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Abstract

Modeling Nonlinear Optical Response in 2D Materials from Nonequilibrium

Quantum Dynamics

by

Wenwen Mao

der Fakultät für Mathematik, Informatik und Naturwissenschaften, Fachbereich

Physik

Universität Hamburg

This thesis investigates the nonlinear optical response in 2D materials through a

comprehensive examination of nonequilibriumquantumdynamicswith inhouse

developed tight binding model able to capture electron dynamics of open quan-

tum systems. The first study explores the injection of nonlinear current inmono-

layer hexagonal boron nitride under two-color linearly-polarized laser fields, un-

veiling the breakdown of time-reversal symmetry and the emergence of ballistic

current by solving time-dependent Schrödinger equation. In the second investi-

gation, terahertz-induced high-order harmonic generation (HHG) and nonlinear

electric transport in graphene are scrutinized, revealing the accurate modeling

of electron dynamics through a nonequilibrium steady-state approach. Addition-

ally, the third work delves into the enhancement of HHG in graphene by mid-

infrared and terahertz fieldswith a joined theoretical and experiemntal study, at-

tributing the phenomenon to a coherent coupling betweenMIR- and THz-induced

transitions. We stress the validity of the theoretical framework developed in this

thesis in the analysis of nonlinear optical phenomena in materials, especially in

microscopic pictures and dissipative non-equilibrium analysis; opening a new

way for theoretical prediction. By synthesizing these findings, this thesis ad-

vances our understanding of nonlinear optical phenomena in 2D materials and

underscores the significance of nonequilibrium quantum dynamics in modeling

such intricate behaviors. Further extensions of this work to other low dimen-

sional phenomena in quantum materials are also highlighted in this report.
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Abstraktum

DieseDissertationuntersucht die nichtlineare optischeReaktion in 2D-Materialien

durch eine umfassende Untersuchung der Nichtgleichgewichtsquantendynamik

mit einem intern entwickelten Tight-BindingModell, das in der Lage ist, die Elek-

tronendynamik offenerQuantensysteme zu erfassen. Die erste Studie untersucht

die Injektion von nichtlinearem Strom in einschichtiges hexagonales Bornitrid

unter zweifarbigen linear polarisierten Laserfeldern und zeigt den Zusammen-

bruch der Zeitumkehrsymmetrie und die Entstehung ballistischen Stroms durch

Lösung der zeitabhängigen Schrödinger-Gleichung. Die zweite Untersuchung be-

fasst sich mit der Terahertz-induzierten Erzeugung von Harmonischen höherer

Ordnung (HHG) und dem nichtlinearen elektrischen Transport in Graphen und

zeigt die genaueModellierungder Elektronendynamikdurch einenNichtgleichgewichts-

Steady-State-Ansatz. Darüber hinaus befasst sich die dritteArbeitmit derVerbesserung

von HHG in Graphen durch mittlere Infrarot- und Terahertz-Felder mit einer

gemeinsamen theoretischen und experimentellen Studie, die das Phänomen auf

eine kohärenteKopplung zwischenMIR- undTHz-induziertenÜbergängen zurück-

führt. Wir betonen die Gültigkeit des in dieser Arbeit entwickelten theoretischen

Rahmens bei der Analyse nichtlinearer optischer Phänomene inMaterialien, ins-

besondere in mikroskopischen Theorien und dissipativer Nichtgleichgewichts-

analyse, die einen neuen Weg für theoretische Vorhersagen eröffnen. Durch die

Synthese dieser Erkenntnisse erweitert diese Arbeit unser Verständnis nichtlin-

earer optischer Phänomene in 2D-Materialien und unterstreicht die Bedeutung

der Nichtgleichgewichtsquantendynamik bei der Modellierung solch komplexer

Verhaltensweisen. Weitere Erweiterungen dieser Arbeit auf andere niederdi-

mensionale Phänomene in Quantenmaterialien werden in diesem Bericht eben-

falls hervorgehoben.
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Chapter1
INTRODUCTION

In the conventional understanding of linear optics, the response of a material to

an incident electromagnetic wave is linearly proportional to the strength of the

electric field. However, when the intensity of the incident light becomes strong

enough, the nonlinear optical response becomes significant. This regime reveals

a rich variety of phenomena, including the photoncarrier injection, phase modu-

lation, and harmonic generation. After the first observation of nonlinear optical

phenomena by Franken [1], based on recent advancements in laser technology,

groundbreaking research in the field of nonlinear optics have been driven [2–

4], have conducted in a new era of intense light generation. These developments

have paved theway for in-depth exploration of light-matter interactions in highly

nonlinear regimes both in atomic and condensedmatter phases. One of the most

captivating nonlinear optical phenomena made accessible by these advances is

High-order Harmonic Generation (HHG), a process characterized by its extreme

photon upconversion and remarkable nonlinear characteristics.

This thesis aims to provide a comprehensive overview of the nonlinear re-

sponse phenomenons including photocarrier injection and high-order harmonic

generation from a theoretical point of view linked to the microscopic modeling

of the electron dynamics in those 2D quantummaterials. Wewill explore the the-

oretical foundations of light induced time-dependent quantum dynamics evolu-

tion in solid systems, including the quantummechanical description of the light-

matter ineraction process and the role of excited electron dynamics. By investi-

gating photocarrier injection and HHG, we seek to deepen our understanding of

1



CHAPTER 1. INTRODUCTION

the nonlinear optical response of materials and unlock the potential for applica-

tions in fields such as ultrafast spectroscopy, attosecond science, and advanced

imaging techniques.

1.1 Nonlinear Optical Response

In studies of optical response theory within solid systems, the dielectric func-

tion serves as an centered concept, the dielectric function characterizes how the

material’s polarization, induced by the external field, evolves with the field’s fre-

quency and intensity. Mathematically, the dielectric function connects the mate-

rial’s polarization density to the electric field throughMaxwell’s equations, form-

ing the basis for understanding its optical properties. Linear response theory,

predicated on the assumption of weak perturbations, asserts that the induced

polarization is directly proportional to the strength of the applied field. Linear

response theory is most applicable when the perturbations are weak. In other

words, the system’s behavior is approximately linear in the vicinity of its equilib-

rium or initial state. In such cases. the system’s behavior is described by linear

susceptibility (𝜒(1)).

The electric susceptibility (𝜒(1)) describes the response of a material to an ap-

plied electric field (E). The relationship between the induced polarization (P) and

the applied electric field can be expressed as:

P(1)(t) = 𝜖0 ∫
∞

0
R(1) ⋅ E(𝑡 − 𝜏)𝑑𝜏 (1.1)

Where:

• P is the induced polarization vector,

• R(1) is the linear response function, electric susceptibility tensor, and

• E is the applied electric field vector.

Equation. (1.1) can be transformed to the frequency domain by intoducing the

Fourier trasnform of electric field:

𝐸(𝜔) = ∫
∞

−∞′
𝐸(𝑡) ⋅ 𝑒𝑖𝜔𝑡𝑑𝑡.

2



1.1. NONLINEAR OPTICAL RESPONSE

𝐸(𝑡) = 1
2𝜋 ∫

∞

−∞′
𝐸(𝜔) ⋅ 𝑒−𝑖𝜔𝑡𝑑𝜔.

By introducing above Fourier transform, we have:

P(1)(𝑡) = 𝜖0 ∫
∞

−∞

𝑑𝜔
2𝜋 ∫

∞

0
R(1)𝑒𝑖𝜔𝜏 ⋅ E(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜏

we intoduce an explicit expression for the linear susceptibility is:

𝜒(1)(𝜔; 𝜔) = ∫
∞

0
R(1)(𝜏) ⋅ 𝑒𝑖𝜔𝜏𝑑𝜏.

By noting that the equality must be maintained for each frequency 𝜔, we recover

the usual frequency domain description of linear response:

P(1)(𝜔) = 𝜖0𝜒(1)(𝜔; 𝜔) ⋅ E(𝜔) (1.2)

In nonlinear response, the relationship can be described by analogous proce-

dures. We can express the nonlinear polarization 𝑃𝑖(𝑡) as a convolution inte-

gral involving the electric field 𝐸𝑗(𝑡) and the time-dependent response function

𝜒(2)
𝑖𝑗𝑘(𝑡 − 𝑡1, 𝑡 − 𝑡2) for the second-order nonlinear process:

𝑃𝑖(𝑡) = 𝜖0

3
∑
𝑗=1

3
∑
𝑘=1

∫
𝑡

−∞
∫

𝑡

−∞
𝜒(2)

𝑖𝑗𝑘(𝑡 − 𝑡1, 𝑡 − 𝑡2)𝐸𝑗(𝑡1)𝐸𝑘(𝑡2)𝑑𝑡1𝑑𝑡2

We should make clear that the first order liner effect as one connects materi-

als properties linearly changing with applied field and should not apply in gen-

eral for describing strong non linear phenomena im materials where one has

to go beyond the description to nonlinear response theory. When considering

the time-domain response of a material to an external perturbation, one deals

frequency-dependent susceptibilities. These susceptibilities can be expressed in

terms of tensor notation and integrated over frequency to account for the mate-

rial’s response over a range of frequencies. In the frequency domain, the induced

polarization (𝑃 ) can be expressed in terms of the applied electric field (𝐸) and the

susceptibility tensor as:

𝑃𝑖(𝜔) = 𝜖0

3
∑
𝑗=1

3
∑
𝑘=1

∫ ∫ 𝜒(2)
𝑖𝑗𝑘(𝜔, 𝜔1, 𝜔2)𝐸𝑗(𝜔1)𝐸𝑘(𝜔2) 𝑑𝜔1 𝑑𝜔2
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CHAPTER 1. INTRODUCTION

Where:

• 𝑃𝑖(𝜔) is the induced polarization component at frequency 𝜔 along direction

𝑖,

• 𝜒(2)
𝑖𝑗𝑘(𝜔, 𝜔1, 𝜔2) is the frequency-dependent second-order susceptibility tensor,

• 𝐸𝑗(𝜔1) and 𝐸𝑘(𝜔2) are the components of the applied electric field at fre-

quencies 𝜔1 and 𝜔2 respectively, and

• The integral is taken over all possible frequencies.

In summary, the nonlinear response of a material to external perturbations

can be described using tensor notation, incorporating frequency or time integrals

to capture thematerial’s response over a range of frequencies or times. The high-

order susceptibility tensor (𝜒(𝑛)) plays a crucial role in characterizing this nonlin-

ear response. Frequency and Intensity-dependent absorption is a key feature of

nonlinear response and is often exploited in applications such as laser-induced

material processing.

1.2 Photocarrier Injection

Photocarrier injection is a phenomenon in semiconductor physics and optoelec-

tronicswhere photoexcited carriers (electrons andholes) are injected into a semi-

conductor material due to the absorption of photons. When light is incident on

a semiconductor material, it generates electron-hole pairs, creating an excess of

carriers within the material. If the semiconductor is part of an electronic circuit,

or if photocarriers have a mean velocity or a bias voltage is applied, the current

may be observed with a circuit. These excess carriers can contribute to the flow

of electrical current. The injected currents have complex components, includ-

ing a shif current and injection current. The injection current persists even after

the laser pulse has ended and it arises from the breaking of time-reversal sym-

metry through elliptically or circularly polarized light, as well as the breaking of

intrinsic spatial inversion symmetry. The injection current is a manifestation of

quantum interference between various excitation pathways, leading to a polar
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1.2. PHOTOCARRIER INJECTION

distribution of electrons or holes in momentum space. Shift current, also known

as displacement current, refers to a nonlinear optical response observed in ma-

terials with broken inversion symmetry when subjected to an oscillating electric

field. Shift current arises due to the displacement of charge within the material

in response to the changing electric field, rather than the flow of charge carriers

as in conventional currents.

For the photovoltaic injection in bulk systems, the second-order nonlinear op-

tical effect, as explored in [5], has garnered considerable attention for its poten-

tial in achieving highly efficient light-to-current conversion. Investigations into

shift-current, detailed in references [6–9], exemplify the significance of this phe-

nomenon.

Another noteworthy aspect of second-order nonlinear current is the ”injec-

tion current”[5, 10–13]. This current can be induced by the breaking of time-

reversal symmetry through elliptically or circularly polarized light, in addition

to the breaking of intrinsic spatial inversion symmetry. The injection current re-

sults from the population imbalance induced by quantum interference (QuI) be-

tweenvarious excitationpaths, arising from the interference betweenabsorption

pathways associated with orthogonal components of polarization. Consequently,

this leads to a polar distribution of electrons or holes in momentum space, gen-

erating a current injection that temporally aligns with optical intensity. Remark-

ably, the non-oscillating current induced by quantum interference may persist

even after the perturbing laser irradiation stops.

It is noteworthy that, unlike the shift-current occurs solely during laser irra-

diation, the injection current exhibits persistence even after the conclusion of

laser irradiation. This enduring quality underscores the unique and sustained

contribution of the injection current in the context of nonlinear optical effects.

Going, beyond second-order nonlinear effects, researchers have investigated

into the realmof photovoltaic effects inducedby intense few-cycle laser pulses [14–

19]. Notably, such laser pulses possess the capability to extrinsically break spatial

inversion symmetry. In addition to this, the presence of a strong field introduces

highly nonlinear excitation channels, including pathways such as tunneling ex-

citation. The combination of extrinsic spatial inversion symmetry breaking and
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intense nonlinear interactions between light andmatter opens the possibility for

an intense few-cycle laser pulse to induce a direct current (dc-current) even in a

material with intrinsic inversion symmetry.

The uniqueness of the photovoltaic effect with a few-cycle pulse lies in its de-

pendence on breaking the inversion symmetry of the incident light fields. This

intrinsic connection allows for the manipulation of the induced current by con-

trolling both the intensity and carrier-envelope phase of the pulse [14, 17]. The

exploration of these intense few-cycle laser pulses not only expands the under-

standing of nonlinear optical phenomena but also unveils avenues for precise

control and manipulation of induced currents through tailored light-matter in-

teractions.

In recent research, an effective method for manipulating valley population

has surfaced, centered around the interplay of two circularly polarized lights

with different frequencies, denoted as 𝜔 and 2𝜔. This investigation is particu-

larly fitting in the context of two-dimensional systems [20, 21]. Individually, each

circularly polarized light breaks time-reversal symmetry, and when combined,

the fields exhibit the added capability of breaking spatial inversion symmetry.

This coupled contravention upon time-reversal and spatial inversion symmetries

gives rise to a population imbalance in momentum space upon laser excitation.

This, in turn, apperas as a sustained charge flow persisting even after the laser

irradiation. Notably, this methodology has extended beyond theoretical explo-

ration, with numerical studies incorporating first-principles calculations applied

to bulk solids [22]. The multifaceted approach of combining circularly polarized

lights at different frequencies not only enriches our understanding of valley pop-

ulation dynamics but also holds promise for diverse technological applications in

the realm of materials and quantum control phenomena.

1.3 High-order Harmonic Generation

Traditional hgh-order harmonic generation (HHG) is a phenomenon where in-

tense laser light interactswith a gas, causing the generation of veryhigh-frequency
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light waves. This process typically occurs when a strong laser field ionizes a ma-

terial, causing electrons to be ripped away from atoms. These electrons then

undergo complex dynamics, involving acceleration, coherent motion, and re-

combination with their parent ions. Through this intricate dance, the electrons

emit high-energy photonswith frequenciesmuch higher than that of the incident

laser, often extending into the extreme ultraviolet (XUV) and X-ray regions of the

electromagnetic spectrum [23].

Since first observed in 1987 using rare gases as target specimens [24, 25], gas-

phase HHG has been intensively utilized to generate ultrashort attosecond light

pulses [26–28] for investigating ultrafast dynamics in matter in the time domain

which is a typical time scale for the motion of electrons.[29–32]. HHG provides

a unique window into electron dynamics and allows us to investigate processes

occurring on attosecond timescales. The emitted harmonics carry valuable in-

formation about the electronic structure, band gaps, and transient states of the

material, offering a powerful tool for probing and controlling ultrafast processes.

