
More Applicable Text Classi�cation

with Human-in-the-Loop: Patterns,

Frameworks, and Tools

Dissertation with the aim of achieving a doctoral degree (Dr. rer. nat.)

at the Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics

Applied Software Technology

Universität Hamburg

submitted by

Jakob Smedegaard Andersen

from Hamburg

Hamburg, 2024

.

Day of the oral defense: July 19, 2024

Chair of the examination board: Prof. Dr. Sören Laue

Prof. Dr. Matthias Rarey (deputy)

First reviewer: Prof. Dr. Walid Maalej

Second reviewer: Prof. Dr. Olaf Zukunft

Third reviewer: Prof. Dr. Foutse Khomh

iii

To My Family.

.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my su-

pervisor, Prof. Walid Maalej, for his tireless support, guidance, and expertise

throughout my Ph.D. Thank you for giving me the opportunity to be a part

of your research group and for constantly challenging and improving my ideas.

This endeavor would not have been possible without you. Your invaluable advice

has contributed greatly to my academic and personal development.

I would like to express my deepest gratitude to Prof. Olaf Zukunft for awaken-

ing my interest in research and encouraging me to pursue a Ph.D. Your encour-

agement and expertise contributed signi�cantly to the successful completion of

this thesis. Thank you for always having time for me and for your continued

dedication to my academic and personal development. Your unwavering support

has been an anchor and will always be remembered.

I would also like to thank Prof. Marina Tropmann-Frick for her support and

inspiring advice, especially in the early stages of my Ph.D. It was a pleasure to

co-author a paper with you.

I have had the pleasure of working with many colleagues and friends who

have supported me along the way. I have had many inspiring conversations

with you, but also spent many enjoyable hours outside of research. Without

your company, this experience would have been far less enriching.

Finally, words cannot express my gratitude to my family for their uncondi-

tional support throughout this journey.

vii

.

Abstract

Machine Learning (ML)-based text classi�cation o�ers a promising and scalable

approach to automate the classi�cation of text, such as app reviews or social

media posts. However, the applicability of text classi�ers in real-world settings

is limited by inherent uncertainties and potential performance gaps.

This thesis explores the potential of the emerging �eld of Human-in-the-Loop

(HiL) to address the applicability challenges for ML-based text classi�cation.

Our goal is to increase applicability by e�ciently incorporating humans into the

text classi�cation pipeline. To this end, we review the current literature on HiL

and develop a pattern catalog to provide software developers with best practices

for designing HiL systems. Our catalog aims to facilitate the development and

deployment of applicable HiL systems that integrate humans into the ML loop.

Next, this thesis proposes and evaluates novel frameworks that implement

three HiL patterns. Addressing common applicability challenges such as high

computational resource requirements, limited classi�cation performance, and

high model latency. In particular, the proposed frameworks utilize the con-

cept of prediction uncertainty to coordinate human e�orts. We evaluated the

e�ectiveness of our frameworks using datasets from the domains of software engi-

neering, online journalism, and social media analysis. Our contributions enable

more applicable solutions for the cost-optimized training and deployment of text

classi�ers.

Furthermore, we propose a novel framework for explaining the prediction

uncertainty of text classi�ers in order to improve user understanding of clas-

si�cation decisions. While existing explanation techniques mainly explain the

provided class label, we build on the concept of prediction uncertainty and make

it explicit to users.

Finally, based on our HiL patterns, this thesis develops REM, a visual tool

for the real-time moderation of online forums. REM enables a semi-automated

moderation of continuous streams of user comments by integrating various HiL

patterns and HiL collaboration mechanisms. Experiments with REM show

promising results, achieving a signi�cant increase in classi�cation performance

(from 78.48% to 96.08%) while requiring manual moderation of only 25% of

the data. These contributions empower domain experts to be e�ciently in-

volved in the text classi�cation process, ultimately improving the applicability

and e�ciency of forum moderation in real-world settings. REM was developed

speci�cally for online journalism, but can be easily adapted to other domains.

Kurzfassung

Textklassi�kationsverfahren, die auf maschinellem Lernen basieren, sind ein

vielversprechender und hochgradig skalierbarer Ansatz, um die Klassi�kation

von Texten wie beispielsweise App-Rezensionen oder Kommentaren in sozialen

Medien zu automatisieren. Die Anwendbarkeit solcher Verfahren wird jedoch

durch inhärente Unsicherheiten und potentielle Leistungsde�zite in Bezug auf

die Anforderungen, die in realen Anwendungsgebieten auftreten, eingeschränkt.

Diese Arbeit untersucht die Eignung des aufstrebenden Human-in-the-Loop-

Ansatzes, um die Anwendbarkeit maschineller Lernverfahren für die Textklas-

si�kation zu adressieren. Unser Ziel ist es, die Anwendbarkeit durch die ef-

�ziente Integration des Menschen in den Klassi�kationsprozess zu verbessern.

Dazu wird zunächst ein Überblick über den aktuellen Stand der Literatur zum

HiL-Ansatz gegeben. Ein Katalog von Entwurfsmustern wird entwickelt, um

Softwareentwicklern bewährte Praktiken für den Entwurf von HiL-Systemen be-

reitzustellen. Die Muster können den Entwurf und die Inbetriebnahme von HiL

Systemen erleichtern.

Anschlieÿend werden neuartige Rahmenwerke für die Umsetzung von drei

HiL-Mustern vorgeschlagen und evaluiert. Diese adressieren allgemeine Heraus-

forderungen der Anwendbarkeit von Textklassi�katoren, wie z.B. den enormen

Bedarf an Rechenressourcen, eine begrenzte Klassi�kationsgenauigkeit und eine

hohe algorithmische Latenz zwischen menschlichen Interaktionen während des

Trainingsprozesses. Die vorgeschlagenen Implementierungen nutzen insbeson-

dere das Konzept der Vorhersageunsicherheit, um die E�zienz menschlicher

Eingri�e zu optimieren. Die E�ektivität dieser Ansätze wird anhand von Daten-

sätzen aus der Softwareentwicklung, dem Online-Journalismus und der Analyse

sozialer Medien evaluiert. Unsere Beiträge ermöglichen anwendbarere Lösungen

für das kostenoptimierte Training und den Einsatz von Textklassi�katoren.

Darüber hinaus schlagen wir ein neues Rahmenwerk zur Erklärung der Vorher-

sageunsicherheit von Textklassi�kationsergebnissen vor, um das Verständnis der

Klassi�kationsergebnisse für den Benutzer zu verbessern. Während bestehende

Ansätze hauptsächlich das Klassi�kationsergebnis erklären, bauen wir auf dem

Konzept der Vorhersageunsicherheit auf und kommunizieren diese dem Nutzer.

Basierend auf unseren HiL-Mustern entwickelt diese Arbeit REM, ein visuelles

Werkzeug für die Echtzeit-Moderation von Online-Foren. REM ermöglicht die

halbautomatische Moderation kontinuierlicher Ströme von Nutzerfeedback durch

die Integration verschiedener HiL-Muster und HiL-Kollaborationsmechanismen.

Experimente mit REM zeigen vielversprechende Ergebnisse mit einer signi�-

kanten Erhöhung der Klassi�kationsgenauigkeit (von 78,48% auf 96,08%), wäh-

rend nur 25% der Daten manuell moderiert werden müssen. REM ermöglicht

die e�ziente Einbindung von Moderatoren in den Textklassi�kationsprozess,

was letztlich die Anwendbarkeit und E�zienz von Forenmoderation in realen

Anwendungsfällen verbessert. REM wurde speziell für den Bereich des Online-

Journalismus entwickelt, kann aber leicht an andere Bereiche angepasst werden.

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Objectives and Contributions . 3

1.3 Scope . 6

1.4 Structure . 7

I Problem 9

2 Foundations 11

2.1 Text Classi�cation . 11

2.1.1 Overview . 11

2.1.2 Problem Speci�cation . 12

2.1.3 Text Classi�cation Pipeline 13

2.1.4 Data Cleaning . 15

2.1.5 Feature Extraction . 16

2.1.6 Classi�cation Models . 21

2.1.7 Classi�er Validation . 27

2.2 Prediction Uncertainty . 30

2.2.1 Motivation . 30

2.2.2 Overview . 32

2.2.3 Sources of Uncertainty . 35

2.2.4 Types of Uncertainty . 36

2.2.5 Uncertainty Estimation 38

2.2.6 Uncertainty Quanti�cation 43

2.3 Conclusion . 47

3 Applicability Challenges of ML-based Text Classi�ers 49

3.1 Examples of Real-world Use-cases 49

3.1.1 Feedback and Review Classi�cation 50

3.1.2 Issues Ticket Classi�cation 50

3.1.3 Hate Speech and O�ensive Language Detection 51

3.1.4 Sentiment Analysis . 52

xiii

Contents

3.1.5 Topic Classi�cation . 52

3.2 Classi�cation of Applicability Challenges in ML-based Text Clas-

si�cation . 53

3.2.1 Related Surveys . 53

3.2.2 Data-centric Challenges 55

3.2.3 Model-centric Challenges 58

3.2.4 Human-centric Challenges 61

3.2.5 Applicability-centric Challenges 62

3.3 Conclusion . 64

II Solution 67

4 Human-in-the-Loop Machine Learning 69

4.1 Motivation . 70

4.2 Scope . 72

4.3 De�nition . 74

4.4 Collaboration Mechanisms . 76

4.4.1 Information Visualization 77

4.4.2 Explanations . 78

4.4.3 Uncertainty Estimations 80

4.5 Design Patterns for HiL Systems 81

4.5.1 Research Methodology . 83

4.5.2 Study Findings . 84

4.5.3 Training Patterns . 86

4.5.4 Operational Patterns . 97

4.6 Discussion . 103

4.7 Conclusion . 106

5 Computational-aware Active Moderation 107

5.1 Motivation . 108

5.2 Conceptual Framework . 109

5.2.1 Problem Statement . 110

5.2.2 Lightweight Text Classi�ers 112

5.2.3 Text Features . 114

5.2.4 Uncertainty Assessment 114

5.3 Study Design . 114

5.3.1 Research Questions . 114

5.3.2 Benchmark Criteria . 116

5.3.3 Datasets . 117

xiv

Contents

5.3.4 Implementation Details 117

5.4 Results . 118

5.4.1 Quality of Predicted Probabilities 118

5.4.2 Classi�er Performance Under Stepwise Removal of Uncer-

tain Instances . 119

5.4.3 Semi-automated Classi�cation Performance 122

5.4.4 Runtime Investigation and Scalability 125

5.5 Discussion . 127

5.5.1 Implications . 127

5.5.2 Field of Application . 128

5.5.3 Threats to Validity . 130

5.5.4 Alternative Approaches from Related Work 131

5.6 Conclusion . 132

6 Human-resource-aware Active Moderation 133

6.1 Motivation . 134

6.2 Conceptual Framework . 135

6.2.1 Problem Statement . 135

6.2.2 Human-resource-aware Active Moderation as a Deploy-

ment Pattern . 136

6.2.3 Saturation-based Moderation Strategy 136

6.2.4 Uncertainty Assessment 138

6.3 Study Design . 138

6.3.1 Research Questions . 138

6.3.2 Benchmark Criteria . 139

6.3.3 Datasets . 140

6.3.4 Implementation Details 140

6.4 Results . 141

6.4.1 Impact of Uncertainty Modeling on the Classi�cation Per-

formance . 141

6.4.2 E�ciency of Misclassi�cation Detection 143

6.4.3 Saturation-based Moderation Performance 144

6.4.4 E�ect of Human Noise . 146

6.5 Discussion . 147

6.5.1 Implications . 148

6.5.2 Field of Application . 149

6.5.3 Threats to Validity . 150

6.5.4 Alternative Approaches from Related Work 151

6.6 Conclusion . 152

xv

Contents

7 Low-latency Active Learning via Proxy-based Data Sampling 153

7.1 Motivation . 153

7.2 Conceptual Framework . 154

7.2.1 Problem Statement . 155

7.2.2 Data Selection via a Low-budget Proxy 156

7.3 Proxy-based Active Learning for Text Classi�cation 157

7.3.1 Proxy Candidates . 157

7.3.2 BERT Consumer . 159

7.3.3 Selection Strategies . 159

7.4 Study Design . 160

7.4.1 Research Questions . 160

7.4.2 Benchmark Criteria . 161

7.4.3 Datasets . 162

7.4.4 Implementation Details 163

7.5 Results . 164

7.5.1 Classi�cation Performance 164

7.5.2 Comparison with Traditional Active Learning 165

7.5.3 Run-time Investigation . 166

7.5.4 Sampled Dataset Quality 167

7.6 Discussion . 168

7.6.1 Implications . 168

7.6.2 Field of Application . 170

7.6.3 Threats to Validity . 171

7.6.4 Alternative Approaches from Related Work 172

7.7 Conclusion . 173

8 Explainable Uncertainty Estimation for Text Classi�cation 175

8.1 Motivation . 176

8.2 Conceptual Framework . 177

8.2.1 Problem Statement . 177

8.2.2 Uncertainty Modeling . 178

8.2.3 Decomposition of Word Relevance and Uncertainty using

RNNs . 178

8.2.4 Visualizing Attributions 181

8.3 Study Design . 181

8.3.1 Research Questions . 181

8.3.2 Evaluation Criteria . 182

8.3.3 Datasets . 185

8.3.4 Implementation Details 185

xvi

Contents

8.3.5 Participants . 185

8.3.6 Procedure of the Human Evaluation 186

8.4 Experimental Evaluation Results 186

8.4.1 Sequence Decomposition 186

8.4.2 Relevant and Uncertain Words 189

8.4.3 Text Explanations . 191

8.5 Human Evaluation Results . 194

8.5.1 Explaining Relevant Words 194

8.5.2 Explaining Uncertainties 196

8.5.3 Questionnaire . 197

8.6 Discussion . 199

8.6.1 Implications . 199

8.6.2 Field of Application . 200

8.6.3 Threats to Validity . 201

8.6.4 Alternative Approaches from Related Work 202

8.7 Conclusion . 203

III Synopsis 205

9 REM - A HiL Tool for the E�cient Moderation of User Comments 207

9.1 Motivation . 207

9.2 System Description . 209

9.2.1 Usage of REM in the Domain of Online Journalism 209

9.2.2 HiL Components . 210

9.2.3 HiL Work�ow . 212

9.3 Requirements . 213

9.3.1 Functional Requirements 213

9.3.2 Non-functional Requirements 216

9.4 Architecture . 217

9.4.1 Components . 217

9.4.2 Real-time ML Pipeline . 219

9.4.3 Domain-driven Data Model 220

9.4.4 Process View . 222

9.5 System Implementation . 225

9.5.1 Context-view . 226

9.5.2 Moderation-view . 227

9.5.3 Control-view . 227

9.6 Active Moderation Experiment 228

xvii

Contents

9.7 Comparing Explanations from BayLUXT and ChatGPT 229

9.7.1 Word Relevance . 230

9.7.2 Word Uncertainties . 231

9.7.3 Explaining Explanations 233

9.7.4 Discussion . 233

9.8 Related Tools from the Literature 235

9.9 Discussion . 236

9.10 Conclusion . 236

10 Conclusion 239

10.1 Summary of the Contributions 239

10.2 Threats to Validity . 244

10.3 Further Work . 247

IV Appendices 249

A Benchmark Results 251

A.1 Computational-aware Active Moderation 251

A.2 Human-resource-aware Active Moderation 255

B Local Explanations 257

C ChatGPT Prompts 261

C.1 Explaining Word Relevance . 262

C.2 Explaining Word Uncertainty . 264

List of Figures 264

List of Tables 269

List of Own Publications 271

Bibliography 273

xviii

Chapter 1

Introduction

This chapter presents the problem statement, goals, and unique contributions

of the thesis, as well as its scope. The chapter concludes with an overview of

the general structure of the thesis.

1.1 Problem Statement

User-generated content written in natural language � commonly referred to as

user comments � has become a fundamental component of many online plat-

forms, including marketplaces, news sites, and social media. Users typically

participate by posting and reading comments about products or services. User

comments are recognized as a valuable and desired form of feedback that pro-

vides a rich and insightful source of real-world opinions and experiences [234].

In addition, user comments are increasingly the target of misuse, such as hate

speech and spam [111]. Across various domains, there is a strong need to extract

and leverage the hidden insights embedded in large collections of user comments

while implementing content �ltering strategies [234, 283, 285]. The most com-

mon type of analysis is text classi�cation [221], which aims to group comments

into existing classes, such as relevant and irrelevant.

Text is qualitative in nature and represents unstructured data. While natu-

ral language text follows grammatical and syntactical rules, it does not specify

how the information it contains is organized. Natural language text is inher-

ently �exible and inconsistent, making it challenging to analyze [267]. There

are two main approaches to text classi�cation. The �rst approach is manual

text classi�cation. This requires human annotators to carefully read and think

about each individual text. However, as the volume of data increases, manual

text classi�cation becomes increasingly impractical. Manually classifying large

amounts of text is labor-intensive, repetitive, tedious, and highly vulnerable to

unintentional errors [8]. For example, when presented with an overwhelming

amount of information, it can be di�cult for humans to extract speci�c useful

1

Chapter 1 Introduction

parts. The second approach is automated text classi�cation. With the use

of sophisticated algorithms, we can automatically classify textual data in many

ways. Automated text classi�cation makes information retrieval faster and more

e�cient [141]. It alleviates the problem of information overload by eliminating

the subjectivity of manual classi�cation. This thesis focuses on automated text

classi�cation using Machine Learning (ML) models.

Natural language text is inherently �exible and inconsistent. Automated text

classi�cation, especially using ML, faces a variety of uncertainties that can af-

fect its reliability and classi�cation performance [87]. As a result, practitioners

typically have to deal with a signi�cant amount of misclassi�cation. The de-

velopment of strong text classi�ers has become a core task in ML research and

has received much attention [88, 195]. ML-based text classi�cation is a di�cult

task due to critical challenges faced by practitioners, which we outline below.

Lack of Applicability. There is typically a gap between the capabilities of

ML-based systems and the actual needs of their users and application domains

[242, 282]. The applicability of ML systems generally refers to their quality

and alignment with critical requirements within a speci�c use-case. Examples

include meeting computational constraints [64], achieving appropriate perfor-

mance metrics that satisfy the goals and needs of the application domain [183],

and meeting fairness-related criteria [250]. Additionally, an ML system is con-

siderably applicable if it achieves desired outcomes under real-world conditions

or aligning with established user experience guidelines [361]. However, as out-

lined by Tambon et al. [356], it is di�cult to guarantee or even certify the safety

or correctness of ML models. Many dimensions of applicability, such as accu-

racy and robustness, are also highly subjective and di�cult to quantify [242,

376]. Current ML models are prone to uncertainty [87] and often exhibit lim-

ited classi�cation performance [73] coupled with a general lack of transparency

[136]. This thesis aims to develop solutions that improve the applicability of

text classi�cation systems. Speci�cally, it focuses on providing highly accurate

classi�cation outcomes tailored to better �t the requirements of a given do-

main, conserving human and computational resources, and ensuring high user

experience and productivity in terms of model latency.

Missing Consideration of Humans in the ML Loop. The Human-in-the-Loop

(HiL) approach [155] represents a new direction for ML systems, emphasizing

the tight integration of humans as a critical part of the ML pipeline. HiL

holds great promise for improving the applicability of text classi�cation systems

[155, 221]. It embodies the concept of harnessing the strengths of humans and

2

1.2 Objectives and Contributions

ML models by allowing humans to provide feedback to an ML model when it

faces challenges in providing appropriate outcomes or requires external feedback.

However, the suitability and e�ectiveness of HiL still need to be researched. The

research landscape on HiL approaches is somewhat convoluted. From a software

engineering perspective, there is a lack of consensus on how to e�ectively pair

humans and ML models, e.g., to achieve superior text classi�cation performance

while maintaining the cost-e�ectiveness of human involvement. How HiL can

mitigate the common applicability challenges of current ML-based text classi-

�ers remains largely unknown. Exploring the potential of HiL to address these

shortcomings is an essential but under-researched area.

Missing Tool Support. Analyzing, �ltering, and aggregating user comments

requires robust tool support, which is recognized as a signi�cant challenge in

various domains dealing with large volumes of user comments [90, 283]. There

is an urgent need for tool support to manage the �ood of information and

strategically allocate human e�ort to support the text classi�cation process [234,

285]. Dealing with an increasing number of diverse user comments is challenging.

Typically, user comments are monitored to gain and extract insight into what

users are expressing, or to �lter out unwanted content such as hate speech or

spam. Ensuring high classi�cation performance during operation is one of the

most important requirements for ML systems to be e�ective [133].

1.2 Objectives and Contributions

The goal of this thesis is to investigate frameworks for improving the applica-

bility of ML-based text classi�ers in real-world settings using HiL. It attempts

to overcome the signi�cant applicability challenges of ML-based text classi�-

cation models by incorporating feedback from human domain experts into the

classi�cation process. A critical aspect of this endeavor is the consideration

of applicability factors such as human-resource e�ciency, latency in terms of

user experience and transparency, and technical considerations such as compu-

tational resource consumption.

First, this thesis analyzes the challenges associated with ML-based text clas-

si�cation models and investigates the HiL approach to address some of the

outlined challenges. It reviews the literature on existing HiL approaches and

develops a catalog of HiL design patterns that involve human intervention to im-

prove the applicability of text classi�cation models. Second, we investigate and

propose concrete frameworks to implement three prevailing HiL patterns. In

addition, this thesis introduces one of the �rst frameworks to explain prediction

3

Chapter 1 Introduction

uncertainty in text classi�cation. Third, this thesis develops REM, a functional

prototype for human-resource-aware moderation of online forums in real-time.

REM assists domain experts in accurately moderating user comments in online

forums. We brie�y summarize the main contributions of our work:

Human-in-the-Loop Pattern Catalog. Chapter 4 proposes a catalog of 12 HiL

patterns to guide software engineers in developing HiL systems. The research

landscape of HiL is rather convoluted, with a notable lack of best practices for

integrating and leveraging human e�ort within the ML loop to achieve speci�c

goals. Design knowledge is essential because careful consideration of human ef-

fort is critical in HiL systems, especially given their limited availability and high

cost. Most existing HiL systems focus primarily on creating the initial training

dataset for model training, while signi�cant challenges arise during the deploy-

ment of ML systems. The catalog is constructed through a literature review

and our experience in developing HiL systems. The emphasis lies on human

domain experts and the task of labeling. We distinguish between training and

operation patterns. Training patterns are primarily concerned with the e�ec-

tive collection of training data or model tuning during the training phase, while

operation patterns apply post-training, i.e., when the model is operationalized.

More Applicable Text Classi�cation via HiL. We present concrete frameworks

for implementing selected patterns from our HiL pattern catalog to improve the

applicability of text classi�ers in real-world scenarios. The focus is on achieving

strong and practical classi�cation performance, a primary goal of text classi�-

cation. Furthermore, we aim to increase the applicability of text classi�cation

under constraints such as limited computational resources and resource-e�cient

use of human e�ort. In addition, we explore a framework to maintain high us-

ability when humans interact with ML models during training by minimizing

model latency.

� Computational-aware Active Moderation. Chapter 5 explores a

novel uncertainty-based HiL framework for improving the classi�cation

performance of text classi�ers in computationally resource-constrained,

low-end infrastructures. It addresses the challenge that state-of-the-art

classi�ers are often highly complex, expensive to train and deploy, and may

not be readily applicable in certain scenarios. In such cases, lightweight

classi�ers must be used. However, these typically have lower classi�cation

performance. We �nd that a HiL approach, in which the most uncer-

tain predictions encountered during operation are referred to humans, can

4

1.2 Objectives and Contributions

signi�cantly improve classi�cation performance at the expense of human

e�ort. Even in the presence of human error, superior results were obtained

compared to purely manual or purely ML-based classi�cation while rely-

ing on lightweight classi�ers. Hence, strong classi�cation performance can

be extended to a broader audience.

� Human-resource-aware Active Moderation. Chapter 6 develops a

framework for optimizing the amount of human e�ort needed to correct

highly uncertain predictions during operation. Human resources are cost-

intensive and cannot be allocated arbitrarily. Therefore, this thesis in-

troduces a human-resource-aware HiL framework that aims to maximize

the classi�cation performance of a classi�er during operation while mini-

mizing human e�ort. The proposed saturation-based moderation strategy

provides a solution to the trade-o� between classi�cation performance and

human e�ort. Our results show that with our novel framework, practi-

tioners can achieve accuracies of up to 99% with reasonable human e�ort.

Minimizing human e�ort while maximizing classi�cation performance in-

creases applicability. Consequently, human-resource-aware Active Moder-

ation allows users to spend their time on more interesting and less redun-

dant tasks other than labeling.

� Proxy-based Active Learning. Chapter 7 explores a time-e�cient

framework for Active Learning, a HiL pattern that aims to minimize the

number of labels a human must provide to train well-performing models.

In Active Learning, typically highly complex models must be re-trained

between label assignments, often resulting in enormous waiting times. To

address this challenge, we propose a Proxy-based Active Learning frame-

work for text classi�cation. The goal is to reduce model latency between

label assignments while leveraging the high classi�cation performance of

complex state-of-the-art classi�ers during deployment. Our results show

that our framework can maintain a latency of less than 1 second while pro-

viding training data that can be e�ectively reused to train state-of-the-art

ML models.

BayLUXT: Bayesian Local Uncertainty Explanations. Chapter 8 introduces

BayLUXT, a model-speci�c local explanation framework designed to explain

prediction uncertainties in text classi�cation. In total, BayLUXT provides �ve

types of explanations, including word-level and sequence-level uncertainty ex-

planations. While uncertainty estimates o�er valuable insights when an ML

model fails to provide reliable outcomes, they remain intransparent and lack

5

Chapter 1 Introduction

user trust. BayLUXT is one of the �rst frameworks to explain why predic-

tions were deemed uncertain by a text classi�er. We have conducted several

experiments that demonstrate the e�ectiveness of our framework and a human

evaluation that underscores its signi�cance. Our results suggest that practition-

ers bene�t from uncertainty explanations because they o�er valuable insights

into a model's decision-making process that traditional explanation techniques

do not provide. For instance, humans can understand which words in a text

contributed most to a highly uncertain prediction.

REM: A Prototype for the Real-Time Moderation of Online Forums. Chap-

ter 9 introduces REM, a functional prototype designed for the real-time mod-

eration of large-scale online forums. REM aims to e�ciently allocate human

e�ort to achieve a desired level of classi�cation performance. The tool inte-

grates several HiL patterns and our frameworks, including those introduced in

the Chapters 5, 6, and 8, while relying heavily on visual interactive interfaces.

REM directly prompts domain experts to label instances marked as highly un-

certain, while enabling exploratory analysis of online forums. With REM, do-

main experts are not only involved in labeling, but also gain additional insight

and knowledge about their data. The architecture of REM is based on several

big data frameworks that ensure its scalability and enable real-time processing

capabilities.

1.3 Scope

We brie�y outline the scope of this thesis.

Domain and Use-case Selection. This thesis focuses mainly on the domains

of software engineering, online journalism, and social media analytics. User

feedback has emerged as a critical aspect enabling data-driven decision-making

in software engineering practice. Especially in app stores and marketplaces,

user feedback is a valuable source of information about how users feel about

apps and services. From a software engineering perspective, mining bug reports,

feature requests, or praise hidden in user comments provides highly desired in-

formation for software maintenance and evolution. Online forums have become

an integral part of online journalism, o�ering valuable feedback and serving

as a desired communication channel for audiences. Harnessing their constructive

value and �ltering out harmful content from the growing �ood of user comments

is a critical challenge. Social Media Analytics has become an indispensable

tool for gaining insight into the behavior, opinions, and trends of millions of

6

1.4 Structure

users. By analyzing user comments on social media sites such as Twitter, stake-

holders can gain insight into how audiences respond to speci�c content, identify

emerging trends, and determine what topics are trending and how users feel

about them.

Text-based User Comments. The scope of this thesis focuses on text-based

user comments as the data to be analyzed. This content typically encompasses

any text created and shared by users on online platforms, social media, forums,

blogs, or other digital platforms where users contribute or share content. In

addition, we limit our analysis to text written in the English language. This

limitation helps to maintain consistency and facilitates the analysis process by

narrowing the scope to a speci�c language.

Domain Expert Feedback. Domain expert feedback encompasses the opin-

ions, insights, and suggestions o�ered by individuals with expertise or special-

ized knowledge in a particular �eld or domain. These experts possess a profound

understanding, experience, and knowledge of their respective domains, enabling

them to provide valuable perspectives, critiques, and recommendations on spe-

ci�c topics, issues, or projects. Domain experts are usually non-ML experts.

They often lack technical knowledge about how ML models work or how they

are developed. From a HiL perspective, feedback from domain experts is most

promising because it has the potential to provide valuable knowledge about the

domains or tasks that an ML model does not process. This knowledge can help

an ML model in cases where it does not perform well on its own.

1.4 Structure

The remainder of this thesis is structured in three parts:

Part I � Problem. Chapter 2 outlines the fundamental concept of ML-based

text classi�cation. It emphasizes the concept of prediction uncertainty,

which we will rely on heavily in the rest of this thesis. It then outlines the

real-world use-cases of text classi�cation that we will focus on. Chapter 3,

analyzes and highlights the general challenges of ML-based text classi�ers

that limit their applicability, especially in real-world settings.

Part II � Solution. Chapter 4 introduces the HiL approach, which we further

adapt to overcome some of the identi�ed challenges to enable more appli-

cable text classi�cation systems. It reviews the literature on existing HiL

solutions and provides a catalog of HiL patterns describing best practices.

7

Chapter 1 Introduction

In the following chapters, we propose three HiL frameworks to address

critical operational and training-related challenges. For each chapter, this

thesis outlines how domain experts in the �elds of online journalism, soft-

ware engineering, and social media analytics can use the HiL approach

to achieve more applicable text classi�cation. Chapter 5 investigates a

HiL framework to improve the classi�cation performance of lightweight

classi�ers in computationally constrained environments. Chapter 6 in-

vestigates a human-resource-aware HiL framework that aims to minimize

human e�ort while maximizing the classi�cation performance during op-

eration. Chapter 7 adapts a Proxy-based Active Learning framework for

text classi�cation to improve the user experience during training. Finally,

Chapter 8 proposes BayLUXT - a novel framework to explain the predic-

tion uncertainties of a text classi�er.

Part III � Synopsis. Chapter 9 describes the engineering and development of

REM, a functional prototype for the e�ective moderation of user com-

ments. It outlines REM's requirements, describes its architecture, and

discusses its HiL work�ow and user interface. Chapter 10 summarizes

our contributions throughout the thesis, discusses threats to validity, and

highlights further work.

8

Part I

Problem

9

Chapter 2

Foundations

This chapter introduces the basic concepts of this thesis. The focus is on aspects

that are central to understanding the HiL patterns and frameworks presented in

the following chapters. Section 2.1 gives a brief introduction to the ML-based

classi�cation of natural language text. It discusses the traditional classi�cation

pipeline and its subtasks. Section 2.2 introduces the concept of classi�cation

uncertainty as a �rst step towards more applicable text classi�cation. It de�nes

various sources, types, and techniques for modeling and quantifying prediction

uncertainty.

2.1 Text Classi�cation

Text classi�cation [221] is one of the most fundamental and essential tasks in

natural language processing (NLP) [264]. This section formally de�nes the text

classi�cation task, provides an overview of the text classi�cation pipeline, dis-

cusses common classi�cation models, and describes the validation process.

2.1.1 Overview

Natural language text is a rich and desirable source of information [85, 234,

240, 263, 348, 368]. It is one of the most common types of user-generated data.

Most natural language text today is created and distributed over the Internet.

Typically, human users communicate by sharing and responding to other con-

tent, for example via email [53], within online forums [234, 348], marketplaces

[240, 247] or support requests [179, 368]. Such text messages can contain valu-

able insights such as aspects, sentiments, personal opinions, or feedback [234]

that are of great interest to many application areas [53, 60, 85, 141, 240, 283].

Automating the extraction of insights from large amounts of textual data is

desirable. A high degree of automation is promising because it saves much time

that would otherwise be spent by humans [141]. The most common task of

natural language processing is text classi�cation [221].

11

Chapter 2 Foundations

Text classi�cation is the process of assigning text instances to prede�ned

classes [165, 221, 264]. For example, an email provider commonly o�ers its

customers protection against spam [53, 364], such as undesired advertisements.

For this purpose, incoming emails must be classi�ed into �spam� and �non-spam�

in order to �lter out the latter. Text classi�cation is a popular research area

with high practical impact. It has numerous real-world applications, including

monitoring [234], content �ltering [283, 285], and indexing [240]. E�ective text

classi�cation can potentially assist practitioners across various domains in their

daily work�ows [234, 285]. Text classi�cation is critical for organizing relevant

text and facilitating data-driven decision-making [241]. For instance, within

the �eld of software engineering, text classi�cation has shown high potential,

including the classi�cation of issue links [237], facilitating onboarding in open-

source projects by classifying bug reports into beginner and expert levels [352],

and identifying knowledge types in API documentation [112]. However, ana-

lyzing natural language text is challenging due to its complexity and individual

nuances, making it both challenging and resource-intensive in terms of human

e�ort.

2.1.2 Problem Speci�cation

Let 𝑋 be a set of input texts 𝑥 ∈ 𝑋 and 𝑌 = {1, ..., 𝐶} a set of 𝐶 ≥ 2 classes,

also called labels. Text classi�cation [62] deals with a set of input-output pairs

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑁 , 𝑦𝑁)} ⊂ 𝑋 ×𝑌 , where we assume an unknown relation-

ship between each pair (𝑥, 𝑦). Given an input 𝑥, classi�cation aims to retrieve

its true label 𝑦 ∈ 𝑌 . Text classi�cation is part of supervised ML [199], which

forms a family of ML models characterized by the way they acquire knowledge.

A classi�cation model acquires knowledge about the unknown input-output re-

lationship 𝑋 ×𝑌 from a set of already labeled examples 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 ⊂ 𝑋 ×𝑌
of size 𝑁 to derive the labels 𝑌 of inputs 𝑋. To better distinguish between true

and inferred labels, we use 𝑦 to refer to the true label (ground truth) of 𝑥 and

𝑦 as the arti�cially inferred label of 𝑥, which may di�er from 𝑦.

Formally, an automated text classi�er can be described as a function 𝑓 𝜔 :

𝑋 → 𝑌 that maps an input text to a �nite set of outputs, where 𝜔 are some

function weights. The input-output mapping 𝑦 ≈ 𝑓 𝜔 (𝑥) is learned in a process

called training. Training usually involves �nding the optimal weights �̂� ∈ Ω of

𝑓 that minimize a loss metric 𝐿 [257]:

�̂� = argmin
𝜔∈Ω

1

𝑁

𝑁∑︁
𝑖=1

𝐿 (𝑦𝑖 , 𝑥𝑖; 𝑓 𝜔) (2.1)

12

2.1 Text Classi�cation

Most modern classi�cation models provide class probabilities 𝑝(𝑦 = 𝑐 |𝑥, 𝐷)
that describe the relationship between 𝑋 and 𝑌 . The probabilities indicate the

likelihood that a given input 𝑥 belongs to a particular class 𝑐 under the control

of data 𝐷. The class of a new input 𝑥 is derived by selecting the class that

receives the highest conditional class probability, that is:

𝑦 = 𝑓 (𝑥) = argmax
𝑘∈{1,...,𝐶 }

𝑝(𝑦 = 𝑘 |𝑥, 𝐷) (2.2)

To build a text classi�er, an initial set of correctly labeled examples 𝐷𝑎𝑙𝑙 =

{𝑥𝑖 , 𝑦𝑖}𝑁𝑖=1 ⊂ 𝑋 × 𝑌 is needed. Examples (𝑥, 𝑦) ∈ 𝐷𝑎𝑙𝑙 de�ne how a classi�er

𝑓 should behave given an unseen input 𝑥. When training a classi�er ,𝐷𝑎𝑙𝑙 is

divided into a training set 𝐷 = 𝐷𝑡𝑟𝑎𝑖𝑛, a validation set 𝐷𝑣𝑎𝑙, and a test set 𝐷𝑡𝑒𝑠𝑡
with 𝐷𝑎𝑙𝑙 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑡𝑒𝑠𝑡 ∪ 𝐷𝑣𝑎𝑙 and 𝐷𝑡𝑟𝑎𝑖𝑛 ∩ 𝐷𝑡𝑒𝑠𝑡 ∩ 𝐷𝑣𝑎𝑙 = ∅. The di�erent
quantities serve the following purposes:

� The training data 𝐷 = 𝐷𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖 , 𝑦𝑖)} |𝐷𝑡𝑟𝑎𝑖𝑛 |
𝑖=1 is a sample of 𝐷𝑎𝑙𝑙 that

is used to train the model. A model learns the relationship between 𝑋 and

𝑌 from the training data.

� Validation data 𝐷𝑣𝑎𝑙 = {(𝑥𝑖 , 𝑦𝑖)} |𝐷𝑡𝑟𝑎𝑖𝑛∪𝐷𝑣𝑎𝑙 |
𝑖= |𝐷𝑡𝑟𝑎𝑖𝑛 |+1 is an additional data seg-

ment that injects new data into the training process. Validation data is

used to evaluate and �ne-tune the model and prevent common learning

issues such as over�tting [230]. While only some models can be tuned

or adapted with additional data during training, validation data is only

occasionally needed.

� The test data 𝐷𝑡𝑒𝑠𝑡 = {(𝑥𝑖 , 𝑦𝑖)} |𝐷𝑎𝑙𝑙 |
𝑖= |𝐷𝑡𝑟𝑎𝑖𝑛∪𝐷𝑣𝑎𝑙 |+1 is used to assess whether

a trained model makes useful prediction after the training process. Its

purpose is to check and con�rm how well the model performs on unseen

data before deploying the classi�er in a real-world scenario. Test data is

needed because the overall classi�cation performance of a classi�er can

only be assessed empirically.

This thesis focuses on the traditional classi�cation setting, where each input

belongs exclusively to one and only one of multiple non-overlapping and im-

mutable classes. Classi�cation is called binary when there are only two classes

(𝐶 = 2) and multi-class when there are more than two classes (𝐶 > 2).

2.1.3 Text Classi�cation Pipeline

Feature extraction [189] and classi�cation models [255] form the technical foun-

dation of automated text classi�cation. However, text classi�cation involves not

13

Chapter 2 Foundations

only the inference step of a classi�cation model, but also upstream and down-

stream tasks such as data cleaning, classi�er validation, and deployment [224].

Text consists of sequences of characters that cannot be fed directly into ML

models. This uniqueness has led to the development of various NLP techniques

to facilitate the use of text for ML models [192, 264]. In general, the application

of text classi�cation models follows a generic, domain-independent ML pipeline,

as depicted in Figure 2.1.

Hand-crafted Encoding
Index-based Encoding
Bag of Words
TF-IDF
Word-Embeddings
Encoder-based LLMs
...

Feature Extraction

Remove Punctuations
Lower Case Transformation
Noise Removal
Stop-word Removal
Stemming
Lemmatization
...

Data Cleaning

Traditional ML

Text

Deep Learning

Classifier
Feed Forward Neural Network
Convolutional Neural Network
Recurrent Neural Network
Encoder-based LLM
...

Classifier Validation

Accuracy
True Positive Rate
Positive Predictive Value
F1 Score
...

Label

Decision Tree
Random Forrest
k-Nearest Neighbors
Naive Bayes
Support Vector Machine
Logistic Regression
...

Classifier

Traditional ML

Punctuation Removal
Lower Case Transformation
Noise Removal
Stop-word Removal
Stemming
Lemmatization
...

Data Cleaning

Hand-crafted Encoding
Index-based Encoding
Bag of Words
TF-IDF
Word Embedding
Encoder-based LLM
...

Feature Extraction
Decision Tree
Random Forrest
k-Nearest Neighbors
Naive Bayes
Support Vector Machine
Logistic Regression
...

Classifier

Figure 2.1: The generic text classi�cation pipeline illustrates the process of
transforming input text into a classi�cation label. The pipeline
shows the work�ow using both traditional and deep learning ap-
proaches. Established implementations are listed for each step.
Adapted from Li et al. [224].

The pipeline illustrates the consecutive steps that data takes from raw text to

the �nal class label. These are data cleaning, feature extraction, classi�er selec-

tion, validation, and the deployment of the classi�cation label [24, 37, 51, 200,

224]. The trend is towards deep learning [213] models, which learn an optimal

feature representation in addition to the actual classi�cation task [265]. Feature

extraction is replaced by autonomously learned, model-internal feature repre-

sentations, eliminating the need for manual feature selection and engineering.

In comparison, traditional ML classi�ers require the selection of an appropriate

feature extraction technique.

Because each text classi�cation task is unique, there is no general solution for

implementing each step of the pipeline. The overall e�ciency of a text classi�er

depends heavily on its downstream task. However, numerous best practices and

design patterns [108, 137, 146, 209, 385] have been proposed that are likely to

yield high-quality and well-performing text classi�ers. The most common goal of

the text classi�cation pipeline is typically to obtain the most accurate classi�er

for deployment [213]. The following section brie�y describes each generic step

of the text classi�cation pipeline and outlines best practices.

14

2.1 Text Classi�cation

2.1.4 Data Cleaning

Like any raw data, text needs to be pre-processed, i.e., cleaned, to improve its

quality. ML models rely heavily on expressive and meaningful input to maximize

analysis outcomes, which requires high-quality data. Data cleaning aims to make

text instances more predictable and analyzable, i.e., more accurate, reliable, and

consistent [299].

A fundamental challenge in text classi�cation is the high dimensionality of

the feature space. The feature space in NLP models often consists of words

or tokens, which tend to be very large. Natural language is inherently complex

and diverse, characterized by large vocabularies, diverse grammatical structures,

and nuanced semantics. Such large and complex feature spaces contribute to

high computational complexity and a more challenging training process. An

illustrative challenge is over�tting [230], a common issue where the model e�ec-

tively �ts the training data but exhibits a poor classi�cation performance when

applied to other datasets.

Data cleaning techniques for text focus on reducing the dimensionality of

the feature space by removing obsolete characters and words from the input

[269]. The fundamental concept of text cleaning is to standardize text instances

and remove ambiguous, noisy, and irrelevant terms that are unlikely to help

distinguish between classes. Data cleaning aims to simplify the classi�cation.

Data cleaning is domain- and task-speci�c because the meaning of words and

characters can vary depending on the context. Data cleaning should be done

carefully, as it can add noise or disrupt the semantic integrity of text [240].

Poorly chosen cleaning steps can have a negative impact on the classi�cation

performance. The following section outlines common cleaning techniques for

natural language text. It focuses on general best practices that have proven

very successful for text classi�cation [86, 200, 267, 355, 375].

Punctuation Removal. Punctuation marks such as �.�, �,�, �:�, �;�, �!�, or �?�

generally do not provide much information for classi�cation tasks and are there-

fore usually removed from the input text, such as:

�Does he drink tea?� ⇒ �Does he drink tea�

Lower Case Transformation. NLP techniques typically distinguish between

uppercase and lowercase letters. Di�erentiating between mixed-case words is

often unnecessary, as this information rarely adds additional meaning given the

semantic equivalence of the terms, e.g.:

�Does he drink tea?� ⇒ �does he drink tea?�

15

Chapter 2 Foundations

Noise Removal. Text obtained from web crawling may contain special charac-

ters, metadata, and markup instructions such as HTML tags. These are consid-

ered noise because they can introduce unwanted inconsistencies and ambiguities

during training, while having little or no value for the actual classi�cation task.

Noise removal involves removing such noisy content from text instances. An

example of noise removal is demonstrated below:

�Does he drink tea?� ⇒ �Does he drink tea?�

Stop-word Removal. Stop words are typically high-frequency words within a

language. They provide little to no information as they do not contribute to the

true meaning of a text. Removing them helps the model focus on meaningful

and important words. Common examples of stop words are �a�, �that�, �from�,

and �while�. The cleaning step might look as follows:

�Does he drink tea? ⇒ drink tea?�

Stemming and Lemmatization. For grammatical reasons, words with related

meanings exist in di�erent forms, e.g., �study�, �studies�, �studying�. Stemming

and lemmatization are techniques that aim to replace related word forms with

a single, canonical representative. Stemming identi�es a common root form of a

word by removing or replacing prede�ned su�xes such as �-ing�, �-s�, �-ed � from

words. The resulting stem is not necessarily a valid word, but stemming can be

done quickly. In contrast, lemmatization considers the contextual meaning of

a word and maps it to its dictionary base form, also known as a lemma. The

lemma is a valid word; for example, �better � can be lemmatized to �well �. A

lemma is identical for all its in�ectional forms, e.g.:

�Changing the system made it better.� ⇒ �Change the system make it well.�

For a comprehensive overview of data cleaning techniques for NLP, see Tabas-

sum and Patil [355] or Naseem et al. [267].

2.1.5 Feature Extraction

Classi�cation models based on ML require meaningful numerical feature vectors

as input to function. Encoding or embedding is the process of transforming

textual data into numerical feature vectors. The e�ectiveness of classi�ers is

largely limited by the feature representations, so creating meaningful encodings

is an essential task of NLP. The most commonly used techniques are as follows

[177, 200, 227]:

16

2.1 Text Classi�cation

Hand-crafted Encoding. Hand-crafted encodings are manually selected or de-

�ned features derived from the text or associated metadata. Manually engi-

neering feature vectors is challenging and time-consuming, requiring a deep

understanding of the problem and much analysis, experimentation, and testing.

A typical example is the length of a text and context-speci�c metadata, such

as the number of texts posted by the same author or the time-frequency of text

postings [247]. However, hand-crafted features do not translate well to other

domains. Purely hand-crafted text encodings are of little relevance in modern

text classi�cation, as they fail to account for syntactic and semantic features.

Index-based Encoding. The most basic technique for representing text nu-

merically is to represent the occurrence of a word in a text by a unique number,

also known as an index. First, an invariant vocabulary is created that assigns

a unique index to each word in a given text corpus. Then, a vocabulary is

formed in which a word is associated with a corresponding index. An index-

based encoding involves replacing each word with its corresponding index from

the vocabulary. The vocabulary size is a critical design consideration, as it af-

fects computational and storage costs by determining the number of words to

be processed. A vocabulary that is too small can result in a large number of

unknown words, i.e. words that cannot be indexed because they are not in the

vocabulary. An index-based encoding might appear as follows:

�Does he drink tea?� ⇒ [1, 6, 5, 3, 14] ∈ Z |𝑥 |

Bag of Words (BoW). A BoW feature vector employs the frequency of words

within a text as its representation [200]. Analogous to index-based encoding,

a vocabulary is constructed to encode each word of a given text corpus. Each

index of a BoW vector represents the frequency of the corresponding word in a

text. A value of 0 indicates the absence of that particular word. Consequently,

the length (𝑛) of the feature vectors must match that of the vocabulary, mak-

ing the model much more complex and increases its computational complexity.

BoW representations capture only the number of word occurrences; they do not

address word order or re�ect the semantic relationship between words.

�Does he drink tea?� ⇒ [0, 0, 1, 1, 0, ..., 0, 0, 1] ∈ {0, 1}𝑛

TF-IDF. A signi�cant limitation of BoW is that all words are equally weighted

in the �nal feature vector. However, some words may be more relevant for a

classi�cation decision. TF-IDF (Term Frequency-Inverse Document Frequency)

is a technique that weights a word in relation to a text and the entire corpus

17

Chapter 2 Foundations

[346]. TF-IDF measures the frequency and distinctiveness of each word in a

corpus. Words that occur frequently throughout the corpus are considered less

important, while less frequent words are deemed more salient and receive a

higher weight.

The Term Frequency (𝑇𝐹), as de�ned in Eq. 2.3, is calculated as the number

of occurrences of a word 𝑤 within a text 𝑑, denoted as count(𝑤, 𝑑) divided by

the total number of words in 𝑑, which is
∑
𝑤′∈𝑑 count(𝑤′, 𝑑).

𝑇𝐹 (𝑤, 𝑑) := count(𝑤, 𝑑)∑
𝑣∈𝑑 count(𝑣, 𝑑)

(2.3)

The Inverse Document Frequency (𝐼𝐷𝐹) is a measure of the information con-

tent of a word within a corpus. It can be used to assess whether a word is

discriminative or common within a corpus. The 𝐼𝐷𝐹 is de�ned as the logarith-

mically scaled fraction of texts containing a word, that is:

𝐼𝐷𝐹 (𝑤, 𝐷) := log
|𝐷 |

|{𝑑 ∈ 𝐷 |𝑤 ∈ 𝑑}| (2.4)

The 𝑇𝐹-𝐼𝐷𝐹 representation is then calculated as the product of the term fre-

quency (𝑇𝐹) and the inverse document frequency (𝐼𝐷𝐹).

𝑇𝐹-𝐼𝐷𝐹 (𝑤, 𝑑, 𝐷) := 𝑇𝐹 (𝑤, 𝑑) · 𝐼𝐷𝐹 (𝑤, 𝐷) (2.5)

A 𝑇𝐹-𝐼𝐷𝐹 vector may look as follows:

�Does he drink tea ?� ⇒ [0, 0.62, 0.12, 0, 0, ..., 0, 0, 0.29] ∈ R𝑛

Word Embeddings. Feature representations based on word frequency do not

take into account the actual meaning of a word. As introduced by Hinton [151],

word embeddings attempt to overcome this limitation. They constitute a family

of unsupervised learned text representations that capture the meaning of words

from the context in which they are used [42, 253, 287]. Word embeddings encode

both the semantic and syntactic information of a word in a vector space [322].

A high-dimensional dense vector represents each word in such a way that the

cosine similarity between two words captures their semantic relationship. Words

that are closer in the vector space are assumed to be semantically similar, while

distant words are assumed to be semantically dissimilar.

Word embeddings allow for simple algebraic operations, demonstrating their

representational accuracy. Mikolov et al. [252] have demonstrated the expressive

power of word embeddings across various word similarity tasks. Let vector(𝑤)

denote a function that returns a word embedding of the word 𝑤. First, they show

18

2.1 Text Classi�cation

that the expression �vector(King) - vector(Man) + vector(Woman)� yields a

vector that is closest to the word Queen. Second, they show that the embedding

space can also re�ect other relationships, such as the degree of comparison. For

example, the word �big� is shown to be similar to �bigger � in the same sense

that �small � is similar to �smaller �.

Word embeddings are typically pre-trained on massive text corpora and can

be further re�ned on domain-speci�c data. Word embeddings map each unique

word to its corresponding vector space representation. Thus, a unique word

is always mapped to the same vector, regardless of its meaning. To illustrate

this concept, consider the following sentences: �I ate an apple� and �Apple an-

nounced a new line of phones�. In these contexts, the word �apple� refers to a

fruit in one context and to a technology company in the other. Word embed-

dings represent �apple� with a single vector, but this representation does not

inherently distinguish between its di�erent senses or meanings. Consequently,

word embeddings cannot account for homonyms. When using word embeddings

as text representations, each text is represented by a matrix 𝑋 ⊂ R𝑚×𝑑 where 𝑚

is the number of processable words per text and 𝑑 is the dimensionality of the

word embeddings. A word embedding might look as follows:

𝑣𝑒𝑐𝑡𝑜𝑟 (𝐾𝑖𝑛𝑔) = [0.34, 0.12, 0.92, 0.03, 0.58, ..., 0.29, 0.64, 0.11] ∈ R𝑑

Common word embedding models are word2vec [252, 253], GloVe [287], and

fastText [42].

Large Language Models (LLMs). Recently, LLMs have attracted consider-

able attention due to their high empirical performance in distilling statistical

meanings from language. This has been demonstrated by models such as BERT

[88], RoBERTa [232], AlBERT [211], and DeBERTa [144], which were trained

on extensive volumes of raw text using self-supervised learning techniques [371].

Current LLMs have been shown to provide state-of-the-art performance in sev-

eral NLP tasks, including text classi�cation [88].

Formally, a language model is a probability distribution over words [66]. They

can be used to determine the probability of words occurring in a sequence

𝑝(𝑤1, 𝑤2, ..., 𝑤𝑛) or to estimate the probability of a word within a sequence

of surrounding words 𝑝(𝑤𝑖 |𝑤1, ..., 𝑤𝑖−1, 𝑤𝑖+1, ..., 𝑤𝑛). Language models are ap-

plied to identify the most likely words, phrases, and sentences based on what

the model has learned.

Recent LLMs are primarily based on the Transformer [371], a deep learn-

ing architecture based solely on the attention mechanism [28]. The attention

mechanism allows for modeling dependencies between words regardless of their

19

Chapter 2 Foundations

distance in the input or output sequence [373]. A Transformer consists of an

encoder and a decoder, each of which can be tailored for a speci�c purpose:

� Encoder-based LLMs consist of a Transformer encoder. These mod-

els take an input sentence and provide e�ective feature representations

learned directly from extensive text collections. The encoder is trained

to capture bidirectional contextual information from the input text, en-

abling it to create text encodings that encapsulate the overall meaning of

the text. Recent models o�er contextualized encodings for tokens, words,

and entire texts. Contextualization means that the feature vectors cap-

ture the contextual meaning of words or tokens. Identical words or tokens

with distinct meanings are represented by di�erent features.

Encoder-based LLMs are built in two phases: pre-training and �ne-tuning

[88]. During pre-training, the model is trained unsupervised on a very

large collection of unlabeled and generic texts using a Mask Language

Modeling (MLM) and Next Sentence Prediction (NSP) target. The ob-

jective of MLM is to randomly mask tokens from text sequences and let

the model predict the original tokens based only on their context. NSP

involves learning the relationships between pairs of texts. The model is

asked to predict the relationship between two sentences, which may be log-

ical, sequential, or random. The purpose of the initial training is to teach

the model the basic syntax and semantics of words (general language un-

derstanding), i.e. how to use natural language correctly. Training aims to

capture the essence of the language.

Encoder-based LLMs should be �ne-tuned to exploit their full potential

and to reach state-of-the-art classi�cation performance [354]. Without

�ne-tuning, the model will not know the meaning of domain-speci�c words

and phrases, requiring updates using domain-speci�c data. The most fa-

mous encoder-based LLM is BERT [88] which stands for Bidirectional

Encoder Representations from Transformers.

� Decoder-based LLMs consist only of a Transformer decoder. Given a

sequence of words, a decoder-based LLM is trained to predict the next

word in the sequence (MLM). In this setup, the LLM is capable of gener-

ating new texts. The text generation process involves computing probabil-

ities for the next token, which is conditioned on the previously generated

token. Users employ decoder-based LLMs to generate human-like text

based on input instructions or prompts. Although decoder-based LLMs

do not extract features from text input, they can be utilized to answer

20

2.1 Text Classi�cation

questions in an FAQ fashion. Text classi�cation can be performed by

transforming the classi�cation task into a closed question problem [326].

Examples of decoder-based LLMs are the family of GPT (Generative Pre-

trained Transformer) models [298] or the chatbot ChatGPT [279]. For a

comprehensive review of LLMs, see Min et al. [254].

2.1.6 Classi�cation Models

The subject of classi�cation models is the concrete implementation of the pre-

diction function 𝑓 (𝑥), which infers the class membership 𝑦 for a given input 𝑥.

Many e�cient text classi�cation models have been developed and proposed over

the past decades [255, 280, 390].

We can distinguish between traditional and modern deep learning models for

text classi�cation. While both provide the technical foundation to automate

text classi�cation, they have signi�cant di�erences [168]. Traditional ML

models are known for their simplicity and relatively low execution time. They

generally require less training data to identify patterns, but are limited in their

ability to capture complex and nonlinear correlations. These models utilize

one-dimensional vector representations as input. Traditional ML models have

a long history, with some models dating back to the 18th century. In contrast,

deep learning models, which demonstrated practical usefulness around 1990

[214], are a subset of ML models that primarily use multiple complex stacks of

computational layers to learn from large amounts of data. The most commonly

used deep learning model is a Neural Network (NN) [142]. Although more com-

plex and computationally intensive, deep learning enables more sophisticated

decision-making, potentially outperforming traditional ML models [292]. How-

ever, deep learning models require a large amount of training data to recognize

patterns and to generalize e�ectively to new data [317].

Amount of Data

Traditional ML

C
la

ss
ifi

ca
tio

n
Pe

rfo
rm

an
ce Deep Learning

Figure 2.2: Expected classi�cation performance of traditional ML compared to
deep learning.

21

Chapter 2 Foundations

Figure 2.2 shows the approximate relationship between the amount of avail-

able training data and the expected classi�cation performance for traditional

ML and deep learning. This �gure illustrates that traditional ML models tend

to outperform deep learning when dealing with small datasets. However, as

the amount of training data increases, deep learning is expected to perform

signi�cantly better.

This section brie�y describes well-established ML models for automated text

classi�cation, covering both traditional ML and NNs for building deep learning

models. Li et al. [224] o�er a comprehensive survey of text classi�cation models.

Traditional Machine Learning. Traditional ML provides a suite of fundamen-

tal models for text classi�cation [177, 396]. Commonly applied traditional ML

models for text classi�cation include:

� Decision Tree (DT). A DT classi�er is a tree-like structure of decision

rules and leaf nodes [70]. A decision node has two or more branches

representing the decision rules derived from the training data. For each

classi�cation, the tree is traversed according to the input. The leaf node

reached de�nes the classi�cation result.

� Random Forrest (RF). An RF classi�er is an ensemble of DTs, each

voting for a particular class outcome [48]. Each tree is built individually

from a random sample of data. The results of all the DTs are combined

into a single classi�cation result. The �nal class prediction is the class

that receives the most votes.

� k-Nearest Neighbors (kNN). A kNN is based on the assumption that

the labeling of similar texts is equal [130]. Texts are classi�ed according

to the k most similar instances of the training dataset. A majority vote

is taken to determine the �nal class result.

� Naive Bayes (NB). NB classi�ers are a family of conditional probabil-

ity models based on the assumption of feature independence [219]. NB

classi�ers use Bayes' rule to infer the conditional probability for each class

outcome 𝑐. The class with the highest probability is taken as the �nal

class outcome, that is:

𝑦 = 𝑓 (𝑥) = argmax
𝑐∈{1,...,𝐶 }

𝑝(𝑐)
𝑛∏
𝑖=1

𝑝(𝑥𝑖 |𝑐) (2.6)

where 𝑥𝑖 is the 𝑖th element of the feature vector 𝑥.

22

2.1 Text Classi�cation

� Support Vector Machine (SVM). An SVM classi�es data by �nding

an optimal linear hyperplane that separates features with a maximummar-

gin [172]. The classi�cation rule is based on which side of the hyperplane

a data point occurs.

� Logistic Regression (LR). LR is a commonly used classi�cation ap-

proach that can directly infer conditional class probabilities [96]. An LR

model uses a sigmoid function to squeeze the output of a linear predictor

function, denoted as 𝜃𝑐𝑥, between 0 and 1, that is:

𝑝(𝑦 = 𝑐 |𝑥) = exp(𝜃𝑐𝑥)∑𝐶
𝑘=1 exp(𝜃𝑘𝑥)

(2.7)

Neural Network (NN). An NN [142, 257] is the basic algorithm for construct-

ing deep learning models. It operates as a biologically inspired supervised

learning model comprising interconnected layers of nodes. In analogy to the

human brain, the nodes are termed neurons. They are parameterized compu-

tational units that jointly perform summation and thresholding to optimize the

classi�cation result. Figure 2.3 shows the function of a single neuron.

Activation
Function

Summing
Junction Output

Bias

Weights

Inputs

Figure 2.3: The processing steps of a neuron. Adopted from Haykin [142].

A neuron takes an input vector 𝑎 = (𝑎1, ..., 𝑎𝑚) of real numbers and maps it to
a single output value 𝑎′. The input vector 𝑎 is �rst multiplied by a weight vector

𝑤 = (𝑤1, ..., 𝑤𝑚), and the resulting weighted inputs are then summed up with a

bias 𝑏. The bias enhances the computation by allowing a richer representation

of the inputs by the model weights. The sum of the weighted inputs and the

bias is de�ned in Eq. 2.8.

𝑧 = 𝑤𝑎 + 𝑏 =
∑︁
𝑘

𝑤𝑘𝑎𝑘 + 𝑏 (2.8)

23

Chapter 2 Foundations

Neurons should only activate (forward important information) under certain

conditions. Therefore, 𝑧 is passed through a typical non-linear activation func-

tion 𝜎, which transforms a real number into a bounded output value, that is:

𝑎′ = 𝜎(𝑧) (2.9)

A common activation function is the sigmoid function [135] which maps a real

value to a value in the interval [0, 1]. The activation function 𝜎 acts as a

threshold and determines whether the neuron should be active. A popular

example is the logistic function, that is:

𝜎(𝑥) = 1

1 + e−𝑥
(2.10)

An NN consists of numerous connected neurons, where the output of one

neuron is fed directly into other neurons. Some neurons are declared as input

neurons and others as output neurons. The result of the output neurons is

the class prediction. An NN computes a function 𝑓 𝜔 : 𝑋 → 𝑌 based on its

parameters 𝜔 = {𝑊 𝑙, 𝑏𝑙 |𝑙 = 1, ..., 𝐿} consisting of the weights of each node 𝜔𝑙
𝑘𝑖

∈
𝑊 𝑙 and all biases 𝑏𝑙

𝑖
∈ 𝑏𝑙. An NN is learned by tuning 𝜔 while minimizing a loss

function. Stochastic Gradient Descent [316] solves the optimization problem.

The gradient of the error function with respect to the weights and biases is

computed iteratively. Back-propagation [318] is used to trace the loss through

the network and update its weights and biases accordingly. Haykin [142] outlines

the operation of gradient-decent and back-propagation in more detail.

Several types and variations of NNs have been successfully used for text clas-

si�cation [195, 208, 276]. The overall architecture, i.e., the structure, size, and

type of neurons, is a critical factor in improving the classi�cation performance

of an NN. In the following, we brie�y discuss the most commonly used varia-

tions of NNs. They di�er mainly in the way information is processed and passed

through the network.

� Feed Forward Neural Network (FFNN). An FFNN is the most ba-

sic type of NN. Neurons are arranged in successive layers, each receiving

inputs from neurons in the preceding layer and transmitting outputs to

the subsequent layer. An FFNN consists of an input layer that passes the

input to a consecutive processing layer, one or more hidden layers, and

an output layer that provides the classi�cation results. An FFNN with

only one or two hidden layers is commonly called a shallow NN due to its

limited depth and relative simplicity. NNs with greater depth are catego-

rized as deep learning models. Figure 2.4 depicts a fully connected 3-layer

24

2.1 Text Classi�cation

Input
Layer

Hidden
Layer

Output
Layer

O
ut
pu

ts

In
pu

ts

Figure 2.4: A 3-layer FFNN.

FFNN. Because of the fully connected layers, an FFNN interprets text as

a bag of words that does not contain sequential information.

� Convolutional Neural Network (CNN). CNNs are used to learn

features from two-dimensional data, such as word embedding matrices.

They mainly consist of three di�erent types of layers that are stacked on

top of each other. These are convolutional, pooling, and fully connected

layers, which serve the following purpose:

� A convolutional layer consists of a set of �lters whose parameters

must be learned by training. Each �lter is a matrix, usually smaller

than the input. A �lter convolutes with the input of the layer, creat-

ing an activation map. The �lter slides over the height and width of

the input, and the dot product of each element of the �lter and the

input window is computed. The result is a two-dimensional activa-

tion map. Figure 2.5 shows an example of the calculation of the �rst

element of the activation map. Within a convolutional layer, a neu-

ron is only connected to a local area of input neurons, thus reducing

the dimensionality of the next layer.

4 0
6

9

7

72
90

36

1
2

0

4 0
6

9

4
72

9054

0 4
1

1

1
02

02
Window Filter

Activation Map

Input

23

Figure 2.5: An example of the operation of a convolutional layer.

� A pooling layer is a �xed function that acts as a downsampling

operation. It reduces the number of parameters and computations

in the network. It is typically inserted between two convolutional

25

Chapter 2 Foundations

layers. Two common pooling functions are to compute the maximum

or average for each patch of an activation map. Figure 2.6 shows an

example of max and average (avg) pooling.

2x2 Pooling
Stride 2

6
5 10

2
6

7
1

2
15

17
410

12 4
8

11

8

7
1712

7 11
4

11 Max Pooling

Avg Pooling

Figure 2.6: Examples of the max and avg pooling operations.

� Within a fully connected layer, all inputs of one layer are con-

nected to each activation unit of the next layer. The input of a fully

connected layer is the �attened activation map of a convolution or

pooling layer. Flattening transforms a two-dimensional activation

map into a vector. Fully connected layers are also used as the output

layer of a CNN to perform the actual classi�cation.

Over the years, several CNN architectures have been proposed for text

classi�cation, varying in the size, depth, frequency, and structure of the

convolutional, pooling, and fully connected layers [190, 195, 255].

� Recurrent Neural Network (RNN). An RNN is an NN architecture

for processing sequence data. Text is viewed as a sequence of words, en-

abling the capture of its structure and word dependencies. Each word

(represented by a word embedding) is recurrently evaluated by incorpo-

rating information from the previously processed sequence of words. In

an RNN, information propagates in loops from one layer to another. The

output of neurons serves as their own input for subsequent computations.

The following equations describe the inner workings of a cell:

ℎ𝑡 = 𝜎(ℎ𝑡−1, 𝑥𝑡 ;𝜔) (2.11)

𝑜𝑡 = 𝜌(ℎ𝑡 ;𝜔) (2.12)

In step 𝑡, the previous hidden internal state of the last step ℎ𝑡−1 and the

current input 𝑥𝑡 are fed into the network to compute ℎ𝑡 . 𝜎 and 𝜌 are

activation functions and 𝜔 is the weight matrix and bias of the network.

The output 𝑜𝑡 depends only on the hidden state ℎ𝑡 . An RNN has a strong

ability to infer contextual meaning from the sequence of preceding words.

26

2.1 Text Classi�cation

A Long Short-term Memory (LSTM) [152] is an evolution of the classical

RNN described above. LSTMs can store long-term dependencies while

traditional RNNs struggle to do so [32].

� Encoder-based LLMs. In addition to providing text encodings, encoder-

based LLMs can also be used as end-to-end text classi�ers. Figure 2.7

illustrates an LLM for text classi�cation. The input text is �rst tokenized

and passed to the LLM. For each input token, the LLM computes a trans-

former block. Devlin et al. [88] suggest passing the transformer block

associated with the [CLS]-token, a contextualized vector representing the

entire input text, to a single-layer FFNN to perform classi�cation directly.

In general, we can use any hidden state from any internal layer of BERT

for classi�cation. For example, Li et al. [225] suggest feeding the hidden

states into a CNN, while Fang et al. [106] add an RNN on top of BERT

to perform classi�cation.

[CLS] [SEP]

FFNN

Tokenisation

Input

Output

Encoder-based LLM

Figure 2.7: Simpli�ed scheme for using an encoder-based LLM for text classi�-
cation.

An NN is a highly �exible structure in which layers can be assembled in

almost any compatible way. Over time, countless combinations and variations

of FFNNs, CNNs, and RNNs have been proposed for text classi�cation. Some

classi�ers also attempt to combine the advantages of CNNs and RNNs [208,

379]. Yu et al. [400] provide a general review of RNN-like architectures, while

Gu et al. [127] present an overview of CNNs.

2.1.7 Classi�er Validation

Text classi�ers must be highly accurate (good enough) when deployed to meet

stakeholder needs [183]. The question arises regarding how accurately a trained

27

Chapter 2 Foundations

classi�er solves the intended task. A validation step is needed to build trust

and provide evidence of a classi�er's e�ectiveness. Especially since classi�ers

will almost never be 100% accurate, there is always a risk of misclassi�cation

[87]. Since ML-based classi�ers are very complex and the derived rules are

di�cult or impossible for a human to understand or interpret, the only way to

validate the classi�er is usually an empirical approach. The validation process

should highlight the correctness of a classi�er, i.e. how it is expected to perform

during deployment. Several validation metrics have been established to assess

the classi�cation performance of ML models [136].

In the validation process, a classi�cation model makes predictions 𝑦1, 𝑦2, ..., 𝑦𝑁
for each example 𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡 in a test dataset of size 𝑁. The predictions are then

compared pairwise with the known ground truth values 𝑦1, 𝑦2, ..., 𝑦𝑁 , where

𝑦𝑖 is the predicted class label of the 𝑖th sample and 𝑦𝑖 the corresponding true

value (ground truth). There are several established metrics for evaluating the

sensitivity of application domains to di�erent types of errors [345].

� Accuracy. The most basic performance metric is the accuracy. It de-

scribes the fraction of all correctly classi�ed instances over all samples

within a training dataset. This fraction is de�ned as:

Acc =
1

𝑁

𝑁∑︁
𝑖=1

I(𝑦𝑖 = 𝑦𝑖) (2.13)

where I is an indicator function. However, the accuracy has a major draw-

back. It reports highly misleading values on imbalanced datasets. Con-

sider a dataset where 99% of the samples do not correspond to the positive

class. A classi�er that always responds with the negative class would im-

mediately reach an accuracy of 99%, since 99% of all classi�cations would

be classi�ed correctly.

� F1 score. The F1 score is another well-established metric for assessing

the generalizability of a classi�er. The F1 score is calculated per class,

requiring some form of aggregation when there are more than two classes.

In the binary setting (C = 2), the F1 score is estimated as the harmonic

mean of the precision and recall of a classi�er. For a class 𝑐 the precision

and recall distinguish between four types of classi�cation outcomes. These

are true positives 𝑇𝑃𝑐 = |{𝑖 |𝑦𝑖 = 𝑐 ∧ 𝑦𝑖 = 𝑐}|, true negatives 𝑇𝑁𝑐 = |{𝑖 |𝑦𝑖 ≠
𝑐 ∧ 𝑦𝑖 ≠ 𝑐}|, false positives 𝐹𝑃𝑐 = |{𝑖 |𝑦𝑖 ≠ 𝑐 ∧ 𝑦𝑖 = 𝑐}|, and false negatives

𝐹𝑁𝑐 = |{𝑖 |𝑦𝑖 = 𝑐 ∧ 𝑦𝑖 ≠ 𝑐}|. While true positives (TP) and true negatives

(TN) are correctly predicted, false positives (FP) and false negatives (FN)

28

2.1 Text Classi�cation

are incorrect predictions. Precision is also referred to as true positive rate

(TPR) and recall as positive predictive value (PPV). The TPR (Eq. 2.14)

indicates the proportion of true positives in relation to all assigned values

of class 𝑐. The PPV (Eq. 2.15) measures the proportion of agreements in

class 𝑐.

𝑇𝑃𝑅𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐
(2.14) 𝑃𝑃𝑉𝑐 =

𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐
(2.15)

The F1 score (Eq. 2.16) evaluates the ability of the models to accept

instances from both classes. It is calculated as the harmonic mean of the

TPR and PPV. It indicates how many instances were correctly classi�ed

without missing a signi�cant number of instances, e.g. underrepresented

classes.

𝐹1𝑐 =
2 · 𝑃𝑃𝑉𝑐 · 𝑇𝑃𝑅𝑐
𝑃𝑃𝑉𝑐 + 𝑇𝑅𝑃𝑐

=
2 · 𝑇𝑃𝑐

2 · 𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐
(2.16)

We need some form of aggregation when computing the F1 score inmulti-

class settings (where 𝐶 > 2). Micro-averaging (denoted by 𝜇) aggre-

gates the contribution of each class. Each sample is equally weighted:

𝑇𝑃𝑅𝜇 =

∑𝐶
𝑖=1 𝑇𝑃𝑖∑𝐶

𝑗=1(𝑇𝑃 𝑗 + 𝐹𝑃 𝑗)
(2.17) 𝑃𝑃𝑉𝜇 =

∑𝐶
𝑖=1 𝑇𝑃𝑖∑𝐶

𝑗=1(𝑇𝑃 𝑗 + 𝐹𝑁 𝑗)
(2.18)

Macro-averaging (denoted by 𝑀) �rst calculates the metrics independently

for each class. Then, the arithmetic mean of the resulting metric is cal-

culated across all classes. Thus, macro-averaging gives equal weight to all

classes:

𝑇𝑃𝑅𝑀 =

∑𝐶
𝑖=1 𝑇𝑃𝑅𝑖

𝐶
(2.19) 𝑃𝑃𝑉𝑀 =

∑𝐶
𝑖=1 𝑃𝑃𝑉𝑖

𝐶
(2.20)

The macro or micro F1 score is calculated using the respective aggregated

TPR and PPV within the Eq. 2.16. Macro-averaging is mainly determined

by the majority class, since large classes have more in�uence. Micro-

averaging is favored when class imbalance is expected and minority classes

are most important. Since all classes are equally weighted, samples of

minority classes become more important. Macro-averaging is preferred

when the goal is to maximize the number of correct predictions made by

the classi�er and no class is more important than the others.

There is no single best metric for validating text classi�ers. The most suitable

metric depends largely on the objective and the costs associated with producing

29

Chapter 2 Foundations

and correcting certain types of errors. Any validation metric raises the question

of �How good is good enough? � [183]. While there is no clear consensus on this

question, it depends on the speci�c requirements of the domain.

2.2 Prediction Uncertainty

ML models are inherently imperfect to some degree due to vagueness, lack of

speci�city, and con�icting knowledge about the task being solved. Noise and

shifts in the data, as well as model misconceptions and limitations, cause inputs

to be misinterpreted by the ML model, leading to incorrect classi�cation results

[148]. In general, classi�cation models cannot reliably assess their trustworthi-

ness [113]. The following section introduces the concept of estimating prediction

uncertainty in text classi�cation as a �rst step towards more applicable predic-

tions.

2.2.1 Motivation

It is challenging to achieve error-free text classi�cation using ML models [356].

Well-trained text classi�ers typically do not achieve 100% accuracy even on

the dataset they were trained on, and even worse on unseen data. Inputs

are expected that the model cannot adequately interpret, resulting in incorrect

and unreliable model behavior. Misclassi�cations are an inevitable consequence

of various de�ciencies and misconceptions that traditionally remain unnoticed.

Typical weaknesses of ML-based classi�ers are that the learned classi�cation

rule does not generalize well to shifting data [260], or that a model does not

adapt to unseen data [312]. Both cases lead to less reliable and likely incor-

rect predictions. Nevertheless, practical applications require high classi�cation

performance and reliability for automated text classi�cation to be e�ective and

practical. Questions arise about how good a classi�er is, whether individual

predictions can be trusted, and how to communicate potential di�culties en-

countered.

The actual predictive quality of an ML-based classi�er can only be evaluated

empirically. As described in Section 2.1.7, the classi�cation performance is val-

idated using an unseen and typically sparse test dataset. Validation results are

tuned by adapting and revising the model until it reaches a satisfactory level of

classi�cation performance that allows it to be used operationally. During opera-

tion, predictions are usually blindly accepted and assumed to be nearly as good

as the test performance. However, the operational classi�cation performance is

likely to be much worse than in laboratory settings. This discrepancy is due to

30

2.2 Prediction Uncertainty

the simpli�ed modeling or validation settings used during model development

[117]. Additionally, the test and training datasets are usually a random sample

of the same data distribution, while real-world data is unknown and subject to

change [260].

Validation metrics primarily assess the average classi�cation performance of

a model based on a historical dataset. We can only assume that the model

will perform similarly on data from the same distribution as the test data. The

transferability of the model to unseen data instances remains unknown and can

only be approximated. For example, consider a classi�er with an accuracy of

90%. It is generally assumed that one out of ten predictions will be wrong. How-

ever, the test accuracy is only an approximation of the assumed classi�cation

performance. If 100 easily judgeable inputs are given to the model, no misclas-

si�cations are likely to occur. The exact amount of hard-to-evaluate text input

is likely to produce a disproportionate number of misclassi�cations. The input

itself strongly in�uences the reliability of an individual prediction, which cannot

be accurately determined by averaging over the entire input space. Traditional

accuracy-based validation metrics cannot be used to judge the reliability of in-

dividual classi�cation results. They do not distinguish between a lucky guess

and systematic evidence. We need other mechanisms to provide insight into the

reliability of individual predictions.

Automation in high-risk domains such as autonomous driving [107] and med-

ical image analysis [120] has highlighted the need for profound and high-�delity

model behavior, as incorrect predictions would have immense impacts on the

well-being of people and their environment. Some even argue that emphasiz-

ing the reliability of individual predictions is essential for the safety of arti�cial

decision-making [357]. Even in less critical areas such as text classi�cation,

highly accurate and reliable ML models are desirable because the occurrence

and correction of misbehavior is still very costly.

Uncertainty estimation [113, 164, 220] is a tool for making explicit the un-

certainty underlying individual predictions. Uncertainty deals with the ability of

a model to recognize its limitations. Its quanti�cation aims to estimate the abil-

ity of models to fail in recognizing the patterns of an input [356]. It is intended

to provide valuable insights into arti�cial decision-making and ultimately help

to make more informed decisions. Uncertainty is estimated to characterize the

variability of predictions. Prediction uncertainties indicate the presence of noise

or imperfect information, which is highly desirable to inform about unreliable

predictions. However, there is no universally accepted de�nition of uncertainty

because it is not a monolithic concept and takes various forms. It is generally

31

Chapter 2 Foundations

Classifier

Has

Prediction

Uncertainty

Reliability /
Robustness

Cause

Classification
Performance Makes

Corrupts

Risk

Error

Reveals Probability /
Confidence

Has

Measured By

IndicatesValidation
Metric

Has

Has

Impacts

Validation
Operation

Figure 2.8: A metamodel illustrating di�erent aspects describing the limitations
of text classi�ers.

hypothesized that highly uncertain predictions are highly unreliable and likely

to be wrong [148] and that uncertainty information could help to manage the

risk of ML-based classi�ers [113, 356].

2.2.2 Overview

A perfect text classi�er 𝑓 which always predicts the correct label 𝑦 = 𝑓 (𝑥) for
any 𝑥 ∈ 𝑋 is practically unattainable due to inherent inaccuracies [87]. The

exact relationship between 𝑋 and 𝑌 remains unknown and can only be approxi-

mated. When describing potential limitations of classi�cation models, the terms

classi�cation performance, reliability, robustness probability, con�dence, uncer-

tainty, error and, risk are commonly used to describe correlated but di�erent

measures of potential inaccuracy.

Classi�cation Performance. The classi�cation performance serves as a tan-

gible measure of a model's reliability. This assessment is made during model

validation using metrics such as the F1 score. Classi�cation performance is

also commonly referred to as accuracy, which should not be confused with the

validation metric of the same name.

Reliability. Text classi�ers should be as reliable as possible. Reliability is the

degree to which predictions can be considered correct for a wide variety of typical

inputs.

Robustness. Robustness is similar to reliability, but it describes the ability to

perform well under varied and unexpected inputs [47], while reliability covers

32

2.2 Prediction Uncertainty

typical inputs. A perfectly reliable and robust classi�er would cause no risk and

be free of uncertainty.

Probability. A class probability measures the likelihood of an inferred class

label and is directly reported by most classi�cation models. A class probability

represents the probability that an input belongs to the predicted class. The

class with the highest probability is taken as the result of the classi�cation.

Con�dence. Class probabilities are also referred to as the con�dence of a

model, because they indicate the resilience of a classi�er in its class outcomes.

Since we are only dealing with text classi�ers that model probability distri-

butions over class labels, this thesis uses the terms con�dence score and class

probability synonymously.

Uncertainty. The concept of uncertainty is di�erent from probability. Gener-

ally, uncertainty refers to a state of imperfect or unknown information. In ML,

uncertainty characterizes the variability of prediction outcomes. Here, uncer-

tainty is generally interpreted as a lack of con�dence in a prediction [21, 334].

Prediction uncertainties can originate from various sources [87] and signi�cantly

in�uence the quality of predictions, for example by causing misclassi�cations.

Risk in ML models arises especially in the presence of epistemic uncertainty

(Section 2.2.4) [370].

Error. The classi�cation error generally describes the di�erence between the

actual classi�cation outcome and its true value 𝑦𝑖. The prediction error can

be expressed directly as 𝜖𝑖 = 𝑦𝑖 − 𝑝(𝑦 = 𝑐 |𝑥𝑖 , 𝜔), where 𝜖 depends on 𝑥𝑖 and 𝜔.
The error 𝜖 arises from the e�ect of potential uncertainties such as inaccuracies,

noise, and misspeci�cations. For instance, a classi�er cannot reduce the aleatory

uncertainty (Section 2.2.4), and some classi�cation errors remain.

Risk. ML-based classi�cation models are fraught with risk, as their classi�ca-

tion performance is subject to uncertainty. In this context, risk can be outlined

as the expected value of the cost of harm [370]. Consequently, risk encompasses

both the cost associated with a classi�cation failure and the likelihood of its

occurrence. Uncertainty in model behavior introduces a potential for failure

and thus contributes to risk. Formally, the risk of an ML model is quanti�ed

as the expected classi�cation error that we aim to minimize during the training

process [369].

33

Chapter 2 Foundations

0.0 0.7 1.0
p(y = 1|x1, D)

M
ea

n

(a)

0.0 0.7 1.0
p(y = 1|x2, D)

M
ea

n

(b)

0.0 0.7 1.0
p(y = 1|x3, D)

M
ea

n

(c)

Figure 2.9: Di�erence between class probability and uncertainty. All predictions
have the same mean probability (𝜇 = 0.7) but di�erent levels of
variability and dispersion (uncertainties).

Class probabilities and prediction uncertainties are two related but distinct

concepts for assessing the reliability of individual predictions. Most text clas-

si�ers learn some probability distributions 𝑝(𝑦 = 𝑐 |𝑥) that indicate the likeli-

hood of label assignments. Since classi�ers are deterministic by default, each

prediction provides a point estimate of the underlying probability distribution

(con�dence score). However, the con�dence of a classi�er does not necessarily

represent the uncertainty of the underlying probability distribution.

Figure 2.9 illustrates the approximated probability distributions given three

text inputs 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋 with 𝑥1 ≠ 𝑥2 ≠ 𝑥3. A vertical line highlights the

mean class probability. As illustrated, all probability distributions have the

same mean of 0.7. Thus, all three predictions were made with the same level of

con�dence. However, the degree of variability and dispersion of each prediction

distribution is substantially di�erent. In Figure 2.9a, the probability distribu-

tion of the prediction is tightly clustered around the mean class probability

with low variance. Therefore, a point estimate is likely to accurately describe

the true distribution, resulting in a relatively con�dent prediction with low un-

certainty. In Figure 2.9b, the underlying probability distribution is similar to

a uniform distribution. Thus, there are a variety of point estimates that could

�t the distribution well. Here, the model is much more uncertain about which

estimate to choose. Figure 2.9c shows a distribution that could be interpreted

in two ways, both with fairly high probabilities. However, no clear decision can

be made, resulting in a much more uncertain prediction. The predictions in

Figures 2.9b and 2.9c are typically more uncertain than those similar to Fig-

ure 2.9a. Unfortunately, conventional classi�ers only provide a point estimate

without providing information about the underlying probability distribution.

34

2.2 Prediction Uncertainty

We can easily determine con�dence scores and classi�cation errors. They are

an integral part of the traditional classi�cation pipeline, i.e., they are used dur-

ing inference, training, and validation. Unfortunately, empirical evidence of the

uncertainty of classi�cation models is generally not available [113]. The ques-

tion is why a point estimate 𝑝(𝑦 = 𝑐 |𝑥, 𝐷) is not a good measure of uncertainty.

Intuitively, a class probability of 0.99 seems more trustworthy and certain than

a class probability of 0.76. The primary reason lies in the tendency of point

estimates from deterministic models to be disproportionately high [129], often

resulting in misleading interpretations. Deterministic softmax probabilities may

poorly represent the true underlying probability distribution, deviating signif-

icantly from the distribution mean. For instance, a classi�er may incorrectly

assign very high class probabilities to inputs from regions that do not appear

in the training dataset. In addition, typical NN models do not account for all

types of uncertainty, limiting their usefulness as meaningful uncertainty indica-

tors [113].

2.2.3 Sources of Uncertainty

Prediction uncertainties can arise from various sources throughout the tradi-

tional ML pipeline [320], signi�cantly impacting the reliability of predictions.

Common sources of uncertainty include misconceptions, bias, ambiguity, noise,

and a lack of representativeness [87]. Listed below are the most common sources

of uncertainty within text classi�cation pipelines [87, 118, 164].

Pre-processing and Feature Misconceptions. Converting natural language

text into a numerical representation poses uncertainties. While text cleaning

aims to improve the quality of text instances, it is uncertain which cleaning and

feature selection steps are optimal. In addition, natural language itself may be

ambiguous, introducing uncertainty in its interpretation. The quality of text

input varies widely, including its expressiveness, sonority, grammatical correct-

ness, and noise level. Text cleaning steps can cause signi�cant information to

be lost or become noisy.

