(2.28)
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Assuming� D ; m > 0, we get

�̂ (1) (p2) OS= �p 2

"

1 + log

 

�
m2

p2

!

� i�

#

� �m 2(1 � i� ) + O("): (2.29)

From this simple result we see that the renormalised one-loop self-energy does not

depend on the regularisation scale� D anymore. For this cancellation to happen, the

�nite parts of both � (1) m2 and � (1) Z need to be taken into account. In a momentum-

subtraction scheme this always happens, while in a minimal subtraction scheme it

does not. We explain these schemes in Sects. 2.2.2 and 2.2.3.

2.2.2 General momentum-subtraction scheme

The previously introduced OS scheme is an example of a so-called momentum-

subtraction (MOM) scheme. A MOM scheme is a renormalisation scheme where

renormalisation conditions are imposed at a speci�c energy scale (as opposed to a

minimal subtraction scheme, where we only require �niteness). This energy scale is

called the renormalisation scale. We modify the OS renormalisation conditions to

Re�̂ (1) (Q2
m ) != 0; (2.30a)

@̂� (1) (Q2
Z ) != 0; (2.30b)

whereQm and QZ are the mass and �eld renormalisation scales, respectively. The

MOM counterterms now depend on the renormalisation scales

� (1) m2;MOM = Re � (1) (Q2
m ) + Re � (1) Z MOM (Q2

m � m2); (2.31a)

� (1) Z MOM = � @� (1) (Q2
Z ): (2.31b)

The counterterms read

� (1) m2;MOM = �A 0(m2) + �Q 2
m ReB0(Q2

m ; m2
1; m2

2) � (Q2
m � m2)

� �
h
Q2

Z Re@B0(Q2
Z ; m2

1; m2
2) + Re B0(Q2

Z ; m2
1; m2

2)
i

;
(2.32a)

� (1) Z MOM = � �Q 2
Z @B0(Q2

Z ; m2
1; m2

2) � �B 0(Q2
Z ; m2

1; m2
2): (2.32b)

We see that the mass counterterm now depends on the �eld renormalisation. As

the divergent part of the one-loop counterterms is always scheme independent, the
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renormalised self-energy is still �nite

�̂ (1) (p2)
�
�
�
�
div

= � (1) (p2)
�
�
�
�
div

+ � (1) Z MOM
�
�
�
�
div

(p2 � m2) � � (1) m2;MOM
�
�
�
�
div

=
�m 2 + �p 2

"
+

� �
"

(p2 � m2) �
�m 2 + �Q 2

m � � (Q2
m � m2)

"
= 0:

(2.33)

The �nite MOM self-energy reads

�̂ (1) (p2) MOM= �p 2

"

1 + log

 

�
� 2

D

p2

!

� log

 

�
� 2

D

Q2
Z

!#

� �Q 2
m

"

1 + Re log

 

�
� 2

D

Q2
m

!

� Re log

 

�
� 2

D

Q2
Z

!#

� �m 2

"

Re log

 

�
� 2

D

Q2
Z

!

� log

 

�
� 2

D

Q2
Z

!#

+ O("):

(2.34)

Assuming� D ; Qm ; QZ > 0, we can simplify

�̂ (1) (p2) MOM= �p 2

"

1 + log

 

�
Q2

Z

p2

!

� i�

#

� �Q 2
m

"

1 + log

 
Q2

Z

Q2
m

!#

+ �m 2 � i� + O("):

(2.35)

We see that the� D dependence drops out again and it is replaced by a dependence

on both Qm and QZ . The choiceQ2
m = Q2

Z = m2 yields the OS results from the

previous section.

2.2.3 Minimal subtraction schemes

In a minimal subtraction scheme, counterterms are chosen to have only a divergent

part. By this choice, renormalised self-energies are still rendered �nite, but with a

di�erent �nite part in comparison to momentum-subtraction schemes. In practice,

we calculate the desired counterterm in any MOM scheme and simply discard its

�nite parts. This method de�nes the MS scheme in DREG and the DR scheme in

DRED. As we work with the DRED regularisation scheme exclusively, we will here

focus on the DR scheme. All results carry over to the MS scheme when using DREG

instead. The mass and �eld counterterms are

� (1) m2;DR � � (1) m2;OS
�
�
�
�
div

=
�m 2 + �m 2

"
;

(2.36a)
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� (1) Z DR � � (1) Z OS
�
�
�
�
div

= �
�
"

:
(2.36b)

With this, the renormalised self-energy is

�̂ (1) (p2) DR= �p 2

"

2 + log(4� ) � 
 E + log

 

�
� 2

D

p2

!#

+ �m 2

"

1 + log(4� ) � 
 E + log

 
� 2

D

m2

!#

+ O("):

(2.37)

To get rid of the irrational constants4� and 
 E , one often uses themodi�ed minimal

subtraction schemesMS and DR, where additional �nite terms are added to the

counterterms:

� (1) m2;DR = ( � + � ) m2
� 1

"
+ log(4� ) � 
 E + O(")

�

; (2.38a)

� (1) Z DR = � �
� 1

"
+ log(4� ) � 
 E + O(")

�

: (2.38b)

The O(") parts do not matter in a one-loop calculation and are often not spelled

out in literature. In Sect. 2.3, we will explain why they are needed in higher-order

calculations and we will extend the expressions above to incorporate them. With

this choice of counterterms, the renormalised self-energy is

�̂ (1) (p2) DR= �p 2

"

2 + log

 

�
� 2

D

p2

!#

+ �m 2

"

1 + log

 
� 2

D

m2

!#

+ O("): (2.39)

In both the DR and the DR scheme, the renormalised self-energy depends on� D .

At �rst glance, this dependence seems to carry over to the prediction of observables

like the pole mass. This does not happen, however, as the DR/DR parameters

m2;DR =DR (� D ) andZ DR =DR (� D ) are scale dependent themselves. Therenormalisation

group (RG) ensures that the scale dependence drops out order by order in relations

between physical observables, and the speci�c energy at which the pole mass is

calculated, the so-calledpole mass scale[137, 157], does not matter at any given

order.

The renormalisation group The renormalisation group describes how the prop-

erties of a physical system change when varying the energy scale at which it is

described. This holds in particular forDR parameters, which are regularisation
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scale dependent. We start from the relation

m2;OS + �m 2;OS = m2
B = m2;DR + �m 2;DR : (2.40)

We take its derivative with respect to� 2
D and get

0 +
@

@�2D
�m 2;OS =

@m2;DR

@�2D
+ 0; (2.41)

as the OS mass is an observable and as such scale independent, and theDR coun-

terterm contains no scale. We de�ne themass anomalous dimension


 DR
m2 � �

� 2
D

m2;DR

@m2;DR

@�2D
= �

@logm2;DR

@log� 2
D

: (2.42)

Similarly, we de�ne the beta function of a coupling constantg via

� DR
g � � 2

D
@gDR

@�2D
=

@gDR

@log� 2
D

: (2.43)

For our current analysis, we require only the mass anomalous dimension
 DR
m2 ; we

insert Eq. (2.27a) into Eq. (2.41) and use de�nition (2.42) to �nd


 DR
m2 = � (� + � ) + O

�
k2

�
: (2.44)

Here, k is the loop counting factor. We integrate Eq. (2.42) between two �xed but

arbitrary scalesQ1 and Q2 to �nd

m2;DR (Q2
2) = m2;DR (Q2

1)

 
Q2

2

Q2
1

! � 
 DR

m
2

+ O
�
k2

�

= m2;DR (Q2
1) + ( � + � )m2;DR log

 
Q2

2

Q2
1

!

+ O
�
k2

�
:

(2.45)

We have omitted the energy scale argument in terms where its impact is of higher

order and we will continue to do so below.

We now use this result to demonstrate that the pole massM 2 is indeed independent

of the speci�c value of � D at which it is calculated. In the DR scheme, the one-

loop pole mass di�ers from the unphysicalDR mass by a �nite shift. For the �rst



2.2. Renormalisation 19

prediction we make the choice� D = Q1:

M 2(Q2
1) = m2(Q2

1) � Re�̂ (1) (m2) + O
�
k2

�

= m2(Q2
1) � �m 2

"

2 + log

 
Q2

1

m2

!#

� �m 2

"

1 + log

 
Q2

1

m2

!#

+ O
�
k2

�

(2.46)

Here and in the following equation,m2 denotes theDR mass. In the second and

third term, the energy at which we evaluatem2 matters only beyond one-loop order,

so we omit the argument here.

For the second prediction, we set� D = Q2:

M 2(Q2
2) = m2(Q2

2) � �m 2

"

2 + log

 
Q2

2

m2

!#

� �m 2

"

1 + log

 
Q2

2

m2

!#

+ O
�
k2

�

= m2(Q2
1) + ( � + � )m2 log

 
Q2

2

Q2
1

!

� �m 2

"

2 + log

 
Q2

2

m2

!#

� �m 2

"

1 + log

 
Q2

2

m2

!#

+ O
�
k2

�

= m2(Q2
1) � �m 2

"

2 + log

 
Q2

1

m2

!#

� �m 2

"

1 + log

 
Q2

1

m2

!#

+ O
�
k2

�

= M 2(Q2
1) + O

�
k2

�
:

(2.47)

In the second step, we have made use of Eq. (2.45) and in the third we combined

the logarithms to cancelQ2. We have thus demonstrated that if we make a one-loop

prediction for an observable at two di�erent energiesQ1 and Q2, the calculations will

agree up to the one-loop level but di�er at the two-loop order and beyond. We can

hence vary the pole mass scale to estimate the size of missing higher-order terms.

Eq. (2.47) also tells us how to interpret the parameter� D in a minimal subtrac-

tion scheme. As we have seen, aDR counterterm does not contain a scale that

could be understood as a renormalisation scale. Instead, we identify the regular-

isation scale� D with the renormalisation scale at which the parameter is de�ned.

For this reason,� D is often called the renormalisation scale although it is�strictly

speaking�introduced at the step of regularisation. When working with DR param-

eters, we always give the value of a parameter at its renormalisation scale. The RG

allows us to calculate the parameter value at any other scale.
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2.3 Minimal subtraction schemes at the two-loop

level

If two or more parameters are de�ned in a minimal subtraction scheme, their renor-

malisation scales�i.e. the energy scales at which the parameters are de�ned�might

be di�erent. In this case, it is not clear which value for the regularisation scale� D

should be used in the calculation. In the standard approach, we �rst employ the

renormalisation group to evolve the parameters to the same scale, then we set� D

to that value.

To illustrate this procedure, let us consider a calculation with twoDR parameters,

p1 and p2, which are de�ned at the renormalisation scalesQ1 and Q2, respectively.

On the one hand, we can evolvep1 from Q1 to Q2, and sincep2 is already de�ned at

Q2, we also set� D = Q2. On the other hand, we can also evolvep2 from Q2 to Q1

instead and set� D = Q1. As a third option, we can also evolve both parameters to

a new scaleQ3 and set� D = Q3. In any n-loop calculation, all three methods yield

results which agree to ordern but di�er by terms of order (n + 1) . In a pole mass

calculation, we can thus vary the pole mass scale to estimate the size of the missing

higher-order terms.

This method has two shortcomings. First, we need to determine the beta functions

for all DR couplings and anomalous dimensions for masses and �elds de�ned in a

minimal subtraction scheme up to the required loop order. Secondly, we are not

able to tell how much each parameter contributes to the uncertainty due to missing

higher orders. In this section, we want to introduce a di�erent prescription, called

the gDR renormalisation scheme. It avoids the need to calculate beta functions when

severalDR parameters are de�ned at di�erent scales; in this way we circumvent the

�rst issue. If the beta functions are known, however, we can use thegDR scheme

to investigate the scale uncertainty which is introduced by each minimally de�ned

parameter separately. Furthermore, our prescription naturally leads to a general-

isation of the DR scheme to the two-loop order. This is important as�starting

at the two-loop level�the de�nition of modi�ed minimal subtraction is no longer

unique [158,159].

To illustrate the non-uniqueness of modi�ed minimal subtraction at higher orders,

let us look at the one-loop integralsA0 and B0, which are de�ned in Eqs. (D.1).

A0 and the masslessB0 have the neat property that they can be put in a closed

expression without the need to expand the integrand in" �rst, see Eqs. (D.22).

As we can see from their de�nitions, all one-loop integrals are proportional to� 2"
D ,

owing to the way the regularisation scale is introduced. The factor of(4� )" always
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appears in the same fashion as well, as it stems from a combination of the prefactor

C of the integrals and the angular integral inD dimensions. The combination of

Gamma functions, however, depends on the considered integral. Therefore, di�erent

de�nitions of the modi�ed regularisation scale�� D and, hence, theDR scheme exist.

The following conventions, among others, are found in the literature:

�� 2"
D =

�
4�e � 
 E

� "
� 2"

D [46]; (2.48a)

�� 2"
D =

(4� )"

�(1 � " )
� 2"

D [158,159]; (2.48b)

�� 2"
D =

(4� )" � 2(1 � " )�(1 + ")
�(1 � 2")

� 2"
D [160]: (2.48c)

All these conventions agree atO("). The second and third convention agree at

O
�
"2

�
, but di�er from the �rst one at that order. At O

�
"3

�
, all conventions di�er.

While all conventions are able to get rid of anylog(4� ) or 
 E terms, other irrational

constants, which appear at higher orders, cannot be removed simultaneously by any

choice. It can be shown, however, that di�erences ofO
�
"2

�
in the de�nition of

�� D do not alter the value of a renormalised Green function after taking the limit

" ! 0 [159]. Therefore, the exact choice of how to de�ne�� D matters only for

technical reasons.

2.3.1 De�ning the gDR renormalisation scheme

When working with several parameters that are de�ned in a minimal subtraction

scheme but at di�erent energy scales, we have to evolve the parameters to the same

energy scale via RG running. This would, however, mix loop orders. To avoid this

mixing, we would have to expand the solution of therenormalisation group equation

(RGE) up to the desired loop order.

This procedure is equivalent to adding a �nite piece to the counterterm of the param-

eter; adding a logarithm of� D over the renormalisation scaleQp for each parameter

p replaces the� D dependence of the renormalised parameter by a dependence on

the renormalisation scale. Now the renormalisation scales of the parameters can be

set to their respective values and a prediction can be made. To illustrate this simple

procedure, we start with the DR counterterm of the parameterp. It will be of the

general form

� (1) pDR =
A
"

: (2.49)
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In a DR scheme, we have

� (1) pDR = A
� 1

"
+ log(4� ) � 
 E + O(")

�

: (2.50)

This prescription removes the irrational constants for any linear combination of

integrals at the one-loop level as they appear in the same combination with the

divergence1
" for all one-loop integrals. If a parameter is renormalised in a MOM

scheme (like e.g. an OS scheme), its one-loop counterterm will contain the same

combination of divergence and irrational constants as theDR counterterm.

To get rid of the � D in the end result as well, we have to further extend theDR

counterterm to the form

� (1) pDR ! � (1) pfDR = A

 
1
"

+ log(4� ) � 
 E + log

 
� 2

D

Q2
p

!

+ O(")

!

; (2.51)

whereQp is the (renormalisation) scale at whichp is de�ned. This form was obtained

from comparison with an OS counterterm. ThegDR counterterm now has the same

� D dependence as an OS counterterm:

@
@�2D

� (1) m2; fDR =
@

@�2D
� (1) m2;OS: (2.52)

An OS parameter is regularisation scale independent; this statement also holds for

a gDR parameter:

@m2; fDR

@�2D
=

@m2;OS

@�2D
+

@
@�2D

� (1) m2;OS �
@

@�2D
� (1) m2; fDR = 0; (2.53)

which follows from

m2;OS + �m 2;OS = m2; fDR + �m 2; fDR : (2.54)

Of course, agDR parameter still depends on its renormalisation scaleQp:

@m2; fDR

@Q2p
= �

@
@Q2p

� (1) m2; fDR =
@

@�2D
� (1) m2; fDR =

@m2;DR

@�2D
6= 0: (2.55)

The �rst equality holds as the bare parameterm2
B is independent ofQp, the second

one from the de�nition of the gDR counterterm, and the third one from

m2;DR + �m 2;DR = m2; fDR + �m 2; fDR : (2.56)

To understand how we can extend this procedure to the two-loop level, let us consider
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a calculation where all parameters are de�ned in a MOM scheme. A renormalised

two-loop self-energy is the sum of the unrenormalised self-energy and the two-loop

counterterms. The unrenormalised self-energy comprises both diagrams with a gen-

uine two-loop topology as well as one-loop diagrams with one-loop counterterm

insertions. Each two-loop diagram is proportional to� 4"
D , while each one-loop dia-

gram comes with a factor� 2"
D . The same holds for two- and one-loop counterterms,

respectively, if they are de�ned in a MOM scheme. Thus, the renormalised two-

loop self-energy will depend on� D merely through the overall factor� 4"
D . As the

� D -independent part is �nite through renormalisation, the scale� D cannot appear

in the renormalised self-energy atO
�
"0

�
. We want the same cancellation to take

place when de�ning at least one parameter in a minimal subtraction scheme.

To this end, we de�ne our own modi�ed minimal subtraction scheme, thegDR scheme,

as follows:

ˆ The divergent part of a gDR counterterm agrees with its DR/DR counterpart.

ˆ For each gDR parameter p, we introduce a separate renormalisation scaleQp.

ˆ At every order of perturbation theory, the regularisation scale� D drops out

at D = 4.

ˆ All appearances oflog(4� ) and 
 E drop out for D = 4.

We work with the convention

�� 2
D = 4�e � 
 E � 2

D : (2.57)

This replacement �hides� all appearances oflog(4� ) and 
 E in the newly de�ned

regularisation scale�� D . If we can give a minimal subtraction prescription according

to which all instances of�� D disappear, the last two requirements of ourgDR de�nition

are simultaneously ful�lled. � D and the constant4� always appear together, while

the 
 E stems from the expansion of the gamma function. Explicit expressions of

one-loop functions up toO(") as in Ref. [161] tell us that the above de�nition of�� D

indeed gets rid of all
 E 's as well. Any other aforementioned convention works as

well and achieves the same.

We de�ne a one-loopgDR counterterm from its DR counterpart via

� (1) pfDR �

 
�� 2

D

Q2
p

! " ~A
"

; (2.58)

whereQp is the renormalisation scale of thegDR parameterp. The divergent part of

the gDR counterterm has to agree with the divergence of the DR counterterm, giving
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us the condition
~A = A (2.59)

for the coe�cient of the divergence. This de�nition leads to

� (1) pfDR = A

 
1
"

+ log

 
�� 2

D

Q2
p

!

+
"
2

log2

 
�� 2

D

Q2
p

!

+ O
�
"2

�
!

(2.60)

with the same leading logarithms,"n log(n+1) , as a momentum-subtraction scheme

and is therefore able to cancel all appearances of�� D . It also reproduces our previous

expression in Eq. (2.51), but it now additionally includes a term ofO(").

At the two-loop level, the procedure is very similar. A two-loop DR counterterm for

the parameterp takes the form

� (2) pDR =
B
"2 +

C
"

: (2.61)

Here, the coe�cient B is independent from the renormalisation chosen at one-loop

order, whereasC depends on the �nite parts of the one-loop counterterms via sub-

loop renormalisation.

We write the gDR counterterm as

� (2) pfDR =

 
�� 2

D

Q2
p

! 2"  ~B
"2 +

~C
"

!

: (2.62)

~B and ~C then need to be chosen such that the divergences of the DR counterterm

are reproduced. The only possible choice is

~B = B; (2.63a)

~C = C � 2B log

 
�� 2

D

Q2
p

!

: (2.63b)

By construction, ~C is �� D -independent whileC is not. Re-expressing thegDR coun-

terterm in terms of the DR coe�cients and expanding in " , we arrive at:

� (2) pfDR = B

 
1
"2 � 2 log2

 
�� 2

D

Q2
p

!

+ O(")

!

+ C

 
1
"

+ 2 log

 
�� 2

D

Q2
p

!

+ O(")

!

: (2.64)

This prescription can easily be extended to higher loop orders. One must not forget

to include O(") terms in counterterms of lower loop order. At the three-loop level,

for example, we need to add anO(") part in the two-loop counterterm.

In the gDR scheme, the single scale� D or �� D is replaced by one renormalisation scale
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Qp for each parameterp. By varying only one of the renormalisation scales, we

can isolate the scale uncertainty stemming from the de�nition of the respectivegDR

parameter.

2.3.2 De�ning the DR renormalisation scheme at higher orders

We want to conclude this section by generalising theDR scheme to the two-loop

order as well. We can simply use thegDR prescription and setQp = � D :

� (1) pDR �
�
4�e � 
 E

� " A
"

= A
� 1

"
+ log(4� ) � 
 E +

"
2

[log(4� ) � 
 E ]2 + O
�
"2

� �

;
(2.65a)

� (2) pDR �
�
4�e � 
 E

� 2"
 

B
"2 +

C
"

!

= B
� 1

"2 � 2[log(4� ) � 
 E ]2 + O(")
�

+ C
� 1

"
+ 2[log(4� ) � 
 E ] + O(")

�

:

(2.65b)

We determinedA, B , and C again by comparing the divergent parts of DR andDR

counterterms, from which we obtained the relations

A = A; (2.66a)

B = B; (2.66b)

C = C � 2B[log(4� ) � 
 E ]: (2.66c)

Similar as in the gDR scheme, theDR constants A, B , and C do not contain the

irrational constants log(4� ) and 
 E . This prescription is in perfect agreement with

the one found in Ref. [159] and was derived independently. In Ref. [159], the idea

of adding one factorS" = (4 �e � 
 E )" for each loop in the counterterms is presented

as well.2

2They use the di�erent but equivalent convention S" = (4 � )" =�(1 � " ).





3 The pole mass of a particle

In this chapter, we explain how the pole mass of a particle is determined in a pertur-

bative, Feynman-diagrammatic calculation. The pole mass is a physical observable

and so it can be used to compare the predictions of a given model with experimental

observations. If a mass parameter is not renormalised in the OS scheme or if the

parameter is not used an input parameter, we have to calculate the pole mass in

terms of input parameters. The following analysis naturally leads to the de�nition

of the OS scheme for masses at the two-loop level both for unstable particles and in

the presence of particle mixing.

In the �rst section, we give de�nitions for several di�erent types of correlation func-

tions. Two of these�the Feynman propagator and the vertex function�play an im-

portant role in a pole mass calculation. We show how the correlators are obtained

from generating functionals and that the Feynman propagator and the two-point

vertex functions are inverse functions of each other. We demonstrate that inverting

the two-point vertex function and performing a Dyson resummation of self-energies

are equivalent and both result in the loop-corrected propagator.

In the second section, we discuss the issues of unstable particles and the mixing of

particles; in the most general case, both e�ects play a role in a pole mass calculation.

Subsequently, we give explicit one- and two-loop formulae from which the pole mass

can be calculated in a �xed-order calculation. These formulae are the basis of a

two-loop de�nition of the OS renormalisation scheme. In a two-loop prediction with

particle mixing, resonance e�ects can enhance the loop corrections to the pole mass.

This can be a problem within a �xed-order approach, which can be circumvented

by numerically determining the exact location of the propagator pole via a �xed-

point iteration. As the numerical approach mixes di�erent loop orders, unphysical

e�ects like a gauge-parameter dependence might a�ect the prediction. Therefore,

depending on the scenario, one method might be more advantageous than the other.
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3.1 The Feynman propagator and vertex functions

In this section, we give de�nitions of di�erent correlation functions and generating

functionals which appear in any interacting quantum �eld theory. For this discus-

sion, we restrict ourselves to a scalar �eld theory with a single scalar �eld� . The

generalisation to the case of several di�erent species of scalar particles is straight-

forward. The same concepts naturally exist for �elds of higher spin�like fermions

and gauge bosons�as well. In this thesis, however, we are solely interested in the

prediction of scalar particle masses. Thus, the following de�nitions will turn out to

be su�cient.

3.1.1 Correlation functions

The unrenormalisedGreen function is de�ned as the vacuum expectation value

(VEV) of the time-ordered product of unrenormalised �elds, each taken at a di�erent

space-time point:

G(x1; : : : ;xn ) � h 
 j T � B (x1) : : : � B (xn ) j
 i : (3.1)

The renormalised Green function, on the other hand, is de�ned in terms of renor-

malised �elds

Ĝ(x1; : : : ;xn ) � h 
 j T � (x1) : : : � (xn ) j
 i = Z � n
2 G(x1; : : : ;xn ): (3.2)

For practical applications, it is often easier to work in the momentum representation.

Therefore, we introduce momentum-space Green functions via a continuous Fourier

transform

eG(p1; : : : ;pn ) �
Y

i

� Z
d4x i eipi �x i

�

G(x1; : : : ;xn )

� (2� )4� (4) (p1 + � � � + pn )G(p1; : : : ;pn );
(3.3a)

êG(p1; : : : ;pn ) �
Y

i

� Z
d4x i eipi �x i

�

Ĝ(x1; : : : ;xn )

� (2� )4� (4) (p1 + � � � + pn )Ĝ(p1; : : : ;pn ):
(3.3b)

The Green functions without tilde are de�ned by pulling out a Dirac delta distribu-

tion which ensures the conservation of the overall four-momentum.

Removing external leg contributions by multiplying ann-point momentum-space
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Green function with n inverse propagators is calledtruncation:

eGtrunc (p1; : : : ;pn ) � G� 1(p1; � p1) : : : G� 1(pn ; � pn ) eG(p1; : : : ;pn ); (3.4a)

êGtrunc (p1; : : : ;pn ) � Ĝ� 1(p1; � p1) : : : Ĝ� 1(pn ; � pn ) êG(p1; : : : ;pn ): (3.4b)

The relation between unrenormalised and renormalised truncated Green functions

is
êGtrunc (p1; : : : ;pn ) = Z + n

2 eGtrunc (p1; : : : ;pn ): (3.5)

Note that the power of the �eld renormalisation constant in Eqs. (3.2) and (3.5)

di�ers.

S-matrix elementsare just truncated on-shell Green functions supplemented with

an appropriate normalisation

h� ps+1 ; : : : ; � pn j S jp1; : : : ; psi = R
n
2 eGtrunc (p1; : : : ;pn )

�
�
�
�
p2

i = M 2
i

= R̂
n
2 êGtrunc (p1; : : : ;pn )

�
�
�
�
p2

i = M 2
i

:
(3.6)

This equation is called theLSZ formula; the normalisation factorsR=R̂ are called

LSZ factors. They are de�ned by

R � � i(p2 � M 2) G(p; � p)
�
�
�
�
p2= M 2

; (3.7a)

R̂ � � i(p2 � M 2) Ĝ(p; � p)
�
�
�
�
p2= M 2

; (3.7b)

and related to one another by the �eld renormalisation constant:

R̂ = Z � 1R: (3.8)

R̂ is sometimes called awave-function normalisation factor. R is renormalisation

scheme independent whileZ and henceR̂ are not. If an OS renormalisation is

chosen forZ , i.e. if Z = R, the wave-function normalisationR̂ equals unity. When

de�ning Z in a minimal subtraction scheme, a �niteR̂ needs to be included when

calculating an S-matrix element.

At tree-level, we do not need to distinguish between unrenormalised and renor-

malised quantities; the tree-level Green function in position space is given by

G(0) (x1;x2) =
Z d4p

(2� )4

i
p2 � m2 + i�

e� ip�(x1 � x2 ) : (3.9)
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Figure 3.1: Four topologies that can contribute to a self-energy at the one-loop level.
The �rst and third diagram are called tadpole contributions to the self-energy. The crosses
in the third and fourth topology denote one-loop counterterm insertions. Not all possible
one-loop topologies are shown here.

The � (with � > 0) describes the correct deformation of the integration contour

to ensure causality. From this expression, the momentum-space Green function is

obtained by a continuous Fourier transform and subsequent removal of a Dirac delta

distribution. The result is

G(0) (p; � p) =
i

p2 � m2 + i�
� i� (0) (p2); (3.10)

where we de�ned the tree-levelFeynman propagator� (0) for scalar �elds. It is worth

noting that the imaginary unit is often included in the de�nition of the Feynman

propagator and in these cases it coincides with the two-point Green function.