In recent years, there have been significant advancements in experimental tech-

niques for studying high-order harmonic generation. The use of intense fem-

tosecond laser pulses, pulse shaping methods, and advanced detection schemes

have enabled precise control and characterization of the generated harmonics.

These experimental advances have led to breakthroughs in attosecond science,

providing tools for investigating ultrafast phenomena in a wide range of atoms

[30, 33, 34], molecules [35–37], and solids [31, 32, 38–40]. The HHG in solid-state

systems was first observed in ZnO in 2011 in mid-infrared (MIR) laser field [41],

and it has since garnered significant attention, both froma fundamental research

perspective and due to its technological potential, as evidenced by recent studies

in solids [42–46].

1.4 Review on Theoretical Models

The generation of nonlinear optical response in solids involves complex quan-

tum mechanical processes and intricate interplays between the laser field and

the electronic structure of atoms. The fundamental processes involved in HHG

7



CHAPTER 1. INTRODUCTION

in a gaseousmedium can be understoodwithin the framework of thewell-known

three-step model [47, 48]. This semi-classical framework delineates the gas HHG

process through three stages, see Figure. (1.1):

• 1. Ionization/Tunneling: Initially, an electron is ionized by the intense laser

field and electrons are stripped away from the atom due to the strong elec-

tric field of the laser.

• 2. Acceleration: Subsequently, the strong laser field imparts energy to the

liberated electron kinetic energy, propelling its acceleration away from the

ionized molecule.

• 3. Recombination: In the final step, the oscillatory force of the laser field

drives the electron back toward the ionized parent molecule. During this

process, the electron undergoes recombination with the molecule, releas-

ing the surplus kinetic energy acquired in the second step in the form of a

high-energy photon.

Figure 1.1: Three step model: (a) Ionization/Tunneling (b) Accelaeration (c) Re-
combination

However, this model is not directly applicable to solid-state HHG due to dif-

ferences in density, structure, band structure, Coulomb interactions, and surface

effects between gases and solids. Solid-state HHG involves more complex mech-

anisms, including interactions with the crystalline lattice and surface effects, re-

quiring sophisticated theoretical models for accurate description.

The understanding and control of HHG have been greatly advanced by the

development of sophisticated theoretical models, the primary and widely used

numerical methods are based on time-dependent Schrödinger equation (TDSE)

8
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, semiconductor Bloch equations (SBE) and time-dependent density-functional

theory (TDDFT). We won’t go in detailed about the theoretical foundations, but

just summarize current status and some challenges of present numerical sim-

ulations which are yet to be improved or solved, for detailed mechanisms and

numerical implementations, please refer to the basic references where all those

methods are disucssed at lenght.

• The time-dependent-Schrödinger equation (TDSE) model [49–57], utilizing

both Bloch state basis and Houston state basis, is proficient in examining

electronic dynamics within periodic potentials. Nonetheless, simulating the

HHGof real solidmaterials proves challenging, primarily due to themethod’s

reliance on idealized model potentials.

• The semiconductor Bloch equations (SBE) [58–68], improving it from a two-

band model to a multiband model allows for a more comprehensive study

of real systems, effectively capturing the main features of High-Order Har-

monic Generation (HHG) in solids. This enhancement involves incorpo-

rating accurate energy bands and transition dipole moments derived from

first-principles calculations. Future endeavors should focus on obtaining

the correct phase of transition dipole elements. However, a significant chal-

lenge persists as current first-principles codes often yield randomphases for

transition dipole moments.

• The time-dependent density-functional theory (TDDFT) model [69–75] ap-

pears to be the ideal approach for straightforwardly studying High-Order

Harmonic Generation (HHG) in solids within real coordinate space. How-

ever, its main drawback lies in its significant computational time require-

ments. Additionally, directly and intuitively analyzing the physical pro-

cesses or mechanisms within the solid-state energy band picture can pose

challenges within the TDDFT framework.

Furthermore, properly incorporatingBerry curvature inmodels andunderstand-

ing its role in solid High-Order Harmonic Generation (HHG) requires more atten-

tion in future theoretical simulations. Despite lingering open questions in this

evolving field, it’s hoped that this review can offer valuable reference points, and
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ongoing efforts from the relevant community will gradually illuminate the intri-

cacies of solid HHG studies.

1.5 Structure of the Thesis

This thesis is organized as follows: Chapter. 2 first introduces the crystallographic

discription for typical hexagonal lattice we are studying, then we study the light-

induced electron dynamics in 2D materials based on the tight-binding model by

time-dependent Schrodinger Equation and quantummaster equation, to account

for dissipative phenomena that plays a fundamental role in the laser induced

electron dyanmics that we will describe in detail in the follwoing chapters of this

thesis. In Chapter. 3 we investigate light-induced electron dynamics in mono-

layer hexagonal boronnitride under the influence of two-color linearly-polarized

laser fields at frequencies 𝜔 and 2𝜔, by solving the time-dependent Schrödinger

equationwith a tight-bindingmodel. We start from time-dependent perturbative

analysis in the weak field regime, then we expand our results to third-order non-

linear regime and deeply off-resonant highly-nonlinear regime. In Chapter. 4,

we study THz-induced HHG in graphene with the method described by quantum

master equation. The microscopic mechanism of HHG with the quasi-static ap-

proximation and the population distribution in the Brillouin zone is described in

detail together with its numerical implementation in Chapter. 5. We further elu-

cidate the role of the nonequilibrium nature of THz-induced electron dynamics

by comparing the nonequilibrium picture in the present work and the thermo-

dynamic picture in the previous work [76]. We explore the possibility of using

a THz field to enhance MIR-induced HHG in graphene based on the knowledge

gained from Chapter. 4. We investigate the dynamics under MIR and THz fields

and evaluate the emitted harmonic spectra. As a result of the analysis, we find

that cou- pling via the induced coherence by THz and MIR fields plays an essen-

tial role in enhancing MIR-induced HHG, clarifying the importance of the field-

induced coherence beyond the simple population effect. Finally, the conclusion

and perspectvies of this thesis is summarized in in Chapter. 6
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Chapter2
THEORETICAL FOUNDATIONS

In recent years, 2D materials have emerged as a fascinating class of materials

with unique properties and promising applications in various fields ranging from

electronics and photonics to energy and biotechnology. These materials, which

exhibit extraordinary properties due to their ultrathin nature, are reshaping the

landscape of materials science and engineering. Among the diverse array of 2D

materials, graphene, transition metal dichalcogenides (TMDs), hexagonal boron

nitride (h-BN), and other emerging candidates stand out for their exceptional

characteristics and potential applications. We introduce 2D materials with a ty-

ical hexagonal lattice nanostructure and their crystallography properties in this

chapter. We then introduce the tight-binding approach, which is basic for un-

derstanding the electronic properties of materials, with a particular focus on the

nearest neighbor tight-binding model. We also discuss the electron dynamics in

2D materials, including the time-dependent Schrödinger equation and quantum

master equation which are fundamental for studying the nonlinear optical re-

sponse in this thesis. We introduce several typical 2D materials:

Graphene: a single layer of carbon atoms arranged in a honeycomb lattice, is

the archetype of 2Dmaterials. Graphene exhibits mechanical strength, electrical

conductivity, and thermal conductivity. Its unique electronic band structure and

optical properties make it a versatile material for various applications in elec-

tronics, such as high-speed transistors and flexible displays, as well as in energy

storage, sensors, and biomedical devices.
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Hexagonal Boron Nitride (h-BN): a structural analog of graphene, consists of

alternating boron and nitrogen atoms arranged in a hexagonal lattice. h-BN ex-

hibits excellent thermal and chemical stability, as well as a large bandgap, mak-

ing it an insulating material. Its flat and atomically smooth surface makes it an

ideal substrate for 2D materials and a protective coating in electronic devices. It

is widely used as a dielectric material in transistors, tunneling barriers in spin-

tronics.

TransitionMetal Dichalcogenides (TMDs): a class of 2Dmaterials composed of

transition metal atoms sandwiched between two layers of chalcogen atoms (e.g.,

sulfur, selenium, or tellurium). TMDs exhibit intriguing electronic, optical, and

mechanical properties, which can be tuned by varying the composition and layer

thickness. They often possess a direct bandgap, making them suitable for opto-

electronic applications. They are used in field-effect transistors, photodetectors,

light-emitting diodes (LEDs), and other optoelectronic devices. They also hold

promise in catalysis, sensing, and flexible electronics.

Other Emerging 2D Materials like Black Phosphorus: a layered semiconduc-

tor, offers tunable bandgap and high carrier mobility, making it suitable for elec-

tronic and optoelectronic applications. MXenes are a family of 2D transition

metal carbides, nitrides, and carbonitrides with metallic conductivity and ex-

cellent mechanical properties, holding promise in energy storage, catalysis, and

electromagnetic shielding. Perovskite Nanosheets: Perovskite nanosheets ex-

hibit remarkable photophysical properties and are being explored for applica-

tions in solar cells, photodetectors, and light-emitting devices.

In summary, 2Dmaterials, including graphene, TMDs, h-BN, and other emerg-

ing candidates, offer a rich platform for exploring novel physical phenomena and

developing advanced technologies with unprecedented performance and func-

tionality. Their diverse properties and potential applications make them a vi-

brant area of research in materials science and engineering. The inclusion of

artificial 2Dmaterials based onmoiré superlattices underscores the dynamic na-

ture of this field and the potential for groundbreaking discoveries [77].

12



2.1. CRYSTALLOGRAPHY PROPERTIES

2.1 Crystallography Properties

Hexagonal lattice nanostructures are fundamental building blocks in the realm

of 2D materials, encompassing a diverse range of materials with hexagonal sym-

metry. From natural materials like graphene and h-BN to artificial structures

based onmoiré physics [77], the crystallographic properties of hexagonal lattices

underpin the rich and varied behavior observed in 2D materials, offering am-

ple opportunities for scientific exploration and technological innovation. As a

fundamental Bravais lattice, it manifests as a distinctive geometric arrangement

prevalent across a spectrum of materials, owing to its highly efficient packing

characteristics. This lattice’s spatial configuration profoundly influences the me-

chanical, electrical, and thermal properties of materials. Understanding lattice

structures is crucial for decipheringmaterial behavior across diverse conditions,

spanning from semimetals to topological insulators. This significance is partic-

ularly noteworthy in the realm of two-dimensional materials. We have selected

graphene, exemplifying a semimetal, and hexagonal boron nitride (h-BN), rec-

ognized as an insulator, for our discussion on nonlinear optical response on 2D

materials.

Graphene’s lattice structure is hexagonal lattice nanostructure for carbon al-

kx

ky

b1

G

b2

K

K'

(a)
(b)

a1

a2

Figure 2.1: (a) Hexagonal lattice,the two triangular sublattices are shown in two
different colors. (b) Brillouin zone in momentum space.

lotrope, showed in Figure 2.1 (a). Carbon atoms lie in a single layer, forming an

exceptional two-dimensional material. The unique atomic-scale hexagonal lat-

tice structure involves each carbon atom intricately bonding through 𝜎-bonds
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with its three nearest neighbors and a delocalized 𝜋-bond. This precise arrange-
ment plays a important role in the formation of Dirac cone, making monolayer

graphene an outstanding conductor of electricity, and finding applications in

electronic devices, sensors, and various fields [78].

Similar to graphene, h-BN also features a hexagonal lattice structure, but with

alternating boron and nitrogen atoms forming the hexagons, making it a wide-

gap insulator due to inversion symmetry breaking, which is used as a dielectric

material in electronics, a substrate for graphene-based devices, and as a solid

lubricant. We define the basis of hexagonal lattice primitive vectors 𝐸 = ( ⃗𝑎1, ⃗𝑎2)
as shown in Fig 2.1 (a):

⃗𝑎1 = 𝑎 ⎛⎜⎜⎜
⎝

√
3

2
1
2

⎞⎟⎟⎟
⎠

, ⃗𝑎2 = 𝑎 ⎛⎜⎜⎜
⎝

√
3

2

− 1
2

⎞⎟⎟⎟
⎠

where 𝑎 is the lattice constant, for graphene 𝑎 = 1.42 ̊𝐴 [78], and for h-BN 𝑎 = 2.5 ̊𝐴
[79]. Generate only 𝐴 sites while sites in 𝐵 sublattice are generated by 𝑛1 ⃗𝑎1 +
𝑛2 ⃗𝑎2 + ⃗𝛿, where ⃗𝛿 has to be chosen as one of the three nearest-neighbor vectors,

⃗𝛿1 = 𝑎 ⎛⎜⎜⎜
⎝

− 1
2

√
3

1
2

⎞⎟⎟⎟
⎠
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⎝

1√
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0
⎞⎟⎟⎟
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, ⃗𝛿3 = 𝑎 ⎛⎜⎜⎜
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3
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2

⎞⎟⎟⎟
⎠

The reciprocal basis 𝐵 = (𝑏1, 𝑏2, 𝑏3) is generated using the formula:

⃗⃗⃗ ⃗⃗ ⃗⃗𝑏𝑘 = 2𝜋 ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑎𝑖 × ⃗⃗⃗⃗⃗ ⃗⃗𝑎𝑗
𝑉

𝑖, 𝑗, 𝑘 are circular permutations, V = ⃗⃗⃗⃗⃗ ⃗⃗ ⃗𝑎1 ⋅ ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎2 × ⃗⃗⃗⃗⃗ ⃗⃗ ⃗𝑎3), presents the mix product be-

tween the three vectors, i.e. the volumeof the unitary cell. By assuming the lattice

primitive vector in the vertical direction of the two-dimensional material plane

is infinit, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎3 → ∞, we get the 2D reciprocal vectors as shown in Fig2.1 (b):

⃗𝑏1 = 𝑘𝐷
⎛⎜⎜⎜
⎝

1
2
√

3
2

⎞⎟⎟⎟
⎠

, ⃗𝑏2 = 𝑘𝐷
⎛⎜⎜⎜
⎝

1
2

−
√

3
2

⎞⎟⎟⎟
⎠

with 𝑘𝐷 = 4𝜋√
3𝑎 . The corresponding Brillouin zone is depicted together with the

two high-symmetry points K and K′ Fig 2.1 (b). Two inequivalent corners of the
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2.2. TIGHT-BINDING APPROACH

Brillouin zone 𝐾 and 𝐾′ can be chosen as follows:

𝐾 = 𝑘𝐷 (1
2, 1

2
√

3) , 𝐾′ = 𝑘𝐷 (1
2, − 1

2
√

3)

2.2 Tight-binding Approach

In this section, we delve into the fundamental principles of the tight-binding ap-

proach, with a particular focus on the nearest neighbor tight-bindingmodel. This

approach is essential for understanding the electronic properties of materials

and is a crucial component of graphene’s electronic structure analysis. In solid-

state physics, the tight-bindingmodel is a theoretical framework used to describe

the electronic structure of crystalline materials. It treats each atomic orbital as

a basis function and describes the electronic wavefunction as an expansion in

terms of these basis functions. One common approach is to expand the wave-

function using Linear Combination of Atomic Orbitals (LCAO). In this method,

the wavefunction on position 𝑟 in the crystal lattice is expressed as a linear com-

bination of atomic orbitals centered on individual atoms:

𝜙𝛽(r) = ∑
R𝛼

𝑏𝛽 (R𝛼) 𝜑𝛽 (r− R𝛼) (2.1)

Here, 𝑏 are coefficients for the linear combination, 𝛽 is the general atomic orbitals

index, 𝜑𝛽 are the atomic orbitals which are eigenfunctions of the Hamiltonian𝐻𝛼

of a single isolated atom 𝛼. The Bloch theorem states that the wave function in a

crystal can change under translation only by a phase factor:

𝜙 (r+ R𝛼) = 𝑒𝑖k⋅R𝛼𝜓(r) (2.2)

The foundation of the tight-binding approach is rooted in the Bloch theorem,

which is satisfiedby the tight-binding functionby combiningEq. (2.1) andEq. (2.3):

Φ𝛼,𝛽(r,k) = 1√
𝑁

∑
R

𝑒𝑖k⋅R𝜙𝛼,𝛽 (r− R𝛼,𝛽) , 𝛼 = 𝐴 or 𝐵 (2.3)

For simplicity, we only consider the contribution from the outermost valence

band electron’s orbital and omit 𝛽 in the following discussion. 𝑁 represents the
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CHAPTER 2. THEORETICAL FOUNDATIONS

number of unit cells, and 𝜙𝛼(r−R𝛼) denotes the orbital function of an electron at

cell R in sublattice 𝛼. In the context of a honeycomb lattice, we focus on the near-

est neighbor approximation. This approximation asserts that an atom in sublat-

tice A only interacts with its three closest neighbor atoms in sublattice B. This

simplification is particularly useful for understanding the interactions between

electrons bound to non-equivalent atoms.