Model Misconceptions and Bias. There is no single classi�cation model that

is the best choice for every text classi�cation task. All proposed models are

empirical approximations and are wrong in some way. Any ML-based classi�-

cation model introduces uncertainty due to its inherent limitations [87]. It is

unknown which model is best suited to solve a given task, which parameteriza-

tion is optimal, and how close it can approximate the function it is trying to

35

Chapter 2 Foundations

learn. Training an ML model is a stochastic process that introduces statistical

uncertainties in parameter selection, computational errors, numerical approxi-

mations, and truncations. Potential errors in the architecture speci�cation of a

classi�er can also lead to uncertain predictions.

Training Data Misconceptions. Highly accurate models require a reasonable

amount of high-quality training data. However, training data is typically sparse,

and only a random sample of its true distribution is available. The problem of

which and how many data instances to use for training introduces uncertainty.

Furthermore, it is unknown whether there are still regions in the data that are

sparsely represented.

Task Inherent Di�culties. The ambiguity, subjectivity, and fuzziness of nat-

ural language text are incompatible with the technical assumption of a seamless

division of text into prede�ned classes. The boundaries between classes are not

necessarily deterministic and may overlap, leading to uncertainty in the results.

Human Related Errors. Human decisions and activities play a critical role

in the text classi�cation process, contributing to uncertainties. Unintentional

errors during modeling, design, construction, and operation can introduce uncer-

tainties. Additionally, human annotators are vital in collecting training data by

manually labeling examples, which introduces a degree of subjectivity. Human

labeling errors, such as incorrect or inconsistent annotations, further contribute

to uncertainty in the learning process.

2.2.4 Types of Uncertainty

Although there are many potential sources of uncertainty, it is common to cat-

egorize uncertainty as either epistemic or aleatory [87, 251]. Epistemic uncer-

tainty is based on a lack of knowledge that can be reduced by providing more

data, while aleatory uncertainty is considered irreducible and inherent in the

data. Some authors, such as Malinin and Gales [245], also consider uncertainty

arising from distributional changes relative to the training data (distributional

uncertainty) as an additional type of uncertainty. Figure 2.10 illustrates the

di�erent types of uncertainty in classi�cation using a simple linear model.

Epistemic Uncertainty. Epistemic uncertainty, also known as data uncertainty,

arises from insu�cient or missing knowledge. If a model is not su�ciently

trained, it will have di�culty making reliable decisions. A su�cient amount

36

2.2 Prediction Uncertainty

a)

b)
c)

w1w2w3

Figure 2.10: A linear classi�er illustrating di�erent types of uncertainty: a) epis-
temic uncertainty, b) aleatory uncertainty, and c) distributional un-
certainty. Adapted from Mena et al. [251].

of training data is needed to determine appropriate model parameters during

training. Figure 2.10 shows that when the training data is sparse, it is more

complex and less certain for the classi�er to generalize to new instances. This

is because many possible model parameters can describe the underlying ground

truth phenomenon, each with di�erent errors. Therefore, epistemic uncertainty

arises from the model weights and occurs because the model is unsure which

weights best explain the data. High uncertainty arises in domains with little or

no observed data for training. The ambiguity and uncertainty will decrease as

more data is available in that area. With unlimited training data, a consistent

learning algorithm will eliminate all epistemic uncertainty.

Common sources of epistemic uncertainty are labeling errors in the train-

ing data (human-related errors) and low data coverage, i.e., the training data

does not represent the true distribution of a phenomenon (training data mis-

conceptions). A second sign of epistemic uncertainty is the use of an ignorant

and poorly �tting classi�cation model (model misconception). Di�erent models

have di�erent learning capabilities, which can lead to over- or under-�tting of

the training data. For example, a linear classi�cation model may not be able to

�t more complex nonlinear relationships in the training data, resulting in highly

uncertain predictions. Choosing a better classi�cation algorithm on the same

dataset can reduce the epistemic uncertainty.

Aleatory Uncertainty. Aleatory uncertainty is rooted in the nature of the phe-

nomena and is beyond the control of a model. It is considered to be an inher-

ent property of the data distribution, contaminated by noise and randomness.

Therefore, aleatory uncertainty is not a�ected by the classi�cation algorithm and

37

Chapter 2 Foundations

cannot be reduced. A typical case of aleatory uncertainty occurs when the input

is too ambiguous to make a clear decision (task-speci�c). In general, aleatory

uncertainty exists when the best possible prediction can only be made with some

degree of uncertainty. For example, suppose we attempt to predict the outcome

of a coin toss. In this case, the best prediction for an unmanipulated coin can

only be made with 50% certainty due to inherent randomness. Aleatory uncer-

tainty can be further divided into homocedastic and heteroscedastic uncertainty.

Homoscedastic uncertainty assumes that the natural noise is consistent across

all inputs. Thus, homoscedastic uncertainty represents the average uncertainty

of a given task. The heteroscedastic uncertainty is the uncertainty that depends

on the input.

Distributional Uncertainty. It has been shown that unfamiliar inputs lead to

much more unreliable and uncertain predictions [304]. So-called distributional

uncertainty occurs when the instances to be predicted do not come from the

distribution of the underlying training data [245]. In the case of distributional

mismatch, the model is confronted with unfamiliar inputs for which it has not

been su�ciently trained to make reliable decisions. Data shift occurs when

actual real-world data changes with respect to the training data [260]. Shifted

data is still a valid input, but it is not part of the actual task on which the model

was trained. For example, a classi�er trained to detect the sentiment of movie

reviews will not work well on insurance fraud. Distributional uncertainty is a

subset of epistemic uncertainty because it is rooted in a lack of knowledge. Thus,

epistemic uncertainty is often used as a method for detecting out-of-distribution

examples [148].

2.2.5 Uncertainty Estimation

Epistemic and aleatory uncertainty can be feasibly determined within NNs [113,

210]. Recent approaches to estimating prediction uncertainty are mainly based

on probability theory. The focus is on so-called Bayesian Neural Networks

(BNNs) [55, 121, 360], which are based on Bayesian statistics [43]. BNNs pro-

vide a framework for statistically correct modeling of epistemic and aleatory

uncertainty in NNs. The following section brie�y introduces BNNs; for a more

technical introduction, see Jospin et al. [174].

For the introduction of BNNs, let us �rst recapitulate how conventional NNs

work. Given a training dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 of size 𝑁. The goal of a

conventional NN is to learn an optimal parameterization 𝜔 that describes 𝐷 in

the best possible way. The resulting classi�er 𝑓 𝜔 is then used to predict the label

38

2.2 Prediction Uncertainty

of some 𝑥 that was not used for training. The optimal weight is determined by

minimizing a loss function via back-propagation, typically the mean square error

(MSE). Since the optimal weight is a point estimate and has a true value, the

resulting classi�er 𝑓 𝜔 is deterministic. That is, it will always behave identically

given the same input.

Within a BNN, a probability distribution called posterior is placed over the

real-valued weights of the model 𝜔 = {𝑊𝑖 , 𝑏𝑖}𝐿𝑖=1 ∈ Ω. The posterior can be

computed by applying Bayes' theorem [121], as shown in Eq. 2.21.

𝑝(𝜔 |𝐷) = 𝑝(𝐷 |𝜔)𝑝(𝜔)
𝑝(𝐷) (2.21)

Bayes' theorem is applied to estimate the posterior 𝑝(𝜔, 𝐷) = 𝑝(𝜔)𝑝(𝐷 |𝜔),
which indicates how well the weights 𝜔 describe the data 𝐷. The posterior

allows for a statistically correct uncertainty quanti�cation. The evaluation of

the posterior requires the likelihood 𝑝(𝐷 |𝜔), the prior 𝑝(𝜔), and the marginal

likelihood 𝑝(𝐷).

Likelihood. The likelihood of the data 𝐷 given the weights 𝜔, expressed as

𝑝(𝐷 |𝜔), describes how well the data 𝐷 can be explained by the weights 𝜔. It

expresses the distribution of weights compatible with the data. We can assume

that all samples (𝑥, 𝑦) ∈ 𝐷 are independent and equally distributed (i.i.d.).

Thus, the likelihood can be calculated as the product of all individual conditional

class probabilities 𝑝(𝑦 |𝑥, 𝐷), which is usually assumed to be Gaussian, that is:

𝑝(𝐷 |𝜔) =
𝑁∏
𝑖=1

𝑝(𝑦𝑖 = 𝑦𝑖 |𝑥𝑖 , 𝜔) (2.22)

For classi�cation, a softmax likelihood is taken as the conditional class proba-

bility. The softmax likelihood is the probability that an input 𝑥 belongs to class

𝑐 given a classi�er 𝑓 𝜔 with weights 𝜔. The softmax likelihood is given by:

𝑝(𝑦 = 𝑐 |𝑥, 𝜔) = exp(𝑓 𝜔𝑐 (𝑥))∑𝐶
𝑘=1 𝑓

𝜔
𝑘
(𝑥)

(2.23)

Prior. The prior 𝑝(𝜔) encodes the initial belief about how the weights 𝜔 are

distributed. It describes what is known about the model weights before ob-

serving the training data. This initial belief about the prior must be set before

training. Typically, BNNs assume a Gaussian prior. The prior is updated as

the BNN is trained.

39

Chapter 2 Foundations

Marginal Likelihood. The evaluation of the marginal likelihood 𝑝(𝐷) requires
solving an integral over the weight space Ω, that is:

𝑝(𝐷) =
∫
Ω

𝑝(𝐷 |𝜔)𝑝(𝜔) 𝑑𝜔 (2.24)

The weight space of an NN is highly dimensional, and averaging over all possible

weights is a challenging task that cannot be solved analytically [39, 113].

Predictive Posterior. The predictive posterior distribution 𝑝(𝑦 |𝑥, 𝐷) is used
for inference. It describes the probability that a single input 𝑥 belongs to class 𝑐,

given training data 𝐷. The predictive posterior, also called the Bayesian model

average, is the prediction distribution weighted by the likelihood for all possible

weights 𝜔, given by:

𝑝(𝑦 |𝑥, 𝐷) =
∫
Ω

𝑝(𝑦 |𝑥, 𝜔)︸ ︷︷ ︸
Aleatory

𝑝(𝜔 |𝐷)︸ ︷︷ ︸
Epistemic

𝑑𝜔 (2.25)

The predictive posterior captures the total uncertainty inherent in the predic-

tion. Given a weight 𝜔, 𝑝(𝑦 |𝑥, 𝜔) captures the aleatory uncertainty, and 𝑝(𝜔|𝐷)
represents the epistemic uncertainty. The predictive posterior is not based on

a single weight estimate, but is marginalized over the entire posterior. In this

way, all possible weights are taken into account. A deterministic model would

only use a single �xed weight 𝜔 to compute a class probability 𝑝(𝑦 = 𝑐 |𝑥, 𝜔)
based on the softmax outcome, which only captures aleatory uncertainty.

Unfortunately, the predictive posterior (Eq. 2.25) is intractable and cannot be

evaluated analytically because the marginal likelihood 𝑝(𝐷) requires averaging
over all possible weights 𝜔. The intractability arises from the high dimension-

ality of the weight space Ω, which makes integration over all possible weights

impractical. Several approximation techniques have been proposed to exploit

the advantages of Bayesian modeling while remaining applicable [39, 113]. A

common approach is to approximate the untraceable posterior 𝑝(𝜔|𝐷) with an

easier-to-evaluate variational distribution 𝑞(𝜔 |𝜃). This variational distribution
is estimated by �nding the parameters 𝜃 of 𝑞(𝜔 |𝜃) that minimize the Kullback-
Leibler (KL) divergence [204]. The KL divergence measures the similarity be-

tween two distributions. This replaces the intractable problem of averaging over

all weights with an optimization problem de�ned as [121]:

𝜃 = argmin
𝜃

{
𝐾𝐿 (𝑞(𝜔|𝜃) | |𝑝(𝜔 |𝐷)) :=

∫
Ω

𝑞(𝜔 |𝜃) log 𝑞(𝜔 |𝜃)
𝑝(𝜔)𝑝(𝐷 |𝜔) 𝑑𝜔

}
(2.26)

40

2.2 Prediction Uncertainty

The variational distribution 𝑞(𝜔 |𝜃) ≈ 𝑝(𝜔 |𝐷) replaces the posterior in Eq. 2.25

when evaluating the predictive posterior 𝑝(𝑦 |𝑥, 𝐷). Finding a tractable approx-
imation to the true posterior density that minimizes the KL divergence is also

known as Variational Bayes. However, Eq. 2.26 poses another intractable inte-

gral that cannot be computed in a closed form.

Since exact Bayesian inference over the weights is still intractable, several

approximation techniques have been suggested [39, 113, 210]. Most techniques

solve the marginalization problem by approximating the predictive posterior

using a Monte Carlo integration as follows:

𝑝(𝑦 |𝑥, 𝐷) =
∫
Ω

𝑝(𝑦 |𝑥, 𝜔)𝑝(𝜔 |𝐷) 𝑑𝜔

≈
∫
Ω

𝑝(𝑦 |𝑥, 𝜔)𝑞(𝜔|𝐷) 𝑑𝜔

= E𝑞 (𝜔 |𝐷) [𝑝(𝑦 |𝑥, 𝜔)]

≈ 1

𝑇

𝑇∑︁
𝑡=1

𝑝(𝑦 |𝑥, 𝜔𝑡)

(2.27)

Common techniques are: Bayes by Backpropagation [39], Monte Carlo Dropout

[113] and Ensembles [210].

Bayes by Backpropagation (BBB). Blundell et al. [39] propose BBB, a prac-

tical solution for learning probability distributions over the weights 𝜔 of an NN.

BBB assumes that the weights have a Gaussian distribution. Thus, the network

weights 𝜔 = (𝜇, 𝜎) consist of means 𝜇 and standard deviations 𝜎 to be learned.

A variational distribution 𝑞(𝜔 |𝜃) ≈ 𝑝(𝜔 |𝐷) is de�ned to approximate the true

posterior 𝑝(𝜔|𝐷). The authors of BBB propose a gradient descent compatible

cost function that approximates Eq. 2.26 to learn the optimal parameters 𝜃.

The cost function is given by:

𝐿 (𝐷, 𝜃) ≈
𝑇∑︁
𝑡=1

log 𝑞(𝜔𝑡 |𝜃) − log 𝑝(𝜔𝑡) − log 𝑝(𝐷 |𝜔𝑡) (2.28)

where 𝜔𝑡 is the 𝑡th sample drawn from the variational posterior 𝑞(𝜔|𝜃).

Monte Carlo Dropout (MCD). Gal and Ghahramani [113] show that the

regularization technique dropout [349] can be interpreted as a Bayesian approx-

imation of a Gaussian process. Dropout randomly disables or �drops� connec-

tions between neurons and previous layers during training. It is implemented

by adapting the original feed-forward operation of a neuron by multiplying a

41

Chapter 2 Foundations

vector 𝑟 = Bernoulli(𝑝) ∈ {0, 1} of independent Bernoulli random variables with

a layer input vector 𝑎, that is:

𝑧 = 𝑤(𝑟𝑎) + 𝑏 =
∑︁
𝑘

𝑤𝑘 (𝑟𝑘𝑎𝑘) + 𝑏 (2.29)

where each element 𝑟𝑘 has the probability 𝑝 of being 1. Applying dropout to

an NN results in training multiple �thinned� networks with numerous shared

weights. Given a network with 𝑛 neurons, dropout can be interpreted as jointly

training 𝑛2 possible weights 𝜔 ∈ {𝜔𝑖}𝑛
2

𝑖=1 simultaneously within a single classi�er.

Figure 2.11 illustrates the dropout operation. Dropout was originally proposed

as a regularization technique to prevent over�tting of ML models and to make

them much more robust by achieving a lower generalization error [349].
Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are different from each other and in order to make
neural net models different, they should either have different architectures or be trained
on different data. Training many different architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train different networks on
different subsets of the data. Even if one was able to train many different large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many different neural network
architectures efficiently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

(a) Standard NN.

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are different from each other and in order to make
neural net models different, they should either have different architectures or be trained
on different data. Training many different architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train different networks on
different subsets of the data. Even if one was able to train many different large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many different neural network
architectures efficiently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

(b) Thinned NN.

Figure 2.11: A standard NN and a thinned NN after applying dropout [349].

Dropout variational inference is performed by training an NN with dropout

enabled before each weight layer and additionally enabling dropout during in-

ference. By randomly dropping units, the model result is a random variable

and is no longer deterministic. Performing multiple probabilistic forward passes

results in an approximation of the posterior, that is 𝑞(𝜔 |𝜃). Each dropout

con�guration corresponds to a di�erent sample of weights 𝜔𝑡 ∼ 𝑞(𝜔 |𝜃). This

corresponds to variational inference. The intractable integral of the predicted

posterior is approximated by performing 𝑇 Monte Carlo samplings (Eq. 2.27),

each using a random sample of weights. Thus, MCD approximates the class

probability 𝑝(𝑦 |𝑥, 𝐷) using 𝑇 deterministic models 𝑓 𝜔1 , 𝑓 𝜔2 , ..., 𝑓 𝜔𝑇 parameter-

ized by 𝑇 sampled weights 𝜔1, 𝜔2, ..., 𝜔𝑇 ∼ 𝑞(𝜔 |𝜃), where 𝑞(𝜔 |𝜃) is the dropout
distribution.

Ensembles. The use of ensembles is another e�ective mechanism for approxi-

mating Bayesian marginalization (Eq. 2.25) [210]. An ensemble is a committee

of multiple similar ML models, each applied to the same classi�cation task. An

ensemble is built in two steps. First, multiple classi�ers are trained separately

42

2.2 Prediction Uncertainty

on data sampled from the same data distribution. Then, inference is performed

on each model individually, and the resulting class probabilities from all mod-

els are averaged to form a single prediction. Due to the stochastic nature of

training, each model learns a slightly di�erent version of the classi�cation func-

tion 𝑓 : 𝑋 → 𝑌 . A boost in classi�cation performance is expected as multiple

models do not tend to make the same error [116, 210]. Building an ensemble is

straightforward because it does not require any changes to the architecture or

source code of the individual models. Only the results of multiple models need

to be collected and averaged.

Ensembles are not a true Bayesian approach. According to Lakshminarayanan

et al. [210], Bayesian inference can still be interpreted as marginalization over an

in�nitely large ensemble of models. They also show that averaging the output

of an ensemble is an approximation to the intractable integral of the posterior

probability (Eq. 2.25). Formally, an ensemble of size 𝑀 can be described as a set

of di�erent weights {𝜔𝑖}𝑀𝑖=1, each initializing a classi�er 𝑓 𝜔1 , 𝑓 𝜔2 , ..., 𝑓 𝜔𝑀 . The

weights 𝜔1, 𝜔2, ..., 𝜔𝑀 are randomly initialized and the corresponding models are

trained independently. The posterior probability is computed by approximating

the intractable integral by averaging the results of 𝑀 independent models.

2.2.6 Uncertainty Quanti�cation

Modeling probability distributions over model outputs provides a natural way

to investigate the uncertainty of a classi�er. Uncertainty estimates can be de-

rived by analyzing the statistical dispersion of the output distribution [39, 113,

207, 251]. Generally, uncertainty quanti�cation techniques aim to assign high

uncertainty values to highly unreliable model results and vice versa.

The empirical variance of a stochastic process is traditionally taken as an

approximation of its uncertainty [113]. The higher the variance of a prediction,

the more uncertain it is. In text classi�cation, the variance of a class label 𝑦

given an input 𝑥 is given by:

𝜎2
𝑐 (𝑥) = E𝑞 (𝜔 |𝐷) [𝑝(𝑦 = 𝑐 |𝑥, 𝜔)2] − E𝑞 (𝜔 |𝐷) [𝑝(𝑦 = 𝑐 |𝑥, 𝜔)]2

≈ 1

𝑇

𝑇∑︁
𝑡=1

𝑝(𝑦 = 𝑐 |𝑥, 𝜔𝑡)2 −
(1
𝑇

𝑇∑︁
𝑡=1

𝑝(𝑦 = 𝑐 |𝑥, 𝜔𝑡)
)2 (2.30)

The mean-variance over all class outcomes can be used to capture the variance

of all class outcomes given an input 𝑥, that is:

𝜎2(𝑥) = 1

𝐶

𝐶∑︁
𝑐=1

𝜎2
𝑐 (𝑥) (2.31)

43

Chapter 2 Foundations

0 1

Low Epistemic Unc.
Low Aleatory Unc.

(a) High con�dence
with low variance.

0 1

Low Epistemic Unc.
High Aleatory Unc.

(b) Mean near decision
boundary and low
variance.

0 1

High Epistemic Unc.
Low Aleatory Unc.

(c) Con�icting out-
comes are equally
likely, each with
high con�dence and
low variance.

0 1

High Epistemic Unc.
High Aleatory Unc.

(d) A uniform distri-
butions represent a
state of maximum
uncertainty.

Figure 2.12: Di�erent con�gurations of probability distributions, showcasing
variations that lead to either low or high levels of epistemic and
aleatory uncertainty.

However, the empirical variance does not account for all types of uncertainty

and is rarely used in text classi�cation. It captures the variability of the model

(epistemic uncertainty), but does not explicitly capture the natural randomness

and noise of the data (aleatory uncertainty). A prediction with zero variance can

still be highly uncertain, e.g., by reporting a mean class probability of 𝜇𝑐 = 0.5

in a binary classi�cation task.

Both the variance and the mean of the posterior in�uence the uncertainty of

a prediction. The epistemic uncertainty accounts for the variance of a model,

which can be reduced or even eliminated by using more su�cient training data.

The aleatory uncertainty is revealed directly by the class probability 𝑝(𝑦 |𝑥, 𝜔)
(Eq. 2.25), given some weight 𝜔. Values close to 1 or 0 contain less aleatory

uncertainty, while values close to 0.5 contain high uncertainty in the sense of

not being able to clearly distinguish between classes. The variance and the

mean are not completely unrelated since the predictions have a small variance

44

2.2 Prediction Uncertainty

when the mean con�dence is close to 0 or 1. Figure 2.12 shows that a predic-

tion may involve high epistemic and no aleatory uncertainty, no epistemic and

high aleatory uncertainty, both high epistemic and high aleatory uncertainty, or

neither.

Especially for classi�cation tasks, the empirical mean is also an important

factor of prediction uncertainty [113], indicating a lack of con�dence in the

predictions. A number of con�dence-based uncertainty measures have been

proposed to quantify the uncertainty of predictions, including:

� Least Con�dent (LC) [76]. Measures the uncertainty as a lack of con-

�dence in only the highest class probability:

𝐿𝐶 [𝑦 |𝑥, 𝐷] := 1 −max
𝑐

𝑝(𝑦 = 𝑐 |𝑥, 𝐷) (2.32)

� Smallest Margin (HM) [325]. Measures the uncertainty as the dif-

ference between the most (𝑐1) and the second most (𝑐2) probable class

outcomes:

𝐻𝑀 [𝑦 |𝑥, 𝐷] := argmin
𝑥

𝑝(𝑦 = 𝑐1 |𝑥, 𝐷) − 𝑝(𝑦 = 𝑐2 |𝑥, 𝐷) (2.33)

� Shannon's Entropy (H) [334]. Shannon's Entropy1 is the classical mea-

sure of uncertainty. It quanti�es the average information content of proba-

bilistic data. Shannon's Entropy takes into account the lack of con�dence

in all class probabilities and is de�ned as:

𝐻 [𝑦 |𝑥, 𝐷] := −
∑︁
𝑐

𝑝(𝑦 = 𝑐 |𝑥, 𝐷) log2 𝑝(𝑦 = 𝑐 |𝑥, 𝐷) (2.34)

� Ratio of Con�dence (RC) [325]. Describes the ratio between the high-

est and second highest class probability, that is:

𝑅𝐶 [𝑦 |𝑥, 𝐷] := 𝑝(𝑦 = 𝑐2 |𝑥, 𝐷)
𝑝(𝑦 = 𝑐1 |𝑥, 𝐷)

(2.35)

All of these metrics are derived from 𝑝(𝑦 = 𝑐 |𝑥, 𝐷) (Eq. 2.27), but can also

be computed from a single prediction 𝑝(𝑦 = 𝑐 |𝑥, 𝜔) given some weight 𝜔.

For example, Shannon's entropy can be rewritten as 𝐻 [𝑦 |𝑥, 𝜔] := −∑
𝑐 𝑝(𝑦 =

𝑐 |𝑥, 𝜔) log2 𝑝(𝑦 = 𝑐 |𝑥, 𝜔) using a single weight 𝜔. Eqs. 2.32, 2.33 and 2.35 can

be adapted analogously. In the latter case, no epistemic uncertainty is captured.

1Shannon's entropy is generally de�ned as: H(𝑝(𝑥)) := −∑
𝑥 𝑝(𝑥) log2 𝑝(𝑥), given some prob-

ability 𝑝(𝑥).

45

Chapter 2 Foundations

However, a single forward pass can be interpreted as a poor approximation of

the mean of a prediction probability distribution.

When modeling probability distributions, more robust estimates of the mean

can be made. Also, additional information hidden in the distribution can be

considered in the uncertainty assessment. When using Bayesian modeling, the

following established uncertainty measures can be applied:

� Variational Ratio (VR) [110]. The VR ratio is a vote-based uncertainty

measure that evaluates uncertainty as the dispersion of the nominal class

outcomes. It refers to the number of predictions that do not agree with

respect to the mode class. The number of predictions that occur in the

mode class is denoted as 𝑓𝑚𝑜𝑑𝑒 using 𝑇 forward passes:

𝑉𝑅[𝑦 |𝑥, 𝐷] := 1 − 𝑓𝑚𝑜𝑑𝑒

𝑇
(2.36)

� Mutual Information (I) [114, 158]. Measures the uncertainty of an

input 𝑥 according to the mutual information between the predictions and

the model posterior, de�ned as:

𝐼 [𝑦 |𝑥, 𝐷] := 𝐻 [𝑦 |𝑥, 𝐷] − E𝑞 (𝜔 |𝐷) [𝐻 [𝑦 |𝑥, 𝜔]]

≈ 𝐻 [𝑦 |𝑥, 𝐷] + 1

𝑇

𝐶∑︁
𝑐=1

𝑇∑︁
𝑡=1

𝑝(𝑦 = 𝑐 |𝑥, 𝜔𝑡) log2 𝑝(𝑦 = 𝑐 |𝑥, 𝜔𝑡)
(2.37)

According to Eq. 2.37, an ML model is highly uncertain about predic-

tions when there is high marginal uncertainty (high 𝐻 [𝑦 |𝑥, 𝐷]) and dis-

agreement about predictions with high certainty (low E𝑞 (𝜔 |𝐷) [H[𝑦 |𝑥, 𝜔]]).
Mutual information is commonly referred to as BALD (Bayesian Active

Learning by Disagreement), which denotes an uncertainty-based Active

Learning query strategy [158].

� Uncertainty by Kwon (KW). Kwon et al. [207] propose a method for

quantifying uncertainty that exploits the relationship between the variance

and the mean of predictions. Their approach allows the decomposition of

prediction uncertainty into its aleatory and epistemic parts. KW does

not require changing the network architecture to capture both types of

uncertainty. The uncertainty measure is given by:

46

2.3 Conclusion

𝐾𝑊 [𝑦 |𝑥, 𝐷] ≈ 1

𝑇

𝑇∑︁
𝑡=1

(diag(𝑝𝑖)) − 𝑝𝑖𝑝𝑖ᵀ︸ ︷︷ ︸
Aleatory

+ 1

𝑇

𝑇∑︁
𝑖=1

(𝑝𝑖 − 𝑝) (𝑝𝑖 − 𝑝)ᵀ︸ ︷︷ ︸
Epistemic

(2.38)

where 𝑝 = 1
𝑇

∑𝑇
𝑖=1 𝑝𝑖 and 𝑝𝑖 = 𝑝(𝑦 |𝑥, 𝜔𝑖) is the softmax probability.

There are a number of other approaches to quantifying uncertainty in pre-

dictions that are not described in detail here. For further approaches, we refer

to the surveys of uncertainty quanti�cation methods provided by Gawlikowski

et al. [118].

2.3 Conclusion

This chapter has introduced the task of text classi�cation. It has presented a

generic pipeline for building an ML-based text classi�er, including data cleaning,

feature engineering, model selection, and classi�er validation. For each step,

established implementations have been outlined. The focus was mainly on deep

learning approaches using NNs.

Each subtask in the ML pipeline can introduce uncertainty into the classi�ca-

tion results, a�ecting the reliability and variability of the predictions. Bayesian

statistics provides a framework to naturally model uncertainty in NNs. Two

main types of uncertainty have been identi�ed. First, predictions are a�ected

by aleatory uncertainty, which describes irreducible noise and randomness in

the data being predicted. Second, epistemic uncertainty characterizes the lack

of knowledge to make reliable predictions, which can be addressed by providing

more training data. Several approaches for approximating BNNs and quantify-

ing uncertainties have been discussed. Being aware of prediction uncertainties is

a step towards more transparent and responsible predictions. However, simply

estimating the uncertainty of classi�ers does not make them more reliable. It is

necessary to take measures that allow e�ective integration and use of uncertainty

information in the decision-making process.

47

Chapter 3

Applicability Challenges of ML-based

Text Classi�ers

Publication. This chapter is based on the paper �Why do we need Domain-

experts for End-to-end Text Classi�cation? � An Overview� [9] in 2023. My

contribution to this paper encompasses the entire research process, including the

literature review, synthesis, and presentation of the results, as well as leading

the writing process.

Contribution. User comments are a valuable source of information with high

economic value for many real-world use-cases. However, ML-based text classi-

�cation faces several challenges that limit its applicability. This chapter �rst

outlines real-world use-cases for text classi�cation that we focus on in this the-

sis. These include the classi�cation of app reviews, problem reports, and social

media posts. Second, it explores and describes vital challenges that hinder the

applicability of text classi�ers. We provide an overview of current challenges and

group them into four main types: data-centric, model-centric, human-centric,

and applicability-centric challenges.

3.1 Examples of Real-world Use-cases

In online communication, the rise of social media, online forums, and other dig-

ital platforms has enabled individuals to express themselves or communicate

with others through text messaging. Many domains, including online market-

places (such as Amazon1 or App Store2) or news media (such as The Washington

Post3), have recognized the potential of allowing their audiences to provide ex-

plicit user feedback [234, 239, 283]. With the increasing popularity of online

communication, these domains share the need to manage large volumes of user

1https://www.amazon.com/
2https://www.apple.com/app-store/
3https://www.washingtonpost.com/

49

Chapter 3 Applicability Challenges of ML-based Text Classi�ers

comments. User feedback holds great promise for facilitating their services, en-

abling them to better understand their audience, make data-driven decisions,

and achieve their business goals. However, enabling user comments also includes

obligations, such as regulatory compliance.

Text classi�cation models and techniques provide a generic and domain-

independent solution space for text classi�cation systems. This thesis focuses on

better exploiting the potential of explicit user feedback by enabling more appli-

cable text classi�cation. To evaluate the proposed HiL frameworks, we consider

several real-world use-cases from the domains of software engineering, online

journalism, and social media analytics.

3.1.1 Feedback and Review Classi�cation

App stores provide a platform for downloading software and also allow users

to provide valuable feedback about it. Users who have downloaded an app can

typically rate it on a scale of 1 to 5 and write a review message. App stores have

become an important communication channel between app users and developers

[7]. Using and making sense of app store feedback for developers and analysts is

of great interest [139]. For instance, app stores have become the top prioritized

channel for bug reports [7]. Developers can easily access the users' view and use

this feedback to drive the development of their applications [239].

Feedback from app stores is a key component of data-driven software en-

gineering. Data and analytics serve as the primary drivers for making informed

decisions throughout the software development process, such as utilizing user

feedback to identify, prioritize, and manage the requirements for a software

product [241]. Particularly promising are reviews from app stores [7, 139, 239],

which commonly contain bug reports, feature requests, questions, or valuable

user experiences. Feedback and review classi�cation have become critical fac-

tors for developers to stay competitive in a rapidly evolving app market. As the

number of reviews increases, so does the need for applicable text classi�cation.

3.1.2 Issues Ticket Classi�cation

The continuous management and tracking of software defects, tasks, and other

work items is critical for e�ective and successful software maintenance and evo-

lution [178]. For this reason, software projects use Issue Tracking Systems (ITS)

such as Jira4 to e�ciently collect, document, and track issues in software sys-

tems that need to be resolved. An issue is a unit of information that typically

includes a title, description, and several properties such as type, status, priority,
4https://www.atlassian.com/software/jira

50

3.1 Examples of Real-world Use-cases

and links to other issues [259]. Users can submit di�erent types of issues, such

as asking questions, suggesting features, or reporting bugs with varying levels

of quality [178, 259].

Software developers are required to timely react and resolve issues reported

in ITS. However, for popular software systems, tens or hundreds of issues are

reported daily [178], and manually labeling issues can be labor-intensive, error-

prone, and time-consuming [104]. Assigning labels (issue types) to issues is

critical for prioritizing, handling, and resolving issues [178, 179], i.e., �ltering

relevant issues for assignment to appropriate teams and channels. For example,

ML-based systems are highly desirable to accurately determine the types of

issues to e�ectively handle and prioritize them [179].

3.1.3 Hate Speech and O�ensive Language Detection

Hate speech and o�ensive language can take many forms, ranging from overt

racism, sexism, and discrimination to subtle microaggressions, trolling, and cy-

berbullying. In addition to harming individuals and communities, these forms

of expression can have far-reaching societal consequences. They can damage

the reputation of service providers and alienate users. To combat the negative

consequences of such content, the development of ML-based hate speech and

o�ensive language detection systems has received considerable attention in the

�eld of ML [80, 256, 267, 296, 383]. Especially in online journalism, hate speech

and o�ensive language have become a major obstacle [20, 285, 297].

Online journalism is the digital dissemination of news and information

through Internet-based platforms. It involves the creation, curation, and pre-

sentation of news content through various digital media such as websites, social

media, and mobile applications. Online forums have become an integral part of

online journalism [234, 307]. They allow users to share personal opinions, valu-

able feedback and corrections on journalistic content such as articles or videos.

While the potential of leveraging user feedback within online forms is widely

recognized [234], the quality of user feedback varies widely. Freedom of expres-

sion has led to a dark side of online discourse [297]: the spread of hate speech

and o�ensive language, which is a major threat to news organizations [40, 285].

Approaches are needed to reliably identify hate speech and o�ensive language

in public discussions. Developing reliable content moderation systems to block

unwanted content remains an open research challenge [283].

51

Chapter 3 Applicability Challenges of ML-based Text Classi�ers

3.1.4 Sentiment Analysis

Social media provides a way for users to communicate and network with each

other. In addition to posting images and videos, users interact by exchang-

ing text messages and comments. Social media has become an essential space

for monitoring public opinion. According to Kaplan and Haenlein [180], Social

Media is de�ned as �a group of Internet-based applications that build on the ide-

ological and technological foundations of Web 2.0, and that allow the creation

and exchange of user generated content�. Social media data is vast, noisy, dis-

tributed, unstructured, and dynamic, making it di�cult to process. The �eld of

social media analytics refers to the collection and monitoring of social media

data in order to extract and make sense of it to support (business) decisions.

One of the most common use-cases for social media analytics is sentiment

analysis [105, 225, 243, 266]. Sentiment analysis aims to classify a text as

expressing a positive, neutral, or negative a�ect, mood, or emotional tone (sen-

timent) [249]. More granular levels of sentiment have been explored, such as a

[−5, +5] range [132]. Sentiment analysis is commonly used to understand the

sentiment regarding certain entities such as movies [243], online courses [225],

or software features [132]. Among other aspects, sentiment analysis allows prac-

titioners to understand customer satisfaction, identify areas for improvement,

pinpoint speci�c problems, or highlight customer preferences.

3.1.5 Topic Classi�cation

User comments are typically associated with distinct topics, such as themes,

aspects, or features within a discussion. Topic classi�cation is concerned with

structuring extensive collections of text into recurring topics. It can be applied

to classify incoming user requests into relevant topics such as politics, sports,

technology, and entertainment to assist editors in receiving content of interest.

In addition, topic classi�cation is commonly used to understand which aspect

of a product is most frequently discussed or to recommend relevant text based

on user interests [212]. Topic classi�cation can also identify emerging trends or

popular topics in news articles or support tickets across di�erent classes over

time, helping journalists or support members focus their coverage on areas of

high interest.

Dividing text into topics helps organize, understand, and �lter large amounts

of data. The frequency of topics reveals what users are talking about. Un-

like topic modeling [2], topic classi�cation is based on supervised rather than

unsupervised ML. Therefore, the topics must be known in advance.

52

3.2 Classi�cation of Applicability Challenges in ML-based Text Classi�cation

3.2 Classi�cation of Applicability Challenges in

ML-based Text Classi�cation

Text classi�cation research continues to propose ML models, architectures, and

best practices that outperform previous benchmarks. However, there remains

a gap between research settings and the requirements and expectations of real-

world use-cases, which negatively a�ects their applicability. This gap a�ects

state-of-the-art approaches and all ML-based text classi�ers in general. While

the operation of ML systems requires proper requirements engineering activities

and techniques [242], there are still data, model, human and applicability-centric

challenges that negatively impact the delivery and acceptance of ML-based sys-

tems.

While accuracy metrics drive most research, many practical considerations

are overlooked. Even the most accurate ML models may not immediately meet

the requirements of the application domain. Common ML obstacles include a

lack of labeled examples, limited hold-out accuracy, lack of user trust, runtime

constraints, low data quality, natural fuzziness, and wrong expectations. The

following section reviews and outlines critical challenges to the applicability of

text classi�ers, especially in real-world applications.

3.2.1 Related Surveys

Several literature surveys indicate di�erent challenges to the applicability of

text classi�ers or ML models in general. For example, Brodley and Smyth [51]

describe various problem-speci�c factors that in�uence the development process

of ML models, including application, data, and human factors. Rahman et al.

[300] report on a general survey of 80 practitioners outlining common challenges

in ML application development, covering the entire ML pipeline. These range

from data collection to model deployment and maintenance.

A signi�cant source of challenges is the trend toward increasing amounts of

data. Liu [231] highlights the issue of real-world datasets consistently growing in

size, creating challenges for contemporary data analysis. This poses signi�cant

di�culties from a data management perspective [65, 380]. Wang et al. [380]

examine the technical challenges of deep learning from a database perspective,

including operation scheduling, memory management, and distributed training.

Najafabadi et al. [265] outline challenges associated with deep learning in the

context of big data. According to them, challenges arise from unstructured and

heterogeneous data formats, noisy and poor quality data, fast-moving streaming

data, high data dimensionality, algorithm scalability, imbalanced data distribu-

53

Chapter 3 Applicability Challenges of ML-based Text Classi�ers

tion, and limited labeled data. A similar review is proposed by Zhou et al. [405].

They discuss key challenges and research directions for ML related to the use

of big data, human labels, domain knowledge, and infrastructure. As computa-

tional power is critical to the success of ML methods, Cheng et al. [68] highlight

the challenge that high storage and computational costs hinder the deployment

of ML systems in situations where computational resources are limited.

Challenges also arise from quality aspects of how an ML system should behave.

Vogelsang and Borg [376] outline the quanti�cation of quality targets such as

explainability, freedom from discrimination, legal and regulatory requirements,

and data requirements as the main challenges and objectives of requirements

engineering for ML. Habibullah and Horko� [133] investigate the applicability

of deep learning from a requirements engineering perspective. They propose

25 non-functional requirements for applying ML models in production environ-

ments, including accuracy, reliability, explainability, fairness, and others. Maalej

et al. [242] review challenges to the applicability of ML-based systems from a re-

quirements engineering perspective. They focus on non-functional requirements

and highlight the di�culty of de�ning measurable success criteria for quality

attributes, such as the acceptable failure rate or risk. To ensure the deployment

of AI (Arti�cial Intelligence) systems, Maalej et al. [242] outline aspects that

need special attention to better meet user, system, and societal requirements.

Khomh et al. [191] outline critical challenges to ensure the quality of ML systems

from a software engineering perspective. These relate to the imperfect nature

of ML models, their testability, and the gap between software engineering and

ML activities.

Other surveys focus on the challenges posed by real-world use-cases. Adnan

and Akbar [3] identify the lack of usability, where non-experts �nd it challeng-

ing to construct classi�ers without great e�ort, and the need for substantial

computational resources to train large models on large datasets as the main

barriers to the widespread adoption of deep learning techniques. Rudin and

Wagsta� [317] outline open challenges and research directions for the applica-

tion of ML systems in real-world settings. Their research agenda focuses on

ML-related challenges that a�ect society. Ittoo et al. [167] review challenges

related to the application of text classi�cation in real-world industrial environ-

ments. These challenges include dealing with heterogeneous data sources, short

and informal text instances, a shortage of labeled data, and a lack of classi�ca-

tion performance. Borrellas and Unceta [44] describe the economic implications

of the problems of interpretability, fairness, and security of ML systems that are

barriers to the development and mass adoption of ML for real-world use-cases.

54

3.2 Classi�cation of Applicability Challenges in ML-based Text Classi�cation

Jöhnk et al. [173] review organizational readiness factors for AI systems: data

accessibility, �nancial budget, AI readiness and infrastructure, openness to in-

tegration with black-boxes, and other necessary considerations. For example,

they note that a lack of understanding and fear of AI can hinder the adoption

of ML-based systems. Ashmore et al. [24] focus on the security of ML systems

to ensure their intended use with respect to data management, model learning,

model veri�cation, and model deployment tasks.

Furthermore, D'Amour et al. [78] identify the challenge of underspeci�cation

that degrades the credibility of ML systems in applications. Underspeci�ca-

tion causes ML systems to exhibit unexpectedly poor classi�cation performance

when used in real-world domains. They describe underspeci�cation as a struc-

tural design �aw that can occur when classi�ers are tested on hold-out data

that follows the same distribution as the training data. A trained classi�er is

underspeci�ed when many di�erent predictors 𝑓 can be trained from 𝐷 that

satisfy the test criteria but have systematically di�erent generalization behav-

ior. They show that even small changes can force an underspeci�ed classi�er to

make di�erent predictions in application domains [78].

3.2.2 Data-centric Challenges

Data-centric challenges to the applicability of ML-based text classi�ers originate

in the underlying data used to train them. These include inadequate and missing

knowledge, as well as poor data quality.

Sparse, Inadequate or Incomplete Training Data. A lack of training data is a

major bottleneck in text classi�cation. Sparse, inadequate, or incomplete train-

ing data limits the ability of classi�cation models to make accurate predictions.

The inference is limited to identifying patterns familiar to the model from the

training data. While text data is widely accessible nowadays, annotated data

needed to train classi�ers is still scarce [332].

Another major challenge for text classi�ers is the generalizability of the train-

ing data. Generalizability refers to the ability of a trained ML model to e�ec-

tively adapt to a range of inputs. The training, validation, and test datasets are

generally assumed to represent the true text distribution 𝑝(𝑋). However, labo-
ratory environments often di�er signi�cantly from real-world conditions. Since

𝑝(𝑋) is unknown, there is no indication of how well the training data repre-

sents the true data distribution that will be encountered during deployment.

Blind-spots and unwanted biases may unintentionally manifest themselves in

the dataset and distort the results [250].

55

Chapter 3 Applicability Challenges of ML-based Text Classi�ers

Moreover, the data collected for training is usually historical and may re�ect

outdated and only static snapshots [201]. However, real-world data is highly

dynamic and subject to change, much like the context of discussions and lan-

guage, which evolve over time [95]. Common drifts to be expected lie in the

distribution of the incoming data 𝑝(𝑋), the prior of the classes 𝑝(𝑌), the con-
ditional class probabilities 𝑝(𝑌 |𝑋) such as changes in the decision bounds, and

the conditional probability 𝑝(𝑋 |𝑌) [115]. Undetected drifts negatively a�ects

the reliability of classi�cation results due to a less representative training data

set. Furthermore, raw real-world data is much noisier, un�ltered, and of varying

quality. Given these limitations, classi�ers are not expected to perform as well

in real-world settings as they do under controlled laboratory conditions.

Compromised Data Quality. Data quality is a relevant challenge for text clas-

si�ers because it signi�cantly impacts the classi�cation performance [75, 201].

The e�ectiveness of supervised ML models depends not only on the quantity

but also on the quality of the data on which they are trained. Since data in the

context of text classi�cation consists of text and labels, we distinguish between

label quality and text quality.

First, the quality of label assignment (label quality) measures the accuracy and

consistency with which provided labels match the actual true labeling [336]. La-

bel quality typically depends on the accuracy, consistency, and objectivity of the

humans providing the labeled data (Section 3.2.4). If the labels are inaccurate

or inconsistent, the classi�cation performance will be adversely a�ected [300].

In addition, incorrect labeling in the test data can make it di�cult to determine

whether the model is making errors and to diagnose and �x problems. High

label quality is critical to the success of text classi�ers.

Second, the quality of the input text (text quality) is also crucial. High text

quality is essential because classi�cation is based on patterns and relationships

in the data. Models cannot adequately interpret low-quality data, resulting in

poor classi�cation performance. In this case, the classi�er may fail to learn

properly, leading to inaccurate classi�cation outcomes. The quality of generic

data is traditionally measured along various dimensions such as accuracy, rel-

evance, representation, completeness, accessibility, timeliness, and others [378].

Data quality is standardized in the ISO/IEC 25012 standard [166], which out-

lines 15 data quality characteristics, including inherent data quality aspects and

system-dependent data quality. However, critics argue that such measurements

are subjective [386] and that it is di�cult to de�ne success criteria for quality

attributes [242]. The key dimensions of data quality for textual data are:

56

3.2 Classi�cation of Applicability Challenges in ML-based Text Classi�cation

Accuracy. Accuracy refers to the extent to which a text aligns with its in-

tended class. This classi�cation ability is in�uenced by how accurately the

features re�ect the text presented and how accurately the text itself expresses

its intended meaning. Highly accurate text instances are also free of typos,

noise, and grammatical errors that interfere with the classi�cation [4].

Relevance. Relevance refers to the degree to which a text ful�lls the needs of

the classi�cation objective. A text instance is considered relevant if it aligns with

the type of text the classi�er is expected to encounter in real-world applications.

For example, a highly relevant text for a class would contain numerous key

terms and concepts associated with that class. Conversely, non-relevant data

often consists of outliers or out-of-distribution instances that do not align with

any prede�ned class [140].

Completeness. A complete text instance contains enough information to make

accurate predictions. Concise, uninformative texts without context lack com-

pleteness and may not be related to any class. In terms of training data, a

complete dataset would cover all words and contexts that occur in its applica-

tion domain (high generalizability). Complete training data must cover a range

of classes or categories and various text styles and formats. A typical indicator

of incompleteness is the appearance of blind spots [26].

Consistency. Measures how consistent and free of errors a dataset is. This

includes consistent use of language, i.e., the same key terms, concepts, contexts,

and appearances. A high consistency makes it much easier for classi�ers to

assign labels accurately. Inconsistent text instances may contain words that

are not expected for their labeling. Di�erent text formats, structures, and

domain-speci�c languages introduce inconsistencies that can negatively a�ect

a classi�er's classi�cation performance.

Timeliness. Timeliness refers to the currency of the data. It describes the

degree to which the data is up-to-date and represents the data a classi�er is

expected to encounter in its real-world application. In text classi�cation, this

means that the training re�ects the current state of the domain. Outdated data

may not re�ect current patterns, resulting in poorly trained classi�ers. Time-

liness is especially important in text classi�cation because natural language is

constantly evolving, as is its context [5]. The classi�cation performance of a

classi�er is known to degrade over time if the training data is not up-to-date.

57

Chapter 3 Applicability Challenges of ML-based Text Classi�ers

In the context of ML, data quality is usually outlined as the degree to which

a dataset serves a given task [128]. Data quality has a signi�cant impact on

the quality of predictions [387]. A high overall data quality is desirable because

it provides a good approximation (high classi�cation performance) of the true

dependency of inputs and outputs. Learning powerful classi�ers does not require

arbitrary data, but good quality data [221].

3.2.3 Model-centric Challenges

Model-centric challenges to the applicability of text classi�cation refer to charac-

teristics of the classi�cation model that negatively impact its application. These

challenges are caused by the model itself, but can also be caused by missing,

con�icting, or poor quality data (data-centric challenges). Typical model-centric

challenges include a lack of performance and reliability, a lack of user trust, high

computational cost, and model latency.

Lack of Classi�cation Performance and Reliability. While recently proposed

ML models for text classi�cation continue to push the state-of-the-art classi-

�cation performance [88], the performance still needs to be much higher for

practical application. Even with high-quality training data, the most advanced

text classi�ers rarely achieve a perfect classi�cation performance. Typically,

the classi�cation performance converges to a maximum reachable level that the

model cannot exceed. Benchmarks indicate that classi�cation performance well

below 100% is expected for well-scoped tasks. [88, 144, 397].

In particular, even state-of-the-art text classi�ers may fail to provide top

classi�cation performance. Often a classi�cation performance of around 85% is

reached [217, 277, 302, 304, 315]. In contrast, in the manufacture of goods and

the provision of services, a minimum accuracy of 99.9997% (Six-Sigma [206])

is usually aimed at in order to be highly e�cient and to ensure high process

quality [358]. In the �eld of ML-based text classi�cation, such nearly error-free

process �ows are not to be expected according to the current state of the art.

A concept closely related to classi�cation performance is reliability. It is

the ability of a model to perform well and consistently on a wide range of

inputs [363]. Tran et al. [363] outline three dimensions of reliability for AI

systems. To be reliable, a model must accurately represent its own uncertainty,

consistently perform well in new scenarios, and e�ciently adapt to new data.

Reliability therefore presupposes a high level of classi�cation performance in a

broader context than the training and test data. Overall, a lack of classi�cation

performance and reliability leads to misclassi�cations.

58

3.2 Classi�cation of Applicability Challenges in ML-based Text Classi�cation

Lack of Transparency and User Trust. While some traditional classi�ers,

such as DTs, are interpretable by design (as long as the decision rules are easy

to interpret) [38]. Most recent classi�ers, especially deep learning approaches,

remain opaque and are by default in-transparent [59]. Such classi�ers are black-

boxes as they do not provide comprehensible insight into their inner workings

[59]. It remains unclear why and how ML models derive at the given labels.

Without human-readable explanations, practitioners can hardly be convinced

by the classi�cation.

The problem of worrying about trusting ML models lies in their fallibility

and inability to explain their decisions and actions [23]. Trust describes the

con�dence of humans in arti�cial decision-making and is a primary reason for

the acceptance and application of ML models [339]. Trust is necessary to create

the willingness to rely on arti�cial decisions and deploy them in practice [309].

The key to building human trust is to understand and know the strengths and

weaknesses of an ML model [56]. Typically, human users tend to trust models

when they can understand why certain predictions were made. In general, black-

box predictions should not be blindly trusted, especially when it has a large

impact on its environment.

High Computational Complexity and Resource Consumption. Current re-

search in text classi�cation focuses mainly on classi�cation performance rather

than e�ciency [353], which is not a problem at �rst because highly e�ective

models are needed. However, ML models generally face a trade-o� between clas-

si�cation performance and utilizing computational resources [294]. The trend

is towards increasingly complex models that continue to outperform previous

approaches [353]. As more powerful computing infrastructures become avail-

able, more complex classi�cation algorithms are being developed, pushing the

boundaries of the-state-of-the-art. Infrastructure and computational resources

have become critical factors in keeping pace with current achievements and not

falling behind.

State-of-the-art ML models for text classi�cation require signi�cant computa-

tional resources [88, 144, 397], making them challenging to deploy in lightweight

environments such as edge devices. Computational constraints have become a

signi�cant bottleneck in model training and deployment. This can be challeng-

ing when high-performance hardware is unavailable, or memory constraints are

an issue. Real-world product environments are typically not as powerful as the

laboratory environments of research-intensive companies and universities. This

prevents many practitioners from using state-of-the-art ML models to automate

text classi�cation.

59

Chapter 3 Applicability Challenges of ML-based Text Classi�ers

Recently, the importance of alternative evaluation criteria has increased. The

awareness of a sustainable and green IT landscape is gradually making its way

into the �eld of ML [6, 205, 353]. User awareness is shifting towards sustainable

and computational-aware use of arti�cial intelligence. Training deep learning

models is particularly resource-intensive, requiring millions of operations to com-

pute the values of the weights. The question is whether it is really necessary to

use highly complex systems to extract the last percentage points of classi�cation

performance, or whether computational-aware ML models are su�cient.

Fuzzy Classi�cation Objective. Natural language text is inherently fuzzy, and

its interpretation is highly subjective. The complexity of a text may not match

the uniqueness of classi�cation goals, which strictly aim to separate classes. In

contrast, class boundaries of real-world data are usually �uid and may overlap

[394]. An observation may erroneously belong to none, several, or all classes, or

an input 𝑥 may belong to two or more classes with a non-zero probability. While

classi�cation models assign inputs to exact classes, natural language is some-

what vague with a certain degree of interpretation. For example, studies show

that even domain experts disagree on the detection of hate speech [25, 383].

It is generally assumed that if domain experts cannot agree on a certain class

membership, an ML model will not be able to do better [41]. The ambiguity

of assigned class labels is also indicated by the common use of inter-annotator

agreements, which are applied to resolve inconsistencies between multiple anno-

tators [383].

A challenge of ML-based classi�ers is that they may not be able to cope with

the complexity of the problem to be solved. Intermediate possibilities between

classes cannot be modeled, although they are present in the data. For example,

sentiment labels are usually �positive� or �negative� [243]. However, text is of-

ten multifaceted and ambiguous. A text may contain both positive and negative

sentiments. The true sentiment covers many more intermediate steps than are

actually modeled. Therefore, some consider �neutral� to be a third category, so

that labelers do not always have to choose between the two extremes. Others try

to approach this diversity by considering more �ne-grained classes. For example,

the sentiment of product reviews can be classi�ed according to more interme-

diate levels, such as �strongly positive� and �weakly positive� [105]. However,

this leads to increased complexity and a more di�cult labeling task, while still

facing the problems of ambiguous boundary cases.

60

3.2 Classi�cation of Applicability Challenges in ML-based Text Classi�cation

3.2.4 Human-centric Challenges

Human-centric challenges revolve around the role of humans in the text classi-

�cation pipeline. In particular, this thesis focuses on data labeling, since text

classi�ers rely heavily on a large volume of high-quality but manually labeled

data instances. This section describes the challenges posed by the resilience of

human labelers and outlines the main obstacles associated with manual labeling.

Cost of Human E�ort. Human labor is typically constrained by its high cost

and tight budgets. Additionally, manual text classi�cation is highly labor-

intensive and time-consuming, requiring careful reading and reasoning for each

text. For instance, Gray et al. [124] report that labeling 211 legal opinions

engaged seven hired law students for over two months at a cost of several thou-

sand dollars. Unfortunately, text classi�cation requires large amounts of labeled

training data. A tight budget for labeling usually limits the classi�cation per-

formance and reliability of classi�ers. Saving human resources is critical to

enabling the applicability of ML models to real-world domains. Reducing the

cost of human involvement while maintaining certain quality constraints is a

common goal of ML systems [332]. Human cost-e�ectiveness should be taken

into account when designing ML systems. Although some researchers [125] con-

sider a labeling budget of 1,000 instances as low-budget, such amounts would

still require enormous manual e�ort.

Latency of Tooling. Another signi�cant consideration in the applicability of

text classi�cation-based systems is the latency of the embedded ML model.

Latency describes the delay between a model request and its response. Thus,

latency is the time it takes for a classi�er to perform training, or to receive an

input, process it, and return a predicted class label. Typically, the latency of

an ML model is correlated with its computational complexity [157].

Current state-of-the-art ML models raise concerns about their high latency,

not only on edge devices [64], but also on exceptional infrastructure. Interacting

with and re�ning ML models during their development can easily be a lengthy

process, violating the time constraints of interactive systems [233]. In most

cases, it is insu�cient for humans to wait hours for an ML model to re-train

before continuing to provide feedback [333]. The trade-o�s between classi�ca-

tion performance, computational complexity, and time constraints are often not

adequately considered in the race for e�ectiveness. Most research papers do not

even mention the training time and computational resources required [353].

61

Chapter 3 Applicability Challenges of ML-based Text Classi�ers

Subjectivity, Biases and Misconceptions. During data labeling, humans must

make decisions based on imperfect, complex, and noisy information. However,

humans are subject to speci�c errors in their reasoning [306]. Sometimes humans

make mistakes in labeling text, adding noise to the model [333]. Human judg-

ment can be corrupted by several human distortions that negatively a�ect the

quality of human feedback, including cognitive, perceptual, and motivational

biases [295]. It may not always be possible to reach a global and objective

consensus.

There are several reasons why human annotators may mislabel text instances.

One factor is a lack of understanding and meaning, or missing context informa-

tion. Mislabeling can also occur when annotators are unfamiliar with related

concepts or terminologies. Such humans are typically referred to as non-domain

experts. A typical example are crowd workers [374]. Studies show that a high

variance in feedback quality between experts and non-experts is to be expected

[344].

Labeling is also known to be a repetitive, tiring, and tedious task, leading

human labelers to �turn o� their brains� [8]. In such cases, the quality of pro-

vided labels may vary over time [109]. Also, when human labelers are under

time pressure or need more time to read and think about a text carefully, they

may mislabel it. In this case, labelers may not recognize the true essence of the

text, leading to hasty and ill-considered decisions. Additionally, humans may

misclassify text due to unintentional errors, such as misreading or selecting the

wrong classi�cation label.

Security and Misuse. Human feedback in the form of labels is fed directly into

the model and directly a�ects its behavior. ML models are highly vulnerable to

malicious user intent. So-called poisoning attacks [359] can be executed, where

a subset of the training data is intentionally altered in some direction to change

the behavior of the model during operation. E�ectively preventing or detecting

a poisoning attack is an open question [359].

3.2.5 Applicability-centric Challenges

Finally, this thesis considers challenges related to the broader applicability and

use of text classi�ers in real-world settings. The focus is on ensuring that ML

solutions can be e�ectively implemented and sustained in practical scenarios.

While many model- and data-centric challenges relate to quality issues, the

challenge remains to specify acceptable yet feasible levels of these qualities [242].

62

3.2 Classi�cation of Applicability Challenges in ML-based Text Classi�cation

Unrealistic Expectations. A common challenge in applying ML models is the

presence of overly optimistic or unrealistic expectations about their capabilities

and results [242]. Stakeholders may expect ML models or systems to solve

complex problems perfectly or instantly, leading to disappointment when faced

with the inherent limitations or uncertainties of these models.

For example, consider a team working on an ML system to automatically

classify user feedback in an app store. Stakeholders, including app developers,

may be excited about the potential of such ML systems to aggregate user feed-

back. They may expect the ML system to perfectly classify each user comment

into its most relevant class, eliminating any misclassi�cations or inconsistencies.

However, accurately classifying apps involves dealing with di�erent nuances of

review quality, app functionality, varying descriptions, and multiple classes that

could apply to each review. In reality, ML systems often struggle to under-

stand and reliably classify the nuances of each app, especially when reviews are

complex, noisy, or ambiguous.

Managing and aligning stakeholder expectations with the actual capabilities

and potential limitations of ML systems is critical to a successful deployment.

It is important to educate stakeholders about the capabilities and limitations

of ML models, emphasizing that these systems are probabilistic and may not

always provide perfect solutions. Managing expectations by communicating

realistic outcomes, potential risks, and uncertainties helps align stakeholders

with the true capabilities of the technology [242].

Acceptable Levels of Quality Requirements. Quality requirements such as

high classi�cation performance, transparency, and misclassi�cation tolerance are

essential in ML projects. However, these requirements are often fuzzy, di�cult

to specify, and di�cult to measure [376]. A signi�cant issue lies in the unde�ned

acceptance levels for these quality requirements [242]. For example, a generic

requirement for an ML model might be �accuracy should be as high as possi-

ble�. While suitable for research purposes, this vague speci�cation is inadequate

for responsible ML systems. Accuracy requirements must be explicitly de�ned

to provide clear guidance to stakeholders and ML engineers. Without clear

agreements and measurable levels, quality goals may receive minimal attention

until serious acceptance issues arise. This underscores the need for a structured

approach to de�ning and accepting quality requirements in ML projects.

Quality Assurance. Creating and maintaining value from ML systems over

time requires ensuring the quality, reliability, and consistency of ML models in

production. Quality assurance is a signi�cant challenge that includes testing the

63

Chapter 3 Applicability Challenges of ML-based Text Classi�ers

classi�cation performance of ML models across di�erent datasets, monitoring for

data drifts, assessing robustness against adversarial attacks, and maintaining the

consistency of model outputs over time.

ML quality assurance ensures that ML models perform reliably, accurately,

and consistently across di�erent scenarios. This involves ensuring that the data

used for training and testing is accurate, representative, and free of bias or er-

ror. Testing ML models against edge cases, anomalies, or adversarial attacks

helps assess their resilience and robustness. In addition, to maintain accuracy

and relevance over time, it is necessary to continuously monitor classi�cation

performance in production, detect drift, and frequently re-train models. Imple-

menting robust quality assurance practices instills con�dence in ML systems,

ensuring they perform as intended and minimizing unexpected failures.

Tradeo�-analysis. Developing and tuning ML-based systems is challenging

because not all quality requirements can be maximized due to inherent con�icts,

competing objectives, or constraints [242]. Real-world applications require the

consideration of various trade-o�s.

For example, the pursuit of higher classi�cation performance may con�ict with

sustainability goals, given the signi�cant energy consumption and carbon emis-

sions associated with tasks such as handling massive datasets and �ne-tuning

ML models. However, more complex models may provide higher classi�cation

performance but be less interpretable, requiring a trade-o� between understand-

ing the model's decisions and its predictive power.

Ensuring fairness in predictions can also impact the overall classi�cation per-

formance, requiring careful trade-o�s to balance fairness and classi�cation per-

formance. Performing careful trade-o� analysis helps to make informed deci-

sions during the development and deployment of ML systems. It ensures that

stakeholders understand the trade-o�s involved and guides the prioritization of

requirements [242]. A well-established trade-o� analysis can help achieve a bal-

anced and thoughtful approach to AI development, taking into account both

technical and ethical dimensions.

3.3 Conclusion

There is a high demand for automating text classi�cation tasks in real-world

domains. However, the capabilities of ML-based text classi�ers are limited, and

such models lack applicability. In general, challenges to the applicability of

ML models can be divided into data-centric, model-centric, human-centric, and

applicability-centric aspects.

64

3.3 Conclusion

ML-based classi�ers must be trained on a large and diverse dataset that con-

tains a wide range of examples from each class. This allows the classi�er to learn

the key characteristics and features associated with each class and to accurately

classify new pieces of text based on these characteristics and features. However,

labeled training examples are limited and expensive to create manually. In ad-

dition, raw natural language text is typically of low quality, i.e., imbalanced,

noisy, inaccurate, and inconsistent. Classi�ers, however, require high-quality

data to be trained accurately. Moreover, text is inherently fuzzy in its inter-

pretation, and instances within the data are usually not separable into distinct

classes. Unclear borderline cases are to be expected, which the classi�er must

still assign to a single class.

In addition, the choice and con�guration of ML models pose a threat to their

applicability. Classi�cation models typically lack in classi�cation performance

and reliability. Misclassi�cations are to be expected. In the worst case, an ML

model may not achieve the desired level of classi�cation performance, making

it ine�ective in production. Decisions made by an ML model are also usually

not transparent and lack user trust. Users generally do not take advantage of

recommendations or suggestions that they do not trust. Furthermore, ML mod-

els are becoming increasingly complex, leading to a mismatch between research

and deployable systems. Productive environments and laboratories often have

di�erent processing capabilities and requirements. In particular, real-time ap-

plications require low latency, which is typically not provided by state-of-the-art

text classi�ers.

Furthermore, the development of text classi�ers requires human assistance,

especially in the labeling of data. However, humans are unreliable, and some

degree of mislabeling is to be expected due to unintentional errors, bias, or sub-

jectivity. It is also challenging to manage the right expectations about what ML

models can provide and their limitations in order to maintain user acceptance

and highly applicable ML solutions. In addition, de�ning acceptable levels of

quality requirements that may be correlated is challenging. As it is unrealistic

to address all challenges simultaneously, i.e. due to data availability, data qual-

ity or computational constraints, a �rst step towards more accepted ML is to

perform a trade-o� analysis to help stakeholders and applicants become aware

of potential limitations [242]. Summarizing the relevant �ndings of this chapter:

� ML-based text classi�cation is a promising and dynamically evolving �eld

of research. There is a strong desire to use automated text classi�cation

to uncover hidden insights or to �lter certain types of content in numerous

use-cases.

65

Chapter 3 Applicability Challenges of ML-based Text Classi�ers

� ML-based text classi�cation remains a challenging task with numerous ap-

plicability challenges. Purely automated solutions are typically corrupted

by uncertainties, misconceptions, and model inherent limitations. Some

degree of misclassi�cation is to be expected.

� Research to address critical challenges in text classi�cation is sorely lack-

ing. For instance, even the most advanced text classi�ers have shortcom-

ings, typically achieving a classi�cation performance of around 80%. As a

result, their applicability in real-world environments remains questionable,

often necessitating manual classi�cation.

� Most research in text classi�cation has focused on accuracy metrics to

evaluate the e�ectiveness of classi�ers. However, other critical factors such

as computational cost, latency, or risk assessment are often neglected or

not considered.

� Current text classi�cation research is mainly focused on maximizing au-

tomation and taking humans out of the ML loop. There is a lack of

research investigating the cost-bene�t ratio of interactive ML approaches.

66

Part II

Solution

67

Chapter 4

Human-in-the-Loop Machine

Learning

Publication. This chapter builds on the paper �Why do we need Domain-

experts for End-to-end Text Classi�cation? � An Overview� [9] in 2023. As

the sole author of this paper, I contributed to all aspects of the research, de-

velopment, and writing process. In addition, parts of this chapter are based on

the paper �Towards Visual Data Science - An Exploration� [365] in 2020. My

contribution to this paper concerns literature acquisition, synthesis, and writ-

ing. Parts of the chapter are also derived from the 2024 paper �Design Patterns

for Machine Learning-Based Systems With Humans in the Loop� [10], where

my contributions involved reviewing, extracting, and structuring best practices

from the existing literature into cohesive design patterns. I also played a lead

role in writing the paper.

Contribution. This chapter outlines the emerging Human-in-the-Loop (HiL)

approach - a novel direction and computational paradigm for ML. HiL involves

integrating human feedback into the ML process. Human feedback is seen as

an integral part of facilitating problem-solving. HiL o�ers a promising solution

to many of the limitations and challenges of purely automated text classi�ers

and ML in general, as detailed in the previous chapter. This chapter reviews

previous implementations, perspectives, and de�nitions of HiL, and outlines its

scope, key applications, and enabling technologies. In the current literature, we

have found that the research area of HiL is rather convoluted and that there is a

lack of engineering knowledge on how to e�ectively design HiL systems. Based

on a literature review, we provide a catalog of seven training and �ve operation

patterns to guide software engineers in selecting and implementing appropriate

HiL solutions.

69

Chapter 4 Human-in-the-Loop Machine Learning

4.1 Motivation

Semi-automated ML approaches have gained prominence to overcome and mit-

igate the challenges that limit the applicability of text classi�ers during de-

velopment and deployment [8, 155, 184]. The need for semi-automated ML

approaches arose from the observation that some ML models require analytical

judgment, while others can be signi�cantly improved or accelerated by letting

humans interact with them [8, 103, 155]. According to Sacha et al. [319] the full

potential of ML models cannot be realized without human participation.

A core characteristic of semi-automated ML approaches is the continuous

support of ML models by human feedback. Human background knowledge,

abilities, and expertise are closely intertwined with the capabilities of ML mod-

els. Allowing humans to interact with ML models aims to overcome critical

challenges of purely arti�cial processing [194] and ultimately increase the appli-

cability of ML approaches in real-world settings. The idea is simple: humans

can provide additional information or make course corrections to ML models to

achieve better processing behavior.

The concept of interactively adapting and supporting ML models with hu-

man feedback is commonly referred to as the Human-in-the-Loop (HiL) [155]

approach. Its research area covers a variety of semi-automated ML approaches

that are characterized by being supported by human feedback before, after, or

during the learning phase. The humans is considered an essential part of the

overall ML system to maintain its functionality and usefulness. However, hu-

mans have contributed to re�ning and creating ML models since its inception

in the late 1970s. Humans have always been essential in various stages of the

traditional ML pipeline [8]. Individual steps such as selecting and labeling data,

engineering feature representations, con�guring algorithms, evaluating models,

and identifying ways to improve the overall classi�cation performance require

manual execution. However, there are signi�cant di�erences between how hu-

mans are involved in the traditional ML approach and HiL.

Figure 4.1 compares the two approaches. In the traditional ML approach,

the development process is handled solely by ML experts who have techni-

cal knowledge but no domain knowledge. Typically, ML models are created

through a trial-and-error process, requiring a signi�cant amount of time and

human resources [145]. The lengthy, asynchronous, and technical nature of the

traditional ML pipeline limits the ability of domain experts to in�uence the

�nal models, even though they possess valuable domain knowledge and exper-

tise. The involvement of domain experts is limited to providing data, answering

domain-speci�c questions, negotiating with ML experts, or providing feedback

70

4.1 Motivation

ML Expert Domain
Expert

OUTPUT

ML Model

INPUT

Design Parameters

Data and
Insights

Sample Outputs,
Questions, ...

Data
Samples, Labels, ...

Predictions,
Recommendations,

...
Testing and Deployment

Development

Accuracy,
F1 Score,
Visualizations,
...

Features,
Model Choice,
Thresholds,
...

(a) Traditional ML paradigm

Domain
Expert

OUTPUT

ML Model

INPUT

Data, Design
Parameters and Others

Samples, Labels, Preference,
Features, Model Selection,

Error Preferences, Corrections,
Guidance, Answers, ...

Predictions, Recommendations,
Classification Performance,
Visualizations, Explanations,

Queries, ...

Simultaneous Development,
Testing and Deployment

(b) Human-in-the-Loop

Figure 4.1: Comparison between the traditional ML paradigm and HiL. Adapted
from Amershi et al. [8].

on the learned model [8]. To address this issue, the HiL approach aims to em-

power domain experts to directly adapt ML-based systems for their own needs

and purposes [8]. According to Karmaker et al. [181] a domain expert is �a

person who is �uent in the domain where ML is being applied but has minimal

knowledge of how ML itself works�. As shown in Figure 4.1, HiL eliminates the

need for ML experts and enables domain experts to adapt machine processing in

a much faster and more direct way. The value of HiL lies in its ability to incor-

porate human expertise and knowledge into the analysis that machines cannot

provide on their own.

Another emerging approach aiming to overcome the strong dependency on

ML experts is end-to-end learning. It aims to make it easier for non-ML experts

to use ML models and to speed up the development and deployment process.

End-to-end classi�ers rely on neural models that do not require the explicit

modeling of individual ML steps, such as pre-processing and feature engineering.

ML capabilities are made available to individuals who are not ML experts, while

increasing the e�ectiveness of the learning process [181]. AutoML [145] goes a

step further by o�ering complete automation of the application of ML models

to real-world problems with software that automates the entire ML pipeline.

Eliminating manual steps in model training and development increases e�ciency.

Only the formulation of the problem and the provision of data remain in the

scope of humans. AutoML aims to eliminate the need for ML experts. Although

AutoML aims to make e�cient and applicable ML models available to everyone,

pure automation of the ML pipeline does not address the critical shortcomings

71

Chapter 4 Human-in-the-Loop Machine Learning

of the classi�ers themselves [215]. Human supervision is still required, as the ML

model is not necessarily better than a manually designed and con�gured model.

The increased applicability of AutoML comes mainly from automating tasks

that would otherwise have to be performed by ML experts, or from preventing

human errors during the design process.

The AutoML approach may at �rst appear to contrast with HiL, as it aims to

take humans out of the ML loop instead of leveraging their knowledge. However,

both approaches share the goal of making ML systems more applicable to real-

world domains. Auto ML aims to provide an easy-to-deploy optimal end-to-end

learning approach, while HiL aims to overcome the applicability challenges of

ML models in practice. For text classi�cation, both approaches can be combined

seamlessly. For example, an AutoML pipeline can be used to build the initial

optimal ML model, and then HiL can be applied to interactively adapt, re�ne,

and improve it.

4.2 Scope

Several HiL solutions for ML have been proposed, covering a wide range of use

cases and application domains [69, 182, 329, 388]. The following section outlines

this heterogeneous landscape of existing interpretations of HiL. It de�nes what

HiL covers and constitutes in the context of ML.

HiL encompasses a variety of closely related and overlapping concepts char-

acterized by the collaboration of humans with ML models. In the current lit-

erature, the scope of HiL comprises many di�erent terms, including Interactive

ML [103], Human-centered ML [61, 347], mixed-initiative ML [82], Hybrid Intel-

ligence [84], Human-AI Teaming [29], or Human-AI Partnership [273], and lies

in the intersection of ML [257] and Human-Computer-Interaction (HCI) [91].

HiL aims to improve problem-solving compared to purely automated or purely

manual approaches. Typical goals of HiL are more accurate [229], trustworthy

[366], and fair [403] problem-solving or faster model development [332].

In recent years, a small number of HiL-related surveys and taxonomies have

emerged, attempting to capture the scope of the HiL approach. However, the

current literature lacks a uni�ed perspective on what HiL actually covers. Wu

et al. [392] outline HiL data processing methods for ML. They identi�ed three

main HiL categories: data pre-processing (interactive parameter tuning), data

annotation, and iterative labeling (�nding the essential samples to label driven

by user experience). Mosqueira-Rey et al. [262] propose a HiL survey that fo-

cuses on how an ML model can learn from human feedback. They identify three

72

4.2 Scope

HiL approaches, which are using humans to label data (same as data annotation

[392]) and having humans provide information in a more focused, frequent, and

incremental way (same as interactive labeling [392]). They further depict Ma-

chine Teaching as a HiL approach, where humans control the knowledge they

want to transfer to the ML model. In the taxonomy of design knowledge for

combining the complementary strengths of humans and ML models by Deller-

mann et al. [84], human assistance is limited to feature engineering, parameter

tuning, and training. Jiang et al. [171] suggest a taxonomy of interactive ML

that states that recent work on interactive classi�cation deals with interactive

labeling, interactive feature engineering, and parameter space analysis. All of

these major surveys and taxonomies outline the scope of HiL as being limited to

the learning phase of a model, which ends when the model is deployed. However,

a focus on training leaves many limitations of text classi�ers untouched.

In contrast, Dudley and Kristensson [98] outline that human activities in HiL

span the entire ML pipeline, including feature selection, model selection, and

data labeling, as well as activities such as quality assessment and deployment.

Similarly, Wang et al. [381] consider the evaluation and deployment steps of

the ML pipeline as part of the HiL approach. This allows for further data

annotation, corrections, and model re-training. In the same sense, Amershi et

al. [8] argue that allowing humans to critique model outcomes is essential for

interactive ML approaches.

Human

Use-case ML Model

Collaboration
Mechanism

Figure 4.2: Key elements of a HiL system [98].

According to Dudley and Kristensson [98] HiL systems typically consist of four

main components, as depicted in Figure 4.2. These components are: a human

user, a model, data, and a user interface with collaboration mechanisms. The

user can control the ML model by providing feedback or guidance to the model.

The model is at the center of the process and receives its instructions from the

data, which is a combination of existing and newly provided training exam-

ples. The interface connects the ML model and the user, o�ering interactive

features and facilitating teamwork to accomplish a particular task. Collabo-

73

Chapter 4 Human-in-the-Loop Machine Learning

ration mechanisms (Section 4.4) are used to facilitate human interaction with

models. Potentially, humans can be involved in every step of the traditional ML

pipeline, including data labeling, model selection and training, validation, and

deployment [381].

4.3 De�nition

At the time of the thesis, there is no generally accepted de�nition of HiL in

the context of ML. Many attempts have been made, covering di�erent aspects

and use-cases of human-machine collaboration. The phrase interactive Machine

Learning (iML) was originally introduced by Ware et al. [382] in 2001 to denote

a collaborative approach that allows humans to develop classi�ers. Users are

empowered to construct Decision Trees based on their domain expertise. Pre-

viously, this task was accomplished only through automated means. Fails and

Olsen Jr [103] were the �rst to use the phrase iML to describe a continuous

train-feedback-correct loop for interactive model training. In their framework,

humans continuously provide additional training data to a model until an accept-

able level of classi�cation performance is reached. This approach is commonly

referred to as Active Learning (Section 4.5.3). Due to their data-centric focus,

Fails and Olsen Jr [103] are often considered the forefathers of the contemporary

interpretation of iML.

Porter et al. [290] further re�ne the iML work�ow. They outline the method-

ology behind iML as an interactive process where humans and ML models work

together on the same task at any stage of the ML pipeline. Additionally, they

di�erentiate between two cases of human involvement. The human can be po-

sitioned at the end of the ML pipeline to validate the model outcomes or at the

beginning of the pipeline to carry out the initial annotation task. Amershi et al.

[8] contend that iML should adopt an extended user-centric perspective, priori-

tizing human factors and the quick, iterative nature of interaction cycles. They

highlight the concurrent development and employment of ML models as a cru-

cial component of iML. Additionally, they portray iML as a chance for domain

experts and experienced practitioners to incorporate their knowledge directly

into ML models. ML experts should not be required to modify and adjust the

learning system to the needs of end users such as domain experts. Interactions

in iML are much more focused, frequent, and incremental than those in tradi-

tional ML, resulting in more seamless and faster interaction cycles. Boukhelifa

et al. [46] state that this user-centric nature of iML systems can play an essential

role in mitigating the black-box e�ect of ML approaches.

74

4.3 De�nition

One of the �rst to establish the phrase HiL is Holzinger [155]. The author uses

the term HiL to describe �algorithms that can interact with both computational

agents and human agents and can optimize their learning behavior through these

interactions�. This de�nition is at �rst surprising, since it allows machine agents

instead of humans to be in the loop. However, the literature presented so far

does not support a machine-only HiL perspective. HiL requires human agents

in the ML loop. This de�nition focuses mainly on the machine-centric aspects

of HiL, where models actively request feedback to support their behavior dur-

ing the learning phase. In general, human-machine cooperation can be either

user- or machine-centric. In a machine-centric approach, a model directly asks

a human for information [332]. In a human-centric approach, humans select in-

formation and make it available to classi�ers [33]. Dudley and Kristensson [98]

outline the latter view. They de�ne iML as �a co-adaptive process, driven by

the user, but inherently dynamic in nature as the model and user evolve together

during training�. According to them, the best way to implement iML is to grant

domain experts the power to develop their own learned concepts by collecting

or labeling training data depending on their own requirements [98]. Their de�-

nition focuses on the user and illuminates the process of knowledge generation

that occurs during the progressive interaction between humans and the model.

Humans gain insight and knowledge about their data by observing its struc-

ture and model results, while machines learn from human feedback [321]. The

acquired knowledge can help to further improve the quality of subsequent feed-

back. Endert et al. [101] go a step further and advocate a �Human-is-the-Loop�

methodology in exploratory settings to emphasize the importance of seamlessly

integrating human skills into the knowledge discovery process. Wondimu et al.

[391] attempt to distinguish between iML and HiL. They outline iML as an ac-

tive machine learning technique in which models are designed and implemented

with human-in-the-loop manner. From their perspective, iML limits human in-

volvement in model building. Whereas HiL describes the cyclical nature of the

in�uence between a model and humans.

However, the application of HiL is not limited to model development. HiL

can also be applied in deployment to further re�ne a model while it is being

used in the �eld. Dellermann et al. [84] de�ne the concept of Hybrid Intelli-

gence as the �the ability to accomplish complex goals by combining human and

arti�cial intelligence to collectively achieve superior results than either could

have done in separation and continuously improve by learning from each other �.

Furthermore, they outline that both humans and machines can augment each

other's knowledge, enabling superior problem-solving. In this sense, Wiethof

75

Chapter 4 Human-in-the-Loop Machine Learning

and Bittner [389] di�erentiate between a HiL and Computer-in-the-Loop (CiL)

methodology. CiL focuses on supporting humans by improving their work e�-

ciency, while HiL is seen as an approach that encourages ML through human

involvement and interaction with the ML model or learning system itself. Thus,

they see HiL as a process in which a human augments machine intelligence

and CiL as a process where a machine augments human intelligence. However,

HiL does not necessarily aim for superior results. Monarch [258] de�nes the

goals of HiL as: increasing the overall performance of a model, reaching the

target performance faster, maximizing performance by combining human and

machine intelligence or assisting human tasks to increase e�ciency. Wang et al.

[381] provide another de�nition, where HiL is described as a framework �where

model developers continuously integrate human feedback into di�erent steps of

the model deployment work�ow.�

Within this thesis, we de�ne HiL as the following:

De�nition

HiL describes a generic semi-automated computational paradigm

in which ML models and humans interact, adapt, or learn from each

other to improve the applicability of ML systems.

This de�nition captures the essence of the HiL approach on which we rely in the

rest of this thesis. Applicability refers to the alignment of ML systems with the

critical requirements of their use-case, such as a top classi�cation performance

and cost-awareness of human and computational resources. Furthermore, this

de�nition emphasizes that humans and ML models are an integral part of an

ML system. The scope of HiL is not limited to the training process, but includes

all other steps in the ML pipeline, including model testing and deployment.

4.4 Collaboration Mechanisms

HiL aims at fast, e�cient, continuous, and bene�cial interactions between ML

models and humans. While arti�cial decision-making is considerably cheap and

fast, human involvement is usually the bottleneck of interactive approaches.

To keep human involvement e�cient and sparse, it is desirable to obtain high-

quality feedback while avoiding redundant and unnecessary interactions. HiL

systems must be designed so that humans can comprehend model outcomes ef-

fectively and be aware of when and how much they can trust them. In order

to focus human attention on aspects where their assistance is needed, human

involvement must be guided and supported. As mentioned earlier, a user inter-

76

4.4 Collaboration Mechanisms

face is the central component of a HiL system, responsible for the bidirectional

feedback between the user and the model [98]. The following section discusses

three general user interface collaboration mechanisms that enable and support

the fast exchange of high-quality feedback. These are visualizations, expla-

nations and uncertainties.

4.4.1 Information Visualization

A user-centric design of HiL systems relies on the ability of human users to

make e�ective use of their capabilities. This requires a certain level of insight

into the data they are confronted with and an understanding of the behavior

and outcomes of ML models. However, humans are easily overwhelmed by large

amounts of data. This problem is often referred to as information overload and

compared to �nding a needle in a haystack. Roetzel [313] de�nes the information

overload problem as �a state in which a decision maker faces a set of information

[...] that inhibit the decision maker's ability to optimally determine the best

possible decision�. Typical causes include limited human resources to deal with

the sheer volume of information, lack of time, and absence of appropriate tools.

While classi�ers are good at automating search and �ltering tasks, they do not

make it easy to understand and make sense of large collections of predictions.

A common approach to face the information overload problem is the use of

visualizations. The �eld of Information Visualization deals with the computer-

aided creation of graphical representations of data or concepts to amplify human

cognition [58]. It is a way of presenting data in a meaningful way using charts,

graphs, and other types of visualizations. The basic idea is that humans can

e�ectively gain insight, make sense, and draw conclusions through a visual pre-

sentation [186]. Visualization can be used for a variety of purposes, including

explanation, interpretation, communication, analysis, and decision-making. By

harnessing the power of visual perception, visual representations of problem

statements enhance human's ability to quickly and easily identify patterns and

trends, �nd outliers and clusters, examine structures, observe relationships, and

understand meaningful insights. These may not be immediately apparent and

understandable in raw data. Card [58] suggests six ways in which visualizations

can amplify human cognition, which are:

� Bringing increased resources to the human in the form of perceptual pro-

cessing and expanded working memory.

� Reducing the search for information.

� Enhancing the detection and recognition of patterns.

77

Chapter 4 Human-in-the-Loop Machine Learning

� Enabling perceptual inference operations.

� Using perceptual attention mechanisms for monitoring.

� Encoding information in a manipulable medium.

While traditional visualizations are static, interaction has become an essential

aspect of modern information visualization [337]. Interactivity enhances the

ability to discover, explore, and understand large amounts of data, increases

awareness of its meaning, and provides even greater insight and understanding.

The most basic need for interactivity arises when the data does not �t into

a static visualization. Interactions include, but are not limited to, �ltering,

zooming, brushing, and hovering [337]. Interactions make visualizations more

dynamic and �exible. For example, users can focus on speci�c areas or scale the

depiction of information. In particular, interactive visualizations are essential

for HiL systems because they allow domain experts to interact with the ML

model without requiring any additional programming [103].