We conclude this section by motivating the concepts of both connected Green func-

tions and vertex functions. We call a Green functionconnectedif it consists only

of fully-connected diagrams, i.e. diagrams that not contain any disconnected sub-

graphs. If we write theS-matrix as

S = 1 + iT ; (3.11)

then only the connected Green functions contribute to thetransfer matrix T . We

denote connected Green functions by the symbolGconn.

Lastly, a vertex function � is a connected, fully truncated, one-particle irreducible

(1PI) graph, multiplied by � i.3 A graph is one-particle irreducible if it decomposes

into two graphs by cutting a single, momentum-carrying propagator.

It is important to note that this includes tadpole contributions in the de�nition of a

vertex function. Tadpole contributions are diagrams where at least one propagator

has vanishing momentum, see e.g. diagram 1 in Fig. 3.1. In an on-shell renormali-

3We include the imaginary unit here so that the vertex functions are derivatives of the e�ective
action without any additional factors, see Sect. 3.1.2.
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sation scheme for tadpoles, diagrams 1 and 3 would fully cancel each other. On the

other hand, if a tadpole counterterm is not de�ned in an on-shell scheme, diagrams

with tadpole insertions have to be included in the unrenormalised self-energy.

3.1.2 Generating functionals

In this section we brie�y recall the de�nition of the most important generating

functionals of Green and vertex functions. We give also the relation between the

two-point Green and vertex functions and we thereafter derive an explicit expression

for the lowest-order two-point vertex function.

Our starting point is the equation

Z [J ] � e� iE [J ] �
Z

D� exp
�

i
Z

d4x [L (� (x)) + J (x)� (x)]
�

; (3.12)

where Z is the partition function ,4 E is the energy functional, and J an external

source �eld. The functional derivative ofE with respect to J de�nes the classical

�eld in the presence of a source:

�
�J (x)

E[J ] = � h 
 j � (x) j
 i J � � � cl(x): (3.13)

This de�nition sets us up to de�ne the e�ective action as a Legendre transform of

the energy functional:

�[ � cl] � � E [J ] �
Z

d4x J (x)� cl(x): (3.14)

The functional derivative of � is

�
�� cl(x)

�[ � cl] = � J (x): (3.15)

An ordinary n-point Green function is obtained from the partition function by

G(x1; : : : ;xn ) =
1

Z [0]

 

� i
�

�J (x1)

!

: : :

 

� i
�

�J (xn )

!

Z[J ]

�
�
�
�
�
J =0

: (3.16)

If we useE instead ofZ , we get the connectedn-point Green functions

Gconn(x1; : : : ;xn ) = ( � i)

 

� i
�

�J (x1)

!

: : :

 

� i
�

�J (xn )

!

E[J ]

�
�
�
�
�
J =0

: (3.17)

4Strictly speaking, the partition function is a functional.
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Lastly, the n-point vertex functions are obtained from the e�ective action� :

�( x1; : : : ;xn ) =

 
�

�� cl(x1)

!

: : :

 
�

�� cl(xn )

!

�[ � cl]

�
�
�
�
�
� cl =0

: (3.18)

Let us now derive a relation between the connected two-point Green function and

the two-point vertex function (i.e. a vertex function with two external legs):

� (4) (x1 � x2) =
�J (x1)
�J (x2)

= �
�

�J (x2)
�

�� cl(x1)
�[ � cl]

= �
Z

d4x3
�� cl(x3)
�J (x2)

� 2�[ � cl]
�� cl(x3)�� cl(x1)

=
Z

d4x3
� 2E[J ]

�J (x2)�J (x3)
� 2�[ � cl]

�� cl(x3)�� cl(x1)

(3.19)

In the third step, we used the chain rule. Now, settingJ = � cl = 0, we get

� (4) (x1 � x2) = ( � i)
Z

d4x3 Gconn(x2;x3)�( x3;x1): (3.20)

The two-point Green function is proportional to the propagator, so we can interpret

the two-point vertex function as theinverse propagator. We now derive an expression

for the vertex function in lowest order in two di�erent ways. First, we Fourier

transform the tree-level version of Eq. (3.20) by changing the variablesf x1;x2g !

f p1;p2g. Performing the integrals overx1 and x2, we are left with

(2� )4� (4) (p1 + p2) = � (0) (p2
2)e� (0) (p2;p1)

= (2 � )4� (4) (p1 + p2)� (0) (p2
2)� (0) (p2; � p2):

(3.21)

In the last step we pulled out the Dirac delta distribution of total momentum con-

servation, leading top1 = � p2. We can read o� the relation

� (0) (p; � p) =
1

� (0) (p2)
= p2 � m2: (3.22)

The same relation can alternatively be derived by taking functional derivatives of

the e�ective action. To lowest order, the e�ective action agrees with the classical
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action S and we get

� 2� (0) [� cl]
�� cl(x1)�� cl(x2)

=
� 2

�� cl(x1)�� cl(x2)

Z
d4x

� 1
2

@� � cl@
� � cl �

1
2

m2� 2
cl + L int

�

= � (� x1
+ m2)� (4) (x1 � x2) + derivatives ofL int :

(3.23)

Setting � cl = 0 removes the interaction terms and yields

� (0) (x1;x2) = � (� x1
+ m2)� (4) (x1 � x2): (3.24)

Fourier transforming this expression as before leads to the known result

� (0) (p; � p) = p2 � m2: (3.25)

3.1.3 Two-point function and propagator at higher orders

Beyond tree level, the two-point vertex function receives quantum corrections from

loop diagrams:

�̂( p; � p) = p2 � m2 + �̂( p2); (3.26)

where�̂ is the renormalised self-energy.̂� and �̂ are one-particle irreducible. Taking

the reciprocal of this expression yields the loop-corrected Feynman propagator

�̂( p2) =
1

p2 � m2 + �̂( p2)
: (3.27)

We can rewrite this equation as

�̂( p2) = � (0) (p2) � � (0) (p2)�̂( p2)�̂( p2)

= � (0) (p2) � �̂( p2)�̂( p2)� (0) (p2):
(3.28)

In this form, it is called the Dyson equation[162]. We can use this relation recursively

to generate the Dyson series

�̂ = � (0) � � (0) �̂� (0) + � (0) �̂� (0) �̂� (0) � � (0) �̂� (0) �̂� (0) �̂� (0) + � � � ; (3.29)

where we have suppressed the momentum dependence of the propagators and self-

energies. The Dyson series can be represented diagrammatically as we show in

Fig. 3.2.

In this section, we have demonstrated that the loop-corrected propagator is simply

the inverse of the loop-corrected two-point vertex function. This is an important
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Figure 3.2: The loop-corrected propagator written as a Dyson series for a single particle
speciesi . The grey blob denotes the full loop corrections to the propagator, the white blobs
represent one-particle irreducible self-energies. The dashed lines are tree-level propagators.

result, as performing the resummation in the case of particle mixing becomes a non-

trivial problem. In this situation, it is much more convenient to work with a matrix

of vertex functions and invert it. We will show this explicitly in Sect. 3.2.2.

3.2 Calculating the pole mass

The pole massis the real part of the simple pole of the Feynman propagator, which

can be complex. Before we explain the di�erent methods of determining the pole

mass, we want to introduce two important concepts: Unstable particles and particle

mixing.

3.2.1 Unstable particles and the complex pole

An unstable particle has a �nite decay width. If the possible decay products appear

in a diagram contributing to the self-energy of the unstable particle, said self-energy

acquires a non-vanishing imaginary part for a su�ciently large external momentum.

This is a consequence of theoptical theorem, which is proven from theunitarity of

the S-matrix [146]. With a complex self-energy, the propagator and the location of

its pole become complex quantities as well. We de�ne the complex poleM 2 as the

solution of

p2 � m2 + �̂( p2)
�
�
�
�
p2= M 2

= 0: (3.30)

We split it into its real and imaginary part as

M 2 = M 2 � iM � ; (3.31)
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where � is the total decay width of the particle. Whenever we talk about the

physical pole mass of a particle in this thesis, we refer to the real partM 2 of the

complex pole. As the complex pole is a gauge-invariant quantity, de�ning pole mass

and decay width in this way yields a gauge-invariant prediction [163]. Furthermore,

a mass counterterm�M 2 de�ned in the corresponding renormalisation scheme is

gauge independent as well.

Of course, we could also de�ne the pole mass as the pole of the real propagator. Let

us call this mass fM 2. The di�erence between fM 2 and M 2 is gauge dependent and

so is the counterterm� fM 2 [164]. For this reason, we do not use this prescription in

the present thesis.

Sometimes, the pole mass is de�ned as the complex pole in its entirety, i.e. including

both real and imaginary part. This leads to a complex mass counterterm� M 2.

Dependent couplings, for example the weak-mixing angle� w, then become complex

quantities as well. While complex parameters in the Lagrangian seem to violate

unitarity, unitarity still holds at each order of perturbation theory in the complex

mass scheme. This happens because for any calculation at ordern, the unitarity-

violating terms are of ordern + 1 [165, 166]. For simplicity, we will also not follow

this approach.

We close this section by addressing an issue which becomes relevant when work-

ing with unstable particles: the treatment of complex momenta. Solving the pole

equation (3.30) requires evaluating the self-energy and hence loop functions at a

complex value. In many cases, the loop integrals have been calculated assuming

real arguments and we cannot compute them by simply inserting a complex value.

Instead, we use an approximation; let us write the complex momentum as

p2 = p2
R + ip2

I : (3.32)

We then approximate the self-energy by

�̂( p2) = �̂( p2
R + ip2

I ) � �̂( p2
R) + ip2

I @̂�( p2
R): (3.33)

Typically, the lowest order contribution to the real part of the pole appears at

tree-level whereas the particle's decay width, which gives rise to the non-vanishing

imaginary part, is at least a one-loop quantity. Therefore, the above approximation

is understood to be a perturbative one. With it, we can evaluate a self-energy at

any complex momentum while keeping the argument of any loop function real.
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3.2.2 Particle mixing and the vertex function matrix

When two particles carry the same quantum numbers, a Green function containing

both �elds does not necessarily vanish. On the diagrammatic level, this leads to a

non-vanishing mixing self-energy. Suppose we have two scalar particles� 1 and � 2

with identical quantum numbers and a non-vanishing mixing self-energŷ� 12. These

mixing e�ects start to play a role at two-loop order and have to be taken into account

when making a prediction for the pole mass. Understanding how the propagator

has to be resummed in the presence of several particle species is a non-trivial task.

Instead, it is easier to invert the two-point vertex function. We can expand the

inverse vertex function to show that it indeed takes into account the resummation

correctly. As we have two species of particles, the vertex function becomes a2 � 2

matrix, whose components read

(�( x1;x2)) ij =

 
�

�� i; cl(x1)

!  
�

�� j; cl(x2)

!

�[ � cl]

�
�
�
�
�
� cl =0

: (3.34)

In momentum space, it reads

�̂( p; � p) =

0

@
p2 � m2

1 + �̂ 11(p
2) �̂ 12(p

2)

�̂ 21(p
2) p2 � m2

2 + �̂ 22(p
2)

1

A : (3.35)

We invert this matrix to obtain the loop-corrected propagator matrix

�̂( p2) =
�
�̂( p; � p)

� � 1
: (3.36)

The components of the propagator read

�̂ ii (p
2) =

p2 � m2
j + �̂ jj

(p2 � m2
i + �̂ ii )(p2 � m2

j + �̂ jj ) � �̂ ij �̂ ji

; (3.37a)

�̂ ij (p2) =
� �̂ ij

(p2 � m2
i + �̂ ii )(p2 � m2

j + �̂ jj ) � �̂ ij �̂ ji

; (3.37b)

wherei 6= j , and we left out the arguments of the self-energies to improve readability.

We can further rewrite the diagonal terms by introducing thee�ective self-energy

�̂ e�
ii (p2) � �̂ ii (p

2) �
�̂ ij (p2)�̂ ji (p2)

p2 � m2
j + �̂ jj (p2)

; (3.38)

which leaves us with

�̂ ii (p
2) =

1

p2 � m2
i + �̂ e�

ii (p2)
: (3.39)
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Figure 3.3: The loop-corrected propagator written as a Dyson series in the case of two-
particle mixing between states i and j . The grey blob denotes the full loop corrections
to the propagator, the white blobs represent one-particle irreducible self-energies. The
dashed lines are tree-level propagators.

With the e�ective self-energy, the loop-corrected propagator is formally identical to

the case of no mixing. We can expand the propagator, leading to an expression

resembling the Dyson series in Eq. (3.29):

�̂ ii = � (0)
ii � � (0)

ii �̂ ii �
(0)
ii + � (0)

ii �̂ ii �
(0)
ii �̂ ii �

(0)
ii + � (0)

ii �̂ ij � (0)
jj �̂ ji � (0)

ii

� � (0)
ii �̂ ii �

(0)
ii �̂ ii �

(0)
ii �̂ ii �

(0)
ii � � (0)

ii �̂ ij � (0)
jj �̂ ji � (0)

ii �̂ ii �
(0)
ii

� � (0)
ii �̂ ii �

(0)
ii �̂ ij � (0)

jj �̂ ji � (0)
ii � � (0)

ii �̂ ij � (0)
jj �̂ jj � (0)

jj �̂ ji � (0)
ii + � � � :

(3.40)

The same expansion is shown in Fig. 3.3 in a diagrammatic form.

As we can see from Eqs. (3.37), all loop-corrected propagators have the same pole

structure. This holds since each element of the propagator matrix is proportional to

the inverse determinant of Eq. (3.35). Thus, each propagator, even the o�-diagonal

ones, can in practice be used to de�ne the pole mass.

We now turn to two methods of calculating the pole mass in the presence of both

unstable particles and particle mixing. We keep the number of scalar �elds at two

for simplicity. All concepts developed in this and the following sections are easily

extended to the case of three or more particles mixing.

3.2.3 The �xed-order method

Our starting point for the �xed-order method (FO) is the pole equation

p2 � m2
i + �̂ e�

ii (p2)
�
�
�
�
p2= M 2

i

= 0; (3.41)
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where, as before,

M 2
i = M 2

i � iM i � i : (3.42)

The one- and two-loop parts of the e�ective self-energy read

�̂ e� ;(1)
ii = �̂ (1)

ii ; (3.43a)

�̂ e� ;(2)
ii = �̂ (2)

ii �
�̂ (1)

ij �̂ (1)
ji

p2 � m2
j
; (3.43b)

wherej 6= i . We write the pole mass as the tree-level mass plus quantum corrections

at di�erent orders of perturbation theory:

M 2
i = m2

i + � (1) M 2
i + � (2) M 2

i : (3.44)

For the one- and two-loop corrections we get

� (1) M 2
i = � Re�̂ (1)

ii (m2
i ); (3.45a)

� (2) M 2
i = � Re�̂ (2)

ii (m2
i ) + Re @̂� (1)

ii (m2
i ) Re�̂ (1)

ii (m2
i )

� Im @̂� (1)
ii (m2

i ) Im �̂ (1)
ii (m2

i ) + Re
�̂ (1)

ij (m2
i )�̂ (1)

ji (m2
i )

m2
i � m2

j
:

(3.45b)

Demanding � (n)M 2
i = 0 at each loop ordern de�nes the renormalised massm2

i =

M 2
i in an OS scheme. We see from Eq. (3.45b) that at the two-loop level mixing

e�ects and imaginary parts of self-energies have to be included in the two-loop mass

counterterm, which enters throughRe�̂ (2)
ii (m2

i ), to ensure a proper OS de�nition of

M 2
i .

3.2.4 The �xed-point iteration

If the di�erence of the tree-level massesmi and mj of two mixing particles be-

comes very small, the two-loop correction� (2) M 2
i becomes very large, as we can

see in Eq. (3.45b). In this case, the perturbative series breaks down and the �xed-

order method no longer provides reliable results. Instead of expanding the e�ective

self-energy up to the desired perturbative order, which is the approach we take in

the �xed-order method, we perturbatively expand the two-point function given in

Eq. (3.35) before inverting it. This leads to an e�ective self-energy in which all en-

tries of the self-energy matrix are expanded up to the same order. This amounts to

including mixing e�ects already at the one-loop level.

With this approximation for the e�ective self-energy, we have to �nd the exact
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solution of Eq. (3.41), which does not su�er from the �xed-order resonance e�ects.

A self-energy usually has a complicated dependence on the external momentump2,

and we have to employ a numerical method to �nd the exact location of the pole.

In this thesis, we utilise an iterative procedure to determine the precise location of

the complex pole. We solve the pole equation (3.30) for its explicitp2 dependence

and obtain the �xed-point iteration

p2
k+1 = m2

i + �̂ e�
ii (p2

k) � f i (p
2
k); k 2 N0; (3.46)

wherep2
0 is the starting point of the iteration. If the iteration converges

lim
k!1

p2
k = lim

k!1
f i (p

2
k) � M 2; (3.47)

we have found the complex poleM 2, which is a �xed-point of f i . The iteration

converges in most scenarios investigated in the framework of the thesis.

If two species of particles participate in the mixing, we get two functionsf 1 and f 2

as well as two complex polesM 2
1 and M 2

2. Both poles are �xed points of either

function:

M 2
a = f i (M

2
a) for i;a 2 f 1;2g: (3.48)

We denote a tree-level mass eigenstate by the labeli and a loop-corrected mass

eigenstate bya. As both poles can in principle be found with either pole equation,

the identi�cation of a tree-level eigenstate with a corresponding loop-corrected mass

eigenstate is not unique [163]. We order the loop-corrected masses by size of their

real parts, i.e.

ReM 2
1 = M 2

1 < M 2
2 = Re M 2

2: (3.49)

Both poles are �xed points of thef i , so we can in principle use eitherf 1 or f 2 in

the iteration to �nd the poles. As it turns out, in the case of 2 � 2 mixing, each

pole is usually an attractive �xed point of one of thef i , and a repelling �xed point

of the other one. For practical application this means that we need to perform the

�xed-point iteration with f 1 and f 2 to �nd both poles.

We demonstrate this in an MSSM scenario whereCP symmetry is conserved, i.e. in

the Higgs sector we have2 � 2 mixing between theCP-even scalarsh and H . The

loop-corrected mass eigenstates areh1 and h2, whereh1 is the lighter one. M 2
h1

is,

for our case, the attractive �xed point of f h and the repelling �xed point of f H . For

M 2
h2

, the opposite is true. This is shown in Fig. 3.4.

We can see thatM 2
h1

is a repelling �xed point of f H , and M 2
h2

of f h. If we use the

real part of the complex pole as starting valuep2
0 (red and cyan dashed curves), the
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Figure 3.4: This �gure shows how the iterative determination of the complex pole con-
verges when choosing a starting value close to the repelling solution.k denotes the number
of iteration steps, and p2

k is the momentum after k steps. As starting valuesp2
0 we use

both the full complex pole (blue and green curves) as well as the real part of the complex
pole (red and cyan curves) of the respective repelling solution.

�xed-point iteration quickly reaches the opposite, attractive solution. If we use the

full complex pole as starting value (solid blue and green curves), the iteration needs

approximately 40 steps before it visibly moves away from the repelling solution,

after which it quickly converges. Thus, we need bothf h and f H to reliably �nd the

two complex poles of the system.

We �nd a similar behaviour also in the case of aCP-violating MSSM scenario with

the same parameters as in Fig. 3.4 butA t = (1540 + 10i) GeV instead. In this case,

the three scalarsh, H , and A mix, giving rise to three functionsf h, f H , and f A . For

each function, there are three �xed points, one of which is attractive and two are

repelling. When plugging the solution found withf A into f h/ f H , the solver quickly

converges and vice versa. The solution found withf h lets the solver converge much

more slowly when plugged intof H and vice versa.

The �xed-point iteration, similar to other numerical methods that are used to de-

termine the exact location of the pole of the propagator, mixes di�erent orders of

perturbation theory. As a consequence, such a prediction typically depends on the

choice for the gauge-�xing parameters and the �eld counterterms. These unphysical,

residual dependencies are e.g. studied in Refs. [79,129,130,167].



4 Renormalisation of the MSSM

When predicting the Higgs boson masses in the MSSM atO
�
(� em + � q)

2N 2
c

�
, two

sectors of the model have to be renormalised; we need a renormalisation of the quark-

squark sector at the one-loop level while the Higgs-gauge sector is renormalised up

to two-loop order. For each sector, we �rst outline its structure at the tree-level.

This gives an overview over the relevant model parameters, and we see how many

input parameters are needed to perform a prediction, each corresponding to an

independent renormalisation condition.

A renormalisation transformation tells us how a bare parameter or �eld is related

to its renormalised value and its counterterm. The full set of transformations leads

to expressions for renormalised self-energies in terms of unrenormalised self-energies

and counterterms.

At the time and due to a lack of observation of SM superpartners, most MSSM

parameters cannot be linked to measured physical observables. Thus, it is often

not obvious which input parameters should be used for a calculation and which

renormalisation schemes are appropriate for those parameters. In the quark-squark

sector, we will present three di�erent renormalisation schemes which di�er both in

the choice of input parameters and the renormalisation conditions. In the Higgs-

gauge sector, the renormalisation of the parametertan(� ) plays an important role,

and we will give two renormalisation prescriptions for it.

Parameters which do not serve as input parameters are dependent quantities; their

values are calculated from the input parameters. Expressions for their counterterms

are given in this chapter and in App. A.

4.1 The quark and squark sector of the MSSM

In this section, we �x the notation for the quark and squark sector in the MSSM.

We give the renormalisation transformations and the resulting expressions for the

renormalised squark self-energy diagrams up to the one-loop order. We present three

di�erent renormalisation schemes for the case of massive quarks and we illustrate

how the renormalisation has to be modi�ed in the massless case.
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Throughout the whole thesis, we assume that mass terms do not mix quarks and

squarks of di�erent generations. This implies a unit CKM matrix and squark mass

matrices which are diagonal in �avour space. The generalisation of our results to

the case of non-zero mixing between the generations would easily be possible but is

expected to not yield any new insights. Quartic interaction terms between squark

�avours of di�erent generations will nevertheless lead to Higgs self-energy diagrams

with generation mixing.

The quark sector requires no renormalisation at our order of perturbation theory,

so we focus solely on the squark sector of the MSSM.

4.1.1 Tree-level

The bilinear squark Lagrangian reads

L bil.
squark =

X

~q

0

@@� ~q�
L @� ~qL + @� ~q�

R@� ~qR �
�

~q�
L ~q�

R

�
M 2

~q

0

@
~qL

~qR

1

A

1

A ; (4.1)

where the sum runs over the squark �avors~t; ~b;~c;~s; ~u; ~d. As we do not consider

generation mixing, the squark mass matrices are �avour diagonal. We denote the

elements of a squark mass matrix by

M 2
~q =

0

@

�
M 2

~q

�

LL

�
M 2

~q

�

LR�
M 2

~q

�

RL

�
M 2

~q

�

RR

1

A : (4.2)

The squark �elds carry non-vanishing quantum numbers and are thus complex scalar

�elds; the mass matrices are, in the most general case, not symmetric but hermitian

so that their eigenvalues�the physical squark masses�are real. The mass matrices

for up- and down-type squarks read

M 2
~ug

=

0

@
M 2

~qg
+ m2

ug
+ M 2

Z cos(2� )( 1
2 � 2

3s2
w) mug

X �
ug

mug
X ug

M 2
~ug

+ m2
ug

+ 2
3M 2

Z cos(2� )s2
w

1

A ;

(4.3a)

M 2
~dg

=

0

@
M 2

~qg
+ m2

dg
+ M 2

Z cos(2� )( � 1
2 + 1

3s2
w) mdg

X �
dg

mdg
X dg

M 2
~dg

+ m2
dg

� 1
3M 2

Z cos(2� )s2
w

1

A :

(4.3b)

The indexg labels the three generations of matter such thatmu3
= mt andX d2

= X s,

for instance. We do not use this convention for the soft SUSY-breaking massesM 2
~qg

,

M 2
~ug

, and M 2
~dg

, i.e. there is no parameterM 2
~t , so that we can distinguish between the
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respective left- (M 2
~q3

) and right-handed (M 2
~u3

) mass terms. Moreover, we introduced

the common abbreviations

X ug
= Aug

� � � cot(� ); (4.4a)

X dg
= Adg

� � � tan(� ): (4.4b)

The parametersM 2
~qg

; M 2
~ug

; M 2
~dg

; Aug
; Adg

break supersymmetry softly. In the most

general scenario of SUSY breaking, they would be3� 3 matrices in generation space.

In our calculation, as mentioned above, we neglect this mixing between generations

and assume these matrices diagonal.

To change from the gauge eigenbasis to the mass eigenbasis, we introduce the unitary

transformation
0

@
~q1

~q2

1

A =

0

@
c~q � s~qe

� i � ~q

s~qe
i � ~q c~q

1

A

0

@
~qL

~qR

1

A � U~q

0

@
~qL

~qR

1

A (4.5)

for each squark �avor ~q. Here we introduced the abbreviationsc~q = cos
�
� ~q

�
and

s~q = sin
�
� ~q

�
. The bilinear squark Lagrangian in terms of the mass eigenbasis reads

L bil.
squark =

X

~q

0

@@� ~q�
1@� ~q1 + @� ~q�

2@� ~q2 �
�

~q�
1 ~q�

2

�
D 2

~q

0

@
~q1

~q2

1

A

1

A ; (4.6)

where

D 2
~q = U~qM

2
~qUy

~q �

0

@
m2

~q1
m2

~q12

m2
~q21

m2
~q2

1

A ; m2
~q21

= m2�
~q12

: (4.7)

The angles� ~q 2 [0; �
2 ] and � ~q 2 (� �;� ] are then determined by the conditions

m2
~q12

= 0 ^ m2
~q1

� m2
~q2

: (4.8)

To give explicit expressions for� ~q and � ~q, we have to distinguish between the degen-

erate and the non-degenerate case. The two squark mass eigenvalues are degenerate

if and only if the matrix M 2
~q is proportional to the identity matrix, in which case no

rotation is needed andU~q can simply be chosen as unity. This happens when both

mqX q = 0 and
�
M 2

~q

�

LL
=

�
M 2

~q

�

RR
are ful�lled simultaneously. When working in

the gaugeless limit, assuming a vanishing quark mass and a universal SUSY scale

M 2
SUSY = M 2

~qg
= M 2

~ug
= M 2

~dg
, this is always the case.

In the case of non-degenerate masses, the mass ordering ensuresm2
~q1

< m 2
~q2

, and we
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can write

exp
�
i� ~q

�
=

X q

jX qj
; (4.9a)

cos
�
2� ~q

�
=

�
M 2

~q

�

RR
�

�
M 2

~q

�

LL

m2
~q2

� m2
~q1

; (4.9b)

sin
�
2� ~q

�
=

2mqjX qj
m2

~q2
� m2

~q1

: (4.9c)

The angles can then uniquely be determined from

� ~q = Arg(X q); � � < � ~q � �; (4.10a)

� ~q =
1
2

arccos

�
M 2

~q

�

RR
�

�
M 2

~q

�

LL

m2
~q2

� m2
~q1

; 0 � � ~q � �
2 : (4.10b)

Mathematically, � ~q is unde�ned if X q vanishes, and we set it to 0 for simplicity in

this case.

The renormalisation transformations

For a full two-loop prediction of the Higgs boson masses, the one-loop renormalisa-

tion of the squark sector is needed. As we are only interested in electroweak correc-

tions of O
�
(� em + � q)

2N 2
c

�
, no lepton/slepton/quark renormalisation constants are

needed.

We renormalise the squark mass matrices and �elds via

D 2
~q ! D 2

~q +

0

@
�m 2

~q1
�m 2

~q12

�m 2
~q21

�m 2
~q2

1

A ; (4.11a)

0

@
~q1

~q2

1

A !