The Hamiltonian for this nearest-neighbor interaction is expressed as:

𝐻̂𝐴𝐵 = 1
𝑁 ∑

R𝐴

∑
R𝐵

𝑒𝑖k(R𝐵−R𝐴) ⟨𝜙𝐴 (r− RA) |𝐻̂|𝜙𝐵 (r− R𝐵)⟩ (2.4)

Due to the translational invariance in a Bravais lattice, the summation over each

atom in a sublattice occurs 𝑁 times, simplifying the expression to:

𝐻̂𝐴𝐵 = ∑
R𝐴

𝑒𝑖k(R𝐵−R𝐴) ⟨𝜙𝐴 (r− RA) |𝐻̂|𝜙𝐵 (r− R𝐵)⟩ (2.5)

We transform the Hamiltonian of real space into the momentum space represen-

tation, and then the tight-binding Hamiltonian under the matrix representation

is:

𝐻̂ = ⎛⎜⎜⎜
⎝

𝜖𝐴 𝑡0𝑓(k)
𝑡0𝑓(k)∗ 𝜖𝐵

⎞⎟⎟⎟
⎠

(2.6)

Here 𝜖𝐴 and 𝜖𝐵 are the on-site energies of electrons on the nearest neighbor

atoms, 𝑡0 presents the hopping parameter:

𝑡0 = ⟨𝜙𝐴 (r− RA) |𝐻̂|𝜙𝐵 (r− R𝐴 − ⃗𝛿𝑖)⟩ (𝑖 = 1, 2, 3)

For typical hexagonal lattice under our discussion, the three nearest neighbor

hoping strength here are identical here due to the hexagonal lattice symmetry.

For graphene, we set 𝜖𝐴 and 𝜖𝐵 to 0, and 𝑡0 = 2.8 𝑒𝑉 in accordance with the pre-

vious work [78]. For h-BN 𝜖B and 𝜖N denote the on-site energies for boron and

nitrogen sites, respectively.

𝐻̂(k) = ⎛⎜⎜⎜
⎝

𝜖B 𝑡0𝑓(k)
𝑡0𝑓(k)∗ 𝜖N

⎞⎟⎟⎟
⎠

, (2.7)
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2.2. TIGHT-BINDING APPROACH

We set 𝜖B to 3.34 eV and 𝜖N to −2.56 𝑒𝑉 and 𝑡0 to 2.6 𝑒𝑉 computed with the first-

principles calculations [80], the band gap 𝐸𝑔 = 𝜖𝑏 − 𝜖𝑛 equals 5.9 eV.

The off-diagonal terms of the tight-binding Hamiltonian 2.6:

𝑓(k) = 𝑒𝑖k ⃗𝛿1 + 𝑒𝑖k ⃗𝛿2 + 𝑒𝑖k ⃗𝛿3

= 𝑒− 𝑖𝑎𝑘𝑥√
3 + 2𝑒

𝑖𝑎𝑘𝑥
2

√
3 cos(𝑎

2𝑘𝑦)
(2.8)

Solving the stationary Schrödinger equation using matrix diagonalization:

𝐻̂k|𝜙𝑏k⟩ = 𝜖𝑏k|𝜙𝑏⟩, (2.9)

we get the eigenenergy of Hamiltonian from 2.6, where 𝑏 is a band index, |𝜙𝑏k⟩
is an eigenstate, and 𝜖𝑏k corresponds to the eigenenergy. As the Hamiltonian is a

2-by-2 matrix in this work, the band index 𝑏 denotes either a conduction (𝑏 = 𝑐)
or valence (𝑏 = 𝑣) state.

𝜖𝑏k = 𝐸0 ± 1
2√𝐸2𝑔 + 4𝑡2

0|𝑓|2 (2.10)

𝐸0 = 𝜖𝐴+𝜖𝐵
2 and 𝐸𝑔 = 𝜖𝑏 − 𝜖𝑛 is the energy gap. For graphene, 𝜖𝐴 = 𝜖𝐵 = 0 the band

gap equals 0. Their corresponding eigenvectors are:

|𝜙𝑏⟩ =
⎛⎜⎜⎜
⎝

𝐸𝑔±√𝐸2𝑔+4𝑡2
0|𝑓|2

2𝑡0𝑓∗

1

⎞⎟⎟⎟
⎠

(2.11)

Tight-binding model is an approximation to the first principles models that

can be drerived from ab-initio DFT calculations and used to improve computa-

tional effeciency through Wannierization. Wannierization facilitates the trans-

formation of electronic wavefunctions from a basis of Bloch states to localized

Wannier functions. Wannier functions provide a clearer physical interpreta-

tion of the electronic structure compared to Bloch states. Each Wannier func-

tion corresponds to an electron localized around a particular atomic site within

the crystal lattice. This localization allows for a more intuitive understanding

of electronic properties, such as onsite energy, bonding, hopping, and interac-

tions, in terms of localized atomic-like orbitals. Wannierization can help educe
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CHAPTER 2. THEORETICAL FOUNDATIONS

the size of the Hilbert space, as the model focuses on the interactions between a

limited number of localized orbitals rather than considering the entire Brillouin

zone; provide a systematic method for constructing the tight-binding Hamilto-

nian; allow for the localization of these interaction terms around specific lat-

tice sites, making the tight-binding model more physically intuitive and inter-

pretable; moreover, enable the incorporation of additional physical effects, such

as electron-electron interactions, spin-orbit coupling, and lattice distortions, into

the tight-binding model.

In 2D materials, quantum effects become prominent due to the reduced di-

mensionality, leading to the emergence of novel electronic states and phenom-

ena. Understanding how topological obstruction influences the electronic struc-

ture of 2Dmaterials sheds light on the quantumbehavior that governs their prop-

erties. For 2D systems, the quantity of topological index as a surface integral over

the Brillouin Zone is defined as the Chern number:

𝑊𝑛 = 1
2𝜋 ∬

𝐵𝑍
𝑑2𝑘 ⋅ Ω⃗𝑛 (2.12)

Quantized Hall conductance 𝜎𝑥𝑦 can be calculated using the Chern number and

the TKNN formula[81]:

𝜎𝑥𝑦 = 𝑒2

ℎ 𝑊𝑛 (2.13)

Ω⃗𝑛 is the Berry curvature, which is defined as the curl(rotor) of the Berry connec-

tion or the Berry vector potential 𝒜(𝑘) = ⟨𝑛(𝑘) ∣𝑖∇𝑘∣ 𝑛(𝑘)⟩[82]. Barry phase 𝛾𝑛 is

expressed as a closed path𝒞 integral in the 𝑘-space 𝛾𝑛 = ∮𝒞 𝑑𝑘⋅𝒜𝑛(𝑘) = ∫𝒮 𝑑𝑘⋅Ω⃗𝑛(𝑘).
𝑛(𝑘) denotes the 𝑛𝑡ℎ eigenstate of the BlochHamiltonian𝐻(𝑘) for general systems.

The Berry curvature Ω⃗𝑛 is an intrinsic property of the band structure because it

only depends on thewave function, which can be nonzero in crystalswith broken

time-reversal or inversion symmetry.[83]

Ω⃗𝑛(𝑘) = ∇𝑘 × 𝒜(𝑘) (2.14)

Using ⟨𝑛|𝜕𝐻/𝜕𝑘|𝑛′⟩ = ⟨𝜕𝑛/𝜕𝑘 ∣ 𝑛′⟩ (𝐸𝑛 − 𝐸𝑛′) for 𝑛′ ≠ 𝑛, the Berry curvature
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2.2. TIGHT-BINDING APPROACH

can be also written as a summation over the eigenstates:

Ω⃗𝑛(𝑘) = Im ∑
𝑛′≠𝑛

⟨𝑛(𝑘) ∣∇𝑘𝐻(𝑘)∣ 𝑛′(𝑘)⟩ × ⟨𝑛′(𝑘) ∣∇𝑘𝐻(𝑘)∣ 𝑛(𝑘)⟩
(𝐸𝑛′(𝑘) − 𝐸𝑛(𝑘))2 (2.15)

which is useful to calculate the numerically the integral.

Hereafter, for two-band tight-binding model, 𝑛(𝑘) is the instantaneous eigen-
states of the time-dependent Hamiltonian 𝐻 from Eq. (2.20) under the vector po-

tential A(t). 𝑛(𝑘) equals to 𝜙𝑣,𝑘+A(𝑡) and 𝜙𝑐,𝑘+A(𝑡) for the valence band and the con-

duction band. One get the Berry curvature for conduction band of 2D-systems:

Ω⃗𝑐,𝑘𝑥𝑘𝑦
(𝑘) = 𝑖

⟨𝜙𝑐(𝑘) ∣𝜕𝐻(𝑘)/𝜕𝑘𝑥∣ 𝜙𝑣(𝑘)⟩ ⟨𝜙𝑣(𝑘) ∣𝜕𝐻(𝑘)/𝜕𝑘𝑦∣ 𝜙𝑐(𝑘)⟩ − (𝑘𝑦 ↔ 𝑘𝑥)
(𝜖𝑐(𝑘) − 𝜖𝑣(𝑘))2

(2.16)

Normally, for monolayer graphene, inversion symmetry hodes Ω𝑛(−𝑘) = Ω𝑛(𝑘).
Also, the Berry curvature and momentum change sign under time-reversal, so

that the Berry curvature at onemomentum becomes opposite to the Berry curva-

ture at opposite momentum Ω𝑛(−𝑘) = −Ω𝑛(𝑘), so Ω𝑛(𝑘) = 0 and 𝜎𝑥𝑦 = 0. [83]. For
non-centrosymmetric crystals, for instance monolayer hBN, inversion symmetry

is broken but time reversal symmetry holds, we have Ω𝑛(𝑘) ≠ 0 and 𝜎𝑥𝑦 = 0.
And if only time reversal symmetry broken but inversion symmetry holds, for

instance magnetic materials, we have Ω𝑛(𝑘) ≠ 0 and 𝜎𝑥𝑦 ≠ 0.

For graphene/hBN:

𝜕𝐻
𝜕𝑘 = ⎛⎜⎜⎜

⎝

0 𝑡0
𝜕𝑓(𝑘+A)

𝜕𝑘

𝑡0
𝜕𝑓∗(𝑘+A)

𝜕𝑘 0
⎞⎟⎟⎟
⎠

, (2.17)

𝜕𝑓(𝑘 +A)
𝜕𝑘 = 𝑖 ⃗𝛿1𝑒𝑖(𝑘+A)⋅ ⃗𝛿1 + 𝑖 ⃗𝛿2𝑒𝑖(𝑘+A)⋅ ⃗𝛿2 + 𝑖 ⃗𝛿3𝑒𝑖(𝑘+A)⋅ ⃗𝛿3 (2.18)

Exploring the theoretical foundations of light-induced topological phase transi-

tions in 2D systems presents interests for research. However, in this thesis, our

focus will be specifically on studing the properties and dynamics of nonlinear ex-
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cited states. While the broader theoretical framework of light-induced topologi-

cal phase transitions merits attention, our emphasis on nonlinear excited states

allows for a deeper understanding of the complex interactions and phenomena

that arise in 2D materials under optical excitation. By narrowing our scope in

this manner, we aim to provide a comprehensive analysis of the nonlinear dy-

namics within the context of the broader field of topological photonics, shedding

light on the intricate interplay between light, topology, and material properties.

2.3 Electron Dynamics

Consider the crystal under the homoheneous electric field E, the wavelength of

thefields ismuch longer than the spatial scale of the electron dynamics, so-callsed

long wavelength approximation, or dipole approximation. The electric field en-

ter the solid system through a uniform vector potential A(𝑡) under Peierls substi-
tution[84]. The time-dependent Hamiltonian is written as

𝐻̂(𝑡) = [p̂+ 𝑒A(𝑡)]2
2𝑚 + 𝑉 (r) (2.19)

Transforming to the k -space representation, we have

𝐻̂(k, 𝑡) = 𝐻̂ (k+ 𝑒
ℏA(𝑡)) (2.20)

where k denotes the Bloch wavevector, The vector potential A(𝑡) is related to the

applied electric field E(𝑡) as E(𝑡) = −𝑑A(𝑡)/𝑑𝑡, and it is included in the Hamilto-

nian as the wavevector shift k → k+ 𝑒A(𝑡)/ℏ via the Peierls substitution [84].

TDSE allows for the direct simulation of the dynamics of photoexcited carriers

in the presence of external fields, accounting for their interaction with the lattice

and other carriers. However, the nonlinear optical response processes involve

the dealing with open quantum systems involves accounting for the interactions

between the system of interest and its surrounding environment, which leads

to decoherence and dissipation. Instead of working with pure quantum states,
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open quantum systems are described using density matrices. The density ma-

trix incorporates both the system’s state and the effects of its interaction with

the environment, allowing for the representation of mixed states and accounting

for decoherence. The dynamics of open quantum systems are typically governed

by master equations. These equations describe the time evolution of the density

matrix and capture the effects of dissipation and decoherence induced by the en-

vironment. HHG induced by intensied THz or MIR laser has strong relaxation

which can not be ignored so we introduce quantum master equation for HHG

progress under intensed long-term pulse. This allows for the study of HHG phe-

nomena and the prediction of experimental observables in more realistic condi-

tions.

2.3.1 Time-dependent Schrödinger Equation

The light-induced electron dynamics can be described by solving the following

TDSE at each k-point:

𝑖ℏ 𝑑
𝑑𝑡 |𝜓k(𝑡)⟩ = 𝐻̂ (k+ 𝑒A(𝑡)

ℏ ) |𝜓k(𝑡)⟩, (2.21)

|𝜓k(𝑡)⟩ is a single-particle electroincwavefunction atk. Solving this time-dependent

Schrödinger equation (TDSE) is an initial value problem. In two-band systems,

usually the ground state |𝜓k(0)⟩ is used as the initial state occupied at the valence
band. Various numerical methods can be chosen for doing the time propagation,

here we split the propagation into short-time propagation using the composition

property rely on a sufficiently small Δ𝑡, 𝑡′ = 𝑡 + Δ𝑡,:

|𝜓k(𝑡′)⟩ = ̂𝑇 exp⎡⎢
⎣

−𝑖 ∫
𝑡′

𝑡
𝑑𝜏𝐻̂(𝜏)⎤⎥

⎦
∣𝜓k+A(𝑡)⟩ (2.22)

which means:

|𝜓k(𝑡′)⟩ = ̂𝑇
⎧{
⎨{⎩

∞
∑
𝑛=0

(−𝑖)𝑛

𝑛! ∫
𝑡′

𝑡
d𝜏1 … ∫

𝑡′

𝑡
d𝜏𝑛𝐻̂ (𝜏1) … 𝐻̂ (𝜏𝑛)

⎫}
⎬}⎭

∣𝜓k+A(𝑡)⟩ (2.23)
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If the Hamiltonian commutes with itself at different times:

|𝜓k(𝑡′)⟩ = ̂𝑇 exp{−i (𝑡′ − 𝑡) 𝐻̂} |𝜓k(𝑡)⟩ (2.24)

Since Δ𝑡 is sufficiently small, the exponential mid-point propagator:

̂𝑇 exp⎡⎢
⎣

−𝑖 ∫
𝑡′

𝑡
𝑑𝜏𝐻̂(𝜏)⎤⎥

⎦
≈ exp{−iΔ𝑡𝐻̂(𝑡 + Δ𝑡/2)} (2.25)

We approximate the exponential using a Taylor expansion to infinit-order:

exp{𝐴} =
∞

∑
𝑘=0

1
𝑘!𝐴

𝑘 (2.26)

in the real implementation, we expanded to the fourth-order. Once the time-

evolution of the wavefunctions, |𝜓k(𝑡)⟩ is computed, the current induced in the

matter can be further evaluated with

Jk(𝑡) = 1
(2𝜋)2 ∫

𝐵𝑍
𝑑k⟨𝜓k(𝑡)| ̂Jk(𝑡)|𝜓k(𝑡)⟩. (2.27)

Here, ̂Jk(𝑡) is the current operator, and it is defined as

̂Jk(𝑡) = 𝜕
𝜕k𝐻̂ (k+ 𝑒A(𝑡)

ℏ ) = −𝑡0
⎛⎜⎜⎜
⎝

0 𝜕𝑓(k+A)
𝜕A

𝜕𝑓∗(k+A)
𝜕A 0

⎞⎟⎟⎟
⎠

, (2.28)

where 𝜕𝑓(k)
𝜕k is given by

𝜕𝑓(k)
𝜕k = 𝑖 ⃗𝛿1𝑒𝑖k⋅ ⃗𝛿1 + 𝑖 ⃗𝛿2𝑒𝑖k⋅ ⃗𝛿2 + 𝑖 ⃗𝛿3𝑒𝑖k⋅ ⃗𝛿3 . (2.29)

We can also analyze the population distribution of photocarriers induced by

the laser fields. To achieve this, we compute the conduction population distribu-

tion by projecting onto the eigenstates of the Hamiltonian defined as:

𝐻̂𝑘|𝜙𝑏𝑘⟩ = 𝜖𝑏𝑘|𝜙𝑏𝑘⟩, (2.30)

where 𝑏 is a band index, |𝜙𝑏𝑘⟩ is an eigenstate, and 𝜖𝑏𝑘 corresponds to the eigen-

value. |𝑢𝐻
𝑏k(𝑡)⟩ are also defined as Houston states [85, 86], are characterized as
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eigenstates of the instantaneous Hamiltonian, expressed as instantaneous adia-

batic eigenstates, which will be also discussed in the later sections in relaxation

approximation in Eq. (2.33) and in Appendix. A for adiabatic expansion.