4.4.2 Explanations

The general lack of transparency is a major challenge for the applicability of text

classi�ers (Section 3.2). Without insight into the model's reasoning process, it is

unclear whether a classi�er will perform adequately during deployment. Poten-

tially erroneous or undesirable behavior remains hidden. To understand how a

classi�er works, it is necessary to provide human-interpretable approximations

of the reasons behind the classi�cation results. Of particular interest is the

question of why a speci�c class was preferred over the others [35].

Explainability is a key enabler for HiL systems to be deployed in real-world

use-cases [366]. The �eld of Explainable Arti�cial Intelligence (XAI) [79] deals

with ML systems that attempt to explicitly extract human-understandable ex-

planations of their predictions. An explanation is some kind of information that

helps to verify a classi�cation outcome. Explanations aim to open the black-box

of classi�ers and ensure that humans can understand and justify why certain

classi�cation results were delivered. They should enable humans to discover

what a model has learned and how it can be further improved [79]. In addi-

tion, explanations aim to increase con�dence in decision-making and provide a

better understanding of the model's limitations, such as weak spots and biases.

In general, explanations can improve a classi�er's robustness and user trust,

knowledge transferability, informativeness, accessibility, interactivity, causality,

and privacy awareness [367], as well as prevent faulty behavior, weak points,

unwanted biases, unfairness, and discrimination [23, 72]. Explanations are also

78

4.4 Collaboration Mechanisms

used to provide better cognitive support and to improve the collaboration be-

tween humans and models [218].

Feature Importance for

XAI

Figure 4.3: Conceptual diagram of an attribution technique that extracts feature
importance from an input.

Within XAI, interpretability and explainability are two di�erent concepts. Ac-

cording to Arrieta et al. [23], interpretability �refers to the level of understanding

of the models' internal decision process for a human observer,� while explain-

ability is �associated with the notion of explanation of the action or procedure

taken by the model with the intent of clarifying its internal decision process�.

Interpretability methods are mainly used when aiming to explain individual

predictions of black-box ML models. In text classi�cation, so-called local expla-

nation techniques are widely adapted, which seek to attribute the importance or

relevance of an input feature, such as a word, regarding a class 𝑐 given the clas-

si�er 𝑓 . Most commonly, local explanation techniques provide a scalar relevance

value for each input feature, indicating its relevance concerning the predicted la-

bel 𝑦. Most commonly, each term of an input text is assigned a value indicating

its positive or negative contribution to a particular class outcome. In contrast,

a global explanation technique would try to understand the model as a whole.

Figure 4.3 shows a conceptual diagram of an attribution method that explains

a single prediction. Local explanations are typically modeled as an additional

output to the �nal class prediction.

12

CNN2 SVM
Yes, weightlessness does feel like falling. It may feel strange at first,
but the body does adjust. The feeling is not too different from that
of sky diving.

>And what is the motion sickness
>that some astronauts occasionally experience?

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

Yes, weightlessness does feel like falling. It may feel strange at first,
but the body does adjust. The feeling is not too different from that
of sky diving.

>And what is the motion sickness
>that some astronauts occasionally experience?

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

Yes, weightlessness does feel like falling. It may feel strange at first,
but the body does adjust. The feeling is not too different from that
of sky diving.

>And what is the motion sickness
>that some astronauts occasionally experience?

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

Yes, weightlessness does feel like falling. It may feel strange at first,
but the body does adjust. The feeling is not too different from that
of sky diving.

>And what is the motion sickness
>that some astronauts occasionally experience?

It is the body's reaction to a strange environment. It appears to be induced
partly to physical discomfort and part to mental distress. Some people are
more prone to it than others, like some people are more prone to get sick
on a roller coaster ride than others. The mental part is usually induced by
a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth
(or ground) is "above" the head of the astronauts. About 50% of the astronauts
experience some form of motion sickness, and NASA has done numerous tests in
space to try to see how to keep the number of occurances down.

s
c
i
.
s
p
a
c
e

(
8
.
1
)

s
c
i
.
m
e
d

(
4
.
1
)

s
c
i
.
s
p
a
c
e

(
0
.
3
)

s
c
i
.
m
e
d

(

0
.
6
)

Figure 2. LRP heatmaps of the document sci.space 61393 for the CNN2 and SVM model. Positive
relevance is mapped to red, negative to blue. The color opacity is normalized to the maximum absolute
relevance per document. The LRP target class and corresponding classification prediction score is
indicated on the left.

sci.med sci.space comp.graphics

symptoms (7.3), treatments (6.6), med-
ication (6.4), osteopathy (6.3), ulcers
(6.2), sciatica (6.0), hypertension (6.0),
herb (5.6), doctor (5.4), physician (5.1),
Therapy (5.1), antibiotics (5.1), Asthma
(5.0), renal (5.0), medicines (4.9), caf-
feine (4.9), infection (4.9), gastrointesti-
nal (4.8), therapy (4.8), homeopathic
(4.7), medicine (4.7), allergic (4.7),
dosages (4.7), esophagitis (4.7), inflam-

mation (4.6), arrhythmias (4.6), cancer
(4.6), disease (4.6), migraine (4.6), pa-
tients (4.5).

spacecraft (11.0), orbit (10.8), NASA
(8.6), Mars (7.8), moon (7.1), orbiting
(7.1), Martian (6.8), orbital (6.8), shut-
tle (6.7), SMOS (6.6), telescope (6.5),
Space (6.5), rocket (6.3), GRBs (6.0),
Earth (6.0), astronaut (5.9), Moon (5.7),
Shuttle (5.7), lander (5.6), Flyby (5.3),
planets (5.2), Hubble (5.2), Soyuz (5.2),
geosynchronous (5.2), Endeavour (5.1),
space (5.0), planetary (4.9), Nasa (4.9),
Astronomy (4.9), astronauts (4.9).

Graphics (6.9), raytracing (6.8), graph-
ics (6.8), polygon (6.5), animation (6.3),
Image (6.2), shaders (6.2), pixel (5.7),
fractal (5.5), viewports (5.5), Autodesk

(5.4), visualization (5.2), RGB (5.1), im-
ages (5.0), TIFF (5.0), Corel (4.9), Stu-
dio (4.9), algorithm (4.8), Bezier (4.8),
polygons (4.7), GIF (4.7), Pixel (4.6), al-
gorithms (4.5), modo (4.5), image (4.4),
radiosity (4.4), AutoDesk (4.3), Studios
(4.3), HPGL (4.2), JPEG (4.2).

Figure 3. The 30 most relevant words per class for the CNN2 model listed in decreasing order of their
relevance (value indicated in parentheses). Underlined words do not occur in the training data.

sci.med sci.space comp.graphics

cancer (1.4), photography (1.0), doctor
(1.0), msg (0.9), disease (0.9), medical
(0.8), sleep (0.8), radiologist (0.7), eye
(0.7), treatment (0.7), prozac (0.7), vi-
tamin (0.7), epilepsy (0.7), health (0.6),
yeast (0.6), skin (0.6), pain (0.5), liver
(0.5), physician (0.5), she (0.5), needles
(0.5), dn (0.5), circumcision (0.5), syn-
drome (0.5), migraine (0.5), antibiotic
(0.5), water (0.5), blood (0.5), fat (0.4),
weight (0.4).

space (1.6), launch (1.4), ics.uci.edu
(1.2), moon (1.1), orbit (1.0), mars (1.0),
pat (1.0), nasa (0.9), dietz (0.9), shut-
tle (0.8), solar (0.7), command (0.7),
henry (0.6), fred (0.6), gamma (0.6),
sci.space (0.6), pluto (0.6), satellite (0.6),
dc-x (0.6), nicho (0.6), astronomy (0.5),
lunar (0.5), pom (0.5), hga (0.5), sky
(0.5), spacecraft (0.5), gravity (0.5),
scicom.alphacdc.com (0.5), nick (0.4),
roland (0.4).

graphics (2.0), phigs (1.4), image (1.4),
images (1.4), xv (1.3), tiff (1.2), polygons
(1.1), comp.graphics (1.0), mpeg (1.0),
format (1.0), siggraph (1.0), povray
(0.9), quicktime (0.8), bockamp (0.8),
surface (0.8), animation (0.8), iges (0.8),
studio (0.8), jpeg (0.8), pov (0.7),
dec (0.7), scodal (0.7), algorithm (0.7),
genoa (0.7), sgi (0.7), palette (0.6), vga
(0.6), impulse (0.6), c (0.6), rgb (0.6).

Figure 4. The 30 most relevant words per class for the BoW/SVM model listed in decreasing order of
their relevance (value indicated in parentheses). Underlined words do not occur in the training data.

Figure 4.4: A heat-map illustrates the explanation of a classi�er regarding the
label �space� [22]. Positive relevance is highlighted in red, and neg-
ative relevance is highlighted in blue.

Local explanations from text classi�ers are most commonly visualized using

heat-maps. They are employed to facilitate the analysis and understanding of

explanations. A heat map is placed directly over the input text and highlights

individual words according to a color gradient scheme, indicating the degree

79

Chapter 4 Human-in-the-Loop Machine Learning

of relevance. Figure 4.4 illustrates an example of a local explanation. The

relevance of each term is highlighted by a color gradient from blue to red. Highly

relevant terms that contribute to the class label �space�, such as �NASA� or

�astronauts�, are highlighted in red, while words that have a negative impact on

this class label, such as �ride,� are highlighted in blue. Commonly used local

explanation techniques include Layer-wise Relevance Propagation [27] and Local

Interpretable Model-agnostic Explanations (LIME) [309].

4.4.3 Uncertainty Estimations

Applying a text classi�er to a target dataset involves reducible and irreducible

uncertainties [87]. Unfortunately, ML-based classi�ers cannot adequately con-

vey their struggles when processing an input instance [113]. Classi�cation al-

gorithms work like an input-output machine. A compatible input is always

answered with a result. It does not check whether the input allows a plausi-

ble decision at all. In the worst case, a human will believe that a prediction

is correct even though it is not. Therefore, it is essential to explicitly convey

uncertainties to users, as otherwise uncertain results may be misinterpreted,

leading to erroneous conclusions [278]. Within HiL applications, Dudley and

Kristensson [98] outline that making users aware of classi�cation uncertainties

is a core solution principle for human-machine coordination since uncertainty

information supports users to manage their expectations about a model's perfor-

mance. Sacha et al. [319] contend that uncertainty awareness is critical in HiL

approaches, as there seems to be a strong connection between user acceptance

of model mistakes and the degree of uncertainty clarity.

Single Prediction Distribution of Predictions

Standard NN BNN

UNC

Figure 4.5: Conceptual diagram of an NN providing a class probability based
on a single prediction or a distribution of predictions. These proba-
bilities form the basis for uncertainty estimation.

The �eld of uncertainty estimation (Section 2.2.1) provides a practical so-

lution for making the uncertainty inherent in classi�cation outcomes explicit.

As depicted in Figure 4.5, NNs provide uncertainty estimates as an additional

output. Estimating the uncertainties of text classi�ers has several advantages

from a HiL point of view:

80

4.5 Design Patterns for HiL Systems

� Uncertainty estimates enable more trustworthy predictions by providing

deeper insight into the reliability of model outputs. Knowing the uncer-

tainty of a provided class label helps to make more informed decisions and

to pay special attention to unreliable classi�cation outcomes. Uncertainty

measures can reduce the risk of relying on incorrect model behavior [148,

372].

� Uncertainties provide an additional measure of the classi�cation perfor-

mance. They allow for more informed decisions in model selection [31],

as an overall low uncertainty results in more accurate predictions. Addi-

tionally, high uncertainties indicate that a model has not acquired enough

information to make accurate predictions. In this case, more training data

may be necessary [221].

� Uncertainty facilitates protection against inputs that are likely to be mis-

classi�ed [148, 162]. Common examples are out-of-distribution instances,

to which classi�ers generally do not generalize well [148].

4.5 Design Patterns for HiL Systems

While the concept behind HiL is promising, its research space is rather con-

voluted, and its operationalizability and applicability in software development

practice are unexplored. Moreover, the design space requires a careful, system-

atic consideration and guidance. First, human assistance in creating and using

ML models is usually costly and should be carefully designed and minimized.

Second, re-training ML models can be very expensive in certain cases, with a

signi�cant carbon footprint. Third, both models and humans can make (di�er-

ent types of) mistakes, which requires a careful trade-o� discussion and decision

that �ts the use-cases and domains at hand.

This thesis proposes a catalog of 12 patterns for designing ML-based systems

with HiL to guide developers in choosing and adapting HiL solutions that �t

their needs and raise awareness about HiL in general. While HiL has been

around for a while as a paradigm for designing and evaluating ML models, we

focus on the software engineering perspective, providing recurring, reusable HiL

solutions for designing ML-based systems given certain contexts. We de�ne

a �design pattern for ML with HiL� as any pattern that directly or indirectly

addresses the learning behavior or outcome of an ML-based system through hu-

man feedback. Like other design patterns, our patterns are general solutions and

best practices to a common and recurring problem faced by many practitioners.

Our pattern catalog provides a common vocabulary to better communicate the

81

Chapter 4 Human-in-the-Loop Machine Learning

label

Labeled
Data

train

select

ML Model

Unlabeled
Data

Human Labeler

start

rank
end?

P1: Active Learning

Model Training and Evaluation

Data Collection and Preparation

System Operation

C
ol

la
bo

ra
tio

n
M

ec
ha

ni
sm

s
Vi

su
al

iz
at

io
ns

, E
xp

la
na

tio
ns

, U
nc

er
ta

in
ty

 E
st

im
at

es
, .

...

Monitoring

P1
Active Learning

P2
Proxy-based Active

Learning

P3
Visual Interactive

Labeling

P6
Prompt-based Data

Generation

P4
Semi-supervised Visual

Interactive Labeling

P5
Prompt-based

Learning

P7
Trick The Model

P8
Recommendation

System

P9
Safeguards

P10
Active Moderation

P11
Thumbs Up or Down

P12
Continuous Learning

Figure 4.6: Our proposed HiL pattern catalog includes seven training and �ve
operation patterns. Arrows between the patterns indicate depen-
dencies. Collaboration mechanisms are orthogonal to the patterns
and enhance human-model interaction.

proven solutions for designing a HiL system. While software engineering pat-

terns have been proposed for designing ML systems in general [209, 236, 384],

there is a lack of design knowledge on how to e�ectively design and deploy HiL

solutions.

This thesis compiles a catalog of design patterns (as shown in Figure 4.6)

to guide developers in selecting and implementing suitable HiL solutions. Our

catalog considers critical requirements such as the cost of human involvement

and model re-training. The catalog is not complete and can be expanded. We

have focused on the most popular patterns with the greatest practical utility and

clarity. The identi�ed patterns are divided into two groups according to their

purpose: training patterns, which are used to make the initial training much

more e�ective, and operation patterns, which are applied during deployment to

further improve the applicability of the model. Our pattern catalog includes

seven training and �ve operation patterns.

82

4.5 Design Patterns for HiL Systems

Id
en

tif
ic
at
io
n

Sc
re
en

in
g

In
cl
ud

ed
Records identified through

database search:
Google Scholar (n = 100)

Google (n = 100)

Records screened
(n = 163)

Studies included in review
(n = 139)

Records removed before screening:
Duplicate records removed (n = 35)

Not publicly available (n = 2)

Records assessed for eligibility
(n = 163)

Records excluded:
Not related to sML (n = 20)

Not written in English (n = 1)
Only available as video (n = 3)

Figure 4.7: A �ow diagram illustrating the record selection process according to
the PRISMA 2020 statement.

4.5.1 Research Methodology

We conduct a literature review to investigate and identify best practices for

the design and deployment of HiL systems. The selection and reporting of

our review are inspired by the guidelines outlined in the PRISMA (Preferred

Reporting Items for Systematic Reviews and Meta-Analyses) statement [281].

PRISMA provides a structured approach to reviewing and synthesizing existing

literature and ensures a comprehensive and transparent methodology.

The objectives of the literature review include synthesizing existing knowl-

edge and providing engineering insights for practitioners and researchers. The

guiding research question of our study is: �What are the prevailing best prac-

tices for employing or implementing the HiL approach in ML systems? � To

ensure the relevance and rigor of the review, we de�ne speci�c inclusion and

exclusion criteria. Included studies or applications must concentrate on HiL

solutions or approaches in the context of supervised ML. We have also included

articles that discuss conceptual HiL approaches without providing a concrete

implementation. Additionally, studies had to be written in English and had

to be open-access. The literature review includes peer-reviewed journals, con-

ference papers, and gray literature, such as non-peer-reviewed research papers,

blog posts, and technical reports.

83

Chapter 4 Human-in-the-Loop Machine Learning

Figure 4.7 depicts the selection process of the included records. A comprehen-

sive search strategy was developed to identify relevant literature. We queried

Google1 and Google Scholar2 for papers and applications of HiL in the context

of supervised ML, using the query string: 'human-in-the-loop AND (�machine

learning� OR classi�cation OR regression)'. For both search engines, the �rst

100 results were considered. A two-stage screening process followed the study

identi�cation process. Initially, for research papers and articles, we screened

the titles, abstracts, and introductions based on the prede�ned inclusion and

exclusion criteria. For blog posts we, screened the entire text. Subsequently,

the full-text is reviewed to assess their eligibility for inclusion. We included a

total of 139 records. Data synthesis involved summarizing and organizing the

�ndings from the selected records. Common themes, patterns, and applications

related to best practices for HiL in ML systems were identi�ed and grouped.

The grouping did not use prede�ned classes. We distinguished between how hu-

mans are integrated into the ML process, the goal of human involvement, and

where an interaction occurs in the ML pipeline. The synthesis process aimed

to provide a �rst overview of the literature and o�ers insights into the current

practices of HiL in ML systems.

Furthermore, we intend to combine the results of the literature review with our

own experience in the research and development of HiL systems [11, 12, 14�17].

Due to the limited scope of our literature review, it is likely to miss approaches

that are considerable established HiL patterns. We intend to incorporate our

own experience into the catalog to ensure a more comprehensive and useful

coverage of the key areas of the ML process.

4.5.2 Study Findings

Our �ndings reveal that the research area of HiL is rather convoluted, and there

is a lack of common knowledge on how to design HiL systems e�ectively. While

there are several literature reviews on HiL, the included studies focus on single

aspects of HiL, mainly to collect data for learning. Typically, the HiL approach

is vaguely de�ned and nebulous in its characterization. Generally, HiL refers

to some rapid, focused, and incremental cycles of interaction between users and

learning systems [8], leading to ambiguity and lack of clarity in the design of

HiL systems. While many HiL solutions have been developed and proposed in

the literature, there is a lack of structured approaches and guidelines on how to

systematically address common problems of ML systems via HiL.

1https://www.google.com/
2https://scholar.google.de/

84

https://www.google.com/
https://scholar.google.de/

4.5 Design Patterns for HiL Systems

0 5 10 15 20 25 30 35 40
Frequency (in %)

Interactive Data Augmentation
Interactive Debugging

Verification of Classification Performance
Interactive Data Processing

Interactive Feature Engineering
Use Human Feedback for Continuous Re-training

Provide Artificial Advice or Rationales for Manual Decision-making
Interactive Model Building or Adaptation

Let Humans Label Arbitrary Instances
Delegate Difficult Decisions to Humans

Ask Humans Explicitly to Label Some Instances
Hi

L
Ap

pr
oa

ch

Figure 4.8: Frequency of the HiL approaches extracted from the literature.

Figure 4.8 displays an overview of the identi�ed HiL approaches sorted by

frequency. In the literature we reviewed, the majority of HiL approaches focus

on the task of data labeling. The most frequently described HiL approach is the

e�ective collection of labeled data for the initial training of ML models (41%).

Here, human labelers act as oracles, responsible for labeling a sequence of arti�-

cially selected data instances during the initial training. When done e�ectively,

the time and e�ort needed to train ML models is signi�cantly reduced. Another

common HiL approach is to rely on humans to oversee arti�cial predictions

in case model predictions are too unreliable for automated deployment (23%).

Here, we see the human as an oracle, which is involved in the deployment phase

of an ML model. The goal is to reduce the number of incorrect model outcomes

when the model is used in deployment. The dominance of these two approaches,

which account for more than 64% of the analyzed samples, indicates a lack of

diversity in the current literature on HiL. The next most common approach is to

have humans label arbitrarily identi�ed instances selected by themselves (12%),

rather than directly asking humans for instances to be labeled. Using human

feedback from labeling or human interventions to re-train the model from time

to time was described or outlined in 9% of the reviewed work.

Another signi�cant portion of the studies use the HiL approach to inte-

grate humans more tightly and quickly into individual steps of traditional ML

pipelines. These include iterative data processing (4%), feature engineering

(6%), model building and adaptation (11%), as well as ML debugging (2%),

and data augmentation (1%). For example, humans may be asked to modify

the logical rules on which the classi�er is built, suggest features, or manually re-

move stop words. Such approaches are usually highly dependent on the actual

task and model being used, and are rarely solvable by domain experts. Fur-

thermore, NLP models are typically based on neural models or learned feature

85

Chapter 4 Human-in-the-Loop Machine Learning

representations that are di�cult to adapt interactively, even for ML experts.

Notably, more recent approaches, such as LLMs, are not mentioned in the iden-

ti�ed records.

In the next step, we identi�ed three main groups of HiL approaches that

are worth distinguishing. The �rst group includes HiL approaches that rely

on technical knowledge or ML expertise to provide valuable feedback. These

approaches include activities such as interactive model building, feature engi-

neering, and data processing. However, as previously outlined, HiL solutions

primarily target domain experts rather than ML experts and engineers. Do-

main experts provide valuable knowledge that machines cannot provide. This

is particularly important since humans are intended to support tasks that ML

models struggle to perform. Therefore, we did not include them in our cata-

log. The second and third groups cover HiL approaches according to the step

where human interactions take place in the ML pipeline. We distinguish be-

tween training and operation patterns. This structure is also re�ected in the

�nal pattern catalog. Based on these �ndings, we have extracted concrete pat-

terns to facilitate the development and design of HiL systems. All patterns are

described in a consistent scheme. Since the reviewed records did not cover some

recent HiL approaches, in particular those using decoder-based LLMs to mimic

supervised ML, we included some patterns based on our own experiments. In

total, 12 concrete HiL patterns for the design and development of ML systems

were extracted. We outline variations for certain patterns to suggest alternative

implementations and explicitly focus on domain experts as humans and the task

of supervised ML.

4.5.3 Training Patterns

Modern supervised ML models require a large amount of labeled data to be prop-

erly trained. However, labeled data for speci�c real-world applications (beyond

common tasks and scienti�c benchmarks) is typically sparse and very expensive

to create. The following section outlines general patterns for the e�ective HiL

training of ML models.

P1: Active Learning [332]

Goal: Minimize the labeling cost (number of labels assigned) by carefully se-

lecting which instances are worth labeling manually. The objective is to create

a minimal training dataset capable of training a highly accurate ML model.

Human Role: Label a sequence of automatically selected data instances.

Problem: ML models require numerous high-quality training examples to re-

86

4.5 Design Patterns for HiL Systems

Label

Labeled
Data

Train

Select

ML Model

Unlabeled
Data

Human Labeler

start

Rank
End?Start

P1: Active Learning

Figure 4.9: The Active Learning pipeline. During training, unlabeled data in-
stances are to be labeled by a human oracle. The labeled instances
are then added to the training dataset. At the end of each training
iteration, the model is re-trained and possibly improved.

liably recognize patterns in unseen data. Since training examples are typically

sparse or unavailable, unlabeled instances must be manually labeled. However,

labeling is a labor- and cost-intensive task that is impractical on a large scale.

It is desirable to use human e�ort most e�ectively during the labeling process

of the initial training data.

Structure: In Active Learning [221, 332], a model actively selects its own train-

ing data from a typically large corpus of unlabeled data instances. It has been

shown that a careful selection of highly informative and expressive instances can

drastically reduce the amount of training data needed to achieve a given level

of performance [221]. Thus, Active Learning can heavily reduce the cost of the

labeling process. The process of Active Learning consists of the following steps

(Figure 4.9): First, potential unlabeled training instances are ranked according

to their expected contribution to a model's learning behavior. The 𝑘-highest

ranked instances are then labeled by a human oracle and added to the training

data. The model is then re-trained until a stopping criterion is met, i.e., the

labeling budget is exhausted or the model's classi�cation performance is good

enough.

Advantage:

� Saves human resources and time during development and (pre-) deploy-

ment.

� An easy-to-implement and straightforward process.

Challenges:

� Frequent re-training of ML models causes high computational cost.

� High degree of dependency between the training data and the trained

model.

� Requires low model latency to maintain user experience.

87

Chapter 4 Human-in-the-Loop Machine Learning

Label

End?

Labeled
Data

Train

Select
Unlabeled

Data

Human Labeler

start

Human Labeler

Start

P2: Proxy-based Active Learning

Leightweight
ML Model

Train

Strong ML
Model

Figure 4.10: The Proxy-based Active Learning pipeline uses a lightweight model,
typically with low latency, for Active Learning. The gathered train-
ing data is then used to train a much more powerful model.

� Labeling a model-selected sequence of instances tends to be a boring and

tedious task at scale.

When to apply: There is a lack of labeled examples, but a large amount of

unlabeled data is available. An extensive user interface is not required.

Example Implementation: ActiveAnno [388] is a versatile text annotation

tool that implements Active Learning. Its user interface is simplistic, displaying

only the instances requiring manual annotation, while o�ering the functionality

to attach annotations. Paladin [272] also allows labelers to con�gure the Active

Learning process by choosing the data selection strategy or batch size. The

tool can also select which of several potential labelers to query based on their

estimated con�dence level.

P2: Proxy-based Active Learning [71]

Dependency: Variation of the Active Learning pattern (P1).

Goal: Maintain an exceptional user experience with respect to model latency

throughout the Active Learning process, while deploying a powerful model that

maximizes performance.

Human Role: Label a sequence of automatically selected data instances.

Problem: When high classi�cation performance is required, complex models

are often preferred due to their ability to yield signi�cantly higher classi�cation

performance than simpler models. However, these highly complex models of-

ten result in signi�cant latency, particularly during the training phase. Active

Learning requires a re-training step after each iteration, which results in sig-

ni�cant waiting time for human labelers to provide feedback. A high latency

adversely impacts the user experience [93, 361]. Keeping the latency of the ML

model low is critical to preserve the user experience of Active Learning.

88

4.5 Design Patterns for HiL Systems

Structure: Proxy-based Active Learning uses two models to maintain a high

user experience during labeling the initial training data, while maximizing the

classi�cation performance during deployment (Figure 4.10). First, a lightweight

model with very low latency is used to select training data according to the

Active Learning pattern. The low computational latency ensures a high user

experience. Then, the collected training data is reused to train a more complex

and, ideally, more powerful model. The latter model is then deployed to maxi-

mize operational e�ciency.

Advantage:

� Maintains a high level of user experience by facilitating rapid interaction

cycles during labeling.

� Saves computational resources by performing frequent re-training with a

lightweight model. The complex model is only trained once.

Challenges:

� Training a model on samples not chosen by the model itself is likely to

lead to a loss of classi�cation performance compared to employing the

same model for both data selection and training [362].

� Increased e�ort to develop and maintain two ML models.

When to apply: Maintain user experience during the labeling process when

the target model has too much latency, making conventional Active Learning

impractical.

Example Implementation: Proxy-based Active Learning is a technical varia-

tion of the Active Learning pattern �rst discussed by Tomanek and Morik [362].

Chapter 7 presents a further investigation into Proxy-based Active Learning for

text classi�cation.

P3: Visual Interactive Labeling [328]

Goal: Allow human labelers to visualize and explore an unlabeled dataset, en-

abling the human-centric selection of appropriate training data.

Human Role: Label self-selected data instances.

Motivation: When an ML model selects its own training data (as in Active

Learning), there is a risk of selecting redundant information or outliers, which

reduces the e�ectiveness of the labeling process [154]. In addition, a machine-

centric selection does not incorporate human skills and expertise into the data

selection process. As a result, much potential remains untapped when experts

of the problem-domain are engaged as labelers.

Structure: Enabling a human-centered selection of training instances requires

some form of visual environment that facilitates analytical reasoning, i.e., human

89

Chapter 4 Human-in-the-Loop Machine Learning

Input
(Optional)

Labeled
Data

TrainML Model

Input
Unlabeled

Data

Start
Rank

Visualization

Interact With / Query

Human Labeler

End?

P3: Visual Interactive Labeling

Select / Label

Figure 4.11: In Visual Interactive Labeling, humans are responsible for selecting
instances worth labeling for re-training. Labelers are provided with
some data visualization to explore and label instances to facilitate
human-centric data selection strategies.

perception of patterns and structures in the data. Visual Interactive Labeling

adapts a visual environment to enable a human-centric annotation process (Fig-

ure 4.11). Training data is selected and annotated directly by humans. As with

Active Learning, the model is periodically re-trained, and the visualization is

updated.

Advantage:

� A more active human role could increase labeling e�ciency compared to

Active Learning.

� Interactive visualization and exploration empower labelers to gain insights

and knowledge about their data.

� Enables a continuous �ow of user interactions without waiting times (la-

tency).

Challenges:

� Requires a visual interface to facilitate the labeling process.

� May require trained humans to make sense of the visualization.

� Visualizations become cluttered at scale.

When to apply: More �exibility during the data selection is needed compared

to Active Learning. Requires a visual labeling tool and an expert who can

perform appropriate user-centered data selection.

Example Implementation:

Seifert and Granitzer [328] propose one of the �rst Visual Interactive Labeling

tools. They use a radar visualization where all unlabeled instances are displayed

based on the con�dence of the model. Alto [291] is another Visual Interactive

90

4.5 Design Patterns for HiL Systems

Input
(Optional)

Labeled
Data

Train
End?

ML Model

Input
(Optional)

Unlabeled
Data

Start
Rank

Interact With / Query

Select / Label
Visualize

Dimension
Reduction

Human Labeler

Input

P4: Semi-supervised Visual Interactive Labeling

Visualization

Figure 4.12: Semi-supervised Visual Interactive Labeling involves using a di-
mension reduction model to generate a latent space visualization
that facilitates the labeling process.

Labeling tool that aims to provide labelers with global knowledge about the

dataset to be labeled. A topic model is used to provide an overview of the

labels to be created. Furthermore, the tool suggests a list of examples to the

user. Users can then select instances to label based on their preferences.

P4: Semi-supervised Visual Interactive Labeling [34]

Dependency: Variation of the Visual Interactive Labeling pattern (P3).

Goal: Semantic embedding spaces provide valuable insights into the data, en-

abling an e�ective and user-centric selection of training instances.

Human Role: Label self-selected data instances within a semantic space.

Motivation: Human-centric labeling approaches rely heavily on meaning and

insightful representations to best use human capabilities. However, manually

extracting and �nding associations and structures for labeling large datasets is

challenging and needs to be supported. Dimension reduction [102] facilitates

labeling by making hidden semantics between data instances explicit. Dimen-

sion reduction is a tool for extracting low-dimensional representations of high-

dimensional data while preserving the semantic relationship between all data

instances. It can make the data instances much easier to visualize while pre-

serving their semantic relationships.

Structure: Semi-supervised Visual Interactive Labeling uses a dimension re-

duction model to compute a low-dimensional and easily visualized representation

of typically high-dimensional data (Figure 4.12). The low-dimensional data is

91

Chapter 4 Human-in-the-Loop Machine Learning

Write

Input

Prompt(s)

Decoder-
based
LLM

Evaluate
Result

Start

End?

Expert
User

P5: Prompt-based Learning

Figure 4.13: The Prompt-based Learning pipeline. Humans translate the task
to be solved into prompts, which are then answered by a decoder-
based LLM. The process may involve multiple iterations of prompt
engineering to appropriately address and solve the task.

then visualized using a scatter plot. The closer two data points are, the more

semantically similar they are, and vice versa. Labeling is supported because

neighboring instances are likely to have the same label. In addition, explor-

ing and understanding the plotted data facilitates the generation of knowledge

about the data, further improving the labeling process.

Advantage:

� A more active role of humans could increase labeling e�ciency compared

to Active Learning.

� Emphasis on human insight and knowledge generation from data.

� Semantic similarities reveal patterns and structures in the data.

Challenges:

� Requires an expert in the �eld to interpret the scatter plot and apply their

knowledge to e�ectively accomplish the labeling process.

� Additional e�ort of training a dimension reduction model.

� Requires a visual interface to facilitate the labeling process.

� Scatter plots become visually cluttered at scale.

When to apply: There are semantically meaningful topics hidden in the data

and experienced labelers available to support human-centric labeling.

Example Implementation: A typical implementation of Semi-supervised Vi-

sual Interactive Labeling is AILA [69], which stands for Attentive Interactive

Labeling Assistant. The system consists of an embedding view that lays out doc-

uments using t-distributed Stochastic Neighbor Embedding (t-SNE) [244]. Users

can then use the embedding view to discover and select instances for labeling.

92

4.5 Design Patterns for HiL Systems

P5: Prompt-based Learning [161]

Goal: Translate the text classi�cation task into a masked language modeling

problem that requires no training data.

Human Role: Prompting a decoder-based LLM to solve a speci�c task di-

rectly.

Motivation: Supervised text classi�ers require labeled training data in order

to learn patterns and structures in new data. While labeled data is typically the

bottleneck during training, unlabeled data may also be unavailable and di�cult

to obtain. In this case, there is no data to label or learn from.

Structure: Prompt-based learning for text classi�cation relies on decoder-

based LLMs that model the probability of a text 𝑝(𝑥) rather than the probability
of a label assignment 𝑝(𝑦 = 𝑐 |𝑥) (Figure 4.13). The text classi�cation problem is

transformed into a masked language modeling problem. Prompt-based learning

uses the general knowledge acquired by an LLM to solve a speci�c task with-

out additional training or parameter tuning. No supervised learning is needed.

The model is tuned during inference with a task-speci�c prompt. A prompt is

a piece of text containing a semantic description of the classi�cation task de-

signed by a human. An input text 𝑥 to be classi�ed is wrapped into a semantic

description of the classi�cation task and passed to the model. For instance, the

input 𝑥 is wrapped into a template such as �[𝑥] It was a [MASK] movie!�. The

prediction is made based on the probability that a class-related word, such as

�great� for �sentiment positive� or �bad� for �sentiment negative� will be �lled

in the [MASK].

Advantages:

� Does not require manual data labeling.

Challenges:

� Requires the use of an decoder-based LLM that consumes signi�cant com-

putational resources or is accessible only through paid black-box APIs.

� May require multiple iterations to create, re�ne, and analyze prompts,

requiring additional knowledge.

� Results could be misleading (hallucination [170]).

When to Apply: There is a lack of unlabeled data to perform any form of

supervised ML.

Example Implementation: Arco et al. [19] propose a prompt-based learning

approach to hate speech detection. They utilize the template: �<text> This

text is <verbalizers>� to prompt a decoder-based LLM given some text. Af-

ter prompting the LLM, they assess the likelihood of hateful and non-hateful

verbalizers and select the most probable completion as the �nal prediction.

93

Chapter 4 Human-in-the-Loop Machine Learning

Write

Input

Prompt(s)

Evaluate
Result

Start

End?

Expert
User

P6: Prompt-based Data Generation

Train

Labeled
Data

Extend

End
ML Model

Decoder-
based
LLM

Figure 4.14: The Prompt-based Data Generation pipeline. A decoder-based
LLM is prompted to generate arti�cial training examples. These
are then used to train a supervised ML model.

P6: Prompt-based Data Generation [398]

Dependency: Variation of the Prompt-based Learning pattern (P3).

Goal: Leveraging an LLM to generate data for training a distinct ML model.

Human Role: Prompting an LLM to generate high-quality training data.

Motivation: While labeled data is typically the bottleneck during training,

unlabeled data may also be unavailable and di�cult to obtain. In this case,

there is no or not enough data to learn from, so a supervised text classi�er

cannot be developed.

Structure: An LLM is prompted to generate a set of labeled text instances

given some context (Figure 4.14). The generated data is then used to train a

supervised ML model. The LLM is tasked with probabilistically �lling in gaps or

continuing a user-provided starting prompt according to a desired outcome. For

example, an LLM might be prompted to �ll the gap in the sentence �Overall, it

was a [_] �lm.� to satisfy a variety of sentiment levels. A secondary task-speci�c

supervised learning model is then trained on the generated data, extending the

training data.

Advantages:

� Does not require manual data labeling.

Challenges:

� LLMs require signi�cant computational resources or are only accessible

through paid APIs.

� May require multiple iterations to create, re�ne, and analyze prompts,

requiring additional knowledge.

� It is challenging to align LLMs with the actual target domain.

94

4.5 Design Patterns for HiL Systems

TrainLabeled
Data

Insert

Select / Create
CheckUnlabeled

Data Instance

Feedback ML Model
Start

Expert
UserEnd?

P7: Trick the Model

Figure 4.15: In the Trick the Model pattern, humans iteratively select or modify
data instances against which the behavior of the model is checked.
If incorrect behavior is detected, the gap in the model must be
closed by providing additional learning examples.

� Synthetic data tends to be less informative and redundant.

� Requires an LLM and a supervised ML model.

When to Apply: Unlabeled data is not available to the extent needed to train

an appropriate ML model.

Example Implementation: ZeroGen [398] is a simplistic method for gener-

ating a labeled dataset from scratch. First, a decoder-based LLM is prompted

to generate labeled text instances in an unsupervised manner. The generated

dataset is then used to train and deploy a lightweight target model.

P7: Trick the Model [26]

Goal: Expose model errors to make the model more reliable against a variety

of inputs.

Human Role: Test the model (and trick it) with inputs that cause incorrect

behavior.

Motivation: Models sometimes poorly transfer learned patterns into real-world

data. Implementing a model without runtime errors does not mean that it will

always work as intended. Even after acquiring a reasonable number of training

examples, cases may occur where a model provides unsatisfactory outcomes.

Errors may not be in the software but hidden in the learned parametrization

caused by poor data quality. Insu�cient training data leads to blind spots,

biases, or vulnerability to adversarial attacks. Additional data is needed to �ll

these gaps and make the use of the model much more reliable and secure.

Structure: Trick the Model involves providing additional training instances to

make the model much more reliable and e�cient (Figure 4.15). First, humans

95

Chapter 4 Human-in-the-Loop Machine Learning

interactively evaluate how models behave on manually constructed or slightly

modi�ed inputs (e.g. cropped images or edited text) to detect unintended be-

havior, such as misclassi�cations. The focus is especially on inputs, where the

model is highly con�dent in its prediction, but is actually wrong. When un-

intended behavior is found, the goal is to close the gap by collecting or cre-

ating additional training examples that address the misconception. Tricking a

model requires humans to understand what a model has learned and when it

is likely to fail. Since it is di�cult to impossible for a human to understand

how a model makes decisions, an explanation mechanism that provides human-

understandable insights into the behavior of the model can help, e.g. showing

which features of the input contributed most to a class-speci�c decision.

Advantage:

� Identi�es and reduces model misbehavior prior to deployment.

� Demonstrates the robustness of an ML model.

� Informs users about the adversarial training process and its purpose, which

can increase transparency and foster trust.

Challenges:

� Requires additional computational resources and time for training and

testing.

� Nondeterminism in model optimization can lead to unintended side e�ects.

� Compelling adversarial examples require a deep understanding of the weak-

nesses and decision boundaries of an ML model, which can be complex

and di�cult to characterize.

� While evidence of misconduct can be provided, conclusive evidence of its

absence cannot.

� Requires a certain degree of transparency to comprehend model outcomes.

When to apply: The model performs well overall, but the data tends to be

unrepresentative. There is a high risk of misbehavior, and the model is too

uncertain on some parts of the data to be used operationally.

Example Implementation: TextAttack [261] is a tool for securing and testing

models against adversarial examples. A so-called �attack� consists of four main

components: a goal function, a set of constraints, a transformation, and a search

method. The objective of the attack is to modify an input text to satisfy the

goal function (determining the success of the attack) while ensuring that the

perturbation adheres to the speci�ed constraints (such as grammar or semantic

similarity). A search method is utilized to discover a sequence of transformations

leading to a successful adversarial example. Attacks are also employed for data

augmentation and adversarial training.

96

4.5 Design Patterns for HiL Systems

P8: Recommendation System

EndRecommendations,
Suggestions, Hints, …

ML ModelInferUnlabeled
Data Instance

Decide

Deployed
Decision

Start

Human Labeler

Figure 4.16: The process of Recommendation System. Each instance is initially
passed to the model. The model predicts the instances and provides
some kind of recommendation to facilitate human decision-making.
The human makes the �nal decision.

4.5.4 Operational Patterns

HiL processing is not limited to the training phase but can also be e�ectively

applied throughout the entire life cycle of a model. The following section focuses

on HiL operational patterns for ML models.

P8: Recommendation System

Goal: Enhance the quality and e�ciency of decisions.

Motivation: Many real-world application domains are high-stakes tasks that

involve high-impact but di�cult decisions, such as medical diagnosis [193].

When the consequences of errors are signi�cant, a purely ML-based approach

usually reaches its limits due to a general lack of user trust, correctness, and

legal responsibility. In this scenario, a domain expert (e.g., a doctor) is responsi-

ble for labeling some data (e.g., disease detection and classi�cation). However,

manual decision-making can be corrupted by human biases, unintentional er-

rors, natural fuzziness and ambiguity, or take much time.

Structure: To actively support a domain expert in making critical decisions,

ML models can provide an initial suggestion or recommendation for decision-

making (Figure 4.16). In addition to a simple label, a suggestion can include

comprehensible evidence as to why an ML-based approach would select a spe-

ci�c outcome or how certain the prediction is. The support of the ML model

provides a second opinion and reduces the risk of humans overlooking essential

things.

Advantage:

� Improves the accuracy of decision-making by providing arti�cial evidence.

� Improves the e�ciency by quickly receiving recommendations and hints.

97

Chapter 4 Human-in-the-Loop Machine Learning

Ask Human / Hints

DecideInferUnlabeled
Data Instance

Decide

Deployed
Decision

Human Labeler

Start

End

P9: Safeguards

Safeguard

ML Model

Figure 4.17: In the Safeguards pattern, an ML model is secured by a set of rules
that prevent it from making predictions that are known to be very
di�cult and likely to be wrong. These cases are delegated to a
human labeler to provide more reliable labels.

Challenges:

� Requires the model to provide evidence as to why a particular recommen-

dation might be favorable.

� Risk of information (recommendation) overload or blindly trusting false

evidence.

� Does not scale well to large workloads since a human expert still makes

every decision.

When to apply: Tasks with a high level of di�culty and signi�cant conse-

quences of failure that typically must be accomplished by humans.

Example Implementation: The Recommendation System pattern is most

frequently utilized within high-stakes tasks such as medical healthcare. A typ-

ical use-case is to assist healthcare professionals in making critical diagnoses

or treatment decisions. Another common use-case is disaster management. For

example, the RADAR system proposed by Sengupta et al. [331] aims to support

complex decision-making in the domain of �re�ghting. Human commanders are

supported by adaptive plans to respond to a �re. Decision Support systems can

be easily adapted to text classi�cation tasks, such as fraud detection.

P9: Safeguards [197]

Goal: Ensure highly reliable decisions by using a safety wrapper, i.e., deter-

ministic rules, to deal with the inherent uncertainty of model results.

Motivation: Due to the complexity and statistical nature of ML models, there

can be no 100% guarantee of their correctness [356]. Even a trained and �ne-

tuned ML model may still not be accurate enough to reach the level of clas-

98

4.5 Design Patterns for HiL Systems

si�cation performance required to use the model productively. Adding more

training examples does not always lead to top classi�cation performance, as the

achievable performance converges to a maximum as the size of the training data

increases [114]. Model predictions are susceptible to uncertainties arising from

various sources, including noisy data or the inherent complexity of the problem

[87]. To ensure reliable deployment, it is crucial to address these uncertainties,

which can introduce variability and a�ect prediction performance.

Structure: A valuable step in achieving more reliable predictions is to en-

capsulate the model's functionality with a safety layer, such as veri�able rules

(Figure 4.17). Inputs that are unlikely to be handled correctly by the ML model

are �ltered out. Safeguards aim to mitigate the consequences of each decision,

i.e. they refuse to decide on ambiguous situations. Rejected instances are then

assigned to human labelers to provide a more reliable decision. A safeguard can

be a deterministic, hand-crafted safety rule or a rejection model.

Advantages:

� Gracefully handles failure cases.

� Provides a higher level of reliability than a purely automated ML model.

Challenges:

� Safeguards themselves poses uncertainty and vagueness.

� Safety rules are di�cult to de�ne.

� A static mechanism does not adapt to changing data distributions and

new concepts.

Example Implementation: Link et al. [229] propose a HiL moderation ap-

proach for social media content, including safeguards. The tool supports human

moderators in correcting arti�cial predictions by assigning instances to human

labelers when they do not contain enough information for automated classi�ca-

tion. Various �ltering rules are used to minimize the human resources required

for manual moderation.

P10: Active Moderation [11]

Dependency: Variation of the Safeguards pattern (P9).

Goal: Improve or maintain a required level of classi�cation performance that a

model alone cannot deliver during deployment.

Motivation: De�ning safeguards for complex feature spaces is challenging.

Additionally, the safeguards themselves can introduce additional uncertainty.

99

Chapter 4 Human-in-the-Loop Machine Learning

DecideInferUnlabeled
Data Instance

Decide

Deployed
Decision

Human Labeler

Start

End

P10: Active Moderation

Ask Human / Hints
(When Highly Uncertain)

ML Model

Figure 4.18: The Active Moderation pattern uses the prediction uncertainty of
the actual models in operation to decide whether a human is needed
to provide more reliable decisions.

They do not account for the statistical vagueness of classi�cation models, nor

do they easily adapt to new and changing data. Furthermore, abstaining from

unreliable predictions is a binary decision, making it di�cult to de�ne abstention

thresholds. There is a knowledge gap between engineering external safety layers

and capturing the true di�culties and uncertainties of models.

Structure: Active Moderation aims to improve the classi�cation performance

by delegating likely to be wrong model outcomes to a human oracle, while

limiting human labor (Figure 4.18). To prevent unreliable predictions, Active

Moderation relies on the prediction uncertainty of the model used. The idea is

to manually decide only those cases for which a model cannot provide reliable

suggestions due to its high uncertainty. Simple predictions, on the other hand,

do not require manual veri�cation because they are close to being correct. For

each prediction, it is determined whether the prediction is likely to be correct

(con�dent) or not (uncertain). If a prediction is uncertain, a human needs to give

a reliable judgment instead. Since ML models generally do not make statements

about their own correctness, special mechanisms (uncertainty estimation and

quanti�cation) are needed to quantify the reliability of the prediction.

Advantage:

� Gracefully handles failure cases.

� Provides a higher level of reliability than a pure ML-based model.

� Relies on the statistical uncertainty of the actual ML model itself. No

other models or external mechanisms are required.

� Provides a dynamic and data-driven approach that adapts to changing

data.

100

4.5 Design Patterns for HiL Systems

Visualize Labeled
Data

ML Model
Start

Visualization

Correct or
Agree

Analyst / User

Input
Unlabeled

Data

Predict

UpdateEnd

P11: Thumbs Up or Down

Figure 4.19: During the Thumbs Up or Down process, humans are empowered
to correct or approve arti�cial decisions to correct potential misla-
beling in the data.

Challenges:

� Uncertainty estimates cannot detect all model misbehavior [26]. Only

those misclassi�cations that receive high uncertainty scores.

� Achieving near-perfect classi�cation performance requires considerable man-

ual e�ort.

� Requires high-quality uncertainty estimates.

When to apply: When already trained ML models do not provide the level of

classi�cation performance required to solve a task appropriately.

Example Implementation: Hendrycks and Gimpel [148] were among the

�rst to demonstrate that prediction uncertainties are capable of detecting po-

tential misclassi�cations. The Active Moderation approach, especially its cost-

e�ectiveness, is studied in more detail in Chapters 5 and 6.

P11: Thumbs Up or Down [17]

Goal: Enable fast deployment by allowing humans to correct incorrect model

outcomes on the �y when using ML systems.

Motivation: Deploying a highly accurate ML model is a lengthy process, as

training data is sparse and can change over time. Cases where ML-based predic-

tions are incorrect can be expected, especially in the early stages of deployment.

Errors identi�ed by a human during the deployment of an ML system should

therefore be correctable.

Structure: ML-based systems should allow users to correct the outcome of the

ML model in case they are incorrect (Figure 4.19). The interface has to provide

a mechanism for correcting model outcomes. A common approach is to provide

a button to overwrite, re-label, or correct all model predictions.

101

Chapter 4 Human-in-the-Loop Machine Learning

P12: Continuous Learning

New
Labeled

Data

Union TrainLabeled
Data

ML Model

Start

End

Label

Human
Labeler

Figure 4.20: In the Continuous Learning pattern, an ML model is continuously
retrained as additional labeled data becomes available.

Advantage:

� Erroneous model behavior can be corrected immediately, making the over-

all analysis more accurate.

Challenges:

� Analysts may be distracted from the actual analysis by an increased need

for correction.

� Allowing users to provide feedback may reduce their trust in the system

and their perception of the system's classi�cation performance [156].

When to apply: ML systems for recommendations or sensemaking of individ-

ual predictions.

Example Implementation: OpenReq [351] is an analytics tool for collecting,

processing and analyzing user feedback from online platforms such as market-

places. It o�ers an enriched visual interface to facilitate an exploratory data

analysis process. The tool allows the user to disagree with the classi�cation

results during the analysis, but only in cases where the model itself is uncertain.

P12: Continuous Learning [89]

Goal: Update the ML model on a regular basis to ensure that it continues to

provide accurate and reliable predictions.

Motivation: Real-world data is highly dynamic and subject to change. For

ML models, it is critical that the training data match the current state of the

environment in which a system is deployed. If a model is applied to new data

that is signi�cantly di�erent from the training data, the model will struggle to

recognize patterns it has not seen before, leading to incorrect results.

Structure: Deployed ML models need to be updated with data that re�ects

their current environment to maintain their e�ectiveness. Continuous Learn-

ing aims to retrain a model on a regular basis when additional training data

102

4.6 Discussion

is available, e.g. daily or when a certain amount of additional labeled data is

available (Figure 4.20). In this way, the model learns new patterns and trends

and continuously adapts to changes in the environment, i.e. new terms, slang,

image resolutions, laws, etc. The training data is extended with labeled exam-

ples that arise during the use of the systems.

Advantage:

� Keeps the model up-to-date and prevents it from decaying over time.

Challenges:

� Continuously re-training a model is computationally expensive.

� Requires ongoing monitoring and quality assessment.

Example Implementation: The Journalist-in-the-Loop system [182] enables

journalists to provide annotated feedback to the system during their daily work.

Its objective is to classify rumors while allowing journalists to improve predic-

tions as they use them. The feedback is used to continuously re-train the model

and keep it up to date.

4.6 Discussion

We emphasize the need to involve domain experts in the text classi�cation pro-

cess to increase or even enable the applicability of ML-based text classi�cation.

The HiL paradigm holds signi�cant promise for enhancing not only the training

but also the deployment of text classi�ers. While HiL aims to overcome the sig-

ni�cant applicability challenges of ML models, it introduces new challenges that

require careful consideration. The high dependence on humans and the associ-

ated high costs require a careful trade-o� analysis. Recognizing that humans are

prone to making mistakes, and that noisy feedback does not necessarily guar-

antee better results. In addition, integrating humans into the ML loop presents

usability challenges that need to be addressed for practical reasons. In addition,

challenges inherent to ML models remain, including computational complexity

and typically high model latency. A primary goal of HiL systems should be to

keep human e�ort highly rewarding and, in most cases, minimal.

To facilitate the design and deployment of HiL systems, we propose a catalog

of HiL training and operation patterns that describe best practices and proven

solutions. Patterns for gathering the initial training data (P1, P2, P3, and P4)

aim at reducing the number of labels needed (and human involvement) to train

accurate models. As labeling a sequence of machine-selected instances (P1, P2)

is often perceived as exhausting, visual approaches (P3, P4) support labelers to

gain additional knowledge about the data through data visualization. However,

103

Chapter 4 Human-in-the-Loop Machine Learning

users must be able to interpret these visualizations, which may require additional

skills, such as understanding semantic relationships or similarity of inputs. In

addition, frequent model re-training can be costly and time-consuming. Other

patterns, based on more recent decoder-based LLMs, aim to avoid human label-

ing altogether by generating the training data (P6) or solving the task directly

(P5). However, decoder-based LLMs require extraordinary computational re-

sources or are usually only available via black-box APIs.

A central problem with ML models is that predictions may be considered

trustworthy when they are not. While adequate explanations can build trust,

there is a danger of convincing humans of false correctness. Putting a human

into the operational loop of an ML-based system has been shown to improve

its classi�cation performance and reliability (P8, P9, and P10). However, the

question is whether human resources are available to the extent required and

whether the added value is worthwhile, i.e. whether the HiL approach signi�-

cantly improves reliability compared to automated predictions. One possibility

is to explicitly capture human feedback in the form of corrections when work-

ing with a system (P11). Since the knowledge of trained ML models is static,

frequent re-training of the models is required to maintain a certain level of reli-

ability (P8). It should be noted that human labelers, like machines, are prone

to errors and may provide incorrect labels. Collaboration mechanisms such as

visualizations (P3, P4, P11), explanations (P7, P8), and uncertainty estimates

(P1, P2, P10) play a crucial role in the implementation of these patterns, which

are orthogonal to the HiL patterns. These mechanisms enhance the overall

understanding and e�ectiveness of the HiL approach.

C
la

ss
ifi

ca
tio

n
Pe

rfo
rm

an
ce

Labeled Samples
Active Learning Budget

Ac
tiv

e
M

od
er

at
io

n
Pe

rfo
rm

an
ce

?
Max. Reachable

Classification Performance ?

Activ
e Learning

Curve

Figure 4.21: A combination of the Active Learning and Active Moderation pat-
terns.

104

4.6 Discussion

The described patterns can and certainly should be combined. For instance,

as depicted in Figure 4.21 Active Learning (P1) and Active Moderation (P10)

can be combined to optimize the learning and deployment behavior with min-

imal human resources. During training, Active Learning is used to incremen-

tally increase the classi�cation performance (blue line) of the classi�er. Active

Moderation can then be applied during deployment to further increase the clas-

si�cation performance. Furthermore, a combination of Active Learning (P1)

and Visual Interactive Labeling (P3) within a labeling system can leverage au-

tomated and human data selection capabilities. The feedback stream collected

through operation patterns such as Recommendation System (P8), Safeguards

(P9), Active Moderation (P10), and Thumbs Up or Down (P11) can be utilized

for continuous model re�nement (P12). In addition, the automatic generation of

additional training data (P6) can be used to address identi�ed weak spots (P7).

The key is to tailor the combination of patterns to the speci�c requirements and

challenges of the actual ML system.

Further, it is highly promising that the HiL patterns are supported by collab-

oration mechanisms. These are vital for some patterns, such as visualizations for

Visual Interactive Labeling (P3) and Semi-supervised Visual Interactive Label-

ing (P4), explanations for Recommendation Systems (P8) and Trick-the-model

(P7), or uncertainties for Active Moderation (P10). Especially explanations and

uncertainty values can be applied in a broader sense. For instance, explanations

are highly promising in facilitating human labeling tasks. Especially highlight-

ing why a model might be false promotes human awareness of model di�culties

and misconceptions, which is the target of many HiL patterns such as Trick

The Model (P7), Recommendation System (P8), Active Moderation (P10), and

Thumbs Up or Down (P11). Knowing what a model does not know and when it

does not know is critical to securing ML models, building user trust, and engage

humans in participation.

The proposed catalog is not intended to be complete. First, our pattern

catalog is the result of a literature review that does not strictly meet the re-

quirements of being substantially systematic. Only two databases were searched

and the 100 most relevant and publicly available records from each were con-

sidered. Furthermore, there is no guarantee that repeating the literature search

would yield the same results. It is also possible that we have missed some ap-

proaches in the literature. The research area of HiL uses many terminologies

and is di�cult to capture in a single search query. Second, our pattern catalog is

in�uenced by our own experience, which adds subjectivity. Further work should

extend the catalog and evaluate its suitability and usefulness in practice.

105

Chapter 4 Human-in-the-Loop Machine Learning

4.7 Conclusion

Deployed ML systems are imperfect to some extent, lacking reliability and accu-

racy. They may not be able to solve di�cult tasks. Supporting ML-based text

classi�ers with a continuous stream of human feedback is a promising approach

to counteract the challenges of purely automated approaches. This chapter has

reviewed the HiL approach and highlighted its potential to improve the applica-

bility of text classi�ers in real-world domains. Due to a lack of a widely accepted

de�nition, we refer to HiL as �a generic semi-automated computational paradigm

in which ML models and humans interact, adapt, or learn from each other to

improve the applicability of ML systems�. Human e�ciency is outlined as an

important goal of HiL, since manual e�ort is typically the bottleneck of interac-

tive systems. The current literature on HiL has been summarized and we have

identi�ed typical enablers, namely visualization, explanation, and uncertainty

estimation. Due to the observed lack of design knowledge for developing such

HiL systems, the chapter has proposed a catalog of 12 patterns for designing

ML-based systems with HiL. Our catalog includes seven training and �ve oper-

ation patterns to guide developers in choosing and adapting the HiL approach.

The main observations are brie�y summarized:

� The existing literature on HiL is highly convoluted, and there is no com-

mon agreement on its scope or a generally accepted de�nition.

� The HiL approach is not limited to certain aspects of the ML process, such

as training, but can also be applied during the operation of ML models.

� While many papers show the success of HiL. Critical applicability factors

such as computational latency, runtime behavior, and human error are

often neglected.

� HiL is highly dependent on humans. In situations where human expertise

is limited or not accessible, the bene�ts of HiL systems may be constrained.

� Most previous HiL approaches focus primarily on the cost-e�ective train-

ing of ML models. However, many weaknesses of ML models only become

apparent in productive use when the model is left to work on its own.

HiL has much more diverse use-cases that are underrepresented in the

literature.

� There are only a few tools that facilitate text classi�cation with HiL.

106

Chapter 5

Computational-aware Active

Moderation

Publication. This chapter is partially based on the 2022 paper �Towards More

Reliable Text Classi�cation on Edge Devices via a Human-in-the-Loop� [16], to

which I contributed by developing and conducting the ML experiments, ana-

lyzing and discussing the �ndings, and leading the writing. In addition, parts

of this chapter rely on the 2022 paper �More Sustainable Text Classi�cation

via Uncertainty Sampling and a Human-in-the-Loop� [14], for which I under-

took the development and implementation of the ML experiments, analyzed and

interpreted the results, and led the writing.

Contribution. The computational e�ciency of text classi�ers is crucial from

both an environmental and �nancial perspective, in�uencing their applicability

in real-world domains. This chapter proposes a novel computational-aware Ac-

tive Moderation framework to improve the applicability of ML-based text clas-

si�cation in computationally constrained infrastructures. The proposed frame-

work aims to make text classi�cation much more competitive in settings where

state-of-the-art classi�ers are not applicable or desirable due to memory or la-

tency constraints (low-end infrastructure) and environmental considerations.

Computational e�ciency is achieved by relying on lightweight classi�ers and

improving their classi�cation performance by asking humans for help with un-

certain predictions during operation (Active Moderation pattern). It is demon-

strated that the careful selection and delegation of highly uncertain predictions

� which are likely to be incorrect � to human moderators can signi�cantly en-

hance the classi�cation performance of lightweight classi�ers, even exceeding

that of state-of-the-art models. This chapter discusses the computational-aware

Active Moderation framework to text classi�cation and o�ers several qualitative

analyses of its potential. We found that computational-aware Active Modera-

tion signi�cantly improves the classi�cation performance compared to a purely

107

Chapter 5 Computational-aware Active Moderation

automated approach. For �ve out of six datasets in our study, Active Modera-

tion increased the F1 score from approximately 78% to at least 95%, with less

than 29.6% of the data requiring manual validation. Our Active Moderation

framework remained computationally e�cient even on low-end infrastructure.

5.1 Motivation

There is a growing disparity in utilizing state-of-the-art ML models between lab-

oratory and product environments [282]. The signi�cant computational require-

ments imposed by recent state-of-the-art ML models are a primary factor driving

this gap. Text classi�ers typically trade o� classi�cation performance with com-

plexity, resulting in signi�cant computational e�orts required for training and

inference. Highly complex deep NNs, such as LLMs, have received considerable

research attention due to their potential for superior classi�cation performance.

Benchmark studies investigating such complex models, which continue to grow

in size, are typically conducted in high-end laboratory settings [88, 371]. For

example, the latest GPT-4 model contains 1.76 trillion parameters, rendering

its adaptability to low-end infrastructure with limited main memory infeasi-

ble. By comparison, BERT already contains 110 million parameters. The high

computational demands of state-of-the-art classi�ers raise two critical concerns.

First, real-world deployment environments are typically much less advanced

and su�er from resource constraints. State-of-the-art classi�ers may be pro-

hibitively expensive to deploy on low-end computing infrastructure [294], thus

excluding practitioners from using them. For example, �ne-tuning BERT re-

quires a GPU with at least 12 GB of main memory. As a workaround, simpler

and less accurate models, such as traditional ML, are often used to maintain

deployment in computationally constrained (low-end) infrastructure. However,

traditional ML, or even more traditional non-LLM-based deep learning models,

are generally expected to deliver much worse classi�cation performance. For

example, Corazza et al. [73] report an F1 score of 82% for detecting hate speech

in online forums using a traditional word embedding-based classi�er, which may

not meet the needs of forum providers. Other tasks, such as classifying software

requirements, are even more di�cult. For example, Silva-Rodríguez et al. [342]

report an F1 score of only 49% for their best-performing classi�er. This raises

the question of how to achieve a certain level of classi�cation performance on a

low-end infrastructure that still meets the requirements of the application do-

main. This necessitates the consideration of a trade-o� between computational

capabilities and classi�cation performance [157].

108

5.2 Conceptual Framework

Second, the high computational requirements of recent models raise environ-

mental concerns [6, 205, 353]. For instance, training the default BERT model

can take more than three days, even when using a GPU, generating a signi�-

cant amount of carbon emissions, comparable to the emissions of a transatlantic

�ight [353]. The question is whether such high computational e�orts justify the

additional classi�cation performance of state-of-the-art classi�ers or whether

weaker ML models are already good enough. Green Learning [205] is an emerg-

ing ML paradigm characterized by low carbon footprints, lightweight models,

and low computational complexity. This new focus has led to the development

of the Climate Protection Foundation1, which pursues the vision of reducing

greenhouse gas emissions caused by software. Among other suggestions, they

provide a Green Software Pattern [284] that promotes the use of energy-e�cient

ML models with similar functionality. A key objective of Green Learning is to

maintain the classi�cation performance of a model while signi�cantly reducing

its computational cost [6]. Environmental awareness has led to a growing re-

luctance computationally expensive models that consume orders of magnitude

more energy for a small or negligible contribution to the actual classi�cation per-

formance. We use the term �computational-aware� to refer to the lightweight

nature of an ML model that requires little computational resources.

When highly complex text classi�ers are not applicable, feasible, or desirable,

practitioners must resort to a less computationally intensive approach. Active

Moderation (Section 4.5.4) is a promising HiL operational pattern to improve

the classi�cation performance of a model during deployment. It is concerned

with classi�ers that provide predictions for their inputs and a degree of certainty

about the outcome. Improving classi�cation performance comes at the cost of

human intervention. However, human involvement must be limited to a fallback

option, as manual e�ort can generally not be excessively spent. It is essential

to let humans only intervene when the model fails to make reliable decisions.

Improving the classi�cation performance of lightweight classi�ers by including

a human in the ML loop is a promising approach to make text classi�ers much

more applicable to real-world use-cases while promoting Green Learning.

5.2 Conceptual Framework

This section describes our computational-aware Active Moderation framework

for text classi�cation. It outlines the problem statement and describes how our

framework can be e�ectively implemented on low-end infrastructure.

1https://greensoftware.foundation

109

https://greensoftware.foundation

Chapter 5 Computational-aware Active Moderation

5.2.1 Problem Statement

While a properly trained classi�er (traditional or deep learning) is capable of

solving the majority of cases, there exist a few cases, typically less than ∼ 20%

[92, 217, 302, 304, 341], where a classi�cation model fails to provide the correct

class labels. We propose a computational-aware Active Moderation framework

to prevent low con�dence and likely incorrect classi�cation results in low-end

production infrastructure. The overall goal is to drastically improve the clas-

si�cation performance and thus the applicability of text classi�cation systems

during deployment.

Classifier

Human LabelerActive Moderation Workflow

Text

Confident

Labeled
Text

U
nc

er
ta

in

Figure 5.1: The Active Moderation work�ow.

Figure 5.1 illustrates the process of Active Moderation. Initially, text in-

stances are classi�ed by an already trained classi�er during deployment. Along

with the classi�cation outcome, the uncertainty of the prediction is estimated.

Uncertainty estimates serve as an indicator of con�dence and reliability (Sec-

tion 2.2.1). Intuitively, uncertain instances should be assigned to a human for

veri�cation, while a con�dent prediction can be considered correct.

We formalized the process of Active Moderation as follows: given an already

trained classi�cation model 𝑓 𝜔 with its optimized parameters 𝜔. First, each

input 𝑥𝑖 of an unseen data corpus 𝑋 is fed into the model, and a class label

𝑦𝑖 = 𝑓 𝜔 (𝑥𝑖) ∈ 𝑌 is computed. Second, for each predicted label 𝑦𝑖, an uncertainty

metric 𝑢𝑖 is determined. A misclassi�cation occurs when the predicted label 𝑦𝑖
of an input 𝑥𝑖 does not match the underlying ground truth 𝑦𝑖, thus 𝑦𝑖 ≠ 𝑦𝑖. To

evaluate misclassi�cations, we use a binary error variable 𝑒𝑖 := I[𝑦𝑖 ≠ 𝑦𝑖], which
indicates whether the classi�cation is correct. The error variable 𝑒𝑖 takes the

value 1 if 𝑦𝑖 ≠ 𝑦𝑖, and 0 otherwise. Active Moderation aims to reduce errors by

assigning error-prone instances to human labelers.

The e�ectiveness of Active Moderation comes from focusing human e�ort on

instances where the model is likely to make classi�cation mistakes. Clearly,

human e�ort is wasted on reviewing instances that the model would have de-

cided correctly on its own. Therefore, humans should only be involved in the

110

5.2 Conceptual Framework

classi�cation process when their assistance is highly bene�cial. Active Moder-

ation uses the prediction uncertainty (Section 2.2.1) to determine whether an

instance should be classi�ed manually or automatically. It is assumed that the

more uncertain a prediction is, the more likely a manual moderation is required.

Formally, Active Moderation attempts to partition 𝑋 into two discrete sets 𝑋𝐻
and 𝑋𝐴, with 𝑋𝐻 ∪ 𝑋𝐴 = 𝑋 and 𝑋𝐻 ∩ 𝑋𝐴 = ∅. The set 𝑋𝐻 ⊆ 𝑋 represents all el-

ements that are moderated by humans. Therefore, 𝑋𝐻 should contain the most

uncertain and probably misclassi�ed instances. On the other hand, 𝑋𝐴 ⊆ 𝑋

describes the set of instances to be classi�ed automatically. The model should

classify these instances very accurately, and they should not require manual cor-

rection. A separation criterion is sought to determine whether a new element

𝑥 ∈ 𝑋 to be classi�ed should belong to 𝑋𝐴 or 𝑋𝐻 when the classi�er is used in

production.

We consider the prediction uncertainty and a �xed moderation e�ort 𝑘 as

the separation criteria. To enable the most e�ective Active Moderation process

using prediction uncertainty, the 3-tuples of inputs, predicted class labels, and

uncertainties 𝑟𝑖 :=
(
𝑥𝑖 , 𝑦𝑖 , 𝑢𝑖

)
are arranged in an ordered sequence 𝑟 := 〈𝑟𝑖 |𝑖 ∈

{1, ..., 𝑛}〉 that best satis�es the following conditions:

1. The predicted instances are sorted by descending uncertainty, i.e., 𝑟𝑖 comes

before 𝑟 𝑗 if and only if 𝑢𝑖 ≥ 𝑢 𝑗 .

2. The �rst 𝑘 instances of the sequence 𝑟 should have the highest misclassi-

�cation rate. The sum of their error variables should be maximal.

3. The last 𝑛 − 𝑘 instances of the sequence 𝑟 should have the lowest misclas-

si�cation rate. The sum of their error variables should be minimal.

Manually annotating the instances in 𝑟 according to their uncertainty is most

rewarding in terms of correcting misclassi�cations. This leads to the following

maximization problem for the task of Active Moderation:

maximize
𝑘∑︁
𝑖=1

𝑒 (𝑖) −
𝑛∑︁

𝑗=𝑘+1
𝑒 (𝑗) (5.1)

where 𝑒 (𝑖) is the error variable of the 𝑖th element of the sequence 𝑟. Alternatively,

other performance measures can be optimized accordingly, such as maximizing

the F1 score of both manually and automatically classi�ed instances.

The variable 𝑘 determines the number of instances to be moderated by a

human and is initially set according to the feasible amount of supervision. In

our computational-aware Active Moderation framework, the �rst 𝑘 instances,

111

Chapter 5 Computational-aware Active Moderation

denoted by the set 𝑋𝐻 = {𝑟 (𝑖) |1 ≤ 𝑖 ≤ 𝑘} undergo manual review, while the re-

maining set 𝑋𝑀 = {𝑟 (𝑖) |𝑘 +1 ≤ 𝑖 ≤ 𝑛} is classi�ed automatically. A human oracle

𝑜𝐻 : 𝑋 → 𝑌 performs the classi�cation for the manual review. Understanding

how Active Moderation performs in low-end infrastructures under varying levels

of human noise is crucial for designing applicable and e�ective HiL classi�cation

systems that can be deployed in diverse settings, including those with limited

computational resources.

5.2.2 Lightweight Text Classi�ers

While previous studies on text classi�ers have mainly focused on maximizing

the classi�cation performance of fully automated approaches, our goal is to

evaluate the suitability of text classi�ers in the context of Active Moderation.

We focus on traditional ML models and shallow NNs to be compatible with low-

end infrastructure. It remains uncertain which model is most e�cient and how

well it performs when humans are involved in the classi�cation process under

tight computational constraints.

We investigate the lightweight ML classi�ers described in Section 2.1.6 for

computational-aware Active Moderation. The following section brie�y outlines

how the conditional class probabilities can be obtained for each classi�er to

allow for uncertainty assessment.

Decision Tree (DT). DTs can estimate conditional class probabilities by re-

porting pre-computed proportions of correct class outcomes for each leaf node

during training [271].

Random Forest (RF). The conditional class probability of an RF can be de-

rived as the fraction of trees that vote for a particular class outcome, that is,

𝑝(𝑦 = 𝑐 |𝑥) = 1

|𝑇 |
∑︁
𝑡 ∈𝑇
I(𝑦𝑡 = 𝑐) (5.2)

where 𝑇 is a set of DTs, 𝑦𝑡 the class estimate of 𝑡 ∈ 𝑇 and I(𝑦𝑡 = 𝑐) = 1 if 𝑦𝑡 = 𝑐

otherwise 0.

k-Nearest Neighbor (kNN). Analogous to Eq. 5.2, we consider the fraction

of votes as the conditional class probability of a kNN classi�er.

112

5.2 Conceptual Framework

Gaussian Naive Bayes (GNB). NB classi�ers apply Bayes' rule to directly

infer conditional class probabilities, that is:

𝑝(𝑦 = 𝑐 |𝑥) = 𝑝(𝑦)
𝑛∏
𝑖=1

𝑃(𝑎𝑖 |𝑦) (5.3)

Since the encodings extracted from encoder-based LLMs consist of continuous

and potentially negative attributes, we apply GNB. This variant assumes that

the attributes of the feature vector are distributed according to a normal distri-

bution.

Support Vector Machine (SVM). SVMs provide distances to classi�cation

boundaries rather than class probabilities. Platt scaling [289] is adapted to

convert distances into probabilities. Platt scaling is an algorithm that learns

probabilities from the SVM's classi�cation score 𝑓 (𝑥), that is,

𝑝(𝑦 = 1|𝑥) = 1

1 + exp(𝑎 𝑓 (𝑥) + 𝑏) (5.4)

where 𝑎, 𝑏 ∈ R are scalar parameters that can be optimized using the negative

log-likelihood loss over the validation set.

Logistic Regression (LR). LR directly predicts conditional class probabilities

alongside the class label. The class probability is given by:

𝑝(𝑦 = 𝑐 |𝑥) = 𝜙softmax (𝜃𝑥)𝑐 (5.5)

where 𝜃𝑥 is the linear predictor function.

Multilayer Perceptron (MLP). An MLP derives the conditional class proba-

bility by applying a softmax function to the network's logits 𝑧 that is:

𝑝(𝑦 = 𝑐 |𝑥) = 𝜙softmax (𝑧)𝑐 (5.6)

Bayesian Multilayer Perceptron (B-MLP). We also consider a Bayesian vari-

ant of the MLP. We apply MCD to approximate the conditional class probability

by averaging 𝑇 Monte Carlo samples over possible weights:

𝑝(𝑦 = 𝑐 |𝑥, 𝐷) ≈ 1

𝑇

𝑇∑︁
𝑡=1

𝑝(𝑦 = 𝑐 |𝑥, 𝜔𝑡) (5.7)

113

Chapter 5 Computational-aware Active Moderation

5.2.3 Text Features

We utilize contextualized BERT and Sentence-BERT (SBERT) [308] encodings

as feature representations for text. SBERT is a variant of BERT that provides

semantically meaningful encodings for unlabeled text documents without requir-

ing domain-speci�c pre-training and �ne-tuning. In addition, SBERT encodings

are more computationally e�cient than BERT.

5.2.4 Uncertainty Assessment

For Active Moderation to be e�ective, a classi�er must o�er a reasonable rank-

ing of misclassi�cations based on the reported uncertainty values. In our exper-

iments, we quantify the prediction uncertainty by computing Shannon's entropy

[334] of the conditional class probabilities (Eq. 2.34). A comprehensive uncer-

tainty assessment for the B-MLP is performed by calculating Shannon's entropy

on the mean conditional class probabilities (Eq. 5.7).

5.3 Study Design

This section outlines the design of our computational-aware Active Moderation

study. First, it presents the research questions and outlines our benchmark

criteria. It then describes the dataset used and provides implementation details

for the benchmark evaluation.

5.3.1 Research Questions

We aim to answer the following research questions:

RQ1: How accurately do di�erent lightweight classi�ers estimate pre-

diction probabilities?

We evaluate the quality of the prediction probabilities reported by the lightweight

classi�ers. Well-calibrated class probabilities are critical for reliably assessing

the true probability of predictions. The accuracy of prediction uncertainties is

likely to a�ect the e�ectiveness of Active Moderation.

RQ2: Which lightweight classi�er can capture the highest proportion

of misclassi�cations via uncertainty sampling, resulting in the

highest macro F1 score after removal?

For Active Moderation to be e�ective, the human should be assigned as many

misclassi�ed instances as possible, while the ML model should decide for it-

self (no human needed) which instances it can handle with high classi�cation

114

5.3 Study Design

performance. We examine the F1 score of di�erent classi�ers when a certain

proportion of the most uncertain predictions are removed from the test dataset.

In the next step, these instances would undergo manual classi�cation.

RQ3: How much of the most uncertain classi�cation outcomes must

be manually annotated to reach a certain level of macro F1

score?

Next, our investigation evaluates the F1 score attained by the proposed computa-

tional-aware Active Moderation framework. It assesses the number of instances

a human annotator needs to moderate to reach a speci�ed F1 score. Since

achieving a target F1 score is usually more desirable than allocating a �xed level

of human e�ort, such as 10%, we adhere to a classi�cation performance-based

evaluation criterion. Human annotators may introduce noise into the labeling

process. Therefore, we investigate di�erent levels of human noise, where human

annotators also make mistakes.

RQ4: What is the performance di�erence between BERT and SBERT

encodings for computational-aware Active Moderation?

Various encoder-based LLMs o�er meaningful feature representations for text

instances. To determine the most e�ective con�guration for computational-

aware Active Moderation, we assess the suitability of two distinct encodings for

our proposed framework: BERT and SBERT.

RQ5: How e�cient are di�erent classi�ers in terms of training and

inference time?

One of the main goals of our study is to enhance the applicability of text classi-

�ers on low-end infrastructure. We analyze the time required to perform training

and inference to assess the feasibility of the considered classi�ers on low-end in-

frastructure. For practical applicability, processing times should ideally be in

the order of seconds or a few minutes rather than hours.

RQ6: How much training and inference time can be saved by upgrad-

ing from 4 GB to 8 GB of main memory?

Finally, we investigate the scalability of the classi�ers employed. The question

is how much a doubling of the main memory, i.e., from 4 GB to 8 GB, a�ects the

total computation time, or whether 4 GB is su�cient to maintain fast training

and inference times.

115

Chapter 5 Computational-aware Active Moderation

5.3.2 Benchmark Criteria

To address RQ1, we evaluate the quality of the prediction probabilities provided

by all nine classi�ers. We calculate the Brier score [49] for each classi�er applied

to each dataset. The Brier score serves as an indicator of the accuracy of the

conditional class probabilities. The Brier score ranges from 0 to 1, where 0

indicates perfect accuracy and 1 indicates poor accuracy. It is computed as the

squared error between the predicted probabilities and the true class outcomes,

that is:

𝐵𝑆 = |𝑌 |−1
∑︁
𝑦∈𝑌

∑︁
𝑐∈𝐶

(
𝑝(𝑦 = 𝑐 |𝑥) − I(𝑦 = 𝑐)

)2 (5.8)

where I(𝑦 = 𝑐) = 1 if the true class of 𝑥 represented by 𝑦 is 𝑐 otherwise 0. To

answer RQ2, we compare the macro F1 score of all nine classi�ers when a certain

number of the most uncertain data instances, in our case 0%, 10%, 20%, and

30%, are removed from the test dataset. Macro-averaging is applied because

several of the datasets considered have signi�cant imbalances between classes.

The objective is to give equal weight to all classes in the evaluation. For RQ3,

we quantify the manual e�ort required by a human to achieve a given target F1

score, which involves correcting classi�er outcomes. Human e�ort is measured

by the number of cases that a human must decide manually. In our experiments,

human annotations are simulated by selecting the ground truth label for each

annotation request, a common approach when evaluating interactive ML ap-

proaches [340]. Since human annotations can be noisy, we simulate four levels

of human noise. Speci�cally, each annotation request is assigned a randomly

selected class label with probabilities of 0%, 5%, 10%, or 15% instead of the

ground truth label. The F1 score of a combined human-automated classi�er

is computed based on the uni�ed sets of manually corrected and automatically

inferred labels. Regarding RQ4, all experiments are conducted with BERT and

SBERT encodings to determine the most suitable one for our framework. In the

next step, the training and inference time is measured to evaluate the compu-

tational e�ciency of the text classi�ers (RQ5). All experiments are performed

on an Intel® Xeon® Gold 5115 CPU @ 2.40GHz with one core and 4 GB of

main memory, which we consider to be a low-end infrastructure. Finally, we

consider the computation time of an ML model as a user-centric indicator of its

computational-awareness. For RQ6, we examine the time required for training

and inference when utilizing 4 GB and 8 GB of main memory. All reported

measurements represent the mean of �ve strati�ed cross-fold datasets with a

50% train-test split. Throughout the remainder of this chapter, the abbreviated

term �F1 score� will refer to the macro F1 score.

116

5.3 Study Design

5.3.3 Datasets

We aim at a domain-independent evaluation of computational-aware Active

Moderation. Therefore, we focus on various tasks involving real-world data from

online forums, marketplaces, issue trackers, and emails. We consider six publicly

available real-world datasets covering heterogeneous classi�cation tasks. These

datasets include binary and multi-class classi�cation tasks that are originally

skewed. Table 5.1 summarizes the key statistics of the datasets.

Dataset Size |𝐶 | Class Distribution #Words (𝜇 ± 𝜎)
App Store 5,752 3 3,472:1,286:994 24 ± 29
News 13,919 4 4,891:3,979:2,625:2,424 198 ± 711
Hate Speech 24,783 2 19,190:5,593 15 ± 7
Issues 29,998 3 10,000:10,000:9,998 54 ± 59
Reuters 8,614 8 3,930:2,319:527:499:458:425:290:166 117 ± 129
TREC 5,952 6 1,344:1,300:1,288:1,009:916:95 10 ± 4

Table 5.1: Dataset details, including size, number of classes, class distribution,
and the mean and standard deviation of words per text instance.

The App Store dataset [239] encompasses user-written reviews sourced from

app stores. The reviews are manually annotated as feature request, bug report or

praise. Second, we consider the 20NewsGroups dataset [212], which contains

messages categorized into 20 di�erent classes. The dataset is reorganized to

focus on the four most frequent classes: comp, politics, rec, and religion [150].

The Hate Speech dataset [80] features a binary classi�cation task to detect

toxic messages (hate speech or o�ensive language) from Twitter. Third, the

Issues dataset [179] consists of software issues extracted from heterogeneous

GitHub projects. Issues were queried from 12,112 projects and labeled as bug,

enhancement (i.e., an improvement or new feature request), or question. The

TREC dataset [226] is a collection of questions, each referring to one of six

di�erent answer types: person, location, number, abbreviation, and entity.

5.3.4 Implementation Details

As text features, we use the pre-trained bert-base-uncased2 model for BERT and

the all-mpnet-base-v2 3 model for SBERT, both of which compute encodings

of length 𝑛 = 768. For most classi�ers, we rely on the default implementation

provided by the Scikit-learn library4. For classi�ers not available in Scikit-learn,

we implemented them using TensorFlow5. For the DT classi�er, Scikit-learn's

2https://huggingface.co/bert-base-uncased
3https://huggingface.co/sentence-transformers/all-mpnet-base-v2
4https://scikit-learn.org/stable/index.html
5https://www.tensorflow.org/

117

https://huggingface.co/bert-base-uncased
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://scikit-learn.org/stable/index.html
https://www.tensorflow.org/

Chapter 5 Computational-aware Active Moderation

non-parametric implementation is utilized. We use 𝑇 = 100 DTs for the RF

classi�er and set 𝑘 = 25 for the kNN classi�er. A linear kernel is used for the

SVM. The structure of the MLP is con�gured as [768, 500, 500, C]. No hyper-

parameter tuning is performed. Since Scikit-learn does not support a Bayesian-

MLP, we used Tensor�ow for its implementation (B-MLP*). We approximate

the posterior using MCD and apply 𝑇 = 100 forward passes. Since replicating

Scikit-learn's MLP in TensorFlow is challenging, we develop a conventional non-

Bayesian MLP, denoted as MLP*, to better compare the impact of Bayesian

modeling. Unlike Scikit-learn's MLP implementation, our MLP model applies

dropout similarly to the Bayesian MLP, but only during training. In addition,

for all MLP implementations, we designate 10% of the training data as validation

data to facilitate early stopping.

5.4 Results

This section presents the results of our experiments and addresses the six re-

search questions. Our replication package is available online6.

5.4.1 Quality of Predicted Probabilities

First, we assess the quality of the predicted probabilities produced by each

classi�er. Figure 5.2 illustrates the mean class probability for both wrong (mis-

classi�ed) and correct classi�cations utilizing the App Store dataset. Each box

represents the lower and upper quartiles, while a line denotes the median. The

whiskers portray the range of the data. The �gure indicates evident di�erences

in the probability distributions between misclassi�ed and correctly classi�ed

text instances. For example, on the App Store dataset using SBERT, the mean

class probability across all classi�ers for all misclassi�cations and correct pre-

dictions is 66.4% and 89.42%, respectively. Only the DT and GNB classi�ers

demonstrate no disparities in their means. For most classi�ers and all datasets,

the reported class probabilities allow to distinguish whether the predictions are

likely to be misclassi�ed or correct. On average, BERT and SBERT show no

signi�cant di�erences. We obtained similar results for the other datasets.

