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Kurzfassung

Magnetic particle imaging (MPI) ist ein Tracer-basiertes medizinisches Bildgebungsverfahren mit
dazugehöriger Erstverö�entlichung im Jahr 2005. Ausgehend von der nicht-linearen Magnetisie-
rungsantwort des Tracers auf sich verändernde Magnetfelder, ermöglicht MPI die quantitative Re-
konstruktion der räumlichen Verteilung injizierter Partikel. Damit die notwendigen Informationen
in den entsprechenden Spannungsmessungen enthalten sind, werden Magnetfelder verwendet, die
eine feldfreie Region aufweisen. Mit dem spezi�schen Verlauf der Magnetisierungskurve tragen nur
Teilchen in der Nähe dieser zum Messsignal bei, während alle weiteren in magnetischer Sättigung
verweilen. Für die Datengenerieung wird das Sichtfeld abgetastet, indem die sensitive Zone entlang
von bestimmten Trajektorien verschoben wird. Es gibt zwei verschiedene Formen, wie das Nied-
rigfeld gewählt werden kann. Daraus resultieren der FFP bzw. der FFL Scanner, bei denen ein
feldfreier Punkt (FFP) bzw. eine feldfreie Linie (FFL) das Zentrum dieses Niedrigfelds bildet. In
dieser Arbeit betrachten wir das FFL Abtastschema. Dabei wird diese Line translatiert und ro-
tiert, sodass die Messgeometrie denen in der Computertomographie ähnelt. Beide generieren Daten
entlang von Linien. Für ein idealisiertes Setting wurde bereits gezeigt, dass die MPI Daten auf
die Radon Transformation der Teilchenkonzentration zurückgeführt werden können. Das Ziel dieser
Arbeit ist es, diese Beziehung für realistischere Annahmen zu verallgemeinern.
Wir betrachten zwei verschiedene Trajektorien, entlang derer die FFL bewegt wird. Zum einen
betrachten wir eine sequentielle und zum anderen eine simultane Translation und Rotation der Li-
nie. Da der Vorwärtsoperator eine Zeitableitung enthält und für das simultane Abtastschema die
FFL ihre Bewegungsrichtung während der Messung ändert, sorgt diese zusätzliche Zeitabhängigkeit
für zusätzliche Terme in der Signalgleichung, wenn die Ableitung ausgeführt wird. Gleichermaÿen
ergeben sich Zusatzterme, wenn dynamische Konzentrationen und Magnetfeldungenauigkeiten zu-
gelassen werden. Wir beschreiben sich zeitlich verändernde Teilchenkonzentrationen mittels di�eo-
morpher Deformation einer Referenzkonzentration. Diesen Ansatz übertragen wir auf den Fall der
Magnetfeldungenauigkeiten. Diese Vorgehensweise stützt sich auf der Annahme, dass die Datengene-
rierung entlang von Linien für dynamische Phantome und die Datengenerierung entlang von Kurven
für statische Phantome in gewisser Weise miteinander verbunden sind. Da das ideale Feld berechnet
und das tatsächliche Feld gemessen werden kann, verwenden wir Bildregistrierungsmethoden, um
einen verbindenden Di�eomorphismus zu bestimmen. Für die verschiedenen Annahmen leiten wir
angepasste Vorwärtsmodelle und Verbindungen zur Radon Transformation her. Wir schätzen die
Zusatzterme mittels der Messparameter ab und basierend auf der totalen Variation rekonstruieren
wir simultan Teilchenkonzentration und Radondaten. Wir untersuchen numerische Resultate für
synthetische Daten.
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Abstract

Magnetic particle imaging (MPI) is a tracer-based medical imaging modality whose �rst publica-
tion dates back to 2005. Relying on the non-linear magnetization response of the tracer material
to changing magnetic �elds, it allows for quantitative reconstruction of the spatial distribution of
injected particles. Encoding of this information into corresponding voltage measurements is guaran-
teed by applying �elds featuring a �eld-free region. Due to the speci�c shape of the magnetization
curve, only those particles in close vicinity to this area are contributing to the signal, while all other
particles stay in magnetic saturation. The low-�eld volume is moved along dedicated trajectories in
order to scan the �eld of view. There are two di�erent choices available for the shape of the low-�eld
volume. This gives the FFP respectively FFL scanner, where a �eld-free point (FFP) respectively
a �eld-free line (FFL) centers the low-�eld volume. In this work, we will concentrate on the FFL
encoding scheme. Considering translation and rotation of the line, the scanning geometry resembles
those in computerized tomography. Both generate data along lines. For an idealized setting it was
already shown that MPI data can be traced back to the Radon transform of the particle concentra-
tion. The goal of our work is to generalize this relation to di�erent setups aiming for more realistic
assumptions.
We consider two scanning geometries. One bases on sequential and one on simultaneous translation
and rotation of the line. The forward operator for MPI contains a time derivative. Thus, as the
simultaneous line rotation changes its moving direction, the additional time dependence results in
additional terms in the signal equation, when executing the derivative. Likewise, additive compon-
ents occur, when allowing dynamic particle concentrations and magnetic �eld imperfections. We
treat time-varying tracer distributions based on di�eomorphic template deformation. We transfer
this approach to �eld imperfections, as we assume that generating data along straight lines for
moving phantoms and generating data along deformed lines for static phantoms are somehow con-
nected. Since the ideal magnetic �eld can be computed and the actual �eld can be measured, we
apply image registration techniques to determine a connecting di�eomorphism. For the di�erent
setup assumptions, we derive adapted versions of the forward model, state relations to the Radon
transform, estimate the additional parts in terms of measurement parameters, and jointly recon-
struct particle concentration and Radon data by means of total variation regularization. We give
numerical results for synthesized data.
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Nomenclature

Abbreviations and mathematical symbols used within this thesis are listed below.

Abbreviations

BV Bounded variation
CT Computerized tomography
EIT Electrical impedance tomography
FAIR Flexible algorithms for image registration
FBP Filtered backprojection
FFL Field-free line
FFP Field-free point
FOV Field of view
LDDMM Large deformation di�eomorphic metric mapping
LFV Low-�eld volume
MPI Magnetic particle imaging
PAT Photoacoustic tomography
PDE Partial di�erential equation
PET Positron emission tomography
PNS Peripheral nerve stimulation
PSNR Peak-signal-to-noise ratio
RESESOP Regularizing sequential subspace optimization
SHC Spherical harmonics coe�cient
SNR Signal-to-noise ratio
SPECT Single-photon emission computerized tomography
SSIM Structural similarity
TV Total variation

Mathematical Symbols

|·| Absolute value
|Ω| Size of a domain Ω

BV (Ω) , BV (Ω,R) Space of functions of bounded variation on domain Ω ⊂ R2

∆ Laplace operator
δ Dirac-δ-distribution
δC Indicator function with respect to a set C
Γ Di�eomorphic deformation function
Λ Excitation function
⌊·⌋ Floor function
C Complex numbers
K K ∈ {R,C}
N; N0 Natural numbers; including zero
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Nomenclature

R; R+; R+
0 ; R Real numbers; positive; non-negative; extended by +∞

1Ω Characteristic function on Ω

E Electric �eld strength
eφ, et, e

⊥
φ , e

⊥
t Unit vectors perpendicular respectively parallel to the FFL

H; HS; HD Magnetic �eld strength; selection �eld; drive �eld
M Magnetization
Rφ,Rt Rotation matrix regarding rotation within xy-plane
A∗ Adjoint of an operator A
C C := {(c, v) ∈ D : c ≥ 0, v ≥ 0}
D D := L2 (BR,R)× L2 (ZR,R) or D := L2 (BR,R)× L2 (ZT × R,R)
F , f̂ Fourier transform of a function f

F−1 Inverse Fourier transform
L Langevin function
L(X,Y ) Space of linear and bounded operators between normed spaces X

and Y

N⊥(A) Orthogonal complement of the null space of an operator A
R Radon transform
S ′ Space of tempered distributions
S,S(Rn),S(Rn,K) Schwartz space
µ0 Magnetic permeability of free space
∇× g Rotation of a di�erentiable vector �eld
∥·∥X Norm with respect to the underlying space X

∥·∥2 Euclidean norm
m Mean magnetic moment
x Convex conjugate of an element x ∈ C
⟨·, ·⟩X Inner product with respect to the underlying space X

supp(f) Support of f
div (g) ,∇ · g Divergence of a di�erentiable vector �eld g

dom (J) Domain of J
TV (·) TV semi-norm
A Drive peak amplitude
BR Open ball with radius R > 0 around the origin in Rn

C1 Space of continuously di�erentiable functions
C∞; C∞

0 Space of in�nitely often di�erentiable functions; with compact sup-
port

f ∗ g Convolution of mappings f and g

fd; fs; frot Drive frequency; sampling frequency; rotation frequency
G Gradient strength
kB Boltzmann constant
Lp,Lp(Rn),Lp(Rn,K) Lebesgue spaces
Lp (M) ,Lp(M,X) Lebesgue-Bochner spaces with (M,µ) �nite measure space and X

Banach space
m Magnetic moment of a single particle
Pm
l Associated Legendre polynomials of degree l ∈ N0 and order

0 ≤ m ≤ l

plm Solid harmonics plm = rlYlm
Sn Unit sphere in Rn+1

Sn
R Sphere with radius R > 0 around the origin in Rn+1
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Tm,Um Chebyshev polynomials of the �rst and second kind
Tp Particle temperature
Xn n-dimensional space
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1. Introduction

Tomographic imaging devices revolutionized medical diagnostics and have become an indispensable
part of everyday clinical practice. Enabling non-invasive detection of e.g. cancerous cells or blood
vessel stenosis, it is no question that research is being conducted worldwide and across disciplines
to develop new and foster existing methods. Points of consideration comprise spatial and temporal
resolution as well as safety issues. Within this thesis, we focus on magnetic particle imaging. It
is a still rather new tracer-based imaging modality, allowing for the quantitative reconstruction of
the particle distribution within the object under investigation. Like the well-known computerized
tomography (CT), the FFL scanner generates data along lines. Thereby, the patient is exposed to
magnetic �elds and, to great advantage, not to ionizing radiation. For an idealized setting, assuming
static particle concentrations and ideal magnetic �elds, a relation between the MPI-FFL forward
operator and the Radon transform has already been derived. In practice, however, the phantoms
move and magnetic �eld imperfections occur. Neglecting this fact may lead to severe image artifacts
that make reliable diagnostics impossible. We build on the previously mentioned result to target
artifact reduction for Radon-based image reconstruction in magnetic particle imaging with an FFL
scanner.

1.1. Outline of the thesis

We start with a recapitulation of some results and concepts from functional analysis, optimization
theory, the space of functions of bounded variation, and spherical harmonics. These preliminaries
are summarized in Chapter 2. Mathematically, magnetic particle imaging is described via an ill-
posed linear inverse problem. For reliable reconstruction, that is to prevent that small measurement
noise results in huge image deviations, suitable regularization methods are mandatory. We recall
the notion of ill-posedness and regularization in Chapter 3. We review the example of Tikhonov reg-
ularization in its variational formulation and according existence, stability, and consistency results.
Furthermore, we introduce dynamic inverse problems. In this course, we brie�y consider the motion
model and the deformable template approach to describe the phantom dynamics. Chapter 4 is ded-
icated to computerized tomography. We explain the imaging principle, de�ne the Radon transform
of a function, and visualize the data as well the scanning geometry. We picture the data inconsist-
encies for objects varying over time during scanning and recall a variant of the Radon transform
obtained via expressing the time dependence of the phantom in terms of di�eomorphic motion
functions. We state the important Fourier slice theorem, basing on this an inversion formula for
the Radon transform, as well as the �ltered backprojection reconstruction. Regarding a�ne organ
movement and using the already mentioned di�eomorphic functions, adapted versions of the Fourier
slice theorem and the inversion formula are recapitulated for the dynamic setting. In comparison
to existing works, we slightly change the results by incorporating an additional function so as to
simultaneously treat the mass and intensity preservation assumption. Afterwards, in Chapter 5,
we introduce magnetic particle imaging. We review the physical principles MPI bases on as well
as the derivation of a forward model. We explain the signal generation and how information about
the particles' positions is encoded in the data. Speci�cally, we recall the forward operator for an
FFL scanner using the Langevin theory of paramagnetism. We image the scanning geometry, derive
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1. Introduction

a link between the MPI-FFL forward operator and the Radon transform in three dimensions for
idealized setup assumptions, and show that, under the supposition that the particles are located
within a plane, this result reduces to a corresponding known theorem for two dimensions. We re-
capitulate a sequential reconstruction of Radon data and particle concentration by means of Wiener
deconvolution. In contrast, we suggest a simultaneous determination of particle distribution and
Radon data, applying total variation regularization. We further give according existence, stability,
and consistency results. We present and compare numerical results for both approaches. After this
introductory part of the thesis, we go on with considerations regarding di�erent setup assumptions,
aiming to approach stepwise a more realistic setting. We start with regarding a di�erent scanning
geometry in Chapter 6, accelerating data acquisition via allowing joint rotation and translation of
the FFL. Afterwards, we consider dynamic particle concentrations in Chapter 7 and we close with
examining magnetic �eld imperfections in Chapter 8. For all these settings, we derive the according
MPI-FFL forward operator and transfer the correspondence to the Radon transform to one with
possibly adapted versions of the Radon transform, e.g. integrating along curves rather than lines
in case of dynamic concentrations. Due to the additional time dependencies, we obtain additive
components in the forward model. We adapt our reconstruction approach by updating the corres-
ponding model and state numerical results for a proof-of-concept. We consider synthetic data and
compare results neglecting the setting adaptions with those incorporating them, con�rming the ne-
cessity of proper inclusion in the image determination. Otherwise, severe artifacts occur disguising
the phantom and possible diseases.
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2. Preliminaries

In this chapter, we gather useful de�nitions and results being used within this thesis. Thereby, we
address aspects regarding functional analysis, optimization theory, functions of bounded variation,
and spherical harmonics.

2.1. Functional analysis

We �rst recapitulate the de�nition of Lebesgue and Schwartz spaces. Moreover, we state the de�n-
ition of Fourier transforms and convolutions. Please consult [49] and [144] for further details.

Let in the following K ∈ {R,C}. The Lebesgue spaces are de�ned below.

De�nition and Theorem 2.1. Let 1 ≤ p < ∞. The Lebesgue spaces Lp = Lp(Rn) = Lp(Rn,K)

consist of all measurable functions f : Rn → K such that

∥f∥Lp
:=

(∫
Rn

|f(r)|p d r

) 1
p

is bounded. Together with these norms, they form Banach spaces. The L2-space equipped with the

inner product

⟨f , g⟩L2
:=

∫
Rn

f(r)g(r) d r

gives a Hilbert space.

Similarly, the Lebesgue-Bochner spaces are introduced for Banach space valued functions. Therefore,
let (M,µ) denote a �nite measure space and X be a Banach space. We refer to [40] and [93].

De�nition and Theorem 2.2. Let 1 ≤ p < ∞. The Lebesgue-Bochner spaces Lp(M,X) consist

of all strongly µ-measurable functions f : M → X such that

∥f∥Lp,X
:=

(∫
M

∥f(r)∥pX dµ

) 1
p

(2.1)

is bounded. Together with these norms, they form Banach spaces. We use the shorthand notation

Lp (M) = Lp (M,X) if X is clear from the context. For X being a Hilbert space, it holds that

L2 (M,X) equipped with the inner product

⟨f , g⟩L2,X
:=

∫
M

⟨f , g⟩X dµ

is also a Hilbert space.

In the following, we drop the index X and simply write ∥·∥Lp
also for the norm in the Lebesgue-

Bochner space. It will be clear from the context which norm is meant.

Before introducing the so-called Schwartz space, we review the notion of a multi-index.

3



2. Preliminaries

De�nition 2.3. Let α = (α1, . . . ,αn)
T with αi ∈ N0 := N ∪ {0}, for i = 1, . . . ,n, and

r = (r1, . . . , rn)
T ∈ Rn with

|α| :=
n∑

i=1

αi, α! :=
n∏

i=1

αi, rα := rα1
1 · · · rαn

n , Dα :=
∂|α|

∂rα1
1 · · · ∂rαn

n
.

Furthermore, let α ≤ β if and only if αi ≤ βi, for i = 1, . . . ,n. Then, α is called multi-index.

Therewith, the Schwartz space can be de�ned. It consists of rapidly decreasing functions.

De�nition 2.4.

(i) The Schwartz space S = S(Rn) = S(Rn,K) contains all functions f ∈ C∞(Rn,K) such that

pk,l(f) := sup
r∈Rn

(
1 + ∥r∥k

) ∑
|α|≤l

|Dα f(r)|

is bounded for all k, l ∈ N0 and multi-indices α ∈ Nn
0 .

(ii) Convergence in S is de�ned as

fj
S−→

j→∞
f ⇐⇒ lim

j→∞
pk,l(fj − f) = 0, for all k, l ∈ N0.

(iii) A functional T : S → K is sequentially continuous, if

fj
S−→

j→∞
f =⇒ Tfj −→

j→∞
Tf .

(iv) The set of all linear and sequentially continuous functionals T : S → K is denoted as S ′. The

elements of S ′ are called tempered distribution.

Example 2.5 (Dirac-δ-distribution). The dirac-δ-distribution δa : S → K is determined via

δa(f) := f(a).

In accordance to [144], for a ∈ Rn we write∫
Rn

f(r)δa(r) d r = f(a)

and introduce the shorthand notation δ := δ0.

Next, we dedicate ourselves towards the de�nition of Fourier transforms.

De�nition and Proposition 2.6. The Fourier transform F : S → S is given by

Ff(ξ) := f̂(ξ) := (2π)−
n
2

∫
Rn

e−ir·ξf(r) d r.

This mapping is continuous and bijective with continuous inverse F−1 : S → S determined via

F−1f̂(r) := (2π)−
n
2

∫
Rn

eir·ξf̂(ξ) d ξ.

The Fourier transform F and its inverse F−1 are isometric isomorphisms, which follows from

Parseval's identity

∥Ff∥L2
= ∥f∥L2

=
∥∥F−1f

∥∥
L2

.
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2.2. Optimization theory

A simple computation gives the following formula for Fourier transforms applied to shifting operators
T zf (r) := f (r+ z).

Lemma 2.7. It holds for f , g ∈ S

F (T zf) (ξ) = eiz·ξFf (ξ) .

Finally, after de�ning the convolution mapping, we present a useful result stating that the Fourier
transform converts the convolution into a multiplication.

De�nition 2.8. For f , g ∈ S the convolution f ∗ g is de�ned as

(f ∗ g)(r) :=
∫
Rn

f(r− y)g(y) dy.

Theorem 2.9. It holds for f , g ∈ S

(̂f ∗ g) = (2π)
n
2 f̂ ĝ.

Remark 2.10. The Fourier transform F : S → S can be extended to an isometric isomorphism

F : L2 → L2 called Fourier-Plancherel transform since S ⊆ L2 is dense.

2.2. Optimization theory

We now review some helpful notions and results regarding optimization theory abstracted from [28]
and [150].

Let J : X → R := R ∪ {∞} be a functional mapping into the extended real numbers. For
convenience, we assume X to be a real Hilbert space. By introducing the indicator function

δC (x) :=

{
0, for x ∈ C,
∞, for x /∈ C,

for a subset C ⊂ X, every constrained minimization problem min
x∈C

J (x) can be written as an un-

constrained problem by replacing the objective functional by J (x) + δC (x). Thus, without loss of
generality, we only regard unconstrained minimization problems

min
x∈X

J (x) . (2.2)

We �rst recall de�nitions of important properties of J .

De�nition 2.11. The e�ective domain of J : X → R is de�ned as

dom(J) := {x ∈ X : J (x) < ∞} .

Further, J is called proper if dom(J) ̸= ∅.

De�nition 2.12. The functional J : X → R is called coercive if lim
n→∞

∥xn∥X = ∞ implies

lim
n→∞

J (xn) = ∞.

5



2. Preliminaries

De�nition 2.13. The functional J : X → R is (weakly) sequentially lower semicontinuous

if

J (x) ≤ lim inf
n→∞

J (xn)

for all (weakly) converging sequences {xn}n∈N with (weak) limit x ∈ X.

Example 2.14.

� The norm ∥·∥X is weakly sequentially lower semicontinuous.

� The indicator function δC of a closed set C is sequentially lower semicontinuous.

In order to analyze functions on (weak) sequential lower semicontinuity or create corresponding
mappings, the lemma below is very useful.

Lemma 2.15. Let F : X → R be (weakly) sequentially lower semicontinuous. Then, the following

functionals are also (weakly) sequentially lower semicontinuous

� γF for γ ≥ 0,

� F +G for (weakly) sequentially lower semicontinuous G : X → R,

� ϕ ◦ F for monotonically increasing and sequentially lower semicontinuous ϕ : R → R,

� F ◦ Φ for (weakly) sequentially continuous Φ : Y → X with Banach space Y .

Using these terms and de�nitions, we can state an existence result for (2.2).

Theorem 2.16. Assuming J to be bounded from below, proper, coercive, and weakly sequentially

lower semicontinuous, the minimization problem (2.2) has a solution x∗ ∈ dom (J).

Proof. The proof is standard and follows the direct method in the calculus of variations (cf. pp.
264 f. in [28]).

1. Since J is bounded from below and proper, existence of a minimizing sequence {xn}n∈N with
J (xn) < ∞ for all n ∈ N and

lim
n→∞

J (xn) = inf
x∈X

J (x) ∈ R.

can be concluded.

2. From the coercivity of J , boundedness of this minimizing sequence is inferred. Thus, since X
was assumed to be a Hilbert space, existence of a subsequence {xnk

}k∈N such that xnk
⇀ x∗

for k → ∞ and some x∗ ∈ X is given.

3. The weak lower semicontinuity of J �nally implies the minimizing property of x∗

inf
x∈X

J (x) ≤ J (x∗) ≤ lim inf
k→∞

J (xnk
) = inf

x∈X
J (x) .

To conclude this section, we brie�y consider convex minimization problems. These play a special
role, since convexity has a lot of nice properties that are particularly advantageous when dealing
with non-smooth functionals.
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2.3. Functions of bounded variation

De�nition 2.17.

� A set C ⊂ X is called convex if for all x, y ∈ C and λ ∈ [0, 1] it holds λx+ (1− λ) y ∈ C.

� The functional J : X → R is called convex if for all x, y ∈ X and λ ∈ [0, 1] it holds

J (λx+ (1− λ) y) ≤ λJ (x) + (1− λ) J (y) .

Moreover, J is strictly convex if for x ̸= y and λ ∈ (0, 1) it holds

J (λx+ (1− λ) y) < λJ (x) + (1− λ) J (y) .

Example 2.18.

� The norm ∥·∥X is convex.

� The squared norm ∥·∥2X is strictly convex.

� The indicator function δC of a convex set C is convex.

As in the case of (weak) sequential lower semicontinuity, the next lemma provides information
concerning the investigation of whether a functional is convex.

Lemma 2.19. Let F : X → R be (strictly) convex. Then, the following functionals are also

(strictly) convex

� γF for γ > 0 ,

� F +G for convex G : X → R,

� ϕ ◦ F for convex and on the range of F (strictly) increasing ϕ : R → R,

� F ◦ Φ for linear (and injective) Φ : Y → X with a normed space Y .

Lemma 2.20. Let J : X → R. If J is weakly sequentially lower semicontinuous, then it is also

sequentially lower semicontinuous. These properties are equivalent for convex J .

For the existence result for convex optimization problems, we refer e.g. to Theorem 6.31 in [28] or
Theorem 2.19 in [150].

Theorem 2.21. Assuming J to be proper, convex, coercive, and sequentially lower semicontinuous,

the minimization problem (2.2) has a solution x∗ ∈ dom (J). If J is moreover strictly convex, x∗ is

the unique solution.

2.3. Functions of bounded variation

Functions of bounded variation are of further interest for image reconstruction, as they allow dis-
continuities in the structure of the unknowns.

Following [179], we de�ne the space of functions of bounded variation (BV) on a domain Ω ⊂ R2 as

BV (Ω) = BV (Ω,R) = {c ∈ L1 (Ω,R) : TV (c) < ∞} ,

7



2. Preliminaries

with total variation (TV)

TV (c) := sup

{∫
Ω
c (r) div (ρ) (r) d r : ρ ∈ G

}
and G :=

{
C∞
0

(
Ω,R2

)
, ∥ρ (r)∥2 ≤ 1 for all r ∈ Ω

}
. If c ∈ C1 (Ω), it follows by integration by

parts [1]

TV (c) =

∫
Ω
∥∇c (r)∥2 d r = ∥∥∇c∥2∥L1

.

There are various ways to de�ne total variation. In the above de�nition, the Euclidean norm ∥·∥2
was applied to ρ resulting in an isotropic total variation. Diverse, possibly anisotropic versions of
TV can be obtained by replacing the Euclidean with other vector norms while keeping the BV space
unchanged [39]. The following is extracted from [1]. Together with the norm ∥·∥BV := ∥·∥L1

+TV (·)
the space BV (Ω) forms a Banach space and it holds for bounded Ω

BV (Ω) ⊂ L2 (Ω) ⊂ L1 (Ω) .

Next, we restate some important properties of the TV semi-norm. We will use these results later on
to show existence of a minimizer with respect to an objective functional including a total variation
term.

Theorem 2.22 (Theorem 2.3 in [1]). The total variation is weakly sequentially lower semicontinuous

regarding the L2 topology.

Theorem 2.23 (Theorem 2.4 in [1]). The total variation semi-norm is convex.

Theorem 2.24 (Theorem 2.5 in [1]). Regard a BV-bounded set of functions C, i.e. ∥c∥BV ≤ B for

all c ∈ C and some B > 0. Then, C is bounded and relatively weakly compact in L2 (Ω).

In order to show the previous theorem, the Poincaré-Wirtinger inequality stated below was used.

Lemma 2.25 (Poincaré-Wirtinger inequality (p. 1221 in [1])). For c ∈ BV (Ω), it holds

∥c− c∥L2
≤ C TV (c) , c :=

1

|Ω|

∫
Ω
c (r) d r (2.3)

for some constant C > 0.

Finally, it was shown that the total variation is BV-coercive. Remember that coercivity was one of
the characteristics within the existence results, Theorem 2.16 and 2.21.

Lemma 2.26 (Lemma 4.1 in [1]). Let A : L2 (Ω) → Y be a bounded and linear functional on a

Hilbert space Y such that A1Ω ̸= 0 with 1Ω denoting the characteristic function on Ω. Then, it holds

for g ∈ Y that ∥Ac− g∥2Y + γ TV (c) with γ > 0 is BV-coercive.

For more information concerning TV we recommend to consult, for instance, [1] and [39].
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2.4. Spherical harmonics

2.4. Spherical harmonics

To conclude the preliminary section, we introduce the spherical harmonic functions. Among other
things, these can be used to model magnetic �elds, as described in Appendix A. Please be referred
to [30] as well as [31].

Consider the spherical coordinates r = (x, y, z)T = r (sinϑ cosφ, sinϑ sinφ, cosϑ)T .

De�nition and Proposition 2.27. The normalized real-valued spherical harmonics Ylm of

degree l ∈ N0 and order m ∈ {−l, . . . , l} are de�ned as

Ylm (ϑ,φ) :=


√
2Km

l cos (mφ)Pm
l (cosϑ) , m > 0,

K0
l P

0
l (cosϑ) , m = 0,

√
2K

|m|
l sin (|m|φ)P |m|

l (cosϑ) , m < 0.

(2.4)

Thereby, leaving out the often incorporated Condon-Shortly phase (−1)m, the Pm
l denote the asso-

ciated Legendre polynomials

Pm
l (x) :=

1

2ll!

(
1− x2

)m
2

dl+m

dxl+m

(
x2 − 1

)l
, 0 ≤ m ≤ l. (2.5)

Moreover, for the choice

Km
l :=

√
(2l + 1)

4π

(l −m)!

(l +m)!
, (2.6)

the spherical harmonics (2.4) form an orthonormal basis regarding the square-integrable functions

on the unit sphere S2 :=
{
r ∈ R3 : ∥r∥ = 1

}
in R3 in view of

⟨f , g⟩L2
=

∫
S2

f (r) g (r) d r =

∫ 2π

0

∫ π

0
f (ϑ,φ) g (ϑ,φ) sinϑ dϑ dφ.

Remark 2.28. In some cases, it might be bene�cial to choose Km
l such that the maximum of the

spherical harmonics is normalized to one. This gives the Schmidt quasi-normalization

Km
l =

√
(l −m)!

(l +m)!
. (2.7)

Lemma 2.29. Exploiting the spherical harmonics from the last de�nition, the polynomials plm of

degree l ∈ N0 and order m ∈ {−l, . . . , l}

plm (r,ϑ,φ) := rlYlm (ϑ,φ)

give a basis for the space of homogeneous harmonic polynomials of degree l in R3. That is, for the

space of polynomials p such that the Laplace equation ∆p = 0 is ful�lled and p can be written as a

linear combination of monomials rα with multi-indices α ∈ N3
0 such that |α| = l.

The table below summarizes the spherical harmonics of degree l ≤ 2.
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2. Preliminaries

Table 2.1.: Spherical harmonics of degree l ≤ 2.

l m Ylm (ϑ,φ) plm (x, y, z)

0 0 1 1

1 −1 sinϑ sinφ y

1 0 cosϑ z

1 1 sinϑ cosφ x

2 −2
√
3
2 sin2 ϑ sin 2φ

√
3xy

2 −1
√
3 sinϑ cosϑ sinφ

√
3yz

2 0 1
2

(
3 cos2 ϑ− 1

)
z2 − 1

2x
2 − 1

2y
2

2 1
√
3 sinϑ cosϑ cosφ

√
3xz

2 2
√
3
2 sin2 ϑ cos 2φ

√
3
2

(
x2 − y2

)
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3. Inverse Problems

This chapter deals with the interaction of cause and impact of measurable e�ects. The physical
principles relating both are summarized in a forward model A : X → Y mapping the set of paramet-
ers X to the set of data Y . The direct problem describes the generation of data g = Ac for given c.
The more demanding task of reconstructing the quantity c ∈ X from determined measurements
g ∈ Y is called the inverse problem, which we denote by (A,X,Y ).

Proper study of inverse problems is of great interest, as they occur in various applications. A
large �eld comprises medical tomographic imaging techniques visualizing inner structures of the pa-
tient's body slice by slice, thus enabling diagnostics, treatment planning, and monitoring. Widely
known examples are single-photon emission computerized tomography (SPECT), positron emission
tomography (PET), magnetic resonance imaging (MRI), electrical impedance tomography (EIT),
photoacoustic tomography (PAT), computerized tomography, and more recently magnetic particle
imaging. We recommend to consult [50] for insights into numerous medical imaging schemes. For a
comprehensive collection of works aiming at the mathematical treatment of imaging tasks, we refer
to [164].
Tomographic methods can be classi�ed into two groups depending on whether the image is formed
based on properties of the tissue itself or of a tracer material injected into the object under in-
vestigation. Note that tracer usage is not exclusive for the second type, it could additionally be
applied e.g. for contrast enhancement. Techniques associated to the �rst category deliver mor-
phological information, whereas those from the second group give quantitative results regarding
the tracer distribution convenient for functional imaging. Hence, hybrid scanners combining prin-
ciples and therewith informational content from each category are of bene�cial interest. For further
aspects as well as a feature comparison with respect to di�erent imaging modalities, we refer to [113].

Let us now give further insights into those two schemes relevant within this thesis, namely CT and
MPI. Computerized tomography relies on tissue-based and magnetic particle imaging on tracer-
based properties.