0

@

q
1 + �Z ~q11

1
2 �Z ~q12

1
2 �Z ~q21

q
1 + �Z ~q22

1

A

0

@
~q1

~q2

1

A ; (4.11b)

0

@
~q�
1

~q�
2

1

A !

0

@

q
1 + �Z ~q11

1
2 � �Z~q21

1
2 � �Z~q12

q
1 + �Z ~q22

1

A

0

@
~q�
1

~q�
2

1

A : (4.11c)

It should be noted that we introduce separate o�-diagonal �eld counterterms for the

squark and anti-squark �elds. This follows the convention of Refs. [49, 50], where

it enables the inclusion of absorptive contributions into the �eld counterterms. If

the absorptive parts are left out, the o�-diagonal �eld counterterms are related by

� �Z~qij
= �Z �

~qji
.
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Figure 4.1: Unrenormalised one-loop squark self-energy� (1)
~qg;i ~qg;j

. g and h are �avour
labels, which we make explicit here since the squark in the loop,~qh , can have a di�erent
�avour than the external squark. i , j , and k label the two mass eigenstates. Note the
convention for naming the self-energy, where the �rst label corresponds to the outgoing
squark in the diagram.

4.1.2 Renormalisation at the one-loop level

In this section, we give an overview over the most important renormalisation schemes

for the squark sector. We present expressions for the relevant one-loop renormal-

isation constants; they enter the prediction for the two-loop Higgs boson masses

through the sub-loop part of two-loop Higgs self-energies.

With the renormalisation transformations given in the previous section, the renor-

malised one-loop squark self-energies read

�̂ (1)
~q1 ~q1

(p2) = � (1)
~q1 ~q1

(p2) + � (1) Z~q11
(p2 � m2

~q1
) � � (1) m2

~q1
; (4.12a)

�̂ (1)
~q1 ~q2

(p2) = � (1)
~q1 ~q2

(p2) +
1
2

� (1) Z~q12
(p2 � m2

~q1
)

+
1
2

� (1) �Z~q12
(p2 � m2

~q2
) � � (1) m2

~q12
;

(4.12b)

�̂ (1)
~q2 ~q1

(p2) = � (1)
~q2 ~q1

(p2) +
1
2

� (1) Z~q21
(p2 � m2

~q2
)

+
1
2

� (1) �Z~q21
(p2 � m2

~q1
) � � (1) m2

~q21
;

(4.12c)

�̂ (1)
~q2 ~q2

(p2) = � (1)
~q2 ~q2

(p2) + � (1) Z~q22
(p2 � m2

~q2
) � � (1) m2

~q2
: (4.12d)

The only topology contributing to the � (1)
~qi ~qj

self-energy atO(Nc) is shown in Fig. 4.1.

These diagrams are independent of the external momentum, and no �eld renor-

malisation constants are needed to yield �nite renormalised one-loop self-energies.

Since in our calculation squarks appear as internal particles only, any �nite part of

their �eld renormalisation constants cancels in the sub-loop renormalisation of the
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two-loop Higgs (and vector boson) self-energies, and we will set them to zero for

simplicity:

� (1) Z~qij
= 0; (4.13a)

� (1) �Z~qij
= 0: (4.13b)

While this choice is not necessary, it simpli�es the algebraic expressions and, if an

on-shell renormalisation scheme is chosen for the squark masses, it lets the squark

self-energies vanish for arbitrary external momenta.

By virtue of the momentum independence, the self-energies are free from absorp-

tive contributions and they can only be complex because of the involved couplings.

Consequently, the o�-diagonal unrenormalised squark self-energies are related via

� (1) �
~q1 ~q2

O(N c )
= � (1)

~q2 ~q1
; (4.14)

which holds for the renormalised self-energies as well. Whenever we set the symbol

O(Nc) over an equal sign, the identity holds in our calculation atO(Nc) but not

necessarily in a more inclusive one. Due to the absence of absorptive contributions,

the diagonal self-energies are real.

Renormalisation conditions and counterterms for the massive case

In this thesis, unless explicitly stated otherwise, we work with a massive third gener-

ation of quarks, while the �rst two generations are treated as massless. For the third

generation squark sector, we consider several di�erent renormalisation schemes; an

on-shell scheme (OS), aDR scheme, and a mixed scheme. In each of these schemes,

we allow for either sbottom massm2
~bi

to be used as input parameter, which amounts

to a total of six di�erent renormalisation schemes for the third generation squark

sector.

Regarding the choice of renormalisation conditions, it is useful to count the num-

ber of independent parameters �rst. A set of independent parameters in the stop-

sbottom sector is for example given byf M 2
~q3

; M 2
~u3

; M 2
~d3

; A t ; Abg, of which the trilinear

couplings can be complex. This requires us to impose seven (real) renormalisation

conditions. Independent of the chosen renormalisation scheme for the squark sector,

we require that

� , Ab are renormalised in theDR scheme. (4.15)

We derive theDR expressions for� and Ab in Sect. 4.1.3.

In all schemes, the stop masses and one of the sbottom masses are used as indepen-
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dent input parameters. We label the independent sbottom withn and the dependent

sbottom with f = 3 � n. In the case of theO
�
(� em + � q)

2N 2
c

�
contributions that are

of interest to us, the quark sector is not renormalised. For the sake of completeness,

we include the vanishing quark mass counterterms in the expressions below.

(i) OS scheme. We use on-shell de�nitions for the stop parameters and thenth

sbottom mass:

� (1) m2
~t i

= Re � (1)
~t i ~t i

O(N c )
= � (1)

~t i ~t i
; i 2 f 1;2g; (4.16a)

� (1) m2
~bn

= Re � (1)
~bn

~bn

O(N c )
= � (1)

~bn
~bn

; (4.16b)

� (1) m2
~t12

= fRe � (1)
~t1~t2

O(N c )
= � (1)

~t1~t2
; (4.16c)

� (1) m2
~t21

= � (1) m2�
~t12

O(N c )
= � (1)

~t2~t1
: (4.16d)

The operator fRe takes the real part of the loop integrals but leaves complex couplings

una�ected. In our calculation, the squark self-energies are momentum independent

and so we do not specify any momentum at which the self-energies are to be eval-

uated. It should be noted that the renormalisation condition for the o�-diagonal

stop mass terms only in our calculation ofNc contributions implies that the whole

renormalised self-energy vanishes (because we chose�Z ~qij
= � �Z~qij

= 0); in a set-

ting where the squark self-energies are momentum-dependent, an unphysical MOM

scheme is often used instead, see Refs. [48,50,68,168,169].

In this scheme, theA t counterterm is a dependent quantity:

� (1) A t =
1

mt

h
U~t11

U�
~t12

�
� (1) m2

~t1
� � (1) m2

~t2

�
+ U~t21

U�
~t12

� (1) m2
~t12

+ U~t11
U�

~t22
� (1) m2

~t21

i

�
X t � (1) mt

mt
+

� (1) � �

t �
�

� � � (1) t �

t2
�

:

(4.17)

(ii) DR scheme. In this scheme, we useA t to formulate a renormalisation condition

instead ofm2
~t12

. Now, all the input counterterms are de�ned in theDR scheme:

m2
~t1

, m2
~t2

, m2
~bn

, and A t are renormalised in theDR scheme. (4.18)

The DR counterterms for the masses are obtained by simply discarding the �nite

parts of the OS counterterms. TheDR expression for� (1) A t is derived in Sect. 4.1.3.
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Finally, the m2
~t12

counterterm is a dependent quantity now:

� (1) m2
~t12

=
1

jU~t11
j2 � j U~t12

j2

�

U~t11
U�

~t21

�
� (1) m2

~t1
� � (1) m2

~t2

�

+ U~t11
U�

~t22

�
mt � (1) X �

t + X �
t � (1) mt

�
� U~t12

U�
~t21

�
mt � (1) X t + X t � (1) mt

� �

:

(4.19)

(iii) Mixed scheme. The input counterterms are the same as in theDR scheme,

but now

m2
~t1

, m2
~t2

, and m2
~bn

are renormalised on-shell.A t is renormalisedDR. (4.20)

� (1) m2
~t12

is calculated by the same expression as in theDR scheme. In this scheme,

just as in theDR scheme,� , t � , and bothA t andAb areDR quantities. Consequently,

X t and X b are DR quantities as well.

Scheme-independent relations. In all three schemes, the counterterms for the

sbottom massesm2
~bf

and m2
~b12

are dependent quantities and as such they have to

be expressed in terms of the input counterterms. To �nd the expression for the

remaining sbottom mass counterterm, we make use of a relation between theLL

entries (see Eq. (4.2)) of the stop and sbottom mass matrix. Both entries contain

the SUSY-breaking parameterM 2
~q3

, yielding

M 2
~q3

=
�
M 2

~t

�

LL
� m2

t � M 2
Z c2�

� 1
2

�
2
3

s2
w

�

=
�
M 2

~b

�

LL
� m2

b + M 2
Z c2�

� 1
2

�
1
3

s2
w

� (4.21a)

,
�
M 2

~b

�

LL
=

�
M 2

~t

�

LL
� m2

t + m2
b � M 2

W c2� : (4.21b)

In order to simplify the notation, we introduce the auxiliary renormalisation constant

� (1)
�
M 2

~b

�

LL
= jU~t11

j2� (1) m2
~t1

+ jU~t12
j2� (1) m2

~t2
� 2 Re

n
U~t22

U�
~t12

� (1) m2
~t12

o

� 2mt �
(1) mt + 2mb�

(1) mb � c2� � (1) M 2
W + 4M 2

W s� c3
� � (1) t � :

(4.22)
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This constant allows us to write the dependent sbottom mass counterterm as

� (1) m2
~bf

=
1

jU~b1f
j2

�

jU~b1n
j2� (1) m2

~bn
+ ( n � f )

�

2 Re
n
U~b11

U�
~b12

�
mb � (1) X �

b + X �
b � (1) mb

�o

+
�
jU~b11

j2 � j U~b12
j2

�
� (1)

�
M 2

~b

�

LL

��

:

(4.23)

Lastly, the counterterm for m2
~b12

reads

� (1) m2
~b12

=
1

jU~b11
j2 � j U~b12

j2

�

U~b11
U�

~b21

�
� (1) m2

~b1
� � (1) m2

~b2

�

+ U~b11
U�

~b22

�
mb � (1) X �

b + X �
b � (1) mb

�
� U~b12

U�
~b21

�
mb � (1) X b + X b � (1) mb

� �

:

(4.24)

Renormalisation in the massless case

To extract all terms of orderO
�
(� em + � q)

2N 2
c

�
in the Higgs boson mass prediction

at the two-loop level, the �rst and second generation of quarks and squarks need to

be taken into account as well. These generations contribute even if their quarks are

assumed to be massless. As there are also two-loop Higgs self-energies with both

a third generation squark in one loop and a �rst/second generation squark in the

other, those contributions cannot simply be obtained by taking the results for the

third generation and applying the massless limit. Instead, the whole calculation has

to be done anew. To this end, we assume both the �rst and second generation of

quarks to be massless and again a diagonal CKM matrix.

As for the third generation of squarks, seven independent real parameters appear in

the squark mass matrices of each of the �rst two generations. In the massless limit,

however, the trilinear counterterms� (1) Aq and correspondingly the o�-diagonal mass

counterterms� (1) m2
~q12

do not contribute in the sub-loop renormalisation of the Higgs

self-energies. This leaves us with three independent parameters in each generation.

If we assume generationg to be massless, these areM 2
~qg

, M 2
~ug

, andM 2
~dg

. As before, we

�x these parameters by imposing renormalisation conditions on the diagonal squark

self-energies. When working with the massive third generation, we used both the

stop and one of the sbottom masses as independent input parameters. The remaining

sbottom mass was then �xed by virtue of theSU(2) symmetry of the SUSY breaking

parameter M 2
~q3

. For the massless �rst two generations, this procedure needs to be

adapted; the squark mass matrices are diagonal in the massless limit and so the

corresponding rotation matricesU~q are either purely diagonal or purely o�-diagonal.
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One of the mass eigenstates thus corresponds to the left-handed gauge eigenstate

~qL , the other one to the right-handed gauge eigenstate~qR . The SU(2) symmetry

�xes the mass of the left-handed down-type squark in terms of the left-handed up-

type squark, and its mass counterterm cannot be chosen independently. This issue

becomes clear when looking at Eq. (4.23); this expression for the dependent mass

counterterm � (1) m2
~bf

is unde�ned if U~b1f
= 0. This can be circumvented by removing

the freedom of choice as for which mass is treated independently. We demonstrate

the procedure for the second generation and an on-shell renormalisation of the input

mass (the �rst generation andDR renormalisation are treated in analogous fashion).

The scalar charm quark mass counterterms are

� (1) m2
~ci

= Re � (1)
~ci ~ci

= � (1)
~ci ~ci

; i 2 f 1;2g: (4.25)

We cannot freely choose which of the two scalar strange quark masses is used as

input. Instead, we �x our choice by the form ofU~s in order to avoid divergent and

thus meaningless expressions:

U~s is diagonal. This means that U~s12
= U~s21

= 0 and the second generation ana-

logue of Eq. (4.23) is only meaningful iff = 1; n = 2 is chosen. We arrive at

� (1) m2
~s1

= � (1)
�
M 2

~s

�

LL
; (4.26a)

� (1) m2
~s2

= � (1)
~s2 ~s2

: (4.26b)

U~s is purely o�-diagonal. This means thatU~s11
= U~s22

= 0 and the second gener-

ation analogue of Eq. (4.23) is only meaningful iff = 2; n = 1 is chosen. We arrive

at

� (1) m2
~s1

= � (1)
~s1 ~s1

; (4.27a)

� (1) m2
~s2

= � (1)
�
M 2

~s

�

LL
: (4.27b)

We can combine both cases in the formulae

� (1) m2
~s1

= jU~s12
j2� (1)

~s1 ~s1
+ jU~s11

j2� (1)
�
M 2

~s

�

LL
; (4.28a)

� (1) m2
~s2

= jU~s11
j2� (1)

~s2 ~s2
+ jU~s12

j2� (1)
�
M 2

~s

�

LL
: (4.28b)

� (1)
�
M 2

~s

�

LL
is obtained from Eq. (4.22) by replacing the third generation labels by

second generation labels.



4.1. The quark and squark sector of the MSSM 51

Figure 4.2: The diagrams relevant for the determination of � (1) � DR and � (1) ADR
t . In the

loop diagram, both stops and sbottoms appear, resulting in eight loop diagrams in total,
g is a �avour index. The �rst and second squark generations do not contribute since their
Yukawa couplings are assumed to vanish.� (1) Ab is determined from diagrams with two
outgoing sbottom squarks.

4.1.3 DR renormalisation of � and Aq

For a full renormalisation of the squark sector, the counterterms� (1) � , � (1) A t , and

� (1) Ab need to be �xed. The higgsino mass parameter� is typically de�ned via the

chargino-neutralino sector (see e.g. Ref. [50]). As that sector is otherwise irrelevant

to our calculation, we choose aDR renormalisation for� . As can be seen in Ref. [50],

the OS expression for the� counterterm in a CCN scheme involves elements of

both chargino rotation matrices, which transform the gauge eigenstates into mass

eigenstates. Taking the divergent part of the OS counterterm yields an expression

which is still rather complicated as the rotation matrix elements do not easily cancel

out algebraically.

As the higgsino mass parameter enters theh~t~t � vertex, an expression for its coun-

terterm can also be obtained from the renormalisation of this vertex. This approach

naturally leads to an expression for� (1) A t as well and avoids the need to deal with

the chargino rotation matrices. Therefore, we calculate the amplitudesh ! ~t1~t �
2

and H ! ~t1~t �
2 at the one-loop level and determine� (1) � DR and � (1) ADR

t from requir-

ing both amplitudes to be �nite. The relevant loop and counterterm diagrams are

shown in Fig. 4.2.

For both amplitudes we have eight loop diagrams each. The counterterm diagram,

apart from � (1) � and � (1) A t , involves the counterterms� (1) M 2
Z , � (1) M 2

W , � (1) sw, � (1) Ze,

� (1) t � , the Higgs �eld counterterms� (1) ZH 1
and � (1) ZH 2

, as well as quark mass and

squark �eld counterterms. The quark mass counterterms vanish and the squark

�eld counterterms are �nite at O(Nc), as we have explained in Sect. 4.1.2. The

squarks appear as external particles in Fig. 4.2 and so their �eld counterterms will
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not drop out in the full amplitude. Here, we want to determine the counterterms

of � and A t in a DR scheme, so the �nite parts of the squark �eld counterterms do

not matter. The de�nition of the remaining counterterms is postponed to Sect. 4.2

and we assume them to be known for the current analysis.

As both amplitudes �̂ (1)
h~t1~t �

2
and �̂ (1)

H ~t1~t �
2

involve both counterterms � (1) � and � (1) A t ,

we have to solve a linear system of equations. It is instructive to consider the

Higgs-stop-stop vertex

L � ~t~t = �
emt

2swMW s�

�

2mt � 2(~t �
L ~tL + ~t �

R~tR) + ( A �
t � 2 � �� 1)~t �

L ~tR

+ ( A t � 2 � � � � 1)~t �
R~tL + O(eMZ )

�

:
(4.29)

We can see that� 1 = c� H � s� h couples to stop squarks via� and � 2 = c� h + s� H

couples to the stops viaA t (and mt ). Therefore, we �nd the two linear combinations:

c� �̂ (1)
H ~t1~t �

2
� s� �̂ (1)

h~t1~t �
2

: � (1) A t drops out; (4.30a)

c� �̂ (1)
h~t1~t �

2
+ s� �̂ (1)

H ~t1~t �
2

: � (1) � drops out: (4.30b)

Now the �rst expression is used to determine� (1) � and the second one for� (1) A t .

The same procedure works for� (1) Ab as well:

c� �̂ (1)
H ~b1

~b�
2

� s� �̂ (1)
h~b1

~b�
2

: � (1) � drops out; (4.31a)

c� �̂ (1)
h~b1

~b�
2

+ s� �̂ (1)
H ~b1

~b�
2

: � (1) Ab drops out: (4.31b)

This follows from

L � ~b~b = �
emb

2swMW c�

�

2mb� 1(~b�
L
~bL + ~b�

R
~bR) + ( A �

b� 1 � �� 2)~b�
L
~bR

+ ( Ab� 1 � � � � 2)~b�
R
~bL + O(eMZ )

�

:
(4.32)

We arrive at

� (1) � DR

�
=

� emNc

16�M 2
W s2

w

� m2
t

s2
�

+
m2

b

c2
�

� 1
"

; (4.33a)

� (1) ADR
t

A t
=

� emNc

8�M 2
W s2

w

m2
t

s2
�

1
"

; (4.33b)

� (1) ADR
b

Ab
=

� emNc

8�M 2
W s2

w

m2
b

c2
�

1
"

: (4.33c)
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The correspondingDR expressions are obtained by the replacement

1
"

!

�
4�e � 
 E

� "

"
=

1
"

+ log(4� ) � 
 E +
"
2

[log(4� ) � 
 E ]2 + O
�
"2

�
; (4.34)

see also Sect. 2.3.2.

4.2 The Higgs and gauge sector of the MSSM

In this section, we �x the notation for the Higgs and gauge sector in the MSSM,

making use of Ref. [67]. We discuss the relevant parameters of this sector and give the

renormalisation transformations for the parameters and �elds. From these, we derive

the resulting expressions for the renormalised tadpole and self-energy diagrams up

to two-loop order. We explain the renormalisation of each independent parameter,

usually in form of a renormalisation condition and a formula for the counterterm.

The renormalisation oftan(� ) is discussed in Sect. 4.3.

4.2.1 Tree-level

The MSSM Higgs Lagrangian contains, inter alia, the following terms [67]:

L Higgs � � (m2
1 + j� j2)H y

1H 1 � (m2
2 + j� j2)H y

2H 2 +
�
m2

12H 1 � H 2 + h.c.
�

� 1
8(g2 + g02)(H y

1H 1 � H y
2H 2) � 1

2g02
�
�
�H y

1H 2

�
�
�
2
:

(4.35)

In the �rst line, we used the SU(2) product a � b = a1b2 � a2b1, wherea and b are

SU(2) doublets. Furthermore, the gauge couplingsg and g0, and the potentially

complex higgsino mass parameter� appear. The parametersm2
1, m2

2, and m2
12, of

which the latter is possibly complex, break supersymmetry softly. The phase ofm2
12

can be removed by a Peccei-Quinn transformation [170�172]. From this point on,

we will treat m2
12 as a real parameter.

We write the Higgs doublets in terms of component �elds:

H 1 =

0

@
v1 + 1p

2
(� 1 � i� 1)

� � �
1

1

A ; (4.36a)

H 2 = ei �

0

@
� +

2

v2 + 1p
2
(� 2 + i� 2)

1

A ; (4.36b)

wherev1 and v2 are the vacuum expectation values of the Higgs doublets, and� is

a phase between the doublets. The doublets have have hyperchargesYH 1
= � 1 and
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YH 2
= +1 [173]. They couple to down- and up-type (s)fermions, respectively.

In terms of the component �elds, the linear and quadratic terms of the Higgs La-

grangian are

L lin.+bil.
Higgs = T� 1

� 1 + T� 2
� 2 + T� 1

� 1 + T� 2
� 2

+ 1
2(@� � i )(@� � i ) + 1

2(@� � i )(@� � i ) + ( @� � +
i )(@� � �

i )

� 1
2

�
� 1 � 2 � 1 � 2

�
0

@
M 2

�� M 2
��

M 2
�� M 2

��

1

A

0

B
B
B
B
B
B
@

� 1

� 2

� 1

� 2

1

C
C
C
C
C
C
A

�
�
� +

1 � +
2

�
M 2

� � � +

0

@
� �

1

� �
2

1

A :

(4.37)

The mass (sub-)matrices, whose entries are given in Ref. [67], ful�l the following

relations:

�
M 2

��

� T
= M 2

�� ; (4.38a)
�
M 2

��

� T
= M 2

�� = � M 2
�� ; (4.38b)

�
M 2

��

� T
= M 2

�� ; (4.38c)
�
M 2

� � � +

� y
= M 2

� � � + : (4.38d)

In the Higgs-gauge sector, we now have eight independent real parameters:g, g0,

v1, v2, m2
1, m2

2, m2
12, and � . It should be noted that we do not consider� to be part

of the Higgs-gauge but rather the chargino-neutralino sector; we have explained

its renormalisation in Sect. 4.1.3. This set of parameters is, however, not the most

convenient to work with. To obtain input parameters which can be linked to physical

observables more easily, we replace the gauge couplings and VEVs by the elementary

chargee, the gauge boson massesMZ and MW , and the VEV ratio tan(� ) = t � :

e = gcw = g0sw; (4.39a)

M 2
Z = 1

2(g2 + g02)(v2
1 + v2

2); (4.39b)

M 2
W = 1

2g02(v2
1 + v2

2) = M 2
Z c2

w; (4.39c)

t � =
v2

v1
: (4.39d)

cw and sw are the cosine and sine of the weak-mixing angle� w, respectively.
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With these de�nitions, the mass matrices introduced in Eq. (4.37) ful�l

Tr M 2
�� = Tr M 2

�� + M 2
Z ; (4.40a)

Tr M 2
� � � + = Tr M 2

�� + M 2
W : (4.40b)

To replace the four remaining (unphysical) input parameters, we �rst rotate the

Higgs component �elds into their mass eigenstates:

0

B
B
B
B
B
B
@

h

H

A

G

1

C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
@

� s� c� 0 0

c� s� 0 0

0 0 � s� n
c� n

0 0 c� n
s� n

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

� 1

� 2

� 1

� 2

1

C
C
C
C
C
C
A

; (4.41a)

0

@
H �

G�

1

A =

0

@
� s� c

c� c

c� c
s� c

1

A

0

@
� �

1

� �
2

1

A ; (4.41b)

wherecx = cos(x) and sx = sin( x) for x 2 f �; � n; � cg. We use the same notation for

all linear combinations of these angles. We call thef � 1;� 2;� 1;� 2g-basis the gauge

eigenstates and thef h; H; A; G g-basis the tree-level mass eigenstates; we use the

same terms for the charged sector. Expressed in terms of mass eigenstates, the

linear and quadratic terms of the Higgs Lagrangian read

L lin.+bil.
Higgs = Th h + TH H + TA A + TG G

+ 1
2(@� h)(@� h) + 1

2(@� H )(@� H ) + 1
2(@� A)(@� A)

+ 1
2(@� G)(@� G) + ( @� H + )(@� H � ) + ( @� G+ )(@� G� )

� 1
2

�
h H A G

�

0

B
B
B
B
B
B
@

m2
h m2

hH m2
hA m2

hG

m2
hH m2

H m2
HA m2

HG

m2
hA m2

HA m2
A m2

AG

m2
hG m2

HG m2
AG m2

G

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

h

H

A

G

1

C
C
C
C
C
C
A

�
�
H + G+

�
0

@
m2

H � m2
H � G+

m2
G� H + m2

G�

1

A

0

@
H �

G�

1

A :

(4.42)

It is important to note that we use a di�erent convention for labelling the o�-

diagonal entries of the charged Higgs boson mass matrix than Ref. [67], which leads

to di�erences also in the respective counterterms. Instead, our charged counterterms

agree with the expressions given in Ref. [50].

To complete our choice of physical input parameters, we choose the tadpole coe�-

cientsTh, TH and TA , as well as one of the massesm2
A / m2

H � . If all MSSM parameters

are real, we refer to the model as the rMSSM. In this case, theCP-odd scalarA does
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not mix with the CP-even scalarsh and H , and we usem2
A as an input parameter. In

the cMSSM, the MSSM with complex parameters,A mixes with the CP-even states

through loop corrections, and theCP eigenstate is not a mass eigenstate anymore.

Instead, we use the charged massm2
H � as input in this case.

To sum up, in the Higgs-gauge sector, we use the input parameters

e; M2
Z ; M 2

W ; m2
A =m2

H � ; Th; TH ; TA ; t � : (4.43)

The remaining mass parameters andTG can be expressed in terms of these input

parameters and the mixing angles� , � n and � c. These relations are needed to derive

counterterm expressions and can be found in Ref. [67]. As stated above, we use a

di�erent convention for the o�-diagonal charged mass counterterms; ourm2
H � G+ is

denoted bym2
G� H + in Ref. [67] and vice versa.

The trace of a matrix is invariant under a unitary transformation, so Eqs. (4.38) can

be rewritten by the masses de�ned in Eq. (4.42):

m2
h + m2

H = m2
A + m2

G + M 2
Z ; (4.44a)

m2
H � + m2

G� = m2
A + m2

G + M 2
W : (4.44b)

These relations hold before and after applying the minimisation conditions for the

Higgs potential.

At tree-level, m2
G and m2

G� vanish and we get the familiar relations

m2
h + m2

H = m2
A + M 2

Z ; (4.45a)

m2
H � = m2

A + M 2
W : (4.45b)

The CP-even tree-level masses are given by

m2
h=H = 1

2

�

m2
A + M 2

Z �
q

(m2
A + M 2

Z )2 � 4m2
A M 2

Z c2
2�

�

; (4.46)

where m2
h � m2

H . The tadpoles, the phase� , the o�-diagonal mass terms, and

the m2
G and m2

G� entries of the mass matrices vanish at tree-level. The would-be

Goldstone bosons can nevertheless obtain a mass from the gauge-symmetry breaking

gauge-�xing procedure, see below. The mixing angles at the minimum are

� n = � c = �; 0 < � < �
2 ; (4.47)
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and

� = arctan

"
� (m2

A + M 2
Z )s� c�

M 2
Z c2

� + m2
A s2

� � m2
h

#

; � �
2 < � < 0: (4.48)

The bilinear MSSM Lagrangian for electroweak gauge bosons is identical to its SM

counterpart. It reads

L bil.
gauge = � 1

2

�
@� A � @� A � � @� A � @� A �

�

� 1
2

�
@� Z � @� Z � � @� Z � @� Z �

�
+ 1

2M 2
Z Z � Z �

�
�
@� W +

� @� W � � � @� W +
� @� W � �

�
+ M 2

W W +
� W � � :

(4.49)

There are also mixing terms between gauge and Higgs bosons:

L bil.
Higgs-gauge = MZ (c� � 1 + s� � 2)@� Z � +

�
iMW (c� � +

1 + s� � +
2 )@� W �

� + h.c.
�

: (4.50)

In the 't Hooft-gauge, these mixing terms are exactly cancelled by the gauge-�xing

terms at tree-level as explained below. At higher orders, they generate counterterms

which renormalise the scalar-vector self-energies.