As the Hamiltonian is a 2-by-2 matrix in this work, the band index 𝑏 denotes
either a conduction (𝑏 = 𝑐) or valence (𝑏 = 𝑣) state.

Using eigenstates defined with Eq. (2.30), the conduction population distribu-

tion 𝑛𝑐𝑘 after the laser irradiation can be evaluated as:

𝑛𝑐𝑘 = ∣⟨𝜙𝑐𝑘|𝜓𝑘(𝑡𝐹 )∣2 , (2.31)

where 𝑡 can be an instantaneous time during or after the laser field. By imposing

the normalization of |𝜙𝑏𝑘⟩ and |𝜓𝑘(𝑡)⟩, the computed conduction population satis-

fies 0 ≤ 𝑛𝑐𝑘 ≤ 1. It is important to note that, in the present theoretical setup, the

conduction population is a constant of motion after laser irradiation since any

relaxation processes are not considered.

2.3.2 QuantumMaster Equation

In contrast to closed quantum systems, which can be adequately described by

the Schrödinger equation, the quantum master equation is typically used in the

context of the time evolution of an open quantum system, where the system of

interest is susceptible to exchanges of energy, particles with its external environ-

ment. To expound processes such as relaxation, dephasing, and thermalization

of the nonlinear response experiments, the quantummaster equation is predom-

inantly employed which is salient in the realm of open quantum systems.

We describe the light-induced electron dynamics in graphene with the following

quantum master equation [87–90]:

d
d𝑡𝜌k(𝑡) = 1

𝑖ℏ [𝐻̂k+𝑒A(𝑡)/ℏ, 𝜌k(𝑡))] + 𝐷̂ [𝜌k(𝑡))] , (2.32)

𝜌k(𝑡) is the reduced density matrix at k. The quantum master equation delin-

eates the dynamical evolution of the density matrix associated with the quan-

tum system, which encompasses both pure and mixed quantum states. To elu-

cidate the impact of dissipation, we formulate the relaxation operator, denoted
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as 𝐷̂ [𝜌k(𝑡)], within the framework of Eq.(2.32) employing the relaxation time ap-

proximation[91] and employing the Houston basis [85, 86]:

𝐻̂k+𝑒A(𝑡)/ℏ|𝑢𝐻
𝑏k(𝑡)⟩ = 𝜖𝑏,k+𝑒A(𝑡)/ℏ|𝑢𝐻

𝑏k(𝑡)⟩ (2.33)

The expansion of the reduced density matrix can then be carried out using the

Houston states.

𝜌k(𝑡) = ∑
𝑏𝑏′

𝜌𝑏𝑏′,k(𝑡)|𝑢𝐻
𝑏k(𝑡)⟩⟨𝑢𝐻

𝑏′k(𝑡)|, (2.34)

where 𝜌𝑏𝑏′,k(𝑡) are the expansion coefficients. On the basis of the Houston state

expansion, we define the relaxation operator [87, 88, 92] as

𝐷̂ [𝜌k(𝑡)] = − ∑
𝑏

𝜌𝑏𝑏,k(𝑡) − 𝑓𝐹𝐷 (𝜖𝑏,k+𝑒A(𝑡)/ℏ, 𝑇𝑒, 𝜇)
𝑇1

|𝑢𝐻
𝑏k(𝑡)⟩⟨𝑢𝐻

𝑏k(𝑡)| (2.35)

− ∑
𝑏≠𝑏′

𝜌𝑏𝑏′,k(𝑡)
𝑇2

|𝑢𝐻
𝑏k(𝑡)⟩⟨𝑢𝐻

𝑏′k(𝑡)|, (2.36)

𝑇1 is the longitudinal relaxation time, 𝑇2 is the transverse relaxation time, and

𝑓FD(𝜖) is the Fermi–Dirac distribution:

𝑓FD(𝜖, 𝑇𝑒, 𝜇) = 1
𝑒(𝜖−𝜇)/𝑘𝐵𝑇𝑒 + 1. (2.37)

When 𝑡 = 0, the eletron system are identical fermions in thermodynamic equi-

librium, the average number of fermions in a single-particle state is given by the

Fermi–Dirac distribution. 𝜇 is the chemical potential, and 𝑇𝑒 is the electron tem-

perature.

In the following discussion, we set the longitudinal relaxation time 𝑇1 to 100 fs
and the transverse relaxation time 𝑇2 to 20 fs in accordance with the previous

works [87–90]. The electron temperature 𝑇𝑒 is set to 300Kunless stated otherwise.

The chemical potential 𝜇 is treated as a tunable parameter to study the effect of

doping.

We directly solve the quantum master equation, Eq. (2.32), in the time domain

by employing the Runge-Kutta method without any approximation. The electric

current is obtained by employing the time-dependent density matrix 𝜌k(𝑡), which
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evolves according to Eq. (2.32):

J(𝑡) = 2
(2𝜋)2 ∫ 𝑑kTr [ ̂Jk(𝑡)𝜌k(𝑡)] , (2.38)

where ̂Jk(𝑡) is the current operator defined as

̂Jk(𝑡) = −𝜕𝐻(k+ 𝑒A(𝑡)/ℏ)
𝜕A(𝑡) . (2.39)

The intraband component of the current is the dominant component for nonlin-

ear current contribute HHG progress which will be discussed in the Chapter 4,

we can get the intraband current by:

Jintrak (𝑡) = ∑
𝑏=𝑣,𝑐

(−2)
(2𝜋)2

𝑒
ℏ × ∫ 𝑑k

𝜕𝜖𝑏,k+𝑒A(𝑡)/ℏ
𝜕k 𝑛𝑏,k+𝑒A(𝑡)/ℏ,

where the band population 𝑛𝑏,k+𝑒A(𝑡)/ℏ is defined with the Houston states of the

Hamiltonian |𝑢𝐻
𝑏,k(𝑡)⟩ computed from Eq 2.33, which can be useful for the micro-

scopic analysis in the folowing chapters:

𝑛𝑏,k+𝑒A(𝑡)/ℏ(𝑡) = ⟨𝑢𝐻
𝑏,k(𝑡)|𝜌k(𝑡)|𝑢𝐻

𝑏,k(𝑡)⟩ (2.40)
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Chapter3
PHOTOVOLTAIC EFFECTS INDUCED

BY CO-LINEAR POLARIZED LIGHT

The discussion and results presented in this chapter ar an adaptation of the ar-

ticle by Ref[Wenwen Mao et al., Nonlinear current injection in hexagonal boron

nitride using linearly polarized light in a deeply off-resonant regime. (2024) Ad-

vanced Optical Materials, (Under Review)]

Photovoltaic effect involves the generation of electric current in response to

incident light in photovoltaicmaterials. To describe andanalyze this phenomenon,

one must consider the absorption of light as we introduced in Section. (1.2) in

introduction, including generation and recombination of charge carriers, estab-

lishment of built-in potential and electric field, extraction of charge carriers. The

conduction band population distribution plays a crucial role in the operation of

photovoltaic devices by influencing themovement of charge carriers and the effi-

ciency of light-to-electricity conversion. When photons with energy greater than

the bandgap of the semiconductormaterial are absorbed, electrons in the valence

band are excited to the conduction band, creating electron-hole pairs. These pho-

togenerated electrons contribute to the population of the conduction band. All

these terms provide a comprehensive framework for understanding the opera-

tion and optimization of photovoltaic devices.

Addressing the photovoltaic effect within the perturbative regime has gar-

nered significant attention, particularly in the exploration of dc current injection
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using two-color linearly polarized light [93–99]. Early investigations have under-

scored the complex interaction between a fundamental frequency, denoted as 𝜔,
and its second harmonic, 2𝜔 [93–95]. A notable study by Jimenez-Galan et al. [20]

utilized deeply off-resonant bi-circular laser fields with 𝜔 and 2𝜔 to generate a

substantial population imbalance in the Brillouin zone. However, it is worth not-

ing that, in principle, linearly polarized light with two frequencies is sufficient to

break time-reversal symmetry.

In this chapter, we first theoretically explore the phenomenon of dc-current

injection and the generation of population imbalance through the application

of two-color linearly polarized laser fields with frequencies 𝜔 and 2𝜔 based on

time-dependent perturbation analysis. Then we look into light-induced electron

dynamics in a typical two-dimensional insulator, ℎ-BN, based on a simple tight-

binding approximation in a perturbative resonant regime using the TDSE intro-

duced in Chapter. (2).

In our quantum dynamics simulations, we further uncover that ballistic cur-

rent can be induced even in the deeply off-resonant regime with two-color lin-

early polarized light. Consequently, efficient injection of dc-current and the cre-

ation of a substantial population imbalance can be realized by employing two-

color linearly polarized laser fields with frequencies 𝜔 and 2𝜔, without relying

on the ellipticity of light. These findings offer a potential pathway for achieving

ultrafast and efficient control of electron population in matter using multi-color

linearly polarized light, opening new avenues for exploring the frontiers of quan-

tum dynamics and optoelectronic applications.

3.1 Time-dependent Perturbative Analysis

Time-dependent perturbation theory provides a form for describing the response

of quantum systems to time-varying external fields, makes it well-suited for an-

alyzing the interaction of materials with intense electromagnetic radiation. Ex-

ploring the photovoltaic effectwithin the perturbative regime has led to a notable

focus on elucidating the injection of dc-current through the use of two-color lin-

early polarized light [93–99]. Here, we investigate the nonlinear photocarrier
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injection process via the time-dependent perturbation analysis. Under adiabatic

basis (also named as Houston basis Eq. (2.30) and Eq. (2.33)) representation de-

scribed in Appendix A, one can rewrite the equation of motion for the coefficient

vector 𝑐k(𝑡) after expansion as

𝑖 𝑑
𝑑𝑡ck(𝑡) = ℋ(𝑡)ck(𝑡). (3.1)

ℋ(𝑡) = 𝑖E(𝑡) ⋅ ⎛⎜⎜⎜
⎝

0 𝑀12

𝑀21 0
⎞⎟⎟⎟
⎠

(3.2)

𝑀12 = 𝑒−𝑖 ∫𝑡
0 𝑑𝑡′Δ𝜖𝑐𝑣,k+A(𝑡′)+𝑖Δ𝜙𝑔

𝑐𝑣,k(𝑡) ⟨𝑢𝑣,k+A(𝑡)∣
𝜕𝑢𝑐,k+A(𝑡)

𝜕k ⟩ (3.3)

𝑀21 = 𝑒−𝑖 ∫𝑡
0 𝑑𝑡′Δ𝜖𝑣𝑐,k+A(𝑡′)+𝑖Δ𝜙𝑔

𝑣𝑐,k(𝑡) ⟨𝑢𝑐,k+A(𝑡)∣
𝜕𝑢𝑣,k+A(𝑡)

𝜕k ⟩ (3.4)

ck(𝑡) = ⎛⎜⎜⎜
⎝

𝑐𝑣,k(𝑡)
𝑐𝑐,k(𝑡)

⎞⎟⎟⎟
⎠

is the coefficient vector, Δ𝜖𝑏𝑏′,k+A(𝑡) is defined by the differ-

ence of the single-particle energies as 𝜖𝑏,k+A(𝑡) − 𝜖𝑏′,k+A(𝑡). |𝑢𝐻
𝑏𝑘(𝑡)⟩ is the Hous-

ton states are eigenstates of the instantaneous Hamiltonian: 𝐻𝑘+𝑒𝐴(𝑡)/ℏ|𝑢𝐻
𝑏𝑘(𝑡)⟩ =

𝜖𝑏,𝑘+𝑒𝐴(𝑡)/ℏ|𝑢𝐻
𝑏𝑘(𝑡)⟩, For simplicity, here assume that the contribution from the geo-

metric phases, Δ𝜙𝑔
𝑐𝑣,k(𝑡) is zero. Then expand the Hamiltonian in Eq. (3.1) up to

the second order of the field A(𝑡) as

ℋ(𝑡) ≈ ℋ(1)(𝑡) + ℋ(2)
𝑑𝑦𝑛(𝑡) + ℋ(2)

𝑑𝑖𝑝(𝑡), (3.5)

ℋ(1)(𝑡) = 𝑖E(𝑡) ⋅
⎛⎜⎜⎜
⎝

0 𝑒−𝑖Δ𝜖𝑐𝑣,k𝑡 ⟨𝑢𝑣,k∣ 𝜕𝑢𝑐,k
𝜕k ⟩

𝑒−𝑖Δ𝜖𝑣𝑐,k𝑡 ⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k
𝜕k ⟩ 0

⎞⎟⎟⎟
⎠

, (3.6)
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ℋ(2)
𝑑𝑦𝑛(𝑡) originates from the modification of the dynamical phase factor:

𝑒−𝑖 ∫𝑡
0 𝑑𝑡′Δ𝜖𝑣𝑐,k+A(𝑡′) (3.7)

ℋ(2)
𝑑𝑦𝑛(𝑡) is given by:

ℋ(2)
𝑑𝑦𝑛(𝑡) = E(𝑡) ⋅ ⎛⎜⎜⎜

⎝

0 𝑀𝑑𝑦𝑛,12

𝑀𝑑𝑦𝑛,21 0
⎞⎟⎟⎟
⎠

, (3.8)

𝑀𝑑𝑦𝑛,12 = 𝜕Δ𝜖𝑐𝑣,k
𝜕k ⋅ (∫

𝑡

0
𝑑𝑡′A(𝑡′)) 𝑒−𝑖Δ𝜖𝑐𝑣,k𝑡 ⟨𝑢𝑣,k∣𝜕𝑢𝑐,k

𝜕k ⟩ (3.9)

𝑀𝑑𝑦𝑛,21 = 𝜕Δ𝜖𝑣𝑐,k
𝜕k ⋅ (∫

𝑡

0
𝑑𝑡′A(𝑡′)) 𝑒−𝑖Δ𝜖𝑣𝑐,k𝑡 ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k

𝜕k ⟩ (3.10)

and ℋ(2)
𝑑𝑖𝑝(𝑡) originates from the modification of the dipole matrix elements:

𝑖 ⟨𝑢𝑣,k+A(𝑡)∣
𝜕𝑢𝑐,k+A(𝑡)

𝜕k ⟩ (3.11)

ℋ(2)
𝑑𝑖𝑝(𝑡) is given by:

ℋ(2)
𝑑𝑖𝑝(𝑡) = ⎛⎜⎜⎜

⎝

0 𝑀𝑑𝑖𝑝,12

𝑀𝑑𝑖𝑝,12 0
⎞⎟⎟⎟
⎠

. (3.12)

𝑀𝑑𝑖𝑝,12 = 𝑒−𝑖Δ𝜖𝑐𝑣,k𝑡A(𝑡) ⋅
𝜕 ⟨𝑢𝑣,k∣𝑖E(𝑡) ⋅ 𝜕𝑢𝑐,k

𝜕k ⟩
𝜕k (3.13)

𝑀𝑑𝑖𝑝,21 = 𝑒−𝑖Δ𝜖𝑣𝑐,k𝑡A(𝑡) ⋅
𝜕 ⟨𝑢𝑐,k∣𝑖E(𝑡) ⋅ 𝜕𝑢𝑣,k

𝜕k ⟩
𝜕k (3.14)

Hereafter, we analyze the photocarrier injection process based on this perturba-

tive expansion of the Hamiltonian. Use perturbation expansion of Eq. (3.1):

𝑖 𝑑
𝑑𝑡(c(0)

k (𝑡) + c(1)
k (𝑡) + c(2)

k (𝑡)) = (ℋ(0)
k + ℋ(1)

k (𝑡) + ℋ(2)
k (𝑡))(c(0)

k (𝑡) + c(1)
k (𝑡) + c(2)

k (𝑡))

(3.15)
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Under initial condition ℋ(0)
k (𝑡 = 0) = 0, c(0)

k (𝑡 = 0) = ⎛⎜⎜⎜
⎝

1
0

⎞⎟⎟⎟
⎠
, the first (𝑐(1)

𝑐,k(𝑡)) and

second-order coefficient vectors (𝑐(2)
𝑐,k,𝑑𝑦𝑛(𝑡), 𝑐(2)

𝑐,k,𝑑𝑖𝑝(𝑡)) for the conduction band can
be written as:

𝑐(1)
𝑐,k(𝑡) = ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k

𝜕k ⟩ ∫
𝑡

0
𝑑𝑡′𝑒−𝑖Δ𝜖𝑣𝑐,k𝑡′E1(𝑡′) (3.16)

𝑐(2)
𝑐,k,𝑑𝑦𝑛(𝑡) = 1

𝑖
𝜕Δ𝜖𝑣𝑐,k

𝜕k ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k
𝜕k ⟩ ∫

𝑡

0
𝑑𝑡′𝑒−𝑖Δ𝜖𝑣𝑐,k𝑡′E2(𝑡′) ∫

𝑡′

0
𝑑𝑡″A2(𝑡″) (3.17)

𝑐(2)
𝑐,k,𝑑𝑖𝑝(𝑡) =

𝜕 ⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k
𝜕k ⟩

𝜕k ∫
𝑡

0
𝑑𝑡′𝑒−𝑖Δ𝜖𝑣𝑐,k𝑡′E2(𝑡′)A2(𝑡′) (3.18)

Under two-color linearly polarized light, here we consider the perturbation by

the external linearly polarized vector potential for ⃗𝑒-direction, assuming 𝑇0 is

much larger than the width of the gaussian, and the gaussian can be approxi-

mately zero.

𝑓(𝑡) = 𝑒− (𝑡−𝑇0)2
2𝜎2 (3.19)

A1(𝑡) = 𝐴1 ⃗𝑒 cos[2𝜔(𝑡 − 𝑇0) + 𝜙]𝑒− (𝑡−𝑇0)2
2𝜎2 , (3.20)

A2(𝑡) = 𝐴2 ⃗𝑒 cos[𝜔(𝑡 − 𝑇0)]𝑒− (𝑡−𝑇0)2
2𝜎2 (3.21)

𝑤 is the carrier frequency of the field, ⃗𝑒 represents a unit vector along the polar-
ization direction of the laser field We assume 𝜎 ≫ 0 to make the approximation

the Gaussian term is a constant:

∫
𝑡′

0
𝐴2 ⃗𝑒 cos[𝜔(𝑡 − 𝑇0)]𝑒− (𝑡−𝑇0)2

2𝜎2 𝑑𝑡 = 𝐴2 ⃗𝑒
𝜔 sin[𝜔(𝑡′ − 𝑇0)]𝑒− (𝑡′−𝑇0)2

2𝜎2 (3.22)

The corresponding external dipolar electric field E(𝑡) = −𝑑A(𝑡)/𝑑𝑡 can be written

as the following pulsed form:
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E1(𝑡) = 2𝜔𝐴1 ⃗𝑒 sin[2𝜔(𝑡 − 𝑇0) + 𝜙]𝑒− (𝑡−𝑇0)2
2𝜎2 , (3.23)

E2(𝑡) = 𝜔𝐴2 ⃗𝑒 sin[𝜔(𝑡 − 𝑇0)]𝑒− (𝑡−𝑇0)2
2𝜎2 (3.24)

Now, let’s express this in terms of the first-order coefficient vector is:

𝑐(1)
𝑐,k(𝑡) = ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k

𝜕k ⟩ ∫
𝑡

0
𝑑𝑡′𝑒−𝑖Δ𝜖𝑣𝑐,k𝑡′2𝜔𝐴1 ⃗𝑒 ⋅ sin[2𝜔(𝑡′ − 𝑇0) + 𝜙]𝑒− (𝑡′−𝑇0)2

2𝜎2

= 𝐴1 ⃗𝑒𝜔
𝑖 ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k

𝜕k ⟩ ∫
𝑡

0
𝑑𝑡′𝑒−𝑖Δ𝜖𝑣𝑐,k𝑡′− (𝑡′−𝑇0)2

2𝜎2 ⋅ (𝑒𝑖[2𝜔(𝑡′−𝑇0)+𝜙] − 𝑒−𝑖[2𝜔(𝑡′−𝑇0)+𝜙])

(3.25)

We consider the population distribution after the laser pulse, so we replace the

integra ∫𝑡
0 by ∫∞

−∞. Under the Gaussian integral,

∫
∞

−∞
𝑒−𝑥2 𝑑𝑥 = √𝜋 (3.26)

we get:

𝑐(1)
𝑐,k(𝑡) = 𝐴1 ⃗𝑒𝜔 ⋅ 𝜎

√
2𝜋

𝑖 ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k
𝜕k ⟩ ⋅ 𝑒−𝑖Δ𝜖𝑣𝑐,k𝑇0 [𝑒− 1

2 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2−𝑖𝜙 − 𝑒− 1
2 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2+𝑖𝜙]

(3.27)

Similarly to thefirst-order perturbation coefficient vector’s derivation, the second-

order coefficient 𝑐(2)
𝑐,k(𝑡) can be written as:

𝑐(2)
𝑐,k,𝑑𝑦𝑛(𝑡) =(𝐴2 ⃗𝑒)2 ⋅ 𝜎√𝜋

2𝑖
𝜕Δ𝜖𝑣𝑐,k

𝜕k ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k
𝜕k ⟩ ⋅ 𝑒−𝑖Δ𝜖𝑣𝑐,k𝑇0

⋅ [𝑒− 𝜎2
4 Δ𝜖2

𝑣𝑐,k − 1
2(𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 + 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]

(3.28)

𝑐(2)
𝑐,k,𝑑𝑖𝑝(𝑡) = (𝐴2 ⃗𝑒)2𝜔 ⋅ 𝜎√𝜋

4𝑖 ⋅
𝜕⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k

𝜕k ⟩
𝜕k ⋅ 𝑒−𝑖Δ𝜖𝑣𝑐,k𝑇0 [𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 − 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]

(3.29)

This completes the derivation of the population of the conduction band after the
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laser pulse:
|𝑐𝑐,k(𝑡)|2 = |𝑐(1)

𝑐,k(𝑡)|2 + |𝑐(2)
𝑐,k,𝑑𝑦𝑛(𝑡)|2 + |𝑐(2)

𝑐,k,𝑑𝑖𝑝(𝑡)|2

+ 𝑐(1)
𝑐,k(𝑡)∗𝑐(2)

𝑐,k,𝑑𝑦𝑛(𝑡) + 𝑐.𝑐.

+ 𝑐(1)
𝑐,k(𝑡)∗𝑐(2)

𝑐,k,𝑑𝑖𝑝(𝑡) + 𝑐.𝑐.

+ 𝑐(2)
𝑐,k,𝑑𝑦𝑛(𝑡)∗𝑐(2)

𝑐,k,𝑑𝑖𝑝(𝑡) + 𝑐.𝑐.

(3.30)

𝑐.𝑐. represents complex conjugate. We consider a prototypical two-dimensional

insulator, monolayer hexagonal boron-nitride (h-BN). For the 2-band h-BN-tight-

binding model, the inversion symmetric is broken

𝑢k(− ⃗𝑟) ≠ 𝑢−k( ⃗𝑟) (3.31)

We apply the time-reversal relation for the derivation:

𝑢∗
k( ⃗𝑟) = 𝑢−k( ⃗𝑟) (3.32)

To compare the |𝑐𝑐,−k(𝑡)|2, the absolute value of the coefficient becomes:

|𝑐(1)
𝑐,k(𝑡)|2 = |𝐴1 ⃗𝑒𝜔 ⋅ 𝜎

√
2𝜋

𝑖 ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k
𝜕k ⟩|2

⋅ [𝑒−(Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2 + 𝑒−(Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2 − 2𝑒− 1
2 ((Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2+(Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2) cos(2𝜙)]

= |𝑐(1)
𝑐,−k(𝑡)|2

(3.33)

|𝑐(2)
𝑐,k,𝑑𝑦𝑛(𝑡)|2 = |(𝐴2 ⃗𝑒)2 ⋅ 𝜎√𝜋

2
𝜕Δ𝜖𝑣𝑐,k

𝜕k ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k
𝜕k ⟩

⋅ [𝑒− 𝜎2
4 Δ𝜖2

𝑣𝑐,k − 1
2(𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 + 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]|2

= |𝑐(2)
𝑐,−k,𝑑𝑦𝑛(𝑡)|2

(3.34)

|𝑐(2)
𝑐,k,𝑑𝑖𝑝(𝑡)|2 = |(𝐴2 ⃗𝑒)2𝜔 ⋅ 𝜎√𝜋

4 ⋅
𝜕⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k

𝜕k ⟩
𝜕k [𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 − 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]|2

= |𝑐(2)
𝑐,−k,𝑑𝑖𝑝(𝑡)|2

(3.35)
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The interference terms are:

𝑐(1)
𝑐,k(𝑡)∗𝑐(2)

𝑐,k,𝑑𝑦𝑛(𝑡) + 𝑐.𝑐. =
√

2𝐴1𝐴2
2 ⃗𝑒𝜔 ⋅ 𝜎2𝜋 𝜕Δ𝜖𝑣𝑐,k

𝜕k | ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k
𝜕k ⟩ |2

⋅ [𝑒− 𝜎2
4 Δ𝜖2

𝑣𝑐,k − 1
2(𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 + 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]

⋅ [𝑒− 1
2 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2 − 𝑒− 1

2 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2 ] cos𝜙

= −(𝑐(1)
𝑐,−k(𝑡)∗𝑐(2)

𝑐,−k,𝑑𝑦𝑛(𝑡) + 𝑐.𝑐.)

(3.36)

𝑐(1)
𝑐,k(𝑡)∗𝑐(2)

𝑐,k,𝑑𝑖𝑝(𝑡) + 𝑐.𝑐. =
√

2𝐴1𝐴2
2 ⃗𝑒𝜔2 ⋅ 𝜎2𝜋
4 ⋅ (𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 − 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)

⋅ (⟨𝜕𝑢𝑣,k
𝜕k |𝑢𝑐,k⟩

𝜕⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k
𝜕k ⟩

𝜕k [𝑒− 1
2 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2+𝑖𝜙 − 𝑒− 1

2 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2−𝑖𝜙]

+
𝜕⟨ 𝜕𝑢𝑣,k

𝜕k ∣𝑢𝑐,k⟩
𝜕k ⟨𝑢𝑐,k|𝜕𝑢𝑣,k

𝜕k ⟩ [𝑒− 1
2 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2−𝑖𝜙 − 𝑒− 1

2 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2+𝑖𝜙])

(3.37)

Here under the time-reversal relation, 𝑢∗
k( ⃗𝑟) = 𝑢−k( ⃗𝑟), so for −k, we have:

⟨𝜕𝑢𝑣,−k
𝜕(−k) |𝑢𝑐,−k⟩

𝜕⟨𝑢𝑐,−k∣ 𝜕𝑢𝑣,−k
𝜕(−k) ⟩

𝜕−k = ⟨
𝜕𝑢∗

𝑣,k
𝜕(−k) |𝑢∗

𝑐,k⟩
𝜕⟨𝑢∗

𝑐,k∣ 𝜕𝑢∗
𝑣,k

𝜕(−k) ⟩
𝜕(−k) (3.38)

= − ⟨𝑢𝑐,k|𝜕𝑢𝑣,k
𝜕k ⟩

𝜕⟨ 𝜕𝑢𝑣,k
𝜕k ∣𝑢𝑐,k⟩
𝜕k (3.39)

The interference terms for central symmetry point −k can be written as:

𝑐(1)
𝑐,−k(𝑡)∗𝑐(2)

𝑐,−k,𝑑𝑖𝑝(𝑡) + 𝑐.𝑐. =
√

2𝐴1𝐴2
2 ⃗𝑒𝜔2 ⋅ 𝜎2𝜋
4 ⋅ (𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 − 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)

⋅ (− ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k
𝜕k ⟩

𝜕⟨ 𝜕𝑢𝑣,k
𝜕k ∣𝑢𝑐,k⟩
𝜕k [𝑒− 1

2 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2+𝑖𝜙 − 𝑒− 1
2 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2−𝑖𝜙]

−
𝜕⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k

𝜕k ⟩
𝜕k ⟨𝜕𝑢𝑣,k

𝜕k |𝑢𝑐,k⟩ [𝑒− 1
2 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2−𝑖𝜙 − 𝑒− 1

2 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2+𝑖𝜙])

(3.40)
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𝑐(2)
𝑐,k,𝑑𝑦𝑛(𝑡)∗𝑐(2)

𝑐,k,𝑑𝑖𝑝(𝑡) + 𝑐.𝑐. = (𝐴2 ⃗𝑒)4𝜔 ⋅ 𝜎2𝜋
8 ⋅ [𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 − 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]

⋅ [𝑒− 𝜎2
4 Δ𝜖2

𝑣𝑐,k − 1
2(𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 + 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]

⋅ 𝜕Δ𝜖𝑣𝑐,k
𝜕k (⟨𝜕𝑢𝑣,k

𝜕k |𝑢𝑐,k⟩
𝜕⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k

𝜕k ⟩
𝜕k +

𝜕⟨ 𝜕𝑢𝑣,k
𝜕k ∣𝑢𝑐,k⟩
𝜕k ⟨𝑢𝑐,k|𝜕𝑢𝑣,k

𝜕k ⟩)

(3.41)

𝑐(2)
𝑐,−k,𝑑𝑦𝑛(𝑡)∗𝑐(2)

𝑐,−k,𝑑𝑖𝑝(𝑡) + 𝑐.𝑐. = (𝐴2 ⃗𝑒)4𝜔 ⋅ 𝜎2𝜋
8 ⋅ [𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 − 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]

⋅ [𝑒− 𝜎2
4 Δ𝜖2

𝑣𝑐,k − 1
2(𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 + 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]

⋅ 𝜕Δ𝜖𝑣𝑐,k
𝜕k (⟨𝑢𝑐,k∣𝜕𝑢𝑣,k

𝜕k ⟩
𝜕⟨ 𝜕𝑢𝑣,k

𝜕k ∣𝑢𝑐,k⟩
𝜕k +

𝜕⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k
𝜕k ⟩

𝜕k ⟨𝜕𝑢𝑣,k
𝜕k |𝑢𝑐,k⟩)

= 𝑐(2)
𝑐,k,𝑑𝑦𝑛(𝑡)∗𝑐(2)

𝑐,k,𝑑𝑖𝑝(𝑡) + 𝑐.𝑐.
(3.42)

To summarize the steps, the asymmetric population distribution between k

and −k can be understood by the quantum interference (QuI) [100] of different

excitation paths:
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|𝑐𝑐,k(𝑡)|2 − |𝑐𝑐,−k(𝑡)|2 = 2𝑐(1)
𝑐,k(𝑡)∗𝑐(2)

𝑐,k,𝑑𝑦𝑛(𝑡) + 𝑐(1)
𝑐,k(𝑡)∗𝑐(2)

𝑐,k,𝑑𝑖𝑝(𝑡) − 𝑐(1)
𝑐,−k(𝑡)∗𝑐(2)

𝑐,−k,𝑑𝑖𝑝(𝑡) + 𝑐.𝑐.