Radiation Source Detector

Figure 3.1.: Visualization of the imaging principle of CT: A radiation source emits an X-Ray L with initial
intensity I0. After traversing the specimen, the attenuated intensity IL is measured via a
detector panel. An exemplary distance traveled ∥∆r∥ is marked in red.

11



3. Inverse Problems

Example 3.1. The �rst example we regard is computerized tomography, a well-known imaging

modality whose invention opened many research topics and which inhabits great bene�ts for medical

diagnostics. Based on the fact that di�erent tissue types absorb radiation to varying extents, CT can

be applied to give morphological knowledge about inner structures of an object under investigation.

To this end, as visualized in Figure 3.1 the intensity loss of X-rays traversing the specimen is

measured. Gathering data for a suitable amount of radiation source positions and X-ray directions

then enables reconstruction of the tissue density c ≥ 0 correlating to the attenuation coe�cient. The

intensity loss can be expressed in terms of the distance covered ∥∆r∥ as

∆I (r) = I (r+∆r)− I (r) = −c(r) ∥∆r∥ I (r) . (3.1)

The X-ray spreads in good accordance along a straight line L. Let I0 denote the initial intensity and

IL the intensity measured at the detector. Considering ∥∆r∥ → 0 in (3.1) and integrating along the

line L, the corresponding forward model

Ac (L) =

∫
L
c (r) d r = ln

(
I0
IL

)
= g (L) (3.2)

is obtained. Hence, the inverse problem in CT consists of reconstructing the density c from know-

ledge of its line integrals g. The forward operator A is the so-called Radon transform. We advise

to view [144] for mathematical prospects of CT. We will consider this example in more detail in

Chapter 4.

Figure 3.2.: Visualization of the imaging principle of MPI: Magnetic tracer material is injected into the
specimen (right). For measurements, magnetic �elds (indicated by the arrows) featuring a
low-�eld volume (indicated by the black dot) are applied (left).

Example 3.2. The second example we regard is magnetic particle imaging. In contrast to compu-

terized tomography, MPI is a preclinical tracer-based imaging modality, i.e. the generated data do

not rely on properties of the specimen itself but on characteristics of the injected material. As the

name implies, magnetic particles are chosen as tracer. Applying changing magnetic �elds to these

particles results in a change in magnetization, which can be measured in the matter of voltage sig-

nals induced in dedicated receive coils. According to Faraday's law of induction the inverse problem

regarding MPI can be formulated as

Ac (t) =

∫
R3

c (r) s (r, t) d r = g (t) .

12



Thereby, s denotes the space- and time-dependent system function gathering all components linking

the particle concentration c ≥ 0 with the measured voltage signal g. We refer to [113] for a detailed

overview of various aspects concerning MPI. Within this thesis, we refer to Chapter 5 for an adequate

introduction to MPI.

While the underlying physical principles di�er for the di�erent methods, in each case images are
obtained by solving an inverse problem. This points out the importance and necessity of accurate
investigations within this �eld of research, which resulted in corresponding highly developed theory
and methods. Consider ([52], [96], [108], [142], [155]) to name only a few examples from the vast
set of literature for inverse problems in general.

We now consider some basic concepts regarding inverse problems. In the following, for conveni-
ence, let X and Y be Hilbert spaces. The problem (A,X,Y ) can be categorized depending on the
properties of A.

De�nition 3.3 (De�nition 1.5.2 in [155]). An inverse problem is called well-posed if the following

conditions are satis�ed.

(i) For all g ∈ Y there exists a solution to the equation Ac = g.

(ii) This solution is unique.

(iii) The inverse operator A−1 : Y → X is continuous.

If one of these conditions is not ful�lled, the problem (A,X,Y ) is called ill-posed.

The notion of well-posedness was introduced by Hadamard [73]. Commonly, inverse problems are ill-
posed, usually due to violation of condition (iii) guaranteeing that the solution to Ac = g depends
continuously on the data. If A−1 exists but is not continuous, small errors in the data g may
lead to huge deviations in the reconstruction c. Among other things, due to device inaccuracies
or environmental e�ects on the measurement system, in real-world applications noisy data is the
rule instead of the exception. Thus, stabilization methods limiting the in�uence of noise to the
reconstruction are indispensable for reliable determination of c. For the remainder, let gϵ ∈ Y

denote data contaminated by measurement noise and let ϵ > 0 determine the noise level such that
∥g − gϵ∥Y ≤ ϵ.

De�nition 3.4 (De�nition 3.1.1 in [155]). Let A ∈ L (X,Y ) and {Rt}t>0 be a family of continuous

operators from Y to X satisfying Rt0 = 0. If there exists a mapping γ : (0,∞)× Y → (0,∞) such

that for all c ∈ N (A)⊥ it holds

sup
{∥∥c−Rγ(ϵ,gϵ)g

ϵ
∥∥
X

: gϵ ∈ Y , ∥Ac− gϵ∥Y ≤ ϵ
}
−→ 0 for ϵ → 0,

the pair
(
{Rt}t>0 , γ

)
is called a regularization (method) for determining c. If each Rt is linear,

it is further called a linear regularization. The mapping γ is named parameter choice and chosen

to be oriented such that

sup {γ (ϵ, gϵ) : gϵ ∈ Y , ∥g − gϵ∥Y ≤ ϵ} −→ 0 for ϵ → 0.

The corresponding value γ (ϵ, gϵ) is called regularization parameter. If γ only depends on ϵ it is

denoted as an a priori, otherwise as an a posteriori parameter choice.

The idea of the above de�nition is to replace the task of solving the ill-posed problem by solving as-
sociated well-posed approximations. A lot of e�ort has been put into the development of elaborated
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3. Inverse Problems

regularization methods allowing stable reconstruction of the searched-for quantity c. A name that
must be mentioned in this context is Tikhonov. His pathbreaking works ([174], [175], [176], [177])
initiated further research in this direction. Examples comprise the introduction of the truncated
singular value decomposition ([7], [86]), the approximate inverse ([128], [172]), iterative meth-
ods ([5], [62], [100]) like Landweber ([85], [121]) or regularizing sequential subspace optimization
(RESESOP) ([171], [188]), variational techniques ([35], [165]), and in the last years data-driven
approaches [4]. Many regularization methods are variants, combinations, or special cases from one
another. Hence, oftentimes they inherit features from di�erent reconstruction techniques and would
�t into more than one category. For an overview, we refer to [52]. Furthermore, for a survey on
topical schemes we recommend to consult [11]. The latter also gives an historical placement of
di�erent regularization approaches.

Based on [96] we review the important example of Tikhonov regularization in its variational formu-
lation. Thereby, a regularized solution cϵγ of (A,X,Y ) is determined via solving

min
c∈C

{
Jgϵ

γ (c) := F (c, gϵ) + γP (c)
}

(3.3)

with Tikhonov functional Jgϵ
γ : X → R. Here, the regularization parameter γ > 0 balances the

weighting of the �delity term F (c, gϵ) and a non-negative regularization term P (c). The �delity
term monitors the closeness of measured data gϵ and modeled data Ac. The regularization term
endorses solutions featuring speci�c a priori known properties, like sparsity or piecewise constancy,
via penalizing those c not complying to these characteristics. Additional constraints on the minim-
izer, such as non-negativity, can further be incorporated by the choice of the feasibility set C ⊂ X

assumed to be convex and closed.
Next, we recall results aiming at the well-posedness of (3.3) choosing F (c, gϵ) := ∥Ac− gϵ∥pY , i.e.

min
c∈C

{
Jgϵ

γ (c) := ∥Ac− gϵ∥pY + γP (c)
}
. (3.4)

To this end, we �rst review the de�nitions of H-property and P-minimizing solution.

De�nition 3.5 (cf. De�nition 3.1 in [96]). A functional P : X → R has the H-property on X if

for any sequence {cn}n∈N ⊂ X it holds

cn ⇀ c and P (cn) → P (c) =⇒ cn → c

for n → ∞ and some c ∈ X.

For instance, norms on Hilbert spaces satisfy the H-property (see Remark 3.3 in [96]).

De�nition 3.6 (De�nition 3.2 in [96]). An element cP ∈ X ful�lling

AcP = g and P
(
cP
)
≤ P (c) , for all c ∈ {c ∈ C : Ac = g}

is called P-minimizing solution.

For the remainder of this section, we assume (cf. Assumption 3.1 in [96]) that

� the functional Jgϵ
γ is coercive;

� the functional P is proper and weakly sequentially lower semicontinuous;

� the forward operator A is linear and bounded, that is A ∈ L (X,Y ).
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Therewith, the results below are valid. We resist from giving the proofs, these can be found in [96].

Theorem 3.7 (Theorem 3.3 in [96]). There exists a P-minimizing solution to Ac = g.

Concerning the well-posedness respectively the regularization property of (3.4), we demonstrate the
next three theorems.

Theorem 3.8 (Theorem 3.1 in [96]). Existence. For all γ > 0 there exists a solution to (3.4).

As discussed earlier, a continuous dependence of minimizer cϵγ on the data gϵ is indispensable to
guarantee that small deviations stay small. This is ensured by the upcoming theorem.

Theorem 3.9 (Theorem 3.2 in [96]). Stability. Consider a sequence {gϵn}n∈N ⊂ Y satisfying

lim
n→∞

∥gϵn − gϵ∥Y = 0. Moreover, let c
gϵn
γ ∈ C be a minimizer to J

gϵn
γ . Then, there exists a subsequence

converging weakly to a minimizer cg
ϵ

γ of Jgϵ
γ . If the solution cg

ϵ

γ is unique, the sequence
{
c
gϵn
γ

}
n∈N

⊂ C

itself converges weakly to cg
ϵ

γ . In case the functional P meets the H-property, the convergence is even

strong.

The last statement �nally concerns convergence of approximated solutions to true solutions for
decreasing noise level ϵ.

Theorem 3.10 (Theorem 3.4 in [96]). Consistency. Consider a sequence {gϵn}n∈N ⊂ Y of noisy

data satisfying lim
n→∞

{ϵn := ∥gϵn − g∥Y } = 0. Let the regularization parameter γn ≡ γ (ϵn) ful�ll

lim
n→∞

ϵpn
γn

= 0 and lim
n→∞

γn = 0.

Then, the sequence
{
cg

ϵn

γn

}
n∈N

⊂ C of corresponding minimizer contains a subsequence, which con-

verges weakly to a P -minimizing solution cP . In case the P -minimizing solution cP is unique, the

sequence itself converges weakly to cP . The convergence is strong for P having the H-property.

With the ongoing investigation of inverse problems, various aspects and setting assumptions have
aroused further interest. Consider for example the inclusion of inaccuracies in the forward model
stemming e.g. from discretization, simplifying assumptions, or usage of approximations instead of
the exact version, when they feature valuable mathematical properties. For MPI, proper modeling
of the complex particle dynamics is still an open problem facing great challenges ([111], [139]). In-
corporation of operator uncertainties in the reconstruction might help to relax the demands on an
accurate model while maintaining reconstruction quality. We exemplary refer to ([18], [34], [170]) for
works dealing with operator uncertainties. Furthermore, in [17] the previously mentioned RESESOP
method was accordingly adapted and tested for dynamic computerized tomography. Thereby, the
time dependence of the tissue density was interpreted as model inaccuracy.
Investigation of dynamic inverse problems became a �eld of research in its own. In the next section,
we give a brief overview with respect to imaging tasks. Moreover, we refer to Subsections 4.1.2 as
well as 4.2.2 for a few considerations regarding dynamic CT and to Chapter 7 for the case of MPI
allowing time-varying particle concentrations.

Please note that some of the references mentioned earlier already targeted recent developments
in inverse problems (e.g. [4], [11]). Additionally, we want to point out the special issue on modern
challenges in imaging [84].
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3. Inverse Problems

3.1. Dynamic inverse problems in imaging

Initially, it was assumed that the searched-for quantity c is static during measurements. However,
in practical applications this might not be true. Consider, for instance, organ movements like the
beating heart or expansion and compression of the lungs while breathing. Additionally, blood �ow
visualization and instrument tracking result intrinsically in time-dependent inverse problems. It is
thus self-evident that reconstruction methods have to be adapted to meet the special requirements
of dynamic inverse problems. Prior information need to be taken into account in order to reduce or
prevent motion artifacts blocking reliable diagnostics. In this section, we �rst introduce the general
setting and then outline di�erent research directions. We conclude with two descriptions of the
object's dynamics, namely motion model and deformable templates. In view of this thesis, it is
worth keeping the latter in mind, as we will use this method in the context of dynamic MPI.

Based on [89] we formalize the setting of dynamic inverse problems via

A (c (·, t) , t) (·, t) = g (·, t) , t ∈ [0,T ] . (3.5)

Thereby, T > 0 denotes the total time required for data acquisition. Independently of each other,
time dependencies may occur at di�erent positions within the above formula. These are indicated
by color and correspond to time dependencies in the

� solution c (·, t) ∈ X, as for tracer material �owing with the blood stream;

� forward operator A (·, t), consider the case that physical properties linking cause and impact
change with time, e.g. due to heating of measurement devices;

� data g (·, t) ∈ Y , as with MPI, where the voltage signal is generated by a change in magnet-
ization with respect to time.

The critical and new time dependence is the one of the searched-for solution resulting in inconsist-
ent and highly undersampled data sets. Just recently, in [40] two notions of ill-posedness, namely
pointwise and uniform ill-posedness, and according regularization of dynamic inverse problems were
proposed.

One of the �rst works aiming at dynamic inverse problems were ([168], [169]). They adapted
the reconstruction process by adding a temporal smoothness assumption. The approach is quite
general, requires no further knowledge of the motion itself and can therefore be used for a wide range
of applications if the movement is not too strong. Within the past years, there was a high increase
in available methods. Many of them base on classical regularization techniques being adapted to
suit the increased demands stemming from the additional degree of freedom due to allowing time
variance. Within the next paragraph, we aim to give a glimpse on di�erent categories of regulariz-
ation techniques and points to be considered with respect to dynamic inverse problems. Again, a
lot of works are multifaceted and while being assigned here to one speci�c class, they may �t into
others as well.
To start with, we refer to the special issue on modeling, regularization and numerical aspects of
time-dependent problems [124]. Furthermore, for a collection of works and a survey paper concern-
ing dynamic inverse problems in imaging, we point to [102] and [89]. The latter is dedicated to
the extensive group of variational approaches, which can be further divided into those exploiting
a motion model, a deformable template, or those not relying on any of these. Examples for works
using motion models based on partial di�erential equations (PDEs) are ([36], [37], [48], [122], [130]).
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3.1. Dynamic inverse problems in imaging

Template motivated papers are given by ([42], [43], [123]), and ([55], [132]) do not exploit precise
knowledge of the motion. The same holds for [32] using shearlets and [145] using level-set methods.
While the aforementioned approaches either consider joint image and motion reconstruction or do
not depend on further motion information, there are also methods assuming the dynamics as given
([77], [104]) in conjunction with dedicated motion estimation techniques ([79], [82], [106], [125]).
Further categories regarding methods aiming at dynamic inverse problems are analytic ([44], [47],
[105], [158]), iterative ([19], [95], [99], [180]), and deep learning ([88], [118], [147], [151]) based ap-
proaches.
For literature speci�cally aiming at dynamic MPI, we refer to Chapter 7 and for further aspects in
the context of dynamic CT to the next chapter.

We close this section by reviewing two of the mentioned approaches. The �rst one incorporates
information about the object's dynamics in terms of a motion model, the second one in terms of
a deformable template. In either case, we suppose that the motion can be modeled using a time-
dependent parameterization. If not indicated di�erently, we refer to [89] for the remainder of this
section.

Let Θ be the set of parameters and assume the existence of a mapping t 7→ θt ∈ Θ and a mo-
tion model Ψθt : X → X such that (3.5) can be rewritten as the constrained inverse problem

A (c (·, t) , t) (·, t) = g (·, t) s.t. Ψθt (c (·, t)) = 0, t ∈ [0,T ] . (3.6)

Both the time-varying image t 7→ c (·, t) ∈ X as well as the time-dependent motion parameter
t 7→ θt ∈ Θ need to be determined based on the measured data t 7→ g (·, t) ∈ Y . Being able to model
the phantom dynamics via a motion model as in (3.6) restricts the set of solutions since therewith
the course of the time development of c is prede�ned. Hence, incorporating the corresponding
constraint simpli�es the problem and may already operate as regularization. However, solving (3.6)
remains a complex task requiring appropriate consideration. The strict constraint can be relaxed
via including the motion model Ψθt in terms of a penalty term.
As noted earlier, PDE-based motion models have been used to deal with dynamic inverse problems.
Prominent examples in this context are given by the optical �ow [91] constraint

Ψν (c (·, t)) :=
∂c

∂t
(·, t) +∇c (·, t) · ν (·, t) (3.7)

assuming intensity preservation and the continuity equation

Ψν (c (·, t)) :=
∂c

∂t
(·, t) +∇ · (c (·, t)ν (·, t))

assuming mass preservation. The parameterization t 7→ θt ∈ Θ is given by a su�ciently regular
velocity �eld θt := ν (·, t).

Another option to model the object's dynamics is to link each state of the phantom c (·, t) to a
static template c0 ∈ X via parameterized deformation operators Wθt : X → X for θt ∈ Θ. To
this end, assume existence of a �xed family {Wθt}θt∈Θ of those mappings such that (3.5) can be
rewritten as

A (Wθt (c0) , t) (·, t) = g (·, t) , t ∈ [0,T ] . (3.8)

Again, both the time-varying image t 7→ c (·, t) ∈ X as well as the time-dependent parameterization
t 7→ θt ∈ Θ need to be determined based on the measured data t 7→ g (·, t) ∈ Y . Similar to the motion
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3. Inverse Problems

model setting, using deformable templates may already operate as regularization and simpli�es the
problem. Nevertheless, solving (3.8) stays challenging and needs a proper reconstruction method.
A special case is when deformation operators can be expressed by di�eomorphisms. Thereby, we
consider two cases based on the underlying constraint. More precisely, we regard existence of
parameterized di�eomorphisms Γθt acting on the image domain such that

Wθt (c0) := c0 ◦ Γθt (3.9)

for the setting of intensity preservation and for mass preservation

Wθt (c0) := (c0 ◦ Γθt) |detDΓθt | . (3.10)

An upcoming question is how to determine the parameterization θt and the according di�eomorph-
isms. Many approaches are inspired by image registration and shape theory. To name a few, in [43]
they build on the concept of large deformation di�eomorphic metric mappings (LDDMM) and [71]
considers metamorphosis. We refer to [193] for a comprehensive introduction into the framework
of shapes and di�eomorphisms including the two approaches just named. We would also like to
mention optimal transport ([161], [183]). Thereby, a mapping is sought that transforms an initial
density into a speci�ed �nal density. The searched-for transport function is optimal in the sense
that it minimizes a certain characteristic quantity.

The methodologies of motion models and deforming templates are somehow interconnected. A
deformation operator may motivate a certain motion model and vice versa. In case of PDE-based
motion models, this connection was especially illustrated in ([42], [43], [89]).
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4. Computerized Tomography

Basic Principle: Computerized tomography allows for the reconstruction of inner
structures by exploiting the varying absorption rates of di�erent tissues with respect
to radiation.

We dedicate this chapter towards the well-known modality X-ray computerized tomography in the
framework of medical imaging. Nevertheless, there are many other application �elds. Some insights
regarding CT were already given in Example 3.1. We recommend to consult [144] for details con-
cerning the mathematical treatment of CT that go beyond our presentation.

One of the early contributions that opened the path for the invention of CT is [152] authored
by Johann Radon. He investigated the determination of a function by its line integrals and is name
giver of the Radon transform.
A major breakthrough for the establishment of CT was reached by scanning a living human for
the �rst time. Dating back to 1972 at the Atkinson Morley's Hospital in London, this proved the
capability of computerized tomography to di�erentiate between healthy and diseased tissue [92].
The clinical relevance was consolidated. For his seminal work with respect to the evolution of CT
and building such a scanner, Godfrey N. Houns�eld was awarded the Nobel Prize in Physiology and
Medicine in 1979 together with Allan M. Cormack. A biography of the latter is given by [181].

Figure 4.1.: Visualization of the parallel scanning geometry: The phantom is irradiated by a set of parallel
X-rays. Data is acquired for evenly distributed directions by rotating radiation source and
detector panel after each measurement.

Ever since, a variety of di�erent scanners was constructed di�ering e.g. based on the sampling
pattern. For the fan beam scanning geometry, the patient is circled by a radiation source emitting
a fan beam of X-rays. We regard the parallel scanning geometry already used in the early days
of CT. Thereby, the specimen is irradiated by a number of equidistant, aligned X-rays. Data is
acquired for evenly distributed angles by rotating radiation source and detector accordingly (see
Figure 4.1). The two geometries mentioned above collect data for one slice through the object at a
time. Implementation examples capturing data for a whole volume at once are spiral and multi-slice
CT (see [98]). The former gathers data via simultaneously rotating the X-ray source and shifting
the patient tabletop, resulting in a helical trajectory of the radiation source relative to the patient.

19



4. Computerized Tomography

Outline of the chapter: In Section 4.1, we derive a forward model for CT regarding both static
as well as time-varying tissue densities. In the dynamic setting, the forward operator is attained
based on di�eomorphic motion functions. Afterwards, Section 4.2 concerns the derivation of an
inversion formula. Again, the static and the dynamic case are considered separately.

4.1. Forward model

We recapitulate forward models for computerized tomography regarding static and dynamic objects
one after the other. Thereby, we focus our attention on the parallel scanning geometry visualized
in Figure 4.1. Reconstructing the object's inner structure in slices allows restriction to two dimen-
sional considerations. For the classical static setting we refer to [144], for time-dependent densities
according references are given within the subpart itself.

4.1.1. Static object

Let c : R2 → R+
0 := R+ ∪{0} be a non-negative, time-invariant density distribution. Example 3.1

presented that the inverse problem in computerized tomography consists in determining the density c
from information about its line integrals (cf. (3.2)). To illustrate the acquired data, Figure 4.2 shows
line integral values for a number of rays for two di�erent scanning directions. It also points out
the necessity of having access to data for a number of source positions. Single measurements
only give the accumulated intensity loss per line, which could have originated from various density
distributions. For instance, the data for a single measurement can always be generated by a constant
phantom whose shape is determined by the area enclosed by the line integral value distribution.
Increasing the number of scanning directions, decreases the number of possible solutions.

Figure 4.2.: Visualization of the acquired data: The data, i.e. the corresponding line integral values, are
shown on the right and at the top of the �gure for two di�erent scanning directions, which
are indicated by red and blue color respectively.

Let S1 :=
{
r ∈ R2 : ∥r∥ = 1

}
denote the unit sphere in R2. Further, we set Z := S1 × R.

De�nition 4.1. The Radon transform of a function c ∈ S
(
R2
)
evaluated at (θ, s) ∈ Z is de�ned

as

Rc(θ, s) :=

∫
R
c
(
sθ + tθ⊥

)
d t =

∫
L(θ,s)

c(r) d r =

∫
R2

c(r)δ (r · θ − s) d r (4.1)
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4.1. Forward model

with dirac-δ-distribution δ = δ0 introduced in Example 2.5 and

L(θ, s) :=
{
r ∈ R2 : s = r · θ

}
(4.2)

de�ning the line orthogonal to θ and with signed distance s to the origin.

Therewith, the forward operator in CT is given by the Radon transform mapping a function to the
set of its line integrals. Existence of the inverse Radon transform would imply the possibility to
determine inner structures of an object by CT measurements. However, the inverse problem

Rc = g

is ill-posed and regularization methods are necessary for a stable reconstruction. Before we have a
closer look at the reconstruction task (Section 4.2), we recall some properties of the Radon transform
following directly from its de�nition (4.1). The Radon transform R of the density c is

� even, that is Rc(−θ,−s) = Rc(θ, s), as

L(−θ,−s) =
{
r ∈ R2 : −s = −r · θ

}
=
{
r ∈ R2 : s = r · θ

}
= L(θ, s);

� linear as the integral is linear by itself;

� contained in S (Z) for c ∈ S
(
R2
)
. Thereby, the space S (Z) is de�ned via restricting functions

in S
(
R3
)
to Z.

The �rst property (evenness) demonstrates that it is su�cient to gather data covering a half circle.
Lastly, one other feature is captured by the Lemma below (cf. [144], pp. 12 f.). For a derivation,
please refer to the reference given.

Lemma 4.2. Let c ∈ S
(
R2
)
. The Radon transform Rc ∈ S (Z) can be extended to

(
R2 \ {0}

)
× R

as a function homogeneous of degree (−1)

Rc (λθ,λs) = λ−1Rc (θ, s)

for (θ, s) ∈ Z and λ > 0. For this extension, derivatives concerning the �rst variable can be

determined as

Dk
θ Rc = (−1)|k|

∂|k|

∂s|k|
R
(
rkc
)

with multi-index k.

As shown in Figure 4.3, the line L(θ, s) can also be speci�ed by the angle φ between x-axis and
regarded X-ray. On that account, we parameterize the normal vector θ ∈ S1 as follows

θ (φ) =

(
− sinφ

cosφ

)
=: eφ, φ ∈ [0, 2π].

Because of this parameterization, throughout this work, we will use both terms Rc (eφ, s) respect-
ively Rc (θ, s) as well as Rc (φ, s) depending on which notion is more convenient in the particular
situation.
Notice that usually the X-ray orientation is determined by the angle between x-axis and normal
vector eφ. Yet, we use the deviating notation above in order to match the one we apply for practical
reasons in the remaining chapters, which focus on magnetic particle imaging. Hence, compared to
common CT literature an angle shift of π

2 appears in the de�nition of φ. This was also remarked
in [114].
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4. Computerized Tomography

s

Figure 4.3.: Visualization of the X-ray parameterization: The X-ray L (eφ, s) is uniquely determined by
the signed distance s to the origin and the normal vector eφ, which itself is set by the angle
φ between x-axis and X-ray.

So far, everything has been considered in a continuous setting. In practice, however, the scanning
process can be executed only for a �nite number of source positions. This leads us to the �nal
remark of this subsection, namely how we assume that the data is sampled.

Remark 4.3. For p, q ∈ N, let measurements be executed for p di�erent scanning directions and

2q + 1 signed distances to the origin determined by

φk := (k − 1)
π

p
, k = 1, . . . , p,

sl := (q + 1− l)
smax

q
, l = 1, . . . , 2q + 1,

with smax > 0 denoting the maximum displacement. Corresponding data are sorted into a so-called

sinogram S ∈ R(2q+1)×p. We suppose that S is �lled according to S = (Slk)l=1,...,2q+1;k=1,...,p and

Slk = Rc (φk, sl) . We refer to Figure 4.4 for an illustration.

Figure 4.4.: Visualization of sorting the Radon data into a sinogram: Each column corresponds to an
angle φ de�ning the scanning direction, while each row corresponds to a displacement s of
the regarded X-ray to the origin.

Before we review the invertibility of the Radon transform for the static case in Subsection 4.2.1, we
consider a forward model for time-varying specimens in the next paragraph.
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4.1. Forward model

4.1.2. Dynamic object

As noted in Section 3.1, the assumption of static objects is not satis�ed for many applications. We
already gave an overview concerning existing methods to reduce or even prevent motion artifacts.
We therefore add only a few more references. In [156] gating is used to treat respiratory motion.
In [129] it is proposed to estimate and compensate motion straight in sinogram space. Therewith,
classical reconstruction approaches can be used. The authors of [81] and [83] investigate the in-
formation content of dynamic data relying on microlocal analysis. The accessible resolution for
a�ne deformations in two dimensions is examined in [78]. Lastly, we refer to [24] for an overview,
published in 2003, regarding conceptions in dynamic CT. The goal of the following part is to derive
an adapted forward operator for moving objects. More precisely, on the grounds of [76], we recall
the approach of using di�eomorphic motion functions linking the time-varying tissue density to a
static reference phantom. This corresponds to the di�eomorphic deformable template framework
introduced at the end of the previous chapter.

In the following, the time dependence is identi�ed with an angle-dependence as the time-consuming
part for CT consists in the rotation of source and detector [76]. Therewith, the Radon transform
of a changing object c (·,φ) ∈ S

(
R2
)
, for all φ ∈ [0, 2π], is given by

Rc(φ, s) =

∫
R2

c(r,φ)δ (r · eφ − s) d r. (4.3)

The issue with dynamic specimen is that for di�erent angles, measurements with respect to di�er-
ent states of the object are taken. This results in insu�cient data for the individual states. As
remedy, motion information can be incorporated via so-called motion functions connecting the time
instances, thus, relating each data to one static reference density. We consider two distinct a priori
assumptions, namely intensity and mass preservation [80] corresponding to (3.9) and (3.10) of the
last chapter. In accordance to this, let c0 ∈ S

(
R2
)
be the static reference state (the template) such

that

(intensity pres.) c (r,φ) = c0 (Γφr) , (4.4)

(mass pres.) c (r,φ) = c0 (Γφr) |detDΓφr| (4.5)

with Γ : R2× [0, 2π] → R2 and Γφr := Γ (r,φ) being a di�eomorphism for each �xed φ ∈ [0, 2π].

The reference density can, for instance, be chosen as one state of the object during data generation

c0 (r) = c (r,φ0)

for some reference angle φ0 ∈ [0, 2π]. We summarize expressions (4.4) and (4.5) as

c (r,φ) = c0 (Γφr)hφ (Γφr) |detDΓφr| (4.6)

via introducing

hφ (y) :=

{∣∣detDΓ−1
φ y

∣∣ , for c as in (4.4),

1 , for c as in (4.5).
(4.7)

The just described concept of motion functions is visualized in Figure 4.5. The static phantom
already shown in Figure 4.2 is depicted in black. On the right side, values of corresponding line
integrals are presented for X-rays regarding φ = 0. Rotation of the radiation source gives the values

23



4. Computerized Tomography

Figure 4.5.: Visualization of inconsistent data: The black phantom de�nes the reference state (phantom
at φ = 0). Corresponding integral values are depicted at the right. At the top of the
picture, data is imaged in red for the deformed specimen (indicated by red contours) at
φ = π

2 . For comparison, the black dashed lines are the measurements for the non-changing
black phantom. Finally, the blue lines link positions within the object at these two angles.

at the top of the image. Thereby, the dashed black line illustrates data for an unchanged phantom,
while the solid red line shows the integral values for the deformed object indicated by the red
contours in the picture center. This demonstrates the data inconsistencies described before, namely
that measurements relate to di�erent states of the object resulting in incomplete data sets with
respect to the di�erent density distributions over time. The blue components show the connection
of the reference object (black) and the current state (red). In this example, it holds |detDΓφr| = 1,
i.e. both mass and intensity preservation are given and the motion of the object can be interpreted
as a motion of its composing particles carrying the density value from Γπ

2
ri to ri with i indicating

the considered particle. It holds (visualized for i = 1, 2)

c
(
ri,

π

2

)
= c

(
Γπ

2
ri, 0

)
= c0

(
Γπ

2
ri

)
.

By inserting expression (4.6) into (4.3), the forward operator for dynamic CT with respect to the
presented motion treatment can be obtained via substituting y := Γφr

Rc(φ, s) =

∫
R2

c0 (Γφr)hφ (Γφr) |detDΓφr| δ (r · eφ − s) d r

=

∫
R2

c0 (y)hφ (y) δ
(
Γ−1
φ y · eφ − s

)
dy.