In a perturbative calculation, we need to introduce gauge-�xing terms to our La-

grangian. These terms break gauge invariance explicitly but they are needed to

invert the photon two-point function, which yields the photon propagator. In the

most general formulation, the MSSM gauge-�xing terms have nine independent bare

gauge parameters. With our choice of gauge parameter renormalisation, the gauge-

�xing Lagrangian does not generate counterterms and it takes the convenient form

of the 't Hooft-gauge with three independent gauge parameters:

L gf = � 1
2F 2


 � 1
2F 2

Z � F � F + ; (4.51a)

F 
 = � � 1=2



�
@� A �

�
; (4.51b)

F Z = � � 1=2
Z

�
@� Z � + � Z MZ G

�
; (4.51c)

F � = � � 1=2
W

�
@� W �

� � i� W MW G�
�
; (4.51d)

F + = � � 1=2
W

�
@� W +

� + i� W MW G+
�
: (4.51e)

These terms cancel the mixing terms in Eq. (4.50) and they give the masses
p

� Z MZ

and
p

� W MW to the would-be Goldstone bosonsG and G� , respectively. Further-

more, the gauge-�xing terms contribute to the longitudinal part of the vector-boson

propagators. The non-renormalisation of the gauge-�xing part means that the

would-be Goldstone boson masses are not shifted via loop contributions. In this

regard, they are di�erent from the m2
G and m2

G� entries of the mass matrices ap-
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pearing in Eq. (4.42), which vanish at tree-level but generate counterterms.

The renormalisation transformations

All parameters are renormalised via

p ! p + �p = p + � (1) p + � (2) p: (4.52)

This means in particular that t � ! t � + �t � , which is also done in e.g. Refs. [49,50],

but not in Refs. [55, 67]. It should be noted that the mixing angles� , � n and � c

are not renormalised. Only after the renormalisation transformation we set� n =

� c = � . For the elementary charge, we writee ! e + �e � (1 + �Z e)e. All mass

parameters in Eq. (4.42) are also renormalised in the form of Eq. (4.52). Since only

the parameters given in Eq. (4.43) are independent in the Higgs and gauge sector,

most mass counterterms will be dependent quantities.

We renormalise the �elds by

H i !
q

1 + �Z H i
H i ; (4.53a)
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2 �Z hH 0 0
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p
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0 0
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1
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1
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B
B
B
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h

H
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G

1
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C
C
C
C
C
A

; (4.53b)

0

@
H �

G�

1

A !

0

@

q
1 + �Z H � H +

1
2 �Z H � G+

1
2 �Z G� H +

q
1 + �Z G� G+

1

A

0

@
H �

G�

1

A ; (4.53c)

0

@
H +

G+

1

A !

0

@

q
1 + �Z H � H +

1
2 �Z G� H +

1
2 �Z H � G+

q
1 + �Z G� G+

1

A

0

@
H +

G+

1

A ; (4.53d)

0

@
A �

Z �

1

A !

0

@

q
1 + �Z 



1
2 �Z 
Z

1
2 �Z Z


p
1 + �Z ZZ

1

A

0

@
A �

Z �

1

A ; (4.53e)

W �
� !

q
1 + �Z W W W �

� ; (4.53f)

where �Z = � (1) Z + � (2) Z as for the parameter renormalisation. All scalar �eld

renormalisation constants are �xed by�Z H 1
and �Z H 2

. As the Higgs Lagrangian

is CP conserving at tree-level, this means in particular that the mixing �eld renor-

malisation constants between theCP-even andCP-odd �elds vanish at all orders.

The counterterms for the masses in Eq. (4.42) are determined by the counterterms

for our input parameters. All relations between the one- and two-loop counterterms

are collected in App. A.
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Applying the renormalisation transformation to Eqs. (4.44), we �nd the relations

� (n)m2
h + � (n)m2

H = � (n)m2
A + � (n)m2

G + � (n)M 2
Z ; (4.54a)

� (n)m2
H � + � (n)m2

G� = � (n)m2
A + � (n)m2

G + � (n)M 2
W ; (4.54b)

which hold to all orders. In the present work, the counterterms� (n)m2
h, � (n)m2

H ,

� (n)m2
G� and � (n)m2

G are always dependent quantities while the gauge boson mass

counterterms, � (n)M 2
Z and � (n)M 2

W , are always de�ned in an on-shell scheme. De-

pending on the scenario, either� (n)m2
A or � (n)m2

H � is de�ned on-shell as well, while

the other one becomes a dependent counterterm.

4.2.2 Renormalisation at the one-loop level

Renormalised tadpoles and self-energies

The one-loop one-point vertex functions are renormalised by the tadpole countert-

erms:

�̂ (1)
h = � (1)

h + � (1) Th; (4.55a)

�̂ (1)
H = � (1)

H + � (1) TH ; (4.55b)

�̂ (1)
A = � (1)

A + � (1) TA ; (4.55c)

�̂ (1)
G = � (1)

G + � (1) TG: (4.55d)

The neutral CP-even self-energies are

�̂ (1)
hh (p2) = � (1)

hh (p2) + � (1) Zhh (p2 � m2
h) � � (1) m2

h; (4.56a)

�̂ (1)
hH (p2) = � (1)

hH (p2) + � (1) ZhH

 

p2 �
m2

h + m2
H

2

!

� � (1) m2
hH ; (4.56b)

�̂ (1)
HH (p2) = � (1)

HH (p2) + � (1) ZHH (p2 � m2
H ) � � (1) m2

H ; (4.56c)

while the CP-odd self-energies read

�̂ (1)
AA (p2) = � (1)

AA (p2) + � (1) ZAA (p2 � m2
A ) � � (1) m2

A ; (4.57a)

�̂ (1)
AG (p2) = � (1)

AG (p2) + � (1) ZAG

 

p2 �
m2

A

2

!

� � (1) m2
AG ; (4.57b)

�̂ (1)
GG (p2) = � (1)

GG (p2) + � (1) ZGG p2 � � (1) m2
G: (4.57c)
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In the case ofCP violation, the self-energies

�̂ (1)
hA (p2) = � (1)

hA (p2) � � (1) m2
hA ; (4.58a)

�̂ (1)
hG (p2) = � (1)

hG (p2) � � (1) m2
hG ; (4.58b)

�̂ (1)
HA (p2) = � (1)

HA (p2) � � (1) m2
HA ; (4.58c)

�̂ (1)
HG (p2) = � (1)

HG (p2) � � (1) m2
HG (4.58d)

do not vanish. The neutral self-energies are symmetric such that for instance

�̂ (1)
Hh = �̂ (1)

hH .

The charged Higgs self-energies are

�̂ (1)

H � H + (p2) = � (1)

H � H + (p2) + � (1) ZH � H +

�
p2 � m2

H �

�
� � (1) m2

H � ; (4.59a)

�̂ (1)

H � G+ (p2) = � (1)

H � G+ (p2) + � (1) ZH � G+

 

p2 �
m2

H �

2

!

� � (1) m2
H � G+ ; (4.59b)

�̂ (1)

G� H + (p2) = � (1)

G� H + (p2) + � (1) ZG� H +

 

p2 �
m2

H �

2

!

� � (1) m2
G� H + ; (4.59c)

�̂ (1)

G� G+ (p2) = � (1)

G� G+ (p2) + � (1) ZG� G+ p2 � � (1) m2
G� : (4.59d)

They are symmetric in the sense

�̂ (1)

G� H + = �̂ (1)

H + G� (4.60)

but in general
�
�̂ (1)

G� H + (p2)
� �

6= �̂ (1)

H � G+ (p2): (4.61)

Instead, we have
�
�̂ (1)

G� H + (p2)
� �

= fCo �̂ (1)

H � G+ (p2); (4.62)

where fCo takes the complex conjugate of loop integrals only and leaves complex

couplings una�ected. Loop integrals are complex quantities for su�ciently large

external momenta and so thefCo must not be left out.

Vector boson self-energies are Lorentz tensors of rank two. We decompose them into

a transverse and into a longitudinal component

� �� (p) =

 

� g�� +
p� p�

p2

!

� T (p2) �
p� p�

p2 � L (p2); (4.63)

using the same convention as in Ref. [174].
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The renormalised transverse parts of the gauge boson self-energies are

�̂ T;(1)


 (p2) = � T;(1)



 (p2) + � (1) Z 

 p2; (4.64a)

�̂ T;(1)

Z (p2) = � T;(1)


Z (p2) + 1
2 � (1) Z 
Z p2 + 1

2 � (1) ZZ
 (p2 � M 2
Z )

= �̂ T;(1)
Z
 (p2);

(4.64b)

�̂ T;(1)
ZZ (p2) = � T;(1)

ZZ (p2) + � (1) ZZZ (p2 � M 2
Z ) � � (1) M 2

Z ; (4.64c)

�̂ T;(1)

W � W + (p2) = � T;(1)

W � W + (p2) + � (1) ZW W (p2 � M 2
W ) � � (1) M 2

W

= �̂ T;(1)

W + W � (p2):
(4.64d)

The transverse parts of vector self-energies are important already at the one-loop

level, as they are used to determine the mass and �eld counterterms of the gauge

bosons. The longitudinal vector boson self-energies enter a Higgs boson mass pre-

diction at the three-loop order and higher, and will not be discussed here.

For a two-loop calculation, we also need self-energies which mix scalars and vectors.

Their Lorentz decomposition reads

� �
SV (p) = p� � L

SV (p2); (4.65a)

� �
V S(p) = p� � L

V S(p2); (4.65b)

where� �
SV (p) denotes a self-energy with incoming vectorV y and outgoing scalarS,

and � �
V S(p) denotes a self-energy with incoming scalarSy and outgoing vectorV.

We have four neutral scalar-vector self-energies

�̂ L; (1)
A
 (p2) = � L; (1)

A
 (p2)

= � �̂ L; (1)

A (p2)

O(N c )
= 0;

(4.66a)

�̂ L; (1)
AZ (p2) = � L; (1)

AZ (p2) � iMZ

�
1
2 � (1) ZAG + c2

� � (1) t �

�

= � �̂ L; (1)
ZA (p2);

(4.66b)
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2
� (1) ZZ


= � �̂ L; (1)

G (p2)

O(N c )
= 0;

(4.66c)

�̂ L; (1)
GZ (p2) = � L; (1)

GZ (p2) �
iMZ

2

 
� (1) M 2

Z

M 2
Z

+ � (1) ZZZ + � (1) ZGG

!

= � �̂ L; (1)
ZG (p2):

(4.66d)
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The charged self-energies are

�̂ L; (1)

H � W + (p2) = � L; (1)

H � W + (p2) + MW

�
1
2 � (1) ZH � G+ + c2

� � (1) t �

�

= � �̂ L; (1)

W + H � (p2);
(4.67a)

�̂ L; (1)

W � H + (p2) = � L; (1)

W � H + (p2) + MW

�
1
2 � (1) ZG� H + + c2

� � (1) t �

�

= � �̂ L; (1)

H + W � (p2):
(4.67b)

�̂ L; (1)

G� W + (p2) = � L; (1)

G� W + (p2) +
MW

2

 
� (1) M 2

W

M 2
W

+ � (1) ZW W + � (1) ZG� G+

!

= � �̂ L; (1)

W + G� (p2);

(4.67c)

�̂ L; (1)

W � G+ (p2) = � L; (1)

W � G+ (p2) +
MW

2

 
� (1) M 2

W

M 2
W

+ � (1) ZW W + � (1) ZG� G+

!

= � �̂ L; (1)

G+ W � (p2):

(4.67d)

Again, conjugated diagrams are related via

�
�̂ L; (1)

W � H + (p2)
� �

= fCo �̂ L; (1)

H � W + (p2): (4.68)

Not all of the self-energies presented in this section are actually needed for our calcu-

lation. We have numerically shown the �niteness of all given one-loop self-energies

as a crosscheck and provide the derived expressions for the sake of completeness and

for future reference.

One-loop renormalisation conditions and counterterms

In this section, we will discuss the one-loop renormalisation of all parameters and

�elds relevant for our O
�
(� em + � q)

2N 2
c

�
calculation. While some of these countert-

erms only matter for the two-loop part of our work, most are relevant already for a

one-loop prediction.

The tadpole counterterms are chosen such that the renormalised one-point vertex

functions vanish:

�̂ (1)
i

!= 0; i 2 f h;H;A g; (4.69a)

) � (1) Ti = � � (1)
i : (4.69b)

Due to the relation

TG = � tan(� � � n )TA ; (4.70)
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the counterterm � (1) TG vanishes:

� (1) TG = 0: (4.71)

Since the unrenormalised vertex function� (1)
G also vanishes, all renormalised Higgs

one-point vertex functions can be set to zero simultaneously. This ensures that our

VEVs receive no shifts from loop corrections [146,175].

We use the input massesM 2
Z , M 2

W , and m2
A (in the rMSSM) or m2

H � (in the cMSSM).

They are determined by expanding the pole equation

M 2
i � m2

i + �̂ e�
ii (M 2

i ) = 0 ; (4.72)

where M 2
i = M 2

i � iM i � i is the complex pole of the propagator (matrix) and�̂ e�
ii

is the e�ective self-energy, see also Sect. 3.2.2. For the determination of one-loop

counterterms from this equation, mixing e�ects do not matter. Expanding the pole

equation to one-loop order and taking the real part leads to

M 2
i � m2

i + Re �̂ (1)
ii (M 2

i ) != 0: (4.73)

In an OS scheme,M 2
i = m2

i , and we �nd

� (1) M 2
Z = Re � T;(1)

ZZ (M 2
Z ); (4.74a)

� (1) M 2
W = Re � T;(1)

W � W + (M 2
W ); (4.74b)

� (1) m2
A = Re � (1)

AA (m2
A ) (in the rMSSM); (4.74c)

� (1) m2
H � = Re � (1)

H � H + (m2
H � ) (in the cMSSM): (4.74d)

Taking the one-loop version of Eq. (4.54b), we get

� (1) m2
H � + � (1) m2

G� = � (1) m2
A + � (1) m2

G + � (1) M 2
W : (4.75)

The neutral and charged would-be Goldstone boson mass counterterms are identical

at the one-loop level, see App. A. The dependent mass counterterm is therefore given

by

� (1) m2
H � = � (1) m2

A + � (1) M 2
W (in the rMSSM); (4.76a)

� (1) m2
A = � (1) m2

H � � � (1) M 2
W (in the cMSSM): (4.76b)

For the �eld renormalisation constants, di�erent approaches are used in the Higgs

and the gauge sector, respectively. In the Higgs sector, we renormalise the �elds
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in a DR scheme. It is most convenient to determine the doublet �eld counterterms

from the CP-even, diagonal self-energies at vanishing mixing angle� :

� (1) Z DR
H 1

= �
�

@� (1)
HH

�
�
�
� =0

�

Div
; (4.77a)

� (1) Z DR
H 2

= �
�

@� (1)
hh

�
�
�
� =0

�

Div
; (4.77b)

where the `Div operator' performs a series expansion in" and keeps only the part

proportional to the divergence" � 1. The DR version is then obtained from the simple

replacement

1
"

!

�
4�e � 
 E

� "

"
; (4.78)

see also Sect. 2.3.2. As mentioned above, all Higgs �eld renormalisation constants

are �xed by this choice for the doublet �eld counterterms.

In the gauge sector, the �eld counterterms are determined from on-shell conditions.

The o�-diagonal counterterms�Z Z
 and �Z 
Z are chosen such that the mixing self-

energy�̂ T

Z vanishes at the two on-shell momentap2 = 0 and p2 = M 2

Z :

�̂ T;(1)

Z (0) != 0; (4.79a)

) � (1) ZZ
 =
2

M 2
Z

� T;(1)

Z (0)

O(N c )
= 0; (4.79b)

and

�̂ T;(1)

Z (M 2

Z ) != 0; (4.80a)

) � (1) Z 
Z = �
2

M 2
Z

� T;(1)

Z (M 2

Z ): (4.80b)

The diagonal �eld counterterms, on the other hand, are used to set the propagators'

residues to unity. The diagonal propagators are just the inverse of the left-hand side

of the pole equation above, shown exemplary for theZ boson:

i� T;(1)
ZZ (p2) =

i

p2 � m2
Z + �̂ T;(1)

ZZ (p2)

=
i

p2 � m2
Z +

h
�̂ T;(1)

ZZ (M 2
Z ) + ( p2 � M 2

Z )@̂� T;(1)
ZZ (M 2

Z ) + � � �
i

'
i

�
p2 � M 2

Z

� h
1 + @̂� T;(1)

ZZ (M 2
Z )

i :

(4.81)
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Requiring the residues to be unity and expanding to one-loop order, we arrive at

@̂� T;(1)
ZZ (M 2

Z ) != 0; (4.82a)

) � (1) ZZZ = � @� T;(1)
ZZ (M 2

Z ): (4.82b)

For the W boson, we analogously �nd

� (1) ZW W = � @� T;(1)

W � W + (M 2
W ): (4.83)

For the photon, the situation presents itself a bit di�erently; no mass parameter in

the Lagrangian is associated with the photon and so there is also no counterterm

to be generated from the renormalisation transformation. This poses no problem,

however, as the transverse part of the photon self-energy, at one-loop order, vanishes

at zero momentum due to a Slavnov-Taylor identity [175], and so the propagator

pole is not shifted away from zero by loop corrections:

� T;(1)


 (0) = 0 : (4.84)

Because of Eq. (4.64a), this also means

�̂ T;(1)


 (0) = 0 : (4.85)

We expand the self-energy in the propagator around the physical pole:

i� T;(1)


 (p2) =

i

p2 + �̂ T;(1)


 (p2)

'
i

p2
h
1 + @̂� T;(1)



 (0)
i :

(4.86)

The OS renormalisation condition for the photon propagator corresponds to setting

its residue to unity, which means we require

@̂� T;(1)


 (0) != 0; (4.87a)

) � (1) Z 

 = � @� T;(1)


 (0): (4.87b)

We de�ne the one-loop vacuum polarisation by

� (1)


 (p2) �

� T;(1)


 (p2)

p2 for p2 6= 0; (4.88a)

� (1)


 (0) � @� T;(1)



 (0); (4.88b)
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so

� (1) Z 

 = � � (1)


 (0): (4.89)

When evaluating the vacuum polarisation� (1)


 at zero momentum, we can no longer

treat the �rst two generations of quarks as massless since this would lead to infrared

divergences. Instead, we take into account the contributions from the �ve light

quarks to the running of the �ne-structure constant � em. As a consequence of the

conceptual issues related to quark con�nement, the light quark masses are not known

with su�cient accuracy to use them as input parameters in a perturbative approach.

Their contributions are determined from hadronice+ e� �annihilation data by using

a dispersion relation together with the optical theorem [176].

We start by �rst splitting the contributions from quarks and squarks to the vacuum

polarisation into parts stemming from light and heavy particles:

� (1)


 (0) = � (1) ;light



 (0) + � (1) ;heavy


 (0): (4.90)

This is always possible, as the photon interaction is fully diagonal in �avour space.

The light part includes contributions from the �ve light quarks whereas the heavy

part contains the squark and top contributions; the heavy part can be calculated

perturbatively. In accordance with Refs. [177,178], we rewrite the light part of the

vacuum polarisation as

� (1) ;light


 (0) = � (1) ;light



 (0) � Re � (1) ;light


 (M 2

Z ) + Re � (1) ;light


 (M 2

Z )

� � � em(M 2
Z ) + Re � (1) ;light



 (M 2
Z );

(4.91)

where we de�ned

� � em(M 2
Z ) = � (1) ;light



 (0) � Re � (1) ;light


 (M 2

Z )

= � � lep(M 2
Z ) + � � (5)

had(M 2
Z ):

(4.92)

The numerical values we use for� � lep(M 2
Z ) and � � (5)

had(M 2
Z ) are given in Eq. (7.2).

� � lep(M 2
Z ) is calculated perturbatively, and � � (5)

had(M 2
Z ) is extracted from experi-

mental input via dispersion relations. As the leptonic contributions to the running

of the �ne-structure constant are sizeable, we include them in our de�nition of

� � em(M 2
Z ) although they are not ofO(Nc).

With this, our expression for the photon �eld counterterm is modi�ed to

� (1) Z 

 = � � (1) ;heavy


 (0) � Re � (1) ;light



 (M 2
Z ) � � � em(M 2

Z ): (4.93)



4.2. The Higgs and gauge sector of the MSSM 67

In the second term, we can now safely set the quark masses of the �rst two genera-

tions to zero without having to worry about infrared divergences.

The elementary charge is renormalised such that all corrections to theee
-vertex

(and, by charge universality, to anyf f 
 -vertex) vanish for external on-shell particles

in the Thomson limit. With this renormalisation condition, we get the relation

Ze

 q
Z 

 �

sw + �s w

cw + �cw

�Z Z


2

!

= 1; (4.94)

which holds to all orders [164,179�181]. Expanding up to one-loop order, we see that

the elementary charge counterterm is fully determined by gauge �eld counterterms:

� (1) Ze �
� (1) e

e
=

1
2

 
sw

cw
� (1) ZZ
 � � (1) Z 



!

: (4.95)

The sign di�erence with respect to Refs. [164,180] stems from a di�erent convention

in the SU(2) term of the gauge-covariant derivative, which is often found between

the SM and the MSSM. While Eq. (4.94) corresponds to the common MSSM choice,

the �SM convention� is obtained by exchanging the minus sign with a plus sign.

The weak mixing angle is not an independent parameter but �xed by the electroweak

vector boson mass counterterms via the relation

c2
w =

M 2
W

M 2
Z

; s2
w = 1 � c2

w; (4.96a)

) � (1) sw =
1
2

c2
w

sw

 
� (1) M 2

Z

M 2
Z

�
� (1) M 2

W

M 2
W

!

: (4.96b)

Lastly, we introduce the auxiliary renormalisation constants related to the ubiqui-

tous factor e=(swMW ):

� (1) Zw � � (1) Ze �
� (1) M 2

W

2M 2
W

�
� (1) sw

sw
: (4.97)

The only parameter we have not renormalised at the one-loop level so far ist � . Its

renormalisation is discussed in Sect. 4.3.
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4.2.3 Renormalisation at the two-loop level

Renormalised one-point functions and self-energies

At the two-loop level, the renormalised one-point vertex functions read

�̂ (2)
h = � (2)

h + � (2) Th + 1
2 � (1) Zhh � (1) Th + 1

2 � (1) ZhH � (1) TH ; (4.98a)

�̂ (2)
H = � (2)

H + � (2) TH + 1
2 � (1) ZHH � (1) TH + 1

2 � (1) ZhH � (1) Th; (4.98b)

�̂ (2)
A = � (2)

A + � (2) TA + 1
2 � (1) ZAA � (1) TA + 1

2 � (1) ZAG � (1) TG; (4.98c)

�̂ (2)
G = � (2)

G + � (2) TG + 1
2 � (1) ZGG � (1) TG + 1

2 � (1) ZAG � (1) TA : (4.98d)

The renormalisedCP-even two-loop self-energies read

�̂ (2)
hh (p2) = � (2)

hh (p2) + � (2) Zhh (p2 � m2
h) � � (2) m2

h

+ 1
4

�
� (1) ZhH

� 2
(p2 � m2

H ) � � (1) Zhh � (1) m2
h � � (1) ZhH � (1) m2

hH ;
(4.99a)

�̂ (2)
hH (p2) = � (2)

hH (p2) + � (2) ZhH

 

p2 �
m2

h + m2
H

2

!

� � (2) m2
hH

+ 1
4 � (1) ZhH � (1) Zhh (p2 � m2

h) + 1
4 � (1) ZhH � (1) ZHH (p2 � m2

H )

� � (1) ZhH
� (1) m2

h + � (1) m2
H

2
�

� (1) Zhh + � (1) ZHH

2
� (1) m2

hH ;

(4.99b)

�̂ (2)
HH (p2) = � (2)

HH (p2) + � (2) ZHH (p2 � m2
H ) � � (2) m2

H

+ 1
4

�
� (1) ZhH

� 2
(p2 � m2

h) � � (1) ZHH � (1) m2
H � � (1) ZhH � (1) m2

hH :
(4.99c)

Similarly, the CP-odd self-energies are

�̂ (2)
AA (p2) = � (2)

AA (p2) + � (2) ZAA (p2 � m2
A ) � � (2) m2

A

+ 1
4

�
� (1) ZAG

� 2
p2 � � (1) ZAA � (1) m2

A � � (1) ZAG � (1) m2
AG ;

(4.100a)

�̂ (2)
AG (p2) = � (2)

AG (p2) + � (2) ZAG

 

p2 �
m2

A

2

!

� � (2) m2
AG

+ 1
4 � (1) ZAG � (1) ZAA (p2 � m2

A ) + 1
4 � (1) ZAG � (1) ZGG p2

� � (1) ZAG
� (1) m2

A + � (1) m2
G

2
�

� (1) ZAA + � (1) ZGG

2
� (1) m2

AG ;

(4.100b)

�̂ (2)
GG (p2) = � (2)

GG (p2) + � (2) ZGG p2 � � (2) m2
G

+ 1
4

�
� (1) ZAG

� 2
(p2 � m2

A ) � � (1) ZGG � (1) m2
G � � (1) ZAG � (1) m2

AG :

(4.100c)
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Finally, the CP-mixing self-energies read

�̂ (2)
hA (p2) = � (2)

hA (p2) � � (2) m2
hA

�
� (1) Zhh + � (1) ZAA

2
� (1) m2

hA � 1
2ZhH m2

HA � 1
2ZAG m2

hG ;
(4.101a)

�̂ (2)
hG (p2) = � (2)

hG (p2) � � (2) m2
hG

�
� (1) Zhh + � (1) ZGG

2
� (1) m2

hG � 1
2ZhH m2

HG � 1
2ZAG m2

hA ;
(4.101b)

�̂ (2)
HA (p2) = � (2)

HA (p2) � � (2) m2
HA

�
� (1) ZHH + � (1) ZAA

2
� (1) m2

HA � 1
2ZhH m2

hA � 1
2ZAG m2

HG ;
(4.101c)

�̂ (2)
HG (p2) = � (2)

HG (p2) � � (2) m2
HG

�
� (1) ZHH + � (1) ZGG

2
� (1) m2

HG � 1
2ZhH m2

hG � 1
2ZAG m2

HA :
(4.101d)

The renormalised charged self-energies are

�̂ (2)

H � H + (p2) = � (2)

H � H + (p2) + � (2) ZH � H + (p2 � m2
H � ) � � (2) m2

H �

+
� (1) ZH � G+ � (1) ZG� H +

4
p2 � � (1) ZH � H + � (1) m2

H �

� 1
2 � (1) ZH � G+ � (1) m2

G� H + � 1
2 � (1) ZG� H + � (1) m2

H � G+ ;

(4.102a)

�̂ (2)

H � G+ (p2) = � (2)

H � G+ (p2) + � (2) ZH � G+

 

p2 �
m2

H �

2

!

� � (2) m2
H � G+

+ 1
4 � (1) ZH � G+ � (1) ZH � H + (p2 � m2

H � )

+ 1
4 � (1) ZH � G+ � (1) ZG� G+ p2

� � (1) ZH � G+
� (1) m2

H � + � (1) m2
G�

2

�
� (1) ZH � H + + � (1) ZG� G+

2
� (1) m2

H � G+ ;

(4.102b)

�̂ (2)

G� H + (p2) = � (2)

G� H + (p2) + � (2) ZG� H +

 

p2 �
m2

H �

2

!