= 2
√

2𝐴1𝐴2
2 ⃗𝑒𝜔 ⋅ 𝜎2𝜋 𝜕Δ𝜖𝑣𝑐,k

𝜕k | ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k
𝜕k ⟩ |2

⋅ [𝑒− 𝜎2
4 Δ𝜖2

𝑣𝑐,k − 1
2(𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 + 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)]

⋅ [𝑒− 1
2 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2 − 𝑒− 1

2 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2 ] cos𝜙

+
√

2𝐴1𝐴2
2 ⃗𝑒𝜔2 ⋅ 𝜎2𝜋
2 ⋅ (𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k−2𝜔)2 − 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k+2𝜔)2)

⋅ (⟨𝑢𝑐,k∣𝜕𝑢𝑣,k
𝜕k ⟩

𝜕⟨ 𝜕𝑢𝑣,k
𝜕k ∣𝑢𝑐,k⟩
𝜕k +

𝜕⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k
𝜕k ⟩

𝜕k ⟨𝜕𝑢𝑣,k
𝜕k |𝑢𝑐,k⟩)

⋅ [𝑒− 1
2 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2 − 𝑒− 1

2 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2 ] cos𝜙

=
√

2𝐴1𝐴2
2 ⃗𝑒𝜔 ⋅ 𝜎2𝜋[𝑒− 1

2 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2 − 𝑒− 1
2 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2 ]

⋅ [ 𝜕Δ𝜖𝑣𝑐,k
𝜕k | ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k

𝜕k ⟩ |2(2𝑒− 𝜎2
4 Δ𝜖2

𝑣𝑐,k − 𝑒− 𝜎2
4 (Δ𝜖𝑣𝑐,k−2𝜔)2 − 𝑒− 𝜎2

4 (Δ𝜖𝑣𝑐,k+2𝜔)2)

+ 𝜔
2 (⟨𝑢𝑐,k∣𝜕𝑢𝑣,k

𝜕k ⟩
𝜕⟨ 𝜕𝑢𝑣,k

𝜕k ∣𝑢𝑐,k⟩
𝜕k +

𝜕⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k
𝜕k ⟩

𝜕k ⟨𝜕𝑢𝑣,k
𝜕k |𝑢𝑐,k⟩)

⋅ (𝑒− 1
4 (Δ𝜖𝑣𝑐,k−2𝜔)2𝜎2 − 𝑒− 1

4 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2)] cos𝜙
(3.43)

We consider the band gap between valence and conduction bands close to twice

the field’s frequency:

Δ𝜖𝑣𝑐,k + 2𝜔 ≈ 0 (3.44)

Because 𝜎 ≫ 1/𝜔, in a nutshell, the population imbalance becomes:

|𝑐𝑐,k(𝑡)|2 − |𝑐𝑐,−k(𝑡)|2 ≈
√

2𝐴1𝐴2
2 ⃗𝑒𝜔 ⋅ 𝜎2𝜋𝑒− 3

4 (Δ𝜖𝑣𝑐,k+2𝜔)2𝜎2 [ 𝜕Δ𝜖𝑣𝑐,k
𝜕k | ⟨𝑢𝑐,k∣𝜕𝑢𝑣,k

𝜕k ⟩ |2

+ 𝜔
2 (⟨𝑢𝑐,k∣𝜕𝑢𝑣,k

𝜕k ⟩
𝜕⟨ 𝜕𝑢𝑣,k

𝜕k ∣𝑢𝑐,k⟩
𝜕k +

𝜕⟨𝑢𝑐,k∣ 𝜕𝑢𝑣,k
𝜕k ⟩

𝜕k ⟨𝜕𝑢𝑣,k
𝜕k |𝑢𝑐,k⟩)] cos𝜙

(3.45)

The utilization of two-color fields, such as 𝜔 and 2𝜔, has opened a potential to

break the time-reversal symmetry of the systems, even when the combined field

is linearly polarized. This symmetry breaking leads to a population imbalance
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induced by laser irradiation, consequently resulting in dc-current injection. The

population imbalance in this scheme is caused by quantum interference between

two excitation paths: One is the two-photon absorption process with photons at

the frequency 𝜔, while the other is the one-photon absorption process with pho-

tons at the frequency 2𝜔. Hence, this protocol for dc-current injection is known

as quantum interference control (QuIC). By manipulating the relative phase of

the optical fields at frequencies 𝜔 and 2𝜔, QuIC can be applied to achieve control

over one- and two-photon absorption processes, often referred to as (1 + 2 QuIC),
we will further discuss in the next section.

We need to emphasize the population imbalance of the quantum interference

induced by the coupling of two different excitation paths (1 + 2 QuIC), is different
from the second order nonlinear current, so-called ”injection current” [11]. The

injection current occurs due to the quantum interference between absorption

pathways associated with orthogonal components of the beam polarization. This

leads to a polar distribution of electrons or holes in momentum space, resulting

in current injection that temporally follows the optical intensity but whose de-

cay characteristics are related to momentum scattering[11]. One may see that

the non-oscillating current due to the quantum interference may exist even after

the perturbation ends. Ref.[10] also discussed the interference of one-photon ab-

sorption processes associated with different linear polarizations of light for the

injection current induced by the circularly polarized light. Furthermore, they

discuss the interference of the one - and two-photon absorption processed with

the two color laser fields.

3.2 Third-order Nonlinear Regime

From perturbation analysis in Sec 3.1, the breakdown of time-reversal symmetry

can be achieved through the use of linearly polarized light featuring two distinct

frequencies. This implies that the injection of dc-current and the generation of a

substantial population imbalance can be efficiently realized without relying on

the ellipticity of light. This principle is exemplified by employing two-color lin-

early polarized laser fields with frequencies 𝜔 and 2𝜔. In this configuration, the
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intrinsic properties of linear polarization and the dual frequencies are sufficient

to break time-reversal symmetry, facilitating the desired outcomes of dc-current

injection and the establishment of a pronounced population imbalance. This ap-

proach provides a adjiustable and simplified means to manipulate quantum in-

terference and achieve specific optical responses in the system without the need

for elliptically polarized light.

In the simulations to be presented below, we examine the light-induced elec-

tron dynamics in a typical two-dimensional insulator, monolayer h-BN, using a

simple tight-binding approximation and TDSE introduced in Chapter 2. In the

quantum dynamics simulation, we employ the following expression for the vec-

tor potential of the applied two-color fields within the interval − 𝜏
2 < 𝑡 < 𝜏

2 and

zero outside this range:

A(𝑡) = −e𝑝
𝐸0
𝜔 [cos (𝜔𝑡) + 1

4 cos (2𝜔𝑡 + 𝜙)] × cos4 (𝜋
𝜏 𝑡) (3.46)

e𝑝 represents a unit vector along the polarization direction of the laser field, 𝐸0

denotes the peak field strength, 𝜔 is the fundamental frequency, and 𝜏 is the dura-
tion of the laser field pulse. To illustrate dc current injection according to pertur-

bation derivation in Section 3.1, we simulate electron dynamics using the vector

potential from Eq. (3.49) with 𝜔 set to 3 eV for practical calculations. Note that the

photon energy satisfies the condition (𝜔 ≤ 𝐸𝑔 ≤ 2ℏ𝜔) for the 1+2QuIC process [94].
Furthermore, we set the laser polarization direction, e𝑝, with the Γ–𝐾 direction,

the pulse duration, 𝜏 , is set to 40 fs. We introduce a relative phase 𝜙 between the

two-color fields. The relative phase governs quantum interferences among dif-

ferent excitation paths induced via 𝜔 and 2𝜔 laser fields, while the global phase

is utilized to extract a dc-like response from the quantum dynamics. By manipu-

lating the relative phase 𝜙 in the electric field described in Eq. (3.47):

E(𝑡) = −e𝑝𝐸0 [cos (𝜔𝑡) + 1
2 cos (2𝜔𝑡 + 𝜙)]

one can induce a population imbalance and, consequently, a dc-current by ex-

trinsically breaking the time-reversal symmetry by utilizing two-color fields with

frequencies 𝜔 and 2𝜔. Figure 3.1 (a) illustrates the electric field generated by the
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vector potential with a relative phase of 𝜙 = 0, while Figure 3.1 (b) presents the

field with a relative phase of 𝜙 = 𝜋/2. It is evident that the field with 𝜙 = 0 in

Fig. 3.1 (a) breaks the time-reversal symmetry, as E(𝑡) ≠ E(−𝑡), while the field

with 𝜙 = 𝜋/2 in Fig. 3.1 (b) maintains the symmetry E(𝑡) = E(−𝑡). Hence, the

time-reversal symmetry of the Hamiltonian is broken when 𝜙 = 0 and preserved
when 𝜙 = 𝜋/2. Consequently, a population imbalance and resulting dc current

injection are expected when 𝜙 = 0, while symmetric excitation population and

the absence of net residual current are anticipated when 𝜙 = 𝜋/2.

(a) (b)

(c) (d)

Figure 3.1: The time profiles of the electric field given by Eq. (3.47) are shown
for (a) 𝜙 = 0 and (b) 𝜙 = 𝜋/2. The corresponding vector potential is shown in (c)
𝜙 = 0 and (d) 𝜙 = 𝜋/2.

To comprehensively determine the observed persistent dc-current following

laser irradiation, we conduct an in-depth analysis utilizing the photo-excited con-

duction population 𝑛𝑐k computed from Eq. (2.31):

𝑛𝑐𝑘 = ∣⟨𝜙𝑐𝑘|𝜓𝑘(𝑡𝐹 )∣2 , (3.47)

where 𝑡𝐹 is a time after the laser field ends (𝑡𝐹 > 𝜏/2). Employing a weak enough
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laser field in the perturbation region with a strength of 𝐸0 = 2.57 MV/cm and fix-

ing the relative phase at 𝜙 = 0, the resulting conduction population is illustrated

in Fig. 3.2 (a). For comparative purposes, Fig. 3.2 (b) presents the conduction pop-

ulation 𝑛𝑐k computed under the same field strength (𝐸0 = 2.57 MV/cm) but with a

distinct relative phase (𝜙 = 0). In both instances, the conduction populations ex-

hibit notable excitations centered around the 𝐾- and 𝐾′-points. This observation

implies that the photo-absorption process is primarily governed by a one-photon

absorption at the photon energy of 2ℏ𝜔 and a two-photon absorption at the pho-

ton energy of ℏ𝜔. The consistency in the excitation patterns further underscores

the dominance of these absorptionmechanisms in the systemunder the specified

laser conditions.

While the population distributions in Fig.3.2(a) and (b) may initially appear

similar, a closer examination reveals distinctions. In the case of the time-reversal

symmetry-brokenfield (𝜙 = 0) illustrated in Fig.3.2(a), the population distribution
must show an imbalance between time-reversal pairs (e.g., k and −k, or 𝐾 and

𝐾′). On the contrary, in the case of the time-reversal field (𝜙 = 𝜋/2) showed in

Fig.3.2(b), the population distribution 𝑛𝑐k is anticipated to lack such a population

imbalance. This discrepancy arises from the absence of a persistent current un-

der these conditions. This analysis deepens ourunderstanding of the complicated

relationship between population distributions and the underlying time-reversal

symmetry characteristics, providing crucial insights into the dynamic behavior

of the system.

To delineate the population imbalance across the Brillouin zone, we introduce

the population imbalance distribution Δ𝑛𝑐k, defined as the disparity in popula-

tion between the time-reversal pair 𝑘-points, expressed as:

Δ𝑛𝑐k = 𝑛𝑐k − 𝑛𝑐,−k (3.48)

Given the constraint 0 ≤ 𝑛𝑐k ≤ 1, the population imbalance distribution is bounded

by −1 ≤ Δ𝑛𝑐k ≤ 1. In situations where external fields maintain time-reversal

symmetry, the populations at k and −k are equivalent, resulting in a popula-

tion imbalance distribution of zero. Conversely, in instanceswhere time-reversal

symmetry is broken, non-equivalent populations can be induced at k and −k,
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(a) (b)

(c) (d)

Figure 3.2: (a, b) The conduction population distribution 𝑛𝑐(k) computed with
(a) 𝜙 = 0 and (b) 𝜙 = 𝜋/2. (c, d) The population imbalance distribution Δ𝑛𝑐(k)
computed with (c) 𝜙 = 0 and (d) 𝜙 = 𝜋/2.
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giving rise to a finite population imbalance distribution Δ𝑛𝑐k. Figures 3.2(c) and

(d) illustrate the population imbalance distribution, Δ𝑛𝑐k, derived from the pop-

ulation distributions presented in Figs.3.2 (a) and (b), respectively. The figures

clearly illustrate that when the external field disrupts time-reversal symmetry

(𝜙 = 0), a discernible finite population imbalance is induced. In contrast, when

the field preserves time-reversal symmetry (𝜙 = 𝜋/2), the population imbalance

diminishes entirely. This comprehensive analysis of the population imbalance

distribution provides a detailed insight into the complicated interplay between

external field characteristics and the resulting population asymmetry within the

Brillouin zone.

The temporal evolution of the corresponding electric current, denoted as J𝑡𝑜𝑡𝑎𝑙(𝑡),
can be computed using Eq.(2.27). This equation represents a functional depen-

dence on the vector potential A(𝑡), as illustrateed in Fig.3.3. The total current en-

compasses multiple components and noises, often overshadowing the relatively

small value of the dc-component following the laser pulse. To examine and iso-

late the dc-current generated by the fields, we introduce the global phase 𝜃 into
the fields as described by the Eq.(3.49), as done in our prior study[101].

A(𝑡) = −e𝑝
𝐸0
𝜔 [cos (𝜔𝑡 + 𝜃) + 1

4 cos (2𝜔𝑡 + 2𝜃 + 𝜙)] × cos4 (𝜋
𝜏 𝑡) (3.49)
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Figure 3.3
The time profiles of the current computed from Eq. (2.27) induced by the electric

field given by Eq. (3.47) as shown in Fig. 3.1(a) with relative phase 𝜙 = 0.

The current, expressed as a function of the global phase 𝜃 in accordance with

the vector potential given by Eq.(3.49), is explicitly denoted as J(𝑡, 𝜃). Bymaintain-
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ing all laser parameters constant in Eq.(3.49) except for the global phase 𝜃, we can

isolate the direct current (dc)-like component of the induced current through the

following integral:

Jdc(𝑡) = 1
2𝜋 ∫

2𝜋

0
𝑑𝜃, J(𝑡, 𝜃). (3.50)

In this formulation, the integral averages out the higher-frequency components,

enabling the extraction of the clean dc-like slow-frequency component of the in-

duced current.
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Figure 3.4: The dc components of the currents Jdc(𝑡) computed from Eq. (3.50)
are shown as a function of time. The results using the relative phase of 𝜙 = 0 are
shown in panel (a), while those using 𝜙 = 𝜋/2 are shown in (b)

In Figure 3.4(a), the calculated dc-current component of the scaled current,
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Jdc(𝑡)/𝐸3
0 , is presented for a relative phase of 𝜙 = 0, including results for various

field strengths, 𝐸0. Remarkably, the residual dc-current persists beyond the con-

clusion of the laser fields (𝑡 > 𝜏/2). Notably, the scaled quantity, Jdc(𝑡)/𝐸3
0 , main-

tains identical behavior across different field strengths. This consistency suggests

that the dc component of the induced current can be interpreted as a third-order

nonlinear optical effect. This interpretation alignswith the inherent nature of the

1+2 QuIC process, which involves interference between one- and two-photon ab-

sorption processes, classifying it as a third-order nonlinear optical phenomenon.