De�nition 4.4. Assume an angle dependent function c (·,φ) ∈ S
(
R2
)
, for all φ ∈ [0, 2π], that

can be linked to a reference function c0 ∈ S
(
R2
)
as in (4.6). The adapted Radon transform of c0

evaluated at (φ, s) ∈ [0, 2π]× R is de�ned as

RΓc0(φ, s) :=

∫
C(φ,s)

c0 (y)hφ (y) dy =

∫
R2

c0 (y)hφ (y) δ
(
Γ−1
φ y · eφ − s

)
dy (4.8)

with C(φ, s) :=
{
y ∈ R2 : s =

(
Γ−1
φ y

)
· eφ
}
.
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4.1. Forward model

In comparison to the classical Radon transform, the adapted version RΓ takes function values
rather along curves C (φ, s) instead of straight lines [76]. For illustration, we refer to Figure 4.6.
The left picture 4.6a shows the reference state and X-rays traversing the object parallel to the
x-axis. Image 4.6b gives the deformed phantom. The last sketch relates positions of particles at
the current state with those according to the reference state. Thereby, particles distributed along
the parallel black lines regarding the red phantom (deformed) are positioned along the red curves
regarding the black phantom (reference).

(a) (b) (c)

Figure 4.6.: Visualization of the dynamic Radon transform: Picture (a) shows the reference state and
X-rays for φ = 0. Data regarding a deformed phantom for this angle, can be either de-
termined via integrating the actual shape (red phantom in (b)) along straight lines, or by
integrating the reference density along the dashed red curves in (c).

For a�ne motions, i.e. Γ−1
φ is for all φ ∈ [0, 2π] of the form

Γ−1
φ y = Aφy + bφ, Aφ ∈ R2×2, detAφ ̸= 0, bφ ∈ R2,

the adapted Radon transform RΓ still integrates along straight lines. According to

C(φ, s) =
{
y ∈ R2 : s =

(
Γ−1
φ y

)
· eφ
}

=
{
y ∈ R2 : s = (Aφy + bφ) · eφ

}
=
{
y ∈ R2 : s− bφ · eφ = y ·A∗

φeφ
}
,

these lines are orthogonal to
A∗

φeφ

∥A∗
φeφ∥ and have signed distance s−bφ·eφ

∥A∗
φeφ∥ to the origin (cf. [76]).

Remark 4.5. The operator RΓ is in general not symmetric. Nevertheless, based on the symmetry

property in the static case, only data for angles covering a half circle are measured in order to

reduce measurement time and radiation exposure. Thus, using the same scanning process in the

dynamic setting, the forward operator can be assumed to be even without changing the data and for

convenience it is proposed RΓc0(−eφ,−s) = RΓc0(eφ, s) (see [76]).

As �nal note, we point out that even with incorporation of motion information and having access
to measurements covering the whole angle range, the acquired data might be insu�cient for reliable
reconstruction. This is due to the fact that the object might change in such a way that the X-rays
do not hit some regions of the phantom. Consider, for instance, a specimen continuously rotating
in compliance with the source rotation. Then, for all angles the X-rays travel through the same
parts of the object and e�ectively data for only one angle is available. Based on microlocal analysis,
results have been derived investigating the information content of data with respect to di�erent
image artifacts ([81], [83]).
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4. Computerized Tomography

4.2. Reconstruction

Various reconstruction approaches for (dynamic) inverse problems are referenced in Chapter 3. Note
that the underlying forward model for time-varying densities derived in the previous section

RΓc0 = gΓ

reduces to the one for time-constant specimen Rc = g by setting Γ = Id. Thus, methods developed
for time-dependent objects are applicable within the static case as well. In the following, we consider
inversion formulas for both static and dynamic phantoms.

4.2.1. Static object

First, we recall an inversion formula for the classical Radon transform. Due to its ill-posedness,
regularization techniques are mandatory for stable image reconstruction and, hence, for reliable
diagnostics. Exemplary, we review the well-known �ltered backprojection (FBP).

For the derivation of the inversion formula, the Fourier slice theorem is of major importance. It
links the Fourier transform of the Radon data with the Fourier transform of the density itself.

Theorem 4.6 (Fourier Slice Theorem, Theorem 1.1 in [144]). Let c ∈ S
(
R2
)
. It holds for σ ∈ R

R̂c(θ,σ) = (2π)
1
2 ĉ(σθ).

Thereby, the Fourier transform with respect to the second argument is regarded.

Therefore, the searched-for image can essentially be obtained by applying the inverse Fourier trans-
form to the transformed data.

Theorem 4.7 (cf. Theorem 2.1 in [144]). The following inversion formula for the tissue density

applies for c ∈ S
(
R2
)

c(r) =
1

2
(2π)−

3
2

∫
S1

∫
R
eir·(σθ) R̂c(θ,σ) |σ| dσ dθ. (4.9)

Proof. The following is based on the proof of Theorem 2.1 in [144]. To obtain expression (4.9) the
De�nition 2.6 of the Fourier transform and its inverse is exploited

c(r) = F−1F c(r) = (2π)−1

∫
R2

eir·ξ ĉ(ξ) d ξ.

Proceeding to polar coordinates ξ := σθ and applying the Fourier slice theorem yields

c(r) = (2π)−1

∫
S1

∫ ∞

0
eir·(σθ) ĉ(σθ)σ dσ dθ

= (2π)−
3
2

∫
S1

∫ ∞

0
eir·(σθ) R̂c(θ,σ)σ dσ dθ.

Finally, utilizing that the Radon and, thus, its Fourier transform are even, results in

c(r) =
1

2
(2π)−

3
2

∫
S1

∫
R
eir·(σθ) R̂c(θ,σ) |σ| dσ dθ.
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4.2. Reconstruction

As already mentioned, regularization methods are inevitable for reliable reconstruction. A well-
known method called �ltered backprojection can be obtained by including a low-pass �lter in the
above formula. More precisely, in order to smooth the image, a �lter F̂

(
1
γ ·
)
with cut-o� frequency

γ > 0 is complemented to (4.9) (cf. [144], pp. 102 f.)

cγ(r) :=

∫
S1

∫
R
eir·(σθ) R̂c(θ,σ)Φ̂γ(σ) dσ dθ, Φ̂γ(σ) :=

1

2
(2π)−

3
2 |σ| F̂

(
|σ|
γ

)
. (4.10)

Thereby, the �lter satis�es 0 ≤ F̂ ≤ 1 and F̂(λ) = 0 for λ > 1, i.e. Φ̂γ(σ) = 0 for σ /∈ [−γ, γ].

Example 4.8 (Shepp-Logan Filter, pp. 110 f. in [144]). A prominent example is given by the

Shepp-Logan �lter

F̂(σ) =

{
sinc

(
π
2σ
)
, σ ≤ 1,

0, σ > 1,
=⇒ Φγ(s) =


γ2

2π4 , s = ± π
2γ ,

γ2

2π3

π
2
−γs sin(γs)

(π
2 )

2−γ2s2
, otherwise.

We will see that cγ can be expressed in terms of the adjoint R∗ of the Radon transform, which is
given according to the next theorem.

Theorem 4.9 (pp. 13 f. in [144]). The adjoint of the Radon transform is given as

R∗g (r) =

∫
S1

g (θ, r · θ) dθ.

Together with Theorem 2.9, formula (4.10) translates to

cγ(r) =

∫
S1

(Φγ ∗ Rc) (θ, r · θ) dθ = R∗ (Φγ ∗ Rc) (r). (4.11)

This expression explains the name �ltered backprojection. The �ltering part is given in form of the
convolution with Φγ . Note that while Rc (θ, s) determines the integral of c along the line L (θ, s),
the adjoint R∗g (r) considers integrals in relation to all lines through r. Thus, the application of
the adjoint Radon transform gives the backprojection component. To further clarify the idea of the
FBP scheme, we recall the theorem below.

Theorem 4.10 (Theorem 1.3 in [144]). For all c ∈ S
(
R2
)
and g ∈ S (Z) it holds

(R∗g) ∗ c = R∗ (g ∗ Rc) .

Thus, assuming that R∗Φγ approximates the dirac-δ-distribution, it follows with (4.11) that

cγ = R∗ (Φγ ∗ Rc) = (R∗Φγ) ∗ c ≈ c.

For the remainder, we suppose the object under investigation to be contained within the circle BR

of radius R > 0 around the origin, i.e. we assume supp (c) ⊆ BR := BR(0) :=
{
r ∈ R2 : ∥r∥ < R

}
with supp(c) := {r ∈ R2 : c(r) ̸= 0} (cf. support condition in [80]).

Theorem 4.11 (Theorem 1.6 in [144]). The Radon transform (4.1) can be continuously extended

to an operator mapping between L2-spaces

R : L2(BR) → L2

(
ZR := S1 × [−R,R]

)
.

Remark 4.12. For the sake of convenience, throughout this thesis we exploit the continuous exten-

sions c (r) = 0 for r ∈ R2 \BR and Rc (θ, s) = 0 for (θ, s) ∈ Z \ ZR.
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4. Computerized Tomography

4.2.2. Dynamic object

This paragraph deals with an inversion formula for the dynamic Radon transform regarding a�ne
deformations as introduced in Section 4.1.2. We suppose the tissue density to be contained within
a circle BR of radius R > 0 around the origin for all time instances, i.e. for all angles φ ∈ [0, 2π].
Motivated by Theorem 4.11 and justi�ed by the smoothing property of RΓ as declared in [76], we
consider c0 ∈ L2 (BR) with continuous extension c0 (r) := 0 for r ∈ R2 \BR. If not mentioned di�er-
ently, the following is abstracted from [76], adapted to our notation and with the minor adjustment
of simultaneously considering the cases of mass and intensity conservation via incorporating hφ,
de�ned in (4.7).

First, we state the adjoint of the dynamic Radon transform.

Theorem 4.13 (cf. (3.2) in [76]). The adjoint
(
RΓ
)∗

: L2 ([0, 2π]× [−R,R]) → L2 (BR) of the

adapted Radon transform RΓ is given as

(
RΓ
)∗

g (y) =

∫
[0,2π]

hφ (y) g(eφ, Γ
−1
φ y · eφ) dφ.

In the following, we restrict ourselves to a�ne motion functions such that Γ−1
φ is for all φ ∈ [0, 2π]

determined by
Γ−1
φ y = Aφy + bφ, Aφ ∈ R2×2, detAφ ̸= 0, bφ ∈ R2 .

In this setting, de�nition (4.7) transforms to

hφ := hφ (y) =

{
|detAφ| , for c as in (4.4),

1, for c as in (4.5).

Remember that for a�ne motions the forward operator RΓ integrates the density along lines ortho-
gonal to

A∗
φeφ

∥A∗
φeφ∥ . Suppose that {

A∗
φeφ∥∥A∗
φeφ

∥∥ : φ ∈ [0, 2π]

}
= S1,

i.e. data for every direction with respect to the reference state can be taken. Let the motion
be smooth, that is, let Aφ and bφ be componentwise continuously di�erentiable. As in practice
only a �nite number of measurements is available, this does not represent a limitation [81]. A
smooth motion function matching the discrete evaluation points can be found by interpolation.
Furthermore,

j̃ (φ) :=
(
A∗

φeφ
)
1

∂

∂φ

(
A∗

φeφ
)
2
−
(
A∗

φeφ
)
2

∂

∂φ

(
A∗

φeφ
)
1
̸= 0, for φ ∈ [0, 2π] (4.12)

shall be satis�ed.

Like in the static case, before we state the inversion formula, we consider an adaption of the Fourier
slice theorem.

Theorem 4.14 (cf. Theorem 4.1 in [76]). Let c0 ∈ L2 (BR). Application of the Fourier transform

with respect to the second argument to the dynamic Radon transform results in

R̂Γc0(eφ,σ) = (2π)
1
2hφe

−iσbφ·eφ ĉ0(σA
∗
φeφ).
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4.2. Reconstruction

Therewith, we �nally recall the inversion formula for a�ne deformations.

Theorem 4.15 (cf. Theorem 4.2 in [76]). The following inversion formula applies for c0 ∈ L2 (BR)

c0(r) =
1

2
(2π)−

3
2

∫
[0,2π]

h−1
φ

∣∣j̃ (φ)∣∣ ∫
R
eir·σA

∗
φeφ eiσbφ·eφ R̂Γc0(eφ,σ) |σ| dσ dφ. (4.13)

Proof. The proof works similar to the static case, that is to the proof of Theorem 4.7. Inclusion of
the identity map Id = F−1F yields

c0(r) = F−1F c0(r) = (2π)−1

∫
R2

eir·ξ ĉ0(ξ) d ξ.

Substitution of ξ := j (σ,φ) := σA∗
φeφ together with detD j (σ,φ) = σ j̃ (φ) (see (4.12)) gives

c0(r) = (2π)−1

∫
[0,2π]

∫ ∞

0
eir·σA

∗
φeφ ĉ0

(
σA∗

φeφ
)
|σ|
∣∣j̃ (φ)∣∣ dσ dφ.

Next, the adapted Fourier slice theorem 4.14 and the assumed evenness of RΓ, as noted in Re-
mark 4.5, yield

c0(r) =
1

2
(2π)−

3
2

∫
[0,2π]

h−1
φ

∣∣j̃ (φ)∣∣ ∫
R
eir·σA

∗
φeφ eiσbφ·eφ R̂Γc0(eφ,σ) |σ| dσ dφ.

By introducing the Riesz potential ϑ̂−1f (σ) := |σ| f̂ (σ), the inversion formula (4.13) can be further
transformed (see proof of Theorem 4.2 in [76]) to

c0(r) =
1

2
(2π)−

3
2

∫
[0,2π]

h−1
φ

∣∣j̃ (φ)∣∣ ∫
R
eir·σA

∗
φeφ eiσbφ·eφ ̂ϑ−1RΓc0(eφ,σ) dσ dφ

=
1

4π

∫
[0,2π]

h−1
φ

∣∣j̃ (φ)∣∣F−1
(
eiσbφ·eφ ̂ϑ−1RΓc0

) (
eφ, r ·A∗

φeφ
)
dφ.

Using the property of Fourier transforms regarding shifting operators, i.e. Lemma 2.7, together
with Theorem 4.13 results in

c0(r) =
1

4π

∫
[0,2π]

h−1
φ

∣∣j̃ (φ)∣∣ϑ−1RΓc0
(
eφ, r ·A∗

φeφ + bφ · eφ
)
dφ

=
1

4π

(
RΓ
)∗ [

h−2
φ

∣∣j̃ (φ)∣∣ϑ−1RΓc0
]
(r) . (4.14)

Remark 4.16. Note that also the classical inversion formula (4.9) can be written in terms of the

Riesz potential as

c =
1

4π
R∗ϑ−1Rc.

This is a direct consequence of (4.14) by choosing Γ = Id.

This chapter was dedicated to the introduction of the medical imaging scheme computerized tomo-
graphy, considering both static and the more challenging case of time-varying objects. We now
pass over to our main application of interest, namely magnetic particle imaging. We will see for a
particular type of scanner that the geometry for MPI and CT is similar. The rest of this work is
therefore focused on exploring a connection between the corresponding forward models, again for
both static as well as dynamic specimen.
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5. Magnetic Particle Imaging

Basic Principle: Magnetic particle imaging enables reconstruction of the spatial
distribution of magnetic particles injected into the object under investigation via
exploiting their non-linear magnetization response to changing magnetic �elds.

In this chapter, we present the promising but still preclinical medical imaging modality magnetic

particle imaging, introduced in Example 3.2, to some more extent. In contrast to the previous
chapter, here we only regard static phantoms as we will consider time-dependent concentrations
speci�cally in Chapter 7. We highly recommend to consult [113] and [115] for a detailed overview
on MPI imaging principles, historical breakthroughs, as well as scanner types. Further review art-
icles regarding magnetic particle imaging are e.g. given by [75] and [149].

MPI was established by Bernhard Gleich at the laboratory of Philips Research in Hamburg. The
initial publication [63] by him and Jürgen Weizenecker, which appeared in 2005, has attracted at-
tention across disciplines and led to the formation of dedicated research groups working to make
MPI clinically applicable. In 2016, together with their team, Gleich and Weizenecker received the
European Inventor Award in the category 'Industry' 1. The authors of [191] managed to visualize
a beating mouse heart based on �rst in vivo 3D measurements. This proved the ability of MPI
to image living organisms. Bruker Biospin MRI GmbH and Magnetic Insight independently pro-
duced �rst commercial MPI scanners fostering investigations regarding the potential of this newly
developed imaging concept.
Features such as high temporal and spatial resolution, quanti�ability, and non-usage of ionizing ra-
diation [113] make MPI auspicious for various applications comprising both imaging as well as treat-
ment. Examples include cancer detection ([3], [194]), instrument tracking [74] and guidance [160],
bolus ([97], [154], [186]) and cell ([33], [196]) tracking, magnetic hyperthermia ([90], [143]), as well
as long term monitoring ([134], [153]). We refer to [13] for a review on applications and safety
considerations with respect to the usage of magnetic nanoparticles.

MPI relies on the non-linear magnetization response of magnetic particles to changing magnetic
�elds. We will see that the magnetization curve features a highly sensitive area right around zero.
Increasing the magnetic �eld strength eventually results in a saturation magnetization. This is
exploited by applying a combination of a static selection �eld including a low-�eld volume (LFV)
and a spatially constant but timely changing drive-�eld steering the LFV through the region of in-
terest. Therewith, only particles in close vicinity to the LFV are contributing to the signal, while all
others remain in magnetic saturation. Shifting the LFV allows gathering information for numerous
positions within the �eld of view (FOV).
Various scanner implementations have been introduced since the invention of MPI aiming at en-
larging the FOV, reducing the energy consumption, and so forth. Enlarging the �eld of view is
important in order to be able to apply MPI to human-sized objects. For instance, single-sided
scanner were suggested ([148], [163]) allowing specimen of arbitrary size. The authors of [187] pro-

1https://www.epo.org/en/news-events/press-centre/press-release/2016/451588
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5. Magnetic Particle Imaging

posed traveling wave MPI using a new low energy gradient system for �eld generation. A modular
simulation framework for MPI is presented in [103].
As mentioned in Example 3.2, MPI does not rely on properties of the object itself and thus does
not yield any morphological information. An advantage is that MPI o�ers high contrast images
due to missing tissue background signals. Nevertheless, in order to locate the particle concentration
within the body, additional scans with a di�erent imaging modality become necessary. Therefore,
hybrid scanning devices are extremely bene�cial as they prevent repositioning of the phantom while
providing both quantitative information on the tracer concentration and morphological insights.
Hybrid MPI-MRI imaging instrumentation is presented in [59] and [184]. The �rst hybrid MPI-CT
scanner is introduced in [185].
As mentioned above, a selection �eld featuring a so-called low-�eld volume is applied to the region
of interest to ensure that spatial information about the particles' positions is encoded in the data.
This gives rise to another di�erentiation of MPI devices based on the shape of the LFV. The initial
publication [63] used a �eld-free point. Later, a �eld-free line [190] was suggested, which is the
encoding scheme we will consider in this work.
The �rst FFL devices were developed by [12] and [66]. The former enabled electromagnetic line ro-
tation and translation. The latter introduced an x-space projection MPI scanner, with FFL motion
perpendicular to itself. Insights regarding a small-bore �eld-free line imager are available at [136]
presenting the open-source project OS-MPI. The scanning geometries for the FFL scanner and CT
are very similar. Thus, the aforementioned hybrid MPI-CT scanner becomes even more attractive.
A Fourier slice theorem for the MPI-FFL setting was proven in [114]. Especially, they were able to
trace back MPI data to the Radon transform of the particle concentration for an idealized setting.
Likewise, this link was shown in [31] based on their 3D model, which is valid for changing �elds
approximately parallel to their velocity �eld. Therewith, we are now able to formulate the goal of
this thesis. Namely, we aim to investigate the connection of MPI and Radon data for di�erent setup
assumptions covering dynamic particle concentrations (Chapter 7) and magnetic �eld imperfections
(Chapter 8). This enables access to theory and methods from the well-known computerized tomo-
graphy. The authors of [119] stated the �rst experimental results for projection reconstruction and
proved practicability of FBP reconstruction in the context of MPI.

Outline of the chapter: Section 5.1 deals with the derivation of the forward model for magnetic
particle imaging �rst in general and afterwards for the speci�c case of �eld-free line scanning. We
state a link between MPI and Radon data in three dimensions and obtain the corresponding result
of [114] by restriction to a two dimensional setting. Afterwards, following the just mentioned work
by Tobias Knopp et al., we review the sequential reconstruction of Radon data and particle con-
centration in Section 5.2. In contrast, we propose a joint reconstruction of particle concentration
and corresponding Radon data by means of total variation regularization. We consider existence,
stability, and consistency results for this approach and conclude with stating �rst numerical results
comparing the presented reconstruction schemes.

5.1. Forward model

In order to describe magnetic particle imaging mathematically, we now derive the according inverse
problem Ac = g. To this end, we need to specify the data acquisition process as well as the physical
properties and principles relating the searched-for particle distribution c with the data g, which
correspond to voltage signals detected in dedicated receive coils.

32



5.1. Forward model

5.1.1. General scanner

Unless otherwise mentioned, we refer to [113] for the following introduction of the general signal
equation.

As starting point, we regard the tracer being injected into the patient's body. It consists of particles
in the nanometer range featuring a magnetic core and a non-magnetic coating. Appropriate choice
of the coating allows negligence of particle-particle interactions for clinical particle concentrations
and prevents agglomeration. The performance of MPI is �rmly linked to the suitability of the used
tracer. It e�ects characteristics like spatial resolution and sensitivity. In addition, the particles must
be biocompatible. Experience and availability of contrast agents from MRI are useful. In particu-
lar, clinically approved tracer are needed to move MPI from its preclinical stage into clinical trials.
Therefore, MRI tracer that are suitable for MPI, such as Resotran® [87], are of great interest, also
in view of hybrid systems combining both techniques. Nevertheless, the study of specially tuned
magnetic particles can enhance the quality of MPI results [56]. In [131] the performance of a self-
synthesized tracer is compared to commercial ones from MRI. For further aspects regarding tracer,
we refer e.g. to [9].
The reaction of a single particle to an applied �eld is determined by its magnetic moment mi. The
reaction of a collection of N particles is then set by the sum of their magnetic moments. Accordingly,
the magnetization M is de�ned as the sum of all magnetic moments per volume ∆V

M :=
1

∆V

N∑
i=1

mi.

The e�ect of an external magnetic �eld H on the particles' magnetization is visualized in Figure 5.1
for varying �eld strengths. Without applying a magnetic �eld, the particles' magnetic moments are
oriented randomly on the basis of Brownian motion. Exposing the tracer material to a magnetic �eld,
their moments start to align with this external �eld resulting in a non-zero magnetization pointing in
the same direction. Starting from zero, the magnetization changes rapidly with increasing magnetic
�eld strength. Eventually, the curve �attens out and enters the saturation area. This can be
explained considering again the magnetic moments of the particles. With increasing �eld strength,
more and more magnetic moments are oriented according to the outer �eld until �nally every
moment will point in the same direction. Thus, further increasing the �eld strength will not change
the magnetization. This will be exploited to encode spatial information of the tracer material in
the data.
The magnetization M depends linearly on the concentration c

M = cm, c :=
N

∆V
, m :=

1

N

N∑
i=1

mi, (5.1)

linked via the mean magnetization m. For continuous considerations ∆V is set to be in�nitesimal
small. Regarding a discrete setting it corresponds to the voxel volume.

So far, we have been concerned with the reconstruction goal, i.e. determining the particle dis-
tribution c, and �rst associated physical properties. Next, we clarify how these properties can be
exploited to construct a data acquisition scheme resulting in measurements containing su�cient
information for reliable recovery of c. Therewith, we can derive both the given data g and the
forward model A of the inverse problem describing MPI.
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Figure 5.1.: Visualization of the alignment of magnetic moments in an applied �eld (inspired by Figure 2.4
in [53]): The upper image shows the signed modulus of the magnetization M in dependence
of the signed modulus of the applied magnetic �eld strength H. The sign is related to the
direction of the magnetic �eld. The red color indicates a zero �eld, turquoise represents a
low-�eld region where the magnetization is highly sensitive, and dark blue corresponds to an
increased magnetic �eld strength resulting in saturation magnetization. The lower part of
the �gure shows the orientation of the magnetic moments, which become more and more
aligned with the applied magnetic �eld as its �eld strength increases (from left to right) until
all moments point in the same direction.

Magnetic particle imaging builds on the theory of electrodynamics, which itself builds on the Max-
well equations. One of these is Faraday's law of induction

∇×E = −∂B

∂t
(5.2)

stating that a temporal change in the magnetic �ux density B results in a spatial change in the
electric �eld strength E and vice versa. This mutual interference can be tracked by measuring the
induced voltage via a receive coil e.g. made of a single wire loop surrounding an area S (Figure 5.2).
Transforming (5.2) into integral form creates the corresponding connection to the voltage signal u

u (t) =

∮
∂S

E (l, t) · d l = − d
dt

∫
S
B (r, t) · dA. (5.3)

The magnetic �ux density B = µ0 (M+H) is related to the magnetization M and the magnetic
�eld strength H via the permeability of free space µ0 = 4π · 10−7TA−1m. Inserting this relation
into (5.3) results in

u (t) = −µ0
d
dt

∫
S
M (r, t) · dA− µ0

d
dt

∫
S
H (r, t) · dA =: uM (t) + uH (t) . (5.4)
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5.1. Forward model

Figure 5.2.: Visualization of Faraday's law of induction (cf. Figure 2.13 in [113]): A changing magnetic
�eld (turquoise) generates an electric �eld (red). The corresponding induced voltage signal u
is measured via a single loop receive coil (dark blue) with surface S.

For details concerning the fundamentals of electrodynamics, we refer to [70]. Remember that the
magnetization depends linearly on the particle concentration. Hence, equation (5.4) links a physical
instance, which can be measured, to our reconstruction goal and a possible choice for the data is
to set g = u. However, the voltage signal stems not only from the particles' magnetization re-
sponse to the excitation �eld. The applied �eld itself in�uences the measurements by the additional
component uH . Further, due to practical constraints on the analog-to-digital converter and as the
direct feedthrough of the excitation �eld is orders of magnitudes higher than the particle signal,
it is not possible to clear the total voltage u by simply subtracting the induced signal resulting
from an empty measurement. Thus, the signal originating from the outer �eld needs to be removed
before conversion to digital. This can be accomplished by regarding the signal in Fourier space and
choosing a time-dependent excitation �eld with small bandwidth, e.g. a sinusoidal signal leading
to a spectrum containing only a single frequency. Due to the non-linear magnetization response,
the particle induced signal is built by a broad range of harmonics and utilizing a band-stop �lter
before digitization allows it to be accessed alone. Note that application of the band-stop �lter not
only removes the direct feedthrough of the excitation �eld but also the �rst harmonic of the particle
signal. For the sake of simplicity, in the remainder we assume g = uM keeping the actual signal �lter-
ing within the data acquisition process in mind. Please consult [113] for further aspects and insights.

After we have speci�ed which quantity c we are looking for based on given data g, we �nally
aim to de�ne the forward operator A connecting both. According to the law of reciprocity, the
particle induced voltage signal can be determined equivalently as

uM (t) = −µ0
d
dt

∫
R3

M (r, t) · p (r) d r
(5.1)
= −µ0

d
dt

∫
R3

c (r) m (r, t) · p (r) d r (5.5)

with receive coil sensitivity p. Hence, we set

Ac (t) := −µ0

∫
R3

c (r)
∂

∂t
m (r, t) · p (r) d r = uM (t) = g (t) . (5.6)

Thus, the system function introduced in Example 3.2 is given as s (r, t) = ∂
∂t m (r, t) · p (r). Let

T > 0 be the total measurement time. Assuming the particle concentration c : R3 → R+
0 and

system function s : R3× [0,T ] → R to be square-integrable, equation (5.6) is well-de�ned. In the
following, for convenience, we neglect the superscript and only write u for the particle signal.
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5. Magnetic Particle Imaging

Approaches for determining the system function can be categorized into two groups, measurement-
and model-based. The measurement-based approach, used for instance in the �rst MPI publica-
tion [63], applies a calibration scan. Positioning a small delta probe of known concentration at
each voxel position, the system matrix describing a discretized forward operator can be obtained.
Since an MPI scan must be performed for each position of the delta probe, the measurement-based
approach is time-consuming and memory-intensive. Importantly, even changing a single parameter
would require a new calibration scan, making this approach severely cumbersome. However, it
inherently incorporates the complex particle dynamics when being exposed to changing magnetic
�elds. The model-based approach (initiated by [117]), on the other hand, gives �exibility, as changes
in the measurement setup and di�erent grid sizes can be included without an arduous calibration
scan. The development of models that accurately describe the complex particle dynamics is an on-
going challenge. Example works aiming to improve the modeling quality comprise ([2], [111], [189]).
Furthermore, the authors of [101] relate modeling the system function to an inverse parameter iden-
ti�cation problem and ([12], [45]) took relaxation e�ects into account. A survey paper regarding
mathematical modeling of the signal chain is given by [109]. In [146] the RESESOP-Kaczmarz
method introduced in [17] is considered for coping with model uncertainties.
In this work, we use the Langevin theory of paramagnetism to model the magnetization reaction.
While still representing the state of the art, this is known to be no suitable model as it grounds on
the assumption that particles are in thermal equilibrium. Considering the Langevin function

L : R → [−1, 1] , L (λ) :=

{
coth (λ)− 1

λ , λ ̸= 0,

0 , λ = 0,
(5.7)

according to [114] the mean magnetic moment can then be written in terms of the magnetic moment
of a single particle m, the Boltzmann constant kB, and the particle temperature Tp

m (r, t) = m (∥H (r, t)∥) H (r, t)

∥H (r, t)∥
, m (H) = mL

(
µ0m

kBTp
H

)
. (5.8)

Next, we need to specify the data acquisition process in MPI. More precisely, the question is how
to choose the magnetic �elds in order to guarantee information about the particles' position to
be encoded in the measurements. This makes it possible to determine not only the presence of
magnetic material in the scanned area, but also its spatial distribution.

Figure 5.3.: Visualization of the selection �eld: Imaged is a selection �eld featuring a �eld-free point (left)
or a �eld-free line (right) centering the low-�eld volume. Arrows specify the �eld direction
and color indicates the modulus of the magnetic �eld strength. Strong red corresponds to
zero �eld and values are increasing as color changes from red over turquoise to dark blue.
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5.1. Forward model

Exploiting the speci�c shape of the magnetization response, a suitable static, inhomogeneous selec-
tion �eld HS is applied. This allows to distinct the particles' magnetic response to an additionally
applied time-dependent, homogeneous drive �eld HD in correspondence to their position within the
�eld. Thereby, the �eld construction is based on the fact that particles levitated into magnetic sat-
uration by the selection �eld react di�erently to a superimposed changing magnetic �eld than those
located in a LFV, i.e. a highly sensitive region. Currently, two di�erent choices for the selection
�eld, visualized in Figure 5.3, are available. In its initial publication [63] a �eld featuring a �eld-free
point centering the LFV was used. Later, in [190] using a �eld-free line instead was suggested. Note
that the FFP cannot be radially symmetric considering all three dimensions as is explained by the
Maxwell equations. For data acquisition, the LFV is moved through the FOV. The steering takes
place via the time-varying drive �eld. MPI performance for several trajectories is investigated in
[112] for an FFP and in [178] for an FFL scanner. In its original proposal [190], the FFL oscillates
rapidly through the FOV while rotating slowly leading to a scanning geometry that looks like a
rosette and is regarded in Chapter 6.

bb cc

Figure 5.4.: Visualization of spatial encoding (inspired by Figure 2.11 in [53]): The top shows, in one
dimension, a linear gradient selection �eld with a �eld-free point at the origin. The particle
response to an additional sinusoidal excitation �eld is imaged at the bottom for three di�erent
particle positions within the selection �eld. For a particle located at the FFP, the positive
and negative parts of the magnetization response are of the same magnitude and width
(red box). Considering a particle in the positive magnetic �eld strength region, the negative
components of the magnetization are narrower. As a result, the peaks of the voltage signal
are no longer equidistant (turquoise box). A particle located within the positive saturation
area, gives a positive magnetization signal that hardly changes (dark blue box). Since the
voltage signal is proportional to the negative magnetization change, information about the
location is encoded in the data. The voltage peaks di�er in height and spacing as a function
of location. Particles in magnetic saturation barely contribute to the voltage signal.