Next, we examine the Brier scores of all nine classi�ers across all six datasets,

as shown in Table 5.2. The table reveals large di�erences among the classi�ers

regarding the quality of their class probabilities. On average, a DT and GNB

exhibit the worst calibrated probabilities, with a Brier score of 0.70 and 0.40,

respectively, using SBERT encodings. RF and kNN achieve nearly equivalent

6https://github.com/jsandersen/MRTviaHIL

118

https://github.com/jsandersen/MRTviaHIL

5.4 Results

DT
Wrong

DT
Correct

RF
Wrong

RF
Correct

kNN
Wrong

kNN
Correct

GNB
Wrong

GNB
Correct

SVR
Wrong

SVR
Correct

LR
Wrong

LR
Correct

MLP
Wrong

MLP
Correct

MLP*
Wrong

MLP*
Correct

B-MLP*
Wrong

B-MLP*
Correct

Classifier

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Cl

as
s P

ro
ba

bi
lit

y
BERT

DT
Wrong

DT
Correct

RF
Wrong

RF
Correct

kNN
Wrong

kNN
Correct

GNB
Wrong

GNB
Correct

SVR
Wrong

SVR
Correct

LR
Wrong

LR
Correct

MLP
Wrong

MLP
Correct

MLP*
Wrong

MLP*
Correct

B-MLP*
Wrong

B-MLP*
Correct

Classifier

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Cl

as
s P

ro
ba

bi
lit

y

SBERT

Figure 5.2: Distributions of mean class probabilities for all wrong (misclassi�ed)
and correct classi�cation results for the App Store dataset.

calibrated probabilities, averaging above 0.27. The best calibrated probabilities,

with average Brier scores below 0.25, are attained by SVM, LR, as well as

MLP and its variants. Across all datasets, MLP and MLP* yield the most

favorable results using BERT encodings, while LR, MLP, and MLP* exhibit

superior performance using SBERT. Particularly, MLP* yields the most accurate

probabilities with average Brier scores of approximately 0.22 (BERT) and 0.20

(SBERT). Similar results were observed for the other datasets.

5.4.2 Classi�er Performance Under Stepwise Removal of

Uncertain Instances

We examine the F1 score of the automatically classi�ed instances of our frame-

work. This is the subset of the test data that the ML-based text classi�er has to

decide on (no human involvement). Table 5.3 presents the F1 scores of the nine

classi�ers applied to each of the six datasets using SBERT encodings. Table

A.1 illustrates the results of BERT. The columns represent the F1 scores ob-

tained when a certain number (0%, 10%, 20%, and 30%) of the most uncertain

instances are removed from the test dataset. Each cell also shows the relative

119

Chapter 5 Computational-aware Active Moderation

Classi�er App Store News Hate Speech Issues Reuters TREC AVG
DT 0.6639 0.6983 0.5230 1.0166 0.5699 1.0181 0.7483
RF 0.3344 0.3392 0.2549 0.5041 0.2632 0.4764 0.3620
kNN 0.3105 0.3021 0.2717 0.4992 0.2065 0.3805 0.3284
GNB 0.6100 0.4206 0.4605 0.7668 0.4148 0.6990 0.5620
SVM 0.2686 0.2097 0.2118 0.4392 0.1125 0.2208 0.2438
LR 0.2551 0.1858 0.2089 0.4320 0.1009 0.2151 0.2330
MLP 0.2419 0.1920 0.2212 0.4385 0.1098 0.2336 0.2395
MLP* 0.2390 0.1760 0.2046 0.4259 0.1028 0.2086 0.2262

B
E
R
T

B-MLP* 0.2322 0.1728 0.2000 0.4209 0.1005 0.2060 0.2221

AVG 0.3506 0.2996 0.2841 0.5492 0.2201 0.4065 0.3517

Classi�er App Store News Hate Speech Issues Reuters TREC AVG
DT 0.6534 0.6126 0.4551 1.0478 0.4182 1.0234 0.7018
RF 0.3174 0.2779 0.2137 0.5191 0.1748 0.4931 0.3327
kNN 0.2871 0.1292 0.2151 0.5099 0.0790 0.4437 0.2773
GNB 0.4418 0.2286 0.3506 0.6958 0.1986 0.4929 0.4014
SVM 0.2469 0.1546 0.1699 0.4115 0.0519 0.1872 0.2037
LR 0.2381 0.1410 0.1671 0.4081 0.0489 0.1848 0.1980
MLP 0.2427 0.1453 0.1822 0.4422 0.0533 0.1992 0.2108
MLP* 0.2361 0.1377 0.1681 0.4139 0.0495 0.1792 0.1974

S
B
E
R
T

B-MLP* 0.2309 0.1349 0.1629 0.4055 0.0483 0.1768 0.1932

AVG 0.3216 0.2180 0.2316 0.5393 0.1247 0.3756 0.3018

Table 5.2: Brier scores of the di�erent classi�ers as an indicator of the accuracy
of the predicted conditional class probabilities. A lower Brier score
indicates a better calibration. The two best and worst Brier scores
for each dataset are highlighted in green and red, respectively.

improvement in F1 score compared to the previous removal rate. For instance,

an LR with SBERT on the News dataset achieves an F1 score of 88.90% on the

entire test dataset. By removing 10% of the most uncertain instances from the

evaluation, the F1 score increases to 93.78%, indicating a relative improvement

of 5.49%.

Our experiment reveals that when classifying the whole test dataset, a DT

provides the worst F1 score on average, followed by GNB, RF, and kNN. LR,

SVM, MLP, MLP* and the B-MLP* achieve on average the highest initial F1

scores as well as the highest scores when a certain number of the most un-

certain instances have been removed from the test dataset. For example, an

improvement of 4.7% is reached when 10% of the data is removed. The kNN

performs exceptionally well only on the News dataset with SBERT encodings

but poorly on the other datasets. The MLP implementation of Scikit-learn

performs worse than our TensorFlow implementation. Bayesian modeling (B-

MLP*) does not improve the F1 score compared to a deterministic MLP. When

comparing SBERT encodings to BERT, all classi�ers achieve up to 20% higher

F1 scores at the same removal ratio. In general, the F1 score increases substan-

tially when a certain proportion of the most uncertain instances are removed

120

5.4 Results

App Store News Hate Speech

Classi�er 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%
58.48 58.58 58.47 58.40 66.25 67.28 67.21 67.15 67.64 67.59 67.72 67.56

DT
+0.16 -0.18 -0.13 +1.55 -0.10 -0.08 -0.07 +0.19 -0.24

63.44 65.30 65.86 65.34 87.24 91.44 94.80 96.24 76.82 76.93 74.07 67.97
RF

+2.93 +0.86 -0.80 +4.82 +3.68 +1.51 +0.14 -3.72 -8.24
69.42 70.47 69.94 69.41 89.67 94.63 97.73 99.06 71.05 71.07 71.83 73.88

kNN
+1.50 -0.75 -0.75 +5.53 +3.28 +1.37 +0.03 +1.07 +2.85

74.11 77.35 80.45 83.33 86.55 91.94 95.48 96.80 77.19 80.71 83.94 86.88
GNB

+4.37 +4.01 +3.59 +6.22 +3.85 +1.39 +4.56 +4.00 +3.51
76.46 80.13 83.68 87.66 88.51 92.92 96.20 97.43 82.79 86.25 88.67 89.87

SVM
+4.80 +4.43 +4.76 +4.98 +3.53 +1.28 +4.18 +2.81 +1.35

77.29 81.41 85.34 89.27 88.90 93.78 96.92 98.11 82.90 86.78 89.51 90.88
LR

+5.32 +4.83 +4.60 +5.49 +3.35 +1.22 +4.68 +3.15 +1.53
78.31 82.21 85.29 87.95 89.16 94.42 97.46 98.62 83.14 86.92 89.95 92.12

MLP
+4.98 +3.74 +3.12 +5.89 +3.22 +1.19 +4.55 +3.48 +2.41

78.75 82.99 86.43 90.44 89.28 94.64 97.60 98.85 83.71 87.63 90.96 93.02
MLP*

+5.38 +4.14 +4.65 +6.00 +3.13 +1.28 +4.68 +3.80 +2.27
78.68 82.72 86.43 90.25 89.27 94.53 97.58 98.79 83.69 87.61 90.75 92.69

B-MLP*

+5.12 +4.50 +4.42 +5.90 +3.22 +1.24 +4.68 +3.59 +2.14

AVG 72.77 75.68 77.99 80.23 86.09 90.62 93.44 94.56 78.77 81.28 83.04 83.87

Issues Reuters TREC

Classi�er 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%
47.38 47.36 47.38 47.41 65.12 65.42 65.43 65.22 46.02 45.81 45.72 45.42

DT
-0.05 +0.04 +0.07 +0.45 +0.01 -0.32 -0.45 -0.21 -0.65

62.68 64.99 66.64 67.94 86.85 91.48 92.61 94.27 69.51 72.10 73.92 76.32
RF

+3.70 +2.54 +1.95 +5.33 +1.24 +1.79 +3.71 +2.53 +3.24
60.60 62.91 64.76 66.81 88.73 95.12 99.45 99.70 69.53 72.03 74.07 76.37

kNN
+3.81 +2.96 +3.16 +7.20 +4.55 +0.25 +3.59 +2.83 +3.11

61.79 63.44 64.97 66.53 88.49 95.02 98.44 99.47 74.33 77.52 80.45 82.76
GNB

+2.67 +2.41 +2.39 +7.38 +3.60 +1.05 +4.30 +3.77 +2.88
70.32 73.08 75.28 77.61 93.85 98.19 99.65 99.92 86.21 89.17 91.72 93.84

SVM
+3.92 +3.01 +3.11 +4.62 +1.49 +0.28 +3.43 +2.86 +2.31

70.45 73.24 75.68 78.04 93.93 99.05 99.84 99.84 86.11 89.12 91.64 93.75
LR

+3.96 +3.33 +3.12 +5.45 +0.80 -0.00 +3.49 +2.82 +2.31
69.47 72.33 74.86 77.33 93.33 98.52 99.66 99.62 86.40 90.33 93.14 94.36

MLP
+4.11 +3.50 +3.30 +5.57 +1.16 -0.04 +4.55 +3.11 +1.31

70.99 73.93 76.47 79.12 93.96 99.15 99.81 99.90 86.51 89.79 92.14 92.46
MLP*

+4.14 +3.44 +3.47 +5.53 +0.67 +0.09 +3.78 +2.62 +0.34
71.01 73.87 76.31 78.72 94.03 99.22 99.80 99.92 86.45 89.41 91.77 91.53

B-MLP*

+4.03 +3.30 +3.16 +5.52 +0.58 +0.12 +3.42 +2.63 -0.26

AVG 64.97 67.24 69.15 71.06 88.70 93.46 94.97 95.32 76.79 79.48 81.62 82.98

Table 5.3: F1 scores of di�erent classi�ers after removing a certain proportion
of the most uncertain predictions from the test dataset, employing
SBERT embeddings. The table also shows the relative changes from
the previously removed portion. The two best and worst F1 scores
for each setting are highlighted in green and red, respectively.

from the test dataset. Only the uncertainty estimates of a DT are consistently

unable to detect misclassi�cations. In this case, the F1 score does not improve

with larger removal ratios. In particular, the relative F1 score improvements

decrease with larger removal ratios. On average, classi�ers with high initial F1

scores achieve the best F1 scores after removing uncertain instances.

121

Chapter 5 Computational-aware Active Moderation

App Store News Hate Speech

Classi�er 89% 91% 93% 95% 91% 93% 95% 97% 89% 91% 93% 95%
DT 73.12 78.04 82.76 87.73 72.70 78.98 84.84 90.88 66.28 72.66 78.70 84.80
RF 32.45 36.83 41.36 46.75 6.48 10.70 15.10 23.82 18.30 22.68 28.08 35.31
kNN 27.35 31.35 36.23 41.96 2.07 5.30 9.43 15.39 19.70 23.14 27.65 34.28
GNB 31.85 36.83 42.77 50.94 6.65 10.13 14.32 22.47 25.83 31.65 38.88 48.95
SVM 19.31 23.37 27.82 33.26 4.34 8.58 12.76 19.21 9.72 14.01 19.21 26.76
LR 17.55 21.21 25.69 31.04 3.15 6.68 10.95 16.51 9.28 13.24 18.19 25.00
MLP 17.18 21.18 25.66 31.91 2.84 6.06 9.67 14.97 9.37 13.77 18.88 26.57
MLP* 15.93 20.15 24.47 29.32 2.57 5.62 9.48 14.45 8.17 11.93 16.80 23.50
B-MLP* 16.27 20.24 24.53 29.60 2.57 5.63 9.58 14.57 8.17 11.96 16.74 23.48

0%
hu
m
an

no
is
e

DT 81.04 86.23 91.49 96.87 81.97 88.81 95.80 - 73.77 80.76 87.65 94.81
RF 36.14 41.36 47.43 57.01 7.04 11.61 17.86 36.09 20.01 25.36 32.27 44.16
kNN 30.35 35.61 42.18 51.60 2.23 5.65 10.53 17.57 21.22 25.31 31.21 42.68
GNB 35.36 41.86 51.19 64.08 7.08 10.93 16.16 40.73 28.31 35.95 46.34 66.19
SVM 21.34 25.88 31.70 40.86 4.73 9.18 14.38 25.46 10.63 15.29 21.51 34.64
LR 19.18 23.15 28.94 38.17 3.33 7.28 12.33 20.11 9.89 14.44 20.41 30.39
MLP 18.99 23.53 30.38 38.45 3.05 6.51 10.80 17.70 10.17 15.08 21.76 33.45
MLP* 17.30 22.06 27.03 35.70 2.76 5.98 10.33 16.91 8.72 12.96 18.67 28.49
B-MLP* 17.58 22.12 27.16 35.67 2.74 6.02 10.66 17.37 8.87 13.17 18.82 28.63

5%
hu
m
an

no
is
e

DT 91.21 97.50 - - 95.75 - - - 82.63 90.86 98.65 -
RF 40.71 47.37 60.54 - 7.87 12.60 24.05 - 22.12 28.63 39.39 -
kNN 34.89 42.15 54.47 - 2.43 6.18 12.40 27.46 22.87 28.16 38.48 -
GNB 40.05 50.91 - - 7.59 12.03 20.79 - 31.34 41.41 67.41 -
SVM 23.44 29.22 37.83 - 5.55 9.99 16.91 - 11.31 16.89 25.43 -
LR 21.09 26.69 34.04 - 3.61 8.07 13.56 - 10.63 15.90 24.02 -
MLP 21.43 27.28 36.36 - 3.20 6.95 12.07 - 10.97 16.53 25.57 -
MLP* 19.74 25.03 33.35 - 2.93 6.47 11.44 26.09 9.38 14.24 21.84 43.32
B-MLP* 19.90 25.38 32.98 - 2.90 6.57 11.65 - 9.44 14.25 21.44 47.59

10
%

hu
m
an

no
is
e

DT - - - - - - - - 96.03 - - -
RF 48.19 - - - 8.56 13.84 - - 25.39 35.64 - -
kNN 40.64 59.92 - - 2.53 6.59 13.71 - 25.64 34.47 - -
GNB 52.35 - - - 8.07 12.79 - - 37.87 - - -
SVM 26.53 36.36 - - 5.98 11.15 - - 12.65 19.84 - -
LR 23.15 31.91 - - 3.72 8.69 15.86 - 11.82 18.48 - -
MLP 23.90 33.67 - - 3.43 7.61 13.89 - 12.18 19.06 - -
MLP* 21.68 28.44 - - 3.07 6.98 12.80 - 10.19 16.16 29.11 -
B-MLP* 22.22 29.13 - - 3.03 7.04 12.73 - 10.15 16.06 30.04 -

15
%

hu
m
an

no
is
e

Table 5.4: F1 scores of computational-aware Active Moderation with SBERT
encodings on the App Store, News, and Hate Speech datasets. Each
cell denotes the percentage of the most uncertain classi�cation results
that require manual annotation to attain a speci�ed F1 score at a
particular level of human noise. F1 scores that are unattainable due
to high levels of human misclassi�cation are denoted by �-�. The two
best and worst F1 scores for each setting are highlighted in green and
red, respectively.

5.4.3 Semi-automated Classi�cation Performance

In the next step, we investigate the overall classi�cation performance of computa-

tional-aware Active Moderation. This includes letting human annotators handle

a certain amount of classi�cation. Tables 5.4 and 5.5 display how many of the

most uncertain instances from the unseen test set need to be manually classi-

122

5.4 Results

Issues Reuters TREC

Classi�er 79% 81% 83% 85% 93% 95% 97% 99% 89% 91% 93% 95%
DT 60.17 63.94 67.76 71.60 80.33 86.32 91.57 97.33 80.11 83.23 87.37 90.76
RF 32.36 37.26 42.14 47.32 4.11 7.38 14.67 30.60 35.79 42.24 49.73 58.33
kNN 34.28 38.99 43.90 48.54 3.13 5.46 9.12 14.14 43.21 49.97 56.12 64.58
GNB 31.42 35.52 39.96 44.73 5.78 8.80 13.12 21.73 34.38 41.60 50.60 59.78
SVM 17.14 21.94 26.96 31.73 0 1.16 4.46 11.79 5.95 10.89 16.50 24.63
LR 16.68 21.16 26.02 31.00 0 1.23 4.36 8.87 6.22 10.99 16.73 24.36
MLP 17.94 22.41 27.05 31.98 0 1.74 4.50 9.68 3.93 8.43 13.21 19.76
MLP* 15.70 20.01 24.47 29.13 0 1.16 3.41 7.89 4.47 8.33 13.41 19.22
B-MLP* 15.84 20.31 24.84 29.76 0 1.14 3.65 8.06 4.70 8.64 13.68 20.23

0%
hu
m
an

no
is
e

DT 64.26 68.38 72.50 76.50 - - - - 91.33 95.63 99.87 -
RF 35.21 40.61 46.21 52.09 5.13 11.93 - - 49.53 61.06 85.28 -
kNN 37.17 42.51 47.59 54.22 3.46 6.57 12.63 - 55.75 68.38 85.72 -
GNB 33.76 38.34 43.52 48.67 6.59 10.45 17.04 - 47.78 60.22 81.99 -
SVM 18.71 24.01 29.36 34.78 0 1.30 5.83 - 7.90 14.65 24.73 -
LR 18.09 23.05 28.48 33.97 0 1.35 5.36 - 8.43 15.12 24.87 -
MLP 19.41 24.31 29.58 34.95 0 1.93 5.46 - 5.21 10.99 17.57 42.78
MLP* 16.97 21.61 26.47 31.08 0 1.32 4.02 - 5.95 11.29 18.85 -
B-MLP* 17.16 21.92 26.99 32.44 0 1.30 4.20 - 6.72 12.33 18.72 -

5%
hu
m
an

no
is
e

DT 68.92 73.28 77.59 81.85 - - - - - - - -
RF 38.80 44.70 50.95 57.67 6.99 - - - - - - -
kNN 40.98 46.47 53.24 59.50 3.71 8.24 - - - - - -
GNB 36.47 41.68 47.26 53.62 7.73 13.58 - - - - - -
SVM 20.36 26.28 32.18 38.45 0 1.37 - - 8.53 18.85 - -
LR 19.60 25.25 31.22 37.46 0 1.67 7.31 - 9.14 20.53 - -
MLP 21.10 26.60 32.46 39.01 0 2.25 7.55 - 5.21 10.99 - -
MLP* 18.34 23.39 28.97 35.02 0 1.44 5.08 - 5.98 12.03 - -
B-MLP* 18.67 23.85 29.72 36.06 0 1.49 5.15 - 7.29 13.71 - -

10
%

hu
m
an

no
is
e

DT 74.30 78.89 83.39 87.89 - - - - - - - -
RF 43.10 49.88 57.83 66.28 - - - - - - - -
kNN 45.08 52.38 59.78 68.60 5.85 - - - - - - -
GNB 40.11 46.35 53.38 61.50 10.45 - - - - - - -
SVM 22.35 28.88 35.54 43.41 0 2.11 - - 15.73 - - -
LR 21.37 27.87 34.58 41.86 0 2.30 - - 15.66 - - -
MLP 22.97 29.20 35.76 43.54 0 3.37 - - 8.43 - - -
MLP* 19.93 25.50 31.83 39.10 0 1.65 - - 10.48 - - -
B-MLP* 20.28 26.11 32.76 39.96 0 1.97 - - 11.93 - - -

15
%

hu
m
an

no
is
e

Table 5.5: F1 scores of computational-aware Active Moderation with SBERT
encodings on the Issues, Reuters, and TREC datasets. Each cell
denotes the percentage of the most uncertain classi�cation results
that require manual annotation to attain a speci�ed F1 score at a
particular level of human noise. F1 scores that are unattainable due
to high levels of human misclassi�cation are denoted by �-�. The two
best and worst F1 scores for each setting are highlighted in green and
red, respectively.

�ed to raise the semi-automated classi�cation results to a given F1 score using

SBERT. The results for BERT are depicted in Tables A.2 and A.3. Each sub-

table represents a di�erent level of human noise. For example, on the News

dataset 12.76% of the most uncertain predictions must be manually corrected

to enhance the F1 score of the SVM (from the original 88.51%) to 95% using

SBERT encodings.

123

Chapter 5 Computational-aware Active Moderation

An accurate human annotator can achieve a high F1 score of 95% to 99%

by manually labeling less than 23.5% of the News, Hate Speech, Reuters, and

TREC datasets. The App Store dataset requires 29.32%. The Issues dataset

has the worst F1 score using purely automated classi�cation. Here, an F1 score

of 83% is achieved when 24.47% of the data is manually annotated, which is

an absolute F1 score improvement of 10.01%. The tables further demonstrate

that ML models with a high initial F1 scores require less manual e�ort to bring

the F1 score to a given target level. Overall, ML models with lower initial F1

scores rarely surpass the more accurate classi�ers in terms of �nal F1 scores.

Human annotators with higher noise levels require more manual e�ort to achieve

a certain F1 score due to the increased number of misclassi�cations. However,

our results suggest that computational-aware Active Moderation can lead to a

higher F1 score than pure machine or human e�orts alone. For instance, an

LR classi�er with an initial F1 score of 88.90% on the News dataset and a 10%

noisy human can attain an F1 score of less than 95% (maximum 96.47%) if less

than 13.56% of the dataset is manually classi�ed.

It can be seen that Active Moderation with a lightweight classi�er can achieve

strong accuracies even when the annotator makes multiple classi�cation errors.

In our experiments, the best-performing classi�ers achieve an F1 score of 89%

(+10.92), 95% (+8.84), 91% (+11.81), 79% (+9.73), 99% (+11.52), and 91%

(+4.61) with a manual e�ort of 19.74%, 11.44%, 14.24%, 18.34%, 5.08%, and

10.99%, respectively, considering a human noise level of 10% and SBERT. Com-

pared to a 100% accurate human annotator, this is an increase in manual e�ort of

19.47%, 17.13%, 16.22%, 14.39%, 32.87%, and 23.29% respectively. Our results

indicate that very high F1 scores (around 95% to 99%) are not always feasible in

all computational-aware Active Moderation settings. When human annotations

contain signi�cant noise, the F1 score decreases after a certain level of sup-

port. As less uncertain predictions are annotated more frequently by humans in

larger workloads, classi�cation performance decreases. This phenomenon arises

because noisy humans incorrectly annotate instances that the machine would

have decided correctly. SBERT encodings consistently yield higher F1 scores

than BERT encodings across all noise levels. For instance, on the Hate Speech

dataset, SBERT encodings require on average 9.6%, 12.0%, 13.5%, and 14.0%

less manual e�ort to attain F1 scores of 89%, 91%, 93%, and 95%, respec-

tively. Furthermore, higher F1 scores can be achieved with SBERT encodings

that would be unattainable with BERT encodings. For instance, an F1 score of

97% would not be achievable by a 15% noisy human on the News dataset using

BERT, whereas SBERT requires a manual e�ort of 12.8%. Overall, the SBERT

124

5.4 Results

DT RF GNB SVM LR MLP MLP* B-MLP*
10 2

10 1

100

101

102

103

Tr
ai

ni
ng

 T
im

e
(s

)
App Store News Hate Speech Issues Reuters TREC

DT RF kNN GNB SVM LR MLP MLP* B-MLP*
Classifier

10 2

10 1

100

101

102

In
fe

re
nc

e
Ti

m
e

(s
)

Figure 5.3: Total training and inference time of all classi�ers using SBERT.

encodings reduce manual e�ort by ∼ 5% to ∼ 20%. However, the di�erences

between BERT and SBERT were small for the App Store dataset, about 1%.

5.4.4 Runtime Investigation and Scalability

Figure 5.3 shows the training time of the classi�ers using SBERT encodings. The

classi�ers are listed on the x-axis, and the average training time in seconds is

shown on the y-axis on a logarithmic scale. The runtimes with BERT encodings

are not reported as they cannot match SBERT in terms of F1 score and provide

less insight. For MLP, MLP*, B-MLP*, and SVM, the training time increases

by up to 53% when using BERT compared to SBERT. However, the di�erences

are not signi�cant when using DT, RF, and NB. 𝑘NN is not included because

it uses a memory-based learning algorithm that requires no training.

A GNB classi�er has the fastest training time, averaging about 0.1 seconds

on 14,999 instances (Issues dataset). The LR has the second shortest training

time with 5.5 seconds. A DT, MLP, and RF are much slower, with 17.21, 26.08,

and 36.78 seconds, respectively. The dropout-based MLP* implementation took

40.54 seconds, almost 1.5 times as long as the MLP. MLP* and B-MLP* take the

same amount of time to train because they utilize the same training procedure.

The SVM is the only classi�er that shows an exponential increase in training

time concerning the size of the training data, ranging from 10.38 seconds for

the App Store (size 2,876) to 10.67 minutes for the Issues (size 14,999) dataset.

125

Chapter 5 Computational-aware Active Moderation

DT RF GNB SVM LR MLP MLP* B-MLP*

0

10

20

30

40

50Ch
an

ge
 o

f T
ra

in
in

g
Ti

m
e

(%
)

App Store News Hate Speech Issues Reuters TREC

DT RF kNN GNB SVM LR MLP MLP* B-MLP*
Classifier

0

10

20

30

Ch
an

ge
 o

f I
nf

er
en

ce
 T

im
e

(%
)

Figure 5.4: Relative time change when using 8 GB of main memory compared
to 4 GB using SBERT.

Thus, SBERT/BERT-based LR classi�ers are time-saving and can be trained

in a few seconds while obtaining a high F1 score.

We also assess the time required for inference. The DT, RF, GNB, LR, MLP,

and MLP* classi�ers take less than one second to infer the labels for 14,999

instances (Issues dataset). The kNN classi�er is much slower, with an infer-

ence time of 16.69 seconds. The inference time of an SVM and kNN grows

exponentially regarding the number of predicted texts. The SVM needs 1.20

seconds for the App Store and 93.85 seconds for the Issues dataset. The kNN

classi�er needs 0.73 seconds for the App Store and 17.00 seconds for the Is-

sues dataset. Sampling-based Bayesian approximations require more time for

inference because they require multiple forward passes to approximate the class

probabilities. By performing 100 forward passes, a Bayesian MLP takes 108.71

seconds (Issues dataset).

Figure 5.4 illustrates the relative time savings in training and inference when

using 8 GB of main memory compared to 4 GB. The LR, SVM, and MLP bene�t

the most from the additional memory. For instance, on the Issues dataset, the

training time can be reduced by 7.8%, 40.3%, and 29.9% for SVM, LR, and MLP,

respectively, resulting in absolute time savings of 50.0, 2.22, and 7.8 seconds.

For the DT, RF, GNB, MLP, and B-MLP*, the time reduction is less than 2%.

126

5.5 Discussion

Regarding inference, the time saved is less than 1 second for all datasets except

the SVM, where 12 seconds were saved. Since the training and inference times

of many classi�ers are very short, the absolute time savings were generally small

for most classi�ers. Using 8 GB instead of 4 GB memory may only be necessary

for very large datasets or time-critical real-time applications.

5.5 Discussion

We discuss the implications of our �ndings, consider their applicability across

domains, and outline the limitations of our study. Further, we review related

work.

5.5.1 Implications

We evaluated the suitability of the Active Moderation pattern for improving the

applicability of lightweight classi�ers during their operation in computationally

constrained environments. Our �ndings suggest that Active Moderation can ef-

fectively maintain strong classi�cation performance while signi�cantly reducing

the use of computational resources, thereby promoting Green Learning. Our

framework requires human e�ort, which can be costly and may not be available

in unlimited amounts. Ultimately, users of HiL systems must decide whether

they want to invest in human e�ort, address computational constraints, or re-

duce their carbon footprint.

We found that uncertainty estimates from lightweight classi�ers are useful

for detecting misclassi�cations. An essential aspect of the Active Moderation

pattern. Although most classi�ers did not use Bayesian modeling, they still

provided similarly well-calibrated class probabilities as a Bayesian MLP. In par-

ticular, we found that the accuracy of the predicted class probabilities depended

not only on the classi�er, but also on the data being classi�ed. For instance,

an LR classi�er achieves a Brier Score of 0.10 on the Reuters dataset and 0.42

on the Issue dataset. Thus, Active Moderation is expected to be much more

e�ective in some classi�cation settings than in others. Since classi�ers with the

highest F1 scores also report the best Brier scores, it is unnecessary to use one

classi�er for uncertainty estimation and another classi�er for the classi�cation

decision. In particular, we found that computational-aware Active Moderation

increased the F1 score from around 78% to at least 95% on �ve out of six datasets

by manually validating less than 29.6% of the data using SBERT. On the Is-

sues dataset, which initially had a relatively low F1 score of 71%, F1 scores of

83% and 85% were achieved when 24.47% and 29.13% of the data, respectively,

127

Chapter 5 Computational-aware Active Moderation

were manually annotated. This represents an absolute F1 score improvement of

12.01% and 14.01%, respectively. In our recent paper [16], we even showed that

our framework is capable of outperforming a state-of-the-art BERT model with

a large margin when moderating only 12.5% of the data.

Furthermore, our results imply e�ectiveness even when humans are noisy and

mislabel in multiple instances. Our experiment shows that even a 15% noisy

human can lead to more accurate results than a purely ML-based classi�cation.

Thus, Active Moderation is a su�cient to improve the classi�cation performance

of a classi�er during deployment, even if the human moderator commits some

incorrect labels. Practitioners must evaluate their own behavior to assess how

much e�ort is worth investing in the loop. However, our results also imply a de-

creasing human e�ciency when large numbers of instances have to be decided

manually. For instance, removing 10% of the most uncertain data instances,

the F1 score of the remaining instances increased by up to 7.38%. Removing

an additional 10% provides only an improvement of 3.60%. As a result, human

e�ciency dropped dramatically as workloads increased. Practitioners must be

aware that arbitrary F1 score improvements may require signi�cant human ef-

fort.

Our runtime experiments show that Active Moderation with a lightweight

classi�er is highly computationally e�cient. Training and inference can be per-

formed in seconds, even with access to only 4 GB of main memory. It requires

only < 5.6 and < 3.3 seconds for training and inference on 14,998 data instances

with 4 GB and 8 GB memory, respectively. Thus, Active Moderation has the po-

tential to achieve very high levels of classi�cation performance on infrastructures

where state-of-the-art classi�cation models would not be applicable or desirable

due to environmental concerns or computational constraints. This makes strong

classi�cation performance available to a much wider audience. Our study pro-

vides guidelines to support practitioners in choosing the most e�cient classi�er

for Active Moderation when humans are willing to re-label a portion of the

classi�cation results without relying on a strong computational infrastructure.

5.5.2 Field of Application

Active Moderation is a HiL operation pattern designed to enhance the classi�ca-

tion performance of text classi�ers during deployment. Its domain-independent

structure makes it applicable across various application domains. The lightweight

and computationally aware nature of our computational-aware Active Modera-

tion framework makes it suitable for a wider audience that may not be able or

willing to apply highly complex ML models.

128

5.5 Discussion

Our �ndings are particularly relevant for domains where text classi�cation

tasks still have to be performed manually due to a lack of well-performing ML

models. A promising �eld of applications is supporting text labeling tasks that

domain experts carry out during their daily work [182, 193]. In such cases,

computational-aware Active Moderation can enable the partial automation of

classi�cation decisions while only assisting the ML models for the most uncer-

tain instances. This approach saves a signi�cant amount of human resources

compared to fully manual classi�cation. In addition, the overall classi�cation

performance is expected to increase. One �eld of application is the �ltering

of o�ensive and unwanted comments in online forums [297], which is usually

still performed manually due to the lack of highly accurate ML models. Ac-

tive Moderation can drastically reduce the moderation overload and free up

human resources. Human moderators can then focus on less repetitive tasks

while still achieving higher classi�cation performance than either machines or

humans alone can accomplish. For example, forum moderators can moderate

the most uncertain instances to the extent that is actually manageable.

Another use-case is to enhance the applicability of green ML solutions for

real-world use-cases. For example, computational-aware Active Moderation can

be applied to classify issue types in app stores without signi�cantly increasing

the carbon footprint. The lower prediction performance of lightweight classi�ers

is compensated for by manually correcting the most uncertain predictions with

a manageable amount of e�ort. As a result, reliability is greatly improved.

A computationally e�cient approach to Active Moderation is fundamental

to bringing highly accurate classi�ers closer to the actual users of the systems,

thus facilitating deployment on edge devices. Many HiL tools, such as Forum

4.0 [134], enable human users to rapidly build personalized prototype ML mod-

els on their own workstations. Since our framework demonstrates practicality

even with 4 GB of main memory, it can be easily integrated into resource-

constrained workstations. Furthermore, lightweight ML models pave the way

for implementing other HiL patterns that rely on low model latency. Generally,

Active Moderation also facilitates the agile deployment of ML systems. Tuning

ML models to achieve a desirable level of performance is challenging. Active

Moderation enables the use of less re�ned models at earlier stages of their de-

velopment during deployment. This signi�cantly reduces the time needed to

obtain an executable ML system.

Overall, the applicability of computational-aware Active Moderation depends

on whether human e�ort is a�ordable during the operational use of a classi�er

and whether more reliable classi�cation outcomes are actually needed.

129

Chapter 5 Computational-aware Active Moderation

5.5.3 Threats to Validity

The following section outlines the internal and external threats to validity.

Internal Threats. Our benchmark experiments rely heavily on the accuracy

of the labeled data we use for training, testing, and validation. Since most

of the datasets are labeled by humans, annotation errors, inconsistencies, or

subjectivity may introduce biases that a�ect the reliability of the labels. To

mitigate this limitation, we rely on established datasets from the literature.

We also simulate human labeling due to a lack of capacity to manually label

thousands of comments. It is rather unlikely that a real human would randomly

mislabel instances with a probability that is independent of the text being la-

beled. Simulated human participation may not fully re�ect and represent the

behavior of real humans. However, simulating human labeling for the sake of

consistency and standardization is a common pattern for evaluating HiL ap-

proaches [94, 154, 221]

Given the limited number of classi�ers and encodings used in our study (nine

and two, respectively), it is possible that we missed a con�guration that could

have produced better results. Expanding the benchmark to include additional

classi�ers or �ne-tuning the parameters could optimize their classi�cation per-

formance or reveal better results.

External Threats. Data labeling typically requires a considerable investment

of time and human resources. The high classi�cation performances showcased in

our study might prove impractical if the associated manual e�ort is not a�ord-

able or if human resources are scarce. For instance, while computational-aware

Active Moderation may attain a certain level of classi�cation performance, this

could surpass the capacity of manual e�orts. E�ectively navigating these con-

straints and establishing pragmatic expectations is crucial to deploying Active

Moderation in practical settings.

We conducted the Active Moderation experiments on a limited number of

datasets. However, the e�ectiveness and results of Active Moderation may not

directly generalize to other datasets or domains due to variations in data char-

acteristics, task complexity, or the presence of domain-speci�c biases. The gen-

eralizability of our �ndings raises concerns about their validity. We sought to

include diverse domains and datasets in our analysis to mitigate these concerns.

The e�ectiveness of Active Moderation may vary depending on the character-

istics of the dataset faced during deployment. Certain dataset characteristics,

such as class imbalance, noise, or concept drift, can challenge Active Modera-

130

5.5 Discussion

tion and limit its performance. Our experiments used random splits to train,

validate, and test our framework from the same data distribution. During de-

ployment, the data will likely shift over time, resulting in a performance degen-

eration. Therefore, results may di�er in real-world use-cases. Understanding

and accounting for these dataset-speci�c limitations is critical.

Furthermore, we have only considered the scenario where a batch of already

collected data needs to be classi�ed at once. In the real world, however, user

comments are not only historical, but may also come as a continuous stream of

data. In this case, it is impractical to assign a speci�c portion of the data to a

human, since the exact amount of comments is unknown.

5.5.4 Alternative Approaches from Related Work

The literature discusses several alternative approaches to reducing the num-

ber of misclassi�cations, mostly following the patterns of Active Moderation or

Safeguards.

Lee et al. [216] propose a similar approach of detecting whether an instance

is out-of-distribution from the training dataset and therefore likely to be mis-

classi�ed. However, their approach requires an auxiliary dataset representing

out-of-distribution samples during training, which is di�cult to create. De et al.

[83] introduce a semi-automated approach that directly optimizes a classi�er for

di�erent levels of automation. However, their approach only applies to convex

margin classi�ers such as SVMs. Xiao et al. [393] propose a self-checking mech-

anism for NNs, where the features of the internal layers are used to check the

reliability of the predictions. In contrast, our framework uses prediction uncer-

tainties obtained via a softmax function, which is relatively easy to implement.

Another strategy to mitigate error-prone classi�cations is to allow classi�ers to

abstain when clear decisions cannot be made [74, 303]. This can be achieved by

introducing an additional label into the classi�cation task or by training a sepa-

rate classi�er. Abstained instances could then be referred to human moderators,

similar to our approach. Abstaining from making a prediction typically entails a

binary decision. Bilgic and Getoor [36] suggest an approach to misclassi�cation

detection based on the premise that misclassi�ed instances are likely to have

similarly misclassi�ed neighbors or are most similar to other misclassi�ed in-

stances. Their method revolves around identifying clusters of misclassi�cations

and comparing them to incoming new instances.

131

Chapter 5 Computational-aware Active Moderation

5.6 Conclusion

This chapter has investigated the suitability of an Active Moderation-based

framework to di�erentiate between cases where human intervention should and

should not be required. In particular, it has focused on providing highly accu-

rate yet applicable text classi�cation solutions for low-end infrastructure where

strong state-of-the-art models would not be applicable due to resource con-

straints. The main �ndings are outlined below.

� Traditional ML models with con�dence-based uncertainty estimates can

e�ectively implement Active Moderation. Most classi�ers are highly e�ec-

tive at detecting when a prediction is likely to be incorrect.

� Computational-aware Active Moderation can achieve high levels of accu-

racy even with lightweight classi�ers. Speci�cally, the proposed framework

increased the F1 score from approximately 78% to at least 95% on �ve

out of six datasets by manually validating less than 29.6% of the data.

� An actively moderated classi�er has the potential to be more accurate

than a purely automated or purely manual classi�er, even when only a

noisy labeler is available.

� There is a high variability in the classi�cation performance of Active Mod-

eration depending on the dataset and classi�er used. LR and MLP were

the best-performing classi�ers regarding computation time and F1 score

for implementing computational-aware Active Moderation in our experi-

ments.

� Active Moderation can be e�ectively applied to lightweight text classi�-

cation models. Training and inference took only 1 second with only 4 GB

of main memory, making it highly computationally e�cient.

� Bayesian modeling, such as MCD, only slightly improved the quality of

the estimated uncertainty. It did not have a major impact on the resulting

F1 score of an actively moderated classi�er using a small MLP.

132

Chapter 6

Human-resource-aware Active

Moderation

Publication. This chapter is based in part on the 2022 paper �E�cient, Uncer-

tainty-based Moderation of Neural Networks Text Classi�ers� [11]. My contribu-

tion includes the conceptualization and implementation of the human-resource-

aware Active Moderation framework, including the modeling and quanti�cation

of prediction uncertainties in various neural text classi�ers. I also conducted

the experiments, analyzed the results, and led the writing of the paper.

Contribution. We propose a framework for the human-resource-aware Active

Moderation of text classi�ers. In Chapter 5, we have shown that the Active

Moderation pattern e�ectively improves the classi�cation performance of al-

ready trained lightweight text classi�ers during deployment. In this chapter, we

address the challenge of maintaining cost-e�ciency regarding the involvement of

human e�ort during the moderation process. Further, we focus on deep learn-

ing models. We introduce a saturation-based moderation strategy for Active

Moderation to maintain an optimal balance between classi�cation performance

and human e�ort. The goal is to reach a highly human-resource-aware mod-

eration process while still achieving top accuracies. Across a spectrum of ML

experiments, we observe a decrease in the e�ciency of Active Moderation as

the human workload increases. In addition, our �ndings reveal that there is a

speci�c point in the moderation process where it is not worthwhile for a human

to continue moderating due to the increasing sparsity of classi�cation mistakes.

Leveraging the proposed human-resource-aware Active Moderation framework,

we attained top accuracies of up to 98�99%, while limiting human involvement

to about one-third to one-fourth of the data. Furthermore, a noisy annota-

tor who guesses with a probability of 15% when labeling only reduces the F1

score by about 3%. The proposed framework is applicable to any classi�er that

provides accurate uncertainty estimates.

133

Chapter 6 Human-resource-aware Active Moderation

6.1 Motivation

Achieving top classi�cation performance in ML-based text classi�cation is dif-

�cult, and compromises must be accepted. Even the most advanced state-of-

the-art text classi�ers often fail to achieve classi�cation performance that can

be considered applicable to real-world use-cases. For example, Hey et al. [149]

achieve an F1 score of 73% to 93% using a state-of-the-art BERT model for re-

quirements classi�cation, which may be too low for use in production. ML-based

classi�ers cannot be used as a stand-alone solution if a much higher classi�ca-

tion performance is desired. Without su�cient support from ML models, service

providers may have to restrict their services to limit the amount of data to a

level that can be handled manually [285].

We have previously identi�ed Active Moderation as a promising HiL pat-

tern to reduce the number of incorrect deployment decisions (misclassi�cations).

Using Active Moderation, we successfully increased the overall applicability of

lightweight text classi�ers on low-end infrastructure (Chapter 5). The prediction

uncertainty was shown to be su�cient to e�ectively identify misclassi�cations.

A key �nding of our investigation was that the more e�ort a highly experienced

human was willing to put into correcting predictions, the higher the overall

classi�cation performance. However, HiL approaches that rely heavily on hu-

man annotators face another critical bottleneck: human e�ort. Since human

resources are costly and do not scale well to larger workloads, moderation pro-

cesses should be designed with human resource e�ciency in mind. However, the

e�cient in-operation integration of human e�ort for building semi-automated

decision systems remains largely unexplored. Furthermore, we have only stud-

ied lightweight models that do not allow for expressive Bayesian modeling. It

remains unknown how Active Moderation performs on deep NNs.

By default, Active Moderation lacks the ability to be cost-e�cient in terms

of human e�ort. We use the term �human-resource-aware� to describe the

cost-e�cient use of human resources, i.e., optimizing the number of times a

human is consulted to label a text instance. It remains unknown how to solve

the trade-o� between manual e�ort and achieved classi�cation performance in

a human-resource-aware manner. A naive approach to determine the number of

instances to manually label according to a given annotation budget has several

shortcomings. If too little human e�ort is spent, much potential is lost. If

too much e�ort is spent, a disproportionate amount of e�ort is required for

a comparatively small gain in classi�cation performance. Finding an optimal

threshold between classi�cation performance and human e�ort would greatly

improve the e�ciency and applicability of Active Moderation.

134

6.2 Conceptual Framework

6.2 Conceptual Framework

This section outlines human-resource-aware Active Moderation for text classi-

�cation. We de�ne the problem statement and present our saturation-based

moderation strategy, which aims to maintain high human e�ciency during the

moderation process.

6.2.1 Problem Statement

In Chapter 5, we found that moderating the 𝑘 most uncertain instances of a

dataset signi�cantly improves classi�cation performance. The question remains:

which 𝑘 provides the most human-resource-aware moderation while maximizing

the overall classi�cation performance? The term human-resource-aware refers

to the careful and economical use of human resources. Humans should only be

involved in the classi�cation process when their intervention is necessary, i.e.,

when a correction is to be made. If no correction is needed, but the human is

still involved, there is no added value to the overall classi�cation performance.

However, using a �xed 𝑘 as a separation criterion is not �exible and would not

adapt to the individual characteristics of the variety of real-world data. A much

more versatile approach is required.

To provide a human-resource-aware solution to the Active Moderation prob-

lem, we aim to separate all text instances into those that are better decided

manually and those that an ML-based classi�er can handle well on its own.

Similar to the framework introduced in Section 5.2, the search for an optimal

separation criterion can be formulated as follows: a partition of the data 𝑋 to

be classi�ed into two discrete sets 𝑋𝐻 and 𝑋𝐴 is sought, with 𝑋𝐻 ∪ 𝑋𝐴 = 𝑋 and

𝑋𝐻 ∩ 𝑋𝐴 = ∅. The set 𝑋𝐻 ⊆ 𝑋 represents all elements that should be moderated

by humans. 𝑋𝐻 should consist of the most uncertain and probably misclassi�ed

instances. On the other hand, 𝑋𝐴 ⊆ 𝑋 describes the set of instances that should

be classi�ed automatically. A separation criterion is needed to determine in a

human-resource-aware manner whether a new element 𝑥 ∈ 𝑋 to be classi�ed

should belong to 𝑋𝐴 or 𝑋𝐻 when the classi�er is used in production.

For human-resource-aware Active Moderation, a moderated classi�er 𝑓 𝜔
𝑚𝑜𝑑

(𝑋)
is created from the manual and automated predictions: 𝑓 𝜔

𝑚𝑜𝑑
(𝑋) := 𝑜𝐻 (𝑋𝐻) ∪

𝑓 𝜔 (𝑋𝐴), where 𝑜𝐻 is a human oracle and 𝑓 𝜔 an ML-based classi�er. To ensure

the applicability of 𝑓 𝜔
𝑚𝑜𝑑

over purely automated approaches 𝑓 𝜔, the following

conditions must be met:

� Each input 𝑥 to be classi�ed is either an exclusive part of 𝑋𝐴 or 𝑋𝐻 . Thus,

each input is �nally classi�ed manually or automatically.

135

Chapter 6 Human-resource-aware Active Moderation

� The classi�cation performance of the automated classi�cation 𝑌𝐴 ≈ 𝑓 𝜔 (𝑋𝐴)
should be as high as possible.

� Keep the number of elements in 𝑋𝐻 as small as possible to ensure the

e�ciency of human involvement.

� Human classi�cations 𝑜𝐻 (𝑋𝐻) should be much more accurate than auto-

matic classi�cations 𝑓 𝜔 (𝑋𝐻).

Given these conditions, a heuristic is needed to e�ciently determine whether

an instance 𝑥 to be classi�ed should rather belong to 𝑋𝐴 or 𝑋𝐻 .

6.2.2 Human-resource-aware Active Moderation as a Deployment

Pattern

A human-resource-aware moderation of classi�cation outcomes aims to save hu-

man resources while optimizing the overall classi�cation performance during

model deployment. We have previously shown that predictions with high un-

certainty have a higher error rate than predictions with very low uncertainty.

Thus, delegating highly uncertain classi�cations to a human oracle can signif-

icantly reduce the number of misclassi�cations. Instead of relying on a �xed

value of 𝑘, we determine whether an instance should undergo manual mod-

eration based on an uncertainty threshold 𝜗𝑢 ∈ R+. We propose to create a

human-resource-aware moderated classi�er 𝑓 𝜔
𝑚𝑜𝑑

from an arti�cial classi�er 𝑓 𝜔

as follows:

𝑓 𝜔𝑚𝑜𝑑 (𝑥) :=

𝑓 𝜔 (𝑥) if 𝑢[𝑦 |𝑥, 𝜔] ≤ 𝜗𝑢
𝑜𝐻 (𝑥) else

(6.1)

where 𝑜𝐻 : 𝑋 → 𝑌 represents the human oracle, 𝑢[𝑦 |𝑥, 𝜔] ∈ R+ an uncertainty

measure of 𝑓 𝜔 (𝑥) and 𝜔 the learned parameters of 𝑓 . If the uncertainty is below

a threshold 𝜗𝑢, the inferred label 𝑦 = 𝑓 𝜔 (𝑥) is considered reliable and is kept.

If the threshold is exceeded (𝑢[𝑦 |𝑥, 𝜔] > 𝜗𝑢), a human oracle 𝑜𝐻 is consulted

and its decision is used as the classi�cation outcome.

6.2.3 Saturation-based Moderation Strategy

We propose a saturation-based moderation strategy to determine the uncer-

tainty threshold 𝜗𝑢. Since misclassi�cations are more frequent at high uncer-

tainty levels, the classi�cation performance of an actively moderated classi�er

becomes less e�cient as the moderation load increases. At some point, signif-

icant improvements may no longer be achievable, and further e�ort will yield

diminishing improvements in classi�cation performance. A saturation-based

136

6.2 Conceptual Framework

0% 25% 50% 75% 100%
Moderation Effort

1

Cl
as

sif
ica

tio
n

Pe
rfo

rm
an

ce
 (C

P)

Expected CP
Random CP
Difference Curve
Saturation Point

Figure 6.1: Saturation detection for manual moderation. Saturation is reached
at the highest point of the di�erence between the expected and ran-
dom classi�cation performance curves.

strategy attempts to restrict the moderation to a point where the expected

improvement diminishes, indicating that the cost of continued moderation out-

weighs the gain in classi�cation performance.

Figure 6.1 depicts a hypothetical saturation curve of human-resource-aware

Active Moderation. The blue curve illustrates the expected classi�cation per-

formance of our framework when a certain number of the most uncertain pre-

dictions are manually moderated. The classi�cation performance of a moder-

ated classi�er relies on the manual annotations and the outcomes of the ML

model classifying the instances that are not forwarded to a human. In an ideal

setting, a classi�cation performance of 100% is achieved when 100% of the in-

stances are decided manually. In practice, however, achieving a classi�cation

performance of 100% manually would be unrealistic. ML models and humans

are prone to making mistakes [45, 148]. Nevertheless, it is generally assumed

that humans, especially domain experts, are capable of producing ground truth

data labels. The expected classi�cation performance curve follows the shape

𝑓 (𝑥) = 𝑎(1 − e−𝑏𝑥). The black line represents the classi�cation performance of

Active Moderation when instances are randomly sampled for moderation. Since

a random sample of instances is expected to contain the same proportion of

misclassi�cations as the entire dataset, the gain in classi�cation performance

increases linearly.

A natural point of saturation can be calculated as the peak of the di�erence

curve between the expected and random classi�cation performance [324]. In

general, a saturation point describes a scenario in which the cost of increasing a

parameter is no longer justi�ed by the corresponding performance improvement.

In the context of Active Moderation, the saturation point describes the situation

where a continued uncertainty-based moderation becomes less e�ective than

moderating randomly selected instances. At this point, correcting one additional

137

Chapter 6 Human-resource-aware Active Moderation

misclassi�cation is not worth the e�ort. We argue that moderation should stop

at this natural limit in order to maintain human-resource-awareness.

6.2.4 Uncertainty Assessment

To estimate epistemic and aleatory uncertainties in 𝑓 𝜔 we use techniques that

have shown e�ciency in similar uncertainty-driven tasks, such as computer vi-

sion [188] and Active Learning studies [57, 114]. We focus on three uncertainty

modeling techniques and a baseline. Speci�cally, we apply the uncertainty mod-

eling techniques MCD, BBB, and Ensemble (as introduced in Section 2.2.5)

along with a baseline. The baseline uses deterministic softmax outcomes as an

indicator of con�dence [148].

Furthermore, we utilize score functions based on the uncertainty modeling

techniques and a baseline to quantify the uncertainty of individual predictions.

For our experiments, we consider commonly used score functions, namely least

con�dent, smallest margin, and mutual information (Section 2.2.6).

6.3 Study Design

We continue our investigation of Active Moderation, with an emphasis on human

e�ciency. Our goal remains to develop a domain-independent framework that

can be applied to various real-world text classi�cation tasks. Thus, we persist

in examining diverse domains in our analysis of human-resource-aware Active

Moderation. We outline the research questions, study design, datasets used and

details of our implementation of human-recourse-aware Active Moderation.

6.3.1 Research Questions

We aim to address the following research questions:

RQ1: How does uncertainty modeling improve the classi�cation per-

formance of unmoderated classi�ers?

RQ1 investigates whether current deep learning-based text classi�ers with un-

certainty modeling (still a fully automated classi�cation without moderation)

can e�ectively address the problem by achieving a top classi�cation performance

close to 99%. In this case, an ML model could su�ciently solve the classi�cation

problem on its own and there would be no need for human intervention.

RQ2: How e�cient is Active Moderation in terms of misclassi�cation

detection rates?

138

6.3 Study Design

Human e�ciency is critical to the design of a HiL deployment pattern. With

RQ2 we investigate how e�cient our uncertainty-based Active Moderation frame-

work actually is. E�ciency is measured by the ratio of correctly classi�ed to

misclassi�ed instances referred to a human moderator.

RQ3: How much would saturation-based moderation improve classi-

�cation performance, and at what human cost?

In RQ3, our objective is to evaluate the human-resource-awareness of our frame-

work. We empirically investigate how our proposed saturation-based moderation

strategy resolves the trade-o� between achieved classi�cation performance and

manual e�ort and whether top classi�cation performance is still achievable.

RQ4: How do noisy oracles a�ect the classi�cation performance of a

human-resource-aware moderation?

Humans annotators are imperfect and prone to unintentional errors, clearly

impacting the accuracy of manual annotation. In RQ4, we assess the in�uence

of noisy annotators on our human-resource-aware Active Moderation framework.

6.3.2 Benchmark Criteria

To answer our research questions, we perform a series of ML experiments. First,

to answer RQ1, we evaluate the initial classi�cation performance of the three

classi�ers augmented with the di�erent uncertainty modeling techniques and

the baseline across all three datasets. We use the micro F1 score to measure

the classi�cation performance of the classi�ers on the actual classi�cation task

without manual moderation. Additionally, we evaluate the ability of the classi-

�er to detect misclassi�cations by computing the AUC-ROC score [81], based on

the correct (positive class) and misclassi�ed (negative class) outcomes. In this

setting, the AUC-ROC score can be interpreted as the probability that a correct

classi�cation will receive a higher con�dence score than a misclassi�cation. For

RQ2, the mean con�dence scores of all correct and misclassi�ed outcomes are

measured. Second, to evaluate the human e�ciency of Active Moderation, we

assess the ratio of misclassi�cations assigned to humans for moderation relative

to a given moderation load. Regarding RQ3, we evaluate the gains in classi�-

cation performance of human-resource-aware Active Moderation and determine

the most appropriate uncertainty estimation technique and model setting. We

compute saturation points to estimate the achievable F1 scores while limiting

human moderation e�ort. Finally, to address RQ4, we assess the impact of hu-

man noise; we simulate human failures by allowing the oracle to make guesses

139

Chapter 6 Human-resource-aware Active Moderation

given a certain noise level. We employ noise levels of 0%, 5%, 10%, and 15%,

where a class label is randomly selected from all possible classes given the noise

level. We investigate the F1 score achieved across all datasets when a noisy

human moderates instances according to the suggested saturation points. All

experiments are performed on the hold-out test dataset.

6.3.3 Datasets

To experimentally evaluate our saturation-based moderation framework, we con-

ducted several benchmarking experiments using three publicly available datasets.

These are summarized in Table 6.1.

Dataset Size |𝐶 | Class Distribution #Words (𝜇 ± 𝜎)
Hate Speech 40,000 2 23,775:16,225 63 ± 104
IMDB 50,000 2 25,000:25,000 234 ± 173

20NewsGroups 18,846 20
999:997:996:994:991:990:990:988:987:985:
984:982:975:973:963:940:910:799:775:628

315 ± 658

Table 6.1: Statistics about the datasets used in the benchmark experiments.

The Hate Speech dataset, provided by a recent Kaggle competition1, con-

sists of Wikipedia comments that have been manually labeled for toxic behavior.

We unify di�erent forms of toxicity in the dataset into a binary classi�cation task

(toxic and non-toxic) and conduct our experiments on a random subset of 40,000

comments. The IMDB dataset [243] consists of 50,000 highly polarized English

movie reviews associated with either a positive or negative sentiment. Lastly, the

20NewsGroups dataset [212] consists of 18,846 English documents grouped

into 20 di�erent news topics. For the training, validation, and test sets, we ran-

domly sampled from the Hate Speech, IMDB, and 20NewsGroups datasets us-

ing train-validate-test splits of 20,000:10,000:10,000, 25,000:12,500:12,500, and

9,846:4,500:4,500, respectively. We conducted all experiments �ve times with

randomized data splits.

6.3.4 Implementation Details

In our evaluation of human-resource-aware Active Moderation, we utilize three

common NN architectures from the literature: CNN, KimCNN, and Distil-

BERT. The CNN consists of a convolutional layer, a global max-pooling layer,

and two fully connected dense layers, similar to recent studies on app reviews

and tweet classi�cation [350]. Dropout is applied before each weight layer at

a rate of 0.4 with L2-regularization using a kernel penalty of 10−5. As fea-

ture representations, we employ 100-dimensional trainable word vectors that
1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

140

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

6.4 Results

are randomly initialized. For KimCNN, we follow the NN architecture and

con�guration recommended by Kim [195]. The author proposes a multi-channel

convolutional NN with di�erent �lter region sizes, followed by a 1-max pool-

ing layer. As feature representations, we use static 300-dimensional Google

word2vec embeddings, which are pre-trained on 100 billion news articles [253].

Finally, we employ the widely adopted state-of-the-art text classi�cation model

DistilBERT [323], a distilled version of BERT. DistilBERT incorporates 40%

fewer parameters than BERT, making it signi�cantly more e�cient for training

while maintaining approximately 97% of its classi�cation performance. We �ne-

tune DistilBERT using the default con�gurations of the Hugging Face Trainer

API2.

For the uncertainty modeling techniques MCD and BBB, 50 stochastic for-

ward passes are used. We consider 5 NNs as the size of the ensembles. It has

been shown that larger ensembles do not signi�cantly improve the uncertainty

estimates [210]. For the MCD and baseline approaches, we perform inference on

the same trained ML model since they share the same training procedure. For

the implementation of BBB in the CNN and KimCNN, we replaced the network

layers with Bayesian layers using the TensorFlow Probability3 library. For Dis-

tilBERT, we only implement MCD by activating the model's internal dropout

layer at inference time, as done by Miok et al. [256]. BBB cannot be applied

directly to DistilBERT. This would require changing the network architecture

and re-training DistilBERT from scratch.

We utilize the Kneedle algorithm [324] to detect the saturation point, as

discussed in Section 6.2.3. Since real saturation curves often lack smoothness,

we employ polynomial interpolation to �t a spline for saturation point detection.

6.4 Results

We outline the results of our experiments and answer the research questions.

Our replication package is publicly available online4.

6.4.1 Impact of Uncertainty Modeling on the Classi�cation

Performance

Table 6.2 presents the initial F1 scores of the classi�ers when no manual moder-

ation is performed. The table is structured according to the evaluation metrics

2https://huggingface.co/transformers
3https://www.tensorflow.org/probability
4https://github.com/jsandersen/CMT

141

https://huggingface.co/transformers
https://www.tensorflow.org/probability
https://github.com/jsandersen/CMT

Chapter 6 Human-resource-aware Active Moderation

Hate Speech IMDB 20NewsGroups

Metrics Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble

F1 score ↑ 90.2|0.1 90.6|0.2 90.4|0.2 90.4|0.3 88.7|0.1 89.0|0.1 89.0|0.1 89.6|0.2 86.9|0.2 87.1|0.1 87.4|0.3 90.1|0.4

C
N
N

Mean Conf. Mis. 89.3|0.2 83.4|0.4 87.5|0.3 85.2|0.4 88.5|0.6 79.5|0.2 82.5|0.7 82.5|0.2 65.4|0.7 57.5|1.9 57.2|0.8 55.5|0.8
Mean Conf. Cor. 98.3|0.1 96.9|0.1 98.1|0.1 97.6|0.1 97.9|0.1 95.2|0.1 96.3|0.1 96.3|0.1 94.4|0.3 85.1|0.4 91.6|0.2 90.8|0.2

Range ↑ 8.7 13.5 10.6 12.4 9.4 15.7 13.8 13.8 29.0 34.6 34.4 35.3

AUC-ROC ↑ 86.3|0.5 86.1|0.6 86.3|0.4 86.8|0.3 83.7|0.2 84.0|0.1 83.8|0.4 83.8|0.2 89.8|0.1 90.0|0.2 90.2|0.4 89.2|0.5

F1 score 91.2|0.2 91.4|0.1 91.3|0.2 91.3|0.1 88.9|0.2 89.7|0.2 89.3|0.1 89.5|0.1 88.2|0.3 88.7|0.2 86.8|0.2 89.5|0.2

K
im

C
N
NMean Conf. Mis. 82.6|0.8 77.5|0.3 82.8|0.3 81.7|0.2 78.5|0.5 73.4|0.2 82.3|0.3 76.5|0.5 54.2|0.5 48.1|0.4 60.1|0.3 52.0|0.4

Mean Conf. Cor. 97.0|0.3 95.4|0.1 97.1|0.1 96.8|0.1 97.5|0.1 92.2|0.1 96.5|0.1 93.6|0.2 90.8|0.3 84.5|0.4 92.0|0.1 89.5|0.2
Range 14.4 17.9 14.3 15.1 15.9 18.8 14.2 17.1 36.6 36.4 31.9 37.5

AUC-ROC 85.1|0.6 87.6|0.2 85.2|0.4 85.9|0.0 83.6|0.4 84.7|0.3 85.0|0.2 84.0|0.4 88.4|0.3 89.1|0.3 88.5|0.5 88.2|0.2

F1 score ↑ 94.0|0.2 94.1|0.1 - 94.0|0.1 93.7|0.1 93.7|0.1 - 93.9|0.2 90.5|0.4 90.4|0.4 - 91.1|0.3

D
is
ti
lB
E
R
T

Mean Conf. Mis. 86.6|0.5 83.3|0.6 - 85.8|1.2 85.7|1.1 82.1|0.8 - 82.8|0.8 71.1|1.7 66.4|0.9 - 68.3|0.8
Mean Conf. Cor. 98.5|0.1 98.1|0.1 - 98.5|0.1 98.2|0.3 97.5|0.2 - 97.7|0.2 95.1|0.2 93.5|0.2 - 94.5|0.1

Range ↑ 11.9 14.8 - 12.7 12.5 15.4 - 14.9 24.0 27.1 - 26.2
AUC-ROC ↑ 89.5|0.5 91.6|0.3 - 91.4|0.4 88.7|0.4 88.9|0.4 - 89.0|0.3 90.2|0.4 90.4|0.3 - 90.4|0.3

Table 6.2: E�ect of extending NN text classi�ers with the uncertainty modeling
techniques (without manual moderation). Each cell displays the
mean | standard deviation of �ve independent classi�cation runs. For
each of the nine experiments (3 classi�ers and 3 datasets), the scores
of the best and worst performing uncertainty modeling techniques
are highlighted in green and red, respectively.

and the uncertainty modeling techniques employed for each dataset and clas-

si�er. Each cell contains the mean and standard deviation derived from �ve

independent classi�cation runs. For each classi�er and dataset, the results of

the best and worst performing uncertainty modeling techniques are highlighted

in green and red, respectively. Mean Conf. represents the mean con�dence score

of all misclassi�cations (Mis.) and correct classi�cations (Cor.). The mean con-

�dence range (Range) is calculated as the range between the mean con�dence

scores.

The results indicate that CNN and KimCNN achieve similar F1 scores across

all experiments, ranging from 86.9% to 91.4%. DistilBERT demonstrates su-

perior classi�cation performance, especially in binary classi�cation tasks (Hate

Speech and IMDB), with F1 scores up to 94.1%. However, even DistilBERT

has room for improvement, as it falls short of achieving top F1 scores of around

99%. The results also show that the explicit modeling of uncertainty has only a

small e�ect compared to the F1 scores of the baselines (less than 1%). The only

exception is an ensemble model using CNN and 20NewsGroups (multi-label

classi�cation), which exhibits an improvement of 3.2%, reaching about 90%.

Among the uncertainty modeling techniques, MCD performs best on the Hate

Speech dataset, while an ensemble model performs best on the 20NewsGroups

and IMDB datasets. BBB never achieves the highest F1 score.

The con�dence scores show that explicit modeling of uncertainty leads to

fewer overcon�dent misclassi�cations compared to the baseline. Uncertainty

modeling tends to increase the con�dence range between correct and incorrect

classi�cations. Among the classi�ers, KimCNN produced the least overcon�-

142

6.4 Results

0% 25% 50% 75% 100%
Moderation Effort

0.1

0.2

0.3

0.4

0.5

0.6
M

is
cl

as
si

fic
at

io
n

R
at

e
HateSpeech CNN-BL

CNN-MCD
CNN-BBB
CNN-EN

0% 25% 50% 75% 100%
Moderation Effort

0.1

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
R

at
e

IMDB CNN-BL
CNN-MCD
CNN-BBB
CNN-EN

0% 25% 50% 75% 100%
Moderation Effort

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
is

cl
as

si
fic

at
io

n
R

at
e

20NewsGroups CNN-BL
CNN-MCD
CNN-BBB
CNN-EN

0% 25% 50% 75% 100%
Moderation Effort

0.1

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
R

at
e

HateSpeech KimCNN-BL
KimCNN-MCD
KimCNN-BBB
KimCNN-EN

0% 25% 50% 75% 100%
Moderation Effort

0.1

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
R

at
e

IMDB KimCNN-BL
KimCNN-MCD
KimCNN-BBB
KimCNN-EN

0% 25% 50% 75% 100%
Moderation Effort

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
is

cl
as

si
fic

at
io

n
R

at
e

20NewsGroups KimCNN-BL
KimCNN-MCD
KimCNN-BBB
KimCNN-EN

0% 25% 50% 75% 100%
Moderation Effort

0.1

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
R

at
e

HateSpeech DistilBERT-BL
DistilBERT-MCD
DistilBERT-EN

0% 25% 50% 75% 100%
Moderation Effort

0.1

0.2

0.3

0.4

0.5

0.6

M
is

cl
as

si
fic

at
io

n
R

at
e

IMDB DistilBERT-BL
DistilBERT-MCD
DistilBERT-EN

0% 25% 50% 75% 100%
Moderation Effort

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
is

cl
as

si
fic

at
io

n
R

at
e

20NewsGroups DistilBERT-BL
DistilBERT-MCD
DistilBERT-EN

Figure 6.2: Human e�ciency of Active Moderation. E�ciency is represented by
the misclassi�cation ratio when moderating a given number of the
most uncertain instances.

dent false positives, followed by DistilBERT. Furthermore, our results reveal

that MCD, BBB, and an ensemble generally outperform the baseline regarding

misclassi�cation detection (AUC-ROC). However, no speci�c technique consis-

tently outperforms the others across all experiments.

6.4.2 E�ciency of Misclassi�cation Detection

We examine the human e�ciency of Active Moderation, which represents the

ratio of misclassi�cations assigned to human moderation for a given moderation

e�ort. Figure 6.2 illustrates the human e�ciency using di�erent uncertainty

modeling approaches and the baseline.

Our results reveal that as moderation e�ort increases, human e�ciency de-

creases. On the Hate Speech and IMDB datasets, the misclassi�cation rate

hovers around 50% when moderating less than 1% of the data. Thus, nearly

every second moderation request is a misclassi�cation. For the 20NewsGroups

dataset, the misclassi�cation rate is even higher, around 75%, when moderating

less than 1% of the data. The e�ciency curves illustrate a decline in human

e�ciency in resolving misclassi�cations. Misclassi�cations become sparser with

increasing moderation e�ort. The misclassi�cation rate converges to a classi�er's

classi�cation performance at 100% manual e�ort.

143

Chapter 6 Human-resource-aware Active Moderation

0% 25% 50% 75% 100%
Moderation Effort

0.92

0.94

0.96

0.98

1.00
HateSpeech

CNNBL
CNNMCD
CNNBBB
CNNEN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.90

0.92

0.94

0.96

0.98

1.00
IMDB

CNNBL
CNNMCD
CNNBBB
CNNEN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups

CNNBL
CNNMCD
CNNBBB
CNNEN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.92

0.94

0.96

0.98

1.00
HateSpeech

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.90

0.92

0.94

0.96

0.98

1.00
IMDB

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00
20NewsGroups

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.92

0.94

0.96

0.98

1.00
HateSpeech

DistilBERTBL
DistilBERTMCD
DistilBERTEN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.90

0.92

0.94

0.96

0.98

1.00
IMDB

DistilBERTBL
DistilBERTMCD
DistilBERTEN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups

DistilBERTBL
DistilBERTMCD
DistilBERTEN

F1
 S

co
re

Figure 6.3: F1 score gains for the three considered datasets with the proposed
moderation using di�erent uncertainty modeling techniques and
the baseline (BL). Dotted-lines illustrate the F1 scores of a random
moderation strategy.

With a moderation e�ort of 10%, 20%, and 50%, the misclassi�cation rate

decreases to 41%, 32%, and 18%, respectively, on the Hate Speech dataset.

There are no signi�cant di�erences between the di�erent uncertainty modeling

approaches on the Hate Speech and IMDB datasets. On the 20NewsGroups,

the ensemble approach is much less e�cient to moderate. Of all the classi�ers,

DistilBERT is the least e�ective at detecting misclassi�cations.

6.4.3 Saturation-based Moderation Performance

Next, we examine the overall F1 scores of the human-resource-aware Active

Moderation framework. This is the F1 score that is achieved when a speci�c

proportion of the most uncertain instances are decided manually, while an au-

tomated classi�er decides the remaining. Figure 6.3 illustrates these F1 scores

for the Hate Speech, IMDB, and 20NewsGroups datasets. The y-axis represents

the F1 score, while the x-axis indicates the corresponding manual moderation

e�ort. In our �rst experiments, manual labeling is accomplished by selecting

the ground truth label. Only the least con�dent score function5 is reported for

all experiments, as it achieves the highest F1 score in most cases and exhibits

the most consistent classi�cation performance.

5𝑢𝑛𝑐𝐿𝐶 [𝑦 |𝑥, 𝐷] := 1 −max𝑐 𝑝(𝑦 = 𝑐 |𝑥, 𝐷)

144

6.4 Results

Hate Speech IMDB 20NewsGroups

Saturation Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble

Moderation Load 31.7 31.6 31.2 31.8 33.2 32.2 32.9 33.8 28.5 28.6 27.5 27.7

C
N
N

F1 score
98.08
(+7.9)

98.10
(+7.5)

97.94
(+7.6)

98.25
(+7.8)

97.80
(+9.1)

97.77
(+8.8)

97.77
(+8.8)

98.03
(+8.4)

98.10
(+11.2)

98.15
(+11.1)

98.13
(+10.8)

98.46
(+8.3)

Moderation Load 26.6 29.1 28.7 26.2 35.5 33.4 33.1 34.9 27.8 28.2 30.7 27.7

K
.C
N
N

F1 score
97.57
(+6.4)

98.39
(+7.0)

97.77
(+6.5)

97.70
(+6.4)

98.01
(+9.1)

98.13
(+8.5)

98.12
(+8.8)

98.20
(+8.7)

98.00
(+9.8)

98.32
(+9.6)

98.04
(+11.2)

98.24
(+8.8)

Moderation Load 24.5 23.9 - 24.5 25.3 25.1 - 24.6 25.5 25.9 - 25.5

D
.B
E
R
T

F1 score
99.36
(+5.3)

99.37
(+5.3)

-
99.37
(+5.4)

99.03
(+5.4)

99.01
(+5.3)

-
99.04
(+5.1)

98.60
(+8.1)

98.62
(+8.2)

-
98.82
(+7.7)

Table 6.3: Achieved F1 scores and moderation load required (in %) using our
human-resource-aware Active Moderation framework.

Figure 6.3 depicts the gains in F1 score, highlighting a signi�cant increase

over a random moderation strategy, as shown by the dotted lines. Additionally,

as demonstrated in Section 6.4.2, it can be seen that the moderation e�ciency

decreases with an increasing moderation load. Misclassi�cations become more

frequent when a classi�er reports large uncertainty scores.

A similar moderation behavior is observed across all examined classi�ers. All

F1 score curves for all classi�ers adhere to the shape of a saturation curve, as we

assumed (Section 6.2.3). The highest variations are observed on the 20News-

Groups dataset. Moreover, the di�erence between all approaches diminishes

with increasing moderation e�ort. By manually moderating more instances, all

classi�ers achieve more similar F1 scores. An ensemble of homogeneous NNs

and MCD achieves the highest overall F1 score with the least moderation e�ort

(with BBB slightly less e�ective). On average, the baseline requires slightly, but

not signi�cantly, more manual e�ort to achieve the same F1 score.

Since gains in classi�cation performance decrease with an increasing modera-

tion e�ort, we calculate saturation points to determine when to stop moderating

before it becomes ine�cient. Table 6.3 lists these saturation points for the LC

score function. The absolute improvement in F1 score is provided in parenthe-

ses. The table demonstrates that our moderation framework can achieve F1

scores of 98% to 99% on all classi�cation tasks while maintaining an e�cient

human moderation. These F1 scores can be achieved with all considered classi-

�ers and uncertainty estimation techniques. Saturation points are reached after

moderating less than 33.1% of the dataset for CNN and KimCNN and less than

25.5% for DistilBERT. All classi�ers o�er a similar trade-o� between the F1

score achieved and the moderation e�ort. However, the baseline is sub-optimal

as it either saturates with a slightly higher moderation e�ort or provides a

lower F1 score than MCD, BBB and an ensemble. On the IMDB dataset, MCD

reaches saturation with the least moderation e�ort while maintaining a high

level of classi�cation performance. Conversely, an ensemble performs best on

145

Chapter 6 Human-resource-aware Active Moderation

0% 25% 50% 75% 100%
Moderation Effort

0.90

0.92

0.94

0.96

0.98

1.00
HateSpeech 5% Noise

F1
 S
co
re

CNNBL
CNNMCD
CNNBBB
CNNEN

0% 25% 75% 100%

0.90

0.92

0.94

0.96

0.98

1.00

F1
 S
co
re

HateSpeech 10% Noise

50%
Moderation Effort

CNNBL
CNNMCD
CNNBBB
CNNEN

0% 25% 50% 75% 100%
Moderation Effort

0.90

0.92

0.94

0.96

0.98

1.00
HateSpeech 15% Noise

F1
 S
co
re

CNNBL
CNNMCD
CNNBBB
CNNEN

0% 25% 50% 75% 100%
Moderation Effort

0.90

0.92

0.94

0.96

0.98

1.00
HateSpeech 5% Noise

F1
 S
co
re

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

0% 25% 50% 75% 100%
Moderation Effort

0.90

0.92

0.94

0.96

0.98

1.00
HateSpeech 10% Noise

F1
 S
co
re

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

0% 25% 50% 75% 100%
Moderation Effort

0.90

0.92

0.94

0.96

0.98

1.00
HateSpeech

F1
 S
co
re

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

15% Noise

0% 25% 75% 100%

0.90

0.92

0.94

0.96

0.98

1.00
HateSpeech 5% Noise

50%
Moderation Effort

F1
 S
co
re

DistilBERTBL
DistilBERTMCD
DistilBERTEN

0% 25% 75% 100%

0.90

0.92

0.94

0.96

0.98

1.00
HateSpeech 10% Noise

50%
Moderation Effort

F1
 S
co
re

DistilBERTBL
DistilBERTMCD
DistilBERTEN

0% 25% 50% 75% 100%
Moderation Effort

0.90

0.92

0.94

0.96

0.98

1.00
HateSpeech

F1
 S
co
re

DistilBERTBL
DistilBERTMCD
DistilBERTEN

15% Noise

Figure 6.4: Active Moderation under human noise (5%, 10%, and 15%) on
the HateSpeech dataset using various uncertainty modeling tech-
niques. Vertical lines illustrate the saturation points.

the 20NewsGroups dataset. DistilBERT requires the least manual e�ort while

achieving the highest level of F1 score, that is 98.6% to 99.37%. The results

also reveal that models with low initial F1 scores achieve higher absolute F1

score improvements. Overall, a moderator using our framework has to label up

to 73.3% (Hate Speech), 71.0% (IMDB), and 70.9% (20NewsGroups) less data

instances compared to a random moderation strategy to attain the same F1

score.

6.4.4 E�ect of Human Noise

Lastly, we investigate how a noisy human would a�ect the classi�cation per-

formance of the proposed saturation-based moderation framework. Figure 6.4

shows the F1 scores of the saturation-based moderation under di�erent noise

levels for the Hate Speech dataset. Figures A.1 and A.2 illustrate the results for

the IMDB and App Store datasets. The vertical lines illustrate the saturation

points. Since humans are now committing errors (random guesses in 5%, 10%,

or 15% of cases), the classi�cation performance does not peak at 100% when

all data is manually labeled. In fact, after a certain amount of manual e�ort,

the classi�cation performance starts to degrade, as a point is reached where

humans are making more labeling mistakes than the classi�er. Thus, stopping

the moderation is much more crucial. Clearly, the higher the noise level of the

146

6.5 Discussion

Hate Speech IMDB 20NewsGroups

Saturation Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble Baseline MCD BBB Ensemble

Moderation Load 31.7 31.6 31.2 31.8 33.2 32.2 32.9 33.8 28.5 28.6 27.5 27.7

C
N
N

F1 score
5% Noise

97.46
(+7.3)

97.35
(+6.8)

97.31
(+6.9)

97.50
(+7.1)

96.70
(+8.0)

96.70
(+7.7)

96.68
(+7.7)

96.92
(+7.3)

96.72
(+9.8)

96.82
(+9.7)

97.00
(+9.6)

97.17
(+7.1)

F1 score
10% Noise

96.31
(+6.1)

96.26
(+5.7)

96.22
(+5.8)

96.45
(+ 6.1)

95.54
(+6.8)

95.65
(+6.7)

95.56
(+6.6)

95.73
(+6.1)

95.53
(+8.6)

95.36
(+8.3)

95.36
(+8.0)

95.84
(+5.7)

F1 score
15% Noise

95.32
(+5.1)

95.33
(+4.7)

95.25
(+4.8)

95.41
(+5.0)

94.52
(+5.8)

94.64
(+5.6)

94.52
(+5.5)

94.70
(+5.1)

94.07
(+7.2)

94.12
(+7.0)

94.18
(+6.8)

94.42
(+4.3)

Moderation Load 26.6 29.1 28.7 26.2 35.5 33.4 33.1 34.9 27.8 28.2 30.7 27.7

K
w
o
n
C
N
N

F1 score
5% Noise

97.16
(+6.0)

97.69
(+6.3)

97.27
(+6.0)

97.18
(+5.9)

96.88
(+8.0)

97.08
(+7.4)

97.03
(+7.7)

97.00
(+7.5)

96.72
(+8.5)

97.02
(+8.3)

96.56
(+9.8)

96.83
(+7.3)

F1 score
10% Noise

96.32
(+5.1)

96.80
(+5.4)

96.28
(+5.0)

96.31
(+5.0)

95.73
(+6.8)

95.80
(+6.1)

95.93
(+6.6)

95.81
(+6.3)

95.51
(+7.3)

95.56
(+6.9)

95.02
(+8.2)

95.64
(+6.1)

F1 score
15% Noise

95.31
(+4.1)

95.89
(+4.5)

95.21
(+3.9)

95.54
(+4.2)

94.57
(+5.7)

94.87
(+5.2)

94.88
(+5.6)

94.77
(+5.3)

94.04
(+5.8)

94.28
(+5.6)

93.72
(+6.9)

94.02
(+4.5)

Moderation Load 24.5 23.9 - 24.5 25.3 25.1 - 24.6 25.5 25.9 - 25.5

D
is
t
iB
E
R
T

F1 score
5% Noise

98.55
(+4.6)

98.53
(+4.4)

-
98.51
(+4.5)

98.20
(+4.5)

98.17
(+4.5)

-
98.19
(+4.3)

97.34
(+6.8)

97.37
(+7.0)

-
97.71
(+6.6)

F1 score
10% Noise

97.71
(+3.7)

97.84
(+3.7)

-
97.71
(+3.7)

97.37
(+3.7)

97.35
(+3.6)

-
97.40
(+3.5)

96.28
(+5.8)

96.16
(+5.8)

-
96.49
(+5.4)

F1 score
15% Noise

96.91
(+2.9)

96.96
(+2.9)

-
96.88
(+2.9)

96.41
(+2.7)

96.46
(+2.8)

-
96.53
(+2.6)

94.92
(+4.4)

94.78
(+4.4)

-
95.35
(+4.3)

Table 6.4: F1 scores and moderation load (in %) achieved using our framework
under di�erent levels of human noise.

human moderator, the less accurate the actively moderated classi�er becomes.

Furthermore, it can be observed that the moderation of DistilBERT is more

challenging due to its relatively high initial classi�cation performance. In such

cases, the human moderator must be highly accurate to outperform the model.

Table 6.4 presents the F1 scores of the classi�ers when the moderation is

stopped at the saturation points under various noise levels. The saturation

points correspond to those in Table 6.3. The results suggest that even in the

presence of human noise, saturation-based moderation leads to signi�cant im-

provements in classi�cation performance in all experiments. A 5% noisy human

would achieve an F1 score of at least 96�98%, a 10% noisy human would achieve

95-97%, and a 15% noisy human would achieve at least 94�96%. This represents

an average 3% decrease in F1 score when considering a 15% noisy human com-

pared to a perfectly accurate labeler. Furthermore, the results demonstrate that

superior F1 scores can be achieved through our Active Moderation framework,

even when a human is highly noisy. For example, a 15% noisy human would

attain an F1 score of approximately 93.5%, while the machine is 91% accurate.

When combined, an F1 score of up to 96.53% is obtained (IMDB).

6.5 Discussion

This chapter proposes a novel uncertainty-based framework for implementing

the Active Moderation pattern in a human-resource-aware manner. We discuss

the implications of our �ndings, areas of application, and limitations of our

framework.

147

Chapter 6 Human-resource-aware Active Moderation

6.5.1 Implications

Our results indicate that explicit uncertainty modeling alone can hardly im-

prove the classi�cation performance of ML-based text classi�ers. However, our

human-resource-aware Active Moderation framework can substantially improve

the classi�cation performance and thus the applicability of both weak (CNN

/ KimCNN) and strong (DistilBERT) text classi�ers. Our HiL framework re-

quires only a fraction of the human e�ort (a quarter to a third) compared to

fully manual classi�cation, while achieving top classi�cation performance levels

of approximately 98�99%. Even when a human is noisy (e.g. guessing 15% of

the time), our framework still achieves a classi�cation performance of 95�97%.

This translates into substantial savings in human resources. Furthermore, our

framework is highly e�cient at correcting misclassi�cations. In particular, in a

binary classi�cation task, 50% of the �rst 1% of human assignments are mis-

classi�cations. Human e�ciency then begins to decline. Stopping moderation

when it becomes ine�cient is the main advantage of our framework. Further-

more, our results show that the framework works well with standard determin-

istic NNs (baseline). Although the classi�cation performance improvement and

e�ort minimization are not as good as with explicit uncertainty modeling, the

baseline achieves similar top F1 scores, especially with DistilBERT. Thus, the

cost of implementing and adapting the framework to existing classi�ers is rather

low. The additional cost of explicit uncertainty modeling should be weighed

against the marginal improvements that can be achieved.

Clearly, the usefulness of our framework depends on the application scenario

at hand. In particular, it is crucial to �rst investigate:

� Whether or not a top classi�cation performance, of e.g. 99% is expected

by users or not.

� Whether and how human moderation is applicable, and whether the mod-

eration can be trusted.

� Whether the goal is to maximize the classi�cation performance while min-

imizing human e�ort.

We believe that HiL classi�cation approaches are particularly important in do-

mains with a very large number of classi�cations and where classi�cation mis-

takes are costly, for example, when user comments need to be moderated in a

public debate space, such as comments in news outlets [40, 234] or in Wikipedia

as in the Hate Speech dataset. Purely automated classi�cation and analysis

of inherently ambiguous text, e.g. re�ecting human opinions or outlining novel

148

6.5 Discussion

ideas, will quickly reach its limits. Even humans may not be able to agree on a

single label for complex text [314]. As our experiments have shown, most text

instances can be accurately labeled by an ML model and do not require human

e�ort. However, complex or ambiguous text may not be adequately handled by

black-and-white thinking, and machines may not be able to make reliable clas-

si�cations. By bringing a human into the loop, human creativity and reasoning

can help solve such di�cult tasks e�ciently.

In moderation, additional data is continuously collected and can be used to

occasionally re-train the classi�er (Continuous Learning). Frequent re-training

prevents the classi�cation performance of the underlying classi�er from decaying

over time [260] and may (but does not necessarily) improve its classi�cation

performance [20]. Our results suggest that moderation would bene�t from a

higher initial classi�cation performance as the amount of human involvement

seems to be lowest here.

In addition, the saturation-based moderation strategy of human-resource-

aware Active Moderation is applicable to online classi�cation settings that deal

with a continuous stream of data. For each received instance, it can be individ-

ually judged whether it should be manually labeled or not. In comparison, a

�xed size moderation load requires all data to be available prior to moderation.

6.5.2 Field of Application

The proposed human-resource-aware Active Moderation framework addresses

a signi�cant obstacle of HiL systems by maximizing the utilization of human

labelers. Without considering human e�ciency, the applicability of Active Mod-

eration would raise critical concerns. We o�er a comprehensive solution to the

trade-o� between manual e�ort and classi�cation performance that has broad

applications across various domains. Its �eld of application overlaps with that

of computational-aware Active Moderation (Chapter 5).