The presented results shed light on the robust and field-independent nature of

the observed third-order nonlinear optical effects in the system.

In Figure 3.4(b), the dc-current component of the scaled current, Jdc(𝑡)/𝐸3
0 , is

illustrateed with a relative phase of 𝜙 = 𝜋/2. In stark contrast to the results with

𝜙 = 0 shown in Fig.3.4(a), the currents in Fig.3.4 (b) do not show a persistent dc

component after the conclusion of the laser irradiation. This outcome signifies

that the applied field with a relative phase of 𝜙 = 𝜋/2 does not disrupt time-

reversal symmetry, and consequently, no population imbalance is induced, re-

sulting in the absence of a sustained current. It is noteworthy that, even in the

case of 𝜙 = 𝜋/2, the dc-component of the current is induced solely during the laser

irradiation, highlighting yet another instance of a third-order nonlinear optical

process. This observation provides further insight into the nuanced interplay be-

tween field characteristics and the resulting dynamical responses in the system.

Bymanipulating the relative phase𝜙, one gains control over the extent of time-

reversal symmetry breaking, thereby influencing the resulting population imbal-

ance and dc- current injection [93]. For subsequent analysis, we systematically

explore the persistent dc current by varying the relative phase 𝜙. Figure 3.5 illus-
trates the dependence of the dc-current on the relative phase 𝜙 after laser irradi-

ation, computed using a field with a strength of 𝐸0 = 2.57 MV/cm. The amplitude

of the induced dc current reaches its maximum when 𝜙 = 0 and 𝜙 = 𝜋, with

opposite signs for these two phases. Moreover, the induced dc current exhibits

continuous variation as the phase 𝜙 is manipulated, attaining zero when 𝜙 = 𝜋/2
and 𝜙 = 3𝜋/2, corresponding to the points where the applied fields restore time-

reversal symmetry. This straightforward phase dependence aligns with findings

from prior works[93, 95], providing further validation of the controllable nature
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of the induced dc current through manipulation of the relative phase.
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Figure 3.5: The persistent current 𝐽dc(𝑡𝑓) as a function of the relative phase, 𝜙.
The results are computed by setting 𝐸0 to 2.57 MV/cm and ℏ𝜔 to 3 eV.

QuIC processes often exhibit resonance conditions at specific photon energies.

By systematically investigating the photon-energy dependence, we can identify

resonant regions where the interference effects are significantly enhanced. In-

vestigating these dependencies helps identify the primary mechanisms. To in-

vestigate this phenomenon within our theoretical framework, we systematically

evaluate the direct current (dc) after laser irradiationby varying the fundamental

frequency 𝜔 in Eq.(3.49). Figure3.6 (a) illustrates the resulting dc current follow-

ing laser irradiation with a field strength of 𝐸0 = 1.03 MV/m.

According to the expected behavior of the 1 + 2 QuIC process, the dc-current

decreases when the fundamental photon energy falls below half of the band gap,

i.e., ℏ𝜔 ≤ 𝐸𝑔/2 = 2.95 eV, since the fundamental photon energy ℏ𝜔 must adhere

to the condition ℏ𝜔 ≥ 𝐸𝑔/2, where 𝐸𝑔 signifies the band gap. In instances where

the fundamental photon energy ℏ𝜔 falls below the gap, both the 1 + 2 QuIC pro-

cess and the resultant dc-current vanish. This exploration not only clarify the

crucial role of photon energy in the indication of the 1 + 2 QuIC process but also

underscores the significance of satisfying specific conditions for its occurrence

and subsequent dc-current induction. This behavior aligns with the expected

characteristics of the 1 + 2 QuIC process and provides valuable insights into the

influence of the fundamental frequency on the induced dc-current in our theo-
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retical framework.

Previous results helps understand the complicated relationship between pho-

ton energy, field strength, and the nonlinear processes. It is essencial to investi-

gate the photon energy dependence of the dc-current after laser irradiationwhile

varying the field strength, 𝐸0, to unravel the intricacies of this highly nonlin-

ear optical phenomenon. Figures 3.6 (b) and (c) throughly illustrate the photon-

energy dependence of the persistent current following laser irradiation, calcu-

lated for twodistinct field strengths: (b)𝐸0 = 51.42MV/cmand (c)𝐸0 = 102.84MV/cm.

In contrast to the weak field regime dominated by the 1 + 2 QuIC, the direct cur-
rent (dc) can be induced even under deeply off-resonant conditions, where the

photon energy is smaller than half of the band gap (ℏ𝜔 ≤ 𝐸𝑔/2), as evident in Fig-

ure3.6(b). This convincing observation suggests that potent laser fields introduce

additional pathways for electron excitation that extend beyond two-photon ab-

sorption. These additional processes, involving multiple photons, contribute to

the creation of a population imbalance and a dc-current, even in the deeply off-

resonant regime. The interaction between laser field strength and photon energy

unveiled in these results provides invaluable insights into the complex dynamics

governing persistent currents in strong-field regimes.

Illustrated in Figure 3.6 (c), a noteworthy observation emerges the magnitude

of the direct current (dc) after laser irradiation in the deeply off-resonant regime

(ℏ𝜔 ≤ 𝐸𝑔/2) surpasses that in the 1 + 2 QuIC regime (ℏ𝜔 ≥ 𝐸𝑔/2) as the applied
field strength reaches exceptionally large values. This interesting behavior finds

its explanation in the ponderomotive energy, denoted as:

𝑈𝑝 = 𝑒2𝐸2
0

4𝑚𝜋𝜔2
0

(3.51)

The associated light-induced intraband transitions, both of which are more sub-

stantial for lower frequency driving[102]. Consequently, the ensuing nonlinear

effects and the injection of dc current becomemore pronounced in the deeply off-

resonant regime compared to the resonant condition. Our initial investigation

focused on analyzing the electric current induced by these two-color laser fields

within the weak field regime. We confirmed that the dc-component of the in-

duced current persists even after laser irradiationwhen the fundamental photon
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Figure 3.6: The current after the laser irradiation is shown as a function of the
fundamental photon energy ℏ𝜔. The results computed different field strengths:
(a) 𝐸0 = 1.03 MV/cm, (b) 51.43 MV/cm, and (c) 𝐸0 = 102.84 MV/cm.
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energy ℏ𝜔 exceeds the optical gap, 𝐸𝑔/2. This ballistic current phenomenon orig-

inates from a population imbalance in the Brillouin zone, arising from quantum

interference between two distinct excitation paths: one involving one-photon ab-

sorption at the photon energy of 2ℏ𝜔, and the other involving a two-photon ab-

sorption path at the photon energy of ℏ𝜔 [93–95].

This discovery sets the stage for a more in-depth exploration of the efficiently

inducing dc-current through highly nonlinear optical processes in the deeply off-

resonant regime in the next section.

3.3 Deeply Off-resonant Highly-nonlinear Regime

Despite the significant interest in the nonlinear photovoltaic effect, there has

been limited exploration of efficient current injection in the deeply off-resonant

regime with multi-cycle light pulses, particularly using linearly polarized light.

Subsequently, the scope of QuIC can be extended to involve general integer com-

binations, denoted as 𝑀 + 𝑁 QuIC [97, 99]. In this extended scheme, two-color

laser fields operating at frequencies 𝜔 and 𝜔′ induce𝑀 - and𝑁 -photon absorption

processes, respectively. To investigate the mechanism of dc-current injection in

the deeply off-resonant regime, as demonstrated in the previous section, we fix

the fundamental photon energy ℏ𝜔 in Eq. (3.49) at 1 eV. Notably, this value ismuch

smaller than half of the band gap, 𝐸𝑔/2 = 2.95 eV, for this section.

Similarly, we start with evaluating the population imbalance induced by a

strong field in the deeply off-resonant regime, we calculate the population dis-

tribution 𝑛𝑐𝑘⃗ after irradiating the laser field with a strength of 100 MV/cm. A

distinct pattern emerges in the excited carrier population distribution around

the 𝐾 and 𝐾′ points. This pattern can be understood through the multi-photon

absorption resonances of the light-induced Floquet states[103]. In Fig.3.7(a), we

present the computed population distribution in the conduction band. As an-

ticipated from the preceding discussion, the photo-carrier distribution reveals a

significant population imbalance between k and −k points. To enhance clarity

in visualizing the population imbalance, we compute the population imbalance
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Figure 3.7: (a) The conduction population distribution 𝑛𝑐(k) after the irradiation
of the laser field, and (b) the population imbalance distributionΔ𝑛𝑐(k) are shown.
The results are computed by setting 𝐸0 to 1010 V/m.
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distributionΔ𝑛𝑐k = 𝑛𝑐k−𝑛𝑐,−k. Figure 3.7(b) displays the resulting population im-

balance distribution Δ𝑛𝑐k. Since Δ𝑛𝑐k is constrained by −1 ≤ Δ𝑛𝑐k ≤ 1, the popu-
lation imbalance between k and −k is maximized when |Δ𝑛𝑐k| = 1. As observed
in Fig.3.7 (b), the population imbalance distribution takes significantly large val-

ues, comparable to themaximumvalues (±1), across awide range of the Brillouin

zone.
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Figure 3.8: The dc components of the currents, J𝑑𝑐(𝑡), are shown as a function
of time. The results are computed with the deeply off-resonant condition, ℏ𝜔 =
1.0 eV.

We calculate the population imbalance ratio 𝑟𝑖𝑚 defined as the maximum ab-

solute value of the population imbalance distribution Δ𝑛𝑐k across the Brillouin

zone for further qualification. Mathematically, it is expressed as:

𝑟𝑖𝑚 =
∫𝐵𝑍 𝑑k ∣Δ𝑛𝑐k∣

∫𝐵𝑍 𝑑k (𝑛𝑐k + 𝑛𝑐,−k)
=

∫𝐵𝑍 𝑑k ∣Δ𝑛𝑐k∣
2 ∫𝐵𝑍 𝑑k𝑛𝑐k

. (3.52)

The computed imbalance ratio, 𝑟𝑖𝑚, from Figs.3.7(a) and (b) is about 0.307. Hence,

more than 30% of the excited electrons contribute to the population imbalance.

This implies the potential for realizing a significant population imbalance through

the use of linearly polarized light alone.

In an earlier study [20], significant control over valley population was pro-

posedusing bi-circular fieldswith counter-rotating𝜔 and 2𝜔 two-color laser fields.
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In contrast, in this work, we demonstrate that significant valley population can

be induced without relying on circular or elliptically polarized light; rather, bi-

color linearly polarized light alone can break the time-reversal symmetry and

cause such population control.

We commence our analysis of population imbalance by examining the light-

induced current in the time domain within the deeply off-resonant regime. In

Figure 3.8, we present the dc component of the current, Jdc(𝑡)/𝐸3
0 , computed with

varying field strengths, 𝐸0. For this analysis, the relative phase 𝜙 is set to 0. Ev-

idently, a third-order nonlinear response dominates the induced current in the

case of weak field strength. Given that the photon energy of the second harmonic

is smaller than the band-gap (2ℏ𝜔 < 𝐸𝑔) and the QuIC process is forbidden, the

third-order current returns to zero after the laser irradiation.

However, as the field strength becomes sufficiently strong, the dc-component

remains finite even after laser irradiation, as illustrateed in Fig. 3.8. This obser-

vation suggests that a higher-order nonlinear process contributes to the ballistic

dc-current injection beyond the third-order nonlinear effect.
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Figure 3.9: The persistent current, 𝐽𝑑𝑐(𝑡𝑓), is shown as a function of the relative
phase 𝜙. The results are computed with the deeply off-resonant condition, ℏ𝜔 =
1.0 eV.

Next, we explore the dependence of the ballistic current induced by deeply

off-resonant light on the relative phase, 𝜙. Figure 3.9 illustrates the computed

current as a function of the relative phase, 𝜙, with calculations conducted at a
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field strength of 𝐸0 = 1 × 104 MV/m. In accordance with the QuIC case shown in

Fig.3.5, the persistent current is maximized when the relative phase is 𝜙 = 0 or

𝜙 = 𝜋, and it vanishes when the applied field exhibits time-reversal symmetry

(𝜙 = 𝜋/2 or 𝜙 = 3𝜋/2). Therefore, even in the deeply off-resonant regime, the

direction and magnitude of the persistent current can be controlled by manipu-

lating the relative phase 𝜙 between the two-color fields at frequencies 𝜔 and 2𝜔.
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Figure 3.10: (a) The persistent current, |𝐽𝑑𝑐(𝑡𝑓)|, is shownas a function of the field
strength, 𝐸0. (b) The number of conduction population after the laser irradiation
is shown as a function of the field strength 𝐸0.

To gain amore detailed understanding of the complicatedmechanism behind

dc current injection in the deeply off-resonant regime, we study into an analysis
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of how the injected current scales with the applied field strength 𝐸0. As illustra-

teed in Figure 3.10, the current amplitude after laser irradiation is plotted against

the varying field strength. Notably, a reference line representing |𝐸0|7 is included
for comparison.

The compelling observation from the figure is that the induced current ex-

hibits a clear proportionality to |𝐸0|7 in the weak field regime. This insightful

finding suggests that the seventh-order nonlinear process takes precedence in

governing the dynamics of dc current injection under these conditions. This

nuanced understanding provides a comprehensive insight into the complicated

nonlinear optical processes that contribute to the observed dc current phenom-

ena in the deeply off-resonant regime.

The observed scaling law of the induced dc current with the applied field

strengthmight initially seem inconsistentwith the expectedbehavior of a straight-

forward 𝑀 + 𝑁 QuIC process. In the conventional 𝑀 + 𝑁 QuIC situation, the

𝑀 -photon absorption process is initiated by light with frequency 𝜔, and the 𝑁 -

photon absorption process is generated by light with frequency 2𝜔, resulting in
an overall (𝑀 + 𝑁)-th order nonlinear process. For instance, if we consider a

six-photon process for multi-photon absorption with light of frequency 𝜔 and a

three-photon process for light of frequency 2𝜔, the anticipated simple𝑀 +𝑁 QuIC

process corresponds to the ninth-order nonlinear process (𝑀 + 𝑁 = 6 + 3 = 9).

However, our experimental observations reveal a scaling that indicates seventh-

order nonlinearity instead. This apparent discrepancy in the observed and ex-

pected nonlinearities of the injected dc current can be rationalized by the pres-

ence of an additional excitation channel involving a four-photon absorption pro-

cess. In this situation, two photons at frequency 𝜔 and the other two photons

at frequency 2𝜔 combine to excite electrons. This additional four-photon excita-

tion channel interferes with the three-photon absorption process at the photon

energy of 2ℏ𝜔, resulting in seventh-order (7 = 3 + 4) nonlinear current injection.

To study deeper into the nonlinearity of the light-induced electron dynamics,

we performed computations to determine the number of photo-excited carriers
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after laser irradiation using the expression:

𝑁𝑒𝑥 = 2
𝐴BZ

∫
BZ

𝑑k𝑛𝑐,k, (3.53)

where 𝐴BZ = ∫BZ 𝑑k represents the area of the Brillouin zone.

Figure 3.10 (b) presents the number of excited electrons as a function of the

field strength, 𝐸0, alongside a reference line proportional to |𝐸0|6. In the weak

field regime, the number of excited electrons exhibits proportionality to |𝐸0|6,
highlighting the dominance of the three-photon absorption process in the excita-

tion mechanism. However, as the field strength increases, the deviation from the

three-photon absorption line suggests the initiation of a nonperturbative mech-

anism in the excitation process.