Figure 5.4 illustrates the generated signal of particles located at three di�erent positions within the
selection �eld (in one dimension) for a sinusoidal excitation �eld. Particles in magnetic saturation
hardly contribute to the voltage signal. Shifting a particle in the direction of the FFP, the voltage
peaks change in magnitude and spacing. Only particles in the FFP show equidistant peaks.
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5. Magnetic Particle Imaging

Considering the magnetic �eld along one axis, the FFP-based selection �eld can be described via
HS (x) = −Gx with gradient strength G specifying the width of the low-�eld. Without loss of gen-
erality we assume G > 0. Adding a drive �eld HD (t) = A cos (2πfd t) with drive peak amplitude
A > 0, drive frequency fd > 0, and time t ∈ [0,T ], the total magnetic �eld is given as

H (x, t) = HS (x) +HD (t) = −Gx+A cos (2πfd t) .

Computing the zeros gives the FFP position FFP (t) := A
G cos (2πfd t), which oscillates in the inter-

val
[
−A

G ,
A
G

]
. It becomes obvious that the choice of parameters A,G, and fd in�uences important

characteristics as FOV size, resolution, and scan time. One of the aspects to consider is that increas-
ing the gradient strength G makes the LFV sharper, resulting in a higher resolution, but also fewer
particles contribute to the signal, which reduces the signal-to-noise ratio (SNR). In addition, the
size of the FOV is reduced. For static concentrations, the SNR can be increased at the expense of
measurement time via averaging voltage signals obtained by multiple scans of the same setting, but
the FOV size is limited by safety concerns regarding the choice of the drive peak amplitude. These
comprise peripheral nerve stimulation (PNS) and heating ([23], [162], [166]). A typical FOV size
concerning these limitations would be 10 × 10 × 5 mm2 for humans [22]. To make MPI applicable
for clinical usage FOV enlargement is thus necessary. For this purpose, so-called focus �elds were
introduced, which enable an extended scanning area by capturing data patch-wise (e.g. [64], [167]).
A further step towards clinical application is the presentation of a human-sized brain scanner [67].

In this work, we are devoted to �eld-free line magnetic particle imaging. Before we turn to this
speci�c scanner type in the next section, we once more recommend to consult [113]. It not only
describes the physical principles, but also imparts knowledge about practical implementation.

5.1.2. FFL scanner

Using a �eld-free line instead of an FFP for spatial encoding was �rst suggested in [190]. We refer
to [29] and [53] for further information and practical insights. Since the FFL scanning scheme ap-
plies a larger LFV, more particles can contribute to the signal, which leads to an increase in SNR
and thus sensitivity. Technical feasibility was proven in [54]. Another highly interesting property
is that scanning geometries for the FFL scanner and computerized tomography look similar and
well-established theory and reconstruction methods of CT may be applicable. We now transform
the forward model (5.6) to this special case and state a �rst link to the Radon transform of the
particle concentration.

Introducing the gradient matrix G ∈ R3×3, the selection �eld can be modeled as HS (r) = Gr. For
example, the choice

G = G

0 0 0

0 −1 0

0 0 1


leads to an FFL along the x-axis as was imaged in Figure 5.3. Again, G > 0 denotes the gradient
strength determining the width of the LFV. Applying the rotation matrix Rφ and further de�ning
the orthonormal vectors eφ, e⊥φ , and ez

Rφ =

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 , eφ =

− sinφ

cosφ

0

 , e⊥φ = −

cosφ

sinφ

0

 , ez =

0

0

1

 ,
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5.1. Forward model

a selection �eld featuring an FFL through the origin within the xy-plane and angle φ to the x-axis
can be expressed as (cf. [114])

HS (r,φ) = RφGR−φ r = −G (r · eφ) eφ +G (r · ez) ez.

Thereby, we exploited that for r = (x, y, z)T it holds

Rφ r = −x e⊥φ + y eφ + z ez, (Rφ)−1 r = R−φ r =
(
−r · e⊥φ , r · eφ, r · ez

)T
. (5.9)

The aforementioned simultaneous line rotation, which leads to a rosette-shaped scanning geometry,
is examined in Chapter 6. In this section, we consider a sequential line rotation. During measure-
ments the FFL is translated through the FOV and in between measurements the FFL is rotated
such that its trajectory forms a star as can be seen in Figure 5.5a.

FFL

FFL

rotation

(a)

s

(b)

Figure 5.5.: Visualization of the sequential line rotation scanning geometry: (a) During measurement,
the FFL is translated through the FOV. It is rotated between scans. (b) Line geometry. The
FFL is uniquely de�ned by the angle φ between line and x-axis as well as the FFL's signed
distance s to the origin.

This geometry can be achieved by superimposing an additional drive �eld

HD(φ, t) = AΛφ(t) eφ

with drive peak amplitude A > 0 and excitation function Λφ : [0,T ] → [−1, 1] to the selection �eld.
The measurement time per angle is �xed to be T > 0. The total magnetic �eld is thus

H(r,φ, t) = (−G r · eφ +AΛφ(t)) eφ +G (r · ez) ez =: fφ (r, t) eφ + fz (r) ez. (5.10)

Computation of the nulls results in the de�nition of the corresponding �eld-free line

FFL (φ, t) = L (eφ, sφ,t) =
{
r ∈ R3 : r · eφ = sφ,t, r · ez = 0

}
, sφ,t :=

A

G
Λφ (t) ,

visualized in Figure 5.5b. Please compare with (4.2) in the CT section.

Remark 5.1. To obtain the star-shaped scanning geometry, we assume for �xed φ ∈ [0, 2π] that

Λφ is continuous covering the entire interval [−1, 1] as well as it is either strictly monotonically

increasing or decreasing on (0,T ).

39



5. Magnetic Particle Imaging

The results below are independent of this assumption and various scanning geometries can be cre-
ated. Remember e.g. that the SNR can be increased by oscillating the FFL through the FOV rather
than performing a single translation per angle. What we need, however, is that the excitation func-
tion is di�erentiable with respect to time. We denote the corresponding derivative as Λ′

φ.

Looking at Figure 5.5 with FFLs replaced by X-rays, similarities between the �eld-free line and
the CT scanning geometry become obvious. While for CT a whole set of X-rays can be emit-
ted, for MPI only one FFL per time step is available. Due to the geometric resemblance of the
scanning processes and because only particles near the FFL contribute to the voltage signal, the
question arose whether MPI-FFL data can be traced back to the Radon transform of the particle
concentration. This would make the extensive results and methods of the well-known medical ima-
ging technique CT accessible for the rather new modality MPI. We obtain the theorem below by
introducing cz : R2 → R+

0 as
cz (x, y) := c (x, y, z) .

Theorem 5.2. For magnetic �elds as given in (5.10) as well as spatially homogeneous receive coil

sensitivity p (r) = p, signal equation (5.5) can be written as

u (φ, t) = −µ0 eφ · p ∂

∂t

∫
R

[
k1z ∗ Rcz (eφ, ·)

]
(sφ,t) d z − µ0 ez · p

∂

∂t

∫
R

[
k2z ∗ Rcz (eφ, ·)

]
(sφ,t) d z,

(5.11)

with convolution kernels

k1z (s) :=
s√

s2 + z2
m
(
G
√
s2 + z2

)
, k2z (s) :=

z√
s2 + z2

m
(
G
√
s2 + z2

)
.

Proof. We insert the speci�c �eld (5.10) into the mean magnetization modeled via the Langevin

theory of paramagnetism (5.8). For convenience, we set fφ,z (r, t) :=
√
f2
φ (r, t) + f2

z (r) and obtain

m (r,φ, t) = m (∥H (r,φ, t)∥) H (r,φ, t)

∥H (r,φ, t)∥
= m (fφ,z (r, t))

fφ (r, t) eφ + fz (r) ez
fφ,z (r, t)

.

Hence, the signal equation (5.5) transforms to

u (φ, t) =− µ0
∂

∂t

∫
R3

c (r) m (r,φ, t) · p (r) d r

=− µ0
∂

∂t

∫
R3

c (r)
fφ (r, t)

fφ,z (r, t)
m (fφ,z (r, t)) eφ · p (r) d r

− µ0
∂

∂t

∫
R3

c (r)
fz (r)

fφ,z (r, t)
m (fφ,z (r, t)) ez · p (r) d r.

Proceeding similar to [114], we assume a spatially homogeneous receive coil sensitivity p (r) = p

and rotate the coordinate system such that the x-axis gets parallel to the FFL, i.e. we substitute
r′ = (v′, s′, z)T := R−φ r, yielding

u (φ, t) =− µ0 eφ · p ∂

∂t

∫
R3

c
(
Rφr′

) fφ (Rφr′, t)

fφ,z (Rφr′, t)
m
(
fφ,z

(
Rφr′, t

))
d r′

− µ0 ez · p
∂

∂t

∫
R3

c
(
Rφr′

) fz (R
φr′)

fφ,z (Rφr′, t)
m
(
fφ,z

(
Rφr′, t

))
d r′.
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5.1. Forward model

Exploiting (5.9), we rede�ne

fz
(
Rφr′

)
= GRφr′ · ez = Gz =: fz,

fφ
(
Rφr′, t

)
= −GRφr′ · eφ +AΛφ(t) = −Gs′ +AΛφ(t) = G

(
sφ,t − s′

)
=: fφ

(
s′, t
)
,

fφ,z
(
Rφr′, t

)
=
√

f2
φ (Rφr′, t) + f2

z (R
φr′) = G

√
(sφ,t − s′)2 + z2 =: fφ,z

(
s′, t
)
.

Therewith, we arrive at

u (φ, t) =− µ0 eφ · p ∂

∂t

∫
R

∫
R

∫
R
cz

(
−v′ e⊥φ + s′ eφ

) fφ (s′, t)

fφ,z (s′, t)
m
(
fφ,z

(
s′, t
))

d v′ d s′ d z

− µ0 ez · p
∂

∂t

∫
R

∫
R

∫
R
cz

(
−v′ e⊥φ + s′ eφ

) fz
fφ,z (s′, t)

m
(
fφ,z

(
s′, t
))

d v′ d s′ d z.

Utilizing the De�nition 4.1 of the Radon transform results in

u (φ, t) =− µ0 eφ · p ∂

∂t

∫
R

∫
R
Rcz

(
eφ, s

′) (sφ,t − s′)√
(sφ,t − s′)2 + z2

m

(
G

√
(sφ,t − s′)2 + z2

)
︸ ︷︷ ︸

k1z
(
sφ,t − s′

)
d s′ d z

− µ0 ez · p
∂

∂t

∫
R

∫
R
Rcz

(
eφ, s

′) z√
(sφ,t − s′)2 + z2

m

(
G

√
(sφ,t − s′)2 + z2

)
︸ ︷︷ ︸

k2z
(
sφ,t − s′

)
d s′ d z.

Exploiting De�nition 2.8 this completes the proof.

We examined the relation between MPI-FFL and Radon data for measurements within a plane. By
analogously applying rotation matrices with respect to the other coordinate system de�ning planes
and adapting the drive �eld accordingly, the FFL can be steered to any position within the R3.
Additionally allowing simultaneous line rotation and translation, o�ers great freedom in the choice
of the scanning trajectory. However, practical feasibility needs to be taken into account. It should
be mentioned that the more time dependencies we allow in the choice of the sampling pattern, the
more components we get within the signal equation when computing the time derivative.

Magnetic particle imaging is three dimensional by itself. Nevertheless, since for all our consid-
erations we regard scanning geometries moving the FFL within the xy-plane, the problem can be
reduced to a two dimensional setting (cf. [110]). To this end, we assume that all particles are located
in the regarded plane such that we can express the tracer distribution as

c (x, y, z) = cz (x, y) δ (z) .

Hence, exploiting m (−H) = −m (H) the signal equation (5.11) simpli�es to

u (φ, t) = −µ0 eφ · p ∂

∂t
[m (G ·) ∗ Rcz=0 (eφ, ·)] (sφ,t) . (5.12)

For the remainder of this thesis, we consider this two dimensional setting. Therefore, we restrict
the introduced matrices and basis vectors to suitable submatrices and subvectors

Rφ =

(
cosφ − sinφ

sinφ cosφ

)
, eφ =

(
− sinφ

cosφ

)
, e⊥φ = −

(
cosφ

sinφ

)
. (5.13)
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5. Magnetic Particle Imaging

Similar to before, it holds for r = (x, y)T

Rφ r = −x e⊥φ + y eφ, (Rφ)−1 r = R−φ r =
(
−r · e⊥φ , r · eφ

)T
. (5.14)

We obtain the two dimensional magnetic �elds

H(r,φ, t) = (−G r · eφ +AΛφ(t)) eφ.

Therewith, the mean magnetization for an ideal FFL scanner can be written as

m (r,φ, t) = m (−G r · eφ +AΛφ(t)) eφ.

Voltage signals are not only measured in one receive coil, but in L ∈ N coils with sensitivity
pl : R2 → R2, for l = 1, . . . ,L. Usually L equals the regarded dimension, i.e. in our case
L = 2. The receive coils are then chosen to be oriented orthogonal to each other. Please consult
[113] for more information regarding receive coils and their sensitivity. For convenience, we de�ne
ZT := [0, 2π] × [0,T ]. Like for tissue densities in Chapter 4, we assume the tracer material to be
contained within the circle BR of radius R > 0 around the origin, i.e. supp (c) ⊂ BR ⊂ R2 and
consider the continuous extensions introduced in Remark 4.12 to be able to regard integrals over
the whole R2.

De�nition 5.3. De�ne AFFL

l : L2

(
BR,R+

0

)
→ L2 (ZT ,R) to be

AFFL

l c (φ, t) := −µ0

∫
R2

c(r)
∂

∂t
m (−G r · eφ +AΛφ(t)) eφ · pl (r) d r. (5.15)

The forward operator for an MPI-FFL scanner is given as AFFL : L2

(
BR,R+

0

)
→ L2

(
ZT ,RL

)
with AFFLc (φ, t) =

{
AFFL

l c (φ, t)
}
l=1,...,L

.

The forward operator is linear and bounded. Assume Λφ+π = −Λφ. Then, because m is odd and
eφ+π = −eφ, it holds

AFFL
l c (φ+ π, t) = AFFL

l c (φ, t) .

Hence, similar to CT it is adequate to gather data only for φ ∈ [0,π]. However, as already noted,
further measurements can be taken to increase the SNR. Note that Λφ+π = −Λφ is not necessary
for the su�ciency of data covering a half circle, however, in this case it gets quite clear.

The above de�nition links the measured data u = {ul}l=1,...,L with the searched-for particle distri-
bution c. Therewith, the inverse problem we need to solve is

AFFLc = u.

According to [110], solving this problem might be less ill-posed than the one for an FFP scanner.
Nevertheless, appropriate regularization methods are necessary for reliable reconstruction.
For the idealized setting considered here, i.e. straight lines centering the LFVs, magnetic �elds being
constant along lines parallel to this FFL, sequential line rotation, and static particle concentrations,
we have already shown a relation between the voltage signal and the Radon data of the particle
distribution in the three dimensional setting. Reduction to our two dimensional considerations,
yields the following link between the forward operators of MPI-FFL and CT, which complies with
the results of [31] and [114].
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5.2. Reconstruction

Theorem 5.4. Given spatially homogeneous receive coil sensitivities pl (r) = pl, the MPI-FFL

forward operator with respect to the l-th receive coil (5.15) can be written as

AFFL

l = Kl ◦ R (5.16)

with convolution operator Kl : L2 (Z,R) → L2 (ZT ,R), for l ∈ {1, . . . ,L},

Klf (φ, t) = −µ0 AΛ
′
φ(t) eφ · pl

[
m′ (G ·) ∗ f (eφ, ·)

](A

G
Λφ (t)

)
.

Proof. The result follows directly from (5.12) computing

∂

∂t
[m (G ·) ∗ Rc (eφ, ·)]

(
A

G
Λφ (t)

)
= AΛ′

φ (t)
[
m′ (G ·) ∗ Rc (eφ, ·)

](A

G
Λφ (t)

)
.

Using a sinusoidal excitation function, the FFL velocity decreases towards the edge of the FOV
and reaches zero at in�ection points. The last theorem therefore explains a potentially lower image
quality with increasing distance from the origin (cf. [112]). Note that for particle diameters ap-
proaching in�nity, the magnetization response becomes a step function. Accordingly, the derivative
of the mean magnetization can be formulated via the dirac-δ-distribution and the forward operator
is pointwise proportional to the Radon transform. However, choosing the particle size as large as
practically possible is not reasonable since e.g. relaxation e�ects and speci�c applications constrain
the diameter [113].

For the remainder of this thesis, we will always consider the �eld-free line encoding scheme. For
the sake of simplicity, we will write brie�y Al refraining from indicating the choice of an FFL scan-
ner. Next, we dedicate ourselves towards reconstruction of the particle concentration as well as
corresponding Radon data. Let the excitation function Λφ be continuously di�erentiable for �xed
φ ∈ [0, 2π].

5.2. Reconstruction

Like for general inverse problems, there are many possible approaches to reconstruct the particle
concentration. For the x-space formulation introduced in [65] for one dimensional FFP measure-
ments, the reconstruction task can be formulated as a deconvolution. The signal equation can also
be �rst discretized and written as matrix vector multiplication. Usually, this equation is regarded in
Fourier space such that excitation signal components can be easily removed. For instance, accord-
ing regularized normal equations can be solved iteratively. A popular method in MPI is to apply
Kaczmarz approach due to its fast convergence as the system matrix rows are almost orthogonal
[116]. Deep learning based image reconstruction is considered in [4]. For a further overview on
existing methods to determine the particle concentration, we refer to [72] and [115].

The �eld-free line scanner is less explored than the FFP implementation. However, in [107] images
obtained via inverse Radon transform based reconstruction are compared to results determined by
applying Kaczmarz method for system matrix-based reconstruction regarding their open-sided FFL
scanner prototype. Furthermore, similar to CT the Fourier slice theorem derived in [114] for the
context of FFL-based MPI can be used to derive reconstruction methods. In the following, we
review their procedure to determine the Radon data from MPI-FFL measurements. In contrast,
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5. Magnetic Particle Imaging

instead of reconstructing Radon data and particle concentration sequentially, we suggest a joint
determination of both by means of total variation regularization inspired by [179].

5.2.1. Sequential reconstruction of Radon data and particle concentration

We follow the course of [114] to recover the Radon data from MPI measurements using a �eld-free
line. Thus, we de�ne m′

G(s) := −µ0m
′(Gs) and pφl := eφ · pl. According to Theorem 5.4, the

voltage signal induced in the l-th receive coil can then be written as

ul (φ, t) = AΛ′
φ(t) p

φ
l

[
m′

G ∗ Rc (eφ, ·)
](A

G
Λφ (t)

)
.

The idea is to eliminate the factor in front of the convolution and apply deconvolution techniques
afterwards. Since pφl vanishes for receive coil sensitivities aligned parallel to the FFL, at least two
receive coils with linear independent coil sensitivities p1 and p2 are required to prevent data loss
with respect to this scanning direction.

Corollary 5.5 (Corollary 1 in [114]). The receive channel normalized signal can be computed as

up(φ, t) := AΛ′
φ(t)

[
m′

G ∗ Rc (eφ, ·)
](A

G
Λφ (t)

)
=

u1(φ, t) + σφu2(φ, t)

pφ1 + σφpφ2
, σφ :=

{
1 , pφ1 p

φ
2 > 0,

−1 , pφ1 p
φ
2 ≤ 0.

For the FFL speed normalization, the voltage signal is divided by the excitation function

up (φ, t) :=
up (φ, t)

AΛ′
φ(t)

=
[
m′

G ∗ Rc (eφ, ·)
](A

G
Λφ (t)

)
.

Thereby, time points need to be removed for which Λ′
φ (t) is zero, which can only be the case at the

boundary. Remember our assumptions regarding the star-shaped scanning geometry (Remark 5.1).
The last step before deconvolution is the transformation of the time dependence into a space de-
pendence. The signal equation can be expressed in terms of the displacement s of the FFL to the
origin

ũp (φ, s) :=
[
m′

G ∗ Rc (eφ, ·)
]
(s) = up

(
φ, Λ−1

φ

(
G

A
s

))
, s ∈

(
−A

G
,
A

G

)
.

The bounds of the interval can be included if Λ′
φ (t) is non-zero on the whole interval [0,T ]. To

�nally determine the Radon data, it is exploited that the Fourier transform of a convolution relates
to the product of the Fourier transforms of the multipliers (cf. Theorem 2.9). For F(m′

G(v)) ̸= 0

for all frequencies v ∈ R it holds

Rc(φ, ·) = F−1

(
(2π)−

1
2
F ũp (φ, ·) (v)
Fm′

G(v)

)
.

Deconvolution is again an ill-posed problem. Hence, it is proposed to apply Wiener deconvolution
attenuating frequency parts with small SNR

RW c(φ, ·) = F−1

(2π)−
1
2
F ũp (φ, ·) (v)
Fm′

G(v)

 |F(m′
G(v))|

2∣∣F(m′
G(v))

∣∣2 + 1
SNR(v)

 . (5.17)
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5.2. Reconstruction

5.2.2. Joint reconstruction of Radon data and particle concentration

Instead of sequentially reconstructing Radon data and particle concentration, inspired by [179] we
suggest a joint reconstruction of both by means of total variation regularization. Starting with the
work by Rudin, Osher, and Fatemi [159], proposing TV for image denoising, total variation became
a popular approach in image reconstruction. Existence, stability, and consistency results with re-
spect to the corresponding minimization problem were investigated in [1]. TV-based methods favor
piecewise constant solutions and allow to reconstruct discontinuities, which correspond to edges
in the image. We refer to [39] and [41] for an overview on theory and numerical methods for the
computation of a TV regularized solution. Also for MPI, TV has already been applied to take a
priori knowledge regarding the image structure into account ([8], [173], [195]). Considering an ideal
FFL scanner, the authors of [94] compared the projection-based ansatz using the inverse Radon
transform with a combination of the system-based ansatz and total variation regularization.

Let us assume R < A
G , that is the concentration is contained within the fully sampled region.

Moreover, suppose the receive coils to be chosen such that eφ ·pl ̸= 0 for at least one l ∈ {1, . . . ,L}.
De�ne D := L2 (BR,R)× L2 (ZR,R), which forms a Hilbert space with inner product

⟨·, ·⟩D := ⟨·, ·⟩L2(BR,R) + ⟨·, ·⟩L2(ZR,R) .

We propose to solve the optimization problem below to determine a regularized particle concentra-
tion c and Radon data v from noisy measurements uϵl , for l = 1, . . . ,L, with noise level ϵ > 0

min
(c,v)∈C

1

2

∑
l

∥Klv − uϵl∥
2
L2

+
ω

2
∥Rc− v∥2L2

+ γ1TV (c) + γ2 P (v) . (5.18)

The feasible set C := {(c, v) ∈ D : c ≥ 0, v ≥ 0} accounts for the non-negativity of particle con-
centration c and Radon data v. The weighting parameter ω > 0 balances the data �delity term
connecting v with the given data uϵl and the second term connecting tracer density c and Radon
data v. The regularization parameters γ1, γ2 > 0 de�ne the strength of penalization. Geometric
a priori information is incorporated via the total variation acting on the concentration. The addi-
tional penalty term for the Radon data is not speci�ed here. Throughout, we either choose it to
be zero or as a sparsity constraint. Di�erently, e.g. directional TV regularization as used in [179]
could be applied. In particular, various choices for both penalty terms are possible, which should
be set according to problem speci�c properties.
Let K : L2 (Z,R) → L2

(
ZT ,RL

)
with Kv (φ, t) = {Klv (φ, t)}l=1,...,L. Further, let u

ϵ = {uϵl}l=1,...,L.
Then, the data �delity term can be expressed as (cf. (2.1))

1

2

∑
l

∥Klv − uϵl∥
2
L2

=
1

2
∥Kv − uϵ∥2L2,RL .

Note that the concentration can also be determined directly via

min
c≥0

1

2

∥∥AFFLc− uϵ
∥∥2
L2,RL + γ1TV (c) .

However, we decided to use (5.18) as it allows exploiting additional information on the Radon data.
Furthermore, therewith the problem is divided into two smaller inverse problems with two forward
operators integrating along lines instead of one integrating over a plane. Moreover, we are interested
in Radon-based methods to keep the connection to the well-known CT.
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To establish existence, stability, and consistency results, we rewrite (5.18) as the unconstrained
optimization problem

min
(c,v)∈D

{
Juϵ

γ (c, v) :=
1

2
∥Kv − uϵ∥2L2,RL +

ω

2
∥Rc− v∥2L2

+ γ1TV (c) + γ2 P (v) + δC (c, v)

}
with indicator function δC introduced in Section 2.2. We further exploited the shorthand form of
the data �delity term and set γ := (γ1, γ2). We make the following assumptions on the penalty
function P .

Assumption 5.6. Let P : L2 (Z,R) → R+
0 be proper, convex, and weakly sequentially lower semi-

continuous.

Therewith, the functional Juϵ

γ satis�es useful properties regarding convex optimization.

Lemma 5.7. Using Assumption 5.6, the objective functional Juϵ

γ : D → R is

(i) proper,

(ii) convex,

(iii) weakly sequentially lower semicontinuous,

(iv) coercive.

Proof. It is easy to see that Juϵ

γ is proper and we only consider the remaining characteristics. By
Theorem 2.22 and 2.23 the total variation is weakly sequentially lower semicontinuous and convex.
Further, K and R are linear bounded operators and the feasible set C is closed and convex. Thus,
Juϵ

γ is jointly convex in (c, v) as per Example 2.18 and Lemma 2.19. It is further weakly sequentially
lower semicontinuous as per Example 2.14 as well as Lemma 2.15 and 2.20. This proves assertions
(ii) and (iii). Since the Radon transform does not annihilate constant functions, it follows by
Lemma 2.26 that

∥c∥BV → ∞ =⇒ ω

2
∥Rc− v∥2L2

+ γ1TV (c) → ∞. (5.19)

To show coercivity, assume
∥(c, v)∥2D = ∥c∥2L2

+ ∥v∥2L2
→ ∞,

i.e. either ∥c∥L2
or ∥v∥L2

must tend towards in�nity. Let us �rst consider ∥v∥L2
→ ∞. We regard

v ≥ 0, otherwise Juϵ

γ (c, v) = ∞ due to the indicator function. Moreover, since R < A
G and due

to Remark 5.1, we can �nd t±R ∈ (0,T ) such that A
GΛφ (t) ∈ [−R,R] and

∣∣AΛ′
φ (t)

∣∣ ≥ ϵR for all
t ∈ [t−R, t+R] and some ϵR > 0. Exploiting the non-negativity of m′ and that m′ (0) > 0, we
estimate

∥Klv∥2L2
=

∫ 2π

0

∫ T

0

∣∣∣∣µ0 AΛ′
φ(t) eφ · pl

[
m′ (G ·) ∗ v (eφ, ·)

](A

G
Λφ (t)

)∣∣∣∣2 d t dφ

≥
(
µ0 m

′ (0)
)2

G ϵR

∫ 2π

0
|eφ · pl|2

∫ t+R

t−R

∣∣∣∣AGΛ′
φ(t)

∣∣∣∣ ∣∣∣∣v(eφ, AGΛφ (t)

)∣∣∣∣2 d t dφ

=
(
µ0 m

′ (0)
)2

G ϵR

∫ 2π

0
|eφ · pl|2

∫ R

−R
|v (eφ, s)|2 d s dφ.

Since eφ · pl ̸= 0 for at least one l ∈ {1, . . . ,L}, we can �nd pL > 0 such that
∑

l |eφ · pl|2 ≥ pL.
Therewith, we compute with C = (µ0 m

′ (0))2G ϵR pL

∥Kv∥2L2,RL =
∑
l

∥Klv∥2L2
≥
(
µ0 m

′ (0)
)2

G ϵR pL

∫ 2π

0

∫ R

−R
|v (eφ, s)|2 d s dφ = C ∥v∥2L2

.
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5.2. Reconstruction

Therefore, we deduce that for ∥v∥L2
→ ∞, it holds 1

2 ∥Kv − uϵ∥2L2,RL → ∞ and it directly follows
that Juϵ

γ (c, v) → ∞. Suppose now that ∥v∥L2
is bounded and ∥c∥L2

→ ∞. Applying the Poincaré-
Wirtinger inequality (2.3) we obtain

∥c∥L2
≤ ∥c− c 1BR

∥L2
+ ∥c 1BR

∥L2
≤ C ′ TV (c) +

√
πR2 |c|

= C ′ TV (c) +
1√
πR2

∥c∥L1
≤ max

{
C ′,

1√
πR2

}
∥c∥BV

and thus, ∥c∥BV → ∞ if ∥c∥L2
→ ∞. Hence, by (5.19) the objective functional Juϵ

γ is coercive
yielding the last statement (iv).

Therewith, the existence, stability, and consistency results of Chapter 3 can be transferred to our
joint reconstruction method.

Theorem 5.8. Existence. Using Assumption 5.6 the minimization problem (5.18) has a solution(
cu

ϵ

γ , vu
ϵ

γ

)
∈ C.

Proof. According to Lemma 5.7, we can apply Theorem 2.21 yielding the proposed existence.

Note that we do not consider uniqueness. This is due to the fact that the Radon transform has
non-trivial null space when only data for �nite scanning directions is available [127].

Theorem 5.9. Stability. Using Assumption 5.6, consider a sequence {uϵ
n}n∈N satisfying

lim
n→∞

∥uϵ − uϵ
n∥

2
L2,RL = 0. Moreover, let

(
c
uϵ
n

γ , v
uϵ
n

γ

)
be a minimizer to J

uϵ
n

γ . Then, there exists

a subsequence converging weakly to a minimizer
(
cu

ϵ

γ , vu
ϵ

γ

)
to Juϵ

γ .

Proof. The proof of Theorem 3.2 in [96] can be transferred to our joint reconstruction setting.
Exploiting that for n ∈ N it holds

1

2
∥Kv − uϵ∥2L2,RL ≤ ∥Kv − uϵ

n∥
2
L2,RL + ∥uϵ − uϵ

n∥
2
L2,RL

as well as that
(
c
uϵ
n

γ , v
uϵ
n

γ

)
is assumed to be a minimizer to J

uϵ
n

γ , it follows

Juϵ

γ

(
c
uϵ
n

γ , v
uϵ
n

γ

)
≤ 2 J

uϵ
n

γ

(
c
uϵ
n

γ , v
uϵ
n

γ

)
+ ∥uϵ − uϵ

n∥
2
L2,RL

≤ 2 J
uϵ
n

γ

(
cu

ϵ

γ , vu
ϵ

γ

)
+ ∥uϵ − uϵ

n∥
2
L2,RL

≤ 4 Juϵ

γ

(
cu

ϵ

γ , vu
ϵ

γ

)
+ 2 ∥uϵ − uϵ

n∥
2
L2,RL

and the sequence
{
Juϵ

γ

(
c
uϵ
n

γ , v
uϵ
n

γ

)}
n∈N

is bounded. From the coercivity of Juϵ

γ we also get the

boundedness of
{(

c
uϵ
n

γ , v
uϵ
n

γ

)}
n∈N

and, therewith, the existence of a subsequence, which we denote

the same, weakly converging to some (c∗, v∗) ∈ C. The weak sequential lower semicontinuity of Juϵ

γ ,
the linearity and boundedness of K together with lim

n→∞
∥uϵ − uϵ

n∥
2
L2,RL = 0 �nally yields

Juϵ

γ (c∗, v∗) ≤ lim inf
n→∞

J
uϵ
n

γ

(
c
uϵ
n

γ , v
uϵ
n

γ

)
≤ lim inf

n→∞
J
uϵ
n

γ

(
cu

ϵ

γ , vu
ϵ

γ

)
= Juϵ

γ

(
cu

ϵ

γ , vu
ϵ

γ

)
,

i.e. (c∗, v∗) is a minimizer of Juϵ

γ .