� � (2) m2
G� H +

+ 1
4 � (1) ZG� H + � (1) ZH � H + (p2 � m2

H � )

+ 1
4 � (1) ZG� H + � (1) ZG� G+ p2

� � (1) ZG� H +
� (1) m2

H � + � (1) m2
G�

2

�
� (1) ZH � H + + � (1) ZG� G+

2
� (1) m2

G� H + ;

(4.102c)
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�̂ (2)

G� G+ (p2) = � (2)

G� G+ (p2) + � (2) ZG� G+ p2 � � (2) m2
G�

+
� (1) ZH � G+ � (1) ZG� H +

4
(p2 � m2

H � ) � � (1) ZG� G+ � (1) m2
G�

� 1
2 � (1) ZH � G+ � (1) m2

G� H + � 1
2 � (1) ZG� H + � (1) m2

H � G+ :

(4.102d)

The renormalised transverse parts of the two-loop gauge boson self-energies are

�̂ T;(2)


 (p2) = � T;(2)



 (p2) + � (2) Z 

 p2 + 1
4

�
� (1) ZZ


� 2
(p2 � M 2

Z ); (4.103a)

�̂ T;(2)

Z (p2) = � T;(2)


Z (p2) + 1
2

�
� (2) Z 
Z + 1

2 � (1) Z 
Z � (1) Z 



�
p2

+ 1
2

�
� (2) ZZ
 + 1

2 � (1) ZZ
 � (1) ZZZ

�
(p2 � M 2

Z )

� 1
2 � (1) ZZ
 � (1) M 2

Z

= �̂ T;(2)
Z
 (p2);

(4.103b)

�̂ T;(2)
ZZ (p2) = � T;(2)

ZZ (p2) + � (2) ZZZ (p2 � M 2
Z ) � � (2) M 2

Z

+ 1
4

�
� (1) Z 
Z

� 2
p2 � � (1) ZZZ � (1) M 2

Z ;
(4.103c)

�̂ T;(2)

W � W + (p2) = � T;(2)

W � W + (p2) + � (2) ZW W (p2 � M 2
W ) � � (2) M 2

W

� � (1) ZW W � (1) M 2
W

= �̂ T;(2)

W + W � (p2):

(4.103d)

At the two-loop level, the renormalised transverse part of the photon self-energy

receives a non-vanishing contribution atp2 = 0 from the mixing with the Z boson.

Another non-vanishing contribution stems from the sub-loop part of the unrenor-

malised self-energy. To demonstrate this, we write the unrenormalised self-energy

as

� T;(2)


 (p2) = e� T;(2)



 (p2) + � (1) Z 

 � T;(1)


 (p2) + � (1) ZZ
 � T;(1)


Z (p2); (4.104)

where e� T;(2)


 (p2) does not contain any �eld renormalisation constants. While the

second term on the right-hand side vanishes at zero momentum due to a Slavnov-

Taylor identity, the third term will usually give a non-vanishing contribution.5 The

third term of Eq. (4.103a) and the third term of Eq. (4.104) will drop out once the

e�ective two-loop self-energy, which we de�ne below, is considered.

The renormalised two-loop self-energy vanishes at zero momentum if an on-shell

renormalisation is chosen for� (1) ZZ
 . In our calculation, the on-shell condition

leads to�Z Z
 = 0.

5For the set of contributions considered in this thesis,� T; (1)

Z (0) = 0 .
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The two-loop Higgs-vector mixing self-energies

�̂ L; (2)
AZ (p2) = � L; (2)

AZ (p2) � iMZ

�

c2
� � (2) t � � c3

� s� (� (1) t � )2

+ 1
2 � (2) ZAG + 1

2c2
� � (1) t � � (1) ZAA

�

�
iMZ

2

�
c2

� � (1) t � + 1
2 � (1) ZAG

�
 

� (1) M 2
Z

M 2
Z

+ � (1) ZZZ

!

= � �̂ L; (2)
ZA (p2);

(4.105a)

�̂ L; (2)

H � W + (p2) = � L; (2)

H � W + (p2) + MW

�

c2
� � (2) t � � c3

� s� (� (1) t � )2

+ 1
2 � (2) ZH � G+ + 1

2c2
� � (1) t � � (1) ZH � H +

�

+
MW

2

�
c2

� � (1) t � + 1
2 � (1) ZH � G+

�
 

� (1) M 2
W

M 2
W

+ � (1) ZW W

!

= � �̂ L; (2)

W + H � (p2)

(4.105b)

are used in some schemes to determine the two-loop counterterm fort � , see Sect. 4.3.

Two-loop renormalisation conditions and counterterms

Similarly to the one-loop level, we choose the tadpole counterterms such that the

one-point vertex functions vanish:

�̂ (2)
i

!= 0; i 2 f h;H;A g; (4.106a)

) � (2) Th = � � (2)
h � 1

2 � (1) Zhh � (1) Th � 1
2 � (1) ZhH � (1) TH ; (4.106b)

� (2) TH = � � (2)
H � 1

2 � (1) ZHH � (1) TH � 1
2 � (1) ZhH � (1) Th; (4.106c)

� (2) TA = � � (2)
A � 1

2 � (1) ZAA � (1) TA � 1
2 � (1) ZAG � (1) TG: (4.106d)

The �eld renormalisation constants which appear explicitly on the right-hand side

cancel with the ones from the sub-loop renormalisation of the� (2)
i . As a consequence,

the two-loop tadpole counterterms are independent of any �eld renormalisation.

From Eq. (4.70), we obtain the dependent� (2) TG counterterm:

� (2) TG = � c2
� � (1) t � � (1) TA : (4.107)

Using this counterterm, the remaining one-point vertex function̂� (2)
G vanishes as

well.

The masses of the electroweak vector bosons and the Higgs bosons are renormalised

in an OS scheme as before. At the two-loop level, however, mixing e�ects have to
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be taken into account. We do this using the e�ective self-energy, that we de�ned in

Sect. 3.2.2. The following e�ective self-energies enter in our results:

�̂ T;(2) ;e�


 (p2) = �̂ T;(2)



 (p2) �

�
�̂ T;(1)


Z (p2)
� 2

p2 � M 2
Z

; (4.108a)

�̂ T;(2) ;e�
ZZ (p2) = �̂ T;(2)

ZZ (p2) �

�
�̂ T;(1)


Z (p2)
� 2

p2 ; (4.108b)

�̂ T;(2) ;e�

W � W + (p2) = �̂ T;(2)

W � W + (p2); (4.108c)

�̂ (2) ;e�
AA (p2) = �̂ (2)

AA (p2) �

�
�̂ (1)

AG (p2)
� 2

p2 � � Z M 2
Z

+ � Z p2 �̂ L; (1)
AZ (p2)�̂ L; (1)

ZA (p2)
p2 � � Z M 2

Z
; (4.108d)

�̂ (2) ;e�

H � H + (p2) = �̂ (2)

H � H + (p2) �
�̂ (1)

H � G+ (p2)�̂ (1)

G� H + (p2)

p2 � � W M 2
W

+ � W p2
�̂ L; (1)

H � W + (p2)�̂ L; (1)

W � H + (p2)

p2 � � W M 2
W

:

(4.108e)

It should be noted that these expressions have already been expanded up to the

two-loop level. The e�ective Higgs self-energies depend explicitly on the gauge

parameters� Z and � W . This dependence vanishes once we go on-shell:

�̂ (2) ;e�
AA (m2

A ) = �̂ (2)
AA (m2

A ) �

�
�̂ (1)

AG (m2
A )

� 2

m2
A

; (4.109a)

�̂ (2) ;e�

H � H + (m2
H � ) = �̂ (2)

H � H + (m2
H � ) �

�̂ (1)

H � G+ (m2
H � )�̂ (1)

G� H + (m2
H � )

m2
H �

: (4.109b)

Here, we have used the on-shell Slavnov-Taylor identities given in Eqs. (B.4). To

determine the two-loop mass counterterms, we expand the pole equation (3.41) up

to the two-loop order; this is shown exemplary in App. C. We arrive at

� (2) M 2
Z = Re � T;(2)

ZZ (M 2
Z ) � Ref � (1) ZZZ g� (1) M 2

Z + 1
4 Ref (� (1) Z 
Z )2gM 2

Z

+ Im f �̂ T;(1)
ZZ (M 2

Z )g Imf @̂� T;(1)
ZZ (M 2

Z )g +

�
Im �̂ T;(1)


Z (M 2
Z )

� 2

M 2
Z

;
(4.110a)

� (2) M 2
W = Re � T;(2)

W � W + (M 2
W ) � Ref � (1) ZW W g� (1) M 2

W

+ Im f �̂ T;(1)

W � W + (M 2
W )g Imf @̂� T;(1)

W � W + (M 2
W )g;

(4.110b)

� (2) m2
A = Re � (2)

AA (m2
A ) � � (1) ZAA � (1) m2

A � � (1) ZAG � (1) m2
AG

+ 1
4(� (1) ZAG )2m2

A + Im f �̂ (1)
AA (m2

A )g Imf @̂� (1)
AA (m2

A )g

� Re

�
�̂ (1)

AG (m2
A )

� 2

m2
A

(in the rMSSM);

(4.110c)
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� (2) m2
H � = Re � (2)

H � H + (m2
H � ) � � (1) ZH � H + � (1) m2

H � � 1
2 � (1) ZH � G+ � (1) m2

G� H +

� 1
2 � (1) ZG� H + � (1) m2

H � G+ + 1
4 � (1) ZH � G+ � (1) ZG� H + m2

H �

+ Im f �̂ (1)

H � H + (m2
H � )g Imf @̂� (1)

H � H + (m2
H � )g

� Re
�̂ (1)

H � G+ (m2
H � )�̂ (1)

G� H + (m2
H � )

m2
H �

(in the cMSSM):

(4.110d)

The last terms in the expressions for theZ , A and H � mass counterterm stem

from the mixing contribution in the e�ective self-energy. As indicated, we use two

di�erent input parameters for the rMSSM and the cMSSM also at the two-loop level.

In all mass counterterms, the diagonal one-loop �eld renormalisation constants drop

out. To get a relation between the Higgs boson mass counterterms, we take the

two-loop version of Eq. (4.54b):

� (2) m2
H � + � (2) m2

G� = � (2) m2
A + � (2) m2

G + � (2) M 2
W : (4.111)

At the two-loop level, the neutral and charged would-be Goldstone boson mass

counterterms do not agree with each other anymore. Instead, they ful�l

� (2) m2
G� � � (2) m2

G = c4
� M 2

W

�
� (1) t �

� 2
; (4.112)

see App. A. From there,

� (2) m2
H � � � (2) m2

A � � (2) M 2
W + c4

� M 2
W

�
� (1) t �

� 2
= 0 (4.113)

follows directly. All previous Feynman-diagrammatic two-loop calculations for the

Higgs boson mass did not require the(� (1) t � )2 term as they were focusing on QCD

corrections [51, 52, 56, 68] or on pure Yukawa corrections [74�77]. In both of these

cases, the(� (1) t � )2 term does not contribute, and it is to our best knowledge also

not mentioned in the literature. In our calculation, however, this term is needed in

order to render all scalar two-loop self-energies �nite.

Depending on the scenario, the dependent mass counterterm is given by

� (2) m2
H � = � (2) m2

A + � (2) M 2
W � c4

� M 2
W

�
� (1) t �

� 2
(in the rMSSM); (4.114a)

� (2) m2
A = � (2) m2

H � � � (2) M 2
W + c4

� M 2
W

�
� (1) t �

� 2
(in the cMSSM): (4.114b)

The two-loop Higgs �eld counterterms are de�ned in aDR scheme again. First, we
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de�ne the DR counterterms via

� (2) Z DR
H 1

= �
�

@� (2)
HH

�
�
�
� =0

�

Div
; (4.115a)

� (2) Z DR
H 2

= �
�

@� (2)
hh

�
�
�
� =0

�

Div
; (4.115b)

where � denotes theCP-even Higgs mixing angle. We obtain theDR versions via

the procedure explained in Sect. 2.3.2.

The two-loop weak-mixing angle counterterm is already determined by the coun-

terterms of the electroweak gauge boson masses:

� (2) sw =
c2

w

2sw

2

4 � (2) M 2
Z

M 2
Z

�
� (2) M 2

W

M 2
W

�

0

@� (1) M 2
Z

M 2
Z

1

A

2

+
� (1) M 2

W

M 2
W

� (1) M 2
Z

M 2
Z

�

0

@� (1) sw

cw

1

A

23

5 :

(4.116)

As at the one-loop level, we again �x the elementary charge via the electromagnetic

vertices in the Thomson limit. This means that Eq. (4.94) holds again. Expanding

this relation up to two-loop order, we get

� (2) Ze = �
1
2

� (2) Z 

 +
sw

2cw
� (2) ZZ
 +

�
� (1) Ze

� 2
+

1
8

�
� (1) Z 



� 2
+

1
2c3

w
� (1) ZZ
 � (1) sw;

(4.117)

in agreement with Ref. [182].

The o�-diagonal �eld renormalisation constants are chosen such that the renor-

malised mixing self-energies vanish on-shell:

�̂ T;(2)

Z (0) != 0

) � (2) ZZ
 =
2

M 2
Z

� T;(2)

Z (0) �

1
2

� (1) ZZ
 � (1) ZZZ � � (1) ZZ

� (1) M 2

Z

M 2
Z

;
(4.118a)

�̂ T;(2)

Z (M 2

Z ) != 0

) � (2) Z 
Z = �
2

M 2
Z

� T;(1)

Z (M 2

Z ) �
1
2

� (1) Z 
Z � (1) Z 

 + � (1) ZZ

� (1) M 2

Z

M 2
Z

:
(4.118b)

The renormalisation constant� (2) Z 
Z is not needed in our calculation but was in-

cluded for the sake of completeness. The unrenormalised transverse part of the
Z

self-energy vanishes at zero momentum also at the two-loop order. This implies

� (2) ZZ


O(N 2
c )

= 0: (4.119)

The diagonal photon �eld counterterm, on the other hand, is again used to set the
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propagator's residue to unity. The derivation proceeds in analogous fashion to the

one-loop case. With the e�ective self-energy de�ned in Eq. (4.108), the two-loop

propagator reads

i� T;(2)


 (p2) =

i

p2 + �̂ T;(1)


 (p2) + �̂ T;(2) ;e�



 (p2)

=
i

p2 + �̂ T;(1)


 (p2) + �̂ T;(2)



 (p2) �
�
�̂ T;(1)


Z (p2)
� 2

=(p2 � M 2
Z )

:
(4.120)

In the vicinity of the pole, using Eqs. (4.79a), (4.85), and (4.87a), the propagator

reads

i� T;(2)


 (p2) '

i

p2 + �̂ T;(2)


 (0) + p2@̂� T;(2)



 (0)
(4.121)

The transverse part of the unrenormalised

 two-loop self-energy vanishes on-shell

� T;(2)


 (0)

O(N 2
c )

= 0 (4.122)

and so, with Eq. (4.79b)

�̂ T;(2)


 (0)

O(N 2
c )

= 0: (4.123)

We can thus impose a renormalisation condition on the derivative of the self-energy

to �x the residue of the propagator:

@̂� T;(2)


 (0) = 0 ; (4.124a)

) � (2) Z 

 = � @� T;(2)


 (0) �

1
4

�
� (1) ZZ


� 2
: (4.124b)

We also give a two-loop version of the auxiliary counterterm�Z w:

� (2) Zw �
1
2

�
� (1) Zw

� 2
+ � (2) Ze �

1
2

�
� (1) Ze

� 2
�

� (2) M 2
W

2M 2
W

+

 
� (1) M 2

W

2M 2
W

! 2

�
� (2) sw

sw
+

1
2

 
� (1) sw

sw

! 2

:

(4.125)



76 Chapter 4. Renormalisation of the MSSM

4.3 Renormalisation of tan(� )

In this section, we discuss the renormalisation of the MSSM parametert � . Both

the precise de�nition and the numerical value of this parameter have a large impact

on the prediction of MSSM observables, in particular the mass of the SM-like Higgs

boson [183].t � appears in the calculation of theCP-even Higgs boson masses already

at the tree-level. Thus, for a prediction at two-loop order, expressions for thet �

counterterms at two-loop order are required.

In this section, we will discuss three renormalisation schemes fort � : The Dabelstein-

Chankowski-Pokorski-Rosiek scheme (DCPR), theDR scheme, and an OS de�nition

via the decayA ! � � � + . Of these, the two latter will be important for our two-loop

Higgs boson mass prediction atO
�
(� em + � q)

2N 2
c

�
. We include a brief discussion

of the DCPR scheme at the one-loop level as well to illustrate some interesting

concepts in thet � renormalisation.

The DR choice is popular sincet � has no natural physical observable to which it is

related, and a minimal renormalisation often simpli�es a calculation, cf. Refs. [55,67,

74,75,183�185]. Furthermore, theDR de�nition is process-independent and provides

numerically stable results in the sense of renormalisation scale dependence [183]. It

does, however, lead to a gauge-dependent de�nition oft � in an R� gauge at the

two-loop level.

As an alternative, we investigate an OS de�nition oft � in terms of the decay width

�( A ! � � � + ):6 We choose this particular decay width as it has a relatively clean

signature and, in the region of largert � involves a sizeable coupling to the leptons

[185]. As a renormalisation condition, we require the square of the amplitudeA !

� � � + to not receive any higher-order corrections and from this determine an OS

t � counterterm. This de�nition is gauge-independent, numerically stable and, of

course, process-dependent [183,184].

Before we discuss the di�erent renormalisation schemes, we introduce the one- and

two-loop counterterms fors� and c� :

� (1) s� = c3
� � (1) t � ; (4.126a)

� (1) c� = � s� c2
� � (1) t � ; (4.126b)

� (2) s� = c3
� � (2) t � � 3

2c4
� s�

�
� (1) t �

� 2
; (4.126c)

� (2) c� = � s� c2
� � (2) t � �

1
2

c3
�

�
c2

� � 2s2
�

��
� (1) t �

� 2
: (4.126d)

6In a CP-violating scenario, one would use�( H � ! � � �� � ) instead.
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4.3.1 The DCPR scheme

The renormalisation of t � is closely tied to the renormalisation of the vacuum ex-

pectation values and the Higgs �elds. We write the renormalisation transformation

for the VEVs in two equivalent ways:

vi ! vi + �v i

= ZH i
(vi + � �vi ):

(4.127)

At the one-loop level, thet � counterterm reads

� (1) t � = t �

� � (1) �v2

v2
�

� (1) �v1

v1
+

1
2

h
� (1) ZH 2

� � (1) ZH 1

i �

: (4.128)

The one-loop relation
� � (1) �v1

v1

�

Div
=

� � (1) �v2

v2

�

Div
(4.129)

was noted in Refs. [23,24]. In the DCPR scheme, the choice

� (1) �vDCPR
1

v1
=

� (1) �vDCPR
2

v2
(4.130)

leads to

� (1) tDCPR
� =

t �

2

�
� (1) Z DCPR

H 2
� � (1) Z DCPR

H 1

�
: (4.131)

The �eld counterterms for the mass eigenstates then read

� (1) Z DCPR
AG = 2c2

� � (1) tDCPR
� ; (4.132a)

� (1) Z DCPR
H � G+ = 2c2

� � (1) tDCPR
� : (4.132b)

This relation allows us to rewrite the scalar-vector mixing self-energies

�̂ L; (1)
AZ (p2) = � L; (1)

AZ (p2) � 2iMZ c2
� � (1) tDCPR

� ; (4.133a)

�̂ L; (1)

H � W + (p2) = � L; (1)

H � W + (p2) + 2 MW c2
� � (1) tDCPR

� ; (4.133b)

which we introduced in Eqs. (4.66b) and (4.67a). The on-shell renormalisation con-

ditions are

Im �̂ L; (1)
AZ (m2

A ) != 0; (4.134a)

) � (1) tDCPR
� =

1
2MZ c2

�
Im � L; (1)

AZ (m2
A ) (4.134b)
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in the rMSSM [183�185] and

Re�̂ L; (1)

H � W + (m2
H � ) != 0; (4.135a)

) � (1) tDCPR
� = �

1
2MW c2

�
Re � L; (1)

H � W + (m2
H � ) (4.135b)

in the cMSSM [186]. With the on-shell Slavnov-Taylor identities given in App. B,

this also implies

Re�̂ (1)
AG (m2

A ) = 0 in the rMSSM; (4.136a)

Re�̂ (1)

H � G+ (m2
H � ) = 0 in the cMSSM: (4.136b)

The DCPR de�nition of t � simpli�es our calculation where mixing e�ects have to be

taken into account, but it comes at a cost: We can no longer de�ne both Higgs �eld

counterterms in the simpleDR scheme.7 In the DCPR scheme, the renormalisation

condition (4.130) for the VEV counterterms replaces the renormalisation condition

for one of the Higgs �elds.

Furthermore, a DCPR counterterm for t � leads to less numerically stable results

than a DR scheme de�nition in some regions of the parameter space [187]. As

we also prefer the handiness of theDR �eld counterterms over the simple DCPR

de�nition of t � , we will not make use of the DCPR scheme in this thesis. Instead,

we use theDR scheme and a di�erent OS scheme, which we discuss now.

4.3.2 DR renormalisation via the AZ transition

If t � is renormalised in theDR-scheme, its counterterm consists of divergent terms

only. Taking the divergent part of Eq. (4.128) and using the one-loop relation in

Eq. (4.129), we �nd

� (1) tDR
� =

t �

2

�
� (1) Z DR

H 2
� � (1) Z DR

H 1

�
: (4.137)

This relation is often used to determine� (1) tDR
� in schemes withDR �eld renor-

malisation. [161]. At the two-loop level, Eq. (4.129) does not hold in general, and

another approach has to be taken.

In this thesis, we determine thet � counterterm by demanding the �niteness of the

7For the de�nition of the � (1) ZH i
in the DCPR scheme, see Ref. [23].
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AZ mixing self-energy:

h
�̂ L; (1)

AZ

i

Div
= 0; (4.138a)

) � (1) tDR
� =

1
ic2

� MZ

h
� L; (1)

AZ

i

Div
�

� (1) Z DR
AG

2c2
�

: (4.138b)

The DR term is then obtained as we explained in Sect. 2.3.2 and agrees with the ex-

pression given in Eq. (4.137). This prescription allows us to determine a counterterm

for t � without having to consider the renormalisation of the VEVs.

The DR renormalisation via AZ transitions can easily be extended to the two-loop

level:

h
�̂ L; (2)

AZ

i

Div
= 0; (4.139a)

) � (2) tDR
� =

1
ic2

� MZ

h
� L; (2)

AZ

i

Div
�

� (2) Z DR
AG

2c2
�

+ c� s�

�
� (1) tDR

�

� 2
� 1

2 � (1) tDR
� � (1) Z DR

AA

�
1
2

�

� (1) tDR
� +

� (1) Z DR
AG

2c2
�

�� � (1) M 2
Z

M 2
Z

+ � (1) ZZZ

�

Div
:

(4.139b)

The DR version is obtained as described in Sect. 2.3.2.

Of course, we could also use theH � W + self-energy to determine an expression for

�t � . Since, in this chapter, we are only interested in extracting divergences to de�ne

t � in a minimal subtraction scheme, the charged self-energies would yield the same

result. We checked the �niteness of the charged self-energy as a validation.

4.3.3 OS renormalisation via the decay A ! � � � +

Several di�erent on-shell de�nitions of t � can be found in the literature. We have

already illustrated the DCPR scheme at the one-loop level and we pointed out its

weaknesses. In this section, we present an OS scheme which is de�ned via the Higgs

decay processA ! � � � + [183�185].

This approach yields a gauge-independent de�nition oft � due to its direct relation

to an observable (the partial decay width�( A ! � � � + )). Furthermore, this method

provides a numerically stable prediction due to the smallness of loop corrections to

the decay [184].

This de�nition, however, comes with its own drawbacks as well. First of all, it is

process- and �avour-dependent and as such it is somewhat inconvenient; any decay

into fermions or even an entirely di�erent observable could be used to de�net �
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instead. Secondly, if such a decay were observed and the corresponding partial

decay width were measured, the extraction of an experimental value fort � would

require the calculation of the respective three-point vertex to the desired order.

Beyond the one-loop level, this can become quite tedious [183,184].

The second issue does not concern us, however, as no such decay has been observed

up to now, and no experimental value fort � needs to be extracted. Furthermore, for

the contributions that are of interest to us, no virtual corrections to the three-point

vertex exist.

For our on-shell de�nition of t � , we impose the renormalisation condition that the

decay width �( A ! � � � + ) receives no quantum corrections. This is equivalent

to demanding that the absolute value of the physical three-point amplitude� ph
A� �

receives no loop corrections. We will also work in aCP-conserving scenario, in

which the CP-odd Higgs boson mixes with both the neutral would-be Goldstone

bosonG and the longitudinal part of the Z boson (and nothing else).

Our starting point is the physical vertex amplitude

�̂ ph
A� � =

q
ẐA

�
�̂ A� � + ẐAG �̂ G� � + AZ mixing

�
: (4.140)

It takes into account mixing e�ects with unphysical states as well as the correct nor-

malisation of the S-matrix by including �nite wave-function normalisation factors.

The contribution from the unphysical states is gauge-dependent for each term sep-

arately, but in the sum the dependence drops out. We have shown this explicitly at

the one-loop level utilising the Slavnov-Taylor identities presented in App. B. From

now on, we work in the Landau gauge� Z = 0 exclusively:8

�̂ ph
A� � =

q
ẐA

�
�̂ A� � + ẐAG �̂ G� �

� �
�
�
� Z =0

: (4.141)

Comparing this with the notation used in Refs. [163,188], some remarks have to be

made. In this paper, the mixing of tree-level mass eigenstates into loop-corrected

mass eigenstates is discussed. In the case ofCP violation, the three tree-level eigen-

statesh, H , and A mix into three loop-corrected eigenstatesh1, h2, and h3. We only

consider the case ofCP conservation here, so no mixing between theCP-even and

the CP-odd states takes place. There is, however, still mixing between theCP-odd

states A and G, which is only well-de�ned when taking into account contributions

from the longitudinal degrees of theZ vector boson as well. To this end, we employ

the formalism established in Ref. [163].

8Due to gauge independence we can of course work in any arbitraryR� gauge; the Landau gauge
is the most convenient for the following discussion as it sets theAZ mixing to 0.
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Therein, the diagonal and o�-diagonal wave function normalisation factors are de-

�ned as

ẐA =

2

41 + @̂� AA (p2) �
@

@p2

�
�̂ AG (p2)

� 2

p2 � � Z M 2
Z + �̂ GG (p2)

3

5

� 1�
�
�
�
�
�
p2= M 2

A

; (4.142a)

ẐAG = �
�̂ AG (M 2

A )

M 2
A � � Z M 2

Z + �̂ GG (M 2
A )

: (4.142b)

We can see that, in the case of on-shell renormalisation,9 ẐA = 1 and ẐAG = 0.

Now we only need expressions for the `bare' vertex functions in Eq. (4.141). We

derive them from the Lagrangian

L �� � + Z� � =
iem�

2swMW c�
� 
 5�

�
s� n

A � c� n
G

�
�

e
swcw

� 
 � [g�
L PL � g�

RPR ] �Z � ; (4.143)

which contains all interactions of bosons with� leptons relevant to us, via a renor-

malisation transformation. We have introduced the abbreviationsg�
L = T �

3L (1 �

4T �
3L Q� s2

w) and g�
R = 4( T �

3L )2Q� s2
w.