A central use-case of human-resource-aware Active Moderation is in settings

where a high level of classi�cation performance is desired, but cannot be achieved

by ML models alone. A typical example is the moderation of online forums.

Here, human moderators are typically confronted with a large amount of data

that needs to comply with certain guidelines. Human-resource-aware Active

Moderation allows for a highly e�cient use of human resources by only asking

for help when it is most e�ective in terms of classi�cation performance. Another

use-case for our framework is data-driven software engineering. App stores and

issue trackers serve as valuable sources of information from a software engineer-

ing perspective. Users typically express feature requests, bug reports, or praise

149

Chapter 6 Human-resource-aware Active Moderation

and dispraise, which provide valuable insights for software developers. Since

automated classi�cation of these types of insights is challenging, our framework

would enable a human cost-e�cient HiL solution to raise the classi�cation per-

formance and usability of these sources. Active Moderation mitigates the risk

of misclassi�cations and the cost of corrections.

6.5.3 Threats to Validity

We discuss the internal and external threats to validity.

Internal Threats. Our framework is based on the assumption that the ex-

pected classi�cation performance curve of a classi�er can be used to estimate

how it would perform in practice. This assumption depends on whether the

dataset used for testing and the derived saturation point represent the real data

distribution. In cases where this assumption is not reasonable, and the real data

distribution is signi�cantly di�erent, the results could be adversely a�ected. For

example, the operational data distribution and the saturation curve would need

to be monitored and possibly adjusted. Further research is needed to investigate

the impact of distribution changes on our framework.

In some parts of our experiments, we assume that human moderators do

not commit errors. While a �awless moderator is generally assumed in the re-

view of interactive ML approaches such as Active Learning [57, 114, 158], this

assumption may not hold in all real-world scenarios [335]. However, domain

expert annotations are usually considered to be more thoughtful and trustwor-

thy than machine annotations, especially for di�cult tasks such as classifying

ambiguous text. For instance, human annotations are generally considered as

the ground truth for many classi�cation tasks and are used to initially label

training data[221]. This assumption may have limitations in practice, as even

humans can make mistakes [45]. However, it is unrealistic to assume that la-

beling mistakes are randomly distributed across the dataset and that they are

independent of the complexity of the actual labeling task. Real humans may

behave di�erently.

Furthermore, interactive ML approaches such as our framework face a scal-

ability limitation. Even a small fraction of human involvement can lead to

enormous manual e�ort when the data to be classi�ed is very large. Our frame-

work can limit human involvement to labeling 23.9�25.4% of the data to achieve

a top F1 score. It is up to the human moderators to decide whether this e�ort

is applicable and desirable. While 23.9% of 1,000 might be manageable for a

human moderator, a third of 100,000 will still cause scalability problems.

150

6.5 Discussion

External Threats. Our framework also faces the limitation that uncertainty

estimation approaches are unable to identify highly certain classi�cations that

are actually wrong (unknown unknowns) [26]. Thus, it is unrealistic to avoid

all misclassi�cations without manually checking all the data. However, we have

shown that our framework can e�ciently identify most misclassi�cations, result-

ing in high F1 scores of around 98�99%.

Finally, as with any empirical evaluation, our results depend on the datasets,

metrics, and settings employed. While we refrain from claiming the generaliz-

ability of the speci�c quantitative results, the diversity of datasets and classi-

�cation models used gives us enough con�dence in the overall trends observed

for text classi�cation. To improve the generalizability of our results, more clas-

si�cation tasks, datasets, and model architectures should be evaluated.

6.5.4 Alternative Approaches from Related Work

Some approaches to coordinating human involvement within Active Moderation

or Safeguards have been discussed previously. To the best of our knowledge, we

are the �rst to propose a human-resource-aware Active Moderation framework.

Rattigan et al. [305] initially investigated the objective of maximizing the ac-

curacy of classi�ers while limiting human e�orts. However, they only focused

on relational data, while our study concentrates on text. To limit human ef-

fort, Pavlopoulos et al. [285] propose searching for upper and lower con�dence

thresholds that maximize a classi�er's classi�cation performance when classi�ca-

tion outcomes between them are manually moderated. However, this approach

requires human moderators to determine how much data they are willing to

moderate. An evaluation of the e�ciency is not performed, resulting in a non-

optimal moderation load in most cases. Geifman and El-Yaniv [119] propose

a classi�cation approach with a reject option that allows practitioners to set

a desired level of risk. Their approach includes training a secondary rejector

classi�er. Similar to our framework, they aim to ensure a certain classi�cation

performance. In contrast, they do not focus on the e�ciency of human interven-

tion. Lin et al. [228] suggest a similar rejection approach based on a set-classi�er

that controls the class-speci�c prediction risks. The idea is to reject a prediction

if the set classi�er returns more than one label.

Others, such as He et al. [143], aim to improve the quality of uncertainty

estimates to improve the detection of misclassi�cations and thus reduce human

e�ort. However, they do not address the trade-o� between manual e�ort and

classi�cation performance. Further, their approach only applies to deep NNs.

Our framework can be applied to any classi�er providing uncertainty estimates.

151

Chapter 6 Human-resource-aware Active Moderation

6.6 Conclusion

This chapter has contributed to the HiL paradigm by investigating the Active

Moderation pattern in the context of deep learning. We have presented an

Active Moderation framework for text classi�cation to minimize unreliable and

error-prone classi�cation outcomes. Based on explicit uncertainty modeling, our

framework attempts to prevent uncertain classi�cations by consulting human

moderators in a human-resource-aware manner. At its core, the framework uses

a saturation-based moderation strategy that limits the moderation load and

ensures a highly cost-e�ective use of human resources. We brie�y outline the

main �ndings:

� Bayesian modeling applied to deep learning models alone does not signif-

icantly improve classi�cation performance. Thus, unmoderated deep NNs

may still fail to deliver the desired classi�cation performance.

� Active Moderation is most e�cient with small moderation e�ort. Its e�-

ciency decreases as human e�ort increases. At a certain point, continuous

human moderation does not lead to signi�cant performance improvements.

� A saturation-based moderation signi�cantly improves the classi�cation

performance of ML-based text classi�cation systems. In all our experi-

ments, we increased the F1 score from an initial value of about 89�94%

to approximately 98�99% by manually moderating between one-third and

one-fourth of the data.

� Saturation-based moderation can e�ciently limit manual e�ort. It saves

up to 70.9% to 73.3% of the e�ort compared to a random moderation to

achieve the same F1 score.

� Clearly, the e�ectiveness of Active Moderation declines when humans com-

mit errors during labeling. Despite the presence of noise, our saturation-

based moderation framework still maintains high improvements in classi-

�cation performance. Using a state-of-the-art model, Active Moderation

with a 15% noisy human performs on average only 3% worse than a human

without noise.

� The baseline of using softmax probabilities without explicit uncertainty

modeling performed surprisingly well within Active Moderation. No sig-

ni�cant di�erences were observed compared to state-of-the-art uncertainty

modeling techniques. Thus, explicit uncertainty modeling may not be nec-

essary for implementing human-resource-aware Active Moderation.

152

Chapter 7

Low-latency Active Learning via

Proxy-based Data Sampling

Publication. This chapter is based on the 2023 paper �Towards Low-budget

Real-time Active Learning for Text Classi�cation via Proxy-based Data Selec-

tion� [15], for which I was the lead researcher, implementer, experimenter, and

writer.

Contribution. We propose a low-budget Proxy-based Active Learning frame-

work for text classi�cation. Our framework aims to improve the applicability

of the traditional Active Learning approach while exploiting the processing ca-

pabilities of state-of-the-art models such as BERT. Current Active Learning

studies yield promising results but su�er from high model latency, making them

less suitable for real-world use-cases. Long waiting times lead to low user expe-

rience and productivity, which negatively a�ects their applicability. We adopt a

Proxy-based data selection strategy to speed up the traditional Active Learning

process, which consists of multiple consecutive re-training and inference steps.

This strategy integrates an additional lightweight model during the learning pro-

cess. We conduct several experiments to demonstrate its e�ectiveness. Our pro-

posed framework outperforms previous research in terms of both model latency

and classi�cation performance. We show that Proxy-based Active Learning im-

proves the quality of the collected training data and increases the classi�cation

performance by up to 19.34% compared to using only a lightweight ML model for

Active Learning. In addition, Proxy-based Active Learning outperforms Passive

Learning by up to 15.30%.

7.1 Motivation

Active Learning has proven to be a highly e�ective training pattern, signi�cantly

reducing human e�ort [125, 154, 221]. However, Active Learning has a special

153

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

temporal requirement to maintain its applicability in real-world settings [333].

To maintain a certain level of user experience, fast interaction cycles are much

more critical for HiL approaches than their actual classi�cation performance

[8, 103]. Maintaining fast training processes is a core principle of HiL training

patterns. Low model latency is particularly important for Active Learning,

since each training iteration requires the model to infer the labeling of a typically

large corpus of unlabeled data, as well as to frequently re-train a model from

scratch. Current studies on Active Learning often overlook the time required to

perform a learning iteration, which casts doubt on their practical applicability.

In the �eld of text classi�cation, encoder-based LLMs such as BERT have

signi�cantly advanced the state-of-the-art classi�cation performance in various

classi�cation tasks. They have become the preferred choice for achieving the

highest classi�cation performance. Although BERT has been shown to work

well in combination with Active Learning in a laboratory environment [94], it

consists of hundreds of millions of parameters. Complex models require very long

training and inference times, negatively impacting the overall user experience

[93]. For example, Dor et al. [94] report a latency for BERT using a pool of

7000 unlabeled instances of 1.4 minutes using a Nvidia® Tesla K80 GPU.

To maintain fast interaction cycles, less complex models are promising to re-

duce the latency of Active Learning. However, a well-known trade-o� exists

between model complexity and classi�cation performance [292]. This is because

more complex models are able to represent more sophisticated classi�cation

functions. Finding the right balance between classi�cation performance and

model latency is not simple. Model complexity is not necessarily linearly re-

lated to classi�cation performance, and the runtime depends primarily on the

production environment, not just the model. To maintain low model latency, a

random selection strategy � also known as Passive Learning � is typically left,

which would not cause any model latency during labeling. In addition, previous

Active Learning research has mostly considered large labeling budgets of several

thousand instances, which may not be applicable in practice (e.g., up to 7,200

[293] or even 25,000 [159] instances). Therefore, applicable learning frameworks

for text classi�ers should also be human-resource-aware.

7.2 Conceptual Framework

This section describes a Proxy-based Active Learning framework for text clas-

si�cation. We outline the problem statement and illustrate our Proxy-based

Active Learning pipeline.

154

7.2 Conceptual Framework

7.2.1 Problem Statement

Training highly accurate models given some data is a core objective of text

classi�cation. However, training data is usually not available and must �rst be

labeled, which is tedious, costly, and labor-intensive. It is desirable to use hu-

man e�ort as e�ciently as possible while still obtaining highly accurate models.

Active Learning as a HiL pattern (Section 4.5.3) aims at minimizing manual

labeling costs while maximizing classi�cation performance.

Active Learning is an iterative, model-centric approach to retrieving training

instances from human annotators by actively soliciting labels. It involves a large

pool of unlabeled data instances 𝑋𝑝𝑜𝑜𝑙 = {𝑥𝑖}𝑁𝑖=1 and a small initial training set of
already labeled instances 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑀𝑖=1. Typically, unlabeled data is available
in much larger quantities than labeled data. The pool of unlabeled data 𝑋𝑝𝑜𝑜𝑙
is assumed to contain the candidates that can potentially be used for training.

The goal of Active Learning is to determine which and how many elements

from 𝑋𝑝𝑜𝑜𝑙 should be labeled in order to e�ectively train a classi�er 𝑓 ∈ F . In

Active Learning, the classi�er itself selects the training instances according to

the expected contribution of an instance to its own learning behavior. To do

this, an acquisition function 𝛼 : (𝑋 × F) → R is used to rank the instances.

Their labeling is then queried from a human annotator, also referred to as a

human oracle 𝑜𝐻 : 𝑋 → 𝑌 . The human oracle is assumed to always provide the

correct label 𝑦 for a given instance 𝑥 so that it can be used as training data in

the next training iteration. A few labeled instances 𝐷 are required to initially

train the model, which a�ects the e�ectiveness of 𝛼 in early iterations. The

simplest approach to initialize 𝐷 is to use some randomly sampled instances for

each class.

Low latency is a critical consideration for HiL systems. In Active Learning,

humans are asked to label a sequence of instances one by one. At each step, the

loop pauses and waits for human feedback. For Active Learning to be practical,

the user experience of the overall system is crucial, as it a�ects the willingness

of humans to stay in the loop. Tolia et al. [361] suggest that the time between

interactions should be no more than 1 second to maintain a high level of user

acceptance and productivity. However, in Active Learning, inference is per-

formed on each instance of the data pool 𝐷 𝑝𝑜𝑜𝑙 to rank its usefulness according

to the acquisition function 𝛼. Furthermore, each Active Learning iteration re-

quires the model to be re-trained from scratch using the entire training corpus

𝐷. Since state-of-the-art classi�ers are too slow for fast Active Learning cycles,

practitioners must choose less complex models to meet time constraints or rely

on Passive Learning.

155

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

We explore an approach to enhance the user experience of Active Learning

for text classi�cation by substantially reducing model latency between learning

iterations, while taking advantage of the processing capabilities of state-of-the-

art classi�ers.

7.2.2 Data Selection via a Low-budget Proxy

The traditional Active Learning process employs the same classi�cation algo-

rithm for both data selection and deployment (self-selection). However, in many

situations, self-selection is neither applicable nor desirable [362]. This is partic-

ularly evident in real-world domains where rapid interactive cycles are critical

to seamlessly integrate humans into the ML loop [103].

Unlabeld
Data

Extend

Query Label

Classifier
(Proxy)

Training
Data

Re-train

Classifier
(Consumer)

Train

Data Selection

Annotator
Traditional AL Loop

Proxy-based AL

Production
Deployment

Figure 7.1: Proxy-based Active Learning is an extension of the traditional Active
Learning process. In this approach, one classi�er (Proxy) is used
for data selection, while a second, typically more complex classi�er
(Consumer) is used for deployment.

In this section, we adapt Proxy-based Active Learning [71, 362] to enhance

the applicability of text classi�ers by increasing the computational e�ciency of

the learning process. Proxy-based Active Learning is a data-centric approach

where the primary output is not a trained classi�er, but a presumably high-

quality training dataset that can be utilized to train a state-of-the-art classi�er.

Proxy-based Active Learning involves two distinct classi�ers in the learning

process. One classi�er is dedicated to data selection (called the �Proxy�). The

second classi�er is trained on the acquired dataset (Proxy sampling) and used

for deployment (referred to as the �Consumer �). To speed up the data selection

process, the Proxy needs to be much faster, typically less complex, and generally

provides a lower classi�cation performance. In comparison, the Consumer is the

model used in production. The Consumer should ideally be a state-of-the-art

model that is likely to deliver the highest classi�cation performance possible.

156

7.3 Proxy-based Active Learning for Text Classi�cation

7.3 Proxy-based Active Learning for Text

Classi�cation

This section describes our implementation of Proxy-based Active Learning for

text classi�cation. To maximize the bene�ts of Proxy-based Active Learning,

we leverage recent text classi�cation techniques from the literature. We present

candidate classi�ers for both the Proxy and the Consumer and outline di�erent

data selection strategies for the Proxy.

7.3.1 Proxy Candidates

A Proxy candidate must demonstrate computational e�ciency during both the

training and inference processes, while delivering a reusable set of training data.

A lightweight, low-latency classi�er is essential for this purpose. In our investi-

gation, we assess the suitability of FastText [176] and Logistic Regression

(LR) as a Proxy. FastText was selected because speed and low complexity were

pivotal to its development. LR was considered due to the promising results

observed in our previous study on lightweight text classi�ers (Chapter 5).

FastText. FastText is a simplistic NN-based linear text classi�er that rep-

resents sentences by averaging trainable word vectors. Its model architecture

consists of only two layers: a hidden layer, also known as the embedding layer,

and a fully connected output layer. FastText operates as an end-to-end learning

approach, seamlessly integrating feature engineering and classi�cation. Figure

7.2 depicts the architecture of FastText.

Words

mean

Figure 7.2: The architecture of the FastText model.

The input of FastText is a text document 𝑑 represented by a vector of words

𝑑 = (𝑟1, 𝑟2, ..., 𝑟𝑤) of size 𝑤. First, each word of 𝑑 is replaced by a 1-hot-

encoding scheme using a dictionary D of size 𝑚. Each word 𝑟 is embedded by

a feature vector 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚) where 𝑥 𝑗 is set to 1 where 𝑗 is the index of

the word 𝑟 in 𝐷. Other components of 𝑥 are set to 0. Second, mean pooling

is performed on the word embeddings to compute a 𝑚-dimensional distributed

157

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

vector representation of 𝑑. Mean pooling averages all word embeddings 𝑥𝑖 to a

document embedding ℎ, that is:

ℎ =
1

𝑤

𝑤∑︁
𝑖=1

𝑥𝑖 ∈ R𝑛 (7.1)

Third, the document embedding is fed into a fully connected hidden dense layer

𝐻 to compute the output layer 𝑂. Finally, the averaged word representations

are fed into a multivariate LR model. Classi�cation is performed by computing

the class probabilities of the output layer activation with the softmax function

𝜙. Local optimal values for the weights 𝑊 and 𝑂 are estimated by minimizing

the negative log-likelihood using backpropagation.

Experiments demonstrate that FastText performs comparably to simple deep

learning-based approaches, while being an order of magnitude faster in both

training and inference [176]. Due to its simplicity and e�ectiveness, FastText has

emerged as a common baseline for text classi�cation tasks. Another advantage

is that FastText can yield e�ective results even with a limited amount of training

data.

Logistic Regression (LR). In our previous investigation, we identi�ed LR as

a well-performing and lightweight text classi�er (Chapter 5). We apply LR in

combination with state-of-the-art embeddings as feature representations. We

use pre-trained encoder-based LLMs without �ne-tuning for feature extraction

to save computational time. The embeddings are pre-computed for all data

instances, cached, and queried during the Active Learning process. We consider

the following state-of-the-art text embeddings from pre-trained encoder-based

LLMs for feature extraction:

� BERT. We utilize BERT to extract contextual representations from text

documents. As a feature representation, we employ the hidden state vector

corresponding to the [CLS] token. In our implementation, we utilize the

BERT base model, which converts textual input into a 768-dimensional

feature vector.

� SBERT. We also consider SBERT for deriving text embeddings. The au-

thors claim to provide out-of-the-box semantically meaningful embeddings

that outperform pooled BERT embeddings on various classi�cation tasks

[308]. SBERT text embeddings have a dimensionality of 512.

� ELMo. Further, we employ Embeddings from Language Models (ELMo)

[288], which is another approach to computing contextualized word rep-

158

7.3 Proxy-based Active Learning for Text Classi�cation

resentations. ELMo embeddings are derived from the internal states of a

bidirectional language model. As a text embedding, ELMo has a dimen-

sionality of 1024.

7.3.2 BERT Consumer

We deploy BERT as the Consumer in our investigation of Proxy-based Active

Learning, as BERT has demonstrated state-of-the-art accuracies in numerous

text classi�cation tasks [88]. We add a softmax function on top of BERT using

the [CLS] token as input to perform classi�cation.

7.3.3 Selection Strategies

Several selection strategies for Active Learning have been investigated to sample

the most informative text instances for manual annotation [94, 114, 332]. A

selection strategy aims to identify instances that are likely to have the greatest

impact on the classi�cation performance of a model when used for re-training

[332]. Our investigation focuses on computational-aware selection strategies that

are either very fast during the Active Learning process or can be computed prior

to training, thereby minimizing the overall duration of each Active Learning

iteration. We concentrate on the following leigtweight acquisition functions:

� Random. A common baseline for Active Learning is to randomly se-

lect the next instance to be manually labeled from the pool of unlabeled

examples [221]. This is also referred to as Passive Learning.

� Uncertainty. Uncertainty-based selection strategies [220] select data in-

stances based on where the model is most uncertain about its label. We

apply smallest margin sampling (Eq. 2.33) to quantify the uncertainty of

predictions, referred to as 𝑈 (𝑥). In a preliminary experiment, we identi-

�ed smallest margin sampling as the most accurate and precise sampling

strategy in our evaluation setting.

� Density*Uncertainty. Since highly uncertain instances may not be rep-

resentative, Zhu et al. [407] suggest selecting instances according to the

maximum uncertainty and the most representative in terms of density.

The authors suggest a k -Nearest-Neighbor density measure to evaluate

the density of an instance 𝑖 ∈ 𝐷 𝑝𝑜𝑜𝑙 with respect to the 𝐾 most similar

examples, denoted as 𝑆(𝑥) = {𝑠𝑖}𝐾𝑖=1, which is de�ned as:

𝐷𝑆(𝑥) = 𝐾−1
∑︁

𝑠𝑖 ∈𝑆 (𝑥)
cos(𝑥, 𝑠𝑖) (7.2)

159

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

where cos(𝑥, 𝑠𝑖) is the cosine-similarity between 𝑥 and 𝑠𝑖. The score func-

tion, which accounts for uncertainty and density, is de�ned as:

𝐷𝑆𝐻 (𝑥) = 𝐷𝑆(𝑥) ×𝑈 (𝑥) (7.3)

� Instability. Zhu and Ma [406] suggest a selection strategy based on in-

stability. The instability of a prediction is measured by the changes in the

prediction uncertainty scores over the last 𝑛 consecutive learning cycles.

The authors provide two instability measures, namely Label-insensitive In-

stability Sampling (ISLI) and Label-sensitive Instability Sampling (ISLS).

ISLS reports high uncertainties when instances cause unstable uncertainty

estimates during the last 𝑙 consecutive learning cycles, that is:

𝐼𝑆𝐿𝐼 (𝑥) = 𝑈𝑖 (𝑥) +
∑︁

𝑖−𝑙<𝑘≤𝑖
𝑈𝑘 (𝑥) −𝑈𝑘−1(𝑥) (7.4)

where 𝑈𝑖 (𝑥) denotes to the uncertainty of 𝑥 at the 𝑖𝑡ℎ learning iteration.

ISIS selects the most informative example from the set of unlabeled exam-

ples that have a high instability and di�erent label predictions during the

last consecutive learning cycles, that is:

𝐼𝑆𝐿𝑆 (𝑥) = 𝑈𝑖 (𝑥) +
∑︁

𝑖−𝑙<𝑘≤𝑖
I(𝑦𝑘 ≠ 𝑦𝑘−1) ×

(
𝑈𝑘 (𝑥) −𝑈𝑘−1(𝑥)

)
(7.5)

� Density*Instability. Zhu and Ma [406] suggest selecting instances ac-

cording to the maximum instability and highest density, which can be

formulated as:

𝐷𝑆𝐼𝑆𝐿𝐼 (𝑥) = 𝐷𝑆(𝑥) × 𝐼𝑆𝐿𝐼 (𝑥) (7.6)

𝐷𝑆𝐼𝑆𝐿𝑆 (𝑥) = 𝐷𝑆(𝑥) × 𝐼𝑆𝐿𝑆 (𝑥) (7.7)

7.4 Study Design

This section outlines the design of our study. First, it states the research ques-

tions and describes the benchmark criteria. It then presents the dataset used

and the implementation details.

7.4.1 Research Questions

We investigate the following research questions:

RQ1: How accurate is BERT when trained via Proxy-based Active Learning?

160

7.4 Study Design

RQ1 focuses on evaluating the classi�cation performance of a BERT Consumer

trained via Proxy-based Active Learning. To identify the best-performing setup,

we compare the suitability in terms of classi�cation performance achieved by

various lightweight Proxies and selection strategies.

RQ2: What is the gain in classi�cation performance between the Proxy and

the Consumer in our Proxy-based Active Learning framework?

RQ2 investigates whether the additional e�ort of using two models (a Proxy

and a Consumer) during the learning process in Proxy-based Active Learning is

pro�table and worth the additional computational e�ort in terms of increased

classi�cation performance. As the Proxy, we consider a lightweight ML model

to maintain low model latencies, while the Consumer is much more complex.

RQ3: How suitable is Proxy-based Active Learning for real-time labeling?

RQ3 examines the runtime behavior of Proxy-based Active Learning. This in-

cludes the process of training, inference, and data selection of the Proxy and

whether it satis�es strict time requirements.

RQ4: How do uncertainty-based and random selection strategies di�er in terms

of the quality of the selected training data?

Previous research shows that uncertainty sampling for Active Learning leads

to higher classi�cation performance than random selection strategies [220]. It

remains unknown how uncertainty sampling via a Proxy a�ects the quality of

the training dataset compared to a random selection. This research question

investigates the quality of the sampled training data.

7.4.2 Benchmark Criteria

To address RQ1, we �rst examine the classi�cation performance of Proxy-based

Active Learning using FastText and LR as the Proxy, with BERT serving as

the Consumer. We report the mean of �ve independent model runs for each

experiment, based on strati�ed train-test splits. Additionally, we assume the

availability of a pool of unlabeled data instances and a small budget for label-

ing the initial training dataset. We evaluate the classi�cation performance of

the BERT Consumer using various uncertainty-based selection strategies and

compare their performance against random selection. We consider a maximum

labeling budget of 500.

To address RQ2, we explore the classi�cation performance enhancements of

our Proxy-based Active Learning framework, using BERT as the Consumer and

161

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

FastText and LR as the Proxy. We compare this approach against traditional

Active Learning, where the same lightweight classi�er is used for both data

selection and deployment. We do not consider using BERT in Active Learning

due to the impracticality caused by the high latency of BERT. We evaluate the

gains in classi�cation performance when training an additional state-of-the-art

Consumer and determine whether it is worth the e�ort.

Regarding RQ3, we examine the real-time capability of our Proxy-based Ac-

tive Learning framework to assess its applicability in real-world settings. To

achieve this, we measure the time required to perform a learning iteration that

includes model training, inference, and selection of the next most informative

instance. We follow the rule of thumb suggesting that a user in an interactive

setting should not wait more than 1 second for the response of his or her action

to maintain user experience and productivity [248, 361].

For RQ4, we investigate the quality of the Proxy- and randomly sampled

training data. As a measure of the quality of the training data, we consider the

class balance, which is an essential property of high-quality training data [300,

395]. Class balance is maintained when no single class signi�cantly outweighs

the others. Typically, most ML models exhibit a bias toward the majority class,

which leads to more frequent misclassi�cation of the minority class. We use

Shannon's entropy as a measure of imbalance. Furthermore, we assess the span

of class ratios by outlining the maximum and minimum class ratios.

7.4.3 Datasets

We consider three publicly available English datasets that originate from real-

world domains. The datasets are summarized in Table 7.1. The datasets exhibit

imbalanced class distributions, a typical characteristic of real-world data. Gen-

erally, class imbalances present additional hurdles for both automated text clas-

si�cation and Active Learning [131, 395], including biases toward selecting the

majority class. Nonetheless, imbalanced classes o�er a more realistic evaluation

scenario.

Dataset Size |𝐶 | Class Distribution #Words (𝜇 ± 𝜎)
App Store 6,392 3 3,855:1,437:1,100 24 ± 29
Hate Speech 24,783 2 20,620:4,163 14 ± 7

Reuters 8,759 9
3,930:2,319:527:495:
458:425:282:166:157

152 ± 176

Table 7.1: Statistics about the datasets used, include its size, the number of
classes and their distribution, as well as the mean and standard de-
viation of words per text instance.

162

7.4 Study Design

First, we utilize the App Store dataset from the domain of participatory

requirements engineering [239]. This dataset consists of manually labeled app

reviews covering feature requests, bug reports, and praise. Second, we employ the

Hate Speech dataset [80], which contains tweets manually labeled for toxicity

(toxic and non-toxic). Third, we use the Reuters dataset [222], which consists

of a highly imbalanced topic modeling task. For our experiments, we select a

subset of the nine most frequent topics with unambiguous labels. We partition

all datasets into a 50% training set (data pool) and a 50% test set, maintaining

the original label distribution. To train the BERT classi�er, we allocate 10% of

the selected training data as a validation set.

7.4.4 Implementation Details

We apply the following con�guration for Proxy-based Active Learning: for the

App Store and Hate Speech datasets we randomly sample 10 instances per class

as the initial training data. For the Reuters dataset, we randomly sample 3

instances per class, resulting in an initial training dataset of 30, 20, and 27

instances, respectively. In each iteration, only one instance is selected from

the pool and added to the training dataset. Training is always performed from

scratch. In total, we run 500 training iterations, causing a labeling budget of

500 instances. We perform our experiments on fully labeled datasets, which

allows us to simulate manual labeling. This approach is consistent with the

standard method for evaluating the classi�cation performance of Active Learn-

ing approaches [94, 114, 221].

For the LR classi�er, we utilize the default implementation provided by the

Scikit-learn library [286], with the maximum number of iterations set to 100.

We employ the FastText implementation provided by Joulin et al. [175], setting

the embedding size to 10, training for 5 epochs, and employing a learning rate

of 0.1. For the FastText classi�er, we do not leverage the density of the learned

sentence representation for the query strategy because this information is not

available in their FastText implementation. Our BERT implementation relies

on Hugging Face [390]. We use the bert-base-uncased pre-trained model and

perform �ne-tuning over 5 iterations. In our experiments, we set 𝐾 = 20 to

estimate the density (Eq. 7.2) as proposed by the original authors. Furthermore,

we compute the instability (Eq. 7.4 and 7.5) over the last 𝑙 = 5 iterations. All

experiments are performed on an Intel® Core� i7-8550U CPU @ 1.80GHz with

16 GB of main memory.

163

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

Strategy
App Store Hate Speech Reuters

FastText
LR+

SBERT
LR+
BERT

LR+
ELMo

FastText
LR+

SBERT
LR+
BERT

LR+
ELMo

FastText
LR+

SBERT
LR+
BERT

LR+
ELMo

Random 83.30 83.07 83.03 83.12 88.29 87.91 87.93 88.51 88.38 88.28 89.11 88.85
U 84.42 83.24 84.69 83.78 91.24 88.27 90.94 93.02 91.33 89.69 92.15 91.43

m
ic
ro

F
1
sc
or
e

U*DS - 83.48 84.59 84.32 - 91.16 90.90 92.27 - 89.44 91.39 92.33

30
0
It
er
at
io
ns

ISLI 83.15 82.49 84.02 83.26 91.13 89.36 91.43 92.03 86.30 91.11 92.23 90.59
ISLI*DS - 83.50 85.03 81.93 - 87.64 91.50 91.87 - 90.45 92.42 92.62

ISLS 83.92 82.27 85.13 83.59 90.52 85.28 91.85 92.45 86.88 90.98 92.82 91.14
ISLS*DS - 82.43 84.95 82.57 - 90.12 91.07 92.56 - 90.49 93.16 91.54

AVG (unc) 83.83 82.78 84.74 83.24 90.96 88.64 91.28 92.37 88.18 90.36 92.36 91.61
Random 78.50 78.18 78.19 78.27 70.36 69.07 69.25 71.22 65.79 66.16 68.67 67.17
U 79.98 78.87 80.62 78.78 83.76 80.34 82.87 87.20 74.61 80.25 79.99 79.25

m
ac
ro

F
1
sc
or
e

U*DS - 79.05 80.47 79.73 - 84.82 83.46 85.30 - 80.36 79.06 79.71

ISLI 78.14 77.55 79.43 78.55 84.21 80.65 83.77 85.10 63.00 83.62 79.02 72.37
ISLI*DS - 79.11 81.08 77.22 - 78.17 83.18 85.03 - 83.25 80.48 79.74

ISLS 79.35 77.42 81.08 79.51 83.16 76.91 84.29 86.32 67.32 82.96 79.56 79.52

ISLS*DS - 78.05 80.84 77.95 - 82.49 83.03 86.60 - 82.41 80.28 80.00

AVG (unc) 79.16 78.12 80.59 78.62 83.71 80.56 83.44 85.93 68.31 82.14 79.73 78.43

Random 85.06 84.64 85.06 84.76 93.09 93.09 93.23 92.84 92.54 92.29 92.56 92.50
U 86.29 84.71 86.55 86.23 93.83 93.39 93.60 94.35 94.56 95.41 95.38 95.19

m
ic
ro

F
1
sc
or
e

U*DS - 85.04 86.38 86.08 - 93.49 94.30 94.62 - 95.39 95.60 95.44

50
0
It
er
at
io
ns

ISLI 85.96 85.27 86.38 86.31 94.31 92.77 94.29 94.54 91.21 95.12 95.33 95.95

ISLI*DS - 85.47 86.27 85.06 - 93.58 94.28 94.39 - 94.97 95.37 95.08

ISLS 85.96 84.99 86.23 85.64 94.29 93.58 93.98 94.51 92.52 95.13 94.90 95.65

ISLS*DS - 85.61 86.45 85.66 - 93.98 93.94 94.64 - 95.37 95.32 95.37

AVG (unc) 86.07 85.18 86.38 85.83 94.14 93.47 94.06 94.51 92.76 95.23 95.32 95.45
Random 80.75 80.32 80.84 80.48 86.92 87.09 87.46 86.64 76.57 75.40 76.91 75.75
U 82.48 80.49 82.89 82.41 88.93 88.55 88.35 89.95 82.50 91.32 87.18 87.01

m
ac
ro

F
1
sc
or
e

U*DS - 81.18 82.59 82.11 - 88.51 89.61 90.25 - 91.04 88.68 88.78

ISLI 82.27 81.32 82.71 82.66 89.71 87.45 89.63 90.25 77.49 90.69 88.42 91.15

ISLI*DS - 81.66 82.29 80.87 - 88.95 89.75 90.14 - 90.45 88.01 87.22

ISLS 82.35 81.13 82.49 81.83 89.87 88.62 89.12 90.08 82.48 90.31 84.80 88.40

ISLS*DS - 81.99 82.77 81.61 - 89.55 88.57 90.65 - 91.42 87.55 87.35

AVG (unc) 82.37 81.30 82.62 81.92 89.50 88.61 89.17 90.22 80.82 90.87 87.44 88.32

Table 7.2: Micro and macro F1 scores of the BERT Consumer after 300 and
500 iterations. The best and worst performing selection strategies
for each classi�er are highlighted in green and red, respectively.

7.5 Results

We present the results of our experiments and answer the four research ques-

tions. The source code of our experiments is publicly available1.

7.5.1 Classi�cation Performance

Table 7.2 lists the F1 scores of BERT Consumers when trained using Proxy-

based Active Learning for 300 and 500 iterations, respectively. The table is

organized by sampling strategies, Proxies, datasets, and number of Active Learn-

ing iterations. The average (AVG (unc)) F1 scores across all uncertainty-based

selection strategies are provided at the bottom of each table. Signi�cant im-

provements (paired t-test with p-value < 0.05) compared to a random selection

strategy are highlighted in bold. The best and worst-performing embeddings for

each dataset and selection strategy are highlighted in green and red, respectively.

Our results show that, across all datasets, Proxy-based Active Learning can

signi�cantly improve the F1 score of a BERT classi�er (Proxy) compared to

training BERT on randomly sampled training data. After 500 iterations, a

1https://github.com/jsandersen/ProxyAL

164

https://github.com/jsandersen/ProxyAL

7.5 Results

0 100 200 300 400 500
Iterations

0.6

0.7

0.8

0.9

1.0 App Store - SBERT
F1

 S
co

re

0 100 200 300 400 500
Iterations

0.6

0.7

0.8

0.9

1.0 Hate Speech - SBERT

F1
 S

co
re

0 100 200 300 400 500
Iterations

0.6

0.7

0.8

0.9

1.0 Reuters - SBERT

F1
 S

co
re

U
DS

ISLI

ISLS

DSISLI

DSISLS

Random

Figure 7.3: Learning curves of the traditional Active Learning process with
SBERT. Solid and dashed lines represent the macro and micro F1
scores, respectively.

relative improvement in the micro F1 score of 1.75%, 1.15%, and 3.18% was

achieved for each dataset, respectively. The macro F1 score increased by 2.54%,

2.62%, and 15.30%, respectively. Across all experiments, the BERT and ELMo

embeddings provide the best Consumer performance. FastText provides the

second-best results on the App Store dataset, but does not perform well on the

Reuters dataset. The SBERT embeddings perform the worst, achieving signif-

icant improvements only on the Reuters dataset. The F1 score improvements

between the 300th and 500th iterations are straightforward, as more instances

are used for training. Also, the macro F1 score improvements were much higher

than the micro F1 score improvements due to the highly imbalanced datasets.

None of the strategies consistently outperformed the others, a common e�ect

when evaluating Active Learning [94] pipelines. Overall, the results show that

Proxy-based Active Learning can signi�cantly improve the F1 score compared

to randomly sampled instances, which would cause no latency.

7.5.2 Comparison with Traditional Active Learning

The question is whether it is worthwhile to train an additional BERT classi-

�er, as done in Proxy-based Active Learning, or whether a traditional Active

Learning approach (using a lightweight classi�er) would yield similar F1 scores.

Figure 7.3 illustrates the relative improvement of a FastText and LR classi�er

used in traditional Active Learning compared to training an additional BERT

classi�er on the selected training set.

The results indicate that consecutive training of BERT Consumers can im-

prove the micro F1 score by up to 7.27% and the macro F1 score by up to

19.34% compared to deploying the Proxy after the traditional Active Learning

165

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

Strategy
App Store Hate Speech Reuters

FastText
LR+

SBERT
LR+
BERT

LR+
ELMo

FastText
LR+

SBERT
LR+
BERT

LR+
ELMo

FastText
LR+

SBERT
LR+
BERT

LR+
ELMo

U 1.34 1.37 5.31 1.97 3.34 -4.43 3.21 6.24 3.34 -6.50 1.62 -2.27

m
ic
ro

F
1
sc
or
e

U*DS - 2.19 5.70 2.01 - -1.23 2.94 5.56 - -6.75 0.76 -1.24

30
0
It
er
at
io
ns

ISLI -0.17 0.99 4.63 1.26 3.21 -3.15 4.14 4.89 -2.36 -5.00 2.53 -3.06
ISLI*DS - 1.72 5.78 -0.37 - -5.19 3.92 4.67 - -5.64 2.88 -0.76
ISLS 0.74 0.14 6.57 1.17 2.53 -7.48 4.36 5.31 -1.70 -5.08 2.46 -2.65
ISLS*DS - -0.82 6.25 0.73 - -2.34 3.40 5.57 - -5.39 3.18 -2.01
AVG (unc) 0.57 0.93 5.71 1.13 3.03 -3.97 3.66 5.37 -0.24 -5.73 2.24 -2.00
U 1.88 2.82 8.25 1.73 19.05 -6.54 8.72 17.99 13.42 -12.44 -2.70 -9.24

m
ac
ro

F
1
sc
or
e

U*DS - 3.28 8.64 1.83 - -1.13 8.21 16.23 - -12.23 -3.96 -9.14
ISLI -0.45 1.79 7.50 1.93 19.69 -5.83 10.14 12.66 -4.23 -8.56 2.06 -16.59
ISLI*DS - 3.15 9.61 0.05 - -9.05 8.30 13.15 - -9.12 0.92 -8.74
ISLS 1.08 0.53 10.70 2.08 18.19 -10.33 10.80 15.28 2.33 -9.47 -2.68 -9.14
ISLS*DS - -0.70 10.01 1.42 - -3.86 9.32 15.25 - -9.49 -1.32 -8.09
AVG (unc) 0.84 1.81 9.12 1.51 18.98 -6.12 9.25 15.09 3.84 -10.22 -1.97 -10.16

U 1.45 2.44 6.59 3.66 0.80 0.72 5.55 6.82 2.19 -0.84 3.66 0.90

m
ic
ro

F
1
sc
or
e

U*DS - 2.81 6.73 3.67 - 0.76 6.06 7.27 - -0.89 4.03 1.22

50
0
It
er
at
io
ns

ISLI 1.03 2.89 6.58 3.52 1.31 0.15 6.49 6.86 -1.43 -1.10 3.66 1.73
ISLI*DS - 2.79 7.00 2.01 - 0.68 6.30 6.74 - -1.34 3.96 0.85
ISLS 1.07 2.33 6.12 2.71 1.29 0.93 6.09 7.26 -0.02 -1.29 3.25 1.40
ISLS *DS - 2.95 6.76 2.79 - 1.29 5.95 6.95 - -0.99 3.83 1.11
AVG (unc) 1.18 2.70 6.63 3.06 1.13 0.75 6.07 6.98 0.24 -1.08 3.73 1.20
U 2.14 3.80 9.80 4.63 2.32 2.36 13.82 18.61 7.75 -0.90 2.54 -2.22

m
ac
ro

F
1
sc
or
e

U*DS - 4.37 9.93 4.49 - 1.95 14.44 19.34 - -1.27 5.05 -0.39
ISLI 1.88 4.52 10.11 4.95 3.22 1.25 15.57 16.71 1.21 -1.50 3.74 2.54
ISLI*DS - 4.29 10.73 2.55 - 2.31 15.30 17.20 - -1.99 4.53 -2.06
ISLS 1.98 3.77 9.81 3.67 3.40 2.41 15.43 18.73 7.72 -2.28 0.10 -0.66
ISLS*DS - 4.70 10.29 3.95 - 3.40 14.85 17.84 - -0.98 3.91 -1.98
AVG (unc) 2.00 4.24 10.11 4.04 2.98 2.29 14.90 18.07 5.56 -1.49 3.31 -0.80

Table 7.3: Relative F1 score improvements of a BERT Consumer compared to
FastText and LR as the Proxy using 300 and 500 iterations. The
best and worst performing selection strategies for each classi�er are
highlighted in green and red, respectively.

process. However, the FastText and LR Proxies are very strong baselines on

their own. Using less training data, i.e., 300 instances, only BERT, ELMo,

and sometimes FastText provide strong improvements (> 3%), while SBERT

performs similarly or even worse than the Proxy alone. In contrast, using 500

instances as the training data for Proxy-based Active Learning, the App Store,

and the Hate Speech datasets show strong improvements. Only the Reuters

dataset exhibits no improvement over a stand-alone Proxy. Proxy-based Active

Learning bene�ts from a larger number of iterations, as all F1 scores improve

when 500 iterations are performed instead of 300. While SBERT embeddings

achieve the highest F1 scores when applying self-selection, they provide the

worst improvements within Proxy-based Active Learning.

7.5.3 Run-time Investigation

Next, we investigate the time behavior of Proxy-based Active Learning. Table

7.4 displays the time needed to perform the 500th learning iteration for each

Proxy. The table shows the average run-time of all six selection strategies.

Averaging is performed to keep the �gure clear since no large di�erences between

the selection strategies were observed. We perform all experiments on a CPU

as outlined in Section 7.4.4.

166

7.5 Results

Runtime
App Store

FastText LR+SBERT LR+BERT LR+ELMo
Training 6.62 0.08 0.17 0.20
Inference 0.11 0.01 0.01 0.01
Selection 0.08 0.12 0.12 0.15
Total 6.81 0.21 0.30 0.36

Runtime
Hate Speech

FastText LR+SBERT LR+BERT LR+ELMo
Training 6.68 0.14 0.27 0.30
Inference 0.31 0.02 0.01 0.02
Selection 0.29 0.14 0.13 0.16
Total 7.28 0.29 0.41 0.49

Runtime
Reuters

FastText LR+SBERT LR+BERT LR+ELMo
Training 7.42 0.04 0.14 0.15
Inference 0.53 0.04 0.02 0.05
Selection 0.37 0.39 0.39 0.48
Total 8.32 0.47 0.54 0.68

Table 7.4: Run-time of the 500th Active Learning iteration in seconds on a CPU
using FastText and LR.

All steps in the Active Learning loop (training, inference, and data selection)

were carried out in less than 1 second using LR with pre-trained text encodings.

SBERT is the fastest approach, followed by BERT and ELMo, which took up to

0.68 seconds for the 500th iteration. FastText is much slower, taking > 6 seconds

for the 500th iteration, which is too slow for real-time Active Learning. Overall,

the total runtime grows linearly with the number of iterations (within the �rst

500 iterations). Furthermore, the runtimes indicate that a batch size of one is

appropriate and that there is no need to use batch-based selection strategies to

save runtime even on a CPU.

7.5.4 Sampled Dataset Quality

Lastly, we investigate the imbalance of the training data sampled by a Proxy

compared to random selection (Passive Learning). A balanced dataset is one

where the number of instances in each class is roughly equal or follows a similar

distribution. On the other hand, an imbalanced dataset is one in which the num-

ber of instances in di�erent classes varies signi�cantly, with one or more classes

having a much smaller number of instances than others. Imbalanced datasets

can pose challenges for ML models, particularly when the minority class (the

class with fewer instances) is of interest and needs to be accurately predicted.

In such cases, the ML model may have a bias toward the majority class, leading

to poor performance in predicting the minority class. Table 7.5 presents met-

rics evaluating the imbalance of the sampled data, including Shannon's entropy

(Entropy) and the maximum and minimum class ratios.

167

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

Metrics
Proxy-based Data Sampling

Random

A
p
p
S
to
re

FastText LR+SBERT LR+BERT LR+ELMo
Imbalance (Entropy) 0.962 0.981 0.989 0.984 0.877
Max Class Ratio 0.43 0.40 0.40 0.42 0.58
Min Class Ratio 0.23 0.24 0.28 0.28 0.18

Metrics
Proxy-based Data Sampling

Random

H
a
te

S
p
e
e
ch

FastText LR+SBERT LR+BERT LR+ELMo
Imbalance (Entropy) 0.997 1.000 0.995 0.992 0.689
Max Class Ratio 0.53 0.51 0.54 0.55 0.82
Min Class Ratio 0.47 0.49 0.46 0.45 0.18

Metrics
Proxy-based Data Sampling

Random

R
e
u
te
rsFastText LR+SBERT LR+BERT LR+ELMo

Imbalance (Entropy) 0.876 0.959 0.941 0.944 0.753
Max Class Ratio 0.31 0.20 0.22 0.21 0.43
Min Class Ratio 0.02 0.06 0.04 0.04 0.02

Table 7.5: Quality indicators of the Proxy-sampled datasets.

Our results show that random sampling approximates the class distribution

of the data pool. For example, in the binary Hate Speech dataset, after 500 iter-

ations, 82% of the training instances are from the same class. Our experiments

demonstrate that Proxy sampling is much less prone to sample disproportion-

ately from majority classes. We found that the Proxy-sampled data is highly

balanced. The best balance is observed on the Hate Speech dataset with an

entropy greater than 0.99, which is a highly precise approximation of a perfect

50:50 balance. In the App Store dataset, a 40:24:36 split is observed. Figure

7.4 illustrates the concrete ratio of classes throughout the training process for

better visualization. Each class is represented by a di�erent color. The class

ratio of the 500th iteration aligns with the values in Table 7.5. Our results show

that Proxy sampling e�ectively reduces the model's bias toward a particular

class by providing much more balanced training data.

7.6 Discussion

We outline the implications of our �ndings, explore the range of domains in

which Proxy-based Active Learning can be applied, highlight limitations, and

review related studies on alternative approaches to improve the applicability of

Active Learning in real-world settings.

7.6.1 Implications

Our benchmark results demonstrate that Proxy-based Active Learning can sig-

ni�cantly improve the F1 score of text classi�ers in a low-budget labeling setting.

168

7.6 Discussion

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Cl

as
s R

at
io

 (%
)

App Store - Random

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

s R
at

io
 (%

)

Hate Speech - Random

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

s R
at

io
 (%

)

Reuters - Random

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

s R
at

io
 (%

)

App Store - Unc

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Cl

as
s R

at
io

 (%
)

Hate Speech - U

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

s R
at

io
 (%

)

Reuters - U

Figure 7.4: Class ratio of the training dataset sampled randomly compared to a
Proxy using SBERT encodings and an LR classi�er.

We found that our framework increases the micro F1 score of a BERT Consumer

by up to 7.27% and the macro F1 score by up to 19.34% compared to deploying

the lightweight Proxy. We considered a manual labeling budget of only 500 in-

stances. Furthermore, we showed that a BERT model trained via Proxy-based

Active Learning increases the micro and macro F1 scores by up to 3.18% and

15.30%, respectively, compared to training BERT with a randomly sampled

dataset. Additionally, we show that Proxy-based Active Learning requires far

less than 1 second for each iteration. This �nding is of great importance, as

time constraints are a major obstacle to the applicability of HiL systems. In

particular, we demonstrate that an LR classi�er is up to ∼ 33 times faster and

provides better reusability of the sampled data than FastText, previously con-

sidered the state-of-the-art for rapid foreign selection [71]. Overall, the most

critical factors for the e�ectiveness of Proxy-based Active Learning compared

to Active Learning are that this approach does not increase the data labeling

e�ort, provides signi�cantly better results than Passive Learning, and allows for

fast interaction cycles.

Our results also indicate that Proxy-based Active Learning does not require

many data instances to learn. The di�erence between labeling 300 and 500

instances results in an average F1 score growth rate of 3.6%. Furthermore,

Proxy-based Active Learning requires a very small amount of initial labeling

data, ranging from 3 to 10 instances per class, while supporting a batch size of

169

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

one. By comparison, some Active Learning studies require extraordinary human

e�ort, which is impossible to o�er in most real-world settings. For example, Hu

et al. [159] consider an initial training dataset and batch sizes of 500 to 2,500

instances and a total labeling budget of 10,000 to 25,000 instances. Most Active

Learning studies use a batch size between 20 and 100 instances [125, 154].

F1 score App Store Hate Speech Reuters

micro 87.82 96.19 97.17
macro 84.30 93.21 93.94

Table 7.6: The maximum reachable F1 score that can be achieved when the
entire data pool is used to train BERT.

In addition, the classi�cation performance of the Consumer was close to the

maximum reachable F1 score of BERT, as shown in Table 7.6. The depicted F1

scores are obtained when the entire data pool is labeled and used for training.

The table shows that on the Reuters dataset, the Proxy already reaches up to

99% of the maximum reachable F1 score after 500 iterations. In this case, train-

ing an additional BERT classi�er does not provide any improvement over the

original Proxy. In comparison, the Proxy reaches only 90�96% of the maximum

F1 score on the App Store and Hate Speech datasets. Thus, Proxy-based Active

Learning is most bene�cial when the maximum reachable F1 score of the Proxy

is much lower than that of the Consumer. Otherwise, it may be su�cient to

directly deploy the lightweight Proxy to save computational e�ort.

7.6.2 Field of Application

The use-case for Proxy-based Active Learning is to maintain a high user expe-

rience while reducing the cost of training well-performing state-of-the-art text

classi�ers. It aims to take advantage of Active Learning when the desired target

model is actually too slow to provide fast HiL interactions. Like Active Learn-

ing, Proxy-based Active Learning is domain-independent and can be applied to

any classi�er that provides uncertainty estimates along the classi�cation result.

We demonstrate that the data labeling phase of Proxy-based Active Learning

can be performed in near real-time on low-end infrastructure. This enables the

integration of Active Learning-like training into ML tools without compromising

user experience due to long waiting times and interruptions. In addition to

fastening existing Active Learning-based labeling tools, one area of application is

data analysis and exploration tools such as Forum 4.0 [134]. Such tools typically

allow domain experts to dynamically build classi�ers from scratch. A lightweight

and real-time learning framework, such as Proxy-based Active Learning, allows

170

7.6 Discussion

users to rapidly develop, test, and deploy ML models while maintaining a high

level of user experience in terms of latency. A typical example is making sense

of user comments from marketplaces or social media channels.

A second �eld of application is to simplify the development and deployment

of classi�ers. The Proxy can be developed quickly even by domain experts using

their personal workstations. The speed also allows for rapid testing and proto-

typing of classi�cation models before committing to resource-intensive computa-

tions, such as �ne-tuning a full BERT model. The speed of Proxy-based Active

Learning is particularly useful for rapid prototyping, i.e. when the classi�cation

objective is vague and not fully developed at the outset. Initial evaluation re-

sults from the Proxy could give an indication of how well a particular task can

be solved.

Finally, our results show that existing Active Learning applications are likely

to bene�t from additional training of a state-of-the-art Consumer on the already

acquired training data. Thus, training new and more powerful ML models on

existing data has the potential to lead to further improvements in classi�cation

performance. However, our study only covers the transfer of training data from

traditional classi�ers to BERT.

7.6.3 Threats to Validity

We discuss threads to the internal and external validity.

Internal validity. Our benchmark experiments cover a limited number of clas-

si�cation models (Proxy and Consumer) and sampling strategies. Although we

used classi�ers that have been shown to perform well in text classi�cation, we

may have missed the optimal con�guration or parametrization of Proxy-based

Active Learning that could improve the results.

Furthermore, we assume that the human labelers provide �awless ground

truth labels, which may be unrealistic. Humans are also error-prone, and some

mislabeling is to be expected. Noise in the training data can corrupt the classi-

�cation performance of the trained classi�er. However, in the research domain

of Active Learning, it is an established approach to consider the provided labels

as correct [94, 154, 221].

In addition, our experiments are based on human labeled datasets. As humans

can be subject to bias or error, noise may have been introduced into the data,

distorting the labeling results. To mitigate this problem, we relied on established

benchmark datasets from the literature.

171

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

External validity. The characteristics of the dataset used can a�ect the valid-

ity of the results. In particular, the distribution and quality of the data, i.e.

the presence of outliers or anomalies, can a�ect the classi�cation performance.

Generalizing the results may be di�cult if the dataset used is not representative

or tends to change over time.

Furthermore, in our experiments we used an additional hold-out dataset to

reliably estimate the classi�cation performance of the model during learning. In

the real world, however, a hold-out dataset is typically not available, making

it di�cult to assess the classi�cation performance of Active Moderation during

deployment.

Proxy-based Active Learning aims to reduce the cost of developing an ap-

propriate training dataset. However, we only measure the cost of labeling in

terms of the number of labels assigned. However, the true cost of labeling also

depends on the time a user has to spend on labeling. Assuming that labeling

very long and very short text takes the same amount of time is insu�cient, but

common practice in Active Learning research. Human constraints, such as time

and budget limitations, may restrict applicability of Active Learning.

7.6.4 Alternative Approaches from Related Work

The idea of using two ML models to train a deployable classi�er was �rst dis-

cussed by Tomanek and Morik [362]. They raise the so-called re-usability prob-

lem of Active Learning, which is about whether �a set of labeled examples that is

deemed most informative using one classi�cation algorithm necessarily informa-

tive for another classi�cation algorithm?�. They study the re-usability problem

using traditional ML classi�ers in the domain of text classi�cation. They found

that foreign selection is around 75% of the cases better than a random selection

strategy. Hu et al. [160] investigate the mutual re-usability of pairs of tradi-

tional text classi�ers. They explore which combination of Proxy and Consumer

provides the best classi�cation performance. In contrast to our work, they do

not consider the time savings of less complex Proxies. Lowell et al. [235] exam-

ine Proxy-based data sampling between similarly accurate classi�ers, including

deep learning. We focus on the transferability between a fast classi�er and a

state-of-the-art deep learning approach. Coleman et al. [71] explore the time-

savings and errors using a FastText classi�er as the Proxy and a deep NN as the

Consumer. They show that FastText is up to 41.9 times faster with no signi�-

cant increase in errors and no loss of classi�cation performance. However, their

approach still takes multiple minutes to train, which is too slow for real-time

processing. Prabhu et al. [293] also investigate Proxy-based Active Learning

172

7.7 Conclusion

using FastText, but they rely on very large labeling budgets. In contrast, we

focus on a low-budget real-time setting, where no more than 500 instances are

queried during the Active Learning process.

Proxy-based Active Learning is also related to approaches that address the

trade-o� between classi�cation performance and computational time of Active

Learning. A common practice to fasten Active Learning is to select new in-

stances in batches [154] since training the model for each instance can be too

computationally expensive. Batch-based sampling strategies aim to reduce wait-

ing times within batches by reducing the number of training cycles. However,

they still require a full re-training between each batch. Another approach is

knowledge distillation [399], which aims to reduce the complexity of classi�ers

while preserving their performance. However, even small NNs are usually too

complex to be trained in real-time.

7.7 Conclusion

This chapter has introduced a HiL framework for classi�er training called Proxy-

based Active Learning. Our framework aims to exploit the substantial classi-

�cation performance of state-of-the-art models while maintaining low model

latency and high user experience during the traditional Active Learning loop,

a key requirement of HiL systems. Proxy-based Active Learning is motivated

by the increasing complexity and computational time required to train state-

of-the-art ML models, making them unusable with Active Learning from the

user's perspective. We have performed a series of ML benchmark experiments

to demonstrate the su�ciency and applicability of our framework. Our main

�ndings are summarized below.

� BERT can be e�ectively trained using our framework. Our experiments

demonstrate that Proxy-based Active Learning can improve the macro F1

score by 19.34% compared to a lightweight classi�er trained via Active

Learning (Proxy).

� BERT trained with Proxy-based Active Learning achieves up to 15.30%

higher macro F1 scores than BERT (Consumer) trained with Passive

Learning.

� Lightweight Proxies can be trained time-e�ciently in near real-time on

low-end infrastructure. For example, an LR Proxy is very fast, taking less

than 1 second for each Active Learning iteration.

173

Chapter 7 Low-latency Active Learning via Proxy-based Data Sampling

� LR as a Proxy signi�cantly outperforms FastText in both runtime e�-

ciency and F1 score.

� Uncertainty sampling yields signi�cantly higher quality training data than

random sampling, especially in terms of class balance.

174

Chapter 8

Explainable Uncertainty Estimation

for Text Classi�cation

Publication. The uncertainty explanation framework described in this chapter

was originally published in the 2020 paper �Word-Level Uncertainty Estimation

for Black-Box Text Classi�ers using RNNs� [12]. My primary areas of involve-

ment include designing and implementing the explanation framework, conduct-

ing the experiments, analyzing the results, and writing the research paper. In

addition, this chapter draws on the 2023 paper �Explaining Prediction Uncer-

tainty in Text Classi�cation: The DUX Approach� [13]. My contribution to this

paper involves designing and conducting the human evaluation, analyzing and

reporting the results, and leading the writing of the paper.

Contribution. This chapter introduces BayLUXT, a novel Bayesian frame-

work for providing local explanations of text classi�cation results. BayLUXT is

a self-explanatory and model-speci�c extension of RNNs such as LSTMs. While

previous local explanation techniques only provide deterministic word relevance

or attribution scores, BayLUXT additionally explains how much uncertainty

each word contributes or takes away from the �nal class result. Furthermore,

BayLUXT is able to explain the sequential understanding of RNN-based text

classi�ers and their uncertainty. BayLUXT integrates uncertainty modeling into

explanations via Bayesian approximation. Hereby, aleatory and epistemic un-

certainties are made explicit at the word-level. We conduct an experimental

and human evaluation of the capabilities of BayLUXT. We show that Bay-

LUXT is capable of e�ectively decomposing prediction uncertainty and that

these explanations provide valuable insights for humans to more e�ectively un-

derstand text classi�cation outcomes. In our human evaluation, more than 92%

of the respondents state that explaining uncertainty is a desirable extension to

traditional relevance-based explanations to facilitate the understanding of text

classi�cation outcomes.

175

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

8.1 Motivation

Clearly, it is important for humans to understand how a text classi�er arrives

at its predictions in order to build trust [52]. Unfortunately, ML-based text

classi�ers are considerable back-boxes as they do not reveal why certain predic-

tions were made. The �eld of XAI, as introduced in Section 4.4.2, is dedicated

to enhancing the human understandability and transparency of ML models,

including text classi�ers. In particular, local explanations [27, 238, 309] have

shown to o�er valuable details and insights that make a model's decisions much

more understandable and trustworthy. Accountable insights into the decision-

making process of ML models allow for greater attention to be paid to particu-

larly error-prone and unreliable predictions, and a better understanding of why

wrong decisions occur. Explanations are a core mechanism for HiL to facilitate

collaboration between humans and ML models.

Current XAI techniques for text classi�cation provide insight into which words

contribute most to a class outcome [309]. These explain why a classi�er favored

one predicted class label over the others. However, just as models can fail by

producing incorrect classi�cations, explanations can also be misleading and pro-

mote incorrect predictions. In particular, uncertainties can corrupt classi�cation

results, resulting in highly ambiguous and distorted explanations. A major ob-

stacle to conventional XAI explanations is their persuasiveness [30]. Humans

tend to be easily persuaded by explanations that actually promote false or highly

uncertain results.

While previous local explanation techniques attempt to explain the words

that contribute most to the �nal class label, they do not provide insight into

which particular word contributed to the uncertainty of the classi�cation [27,

238, 309]. Human users cannot be made explicitly aware of uncertainties that

may corrupt predictions. Uncertainty estimation is another black-box compo-

nent that provides opaque uncertainty scores. It remains unknown why a single

prediction is considered uncertain, or why it is much more uncertain than oth-

ers. This lack of understanding makes it challenging to acknowledge potential

classi�cation di�culties and errors.

The previous chapter illustrated the importance of recognizing when a model

lacks the knowledge to produce reliable results. This understanding empowers

humans to approach error-prone and unreliable predictions with additional cau-

tion, such as through Active Moderation. This lack of clarity poses a signi�cant

challenge, especially since many HiL deployment patterns rely on humans to

deal with the most uncertain instances. We argue that explaining prediction

uncertainty would provide a deeper understanding of model behavior.

176

8.2 Conceptual Framework

8.2 Conceptual Framework

This section is dedicated to the BayLUXT framework. First, it outlines the

problem to be solved. Then it describes the inner workings of BayLUXT. Finally,

we illustrate how the word attributions are visualized.

8.2.1 Problem Statement

Let 𝑓 𝜔 be the prediction function of a trained NN classi�er with its learned pa-

rameters 𝜔 ∈ Ω. Given an input sequence of word embeddings1 𝑒 = (𝜖1, 𝜖2, ..., 𝜖𝐸)
∈ 𝑋 with dimensionality 𝐸 , 𝑓 𝜔 computes class activation score 𝑆𝜔𝑐 per class 𝑐 ∈ 𝑌
given 𝑒. The class activation score 𝑆𝜔𝑐 is the outcome of the last layer before the

�nal activation function 𝜙. The class prediction 𝑦 is the class with the highest

activation score that is,

𝑦 = 𝑓 𝜔 (𝑒) := argmax
𝑐∈𝑌

𝑆𝜔𝑐 (𝑒) (8.1)

The posterior probability of a class prediction is computed by applying a softmax

function 𝜙 to the class activation scores:

𝑝(𝑦 = 𝑐 |𝑒, 𝜔) := 𝜙(𝑆𝜔𝑐 (𝑒)) =
exp(𝑆𝜔𝑐 (𝑒))∑
𝑘∈𝑌 exp(𝑆𝜔

𝑘
(𝑒)) (8.2)

Given some 𝑒 ∈ 𝑋, a mapping exp : 𝑋 → R𝐸 is desired that explains a prediction

pair (𝑒, 𝑦) ∈ 𝑋 ×𝑌 . Traditionally, an explanation should capture how much each

word of the input text 𝑒 contributes to the �nal class prediction 𝑦. We aim to

compute a mapping that explains the predicted uncertainty 𝑢[𝑦 |𝑒] regarding the
in�uence of each word 𝜖 in 𝑒. It is expected that some words will add uncertainty,

while others will remove it, analogous to word relevance. To further improve

the understanding of how text classi�ers work, we aim to assess the parts of the

input that a model can classify easily or has problems with. We refer to this

as explaining the sequential behavior of a model. The following explanations

should be provided by BayLUXT:

� Explain the contribution of each word 𝜖 in 𝑒 to the posterior probability

𝑝(𝑦 = 𝑐 |𝑒, 𝐷) for all classes 𝑐 ∈ 𝑌 .

� Explain the contribution of each word 𝜖 in 𝑒 to the prediction uncertainty

𝑢[𝑦 = 𝑐 |𝑒] for all classes 𝑐 ∈ 𝑌 .
1We refer to a text instance as 𝑒 rather than 𝑥 to emphasize that the input must explicitly
be a sequence of word embeddings. Thus, in this chapter, 𝑒 ∈ 𝑋 ⊂ N𝐸×𝑑 applies. Where 𝑑
is the dimensionality of the word embedding.

177

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

� Explain the posterior probability 𝑝(𝑦 = 𝑐 | (𝜖1, 𝜖2, ..., 𝜖𝑖), 𝐷) for each index

1 ≤ 𝑖 ≤ 𝐸 and for all classes 𝑐 ∈ 𝑌 .

� Explain the prediction uncertainty 𝑢[𝑦 = 𝑐 | (𝜖1, 𝜖2, ..., 𝜖𝑖)] for each index

1 ≤ 𝑖 ≤ 𝐸 and for all classes 𝑐 ∈ 𝑌 .

In addition, the estimated uncertainty of the prediction should be separable

into its aleatory and epistemic components.

8.2.2 Uncertainty Modeling

To explain prediction uncertainties, they must �rst be modeled and quanti�ed.

For our implementation of BayLUXT, we consider MCD to model uncertain-

ties. By enabling dropout at inference time, each forward pass uses a random

sample of weights, resulting in a probabilistic model. A measure of prediction

uncertainty with respect to an input 𝑒 is derived by analyzing the statistical

dispersion of the output distribution 𝑝(𝑦 = 𝑐 |𝑒, 𝐷). For BayLUXT we apply the

uncertainty quanti�cation approach proposed by Kwon et al. (Eq. 2.38) to esti-

mate the total uncertainty 𝑈 and decompose it into its epistemic and aleatory

components. Since their approach requires no structural changes, uncertainty

modeling can be seamlessly integrated into existing RNN implementations.

8.2.3 Decomposition of Word Relevance and Uncertainty using

RNNs

BayLUXT follows a model-speci�c sequence attribution approach using RNNs

in conjunction with Bayesian modeling to assess word and sequence uncertainty.

Explanations are modeled as an additional outcome of the inference process. An

RNN, as introduced in Section 2.1.6, is an adaptation of a traditional FFNN for

processing sequence data. Each element of the input sequence is recurrently eval-

uated, taking into account information from the previously processed sequence.

We consider an RNN variant called Long Short Term Memory (LSTM), initially

described by Hochreiter and Schmidhuber [152]. LSTMs are commonly used for

text classi�cation tasks [223, 276, 330] as they perform much better than tra-

ditional RNNs. We brie�y describe how we derive relevance and uncertainty

explanations using an LSTM.

An LSTM consists of a sequence of repeated cells, each of which computes

a hidden state. For each index 𝑡 of the input sequence, the output of a corre-

sponding cell is controlled by a set of gates as a function of an input 𝑥𝑡 and the

previous hidden states ℎ𝑡−1. Several gates control how the current hidden state

178

8.2 Conceptual Framework

ℎ𝑡 changes: The forget gate 𝑓𝑡 , the input gate 𝑖𝑡 , and the output gate 𝑜𝑡 . These

gates are de�ned as follows [97]:

𝑓𝑡 := 𝜎(𝑊𝑥 𝑓 𝑥𝑡 +𝑊ℎ 𝑓 ℎ𝑡−1 + 𝑏 𝑓)

𝑖𝑡 := 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)

𝑔𝑡 := 𝜓(𝑊𝑥𝑔𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑔) (8.3)

𝑜𝑡 := 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)

𝑐𝑡 := 𝑓𝑡 � 𝑐𝑡−1 + 𝑖𝑡 � 𝑔𝑡
ℎ𝑡 := 𝑜𝑡 � 𝜓(𝑐𝑡)

Where 𝑊𝑥 𝑗 ,𝑊ℎ 𝑗 are weight matrices and 𝑏 𝑗 is a bias vector for 𝑗 ∈ { 𝑓 , 𝑖, 𝑔, 𝑜}.
The initial cell and hidden states are 𝑐0 = ℎ0 = 0. The symbol 𝜎 refers to

the logistic sigmoid function, 𝜓 denotes the hyperbolic tangent, and � is the

element-wise multiplication. For a classi�cation task, we add a discriminative

layer after the last activation vector ℎ𝑇 to obtain class activation scores using

a weight matrix 𝑊 :

𝑆𝜔𝑐 (𝑒) := 𝑊𝑐ℎ𝑇 (8.4)

Since the 𝑖th hidden state vector ℎ𝑖 is updated by prior hidden states, pre-

vious sequence elements 𝜖1, 𝜖2, ..., 𝜖𝑖−1 are already taken into account in the

evaluation of ℎ𝑖. Thus, 𝑆𝜔𝑐 (𝑒𝑖) = 𝑊𝑐ℎ𝑖 describes the accumulated class acti-

vation of the �rst 1 ≤ 𝑖 ≤ 𝐸 word embeddings 𝑒𝑖 := (𝜖1, 𝜖2, ..., 𝜖𝑖) of an input

𝑒 = (𝜖1, ..., 𝜖𝑖 , 𝜖𝑖+1, ..., 𝜖𝐸). To assess the contribution of a single word 𝜖 to the

�nal class prediction, we decompose the �nal class activation score into the sum

of the contributions of several individual words [97]:

𝑆𝜔𝑐 (𝑒) :=
𝐸∑︁
𝑖=1

𝑆𝜔𝑐 (𝑒𝑖) − 𝑆𝜔𝑐 (𝑒𝑖−1) =
𝐸∑︁
𝑖=1

𝑊𝑐 (ℎ𝑖 − ℎ𝑖−1) (8.5)

The calculation of word contribution relies on evaluating the slope of the se-

quence of class activation scores, denoted as 𝑆𝜔𝑐 (𝑒1), 𝑆𝜔𝑐 (𝑒2), ..., 𝑆𝜔𝑐 (𝑒𝐸). The

slope is calculated as the di�erence between consecutive elements of the se-

quence. Since even the �rst word 𝜖1 within a text can signi�cantly contribute to

a certain class, we treat 𝑒0 as a neutral placeholder that is not part of 𝑒 and does

not contribute disproportionately to any class; thus, 𝑆𝜔𝑐 (𝑒0) ≈ 1
𝐶
. Technically,

𝑒0 can be realized by pre-padding.

When modeling uncertainty with variational Bayes, the class activation score

is computed as the average of 𝑇 stochastic forward passes, that is 𝑆𝑐 (𝑒) :=

𝑇−1∑𝑇
𝑡=1 𝑆

𝜔𝑡
𝑐 (𝑒). Computing the mean posterior probability 𝑝(𝑦 = 𝑐 |𝑒𝑖 , 𝐷) for

179

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

each word sequence up to index 𝑖 with 1 ≤ 𝑖 ≤ 𝐸 using MCD allows us to

assess the development of uncertainties along the input sequence. Analogous to

Eq. 8.5, we measure the word-level uncertainty 𝑈 as the change in uncertainty

contributed by a single word:

𝑈 (𝜖𝑖) := 𝑈 (𝑒𝑖) −𝑈 (𝑒𝑖−1) (8.6)

Additionally, we derive the relevance 𝑅𝑐 of each word in terms of its contribution

to the class activation score. The relevance of a word is calculated as the class

activation contributed by a single word compared to its previous sequence:

𝑅𝑐 (𝜖𝑖) := 𝑆𝑐 (𝑒𝑖) − 𝑆𝑐 (𝑒𝑖−1) (8.7)

According to Eqs. 8.5 and 8.7, the posterior probability of a word sequence 𝑒𝑖
can also be calculated from the word relevance:

𝑝(𝑦 = 𝑐 |𝑒𝑖 , 𝐷) := 𝜙(𝑆𝑐 (𝑒𝑖))

= 𝜙

(1
𝑇

𝑇∑︁
𝑡=1

𝑖∑︁
𝑗=1

𝑆𝜔𝑡
𝑐 (𝑒 𝑗) − 𝑆𝜔𝑡

𝑐 (𝑒 𝑗−1)
)

= 𝜙

(𝑖∑︁
𝑗=1

𝑆𝑐 (𝑒 𝑗) − 𝑆𝑐 (𝑒 𝑗−1)
)

=: 𝜙
(𝑖∑︁
𝑗=1

𝑅𝑐 (𝜖 𝑗)
)

(8.8)

Since the direction of the certainty, e.g., whether a text contains a positive or

negative sentiment at some index 𝑖, is much more meaningful than simply that

the model is certain, we also suggest using the Directed Uncertainty Explanation

(DUX) as a type of explanation. The DUX is based on the sequence uncertainty

𝑈 (𝑒𝑖) and the sequence relevance 𝜙(𝑆𝑐 (𝑒𝑖)) and is de�ned as:

DUX(𝑒𝑖) :=

𝜙(𝑆𝑐 (𝑒𝑖)) if 𝑈 (𝑒𝑖) ≤ 𝜏𝑈
𝑈 (𝑒𝑖)

(8.9)

The sequence relevance 𝜙(𝑆𝑐 (𝑒𝑖)) is used if the model is certain about 𝑒𝑖. Oth-

erwise, the sequence uncertainty 𝑈 (𝑒𝑖) is taken. As the uncertainty threshold

𝜏𝑈 we use the mean of the uncertainty range, which is 𝜏𝑈 = 0.125.

Overall, BayLUXT supports the following types of explanation: the word rel-

evance 𝑅𝑐 (𝜖𝑖), the sequence relevance 𝜙(𝑆𝑐 (𝑒𝑖)), the word uncertainty 𝑈 (𝜖𝑖), the
sequence uncertainty 𝑈 (𝑒𝑖), and the directed uncertainty explanation 𝐷𝑈𝑋 (𝑒𝑖).

180

8.3 Study Design

8.2.4 Visualizing Attributions

As previously outlined, a common approach to making users aware of word

attributions is to rely on heat-maps. These encode the magnitude of word at-

tributions as colors. To compute a word-level attribution mask for visualization

via a heat-map, the attribution associated with the corresponding embedded

words 𝜖1, 𝜖2, ..., 𝜖𝐸 must be traced back to their original natural language repre-

sentation. Several steps must be performed to trace back the attribution scores.

So far, we have only considered the meaningful parts of the feature space given

an input 𝑒. However, sequences of word embeddings are generally padded to �t

the same sequence length. Thus, the actual input has the form (𝜌1, 𝜌2, ...𝜌𝑃) | | (𝜖1,
𝜖2, ..., 𝜖𝐸) where 𝜌1, 𝜌2, ...𝜌𝑃 represent padded elements that hold no signi�cant

meaning for the classi�cation outcome. Relevant sequence information only

exists in the unpadded word embeddings 𝜖1, 𝜖2, ..., 𝜖𝐸 . Therefore, attributions

associated with padded elements need to be dropped. Second, cleaning steps

applied to the input text, such as lowercase transformation or the removal of

punctuation marks and stop words, must be traced back to preserve the origi-

nal format of the input. Finally, for enhancing visual clarity, word attributions

are typically normalized to sharpen the visualization, for instance, by using the

absolute maximum attribution score per input sequence [22].

Heat-maps often become cluttered when visualizing large amounts of infor-

mation. Therefore, we also explore the use of line graphs to represent the word

attributions. This approach plots word indices on the x-axis, while attribution

scores are plotted on the y-axis. Although the change in attribution scores is

clearly visible in this representation, the direct relationship to individual words

is less obvious. However, since the subsequent evaluation is primarily concerned

with changes in attribution scores rather than the text itself, this does not

diminish its e�ectiveness.

8.3 Study Design

We outline the research questions and evaluation criteria for the experimental

and human evaluation. We describe the implementation details of BayLUXT

and the datasets used, as well as the participants and procedure of the human

evaluation.

8.3.1 Research Questions

We will investigate BayLUXT by examining the following research questions:

181

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

RQ1: Can BayLUXT provide a meaningful decomposition of the posterior

probability of an input over the sequence of its words?

BayLUXT aims to o�er profound insight into the decision-making of text classi-

�cation models. We explore the ability of BayLUXT to decompose and extract

sequence information, speci�cally how the posterior probability of the model

evolves given various input texts.

RQ2: Is BayLUXT suitable for explaining the relevance and uncertainty of

words in the context of text classi�cation?

Traditional local explanation techniques o�er word attributions that indicate

the most relevant words for speci�c class outcomes. BayLUXT extends this by

decomposing the prediction uncertainty at the word-level. We assess how well

BayLUXT can distinguish between relevant, irrelevant, certain, and uncertain

words or phrases with respect to the classi�cation objective.

RQ3: Do explanations of uncertainty improve human understanding of text

classi�cation results?

It is currently unknown to what extent explanations of uncertainty provide

insights for human users seeking to better understand classi�cation models,

compared to providing only traditional word relevance.

RQ4: How does explaining uncertainty compare to the traditional approach of

explaining relevance?

We investigate how uncertainty explanations complement traditional relevance-

based explanations. Our goal is to determine whether uncertainty explanations

can replace or meaningfully enhance relevance explanations.

8.3.2 Evaluation Criteria

We evaluate the suitability of BayLUXT through two consecutive studies. First,

we examine the e�ectiveness of BayLUXT through an experimental evaluation.

Second, we conduct a human evaluation in which participants are presented with

explanations of BayLUXT and are given a series of tasks, and a questionnaire.

Experimental Evaluation. The experimental evaluation assesses the correct-

ness of BayLUXT. We investigate the explanatory power of BayLUXT on var-

ious text inputs. Since BayLUXT can explain text classi�cation regardless of

182

8.3 Study Design

the actual domain and task, we focus on the common and widely studied task

of sentiment analysis.

To answer RQ1 and RQ2, we �rst examine whether BayLUXT can detect

sentiment changes within a text. For instance, a movie review might start

with positive aspects and conclude with negative ones. A decomposition of

the posterior probability 𝑝(𝑦 = 𝑐 |𝑒, 𝐷) should be able to detect such sentiment

changes. To systematically investigate the ability of BayLUXT to explicitly re-

veal changes in sentiment, we concatenate di�erent texts with known labels. For

instance, a text with a positive sentiment is concatenated with a text express-

ing a negative sentiment. We then examine whether the transitions between

the di�erent sentiment sections of the concatenated input are visible in the ex-

planation. Second, we examine which words are frequently deemed uncertain

or relevant for positive and negative sentiment texts and whether they are con-

textually meaningful. To accomplish this, we rank the words based on their

mean attribution scores for positive and negative class outcomes and examine

the sensibility of the most frequently occurring words. Third, we visualize the

attribution scores provided by BayLUXT. Given several input examples, we

investigate which words are highlighted by di�erent types of explanations and

demonstrate the insights provided.

Human Evaluation. To answer RQ3 and RQ4, we conducted a human eval-

uation of BayLUXT. Since it is overwhelming to provide �ve di�erent types

of explanations to human users to facilitate their understanding of a predic-

tion, we focus on the evaluation of DUX. DUX is considered because we believe

it provides the most comprehensive insight into assessing the uncertainty of

a prediction. We asked participants to complete several comprehension tasks

of text classi�cation explanations provided by BayLUXT, covering both tradi-

tional relevance-based explanations and DUX. Participants were also asked to

complete a short questionnaire.

Phase 2

Reveal Word Relevance Q1

An
no

ta
tio

n
G

ui
de

Reveal Predicted Class
and Class Probability

Q3

Reveal DUX

Q2

Q4Q5

Q6 Q7 Q8

Phase 1

In
tro

du
ct

io
n

(D
om

ai
n)

Q
ue

st
io

nn
ai

re

Task

In
tro

du
ct

io
n

(X
AI

)

Figure 8.1: Overview of the human evaluation design.

183

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

The task of the human evaluation, as shown in Figure 8.1, is divided into

two parts. In total, both tasks are performed on 7 text instances. Given a

text instance, BayLUXT is used to classify it and provide a traditional word-

relevance-based explanation 𝜙(𝑆𝑐 (𝜖𝑖)), as well as DUX(𝑒𝑖). In each task, partic-
ipants are asked several questions to investigate the usefulness of the two types

of explanations.

� Part 1: Explaining Relevant Words. In the �rst part of the user eval-

uation, participants are shown a text and an explanation that highlights

the most relevant words for positive and negative sentiment. Based on

the explanations alone, participants are �rst asked to decide whether the

text has a positive or negative sentiment (Q1). If no clear decision can be

made, an instance can also be marked as undecidable. Second, without

knowing the predicted class label, participants were asked how much the

provided explanation made sense to them (Q2). Participants were then

asked how easy it was to make a clear classi�cation decision (Q3). In the

next step, participants were shown the classi�cation outcome 𝑦 and the

class probability 𝑝(𝑦 |𝑒) . They were asked how trustworthy they thought

the predictions were (Q4). Finally, we asked participants to what extent

the explanation for that class made sense, i.e., supported the classi�cation

result (Q5). Our study does not reveal the ground truth label, as this

information would not be available in a real-world scenario.

� Part 2: Explaining Uncertainties via DUX. The second part of our

human evaluation concerns the suitability and validity of DUX. Partici-

pants are presented with DUX. Given the same text, we ask how under-

standable the provided explanation of the underlying uncertainties was

(Q6). Participants were then asked to what extent the explanation of

the uncertainty helped them to judge the trustworthiness of the predic-

tion (Q7). Finally, participants were asked which type of explanation was

most helpful in understanding the prediction outcome and its con�dence

(Q8). Participants were given a choice between �word relevance�, �uncer-

tainties�, �both equally� or �neither�. For Q2 to Q7, participants could

express their agreement or disagreement with the question using a 5-point

Likert scale.

Finally, participants are asked to answer a series of questions covering vari-

ous aspects of explainability in general and a comparison of the two types of

explanations.

184

8.3 Study Design

8.3.3 Datasets

To demonstrate the capabilities and correctness of BayLUXT, we apply it to

the well-studied task of sentiment analysis [243]. Sentiment analysis has the

advantage that explanations are easy to understand and do not require speci�c

expert knowledge. As a technical contribution to the �eld of explainable text

classi�cation, no serious di�erences in the basic functioning of BayLUXT are to

be expected with respect to other datasets and domains. Only the complexity of

the task impacts the classi�cation performance of a model and thus the explana-

tion associated with it. For our evaluation, we consider the IMDB dataset [243],

which consists of 50,000 polarized movie reviews, equally divided into positive

and negative reviews according to their sentiment. In our experiments, we use

25,000 examples for training, 12,500 for validation, and 12,500 for testing. After

training, we achieve a test accuracy of 88%.

We also rely on the same sentiment analysis task and trained LSTM model for

the human evaluation. We consider a total of seven text instances for the human

evaluation. We randomly sampled four highly uncertain reviews from the test

dataset. Additionally, we randomly sampled one positive and one negative text

with very low uncertainty. In addition, we used a text with a mixed sentiment

written by ourselves. Since the movie reviews are usually very long and time-

consuming to read, we simpli�ed and reduced the sampled texts to include less

than 60 words.

8.3.4 Implementation Details

We implemented BayLUXT using an LSTM with an additional dropout-layer

after the embedding-layer with a dropout probability of 0.5. We consider the

LSTM con�guration used in the o�cial Tensor�ow example2. We take pre-

trained Google word2vec embeddings3 with a dimensionality of 300 as our word

representations. Further, we use the Adam [196] optimizer, a batch size of 50

and apply early stopping. For each input, we consider 𝑇 = 50 model runs to

approximate the posterior probabilities.

8.3.5 Participants

We recruited participants from students participating in an advanced ML project.

All participants were familiar with back-box classi�ers for text classi�cation and

the interpretation of traditional relevance-based explanations. Furthermore, all

2https://keras.io/examples/imdb_lstm/
3https://code.google.com/archive/p/word2vec/

185

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

participants had at least two years of experience in software development. A to-

tal of 15 participants were recruited for the human evaluation. One participant

was excluded from the results due to a high number of incomplete responses

during the task.

8.3.6 Procedure of the Human Evaluation

The participants were invited to carry out the experiment in person. All tasks

were distributed on paper. First, the structure of the human evaluation was

explained, as shown in Figure 8.1. Then the overall problem domain of expla-

nations as a means to achieve more transparent predictions was brie�y intro-

duced. An annotation guide for sentiment analysis was provided, outlining the

overall objective and how to distinguish between the two classes. We presented

an example of a clearly negative and a clearly positive review. We also provided

examples of terms such as �perfect�, �great� and �awful � as typical indicators of

a positive or negative review. Next, we explained the process of comprehend-

ing relevance-based explanations and DUX by showing an example of each type

of explanation. We also provided a step-by-step guide for understanding word

relevance and DUX. Finally, each participant was given a task sheet and the

questionnaire.

8.4 Experimental Evaluation Results

This section presents the experimental evaluation of the technical contribution of

BayLUXT. This includes its ability to decompose the posterior probability and

uncertainties over the input sequence and the attribution of individual words.

Our implementation and experimental results are publicly available online4.

8.4.1 Sequence Decomposition

First, we investigate the information provided by the decomposition of posterior

probabilities and prediction uncertainties. In particular, given some input texts,

we experimentally assess the degree of transparency that BayLUXT reveals.