Theorem 5.10. Consistency. Using Assumption 5.6, consider a sequence {uϵn}n∈N of noisy data

satisfying lim
n→∞

{
ϵn := ∥u− uϵn∥L2,RL

}
= 0. Let the regularization parameters γn := (γ1,n, γ2,n) ≡
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5. Magnetic Particle Imaging

(γ1 (ϵn) , γ2 (ϵn)) ful�ll

lim
n→∞

γ2,n
γ1,n

= 0, lim
n→∞

ϵ2n
γ1,n

= 0, and lim
n→∞

γ1,n = 0, lim
n→∞

γ2,n = 0.

Then, the sequence
{(

cu
ϵn

γn
, vu

ϵn

γn

)}
n∈N ⊂ C of minimizer to Juϵn

γn contains a subsequence converging

weakly to a solution
(
c†, v†

)
∈ C of

Kv = u, Rc = v

with c† being a TV-minimizing solution to (K ◦ R) c = u.

Proof. We adapt the proof of Theorem 3.4 in [96] to our needs. Again, we have that for n ∈ N it
holds

1

2

∥∥Kvu
ϵn

γn
− u

∥∥2
L2,RL ≤

∥∥Kvu
ϵn

γn
− uϵn

∥∥2
L2,RL + ∥u− uϵn∥2L2,RL .

Utilizing that
(
cu

ϵn

γn
, vu

ϵn

γn

)
is a minimizer to Juϵn

γn
, we infer

Ju
γn

(
cu

ϵn

γn
, vu

ϵn

γn

)
≤ 2 Juϵn

γn

(
cu

ϵn

γn
, vu

ϵn

γn

)
+ ∥u− uϵn∥2L2,RL

≤ 2 Juϵn

γn

(
c†, v†

)
+ ϵ2n

≤ 2γ1,nTV
(
c†
)
+ 2γ2,n P

(
v†
)
+ 2ϵ2n

and the sequence
{
Ju
γn

(
cu

ϵn

γn
, vu

ϵn

γn

)}
n∈N is bounded. From the coercivity of Ju

γn
we again deduce

the boundedness of
{(

cu
ϵn

γn
, vu

ϵn

γn

)}
n∈N. It follows the existence of a subsequence, which we denote

the same, weakly converging to a (c∗, v∗) ∈ C. It holds due to the linearity and boundedness of
K,R and the weak sequential lower semicontinuity of norms that

1

2
∥Kv∗ − u∥2L2,RL +

ω

2
∥Rc∗ − v∗∥2L2

≤ lim inf
n→∞

1

2

∥∥Kvu
ϵn

γn
− u

∥∥2
L2,RL +

ω

2

∥∥Rcu
ϵn

γn
− vu

ϵn

γn

∥∥2
L2

≤ 2 lim sup
n→∞

(
γ1,nTV

(
c†
)
+ γ2,n P

(
v†
)
+ ϵ2n

)
= 0,

i.e. Kv∗ = u, Rc∗ = v∗. Finally, we complete the proof by deriving from the weak sequential
lower semicontinuity of the total variation (Theorem 2.22) that

TV (c∗) ≤ lim inf
n→∞

TV
(
cu

ϵn

γn

)
≤ lim sup

n→∞
TV

(
cu

ϵn

γn

)
≤ lim sup

n→∞

1

γ1,n
Juϵn

γn

(
cu

ϵn

γn
, vu

ϵn

γn

)
≤ lim sup

n→∞

1

γ1,n
Juϵn

γn

(
c†, v†

)
≤ lim

n→∞

(
TV

(
c†
)
+

γ2,n
γ1,n

P
(
v†
)
+

ϵ2n
γ1,n

)
= TV

(
c†
)
.

5.2.3. Numerical results

Throughout this thesis, we consider numerical examples for synthetic data and di�erent setup as-
sumptions. Based on the simulation framework developed by Gael Bringout [29] available at https:
//github.com/gBringout, we implemented one adapted to our purposes. In this section, we give
�rst reconstruction results for the idealized setting proposing static phantoms, ideal magnetic �elds,
and sequential line rotation. The corresponding magnetic �elds can be modeled using a �nite number
of spherical harmonics as described in Appendix A.1. We compare our suggested joint reconstruc-
tion approach with the sequential image determination described in [114] and Paragraph 5.2.1.

48

https://github.com/gBringout
https://github.com/gBringout


5.2. Reconstruction

Consider the semidiscrete setting regarding a �nite number p ∈ N of FFL orientations speci�ed
by

φj := (j − 1)
π

p
, j = 1, . . . , p. (5.20)

As already mentioned, the excitation function is usually chosen to be sinusoidal. According to this
we de�ne

Λφj (t) =

{
cos (2πfdt) , j odd,

− cos (2πfdt) , j even,
j = 1, . . . , p, t ∈ [0,T ]

with drive frequency fd > 0 and T = 1
2fd

. Hence, initially the FFL is located parallel to the x-axis

with displacement A
G to the origin. It is then translated in orthogonal FFL direction until a signed

distance −A
G to the coordinate center is reached. After a small rotation, the line is moved back

through the FOV. This sequential repetition of translation and rotation then indeed results in a star-
shaped scanning geometry as was visualized in Figure 5.5a. Within our numerical investigations,
we consider an instantaneous rotation.
The tracer material is modeled as a solution with 0.5 mol(Fe3O4)

m3 concentration of magnetite with
30 nm core diameter and 0.6

µ0
T saturation magnetization. We propose the particle distribution

to be normalized to one and contained within the circle of radius A
G , i.e. the maximum FFL

displacement, around the origin. For data generation, we divide the FOV
[
−A

G ,
A
G

]
×
[
−A

G ,
A
G

]
into

501 × 501 pixel. Since MPI is intrinsically three dimensional and the concentration is given per
volume, these are actually implemented as 501 × 501 × 1 voxel. In order to avoid inverse crime,
reconstructions are executed on a coarser 201× 201 grid. Moreover, we use the concentration based
formulation of the forward model (5.15) for data simulation and the Radon-based formulation (5.16)
for reconstruction. We simulate voltage signals induced in two orthogonal receive coils. The chosen
receive coil sensitivities as well as further simulation parameters are summarized in Table 5.1.

Table 5.1.: Simulation parameters

Parameter Explanation Value Unit

µ0 magnetic permeability 4π · 10−7 TA−1m

kB Boltzmann constant 1.380650424 · 10−23 JK−1

Tp particle temperature 310 K

G gradient strength 4 T (mµ0)
−1

A drive peak amplitude 0.015 Tµ−1
0

p1 sensitivity of the �rst receive coil [0.015/293.29, 0]T m−1

p2 sensitivity of the second receive coil [0, 0.015/379.71]T m−1

fd drive-�eld frequency 25 kHz

fs sampling frequency 8 MHz

p amount of FFL directions 25

We use standard methods for discretization and denote the resulting operators using bold letters.
If not mentioned di�erently, we use composite trapezoidal rule and linear respectively bilinear
interpolation if necessary. We approximate time derivatives via central and spatial derivatives via
forward di�erences. Finally, we replace Lp-norms via the norms ∥·∥p in the respective lp-space of
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5. Magnetic Particle Imaging

sequences. The above choice of parameters leads to

ns :=
fs
2fd

+ 1 = 161

data points per sampling direction, which are gathered equidistantly in time. Therefore, the cor-
responding FFL positions are not equidistant according to the choice of the excitation function.
During the signal processing according to [114], summarized in Paragraph 5.2.1, we use cubic spline
interpolation to determine the signal on an equidistant spatial grid before the deconvolution step.
Note that for our method, introduced in Paragraph 5.2.2, no signal transformation is necessary.
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Figure 5.6.: Phantom (a) and corresponding sinogram (b).

We consider simulated data generated for the phantom given in Figure 5.6a. Additionally to the
phantom itself, we aim to reconstruct the corresponding sinogram for evenly distributed angles
(5.20) as well as evenly distributed signed distances to the origin

sl =

(
1− 2

l − 1

ns − 1

)
A

G
, l = 1, . . . ,ns,

depicted in Figure 5.6b. First of all, using (5.17) respectively

Rγc(φ, ·) = F−1

(
(2π)−

1
2
F ũp (φ, ·) (v)
Fm′

G(v)

(
|F(m′

G(v))|
2∣∣F(m′

G(v))
∣∣2 + γ

))
(5.21)

and choosing γ = 1 · 10−12 by visual inspection, we obtain the sinogram in Figure 5.7.
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10-3

Figure 5.7.: Sinogram reconstruction using Wiener deconvolution (5.21) with γ = 1 · 10−12.
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5.2. Reconstruction

In [114] numerical results obtained by applying �ltered backprojection to the previously determined
Radon data were compared with results obtained by a system matrix-based Tikhonov regularized
least-squares approach exploiting Kaczmarz for its solution. We restrict ourselves towards Radon-
based approaches and give results using FBP. Thereby, since we assume the phantom to be contained
within the circle of Radius A

G , we set all values outside this region to zero. The corresponding
reconstruction is given in Figure 5.8a. All components of the phantom are clearly visible in the
concentration reconstruction based on the Radon data determined by (5.21). However, the image is
quite blurry and the background artifacts on the upper and lower part of the reconstructed sinogram
(Figure 5.6b) are re�ected in the circle contour in Figure 5.8a merging with the lower left corner
of the square. The sharpness of the determined phantom and the intensity of the artifacts must
be weighed up by the choice of γ. Smaller γ results in a sharper reconstruction at the cost of
heavy artifacts obscuring the phantom. For comparison, Figure 5.8b gives the FBP reconstruction
using computed exact Radon data, which shows clear contours of the shapes. While the sinogram
is generated for 161 points per scanning direction, the number of angles (p = 25) is rather small.
This results in streak artifacts visible in both FBP reconstructions.
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Figure 5.8.: Phantom reconstruction using �ltered backprojection for the sinogram obtained using Wiener
deconvolution (a) and for computed exact Radon data (b).

Next, we consider results for our joint reconstruction approach (5.18). Let K and R denote the
discretized forward mappings regarding MPI and CT. Moreover, let u denote �nite data obtained
via stacking measurements of both receive coils in one vector. Let u∞ denote the maximum absolute
data value regarding all time points and both receive coils. By setting

û :=
u

u∞
, K̂ :=

K

u∞
,

we normalize the maximum absolute data value to one. We consider P = 0 and thus actively only
regularize the concentration, which leads to the minimization problem

min
c≥0,v≥0

1

2

∥∥∥K̂v − û
∥∥∥2
2
+

ω

2
∥Rc− v∥22 + γ1 ∥∥∇c∥2∥1 . (5.22)

To solve this problem, we use CVX, a package for specifying and solving convex programs ([68],
[69]), together with the MOSEK solver [141]. By visual inspection, we determine a good choice for
the parameters ω and γ1. We then tune these by comparing solutions for ω ∈ {1, 2, 4} ·104 and γ1 ∈{
0.15.5−0.05i, i = 0, . . . , 49

}
based on their structural similarity (SSIM) value of the reconstructed

particle concentration with the groundtruth phantom. Reconstructions regarding the choice of
parameters yielding the highest SSIM value are given in Figure 5.9.
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(b)

Figure 5.9.: Reconstruction of phantom (a) and sinogram (b) based on (5.22) for the parameter choice
ω = 2 · 104, γ1 = 0.14.65, and according SSIM value SSIM (c) = 0.9576.

Both the considered particle distribution as well as the associated Radon data are well reconstructed.
Furthermore, the streaking artifacts that appeared in the FBP reconstructions have completely
disappeared as TV-based approaches endorse piecewise constant structures. However, the corners
of the square are not sharply de�ned. An explanation can be e.g. missing information in the data
or since we use an isotropic de�nition of the total variation favoring rounded edges (cf. [39] and
Section 2.3). To conclude, we state results concerning added Gaussian noise (standard deviation:
ca. 0.8% of u∞) in Figure 5.10.
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Figure 5.10.: Reconstruction of phantom (a) and sinogram (b) applying (5.22) to noisy data. Parameters
are chosen as ω = 4 · 104, γ1 = 0.13.9, leading to an SSIM value SSIM (c) = 0.8915.

In real applications, the object might move and LFVs exhibit deformations. Hence, the next chapters
deal with these non-ideal settings and aim to derive a similar relation between situation adapted
MPI and Radon data. We start with introductory considerations and move on to simultaneous line
rotation.
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6. Simultaneous Line Rotation

This chapter also deals with MPI regarding static phantoms and ideal magnetic �elds, i.e. straight
lines centering the LFV. In contrast to Chapter 5, however, we here regard the scanning geometry
suggested in the initial publication with respect to the FFL scanner [190]. The left image below
(Figure 6.1a) recapitulates the sequential line rotation pattern discussed in the previous chapter.
Remember that in this case the FFL is translated through the FOV followed by a rotation in
between measurements. The translation and rotation procedure is repeated for di�erent FFL ori-
entations. Instead, for the simultaneous line rotation scheme translation and rotation are jointly
executed resulting in an FFL trajectory forming a rosette (Figure 6.1b). Simultaneous rotation
decreases the measurement time as data generation is not interrupted while rotating the FFL. For
clinical applications short scanning times are crucial e.g. for avoiding inconsistent data sets due
to time-varying concentrations. An open-source FFL implementation enabling continuous line ro-
tation by mechanical movement of the corresponding magnets and shift coils for imaging the rat
brain is presented in [137]. The authors of [31] and [114] proposed that the relation of the forward
operator to the Radon transform stated in Theorem 5.4 can still be used for image reconstruction,
if the rotation is su�ciently slow compared to the translation speed. The aim of this chapter is to
examine this setting in more detail. Our results of this chapter have been published in [16].

Outline of the chapter: In Section 6.1, we adapt the forward model (5.15) by taking the addi-
tional time dependence resulting from the changed scanning geometry into account. Due to these
new time dependencies and the time derivative within the model, the signal equation contains ad-
ditive components. We link each of these to the Radon transform respectively a weighted version
of the Radon transform and state corresponding upper bounds depending on the line translation or
rotation velocity in Section 6.2. Afterwards, in Section 6.3, we modify our TV-based reconstruction
approach according to the speci�ed forward model and state corresponding numerical results for
synthetic data in Section 6.4.

FFL

FFL

rotation

(a) Sequential line rotation

FFL

FFL

rotation

(b) Simultaneous line rotation

Figure 6.1.: Visualization of two di�erent scanning geometries: (a) Sequential line translation and rota-
tion. (b) Simultaneous line translation and rotation.
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6. Simultaneous Line Rotation

6.1. Forward model

First, we give a more general formulation of the De�nition 5.15 of the MPI-FFL forward operator.
To this end, we add a time dependence to the angle φ : [0,T ] → [0, 2π] and adapt the notation
accordingly, namely we set et := eφ(t) as well as Λ (t) := Λφ(t) (t). Note that T > 0 is now the total
measurement time. Both Λ and φ are proposed to be di�erentiable with derivatives Λ′ and φ′.

De�nition 6.1. De�ne Al : L2

(
BR,R+

0

)
→ L2 ([0,T ] ,R) to be

Alc (t) := −µ0

∫
R2

c(r)
∂

∂t
m (−G r · et +AΛ (t)) et · pl (r) d r. (6.1)

The forward operator for an MPI-FFL scanner is then given as A : L2

(
BR,R+

0

)
→ L2

(
[0,T ] ,RL

)
with Ac (t) = {Alc (t)}l=1,...,L.

This formulation of the forward model allows consideration of various scanning geometries. For
example, sequential line rotation can be described via choosing φ (t) to be piecewise constant.
Regarding simultaneous line rotation, the angle φ determining the FFL direction changes with
the corresponding translation. By introducing the line rotation frequency frot > 0, the trajectory
visualized in Figure 6.1b can be obtained by choosing the excitation function as Λ (t) = cos (2πfdt)

and considering a temporally changing angle determined via φ (t) := 2πfrott (cf. [31]). Thereby, we
propose that within a half line rotation, the FFL moves (2n+ 1)-times through the FOV

fd
frot

= 2n+ 1, n ∈ N.

This guarantees that after t =
1

2frot
, that is φ

(
1

2frot

)
= π, the FFL is back at its initial position.

Therewith, as for CT and sequential line rotation, we motivate that gathering data within the angle
range [0,π] contains all required information.

Due to the additional time dependence, additional terms appear when determining the time de-
rivative. Assuming that the FFL rotation is su�ciently slow compared to its translation, [114]
and [31] supposed that Theorem 5.4 is still applicable. In what follows, we investigate this setting
in more detail. We determine the supplementary components by executing the derivative and infer
an analogue result to Theorem 5.4 by expressing these parts in terms of the Radon transform of the
particle concentration.

6.2. Relation between MPI and Radon data

Like for et, we adapt the notation in (5.13) towards Rt := Rφ(t) as well as e⊥t := e⊥φ(t). We further

set R−t :=
(
Rt
)−1

= R−φ(t) and we de�ne a weighted version of the Radon transform

R̃c (et, s) :=

∫
R2

c (r) δ (r · et − s) r · e⊥t d r. (6.2)

Exploiting (5.14) and rotating the coordinate system such that one axis is determined by et and
the other one by e⊥t (see Figure 6.2), i.e. substituting r′ := (v′, s′)T := R−t r = R−t (x, y)T , yields

R̃c (et, s) = −
∫
R
c
(
s et−v′ e⊥t

)
v′ d v′.
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Thus, R̃ determines the line integral for the function being weighted by the signed distance in
line direction v′ to the origin. It is therefore easy to see that this operator annihilates radially
symmetrical functions, i.e. c(r) = c(∥r∥).

Figure 6.2.: Visualization of the rotation of the coordinate system such that one axis gets parallel to the
FFL marked in red.

We now derive a relation between the Radon transform and the MPI-FFL forward operator (6.1)
with a similar result as Theorem 5.4.

Theorem 6.2. Given spatially homogeneous receive coil sensitivities, the MPI-FFL forward operator

with respect to the l-th receive coil (6.1) can be written as

Al = K1,l ◦ R+K2,l ◦ R̃+K3,l ◦ R

with convolution operators Ki,l : L2 (Z,R) → L2 ([0,T ] ,R) , for i = 1, 2, 3 and l ∈ {1, . . . ,L},

K1,lf (t) = −µ0 AΛ′ (t) et · pl m
′ (G ·) ∗ f (et, ·) (st) ,

K2,lf (t) = µ0 Gφ′ (t) et · pl m
′ (G ·) ∗ f (et, ·) (st) ,

K3,lf (t) = −µ0 φ′ (t) e⊥t · pl m (G ·) ∗ f (et, ·) (st)

with st :=
A

G
Λ (t).

Proof. We start with executing the derivative in (6.1). Exploiting that e′t = φ′ (t) e⊥t and that the
receive coil sensitivities are proposed to be spatially homogeneous, we arrive at

Alc (t) = − µ0 AΛ′ (t) et · pl

∫
R2

c(r) m′ (−G r · et +AΛ (t)) d r

+ µ0 Gφ′ (t) et · pl

∫
R2

c(r) m′ (−G r · et +AΛ (t)) r · e⊥t d r

− µ0 φ′ (t) e⊥t · pl

∫
R2

c(r) m (−G r · et +AΛ (t)) d r.

As with the considerations regarding the weighted Radon transform and similar to [114], we transfer
to a coordinate system with one axis being parallel to the �eld-free line, as visualized in Figure 6.2

55



6. Simultaneous Line Rotation

and accomplished by substituting r′ := (v′, s′)T := R−t r. Based on (5.14) it holds

FFL
(
et, s

′) = L
(
et, s

′) = {r ∈ R2 : r · et = s′
}
=
{
s′ et − v′ e⊥t : v′ ∈ R

}
=

{
Rt

(
v′

s′

)
: v′ ∈ R

}
.

We thus obtain

Alc (t) = − µ0 AΛ′ (t) et · pl

∫
R
Rc
(
et, s

′) m′ (−G s′ +AΛ (t)
)
d s′

+ µ0 Gφ′ (t) et · pl

∫
R
R̃c
(
et, s

′) m′ (−G s′ +AΛ (t)
)
d s′

− µ0 φ′ (t) e⊥t · pl

∫
R
Rc
(
et, s

′) m
(
−G s′ +AΛ (t)

)
d s′.

Hence, we �nally get

Al = K1,l ◦ R+K2,l ◦ R̃+K3,l ◦ R

completing the proof.

Remark 6.3. The sequential line rotation setting can be described by De�nition 6.1 via choosing

φ (t) to be piecewise constant and neglecting the �nite jumping points. In that case, operators K2,l

and K3,l become zero mappings and Theorem 6.2 reduces to Theorem 5.4.

Remark 6.4. As in Theorem 5.2, we could have derived the more compact expression

Alc (t) = −µ0
∂

∂t
et · pl [m (G ·) ∗ R (et, ·)]

(
A

G
Λ (t)

)
.

However, we are interested in the additional terms resulting from a sampling pattern where the FFL

direction is time-dependent. Executing the time derivative in the above formula, gives the same

result as in Theorem 6.2, validating our computation. This can be seen by exploiting Lemma 4.2 to

obtain
∂

∂t
Rc (et, s) = −φ′ (t)

∂

∂s
R
(
r · e⊥t c

)
(et, s) = −φ′ (t)

∂

∂s
R̃c (et, s)

and applying integration by parts.

As shown in the last theorem, for all receive coils the according forward operator Al can be divided
into three parts Ki,l, i = 1, 2, 3. Thereby, the third term incorporates the orientation change of
the �eld-free line with respect to the receive coil sensitivity. For interpretation of the second term,
we refer to the next chapter. Each component gives a convolution with the Radon transform
respectively its weighted version de�ned in (6.2). While the �rst part K1,l is analogue to the
sequential setting regarded in the last chapter and scales with the translation speed Λ′ (t), the other
two stem from the additional time dependence due to the simultaneous rotation and thus scale with
the rotation speed φ′ (t) of the FFL. Hence, Theorem 6.2 supports the assumption of [31] and [114]
that Theorem 5.4 can still be used in case φ′ (t) is small enough compared to Λ′ (t). For further
con�rmation regard the lemma below.

Lemma 6.5. Let R = A
G , i.e. the concentration is contained within the fully sampled region.

Assume φ′ (t) ̸= 0 for all t ∈ [0,T ]. Then, it holds

|K1,lRc (t)| ≥
∣∣∣∣Λ′ (t)

φ′ (t)

∣∣∣∣ ∣∣∣K2,lR̃c (t)
∣∣∣ .
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6.2. Relation between MPI and Radon data

Proof. We have

R̃c (et, s) =

{
−
∫ √

R2−s2

−
√
R2−s2

c
(
s et−v′ e⊥t

)
v′ d v′, for s ≤ R,

0, for s > R,

≤ R Rc (et, s) .

Therewith, we obtain

|K1,lRc (t)| =
∣∣µ0 RGΛ′ (t) et · pl m

′ (G ·) ∗ Rc (et, ·) (st)
∣∣

≥
∣∣∣µ0 GΛ′ (t) et · pl m

′ (G ·) ∗ R̃c (et, ·) (st)
∣∣∣

=
∣∣∣µ0 Gφ′ (t) et · pl m

′ (G ·) ∗ R̃c (et, ·) (st)
∣∣∣ ∣∣∣∣Λ′ (t)

φ′ (t)

∣∣∣∣
=

∣∣∣∣Λ′ (t)

φ′ (t)

∣∣∣∣ ∣∣∣K2,lR̃c (t)
∣∣∣ .

As mentioned earlier, to get a rosette trajectory as in Figure 6.1b, we set the excitation function
Λ (t) = cos (2πfdt) and the time-varying angle φ (t) := 2πfrott. In this case, it holds∣∣∣∣Λ′ (t)

φ′ (t)

∣∣∣∣ = fd
frot

|sin (2πfdt)| . (6.3)

At each in�ection point of the FFL, the �rst term K1,lRc reaches the value zero. According to
Lemma 6.5 and (6.3), the associated time intervals in which this component can be exceeded by
K2,lR̃c are the smaller the larger the ratio fd

frot
gets. As per [189], drive frequencies range around

1 kHz to 150 kHz and by [31] a typical upper bound for the rotation frequency is given by 100 Hz.
Therewith, we estimate fd

frot
≥ 10. For radial symmetric concentrations, K2,lR̃c vanishes.

Finally, we state bounds for
∣∣∣K2,lR̃c (t)

∣∣∣ and |K3,lRc (t)| .

Lemma 6.6. Let m denote the magnetic moment of a single particle, m′
∞ := max

λ∈R
m′ (λ) and Np

the total amount of particles contained in the tracer injection. Then, it holds that∣∣∣K2,lR̃c (t)
∣∣∣ ≤ µ0GR

∣∣φ′ (t)
∣∣ ∣∣∣et · pl

∣∣∣m′
∞ Np,

|K3,lRc (t)| ≤ µ0

∣∣φ′ (t)
∣∣ ∣∣∣e⊥t · pl

∣∣∣m Np. (6.4)

Proof. From the proof of Theorem 6.2 we obtain∣∣∣K2,lR̃c (t)
∣∣∣ =

∣∣∣∣µ0Gφ′ (t) et · pl

∫
R2

c(r) m′ (−G r · et +AΛ (t)) r · e⊥t d r

∣∣∣∣ ,
|K3,lRc (t)| =

∣∣∣∣µ0 φ′ (t) e⊥t · pl

∫
R2

c(r) m (−G r · et +AΛ (t)) d r

∣∣∣∣ .
Therewith, it follows∣∣∣K2,lR̃c (t)

∣∣∣ ≤ µ0GR
∣∣φ′ (t)

∣∣ ∣∣∣et · pl

∣∣∣m′
∞

∣∣∣∣∫
R2

c(r) d r

∣∣∣∣ ≤ µ0GR
∣∣φ′ (t)

∣∣ ∣∣∣et · pl

∣∣∣m′
∞ Np.
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6. Simultaneous Line Rotation

Furthermore, since the modulus of the mean magnetic moment is bounded by m (cf. Langevin
model (5.7) and (5.8))

|K3,lRc (t)| ≤ µ0

∣∣φ′ (t)
∣∣ ∣∣∣e⊥t · pl

∣∣∣m ∣∣∣∣∫
R2

c(r) d r

∣∣∣∣ ≤ µ0

∣∣φ′ (t)
∣∣ ∣∣∣e⊥t · pl

∣∣∣m Np.

Note that using the Langevin model (5.8), it holds m′
∞ := m′ (0) .

Remark 6.7. For practical reasons, it might be convenient to state the upper bounds in terms of

the maximal particle concentration cmax via exploiting Np ≤ cmaxπR
2.

For time points for which the phantom is fully located within the saturation area on one side of the
FFL, (6.4) applies approximately with equality. The estimates in the last Lemma can be computed
beforehand to measurements, as all components are determined by the scanner setup and the choice
of the injected tracer. Thus, these upper bounds can be determined and compared to the magnitudes
of measured data in order to evaluate whether incorporation is needed. From the s-shape of the
Langevin function, it follows that |K3,lRc (t)| is largest at turning points of the FFL, which are the
zero crossings of |K1,lRc (t)|.

6.3. Radon-based image reconstruction using TV regularization

For reconstruction, we use the same approach as presented in the last chapter (cf. (5.18)) and simply
insert the updated forward model for simultaneous line rotation. Let Al : D → L2 ([0,T ] ,R) be for
l = 1, . . . ,L de�ned as

Al (c, v) := K1,lv +
(
K2,l ◦ R̃

)
c+K3,lv (6.5)

with operators Ki,l, i = 1, 2, 3, introduced in Theorem 6.2. We then have that Al (c,Rc) = Alc

for c ≥ 0. Hence, we consider the following minimization problem for image c and Radon data v

reconstruction from noisy measurements uϵl , for l = 1, . . . ,L, with noise level ϵ > 0

min
(c,v)∈C

1

2

∑
l

∥Al (c, v)− uϵl∥
2
L2

+
ω

2
∥Rc− v∥2L2

+ γ1TV (c) + γ2 P (v) . (6.6)

Remember that the feasible set C := {(c, v) ∈ D : c ≥ 0, v ≥ 0} guarantees non-negativity of solu-
tions. Introducing A (c, v) = {Al (c, v)}l=1,...,L, the data �delity term can be rewritten as

1

2

∑
l

∥Al (c, v)− uϵl∥
2
L2

=
1

2
∥A (c, v)− uϵ∥2L2,RL

with uϵ = {uϵl}l=1,...,L. We omit speci�cation of existence, stability, and consistency results. For
these, Lemma 5.7 needs to be proved for the new objective functional. Since only the data �delity
term has changed, but Al is still linear and bounded, the only point of interest is the coercivity.
This should be transferable from Paragraph 5.2.2 to the updated scanning geometry if the rotation
speed is slow enough in comparison to the translation. In case of doubt, the penalty term acting
on v can always be chosen in such a way that coercivity and thus all other results are guaranteed.
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6.4. Numerical results

6.4. Numerical results

We now consider numerical results for synthetic data acquired using the same procedure as in the
last chapter. Since we are now considering a continuously rotating FFL, we do not use an excitation
function that changes sign for every other angle. Instead, a line that moves back and forth through
the FOV can be modeled by choosing

Λ (t) = cos (2πfdt) .

Simulation parameters are set according to Table 5.1. Furthermore, we regard a line rotation
frequency frot of 1 kHz. The total measurement time is determined to be T = 1

2frot
. Therewith, we

get a total of

2
fd
T

=
fd
frot

= 25

passes of the FFL through the FOV covering angles in [0,π]. The number of sampling points per
translation through the phantom is the same as for the numerical example with respect to sequential
line rotation as we do not change drive or sampling frequency. Thus, we can compare results for
simultaneous and sequential line rotation using this parameter choice. For comparison purposes,
we consider the same phantom as for our sequential line rotation results in the last chapter. For
convenience, we present concentration and sinogram �lled angle by angle again in Figure 6.3.
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Figure 6.3.: Phantom (a) and corresponding sinogram �lled angle by angle (b).

We neglect the second part of the forward model, that is K2,l ◦R̃, such that the considered operator
only depends on the Radon data. We justify this by our estimate in Lemma 6.5 and the speci�c
choice of frequencies. Moreover, we refer to Figure 6.4 for an exemplary visualization of the negligible
contribution of the second component to the voltage signal induced in the �rst receive coil. Thereby,
normalizing the largest absolute data value regarding this coil

K̂i,1f (t) :=
Ki,1f (t)

max
t

{|K1,1f (t)|}
, for i = 1, 2, 3,

the left image presents K̂1,1Rc in relation to K̂3,1Rc. The image on the right shows K̂2,1R̃c+K̂3,1Rc

and K̂3,1Rc. Both components, which entered the model due to the additional time dependencies
for simultaneous line rotation, are small compared to K̂1,1Rc. In particular, the second part is only
recognizable when the main part reaches its highest values anyway. In contrast, the third term is
largest for zero crossings of K̂1,1Rc. This term is easy to include in the reconstruction task as it
directly links to the classical Radon transform itself. We see that the bound of Lemma 6.6 �ts well.