As a renormalisation condition, we require the absolute square of the physical am-

plitude to not receive any higher order corrections:

�
�
� �̂ ph

A� �

�
�
�
2

=
�
�
�� (0)

A� � + �̂ ph,(1)
A� � + �̂ ph,(2)

A� � + � � �
�
�
�
2

=
�
�
�� (0)

A� �

�
�
�
2�

1 + 2 Re ~� ph,(1)
A� � + 2 Re ~� ph,(2)

A� � +
�
�
� ~� ph,(1)

A� �

�
�
�
2

+ � � �
�

!=
�
�
�� (0)

A� �

�
�
�
2
;

(4.144)

where we de�ned~� ph,(i)
A� � via

�̂ ph,(i)
A� � � ~� ph,(i)

A� � � (0)
A� � : (4.145)

From this, we obtain both the one-loop and the two-loop renormalisation condition

Re~� ph,(1)
A� � = 0; (4.146a)

Re~� ph,(2)
A� � = �

1
2

Im2 ~� ph,(1)
A� � : (4.146b)

9Proper on-shell renormalisation sets diagonal �eld counterterms such that the corresponding
propagator has unit residue and the o�-diagonal �eld counterterms such that mixing contribu-
tions vanish on the mass-shell.
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One-loop order

Expanding Eq. (4.141) to the one-loop order, we obtain

�̂ ph,(1)
A� � = �̂ (1)

A� � �
1
2

@̂� (1)
AA (m2

A )� (0)
A� � �

�̂ (1)
AG (m2

A )
m2

A
� (0)

G� � : (4.147)

The �rst term is the renormalised one-loop vertex, which in our case is just the vertex

counterterm, as no loop contributions exist atO(Nc). We obtain the counterterm by

applying the renormalisation transformation presented in Sect. 4.2.1 to the tree-level

vertex:

�̂ (1)
A� �

O(N c )
= � (1) � A� �

O(N c )
=

�

�
� (1) c�

c�
+ � (1) Zw +

1
2

� (1) ZAA �
1

2t �
� (1) ZAG

�

� (0)
A� � :

(4.148)

The G� � tree-level vertex is simply

� (0)
G� � = �

1
t �

� (0)
A� � : (4.149)

All �eld renormalisation constants drop out in the physical amplitude, as one would

expect. This allows us to de�ne� (1) t � independently of the renormalisation con-

ditions for the �elds. The t � counterterm appears in both the vertex counterterm

(through � (1) c� ) and the renormalisedAG self-energy (through the mass counterterm

� (1) m2
AG ).

Solving Eq. (4.146a) for� (1) t � leads to

� (1) tOS
�

t �
= � � (1) Zw +

1
2

Re@� (1)
AA (m2

A ) �
Re � (1)

AG (m2
A ) � � (1) m2

AG

t � m2
A

�
�
�
�
� (1) t � =0

: (4.150)

The last term can be rewritten by noting

Re � (1)
AG (m2

A ) � � (1) m2
AG

�
�
�
� (1) t � =0

= Re � (1)
AG (m2

A ) � � (1) m2
AG � � (1) t � c2

� m2
A

= �
m2

A

MZ
Im � L; (1)

AZ (m2
A );

(4.151)

where we used Eq. (B.2a) from the �rst to the second line. With this, we can write

� (1) tOS
�

t �
= � � (1) Zw +

1
2

Re@� (1)
AA (m2

A ) +
1
t �

Im � L; (1)
AZ (m2

A )
MZ

: (4.152)
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Two-loop order

The physical two-loop vertex is obtained by expanding Eq. (4.141) up to the two-loop

order:

�̂ ph,(2)
A� � = �̂ (2)

A� � �
1
2

@̂� (1)
AA (m2

A )�̂ (1)
A� � �

�̂ (1)
AG (m2

A )
m2

A
�̂ (1)

G� �

�
1
2

2

4@̂� (2)
AA (m2

A ) �
3
4

�
@̂� (1)

AA (m2
A )

� 2
�

@
@p2

�
�̂ (1)

AG (p2)
� 2

p2

�
�
�
�
p2= m2

A

3

5 � (0)
A� �

�

2

4 �̂ (2)
AG (m2

A )
m2

A
�

�̂ (1)
AG (m2

A )�̂ (1)
GG (m2

A )
m4

A
�

1
2

@̂� (1)
AA (m2

A )
�̂ (1)

AG (m2
A )

m2
A

3

5 � (0)
G� �

+
i
2

Im �̂ (1)
AA (m2

A )@2�̂ (1)
AA (m2

A )� (0)
A� �

+
i Im �̂ (1)

AA (m2
A )

m2
A

2

4@̂� (1)
AG (m2

A ) �
�̂ (1)

AG (m2
A )

m2
A

3

5 � (0)
G� � :

(4.153)

The terms in the last line appear because we de�ned the wave function normalisation

constants at the complex rather than at the real pole. When taking the real part of

the physical amplitude, the last line will produce products of imaginary parts. As

the real part of the two-loop vertex and the imaginary part of the one-loop vertex

appear in the two-loop renormalisation condition, we give their explicit expressions

here:

Re�̂ ph,(2)
A� � = �̂ (2)

A� � �
1
2

Re@̂� (1)
AA (m2

A )�̂ (1)
A� � �

Re�̂ (1)
AG (m2

A )
m2

A
�̂ (1)

G� �

�
1
2

Re

8
<

:
@̂� (2)

AA (m2
A ) �

3
4

�
@̂� (1)

AA (m2
A )

� 2
�

@
@p2

�
�̂ (1)

AG (p2)
� 2

p2

�
�
�
�
p2= m2

A

9
=

;
� (0)

A� �

� Re

8
<

:
�̂ (2)

AG (m2
A )

m2
A

�
�̂ (1)

AG (m2
A )�̂ (1)

GG (m2
A )

m4
A

�
@̂� (1)

AA (m2
A )

2
�̂ (1)

AG (m2
A )

m2
A

9
=

;
� (0)

G� �

�
1
2

Im �̂ (1)
AA (m2

A ) Im @2�̂ (1)
AA (m2

A )� (0)
A� �

�
Im �̂ (1)

AA (m2
A )

m2
A

2

4 Im @̂� (1)
AG (m2

A ) �
Im �̂ (1)

AG (m2
A )

m2
A

3

5 � (0)
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(4.154a)

Im �̂ ph,(1)
A� � = �

1
2

@Im �̂ (1)
AA (m2

A )� (0)
A� � �

Im �̂ (1)
AG (m2

A )
m2

A
� (0)

G� � : (4.154b)
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In our calculation, the two-loop vertex again just contains the counterterm

�̂ (2)
A� �

O(N 2
c )

= � (2) � A� �

O(N 2
c )

=

2

4 �
� (2) c�
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+

� � (1) c�

c�

� 2

+ � (2) Zw � � (1) Zw
� (1) c�

c�

+
1
2

� (2) ZAA �
1
8

�
� (1) ZAA

� 2
+

1
2

� (1) ZAA

�

� (1) Zw �
� (1) c�

c�

�

�
1

2t �
� (2) ZAG �

1
2t �

� (1) ZAG

�

� (1) Zw �
� (1) c�

c�

�
3

5 � (0)
A� � :

(4.155)

At the two-loop level, also the one-loopG� � vertex appears:

�̂ (1)
G� �

O(N c )
= � (1) � G� �

O(N c )
=

�

�
� (1) c�

c�
+ � (1) Zw +

1
2

� (1) ZGG �
t �

2
� (1) ZAG

�

� (0)
G� � : (4.156)

Before we give an explicit expression for the two-loopt � counterterm, we introduce

the symbol
~� (2) (p2) = � (2) (p2)

�
�
�
�
� (1) Z =0

; (4.157)

which denotes an unrenormalised two-loop self-energy where the one-loop �eld coun-

terterms in the sub-loop diagrams have been set to 0. This means in particular

� (2)
AA = ~� (2)

AA + � (1) ZAA � (1)
AA + � (1) ZAG � (1)

AG ; (4.158a)

� (2)
AG = ~� (2)

AG + 1
2

�
� (1) ZAA + � (1) ZGG

�
� (1)

AG + 1
2 � (1) ZAG

�
� (1)

AA + � (1)
GG

�
: (4.158b)

We now insert Eqs. (4.154) into Eq. (4.146b) and solve for� (2) t � . As in the one-loop

case, thet � counterterm appears as a contribution to� (2) c� in the vertex counterterm

and to the mass counterterm� (2) m2
AG in the renormalised two-loopAG self-energy.
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Putting everything together, we obtain
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(4.159)

Again, any �eld renormalisation constant drops out in the �nal expression for the

two-loop t � counterterm. In order to assure this feature, however, we have to make

use of the fact thatm2
A has been de�ned as an on-shell quantity, as can be seen from

the last term. In a CP-violating scenario, we would thus have to use the decay of a

charged Higgs boson into� and � � together with a charged on-shell mass.





5 Calculation of electroweak O
0

@N 2
c

1

A

terms to the Higgs boson masses

In this thesis, we calculate for the �rst time the complete two-loop corrections of

O
�
(� em + � q)

2N 2
c

�
to the Higgs boson masses in the MSSM. The setup of our calcu-

lation is general enough to allow for both real and complex input parameters.10 We

refer to these scenarios as the rMSSM and the cMSSM, respectively. The masses of

the CP-even Higgs bosonsh and H obtain contributions from particle mixing at the

two-loop order and beyond in both scenarios. The presence of non-vanishing phases

in the cMSSM gives rise to non-vanishingCP-violating self-energies and thus leads

to mixing with the CP-odd Higgs bosonA. Hence, we have a2� 2 propagator matrix

in the rMSSM and a3 � 3 matrix in the cMSSM. In most scenarios, the di�erence

between the tree-level massesm2
H and m2

A is rather small, leading potentially to

large mixing e�ects in the cMSSM, see Sect. 3.2.4.

We start this chapter by giving an overview of the current status of Higgs mass

predictions in the MSSM, focussing especially on the �xed-order approach for de-

termining the Higgs masses. Next, we discuss the two-loop Feynman diagrams

calculated in this work. We analyse their structure in terms of coupling constants,

colour factors and loop integrals. Subsequently, we motivate why QCD corrections,

terms of O(Nc) and other known corrections are not taken into account, leading to

the considered class ofO
�
(� em + � q)

2N 2
c

�
contributions. We continue by giving an

overview over the di�erent codes and packages used to obtain algebraic expressions

for the relevant one- and two-loop self-energies.

After renormalisation, the self-energies become �nite quantities and can be used to

make a prediction for the Higgs masses in the MSSM. The divergent, �nite andO(")

parts of the loop integrals appearing in our calculation can be evaluated analytically

in the most general setting. We will show that the choice of an on-shell renormali-

sation scheme at two-loop order leads to the cancellation of theO(") parts of loop

integrals and thus simpli�es the analytical structure of the �nite result.

10So far, we have calculated the on-shellt � counterterms from the A ! � � � + decay for a scenario
with CP-symmetry conservation. The de�nition of an on-shell t � in a CP-violating scenario via
the decayH + ! � + � � is straightforward.
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Figure 5.1: Topologies of the two-loop tadpole diagrams. � = h; H; A; G ; g and h are
�avour indices. The cross denotes the insertion of a one-loop counterterm. Counterterm
topologies which have not been listed vanish for the considered class of contributions.

We present the leading one-loop contributions in an algebraic form in Ch. 6. The

combined one- and two-loop results are investigated numerically for several di�erent

scenarios in Ch. 7.

5.1 Current status of the MSSM Higgs boson mass

prediction

Already in the mid-1990s the full one-loop corrections to the Higgs boson mass

have been available, albeit in the MSSM with real parameters (rMSSM) and no

�avour mixing [20�25]. One-loop results for the complex MSSM can be found in

Refs. [57�67]. Two-loop corrections to the neutral Higgs masses, in the limit of van-

ishing external momentum and vanishing electroweak gauge couplings, followed in

subsequent years [26�40]. Only a decade later, the corresponding two-loop calcu-

lations were done for the mass of the charged Higgs boson [41, 42]. The e�ective-

potential method allowed for the incorporation of electroweak two-loop e�ects into

the predictions for the Higgs boson masses in the MSSM, still in the limit of van-

ishing external momentum, in 2002 [43,44].

In 2004, using a Feynman-diagrammatic (FD) approach, the full two-loop contri-

butions involving all diagrams in which� s � g2
s=(4� ), � t � h2

t =(4� ), � b � h2
b=(4� ),

or � � � h2
� =(4� ) appear have been calculated [45].11 For these diagrams, the full

dependence on the external momentump2 was kept, as well as a non-vanishing �ne-

structure constant � em � e2=(4� ). Those numerical results, however, do not include

contributions from the �rst or second generation of fermions, or generation mixing.

Furthermore, the results of Ref. [45] were obtained in a pureDR scheme, which

greatly simpli�es the renormalisation process.

11gs is the strong gauge coupling, andht , hb and h� are third generation Yukawa couplings.
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Figure 5.2: Topologies of the neutral two-loop self-energy diagrams.� = h; H; A; G ;
g and h are �avour indices. The cross denotes the insertion of a one-loop counterterm.
Counterterm topologies which have not been listed vanish for the considered class of
contributions.

In 2014, the leading two-loop contributions ofO(� t � s) including the contributions

from a non-vanishing external momentum were calculated in a mixed OS-DR scheme

in Ref. [51]. A few months later and in an independent calculation, Ref. [52] also

incorporated the subleadingO(� em� s) contributions, working both in a mixed and

in a pure DR scheme. In 2018, Ref. [56] included all QCD contributions, giving

results ofO
�
� q� s

�
and O(� em� s), where � q denotes a product of any two Yukawa

couplings. In Ref. [56], a mixed OS-DR scheme was used and complex parameters

were taken into account. The leading Yukawa corrections ofO
�
(� t + � b)

2
�

are given

in Refs. [74�77] for the case of general complex parameters and vanishing external

momentum.

We go beyond the previously obtained results by fully taking into account elec-

troweak and Yukawa two-loop contributions for non-vanishing external momenta in

a mixed OS-DR scheme within the considered class of contributions. In our calcu-

lation, we allow for the general case of complex parameters in the MSSM, and we

take into account �avour- and generation-mixing Feynman diagrams. Since we still

use a unit CKM matrix, our calculation is not as general as it could be with regard

to �avour. We focus on the contributions of O
�
(� em + � q)

2N 2
c

�
. This avoids the

need to calculate diagrams with internal leptons, Higgs and gauge bosons as well as

their respective supersymmetric partners.

The relevant tadpole diagrams are shown in Fig. 5.1, while the neutral and charged

self-energies consist of the diagrams shown in Figs. 5.2 and 5.3, respectively. The
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Figure 5.3: Topologies of the charged two-loop self-energy diagrams.� � = H � ; G� ;
g and h are �avour indices. The cross denotes the insertion of a one-loop counterterm.
Counterterm topologies which have not been listed vanish for the considered class of
contributions.

calculated two-loop vector boson self-energies and scalar-vector mixing self-energies

have the same topological structure. All of these topologies lead to diagrams which

can be written as products of one-loop integrals.

5.2 The structure of the self-energies

When discussing two-loop self-energies, we distinguish between so-called �genuine�

diagrams with two independent loop momenta, see e.g. topologies 1�3 in Fig. 5.2,

and �sub-loop� diagrams with a one-loop counterterm insertion, see e.g. topologies

4�8 in Fig. 5.2.

All genuine two-loop diagrams have two loop momenta that are integrated over.

In our case, no internal propagator depends on both loop momenta, and our two-

loop diagrams decompose into mere products of one-loop integrals. The sub-loop

diagrams have a very similar form as they are products of a one-loop integral and a

one-loop counterterm.

The genuine diagrams all contain a four-squark interaction vertex. To better under-

stand their overall structure in terms of colour factors and coupling constants, we

investigate the vacuum diagram shown in Fig. 5.4. All genuine tadpole and neutral

self-energy diagrams can be obtained from this diagram by simply adding external

legs to the vacuum bubble. As such, all genuine diagrams will have the same colour
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Figure 5.4: The basic two-loop vacuum diagramV~qg ~qh
with the four-squark vertex. Here,

g and h are �avour indices.

structure as the vacuum diagram.

The colours of the internal squark propagators in Fig. 5.4 can have all possible

values, and hence they need to be summed over; we label them by the indicesa and

b. Keeping the colour sum explicit, the vacuum bubble has the structure

V~qg ~qh
=

N cX

a;b=1

�

� s
1
2

�

� ab� ab �
1

Nc
� aa� bb

�

Sgh + � s
1
2

�

� aa� bb �
1

Nc
� ab� ab

�

S0
gh

+ � em� abGgh + � emG0
gh + � q� abYgh + � qY

0
gh

�

;

(5.1)

where the coe�cients Sgh, S0
gh, Ggh, G0

gh, Ygh, and Y 0
gh contain entries of the squark-

mixing matrices and other numerical factors, but no couplings constants or colour

factors. After performing the colour sums, we �nd

V~qg ~qh
= � sNcCF S0

gh + � em(NcGgh + N 2
c G0

gh) + � q(NcYgh + N 2
c Y 0

gh); (5.2)

where we introduced the Casimir operatorCF of the fundamental representation,

CF =
N 2

c � 1
2Nc

: (5.3)

Depending on which squark �avours appear in the loops, the coe�cients have the

following properties:

ˆ If the squarks have the same �avour,g = h:

Sgg = S0
gg, Ggg = G0

gg and Ygg = Y 0
gg. All coe�cients are non-vanishing.

ˆ If the squarks have di�erent �avours but are of the same generation:
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S0
gh = 0, Ggh 6= G0

gh, and Y 0
gh = 0.

ˆ If the squarks stem from di�erent generations but are of the same type:

S0
gh = 0, Ggh = 0 and Ygh = 0.

ˆ If the squarks stem from di�erent generations and are of a di�erent type:

S0
gh = 0, Ggh = 0, and Ygh = Y 0

gh = 0.

These relations are read o� the four-squark-vertex Feynman rules, see e.g. Ref. [173].

The contributions parameterised bySgh, Ggh and Ygh are irrelevant to us as they

do not produce terms ofO
�
N 2

c

�
. The term with the coe�cient S0

gh is propor-

tional to NcCF , and hence formally contains a factorN 2
c , as one sees from Eq. (5.3).

Other genuine two-loop diagrams, like the one shown in Fig. 5.5, also contribute

at O(� sNcCF ). This diagram does not decompose into a simple product of one-

loop integrals. Since the complete two-loop QCD contributions have already been

calculated in Refs. [51,52,56,68], we set

� s � 0 (5.4)

in the diagrams that are evaluated in this thesis. We give estimates for the size of

the left-out QCD corrections in the scenarios discussed in Ch. 7.

With this restriction, all diagrams appearing in our calculation contain only quarks

and squarks as internal particles. We are interested in theO
�
N 2

c

�
parts of these two-

loop diagrams, i.e. the contributions parameterised by the coe�cientsG0
gh and Y 0

gh.

The genuine two-loop self-energy diagrams in Fig. 5.2 are obtained from the vacuum

bubble Fig. 5.4 by adding two cubic Higgs-squark-squark vertices or a single quartic

Higgs-Higgs-squark-squark vertex; the self-energies are hence ofO
�
(� em + � q)

2N 2
c

�
.

Figure 5.5: This two-loop diagram is proportional to � sNcCF . h is a �avour index.
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We treat the �rst and second generation quarks as massless. This leaves us with the

three non-vanishing couplings

� em; � t ; � b: (5.5)

These are su�cient to describe any four-squark vertex, as well as any Higgs-quark

or Higgs-squark vertex. The coupling structure of the one- and two-loop corrections

to the Higgs boson pole masses is then typically of the form

� (1) M 2
h=H � O

�

Nc� t (mt + � + A t )
2 + Nc� b(mb + � + Ab)

2

+ Nc� em

h
mt (mt + � + A t ) + mb(mb + � + Ab) + M 2

Z

i �

;
(5.6a)

� (2) M 2
h=H � O

�

N 2
c � 2

t (mt + � + A t )
2 + N 2

c � 2
b(mb + � + Ab)

2

+ N 2
c � em

hp
� t (mt + � + A t ) +

p
� b(mb + � + Ab)

i 2

+ N 2
c � 2

em

h
mt (mt + � + A t ) + mb(mb + � + Ab) + M 2

Z

i �

;

(5.6b)

where the plus signs in the parentheses and brackets are used to indicate possible

combinations but do not imply that the terms always occur in this exact form. We

have derived these expressions by considering the two-loop self-energy diagrams of

the �rst and third topology shown in Fig. 5.2.

While the one-loop result was already fully known, for the two-loop contribution only

the O
�
� 2

t

�
and O

�
� 2

b

�
part (�rst line of Eq. (5.6b)) had so far been evaluated. The

second and third line of Eq. (5.6b) vanish in the gaugeless limit and are calculated

for the �rst time in the present work.

We stress again that two-loop terms ofO(Nc) are not included in our calculation.

Two-loop diagrams with one internal squark and an additional internal Higgs boson

are also of this order and therefore would have to be included in a full discussion of

O(Nc) contributions.

5.3 Algebraic calculation of the two-loop self-energies

In this section we describe the technical tools which we used for our calculation

and outline the procedure step by step. Every part of the calculation, from the

generation of the required Feynman diagrams up to the numerical evaluation, is

performed within the computer algebra programWolfram Mathematica . We

use mostly pre-existing tools and packages and we created our own packages where

necessary. Our calculational setup closely follows the one presented in Ref. [76].
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Generating the amplitudes. We turn the one- and two-loop diagrams presented

in Sect. 5.2 into a mathematical form with theMathematica packageFeynArts

3.11 [189,190]. We treat the tadpoles and self-energies such that they do not con-

tain topologies with tadpole sub-diagrams by setting the �agExcludeTopologies

! Internal . These excluded topologies exactly cancel each other for schemes em-

ploying an OS de�nition for the tadpole counterterms, which is the prescription that

we use exclusively in this thesis.

We use theFeynArts model �les MSSMCT.mod[50] andNc.mod. The former includes

the information on MSSM particles and the generation of one-loop counterterms

while the latter allows us to keep the number of (s)quark colours as a symbol. In

this way we can easily use this parameter for extracting theO
�
N 2

c

�
contributions.

The numbers of generated diagrams per two-loop self-energy are displayed in Ta-

ble 5.1. For the case of a single (s)quark generation, 4080 genuine two-loop diagrams

and 1242 sub-loop diagrams have been calculated, amounting to a total of 5322 di-

agrams. When taking into account all three generations of matter, we have 36720

genuine and 3726 sub-loop diagrams, for a combined total number of 40446 diagrams

at the particle level.

Preparing the amplitudes for tensor reduction. The sub-loop diagrams have

a simple one-loop topology and hence they can be reduced using by the package

FormCalc 9.9 [191, 192]. The genuine two-loop diagrams, on the other hand,

are reduced withTwoCalc [174, 193]. Before they can be reduced, the genuine

diagrams have to be adapted to the conventions used inTwoCalc . The sub-loop

diagrams can also be reduced using the one-loop version ofTwoCalc , which is

called OneCalc [174,193], but this requires a prior modi�cation of the amplitudes

as well.

These conversions are done by the packagesSimpSubstFA3.mfor the genuine two-

loop diagrams andOneSimpSubstFA3.mfor the sub-loop diagrams. As we can eval-

no. of gen. top. � �� � � � + A
 AZ H � W + 

 
Z

1
genuine 32 224 112 96 192 80 64 128
sub-loop 14 64 38 32 52 26 28 44

3
genuine 288 2016 1008 864 1728 720 576 1152
sub-loop 42 192 114 96 156 78 84 132

Table 5.1: The number of genuine and sub-loop diagrams for each tadpole and self-
energy, and for the case of both one and three generations of matter.� 2 f h; H; A; G g;
� � 2 f H � ; G� g. The numbers for ZZ and W � W + are identical to the ones of the neutral
and charged scalar self-energies, respectively. The numbers forG
 coincide with the ones
for A
 , etc.
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uate the sub-loop diagrams using eitherOneCalc or FormCalc , we will subse-

quently compare the results as a cross check. The conversion packages, together

with OneCalc and TwoCalc , are included inFeynHiggs [30,67,88,90,128,129,

194�196], a Fortran code which, i.a., calculates the masses of MSSM Higgs bosons.

While FormCalc automatically evaluates the colour sums even for a general sym-

bol Nc, OneCalc and TwoCalc do not. We developed the packageColorSimp.m

to evaluate colour sums symbolically also at the two-loop level. This package and

its usage are documented in App. E. After the evaluation of the colour sums and

the subsequent conversion withSimpleSubst, both the sub-loop and the genuine

two-loop amplitudes are ready to be evaluated usingOneCalc and TwoCalc .

The tensor reduction. As already mentioned, the two-loop diagrams with coun-

terterm insertions are reduced using bothFormCalc and OneCalc . The genuine

two-loop diagrams have two independent loop momenta and are therefore evaluated

with TwoCalc .

For both OneCalc and TwoCalc , we set the �agsDimReduction ! True and

Dimension ! $D. Afterwards, we invoke the packageSimple.m to further reduce

scalar integrals. At this step, all self-energies are expressed in terms ofA0, B0 and B 0
0

integrals, which are de�ned in App. D.FormCalc further reduces theB 0
0 integral

in terms of A0 and B0; we give the reduction formula in Sect. D.2.2.

The FormCalc and the OneCalc results fully agree, as they should. It should be

noted that the loop integrals appearing inFormCalc and OneCalc use di�erent

conventions for the arguments of the loop integrals. In our work, we write the mass

arguments of loop integrals as squared masses, i.e. they have mass dimension two.

Simpli�cation of the self-energies. Before renormalisation, we simplify the self-

energies to obtain more compact expressions. In the genuine two-loop diagrams, the

coupling � s appears, which we set to 0 for the considered contributions as explained

above. Furthermore, we discard terms ofO(Nc) andO
�
N 0

c

�
. Subsequently, we apply

the operation USfSimplify from the packageUSfSimplify.m to combine products

of squark mixing matrices into a single expression. This facilitates the usage of

relations which rely on the unitarity of said mixing matrices.

The sub-loop diagrams are mere products of one-loop diagrams and one-loop coun-

terterms, and they are, therefore, never proportional to� s. We set the counterterms

for the quark masses, quark �elds and squark �elds to zero. This can be done as

quark counterterms obtain noO(Nc) contribution, and the squark �eld counterterms

drop out, see Sect. 4.1.2.



96 Chapter 5. Calculation of electroweakO
�
N 2

c

�
terms to the Higgs boson masses

Determination of counterterms. Now that we have obtained explicit algebraic

expressions for the two-loop tadpoles and self-energies, we determine the one- and

two-loop counterterms as described in Ch. 4. For each sector, di�erent choices for

the renormalisation are possible:

ˆ Quark-squark sector: Six di�erent renormalisation schemes are possible, see

Sect. 4.1. An overview is given in Table 5.2.

ˆ Higgs-gauge sector: We choosem2
A as input parameter in the rMSSM and

m2
H � as input parameter in the cMSSM, see Sect. 4.2.

ˆ tan(� ): t � can be renormalised in theDR or in an OS scheme, see Sect. 4.3.

The latter choice requires additional electroweak two-loop counterterms, all of

which are given in Sect. 4.2.

Expansion of the renormalised self-energies. We combine the unrenormalised

two-loop self-energies, which consist of the genuine two-loop diagrams as well as

the sub-loop renormalisation diagrams, and the counterterms as per the expressions

found throughout Sect. 4.2.3. This yields the renormalised self-energies, which are

�nite. We expand the renormalised self-energies in" using the packageExpandDel.m,

see Ref. [76]. Any one-loop integral is thereby written as

L = Ldiv 1
"

+ L �n + L " " + O
�
"2

�
; (5.7)

where L is either an A0, a B0, or a B 0
0 loop function. Similarly, we expand the

one-loop counterterms as

� (1) c = � (1) cdiv 1
"

+ � (1) c�n + � (1) c" " + O
�
"2

�
; (5.8)

scheme m2
~t1

m2
~t2

m2
~t12

m2
~b1

m2
~b2

m2
~b12

A t Ab

OS[1] OS OS OS OS dep. dep. dep. DR
OS[2] OS OS OS dep. OS dep. dep. DR
DR[1] DR DR dep. DR dep. dep. DR DR
DR[2] DR DR dep. dep. DR dep. DR DR
MIX[1] OS OS dep. OS dep. dep. DR DR
MIX[2] OS OS dep. dep. OS dep. DR DR

Table 5.2: An overview of the di�erent renormalisation schemes used for the quark-
squark sector. In each scheme, �ve parameters are used as input, corresponding to the
free parameters in the third-generation squark mixing matrices. The formulae for the
dependent parameters are given in Sect. 4.1.2.