Figure 8.2 gives an example of two movie reviews that are clearly classi�ed as

negative. Both posterior probabilities are close to one. The x-axis refers to the

word index 𝑖 of the processed subsequence 𝑒𝑖. The y-axis shows the posterior

probability for the negative sentiment case. The graph can be interpreted as

the prediction outcome if the model only considers the �rst 𝑖 word embeddings

of the input.

4https://github.com/jsandersen/WU-RNN

186

https://github.com/jsandersen/WU-RNN

8.4 Experimental Evaluation Results

0 20 40 60 80 100 120
Word Index

0.0

0.2

0.4

0.6

0.8

1.0
P

os
te

rio
r

P
ro

ba
bi

lit
y

Mean
Std

(a)

0 50 100 150 200
Word Index

0.0

0.2

0.4

0.6

0.8

1.0

P
os

te
rio

r
P

ro
ba

bi
lit

y

Mean
Std

(b)

Figure 8.2: Two predictions with similar class outcomes, but di�erent sequential
behavior. The path of the mean posterior probability reveals rele-
vant regions in the input.

0 50 100 150
Word Index

0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r P
ro

ba
bi

lit
y

Mean
Std

(a)

0 50 100 150 200
Word Index

0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r P
ro

ba
bi

lit
y

Mean
Std

(b)

Figure 8.3: Two highly uncertain predictions with similar class probabilities but
di�erent sequential behavior. The path of the mean posterior prob-
ability reveals relevant regions in the input.

Decomposing the posterior probabilities reveals di�erent model behavior along

the input sequences. In Figure 8.2a the model has inferred early that the in-

put describes a negative review. In Figure 8.2b, the input is �rst evaluated as

positive and then changes to a negative sentiment classi�cation result. Two ex-

amples of highly uncertain predictions are depicted in Figure 8.3. The example

in Figure 8.3a is predominantly perceived as a negative sentiment. Towards the

end, however, the model loses con�dence in its decision. The correct classi�ca-

tion (ground truth) for this example would be a positive sentiment. In contrast,

for the example shown in Figure 8.3b, the model is not sure which class to prefer

for almost every index. The model �uctuates between the two classes and �nally

makes a decision with a posterior probability of 0.51.

The path of the mean posterior reveals the structure of the input. BayLUXT

demonstrates its ability to �nd indistinguishable positive or negative sections

187

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

20 40 60 80 100 120
Word Index

00

20

40

60

80

100
U
nc
er
ta
in
ty

 (%
)

Total
Aleatory
Epistemic

(a)

0 50 100 150 200
Word Index

0

20

40

60

80

100

U
nc

er
ta

in
ty

 (%
)

Total
Aleatory
Epistemic

(b)

50 100 150
Word Index

Total
Aleatory
Epistemic

00

20

40

60

80

100

U
nc

er
ta

in
ty

 (%
)

(c)

0 50 100 150 200
Word Index

0

20

40

60

80

100

U
nc

er
ta

in
ty

 (%
)

Total
Aleatory
Epistemic

(d)

Figure 8.4: Decomposition of the total, aleatory, and epistemic uncertainties for
the examples used in Figure 8.2 (a and b) and Figure 8.3 (c and d).

within the input text. With traditional uncertainty estimation approaches, these

internal insights would remain hidden because they provide a single uncertainty

value that covers the entire input text.

Figure 8.4 plots the total uncertainty as well as its aleatory and epistemic

components for the posterior distributions shown in Figures 8.2 and 8.3. The

total uncertainty is limited to a maximum of 0.25 (100%). In the example shown

in Figure 8.4a, the model starts to have a high uncertainty when only a few

words are considered. In comparison, in Figure 8.4b, the model is much more

uncertain in the �rst half of the text. In both cases, however, the uncertainty is

almost eliminated by considering additional sequence information. In contrast,

the examples in Figures 8.4c and 8.4d are almost maximally uncertain.

To provide a more detailed example, we concatenate a clearly negative review

of 140 words with a clearly positive review of 239 words. As shown in Figure

8.5a, the �rst 140 words are clearly identi�ed as negative with a total uncertainty

of 24%. At the beginning of the second review, the mean posterior probability

drops and becomes highly uncertain. Furthermore, Figure 8.5 shows that the

uncertainty increases as the sentiment shifts. Another example is shown in Fig-

ure 8.6, where an uncertain, a positive, and a negative review are concatenated.

188

8.4 Experimental Evaluation Results

0 100 200 300
Word Index

0.0

0.2

0.4

0.6

0.8

1.0
P

os
te

rio
r

P
ro

ba
bi

lit
y

Mean
Std

(a)

0 100 200 300
Word Index

0

20

40

60

80

100

U
nc

er
ta

in
ty

 (
%

)

Total
Aleatory
Epistemic

(b)

Figure 8.5: A negative review of 140 words concatenated with a positive review.
The �gure shows the e�ect of a changing sentiment along the input.

0 100 200 300 400
Word Index

0.0

0.2

0.4

0.6

0.8

1.0

Po
st

er
io

r P
ro

ba
bi

lit
y

Mean
Std

(a)

0 100 200 300 400
Word Index

0

20

40

60

80

100

U
nc

er
ta

in
ty

 (%
)

Total
Aleatory
Epistemic

(b)

Figure 8.6: Concatenation of a highly uncertain, positive, and negative review
with 140, 171, and 140 words, respectively.

Again, the decomposed posterior probability shows the change in sentiment that

matches that of the concatenated review. Overall, our experiments show that

the decomposition of NN outputs can provide valuable information to support

the understanding of classi�cation decisions.

8.4.2 Relevant and Uncertain Words

Next, we examine the most relevant words for each class outcome to demonstrate

the correct decomposition of the class activation score 𝑆𝑐 given some input 𝑥.

It is assumed that words with positive meanings such as �brilliant�, �favorite�,

or �excellent�, are often used to describe positive movie reviews. Conversely,

negative words such as �boring� or �awful � indicate negative reviews. Table 8.1

lists the most relevant words on average for the positive and negative sentiment

class outcomes on the test dataset. Given a word embedding 𝜖 , its average

relevance 𝑅𝑐 (𝜖) is calculated as the ratio of the sum of word activations to its

total frequency. The inferred words match our expectations, indicating that our

189

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

Positive 𝑅𝑐 Count Negative 𝑅𝑐 Count
1 perfect 1.21 720 worst 1.55 1237
2 excellent 1.14 974 disappointing 1.35 179
3 superb 1.05 303 unwatchable 1.31 57
4 refreshing 1.04 79 insult 1.22 120
5 �nest 0.99 135 waste 1.22 646
6 favorites 0.97 92 forgettable 1.21 84
7 favorite 0.95 537 awful 1.18 833
8 delightful 0.94 91 plagiarized 1.15 1
9 interweaving 0.91 1 disappointment 1.15 178
10 unforgettable 0.90 68 appalling 1.12 72
11 excellently 0.90 17 pointless 1.12 230
12 unsurpassed 0.90 5 uninspired 1.11 82
13 celebrates 0.90 9 stinker 1.10 59
14 timeless 0.90 51 torpid 1.10 1
15 enjoyable 0.89 383 twit 1.10 2

Table 8.1: Top 15 most relevant words for positive and negative reviews.

Aleatory 𝑈𝑎 Count Epistemic 𝑈𝑒 Count
1 worst -0.079 1237 dumber -0.019 21
2 awful -0.058 833 ine�ective -0.017 17
3 excellently -0.056 17 instrumental -0.016 11
4 dumber -0.055 21 vapid -0.015 16
5 stink -0.053 12 crow -0.015 16
6 waste -0.052 646 excellently -0.014 17
7 puerile -0.049 13 stink -0.014 12
8 insult -0.049 120 lifeless -0.013 35
9 excellent -0.048 974 mediocrity -0.013 28
10 �nest -0.047 135 gutter -0.013 11
11 disappointing -0.047 179 mst3k -0.013 81
12 mesmerizing -0.047 24 clowns -0.013 11
13 stinker -0.047 59 puerile -0.013 13
14 apologize -0.047 11 wasting -0.013 56
15 mst3k -0.047 81 hatchet -0.013 21

Table 8.2: Top 15 words that reduce the overall aleatory and epistemic uncer-
tainty of a prediction. Words in bold are among the 15 most relevant
words of both classes (Figure 8.1). Words that strongly reduce both
epistemic and aleatory uncertainty are underlined.

model can correctly infer the meaning of emotional phrases. No unintuitive or

ambiguous words were noticed.

Table 8.2 shows which words of the test data, on average, reduce the aleatory

or epistemic uncertainty of a prediction the most. It is noticeable that the ma-

jority of the listed words that reduce aleatory uncertainty are also the most sen-

sitive (as listed in Table 8.1). The sequence decomposition has demonstrated

that a prediction begins to have almost maximum aleatory uncertainty when

only the �rst word of the text is considered. At this point, the epistemic uncer-

190

8.4 Experimental Evaluation Results

tainty is close to zero. Furthermore, by de�nition, relevant words increase the

class activation score the most. Therefore, it is reasonable that relevant words

will reduce aleatory uncertainty the most, especially at the �rst encounter.

(a) (b)

Figure 8.7: Dependencies between word relevance and a) aleatory and b) epis-
temic uncertainty.

Figure 8.3 displays the relationship between the average word relevance and

the uncertainty contributed by each word. For each word 𝜖 the y-axis denotes

the word relevance 𝑅𝑐 (𝜖) and the x-axis refers to the aleatory and epistemic un-

certainty. The plot reveals that relevant words are more likely to add or remove

uncertainty in the model. This was already seen in Table 8.2. Furthermore,

uncommon words are likely to add the most uncertainty, while the most com-

mon words reduce the uncertainty. A comparison of the �gures reveals similar

behavior for aleatory and epistemic uncertainty. However, the overall model is

less a�ected by epistemic uncertainty than by aleatory uncertainty.

8.4.3 Text Explanations

To visualize the degree of word relevance and uncertainty, we use heat-maps and

a gradient-based color scheme. The color gradients used for sentiment analysis

are shown in Figure 8.8. Positive sentiment words are highlighted in green

and negative sentiment words are highlighted in red. In addition, words that

reduce uncertainty are highlighted in blue and words that increase uncertainty

are highlighted in orange. Neutrality is illustrated by keeping the background

color white (no highlighting). As neutrality can be interpreted to some extent as

ambiguity and uncertainty, we use a modi�ed gradient for sequence uncertainty

that does not include a broad neutral state.

Table 8.3 illustrates all types of explanations provided by BayLUXT. More

text examples are shown in Table B.1. These are the word relevance 𝑅𝑐 (𝜖𝑖), the
sequence relevance 𝜙(𝑆𝑐 (𝑒𝑖)), the word uncertainty 𝑈 (𝜖𝑖), the sequence uncer-

191

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

positive negativneutral

(a) Word and sequence relevance

decrease increaseneutral

(b) Word uncertainty

decrease increase

(c) Sequence uncertainty

Figure 8.8: Meaning of the color gradients of BayLUXT for di�erent types of
explanations.

Label and
Confidence Text and Explanations Type

Positive
0.66

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

𝐷𝑈𝑋 (𝑒𝑖)

𝑈 (𝑒𝑖)

𝑈 (𝜖𝑖)

𝜙(𝑆𝑐 (𝑒𝑖))

𝑅𝑐 (𝜖𝑖)

Table 8.3: Visualizations of the di�erent types of explanations obtained from
BayLUXT. A word at index 𝑖 is highlighted according to the word
relevance 𝑅𝑐 (𝜖𝑖), the sequence relevance 𝜙(𝑆𝑐 (𝑒𝑖)), the word uncer-
tainty 𝑈 (𝜖𝑖), the sequence uncertainty 𝑈 (𝑒𝑖), and DUX 𝐷𝑈𝑋 (𝑒𝑖).
Positive and negative sentiment words are highlighted in green and
red, respectively, while words that reduce and increase uncertainty
are highlighted in blue and orange.

tainty 𝑈 (𝑒𝑖) and 𝐷𝑈𝑋 (𝑒𝑖). The example shown is classi�ed as positive with a

mean posterior probability of 0.66. The explanations given can be interpreted

as follows:

� Word Relevance � 𝑅𝑐 (𝜖𝑖). The words �excellent� and �great� are iden-

ti�ed as the most relevant words for a positive sentiment, while �unfortu-

nately� and �terrible� are negative. Considering only these words, it may

not be obvious why the classi�er reports positive instead of negative as

the class result.

� Sequence Relevance � 𝜙(𝑆𝑐 (𝑒𝑖)). This explanation highlights a word

in terms of the posterior probability that the classi�er would report if only

192

8.4 Experimental Evaluation Results

the text from the beginning to that word were considered by the classi�er.

Thus, the 𝑖th word shows the classi�cation outcome if only the �rst 𝑖

words were passed to the classi�er. For example, the word �excellent�

is highlighted in green as the text �I was an excellent� was recognized

as positive. It can be seen that the classi�er would provide a positive

sentiment outcome with high con�dence until the negative word �terrible�

appears.

� Word Uncertainty � 𝑈 (𝜖𝑖). The word uncertainty shows the total uncer-
tainty contributed by each word. It can be seen that the word �excellent�

reduces the classi�cation uncertainty, as it is a highly relevant word that

leads to high sequence relevance. When the contradictory relevant word

�unfortunately� appears in the sequence, the class probability decreases,

resulting in a loss of con�dence and an increase in uncertainty.

� Sequence Uncertainty � 𝑈 (𝑒𝑖). The sequence uncertainty, analogous to
the sequence relevance, illustrates the uncertainty of the prediction when

only the �rst 𝑖 words of the input have been considered by the model.

The model is initially highly uncertain once it observes a relevant term. If

a relevant term, i.e., �unfortunately�, occurs that contradicts the current

sequence relevance, the sequence uncertainty increases. Finally, the model

remains highly uncertain about the overall prediction in this example.

� DUX � 𝐷𝑈𝑋 (𝑒𝑖). In the case of uncertainty, the DUX is equivalent to

the sequence uncertainty. Certain words are highlighted in the color of

the sentiment they are relevant to.

In this example, the model remains highly uncertain about the overall pre-

diction. The following observations can be made from the examples:

1. Text classi�ers have a high degree of uncertainty in making a clear predic-

tion at the beginning of a text when no relevant term has yet appeared.

2. Highly relevant terms (positive or negative) reduce the uncertainty if the

classi�er is highly uncertain beforehand.

3. If two highly relevant terms for the same class occur consecutively in a

text, the second term is likely to further reduce the uncertainty of the

prediction.

4. If two highly relevant but contradictory terms occur consecutively in a

text, the second term increases the uncertainty of the prediction.

193

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

5. The same word can add or remove uncertainty to a prediction depending

on its position in the text.

8.5 Human Evaluation Results

The following section outlines the results of the human evaluation of BayLUXT.

The texts, classi�cation results, and explanations provided to the participants

are shown in Table B.2.

8.5.1 Explaining Relevant Words

In the �rst phase of the user evaluation, participants are shown a text and a

word relevance explanation that highlights the most relevant words associated

with positive and negative sentiments. Initially, participants are requested to

determine whether the sentiment of the text is positive or negative based solely

on the explanation provided. If no clear decision can be made, participants can

label an instance as unknown. The label assignments provided by the partici-

pants for each of the seven texts are illustrated in Figure 8.9.

100% 50% 0% 50% 100%

Text 1
Text 2
Text 3
Text 4
Text 5
Text 6
Text 7

7.1

21.4

71.4

71.4

42.9

71.4

21.4

7.1

14.3

28.6

21.4

7.1

21.4

57.1

92.9

85.7

7.1

50.0

Positive Unkown Negative

Figure 8.9: Responses to Q1: �Based on the word relevance, determine whether
the following text expresses a more positive or negative sentiment�.

The results indicate that assigning labels to the text instances posed a con-

siderable challenge. In the majority of cases (4 out of 7), con�icting labels were

assigned. In addition, on average 24.5% of the participants could not clearly

decide which class a text belonged to. Text 7 notably stands out, where 92.9%

of the participants could clearly decide on its class. However, only 50% of the

participants agreed on the most common class.

Second, participants were asked to rate the coherence of the highlighted words

without prior knowledge of the predicted class label. A signi�cant majority of

67.3% either agreed or strongly agreed that the explanations provided made

sense (Figure 8.10a). In contrast, only 21.4% disagreed or strongly disagreed.

194

8.5 Human Evaluation Results

26.5%

40.8%

11.2%

17.3%
4.1%

Strongly agree
Agree
Neither agree nor disagree
Disagree
Strongly disagree

26.5%

40.8%

11.2%

17.3%
4.1%

(a) Q2: �Did the words maked as relevant
make sense to you?�.

19.4%

33.7% 15.3%

18.4%

13.3%

Very easy
Easy
Neither easy nor difficult
Difficult
Very difficult

19.4%

33.7% 15.3%

18.4%

13.3%

(b) Q3: �How easy was it for you to reach
a clear decision based on the marked
words?�.

Figure 8.10: Responses to Q2 and Q3.

Regarding the ease of making a clear decision, 53.1% stated that it was easy or

very easy (Figure 8.10b). However, 31.6% found it di�cult or very di�cult to

choose between the three possible alternatives (positive, negative, undecided).

Thus, on average, participants found it more di�cult to make a clear decision

based on an explanation than to understand the explanation itself.

In the next phase, participants were presented with the classi�cation results

and the associated con�dence levels. When asked about the perceived trustwor-

thiness of the predictions, on average 53.1% indicated high or moderate trust-

worthiness, while 24.5% indicated a low or no trustworthiness (Figure 8.11).

Texts 1 and 6 were met with considerable skepticism, with only 78.5% and

71.4%, respectively, �nding these predictions untrustworthy. None of the pre-

dictions received absolute con�dence from all participants. The predictions of

texts 4 and 5 proved to be the most trustworthy, each receiving agreement

from 71.4% of the participants. Notably, these predictions also had the highest

con�dence levels at 97% and 91%, respectively.

100% 50% 0% 50% 100%

Avg
Text 1
Text 2
Text 3
Text 4
Text 5
Text 6
Text 7

23.5

7.1

21.4

28.6

64.3

28.6

14.3

29.6

14.3

35.7

35.7

7.1

42.9

28.6

42.9

22.4

35.7

28.6

14.3

7.1

14.3

42.9

14.3

17.4

35.7

14.3

14.3

14.3

7.1

21.4

14.3

7.1

7.1

7.1

7.1

7.1

7.1

14.3

Trustworthy Rather trustworthy Neutral Rather not trustworthy Not trustworthy

Figure 8.11: Responses to Q4: �How trustworthy do you consider this prediction
to be?�.

195

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree

100% 50% 0% 50% 100%

Avg
Text 1
Text 2
Text 3
Text 4
Text 5
Text 6
Text 7

33.6

21.4

28.6

64.3

71.4

21.4

36.7

21.4

35.7

50.0

50.0

71.4

42.9

50.0

(a) Coherence of the word relevance with-
out knowing the class label (Q2).

100% 50% 0% 50% 100%

Avg
Text 1
Text 2
Text 3
Text 4
Text 5
Text 6
Text 7

26.5

42.9

50.0

28.6

28.6

40.8

42.9

28.6

28.6

42.9

35.7

57.1

50.0

28.6

21.4

50.0

21.4

(b) Coherence of the word relevance with
knowing the class label (Q5).

Figure 8.12: A comparison of the coherence between relevance-based explana-
tions without (Q2) and with (Q5) knowing of the class label.

100% 50% 0% 50% 100%

Avg
Text 1
Text 2
Text 3
Text 4
Text 5
Text 6
Text 7

26.5

28.6

14.3

21.4

50.0

64.3

7.1

21.4

40.8

64.3

42.9

50.0

42.9

28.6

71.4

21.4

11.2

7.1

14.3

7.1

7.1

7.1

7.1

18.4

28.6

21.4

7.1

14.3

35.7 14.3

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree

Figure 8.13: Responses to the Q6: �The markings of uncertainty appear under-
standable to me�.

Participants were then asked to rate the extent to which the explanation

for that class made sense and supported the classi�cation result (Figure 8.12a).

The results indicate that, on average, the coherence of the explanation improves

when participants know the class outcome and its con�dence. The comparison of

coherence with and without knowledge of the predicted class and its con�dence

level is illustrated in Figure 8.12b. The most signi�cant increase in coherence

was observed for Texts 4, 3, and 5, with improvements of 47.6%, 47.4%, and

12.5%, respectively. Conversely, the coherence of Text 1 decreased by 25.7%.

8.5.2 Explaining Uncertainties

The second segment of our human evaluation concerns the adequacy of un-

certainty explanations. Figure 8.13 shows the responses regarding how under-

standable the provided uncertainty explanations were. On average, 75.5% of

the participants stated that the uncertainty explanations were at least some-

what understandable, while on average 17.3% expressed that they were not

196

8.5 Human Evaluation Results

100% 50% 0% 50% 100%

Avg
Text 1
Text 2
Text 3
Text 4
Text 5
Text 6
Text 7

26.5

7.1

21.4

7.1

35.7

64.3

14.3

14.3

40.8

50.0

21.4

35.7

35.7

14.3

50.0

28.6

11.2

35.7

28.6

21.4

7.1

14.3

21.4

28.6

18.4

7.1

28.6

28.6

14.3

7.1

21.4

7.1

7.1

7.1

7.1

7.1

Assist Rather Assist Neutral Rather not assist Not assist

Figure 8.14: Responses to Q7: �To what extent does the uncertainty assist you
in assessing the trustworthiness of the prediction?�.

very understandable or not understandable at all. Thus, the comprehensibility

of uncertainty explanations is only slightly lower than that of word relevance.

However, the level of comprehensibility varied depending on the text being ex-

plained. Uncertainties in Texts 7, 2, and 3 were least understood, while those

in Texts 1 and 4 were best understood.

In the next step, participants were asked to what extent the explanation of

uncertainty contributed to their assessment of the reliability of the prediction.

Figure 8.14 shows the responses. On average, 57.1% of participants indicated

that the explanation of uncertainty helped them understand the reliability of

the prediction, while about 20.4% stated that it did not help them.

Finally, participants were asked which type of explanation was most helpful

in understanding the prediction and its con�dence. Participants were given

the options �relevance�, �uncertainty�, �both�, or �neither�. The answers are

illustrated in Figure 8.15. The results show that there is no ideal explanation

that consistently leads to a better understanding of a prediction. However, on

average, 90.8% of participants found at least one of the two explanations helpful.

In three cases (Text 1, 2, and 3), the word relevance was considered to be more

helpful. In contrast, uncertainty was found to be more helpful in three other

cases (Text 4, 5, and 7). Only for Text 6, both types of explanations were found

to be equally helpful (35.7% of the votes each).

8.5.3 Questionnaire

Figure 8.16 shows the responses to the �nal questionnaire. When asked if the

participants would blindly trust the model without any explanations, 57.1%

disagreed, and 21.4% each were undecided or would rather blindly trust the

model. However, 100% of the participants agree that the explanations generally

help to understand and comprehend the arti�cial decisions. The statement

197

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

Relevance Uncertainty Both Neither

21.4%

35.7%
21.4%

21.4%

(a) Text 1

71.4%

14.3%

7.1%
7.1%

(b) Text 2

64.3%
14.3%

14.3%
7.1%

(c) Text 3

21.4%

57.1%

21.4%

(d) Text 4

50.0%
42.9%

7.1%

(e) Text 5

35.7%

35.7%

7.1%

21.4%

(f) Text 6

21.4%

35.7%
21.4%

21.4%

(g) Text 7

Figure 8.15: Responses to the Q8: �Which type of explanation was more helpful
for you to understand the classi�cation decision?�.

100% 50% 0% 50%

50.0

21.4

28.6

14.3

14.3

35.7

28.6

21.4

50.0

35.7

42.9

57.1

57.1

35.7

7.1

21.4

35.7

21.4

7.1

28.6

28.6

50.0

7.1

7.1

28.6

21.4

28.6

7.1

7.1

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree

I would have trusted the model even in the absence of an
explanation.

Explanations, in general, facilitate the comprehension of artificial
decisions.

Predictions become trustworthy only by revealing word
uncertainties.

Word uncertainties are necessary and should always be provided
when making predictions to ensure safety.

The rationale behind marking certain words as relevant was
evident to me.

The rationale behind marking certain words as uncertain was
evident to me.

A significant degree of uncertainty reduced my confidence in the
predictions and made me prefer to make my own decisions.

From the word relevance alone, I could not comprehend the
probability of the class outcome.

Figure 8.16: Responses to the questionnaire.

that uncertainties are necessary to make a prediction reliable was agreed to

by 57.1%, while 7.1% would rather disagree with this statement. In addition,

71.4% believe that uncertainties should always be stated for the sake of certainty.

Again, 7.1% disagree with this statement. Regarding the comprehensibility

of the explanations, 71.4% said they understood why words were marked as

relevant or uncertain. 28.6% were unclear about the relevance of the words, and

21.4% were rather unclear about the uncertainty. On the statement that it is

better to decide manually when there is little con�dence in a prediction, 71.4%

agreed, and 28.6% were undecided. In response to the statement that using

only word relationships gives a poor understanding of class probability, 36.7%

agreed and 36.7% disagreed.

198

8.6 Discussion

50.0%

35.7%

14.3%

Relevance
Uncertainty
No differance

(a) �I found the following type of
explanation more helpful ...�

92.9%

Only Relevance
Only Uncertainty
Both

7.1%

(b) �The optimal type of explana-
tions for me would be ...�

Figure 8.17: Comparison of relevance and uncertainty explanations regarding
their usefulness for humans.

When questioned about the most useful types of explanations (Figure 8.17a),

half of the respondents favored relevance explanations, while 35.7% found un-

certainty explanations to be the most e�ective. A negligible 14.3% expressed

no preference. The optimal type for explaining a prediction was considered by

92.9% to be the simultaneous explanation of relevance and uncertainty (Figure

8.17b). However, a minority (7.1%) considered only relevance-based explana-

tions to be ideal.

8.6 Discussion

We discuss the implications of our �ndings, consider their applicability to various

�elds, discuss the limitations of our study, and review related work.

8.6.1 Implications

The research �eld of XAI for text classi�cation has mainly focused on relevance-

based explanation techniques, attempting to accurately extract which words

contribute most to certain class outcomes. While these types of explanations

have demonstrated valuable insights into black-box classi�ers, they do not ex-

plicitly communicate prediction uncertainties. They lack the ability to make

humans aware of uncertainties, a core principle of securing ML models. With

BayLUXT, we propose one of the �rst frameworks to explain prediction un-

certainties accordingly. We demonstrate that BayLUXT is su�cient to extract

several types of explanations: word relevance, sequence relevance, word uncer-

tainty, sequence uncertainty, and DUX. In comparison, previous local explana-

tion techniques are mainly limited to word relevance.

Uncertainty awareness is very important when dealing with probabilistic and

imperfect classi�ers. It reveals weaknesses, misunderstandings, and ambiguities

in the model or in the inputs that greatly a�ect the applicability of the classi-

199

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

�er. Understanding the uncertainty of a model is particularly important for HiL

systems, since humans typically have to deal with situations where the model

is highly uncertain. Therefore, cognitive support to explain why uncertainties

occur is desirable. Our experiments show that understanding a model's uncer-

tainty helps human users to better comprehend a model's prediction, and in

some cases is even more useful than traditional relevance-based explanations.

Our results also imply that uncertainty explanations harmonize with word-

relevance-based explanations to aid the understanding of predictions. Our study

indicates that 92.9% of participants would prefer to have access to uncertainty-

based explanations in addition to word relevance to improve their understand-

ing of text classi�ers. Thus, uncertainty information does not replace word

relevance, but complements it in terms of informativeness. Which type of ex-

planation is considerably more useful depends on the input text and the model.

Although our investigation is limited in scope, covering only a small number

of tasks with a total of 15 participants, our work provides initial promising

�ndings that highlight the potential of uncertainty-based explanations in text

classi�cation. We demonstrate a clear bene�t of uncertainty-based explanations

for improving comprehension of text classi�cation results. Trust in predictions

increases with the speci�cation of word uncertainties, indicating the need to

include such uncertainties for safety and reliability. We argue that humans

should be made aware of all available uncertainty information in high-risk tasks.

Uncertainty awareness improves model comprehension and is likely to enhance

the perception of model misbehavior.

Although our implementation of BayLUXT has limitations and our investiga-

tion is limited in the scope, we see BayLUXT as a �rst important step towards

anchoring the concept of uncertainty explanations as an integral part of the XAI

literature. So far, BayLUXT can be applied to any single-layer RNN-based text

classi�er without changing the architecture of the model. Since the explanations

are extracted from the internal states of the recurrent layer, no additional com-

putational e�ort is required during training. Only a Bayesian approximation

must be performed to model uncertainties.

8.6.2 Field of Application

Explanations are a key enabler of the HiL approach. The use-case of BayLUXT

is to make human users aware of uncertainties in their predictions that tradi-

tional XAI approaches could not reveal.

The primary goal of BayLUXT is to provide deeper insight into ML-based

text classi�cation. Uncertainty awareness is promising to improve the aware-

200

8.6 Discussion

ness of what a model can and cannot accomplish and help mitigate the risk

of unconditional trust in unreliable results. A typical example is the Active

Moderation and Decision Support System patterns. Here, human labelers typi-

cally deal with highly uncertain classi�cation results that are likely to be wrong.

Making these uncertainties explicit through BayLUXT provides cognitive sup-

port for understanding di�culties and potential misconceptions of the model,

thus facilitating the labeling process.

Another application of BayLUXT is the debugging of ML-based text classi-

�ers. Debugging in the context of ML [123] describes the process of controlling,

identifying, and resolving problems or errors in an ML model's architecture,

training data, trained parameters, or classi�cation performance. Debugging in-

volves rigorously testing the model on unseen data, systematically analyzing

the model's behavior, examining intermediate results, and diagnosing problems

in order to improve the model's classi�cation performance. BayLUXT helps

to understand how individual words contribute to prediction uncertainty. This

improves insight into the model's reasoning process, including the source of un-

certainty, potential misconceptions, knowledge gaps, and biases. Also of great

interest are cases that are misclassi�ed but actually have no uncertainty.

In addition, BayLUXT can be used to assess and improve the quality of text

instances using prediction con�dence as an indicator of data quality. Consider

an issue tracker where users submit questions, bug reports, and feature requests.

If a user wants to submit a bug report but chooses to formulate it as a question,

this is considered a low-quality bug report. Similarly, a feature request is of poor

quality if it describes bugs or is in the form of a question. In both cases, the

text is of low accuracy and consistency. A trained ML model approximates the

knowledge required to perform a particular task, i.e. text classi�cation. Thus,

given a class label, a classi�er can judge how well a given text �ts into that

class. Deviations and inconsistencies explained by BayLUXT make the model's

knowledge explicit and are likely to support users write better quality text.

8.6.3 Threats to Validity

We further outline the internal and external threats to validity.

Internal validity. First, we demonstrate the functional su�ciency and correct-

ness of BayLUXT using a limited number of randomly sampled text instances

from a hold-out dataset. Other samples may yield di�erent results. Further-

more, since it is not feasible to prove the functional correctness of a local expla-

nation, our investigation is qualitative, introducing a degree of subjectivity.

201

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

Although we relied on random sampling techniques to minimize sampling bias,

we trimmed some of the text instances to be simpler and not overwhelmingly

large within our human evaluation. This may make the samples less repre-

sentative of the overall dataset. In addition, BayLUXT explanations are non-

deterministic because they rely on Bayesian approximations. The number of

forward passes a�ects the consistency and reliability of the results. To mitigate

this problem, we perform 50 forward passes.

As with any human evaluation, our study may be corrupted by human bi-

ases that a�ect the interpretation and perception of explanations. Participants'

prior knowledge, experience, or individual preferences may also in�uence their

evaluation of explanations. In addition, all of our participants can be considered

ML-experts, which might alter their behavior or responses due to their aware-

ness of the technical aspects of ML systems. Domain experts without technical

knowledge may have a di�erent understanding of local explanations, leading to

a bias in their human judgment.

External validity. The results of our human evaluation may have limited gen-

eralizability to other user populations or contexts. The number of participants

in our user evaluation is limited, and the sample may not be fully representative

of the full range of users across di�erent domains and user groups, e.g., ML

experts and domain experts.

Second, BayLUXT is only evaluated in the context of sentiment analysis,

which limits the generalizability of the results. In sentiment analysis, class

boundaries are likely to be fuzzy due to the subjectivity of sentiment charac-

teristics. It may be that the results would be di�erent for better-de�ned and

less subjective tasks. However, we argue that it is more relevant to evaluate

human judgments for more di�cult tasks that could not easily be performed

autonomously by an ML model (Chapters 5 and 6). In addition, we only applied

BayLUXT to binary classi�cation tasks. More classes could add complexity to

the explanations and lead to di�erent results.

Another limitation of our implementation of BayLUXT is its model-speci�c

nature. BayLUXT is only applicable to RNN-based classi�ers. Further research

is needed to extract uncertainty explanations from other classi�cation models,

such as FFNNs, CNNs and LLMs.

8.6.4 Alternative Approaches from Related Work

Du et al. [97] propose a similar local explanation approach of deriving the con-

tribution of each word to the �nal prediction based on an LSTM. However, they

202

8.7 Conclusion

do not account for prediction uncertainty. Some studies show that uncertainty

modeling alone can improve both the consistency and robustness of local expla-

nations. For example, Zhao et al. [404] propose BayLIME, a Bayesian extension

to the LIME framework. However, BayLIME does not explain uncertainties and

is only applied to improve the consistency and robustness of relevance-based ex-

planations. The �eld of uncertainty explanation within ML is usually divided

into approaches that attempt to explain either the uncertainty of predictions

or the uncertainty of the explanation itself. BayLUXT focuses on explaining

prediction uncertainty (including aleatory and epistemic uncertainty). Thus, it

aims to understand model misconceptions and unreliability.

While there are some approaches to explaining prediction uncertainty, they

are mostly limited to tabular and image data. For example, Slack et al. [343]

compute credible intervals for the feature importance, capturing the associated

uncertainty. However, they rely on data perturbations that are di�cult to apply

to text classi�cation. Others, such as Gosiewska and Biecek [122] suggest mea-

suring the stability of local explanations between bootstrap samples to quantify

uncertainty. Antoran et al. [18] propose CLUE, an approach to detect which

input feature can be changed to reduce the uncertainty of an ML model. Their

approach relies on searching for counterfactuals in the latent space of a deep

generative model.

To our knowledge, BayLUXT is the �rst framework to explain the uncer-

tainties of an ML-based text classi�er, while our human evaluation is the �rst

assessment of the e�ect of uncertainty explanations on human users in the �eld

of text classi�cation.

8.7 Conclusion

This chapter has introduced BayLUXT, one of the �rst XAI frameworks to ex-

plain the prediction uncertainties of RNN-based text classi�ers. BayLUXT uses

Bayesian statistics combined with a sequence modeling technique to decompose

the aleatory and epistemic uncertainties of ML models. We have conducted a se-

ries of experiments and a human evaluation to demonstrate the correctness and

appropriateness of our approach. BayLUXT does not require additional train-

ing e�ort over Bayesian approximation, nor does it compromise in classi�cation

performance. We brie�y summarize the main �ndings.

� BayLUXT is suitable for extracting �ve types of explanations, including

word- and sequence-level approximations of class probabilities, word and

sequence uncertainty, and directed uncertainty explanations (DUX).

203

Chapter 8 Explainable Uncertainty Estimation for Text Classi�cation

� Sequence relevances are able to highlight changes in the classi�cation de-

cision when an input text is analyzed from beginning to end. For example,

they can indicate where in a text its overall sentiment changes from posi-

tive to negative and vice versa.

� Uncertainty explanations are a valuable source of information. We demon-

strated that 85.7% of our participants stated that uncertainty explana-

tions are either more helpful or equally helpful compared to traditional

relevance-based explanations in understanding prediction results.

� Uncertainty explanations complement word relevance in enhancing the

understanding of predictions. We found that 92.9% of our participants

would prefer to have access to uncertainty-based explanations alongside

word relevance to enrich their comprehension of arti�cial decision-making.

204

Part III

Synopsis

205

Chapter 9

REM - A HiL Tool for the E�cient

Moderation of User Comments

Publication. This chapter is based on the 2021 paper �REM: E�cient Semi-

Automated Real-Time Moderation of Online Forums� [17]. My contribution

consists of the design and implementation of the tool. In addition, I took the

lead in developing the HiL work�ow, conducting the ML experiments, analyzing

the results, and writing the research paper.

Contribution. We introduce REM, a novel HiL tool for the semi-automated

real-time moderation of large-scale online forums. REM e�ectively saves hu-

man e�ort during the moderation process by combining multiple HiL design

patterns and visual data analysis. REM implements the human-resource-aware

Active Moderation framework we introduced in Chapter 6 to enable a highly

human-resource-aware and simultaneously highly accurate moderation process.

Additionally, REM provides a rich uncertainty-aware visual interactive interface

to facilitate the analysis and �ltering of user comments through exploratory data

analysis (Visual Interactive Labeling pattern). Additionally, REM o�ers local

explanations, such as BayLUXT (Chapter 8), to support the moderation pro-

cess. Built on top of a big data architecture, REM is designed to be highly

scalable and to enable real-time moderation. A preliminary experiment with

domain-speci�c data indicates that the moderation process of REM is able to

improve the classi�cation performance of a hate speech and o�ensive language

classi�er from 78.48% to 96.08% with a manual e�ort of 25%.

9.1 Motivation

Online forums have become an integral part of many domains to facilitate user

participation and deliberation [246]. Having recognized the vast potential of

user comments, many attempts have been made to better exploit their construc-

207

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

tive value [234, 283, 307, 311]. However, the quality of user comments varies

widely [40, 285, 297]. On the one hand, studies promote the automated detec-

tion of desirable and high-quality user comments [283], such as meta-comments

[138]. High-quality comments are those that are most interesting and worth

reading by others, for instance, by providing a wide range of viewpoints and

insights on a particular topic. On the other hand, online forums are increas-

ingly confronted with inappropriate and toxic content such as hate-speech [80,

198] and spam [67, 247]. Quandt [297] even refers to �dark participation� to

describe negative, harassing, or profoundly obscure forms of online engagement

that include personal threats, insults, and malicious e�orts.

Poor quality and harmful user comments considerably damage the reputa-

tion of forum providers [99, 283] and discourage user engagement. In the worst

case, users turn of from online services completely potentially leading to �-

nancial losses. Typically, forum providers seek to avoid being associated with

disruptive and uncivil content. Ethical and legal guidelines promote civilized

interactions and put pressure on forum providers to ensure appropriate and

netiquette-compliant communication. Content moderation plays a critical role

in enforcing such guidelines, thereby encouraging continued user participation

[274].

Content moderation in online forums is a typical classi�cation task. It refers

to �the governance mechanisms that structure participation in a community to

facilitate cooperation and prevent abuse� [126]. In other words, forum modera-

tion is about identifying and �ltering out unwanted comments from public online

discussions. Some research also refers to forum moderation as gatekeeping [40].

There are many possible reasons why a particular comment should be removed.

These include comments that contain hateful, discriminatory, abusive, profane,

or obscene language [274, 327], content that is irrelevant to the discussion (o�-

topic) [377], personal attacks or insults [301], spam or commercial solicitation

[67], radicalism [275], trolling [54], fake content [247], and false or misleading

information [338].

Filtering out content increases the moderation overhead for service providers

[234]. The sheer amount of data makes manual moderation impractical. ML-

based moderation solutions are promising, as they are cheap and fast compared

to manual analysis. However, humans are very robust and adaptive compared to

ML models. ML-based text classi�ers generally cannot handle various situations

and are unable to replace humans in real-world applications completely. Drastic

measures have been taken to improve the quality of online forums, ranging from

deleting individual comments, blocking certain users to shutting down the forum

208

9.2 System Description

entirely [40, 111, 297]. However, restricting access to online forums is contrary to

taking advantage of their enormous constructive potential. Helping to analyze

and moderate online forums without restricting them is considered a major

challenge for forum providers [90].

Tool support is needed to accurately classify and manage large amounts of

user comments within online forums while maintaining high applicability. Pre-

viously, we proposed HiL as a promising approach to achieve these goals. While

text classi�cation is mostly generic, typical objectives such as high classi�cation

performance are orthogonal to the actual application domain. Thus, a tool that

achieves highly accurate text classi�cation with HiL support can address many

use-cases.

9.2 System Description

In this section, we provide an overview of REM and its application to the task

of moderating online forums in the domain of online journalism. We discuss the

implemented HiL patterns and describe the moderation pipeline.

9.2.1 Usage of REM in the Domain of Online Journalism

The REM system is domain-independent and can be easily adapted to other

datasets and use-cases, such as software engineering or social media analysis.

For this purpose, the �lterable dimensions, the amount of displayed information

or the classi�cation objective can be easily adapted. We consider the use-case

of REM to facilitate the moderation of forums in the �eld of online journalism.

Online journalism is the practice of gathering, editing, and publishing news

stories via the Internet. It involves delivering information to a global audience

through various digital media, including websites, blogs, social media, and video-

sharing sites. Online forums are an integral part of online journalism. They

provide a platform where readers can interact, discuss, and debate news topics

and issues, bringing a clear positive value to news organizations [234]. From a

journalistic perspective, forums are a valuable source of information that can

be used to receive feedback on stories, obtain new perspectives and personal

stories, gather new ideas for further articles, as well as to get hints pointing out

errors and typos [234]. This kind of feedback would otherwise be di�cult to

obtain. Reading and responding to user comments has become an essential part

of the work of online journalists [63].

News organizations generally provide guidelines and rules for users to follow

when participating in their online forums. These are designed to ensure that

209

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

all users have a positive and respectful experience when participating in online

conversations. They are intended to encourage users to interact with others in a

considerate and respectful manner, while also legitimizing the removal of inap-

propriate content. Ethical guidelines, moderation policies, or legal constraints

are typically employed to guide moderation decisions. Forum moderators are

tasked with enforcing the rules of the forum. For example, Zeit Online1 � one

of Germany's largest news organizations � has the following rules regarding

unwanted language2:

� �Insults have no place in discussions. If you disagree with an article or

comment, criticize the content, not the author.�

� �Discrimination and defamation of other users and social groups based on

religion, origin, nationality, disability, income, sexual orientation, age or

gender is expressly prohibited.�

Spiegel Online3, another major German news organization, is also proposing

similar rules4:

� �Comments that are illegal, pornographic, extremist, racist, abusive, dam-

aging to reputation or business, or inciting to commit a criminal o�ense

will be deleted without justi�cation.�

� �Comments that contain defamation, other criminal content, advertising

or commercial content will also be removed.�

Recently, large online forums have received up to 10,000 comments per day

[134]. The e�ective and applicable moderation of online forums is an open

research challenge that we aim to address with REM.

9.2.2 HiL Components

REM implements several facets of the HiL approach to render the moderation

process highly e�ective and e�cient. First, REM aims to maximize the e�ciency

of the moderation process by implementing the Active Moderation pattern. In

particular, we apply the human-resource-aware Active Moderation framework

introduced in Chapter 6. Second, uncertainty quanti�cation techniques are gen-

erally unable to detect all misclassi�cations. Especially those that the classi�er

mistakenly assumes to be correct with a high degree of certainty (i.e., unknown

1https://www.zeit.de/index
2https://www.zeit.de/administratives/2010-03/netiquette/seite-2
3https://www.spiegel.de/
4https://www.spiegel.de/panorama/netiquette-a-785155.html

210

9.2 System Description

unknowns [26]). Therefore, REM also relies on exploratory visualization and

data analysis concepts [184]. Implementing the Visual Interactive Labeling pat-

tern allows for the user-centered moderation of any instance. Third, REM also

implements the Continuous Learning pattern, where the model is frequently

re-trained as additional labeled instances become available. Over time, moder-

ator feedback is used to re-train and potentially improve the underlying model.

Fourth, in order to build user trust in the decision-making of REM, it provides

local explanations such as BayLUXT for each classi�cation outcome. Users can

plug in the approach they want to use for both classi�cation and explanation.

Finally, REM allows human moderators to de�ne the amount of e�ort they are

willing to spend and provides guidelines on how much human involvement is

actually required to achieve a speci�c level of classi�cation performance. REM

enables the formulation of customized moderation strategies to better meet the

needs of news organizations.

Through a variety of visualizations, moderators can view and explore the

current state of forum discussions. This includes which topics, articles, or users

are most prone to inappropriate content, or which articles receive the most

comments. In addition to actively requesting moderation in some cases, com-

ments can be interactively �ltered and individually selected for moderation. We

assume that moderators will be able to extract useful information from the vi-

sualizations to identify outliers or anomalies that require special attention. By

enabling user-centric moderation strategies, other types of machine errors and

misconceptions can potentially be detected and corrected by humans. In par-

ticular, moderators should be able to identify toxic users or controversial topics

that are prone to rudeness and derailment and require special attention. Focus-

ing on data exploration allows moderators to better know and understand their

data, ultimately leading to a process of knowledge discovery [184]. For example,

moderators gain deeper insight into the dynamics of the debates. The gained

knowledge about the data contributes to the e�ectiveness of further interactions.

Overall, REM aims to enhance the quality of forum moderation by combining

the strengths of human visual perception and reasoning with the computational

power of ML models.

To the best of our knowledge, REM is the �rst HiL tool that explicitly uses

the expected model behavior evaluated on a representative dataset to provide

guidance on how much manual e�ort is required to achieve the desired level of

classi�cation performance. We outline the following domain-independent design

goals for REM:

� Support for highly accurate HiL-based moderation of text classi�ers (accu-

racy).

211

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

Classification &
Uncertainty Estimation

Visualize

Inferred Label

Bl
oc

ke
d

Va
lid

U
nc

er
ta

in

Extend

Human Label
Bl

oc
ke

d

Va
lid

Human Moderator

Re-train

Training
Data

Model Unlabeled Data _

Annotations / Corrections

Correct
Inspect &
ModerateDashboardAdjust

2

3

4

5

1

6

7

Figure 9.1: Human-in-the-Loop work�ow of REM.

� Cost-e�ective use of human resources (human e�ciency).

� Enable the moderation of large-scale text corpora (scalability).

� Support real-time moderation (real-time processing).

� Provide a transparent and comprehensible moderation process (trans-

parency).

� Facilitate the sense-making of online debates in news discussions (sense-

making).

9.2.3 HiL Work�ow

The HiL work�ow implemented in REM is illustrated in Figure 9.1. Newly

posted forum comments 1 undergo immediate classi�cation and are enriched

with uncertainty information 2 . Our tool employs a comprehensive modera-

tion approach based on a binary classi�er. Each comment is classi�ed as ei-

ther blocked or valid. Comments may also be marked as uncertain 3 if their

inferred labels lack the reliability needed to achieve the desired level of clas-

si�cation performance. Human moderators will then be asked to provide new

and more reliable labels for uncertain comments 4 . However, moderators are

also empowered to correct false positives and false negatives that have not been

identi�ed as uncertain. Our approach also includes a Continuous Learning com-

ponent. Human-labeled instances 5 are incorporated into the training data 6

and utilized to continuously re-train the model 7 . Since continuous re-training

212

9.3 Requirements

after each moderation request is ine�cient when moderators work in parallel, we

implement Continuous Learning in batch mode [154]. The resulting incremen-

tal update of the model weights is particularly important since the classi�cation

performance of an ML model is prone to decay over time due to data shifts

[260], such as statistical disparities between training and operational data.

9.3 Requirements

This section speci�es the requirements of REM, which are in part the result of

an informal interview conducted with Norddeutscher Rundfunk5 (NDR). This

leading German news organization provides online forums as part of its service.

The NDR states that their ability to ensure moderated online discussions was

overwhelmed by the sheer volume of user comments received in near real-time.

Forum moderation was outlined as a critical and open challenge that they could

not handle manually due to the enormous volume of data. They emphasized

that the lack of highly reliable and accurate ML models hampered their ability

to automate the moderation process. Skepticism was also expressed about the

feasibility of fully automated moderation approaches due to the complexity and

ambiguity of language. It was also noted that they did not want to completely

replace human moderators with automation. To allow at least partially mod-

erated communication within their online forums, some drastic measures were

implemented. Among other steps, the commenting function was restricted in

terms of time or disabled altogether for certain topics. These measures under-

utilize the proven potential of user feedback.

The development of REM also draws on the �ndings of Loosen et al. [234],

which investigated features of a visual software framework for analyzing user

comments. They outline key user needs, speci�cally focusing on data dimensions

that need to be visualized to facilitate the comprehension of large volumes of

user comments. Visualizations provide valuable insights from data, which play

a central role within the HiL approach. Therefore, we build REM based on

their �ndings. Further, we have identi�ed common functionalities expected in

a user-driven analysis tool from the visual analytics literature [184, 185], such

as �ltering and selecting comments according to all available dimensions.

9.3.1 Functional Requirements

First, we outline the functional requirements of REM. Figure 9.2 shows a use-

case diagram that visualizes how di�erent actors can interact with the REM

5https://www.ndr.de/

213

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

Moderator

 REM

Administrator

Login

Filter Comments

Sort Comments

Label Comments

Show Detailed
Information for Selected

Comment

Filter by Time

Filter by Topic

Filter by User

Filter by Classification
Result

Filter by Automatic or
Human Assignments

Sort by
Uncertain Counts

Sort by
Valid Counts

Sort by
Blocked Counts

Overview Expected
Moderation Behavior

Select Moderation
Strategy

Save and Load
Moderation Strategy

<<System>>
ML Bot

Re-train Model

Update Expected
Moderation Behavior

Change View

Show Author
Distribution

Show Commenter
Distribution

Figure 9.2: Use-case diagram of REM illustrating the interaction between users
(moderators and administrators) and the system.

system, including users, administrators and other systems. We identify the

following functional requirements for REM, which are speci�ed as user stories.

We further categorize the functional requirements into visual analysis (VA), ML,

and HiL related requirements.

VA Related Functional Requirements. REM relies on VA, where a visual

interactive interface is used to facilitate a knowledge generation process [187].

In this context, we identify the following functional requirements for REM's VA

process:

FRQ-VA-1: Users should be able to overview the distribution of comments over

time.

FRQ-VA-2: Users should be able to view the number of comments grouped by

article, topic, commenter, and label.

214

9.3 Requirements

FRQ-VA-3: Users should be able to �lter comments by time, article, topic,

commenter, and classi�cation results.

FRQ-VA-4: Users should be able to interact directly with visual representations

to �lter out uninteresting comments.

FRQ-VA-5: Users should be able to select individual comments and view asso-

ciated meta information.

FRQ-VA-6: User comments should be processed and visualized in near-real-

time.

ML related functional requirements. REM includes an ML-based text classi-

�cation pipeline. The ML part of REM should meet the following requirements:

FRQ-ML-1: All comments are classi�ed as to whether they should be blocked

or not.

FRQ-ML-2: Users should be aware of the uncertainty of any prediction.

FRQ-ML-3: Users should be informed of comments that require manual mod-

eration.

FRQ-ML-4: Users should be able to understand why a model made classi�ca-

tion.

FRQ-ML-5: The model should be periodically re-trained as additional training

data becomes available.

FRQ-ML-6: Users should be shown the number of blocked, non-blocked, and

uncertain comments.

HiL Related Functional Requirements. In order to e�ectively use ML models

to support the moderation, several considerations must be taken into account.

Human moderators need cognitive support during labelling, while minimising

the amount of human supervision. For REM, the following requirements for the

HiL process emerge:

FRQ-HL-1: Users should be able to make moderation decisions (block or not

block comments).

FRQ-HL-2: Users can correct all ML decisions.

215

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

FRQ-HL-3: Users have access to local explanations that explain all ML-based

classi�cation decisions.

FRQ-HL-4: Users should be able to see if a human moderator has already

corrected an instance.

FRQ-HL-5: Administrators should be able to select and con�gure a moderation

strategy.

FRQ-HL-6: Administrators should be suggested the optimal saturation-based

moderation strategy (Section 6.2.3).

FRQ-HL-7: Administrators should be aware of the trade-o� between the amount

of human labor required to achieve a desired level of classi�cation

performance.

FRQ-HL-8: Administrators should be able to judge how e�cient and e�ective

a moderation strategy is.

9.3.2 Non-functional Requirements

We summarize the non-functional requirements considered in the design and

implementation of REM. Our main focus is to ensure high classi�cation perfor-

mance, scalability, security, and low model latency.

NFR-1: The ML-based classi�cation should provide high-quality results, espe-

cially high classi�cation performance and meaningful explanations.

The ML component of REM should maintain strong classi�cation performance

and reliable uncertainties and explanations for maximum e�ectiveness. The

most advanced and applicable approaches to text classi�cation should be em-

ployable.

NFR-2: The application should be compatible with all major desktop browsers.

The system must be compatible with the most popular web browsers. Google

Chrome, Mozilla Firefox, Microsoft Edge, and Apple Safari in their latest ver-

sions.

NFR-3: User interaction with the system should take no more than one second.

Ensuring high user experience is crucial for HiL systems. Therefore, the system

should respond within one second after the user interacts with it.

216

9.4 Architecture

NFR-3: Visualizations should be easy to understand and handle both small

and large amounts of comments.

Visualizations can easily become cluttered as the number of instances to be

displayed increases. On the other hand, the tool should be used e�ectively in

data-intensive situations (more than 10,000 texts) that exceed manual capacity.

NFR-4: Access to REM should be protected and available only to authorized

users. A distinction should also be made between the roles of a mod-

erator and administrator. Only administrators should be able to con-

�gure, select, and apply moderation strategies.

De�ned user roles should secure access to REM. The default users are moder-

ators who can view and explore the current state of all discussions. They can

also perform moderation tasks. Administrators manage moderation strategies.

They are responsible for determining how much e�ort moderation should take

to achieve a desired level of performance.

9.4 Architecture

REM is designed to o�er a publicly available open-source platform. We use

open-source tools distributed under a free license to achieve this goal. Given

the absence of a universal open-source big data framework, REM is constructed

as a combination of various technologies. Our main focus is on processing speed

and scalability. This section provides an overview of REM's architecture.

9.4.1 Components

The components of our tool are shown in the deployment diagram in Figure 9.3.

The entry point to REM is a web application served by a Node.js6 server, which

is based on multiple micro-services. Each micro-service is built using Flask7, a

lightweight web framework for Python. The web application is constructed using

Vue.js8. Additionally, we utilize D3.js9, which employs a data-driven approach

to DOM manipulation, to implement responsive data visualizations.

Since REM is tasked with moderating real-time data, it integrates multiple

big data frameworks for stream processing. We employ Apache Kafka [203] as

6https://nodejs.org/en/
7https://flask.palletsprojects.com/
8https://vue.org
9https://d3js.org/

217

https://nodejs.org/en/
https://flask.palletsprojects.com/
https://vue.org
https://d3js.org/

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

«component»
ML Server

Serving Layer
Estimate UncertaintyInference

Speed Layer

Preprocessing
Message Broker
(Queue / Topic)Input Stream

Node.js Server

Flask REST-Api

«component»
Main Server

«component»
Data Source

Mongo DB

«component»
Stream Processing

Apache Spark

«component»
Database Server

Kafka & Zookeeper

ML Model

Explainer

Forum Crawler B

Forum Crawler A

Uncertainty Est.

Model Trainer

Dashboard

Moderation Microservice

Authentification Microservice

Dataserving Microservice

Spark Stream Processing Programm

Figure 9.3: Main components of the HiL moderation tool REM.

a message broker. Apache Kafka serves as a real-time data streaming technol-

ogy capable of implementing a message queuing system. It o�ers a scalable

public-subscribe messaging pattern that acts as a middleware between one or

more data sources and a stream processing platform. In this context, Kafka ef-

fectively gathers asynchronous incoming user comments and converts them into

a continuous data stream. REM leverages Kafka as the central entry point for

analyzing the ongoing stream of user comments. As a message queue, Kafka

can receive data from any source. In an optimal setup, user comments would

be directly fed into Kafka by the forum software being moderated.

To implement stream processing, REM utilizes Apache Spark's Structural

Streaming API [401]. Spark Streaming is an extension of the Apache Spark

[402] cluster computing ecosystem. It provides the functionality to develop

an in-memory analytics platform tailored for processing real-time data. We

employ Spark Streaming to handle the data stream supplied by Apache Kafka.

Each stream is divided into batches and then transformed in a map-reduce

fashion until the �nal stream of processed data is written to the serving layer.

ML models can be seamlessly integrated and distributed within the stream

processing pipeline.

Further, the data is persisted and served through MongoDB10. MongoDB is a

document-based NoSQL database that is particularly suited to the needs of big

data applications. MongoDB's query language relies on a map-reduce data pro-

cessing pipeline. Moreover, MongoDB documents are schema-less, enabling easy

extensibility and support for complex hierarchies. We chose a NoSQL database

10https://www.mongodb.com/

218

https://www.mongodb.com/

9.4 Architecture

due to its �exible and extensible schema. Additionally, NoSQL databases of-

fer scalability to e�ectively manage large datasets, making them suitable for

handling diverse and expansive data scenarios.

Traditional and deep learning-based text classi�ers can be used for REM.

However, they need to be able to integrate uncertainty estimation and local

explanations, such as BayLUXT (Chapter 8). In our implementation, the text

classi�er is developed using TensorFlow [1]. The initial model training is per-

formed o�ine (e.g., using Proxy-based Active Learning (Chapter 7)). Model

re-training is triggered by a dedicated ML service. Prior research suggests that

periodically re-training a model with additional data can enhance its classi�ca-

tion performance [20].

9.4.2 Real-time ML Pipeline

User comments from online forums are real-time data, as they occur in a con-

tinuous stream. Unwanted and toxic comments should generally be detected

and removed as quickly as possible, ideally at the moment they are posted.

Therefore, a moderation tool like REM must be able to classify a stream of user

comments in near real-time.

Text Classification

Provide Explanation

Duplicate
Detection

Serving Layer

Estimate Uncertainty
Inference

Speed Layer

Pre-processing

Message Broker
(Queue / Topic)Input Stream

Figure 9.4: Kappa architecture of REM. The speed layer is part of the stream
processing component.

Two di�erent software architectures have been established for scalable and

fault-tolerant real-time data processing: Lambda and Kappa. REM adopts the

Kappa-architecture for its data processing pipeline. The Kappa-architecture,

introduced by Kreps [202], is designed to process a continuous stream of real-

time data. Kappa consists of two primary layers: the speed layer and the serving

layer. The speed layer manages the processing of a continuous stream of data

in real-time, while the serving layer focuses on delivering low-latency access

to the processed data. In contrast, Lambda incorporates an additional layer

for processing batches of data � the batch layer � dedicated to handling large

volumes of historical data in batches. In Kappa, all data traverses through the

219

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

same speed layer. REM implements Kappa because there is no need for a batch

layer. Since the moderation is primarily aimed at recent data, there is no need

to process large amounts of historical data. Text classi�ers can be seamlessly

integrated into the speed layer. Figure 9.4 illustrates our implementation of the

Kappa Architecture. The speed layer encompasses the following steps:

1. Duplicate Detection. Comments that have been classi�ed with the

current model are not re-classi�ed to save computational resources. Du-

plicate detection involves comparing the hash value of a comment text

with previous texts associated with the same article and comment id.

2. Text Classi�cation. Non-duplicate comments are passed through a text

classi�cation pipeline. We perform text cleaning steps, including lowercase

transformation and lemmatization. The text input is then encoded and

passed to a classi�er for inference. For each text, the class label and its

uncertainty are estimated. Further, explanations are derived. Popular

ML libraries such as Keras and TensorFlow are compatible with Spark,

making it easy to distribute ML models across a Spark cluster.

3. Data Serving. The computational results are stored and made available

in the data serving layer. The serving layer is a database that provides

low-latency access to the computed data and enables ad hoc queries.

9.4.3 Domain-driven Data Model

MongoDB is a document-oriented database. Entries are stored as nested JSON

objects. The domain-driven data model of REM is depicted in Figure 9.5. It

consists of articles (Article) and their associated comments (Comment) along

with metadata, as well as users (SystemUser) representing the users of REM and

their credentials. Furthermore, moderation strategies (ModerationStrategy) are

incorporated, dictating which instances to label and what level of classi�cation

performance is currently being targeted.

A Comment entity represents a user comment within the forum and comprises

associated meta information. This includes a unique identi�er (id), the actual

comment in text format, a hash of the text, and the name of the commenter.

The hash is used to detect duplicate comments. As comments may be related

to each other, each comment can optionally contain the id of the comments it

references to (parent_id). Additionally, the number of user recommendations,

such as likes, is stored. Moreover, each comment includes an object for storing

its ML results. This object encompasses the class probability of blocking the

comment, the inferred uncertainty, and a �ag indicating whether the comment

220

9.4 Architecture

Comment

id : Int32

text : String

text_hash: Int32

parent_id : Int32

commenter_name : String

recommendations : Int32

time_stamp : Timestamp

article_id : String

ml_results : Object

ml_results

p_block : Double

uncertainty : Double

explanation : Object[]

blocked : Boolean

blocked_manual : Boolean

{ }

Article

id : Int32

url : String

title : String

kicker : String

summary : String

author : String

text : String

topic_root : String

topic_sub : String

time_stamp : Timestamp

SystemUser

name : String

pwd_hash : String

role : String

ModerationStrategy

strategy : Object

model : Object

strategy

name : String

load : Int32

accuracy : Double

uncertainty : Double

model

time_stamp : Timestamp

stats : Object

{ }

{ }stats

accuracy : Double[]

load : Int32[]

uncertainty : Double[]

{ }

explanation

type : String

mask : Double[]

{ }

Figure 9.5: Domain-driven data model of REM. The �gure illustrates the struc-
ture of individual data records.

was automatically or manually blocked. The di�erentiation between manual

and automated blocking is necessary to facilitate a visual distinction within the

tool. In addition, multiple explanations can be stored, each containing a type

and an attribution mask. Furthermore, each comment includes a timestamp

and a reference to the corresponding article (article_id).

A news page is represented by an Article entity. An article comprises an

id, the article's URL, its title, the actual text, a timestamp, author names, a

summary, and a kicker. The kicker is a short description of the article, typically

even shorter than the summary. Additionally, in our data model, each article

can belong to a two-level hierarchy of topics: a general topic (topic_root) and a

subcategory of the general topic (topic_sub). Each article also has a timestamp.

The actual strategy for moderating an online forum is represented by a Mod-

erationStrategy entity. Each moderation strategy consists of a strategy object

and a model object. The strategy is a named uncertainty threshold derived from

the expected model behavior. It also includes the anticipated classi�cation per-

formance and the moderation load resulting from the uncertainty threshold. An

example of a strategy would be the saturation point of human-resource-aware

Active Moderation. Additionally, each moderation strategy stores a model rep-

221

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

Moderation
Component

Overview
Component

Overview
Component

. . .

Actions

Getters

Moderation
Service

Mutations

State

Data
Service . . .

Vuex State Manager

Figure 9.6: Components of the Vuex state manager.

resented by its expected behavior. Each possible moderation load is associated

with its uncertainty threshold and expected classi�cation performance.

9.4.4 Process View

This section describes the runtime behavior of REM. We focus on key features

and illustrate how various processes interact using UML sequence diagrams.

These diagrams show the fronted state management as well as the authentica-

tion, annotation, and moderation strategy selection processes.

Frontend State Management. REM is constructed utilizing the Vue.js web

framework. To manage REM's application state and translate controller re-

quests into REST calls, we employ Vuex11. The Vuex state manager is a cen-

tralized data store for all components within REM. Through Vuex, multiple

views can access the same state or initiate actions consistently. This enables in-

stant updates to all views that rely on the shared data whenever changes occur

in the underlying data.

The functionality of Vuex is depicted in Figure 9.6. The state encompasses

all application data. Mutations represent functions that can manipulate the

state. Getters provide an abstraction layer for accessing the data. Components

utilize getters to retrieve data from the state and to invoke actions, which are

methods employed to trigger mutations or execute asynchronous operations such

as REST calls.

Authentication. An essential requirement of REM is that only authenticated

users can access the system. Consequently, all of REM's routes, services, and

resources must be protected. Figure 9.7 shows the authentication process.

11https://vuex.vuejs.org/

222

9.4 Architecture

JWT token

:LoginController

login via
user_name and pwd

:StateManager

save(JWT token)

login(user_name, password)

true

User

:MongoDB

find_one(userName)

:AuthService

create_jwt_token()

userName, hash

JWT token

check_hash(hash, password)

true

POST /auth
(user_name, password)

authenticated

Front-End Back-End Serving Layer

Figure 9.7: Sequence diagram of the authentication process.

First, users of REM must have valid credentials to log into the system. These

are issued by privileged users and stored in the database. Authentication re-

quires a username and password. The user must enter their credentials imme-

diately after starting REM's web interface. The credentials are passed through

the user interface to the login controller (LoginController). The login controller

delegates the request to the state manager (StateManager), which manages the

state of the application. The credentials are sent via a REST call to the authen-

tication service (AuthService), which is responsible for ensuring the authenticity

of the user. In REM, the user credentials are stored as a BSON �le in a database.

Instead of storing the passwords directly, only their hashes are stored. The pass-

word is preceded by a salt before it is hashed. The authentication service �rst

looks up the username in the database and retrieves the associated hashed pass-

word. The provided password is then hashed accordingly and compared to the

password hash stored in the database. If the two hashed passwords match after

string comparison, a JSON Web Token (JWT) [169] is generated. The token

is the result of the authentication process and is used as a signed claim that

veri�es the integrity and authority of the user. The JWS token is stored in the

state manager and is attached to each subsequent request to authorize access.

The authentication process ends when the user is authenticated and granted

access to the system.

223

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

:LabelController

label a comment

:StateManager

update_state(comment_id, label)

label_instance(comment_id, label)

User
(authenticated)

:MongoDB

update_one(comment_id, label)

:AuthService

POST /label
(comment_id, label, JWT token)

labeling done

Front-End Back-End Serving Layer

check_token(JWT token)

true

:VisController

JWT token, role

updateVis(state)

true

Figure 9.8: Sequence diagram of labeling a user comment.

Label Comments. Labeling is a fundamental feature of REM. The sequence

diagram in Figure 9.8 outlines the labeling process. When a user provides a

label, the controller (LabelController) captures both the label and the id of the

corresponding comment. This information is then forwarded to the state man-

ager (StateManager), which delegates it to the label service (LabelService). The

StateManager initiates a REST call over HTTPS. If the user has the necessary

credentials to access the LabelService, the label is changed in the database. Ad-

ditionally, the StateManager updates the application store, triggering a local

update of the visualizations in use. The label of the comment is changed and

marked as manually labeled.

Apply Moderation Strategy. The sequence diagram in Figure 9.9 illustrates

the process of applying a new moderation strategy, which is divided into two

tasks. First, selecting a moderation strategy and observing its e�ects, and

second, applying the strategy. To select a moderation strategy, a user must

have valid credentials and the role �administrator �.

When a moderation strategy is selected in REM, an uncertainty threshold

describing the selected moderation strategy is estimated by the ModController

and passed to the StateManager. As with any subsequent API call, the JWT

token is validated. A database query is performed to calculate the expected

change from the current moderation strategy to the new one. This includes the

number of valid, blocked, and uncertain comments. The aggregations are passed

to the state manager, and the values are shown to the user. When the user wants

224

9.5 System Implementation

:ModController

apply moderation
strategy

:StateManager

apply(old_theshold, new_theshold)

:CommentService

Administrator
(authenticated)

:MongoDB

aggregate(old_theshold)

POST /comments/change
(old_theshold, new_theshold)

show change

Front-End Back-End Serving Layer

check_token(JWT token)

true

aggregate_old,
aggregate_new

aggregate(new_theshold)

aggregate_new

aggregate_old

save strategy
set_moderation_setting(new_theshold)

for each chart POST /[data]/
(selector)

data

aggregate(selector)

check_token(JWT token)

true

data

:UI

update_vis(data)

update_vis(aggregate_old,
aggregate_new)

Figure 9.9: Sequence diagram of applying and saving a moderation strategy.

to commit a selected moderation strategy, he or she sends a commit command

through REM's UI. The strategies underlying the uncertainty threshold are

passed to the StateManager, which initiates a REST call for each visualization

to be updated. On each request, new data to be visualized is retrieved from the

serving layer and the visualizations are updated accordingly.

9.5 System Implementation

We will brie�y describe the implementation of the user interface of REM. Figure

9.10 shows the main page of our tool. The user interface consists of three views,

which are described in the following. We share the source code12 of our prototype

along with a video demonstrating the main features of the tool13.

12https://github.com/jsandersen/REM
13https://youtu.be/cA92Io_xr6Q

225

https://github.com/jsandersen/REM
https://youtu.be/cA92Io_xr6Q

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

Figure 9.10: The main page of REM showing the Context-view (left) and the
Moderation-view (right).

9.5.1 Context-view

The Context-view shown in Figure 9.10 provides an overview of the distribution

of comments over time and journalistic entities such as topics, articles, and users

(commenters). The upper bar chart shows the distribution of comments over

time. The x-axis represents the time dimension, and the y-axis indicates the

total number of comments. Each bar represents the number of classi�ed com-

ments within a given time period using a three-color scheme. Blocked comments

(e.g., inappropriate, o�ending, etc.) are red, valid (non-blocked) comments are

green, and uncertain comments are gray. Since moderating online forums is a

real-time task, the tool focuses on recently posted comments. The granularity of

the time dimension can be changed using the button group at the top. Possible

intervals are minutes, hours, and days. Furthermore, moderators can choose to

show comments from the last 72 hours, or just the last hour.

The lower part of the Context-view shows the distribution of comments con-

cerning journalistic entities, i.e., topics such as politics or economics, and the

articles identi�ed by their titles. The second graph shows the commenting be-

havior of users. Each graph can be sorted by the number of uncertain, blocked,

valid, and all comments. All visualizations in the Context-view are responsive

to �lter operations. These can be triggered by clicking on the bars. Speci�c en-

tities can also be searched for using a text box. Multiple �lters can be chained

for �exible visual analysis.

226

9.5 System Implementation

9.5.2 Moderation-view

The Moderation-view shown in the right part of Figure 9.10 provides a detailed

overview of the selected comments from the Context-view. All selected com-

ments are listed. Each entry in the list consists of the text of the comment

and additional meta information, such as the corresponding topic, the user who

posted it, and the number of recommendations given by other users. Similar to

the color scheme used in the Context-view, the color of each cell represents the

current label of the comment. The pie chart visualizes the model's conditional

class probability for blocked and valid class outcomes. For highly uncertain pre-

dictions, both class results would be nearly equal. A �human� icon is displayed

instead of the pie chart when a human has already labeled a comment. The

list can be �ltered to show only uncertain, valid, or blocked comments. En-

tries can also be sorted by timestamp or uncertainty. Moderators are asked to

at least moderate the uncertain user comments. Comments that have already

been manually moderated can also be hidden for a better overview.

Detailed information about a selected comment is displayed at the top of

the view. This includes additional information about the corresponding article,

followed by the text of the comment. The view also provides class probabilities

and local explanations, to facilitate humans better understand the classi�cation

decision and maintain user trust. The selected comment is highlighted with a

blue box in the comment list. Actual moderation is done using the buttons at the

bottom. An uncertain comment can be blocked or marked as valid. Predictions

can also be corrected. Additionally, the moderator can agree on (accept as a

ground truth) arti�cial predictions to provide more training data for re-training.

Corrections and additional labels are synchronized directly with the database.

9.5.3 Control-view

Figure 9.11 depicts the Control-view, which is used to control the moderation

process. It can be accessed from the �Moderation Strategy� button on the main

page. REM implements the Active Moderation pattern. The expected classi-

�cation performance of the underlying classi�er when a certain number of the

most uncertain predictions are manually validated is shown by the line graph.

On the right, a user can select di�erent moderation strategies, which are also

highlighted in the line graph. For each moderation strategy, the expected clas-

si�cation performance and the required e�ort are shown. A user can select a

prede�ned moderation strategy or de�ne a custom strategy by hovering and

clicking on a point in the line graph. A moderation strategy a�ects the number

of predictions marked as uncertain. The current strategy is displayed at the top.

227

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

Figure 9.11: The Control-view of REM for managing the moderation strategy.

Usually only some moderators should be able to change the moderation strat-

egy, and thus the classi�cation performance of forum moderation. Therefore,

the Control-view is secured by requiring the role �administrator�.

Because moderation e�ciency decreases as workload increases, a point is

reached where further moderation e�ort yields only marginal improvements. To

inform users of such ine�ciencies, REM provides a recommended moderation

strategy to optimize human moderation e�ort in terms of gains in classi�ca-

tion performance. We calculate the recommended moderation e�ort according

to our human-resource-aware Active Moderation framework (Chapter 6). The

gray area in the line graph highlights ine�cient workloads.

9.6 Active Moderation Experiment

We conduct a preliminary experiment to demonstrate that the Active Moder-

ation approach integrated into REM can e�ciently improve the classi�cation

performance of a hate speech classi�er during its operational use. Our experi-

ment uses the dataset provided by Davidson et al. [80], which consists of 24,782

Twitter comments labeled as o�ensive, hate speech, or neither. In our experi-

ment, we classify the comments into blocked (o�ensive and hate speech) (83.2%

of the total) and valid comments (16.8% of the total). Since the data is highly

imbalanced, we use the balanced accuracy [50] to measure the classi�cation per-

formance. We use 7,868 instances for training, 7,868 for validation, and 9,046

for testing. A workload of 100% corresponds to manually reviewing 9,046 com-

ments, the expected daily number of comments in our application scenario. We

adopted SBERT to compute the text encodings used as the input for an FFNN.

We employ MCD to estimate prediction uncertainties.

228

9.7 Comparing Explanations from BayLUXT and ChatGPT

Blocked Valid
Predicted Label

Bl
oc

ke
d

Va
lid

Tr
ue

 L
ab

el 97.95% 2.05%

40.99% 59.01%

Blocked Valid
Predicted Label

Bl
oc

ke
d

Va
lid

Tr
ue

 L
ab

el 99.87% 0.13%

7.70% 92.30%

Figure 9.12: Normalized confusion matrix of the initial classi�er (left) and the
same classi�er when 25% of the most uncertain predictions were
moderated (right).

Our trained classi�er achieves a balanced accuracy of 78.48% (without man-

ual moderation). Next, we simulate manual moderation by selecting the ground

truth labels. The balanced accuracy of a moderated classi�er is computed

based on the inferred and manually corrected labels. The results show that

uncertainty-based moderation is more e�cient than a random moderation strat-

egy, where the instances to be labeled are selected randomly. For example, mod-

erating 25% of the data based on its uncertainty leads to a balanced accuracy of

96.08%. In comparison, a random moderation strategy requires a moderation

e�ort of 81.8% to achieve the same accuracy, and is thus much less e�cient.

The confusion matrix of the initial and moderated classi�ers is shown in Fig-

ure 9.12. The fully ML-based classi�er obviously has di�culties in correctly

identifying valid comments. Only 59.01% of the valid comments were correctly

identi�ed. By moderating only 25% of the data, the detection of valid comments

can be increased to 92.30%. The Control-view depicted in Figure 9.11 illustrates

that the classi�cation performance can further be improved by increasing the

amount of human involvement. Thus, our approach is able to further improve

the classi�cation performance of a text classi�er with reasonable manual ef-

fort. A more general investigation of the Active Moderation pattern is stated in

Chapters 5 and 6.

9.7 Comparing Explanations from BayLUXT and

ChatGPT

Decoder-based LLMs such as ChatGPT provide strong performance in many

NLP tasks, without requiring any training data (Prompted-base Learning).

LLMs are able to classify text and explain themselves in a human-like verbalized

form. In a preliminary study, we investigate how an LLM compares to BayLUXT

in providing word attributes for the REM system, including word relevance and

229

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

word uncertainty. Both approaches can potentially be used within REM. Our

goal is to highlight the di�erences between the two approaches. We prompt

ChatGPT to provide explanations similar to those provided by BayLUXT, and

also investigate ChatGPT's rationale for providing these explanations.

We consider the task of sentiment analysis as it is done in the human evalua-

tion. We also use the same text instances. We apply BayLUXT and ChatGPT-

3.5 [279] to provide explanations of word-relevance and -uncertainty. For Chat-

GPT, we �rst translate the sentiment analysis task into a natural language

prompt. We then extend the prompt to provide local explanations and con�-

dence scores for the classi�cation task. Explanations are queried to take the

shape of a Python-like array, with each element indicating the attribution of

a particular word. These arrays are then visualized using a heat-map, as in

BayLUXT. We rely on a prompt from the literature Huang et al. [163] and a

self-developed prompt. Given a small set of text instances, we compare the

explanations obtained with those of BayLUXT. Second, we prompt ChatGPT

to provide uncertainty explanations. We also experimentally investigate the

ability of LLMs to further explain their explanations in natural language. Our

preliminary study of BayLUXT and ChatGPT focuses on qualitative aspects.

9.7.1 Word Relevance

First, we investigate the ability of ChatGPT as a decoder-based LLM to provide

self-explanations for the task of sentiment analysis. We consider a prompt from

the literature, as shown in Table C.1, and a self-engineered prompt, as shown

in Table C.2. We compare the results of both prompts with the corresponding

explanations provided by BayLUXT.

Figure 9.13 shows the relevance explanations retrieved from ChatGPT and

BayLUXT on several examples. First, it is noticeable that ChatGPT highlights

signi�cantly more words as relevant than BayLUXT. For example, the words

�a�, �an�, �you�, �keep�, �that� and, �will � are highlighted as highly relevant.

Also, ChatGPT tends to treat words that refer to relevant words as highly rele-

vant. Examples include the phrases �weak writing�, �bad acting�, and �thrilling

story�. However, changing the phrase weak writing to �weak camera work � does

not signi�cantly change the sentiment. Masking relevant words from the input

and measuring how this a�ects the model's con�dence is a typical approach

to evaluating explanations. The relevance of the masked word is expected to

be proportional to the shift in the output distribution [268]. Furthermore, the

trimmed variation �An absolute disaster of a movie with weak, poor, and a

predictable.� has the same class probability as the original sentence. Thus,

230

9.7 Comparing Explanations from BayLUXT and ChatGPT

Label:
Confidence

Text and Explanations Type

Positive:
0.66

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

BayLUXT

Negative:
0.85

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

ChatGPT – P1

Negative:
0.75

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

ChatGPT – P2

Negative:
0.51

An average thriller that keeps you guessing until the end,
but falls short on execution.

BayLUXT

Negative:
0.7

An average thriller that keeps you guessing until the end,
but falls short on execution.

ChatGPT – P1

Negative:
0.65

An average thriller that keeps you guessing until the end,
but falls short on execution.

ChatGPT – P2

Negative:
1.00

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

BayLUXT

Negative:
0.9

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

ChatGPT – P1

Negative:
0.9

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

ChatGPT – P2

Positive:
0.90

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

BayLUXT

Positive:
0.95

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

ChatGPT – P1

Positive:
0.95

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

ChatGPT – P2

Figure 9.13: Word relevance extracted by BayLUXT compared to ChatGPT
using two prompts (P1 and P2).

ChatGPT is prone to mark words as relevant which do not contribute to the ac-

tual classi�cation outcome. As ChatGPT, BayLUXT considers the words that

describe an emotion to be relevant, such as �weak �, �poor �, and �excellent�. As

outlined in Chapter 8, BayLUXT aims to only highlight words that contribute

to the actual class outcome.

When comparing the two prompts, there are only minor di�erences that

present some inconsistencies. Both prompts o�er very similar con�dence scores.

The only noticeable di�erence is that P2 considers the word �thriller � as posi-

tive and �betrayal � as negative, similar to BayLUXT. In both cases, P1 considers

these words to have the opposite sentiments.

9.7.2 Word Uncertainties

Next, we prompt ChatGPT to provide explanations of word uncertainties simi-

lar to those provided by BayLUXT. Since there is no comparable study in the

literature, we adapted P2 to query for word uncertainties instead of word rele-

231

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

Label:
Confidence

Text and Explanations Type

Positive:
0.66

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that the
actors find new projects.

BayLUXT

Negative:
0.8

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that the
actors find new projects.

ChatGPT – P1

Negative:
0.75

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that the
actors find new projects.

ChatGPT – P2

Negative:

0.51
An average thriller that keeps you guessing until the end, but
falls short on execution.

BayLUXT

Negative: 0.7 An average thriller that keeps you guessing until the end, but
falls short on execution.

ChatGPT – P1

Negative:
0.65

An average thriller that keeps you guessing until the end, but
falls short on execution.

ChatGPT – P2

Negative:

1.00
An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

BayLUXT

Negative:
0.9

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

ChatGPT – P1

Negative:
0.9

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

ChatGPT – P2

Positive:

0.90
A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

BayLUXT

Positive:
0.95

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

ChatGPT – P1

Positive:
0.95

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

ChatGPT – P2

Confidence/
Uncertainty

Text and Explanations Type

0.66 / 0.40

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

BayLUXT

0.75 / 0.65 It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

ChatGPT – P3

0.51 / 0.50 An average thriller that keeps you guessing until the end,

but falls short on execution.
BayLUXT

0.80 / 0.60 An average thriller that keeps you guessing until the end but
falls short on execution.

ChatGPT – P3

1.00 / 0.00 An absolute disaster of a film with weak writing, poor acting,

and a predictable plot.
BayLUXT

0.90 / 0.80 An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

ChatGPT – P3

0.90 / 0.14 A gripping tale of love, betrayal, and redemption that will

leave you emotionally invested till the very end.
BayLUXT

0.85 / 0.70 A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

ChatGPT – P3

Figure 9.14: Word uncertainty extracted by BayLUXT compared to ChatGPT.

vances. The prompt is shown in Table C.3. In particular, we asked how much

each word contributed to the overall uncertainty of the classi�cation decision.

Similar to BayLUXT, we asked not only for words that added uncertainty, but

also for words that reduced uncertainty.

Figure 9.14 shows the explanations obtained. The results indicate that the

explanations of ChatGPT can be interpreted similarly to those of BayLUXT,

but also show signi�cant di�erences. For the �rst text, both explanations are

very similar. In both cases, the words �excellent� and �great� are considered

certain. Also in both cases the term �Unfortunately� contributes uncertainty to

the prediction. Both approaches consider words in the �rst sentence as adding

certainty, while words in the second sentence add uncertainty to the prediction.

In contrast, ChatGPT highlights many more words. Comparing the highlighted

words with the word relevance in Figure 9.13, it can be seen that both explana-

tions follow the same scheme of highlighting the �rst sequence of positive words

as certain and the following uncertain words as uncertain. The second sentence

follows a similar scheme, where the �rst relevant word is considered to contribute

uncertainty, while the relevant word of the other class contributes uncertainty.

While BayLUXT is maximally con�dent without any uncertainty in the third

example, ChatGPT reports a high con�dence but also a high uncertainty score.

Surprisingly, many words are considered to add uncertainty, while no words re-

duce uncertainty, which is contrary to the behavior of BayLUXT. In the forth

sentence, BayLUXT provides a class label with no uncertainty, while ChatGPT

reports high uncertainties across all highly in�uential words. In addition, the

sentence receives the highest overall uncertainty.

232

9.7 Comparing Explanations from BayLUXT and ChatGPT

Further, we did not �nd a direct correlation between the uncertainty and

con�dence scores provided by ChatGPT. A prediction with a con�dence of 0.9

received more than twice the uncertainty of a prediction with a con�dence of

0.8. Further, a low con�dence does not necessarily cause a higher uncertainty.

Compared to BayLUXT, ChatGPT is much more inconsistent in its con�dence

and uncertainty scores. For example, non-relevant words can also contribute to

the prediction uncertainty.

9.7.3 Explaining Explanations

ChatGPT has the advantage of being able to answer follow-up questions. For

example, ChatCPT can provide textual explanations of its predictions by simply

prompting for additional explanations. This includes asking why certain words

are relevant, not relevant, or more relevant than others. BayLUXT, on the other

hand, obviously cannot provide any additional information.

Our experiments show that ChatGPT provides plausible explanations. For

instance, to the question �Why is the word 'acting' negative?�, ChatGPT an-

swers: �[...] When words are in close proximity to other negative words or

phrases in a sentence, they can inherit the negative sentiment associated with

those words through semantic association or contextual interpretation. In this

case, the presence of �poor acting� in the sentence likely in�uenced the classi-

�cation of �acting� as negative.�. Similarly, ChatGPT is able to explain word

uncertainties such as �The word 'Unfortunately' contributes to uncertainty in

the sentiment classi�cation because it introduces a con�icting sentiment within

the review.�

However, natural language explanations clearly lack precision, which leads

to a certain degree of vagueness. For example, when ChatGPT is asked why

some words are uncertain, it states: �There might still be slight uncertainty

due to the potential for di�erent interpretations or nuances in the context.�

Furthermore, we notice that in some cases, ChatGPT reconsiders and corrects its

reasoning when asking for explanations regarding speci�city attribution scores.