59



6. Simultaneous Line Rotation
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Figure 6.4.: Comparison of the magnitudes of the forward model's components. (a) Given is K̂1,1Rc

(blue) in relation to K̂3,1Rc (red) together with the bound determined in Lemma 6.6 (dark

grey). (b) Given is K̂2,1R̃c+ K̂3,1Rc (blue) in comparison to K̂3,1Rc (red) for the phantom
in Figure 6.3a. Light gray color boxes in the background of the two plots, indicate periods
of the drive �eld. The total measurement time is 12.5 1

fd
= 1

2frot
.

For the calculation of MPI data in a discretized setting, a sinogram �lled angle by angle is required.
Hence, to evaluate a discretized version of (6.5) for every sampling point, a sinogram composed of
columns for each angle that the FFL assumes during scanning is needed. In case of rotating the
FFL in between measurements, this condition is satis�ed for the sinogram shown in Figure 6.3b.
However, for simultaneous line rotation, the �ne sinogram presented in Figure 6.5a would be ne-
cessary. Nevertheless, aiming at a problem size reduction, we opt for reconstruction of Radon data
corresponding to the white dashed line in Figure 6.5a leading to the sinogram in Figure 6.5b. We
assume that the corresponding additional error is negligible due to the shape of the convolution ker-
nel with respect to the main contributing part K̂1,lRc, which converges to the dirac-δ-distribution
for particle diameters tending to in�nity [113]. The use of regularization also ensures stability.
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Figure 6.5.: Sinogram for the phantom shown in Figure 6.3a with columns for each angle attained by the
FFL during scanning (a) and adapted version �lled following the dashed line on the left (b).

60



6.4. Numerical results

Consider discretizations of the Radon transform Rseq and Rsim such that Rseqc gives the sinogram
in Figure 6.3b and Rsimc the one in Figure 6.5b. Let Ki denote a discretization of the forward
model's components such that the resulting data u contains data for both receive coils stacked in
one vector. As in Section 5.2.3, we scale simulated measurements and operators by dividing through
the maximum absolute data value u∞ with respect to all time points and both receive coils

û :=
u

u∞
, K̂i :=

Ki

u∞
, i = 1, 3.

Incorporating only active regularization of the concentration by setting P = 0, we consider the
variants of (6.6) speci�ed in Table 6.1 for reconstruction. These comprise an approach neglecting
the speci�c sampling pattern and using the same method as for sequential line rotation. The other
approaches shall investigate results with and without including the third component.

Table 6.1.: Reconstruction methods

Method Regarded minimization problem

M1 min
c≥0,v≥0

1

2

∥∥∥K̂1v − û
∥∥∥2
2
+

ω

2
∥Rseqc− v∥22 + γ1 ∥∥∇c∥2∥1

M2 min
c≥0,v≥0

1

2

∥∥∥K̂1v − û
∥∥∥2
2
+

ω

2
∥Rsimc− v∥22 + γ1 ∥∥∇c∥2∥1

M3 min
c≥0,v≥0

1

2

∥∥∥(K̂1 + K̂3

)
v − û

∥∥∥2
2
+

ω

2
∥Rsimc− v∥22 + γ1 ∥∥∇c∥2∥1

Like before, we use CVX ([68], [69]) together with the MOSEK solver [141] for determining solutions
of the minimization problems. Also, we determine results for weighting parameters ω ∈ {1, 2, 4}·104

and regularization parameters γ1 ∈
{
0.15.5−0.05i, i = 0, . . . , 49

}
and give those results corresponding

to the maximum structural similarity of the reconstructed particle concentration with respect to
the groundtruth.
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0.6

0.8

1

Figure 6.6.: Phantom reconstruction for simultaneous line rotation using method M1, neglecting the
speci�c sampling pattern, and ω = 4 · 104, γ1 = 0.14. The corresponding SSIM value is
SSIM (c) = 0.7996. Contours of the groundtruth are depicted in white.

A reconstruction result neglecting the speci�c sampling pattern via applying method M1, is stated
in Figure 6.6. Contours of the groundtruth concentration are indicated in white. The phantom
appears slightly rotated, which is self-evident as no information of the joint rotation and translation
is exploited.
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Reconstruction with respect to M2 and ω = 4 · 104, γ1 = 0.14. SSIM (c) = 0.9070
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Reconstruction with respect to M3 and ω = 1 · 104, γ1 = 0.14.5. SSIM (c) = 0.9304
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Reconstruction with respect to M2, noisy data, and ω = 4 · 104, γ1 = 0.14. SSIM (c) = 0.8713
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Reconstruction with respect to M3, noisy data, and ω = 4 · 104, γ1 = 0.14.05. SSIM (c) = 0.8807.

Figure 6.7.: Results for simultaneous line rotation using di�erent reconstruction approaches.
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6.5. Conclusion and outlook

Finally, we state results incorporating the speci�c sampling trajectory. We compare results including
K3,lR in the reconstruction process, that is methodM3, with those neglecting this term, i.e. method
M2. With regard to Figure 6.4, we expect only minor di�erences. The according outcomes with
and without added Gaussian noise (standard deviation: ca. 0.8% of u∞) are presented in Figure 6.7.
First of all, all reconstructions prove that we have removed the rotation artifacts by adapting the
Radon transform to this measurement setting. Inclusion of the third component in the forward
model leads to slightly higher values for structural similarity. For noisy data, the magnitude of
K3,lR is close to the range of the added noise. Therefore, it is comprehensible that the increase
in the SSIM value is lower compared to the noise-free setting. However, it is di�cult to recognize
di�erences when simply comparing images with the human eye.

6.5. Conclusion and outlook

We have generalized the MPI-FFL forward model to allow for di�erent scanning trajectories. Due
to the additional time dependencies via enabling simultaneous rotation and translation of the line,
after executing the time derivative in the signal equation, the adapted forward operator is composed
of di�erent additive terms. We have de�ned bounds for these terms, which can be calculated before
image reconstruction, as only parameters known from the measurement setup are required. In this
way, it can be assessed whether the inclusion of the additional components is necessary or whether
it is justi�able to neglect them. We investigated the new relation between the corresponding MPI
measurements and the Radon transform of the particle concentration. Not every term is associated
with the classic Radon transform itself, but one with a weighted version.
In this chapter, our main focus was on analyzing the rosette-shaped scanning geometry shown in
Figure 6.1b, i.e. the drive frequency is a multiple of the rotation frequency. The larger the ratio
of drive to rotation frequency, the closer the simultaneous and sequential rotation scheme. In our
numerical results, we have considered a ratio of 25. We found that our reconstruction method in-
cluding the speci�c trajectory is well suited for image reconstruction. Furthermore, in our examples,
the utilization of the term K1, which connects to the operator K with respect to the sequential line
rotation, was su�cient for the determination of particle concentration and Radon data.

Other scanning trajectories (cf. [178]) are interesting considerations for future investigations. A
starting point could be the numerical analysis of the case that drive and rotation frequency are of
the same order of magnitude or even show a reversed ratio in comparison to our examples. The
weighting of the components of the forward model in relation to one another is then particularly in-
teresting. This work continues with examinations regarding timely changing particle distributions.
For the sake of clarity, we return to sequential scanning. We will see that for some motion the
simultaneous line rotation can be interpreted to a certain extent as a kind of special case.
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7. Dynamic Particle Concentrations

In this Chapter, we will consider a next step towards more realistic setup assumptions. We allow
the particle concentration to vary with time. Due to the additional time dependence determining
the time derivative gets again more cumbersome. Thus, for facility of inspection, we go back to
the sequential line rotation scanning geometry in order to reduce the number of terms in the signal
equation. We have summarized our �ndings in [15].

Since we already gave an overview on works regarding dynamic inverse problems in Chapter 3.1,
we now restrict ourselves to dynamic approaches in MPI. For periodic dynamics, which may result
e.g. from repetitive organ deformations like cardiac or pulmonary movement, the authors of [61]
group the data with respect to the occurring phantom states. To this end, the motion frequency is
determined based on the measurements. After this data processing, classic reconstruction schemes
for static tracer distributions can be applied. An extension to multi-patch MPI is presented in [60].
In [26], the forward model is adapted to potentially fast and non-periodic dynamics. They also con-
sider the relevance of this adjustment. To avoid motion and multi-patch artifacts, they presented
a reconstruction approach based on expanding the tracer concentration using spline curves in [27].
Just recently, joint motion estimation and image reconstruction applying motion priors, which cor-
responds to the PDE-based model in Chapter 3.1, was considered in [25]. All these works assessed
reconstruction examples for the FFP scanner, while we examine modeling and image determination
for the FFL encoding scheme.
Motivated by our interest in Radon-based image reconstruction as well as the geometrical similarity
of the FFL and CT scanning patterns, we model the time-varying particle concentrations via di�eo-
morphic motion functions, as presented for dynamic CT in Section 4.1.2. This approach allows us
to relate the dynamic forward operator to an adapted Radon transform known (e.g. [80]) from dy-
namic CT. Regarding the FFP scanner implementation, in [51] a registration-based technique also
led to a di�eomorphic transformation model for rigid motions and multi-patch MPI. While they
consider image and motion estimation together, so far we assume that the dynamics are known.
Nevertheless, we provide an outlook on possible strategies for the incorporation of motion determ-
ination.

Outline of the chapter: In Section 7.1, we begin with restating the motion model introduced for
dynamic CT in Section 4.1.2 for MPI and accordingly adapt the forward model. We then derive
the relation of this operator to Radon transforms modi�ed with respect to the phantom dynamics
in Section 7.2. Similar to the last section, the additional time dependencies result in additional
components in the signal equation and we state bounds for these. Finally, in Section 7.4, we regard
numerical results for synthetic data using our joint reconstruction approach incorporating motion
information, as stated in Section 7.3. We present examples for both the intensity as well as the
mass preservation assumption.
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7. Dynamic Particle Concentrations

7.1. Forward model

First of all, we have to say that, in contrast to our former considerations, the time derivative in (5.5)
does now operate on both the particle distribution as well as the mean magnetic moment

u (t) = −µ0

∫
R3

(
m (r, t)

∂

∂t
c (r, t) + c (r, t)

∂

∂t
m (r, t)

)
· p (r) d r.

The authors of [60] assumed that the �rst part of the signal equation, which corresponds to the
change in concentration with time, can be neglected. The authors of [27], on the other hand, in-
corporated both terms in modeling the voltage signal. To this end, they represented the particle
distribution using spline curves. Via linking each state of the object to a static reference concen-
tration by means of di�eomorphic motion functions, the dynamic inverse problem of determining
the time-dependent concentration c can be transformed to the determination of a single reference
state c0 not depending on time and computation of the concentration derivative can be bypassed.
In MPI, a single �eld-free line is steered through the FOV, whereas in CT a bunch of X-rays can
be emitted at the same time. Hence, while in CT the time consuming part within the measurement
process consists in the rotation of radiation source and detector panel and, thus, the time depend-
ence was identi�ed with an angle dependence, this is not the case in MPI and we consider tracer
densities relying on time, angle, and space. When modeling the dynamic particle concentration,
however, we proceed analogously to subsection 4.1.2 and make appropriate adjustments.

Recall that for sequential line rotation T > 0 denoted the scanning time needed for the FFL trans-
lation per angle. As before, we assume the following support condition for the particle distribution,
now for each object state. Let c (·,φ, t) ∈ L2

(
BR,R+

0

)
for all (φ, t) ∈ ZT and, when convenient,

regard the continuous extension c (·,φ, t) := 0 for r /∈ BR (cf. Remark 4.12). We propose existence
of a reference concentration c0 ∈ L2

(
BR,R+

0

)
and a motion function Γ : R2×ZT → R2 such that

Γφ,tr := Γ (r,φ, t) is a di�eomorphism for all �xed (φ, t) ∈ ZT satisfying

(intensity pres.) c (r,φ, t) = c0 (Γφ,tr) , (7.1)

(mass pres.) c (r,φ, t) = c0 (Γφ,tr) |detDΓφ,tr| . (7.2)

Remember that c0 could for example be chosen as one of the states the particle concentration attains
during the measurement, i.e. for some reference time t0 ∈ [0,T ] and angle φ0 ∈ [0, 2π]

c0 (r) = c (r,φ0, t0) .

Similar to before, we introduce the function

hφ,t (y) :=

{∣∣detDΓ−1
φ,ty

∣∣ , for c as in (7.1),

1 , for c as in (7.2),

in order to summarize the expressions concerning intensity and mass preservation in one formula

c (r,φ, t) = c0 (Γφ,tr)hφ,t (Γφ,tr) |detDΓφ,tr| .

Signi�cant movements in relation to magnetic particle imaging can be described in terms of these
motion functions. Examples comprise instrument as well as bolus tracking ([74], [97], [186]). In
these cases, it is even reasonable to assume a�ne motions. The reference concentration can be
de�ned as the initial state of the particle distribution. Regarding instrument tracking, the starting
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position of the tracer material relative to the marked device is known from the measurement setup
and can be used to estimate c0. Similarly, for bolus tracking, the initial state can be approximated
from knowledge of the injection. Such advance information can be used to improve and accelerate
reconstructions as well as to reduce the motion estimation problem.
By substituting y := Γφ,tr, all time dependencies can be shifted to quantities proposed to be known

ul (φ, t) = − µ0
∂

∂t

∫
R2

c(r,φ, t)m (−G r · eφ +AΛφ(t)) eφ · pl (r) d r

= − µ0
∂

∂t

∫
R2

c0 (Γφ,tr)hφ,t (Γφ,tr) |detDΓφ,tr| m (−G r · eφ +AΛφ(t)) eφ · pl (r) d r

= − µ0

∫
R2

c0 (y)
∂

∂t
hφ,t (y)m

(
−G Γ−1

φ,ty · eφ +AΛφ(t)
)
eφ · pl

(
Γ−1
φ,ty

)
dy.

In order to ensure the above signal equation to be well-de�ned, we make the assumptions below.

Assumption 7.1. Let Γ−1
φ,t and DΓ−1

φ,t be di�erentiable with respect to time t. Further, we denote

the corresponding partial derivatives as

(
Γ−1
φ,t

)′
:=

∂

∂t
Γ−1
φ,t,

(
DΓ−1

φ,t

)′
:=

∂

∂t
DΓ−1

φ,t, h′φ,t :=
∂

∂t
hφ,t.

Finally, we assume the existence of constants Cφ,t, Dφ,t > 0 such that for all y ∈ R2 and (φ, t) ∈ ZT ,

it holds ∥∥∥(Γ−1
φ,t

)′
y
∥∥∥ ≤ A

G
Cφ,t,

∣∣h′φ,t (y)∣∣ ≤ Dφ,t.

Notice that Assumption 7.1 does not impose a restriction on actual applications. Speed and scope
of the motion are inherently limited due to physiological constraints. Furthermore, only discrete
measurements are available in practice, i.e. a smooth motion function matching the data at the
discrete time points can be determined (see [81]). We formulate the forward operator for time-
varying particle densities.

De�nition 7.2. De�ne AΓ
l : L2

(
BR,R+

0

)
→ L2 (ZT ,R) as

AΓ
l c0 (φ, t) := −µ0

∫
R2

c0 (y)
∂

∂t
hφ,t (y)m

(
−G Γ−1

φ,ty · eφ +AΛφ(t)
)
eφ · pl

(
Γ−1
φ,ty

)
dy. (7.3)

The forward operator for MPI-FFL scanner, allowing dynamic particle concentrations, is given by

AΓ : L2

(
BR,R+

0

)
→ L2

(
ZT ,RL

)
with AΓc0 (φ, t) =

{
AΓ

l c0 (φ, t)
}
l=1,...,L

.

Thus, the dynamic linear ill-posed inverse problem we aim to solve in this chapter is given by

AΓc0 = u

with measured data u = {ul}l=1,...,L and forward operator AΓ. Knowledge of reference state and
motion function then allows determination of the particle distribution at each time instance.

7.2. Relation between MPI and Radon data

We proceed similar to the last chapter in order to derive a connection between the MPI-FFL forward
model (7.3) and the adapted version of the Radon transform (4.8) derived in Subsection 4.1.2.
However, we have to make a simple adjustment since, as already mentioned, there is only one FFL
per time instance and thus, we cannot identify time and angle. We therefore use the following
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formulation for the dynamic Radon transform

RΓc0 (φ, t, s) :=

∫
R2

c0 (y)hφ,t (y) δ
(
Γ−1
φ,ty · eφ − s

)
dy. (7.4)

Comparable to the simultaneous line rotation setting, we additionally introduce a weighted version
of RΓ, but this time more generally via inserting a bounded weight function wφ,t : R2 → R

RΓ
wc0 (φ, t, s) :=

∫
R2

wφ,t (y) c0 (y)hφ,t (y) δ
(
Γ−1
φ,ty · eφ − s

)
dy. (7.5)

Therewith, the forward operator for MPI using a �eld-free line and allowing dynamic particle
concentrations, can be reformulated as follows.

Theorem 7.3. Given spatially homogeneous receive coil sensitivities, the MPI-FFL forward operator

with respect to the l-th receive coil (7.3) can be written as

AΓ
l = K1,l ◦ RΓ +K2,l ◦ RΓ

α +K3,l ◦ RΓ
β (7.6)

with convolution operators Ki,l : L2 (ZT × R,R) → L2 (ZT ,R) , for i = 1, 2, 3 and l ∈ {1, . . . ,L} ,

K1,lf (φ, t) = −µ0 AΛ
′
φ(t) eφ · pl m

′ (G ·) ∗ f (φ, t, ·) (sφ,t) ,
K2,lf (φ, t) = µ0 G eφ · pl m

′ (G ·) ∗ f (φ, t, ·) (sφ,t) ,
K3,lf (φ, t) = −µ0 eφ · pl m (G ·) ∗ f (φ, t, ·) (sφ,t) ,

with sφ,t :=
A

G
Λφ (t) as well as weight functions αφ,t,βφ,t : R2 → R

αφ,t (y) =
(
Γ−1
φ,t

)′
y · eφ, βφ,t (y) =

h′φ,t (y)

hφ,t (y)
.

Proof. We start with the determination of the derivative in (7.3), which yields

AΓ
l c0 (φ, t) = − µ0 AΛ′

φ (t) eφ · pl

∫
R2

c0 (y)hφ,t (y)m
′ (−G Γ−1

φ,ty · eφ +AΛφ(t)
)
dy

+ µ0 G eφ · pl

∫
R2

c0 (y)hφ,t (y)
(
Γ−1
φ,t

)′
y · eφ

× m′ (−G Γ−1
φ,ty · eφ +AΛφ(t)

)
dy

− µ0 eφ · pl

∫
R2

c0 (y)h
′
φ,t (y)m

(
−G Γ−1

φ,ty · eφ +AΛφ(t)
)
dy

=: − µ0 eφ · pl

(
AΛ′

φ (t) I (φ, t)−G II (φ, t) + III (φ, t)
)
. (7.7)

We investigate the integrals separately. Inspired by [114] and the last chapter, we introduce
R−φΓ−1

φ,ty =: r′ =: (v′, s′)T using the rotation matrixRφ de�ned in (5.13). Remember that by (5.14)
we get

FFL
(
eφ, s

′) =
{
r ∈ R2 : r · eφ = s′

}
=
{
s′ eφ − v′ e⊥φ : v′ ∈ R

}
=

{
Rφ

(
v′

s′

)
: v′ ∈ R

}
.
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Exploiting the de�nition of the adapted Radon transform (7.4), we get for the �rst integral in (7.7)

I (φ, t) :=

∫
R2

c0 (y)hφ,t (y)m
′ (−G Γ−1

φ,ty · eφ +AΛφ(t)
)
dy

=

∫
R2

c0
(
Γφ,tR

φr′
)
hφ,t

(
Γφ,tR

φr′
) ∣∣detDΓφ,t

(
Rφr′

)∣∣ m′ (−G Rφr′ · eφ +AΛφ(t)
)
d r′

=

∫
R
m′ (−G s′ +AΛφ(t)

) ∫
R2

c0 (Γφ,tr)hφ,t (Γφ,tr) |detDΓφ,tr| δ
(
r · eφ − s′

)
d r d s′

=

∫
R
RΓc0

(
φ, t, s′

)
m′ (−G s′ +AΛφ(t)

)
d s′

=
[
m′ (G ·) ∗ RΓc0 (φ, t, ·)

](A

G
Λφ (t)

)
.

Proceeding similar for the other two integrals in (7.7), we arrive at

II (φ, t) :=

∫
R2

c0 (y)hφ,t (y)
(
Γ−1
φ,t

)′
y · eφ m′ (−G Γ−1

φ,ty · eφ +AΛφ(t)
)
dy

=

∫
R2

c0
(
Γφ,tR

φr′
)
hφ,t

(
Γφ,tR

φr′
) (

Γ−1
φ,t

)′ (
Γφ,tR

φr′
)
· eφ

∣∣detDΓφ,t

(
Rφr′

)∣∣
× m′ (−G Rφr′ · eφ +AΛφ(t)

)
d r′

=

∫
R
RΓ

αc0
(
φ, t, s′

)
m′ (−G s′ +AΛφ(t)

)
d s′

=
[
m′ (G ·) ∗ RΓ

αc0 (φ, t, ·)
](A

G
Λφ (t)

)
,

as well as

III (φ, t) :=

∫
R2

c0 (y)h
′
φ,t (y)m

(
−G Γ−1

φ,ty · eφ +AΛφ(t)
)
dy

=

∫
R2

c0
(
Γφ,tR

φr′
)
hφ,t

(
Γφ,tR

φr′
) h′φ,t (Γφ,tR

φr′)

hφ,t (Γφ,tRφr′)

∣∣detDΓφ,t

(
Rφr′

)∣∣
× m

(
−G Rφr′ · eφ +AΛφ(t)

)
d r′

=

∫
R
RΓ

βc0
(
φ, t, s′

)
m
(
−G s′ +AΛφ(t)

)
d s′

=
[
m (G ·) ∗ RΓ

βc0 (φ, t, ·)
](A

G
Λφ (t)

)
.

Putting everything together, we �nally obtain

AΓ
l c0 (φ, t) = −µ0 eφ · pl

(
AΛ′

φ (t) I (φ, t)−GII (φ, t) + III (φ, t)
)

=
[
K1,l ◦ RΓ +K2,l ◦ RΓ

α +K3,l ◦ RΓ
β

]
c0 (φ, t) .

Via choosing Γφ,t = Id, also static particle distributions can be modeled within the introduced
framework. Moreover, in that case Theorem 7.3 reduces to Theorem 5.4.

Corollary 7.4. Assume the existence of scalar functions α̃φ,t, β̃φ,t : R → R satisfying

αφ,t (y) = α̃φ,t

(
Γ−1
φ,ty · eφ

)
, βφ,t (y) = β̃φ,t

(
Γ−1
φ,ty · eφ

)
.
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Then, formula (7.6) simpli�es to
AΓ

l = Kl ◦ RΓ. (7.8)

Thereby, the operator Kl : L2 (ZT × R,R) → L2 (ZT ,R) is for l ∈ {1, . . . ,L} de�ned as

Klf (φ, t) =
[
K1,lf +K2,l (α̃φ,tf) +K3,l

(
β̃φ,tf

)]
(φ, t) .

Proof. Inserting the given scalar functions for αφ,t respectively βφ,t into the de�nition of the weighted
Radon transform (7.5), we simply obtain

RΓ
αc0 (φ, t, s) = α̃φ,t (s)RΓc0 (φ, t, s) , RΓ

βc0 (φ, t, s) = β̃φ,t (s)RΓc0 (φ, t, s) .

Expression (7.8) then presents a direct consequence of the last theorem.

Remark 7.5. The third component K3,l ◦RΓ
β in (7.6) depends on the chosen preservation assump-

tion.

� Supposing mass conservation, we have hφ,t (y) = 1. It follows

βφ,t (y) =
h′φ,t (y)

hφ,t (y)
= 0 =⇒ K3,l ◦ RΓ

β = 0.

� Supposing intensity conservation, we have hφ,t (y) =
∣∣detDΓ−1

φ,ty
∣∣. It follows

h′φ,t (y) =
∂

∂t

∣∣detDΓ−1
φ,ty

∣∣ = detDΓ−1
φ,ty

∂
∂t detDΓ−1

φ,ty∣∣detDΓ−1
φ,ty

∣∣ .

Exploiting Jacobi's formula, we obtain

∂

∂t
detDΓ−1

φ,ty = detDΓ−1
φ,ty tr

[(
DΓ−1

φ,t

)−1
(y)

(
DΓ−1

φ,t

)′
(y)
]
,

which �nally results in

βφ,t (y) =
∂
∂t

∣∣detDΓ−1
φ,ty

∣∣∣∣detDΓ−1
φ,ty

∣∣ =
detDΓ−1

φ,ty
∂
∂t detDΓ−1

φ,ty∣∣detDΓ−1
φ,ty

∣∣2 =
∂
∂t detDΓ−1

φ,ty

detDΓ−1
φ,ty

= tr
[(
DΓ−1

φ,t

)−1
(y)

(
DΓ−1

φ,t

)′
(y)
]
= tr

[
DΓφ,t

(
Γ−1
φ,ty

) (
DΓ−1

φ,t

)′
(y)
]
.

Let us now consider a speci�c set of dynamics, namely a�ne di�eomorphic motions, moreover
satisfying Assumption 7.1. Then, the motion functions can be written in the form

Γ−1
φ,ty = Aφ,ty + bφ,t

with bφ,t ∈ R2, Aφ,t ∈ R2×2 such that detAφ,t ̸= 0. Further, b′
φ,t ∈ R2, A′

φ,t ∈ R2×2 denote the
corresponding partial derivatives with respect to time assumed to be bounded.
According to the previous remark, in case of mass conservation it always holds the nice property
that βφ,t = 0 decreasing the number of ingredients in the signal equation. Fortunately, for a�ne
motions, things become easier also for the intensity preserving setting, as

βφ,t (y) = tr
[
A−1

φ,tA
′
φ,t

]
=: β̃φ,t (7.9)

is constant for �xed angle φ and time t and especially does not depend on the spatial variable y.
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However, even for a�ne motion model, the weighting function αφ,t (y) can, in general, not be
expressed as in Corollary 7.4. Nevertheless, we extract the spatially independent component

αφ,t (y) =
(
A′

φ,ty + b′
φ,t

)
· eφ =: A′

φ,ty · eφ + α̃φ,t.

Thus, in total we arrive at the following formulation for the forward operator

AΓ
l = Kl ◦ RΓ +K2,l ◦ RΓ

A′
φ,ty·eφ

.

Example 7.6. Choose aφ,t ̸= 0 such that Assumption 7.1 is satis�ed for the deformation

Aφ,t := Rφ

(
aφ,t 0

0 1

)
R−φ =⇒ Γ−1

φ,ty := Aφ,ty = aφ,t

(
y · e⊥φ

)
e⊥φ + (y · eφ) eφ.

Therewith, the object is only distorted in directions orthogonal to the FFL translation. We compute

for the time derivative

A′
φ,ty = a′φ,t

(
y · e⊥φ

)
e⊥φ =⇒ αφ,t (y) = A′

φ,ty · eφ = 0

and K2,l◦RΓ
α = 0. If a translation bφ,t is also included in the movement, αφ,t (y) is generally spatially

independent, but only disappears for either a time-independent shift or for those translations that

run parallel to the �eld-free line. At last, this example is especially appealing as here the dynamic

Radon transform is directly linked to the classical static Radon transform

RΓc0 (φ, t, s) =

∫
R2

c0 (y)hφ,t (y) δ (Aφ,ty · eφ + bφ,t · eφ − s) dy

=

∫
R2

c0 (y)hφ,t δ (y · eφ + bφ,t · eφ − s) dy

= hφ,tRc0 (φ, t, s− bφ,t · eφ)

with

hφ,t :=

{
|aφ,t| , for c as in (7.1),

1 , for c as in (7.2).

We infer that for phantom translations in general and deformations restricted to directions perpen-
dicular to the FFL movement, αφ,t (y) = α̃φ,t does not depend on the spatial variable.

Example 7.7. Choose aφ,t ̸= 0 such that Assumption 7.1 is satis�ed for the rigid phantom rotation

Γ−1
φ,ty = Raφ,ty.

A simple computation yields

Γ−1
φ,ty · eφ = y · eφ−aφ,t , detDΓ−1

φ,ty = 1

and therewith

αφ,t =
(
Γ−1
φ,t

)′
y · eφ = −a′φ,t y · e⊥φ−aφ,t

, βφ,t = 0.

Insertion into the de�nition of RΓ as well as RΓ
α directly results in

RΓc0 (φ, t, s) = Rc0
(
eφ−aφ,t , s

)
, RΓ

αc0 (φ, t, s) = −α′
φ,tR̃c0

(
eφ−aφ,t , s

)
.
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Comparison with Theorem 6.2 yields that rigid phantom rotations are highly correlated to the simul-

taneous line rotation setting. This observation is self-evident, as arithmetically it makes no di�erence

whether we rotate the phantom or regard an oppositely rotating line. However, it is not equivalent as

for line rotation the orientation of the magnetic �eld direction relative to the receive coil sensitivity

changes, which is not the case for phantom rotation.

Remark 7.8. The relation of the MPI-FFL forward operator to the dynamic Radon transform po-

tentially enables access to the numerous results and techniques concerning computerized tomography.

This includes fast reconstruction methods building on inversion formulas (cf. [76], [144]) or examin-

ation of the information contained in measurements using microlocal analysis (e.g. [81], [83], [120]).

For instance, setting aφ,t = φ in the last example leads to severely insu�cient data, because it con-

tains information for only one angle, even if measurements are executed for numerous �eld-free line

orientations.

Analogous to the last chapter, we conclude this section by providing estimates for the, in comparison
to the ideal case, additional terms K2,l ◦ RΓ

α as well as K3,l ◦ RΓ
β for l ∈ {1, . . . ,L}.

Lemma 7.9. It holds that

∣∣K1,lRΓc0 (φ, t)
∣∣ ≥

∣∣∣∣Λ′
φ(t)

Cφ,t

∣∣∣∣ ∣∣K2,lRΓ
αc0 (φ, t)

∣∣ .
Proof. Relying on Assumption 7.1, the weighted Radon transform can be bounded as follows

RΓ
αc0 (φ, t, s) =

∫
R2

αφ,t (y) c0 (y)hφ,t (y) δ
(
Γ−1
φ,ty · eφ − s

)
dy

≤
∫
R2

∥∥∥(Γ−1
φ,t

)′
y
∥∥∥ c0 (y)hφ,t (y) δ (Γ−1

φ,ty · eφ − s
)
dy

≤ A

G
Cφ,tRΓc0 (φ, t, s) .

This directly yields∣∣K1,lRΓc0 (φ, t)
∣∣ =

∣∣µ0 eφ · pl A Λ′
φ(t) m′ (G ·) ∗ RΓc0 (φ, t, ·) (sφ,t)

∣∣
≥

∣∣∣∣µ0 eφ · pl G
Λ′
φ(t)

Cφ,t
m′ (G ·) ∗ RΓ

αc0 (φ, t, ·) (sφ,t)
∣∣∣∣

=

∣∣∣∣Λ′
φ(t)

Cφ,t

∣∣∣∣ ∣∣K2,lRΓ
αc0 (φ, t)

∣∣ .