5.4. The cancellation of O(" ) parts of one-loop integrals and counterterms 97

wherec is a parameter or �eld. One-loop counterterms appear in the sub-loop part

of the unrenormalised two-loop self-energies as well as in the two-loop counterterms.

Keeping the expansion coe�cients of one-loop integrals and counterterms as symbols

speeds up the expansion in" signi�cantly. The coe�cients can later be evaluated

numerically.

We expand the two-loop self-energy up toO
�
"0

�
:

� (2) = � (2) ;ddiv 1
"2 + � (2) ;div 1

"
+ � (2) ;�n + O("): (5.9)

The one-loop integrals and counterterms enter the self-energy coe�cients via

� (2) ;ddiv � Ldiv ; � (1) cdiv ; (5.10a)

� (2) ;div � Ldiv ; � (1) cdiv ; L �n ; � (1) c�n ; (5.10b)

� (2) ;�n � Ldiv ; � (1) cdiv ; L �n ; � (1) c�n ; L " ; � (1) c" : (5.10c)

The renormalised self-energies are UV-�nite, so

�̂ (2) ;ddiv = 0; (5.11a)

�̂ (2) ;div = 0: (5.11b)

We have numerically checked the �niteness of all renormalised two-loop tadpoles,

the neutral and charged two-loop Higgs self-energies, and the scalar-vector mixing

two-loop self-energiesA
 , AZ , G
 and H � W + .

If all parameters which need to be renormalised at the two-loop level are de�ned in

an OS scheme, theO(") parts L " and � (1) c" will drop out in the determination of

�̂ (2) ;�n . We will analyse this observation in the following section.

5.4 The cancellation of O(") parts of one-loop

integrals and counterterms

To understand how theO(") parts of loop integrals and counterterms cancel in a

renormalised self-energy, we have to study the structure of the unrenormalised two-

loop self-energies �rst. It is important to note that the �ndings of this section do

not necessarily apply to arbitrary two-loop �xed-order calculations; we only consider

two-loop self-energies which have the handy property that they fully decompose into

products of one-loop integrals and counterterms. In a more general calculation, a

two-loop self-energy will not be of this form.
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When trying to cast self-energy diagrams into an analytic form, keeping the one-

loop integrals as symbols, there is always some freedom involved in the choice of

the resulting expression. This is due to reduction formulae relating di�erent loop

integrals to one another, for example

B0(0; m2; m2) = (1 � ")
A0(m2)

m2 : (5.12)

Inserting Eq. (5.7) into Eq. (5.12) allows us to relate the coe�cients ofA0 and B0 in

the expansion with respect to" to each other:

B div
0 (0; m2; m2) =

Adiv
0 (m2)
m2 ; (5.13a)

B �n
0 (0; m2; m2) =

A �n
0 (m2) � Adiv

0 (m2)
m2 ; (5.13b)

B "
0(0; m2; m2) =

A"
0(m2) � A �n

0 (m2)
m2 : (5.13c)

We can also invert these relations:

Adiv
0 (m2) = m2B div

0 (0; m2; m2); (5.14a)

A �n
0 (m2) = m2

�
B �n

0 (0; m2; m2) + B div
0 (0; m2; m2)

�
; (5.14b)

A"
0(m2) = m2

�
B "

0(0; m2; m2) + B �n
0 (0; m2; m2) + B div

0 (0; m2; m2)
�

: (5.14c)

We can see that if a cancellation ofO(") parts of loop integrals occurs for a particular

choice of the base integrals, it will also occur for the other possible choices.

As mentioned before, all two-loop diagrams appearing in our calculation are products

of one-loop integrals and counterterms. This allows us to cast the unrenormalised

two-loop self-energy in the following still quite general form:

� (2) =
X

i

L i M i +
X

j

N j �c j : (5.15)

Here, theL i , M i , and N j are one-loop integrals. The�c j are one-loop counterterms.

The �rst term contains all genuine diagrams, the second one the diagrams with

sub-loop renormalisation. In the following, we leave the summation overi and j

implicit.

To see how the aforementioned cancellation takes place, we �rst expand the functions
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and counterterms according to Eqs. (5.7) and (5.8):

� (2) =
Ldiv

i M div
i + N div

j �cdiv
j

"2 +
Ldiv

i M �n
i + L �n

i M div
i + N div

j �c �n
j + N �n

j �cdiv
j

"
+ Ldiv

i M "
i + L �n

i M �n
i + L "

i M
div
i + N div

j �c "
j + N �n

j �c �n
j + N "

j �cdiv
j

+ O("):

(5.16)

For the next step, we derive a relation between the genuine contributions and the

contributions involving sub-loop renormalisation. Every genuine two-loop diagram

comes with a number of sub-loop renormalisation diagrams that are associated with

it. The sum of a genuine diagram and its sub-loop renormalisation diagrams is free

from non-local divergences, i.e. terms of the formlog
�
p2

�
" � 1. These terms have to

cancel after the process of sub-loop renormalisation in a renormalisable theory [197].

We obtain the sub-loop renormalisation diagrams by shrinking one of the loops of

the genuine two-loop diagram to a single point and inserting a one-loop counterterm

at this point. Let us demonstrate this for the squark topologies in Fig. 5.2: Topology

1 leads to the sub-loop renormalisation topology 4 when shrinking the upper loop,

and to topology 5 when shrinking the lower one. Topology 2 will similarly lead to

the sub-loop renormalisation topologies 5 and 6; topology 3 leads to two diagrams

of topology 8. We see that two genuine diagrams of a di�erent topology can lead to

the same sub-loop renormalisation diagram. Therefore, the following relations are

understood to hold only when all genuine and all sub-loop renormalisation diagrams

are taken into account.

To derive the required relations, as an example, let us �rst consider a simple two-loop

�test� self-energy

� (2)
test = A0B0 + A0�cB + B0�cA : (5.17)

The �rst term corresponds to a genuine diagram (like topology 2 in Fig. 5.2, but

without any couplings), and the second and third term stem from sub-loop renor-

malisation diagrams. The divergent parts of the counterterms are given by the

divergence of the loop which was shrunk but with an additional minus sign:

�cdiv
A = � Adiv

0 ; (5.18a)

�cdiv
B = � B div

0 : (5.18b)
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This implies the relations

Adiv
0 �cdiv

B + B div
0 �cdiv

A = � 2Adiv
0 B div

0 ; (5.19a)

A �n
0 �cdiv

B + B �n
0 �cdiv

A = � A �n
0 B div

0 � B �n
0 Adiv

0 ; (5.19b)

A"
0�cdiv

B + B "
0�cdiv

A = � A"
0B div

0 � B "
0Adiv

0 : (5.19c)

This derivation can be straightforwardly extended to other products of one-loop

integrals. Consequently, in the notation of Eq. (5.15), this means

N div
j �cdiv

j = � 2Ldiv
i M div

i ; (5.20a)

N �n
j �cdiv

j = � L �n
i M div

i � Ldiv
i M �n

i ; (5.20b)

N "
j �cdiv

j = � L "
i M

div
i � Ldiv

i M "
i ; (5.20c)

where now all sub-loop renormalisation diagrams are included on the left-hand side

and all genuine diagrams contribute to the right-hand side. These relations hold

independently of the renormalisation scheme as only the divergent (and therefore

scheme-independent) parts of the one-loop counterterms appear. Inserting all three

relations into the expression for the unrenormalised self-energy leaves us with

� (2) = �
Ldiv

i M div
i

"2 +
N div

j �c �n
j

"
+ L �n

i M �n
i + N div

j �c "
j + N �n

j �c �n
j + O("): (5.21)

We have numerically veri�ed that, in our calculation, theO
�
" � 1

�
part is indeed only

generated by the �nite part of the one-loop counterterms. Similarly, allO(") parts

of loop integrals in the �nal result stem from the one-loop counterterms. It becomes

clear that some, if not all, two-loop counterterms have to include �nite pieces in

order to cancel the�c "
j -terms in the renormalised self-energy, as subtracting only

the divergences�as is done in aDR scheme�will leave the �nite part unaltered. In

a pureDR scheme, however, allO(") parts cancel after the sub-loop renormalisation

already.

We demonstrate these �ndings with the example of the two-loopAA self-energy and

show under which circumstances theO(") part of the one-loop counterterm� (1) M 2
W

cancels after renormalisation. To simplify the analysis, we restrict ourselves to aDR

renormalisation oft � , which in this case is needed only up to the one-loop order.

The renormalised two-loopAA self-energy is given in Eq. (4.100a). Genuine two-loop

counterterms as well as products of one-loop counterterms appear. The counterterm

products can be neglected in our discussion as� (1) M 2
W plays no role at the one-loop

level if t � is renormalised in aDR scheme. TheW mass counterterm appears,
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however, in the sub-loop renormalisation part of� (2)
AA in a product with one-loop in-

tegrals. Therefore, it plays a role in the determination of the two-loop counterterms.

The relevant terms in the renormalised self-energy are

�̂ (2)
AA (p2) = � (2)

AA (p2) + � (2) ZAA (p2 � m2
A ) � � (2) m2

A + terms without � (1) M 2
W

= N div (p2)( � (1) M 2
W )" + � (2) ZAA (p2 � m2

A ) � � (2) m2
A

+ terms without ( � (1) M 2
W )" :

(5.22)

As before,N div (p2) is the divergent part of the loop integrals which are multiplied

with � (1) M 2
W in the sub-loop renormalisation diagrams. It has to be a polynomial

of degree one inp2, so we can writeN div (p2) = � 1p2 + � 0.

When de�ning the massm2
A in an OS scheme, it contains theO(") part of � (1) M 2

W

as well, since

� (2) m2
A = Re � (2)

AA (m2
A ) + terms without � (1) M 2

W

= N div (m2
A )

| {z }
= � 1m2

A + � 0

(� (1) M 2
W )" + terms without ( � (1) M 2

W )" : (5.23)

Inserting this back into the renormalised self-energy, we arrive at

�̂ (2)
AA (p2) =

�
N div (p2) � N div (m2

A )
�

| {z }
= � 1 (p2 � m2

A )

(� (1) M 2
W )" + � (2) ZAA (p2 � m2

A )

+ terms without ( � (1) M 2
W )" :

(5.24)

We can see that the on-shell self-energŷ� (2)
AA (m2

A ) is free from (� (1) M 2
W )" . To obtain

this property also for o�-shell momenta, we need to use an on-shell renormalisation

for the �eld counterterm � (2) ZAA as well:

� (2) ZAA = � @� (2)
AA (m2

A ) + terms without � (1) M 2
W

= �
@Ndiv (p2)

@p2
| {z }

= � 1

(� (1) M 2
W )" + terms without ( � (1) M 2

W )" : (5.25)

With � (2) m2
A and � (2) ZAA de�ned in an on-shell scheme, we �nd

�̂ (2)
AA (p2) OS= � 1(p2 � m2

A )( � (1) M 2
W )" � � 1(� (1) M 2

W )" (p2 � m2
A )

+ terms without ( � (1) M 2
W )"

= terms without ( � (1) M 2
W )" :

(5.26)
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The same logic applies to all other one-loop counterterms as well. Thus, in a full OS

renormalisation, allO(") parts of loop integrals will drop out for arbitrary momenta.

Alternatively, we could have used a fullDR renormalisation for all one- and two-loop

counterterms. In this case, Eq. (5.21) takes the form

� (2) DR= �
Ldiv

i M div
i

"2 + L �n
i M �n

i + O("): (5.27)

The two-loop counterterms will remove theO
�
"2

�
divergence, and the renormalised

self-energy reads

�̂ (2) DR= L �n
i M �n

i + O("): (5.28)

Again, the renormalised self-energy is free fromO(") terms of loop integrals and

counterterms.

It becomes clear that, in our two-loop calculation, theO(") parts of loop integrals

and counterterms contribute only in a mixed renormalisation scheme where at least

one one-loop counterterm is de�ned in an on-shell scheme and at least one two-loop

counterterm is de�ned in a minimal subtraction scheme. To demonstrate this, let

us assume that we need two counterterms�c1 and �c2 to renormalise the two-loop

self-energy.�c1 is only needed at the one-loop level and de�ned in the OS scheme,

�c2 is needed at the one- and two-loop level and de�ned in theDR scheme. Then

� (2) MIX= �
Ldiv

i M div
i

"2 +
N div

1 �c �n
1

"
+ L �n

i M �n
i + N div

1 �c "
1 + N �n

1 �c �n
1 + O("): (5.29)

The DR �c2 counterterm will then only remove the divergences and we �nd

�̂ (2) MIX= L �n
i M �n

i + N div
1 �c "

1 + N �n
1 �c �n

1 + O("): (5.30)

In schemes where theO(") terms of the counterterms cancel out, it is possible to

do the renormalisation in one scheme and then do a �nite reparameterisation into a

di�erent scheme. This is not possible if, in one of the two schemes, theO(") parts

of the counterterms contribute.

This was already noted in Ref. [55]. They compared two calculations, both of which

employed a mixed renormalisation scheme [51,52]. In Ref. [52], the mixed scheme is

implemented by starting in a pureDR scheme and subsequently reparameterising the

top quark mass and the stop squark masses into an OS scheme. This approach leads

to a complete cancellation ofO(") terms even in a mixed scheme. The disagreement

between the two calculations was therefore traced back to a di�erent implementation

of the DR scheme at the two-loop level.



6 Algebraic expressions for the

leading O(Nc) one-loop terms

In this chapter, we give explicit expressions for the leading one-loop contributions to

the Higgs boson self-energies in the complex MSSM. While these contributions, as

all one-loop results, have been known for some time already [20�25], they served

as a cross check for our calculational setup, which we explained in Ch. 5. We

veri�ed our computation of the full third-generation Yukawa terms of O
�
� qNc

�

via cross-checking withFeynHiggs [30, 67, 88, 90, 128, 129, 194�196]. The numeri-

cal results presented in Ch. 7 include the full electroweak one-loop self-energies of

O
�
(� em + � q)Nc

�
.

At �rst, we worked in the gaugeless limit, which we explain in Sect. 6.1, and only

included top quarks and stop squarks as internal particles. The resulting expressions

are the dominant one-loop contributions to the Higgs boson masses in the MSSM,

which are proportional tom4
t . This approach is useful only when restricting ourselves

to the MSSM with real parameters and the calculation of neutral self-energies. For

a prediction of the mass of the charged Higgs boson, diagrams with internal bottom

quarks and sbottom squarks need to be included as well.

In the presence of complex parameters, we de�ne the charged Higgs mass as an on-

shell quantity and use it as an input parameter, as we have explained in Sect. 4.2.

In this case, we have to include internal bottom quarks and sbottom squarks in the

self-energies even if we are only interested in the prediction for the neutral Higgs

boson masses. To extract the leading one-loopm4
t contributions, we work in the

limit mb ! 0 as well as the aforementioned gaugeless limit. The results presented in

this chapter are cast in a form that is valid in both the rMSSM and the cMSSM. The

algebraic expressions for the renormalised neutral one-loop self-energies are given in

Sect. 6.2. We calculate the di�erence between theCP-odd and the charged Higgs

boson self-energy in Sect. 6.3.



104 Chapter 6. Algebraic expressions for the leadingO(Nc) one-loop terms

Figure 6.1: Topologies of the one-loop tadpole and self-energy diagrams.� = h; H; A; G ;
� � = H � ; G� ; g is a �avour index.

6.1 The gaugeless limit and further approximations

To extract the leading corrections proportional tom4
t , we employ the so-called

�gaugeless limit� to the tadpole and self-energy diagrams shown in Fig. 6.1; we

set the electric chargee (or, equivalently, the �ne-structure constant � em) to zero.

This leads to a number of simpli�cations: at tree level, the mass of the lightest

CP-even Higgs bosonh vanishes exactly, and the heavierH , A, and H � bosons are

mass-degenerate. The Higgs mixing angle� and the angle� that is obtained from

the VEV ratio are related by

� � �
gl.
=

�
2

: (6.1)

Whenever we put a �gl.� on top of an equal sign, the equation will hold in the

gaugeless limit but not necessarily in a more complete calculation. While not tech-

nically part of the gaugeless limit, we also employ the limitmb ! 0 when writing

the symbol �gl.�.

In this limit, the Z and W bosons become massless. In order to apply the gaugeless

limit in a consistent way, we have to rewrite the electroweak vector boson masses in

terms of the electric charge and the vacuum expectation valuesv1 and v2 as follows:

M 2
Z =

e2

2s2
wc2

w
(v2

1 + v2
2); (6.2a)

M 2
W =

e2

2s2
w

(v2
1 + v2

2): (6.2b)
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In this form, the limit e ! 0 can easily be taken. The VEVs can be replaced by

Fermi's constant by virtue of

v2
1 + v2

2 =
1

2
p

2GF
: (6.3)

Additionally, all self-energies are evaluated at a vanishing external momentump2.

To allow for an on-shell renormalisation, we therefore set the degenerate masses

m2
H � = m2

H = m2
A to zero as well. In this limit, all Higgs bosons are massless at the

tree-level, and no counterterms are needed fortan(� ) and the Higgs �elds. The mass

counterterms for the electroweak gauge bosons vanish in the gaugeless limit due to

their proportionality to the �ne-structure constant. Thus, only the counterterms for

m2
A , m2

H � , and the tadpoles are needed.

As mentioned above, a �nal approximation needs to be made in order to get the

leadingm4
t terms; one has to set the mass of the bottom quarkmb to zero (and also

neglect the �rst and second generation quark masses as well as the lepton masses).

In this limit, in combination with the gaugeless limit, all diagrams with (s)bottom

(s)quarks in the loop do not contribute to the neutral Higgs self-energies. In the

charged self-energies, however, a dependence on the left-handed SUSY breaking

massM 2
~q3

remains. In the gaugeless limit,M 2
~q3

is related to the stop masses through

the identity

M 2
~q3

gl.
= c2

~t m2
~t1

+ s2
~t m2

~t2
� m2

t : (6.4)

6.2 The leading one-loop contributions to the neutral

Higgs-boson self-energies

In this section, we give the leading expressions for all neutral Higgs-boson self-

energies in the interaction eigenbasis. Our formulae hold for the case of real param-

eters as well as for a scenario with complex parameters. For the rMSSM and the

cMSSM, we use di�erent renormalisation schemes: In the rMSSM, we renormalise

the CP-odd Higgs boson mass in an on-shell scheme and hence�̂ (1)
AA (0) vanishes in

any such scenario. In the cMSSM, however, the charged Higgs mass is renormalised

on-shell and�̂ (1)
AA (0) 6= 0.

� (1) m2
A

gl.
= � (1)

AA (0) (in the rMSSM); (6.5a)

� (1) m2
H �

gl.
= � (1)

H � H + (0) (in the cMSSM): (6.5b)
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Since� (1) M 2
W vanishes in the gaugeless limit, we also have

� (1) m2
H �

gl.
= � (1)

AA (0) (in the rMSSM); (6.6a)

� (1) m2
A

gl.
= � (1)

H � H + (0) (in the cMSSM): (6.6b)

This means

�̂ (1)
AA (0)

gl.
= 0 (in the rMSSM); (6.7a)

�̂ (1)

H � H + (0)
gl.
= 0 (in the cMSSM); (6.7b)

and

�̂ (1)

H � H + (0)
gl.
= � (1)

H � H + (0) � � (1)
AA (0) � � � (1) m2

H � (in the rMSSM); (6.8a)

�̂ (1)
AA (0)

gl.
= � (1)

AA (0) � � (1)

H � H + (0) = +� (1) m2
H � (in the cMSSM); (6.8b)

where we introduced the abbreviation� (1) m2
H � from Ref. [41].

We determine the tadpole counterterms as explained in Sect. 4.2. To obtain expres-

sions which are valid in both the rMSSM and the cMSSM, we write theCP-odd

mass counterterm as

� (1) m2
A

gl.
= � (1)

AA (0) � �̂ (1)
AA (0): (6.9)

For the remainder of this section, we keep̂� (1)
AA (0) as a symbol.�̂ (1)

AA (0) vanishes in

the rMSSM, while in the cMSSM it is given by� (1) m2
H � . We calculate � (1) m2

H �

in Sect. 6.3. To further simplify our results, we give the neutral self-energies in the

interaction eigenbasis instead of the tree-level mass eigenbasis. The self-energies in

the di�erent bases are related by

�̂ (1)
hh = c2

� �̂ (1)
� 2 � 2

+ s2
� �̂ (1)

� 1 � 1
� s2� �̂ (1)

� 1 � 2
; (6.10a)

�̂ (1)
hH = c2� �̂ (1)

� 1 � 2
� s� c� (�̂ (1)

� 1 � 1
� �̂ (1)

� 2 � 2
); (6.10b)

�̂ (1)
HH = c2

� �̂ (1)
� 1 � 1

+ s2
� �̂ (1)

� 2 � 2
+ s2� �̂ (1)

� 1 � 2
; (6.10c)

�̂ (1)
AA = c2

� �̂ (1)
� 2 � 2

+ s2
� �̂ (1)

� 1 � 1
� s2� �̂ (1)

� 1 � 2
; (6.10d)

�̂ (1)
AG = c2� �̂ (1)

� 1 � 2
� s� c� (�̂ (1)

� 1 � 1
� �̂ (1)

� 2 � 2
); (6.10e)

�̂ (1)
GG = c2

� �̂ (1)
� 1 � 1

+ s2
� �̂ (1)

� 2 � 2
+ s2� �̂ (1)

� 1 � 2
; (6.10f)

�̂ (1)
hA = c� c� �̂ (1)

� 2 � 2
+ s� s� �̂ (1)

� 1 � 1
� s� c� �̂ (1)

� 1 � 2
� c� s� �̂ (1)

� 2 � 1
; (6.10g)

�̂ (1)
hG = c� c� �̂ (1)

� 2 � 1
� s� s� �̂ (1)

� 1 � 2
� s� c� �̂ (1)

� 1 � 1
+ c� s� �̂ (1)

� 2 � 2
; (6.10h)

�̂ (1)
HA = c� c� �̂ (1)

� 1 � 2
� s� s� �̂ (1)

� 2 � 1
+ s� c� �̂ (1)

� 2 � 2
� c� s� �̂ (1)

� 1 � 1
; (6.10i)

�̂ (1)
HG = c� c� �̂ (1)

� 1 � 1
+ s� s� �̂ (1)

� 2 � 2
+ s� c� �̂ (1)

� 2 � 1
+ c� s� �̂ (1)

� 1 � 2
; (6.10j)



6.2. The leading one-loop contributions to the neutral Higgs-boson self-energies 107

where we again used the shorthand notationssx = sin x and cx = cosx.

After consistently employing the gaugeless limit and setting the bottom mass to zero,

the leadingm4
t contributions to the renormalisedCP-even Higgs boson self-energies

are found to be

�̂ (1)
� 1 � 1

(0)
gl.
= �

NcGF m4
t

2
p

2� 2s2
�

"
Ref � 2X 2

t g
(m2

~t1
� m2

~t2
)2 g(m2

~t1
; m2

~t2
)

#

+ s2
� �̂ (1)

AA ; (6.11a)

�̂ (1)
� 1 � 2

(0)
gl.
= �

NcGF m4
t

2
p

2� 2s2
�

"

�
Ref �X tg
m2

~t1
� m2

~t2

log

 
m2

~t1

m2
~t2

!

�
Ref �X 2

t A �
t g

(m2
~t1

� m2
~t2

)2 g(m2
~t1

; m2
~t2

)

#

� s� c� �̂ (1)
AA ;

(6.11b)

�̂ (1)
� 2 � 2

(0)
gl.
= �

NcGF m4
t

2
p

2� 2s2
�

"

log

 
m2

~t1
m2

~t2

m4
t

!

+
2 Ref X tA

�
t g

m2
~t1

� m2
~t2

log
m2

~t1

m2
~t2

+
Ref X 2

t A �
t

2g
(m2

~t1
� m2

~t2
)2 g(m2

~t1
; m2

~t2
)

#

+ c2
� �̂ (1)

AA ;

(6.11c)

where we used the de�nition

g(m2
~t1

; m2
~t2

) � 2 �
m2

~t1
+ m2

~t2

m2
~t1

� m2
~t2

log
m2

~t1

m2
~t2

: (6.12)

These expression generalise the ones found in Ref. [30] to the case of complex pa-

rameters.12 The same self-energies have been calculated in Ref. [198] also in the case

of complex parameters and an on-shell renormalisation of the charged Higgs mass.

The results of Ref. [198] are expressed using the abbreviationsC112� 122 and C12L . We

�nd full agreement making use of the identities

C112� 122 � C0(0; 0; 0; m2
~t1

; m2
~t1

; m2
~t2

) � C0(0; 0; 0; m2
~t1

; m2
~t2

; m2
~t2

)

= �
g(m2

~t1
; m2

~t2
)

m2
~t1

� m2
~t2

;
(6.13a)

C12L � C0(0; 0; 0; m2
~t1

; m2
~t2

; M 2
~q3

)

= �
1
2

"
M 2

~q3

(M 2
~q3

� m2
~t1

)(M 2
~q3

� m2
~t2

)
log

 
M 4

~q3

m2
~t1

m2
~t2

!

�
m2

~t1
(M 2

~q3
� m2

~t2
) + m2

~t2
(M 2

~q3
� m2

~t1
)

(M 2
~q3

� m2
~t1

)(M 2
~q3

� m2
~t2

)(m2
~t1

� m2
~t2

)
log

 
m2

~t1

m2
~t2

!#

:

(6.13b)

We de�ne the three-point integral C0 in Eqs. (D.1).

12In Ref. [28], an overall minus sign is missing in the self-energies, as has been veri�ed by the
authors.
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At tree-level, the MSSM Higgs sector isCP conserving also in the presence of com-

plex parameters. The self-energies which mixCP-even andCP-odd states and hence

violate CP symmetry, arise at the one-loop level due to non-zero imaginary parts of

the parameters:

�̂ (1)
� 1 � 1

(0)
gl.
= �

NcGF m4
t

4
p

2� 2s2
�

"
Imf � 2X 2

t g
(m2

~t1
� m2

~t2
)2 g(m2

~t1
; m2

~t2
)

#

; (6.14a)

�̂ (1)
� 2 � 2

(0)
gl.
= �

NcGF m4
t

4
p

2� 2s2
�

"
2 Imf X tA

�
t g

m2
~t1

� m2
~t2

log
m2

~t1

m2
~t2

+
Imf X 2

t A �
t

2g
(m2

~t1
� m2

~t2
)2 g(m2

~t1
; m2

~t2
)

#

; (6.14b)

�̂ (1)
� 1 � 2

(0)
gl.
= �

NcGF m4
t

4
p

2� 2s2
�

"

�
Imf �X 2

t A �
t g

(m2
~t1

� m2
~t2

)2 g(m2
~t1

; m2
~t2

)

+
jX t j

2 Imf �X tg
(m2

~t1
� m2

~t2
)2 g(m2

~t1
; m2

~t2
)

#

gl.
= � t � 1

� �̂ (1)
� 1 � 1

(0)

(6.14c)

�̂ (1)
� 2 � 1

(0)
gl.
= �

NcGF m4
t

4
p

2� 2s2
�

"

�
2 Imf �X tg
m2

~t1
� m2

~t2

log
m2

~t1

m2
~t2

�
Imf �X 2

t A �
t g

(m2
~t1

� m2
~t2

)2 g(m2
~t1

; m2
~t2

)

�
jX t j

2 Imf �X tg
(m2

~t1
� m2

~t2
)2 g(m2

~t1
; m2

~t2
)

#

gl.
= � t � �̂ (1)

� 2 � 2
(0):

(6.14d)

All CP-odd self-energies are proportional tô� (1)
AA :

�̂ (1)
� 1 � 1

(0)
gl.
= s2

� �̂ (1)
AA (0); (6.15a)

�̂ (1)
� 1 � 2

(0)
gl.
= � s� c� �̂ (1)

AA (0); (6.15b)

�̂ (1)
� 2 � 2

(0)
gl.
= c2

� �̂ (1)
AA (0): (6.15c)

Inserting Eqs. (6.14) and (6.15) into Eqs. (6.10), we see that the self-energies with

external would-be Goldstone bosons vanish:

�̂ (1)
AG (0)

gl.
= 0; (6.16a)

�̂ (1)
GG (0)

gl.
= 0; (6.16b)

�̂ (1)
hG (0)

gl.
= 0; (6.16c)

�̂ (1)
HG (0)

gl.
= 0: (6.16d)

This behaviour is to be expected as all self-energies are evaluated at vanishing exter-

nal momentum, for which self-energies with external Goldstone bosons vanish due
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to a Slavnov-Taylor identity [57,199].