In particular, ChatGPT tries to improve the results according to the user's

questions. In our experiments, we were able to change almost all attribution

scores with a prompt similar to the one shown in Figure 9.15.

9.7.4 Discussion

We have compared the explanations of BayLUXT and ChatGPT, which di�er

signi�cantly in the way they receive explanations. BayLUXT extracts relevance

and uncertainty explanations based on the logits of a supervised learned RNN.

233

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

Figure 9.15: ChatGPT altering an attribution after prompting for an explana-
tion.

The explanations are derived directly from the weights, allowing statistical ap-

proaches to uncertainty estimation. ChatGPT is a decoder-based LLM hidden

behind a back-box API. It does not provide access to its internal weights. Word

relevance and uncertainties are the response to a prompt, so they are estimated

as a masked language problem.

Our results show that ChatGPT is well suited for providing local explanations.

While it is challenging to judge which explanation is better, ChatGPT can well

express how it solves a text classi�cation task. However, ChatGPT does not

provide intuitive con�dence and uncertainty scores. Nevertheless, it functions

well for text classi�cation and is able to express reasonable explanations.

ChatGPT is built on top of the Transformers architecture, which is based

solely on the attention mechanism. This serves as a plausible explanation for

ChatGPT's behavior. The attention mechanism allows the contextual mean-

ing of each word to in�uence the meaning of the others. It is conceivable that

the internal embeddings of nouns incorporate the meanings from their corre-

sponding adjectives. Thus, both words in the phrase 'excellent performance'

are associated with a positive sentiment. Therefore, ChatGPT's explanations

are not considerably better or worse than those of BayLUXT. Both re�ect how

the di�erent models arrive at their classi�cation results.

234

9.8 Related Tools from the Literature

Ultimately, users will have to decide which approach to classi�cation, coupled

with their way of explaining predictions, makes more sense to them and which

they want to use within REM.

9.8 Related Tools from the Literature

Previous HiL tools have attempted to facilitate text classi�cation. Most tools

focus on the task of interactive model building, also known as Active Learning

[332], and rely heavily on multidimensional projections [100]. Similar to REM,

HiL annotation tools typically o�er a visual-interactive interface to guide human

involvement [34, 153]. Neves and �eva [270] provide a comprehensive overview

of document annotation tools.

Seifert and Granitzer [328] present a basic user-centered Active Learning tool

in which humans sequentially select and label instances for the next training

iteration. Similar to our tool, the authors use prediction uncertainty to guide

human involvement. However, they do not integrate an explorative analysis

component. Heimerl et al. [147] propose a user-centered visual-interactive Active

Learning tool for text documents. Annotators can re-train models in batches and

inspect statistics about the model's performance. However, the authors do not

consider uncertainty thresholds. The tool provided by Höferlin et al. [153] allow

annotators to directly manipulate the underlying model. This approach requires

the annotators to be experts in ML, which is not the case for typical forum

moderators in the domain of online journalism. The HiL labeling tool proposed

by Choi et al. [69] facilitates an attention mechanism to explain predictions to

annotators. They aim to reduce the time needed for annotation decisions and

increase labeling e�ciency. Their results could improve our tool.

Link et al. [229] introduce a similar semi-automated process for moderating

social media content. In addition to relying on prediction uncertainty, they

de�ne untrustworthy sources that require additional attention. Similar to our

tool, human moderation is requested when a prediction does not meet a certain

con�dence level. In contrast, they do not focus on optimizing moderation to

achieve a desired level of classi�cation performance and human e�ort. Riehle

et al. [310] propose a platform for semi-automated moderation of online dis-

cussions. Similar to our tool, comments are automatically pre-moderated, and

human moderators can correct or agree with the predicted labels. However,

moderators are not guided to identify comments that require manual atten-

tion, nor do they evaluate the e�ectiveness of the moderation process. Forum

4.0 [134] is a HiL tool for classifying, aggregating, and visualization of user

235

Chapter 9 REM - A HiL Tool for the E�cient Moderation of User Comments

comments. Domain experts can train ML models by labeling data instances

according to their needs. Classi�ers are built on the �y through an interactive

labeling process with continuously monitored validation metrics. However, they

have not implemented the Active Moderation pattern and rely only on a single

visualization.

9.9 Discussion

The HiL system REM can improve the reliability of moderation decisions while

still relying heavily on ML-based text classi�cation. Incorporating human ex-

pertise and input helps to identify and correct errors, �ll knowledge gaps, and

align tool outputs with real-world scenarios and user requirements. This hu-

man involvement facilitates customization and adaptation of the tool to speci�c

application needs or user preferences. By incorporating domain-speci�c knowl-

edge, the tool's behavior can be tailored to di�erent contexts, resulting in more

personalized and e�ective outcomes. Bringing people into the loop also promotes

trust and transparency within the system. Users gain a clearer understanding of

how the tool works and their ability to provide input and feedback fosters a sense

of control and understanding. As a result, user acceptance and con�dence in the

tool's results are increased. Another bene�t of the HiL approach is the ability

to address biases and ethical considerations in the results generated. Human

annotators or users can identify and correct biased or harmful results, promot-

ing fairness and responsible AI practices. In addition, the interaction between

the ML tool and human users promotes collaborative learning and knowledge

sharing. Users can contribute insights, corrections, or alternative perspectives,

ultimately improving the overall classi�cation performance and learning of the

tool. This collaboration creates a symbiotic relationship between humans and

the tool, facilitating mutual learning and growth.

9.10 Conclusion

This chapter has presented REM, a novel tool for the semi-automated real-time

moderation of large scale online forums. REM implements several HiL patterns

to meet the requirements of accurately moderating large-scale online forums.

Forum moderators contribute to REM by providing expert knowledge about

the problem being solved. No technical ML knowledge is required.

REM has been designed speci�cally for online journalism. The growing de-

mand for online participation and the increasing number of user comments raise

the challenge of �ltering out harmful and unwanted content from public debates

236

9.10 Conclusion

in online forums. Since manual moderation does not scale well and fully au-

tomated approaches often lack the required level of classi�cation performance,

we propose a semi-automated moderation approach. Our approach maximizes

the e�ciency of manual e�orts by targeting only those comments that require

human intervention (Active Moderation). Our tool provides a rich visual in-

teractive environment for exploring online debates. We conduct a preliminary

experiment to demonstrate the suitability of the moderation approach imple-

mented in REM and publicly release its source code. Since REM can potentially

be used with di�erent classi�cation models, their form of explanations may also

di�er. In a preliminary study, we compared the explanations provided by Bay-

LUXT with some provided by ChatGPT. While we found signi�cant di�erences

in the way they explain themselves, the user must ultimately decide which one

best suits their needs.

REM combines HiL and visual analytics methods to enable an e�cient and

more accurate moderation process. We implement the human-resource-aware

Active Moderation framework to reduce and optimize human e�ort by building

on the prediction uncertainty of models. We also present a rich uncertainty-

aware visual-interactive interface to facilitate moderation through exploratory

data analysis. Built on a big data architecture, our tool is highly scalable and

enables real-time moderation. A preliminary experiment has shown that our

moderation approach is able to improve the classi�cation performance of a hate

and o�ensive language classi�er from 78.48% to 96.08% by moderating only 25%

of the data.

REM can be adapted to more general use-cases where annotators need to ef-

�ciently improve the classi�cation performance of binary classi�ers while taking

advantage of Continues Learning. Future work should focus on evaluating our

tool in terms of user experience, acceptance, and usefulness in supporting the

moderation of online forums.

237

Chapter 10

Conclusion

This chapter summarizes the contributions of this thesis, discusses the results,

and outlines its limitations.

10.1 Summary of the Contributions

The main contribution of this thesis is sixfold. First, we provide a catalog of

12 HiL design patterns for software engineers to better understand and design

HiL systems. Second, we comprehensively investigate the e�ectiveness of the

uncertainty-based moderation of text classi�ers, called Active Moderation, to

improve their classi�cation performance during operation. Third, we propose

and study a saturation-based moderation strategy to e�ectively limit human

resources during Active Moderation while maximizing the classi�cation per-

formance of text classi�ers. Fourth, we adopt a Proxy-based Active Learning

framework for text classi�cation to maintain highly applicable training in terms

of high user experience, human cost-e�ectiveness, and high classi�cation per-

formance. Fifth, we propose and investigate the suitability of one of the �rst

frameworks based on Bayesian statistics to explain the prediction uncertainty

of text classi�ers, which we refer to as BayLUXT. Finally, we present REM, a

functional prototype for the e�ective real-time moderation of online forums that

integrates the previous contributions. Taken together, these contributions pro-

vide valuable insights into how the HiL approach can facilitate the applicability

of text classi�cation systems. Below is a detailed summary of our contributions

and �ndings:

HiL Pattern Catalog. We have identi�ed a general lack of design knowledge

and best practices for developing HiL systems. To address this, we have con-

ducted a literature review of current HiL approaches, covering a total of the 200

most relevant records from Google Scholar and the Google search engine. We

have considered both research papers and gray literature.

239

Chapter 10 Conclusion

We found that most existing HiL approaches are concerned with the cost-

e�ective use of human labor during the initial training phase. Also, many ap-

proaches rely on human assistance to discover and prevent unreliable predictions

during operation. In total, we have identi�ed 12 di�erent HiL approaches. Based

on these �ndings and our experiments, we developed a HiL pattern catalog that

covers best practices for HiL model training and operational use. Since the

scope of this thesis focuses on domain expert feedback, we have concentrated

on HiL approaches that do not require technical feedback, i.e., no direct model

building and hyperparameter selection.

From these �ndings, we have extracted 12 HiL design patterns, including

seven training and �ve operation patterns. For each pattern, we outline its

goal, human role, structure, advantages, and potential challenges. Furthermore,

we outline when the patterns should be applied and refer to existing imple-

mentations from the literature. A common goal of HiL training patterns is

the cost-e�ective human labeling of training data, while operation patterns are

mainly aimed at improving the quality of decision-making. While our pattern

catalog is by no means complete, it is a step towards facilitating the design and

deployment of HiL systems.

Computational-aware Active Moderation. In Chapter 5, we have investigated

the potential of the Active Moderation pattern to increase the applicability of

ML-based text classi�ers in situations where highly complex but accurate classi-

�ers are not applicable due to environmental concerns or a lack of computational

resources. For this purpose, we have investigate the suitability of the prediction

uncertainties of lightweight classi�ers for Active Moderation and evaluate their

e�ectiveness.

We found that the probability distributions between incorrect and correct

classi�cations di�er signi�cantly when using lightweight classi�ers, potentially

allowing for computationally e�cient Active Moderation. For app reviews,

the mean probability of all incorrect and correct classi�cations was 66.4% and

89.42%, respectively. Next, we showed that removing the most uncertain in-

stances from the test dataset (i.e., 0%, 10%, 20%, and 30%) signi�cantly in-

creases its overall F1 score. For example, the F1 score of an MLP* increased

from 83.71% to 93.02% when the classi�cation performance was calculated us-

ing only the 70% most certain predictions. Since Active Moderation allocates

the most uncertain predictions to human annotators, we then investigated the

combined semi-automated classi�cation performance. In particular, how much

human e�ort is required to achieve a given F1 score. We observed signi�cant im-

provements in the F1 score when the most uncertain predictions were manually

240

10.1 Summary of the Contributions

corrected. For example, on the News dataset, when 9.48% of the most uncer-

tain predictions were manually corrected, the F1 score of the MLP* improved

from the original 89.28% to 95%. As the most uncertain predictions are as-

signed to human annotators, we next investigate the combined semi-automated

classi�cation performance of the ML model and humans. In particular, we

have investigated how much human e�ort is required to achieve a speci�c F1

score. In our experiments, the F1 score increased from an initial F1 score of

about 78% to at least 95% in �ve out of six datasets by manually validating

less than 29.6% of the data. Since human annotators can make mistakes, we

also accounted for some level of human noise. We found that even a 15% noisy

human within Active Moderation can still produce signi�cantly more accurate

results than a purely automated classi�er with a reasonable amount of manual

e�ort. Finally, we have investigated the runtime behavior of the classi�ers on

a weak infrastructure (only 4 GB of main memory) to assess the applicability

in resource-constrained settings. We found that several of the best performing

classi�ers, such as LR and MLP, require less than one second to infer the labels

of classifying around 15,000 instances.

Human-resource-aware Active Moderation. In Chapter 6, we have conducted

a second study of the Active Moderation pattern. We have focused on the prob-

lem that human e�ort is costly and scarce. To be applicable, human e�ort must

be limited to instances where human corrections are actually needed. We have

proposed a human-resource-aware Active Moderation framework based on a

saturation-based moderation strategy to minimize human e�ort while maximiz-

ing classi�cation performance. Our experiments included several deep learning-

based text classi�ers, including a state-of-the-art DistilBERT model, as well as

several uncertainty estimation techniques and datasets.

Without human intervention, we achieved F1 scores of up to 94.1%, which

may still be too low for practical use-cases. When applying Active Modera-

tion to deep learning models, we found that human e�ciency (the number of

moderation requests that are misclassi�cations and require human intervention)

steadily declines as moderation e�ort increases. In particular, we observed hu-

man e�ciencies of 50%, 41%, and 32% when moderating 1%, 10%, and 20%

of the data, respectively. This underscores the need to limit moderation to

a certain amount to avoid wasting human e�ort. Therefore, we proposed a

saturation-based moderation strategy that estimates the natural point of sat-

uration for the moderation on a test dataset to limit human involvement. We

show that our saturation-based moderation strategy can e�ectively limit human

e�ort while still achieving very high F1 scores. In particular, using DistilBERT,

241

Chapter 10 Conclusion

we achieved an F1 score of at least 98% on all datasets with a manual load of

∼ 25%. When humans are noisy, we found that F1 scores of about 98%, 97%,

and 96% are still achieved with noise levels of 5%, 10%, and 15%, respectively.

Overall, our experiments show that our moderation framework can signi�cantly

improve the F1 score and thus the applicability of both weak (CNN) and strong

(DistilBERT) deep learning-based text classi�ers.

Proxy-based Active Learning. In Chapter 7, we have addressed the lack of

user experience when adopting Active Learning to train deep learning-based

text classi�ers. The use of state-of-the-art ML models is highly desirable due to

their expected high classi�cation performance. However, state-of-the-art mod-

els are usually very slow during training and inference due to their high com-

plexity. While Active Learning promises to reduce human e�ort during the

initial labeling of training data, it requires frequent model re-training, resulting

in lengthy interruptions and waiting times. This makes Active Learning with

highly complex models impractical from a user experience perspective. We have

investigated a Proxy-based Active Learning framework where a lightweight, low-

latency classi�er is used within Active Learning. The collected training data is

then used to train an additional state-of-the-art model, which is then used dur-

ing operation. In this context, we have investigated the performance of BERT

when trained on multiple Proxy-sampled datasets. We have examined Logistic

Regression (LR) and FastText as Proxies, using a label budget of 300 and 500

instances.

We found that data collected by a Proxy can signi�cantly improve the F1

score of a BERT classi�er compared to sampling random training data. Af-

ter 500 Active Learning iterations, the relative improvement in micro F1 score

ranges from 1.75% to 3.18%. The macro F1 score increased by 2.54% to 15.30%.

Furthermore, we found that training an additional BERT classi�er on the Proxy-

sampled data can improve the micro F1 score by up to 7.27% and the macro F1

score by up to 19.34% compared to the direct operational use of the Proxy. We

have additionally investigated the runtime behavior of the Proxies. We show

that LR is signi�cantly faster than FastText. In particular, FastText requires

6.81 to 8.32 seconds to perform training and inference, while LR requires only

0.36 to 0.68 seconds to perform the 500th Active Learning iteration. Thus,

Proxy-based Active Learning is suitable for fast user interactions of less than 1

second. Finally, we have compared the imbalance of the Proxy-sampled train-

ing data to the randomly sampled data. We found that the Proxy-sampled

data is much more balanced and thus considered to be of higher quality, which

is also re�ected in the increased classi�cation performance. Overall, we show

242

10.1 Summary of the Contributions

that Proxy-based Active Learning is su�cient to improve the classi�cation per-

formance of strong classi�ers when they cannot be used directly within Active

Learning. Our framework mitigates user experience concerns while enabling

Active Learning in computationally constrained training environments.

BayLUXT: Bayesian Local Uncertainty Explanations. In Chapter 8, we have

proposed BayLUXT, a framework for explaining potential uncertainties in text

classi�cation outcomes. BayLUXT is speci�cally designed to explain RNNs such

as LSTMs. It applies a decomposition technique that reveals how much each

word contributes to the overall classi�cation uncertainty and class activation

score. BayLUXT provides �ve di�erent types of explanations: word relevance,

word uncertainty, sequence relevance, sequence uncertainty, and directed uncer-

tainty explanations (DUX). We have conducted several experiments to assess

the correctness and appropriateness of BayLUXT. Our investigation focuses on

the task of sentiment analysis.

First, we have demonstrated the correctness of BayLUXT through several

experiments. We show that BayLUXT is able to identify transitions within a

text between sentiment changes. Furthermore, we found that the most relevant

words for positive and negative sentiment are reasonable, supporting the appro-

priateness of our framework. We also found a relationship between relevance

scores and uncertainty. Overall, we show that BayLUXT is su�cient to ex-

tract meaningful words for both positive and negative sentiment and to provide

plausible uncertainty scores.

Second, we have conducted a human evaluation that contained several com-

prehension tasks, including the explanations provided by BayLUXT, and a ques-

tionnaire. We found that uncertainty explanations provide a valuable source of

insight into the inner workings of a text classi�er. Uncertainty explanations

help human users to better understand a model's prediction. In our study, 92%

of respondents stated that uncertainty should always be explained along with

word relevance.

REM. In Chapter 9, we have introduced REM, a visual interactive HiL tool

for the e�cient moderation of online forums. REM is built on top of multiple

big data frameworks, including Apache Kafka, Apache Spark, and MongoDB.

It also includes a scalable real-time ML pipeline. REM implements several

HiL patterns, including Active Moderation, Visual Interactive Labeling, and

Continuous Learning. In addition, a visual-interactive user interface allows for

knowledge discovery of the forum while enabling user-centric labeling. The

requirements were derived from an interview with NDR and the literature. We

243

Chapter 10 Conclusion

present REM's domain-driven data models, outline its architecture, and present

its user interface and work�ows.

The concept of prediction uncertainty plays an important role in REM. In-

stances are not only classi�ed into �blocked � or �valid �, but may also be �agged

as uncertain. This would indicate the need for human supervision. Humans can

de�ne an uncertainty threshold, which in�uences the number of instances to be

considered uncertain. In addition to user-de�ned moderation strategies, REM

also suggests the saturation-based moderation strategy. We have conducted an

empirical evaluation of REM on hate speech data. We show that moderating

25% of the most uncertain data increased the balanced accuracy from an ini-

tial 78,48% to 96.08%. Further, we have conducted a preliminary investigation

of two explanation techniques compatible with REM: our BayLUXT framework

and ChatGPT. Both approaches provide reasonable explanations, but also show

substantial di�erences. Practitioners can incorporate their preferred explana-

tion techniques into the REM tool.

10.2 Threats to Validity

We summarize the threads to validity from the previous chapters and place them

in the overall context of this thesis.

HiL Pattern Catalog. Our proposed pattern catalog is not intended to be

complete, and we may have overlooked some established HiL patterns. During

the analysis, we limited our scope to the 200 most relevant records in the lit-

erature across two search engines. We did not consider further literature due

to the high screening e�ort. Moreover, HiL is a highly heterogeneous concept.

Existing HiL approaches may not explicitly identify themselves as such, making

it di�cult to identify them using our search query alone. In addition, the HiL

research domain employs various terminologies that cannot be comprehensively

captured in a single search query, complicating e�orts to gain a holistic view of

the HiL approach.

Furthermore, our pattern catalog incorporates our experience in designing

HiL systems, which introduces subjectivity into the catalog. Additionally, there

is a bias towards text classi�cation, as it serves as the primary objective of our

work. Other ML domains may encounter di�erent challenges and tasks that we

may not have considered in our analysis.

Investigations of HiL Frameworks. The HiL experiments conducted in Chap-

ters 5, 6, and 7, lack to some extent in generalizability. As with any empirical

244

10.2 Threats to Validity

ML experiment, we had to make some compromises that a�ected the validity

of the results. For practical reasons, only a limited number of datasets, model

architectures, and con�gurations can be considered. We may have missed a

con�guration that would have produced better results. To mitigate these limi-

tations, we considered a variety of well-performing concepts, such as commonly

used classi�cation models or established uncertainty modeling techniques. We

have also focused on a variety of real-world datasets covering software engineer-

ing, online journalism, and social media analytics. There is no guarantee that

other datasets will not yield signi�cantly di�erent results. Furthermore, all of

our experiments involve only English datasets, which limits their generalizability

to other languages. Languages vary greatly in structure, grammar, and vocab-

ulary, and what works well for English may not be directly applicable to other

languages. Furthermore, English-centric datasets may contain socio-cultural

biases. To mitigate this limitation, we have included multiple datasets from

di�erent domains that cover a variety of jargons. Further research is needed to

evaluate other languages accordingly.

Another limitation concerns the label quality of the ground truth datasets.

Most of the considered datasets are labeled by humans, who may make mistakes.

Furthermore, some labels are automatically derived from manually assigned

information, such as star ratings, which are highly subjective and may not match

the actual text. Although we rely on established datasets, errors and noise are

not excluded. Noise in the data can corrupt the classi�cation performance and

make it di�cult to assess whether the model is actually making a mistake.

We also simulate human e�ort by selecting the ground truth class label for

each moderation or labeling request. This is done because we do not have the

resources to have several thousand user comments manually labeled by domain

experts. We follow the common practice of considering feedback from domain

experts in their domain to be somewhat reliable. Using fully labeled datasets

allowed us to simulate human labelers. Since it is unrealistic to assume that

humans do not make mistakes, we also simulate human guessing by randomly

selecting labels. However, it is unrealistic to assume that humans make random

mistakes without taking into account the characteristics of the actual text. To

mitigate this problem, we compare di�erent noise levels across multiple datasets.

Our results also do not emphasize that the proposed HiL frameworks are

clearly domain-independent. Although we covered three domains, each with

several di�erent real-world datasets, we mainly considered comparatively short

texts that �t into the feature space of the classi�ers. Domains with much longer

text or statistical di�erences to our datasets may perform di�erently. Dealing

245

Chapter 10 Conclusion

with overlong sentences may require additional pre-processing steps, such as

feature averaging, that need to be considered.

Regarding the external threads, the anticipated a�ordable amount of human

e�ort may still be too large for some use-cases. While the HiL approach sig-

ni�cantly improves classi�cation performance or reduces human e�ort during

training, manual data annotation is still very expensive and only available in

limited quantities. It is up to the user to decide if the e�ort is worth it or if it

is really necessary to bene�t from HiL. We also ran our experiments with fully

labeled datasets. Thus, the random splits in the training, test, and evaluation

data are all from the same distribution. Real-world data could change over time,

which would negatively a�ect the classi�cation performance.

Explaining Prediction Uncertainties. Our investigation of BayLUXT is lim-

ited in scope, which a�ects the generalizability of our �ndings. First, we consider

only one dataset covering the task of sentiment analysis. Furthermore, we ran-

domly selected a few samples to demonstrate the technical suitability of the

explanations provided. The applicability to other tasks or domains is unknown.

We have focused on a task that is fairly easy to understand and does not require

domain-speci�c knowledge that is di�cult to understand for a broad audience.

In addition, our human evaluation is limited because we only had 15 partic-

ipants. Also, we could only evaluate a small sample of explanations to keep

the evaluation time short. Furthermore, we only consider DUX in the human

evaluation. It remains unknown whether other uncertainty explanations would

have performed di�erently. Furthermore, our participants were students who

were familiar with the development of ML systems and the application of XAI

techniques. It is possible that other samples of people would have produced

di�erent results. To mitigate this, we compared our framework to the baseline

of traditional relevance explanations.

REM. REM is easily adaptable to domains other than online journalism, such

as facilitating the HiL-based classi�cation of app store data or software issues.

However, we have not reviewed and analyzed the speci�c requirements for these

applications. It may be that slightly di�erent views are needed to optimally

support these domains. Furthermore, the development of REM is based on an

informal interview at a German news organization and requirements from the

literature. It is possible that other news organizations have di�erent require-

ments for their moderation processes, and thus we cannot generalize to all news

organizations. Further research is needed to test the user acceptance of REM

with actual end users.

246

10.3 Further Work

10.3 Further Work

We suggest directions for future work.

User Experiments with Domain Experts. One potential area for further in-

vestigation is conducting experiments investigating the user acceptance of the

proposed HiL approaches. While the empirical results are promising, research

is needed to investigate whether and to what extent domain experts are willing

to be in the ML loop. A promising use-case is to facilitate the daily work of

practitioners, such as forum moderators or software engineers. Further research

should focus on conducting applicability tests with real end users.

HiL with Decoder-based LLMs. While we focus on supervised ML models

for text classi�cation, decoder-based LLMs provide a highly promising alterna-

tive to solve text classi�cation tasks. However, these models have signi�cant

di�erences, such as not revealing internal parameters nor providing softmax

probabilities. While con�dence and uncertainty scores can be extracted as part

of the reasoning task, their extraction poses uncertainties that remain opaque.

Further research can investigate the suitability of their self-expressed prediction

uncertainty to implement Active Moderation or other operational HiL patterns.

Also, decoder-based LLMs o�er novel ways of explaining themselves, such as

textual justi�cations, which attain less attention to facilitate the HiL approach.

To further reduce the bottleneck of human e�ort in HiL systems, a recent

idea is an LLM-in-the-Loop [77] paradigm. Since decoder-based LLMs have

shown promising results in replicating human-like behavior, they can potentially

eliminate some of the human e�ort through automation. Further research could

investigate this paradigm for its e�ciency and e�ectiveness in text classi�cation.

Investigation of other HiL Patterns for Text Classi�cation. While we pro-

mote a catalog of 12 HiL design patterns, our investigation focuses on cost-

e�cient implementations of Active Moderation and Active Learning. Further

work could be dedicated to providing cost-e�ective and applicable implementa-

tions of other patterns accordingly. This would highly contribute to the research

areas of HiL text classi�cation, i.e., human-resource-aware Safeguards.

REM Improvements and Extensions. We could also improve the Visual Inter-

active Labeling interface of REM. A promising extension would be the Semi-

supervised Interactive Labeling pattern. This would allow the moderator to

easily inspect semantically similar user comments that are likely to share the

247

Chapter 10 Conclusion

same label. Further, we could improve on REMs' Continuous Learning integra-

tion. An extension could monitor and communicate the improvements achieved

through re-training, providing an incentive for humans to stay in the loop. Ad-

ditionally, we could improve REM by considering the time required to perform

the moderation as well. Yet, REM considers each moderation request to cost

the same amount of human resources. Di�erentiating the complexity or length

of user comments could improve the moderation throughput in human time-

constrained settings.

Furthermore, online forums also increasingly consist of images. We could

extend REM with image classi�cation to detect inappropriate images. Further

research could investigate the adaptability of our human-resource-aware Active

Moderation framework to image data.

Transfer of REM to other Domains. While REM is speci�cally designed to

facilitate the e�cient moderation of large-scale online forums, it can be adapted

to other domains accordingly. Further research could investigate the transfer

and use of REM for alternative use-cases, such as classifying app store reviews

and issue types. In these cases, the classi�cation object is di�erent and covers

more than two classes.

Adaption of Uncertainty Explanations. With BayLUXT, we propose one of

the �rst investigations of uncertainty explanations for text classi�cation. While

our �ndings clearly promote the value of uncertainty explanations for human

users, they play a minor role in the current XAI literature. Further research is

needed to adapt BayLUXT to other NN architectures, such as CNNs or LLMs,

or even to provide a model-agnostic approach. Also, more extensive user studies

covering multiple domains and actual domain experts contribute to the �eld of

uncertainty explanation.

248

Part IV

Appendices

249

Appendix A

Benchmark Results

A.1 Computational-aware Active Moderation

251

Appendix A Benchmark Results

App Store News Hate Speech

Classi�er 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%
56.74 56.58 56.30 56.26 61.29 62.23 62.21 62.33 63.12 63.22 63.22 63.13

DT
-0.27 -0.50 -0.07 1.52 -0.03 +0.20 +0.16 +0.0 -0.14

65.40 66.97 66.60 64.33 78.64 82.72 86.78 90.11 68.40 66.21 62.69 58.96
RF

+2.41 -0.54 -3.41 +5.19 +4.91 +3.84 -3.20 -5.31 -5.95
69.73 72.72 74.61 76.03 76.23 80.99 84.77 88.36 57.51 53.53 53.30 53.45

kNN
+4.30 +2.60 +1.90 +6.25 +4.66 +4.25 -6.93 -0.41 +0.28

63.69 66.34 68.83 71.41 76.34 80.00 83.71 86.55 69.94 72.44 74.48 76.82
GNB

+4.16 +3.75 +3.75 +4.79 +4.64 +3.40 +03.57 +2.82 +3.14
74.22 77.79 80.76 83.73 83.23 88.11 92.11 95.44 76.70 79.00 80.98 82.59

SVM
+4.81 +3.82 +3.68 +5.86 +4.55 +3.61 +3.00 +2.51 +1.99

77.01 81.13 84.84 88.19 85.13 90.42 94.52 97.11 78.17 81.08 83.63 85.57
LR

+5.35 +4.57 +3.95 +6.22 +4.53 +2.74 +3.72 +3.15 +2.31
77.55 81.68 85.70 89.53 85.36 90.63 94.73 97.34 78.25 81.40 84.03 86.15

MLP
+5.33 +4.93 +4.47 +6.17 +4.53 +2.75 +4.01 +3.23 +2.53

78.08 82.05 85.80 88.96 86.16 91.30 95.35 97.63 79.19 82.61 85.40 87.82
MLP*

+5.08 +4.57 +3.69 +5.97 +4.43 +2.39 +4.32 +3.38 +2.83
77.96 81.97 85.53 88.88 86.03 91.18 95.18 97.56 79.10 82.46 85.18 87.43

B-MLP*

+5.13 +4.35 +3.91 +5.98 +4.38 +2.51 +4.25 +3.30 +2.63

AVG 71.15 74.14 76.55 78.59 79.82 84.18 87.71 90.27 72.26 73.55 74.77 75.77

Issues Reuters TREC

Classi�er 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%
48.96 49.01 48.89 48.85 50.23 50.28 49.99 50.18 46.02 45.81 45.72 45.42

DT
+0.09 -0.24 -0.08 +0.10 -0.58 +0.39 -0.45 -0.21 -0.65

63.44 65.74 67.78 69.93 72.89 77.75 82.16 82.47 67.71 69.97 72.11 73.96
RF

+3.61 +3.11 +3.17 +6.67 +5.68 +0.37 +3.33 +3.06 +2.57
62.02 64.21 66.24 68.19 73.94 79.45 82.91 83.02 72.26 74.80 76.96 79.36

kNN
+3.53 +3.17 +2.93 +7.46 +4.36 +0.13 +3.52 +2.88 +3.12

60.42 62.38 64.01 65.58 68.64 74.66 80.53 84.96 61.55 63.90 66.10 68.33
GNB

+3.25 +2.62 +2.45 +8.77 +7.86 +5.49 +3.82 +3.44 +3.37
67.71 70.44 72.52 74.70 87.26 93.67 96.82 98.43 83.60 87.48 89.74 92.38

SVM
+4.03 +2.95 +3.02 +7.34 +3.36 +1.66 +4.65 +2.58 +2.94

68.38 71.09 73.42 75.84 87.70 94.60 97.41 98.86 84.92 88.42 90.75 92.90
LR

+3.96 +3.28 +3.30 +7.87 +2.97 +1.49 +4.13 +2.63 +2.36
67.92 70.49 72.92 75.13 86.81 94.17 97.30 98.44 86.39 90.31 93.13 94.36

MLP
+3.77 +3.45 +3.04 +8.48 +3.32 +1.17 +4.53 +3.13 +1.31

69.27 72.02 74.48 76.97 87.48 94.97 97.69 98.95 86.72 90.23 92.21 93.61
MLP*

+3.97 +3.41 +3.35 +8.56 +2.86 +1.28 +4.05 +2.19 +1.52
69.31 72.05 74.48 76.82 87.27 94.51 97.75 99.15 86.76 89.72 92.03 93.52

B-MLP*

+3.96 +3.37 +3.14 +8.29 +3.43 +1.43 +3.40 +2.57 +1.63

AVG 64.16 66.38 68.30 70.22 78.02 83.78 86.95 88.27 75.10 77.85 79.86 81.54

Table A.1: F1 scores of di�erent classi�ers after removing a certain proportion
of the most uncertain predictions from the test dataset, employing
BERT embeddings. The table also shows the relative changes from
the previously removed portion. The two best and worst F1 scores
for each setting are highlighted in green and red, respectively.

252

A.1 Computational-aware Active Moderation

App Store News Hate Speech

Classi�er 89% 91% .93% 95% 91% 93% 95% 97% 89% 91% 93% 95%
DT 74.87 79.16 83.51 88.45 76.34 81.48 86.80 92.16 70.30 75.83 81.26 86.57
RF 36.70 41.40 47.12 53.47 21.49 26.78 32.96 42.37 28.78 34.15 41.16 50.23
kNN 31.23 36.26 40.58 47.25 25.40 30.95 37.10 44.74 30.37 35.72 42.66 51.92
GNB 43.02 47.68 52.25 58.20 28.09 34.41 41.44 53.22 46.34 54.36 62.65 72.53
SVM 23.65 27.78 32.23 37.80 12.69 17.10 22.79 28.92 19.06 23.56 29.57 38.17
LR 18.49 22.65 27.82 33.64 8.89 12.79 17.30 23.46 17.72 22.48 28.53 37.25
MLP 17.80 21.68 25.75 31.57 8.55 12.37 16.94 23.30 17.82 22.99 29.62 38.46
MLP* 16.74 20.65 25.53 30.63 7.47 11.25 15.68 21.44 16.04 20.90 26.96 35.01
B-MLP* 17.08 21.25 25.53 30.91 7.61 11.52 16.14 21.65 15.99 20.71 26.56 34.34

0%
hu
m
an

no
is
e

DT 82.01 87.23 91.90 97.12 84.74 90.92 96.78 - 77.10 83.13 89.03 95.06
RF 42.02 48.19 55.54 63.20 24.02 30.57 40.70 63.64 32.04 39.00 48.77 64.92
kNN 35.67 40.52 47.78 54.66 28.42 35.42 44.15 59.21 33.89 41.06 51.25 68.77
GNB 47.87 53.10 59.98 69.96 32.07 40.32 55.09 - 53.11 62.90 74.83 90.00
SVM 26.03 31.10 36.86 47.87 13.91 19.09 26.08 37.63 20.73 26.21 34.57 50.07
LR 20.18 24.81 31.32 40.93 9.63 14.05 19.43 29.80 19.29 25.00 33.40 46.56
MLP 19.40 23.62 29.41 38.58 9.27 13.53 18.98 28.81 19.45 25.76 34.64 49.41
MLP* 18.02 22.50 28.19 35.92 8.07 12.46 17.43 26.71 17.58 23.23 31.16 45.05
B-MLP* 18.68 23.19 28.69 35.95 8.30 12.76 18.07 26.94 17.50 23.12 30.77 43.38

5%
hu
m
an

no
is
e

DT 91.49 97.47 - - 97.10 - - - 85.17 92.06 99.03 -
RF 47.28 55.60 64.99 - 27.60 37.59 - - 36.87 47.80 71.12 -
kNN 39.92 48.00 56.66 - 33.18 42.30 - - 38.46 50.23 78.78 -
GNB 53.88 61.83 - - 38.06 - - - 62.02 7.57 98.13 -
SVM 29.72 35.70 49.62 - 15.32 22.16 31.52 - 22.84 30.16 45.42 -
LR 22.81 29.66 40.77 - 10.43 15.40 22.66 - 21.43 28.74 41.92 -
MLP 21.59 26.72 35.54 - 10.01 15.10 22.24 - 21.87 30.20 45.30 -
MLP* 20.59 26.66 34.11 - 8.69 13.66 20.20 - 19.41 26.89 39.73 -
B-MLP* 21.50 26.94 34.73 - 8.81 14.21 20.69 - 19.13 26.07 37.72 -

10
%

hu
m
an

no
is
e

DT - - - - - - - - 97.33 - - -
RF 59.67 - - - 33.81 - - - 47.37 - - -
kNN 48.03 - - - 41.36 - - - 49.54 - - -
GNB 70.62 - - - - - - - 87.02 - - -
SVM 33.26 54.01 - - 17.30 26.32 - - 26.07 39.70 - -
LR 25.03 35.29 - - 11.48 17.59 - - 24.42 38.24 - -
MLP 23.28 31.20 - - 10.93 17.01 - - 24.93 39.20 - -
MLP* 22.65 31.54 - - 9.57 15.00 32.39 - 22.02 32.54 - -
B-MLP* 22.90 31.13 - - 9.74 15.62 - - 22.10 31.88 - -

15
%

hu
m
an

no
is
e

Table A.2: F1 score of Active Moderation utilizing BERT encodings on the App
Store, News, and Hate Speech datasetss. Each cell denotes the per-
centage of the most uncertain classi�cation results that require man-
ual annotation to attain a speci�ed F1 score at a particular level of
human noise. F1 scores that are unattainable due to high levels of
human misclassi�cation are denoted by �-�. The two best and worst
F1 scores for each setting are highlighted in green and red, respec-
tively.

253

Appendix A Benchmark Results

Issues Reuters TREC

Classi�er 79% 81% 83% 85% 93% 95% 97% 99% 89% 91% 93% 95%
DT 58.97 62.92 66.89 70.76 86.35 89.92 93.85 97.79 79.67 83.33 87.10 90.46
RF 29.93 34.46 39.18 44.00 17.44 21.45 28.95 44.86 42.94 48.82 56.72 67.44
kNN 32.32 36.75 41.63 46.54 17.65 21.11 25.93 38.36 38.84 45.53 53.76 61.46
GNB 36.07 40.64 45.67 50.99 27.12 31.27 36.78 49.69 62.60 69.96 77.42 83.74
SVM 22.35 26.79 31.66 36.78 5.69 8.92 13.93 24.36 9.91 16.10 22.24 28.66
LR 20.61 25.06 29.68 34.60 4.50 7.66 13.05 22.54 8.33 13.74 20.09 26.85
MLP 21.07 25.51 30.44 35.50 5.55 8.52 13.19 23.84 9.11 13.17 19.35 25.87
MLP* 19.26 23.65 28.34 33.04 4.85 8.06 12.10 21.96 7.56 12.87 18.51 26.38
B-MLP* 19.42 23.97 28.61 33.42 5.25 7.99 12.03 21.04 8.30 14.01 19.52 27.25

0%
hu
m
an

no
is
e

DT 63.20 67.40 71.54 75.84 - - - - 90.96 95.63 99.83 -
RF 32.44 37.46 42.66 47.98 21.27 39.26 - - 56.89 73.52 96.77 -
kNN 34.99 39.98 45.53 50.58 21.22 29.21 - - 38.84 45.53 53.76 61.46
GNB 39.19 44.50 50.14 56.49 33.29 - - - 78.43 88.51 97.11 -
SVM 24.29 29.26 34.64 40.28 6.62 11.84 - - 13.17 21.37 31.45 -
LR 22.31 27.22 32.50 38.02 5.02 9.87 20.76 - 10.25 19.25 29.03 -
MLP 22.83 27.96 33.34 38.75 6.32 10.77 20.78 - 11.66 17.37 26.28 56.45
MLP* 20.87 25.76 30.86 36.02 5.87 9.52 18.06 - 9.95 17.07 28.09 48.96
B-MLP* 21.03 26.14 31.30 36.74 6.04 9.80 18.55 - 11.09 18.65 29.47 54.91

5%
hu
m
an

no
is
e

DT 67.85 72.38 76.90 81.43 - - - - - - - -
RF 35.17 40.78 46.68 52.92 - - - - - - - -
kNN 38.02 44.20 49.62 56.26 - - - - - - - -
GNB 42.88 48.98 55.88 63.30 - - - - - - - -
SVM 26.26 32.19 38.24 44.63 8.08 - - - 17.00 26.41 - -
LR 24.19 29.73 35.59 41.98 6.04 - - - 11.66 23.42 - -
MLP 24.75 30.68 36.58 42.67 7.41 - - - 12.20 21.91 - -
MLP* 22.57 28.02 33.56 39.44 7.27 13.47 - - 11.32 21.88 - -
B-MLP* 22.89 28.40 34.24 40.36 7.22 13.47 - - 12.00 25.74 - -

10
%

hu
m
an

no
is
e

DT 73.80 78.63 83.59 88.38 - - - - - - - -
RF 38.70 45.03 51.96 59.47 - - - - - - - -
kNN 42.17 48.56 55.91 64.68 - - - - - - - -
GNB 47.88 55.82 64.50 72.91 - - - - - - - -
SVM 28.88 35.54 42.84 50.81 - - - - 32.49 - - -
LR 26.39 32.65 39.49 46.99 11.93 - - - 25.03 - - -
MLP 27.00 33.68 40.36 47.88 12.05 - - - 21.40 - - -
MLP* 24.51 30.54 36.85 44.08 9.84 - - - 20.19 - - -
B-MLP* 25.18 31.35 38.14 45.53 11.07 - - - 25.71 - - -

15
%

hu
m
an

no
is
e

Table A.3: F1 score of Active Moderation with BERT encodings on the Issues,
Reuters, and TREC datasets. Each cell denotes the percentage of the
most uncertain classi�cation results that require manual annotation
to attain a speci�ed F1 score at a particular level of human noise.
F1 scores that are unattainable due to high levels of human misclas-
si�cation are denoted by �-�. The two best and worst F1 scores for
each setting are highlighted in green and red, respectively.

254

A.2 Human-resource-aware Active Moderation

A.2 Human-resource-aware Active Moderation

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 IMDB 5% Noise

F1
 S

co
re

CNNBL
CNNMCD
CNNBBB
CNNEN

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 IMDB 10% Noise

F1
 S

co
re

CNNBL
CNNMCD
CNNBBB
CNNEN

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 IMDB 15% Noise

F1
 S

co
re

CNNBL
CNNMCD
CNNBBB
CNNEN

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 IMDB 5% Noise

F1
 S

co
re

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 IMDB 10% Noise

F1
 S

co
re

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 IMDB

F1
 S

co
re

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

15% Noise

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 IMDB 5% Noise

DistilBERT-BL
DistilBERT-MCD
DistilBERT-EN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 IMDB 10% Noise

DistilBERT-BL
DistilBERT-MCD
DistilBERT-EN

F1
 S

co
re

0% 25% 50% 75% 100%
Moderation Effort

0.88

0.90

0.92

0.94

0.96

0.98

1.00 IMDB 15% Noise

DistilBERT-BL
DistilBERT-MCD
DistilBERT-EN

F1
 S

co
re

Figure A.1: Active Moderation under human noise (5%, 10%, and 15%) on the
IMDB dataset using various uncertainty modeling techniques. Ver-
tical lines illustrate the saturation points.

255

Appendix A Benchmark Results

0% 25% 75% 100%
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups 5% Noise

F1
 S

co
re

50%
Moderation Effort

CNNBL
CNNMCD
CNNBBB
CNNEN

0% 25% 75% 100%
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups

F1
 S

co
re

CNNBL
CNNMCD
CNNBBB
CNNEN

10% Noise

50%
Moderation Effort

0% 25% 50% 75% 100%
Moderation Effort

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups

F1
 S

co
re

CNNBL
CNNMCD
CNNBBB
CNNEN

15% Noise

0% 25% 50% 75% 100%
Moderation Effort

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups

F1
 S

co
re

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

5% Noise

0% 25% 50% 75% 100%
Moderation Effort

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups

F1
 S

co
re

KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

10% Noise

0% 25% 50% 75% 100%
Moderation Effort

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups
F1

 S
co

re
KimCNNBL
KimCNNMCD
KimCNNBBB
KimCNNEN

15% Noise

0% 25% 50% 75% 100%
Moderation Effort

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups

DistilBERT-BL
DistilBERT-MCD
DistilBERT-EN

F1
 S

co
re

5% Noise

0% 25% 75% 100%
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups

F1
 S

co
re

10% Noise

DistilBERT-BL
DistilBERT-MCD
DistilBERT-EN

50%
Moderation Effort

0% 25% 75% 100%
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00 20NewsGroups

F1
 S

co
re

15% Noise

DistilBERT-BL
DistilBERT-MCD
DistilBERT-EN

50%
Moderation Effort

Figure A.2: Active Moderation under human noise (5%, 10%, and 15%) on the
20NewsGroups dataset using various uncertainty modeling tech-
niques. Vertical lines illustrate the saturation points.

256

Appendix B

Local Explanations

257

Appendix B Local Explanations

Label and
Confidence

Text and Explanations Type

Negative

0.51

An average thriller that keeps you guessing until the end,
but falls short on execution.

An average thriller that keeps you guessing until the end,
but falls short on execution.

An average thriller that keeps you guessing until the end,
but falls short on execution.

An average thriller that keeps you guessing until the end,
but falls short on execution.

An average thriller that keeps you guessing until the end,
but falls short on execution.

Negative

1.00

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

An absolute disaster of a film with weak writing, poor acting,
and a predictable plot.

Positive

0.90

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

A gripping tale of love, betrayal, and redemption that will
leave you emotionally invested till the very end.

𝐷𝑈𝑋 (𝑒𝑖)
𝑈 (𝑒𝑖)
𝑈 (𝜖𝑖)
𝜙(𝑆𝑐 (𝑒𝑖))
𝑅𝑐 (𝜖𝑖)
𝐷𝑈𝑋 (𝑒𝑖)
𝑈 (𝑒𝑖)
𝑈 (𝜖𝑖)
𝜙(𝑆𝑐 (𝑒𝑖))
𝑅𝑐 (𝜖𝑖)
𝐷𝑈𝑋 (𝑒𝑖)
𝑈 (𝑒𝑖)
𝑈 (𝜖𝑖)
𝜙(𝑆𝑐 (𝑒𝑖))
𝑅𝑐 (𝜖𝑖)

Table B.1: Visualization of the di�erent types of explanations obtained from
BayLUXT. Each explanation consists of a heat-map visualizing dif-
ferent types of word attributions. A word at index 𝑖 is highlighted ac-
cording to the word relevance 𝑅𝑐 (𝜖𝑖) the sequence relevance 𝜙(𝑆𝑐 (𝑒𝑖))
the word uncertainty 𝑈 (𝜖𝑖) and the sequence uncertainty 𝑈 (𝑒𝑖), and
DUX 𝐷𝑈𝑋 (𝑒𝑖). Positive and negative sentiment words are high-
lighted in green and red respectively, while words that reduce and
increase uncertainty are highlighted in blue and orange respectively.

258

Text 1 – Sentiment: positive, Probability: 68% Type
It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

𝑅𝑅𝑐𝑐(𝜀𝜀𝑖𝑖)

Text 2 – Sentiment: negative, Probability: 64% Type
I am a big fan of Kevin Spacey, but this is a substandard
film. If you think it looks quiet interesting or you have
seen it and liked it go and check out 'John boorman is The
General', it is basically about the same guy but is far
superior in every way.

𝑅𝑅𝑐𝑐(𝜀𝜀𝑖𝑖)

I am a big fan of Kevin Spacey, but this is a substandard
film. If you think it looks quiet interesting or you have
seen it and liked it go and check out 'John boorman is The
General', it is basically about the same guy but is far
superior in every way.

Text 3 – Sentiment: negative, Probability: 60% Type
This movie is so bad it is almost worth watching. Trash at
its very best. You really have to see it. It is so bad my
sides hurt from laughing.

𝑅𝑅𝑐𝑐(𝜀𝜀𝑖𝑖)

This movie is so bad it is almost worth watching. Trash at
its very best. You really have to see it. It is so bad my
sides hurt from laughing.

Text 4 – Sentiment: negative, Probability: 97% Type
After 15 minutes of watching the movie I was asking myself
what to do, leave the cinema, sleep or try to keep
watching the movie to see if there was anything worth
seeing. Finally, I watched the movie. What a waste of
time, maybe I am not a 10 years old kid anymore.

𝑅𝑅𝑐𝑐(𝜀𝜀𝑖𝑖)

After 15 minutes of watching the movie I was asking myself
what to do, leave the cinema, sleep or try to keep
watching the movie to see if there was anything worth
seeing. Finally, I watched the movie. What a waste of
time, maybe I am not a 10 years old kid anymore.

Text 5 – Sentiment: positive, Probability: 91% Type
A gripping tale of love, betrayal, and redemption that
will leave you emotionally invested till the very end. 𝑅𝑅𝑐𝑐(𝜀𝜀𝑖𝑖)
A gripping tale of love, betrayal, and redemption that
will leave you emotionally invested till the very end.

Text 6 – Sentiment: positive, Probability: 57% Type
The opening is admittedly great. Drew Barrymore picking up
the phone only to find herself talking to a stalker is
inspired. What a shame about the rest of the film.

𝑅𝑅𝑐𝑐(𝜀𝜀𝑖𝑖)

The opening is admittedly great. Drew Barrymore picking up
the phone only to find herself talking to a stalker is
inspired. What a shame about the rest of the film.

Text 7 – Sentiment: negative, Probability: 60% Type
My girlfriend recommended this movie to me because it was
the sequel to her favourite movie. She thought it was
excellent. Sadly, I did not like it at all. It was the
worst movie I have ever seen. What a shame.

𝑅𝑅𝑐𝑐(𝜀𝜀𝑖𝑖)

My girlfriend recommended this movie to me because it was
the sequel to her favourite movie. She thought it was
excellent. Sadly, I did not like it at all. It was the
worst movie I have ever seen. What a shame.

It was an excellent performance by the actors and a great
setting. Unfortunately, the plot was terrible. I hope that
the actors find new projects.

𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒𝑖𝑖)

𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒𝑖𝑖)

𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒𝑖𝑖)

𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒𝑖𝑖)

𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒𝑖𝑖)

𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒𝑖𝑖)

𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒𝑖𝑖)

Table B.2: Texts and explanations used within the human evaluation.

259

Appendix C

ChatGPT Prompts

261

Appendix C ChatGPT Prompts

C.1 Explaining Word Relevance

Role Text
System You are a creative and intelligent movie review analyst, whose purpose is to aid in sentiment analysis

of movie reviews. A review will be provided to you, and you must classify the review as either 1
(positive) or 0 (negative), as well as your con�dence in the score you chose. The con�dence should
be a decimal number between 0 and 1, with 0 being the lowest con�dence and 1 being the highest
con�dence. Output this in the Python tuple format (<int classi�cation>, <�oat con�dence>).

Then, analyze how important every single word and punctuation token in the review was to your
classi�cation. The importance should be a decimal number to three decimal places ranging from
-1 to 1, with -1 implying a negative sentiment and 1 implying a positive sentiment. Provide a list
of (<word or punctuation>, <�oat importance>) for each and every word and punctuation token
in the sentence in a format of Python list of tuples. Each word or punctuation is separated by a
space.

It does not matter whether or not the sentence makes sense. Do your best given the sentence. The
movie review will be encapsulated within <review> tags. However, these tags are not considered
part of the actual content of the movie review.

Example output: (<int classi�cation>, <�oat con�dence>) [(<word or punctuation>, <�oat im-
portance>), (<word or punctuation>, <�oat importance>), ...]

User <review> It was an excellent performance by the actors and a great setting. Unfortunately, the plot
was terrible. I hope that the actors �nd new projects. <review>

System (0, 0.85) [('It', 0.2), ('was', 0.1), ('an', 0.1), ('excellent', 0.9), ('performance', 0.8), ('by', 0.1), ('the',
0.1), ('actors', 0.9), ('and', 0.4), ('a', 0.1), ('great', 0.8), ('setting', 0.7), ('Unfortunately', -0.8), (',',
0.1), ('the', 0.1), ('plot', -0.9), ('was', -0.1), ('terrible', -0.9), ('.', 0.1), ('I', 0.1), ('hope', 0.6), ('that',
0.1), ('the', 0.1), ('actors', 0.8), ('�nd', 0.5), ('new', 0.3), ('projects', 0.4), ('.', 0.1)]

Table C.1: A prompt proposed by Huang et al. [163] to query a decoder-based
LLM to extract feature attribution-like self-explanations for senti-
ment analysis. Gray text in italics is a placeholder for the input
text. The blue text is the output of the LLM.

262

C.1 Explaining Word Relevance

Role Text
System You are an expert in sentiment analysis of movie reviews. I give you a movie review and ask you

to classify it as 1 (sentiment positive) or -1 (sentiment negative). Also provide your classi�cation
probability, which describes your con�dence in your decision.

Similar to the LIME local explanation technique, provide a sentiment score for each word, ranging
from 1 (sentiment positive) to -1 (sentiment negative), which describes the relevance of that word
to the overall sentiment of the review. A score of 0 would represent a neutral word. Please do not
omit any words.

The movie review will be encapsulated within <review> tags.

Please format your response as the following array:
(<sentiment>, <con�dence>) [(<word or punctuation>, <�oat word-importance>,), (<word or
punctuation>, <�oat word-importance>), ...]

User <review> It was an excellent performance by the actors and a great setting. Unfortunately, the plot
was terrible. I hope that the actors �nd new projects. <review>

System (-1, 0.75) [('It', 0.0), ('was', 0.0), ('an', 0.0), ('excellent', 0.9), ('performance', 0.8), ('by', 0.0), ('the',
0.0), ('actors', 0.8), ('and', 0.0), ('a', 0.0), ('great', 0.7), ('setting', 0.6), ('Unfortunately', -0.8), (',',
0.0), ('the', 0.0), ('plot', -0.9), ('was', 0.0), ('terrible', -0.9), ('I', 0.0), ('hope', 0.7), ('that', 0.0),
('the', 0.0), ('actors', 0.8), ('�nd', 0.5), ('new', 0.0), ('projects', 0.6), ('.', 0.0)]

Table C.2: ChatGPT prompt for relevance explanation engineered by our self.
Gray text in italics is a placeholder for the input text. The blue text
is the output of the LLM.

263

Appendix C ChatGPT Prompts

C.2 Explaining Word Uncertainty

Role Text
System You are an expert in sentiment analysis of movie reviews. I give you a movie review and ask you

to classify it as 1 (sentiment positive) or -1 (sentiment negative). Also provide your classi�cation
probability, which describes your con�dence in your decision. Furthermore, provide the uncertainty
score describing the classi�cation uncertainty of the classi�cation.

Similar to a local explanation technique, provide an uncertainty score for each word, ranging from
1 (contributes certainty) to -1 (contributes uncertainty), which describes the contribution of that
word's certainty/uncertainty to the overall prediction uncertainty of the review. A score of 0 would
represent a neutral word. Please do not omit any words.

The movie review will be encapsulated within <review> tags.

Please format your response as the following array: (<sentiment>, <con�dence>, <uncertainty>)
[(<word or punctuation>, <�oat word-uncertainty>), (<word or punctuation>, <�oat word-
uncertainty>), ...]

User <review> It was an excellent performance by the actors and a great setting. Unfortunately, the plot
was terrible. I hope that the actors �nd new projects. <review>

System (-1, 0.75, 0.65) [('It', 0), ('was', 0), ('an', 0), ('excellent', 0.8), ('performance', 0.8), ('by', 0), ('the',
0), ('actors', 0.8), ('and', 0), ('a', 0), ('great', 0.8), ('setting', 0.8), ('Unfortunately', -0.8), (',', 0),
('the', 0), ('plot', -0.8), ('was', 0), ('terrible', -0.8), ('.', 0), ('I', 0), ('hope', 0), ('that', 0), ('the', 0),
('actors', 0), ('�nd', 0), ('new', 0), ('projects', 0), ('.', 0)]

Table C.3: ChatGPT prompt for uncertainty explanations. Gray text in italics
is a placeholder for the input text. The blue text is the output of
the LLM.

264

List of Figures

2.1 The generic text classi�cation pipeline. 14

2.2 Expected classi�cation performance of traditional ML compared

to deep learning. 21

2.3 The processing steps of a neuron. 23

2.4 A 3-layer FFNN. 25

2.5 An example of the operation of a convolutional layer. 25

2.6 Examples of the max and avg pooling operations. 26

2.7 Encoder-based LLM for text classi�cation. 27

2.8 A metamodel illustrating di�erent aspects describing the limita-

tions of text classi�ers. 32

2.9 Di�erence between class probability and uncertainty. 34

2.10 A linear classi�er illustrating di�erent types of uncertainty. . . . 37

2.11 A standard and thinned NN after applying dropout. 42

2.12 Di�erent con�gurations of probability distributions. 44

4.1 Comparison between the traditional ML and HiL. 71

4.2 Key elements of a HiL system. 73

4.3 Conceptual diagram of an attribution technique. 79

4.4 A heat-map illustrating an explanation. 79

4.5 Conceptual diagram of an NN providing class probabilities. . . . 80

4.6 Proposed HiL pattern catalog. 82

4.7 A �ow diagram illustrating the record selection process according

to the PRISMA 2020 statement. 83

4.8 Frequency of the HiL approaches extracted from the literature. . 85

4.9 The Active Learning pipeline. 87

4.10 The Proxy-based Active Learning pipeline. 88

4.11 The Visual Interactive Labeling pipeline. 90

4.12 The Semi-supervised Visual Interactive Labeling pipeline 91

4.13 The Prompt-based Learning pipeline. 92

4.14 The Prompt-based Data Generation pipeline. 94

4.15 The Trick the Model pipeline. 95

4.16 The Recommendation System pipeline. 97

265

List of Figures

4.17 The Safeguards pipeline. 98

4.18 The Active Moderation pipeline. 100

4.19 The Thumbs Up or Down pipeline. 101

4.20 The Continuous Learning pipeline. 102

4.21 A combination of the Active Learning and Active Moderation

patterns. 104

5.1 The Active Moderation work�ow. 110

5.2 Distribution of mean class probabilities. 119

5.3 Total training and inference time of all classi�ers using SBERT. . 125

5.4 Relative time change when using 8 GB of main memory compared

to 4 GB using SBERT. 126

6.1 Saturation detection for manual moderation. 137

6.2 Human e�ciency of Active Moderation. 143

6.3 Accuracy gains with the proposed moderation. 144

6.4 Active Moderation under human noise on the HateSpeech dataset.146

7.1 Proxy-based Active Learning process. 156

7.2 The architecture of the FastText model. 157

7.3 Learning curves of the traditional Active Learning process with

SBERT. 165

7.4 Class ratio of the training dataset sampled randomly compared

to a Proxy. 169

8.1 Overview of the human evaluation design. 183

8.2 Two predictions with similar class outcomes, but di�erent sequen-

tial behavior. 187

8.3 Two highly uncertain predictions with similar class probabilities

but di�erent sequential behavior. 187

8.4 Decomposition of the total, aleatory, and epistemic uncertainties. 188

8.5 E�ect of changing sentiment along the input. 189

8.6 Concatenation of a highly uncertain, positive, and negative review.189

8.7 Dependencies between word relevance and aleatory and epistemic

uncertainties. 191

8.8 Meaning of the color gradients of BayLUXT for di�erent types of

explanations. 192

8.9 Responses to Q1: �Based on the word relevance, determine whether

the following text expresses a more positive or negative sentiment�.194

8.10 Responses to Q2 and Q3. 195

266

List of Figures

8.11 Responses to Q4: �How trustworthy do you consider this predic-

tion to be?�. 195

8.12 A comparison of the coherence between relevance-based explana-

tions without (Q2) and with (Q5) knowing of the class label. . . 196

8.13 Responses to the Q6: �The markings of uncertainty appear un-

derstandable to me�. 196

8.14 Responses to Q7: �To what extent does the uncertainty assist you

in assessing the trustworthiness of the prediction?�. 197

8.15 Responses to the Q8: �Which type of explanation was more help-

ful for you to understand the classi�cation decision?�. 198

8.16 Responses to the questionnaire. 198

8.17 Comparison of relevance and uncertainty explanations regarding

their usefulness for humans. 199

9.1 Human-in-the-Loop work�ow of REM. 212

9.2 Use-case diagram of REM illustrating the interaction between

users (moderators and administrators) and the system. 214

9.3 Main components of the HiL moderation tool REM. 218

9.4 Kappa Architecture. 219

9.5 Domain-driven data model of REM. 221

9.6 Components of the Vuex state manager. 222

9.7 Sequence diagram of the authentication process. 223

9.8 Sequence diagram of labeling a user comment. 224

9.9 Sequence diagram of applying and saving a moderation strategy. 225

9.10 The main page of REM. 226

9.11 The Control-view of REM for managing the moderation strategy. 228

9.12 Normalized confusion matrix of the initial and moderated classi�er.229

9.13 Word relevance extracted by BayLUXT compared to ChatGPT. . 231

9.14 Word uncertainty extracted by BayLUXT compared to ChatGPT.232

9.15 ChatGPT altering an attribution after prompting for an expla-

nation. 234

A.1 Active Moderation under human noise on the IMDB dataset. . . 255

A.2 Active Moderation under human noise on the 20NewsGroups

dataset. 256

267

List of Tables

5.1 Dataset details. 117

5.2 Brier scores of the di�erent classi�ers. 120

5.3 F1 scores of di�erent classi�ers after removing a certain propor-

tion of the most uncertain predictions. 121

5.4 F1 scores of computational-aware Active Moderation with SBERT

encodings on the App Store, News, and Hate Speech datasets. . . 122

5.5 F1 scores of computational-aware Active Moderation with SBERT

encodings on the Issues, Reuters, and TREC datasets. 123

6.1 Dataset details. 140

6.2 E�ect of extending NN text classi�ers with the uncertainty mod-

eling techniques. 142

6.3 Achieved F1 scores and moderation load required using our human-

resource-aware Active Moderation framework. 145

6.4 F1 scores and moderation load achieved using our framework un-

der di�erent levels of human noise. 147

7.1 Dataset details. 162

7.2 Micro and macro F1 scores of the BERT Consumer after 300 and

500 iterations. The best and worst performing selection strategies

for each classi�er are highlighted in green and red, respectively. . 164

7.3 Relative F1 score improvements of the Consumer compared to

the Proxy. 166

7.4 Run-time of the 500th Active Learning iteration in seconds on a

CPU using FastText and LR. 167

7.5 Quality indicators of the Proxy-sampled datasets. 168

7.6 The maximum reachable F1 score that can be achieved when the

entire data pool is used to train BERT. 170

8.1 Top 15 most relevant words for positive and negative reviews. . . 190

8.2 Top 15 words that reduce the overall aleatory and epistemic un-

certainty of a prediction. 190

269

List of Tables

8.3 Visualizations of the di�erent types of explanations obtained from

BayLUXT. 192

A.1 F1 scores of di�erent classi�ers after removing a speci�ed number

of the most uncertain predictions. 252

A.2 F1 score of Active Moderation utilizing BERT encodings on the

App Store, News, and Hate Speech datasets. 253

A.3 F1 score of Active Moderation with BERT encodings on the Is-

sues, Reuters, and TREC datasets. 254

B.1 Visualization of the di�erent types of explanations obtained from

BayLUXT. 258

B.2 Texts and explanations used within the human evaluation. 259

C.1 ChatGPT prompt for relevance explanations by Huang et al. . . 262

C.2 ChatGPT prompt for relevance explanations. 263

C.3 ChatGPT prompt for for uncertainty explanations. 264

270

List of Publications

The thesis is based on the listed peer-reviewed publications. We have adopted

parts of them verbatim:

� Andersen, J. S. and Maalej, W. �Design Patterns for Machine Learning-

Based Systems With Humans in the Loop�. In: IEEE Software (2024)

41(04), pp. 151�159.

� Andersen, J. S. and Zukunft, O. �Explaining Prediction Uncertainty in

Text Classi�cation: The DUX Approach�. In: Proceedings of the 7th

International Conference on Natural Language Processing and Information

Retrieval (NLPIR). ACM. 2023, pp. 57�62.

� Andersen, J. S. and Zukunft, O. �Towards Low-budget Real-time Active

Learning for Text Classi�cation via Proxy-based Data Selection�. In: Pro-

ceedings of the 15th International Conference on Agents and Arti�cial In-

telligence (ICAART). Vol. 3. SciTePress. 2023, pp. 25�33.

� Andersen, J. S. �Why Do We Need Domain-Experts for End-to-End Text

Classication? An Overview�. In: Proceedings of the 15th International

Conference on Agents and Arti�cial Intelligence (ICAART). Vol. 3. SciTe-

Press. 2023, pp. 17�24.

� Andersen, J. S. and Zukunft, O. �More Sustainable Text Classi�cation via

Uncertainty Sampling and a Human-in-the-Loop�. In: Lecture Notes in

Computer Science (LNCS). Springer. 2022, pp. 201�225.

� Andersen, J. S. and Maalej, W. �E�cient, Uncertainty-based Moderation

of Neural Networks Text Classi�ers�. In: Findings of the Association for

Computational Linguistics (ACL). 2022, pp. 1536�1546.

� Andersen, J. S. and Zukunft, O. �Towards More Reliable Text Classi�-

cation on Edge Devices via a Human-in-the-Loop�. In: Proceedings of

the 14th International Conference on Agents and Arti�cial Intelligence

(ICAART). Vol. 2. SciTePress. 2022, pp. 636�646.

271

List of Publications

� Andersen, J. S., Zukunft, O., and Maalej, W. �REM: E�cient Semi-

Automated Real-Time Moderation of Online Forums�. In: Proceedings

of the 59th Annual Meeting of the Association for Computational Lin-

guistics and the 11th International Joint Conference on Natural Language

Processing: System Demonstrations (ACL-IJCNLP). 2021, pp. 142�149

� Andersen, J. S., Schöner, T., and Maalej, W. �Word-Level Uncertainty

Estimation for Black-Box Text Classi�ers using RNNs�. In: Proceedings

of the 28th International Conference on Computational Linguistics (COL-

ING). 2020, pp. 5541�5546.

� Tropmann-Frick, M. and Andersen, J. S. �Towards Visual Data Science-An

Exploration�. In: Proceedings of the International Conference on Human

Interaction and Emerging Technologies (IHIET). Springer. 2019, pp. 371�

377.

In addition, my peer-reviewed publications which are not part of this thesis:

� Barbas, H., Soll, M., Andersen, J. S., Bender, E., Hamann, F., Hauster-

mann, M., and Sitzmann, D. �The MINTFIT Computer Science Online

Course�. In: 2022 IEEE German Education Conference (GeCon). IEEE.

2022, pp. 1�6.

� Haering, M., Andersen, J. S., Biemann, C., Loosen, W., Milde, B., Pietz,

T., Stoecker, C., Wiedemann, G., Zukunft, O., and Maalej, W. �Forum 4.0:

An Open-Source User Comment Analysis Framework�. In: Proceedings

of the 16th Conference of the European Chapter of the Association for

Computational Linguistics: System Demonstrations (EACL). 2021, pp.

63�70.

� Andersen, J. S. �A User Centric Visual Analytics Framework for News

Discussions�. In: Proceedings of the Workshops of the EDBT/ICDT 2019

Joint Conference. 2019.

� Andersen, J. S. and Zukunft, O. �Semi-clustering that Scales: An Empiri-

cal Evaluation of GraphX�. In: 2016 IEEE International Congress on Big

Data (BigData Congress). IEEE. 2016, pp. 333�336.

� Andersen, J. S. and Zukunft, O. �Evaluating the Scaling of Graph-algorithms

for Big Data using GraphX�. In: 2016 2nd International Conference on

Open and Big Data (OBD). IEEE. 2016, pp. 1�8.

272

Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J.,

Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P. A., Vasude-

van, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. �Tensor�ow: A

System for Large-scale Machine Learning�. In: 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI). USENIX As-

sociation. 2016, pp. 265�283.

[2] Abdelrazek, A., Eid, Y., Gawish, E., Medhat, W., and Hassan, A. �Topic

Modeling Algorithms and Applications: A Survey�. In: Information Sys-

tems 112 (2023), p. 102131.

[3] Adnan, K. and Akbar, R. �An Analytical Study of Information Extrac-

tion From Unstructured and Multidimensional Big Data�. In: Journal of

Big Data 6.1 (2019), pp. 1�38.

[4] Agarwal, S., Godbole, S., Punjani, D., and Roy, S. �How Much Noise Is

Too Much: A Study in Automatic Text Classi�cation�. In: Seventh IEEE

International Conference on Data Mining (ICDM). IEEE. 2007, pp. 3�

12.

[5] Aitchison, J. Language Change: Progress or Decay? Cambridge Univer-

sity Press. 2001.

[6] Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., and

Taha, K. �E�cient Machine Learning for Big Data: A Review�. In: Big

Data Research 2.3 (2015), pp. 87�93.

[7] Al-Subaihin, A. A., Sarro, F., Black, S., Capra, L., and Harman, M. �App

Store E�ects on Software Engineering Practices�. In: IEEE Transactions

on Software Engineering 47.2 (2019), pp. 300�319.

[8] Amershi, S., Cakmak, M., Knox, W. B., and Kulesza, T. �Power to the

People: The Role of Humans in Interactive Machine Learning�. In: AI

Magazine 35.4 (2014), pp. 105�120.

273

Bibliography

[9] Andersen, J. S. �Why Do We Need Domain-Experts for End-to-End

Text Classi�cation? An Overview.� In: Proceedings of the 15th Interna-

tional Conference on Agents and Arti�cial Intelligence (ICAART). Vol. 3.

SciTePress, 2023, pp. 17�24.

[10] Andersen, J. S. and Maalej, W. �Design Patterns for Machine Learning-

Based Systems With Humans in the Loop�. In: IEEE Software 41.04

(2024), pp. 151�159.

[11] Andersen, J. S. and Maalej, W. �E�cient, Uncertainty-based Moderation

of Neural Networks Text Classi�ers�. In: Findings of the Association for

Computational Linguistics: ACL. 2022, pp. 1536�1546.

[12] Andersen, J. S., Schöner, T., and Maalej, W. �Word-level Uncertainty Es-

timation for Black-box Text Classi�ers Using RNNs�. In: Proceedings of

the 28th International Conference on Computational Linguistics (COL-

ING). 2020, pp. 5541�5546.

[13] Andersen, J. S. and Zukunft, O. �Explaining Prediction Uncertainty in

Text Classi�cation: The DUX Approach�. In: Proceedings of the 2023 7th

International Conference on Natural Language Processing and Informa-

tion Retrieval (NLPIR). ACM. 2023, pp. 57�62.

[14] Andersen, J. S. and Zukunft, O. �More Sustainable Text Classi�cation

via Uncertainty Sampling and a Human-in-the-Loop�. In: Lecture Notes

in Computer Science (LNCS). Springer. 2022, pp. 201�225.

[15] Andersen, J. S. and Zukunft, O. �Towards Low-Budget Real-Time Active

Learning for Text Classi�cation via Proxy-Based Data Selection.� In:

Proceedings of the 15th International Conference on Agents and Arti�cial

Intelligence (ICAART). Vol. 3. SciTePress. 2023, pp. 25�33.

[16] Andersen, J. S. and Zukunft, O. �Towards More Reliable Text Classi-

�cation on Edge Devices via a Human-in-the-Loop.� In: Proceedings of

the 14th International Conference on Agents and Arti�cial Intelligence

(ICAART). Vol. 2. SciTePress. 2022, pp. 636�646.

[17] Andersen, J. S., Zukunft, O., and Maalej, W. �REM: E�cient Semi-

automated Real-time Moderation of Online Forums�. In: Proceedings of

the 59th Annual Meeting of the Association for Computational Linguis-

tics and the 11th International Joint Conference on Natural Language

Processing: System Demonstrations. 2021, pp. 142�149.

[18] Antoran, J., Bhatt, U., Adel, T., Weller, A., and Hernández-Lobato, J. M.

�Getting a CLUE: A Method for Explaining Uncertainty Estimates�. In:

International Conference on Learning Representations (ICLR). 2021.

274

Bibliography

[19] Arco, F. M. Plaza-del, Nozza, D., Hovy, D., et al. �Respectful or Toxic?

Using Zero-shot Learning with Language Models to Detect Hate Speech�.

In: The 7th Workshop on Online Abuse and Harms (WOAH). 2023.

[20] Arnt, A. and Zilberstein, S. �Learning to Perform Moderation in Online

Forums�. In: Proceedings IEEE/WIC International Conference on Web

Intelligence (WI). IEEE. 2003, pp. 637�641.

[21] Arora, S., Nyberg, E., and Rose, C. �Estimating Annotation Cost for Ac-

tive Learning in a Multi-annotator Environment�. In: Proceedings of the

NAACL HLT 2009 Workshop on Active Learning for Natural Language

Processing. 2009, pp. 18�26.

[22] Arras, L., Horn, F., Montavon, G., Müller, K.-R., and Samek, W. �"What

is Relevant in a Text Document?": An Interpretable Machine Learning

Approach�. In: PLOS ONE 12.8 (2017), pp. 1�23.

[23] Arrieta, A. B., Rodríguez, N. D., Ser, J. D., Bennetot, A., Tabik, S., Bar-

bado, A., García, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila,

R., and Herrera, F. �Explainable Arti�cial Intelligence (XAI): Concepts,

Taxonomies, Opportunities and Challenges Toward Responsible AI�. In:

Information Fusion 58 (2020), pp. 82�115.

[24] Ashmore, R., Calinescu, R., and Paterson, C. �Assuring the Machine

Learning Lifecycle: Desiderata, Methods, and Challenges�. In: ACM Com-

puting Surveys (CSUR) 54.5 (2021), pp. 1�39.

[25] Assimakopoulos, S., Muskat, R. V., Plas, L. van der, and Gatt, A. �An-

notating for Hate Speech: The MaNeCo Corpus and Some Input from

Critical Discourse Analysis�. In: Proceedings of the 12th Language Re-

sources and Evaluation Conference. 2020, pp. 5088�5097.

[26] Attenberg, J. M., Ipeirotis, P. G., and Provost, F. �Beat the Machine:

Challenging Workers to Find the Unknown Unknowns�. In: Workshops

at the Twenty-Fifth AAAI Conference on Arti�cial Intelligence. 2011.

[27] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and

Samek, W. �On Pixel-wise Explanations for Non-linear Classi�er Deci-

sions by Layer-wise Relevance Propagation�. In: PLOS ONE 10.7 (2015),

pp. 1�46.

[28] Bahdanau, D., Cho, K. H., and Bengio, Y. �Neural Machine Transla-

tion by Jointly Learning to Align and Translate�. In: 3rd International

Conference on Learning Representations (ICLR). 2015.

275

Bibliography

[29] Bansal, G., Nushi, B., Kamar, E., Weld, D. S., Lasecki, W. S., and

Horvitz, E. �Updates in Human-AI Teams: Understanding and Address-

ing the Performance/Compatibility Tradeo��. In: Proceedings of the AAAI

Conference on Arti�cial Intelligence. Vol. 33. 01. 2019, pp. 2429�2437.

[30] Bansal, G., Wu, T., Zhou, J., Fok, R., Nushi, B., Kamar, E., Ribeiro,

M. T., and Weld, D. �Does the Whole Exceed its Parts? The E�ect of

AI Explanations on Complementary Team Performance�. In: Proceedings

of the 2021 CHI Conference on Human Factors in Computing Systems.

2021, pp. 1�16.

[31] Barandas, M., Folgado, D., Santos, R., Simão, R., and Gamboa, H.

�Uncertainty-based Rejection in Machine Learning: Implications for Mod-

el Development and Interpretability�. In: Electronics 11.3 (2022), p. 396.

[32] Bengio, Y., Simard, P., and Frasconi, P. �Learning Long-term Dependen-

cies with Gradient Descent is Di�cult�. In: IEEE Transactions on Neural

Networks 5.2 (1994), pp. 157�166.

[33] Bernard, J., Hutter, M., Zeppelzauer, M., Fellner, D., and Sedlmair, M.

�Comparing Visual-interactive Labeling with Active Learning: An Exper-

imental Study�. In: IEEE Transactions on Visualization and Computer

Graphics 24.1 (2017), pp. 298�308.

[34] Bernard, J., Zeppelzauer, M., Sedlmair, M., and Aigner, W. �VIAL: a

Uni�ed Process for Visual Interactive Labeling�. In: The Visual Computer

34.9 (2018), pp. 1189�1207.

[35] Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J.,

Puri, R., Moura, J. M., and Eckersley, P. �Explainable Machine Learn-

ing in Deployment�. In: Proceedings of the 2020 Conference on Fairness,

Accountability, and Transparency. 2020, pp. 648�657.

[36] Bilgic, M. and Getoor, L. �E�ective Label Acquisition for Collective Clas-

si�cation�. In: Proceedings of the 14th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining. 2008, pp. 43�51.

[37] Binkhonain, M. and Zhao, L. �A Review of Machine Learning Algorithms

for Identi�cation and Classi�cation of Non-functional Requirements�. In:

Expert Systems with Applications: X 1 (2019).

[38] Blanco-Justicia, A. and Domingo-Ferrer, J. �Machine Learning Explain-

ability Through Comprehensible Decision Trees�. In: 3rd International

Cross-Domain Conference for Machine Learning and Knowledge Extrac-

tion (CD-MAKE). Springer. 2019, pp. 15�26.

276

Bibliography

[39] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. �Weight

Uncertainty in Neural Network�. In: International Conference on Ma-

chine Learning. PMLR. 2015, pp. 1613�1622.

[40] Boberg, S., Schatto-Eckrodt, T., Frischlich, L., and Quandt, T. �The

Moral Gatekeeper? Moderation and Deletion of User-generated Content

in a Leading News Forum�. In: Media and Communication 6.4 (2018),

pp. 58�69.

[41] Boguslav, M. and Cohen, K. B. �Inter-Annotator Agreement and the Up-

per Limit on Machine Performance: Evidence from Biomedical Natural

Language Processing.� In: Studies in Health Technology and Informatics

245 (2017), pp. 298�302.

[42] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. �Enriching Word

Vectors with Subword Information�. In: Transactions of the Association

for Computational Linguistics 5 (2017), pp. 135�146.

[43] Bolstad, W. M. and Curran, J. M. Introduction to Bayesian Statistics.

John Wiley & Sons. 2016.

[44] Borrellas, P. and Unceta, I. �The Challenges of Machine Learning and

Their Economic Implications�. In: Entropy 23.3 (2021), p. 275.

[45] Bouguelia, M.-R., Nowaczyk, S., Santosh, K., and Verikas, A. �Agreeing

to Disagree: Active Learning with Noisy Labels without Crowdsourcing�.

In: International Journal of Machine Learning and Cybernetics 9 (2018),

pp. 1307�1319.

[46] Boukhelifa, N., Bezerianos, A., and Lutton, E. �Evaluation of Interactive

Machine Learning Systems�. In: Human and Machine Learning: Visible,

Explainable, Trustworthy and Transparent (2018), pp. 341�360.

[47] Braiek, H. B. and Khomh, F. �Machine Learning Robustness: A Primer�.

In: arXiv preprint arXiv:2404.00897 (2024).

[48] Breiman, L. �Random Forests�. In: Machine Learning 45.1 (2001), pp. 5�

32.

[49] Brier, G. W. �Veri�cation of Forecasts Expressed in Terms of Probabil-

ity�. In: Monthly Weather Review 78.1 (1950), pp. 1�3.

[50] Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M.

�The Balanced Accuracy and its Posterior Distribution�. In: 2010 20th

International Conference on Pattern Recognition. IEEE. 2010, pp. 3121�

3124.

277

Bibliography

[51] Brodley, C. E. and Smyth, P. �Applying Classi�cation Algorithms in

Practice�. In: Statistics and Computing 7.1 (1997), pp. 45�56.

[52] Brunk, J., Mattern, J., and Riehle, D. M. �E�ect of Transparency and

Trust on Acceptance of Automatic Online Comment Moderation Sys-

tems�. In: 2019 IEEE 21st Conference on Business Informatics (CBI).

Vol. 1. IEEE. 2019, pp. 429�435.

[53] Brutlag, J. D. and Meek, C. �Challenges of the Email Domain for Text

Classi�cation�. In: Proceedings of the Seventeenth International Confer-

ence on Machine Learning (ICML). Vol. 2000. 2000, pp. 103�110.

[54] Buckels, E. E., Trapnell, P. D., and Paulhus, D. L. �Trolls Just Want to

Have Fun�. In: Personality and Individual Di�erences 67 (2014), pp. 97�

102.

[55] Buntine, W. L. and Weigend, A. S. �Bayesian Back-Propagation�. In:

Complex Syst. 5.6 (1991), pp. 603�643.

[56] Burkart, N. and Huber, M. F. �A Survey on the Explainability of Super-

vised Machine Learning�. In: Journal of Arti�cial Intelligence Research

70 (2021), pp. 245�317.

[57] Burkhardt, S., Siekiera, J., and Kramer, S. �Semisupervised Bayesian Ac-

tive Learning for Text Classi�cation�. In: Bayesian Deep Learning Work-

shop at NeurIPS. 2018.

[58] Card, M. Readings in Information Visualization: Using Vision to Think.

Morgan Kaufmann. 1999.

[59] Castelvecchi, D. �Can we Open the Black Box of AI?� In: Nature News

538.7623 (2016), p. 20.

[60] Cecchini, M., Aytug, H., Koehler, G. J., and Pathak, P. �Making Words

Work: Using Financial Text as a Predictor of Financial Events�. In: De-

cision Support Systems 50.1 (2010), pp. 164�175.

[61] Chancellor, S. �Toward Practices for Human-centered Machine Learning�.

In: Communications of the ACM 66.3 (2023), pp. 78�85.

[62] Chapelle, O., Scholkopf, B., and Zien, A. �Semi-supervised Learning�. In:

Cambridge, Massachusettes: The MIT Press View Article 2 (2006).

[63] Chen, G. M. and Pain, P. �Normalizing Online Comments�. In: Journal-

ism Practice 11.7 (2017), pp. 876�892.

[64] Chen, J. and Ran, X. �Deep Learning With Edge Computing: A Review�.

In: Proceedings of the IEEE 107.8 (2019), pp. 1655�1674.

278

Bibliography

[65] Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., and Zhou, X. �Big

Data Challenge: A Data Management Perspective�. In: Frontiers of Com-

puter Science 7.2 (2013), pp. 157�164.

[66] Chen, X., Ragni, A., Liu, X., and Gales, M. J. �Investigating Bidirectional

Recurrent Neural Network Language Models for Speech Recognition�. In:

Proceedings of Interspeech 2017. International Speech Communication

Association (ISCA). 2017, pp. 269�273.

[67] Chen, Y.-R. and Chen, H.-H. �Opinion Spam Detection in Web Forum:

A Real Case Study�. In: Proceedings of the 24th International Conference

on World Wide Web. 2015, pp. 173�183.

[68] Cheng, Y., Wang, D., Zhou, P., and Zhang, T. �Model Compression and

Acceleration for Deep Neural Networks: The Principles, Progress, and

Challenges�. In: IEEE Signal Processing Magazine 35.1 (2018), pp. 126�

136.

[69] Choi, M., Park, C., Yang, S., Kim, Y., Choo, J., and Hong, S. R. �AILA:

Attentive Interactive Labeling Assistant for Document Classi�cation Th-

rough Attention-based Deep Neural Networks�. In: Proceedings of the

2019 CHI Conference on Human Factors in Computing Systems. 2019,

pp. 1�12.

[70] Cohen, W. W. and Singer, Y. �Context-sensitive Learning Methods for

Text Categorization�. In: ACM Transactions on Information Systems

(TOIS) 17.2 (1999), pp. 141�173.

[71] Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B., Bailis, P., Liang,

P., Leskovec, J., and Zaharia, M. �Selection via Proxy: E�cient Data

Selection for Deep Learning�. In: International Conference on Learning

Representations (ICLR). 2020.

[72] Confalonieri, R., Coba, L., Wagner, B., and Besold, T. R. �A Histori-

cal Perspective of Explainable Arti�cial Intelligence�. In: Wiley Interdis-

ciplinary Reviews: Data Mining and Knowledge Discovery 11.1 (2021),

e1391.

[73] Corazza, M., Menini, S., Cabrio, E., Tonelli, S., and Villata, S. �A Mul-

tilingual Evaluation for Online Hate Speech Detection�. In: ACM Trans-

actions on Internet Technology (TOIT) 20.2 (2020), pp. 1�22.

[74] Cortes, C., DeSalvo, G., and Mohri, M. �Learning with Rejection�. In: In-

ternational Conference on Algorithmic Learning Theory. Springer. 2016,

pp. 67�82.

279

Bibliography

[75] Cortes, C., Jackel, L. D., and Chiang, W.-P. �Limits on Learning Machine

Accuracy Imposed by Data Quality�. In: Advances in Neural Information

Processing Systems 7 (1994).