This lemma states that the size relation between K1,lRΓ and K2,lRΓ
α correlates to the ratio between

FFL translation velocity and speed of motion.

Lemma 7.10. De�ne m′
∞ := max

λ∈R
m′ (λ) and let cmax be the maximal particle concentration during

measurements. Then, it holds that∣∣K2,lRΓ
αc0 (φ, t)

∣∣ ≤ µ0 |eφ · pl|m′
∞A Cφ,t cmaxπR

2,∣∣K3,lRΓ
βc0 (φ, t)

∣∣ ≤ µ0 |eφ · pl|m Dφ,t cmaxπR
2.
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Proof. Exploiting Assumption 7.1, we estimate based on the proof of Theorem 7.3

∣∣K2,lRΓ
αc0 (φ, t)

∣∣ =

∣∣∣∣µ0 eφ · pl G

∫
R2

c0 (y)hφ,t (y)m
′ (−G Γ−1

φ,ty · eφ +AΛφ(t)
) (

Γ−1
φ,t

)′
y · eφ dy

∣∣∣∣
≤ µ0 |eφ · pl| A Cφ,t

∣∣∣∣∫
R2

c (r,φ, t) m′ (−G r · eφ +AΛφ(t)) d r

∣∣∣∣
≤ µ0 |eφ · pl|m′

∞ A Cφ,t

∣∣∣∣∫
R2

c (r,φ, t) d r

∣∣∣∣
≤ µ0 |eφ · pl|m′

∞ A Cφ,t cmaxπR
2.

Remember that according to the Langevin model (5.7) and (5.8) the modulus of the mean magnetic
moment is bounded by m. Hence, we determine

∣∣K3,lRΓ
αc0 (φ, t)

∣∣ =

∣∣∣∣µ0 eφ · pl

∫
R2

c0 (y)m
(
−G Γ−1

φ,ty · eφ +AΛφ(t)
)
h′φ,t (y) dy

∣∣∣∣
≤ µ0 |eφ · pl|m Dφ,t

∣∣∣∣∫
R2

c0 (y) dy

∣∣∣∣
≤ µ0 |eφ · pl|m Dφ,t cmaxπR

2.

Lemma 7.9 shows that K2,l ◦ RΓ
α can be neglected for suitably slow phantom motion compared to

the FFL translation. Moreover, for given bounds Cφ,t,Dφ,t for velocity and extent of the object's
dynamics, the estimates derived in Lemma 7.10 can be determined even prior to data generation
as all further components are clear from the measurement setup. This can be used to decide which
components of the forward model need to be included in the image reconstruction process.

7.3. Radon-based image reconstruction using TV regularization

In order to determine the reference concentration c0, we now update our TV-based reconstruction
method by inserting the adapted forward operators for MPI as well as CT with respect to the
dynamic setting. Access to the motion functions Γ then enables calculation of the time-varying
particle concentration for all other states. Let us rede�ne D := L2 (BR,R) × L2 (ZT × R,R) and
AΓ

l : D → L2 (ZT ,R) for l = 1, . . . ,L via

AΓ
l

(
c0, v

Γ
)
:= K1,lv

Γ +
(
K2,l ◦ RΓ

α

)
c0 +

(
K2,l ◦ RΓ

β

)
c0

using the operators Ki,l, i = 1, 2, 3, and RΓ
α, RΓ

β introduced in Theorem 7.3. Therewith, it holds
AΓ

l

(
c0,RΓc0

)
= AΓ

l c0 in case c0 ≥ 0. We regard the following minimization problem to jointly
reconstruct the reference concentration c0 and according dynamic Radon data vΓ := RΓc0 from
noisy measurements uϵl , for l = 1, . . . ,L, with noise level ϵ > 0

min
(c0,vΓ)∈C

1

2

∑
l

∥∥AΓ
l

(
c0, v

Γ
)
− uϵl

∥∥2
L2

+
ω

2

∥∥RΓc0 − vΓ
∥∥2
L2

+ γ1TV (c0) + γ2P
(
vΓ
)
.

Again, the constraint
(
c0, v

Γ
)
∈ C guarantees non-negativity of both. We rewrite the data �delity

term like in the previous chapter as

1

2

∑
l

∥∥AΓ
l

(
c0, v

Γ
)
− uϵl

∥∥2
L2

=
1

2

∥∥AΓ
(
c0, v

Γ
)
− uϵ

∥∥2
L2,RL
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by setting AΓ
(
c0, v

Γ
)
=
{
AΓ

l

(
c0, v

Γ
)}

l=1,...,L
with measurements uϵ = (uϵl )l=1,...,L. Moreover, in

case the conditions in Corollary 7.4 are ful�lled, the forward model only depends on vΓ since we
then can write [

AΓ
l

(
c0, v

Γ
)]

(φ, t) =
[
K1,lv

Γ +K2,l

(
α̃φ,tv

Γ
)
+K3,l

(
β̃φ,tv

Γ
)]

(φ, t) .

For existence, stability and consistency, we refer to Paragraph 5.2.2. Similar to the simultaneous
line rotation considerations, the only interesting point is the coercivity. This should transfer from
the ideal setting if the motion speed is suitably slow compared to the FFL translation. Additionally,
coercivity can be enforced via choosing the penalty term acting on v accordingly.

7.4. Numerical results

We consider simulated data generated with respect to the sequential line rotation geometry described
in Section 5.2.3. Notation and simulation parameters are presented in this section. Furthermore,
we assume that the particle distribution is contained within a circle of radius A

G around the origin
for the entire measurement. For our numerical examples, we regard an a�ne motion

Γφj ,tr = Aφj ,tr+ bφj ,t, Γ−1
φj ,t

y = A−1
φj ,t

(
y − bφj ,t

)
,

de�ned for j = 1, . . . , p and t ∈ [0,T ] via

Aφj ,t :=

(
aφj ,t 0

0 aφj ,t

)
, aφj ,t := 0.8 + 0.2 cos

(
2πf

(
j − 1

2fd
+ t

))
, (7.10)

bφj ,t := aφj ,t

(
∆x−

(
j−1
2fd

+ t
)

2∆x
(p−1)T

0

)
. (7.11)

Thereby, f = 78 kHz sets the deformation frequency and ∆x = 2 mm gives the translation shift
of the particle distribution at the beginning of data acquisition with respect to the reference state.
Figure 7.1 shows the reference concentration together with Radon data proposing mass respectively
intensity preservation. Imagine e.g. a bolus injection [154] or a labeled instrument like a catheter
([74], [160]).
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Figure 7.1.: Reference particle concentration (a) and sinograms assuming mass (b) respectively intensity
(c) conservation.

For a continuously rotating FFL, a sinogram with columns �lled angle by angle for each direction
the line attains during measurement is required to properly evaluate discretizations of the forward
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operator. Likewise, here one with each column corresponding to a �xed time-angle combination is
needed. At the cost of modeling errors and in favor of a reduced problem size, we rather aim to
reconstruct the sinogram with entries RΓc0 (φj , tl, sl) for j = 1, . . . , p and l = 1, . . . ,ns =

fs
2fd

+ 1

as well as

φj = (j − 1)
π

p
, tl =

l − 1

fs
, sl =

(
1− 2

l − 1

ns − 1

)
A

G
.

However, similar to the previous chapter, we propose the additional error to be su�ciently small to
be controllable by means of TV-based regularization.
Note that exploiting (7.9) and relying to the proof of Corollary 7.4, we are able to write(

K3,l ◦ RΓ
βc0
)
(φj , t) = β̃φj ,t

(
K3,l ◦ RΓc0

)
(φj , t) =:

(
K̃3,l ◦ RΓc0

)
(φj , t) .

Here, we have β̃φj ,t = 0 assuming mass preservation and β̃φj ,t = tr
[
A−1

φj ,t
A′

φj ,t

]
= 2

a′φj ,t

aφj ,t
in case of

intensity conservation. Thus, the third component can be easily incorporated in the reconstruction
process. For the same reasons as for simultaneous line rotation, we neglect the second term in
what follows. Its share of the signal was insigni�cantly small compared to the other two signal
components. Let K1 and K̃3 denote a discretization of the forward model's components such that
the resulting data u contains data for both receive coils stacked in one vector. Scaling by the
maximum absolute data value u∞ concerning all time points and both receive coils, we de�ne

û :=
u

u∞
, K̂1 :=

K1

u∞
,

̂̃
K3 :=

K̃3

u∞
,

and consider the minimization problems determined in Table 7.1.

Table 7.1.: Reconstruction methods

Method Regarded minimization problem

M1 min
c0≥0,vΓ≥0

1

2

∥∥∥K̂1v
Γ − û

∥∥∥2
2
+

ω

2

∥∥Rc0 − vΓ
∥∥2
2
+ γ1 ∥∥∇c0∥2∥1 + γ2

∥∥vΓ
∥∥
1

M2 min
c0≥0,vΓ≥0

1

2

∥∥∥K̂1v
Γ − û

∥∥∥2
2
+

ω

2

∥∥RΓc0 − vΓ
∥∥2
2
+ γ1 ∥∥∇c0∥2∥1 + γ2

∥∥vΓ
∥∥
1

M3 min
c0≥0,vΓ≥0

1

2

∥∥∥∥(K̂1 +
̂̃
K3

)
vΓ − û

∥∥∥∥2
2

+
ω

2

∥∥RΓc0 − vΓ
∥∥2
2
+ γ1 ∥∥∇c0∥2∥1 + γ2

∥∥vΓ
∥∥
1

As always, we apply CVX ([68], [69]) together with the MOSEK solver [141] for determining solutions
of these minimization problems. Unless otherwise speci�ed, we calculate results for parameters
ω ∈

{
2 · 10i, i = 1, . . . , 8

}
, γ1 ∈

{
0.15−0.2i, i = 0, . . . , 19

}
, and γ2 = 0. In contrast to the last

chapter, we do not only regard the structural similarity but also the peak-signal-to-noise ratio
(PSNR) for comparing the image reconstruction to the considered input phantom. The caption
of the �gures indicates whether the given results are obtained via a parameter choice based on
SSIM or PSNR optimization. Complete information about the selected parameter values and the
corresponding image quality measures are listed in special tables at the end of the sections. For
static data using the method M1, that is static reconstruction using the classical Radon transform,
we reach at its best an SSIM(c0) value of 0.9882 (ω = 2 · 105, γ1 = 0.12.8) and a PSNR(c0) value
of 31.91 (ω = 2 · 106, γ1 = 0.13.6). These should serve as reference values for the possible image
quality with respect to our reconstruction approach.
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7. Dynamic Particle Concentrations

7.4.1. Mass preservation

In this section, we consider results for the motion de�ned in (7.10) and (7.11) assuming mass preser-
vation. These motion functions describe a periodic expansion and contraction superimposed with a
translation from left to right through the FOV as visualized in Figure 7.2. Consider, for instance, a
particle distribution deforming due to respiration or an expanding and compressing bolus traveling
within a blood vessel.
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Figure 7.2.: Visualization of executed motion: Initially the specimen is located on the left side of the
FOV (a). Simultaneously with being moved to the right side, the phantom expands until
it reaches its maximum size (b). During further translation to the right, it contracts back
until the next expansion cycle starts (c). Contours of the reference state are indicated by
the white circle.

Application of method M1, that is ignoring the time dependence of the particle concentration, gives
images su�ering from severe motion artifacts. According deliverables are shown in Figure 7.3b for
the SSIM- and Figure 7.3c for the PSNR-based parameter choice. Thereby, Figure 7.3a states a
variant of Figure 7.3b enhancing the contrast by suppressing outliers via limiting the colorbar to
the range of the groundtruth.
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Figure 7.3.: Phantom reconstructions according to approach M1, neglecting the dynamics of the object.
To improve the contrast, (a) shows a version of (b) where values greater than one are
projected to one.

It is obvious that motion information need to be incorporated in the reconstruction process. With

reference to Remark 7.5, we �nd that ̂̃K3,l = 0 and thus methods M2 and M3 coincide. Corres-
ponding results are depicted in Figure 7.4.

76



7.4. Numerical results

0.2

0.4

0.6

0.8

(a) SSIM(c0) = 0.9685

0

0.2

0.4

0.6

0.8

1

(b) Groundtruth

0.2

0.4

0.6

0.8

(c) PSNR(c0) = 28.53

0

2

4

6

8

10

12

10-4

(d) SSIM(c0) = 0.9685

0

0.2

0.4

0.6

0.8

1

1.2

10-3

(e) Groundtruth

2

4

6

8

10

12
10-4

(f) PSNR(c0) = 28.53

Figure 7.4.: Phantom (�rst row) and corresponding sinogram (second row) reconstructions applying
method M2, incorporating motion information, compared to the groundtruth phantom (b)
respectively sinogram (e).
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Figure 7.5.: Comparison of the groundthruth phantom (b) to reconstructed images (�rst row) and
groundtruth sinogram (e) to reconstructed sinograms (second row) applying M2 to noisy
data without (left column) and with (right column) sparsity constraint on the Radon data.

77



7. Dynamic Particle Concentrations

Results for both, i.e. SSIM- and PSNR-based, parameter selections exhibit a similar image qual-
ity. The phantom still shows a slight blurring in the same directions as the static reconstruction.
Nevertheless, the concentration and its Radon data are clearly recognizable, located at the right
position with values in good accordance to the groundtruth. In summary, the motion artifacts are
well prevented.
In addition, the application of M2 to data with added Gaussian noise (standard deviation: ca. 10%
of u∞) also works well, as can be seen in Figure 7.5. In this case, we do not contrast reconstructions
with respect to SSIM- and PSNR-based parameter choices but we contrast results obtained with
and without incorporation of an additional sparsity constraint on the Radon data. We abstain from
executing a parameter search. Instead, we took those for the PSNR-based selection in the noise-free
setting. While there is hardly any di�erence in the phantom reconstruction, the background noise
in the reconstructed sinogram is avoided by setting γ2 > 0.

Table 7.2.: Reconstruction parameters and image quality values

Figure ω γ1 γ2 SSIM(c0) PSNR(c0)

7.3b 2 · 105 0.13.6 0 0.8603 15.27

7.3c 2 · 101 0.14.4 0 0.3335 17.45

7.4a + 7.4d 2 · 103 0.13.6 0 0.9685 28.03

7.4c + 7.4f 2 · 106 0.11.4 0 0.9477 28.53

7.5a + 7.5d 2 · 106 0.11.4 0 0.8826 27.32

7.5c + 7.5f 2 · 106 0.11.4 10 0.9730 27.53

7.4.2. Intensity preservation

We now consider the de�ned motion, but under the assumption of intensity conservation. To
illustrate the motion, please refer back to Figure 7.2. Note that with intensity conservation, the
concentration value is independent of the object's size.
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Figure 7.6.: Phantom reconstructions according to M1, neglecting the dynamics of the object.

Results obtained by method M1, neglecting the dynamics of the particle concentration, are stated
in Figure 7.6. While the PSNR-based parameter choice at least yields the correct shape but results
in a delocalized phantom with incorrect size and concentration value, the SSIM-based choice leads to
three additional circles in the reconstruction. These could be wrongly identi�ed as three additional
balls of lower concentration leading to severe misdiagnosis.
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Figure 7.7.: Groundtruth phantom (b) and sinogram (e) compared to reconstructed phantoms (�rst row)
and sinograms (second row) applying M2 (left column) or M3 (right column) for SSIM-
based parameter choice.
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Figure 7.8.: Groundtruth phantom (b) and sinogram (e) compared to reconstructed phantoms (�rst row)
and sinograms (second row) applying M2 (left column) or M3 (right column) for PSNR-
based parameter choice.
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Under the assumption of intensity conservation, the third component ̂̃K3,l does not vanish. We
therefore compare results obtained by method M2, ignoring this term, with those by approach
M3, including it. These results are presented in Figure 7.7 for a parameter choice based on the
SSIM image quality measure. The three additional circles come closer to the actual phantom in
the center. Moreover, size and position of the phantom �t better with the groundtruth than the
results of method M1. The approach M3, which takes into account the additional term from the
further time dependence, still contains artifacts. However, in this case, these are identi�able as
those. Nevertheless, the contrast is reduced due to outliers, which could also explain the lower
SSIM value in relation to M2 incorporating less information.
As presented in Figure 7.8, exploiting the PSNR-based parameter choice and applying approachM3

�nally gives a well reconstructed reference state of the concentration. Nevertheless, the sinogram is
still disturbed by background errors. One explanation for this could be that, despite the extension

of the model by ̂̃K3, the modeling inaccuracies resulting from the use of the reduced sinogram lead
to these reconstruction errors.
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Figure 7.9.: Phantom and sinogram reconstruction applying method M2 with γ2 > 0.

Figure 7.9 shows the potential of the supplementary sparsity constraint on the Radon data. The
SSIM-based parameter choice using method M2, which formerly exhibited severe irritations in the
sinogram and defective parts in the image, allows promising results when being used with γ2 > 0,
i.e. with sparsity constraint. Note that even better results can be expected, as we restrained from
executing a parameter search and simply set ω and γ1 like for the previous SSIM-based choice used
for Figure 7.7.

Table 7.3.: Reconstruction parameters and image quality values

Figure ω γ1 γ2 SSIM(c0) PSNR(c0)

7.6a 2 · 106 0.12.6 0 0.7684 14.81

7.6b 2 · 104 0.11.4 0 0.0468 16.95

7.7a + 7.7d 2 · 107 0.11.4 0 0.8951 21.89

7.7c + 7.7f 2 · 102 0.14.4 0 0.8469 19.58

7.8a + 7.8d 2 · 105 0.11.2 0 0.4703 23.23

7.8c + 7.8f 2 · 105 0.11.4 0 0.6096 27.61

7.9 2 · 107 0.11.4 50 0.9726 23.22
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7.5. Conclusion and outlook

In this chapter, we adapted the MPI-FFL forward operator for dynamic particle concentrations.
Due to the geometric similarity of the FFL encoding scheme and CT, we describe the dynamics
via di�eomorphic motion functions, as has successfully been done for dynamic CT. This approach
allows shifting of the particle distribution's time dependence to the mean magnetization and thus,
only components known from the measurement setup depend on time. Like for a simultaneously
rotating FFL, we get additional parts in the forward operator, stemming from executing the time
derivative. In particular, we found that the settings of simultaneous line rotation and phantom
rotation are connected. Via suitable substitution of variables, all components can be linked to
variants of the Radon transform. These comprise the version known from dynamic CT and further
weighted adaptions. We derived estimates of these terms applicable for deciding whether incorpor-
ation within the reconstruction process is necessary. We presented numerical results for synthetic
data, applying our usual TV-based joint reconstruction of particle concentration and Radon data.
This time, we also stated results with respect to an additional sparsity constraint, acting on the
sinogram, which was especially functional for the reduction of background artifacts. We considered
examples for both mass and intensity preservation. For mass conservation, the signal equation is
composed of two components in contrast to the three for intensity preservation. Comparison of res-
ults, neglecting and incorporating motion information in the image determination, pointed out the
importance of appropriate reconstruction methods for reliable diagnostics. Our numerical results
proved the operability of our method. Thus, it is worth proceeding with further research. This
can e.g. include the reduction of the modeling error, we accepted by using the reduced sinogram.
It would be interesting to combine our approach with inpainting techniques to come closer to the
ideally required full sinogram for data computation. A major point of interest consists in motion
estimation. For practical applicability, we need to determine the motion either before or jointly
with image reconstruction. Fortunately, variational methods show great �exibility for incorporation
of prior information and adapting the objective functional to speci�c applications. Starting points
can be, for instance, techniques derived for dynamic CT or dynamic inverse problems in general.
In [42], a simultaneous motion and image reconstruction, using a variational approach combined
with di�eomorphic deformation functions, is presented, which would �t well to our setting. In
contrast, we could also replace our joint reconstruction by �rst determining the dynamic Radon
data and then applying corresponding motion estimation and compensation schemes. A proof-of-
concept with respect to determining motion functions via solving the Navier-Cauchy equation is
given in [82]. In general, PDEs play an important role for motion estimation, as was already poin-
ted out in Section 3.1. Remember that MPI does not contain morphological information. Hence, it
is typically applied in combination with an MRI or CT scan, providing knowledge about the tissue
itself. These scans can be used to extract prior knowledge with respect to the particles' movements.
In particular, to fuse MPI and e.g. MRI images, markers are exploited, which track the position
of organs [160]. Information of these markers can be used to determine the organ's deformation
(cf. [79]). This serves then as additional information or constraint for the determination of the
particles' dynamics. Moreover, as also pointed out in Section 3.1, image registration and shape
deformation [193] are of further interest for determining the motion functions.

Next, we transfer the considerations of this chapter, dealing with deformed phantoms, to the setting
of static concentrations but deformed magnetic �elds. We use image registration for the derivation
of the corresponding deformation functions.
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So far, we considered ideal magnetic �elds, i.e. the low-�eld volumes are centered by a straight line
and the �eld is constant along lines parallel to this �eld-free line [114]. However, in practice we are
confronted with �eld imperfections leading to deformed LFVs (e.g. [22], [29], [31], [192]) and there-
with ignoring these circumstances within the reconstruction procedure results in disguising artifacts.

In [138] �eld imperfections regarding the selection, excitation, and receive coils were considered.
They came to the conclusion that for Radon-based approaches artifact reduction methods are
required. Hence, the last topic we aim to consider in this thesis regards artifact reduction for
Radon-based image reconstruction in case of �eld deformations. We dedicate ourselves towards
imperfections within the selection �eld. While for the system matrix based approach �eld imper-
fections are somehow intrinsically regarded due to the calibration scan, this is not the case for
model-based considerations. The authors of [31] use spherical harmonics (cf. Section 2.4 and A.1)
to model magnetic �elds. Thereby, spherical harmonics coe�cients (SHCs) for real �elds can be
obtained via a calibration process. In contrast to the ideal setting, more and higher degrees of
spherical harmonics are required to properly express the real �elds. In order to address the issue
of artifact reduction, they introduce a new 3D model assuming that velocity and acceleration �eld
are parallel. In the context of spherical harmonics, we additionally refer to [21]. In [192], selection
�eld imperfections for the FFP scanner and x-space reconstruction are considered and reduced via
unwarping methods relying on displacement maps. Warping is also regarded in [20] for artifact
reduction. In the FFP multi-patch context, they suggest linking di�erent system matrices via non-
rigid transformations, which could be determined based on image registration. Instead, they then
pursue a di�erent approach starting from the magnetic �elds. However, this goes in the direction we
want to take. Namely, our goal is to connect ideal and deformed magnetic �eld via di�eomorphic
deformation functions obtained using image registration techniques. The �eld imperfections are
then included in the forward model, leading to a similar operator as for time-varying particle con-
centrations. The derivation of the link between MPI-FFL and Radon data and the updating of our
reconstruction methods thus follow the same steps as in the last chapter dealing with dynamic MPI.
Parts of our results have been published in [14].

Outline of the chapter: We are maintaining our usual structure. Hence, the �rst Section 8.1 is
about adapting the forward model to the considered setting, that is incorporation of magnetic
�eld imperfections via di�eomorphic functions. Afterwards, in Section 8.2, we state the relation
between MPI-FFL and adapted Radon data. Since this setting is highly connected to the one of
di�eomorphic motion functions, we keep it short and refrain from giving bounds of the additional
component in the forward model. In Section 8.3, we review the image registration scheme we con-
sider for linking ideal and real magnetic �eld. We close this chapter by stating numerical results in
Section 8.4, applying again our joint reconstruction approach. We consider examples incorporating
the exact deformation function and those incorporating an approximation obtained via registration.
Furthermore, we check the possibility of describing real �elds via ideal ones using di�eomorphisms.
To this end, we apply the image registration scheme to measured �elds and their corresponding
computed ideal version.
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8.1. Forward model

Thinking back to the Figure 4.6 in Chapter 4, we realized that the integration of a deformed object
along straight lines and the integration of the non-deformed object along curves are equivalent. On
that account, we approach magnetic �eld imperfections via transferring the di�eomorphic motion
function ansatz regarding changing tracer distributions to this setting. More precisely, we assume
the existence of a deformation function Γ : R2×ZT → R2 such that Γφ,tr := Γ (r,φ, t) is a di�eo-
morphism for �xed (φ, t) ∈ ZT , which approximately links the real magnetic �eld HΓ to the ideal
one Hideal

HΓ (r,φ, t) ≈ Hideal
(
Γ−1
φ,tr,φ, t

)
. (8.1)

Due to the similarity of these settings, i.e. dynamic phantoms and �eld deformations, we use the
same notation. Hence, adapting the ideal forward model (5.15) accordingly, we obtain

De�nition 8.1. De�ne AΓ
l : L2

(
BR,R+

0

)
→ L2 (ZT ,R) to be

AΓ
l c (φ, t) := −µ0

∫
R2

c (r)
∂

∂t
m
(
−G Γ−1

φ,tr · eφ +AΛφ(t)
)
eφ · pl (r) d r. (8.2)

The forward operator for MPI-FFL scanner in presence of imperfect �elds satisfying (8.1) can be

stated as AΓ : L2

(
BR,R+

0

)
→ L2

(
ZT ,RL

)
with AΓc (φ, t) =

{
AΓ

l c (φ, t)
}
l=1,...,L

.

Again, we have to pose some conditions on the deformation function Γ to guarantee well-posedness
of the previous de�nition.

Assumption 8.2. Suppose that Γ−1
φ,t is di�erentiable with respect to time and let

(
Γ−1
φ,t

)′
:=

∂

∂t
Γ−1
φ,t

denote the corresponding partial derivative. Moreover, propose for all r ∈ R2 and (φ, t) ∈ ZT∥∥∥(Γ−1
φ,t

)′
r
∥∥∥ ≤ A

G
Cφ,t.

for some Cφ,t > 0.

As before, this assumption states no restriction, since only a �nite number of measurements are
available and Γ describes the deviation of the real magnetic �eld to the ideal case, whereby the
change over time should be small. The resulting inverse problem is given as

AΓc = u

with measured data u = {ul}l=1,...,L and forward operator AΓ.

8.2. Relation between MPI and Radon data

Comparing De�nition 7.2 and 8.1, the connection between time-varying phantoms and �eld deform-
ations is emphasized. Thus, the results of the last chapter directly transfer to this setting and we
refrain from giving the proofs. A minor di�erence is that, in contrast to the dynamic case, we do
not have to switch the time dependence from the concentration to the �eld description.

Theorem 8.3. Given spatially homogeneous receive coil sensitivities, the MPI forward operator (8.2)
with respect to the l-th receive coil can be written as

AΓ
l = K1,l ◦ RΓ +K2,l ◦ RΓ

α
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8.3. Image registration

with convolution operators Ki,l : L2 (ZT × R,R) → L2 (ZT ,R) , for i = 1, 2, 3 and l ∈ {1, . . . ,L} ,

K1,lf (φ, t) = −µ0 AΛ′
φ(t) eφ · pl m

′ (G ·) ∗ f (φ, t, ·) (sφ,t) ,
K2,lf (φ, t) = µ0 G eφ · pl m

′ (G ·) ∗ f (φ, t, ·) (sφ,t)

with sφ,t :=
A

G
Λφ (t) as well as weight functions αφ,t : R2 → R

αφ,t (r) =
(
Γ−1
φ,t

)′
r · eφ.

The above theorem transforms to the result for the ideal setting (Theorem 5.4) by choosing Γφ,t = Id.
Theoretically, Example 7.6 can also be applied to �eld imperfections. In practice, however, this does
not make sense, as it is not possible to generate curved LFVs if restricting to �eld deformations
parallel to the ideal FFL. For the same reason, the �eld transformations Γ will most likely not be
described by a�ne functions. We refrain from transferring the estimates of Lemmas 7.9 and 7.10,
as they are transferred one-to-one. Moreover, we assume that K2,l ◦RΓ

α is negligible, since the �eld
deviations and especially the �eld changes with respect to time are most probably reasonably small.
Hence, sticking to our Radon-based reconstruction scheme, we consider the minimization problem

min
(c,v)∈C

1

2

∑
l

∥∥K1,lv
Γ − uϵl

∥∥2
L2

+
ω

2

∥∥RΓc− vΓ
∥∥2
L2

+ γ1TV (c) + γ2 P
(
vΓ
)

with noisy data uϵl , for l = 1, . . . ,L, noise level ϵ > 0, and the usual non-negativity constraint. An
equivalent formulation of the �delity term is given by

1

2

∑
l

∥∥K1,lv
Γ − uϵl

∥∥2
L2

=
1

2

∥∥K1v
Γ − uϵ

∥∥2
L2,RL

with uϵ = {uϵl}l=1,...,L. Note that, di�erently from the previous chapters, we have decided to neglect
the second component directly for the sake of simplicity. However, it could be included here in the
same way as in the dynamic phantom considerations.

Next, we recapitulate some aspects regarding image registration. In particular, we summarize
the technique we will rely on for our numerical investigations.

8.3. Image registration

Image registration plays an important role in medical imaging. Application �elds comprise e.g.
registration of images obtained via di�erent scanner types. This is also of major interest for MPI
in view of registering the particle distribution within the body by additional application of, for in-
stance, MRI yielding morphological information. Furthermore, as stated earlier, image registration
may be of great use for motion estimation and compensation by linking di�erent states of a time-
varying phantom. For magnetic particle imaging, the settings of dynamic concentrations and �eld
deformations are strongly linked, as pointed out in the last section. Hence, we dedicate the following
paragraph to image registration. Regard in this context the large deformation di�eomorphic metric
mapping problem already mentioned in Section 3.1, we exemplary refer to [10]. See [182] for consid-
erations concerning functions of bounded variation. The authors of [38] regard hyperelasticity as a
regularizer. For an investigation of the description of di�eomorphic representations using geodesic
interpolating splines, please refer to [135] and for learning based methods to ([6], [46], [126]). In this
work, we consult a di�eomorphic image registration according to [133], which uses a Lagrangian
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8. Magnetic Field Imperfections

Gauss-Newton-Krylov solver for the LDDMM problem and whose implementation is available as
an add-on to the �exible algorithms for image registration (FAIR) framework [140]. The following
section is devoted to outline their method for the assumption of intensity preservation. Notice that
their scheme is also available for mass conservation.

Let Ω ⊂ Rd, d ∈ {2, 3} , denote the image domain. Let further T,R : Ω → R represent con-
tinuously di�erentiable and on Ω compactly supported template T respectively reference R images.
In the following, we use the term target instead of reference image to avoid confusion with the refer-
ence concentration introduced in the last chapter. The LDDMM problem in variational formulation
can be written as

min
ν,H

D (H (·, 1) ,R) + γS (ν) s.t. Ψν (H (·, t)) = 0, t ∈ [0, 1] . (8.3)

Thereby, D measures the similarity between the image H : Ω× [0, 1] → R at �nal time point t = 1

and the target image R. The penalty term S is added in order to pose a smoothness constraint on
the velocity �eld ν : Ω× [0, 1] → Rd. The regularization parameter γ > 0 can be used as controller
to adjust the weighting between image �delity and smoothness of the velocity �eld. Finally, Ψν

determines the transformation model

Ψν (H (·, t)) =

{
∂H
∂t (·, t) +∇H (·, t) · ν (·, t) = 0,

H (·, 0) = T.
(8.4)

Please be referred to the PDE-based motion model (3.7) introduced in Section 3.1. As was already
mentioned in that section, motion models and deforming templates are related to one another.
Indeed, under certain regularity assumptions on the velocity �eld ν as well as the template and
target image, a di�eomorphism linking both can be derived exploiting the method of characteristics.
This underlines the connection between motion estimation problems and image registration.
The constraint in (8.4) corresponds to the assumption of intensity preservation. Hence, it can
be supposed that the template image is composed of particles positioned at rp0 ∈ Ω carrying the
according intensity value over time until they reach their �nal position rp1 forming the target image.
This also connects to the description of motion via deformation functions as e.g. described in [76].
It thus holds for all t ∈ [0, 1] that

H
(
Γ−1
ν,tr

p
0, t
)
= T (rp0) .