Inserting Eqs. (6.11) into Eqs. (6.10) and keeping only the leading logarithmic terms

� log
�
m2

~t1
m2

~t2
=m4

t

�
, we �nd

�̂ (1)
hh (0)

gl.
� �

NcGF m4
t

2
p

2� 2s2
�

log

 
m2

~t1
m2

~t2

m4
t

!

c2
� ; (6.17a)

�̂ (1)
hH (0)

gl.
� �

NcGF m4
t

2
p

2� 2s2
�

log

 
m2

~t1
m2

~t2

m4
t

!

s� c� ; (6.17b)

�̂ (1)
HH (0)

gl.
� �

NcGF m4
t

2
p

2� 2s2
�

log

 
m2

~t1
m2

~t2

m4
t

!

s2
� : (6.17c)

6.3 The di�erence between the CP-odd and the

charged self-energy in the cMSSM

We close this chapter by calculating the leading contributions to

� (1) m2
H � = � (1)

AA (0) � � (1)

H � H + (0); (6.18)

which we �rst introduced in Sect. 6.2. We will work in the most general scenario,

allowing for complex model parameters. This quantity is the one-loop correction

to the charged Higgs mass in the rMSSM [41], hence the symbol. In the cMSSM,

it agrees with the renormalisedCP-odd self-energy�̂ (1)
AA (0), which appears in the

renormalised self-energies of Sect. 6.2. For its calculation, we need the unrenor-

malised self-energy of theCP-odd Higgs boson and the charged Higgs boson.

Allowing for complex parameters, the unrenormalised self-energy of theCP-odd

Higgs boson is

� (1)
AA (0)

gl.
= �

NcGF m4
t

2
p

2� 2s4
�

 
Imf �X tg
m2

~t1
� m2

~t2

! 2

g(m2
~t1

; m2
~t2

)

�
NcGF m2

t

4
p

2� 2t2
�

"

2A0(m2
t ) � A0(m2

~t1
) � A0(m2

~t2
) � j Yt j

2B0(0; m2
~t1

; m2
~t2

)

#

;

(6.19)

where we introduced the abbreviation

Yt � A t + � � tan(� ): (6.20)
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The self-energy of the charged Higgs boson is given by

� (1)

H � H + (0)
gl.
= �

NcGF m2
t

4
p

2� 2t2
�

"

2A0(m2
t ) � A0(M 2

~q3
) � s2

~t A0(m2
~t1

) � c2
~t A0(m2

~t2
)

� j c~tmt � e� i � ~t s~tYt j
2B0(0; m2

~t1
; M 2

~q3
)

� j ei � ~t s~tmt + c~tYt j
2B0(0; m2

~t2
; M 2

~q3
)

#

:

(6.21)

The soft SUSY-breaking massM 2
~q3

was introduced in Eqs. (4.3). The expressions

for the self-energies in Eqs. (6.19) and (6.21) generalise the ones given in Ref. [41] to

the case of complex parameters. We use a di�erent sign convention in the unitary

transformation introduced in Eq. (4.5), leading to an additional minus sign in alls~t

terms in comparison with Ref. [41].

Combining the results above yields

� (1) m2
H �

gl.
= �

NcGF m4
t

2
p

2� 2s4
�
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We can further eliminate the stop mixing angle� ~t and the phase� ~t by using

Eqs. (4.9). This leaves us with
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This result generalises the one given in Ref. [41] to the case of complex parameters

and fully agrees with the one found in Ref. [198].



7 Numerical analysis of the full

electroweak O
0

@N 2
c

1

A two-loop results

In this chapter, we present the numerical results of our two-loop prediction for

the MSSM Higgs boson masses. Our main emphasis lies on the size of our newly

calculated contributions relative to the experimental uncertainty of the Higgs boson

mass atM h = 125:25� 0:17 GeV [7]. In the discussed scenarios, it will therefore not

be our goal to include all known one-loop [20�25,57�67] and two-loop contributions

[26�40,43,45,51,52,56,68,74�77] to the MSSM Higgs boson mass and to perform a

resummation of large logarithms [31, 32, 81�127]. Instead, we take into account all

one-loop contributions ofO(Nc) and the full two-loop contributions of O
�
N 2

c

�
. As

we explained in the previous chapters, we neglect the quark masses of the �rst and

second generation. Since they do not belong to the class ofO
�
N 2

c

�
contributions, we

note that we also do not include the numerically sizeable two-loop QCD corrections

that have been calculated previously [51,52,56,68].

The couplings relevant to us are� em, � t , and � b. We go beyond Refs. [74�77] in

including the dependence on the external momentum also for the Yukawa terms of

O
�
N 2

c

�
.

The MSSM in its most generalR-parity conserving form�with complex parameters

and taking into account all possible mixing contributions between the sfermions�

has 124 input parameters compared to the 19 parameters in the SM [173, 200].

Despite having worked out the renormalisation for the most general case of complex

parameters in Ch. 4, we restrict ourselves toCP-conserving scenarios in the following

analyses. As we have explained in Sect. 4.1, we also assume �avour diagonal squark

mass matrices and a unit CKM matrix. This already greatly reduces the number of

MSSM parameters entering our calculation.

In the Higgs-gauge sector, the most important parameters for a Higgs boson mass

prediction are the mass of theCP-odd Higgs boson,mA , and the VEV ratio t � . They

fully determine the tree-level masses of theCP-even Higgs bosons, see Eq. (4.46).

Starting from the one-loop level, parameters from the squark sector also enter the

mass prediction through self-energy diagrams containing squarks in the loops. These
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parameters appear in the squark mass matrices given in Eqs. (4.3); we have the

squark mass parametersM ~qg
, M ~ug

, and M ~dg
for each generationg, the trilinear cou-

plings A t and Ab,
13 and the higgsino mass parameters� . All of these parameters

have a non-vanishing mass dimension and, with the exception of� , break supersym-

metry softly. The trilinear couplings and � determine the o�-diagonal elements of

the squark mass matrices and are hence responsible for the strength of the squark

mass mixing. In our analysis, we typically set these parameters to one single com-

mon value, the SUSY scaleMS.

We investigate the calculated corrections for �ve di�erent MSSM scenarios:

ˆ The dependence of the light Higgs boson massM h on the SUSY scaleMS for

t � = 15 and Aq = 0.

ˆ The dependence of the light Higgs boson massM h on the SUSY scaleMS for

t � = 15 and Aq = � 2MS.

ˆ The dependence of the light Higgs boson massM h on the trilinear coupling

Aq for t � = 15 and MS = 1:5 TeV.

ˆ The dependence of the heavy Higgs boson massMH on the SUSY scaleMS

for t � = 7, mA = 750 GeV, and Aq = +2 MS.

ˆ The dependence of theCP-even Higgs boson masses on the trilinear coupling

Aq in the M 125
h scenario [133] fort � = 5 and mA = 90 GeV.

In order to estimate the size of the individual corrections contributing to theO
�
N 2

c

�

prediction, we perform calculations for di�erent values of the coupling constants in

each scenario. For the full prediction, we use the parameter values given below.

Additionally, we make predictions for su�ciently small values for the electric charge

and the bottom mass, the former allowing us to take the gaugeless limit (see Sect. 6.1)

numerically. By appropriately adding and subtracting the di�erent predictions, we

can then separate the Yukawa contributions from the gauge contributions. The limit

of vanishing bottom mass allows us to separate the dominant top contributions from

the smaller bottom and the top-bottom-mixing contributions. The details are given

in App. F.

Our scenarios respect theCP symmetry and hence only theCP-even Higgs bosons

h and H mix with each other. We therefore use an on-shell de�nition for the mass

of the CP-odd Higgs bosonA. Furthermore, we use the on-shell renormalisation for

13The trilinear couplings Au , Ac, Ad, and As do not appear in our calculation since we set the
corresponding quark masses to zero.
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t � which we explained in detail in Sect. 4.3.3. For the quark-squark sector we choose

a mixed on-shell-DR renormalisation; in the �rst four scenarios, we use theMIX[2]

scheme while for the �fth we use the schemeMIX[1] , see Table 5.2.

The squared Higgs boson masses are calculated at the two-loop order according to

the procedure explained in Sect. 3.2.3. For us, this means

M 2
h = m2

h � Re�̂ (1)
hh (m2

h) � Re�̂ (2)
hh (m2

h)

+ Re
�

�̂ (1)
hh (m2

h)@̂� (1)
hh (m2

h)
�

� Re

�
�̂ (1)

hH (m2
h)

� 2

m2
H � m2

h
;

(7.1a)

M 2
H = m2

H � Re�̂ (1)
HH (m2

H ) � Re�̂ (2)
HH (m2

H )

+ Re
�

�̂ (1)
HH (m2

H )@̂� (1)
HH (m2

H )
�

+ Re

�
�̂ (1)

hH (m2
H )

� 2

m2
H � m2

h
:

(7.1b)

It is important to note that the �xed-order approach via self-energies gives correc-

tions to the squared Higgs boson masses since the mass parameters appearing in

the Lagrangian are of mass dimension two, see Eq. (4.42). In order to be able to

compare our results with the experimental value for the Higgs boson mass, which

is of mass dimension one, we have to take the square root of the above expressions.

This will naturally mix di�erent contributions and orders of perturbation theory.

For a full analysis, we therefore calculate:

ˆ The Higgs boson mass,M h i
. It contains the full tree-level as well as one-loop

and two-loop contributions of orderO(Nc) and O
�
N 2

c

�
, respectively. It is

obtained by simply taking the square root of the squared Higgs boson mass, see

Eqs. (F.3). This calculation gives an estimate of the overall value of the Higgs

boson mass (where, as explained above, numerically sizeable contributions that

are not of O(Nc) or O
�
N 2

c

�
have not been incorporated).

ˆ Two-loop contributions of O
�
N 2

c

�
to the squared Higgs boson mass,� (2) M 2

h i
.

They are obtained by adding and subtracting di�erent Higgs boson mass

squares appropriately, see Eqs. (F.4). These calculations allow us to study the

logarithmic dependence of the Higgs boson masses on e.g. the SUSY scaleMS

without mixing contributions from di�erent sectors of the theory and without

mixing di�erent orders of perturbation theory.

ˆ Two-loop contributions of O
�
N 2

c

�
to the Higgs boson mass,� (2) M h i

. They

are calculated by subtracting di�erent predictions for the Higgs boson mass,

see Eqs. (F.5). These calculations allow us to compare the size of our newly

calculated contributions to the experimental uncertainty of the observed Higgs
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boson mass. This will mix contributions from di�erent sectors as well as

di�erent orders of perturbation theory.

For our parameters, unless explicitly stated otherwise, we use the following values:

� � 1
em = 137:035999084[201]; � s = 0;

� � lep(M 2
Z ) = 0 :031497687[202]; � � (5)

had(M 2
Z ) = 0 :02766[201];

MZ = 91:1876GeV [201]; MW = 80:379GeV [201];

mu = 0; mc = 0;

mt = M t = 172:76 GeV [201]; md = 0;

ms = 0; mb = 4:18 GeV [201];

t � = tOS
� = 15; mA = MA = MS;

M 2
~qg

= M 2
S; M 2

~ug
= M 2

S;

M 2
~dg

= M 2
S; � = MS;

A t = Aq; Ab = Aq:

(7.2)

The trilinear couplings of the �rst and second generation do not need to be speci�ed

since only the productmqAq enters the calculation, and the associated quark masses

vanish in our approximation. The given top-quark mass is de�ned as the pole mass.

We can estimate the size of the leading QCD corrections by comparing the one-loop

predictions for the Higgs boson mass where we either use formt the value given

above or theMS value at the scaleM t . The two masses are related by [32,203]

mMS
t (M t ) =

M t

1 + 4
3� � MS

s (M t )
: (7.3)

Using � MS
s (M t ) = 0 :1079[204,205], we �ndmMS

t (M t ) � 165:2 GeV.

All plots in the following analyses have been created using the pole mass valueM t

as an input to our calculation. In the �rst three scenarios, we have also performed

predictions at the one-loop level where we used theMS mass instead. The di�erence

between a one-loop prediction usingM t and a one-loop prediction usingmMS
t (M t ) is

formally of the two-loop order. While we have not included the predictions with the

MS mass in the plots, we could estimate the size of the two-loop QCD corrections

that have been omitted in our work by comparing the di�erent predictions.
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Figure 7.1: The dependence of the Higgs boson massM h on the SUSY scaleM S for
Aq = 0 . The solid cyan curve includes the tree-level prediction as well as the one-loop

contributions of O(Nc) and the two-loop contributions of O
�
N 2

c

�
. The dashed cyan curve

takes into account only the third generation of quarks and squarks at the two-loop level.
The green curves include only theO

�
N 2

c

�
Yukawa contributions at the two-loop level.

The black curve shows the prediction of the Higgs boson mass at the one-loop order.

7.1 Scenario 1: The dependence of Mh on the scale

MS for Aq = 0

For our �rst scenario, we investigate how the mass of the lightCP-even Higgs boson,

h, depends on the SUSY scaleMS. We set the VEV ratio t � = 15 and we assume

the third generation trilinear couplings, A t and Ab, to vanish. The remaining soft

SUSY-breaking parameters, the squark masses and� , are set to the same valueMS.

Furthermore, we set theCP-odd massmA to MS as well.

In Fig. 7.1, we give predictions for lightCP-even massM h at the one-loop (black

curve) and two-loop level (cyan and green curves). The di�erent two-loop predictions

yield very similar predictions and, hence, not all curves are clearly visible in the plot.

The solid cyan curve is obtained by including all two-loop contributions ofO
�
N 2

c

�
.

For MS = 500 GeV, the full two-loop contribution shifts the Higgs boson mass by
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(a)

(b)

Figure 7.2: The leading two-loop contributions to the light Higgs boson massM h for Aq =

0. The solid cyan curve includes all two-loop contributions at O
�
N 2

c

�
, the dashed cyan

curve uses only contributions from the third generation. The green curves give the two-
loop Yukawa contributions at O

�
N 2

c

�
. The magenta curves do not contain contributions

proportional to the bottom Yukawa coupling. In both plots, they lie under the cyan curves.
The upper plot shows the contributions in terms of the squared Higgs boson mass, the
lower plot in terms of the Higgs boson mass. In blue, we give the experimental uncertainty
for the Higgs boson mass.
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approximately 1 GeV while for MS = 5 TeV the shift amounts to about 2 GeV. We

stress again, that these results do not include any QCD corrections, which would

lower the Higgs boson mass by 3�7:5 GeV in the current scenario. The size of the

omitted QCD corrections was estimated by making a second one-loop prediction

usingmt = mMS
t (M t ) instead of the pole massM t , which was used in the creation of

all plots in this chapter. We explain the determination ofmMS
t (M t ) below Eq. (7.2).

In Fig. 7.2, we show the leading two-loop contributions in our �rst scenario. The pure

Yukawa corrections, shown in green, are dominated by the top and stop contributions

of O
�
� 2

t

�
. The bottom and sbottom contributions are negligible in this scenario.

The cyan curves contain the full electroweak two-loop contributions ofO
�
N 2

c

�
. We

also made a prediction in the limit mb ! 0, which is supposed to be shown in

magenta. Due to the aforementioned smallness of theO
�
� 2

b

�
terms, the magenta

curves are not distinguisable from the cyan ones and hence lie behind them.

The green curves represent the contributions of our calculation that were already

known. The cyan curves additionally contain pure gauge (O
�
� 2

em

�
) and mixed

gauge-Yukawa (O
�
� em� q

�
) contributions, that were calculated for the �rst time

in this thesis. Independently of the value chosen forMS, these terms lower the

O
�
N 2

c

�
two-loop corrections by approximately15%of the pure Yukawa contributions

(Fig. 7.2a). This reduction is even larger when regarding only the contributions of

the third generation of quarks and squarks (the dashed cyan curve).

A similar relative size between the new contributions and the known Yukawa terms

can be seen in Fig. 7.2b. From it we can infer that our additional contributions lead

to a shift of the Higgs boson mass of0:15 GeV for smaller values ofMS and more

than 0:3 GeV for larger values. Again, this shift is even larger under exclusion of

the �rst and second generation of squarks. In any case, the new contributions shift

the mass of the light Higgs boson by an amount that is larger than the current

experimental uncertainty.
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Figure 7.3: The dependence of the Higgs boson massM h on the SUSY scaleM S for
Aq = � 2M S. The solid cyan curve includes the tree-level prediction as well as the one-

loop contributions of O(Nc) and the two-loop contributions of O
�
N 2

c

�
. The dashed cyan

curve takes into account only the third generation of quarks and squarks at the two-loop
level. The green curves include only theO

�
N 2

c

�
Yukawa contributions at the two-loop

level. The black curve shows the prediction of the Higgs boson mass at the one-loop order.

7.2 Scenario 2: The dependence of Mh on the scale

MS for Aq = � 2MS

The second scenario uses the same parameters as the �rst one, the only di�erence

is that the trilinear couplings are now set toAq = � 2MS. The value of the stop-

mixing parameter X t is therefore close to the one for which the maximal value of

M h is obtained [133].

The light Higgs boson massM h now ranges between approximately135 GeV and

165GeV (Fig. 7.3) at the two-loop level and it is therefore considerably larger than

the experimentally observed value. The cyan curves (full electroweak contributions)

and the green curves (Yukawa terms only) are very similar in this plot and hence

not all are clearly visible.

We emphasise again that we work only with part of the available two-loop contri-
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(a)

(b)

Figure 7.4: The leading two-loop contributions to the light Higgs boson massM h for
Aq = � 2M S. The solid cyan curve includes all two-loop contributions at O

�
N 2

c

�
, the

dashed cyan curve uses only contributions from the third generation. The green curves
give the two-loop Yukawa contributions at O

�
N 2

c

�
. The magenta curves do not contain

contributions proportional to the bottom Yukawa coupling. The upper plot shows the
contributions in terms of the squared Higgs boson mass, the lower plot in terms of the
Higgs boson mass. In blue, we give the experimental uncertainty for the Higgs boson mass.
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(a)

(b)

Figure 7.5: The subleading two-loop contributions to the light Higgs boson massM h
for Aq = � 2M S. The red curves correspond to the contributions depending on the �ne-
structure constant � em. The orange curves give the contributions which vanish in the limit
mb ! 0. The upper plot shows the contributions in terms of the squared Higgs boson
mass, the lower plot in terms of the Higgs boson mass. In blue, we give the experimental
uncertainty for the Higgs boson mass.
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butions, as was explained before. The QCD contributions are expected to lower the

Higgs boson mass by 5.5�9:5 GeV, as we have estimated by making two predictions

at the one-loop level, usingmt = mMS
t (M t ) and mt = M t , respectively. All plots

of this scenario were made usingmt = M t . Our main focus, however, is again to

estimate the size of our newly obtained corrections.

We have isolated the leading two-loop corrections in Fig. 7.4. Regarding the pure

Yukawa corrections (green curves), we see that the bottom and sbottom contribu-

tions now make up a considerable part of the full Yukawa contribution. The full

two-loop correction (solid cyan curve) is again dominated by the Yukawa terms; the

combined gauge and the mixed gauge-Yukawa contributions make up between1%

for high MS and 10% for low MS of the full two-loop correction (Fig. 7.4a). This

corresponds to a shift of 0.03�0:17 GeV for the Higgs boson mass prediction, as one

can see in Fig. 7.4b. The bottom and sbottom contributions, on the other hand,

give a shift of 0.12�0:32 GeV.

In Fig. 7.5, we give the subleading contributions to our Higgs mass prediction in

the second scenario. They have been obtained by appropriate subtraction of the

curves from Fig. 7.4. From Fig. 7.5a, we see that a cancellation takes place between

the contributions from the quarks and squarks of the third generation (dashed red

curve) and the combined �rst, second, and generation-mixing contributions (dotted

red curve). Nevertheless, our newly obtained corrections (solid red curve) are com-

parable to the experimental uncertainty for not too large values ofMS, see Fig. 7.5b.
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Figure 7.6: The dependence of the Higgs boson massM h on the trilinear coupling Aq.
We plot the mass against the stop-mixing parameterX t = A t � �=t � . The solid cyan
curve includes the tree-level prediction as well as the one-loop contributions ofO(Nc) and
the two-loop contributions of O

�
N 2

c

�
. The dashed cyan curve takes into account only the

third generation of quarks and squarks at the two-loop level. The green curves include
only the O

�
N 2

c

�
Yukawa contributions at the two-loop level. The black curve shows the

prediction of the Higgs boson mass at the one-loop order.

7.3 Scenario 3: The dependence of Mh on the

trilinear coupling Aq

In our third scenario, we analyse how our prediction for the mass of the lightCP-

even Higgs boson depends on the trilinear couplingsA t and Ab. To this end, we will

assume a single value for the trilinear couplings and setA t = Aq = Ab. All other

SUSY-breaking parameters, the higgsino mass parameter� , and the mass of theCP-

odd Higgs bosonmA are set to the �xed valueMS = 1:5 TeV. Plots for this scenario

are shown as a function of the stop-mixing parameterX t = A t � �=t � = Aq � �=t � .

In Fig. 7.6, we show how our two-loop prediction for the Higgs boson pole massM h

depends onAq. As expected, the dependence on the parameterX t is dominated by

the well-known quartic dependence of the one-loop correction to the lightestCP-

even Higgs boson mass. This shape appears because, in the limitMS � mt , the
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(a)

(b)

Figure 7.7: The leading two-loop contributions to the light Higgs boson massM h . We
plot the corrections against the stop-mixing parameter X t = A t � �=t � . The solid cyan

curve includes all two-loop contributions at O
�
N 2

c

�
, the dashed cyan curve uses only

contributions from the third generation. The green curves give the two-loop Yukawa
contributions at O

�
N 2

c

�
. The magenta curves do not contain contributions proportional

to the bottom Yukawa coupling. The upper plot shows the contributions in terms of the
squared Higgs boson mass, the lower plot in terms of the Higgs boson mass. In blue, we
give the experimental uncertainty for the Higgs boson mass.



124 Chapter 7. Numerical analysis of the full electroweakO
�
N 2

c

�
two-loop results

(a)

(b)

Figure 7.8: The subleading two-loop contributions to the light Higgs boson massM h .
We plot the corrections against the stop-mixing parameter X t = A t � �=t � . The red
curves give the contributions depending on the �ne-structure constant � em. The orange
curves give the contributions which vanish in the limit mb ! 0. The upper plot shows
the contributions in terms of the squared Higgs boson mass, the lower plot in terms of
the Higgs boson mass. In blue, we give the experimental uncertainty for the Higgs boson
mass.
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dominant O(� t ) contributions are [32,140]

� (1) M 2
h

O(� t )
�

3m4
t

4� 2v2

�

log
M 2

S

m2
t

+
X 2

t

M 2
S

�
X 4

t

12M 4
S

�

: (7.4)

At X t = 0, the stop-mixing matrix (see Eqs. (4.3)) is diagonal and the Higgs boson

mass takes a minimal value ofM h � 131GeV under inclusion of all electroweak two-

loop contributions (solid cyan curve). In the same prediction, the mass becomes

maximal with M h � 150 GeV at X t � �
p

6MS � � 3:7 TeV. We estimate the

leading two-loop QCD corrections to lower the overall value of the Higgs boson

mass by 5�8 GeV in this scenario. This estimate was obtained by comparing two

one-loop predictions, usingmt = mMS
t (M t ) and mt = M t , respectively.

In Fig. 7.7, we show the dominant contributions in the third scenario. Here, we

can see that the two-loop corrections shift the Higgs boson mass by 1.4�2:8 GeV

(Fig. 7.7b), depending on the contributions chosen. Again, the Yukawa contributions

make up the largest part of the two-loop contributions. The pure top contributions

of O
�
� 2

t

�
(dashed green curve) are very symmetric with respect to their dependence

on X t . When including also the bottom contributions (solid green curve), which

are symmetric with respect toX b = Ab � �t � , the curve loses itsX t symmetry; for

negative values ofX t , the pure bottom corrections are larger than for positive values

of the samejX t j (see also Fig. 7.8). The bottom contributions lower the prediction

by roughly 10%, as we can see from comparing the magenta curves with the cyan

ones, or the dashed green one with the solid green curve in Fig. 7.7a.

The additional inclusion of gauge contributions (cyan curves) leaves the maximal

value for the corrections largely una�ected (solid cyan vs. solid green). They, how-

ever, shift the position of the maximum to larger values ofjX t j � 4 TeV. The mini-

mum remains atX t � 0, but the gauge contributions lower it by around0:25 GeV

in comparison to the pure Yukawa corrections.

In Fig. 7.8, we show the subleading contributions in our third scenario. We can

clearly see the aforementioned, strong asymmetry of the bottom corrections with

respect toX t . The corrections proportional to the gauge couplings are dominated

by contributions from the third generation squarks, see Fig. 7.8a. In the whole

range of jX t j < 2 TeV, the gauge corrections lower the Higgs boson mass by more

than 0:2 GeV and hence exceed the experimental uncertainty (Fig. 7.8b). In the

same range, the gauge corrections which stem from the �rst and second generation

squarks and generation mixing increase the Higgs boson mass by� 0:05 GeV.
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Figure 7.9: The dependence of the Higgs boson massM H on the SUSY scaleM S. The
solid cyan curve includes the tree-level prediction as well as the one-loop contributions
of O(Nc) and the two-loop contributions of O

�
N 2

c

�
. The dashed cyan curve takes into

account only the third generation of quarks and squarks at the two-loop level. The green
curve includes only the O

�
N 2

c

�
Yukawa contributions at the two-loop level. The black

curve shows the prediction of the Higgs boson mass at the one-loop order.

7.4 Scenario 4: The dependence of MH on the SUSY

scale MS

In this scenario, we investigate how our newly calculated contributions a�ect the

prediction for the mass of the heavyCP-even MSSM Higgs bosonH . These results

are included for completeness; for a heavyCP-even Higgs boson, the relative e�ects

of the loop contributions are quite small, and it is not expected that the new two-loop

contributions are numerically signi�cant in this case.

We sett � = 7, and for the mass of theCP-odd Higgs boson we choosemA = 750 GeV.

We set the remaining SUSY-breaking parameters and the higgsino mass parameter

to the common valueMS; for the trilinear couplings, in particular, we make the

choice Aq = +2 MS. Within this framework, we vary MS between400 GeV and

3 TeV.

In Fig. 7.9, we show our prediction for the heavy Higgs boson massMH . The most
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(a)

(b)

Figure 7.10: The leading two-loop contributions to the heavy Higgs boson massM H . The
solid cyan curve includes all two-loop contributions atO

�
N 2

c

�
, the dashed cyan curve uses

only contributions from the third generation. The green curve gives the two-loop Yukawa
contributions at O

�
N 2

c

�
. The magenta curves do not contain contributions proportional

to the bottom Yukawa coupling. The upper plot shows the contributions in terms of the
squared Higgs boson mass, the lower plot in terms of the Higgs boson mass.
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