[76] Culotta, A. and McCallum, A. �Reducing Labeling E�ort for Structured

Prediction Tasks�. In: Proceedings of the AAAI Conference on Arti�cial

Intelligence. Vol. 5. 2005, pp. 746�751.

[77] Dai, S.-C., Xiong, A., and Ku, L.-W. �LLM-in-the-loop: Leveraging Large

Language Model for Thematic Analysis�. In: Findings of the Association

for Computational Linguistics: EMNLP 2023. 2023, pp. 9993�10001.

[78] D'Amour, A., Heller, K. A., Moldovan, D., Adlam, B., Alipanahi, B.,

Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Ho�man, M. D., Hormoz-

diari, F., Houlsby, N., Hou, S., Jerfel, G., Karthikesalingam, A., Lucic,

M., Ma, Y., McLean, C. Y., Mincu, D., Mitani, A., Montanari, A., Nado,

Z., Natarajan, V., Nielson, C., Osborne, T. F., Raman, R., Ramasamy,

K., Sayres, R., Schrou�, J., Seneviratne, M., Sequeira, S., Suresh, H.,

Veitch, V., Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S., Yun,

T., Zhai, X., and Sculley, D. �Underspeci�cation Presents Challenges for

Credibility in Modern Machine Learning�. In: Journal of Machine Learn-

ing Research 23 (2022), pp. 1�61.

[79] Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., and Sen,

P. �A Survey of the State of Explainable AI for Natural Language Pro-

cessing�. In: Proceedings of the 1st Conference of the Asia-Paci�c Chapter

of the Association for Computational Linguistics and the 10th Interna-

tional Joint Conference on Natural Language Processing. 2020, pp. 447�

459.

[80] Davidson, T., Warmsley, D., Macy, M., and Weber, I. �Automated Hate

Speech Detection and the Problem of O�ensive Language�. In: Proceed-

ings of the 11th International AAAI Conference on Web and Social Me-

dia. ICWSM '17. 2017, pp. 512�515.

[81] Davis, J. and Goadrich, M. �The Relationship Between Precision-Recall

and ROC Curves�. In: Proceedings of the 23rd International Conference

on Machine Learning. 2006, pp. 233�240.

[82] Day, D., Aberdeen, J., Hirschman, L., Kozierok, R., Robinson, P., and

Vilain, M. �Mixed-initiative Development of Language Processing Sys-

tems�. In: Fifth Conference on Applied Natural Language Processing.

1997, pp. 348�355.

280

Bibliography

[83] De, A., Okati, N., Zarezade, A., and Rodriguez, M. G. �Classi�cation

Under Human Assistance�. In: Proceedings of the AAAI Conference on

Arti�cial Intelligence. Vol. 35. 7. 2021, pp. 5905�5913.

[84] Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., and

Ebel, P. �The Future of Human-AI Collaboration: A Taxonomy of Design

Knowledge for Hybrid Intelligence Systems�. In: Proceedings of the 52nd

Hawaii International Conference on System Sciences. 2019.

[85] Demner-Fushman, D., Chapman, W. W., and McDonald, C. J. �What

can Natural Language Processing do for Clinical Decision Support?� In:

Journal of Biomedical Informatics 42.5 (2009), pp. 760�772.

[86] Deng, X., Li, Y., Weng, J., and Zhang, J. �Feature Selection for Text

Classi�cation: A Review�. In: Multimedia Tools and Applications 78.3

(2019), pp. 3797�3816.

[87] Der Kiureghian, A. and Ditlevsen, O. �Aleatory or Epistemic? Does it

Matter?� In: Structural Safety 31.2 (2009), pp. 105�112.

[88] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. �BERT: Pre-

training of Deep Bidirectional Transformers for Language Understand-

ing�. In: Proceedings of the 2019 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language

Technologies. Vol. 1. 2019, pp. 4171�4186.

[89] Diethe, T., Borchert, T., Thereska, E., Balle, B., and Lawrence, N. D.

�Continual Learning in Practice�. In: Continual Learning Workshop of

32nd Conference on Neural Information Processing Systems (NeurIPS).

2019.

[90] Diplaris, S., Papadopoulos, S., Kompatsiaris, I., Heise, N., Spangenberg,

J., Newman, N., and Hacid, H. �"Making Sense of it All" An Attempt to

Aid Journalists in Analysing and Filtering User Generated Content�. In:

Proceedings of the 21st International Conference on World Wide Web.

2012, pp. 1241�1246.

[91] Dix, A., Finlay, J., Abowd, G. D., and Beale, R. Human-computer Inter-

action. Pearson Education. 2004.

[92] Djandji, M., Baly, F., Antoun, W., and Hajj, H. �Multi-task Learning

using AraBert for O�ensive Language Detection�. In: Proceedings of the

4th Workshop on Open-Source Arabic Corpora and Processing Tools, with

a Shared Task on O�ensive Language Detection. 2020, pp. 97�101.

281

Bibliography

[93] Doherty, R. A. and Sorenson, P. �Keeping Users in the Flow: Mapping

System Responsiveness with User Experience�. In: Procedia Manufactur-

ing 3 (2015), pp. 4384�4391.

[94] Dor, L. E., Halfon, A., Gera, A., Shnarch, E., Dankin, L., Choshen, L.,

Danilevsky, M., Aharonov, R., Katz, Y., and Slonim, N. �Active Learning

for BERT: An Empirical Study�. In: Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing (EMNLP). 2020,

pp. 7949�7962.

[95] Dorogovtsev, S. N. and Mendes, J. F. F. �Language as an Evolving Word

Web�. In: Proceedings of the Royal Society of London. Series B: Biological

Sciences 268.1485 (2001), pp. 2603�2606.

[96] Dreiseitl, S. and Ohno-Machado, L. �Logistic Regression and Arti�cial

Neural Network Classi�cation Models: A Methodology Review�. In: Jour-

nal of Biomedical Informatics 35.5-6 (2002), pp. 352�359.

[97] Du, M., Liu, N., Yang, F., Ji, S., and Hu, X. �On Attribution of Recurrent

Neural Network Predictions via Additive Decomposition�. In: The World

Wide Web Conference. 2019, pp. 383�393.

[98] Dudley, J. J. and Kristensson, P. O. �A Review of User Interface Design

for Interactive Machine Learning�. In: ACM Transactions on Interactive

Intelligent Systems (TiiS) 8.2 (2018), pp. 1�37.

[99] Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R.,

Jacobson, J., Jain, V., Karjaluoto, H., Ke�, H., Krishen, A. S., et al.

�Setting the Future of Digital and Social Media Marketing Research:

Perspectives and Research Propositions�. In: International Journal of

Information Management 59 (2021), p. 102168.

[100] Endert, A., Fiaux, P., and North, C. �Semantic Interaction for Visual

Text Analytics�. In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. 2012, pp. 473�482.

[101] Endert, A., Hossain, M. S., Ramakrishnan, N., North, C., Fiaux, P.,

and Andrews, C. �The Human is the Loop: New Directions for Visual

Analytics�. In: Journal of Intelligent Information Systems 43.3 (2014),

pp. 411�435.

[102] Espadoto, M., Martins, R. M., Kerren, A., Hirata, N. S., and Telea, A. C.

�Toward a Quantitative Survey of Dimension Reduction Techniques�. In:

IEEE Transactions on Visualization and Computer Graphics 27.3 (2019),

pp. 2153�2173.

282

Bibliography

[103] Fails, J. A. and Olsen Jr, D. R. �Interactive Machine Learning�. In: Pro-

ceedings of the 8th International Conference on Intelligent User Inter-

faces. 2003, pp. 39�45.

[104] Fan, Q., Yu, Y., Yin, G., Wang, T., and Wang, H. �Where is the Road for

Issue Reports Classi�cation based on Text Mining?� In: 2017 ACM/IEEE

International Symposium on Empirical Software Engineering and Mea-

surement (ESEM). IEEE. 2017, pp. 121�130.

[105] Fang, F., Dutta, K., and Datta, A. �Domain Adaptation for Sentiment

Classi�cation in Light of Multiple Sources�. In: INFORMS Journal on

Computing 26.3 (2014), pp. 586�598.

[106] Fang, M., Zhao, H., Song, X., Wang, X., and Huang, S. �Using Bidi-

rectional LSTM with BERT for Chinese Punctuation Prediction�. In:

2019 IEEE International Conference on Signal, Information and Data

Processing (ICSIDP). IEEE. 2019, pp. 1�5.

[107] Feng, D., Harakeh, A., Waslander, S. L., and Dietmayer, K. �A Re-

view and Comparative Study on Probabilistic Object Detection in Au-

tonomous Driving�. In: IEEE Transactions on Intelligent Transportation

Systems 23.8 (2021), pp. 9961�9980.

[108] Ferlitsch, A. Deep Learning Patterns and Practices. Simon and Schuster.

2021.

[109] Fredriksson, T., Mattos, D. I., Bosch, J., and Olsson, H. H. �Data Label-

ing: An Empirical Investigation into Industrial Challenges and Mitigation

Strategies�. In: International Conference on Product-Focused Software

Process Improvement. Springer. 2020, pp. 202�216.

[110] Freeman, L. C. Elementary Applied Statistics: For Students in Behavioral

Science. John Wiley & Sons. 1965.

[111] Frischlich, L., Boberg, S., and Quandt, T. �Comment Sections as Targets

of Dark Participation? Journalists' Evaluation and Moderation of De-

viant User Comments�. In: Journalism Studies 20.14 (2019), pp. 2014�

2033.

[112] Fucci, D., Mollaalizadehbahnemiri, A., and Maalej, W. �On Using Ma-

chine Learning to Identify Knowledge in API Reference Documentation�.

In: Proceedings of the 2019 27th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering. 2019, pp. 109�119.

283

Bibliography

[113] Gal, Y. and Ghahramani, Z. �Dropout as a Bayesian Approximation:

Representing Model Uncertainty in Deep Learning�. In: International

Conference on Machine Learning. PMLR. 2016, pp. 1050�1059.

[114] Gal, Y., Islam, R., and Ghahramani, Z. �Deep Bayesian Active Learning

with Image Data�. In: International Conference on Machine Learning.

PMLR. 2017, pp. 1183�1192.

[115] Gama, J., �liobait
e, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A.

�A Survey on Concept Drift Adaptation�. In: ACM Computing Surveys

(CSUR) 46.4 (2014), pp. 1�37.

[116] Ganaie, M. A., Hu, M., Malik, A., Tanveer, M, and Suganthan, P. �En-

semble Deep Learning: A Review�. In: Engineering Applications of Arti-

�cial Intelligence 115 (2022), p. 105151.

[117] Ganesh, A., Cao, J., Perko�, E. M., Southwell, R., Palmer, M., and Kann,

K. �Mind the Gap between the Application Track and the Real World�.

In: Proceedings of the 61st Annual Meeting of the Association for Com-

putational Linguistics. Vol. 2. 2023, pp. 1833�1842.

[118] Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J.,

Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W.,

Bamler, R., and Zhu, X. X. �A Survey of Uncertainty in Deep Neural

Networks�. In: Arti�cial Intelligence Review (2023), pp. 1�77.

[119] Geifman, Y. and El-Yaniv, R. �Selective Classi�cation for Deep Neural

Networks�. In: Proceedings of the 31st International Conference on Neural

Information Processing Systems. 2017, pp. 4885�4894.

[120] Ghesu, F. C., Georgescu, B., Mansoor, A., Yoo, Y., Gibson, E., Vish-

wanath, R. S., Balachandran, A., Balter, J. M., Cao, Y., Singh, R., Digu-

marthy, S. R., Kalra, M. K., Grbic, S., and Comaniciu, D. �Quantifying

and Leveraging Predictive Uncertainty for Medical Image Assessment�.

In: Medical Image Analysis 68 (2021), p. 101855.

[121] Goan, E. and Fookes, C. �Bayesian Neural Networks: An Introduction

and Survey�. In: Case Studies in Applied Bayesian Data Science (2020),

pp. 45�87.

[122] Gosiewska, A. and Biecek, P. �IBreakDown: Uncertainty of Model Ex-

planations for Non-additive Predictive Models�. In: arXiv preprint arXiv

:1903.11420 (2019).

284

Bibliography

[123] Gralinski, F., Wróblewska, A., Stanisªawek, T., Grabowski, K., and Góre-

cki, T. �GEval: Tool for Debugging NLP Datasets and Models�. In: Pro-

ceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Inter-

preting Neural Networks for NLP. 2019, pp. 254�262.

[124] Gray, M., Savelka, J., Oliver, W., and Ashley, K. �Can GPT Alleviate the

Burden of Annotation?� In: Legal Knowledge and Information Systems.

IOS Press, 2023, pp. 157�166.

[125] Grieÿhaber, D., Maucher, J., and Vu, N. T. �Fine-tuning BERT for Low-

Resource Natural Language Understanding via Active Learning�. In: Pro-

ceedings of the 28th International Conference on Computational Linguis-

tics (COLING). 2020, pp. 1158�1171.

[126] Grimmelmann, J. �The Virtues of Moderation�. In: Yale Journal of Law

and Technology 17.1 (2015), p. 2.

[127] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T.,

Wang, X., Wang, G., Cai, J., and Chen, T. �Recent Advances in Convo-

lutional Neural Networks�. In: Pattern Recognition 77 (2018), pp. 354�

377.

[128] Gudivada, V., Apon, A., and Ding, J. �Data Quality Considerations

for Big Data and Machine Learning: Going Beyond Data Cleaning and

Transformations�. In: International Journal on Advances in Software 10.1

(2017), pp. 1�20.

[129] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. �On Calibration

of Modern Neural Networks�. In: International Conference on Machine

Learning. PMLR. 2017, pp. 1321�1330.

[130] Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. �Using kNN Model

for Automatic Text Categorization�. In: Soft Computing 10.5 (2006),

pp. 423�430.

[131] Guo, X., Yin, Y., Dong, C., Yang, G., and Zhou, G. �On the Class Im-

balance Problem�. In: 2008 Fourth International Conference on Natural

Computation. Vol. 4. IEEE. 2008, pp. 192�201.

[132] Guzman, E. and Maalej, W. �How do Users Like this Feature? A Fine

Grained Sentiment Analysis of App Reviews�. In: 2014 IEEE 22nd Inter-

national Requirements Engineering Conference (RE). IEEE. 2014, pp. 153�

162.

285

Bibliography

[133] Habibullah, K. M. and Horko�, J. �Non-functional Requirements for Ma-

chine Learning: Understanding Current Use and Challenges in Industry�.

In: 2021 IEEE 29th International Requirements Engineering Conference

(RE). IEEE. 2021, pp. 13�23.

[134] Haering, M., Andersen, J. S., Biemann, C., Loosen, W., Milde, B., Pietz,

T., Stoecker, C., Wiedemann, G., Zukunft, O., and Maalej, W. �Forum

4.0: An Open-Source User Comment Analysis Framework�. In: Proceed-

ings of the 16th Conference of the European Chapter of the Association

for Computational Linguistics: System Demonstrations. 2021, pp. 63�70.

[135] Han, J. and Moraga, C. �The In�uence of the Sigmoid Function Pa-

rameters on the Speed of Backpropagation Learning�. In: International

Workshop on Arti�cial Neural Networks. Springer. 1995, pp. 195�201.

[136] Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H., Huang,

S., Brooks, M., Lee, M. J., and Asadi, H. �Peering Into the Black Box of

Arti�cial Intelligence: Evaluation Metrics of Machine Learning Methods�.

In: American Journal of Roentgenology 212.1 (2019), pp. 38�43.

[137] Harbi, S. H. A., Tidjon, L. N., and Khomh, F. �Responsible Design Pat-

terns for Machine Learning Pipelines�. In: arXiv preprint arXiv:2306.01788

(2023).

[138] Häring, M., Loosen, W., and Maalej, W. �Who is Addressed in this Com-

ment? Automatically Classifying Meta-Comments in News Comments�.

In: Proceedings of the ACM on Human-Computer Interaction 2.CSCW

(2018), pp. 1�20.

[139] Harman, M., Jia, Y., and Zhang, Y. �App Store Mining and Analysis:

MSR for App Stores�. In: 2012 9th IEEE Working Conference on Mining

Software Repositories (MSR). IEEE. 2012, pp. 108�111.

[140] Hawkins, D. M. Identi�cation of Outliers. Vol. 11. Springer. 1980.

[141] Hayes, P. J. �Intelligent High-volume Text Processing using Shallow,

Domain-speci�c Techniques�. In: Text-based Intelligent Systems: Current

Research and Practice in Information Extraction and Retrieval (1992),

pp. 227�242.

[142] Haykin, S. Neural Networks: A Comprehensive Foundation. International

Edition. Prentice Hall. 1999.

286

Bibliography

[143] He, J., Zhang, X., Lei, S., Chen, Z., Chen, F., Alhamadani, A., Xiao,

B., and Lu, C. �Towards More Accurate Uncertainty Estimation In Text

Classi�cation�. In: Proceedings of the 2020 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP). 2020, pp. 8362�8372.

[144] He, P., Liu, X., Gao, J., and Chen, W. �DeBERTa: Decoding-enhanced

BERT with Disentangled Attention�. In: International Conference on

Learning Representations (ICLR). 2021.

[145] He, X., Zhao, K., and Chu, X. �AutoML: A Survey of the State-of-the-

Art�. In: Knowledge-Based Systems 212 (2021), p. 106622.

[146] Heiland, L., Hauser, M., and Bogner, J. �Design Patterns for AI-based

Systems: A Multivocal Literature Review and Pattern Repository�. In:

arXiv preprint arXiv:2303.13173 (2023).

[147] Heimerl, F., Koch, S., Bosch, H., and Ertl, T. �Visual Classi�er Training

for Text Document Retrieval�. In: IEEE Transactions on Visualization

and Computer Graphics 18.12 (2012), pp. 2839�2848.

[148] Hendrycks, D. and Gimpel, K. �A Baseline for Detecting Misclassi�ed

and Out-of-Distribution Examples in Neural Networks�. In: International

Conference on Learning Representations (ICLR) (2017).

[149] Hey, T., Keim, J., Koziolek, A., and Tichy, W. F. �Norbert: Transfer

Learning for Requirements Classi�cation�. In: 2020 IEEE 28th Interna-

tional Requirements Engineering Conference (RE). IEEE. 2020, pp. 169�

179.

[150] Hingmire, S., Chougule, S., Palshikar, G. K., and Chakraborti, S. �Doc-

ument Classi�cation by Topic Labeling�. In: Proceedings of the 36th In-

ternational ACM SIGIR Conference on Research and Development in

Information Retrieval. 2013, pp. 877�880.

[151] Hinton, G. E. �Learning Distributed Representations of Concepts�. In:

Proceedings of the Eighth Annual Conference of the Cognitive Science

Society. Vol. 1. Amherst. 1986, p. 12.

[152] Hochreiter, S. and Schmidhuber, J. �Long Short-Term Memory�. In: Neu-

ral Comput. 9.8 (1997), pp. 1735�1780.

[153] Höferlin, B., Netzel, R., Höferlin, M., Weiskopf, D., and Heidemann, G.

�Inter-active Learning of Ad-hoc Classi�ers for Video Visual Analytics�.

In: 2012 IEEE Conference on Visual Analytics Science and Technology

(VAST). IEEE. 2012, pp. 23�32.

287

Bibliography

[154] Hoi, S. C., Jin, R., and Lyu, M. R. �Batch Mode Active Learning with Ap-

plications to Text Categorization and Image Retrieval�. In: IEEE Trans-

actions on Knowledge and Data Engineering 21.9 (2009), pp. 1233�1248.

[155] Holzinger, A. �Interactive Machine Learning for Health Informatics: When

do we Need the Human-in-the-Loop?� In: Brain Informatics 3.2 (2016),

pp. 119�131.

[156] Honeycutt, D., Nourani, M., and Ragan, E. �Soliciting Human-in-the-

Loop User Feedback for Interactive Machine Learning Reduces User

Trust and Impressions of Model Accuracy�. In: Proceedings of the AAAI

Conference on Human Computation and Crowdsourcing. Vol. 8. 2020,

pp. 63�72.

[157] Hosseinzadeh, M., Wachal, A., Khamfroush, H., and Lucani, D. E. �Op-

timal Accuracy-time Trade-o� for Deep Learning Services in Edge Com-

puting Systems�. In: ICC 2021-IEEE International Conference on Com-

munications. IEEE. 2021, pp. 1�6.

[158] Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M. �Bayesian

Active Learning for Classi�cation and Preference Learning�. In: arXiv

preprint arXiv:1112.5745 (2011).

[159] Hu, Q., Guo, Y., Cordy, M., Xie, X., Ma, W., Papadakis, M., and Le

Traon, Y. �Towards Exploring the Limitations of Active Learning: An

Empirical Study�. In: 2021 36th IEEE/ACM International Conference

on Automated Software Engineering (ASE). IEEE. 2021, pp. 917�929.

[160] Hu, R., Mac Namee, B., and Delany, S. J. �Active Learning for Text

Classi�cation with Reusability�. In: Expert Systems with Applications 45

(2016), pp. 438�449.

[161] Hu, S., Ding, N., Wang, H., Liu, Z., Wang, J., Li, J., Wu, W., and Sun, M.

�Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt

Verbalizer for Text Classi�cation�. In: Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (ACL). Vol. 1.

2022, pp. 2225�2240.

[162] Hu, Y. and Khan, L. �Uncertainty-aware Reliable Text Classi�cation�.

In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining. 2021, pp. 628�636.

[163] Huang, S., Mamidanna, S., Jangam, S., Zhou, Y., and Gilpin, L. H.

�Can Large Language Models Explain Themselves? A Study of LLM-

Generated Self-Explanations�. In: arXiv preprint arXiv:2310.11207 (2023).

288

Bibliography

[164] Hüllermeier, E. and Waegeman, W. �Aleatoric and Epistemic Uncer-

tainty in Machine Learning: An Introduction to Concepts and Methods�.

In: Machine Learning 110.3 (2021), pp. 457�506.

[165] Ikonomakis, M, Kotsiantis, S., and Tampakas, V. �Text Classi�cation

using Machine Learning Techniques.� In: WSEAS Transactions on Com-

puters 4.8 (2005), pp. 966�974.

[166] ISO Central Secretary. Software Engineering � Software product Qual-

ity Requirements and Evaluation (SQuaRE) � Data Quality Model. en.

Standard ISO/IEC 25012:2008. International Organization for Standard-

ization. 2018.

[167] Ittoo, A., Nguyen, L. M., and Bosch, A. van den. �Text Analytics in

Industry�. In: Computers in Industry 78.C (2016), pp. 96�107.

[168] Janiesch, C., Zschech, P., and Heinrich, K. �Machine Learning and Deep

Learning�. In: Electronic Markets 31.3 (2021), pp. 685�695.

[169] Jánoky, L. V., Levendovszky, J., and Ekler, P. �An Analysis on the Re-

voking Mechanisms for JSON Web Tokens�. In: International Journal of

Distributed Sensor Networks 14.9 (2018).

[170] Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J.,

Madotto, A., and Fung, P. �Survey of Hallucination in Natural Language

Generation�. In: ACM Computing Surveys 55.12 (2023), pp. 1�38.

[171] Jiang, L., Liu, S., and Chen, C. �Recent Research Advances on Interactive

Machine Learning�. In: Journal of Visualization 22 (2019), pp. 401�417.

[172] Joachims, T. �Text Categorization with Support Vector Machines: Learn-

ing with Many Relevant Features�. In: European Conference on Machine

Learning. Springer. 1998, pp. 137�142.

[173] Jöhnk, J., Weiÿert, M., and Wyrtki, K. �Ready or Not, AI Comes�An

Interview Study of Organizational AI Readiness Factors�. In: Business &

Information Systems Engineering 63.1 (2021), pp. 5�20.

[174] Jospin, L. V., Laga, H., Boussaid, F., Buntine, W., and Bennamoun,

M. �Hands-on Bayesian Neural Networks�A Tutorial for Deep Learn-

ing Users�. In: IEEE Computational Intelligence Magazine 17.2 (2022),

pp. 29�48.

[175] Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and Mikolov,

T. �Fasttext.zip: Compressing Text Classi�cation Models�. In: arXiv pre-

print arXiv:1612.03651 (2016).

289

Bibliography

[176] Joulin, A., Grave, É., Bojanowski, P., and Mikolov, T. �Bag of Tricks for

E�cient Text Classi�cation�. In: Proceedings of the 15th Conference of

the European Chapter of the Association for Computational Linguistics

(EACL). Vol. 2. 2017, pp. 427�431.

[177] Kadhim, A. I. �Survey on Supervised Machine Learning Techniques for

Automatic Text Classi�cation�. In: Arti�cial Intelligence Review 52.1

(2019), pp. 273�292.

[178] Kallis, R., Di Sorbo, A., Canfora, G., and Panichella, S. �Predicting Issue

Types on GitHub�. In: Science of Computer Programming 205 (2021),

p. 102598.

[179] Kallis, R., Di Sorbo, A., Canfora, G., and Panichella, S. �Ticket Tag-

ger: Machine Learning Driven Issue Classi�cation�. In: 2019 IEEE Inter-

national Conference on Software Maintenance and Evolution (ICSME).

IEEE. 2019, pp. 406�409.

[180] Kaplan, A. M. and Haenlein, M. �Users of the World, Unite! The Chal-

lenges and Opportunities of Social Media�. In: Business Horizons 53.1

(2010), pp. 59�68.

[181] Karmaker, S. K., Hassan, M. M., Smith, M. J., Xu, L., Zhai, C., and

Veeramachaneni, K. �AutoML to Date and Beyond: Challenges and Op-

portunities�. In: ACM Computing Surveys (CSUR) 54.8 (2021), pp. 1�

36.

[182] Karmakharm, T., Aletras, N., and Bontcheva, K. �Journalist-in-the-Loop:

Continuous Learning as a Service for Rumour Analysis�. In: Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Pro-

cessing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP): System Demonstrations. 2019, pp. 115�

120.

[183] Kay, M., Patel, S. N., and Kientz, J. A. �How Good is 85%? A Survey

Tool to Connect Classi�er Evaluation to Acceptability of Accuracy�. In:

Proceedings of the 33rd annual ACM Conference on Human Factors in

Computing Systems. 2015, pp. 347�356.

[184] Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., and

Melançon, G. �Visual Analytics: De�nition, Process, and Challenges�. In:

Information Visualization. Springer, 2008, pp. 154�175.

[185] Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F. Mastering the

Information Age Solving Problems with Visual Analytics. Eurographics

Association. 2010.

290

Bibliography

[186] Keim, D. A. �Visual Exploration of Large Data Sets�. In: Communica-

tions of the ACM 44.8 (2001), pp. 38�44.

[187] Keim, D. A., Mansmann, F., Oelke, D., and Ziegler, H. �Visual Ana-

lytics: Combining Automated Discovery with Interactive Visualizations�.

In: 11th International Conference of Discovery Science. Springer. 2008,

pp. 2�14.

[188] Kendall, A. and Gal, Y. �What Uncertainties do we Need in Bayesian

Deep Learning for Computer Vision?� In: Proceedings of the 31st Inter-

national Conference on Neural Information Processing Systems. 2017,

pp. 5580�5590.

[189] Khalid, S., Khalil, T., and Nasreen, S. �A Survey of Feature Selection and

Feature Extraction Techniques in Machine Learning�. In: 2014 Science

and Information Conference. IEEE. 2014, pp. 372�378.

[190] Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. �A Survey of

the Recent Architectures of Deep Convolutional Neural Networks�. In:

Arti�cial Intelligence Review 53.8 (2020), pp. 5455�5516.

[191] Khomh, F., Adams, B., Cheng, J., Fokaefs, M., and Antoniol, G. �Soft-

ware Engineering for Machine-Learning Applications: The Road Ahead�.

In: IEEE Software 35.5 (2018), pp. 81�84.

[192] Khurana, D., Koli, A., Khatter, K., and Singh, S. �Natural Language

Processing: State of the Art, Current Trends and Challenges�. In: Multi-

media Tools and Applications (2022), pp. 1�32.

[193] Kieseberg, P., Schantl, J., Frühwirt, P., Weippl, E., and Holzinger, A.

�Witnesses for the Doctor in the Loop�. In: Brain Informatics and Health:

8th International Conference BIH 2015. Springer. 2015, pp. 369�378.

[194] Kim, B. and Pardo, B. �A Human-in-the-Loop System for Sound Event

Detection and Annotation�. In: ACM Transactions on Interactive Intel-

ligent Systems (TiiS) 8.2 (2018), pp. 1�23.

[195] Kim, Y. �Convolutional Neural Networks for Sentence Classi�cation�.

In: Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP). 2014, pp. 1746�1751.

[196] Kingma, D. P. and Ba, J. �Adam: AMethod for Stochastic Optimization�.

In: arXiv preprint arXiv:1412.6980 (2014).

291

Bibliography

[197] Kläs, M. and Vollmer, A. M. �Uncertainty in Machine Learning Appli-

cations: A Practice-driven Classi�cation of Uncertainty�. In: Computer

Safety, Reliability, and Security: SAFECOMP 2018 Workshops. Vol. 37.

Springer. 2018, pp. 431�438.

[198] Kolhatkar, V. and Taboada, M. �Constructive Language in News Com-

ments�. In: Proceedings of the First Workshop on Abusive Language On-

line. 2017, pp. 11�17.

[199] Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. �Supervised Machine

Learning: A Review of Classi�cation Techniques�. In: Emerging Arti�cial

Intelligence Applications in Computer Engineering 160.1 (2007), pp. 3�

24.

[200] Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes,

L., and Brown, D. �Text Classi�cation Algorithms: A Survey�. In: Infor-

mation 10.4 (2019), p. 150.

[201] Kreek, R. A. and Apostolova, E. �Training and Prediction Data Discrep-

ancies: Challenges of Text Classi�cation with Noisy, Historical Data�. In:

Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop

on Noisy User-generated Text. 2018, pp. 104�109.

[202] Kreps, J. Questioning the Lambda Architecture. Accessed May 5, 2024.

2014. url: https://www.oreilly.com/radar/questioning-the-lamb

da-architecture/.

[203] Kreps, J., Narkhede, N., and Rao, J. �Kafka: A Distributed Messaging

System for Log Processing�. In: Proceedings of the NetDB. Vol. 11. 2011,

pp. 1�7.

[204] Kullback, S. and Leibler, R. A. �On Information and Su�ciency�. In: The

Annals of Mathematical Statistics 22.1 (1951), pp. 79�86.

[205] Kuo, C. C. J. and Madni, A. M. �Green Learning: Introduction, Ex-

amples and Outlook�. In: Journal of Visual Communication and Image

Representation 90 (2023), p. 103685.

[206] Kwak, Y. H. and Anbari, F. T. �Bene�ts, Obstacles, and Future of Six

Sigma Approach�. In: Technovation 26.5-6 (2006), pp. 708�715.

[207] Kwon, Y., Won, J.-H., Kim, B. J., and Paik, M. C. �Uncertainty Quan-

ti�cation using Bayesian Neural Networks in Classi�cation: Application

to Biomedical Image Segmentation�. In: Computational Statistics & Data

Analysis 142 (2020), p. 106816.

292

https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/

Bibliography

[208] Lai, S., Xu, L., Liu, K., and Zhao, J. �Recurrent Convolutional Neural

Networks for Text Classi�cation�. In: Twenty-ninth AAAI Conference on

Arti�cial Intelligence. 2015.

[209] Lakshmanan, V., Robinson, S., and Munn, M. Machine Learning Design

Patterns. O'Reilly Media. 2020.

[210] Lakshminarayanan, B., Pritzel, A., and Blundell, C. �Simple and Scalable

Predictive Uncertainty Estimation using Deep Ensembles�. In: Proceed-

ings of the 31st International Conference on Neural Information Process-

ing Systems. 2017, pp. 6405�6416.

[211] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R.

�ALBERT: A Lite BERT for Self-supervised Learning of Language Rep-

resentations�. In: International Conference on Learning Representations

(ICLR). 2019.

[212] Lang, K. �Newsweeder: Learning to Filter Netnews�. In: Machine Learn-

ing Proceedings 1995. Elsevier. 1995, pp. 331�339.

[213] LeCun, Y., Bengio, Y., and Hinton, G. �Deep Learning�. In: Nature

521.7553 (2015), pp. 436�444.

[214] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hub-

bard, W., and Jackel, L. D. �Backpropagation Applied to Handwritten

Zip Code Recognition�. In: Neural Computation 1.4 (1989), pp. 541�551.

[215] Lee, D. J.-L. and Macke, S. �A Human-in-the-loop Perspective on Au-

toML: Milestones and the Road Ahead�. In: IEEE Data Engineering Bul-

letin (2020).

[216] Lee, K., Lee, K., Lee, H., and Shin, J. �Training Con�dence-Calibrated

Classi�ers for Detecting Out-of-Distribution Samples�. In: International

Conference on Learning Representations (ICLR). ICLR. 2018.

[217] Lemmens, J., Markov, I., and Daelemans, W. �Improving Hate Speech

Type and Target Detection with Hateful Metaphor Features�. In: Proceed-

ings of the Fourth Workshop on NLP for Internet Freedom: Censorship,

Disinformation, and Propaganda. 2021, pp. 7�16.

[218] Lertvittayakumjorn, P. and Toni, F. �Human-grounded Evaluations of

Explanation Methods for Text Classi�cation�. In: Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP). 2019, pp. 5195�5205.

293

Bibliography

[219] Lewis, D. D. �Naive (Bayes) at Forty: The Independence Assumption in

Information Retrieval�. In: European Conference on Machine Learning.

Springer. 1998, pp. 4�15.

[220] Lewis, D. D. and Catlett, J. �Heterogeneous Uncertainty Sampling for

Supervised Learning�. In: Machine Learning Proceedings 1994. Elsevier.

1994, pp. 148�156.

[221] Lewis, D. D. and Gale, W. A. �A Sequential Algorithm for Training Text

Classi�ers�. In: Proceedings of the 17th Annual International ACM SI-

GIR Conference on Research and Development in Information Retrieval.

Springer. 1994, pp. 3�12.

[222] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. �Rcv1: A new Benchmark

Collection for Text Categorization Research�. In: Journal of Machine

Learning Research 5 (2004), pp. 361�397.

[223] Li, J., Chen, X., Hovy, E., and Jurafsky, D. �Visualizing and Understand-

ing Neural Models in NLP�. In: Proceedings of the 2016 Conference of

the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies. 2016, pp. 681�691.

[224] Li, Q., Peng, H., Li, J., Xia, C., Yang, R., Sun, L., Yu, P. S., and He, L. �A

Survey on Text Classi�cation: From Traditional to Deep Learning�. In:

ACM Transactions on Intelligent Systems and Technology (TIST) 13.2

(2022), pp. 1�41.

[225] Li, X., Zhang, H., Ouyang, Y., Zhang, X., and Rong, W. �A Shallow

BERT-CNN Model for Sentiment Analysis on Moocs Comments�. In:

2019 IEEE International Conference on Engineering, Technology and

Education (TALE). IEEE. 2019, pp. 1�6.

[226] Li, X. and Roth, D. �Learning Question Classi�ers�. In: Proceedings of the

19th International Conference on Computational Linguistics (COLING).

ACL. 2002, 1�7.

[227] Li, Y. and Yang, T. �Word Embedding for Understanding Natural Lan-

guage: A Survey�. In: Guide to Big Data Applications. Springer, 2018,

pp. 83�104.

[228] Lin, Z., Glass, L., Westover, M. B., Xiao, C., and Sun, J. �SCRIB: Set-

classi�er with Class-speci�c Risk Bounds for Blackbox Models�. In: Pro-

ceedings of the AAAI Conference on Arti�cial Intelligence. Vol. 36. 7.

2022, pp. 7497�7505.

294

Bibliography

[229] Link, D., Hellingrath, B., and Ling, J. �A Human-is-the-Loop Approach

for Semi-Automated Content Moderation.� In: 13th Proceedings of the

International Conference on Information Systems for Crisis Response

and Management. 2016.

[230] Liu, R. and Gillies, D. F. �Over�tting in Linear Feature Extraction for

Classi�cation of High-dimensional Image Data�. In: Pattern Recognition

53 (2016), pp. 73�86.

[231] Liu, X. �Intelligent Data Analysis: Issues and Challenges�. In: The Knowl-

edge Engineering Review 11.4 (1996), pp. 365�371.

[232] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,

M., Zettlemoyer, L., and Stoyanov, V. �RoBERTa: A Robustly Optimized

BERT Pretraining Approach�. In: arXiv preprint arXiv:1907.11692 (2019).

[233] Liu, Z. and Heer, J. �The E�ects of Interactive Latency on Exploratory

Visual Analysis�. In: IEEE Transactions on Visualization and Computer

Graphics 20.12 (2014), pp. 2122�2131.

[234] Loosen, W., Häring, M., Kurtanovi¢, Z., Merten, L., Reimer, J., Roessel,

L. van, and Maalej, W. �Making Sense of User Comments: Identifying

Journalists' Requirements for a Comment Analysis Framework�. In: SCM

Studies in Communication and Media 6.4 (2018), pp. 333�364.

[235] Lowell, D., Lipton, Z. C., and Wallace, B. C. �Practical Obstacles to De-

ploying Active Learning�. In: Proceedings of the 2019 Conference on Em-

pirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP).

2019, pp. 21�30.

[236] Lu, Q., Zhu, L., Xu, X., Whittle, J., Zowghi, D., and Jacquet, A. �Re-

sponsible AI Pattern Catalogue: A Collection of Best Practices for AI

Governance and Engineering�. In: ACM Computing Surveys (2023).

[237] Lüders, C. M., Pietz, T., and Maalej, W. �Automated Detection of Typed

Links in Issue Trackers�. In: 2022 IEEE 30th International Requirements

Engineering Conference (RE). IEEE. 2022, pp. 26�38.

[238] Lundberg, S. M. and Lee, S.-I. �A Uni�ed Approach to Interpreting

Model Predictions�. In: Advances in Neural Information Processing Sys-

tems 30 (2017).

[239] Maalej, W., Kurtanovi¢, Z., Nabil, H., and Stanik, C. �On the Auto-

matic Classi�cation of App Reviews�. In: Requirements Engineering 21.3

(2016), pp. 311�331.

295

Bibliography

[240] Maalej, W. and Nabil, H. �Bug Report, Feature Request, or Simply

Praise? On Automatically Classifying App Reviews�. In: 2015 IEEE 23rd

International Requirements Engineering Conference (RE). IEEE. 2015,

pp. 116�125.

[241] Maalej, W., Nayebi, M., Johann, T., and Ruhe, G. �Toward Data-driven

Requirements Engineering�. In: IEEE Software 33.1 (2015), pp. 48�54.

[242] Maalej, W., Pham, Y. D., and Chazette, L. �Tailoring Requirements

Engineering for Responsible AI�. In: Computer 56.4 (2023), pp. 18�27.

[243] Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C.

�Learning Word Vectors for Sentiment Analysis�. In: Proceedings of the

49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies. 2011, pp. 142�150.

[244] Maaten, L. Van der and Hinton, G. �Visualizing Data using t-SNE.� In:

Journal of Machine Learning Research 9.11 (2008).

[245] Malinin, A. and Gales, M. �Predictive Uncertainty Estimation via Prior

Networks�. In: Advances in Neural Information Processing Systems 31

(2018).

[246] Manosevitch, E. and Walker, D. �Reader Comments to Online Opinion

Journalism: A Space of Public Deliberation�. In: International Sympo-

sium on Online Journalism. Vol. 10. 2009, pp. 1�30.

[247] Martens, D. and Maalej, W. �Towards Understanding and Detecting Fake

Reviews in App Stores�. In: Empirical Software Engineering 24.6 (2019),

pp. 3316�3355.

[248] Martin, G. L. and Corl, K. G. �System Response Time E�ects on User

Productivity�. In: Behaviour & Information Technology 5.1 (1986), pp. 3�

13.

[249] Medhat, W., Hassan, A., and Korashy, H. �Sentiment Analysis Algo-

rithms and Applications: A Survey�. In: Ain Shams Engineering Journal

5.4 (2014), pp. 1093�1113.

[250] Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. �A

Survey on Bias and Fairness in Machine Learning�. In: ACM Computing

Surveys (CSUR) 54.6 (2021), pp. 1�35.

[251] Mena, J., Pujol, O., and Vitrià, J. �A Survey on Uncertainty Estimation

in Deep Learning Classi�cation Systems from a Bayesian Perspective�.

In: ACM Computing Surveys (CSUR) 54.9 (2021), pp. 1�35.

296

Bibliography

[252] Mikolov, T., Chen, K., Corrado, G., and Dean, J. �E�cient Estimation

of Word Representations in Vector Space�. In: International Conference

on Learning Representations (ICLR). 2013.

[253] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. �Dis-

tributed Representations of Words and Phrases and Their Composition-

ality�. In: Advances in Neural Information Processing Systems 26 (2013).

[254] Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen, T. H., Sainz,

O., Agirre, E., Heintz, I., and Roth, D. �Recent Advances in Natural

Language Processing via Large Pre-trained Language Models: A Survey�.

In: ACM Computing Surveys (CSUR) 56.2 (2023), pp. 1�40.

[255] Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M.,

and Gao, J. �Deep Learning�based Text Classi�cation: A Comprehensive

Review�. In: ACM Computing Surveys (CSUR) 54.3 (2021), pp. 1�40.

[256] Miok, K., �krlj, B., Zaharie, D., and Robnik-�ikonja, M. �To BAN or not

to BAN: Bayesian Attention Networks for Reliable Hate Speech Detec-

tion�. In: Cognitive Computation (2022), pp. 1�19.

[257] Mitchell, T. M. Machine Learning. Vol. 1. 9. McGraw-hill. 1997.

[258] Monarch, R. M. Human-in-the-Loop Machine Learning: Active Learning

and Annotation for Human-centered AI. Simon and Schuster. 2021.

[259] Montgomery, L., Lüders, C., and Maalej, W. �An Alternative Issue Track-

ing Dataset of Public Jira Repositories�. In: Proceedings of the 19th In-

ternational Conference on Mining Software Repositories. 2022, pp. 73�

77.

[260] Moreno-Torres, J. G., Raeder, T., Alaiz-Rodríguez, R., Chawla, N. V.,

and Herrera, F. �A Unifying View on Dataset Shift in Classi�cation�. In:

Pattern Recognition 45.1 (2012), pp. 521�530.

[261] Morris, J., Li�and, E., Yoo, J. Y., Grigsby, J., Jin, D., and Qi, Y. �Tex-

tAttack: A Framework for Adversarial Attacks, Data Augmentation, and

Adversarial Training in NLP�. In: Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System Demonstra-

tions. 2020, pp. 119�126.

[262] Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Basc-

arán, J., and Fernández-Leal, Á. �Human-in-the-Loop Machine Learn-

ing: A State of the Art�. In: Arti�cial Intelligence Review 56.4 (2023),

pp. 3005�3054.

297

Bibliography

[263] Murarka, A., Radhakrishnan, B., and Ravichandran, S. �Classi�cation

of Mental Illnesses on Social Media using RoBERTa�. In: Proceedings of

the 12th International Workshop on Health Text Mining and Information

Analysis. 2021, pp. 59�68.

[264] Nadkarni, P. M., Ohno-Machado, L., and Chapman, W. W. �Natural

Language Processing: An Introduction�. In: Journal of the American

Medical Informatics Association 18.5 (2011), pp. 544�551.

[265] Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N.,

Wald, R., and Muharemagic, E. �Deep Learning Applications and Chal-

lenges in Big Data Analytics�. In: Journal of Big Data 2.1 (2015), pp. 1�

21.

[266] Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., and Stoyanov, V.

�SemEval-2016 Task 4: Sentiment Analysis in Twitter�. In: Proceedings

of the 10th International Workshop on Semantic Evaluation (SemEval-

2016). 2016, pp. 1�18.

[267] Naseem, U., Razzak, I., and Eklund, P. W. �A Survey of Pre-processing

Techniques to Improve Short-text Quality: A Case Study on Hate Speech

Detection on Twitter�. In: Multimedia Tools and Applications 80 (2021),

pp. 35239�35266.

[268] Nauta, M., Trienes, J., Pathak, S., Nguyen, E., Peters, M., Schmitt, Y.,

Schlötterer, J., Keulen, M. van, and Seifert, C. �From Anecdotal Evidence

to Quantitative Evaluation Methods: A Systematic Review on Evaluating

Explainable AI�. In: ACM Computing Surveys 55.13s (2023), pp. 1�42.

[269] Nayak, A. S., Kanive, A. P., Chandavekar, N., and Balasubramani, R.

�Survey on Pre-processing Techniques for Text Mining�. In: International

Journal of Engineering and Computer Science 5.6 (2016), pp. 16875�

16879.

[270] Neves, M. and �eva, J. �An Extensive Review of Tools for Manual An-

notation of Documents�. In: Brie�ngs in Bioinformatics 22.1 (2021),

pp. 146�163.

[271] Neville, J., Jensen, D., Friedland, L., and Hay, M. �Learning Relational

Probability Trees�. In: Proceedings of the Ninth ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining. 2003,

pp. 625�630.

298

Bibliography

[272] Nghiem, M.-Q., Baylis, P., and Ananiadou, S. �Paladin: An Annotation

Tool Based on Active and Proactive Learning�. In: Proceedings of the

16th Conference of the European Chapter of the Association for Compu-

tational Linguistics: System Demonstrations. 2021, pp. 238�243.

[273] Nguyen, A. T., Kharosekar, A., Krishnan, S., Krishnan, S., Tate, E.,

Wallace, B. C., and Lease, M. �Believe it or Not: Designing a Human-

AI Partnership for Mixed-initiative Fact-checking�. In: Proceedings of the

31st Annual ACM Symposium on User Interface Software and Technol-

ogy. 2018, pp. 189�199.

[274] Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and Chang, Y. �Abu-

sive Language Detection in Online User Content�. In: Proceedings of the

25th international Conference on World Wide Web. 2016, pp. 145�153.

[275] Nouh, M., Nurse, J. R., and Goldsmith, M. �Understanding the Radical

Mind: Identifying Signals to Detect Extremist Content on Twitter�. In:

2019 IEEE International Conference on Intelligence and Security Infor-

matics (ISI). IEEE. 2019, pp. 98�103.

[276] Nowak, J., Taspinar, A., and Scherer, R. �LSTM Recurrent Neural Net-

works for Short Text and Sentiment Classi�cation�. In: International

Conference on Arti�cial Intelligence and Soft Computing. Springer. 2017,

pp. 553�562.

[277] Oliveira, A. S., Cecote, T. C., Silva, P. H., Gertrudes, J. C., Freitas, V. L.,

and Luz, E. J. �How Good Is ChatGPT For Detecting Hate Speech In

Portuguese?� In: Anais do XIV Simpósio Brasileiro de Tecnologia da

Informação e da Linguagem Humana. SBC. 2023, pp. 94�103.

[278] Olston, C. and Mackinlay, J. D. �Visualizing Data with Bounded Uncer-

tainty�. In: IEEE Symposium on Information Visualization (INFOVIS).

IEEE. 2002, pp. 37�40.

[279] OpenAI. ChatGPT-3.5. Accessed May 5, 2024. url: https://chatgpt

.com.

[280] Otter, D. W., Medina, J. R., and Kalita, J. K. �A Survey of the Usages of

Deep Learning for Natural Language Processing�. In: IEEE Transactions

on Neural Networks and Learning Systems 32.2 (2020), pp. 604�624.

[281] Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Ho�mann,

T. C., Mulrow, C. D., Shamseer, L., Tetzla�, J. M., Akl, E. A., Brennan,

S. E., et al. �The PRISMA 2020 Statement: An Updated Guideline for

Reporting Systematic Reviews�. In: BMJ 372 (2021).

299

https://chatgpt.com
https://chatgpt.com

Bibliography

[282] Paleyes, A., Urma, R.-G., and Lawrence, N. D. �Challenges in Deploy-

ing Machine Learning: a Survey of Case Studies�. In: ACM Computing

Surveys 55.6 (2022), pp. 1�29.

[283] Park, D., Sachar, S., Diakopoulos, N., and Elmqvist, N. �Supporting

Comment Moderators in Identifying High Quality Online News Com-

ments�. In: Proceedings of the 2016 CHI Conference on Human Factors

in Computing Systems. 2016, pp. 1114�1125.

[284] Patterns Greensoftware Foundation. Use energy e�cient AI/ML models.

Accessed May 5, 2024. url: https://patterns.greensoftware.found

ation/catalog/ai/energy-efficent-models.

[285] Pavlopoulos, J., Malakasiotis, P., and Androutsopoulos, I. �Deep Learn-

ing for User Comment Moderation�. In: Proceedings of the First Workshop

on Abusive Language Online. 2017, pp. 25�35.

[286] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-

derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and

Duchesnay, E. �Scikit-learn: Machine Learning in Python�. In: Journal

of Machine Learning Research 12 (2011), pp. 2825�2830.

[287] Pennington, J., Socher, R., and Manning, C. D. �Glove: Global Vec-

tors for Word Representation�. In: Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP). 2014,

pp. 1532�1543.

[288] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K.,

and Zettlemoyer, L. �Deep Contextualized Word Representations�. In:

Proceedings of the 2018 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Tech-

nologies. Vol. 1. 2018, pp. 2227�2237.

[289] Platt, J. �Probabilistic Outputs for Support Vector Machines and Com-

parisons to Regularized Likelihood Methods�. In: Advances in Large Mar-

gin Classi�ers 10.3 (1999), pp. 61�74.

[290] Porter, R., Theiler, J., and Hush, D. �Interactive Machine Learning in

Data Exploitation�. In: Computing in Science & Engineering 15.5 (2013),

pp. 12�20.

[291] Poursabzi-Sangdeh, F., Boyd-Graber, J., Findlater, L., and Seppi, K.

�Alto: Active Learning with Topic Overviews for Speeding Label Induc-

tion and Document Labeling�. In: Proceedings of the 54th Annual Meeting

300

https://patterns.greensoftware.foundation/catalog/ai/energy-efficent-models
https://patterns.greensoftware.foundation/catalog/ai/energy-efficent-models

Bibliography

of the Association for Computational Linguistics. Vol. 1. 2016, pp. 1158�

1169.

[292] Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu,

M.-L., Chen, S.-C., and Iyengar, S. S. �A Survey on Deep Learning:

Algorithms, Techniques, and Applications�. In: ACM Computing Surveys

(CSUR) 51.5 (2018), pp. 1�36.

[293] Prabhu, A., Dognin, C., and Singh, M. �Sampling Bias in Deep Ac-

tive Classi�cation: An Empirical Study�. In: Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP). 2019, pp. 4058�4068.

[294] Preuveneers, D., Tsingenopoulos, I., and Joosen, W. �Resource Usage

and Performance Trade-o�s for Machine Learning Models In Smart En-

vironments�. In: Sensors 20.4 (2020), p. 1176.

[295] Pronin, E. �Perception and Misperception of Bias in Human Judgment�.

In: Trends in Cognitive Sciences 11.1 (2007), pp. 37�43.

[296] Qian, J., Bethke, A., Liu, Y., Belding, E., and Wang, W. Y. �A Bench-

mark Dataset for Learning to Intervene in Online Hate Speech�. In: Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP). 2019, pp. 4757�4766.

[297] Quandt, T. �Dark Participation�. In: Media and Communication 6.4

(2018), pp. 36�48.

[298] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever,

I. �Language Models are Unsupervised Multitask Learners�. In: OpenAI

Blog 1.8 (2019), p. 9.

[299] Rahm, E. and Do, H. H. �Data Cleaning: Problems and Current Ap-

proaches�. In: IEEE Data Engineering Bulletin 23.4 (2000), pp. 3�13.

[300] Rahman, M. S., Khomh, F., Hamidi, A., Cheng, J., Antoniol, G., and

Washizaki, H. �Machine Learning Application Development: Practition-

ers' Insights�. In: Software Quality Journal 31.4 (2023), pp. 1065�1119.

[301] Raj, C., Agarwal, A., Bharathy, G., Narayan, B., and Prasad, M. �Cy-

berbullying Detection: Hybrid Models Based on Machine Learning and

Natural Language Processing Techniques�. In: Electronics 10.22 (2021),

p. 2810.

301

Bibliography

[302] Rajput, G., Punn, N. S., Sonbhadra, S. K., and Agarwal, S. �Hate Speech

Detection Using Static BERT Embeddings�. In: Proceedings of the 9th

International Conference of Big Data Analytics. 2021, pp. 67�77.

[303] Ramaswamy, H. G., Tewari, A., and Agarwal, S. �Consistent Algorithms

for Multiclass Classi�cation with an Abstain Option�. In: Electronic Jour-

nal of Statistics 12.1 (2018), pp. 530�554.

[304] Ramponi, A. and Tonelli, S. �Features or Spurious Artifacts? Data-

centric Baselines for Fair and Robust Hate Speech Detection�. In: Pro-

ceedings of the 2022 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technolo-

gies. ACL. 2022, pp. 3027�3040.

[305] Rattigan, M. J., Maier, M., and Jensen, D. �Exploiting Network Struc-

ture for Active Inference in Collective Classi�cation�. In: Seventh IEEE

International Conference on Data Mining Workshops (ICDMW). IEEE.

2007, pp. 429�434.

[306] Ravitch, M. M. �Subjectivity in Decision Making: Common Problems

and Limitations�. In: World Journal of Surgery 13 (1989), pp. 281�286.

[307] Reimer, J., Häring, M., Loosen, W., Maalej, W., and Merten, L. �Con-

tent Analyses of User Comments in Journalism: A Systematic Literature

Review Spanning Communication Studies and Computer Science�. In:

Digital Journalism 11.7 (2023), pp. 1328�1352.

[308] Reimers, N. and Gurevych, I. �Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks�. In: Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing and the 9th In-

ternational Joint Conference on Natural Language Processing (EMNLP-

IJCNLP). 2019, pp. 3982�3992.

[309] Ribeiro, M. T., Singh, S., and Guestrin, C. �"Why Should I Trust you?"

Explaining the Predictions of any Classi�er�. In: Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. 2016, pp. 1135�1144.

[310] Riehle, D. M., Niemann, M., Brunk, J., Assenmacher, D., Trautmann, H.,

and Becker, J. �Building an Integrated Comment Moderation System�

Towards a Semi-automatic Moderation Tool�. In: International Confer-

ence on Human-Computer Interaction. Springer. 2020, pp. 71�86.

[311] Rizos, G., Papadopoulos, S., and Kompatsiaris, Y. �Predicting News Pop-

ularity by Mining Online Discussions�. In: Proceedings of the 25th Inter-

national Conference Companion on World Wide Web. 2016, pp. 737�742.

302

Bibliography

[312] Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller,

J., and Schmidt, L. �A Meta-analysis of Over�tting in Machine Learning�.

In: Advances in Neural Information Processing Systems 32 (2019).

[313] Roetzel, P. G. �Information Overload in the Information Age: A Review

of the Literature from Business Administration, Business Psychology,

and Related Disciplines with a Bibliometric Approach and Framework

Development�. In: Business Research 12.2 (2019), pp. 479�522.

[314] Ross, B., Rist, M., Carbonell, G., Cabrera, B., Kurowsky, N., and Wo-

jatzki, M. �Measuring the Reliability of Hate Speech Annotations: The

Case of the European Refugee Crisis�. In: Proceedings of NLP4CMC III:

3rd Workshop on Natural Language Processing for Computer-Mediated

Communication. Ed. by M. Beiÿwenger, M. Wojatzki, and T. Zesch. 2016,

pp. 6�9.

[315] Roy, S., Harshvardhan, A., Mukherjee, A., and Saha, P. �Probing LLMs

for Hate Speech Detection: Strengths and Vulnerabilities�. In: Findings

of the Association for Computational Linguistics: EMNLP 2023. 2023,

pp. 6116�6128.

[316] Ruder, S. �An Overview of Gradient Descent Optimization Algorithms�.

In: arXiv preprint arXiv:1609.04747 (2016).

[317] Rudin, C. and Wagsta�, K. L. �Machine Learning for Science and Soci-

ety�. In: Machine Learning 95.1 (2014), pp. 1�9.

[318] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. �Learning Rep-

resentations by Back-propagating Errors�. In: Nature 323.6088 (1986),

pp. 533�536.

[319] Sacha, D., Sedlmair, M., Zhang, L., Lee, J. A., Weiskopf, D., North, S.,

and Keim, D. �Human-centered Machine Learning Through Interactive

Visualization�. In: ESANN. 2016.

[320] Sacha, D., Senaratne, H., Kwon, B. C., Ellis, G., and Keim, D. A. �The

Role of Uncertainty, Awareness, and Trust in Visual Analytics�. In: IEEE

Transactions on Visualization and Computer Graphics 22.1 (2015), pp. 240�

249.

[321] Sacha, D., Sto�el, A., Sto�el, F., Kwon, B. C., Ellis, G., and Keim, D. A.

�Knowledge Generation Model for Visual Analytics�. In: IEEE Transac-

tions on Visualization and Computer Graphics 20.12 (2014), pp. 1604�

1613.

303

Bibliography

[322] Salton, G., Wong, A., and Yang, C.-S. �A Vector Space Model for Auto-

matic Indexing�. In: Communications of the ACM 18.11 (1975), pp. 613�

620.

[323] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. �DistilBERT, a Dis-

tilled Version of BERT: Smaller, Faster, Cheaper and Lighter�. In: arXiv

preprint arXiv:1910.01108 (2019).

[324] Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B. �Finding a "Knee-

dle" in a Haystack: Detecting Knee Points in System Behavior�. In: 2011

31st International Conference on Distributed Computing Systems Work-

shops. IEEE. 2011, pp. 166�171.

[325] Sche�er, T., Decomain, C., and Wrobel, S. �Active Hidden Markov Mod-

els for Information Extraction�. In: International Symposium on Intelli-

gent Data Analysis. Springer. 2001, pp. 309�318.

[326] Schick, T. and Schütze, H. �Exploiting Cloze-Questions for Few-Shot

Text Classi�cation and Natural Language Inference�. In: Proceedings of

the 16th Conference of the European Chapter of the Association for Com-

putational Linguistics: Main Volume. 2021, pp. 255�269.

[327] Schmidt, A. and Wiegand, M. �A Survey on Hate Speech Detection Using

Natural Language Processing�. In: Proceedings of the Fifth International

Workshop on Natural Language Processing for Social Media. 2017, pp. 1�

10.

[328] Seifert, C. and Granitzer, M. �User-based Active Learning�. In: 2010

IEEE International Conference on Data Mining Workshops. IEEE. 2010,

pp. 418�425.

[329] Seifert, C. and Lex, E. �A Novel Visualization Approach for Data-mining-

related Classi�cation�. In: 2009 13th International Conference Informa-

tion Visualisation. IEEE. 2009, pp. 490�495.

[330] Semberecki, P. and Maciejewski, H. �Deep Learning Methods for Subject

Text Classi�cation of Articles�. In: 2017 Federated Conference on Com-

puter Science and Information Systems (FedCSIS). IEEE. 2017, pp. 357�

360.

[331] Sengupta, S., Chakraborti, T., Sreedharan, S., Vadlamudi, S. G., and

Kambhampati, S. �Radar�A Proactive Decision Support System for

Human-in-the-Loop Planning�. In: 2017 AAAI Fall Symposium Series.

2017.

304

Bibliography

[332] Settles, B. �Active Learning Literature Survey�. In: Science 10.3 (1995),

pp. 237�304.

[333] Settles, B. �From Theories to Queries: Active Learning in Practice�. In:

Active Learning and Experimental Design Workshop In Conjunction with

AISTATS 2010. PMLR. 2011, pp. 1�18.

[334] Shannon, C. E. �A Mathematical Theory of Communication�. In: The

Bell System Technical Journal 27.3 (1948), pp. 379�423.

[335] Sheng, V. S., Provost, F., and Ipeirotis, P. G. �Get Another Label? Im-

proving Data Quality and Data Mining Using Multiple, Noisy Labelers�.

In: Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 2008, pp. 614�622.

[336] Sheng, V. S. and Zhang, J. �Machine Learning with Crowdsourcing: A

Brief Summary of the Past Research and Future Directions�. In: Proceed-

ings of the AAAI Conference on Arti�cial Intelligence. Vol. 33. 1. 2019,

pp. 9837�9843.

[337] Shneiderman, B. �The Eyes have it: A Task by Data Type Taxonomy for

Information Visualizations�. In: The Craft of Information Visualization.

Elsevier, 2003, pp. 364�371.

[338] Shu, K., Sliva, A., Wang, S., Tang, J., and Liu, H. �Fake News Detec-

tion on Social Media: A Data Mining Perspective�. In: ACM SIGKDD

Explorations Newsletter 19.1 (2017), pp. 22�36.

[339] Siau, K. and Wang, W. �Building Trust in Arti�cial Intelligence, Machine

Learning, and Robotics�. In: Cutter Business Technology Journal 31.2

(2018), pp. 47�53.

[340] Siddhant, A. and Lipton, Z. C. �Deep Bayesian Active Learning for Nat-

ural Language Processing: Results of a Large-Scale Empirical Study�.

In: Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing. 2018, pp. 2904�2909.

[341] Sigurbergsson, G. I. and Derczynski, L. �O�ensive Language and Hate

Speech Detection for Danish�. In: Proceedings of the 12th Language Re-

sources and Evaluation Conference. 2020, pp. 3498�3508.

[342] Silva-Rodríguez, V., Nava-Muñoz, S. E., Castro, L. A., Martínez-Pérez,

F. E., Pérez-González, H. G., and Torres-Reyes, F. �Classifying Design-

level Requirements using Machine Learning for a Recommender of Inter-

action Design Patterns�. In: IET Software 14.5 (2020), pp. 544�552.

305

Bibliography

[343] Slack, D., Hilgard, A., Singh, S., and Lakkaraju, H. �Reliable Post Hoc

Explanations: Modeling Uncertainty in Explainability�. In: Advances in

Neural Information Processing Systems 34 (2021), pp. 9391�9404.

[344] Snow, R., O'connor, B., Jurafsky, D., and Ng, A. Y. �Cheap and Fast

� But is it Good? Evaluating Non-Expert Annotations for Natural Lan-

guage Tasks�. In: Proceedings of the 2008 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP). 2008, pp. 254�263.

[345] Sokolova, M. and Lapalme, G. �A Systematic Analysis of Performance

Measures for Classi�cation Tasks�. In: Information Processing & Man-

agement 45.4 (2009), pp. 427�437.

[346] Sparck Jones, K. �A Statistical Interpretation of Term Speci�city and

its Application in Retrieval�. In: Journal of Documentation 28.1 (1972),

pp. 11�21.

[347] Sperrle, F., El-Assady, M., Guo, G., Borgo, R., Chau, D. H., Endert,

A., and Keim, D. �A Survey of Human-Centered Evaluations in Human-

Centered Machine Learning�. In: Computer Graphics Forum. Vol. 40. 3.

Wiley Online Library. 2021, pp. 543�568.

[348] Springer, N., Engelmann, I., and Pfa�nger, C. �User Comments: Motives

and Inhibitors to Write and Read�. In: Information, Communication &

Society 18.7 (2015), pp. 798�815.

[349] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhut-

dinov, R. �Dropout: A Simple Way to Prevent Neural Networks from

Over�tting�. In: The Journal of Machine Learning Research 15.1 (2014),

pp. 1929�1958.

[350] Stanik, C., Haering, M., and Maalej, W. �Classifying Multilingual User

Feedback using Traditional Machine Learning and Deep Learning�. In:

2019 IEEE 27th International Requirements Engineering Conference Work-

shops (REW). IEEE. 2019, pp. 220�226.

[351] Stanik, C. and Maalej, W. �Requirements Intelligence with OpenReq

Analytics�. In: 2019 IEEE 27th International Requirements Engineering

Conference (RE). IEEE. 2019, pp. 482�483.

[352] Stanik, C., Montgomery, L., Martens, D., Fucci, D., and Maalej, W. �A

Simple NLP-based Approach to Support Onboarding and Retention in

Open Source Communities�. In: 2018 IEEE International Conference on

Software Maintenance and Evolution (ICSME). IEEE. 2018, pp. 172�182.

306

Bibliography

[353] Strubell, E., Ganesh, A., and McCallum, A. �Energy and Policy Consid-

erations for Deep Learning in NLP�. In: Proceedings of the 57th An-

nual Meeting of the Association for Computational Linguistics. 2019,

pp. 3645�3650.

[354] Sun, C., Qiu, X., Xu, Y., and Huang, X. �How to Fine-tune Bert for

Text Classi�cation?� In: China National Conference on Chinese Compu-

tational Linguistics. Springer. 2019, pp. 194�206.

[355] Tabassum, A. and Patil, R. R. �A Survey on Text Pre-processing & Fea-

ture Extraction Techniques in Natural Language Processing�. In: Inter-

national Research Journal of Engineering and Technology (IRJET) 7.06

(2020), pp. 4864�4867.

[356] Tambon, F., Laberge, G., An, L., Nikanjam, A., Mindom, P. S. N., Pe-

quignot, Y., Khomh, F., Antoniol, G., Merlo, E., and Laviolette, F. �How

to Certify Machine Learning Based Safety-critical Systems? A System-

atic Literature Review�. In: Automated Software Engineering 29.2 (2022),

p. 38.

[357] Tang, X., Yang, K., Wang, H., Wu, J., Qin, Y., Yu, W., and Cao,

D. �Prediction-uncertainty-aware Decision-making for Autonomous Ve-

hicles�. In: IEEE Transactions on Intelligent Vehicles 7.4 (2022), pp. 849�

862.

[358] Tennant, G. Six Sigma: SPC and TQM in Manufacturing and Services.

Routledge. 2017.

[359] Tian, Z., Cui, L., Liang, J., and Yu, S. �A Comprehensive Survey on

Poisoning Attacks and Countermeasures in Machine Learning�. In: ACM

Computing Surveys (CSUR) 55.8 (2022), pp. 1�35.

[360] Titterington, D. M. �Bayesian Methods for Neural Networks and Related

Models�. In: Statistical Science (2004), pp. 128�139.

[361] Tolia, N., Andersen, D. G., and Satyanarayanan, M. �Quantifying In-

teractive User Experience on Thin Clients�. In: Computer 39.3 (2006),

pp. 46�52.

[362] Tomanek, K. and Morik, K. �Inspecting Sample Reusability for Active

Learning�. In: Active Learning and Experimental Design Workshop In

Conjunction with AISTATS 2010. JMLR Workshop and Conference Pro-

ceedings. 2011, pp. 169�181.

307

Bibliography

[363] Tran, D., Liu, J. Z., Dusenberry, M. W., Phan, D., Collier, M., Ren, J.,

Han, K., Wang, Z., Mariet, Z. E., Hu, H., Band, N., Rudner, T. G. J.,

Nado, Z., Amersfoort, J. van, Kirsch, A., Jenatton, R., Thain, N., Buch-

anan, E. K., Murphy, K. P., Sculley, D., Gal, Y., Ghahramani, Z., Snoek,

J., and Lakshminarayanan, B. �Plex: Towards Reliability using Pretrained

Large Model Extensions�. In: First Workshop on Pre-training: Perspec-

tives, Pitfalls, and Paths Forward at ICML 2022. 2022.

[364] Trivedi, S. K. and Dey, S. �An Enhanced Genetic Programming Ap-

proach for Detecting Unsolicited Emails�. In: 2013 IEEE 16th Inter-

national Conference on Computational Science and Engineering. IEEE.

2013, pp. 1153�1160.

[365] Tropmann-Frick, M. and Andersen, J. S. �Towards Visual Data Science

- An Exploration�. In: Human Interaction and Emerging Technologies:

Proceedings of the 1st International Conference on Human Interaction

and Emerging Technologies (IHIET). Springer. 2019, pp. 371�377.

[366] Tsiakas, K. and Murray-Rust, D. �Using Human-in-the-Loop and Ex-

plainable AI to Envisage new Future Work Practices�. In: Proceedings of

the 15th International Conference on PErvasive Technologies Related to

Assistive Environments. 2022, pp. 588�594.

[367] Van Der Sype, Y. S. and Maalej, W. �On Lawful Disclosure of Personal

User Data: What Should App Developers do?� In: 2014 IEEE 7th In-

ternational Workshop on Requirements Engineering and Law (RELAW).

IEEE. 2014, pp. 25�34.

[368] Van Oordt, S. and Guzman, E. �On the Role of User Feedback in Software

Evolution: a Practitioners' Perspective�. In: 2021 IEEE 29th Interna-

tional Requirements Engineering Conference (RE). IEEE. 2021, pp. 221�

232.

[369] Vapnik, V. �Principles of Risk Minimization for Learning Theory�. In:

Advances in Neural Information Processing Systems 4 (1991).

[370] Varshney, K. R. �Engineering Safety in Machine Learning�. In: 2016 In-

formation Theory and Applications Workshop (ITA). IEEE. 2016, pp. 1�

5.

[371] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A. N., Kaiser, �., and Polosukhin, I. �Attention is All you Need�. In:

Advances in Neural Information Processing Systems 30 (2017).

308

Bibliography

[372] Vazhentsev, A., Kuzmin, G., Shelmanov, A., Tsvigun, A., Tsymbalov,

E., Fedyanin, K., Panov, M., Panchenko, A., Gusev, G., Burtsev, M.,

Avetisian, M., and Zhukov, L. �Uncertainty Estimation of Transformer

Predictions for Misclassi�cation Detection�. In: Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics (ACL).

Vol. 1. 2022, pp. 8237�8252.

[373] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Ben-

gio, Y. �Graph Attention Networks�. In: 6th International Conference on

Learning Representations (ICLR). 2018.

[374] Venanzi, M., Guiver, J., Kazai, G., Kohli, P., and Shokouhi, M. �Commu-

nity-based Bayesian Aggregation Models for Crowdsourcing�. In: Pro-

ceedings of the 23rd International Conference on World Wide Web. 2014,

pp. 155�164.

[375] Vijayarani, S, Ilamathi, J, and Nithya, M. �Preprocessing Techniques

for Text Mining-an Overview�. In: International Journal of Computer

Science & Communication Networks 5.1 (2015), pp. 7�16.

[376] Vogelsang, A. and Borg, M. �Requirements Engineering for Machine

Learning: Perspectives from Data Scientists�. In: 2019 IEEE 27th Inter-

national Requirements Engineering Conference Workshops (REW). IEEE.

2019, pp. 245�251.

[377] Wanas, N., Magdy, A., and Ashour, H. �Using Automatic Keyword Ex-

traction to Detect O�-topic Posts in Online Discussion Boards�. In: Pro-

ceedings of Content Analysis for Web 2 (2009).

[378] Wang, R. Y. and Strong, D. M. �Beyond Accuracy: What Data Qual-

ity Means to Data Consumers�. In: Journal of Management Information

Systems 12.4 (1996), pp. 5�33.

[379] Wang, R., Li, Z., Cao, J., Chen, T., and Wang, L. �Convolutional Re-

current Neural Networks for Text Classi�cation�. In: 2019 International

Joint Conference on Neural Networks (IJCNN). IEEE. 2019, pp. 1�6.

[380] Wang, W., Zhang, M., Chen, G., Jagadish, H., Ooi, B. C., and Tan,

K.-L. �Database Meets Deep Learning: Challenges and Opportunities�.

In: ACM SIGMOD Record 45.2 (2016), pp. 17�22.

[381] Wang, Z. J., Choi, D., Xu, S., and Yang, D. �Putting Humans in the

Natural Language Processing Loop: A Survey�. In: Proceedings of the

First Workshop on Bridging Human�Computer Interaction and Natural

Language Processing. 2021, pp. 47�52.

309

Bibliography

[382] Ware, M., Frank, E., Holmes, G., Hall, M., and Witten, I. H. �Interac-

tive Machine Learning: Letting Users Build Classi�ers�. In: International

Journal of Human-Computer Studies 55.3 (2001), pp. 281�292.

[383] Waseem, Z. �Are you a Racist or am I Seeing Things? Annotator In�u-

ence on Hate Speech Detection on Twitter�. In: Proceedings of the First

Workshop on NLP and Computational Social Science. 2016, pp. 138�142.

[384] Washizaki, H., Khomh, F., Guéhéneuc, Y.-G., Takeuchi, H., Natori, N.,

Doi, T., and Okuda, S. �Software-engineering Design Patterns for Ma-

chine Learning Applications�. In: Computer 55.3 (2022), pp. 30�39.

[385] Washizaki, H., Uchida, H., Khomh, F., and Guéhéneuc, Y.-G. �Studying

Software Engineering Patterns for Designing Machine Learning Systems�.

In: 2019 10th International Workshop on Empirical Software Engineering

in Practice (IWESEP). IEEE. 2019, pp. 49�495.

[386] Watts, S., Shankaranarayanan, G., and Even, A. �Data Quality Assess-

ment in Context: A Cognitive Perspective�. In: Decision Support Systems

48.1 (2009), pp. 202�211.

[387] Whang, S. E. and Lee, J.-G. �Data Collection and Quality Challenges for

Deep Learning�. In: Proceedings of the VLDB Endowment 13.12 (2020),

pp. 3429�3432.

[388] Wiechmann, M., Yimam, S. M., and Biemann, C. �ActiveAnno: General-

purpose Document-level Annotation Tool with Active Learning Integra-

tion�. In: Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies: Demonstrations. 2021, pp. 99�105.

[389] Wiethof, C. and Bittner, E. A. �Hybrid Intelligence�Combining the Hu-

man in the Loop with the Computer in the Loop: A Systematic Liter-

ature Review�. In: Proceedings of the 42nd International Conference on

Information Systems (ICIS). Association for Information Systems. 2021.

[390] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,

Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S.,

Platen, P. von, Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger,

S., Drame, M., Lhoest, Q., and Rush, A. M. �Transformers: State-of-

the-Art Natural Language Processing�. In: Proceedings of the 2020 Con-

ference on Empirical Methods in Natural Language Processing: System

Demonstrations. 2020, pp. 38�45.

310

Bibliography

[391] Wondimu, N. A., Buche, C., and Visser, U. �Interactive Machine Learn-

ing: A State of the Art Review�. In: arXiv preprint arXiv:2207.06196

(2022).

[392] Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., and He, L. �A Survey of

Human-in-the-Loop for Machine Learning�. In: Future Generation Com-

puter Systems (2022).

[393] Xiao, Y., Beschastnikh, I., Rosenblum, D. S., Sun, C., Elbaum, S., Lin,

Y., and Dong, J. S. �Self-Checking Deep Neural Networks in Deploy-

ment�. In: 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE). IEEE. 2021, pp. 372�384.

[394] Xiong, H., Wu, J., and Liu, L. �Classi�cation with Classoverlapping:

A Systematic Study�. In: 1st International Conference on E-Business

Intelligence (ICEBI). Atlantis Press. 2010, pp. 303�309.

[395] Yan, Y., Chen, M., Shyu, M.-L., and Chen, S.-C. �Deep Learning for Im-

balanced Multimedia Data Classi�cation�. In: 2015 IEEE International

Symposium on Multimedia (ISM). IEEE. 2015, pp. 483�488.

[396] Yang, Y. and Liu, X. �A Re-examination of Text Categorization Meth-

ods�. In: Proceedings of the 22nd Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval. 1999,

pp. 42�49.

[397] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and

Le, Q. V. �XLNet: Generalized Autoregressive Pretraining for Language

Understanding�. In: Advances in Neural Information Processing Systems.

Vol. 32. Curran Associates. 2019.

[398] Ye, J., Gao, J., Li, Q., Xu, H., Feng, J., Wu, Z., Yu, T., and Kong,

L. �ZeroGen: E�cient Zero-shot Learning via Dataset Generation�. In:

(2022), pp. 11653�11669.

[399] Yim, J., Joo, D., Bae, J., and Kim, J. �A Gift from Knowledge Distilla-

tion: Fast Optimization, Network Minimization and Transfer Learning�.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2017, pp. 4133�4141.

[400] Yu, Y., Si, X., Hu, C., and Zhang, J. �A Review of Recurrent Neural Net-

works: LSTM Cells and Network Architectures�. In: Neural Computation

31.7 (2019), pp. 1235�1270.

311

Bibliography

[401] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I.

�Spark: Cluster Computing with Working Sets�. In: 2nd USENIX Work-

shop on Hot Topics in Cloud Computing (HotCloud'10). Vol. 10. USENIX

Association. 2010, pp. 95�105.

[402] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A.,

Meng, X., Rosen, J., Venkataraman, S., Franklin, M. J., Ghodsi, A.,

Gonzalez, J., Shenker, S., and Stoica, I. �Apache Spark: A Uni�ed Engine

for Big Data Processing�. In: Communications of the ACM 59.11 (2016),

pp. 56�65.

[403] Zanzotto, F. M. �Human-in-the-Loop Arti�cial Intelligence�. In: Journal

of Arti�cial Intelligence Research 64 (2019), pp. 243�252.

[404] Zhao, X., Huang, W., Huang, X., Robu, V., and Flynn, D. �BayLIME:

Bayesian Local Interpretable Model-agnostic Explanations�. In: Uncer-

tainty in Arti�cial Intelligence. PMLR. 2021, pp. 887�896.

[405] Zhou, L., Pan, S., Wang, J., and Vasilakos, A. V. �Machine Learning

on Big Data: Opportunities and Challenges�. In: Neurocomputing 237

(2017), pp. 350�361.

[406] Zhu, J. and Ma, M. �Uncertainty-based Active Learning with Instability

Estimation for Text Classi�cation�. In: ACM Transactions on Speech and

Language Processing (TSLP) 8.4 (2012), pp. 1�21.

[407] Zhu, J., Wang, H., Yao, T., and Tsou, B. K. �Active Learning With Sam-

pling by Uncertainty and Density for Word Sense Disambiguation and

Text Classi�cation�. In: Proceedings of the 22nd International Conference

on Computational Linguistics (COLING). 2008, pp. 1137�1144.

312

Eidesstattliche Erklärung:

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift

selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel

benutzt habe.

Hamburg, den

Jakob Smedegaard Andersen

	1 Introduction
	1.1 Problem Statement
	1.2 Objectives and Contributions
	1.3 Scope
	1.4 Structure

	I Problem
	2 Foundations
	2.1 Text Classification
	2.1.1 Overview
	2.1.2 Problem Specification
	2.1.3 Text Classification Pipeline
	2.1.4 Data Cleaning
	2.1.5 Feature Extraction
	2.1.6 Classification Models
	2.1.7 Classifier Validation

	2.2 Prediction Uncertainty
	2.2.1 Motivation
	2.2.2 Overview
	2.2.3 Sources of Uncertainty
	2.2.4 Types of Uncertainty
	2.2.5 Uncertainty Estimation
	2.2.6 Uncertainty Quantification

	2.3 Conclusion

	3 Applicability Challenges of ML-based Text Classifiers
	3.1 Examples of Real-world Use-cases
	3.1.1 Feedback and Review Classification
	3.1.2 Issues Ticket Classification
	3.1.3 Hate Speech and Offensive Language Detection
	3.1.4 Sentiment Analysis
	3.1.5 Topic Classification

	3.2 Classification of Applicability Challenges in ML-based Text Classification
	3.2.1 Related Surveys
	3.2.2 Data-centric Challenges
	3.2.3 Model-centric Challenges
	3.2.4 Human-centric Challenges
	3.2.5 Applicability-centric Challenges

	3.3 Conclusion

	II Solution
	4 Human-in-the-Loop Machine Learning
	4.1 Motivation
	4.2 Scope
	4.3 Definition
	4.4 Collaboration Mechanisms
	4.4.1 Information Visualization
	4.4.2 Explanations
	4.4.3 Uncertainty Estimations

	4.5 Design Patterns for HiL Systems
	4.5.1 Research Methodology
	4.5.2 Study Findings
	4.5.3 Training Patterns
	4.5.4 Operational Patterns

	4.6 Discussion
	4.7 Conclusion

	5 Computational-aware Active Moderation
	5.1 Motivation
	5.2 Conceptual Framework
	5.2.1 Problem Statement
	5.2.2 Lightweight Text Classifiers
	5.2.3 Text Features
	5.2.4 Uncertainty Assessment

	5.3 Study Design
	5.3.1 Research Questions
	5.3.2 Benchmark Criteria
	5.3.3 Datasets
	5.3.4 Implementation Details

	5.4 Results
	5.4.1 Quality of Predicted Probabilities
	5.4.2 Classifier Performance Under Stepwise Removal of Uncertain Instances
	5.4.3 Semi-automated Classification Performance
	5.4.4 Runtime Investigation and Scalability

	5.5 Discussion
	5.5.1 Implications
	5.5.2 Field of Application
	5.5.3 Threats to Validity
	5.5.4 Alternative Approaches from Related Work

	5.6 Conclusion

	6 Human-resource-aware Active Moderation
	6.1 Motivation
	6.2 Conceptual Framework
	6.2.1 Problem Statement
	6.2.2 Human-resource-aware Active Moderation as a Deployment Pattern
	6.2.3 Saturation-based Moderation Strategy
	6.2.4 Uncertainty Assessment

	6.3 Study Design
	6.3.1 Research Questions
	6.3.2 Benchmark Criteria
	6.3.3 Datasets
	6.3.4 Implementation Details

	6.4 Results
	6.4.1 Impact of Uncertainty Modeling on the Classification Performance
	6.4.2 Efficiency of Misclassification Detection
	6.4.3 Saturation-based Moderation Performance
	6.4.4 Effect of Human Noise

	6.5 Discussion
	6.5.1 Implications
	6.5.2 Field of Application
	6.5.3 Threats to Validity
	6.5.4 Alternative Approaches from Related Work

	6.6 Conclusion

	7 Low-latency Active Learning via Proxy-based Data Sampling
	7.1 Motivation
	7.2 Conceptual Framework
	7.2.1 Problem Statement
	7.2.2 Data Selection via a Low-budget Proxy

	7.3 Proxy-based Active Learning for Text Classification
	7.3.1 Proxy Candidates
	7.3.2 BERT Consumer
	7.3.3 Selection Strategies

	7.4 Study Design
	7.4.1 Research Questions
	7.4.2 Benchmark Criteria
	7.4.3 Datasets
	7.4.4 Implementation Details

	7.5 Results
	7.5.1 Classification Performance
	7.5.2 Comparison with Traditional Active Learning
	7.5.3 Run-time Investigation
	7.5.4 Sampled Dataset Quality

	7.6 Discussion
	7.6.1 Implications
	7.6.2 Field of Application
	7.6.3 Threats to Validity
	7.6.4 Alternative Approaches from Related Work

	7.7 Conclusion

	8 Explainable Uncertainty Estimation for Text Classification
	8.1 Motivation
	8.2 Conceptual Framework
	8.2.1 Problem Statement
	8.2.2 Uncertainty Modeling
	8.2.3 Decomposition of Word Relevance and Uncertainty using RNNs
	8.2.4 Visualizing Attributions

	8.3 Study Design
	8.3.1 Research Questions
	8.3.2 Evaluation Criteria
	8.3.3 Datasets
	8.3.4 Implementation Details
	8.3.5 Participants
	8.3.6 Procedure of the Human Evaluation

	8.4 Experimental Evaluation Results
	8.4.1 Sequence Decomposition
	8.4.2 Relevant and Uncertain Words
	8.4.3 Text Explanations

	8.5 Human Evaluation Results
	8.5.1 Explaining Relevant Words
	8.5.2 Explaining Uncertainties
	8.5.3 Questionnaire

	8.6 Discussion
	8.6.1 Implications
	8.6.2 Field of Application
	8.6.3 Threats to Validity
	8.6.4 Alternative Approaches from Related Work

	8.7 Conclusion

	III Synopsis
	9 REM - A HiL Tool for the Efficient Moderation of User Comments
	9.1 Motivation
	9.2 System Description
	9.2.1 Usage of REM in the Domain of Online Journalism
	9.2.2 HiL Components
	9.2.3 HiL Workflow

	9.3 Requirements
	9.3.1 Functional Requirements
	9.3.2 Non-functional Requirements

	9.4 Architecture
	9.4.1 Components
	9.4.2 Real-time ML Pipeline
	9.4.3 Domain-driven Data Model
	9.4.4 Process View

	9.5 System Implementation
	9.5.1 Context-view
	9.5.2 Moderation-view
	9.5.3 Control-view

	9.6 Active Moderation Experiment
	9.7 Comparing Explanations from BayLUXT and ChatGPT
	9.7.1 Word Relevance
	9.7.2 Word Uncertainties
	9.7.3 Explaining Explanations
	9.7.4 Discussion

	9.8 Related Tools from the Literature
	9.9 Discussion
	9.10 Conclusion

	10 Conclusion
	10.1 Summary of the Contributions
	10.2 Threats to Validity
	10.3 Further Work

	IV Appendices
	A Benchmark Results
	A.1 Computational-aware Active Moderation
	A.2 Human-resource-aware Active Moderation

	B Local Explanations
	C ChatGPT Prompts
	C.1 Explaining Word Relevance
	C.2 Explaining Word Uncertainty

	List of Figures
	List of Tables
	List of Own Publications
	Bibliography