These particle trajectories, i.e. curves along which H is constant, result in the characteristics
t 7→ Γ−1

ν,tr
p
0 ful�lling

∂Γ−1
ν,t

∂t
rp0 = ν

(
Γ−1
ν,tr

p
0

)
and Γ−1

ν,0 = Id.

Analogously, the transformation can be considered inversely. That is, starting from a position rp1 at
�nal time, the original image can be determined by following the particle's location backwards in
time. For a given velocity �eld, the characteristics are determined exploiting a fourth order Runge-
Kutta method and used to determine the deformed image by tracking them backwards in time. To
this end, interpolation methods are required to calculate intensity values at o�-gird points, since
deformed and original grid di�er. Thus, the searched-for approximation H (·, 1) to the target image
R can be expressed in terms of the velocity �eld ν and the minimization problem (8.3) reduces to

min
ν

D (Hν (·, 1) ,R) + γS (ν) .
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A discretize-then-optimize approach is pursued. To solve the discrete optimization problem an in-
exact Gauss-Newton-Krylov method is considered. Due to the non-convexity, a multilevel approach
is suggested to increase robustness and decrease computation time.

In view of our application in mind, the image H corresponds to the magnetic �eld. In this setting,
we actually do not connect di�erent image states that existed but we link the actual �eld, which
can be measured, to the desired ideal one, which practically never existed but can be calculated
from the chosen parameter setting. Since we express the magnetic �elds in terms of spherical har-
monics, as outlined in Appendix A.1, they are composed of multivariate polynomials and hence
especially continuously di�erentiable. Moreover, the magnetic �elds are constrained to the bore
of the �eld generating coils. Therefore, for arbitrary but �xed angle φ and time t ∈ [0,T ], real
and ideal �eld can be represented as continuously di�erentiable and on some domain Ω compactly
supported images. Note that the time dependence of the magnetic �elds does not coincide with
the time dependence of the images considered in this section, which was introduced to describe a
step-wise transformation of the template into the target image.

8.4. Numerical results

For the numerical examples, we consider the same simulation framework as for the other chapters
and refer to its introduction in Section 5.2.3. We regard the following time- and angle-independent
�eld deformation function

Γ−1r := Γ−1
φ,tr = Γ−1

φ,t

(
x

y

)
=

(
x

y − 50x2

)
(8.5)

so that the second integral within the forward model is not only small, but even zero. As always, we
denote a discretized version of the forward operator using bold letters K1 and u gives the data with
respect to both receive coils gathered in one vector. In order to normalize the maximum absolute
data value u∞ concerning all time points and both receive coils, we set

û :=
u

u∞
, K̂1 :=

K1

u∞

and specify the regarded minimization problems in Table 8.1.

Table 8.1.: Reconstruction methods

Method Regarded minimization problem

M1 min
c≥0,vΓ≥0

1

2

∥∥∥K̂1v
Γ − û

∥∥∥2
2
+

ω

2

∥∥Rc− vΓ
∥∥2
2
+ γ1 ∥∥∇c∥2∥1 + γ2

∥∥vΓ
∥∥
1

M2 min
c≥0,vΓ≥0

1

2

∥∥∥K̂1v
Γ − û

∥∥∥2
2
+

ω

2

∥∥RΓc− vΓ
∥∥2
2
+ γ1 ∥∥∇c∥2∥1 + γ2

∥∥vΓ
∥∥
1

We aim to reconstruct phantom and sinogram depicted in Figure 8.1, which are the same we con-
sidered in Chapter 5 and 6. We compare results neglecting the �eld deformation (method M1) with
those incorporating them (method M2). We further compare results using the exact deformation
function (8.5) with those using image registration, as described in the last section, to determine a
deformed grid. For simplicity, we apply the example "ELDDMM_2Ddisc2C_mbCurvatureST.m"
for image registration. It is available within the LagLDDMM add-on [133] to the FAIR [140] package
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8. Magnetic Field Imperfections

https://github.com/C4IR/FAIR.m. To make it work for our setting, we need to scale the magnetic
�eld such that its values are within similar range as those of template and target image in their
example. After image registration, we undo the scaling and transfer the grid from their considered
domain Ω = (0, 1)2 to our FOV with length 2A

G . We regard the phantom divided into 129 × 129

pixel. Therewith, applying their implementation works �ne for our considerations, as we will see.
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Figure 8.1.: Phantom (a) and corresponding sinogram (b).

The non-scaled template and target �elds are plotted in Figure 8.2 for the di�erent resolution levels
(32×32, 64×64, 128×128) regarded within the multilevel strategy. Note that we use the modulus
of the magnetic �eld strengths for image registration.
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Figure 8.2.: Presented are the ideal and deformed �elds with respect to di�erent resolutions (coarse to
�ne from left to right with pixel numbers in brackets). With regard to image registration,
the ideal �eld corresponds to the template and the deformed �eld to the target.
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8.4. Numerical results

The image registration framework exploits padding and interpolation in order to ensure compactly
supported and continuously di�erentiable functions. In the named example, the following is chosen
as regularizer

S (ν) =
1

2

∫ 1

0

∫
Ω

2∑
k=1

|∆νk (r, t)|2 d r d t.

However, the authors of [133] emphasize that the regularizer is a modular component.

Once more, we apply CVX ([68], [69]) together with the MOSEK solver [141] for determining solu-
tions of these minimization problems. We determine reconstructions for the parameters
ω ∈

{
2 · 10i, i = 1, . . . , 8

}
, γ1 ∈

{
0.19−0.25i, i = 0, . . . , 24

}
, and γ2 = 0. Proceeding likewise as in

the previous chapter dealing with time-varying particle concentrations, we extract those parameter
choices maximizing the structural similarity or the peak-signal-to-noise ratio with respect to the
groundtruth concentration respectively. The caption of the according reconstructions determines
which image quality was used for the parameter choice and further information is gathered in a
table at the end of the section. Please look back at Section 5.2.3 for results in the ideal setting and
to Section 6.4 for results regarding simultaneous line rotation for this phantom.
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Figure 8.3.: Phantom (a) and sinogram (b) reconstruction with respect to method M1, neglecting the
�eld deformation. The structural similarity is SSIM (c) = 0.8331.

A reconstruction based on method M1, i.e. assuming ideal �elds while data is determined for
deformed �elds, yields the concentration and sinogram depicted in Figure 8.3. We �nd that by pro-
posing ideal �elds the �eld deformation is transferred to the phantom, con�rming the connection
between phantom deformation and �eld deformation. Note that the concentration shape appears
clear as we consider a constant deformation. If Γ depended on angle and time, the data set would
be inconsistent and a blurred reconstruction as in the last chapter would be expected.
Applying method M2, incorporating the deformation in the reconstruction process, yields the im-
ages in Figure 8.4. The left column shows results using the exact deformation function (8.5), the
right column makes use of the deformed grid obtained via the di�eomorphic image registration
as previously described. In both cases, the concentration as well as the corresponding sinogram
are well-reconstructed without deformation. We resist from additionally stating results for the
PSNR-based parameter choice as they yield similar deliverables.
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(f) SSIM (c) = 0.8877

Figure 8.4.: Phantom (�rst row) and sinogram (second row) reconstructions according to method M2.
The left column incorporates the exact deformation, the right column the one estimated via
image registration.

We just presented a �rst proof-of-concept result for our approach to deal with magnetic �eld imper-
fections. However, for the regarded transformation (8.5), the corresponding �eld Hideal

(
Γ−1
φ,tr,φ, t

)
does not satisfy the Maxwell conditions, that is it cannot be a real magnetic �eld. Therefore, we
transform this �eld such that it is divergence- and rotation-free as proposed by (A.1). To this end,
we �rst express it in terms of spherical harmonics. The coe�cients for the ideal �eld are presented
in Table A.1. To obtain the �eld described by the above de�ned deformation, we additionally need
second order spherical harmonics. More precisely, we express −x2 in terms of the polynomials plm
de�ned in Lemma 2.29, that is

−x2 = p2,0 (x, y, z)−
1√
3
p2,2 (x, y, z)− z2.

The additional component z2 does not matter for our considerations, as we regard the xy-plane and
thus z = 0. Hence, by adding the black coe�cients in Table 8.2 to the ideal �eld coe�cients, we
arrive at the �eld determined by our exact deformation function.
The �eld, however, is still not divergence- and rotation-free. Exploiting the explicit expression for
spherical harmonics stated in Section A.2, we implemented a function that yields coe�cients de-
scribing a divergence- and rotation-free �eld based on some input coe�cients (if possible). Thereby,
before transformation we add the red component in Table 8.2 to the spherical harmonics coe�cients
in order to guarantee that the Select Quad45 �eld is not changed back to its ideal version. Note
that this component does not change the �eld within our two-dimensional formulation, as it scales
again with z. Therewith, the coe�cients in the previous table are transformed to those in Table 8.3.
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8.4. Numerical results

Table 8.2.: Spherical harmonics coe�cients used in addition to the ideal �eld's SHCs to describe �elds
deformed according to (8.5).

Coil Name
H

H1 H2 H3

Select Maxwell c22,2 =
25√
3
G; c22,0 = −25G

Select Quad0 c22,2 =
25√
3
G; c22,0 = −25G

Select Quad45 c12,2 = − 25√
3
G; c12,0 = 25G c32,1 =

25√
3
G

Since some of the coe�cients that we have added compared to the ideal �eld have thus been set to
zero, we multiply all the remaining coe�cients by two. Thus, the curvature of this deformation is
comparable to the one we considered before.

Table 8.3.: Adapted spherical harmonics coe�cients yielding a divergence- and rotation-free �eld.

Coil Name
H

H1 H2 H3

Select Maxwell c12,−2 =
25√
3
G c22,2 =

25√
3
G

Select Quad0 c12,−2 =
25√
3
G c22,2 =

25√
3
G

Select Quad45 c12,2 = − 25
2
√
3
G; c12,0 = 25G c32,1 =

25√
3
G

We use these coe�cients for modeling the magnetic �elds and hence data simulation. Applying the
classic reconstruction introduced for ideal �elds, we gain the results presented in Figure 8.5. We
obtain reconstructions exhibiting similar deformation artifacts as for our �rst example, where we
included a di�eomorphic deformation and neglected it in the image determination. However, the
results show background errors, which were not present in the previous setting. If we now incorporate
the di�eomorphism (8.5) in the reconstruction, we obtain the results depicted in Figure 8.6. While
the deformation is reduced, the background irritations are still present. Additionally, the shape of
the phantom components do not �t. See for example the square, which rather appears as a rectangle
in this reconstruction. Note that the deformation function in this case is only an approximation, as
we have adapted the �eld to divergence- and rotation-free versions. The question is, whether the
regarded �elds can be linked to the ideal �eld via a di�eomorphism. Corresponding results, using
a deformation function obtained by the described image registration framework are presented in
Figure 8.7. This gives the best results. The background deviations are still present, but the shape
matches the initial phantom. Considering these magnetic �elds, we �nd varying results with respect
to the SSIM- and PSNR-based parameter choice. The PSNR-based images appear smoother and by
personal opinion are in better agreement to the groundtruth images. Reconstructions with reduced
background noise obtained by adding a sparsity constraint on the Radon data are visualized in
Figure 8.8. Please be referred to Table 8.4 for parameter choices and similarity values.
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(f) PSNR (c) = 17.24

Figure 8.5.: Phantom (�rst row) and sinogram (second row) reconstructions using the approachM1. The
left column shows results for SSIM-based and the right column for PSNR-based parameter
choice.
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Figure 8.6.: Phantom (�rst row) and sinogram (second row) reconstructions using the approach M2

with the deformation function (8.5). The left column shows results for SSIM-based and the
right column for PSNR-based parameter choice.
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Figure 8.7.: Phantom (�rst row) and sinogram (second row) reconstructions using the approach M2

with deformation function generated via image registration. The left column shows results
for SSIM-based and the right column for PSNR-based parameter choice.
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Figure 8.8.: Phantom (�rst row) and sinogram (second row) reconstructions using the approach M2

with sparsity constraint and deformation function generated via image registration. The
left column shows results for SSIM-based and the right column for PSNR-based parameter
choice.
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We now want to investigate the background irritations and ideas to further improve image recon-
struction. To this end, consider Figure 8.9.
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Figure 8.9.: Comparison of the ideal �eld (�rst column) with the �elds deformed according to (8.5)
(second column), and �elds adapted to a divergence- and rotation-free version (third
column), at di�erent time steps (rows). The white dotted square shows our usual FOV
and the dashed white circle represents the fully sampled region. The colorbar is �xed for
better comparability.

Shown is the ideal magnetic �eld for di�erent FFL positions in the �rst column. The second column
gives the according �elds for the deformation (8.5), and the third column those for the �elds con-
sidered latest, i.e. the adaption to divergence- and rotation-free �elds. Indicated by the dashed
circle is the fully sampled region regarding ideal �elds. For image registration, we considered the
image sections in the second row limited by the dotted square. We added the square also in the
�rst and third row for visualization purposes. We deduce that reconstructions can be improved by
regarding an increased image section for image registration, as it can be seen that parts of the �elds
move to an area outside the dotted square. This cannot be described by di�eomorphisms derived
with image sections constrained to the dotted square. In order to explain the lower image quality of
reconstructions regarding the deformation described by Table 8.3, we compare the second and third
column of the above �gure. While the LFVs seem to be in good accordance when being located
in the center of the FOV, this is not the case for outer regions. For the later �elds, the low-�eld
region appears compressed when located at the top of the FOV. It appears disconnected and shifted
outside of the FOV, when located at the bottom. This explains the resolution and image quality
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loss closer to the boundary in Figure 8.5 to 8.8. Thus, future investigations should include the
speci�c shape of LFVs for realistic magnetic �elds, as this directly links to reliability and usability
of image reconstruction and gives insight of where to approach for image enhancement. Finally,
it moreover is necessary to investigate whether the link between ideal and real magnetic �elds can
indeed be estimated by di�eomorphisms in practice. We do not assume an exact �t, keeping the
disconnected LFV from our example in mind, however, a reasonable well matching approximation
would be enough. As a �rst approach regarding real measured �elds, we refer to Figure 8.10 and
8.11. Thereby, we take into account real measured �elds that were provided to us and presented in
([57], [58]). Here, we further allow scaling of the magnetic �elds to enable more �exibility, i.e.

HΓ (r,φ, t) ≈ λSφ,tH
ideal
S

(
Γ−1
φ,tr,φ

)
+ λDφ,tH

ideal
D (φ, t) (8.6)

with λSφ,t,λ
D
φ,t > 0. This can easily be included in the modeling of the forward operator as well

as in the image reconstruction if the scaling is assumed to be spatially independent. We �nd that
the di�eomorphic image registration is well able to link the measured �eld with the computed ideal
�eld. Note that we considered two dimensional registration for the depicted slices separately. In
practice, three dimensional registration should be applied. However, LagLDDMM is capable of 3D
image registration.

Table 8.4.: Reconstruction parameters and image quality values

Figure ω γ1 γ2 SSIM(c) PSNR(c)

8.3 2 · 104 0.14.25 0 0.8331 18.74

8.4a + 8.4d 2 · 103 0.15 0 0.9342 26.36

8.4c + 8.4f 2 · 103 0.14.75 0 0.8877 22.96

8.5a + 8.5d 2 · 104 0.14 0 0.5537 16.57

8.5c + 8.5f 2 · 101 0.15.25 0 0.3993 17.24

8.6a + 8.6d 2 · 104 0.14.25 0 0.5801 17.43

8.6c + 8.6f 2 · 101 0.15.75 0 0.4552 18.54

8.7a + 8.7d 2 · 105 0.13.5 0 0.5995 18.82

8.7c + 8.7f 2 · 101 0.15.5 0 0.4642 19.92

8.8a + 8.8d 2 · 105 0.13.5 2.5 0.7242 18.76

8.8c + 8.8f 2 · 101 0.15.5 0.4 0.5234 19.96

In summary, our new approach towards dealing with magnetic �eld imperfections gives promising
results. Nevertheless, further investigations, especially in accordance with real measurements, are
needed to provide a robust analysis.
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Figure 8.10.: Di�eomorphic image registration, which additionally allows scaling according to (8.6), ap-
plied to a real measured �eld, presented in ([57], [58]), featuring a horizontal FFL.
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Figure 8.11.: Di�eomorphic image registration, which additionally allows scaling according to (8.6), ap-
plied to a real measured �eld, presented in ([57], [58]), featuring a vertical FFL.

8.5. Conclusion and outlook

We transferred the approach of dealing with dynamic particle concentrations to the setting of mag-
netic �eld imperfections. This grounds on the observation that integrating a static phantom along
curves can be reinterpreted as integrating a deformed phantom along straight lines. We tested the
functional capability on the basis of numerical results. More precisely, we considered magnetic �elds
deformed via a constant di�eomorphism. We were well able to reconstruct phantom and sinogram,
using our usual simultaneous approach, for both exact incorporation of the deformation function and
incorporating the approximated deformed grid based on di�eomorphic image registration applied to
the modulus of magnetic �eld strengths. Since the resulting simulated magnetic �eld did not satisfy
the Maxwell equations, we aimed to make our analysis more realistic by adapting the corresponding
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spherical harmonics coe�cients such that afterwards the �elds are divergence- and rotation-free.
We still were able to determine reconstructions in good accordance to the groundtruth. Never-
theless, by plotting the ideal �eld in comparison to the ideally deformed �eld (using the de�ned
di�eomorphism) and to the divergence- and rotation-free �eld, showed that the image quality might
be improved via including a larger image section for image registration, as parts of the �elds moved
out of the FOV. Furthermore, we observed that for the �elds modeled by adapting the SHCs, the
LFVs were contracted when located at the top of the FOV and teared apart at the bottom. Hence,
for practical applications it should be examined on the one hand whether real and ideal �eld can
indeed be linked via a di�eomorphic map, and on the other hand whether the information content
of the data is reduced, as parts of the object might not be scanned by a LFV if it is shortened.
Moreover, a possible resolution loss due smearing of real low-�eld volumes should be taken into
account. As a �rst step towards real applications, we registered measured �elds to computed ideal
ones. Allowing additional scaling, which is easy to incorporate in modeling and reconstruction if
it is spatially independent as it then can be pulled out of the voltage integral, we �nd that dif-
feomorphic image registration worked well for describing the measured �elds in terms of the ideal
one. These �elds were presented in ([57], [58]) and thankfully provided to us. In our examples, we
considered constant deformations. In practice, it might be necessary to execute image registration
for di�erent angle and time instances. Further future investigations might include considerations
in 3D. Fortunately, the LagLDDMM approach [133] is also capable of 3D investigations and can
be used for the according analysis. So far, we regarded the modulus of magnetic �eld strengths
as input for image registration. It might be interesting to try registering the vector �elds directly.
In order to improve results, prior information as the requirement of the satisfaction of Maxwell
equations can be exploited. Note that the considerations of this chapter are not only relevant for
magnetic �eld imperfections but opens the possibility of various scanning geometries not restricted
to applications utilizing an FFP or FFL. As a �nal remark, another point to consider is the possible
occurrence of inaccuracies in the drive �elds as well as receive coils.
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To conclude this work, let us recapitulate what we did and achieved. We started with introductory
considerations, recalling fundamental notations and results from the �elds of functional analysis,
optimization theory, functions of bounded variation, as well as the de�nition of spherical harmonics.
The latter can be used to model and simulate magnetic �elds. In the ideal case a few SHCs are
su�cient. For realistic magnetic �elds, more and higher degrees become relevant. We continued
with basic aspects of inverse problems in general and dynamic inverse problems in particular. Af-
terwards, we presented the two medical imaging techniques essential for our investigations, namely
computerized tomography and magnetic particle imaging. For the special scanner type, applying
a �eld-free line for spatial encoding, geometrical similarities between the scanning patterns of CT
and MPI became obvious. Indeed, for an ideal setting, that is static phantoms, ideal �elds, as well
as sequential line rotation, it had already been shown that MPI-FFL data can be linked to the
classical Radon transform. The goal of our work was to investigate artifact reduction for Radon-
based image reconstruction in MPI using an FFL scanner. To this end, step by step, we considered
di�erent setup assumptions and aimed to transfer the mentioned relation from the ideal case to the
updated settings. We started with considerations regarding a simultaneous line rotation, went on to
dynamic particle concentrations, and ended with the examination of magnetic �eld imperfections.
We �nd that all settings are somehow linked to the main part of this thesis, i.e. the examination
of time-varying particle concentrations. The simultaneous line rotation links to the sequential one
by assuming a rotating particle concentration. The �eld imperfections link to ideal �elds in com-
bination with deformed phantoms. It should be noted that this is not an equivalence, as the time
dependencies are considered di�erently in the model, which leads to di�erences in the execution of
the time derivative. For each setup, we were able to trace back MPI-FFL data to adapted versions
of the Radon transform. These connections make the vast set of results regarding CT accessible.
We decided to introduce a TV-based joint reconstruction of Radon data and particle concentration,
which enables incorporation of both prior information about the phantom as well as the Radon data.

While our numerical results, using simulated data, showed promising results, future investigations
require checking the applicability to real data in order to examine the reliability for clinical issues.
To this end, it might be necessary to improve the magnetization model e.g. via incorporation of
relaxation e�ects (cf. [12], [45]). Additionally, due to the great �exibility of variational regular-
ization methods, we can enhance image reconstruction by adapting the objective functional. For
instance, model uncertainties could be included like in [34]. Furthermore, the possibility to incor-
porate motion estimation directly in the image reconstruction process should be considered. At
some point, however, the objective functional may become �ooded with tasks and consideration
should be given to outsourcing some of these to separate problem solvers. More points to consider
comprise the elevation of the setting from two to three dimensions. We have taken an initial step in
this direction by connecting the ideal MPI-FFL forward operator to the Radon transform in three
dimensions and only then reducing it to 2D considerations for the sake of simplicity. To go on, our
results could be transformed into Fourier space. Since all the links base on a convolution of the
mean magnetization with the Radon transform, this might give helpful insights for the development
of di�erent reconstruction approaches. Being in Fourier space, it is then easily possible to extract
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the particle response from the total signal including the direct feedthrough of the excitation func-
tion. Of further interest are investigations concerning the image quality with the �rst harmonic of
the particle signal being removed. Finally, the combination of the settings we considered and the
corresponding information content in the data could be examined with regard to e.g. contracted
LFVs.
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A. Appendix

A.1. Expansion of magnetic �elds in spherical harmonics

This section summarizes considerations stated in [30] and [31] adapted to our notation. Since in
practice every magnetic �eld is three dimensional, from now on considerations are made in R3. We
further assume the �elds to be su�ciently smooth. Starting from the Maxwell conditions, under
the assumption that the FOV is free of �eld sources and has constant permeability µ0, magnetic
�elds can be assumed to comply with

∇ ·H = 0 and ∇×H = 0. (A.1)

Thus, the �eld components Hi ful�ll the Laplace equation ∆Hi = 0, i = 1, 2, 3. Adding Dirichlet
boundary conditions on the sphere S2

R :=
{
r ∈ R3 : ∥r∥ = R

}
with radius R > 0{

∆Hi (r) = 0, r ∈ BR,

Hi (r) = HR
i (r) , r ∈ S2

R,

using continuous functions HR
i : S2

R → R, for i = 1, 2, 3, the magnetic �eld can be described
via spherical harmonics introduced in Section 2.4. The according series expansion in spherical
coordinates (r,ϑ,φ) is then determined by

Hi (r,ϑ,φ) =
∞∑
l=0

l∑
m=−l

cR,i
lm

( r

R

)l
Ylm (ϑ,φ) =

∞∑
l=0

l∑
m=−l

cR,i
lm

Rl
plm (ϑ,φ) . (A.2)

Regarding the normalization (2.6) the coe�cients can be computed via

cR,i
lm =

∫ 2π

0

∫ π

0
HR

i (ϑ,φ)Ylm (ϑ,φ) sinϑ dϑ dφ.

Alternatively, for the Schmidt quasi-normalization (2.7) the computation transforms to

cR,i
lm =

1

∥Ylm∥2

∫ 2π

0

∫ π

0
HR

i (ϑ,φ)Ylm (ϑ,φ) sinϑ dϑ dφ, ∥Ylm∥2 = 4π

2l + 1
.

Therewith, the magnetic �eld within the ball BR of radius R > 0 around the zero point is completely
determined by the values on the sphere. Furthermore, in the latter choice of normalization, the coef-
�cients give the maximum amplitude of the spherical harmonics on a sphere, which is advantageous
for the assessment of the spatially dependent �eld amplitude.

Example A.1. A rotating ideal �eld-free line, obtained by the composition of �ve �eld generating

coils, can be described by a few spherical harmonics coe�cients. Assume without loss of generality

R = 1 and neglect the according index. Exploiting (A.2) and Table 2.1, the resulting magnetic �eld

119



A. Appendix

at r = (x, y, z)T can be computed by

H (r, t) = HMaxwell (r) +HQuad0 (r) cos (4πfrott) +HQuad45 (r) sin (4πfrott)

−Hx-Drive (r) Λ (t) sin (2πfrott) +Hy-Drive (r) Λ (t) cos (2πfrott)

=
G

2

−x

−y

2z

+
G

2

 x

−y

0

 cos (4πfrott) +
G

2

y

x

0

 sin (4πfrott) +AΛ (t)

− sin (2πfrott)

cos (2πfrott)

0


z=0
= (AΛ (t) +Gx sin (2πfrott)−Gy cos (2πfrott))

− sin (2πfrott)

cos (2πfrott)

0

 .

A simple computation using the double angle formulas for trigonometric functions and setting z = 0

therefore yields

H (r, t) = (−G r · et −AΛ (t)) et,

i.e. the magnetic �eld for the simultaneously rotating FFL regarded in Chapter 6. When considering

piecewise constant angles φt, it transforms into the discrete line rotation that we have considered in

the other chapters.

Table A.1.: Spherical harmonics coe�cients for a continuously rotating ideal �eld-free line.

Coil Name
H

Time-dependent Part

H1 H2 H3

Select Maxwell 2 c11,1 = −G 2 c21,−1 = −G c31,0 = G 1

Select Quad0 2 c11,1 = G 2 c21,−1 = −G cos (4πfrott)

Select Quad45 2 c11,−1 = G 2 c21,1 = G sin (4πfrott)

x-drive c10,0 = A −Λ (t) sin (2πfrott)

y-drive c20,0 = A Λ (t) cos (2πfrott)

A.2. Explicit expression of spherical harmonics

Binomial Theorem: (x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk,

(
n

k

)
=

n!

(n− k)! k!
, n ∈ N0

We derive a closed-form expression of spherical harmonics, which we have translated into Julia code.
Our implementation of spherical harmonics is inspired by https://github.com/hofmannmartin/

SphericalHarmonicExpansions.jl.
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A.2. Explicit expression of spherical harmonics

In a �rst step, we exploit the well-known binomial theorem for the computation of the associ-
ated Legendre polynomials (2.5). Let l ∈ N0 and m ∈ {−l, . . . , l}. With ⌊·⌋ : R → Z denoting the
�oor function, we obtain

Pm
l (x) =

1

2ll!

(
1− x2

)m
2

dl+m

dxl+m

(
x2 − 1

)l
=

1

2ll!

(
1− x2

)m
2

l∑
k=0

(−1)k
(
l

k

)
dl+m

dxl+m
x2(l−k)

=
1

2ll!

(
1− x2

)m
2

⌊ l−m
2

⌋∑
k=0

(−1)k
(
l

k

)
(2 (l − k))!

(2 (l − k)− (l +m))!
x2(l−k)−(l+m)

and thus

Pm
l (cosϑ) =

1

2ll!
sinm ϑ

⌊ l−m
2

⌋∑
k=0

(−1)k
(
l

k

)
(2 (l − k))!

(l − 2k −m)!
cosl−2k−m ϑ.

Further, we make use of the Chebyshev polynomials of the �rst Tm and of the second kind Um.
A comprehensive overview on Chebyshev polynomials is given in [157]. We use their following
representation

cos (mφ) = Tm (cosφ) =

⌊m
2
⌋∑

k=0

(−1)k
(
m

2k

)
sin2k φ cosm−2k φ,

sin (mφ) = sinφUm−1 (cosφ) =

⌊m−1
2

⌋∑
k=0

(−1)k
(

m

2k + 1

)
sin2k+1 φ cosm−1−2k φ.

Regard the spherical coordinates r = (x, y, z)T = r (sinϑ cosϕ, sinϑ sinϕ, cosϑ)T . Moreover, by
setting

Akk′
lm :=

√
2Km

l

1

2ll!
(−1)k+k′

(
m

2k

)(
l

k′

)
(2 (l − k′))!

(l − 2k′ −m)!
,

Bk′
l0 := K0

l

1

2ll!
(−1)k

′
(
l

k′

)
(2 (l − k′))!

(l − 2k′)!
,

Ckk′
lm :=

√
2K

|m|
l

1

2ll!
(−1)k+k′

(
|m|

2k + 1

)(
l

k′

)
(2 (l − k′))!

(l − 2k′ − |m|)!

the spherical harmonics (2.4) can be stated explicitly. For m > 0 we obtain

Ylm (ϑ,φ) =
√
2Km

l cos (mφ)Pm
l (cosϑ)

=

⌊m
2
⌋∑

k=0

⌊ l−m
2

⌋∑
k′=0

Akk′
lm (sinϑ sinφ)2k (sinϑ cosφ)m−2k (cosϑ)l−2k′−m

=

⌊m
2
⌋∑

k=0

⌊ l−m
2

⌋∑
k′=0

Akk′
lm y2kxm−2kzl−2k′−m

(√
x2 + y2 + z2

)2k′−l
= Ylm (r) .
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Likewise, we compute for m = 0

Yl0 (ϑ,φ) = K0
l P

0
l (cosϑ) =

⌊ l
2
⌋∑

k′=0

Bk′
l0 cos

l−2k′ ϑ =

⌊ l
2
⌋∑

k′=0

Bk′
l0z

l−2k′
(√

x2 + y2 + z2
)2k′−l

= Yl0 (r) ,

as well as for m < 0

Ylm (ϑ,φ) =
√
2K

|m|
l sin (|m|φ)P |m|

l (cosϑ)

=

⌊ |m|−1
2

⌋∑
k=0

⌊ l−|m|
2

⌋∑
k′=0

Ckk′
lm (sinϑ sinφ)2k+1 (sinϑ cosφ)|m|−1−2k (cosϑ)l−2k′−|m|

=

⌊ |m|−1
2

⌋∑
k=0

⌊ l−|m|
2

⌋∑
k′=0

Ckk′
lm y2k+1x|m|−1−2kzl−2k′−|m|

(√
x2 + y2 + z2

)2k′−l
= Ylm (r) .

The above representation of the spherical harmonics can be used to rewrite (A.2)

Hi (r,ϑ,φ) =
∞∑
l=0

( −1∑
m=−l

cR,i
lm

( r

R

)l
Ylm (ϑ,φ) + cR,i

l0

( r

R

)l
Yl0 (ϑ,φ) +

l∑
m=1

cR,i
lm

( r

R

)l
Ylm (ϑ,φ)

)
.

This explicit formulation of the spherical harmonics allows the determination of conditions on the
corresponding coe�cients to ensure the ful�llment of Maxwell's equations.
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