In contrast to the |𝐸0|6-dependence of the number of photo-excited carriers

in the weak field regime, the injected current and the corresponding population

imbalance follow a |𝐸0|7 scaling, as illustrateed in Figure 3.10 (a). The difference

in nonlinearities between the absolute photo-carrier population and the popu-

lation imbalance implies that the population imbalance is negligible concern-

ing the absolute photo-carrier population in the weak field regime. However,

in a strong field regime, the relative significance of the population imbalance be-

comes substantial as it grows more rapidly than the absolute photo-carrier pop-

ulation. Therefore, the distinction in nonlinearities between the total photocar-

rier population and the population imbalance indicates the potential for large-

amplitude valley carrier population control.

Expanding our analysis to the deeply off-resonant regime, where ℏ𝜔 ≪ 𝐸𝑔/2,
we observed anabsence of population imbalanceunderweakfield strength. How-

ever, as the field strength increased, a population imbalance in the Brillouin zone

is formed, leading to the injection of the persistent dc-current after the laser ir-

radiation. Scaling analysis of the ballistic current injection with respect to the

applied field strength 𝐸0 revealed that the population imbalance and the ballis-

tic current result from an interference between three-photon absorption process

with three photons of energy 2ℏ𝜔 and a four-photon absorption process with two

photons of energy 2ℏ𝜔 and two photons of energy ℏ𝜔. Consequently, we demon-

strated that a multi-photon absorption process, incorporating photons with dif-
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ferent energies, plays a pivotal role in addition to the multi-photon absorption

process involving single-color photons.

In previous works [22, 88], the formation of substantial population imbalance

and valley-population control has been discussed in monolayer systems such as

monolayer ℎ-BN and graphene, using bi-circular laser fields with frequencies

𝜔 and 2𝜔. Recently, valley-population control with bi-circular fields has been

extended to multi-layer and bulk systems [104] without relying on intrinsic in-

version symmetry breaking and the Berry curvature at the valleys. In contrast

to these works, our study demonstrates the induction of a large population im-

balance and ballistic current injection without relying on the ellipticity of light.

Instead, we rely on time-reversal symmetry breaking achieved through relative

phase control between two-color linearly-polarizedfields at frequencies𝜔 and 2𝜔.
Furthermore, similar to Ref. [104], the injectionmechanismwith bi-color linearly

polarized light does not rely on intrinsic inversion symmetry breaking, indicat-

ing an efficient dc current injection and population controlwith the schemeusing

linearly-polarized light. The potential of population control and the photovoltaic

effect with linearly polarized light, in addition to circularly/elliptically polarized

light, unveils novel avenues for realizing ultrafast opto-electronics, marked by

precise control of current and population dynamics on the femtosecond time

scale.
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Chapter4
THZ-INDUCED HHG AND

NONLINEWAR CHARGE TRANSPORT

The discussion and results presented in this chapter ar an adaptation of the arti-

cle Ref. ([105]) [WenwenMao et al., THz-induced high-order harmonic generation

and nonlinear transport in graphene. (2022) Phys. Rev. B 106, 024313]

Recent experimental work conducted by Yoshikawa in Ref. [106] nicely show

the enhancement of HHG by elliptically polarized light, strongly indicating that

the solid-state HHG is completely different from the gas-phase HHG because the

HHG from gas is reduced by increasing the elliptically polarized light. Later, ex-

periments on the THz high-harmonic generation in graphene sample with elec-

trical tunability of terahertz nonlinearity in graphene [107, 108], In their experi-

mental setup, the gated graphene sample device, in which the graphene film acts

as a channel between source and drain electrodes subjected to a constant poten-

tial difference of 0.2 mV. The graphene film is covered on top by an electrolyte

subjected to a varying gating voltage to tune the Fermi level of the graphene layer

[108], showing extremely efficeint HHG spectrum intensty controled by Fermi

Level shifting. It would be interesting to theoretically study nonequilibrium elec-

tron dynamics to understand the mechanism of HHG in graphene in THz regime

with a shifted Fermi level. However, the microscopic understanding of these

HHG is not clear yet, and thus youpeform themicroscopic electron dynamcis sim-

ulation by considering nonequilibrium aspects of the phenomena. Meanwhile,
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HHG induced by intense laser fields has strong relaxation which cannot be ig-

nored. These all require for the study of HHG phenomena and the prediction of

experimental observables inmore realistic conditions, so we introduce the quan-

tum master equation for HHG progress under intensed long-term pulses.

THz-induced transparency of graphene, an interesting nonlinear optical ef-

fect, has been explored [109–111], often analyzed througha thermodynamicmodel

emphasizing the reduction of electric conductivity [76, 108]. Despite these ad-

vancements, a comprehensive understanding of the microscopic mechanisms

controlling these nonlinear effects remains tricky. The existing studies predomi-

nantly rely on thermodynamicmodels, lacking a thorough exploration of nonequi-

librium quantum dynamics under dissipation. This research gap highlights the

need for a deeper exploration of the underlyingmicroscopic processes to unravel

the intricacies of HHG and related nonlinear optical effects in graphene.

In this chapter, we investigate into the complex details of THz-induced HHG

andnonlinear electric transport in graphene. Our approach involves utilizing the

quantum master equation with the relaxation time approximation to provide a

comprehensive understanding of the underlying phenomena in Chapter. (2.3.2).

To gain microscopic insights, we thoroughly compare the outcomes of fully dy-

namic calculationswith those obtained through a quasi-static approximation, the

electronic system is treated as a nonequilibrium steady state.

The key revelation from our investigation is that the THz-induced electron dy-

namics in graphene can be accurately represented by the nonequilibrium steady-

state approach at each moment in time. Through a thorough population distri-

bution analysis, we clarify that THz-induced HHG in graphene arises from the

reduction of effective conductivity, attributed to a significant displacement of

electrons in the Brillouin zone.

To deepen our understanding, we draw comparisons between the nonequilib-

rium picture presented here and a thermodynamic perspective. This compara-

tive analysis allows us to unravel the central role of the nonequilibrium nature

of electron dynamics in driving the extremely nonlinear optical and transport

phenomena observed in graphene. Our study contributes valuable insights into
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the complex interplay between THz fields, electron dynamics, and nonlinear be-

havior in graphene systems.

The comprehensive dynamical analysis derived from the quantum master

equation provides a natural framework for understanding the complex nonequi-

librium features inherent in field-induced phenomena. Specifically, it allows for

the exploration of phenomena characterized by symmetry breaking and delayed

responses, uncovering the dynamics of the system under the influence of exter-

nal fields. Ongoing theoretical investigations aim to investigate deeper into these

aspects, explaining the nonequilibrium behavior induced by light-matter inter-

actions.

4.1 Fully Dynamical Simulations for THz Field

In this section, we first give a brief introduction of recent Experiments and Ther-

modynamic model on graphene. Next we investigate into the microscopic intri-

cacies controlling the THz-induced HHG in graphene, the electronic structure is

discriped by the tight-binding model in Chapter2. We initiate our investigation

by conducting a detailed electron dynamics simulation using TDSE,Eq. (2.32). The

focus of this simulation is to analyze the HHG in graphene under the influence

of a linearly polarized laser pulse. To promote this analysis, we adopt a specific

form for the applied vector potential, described by the equation:

A(𝑡) = −𝐸0
𝜔0

ex sin(𝜔0𝑡) cos4 ( 𝜋
𝑇full

𝑡) , (4.1)

where the simulation is conducted in the domain −𝑇full/2 < 𝑡 < 𝑇full/2 and

is zero outside this period. Aligning with a previous experimental setup [112],

we set specific parameters for the pulse: the peak field strength 𝐸0 is chosen as

8.5MV/m, themean photon energy ℏ𝜔0 is set to 1.2407 meV, and the pulse duration

𝑇full is established as 40 ps. Notably, the direction of the electric field e𝑥 is defined

along the Γ–𝑀 direction.
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This detailed setup enables a thorough exploration of the electron dynamics

under the influence of the specified laser pulse parameters, laying the ground-

work for a comprehensive analysis of high-order harmonic generation in graphene.

Following the electron dynamics simulation governed by the field in Eq. (5.3),

solve the quantum master euation in Eq. (2.32) with the vector potential given

above, we obtain the time-dependent density matrix. Then we proceed to com-

pute the induced electric current, denoted as J(𝑡) given by Eq. (2.38). To unveil the
frequency content embedded within the current dynamics, we employ a Fourier

transform applied to the current, yielding the high-order harmonics spectrum

described by the expression:

𝐼HHG(𝜔) ∼ 𝜔2 ∣∫
∞

−∞
𝑑𝑡, 𝐽(𝑡), 𝑒𝑖𝜔𝑡∣

2

. (4.2)

Here, 𝐼HHG(𝜔) encapsulates the contribution of high-order harmonics, and the

spectrum is determined by the square of the magnitude of the Fourier transform

of the induced current. This approach enables us to discern and analyze the

harmonic content within the electric current, providing valuable insights into

the high-order harmonic generation phenomenon induced by the specified laser

pulse.

Figure. 4.1.(a) we first show the computed current induced by THz field from

Eq. (2.38) and the correspondinghigh-order harmonic spectrum 𝐼HHG(𝜔) in Fig. 4.1.(b)
to compare the results with and without dissipation. The blue curves are com-

puted by setting 𝑇1 and 𝑇2 to infinity +∞, so the relaxation operation term in

Eq. (2.36)with approach zero, and the computed total currents fromEq. (2.38)will

be equivalent to the current in Eq. (2.27) solving from TDSE in Eq. (2.21). The red

curves are computed with finite 𝑇1 = 100𝑓𝑠 and 𝑇2 = 20𝑓𝑠 values as introduced
in the master equation section 2.3.2, by setting the chemical potential 𝜇 = 0.17𝑒𝑉 .

The compared results show that the total currents and HHG signal intensities are

significantly suppressed with the inclusion of dissipation, due to losing energy

form the system to the environment, indicating the importance of considering

relaxation processes in THz-induced nonlinear phenomena in graphene.
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Figure 4.1: (a). Compared total currents with Eq. (2.38) with (red curve) and
without (blue curve) relaxation approximation in master equation in Eq. (2.32),
by setting the eletron temperature 𝑇𝑒 = 300𝐾 and Fermi level 𝜇 = 0.17𝑒𝑉 . Com-
pared harmonic spectra 𝐼HHG(𝜔) with Eq. (4.2) from the cuurents in (a) with (red
curve) and without (blue curve) relaxation approximation.
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Figure 4.2: Computed harmonic spectra 𝐼HHG(𝜔)with Eq. (4.2) for different chem-
ical potentials, 𝜇 = 0, 70 and 170 meV. Figure is reproduced with permission from
ref. ([113]). Copyright 2022, Phys. Rev. B.

In Figure 4.2, we present the computed HHG spectra, denoted as 𝐼HHG(𝜔), cor-
responding to different chemical potentials 𝜇. Each chemical potential yields dis-

tinct harmonic peaks, and a noticeable trend emerges: the intensities of the in-

duced harmonics systematically increase with the rise in the chemical potential.

This observation combines with findings from a recent experiment [108], where

an analogous increase in induced harmonic intensity was noted with an eleva-

tion in gate voltage.

The observed trends in harmonic spectra intensities presented here depend-

ing on the chemical potential increasing reproduce the results from former re-

search, such as [76], where THz-inducedhigh-order harmonic generation in graphene

was clarifyd througha thermodynamic framework. In contrast, our current study

aims to advance the understanding of these THz-induced nonlinear phenomena

by considering a comprehensive microscopic perspective. Specifically, we inves-

tigate into the nonequilibrium nature of electron dynamics to process our de-

scription of light-matter interactions and provide a more interpretation of the

observed trends in high-order harmonic spectra with varying chemical poten-

tials.

Following the electron dynamics calculations under THz fields, our findings

reveal that the induced harmonics experience enhancement with an increase in
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chemical potential. This theoretical insight combines with recent experimen-

tal observations, where high-order harmonic generation is similarly enhanced

through the application of a gate bias voltage [108].

4.2 Quasi-static Approximation

Subsequently, we introduce a quasi-static approximation to investigate the THz-

inducednonperturbative electron dynamics, halping a reexamination of the non-

linear electric transport and the field-induced transparency phenomena inher-

ent to graphene [90]. In our analysis, we make the assumption that the varia-

tion of the THz field is sufficiently slow, allowing the electronic system to be ef-

fectively characterized by a nonequilibrium steady state at each point in time.

This assumption holds true under the equilibrium established between the field-

induced excitation and relaxation processes. Its accuracy is particularly pro-

nounced when the mean frequency of the THz field is significantly smaller than

the essential relaxation rates, denoted as 1/𝑇1 and 1/𝑇2.

For practical considerations within the quasi-static approximation, we initi-

ate our analysis by evaluating the electric current of a nonequilibrium steady

state under a static electric field, represented as E(𝑡) = 𝐸0e𝑥. The corresponding

expression is given by:

J𝑆(𝐸0) = lim
𝑡→∞

2
(2𝜋)2 ∫ 𝑑kTr [ ̂𝐽𝑘(𝑡)𝜌𝑘(𝑡)] . (4.3)

In this equation, the electron dynamics are computed under a static field,

A(𝑡) = −𝐸0e𝑥𝑡. Over time, the electronic system obtains a nonequilibrium steady

state as a result of the equilibrium between field-induced excitation and relax-

ation processes.

Within the quasi-static approximation, we raplace the instantaneous electric

field in the induced current J(𝑡) with the steady current J𝑆(𝐸0) from Eq. (4.3),

resulting in the approximation:
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J(𝑡) ≈ J𝑆 (E(𝑡)) . (4.4)

To evaluate the validity of this approximation, we first look into the steady

current in Eq.(4.3) for various field strengths. For practical computations, we

analyze the electron dynamics under a static electric field, denoted as E0 = 𝐸0e𝑥.

Figure4.3 illustrates the computed current as a function of time under a static

field. In this simulation, the chemical potential 𝜇 is set to 170 meV, and the field

strength 𝐸0 is established at 8.5 MV/m. The initial state at 𝑡 = 0 corresponds to

the thermal equilibrium state.
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Figure 4.3: Electric current in graphene under a static electric field, 𝐸0 =
8.5MV/m. Figure is reproducedwith permission from ref. ([113]). Copyright 2022,
Phys. Rev. B.

As observed in Fig.4.3, the application of the electric field induces an elec-

tric current at 𝑡 = 0, and it steadily approaches the steady-state value, denoted

as J𝑆(𝐸0). This observation confirms that the electronic system, evolving under

Eq.(2.32) with a static electric field, eventually reaches a nonequilibrium steady

state after a sufficiently extended period of time propagation. This validation

supports the reliability of the quasi-static approximation in capturing thenonequi-

librium dynamics induced by a slowly varying electric field.
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the fully dynamical calculation are showns as the red points, while the interpo-
lated result is shown as the blue-solid line. Figure is reproduced with permission
from ref. ([113]). Copyright 2022, Phys. Rev. B.

In our practical simulations, we systematically vary the field strength 𝐸0 and

evaluate the resulting values of the steady current. Denoting the 𝑘th set of em-

ployed field strength and evaluated current as 𝐸𝑘 and J𝑘 respectively, we repre-

sent the computed steady current J𝑘 as red points in Figure 4.4 against the applied

field strength𝐸𝑘. To construct a continuous function J𝑆(𝐸0) from the discrete data

points 𝐸𝑘, J𝑘 in Figure 4.4, we adopt a two-step interpolation procedure.

In the first step of constructing the continuous function, we employ a polyno-

mial regression with the following odd function:

Jpolynomials(𝐸0) = ∑ 𝑗 = 04e𝑥𝛼(2𝑗+1)𝐸2𝑗+1
0 , (4.5)

where 𝛼(𝑗) represents optimization parameters. These parameters are fine-

tuned to ensure that the polynomial function Jpolynomials(𝐸0) effectively repro-

duces the discrete points 𝐸𝑘, J𝑘 in Figure 4.4.

Moving on to the second step, we aim to process the discrepancy between

the discrete points in Figure 4.4 and the polynomial function Jpolynomials(𝐸0). To
achieve this, we define the residual error of the polynomial regression as:
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Figure 4.5: Comparison of the THz-induced current computed with the fully
dynamical calculation and the quasi-static approximation. Figure is reproduced
with permission from ref. ([113]). Copyright 2022, Phys. Rev. B.

ΔJ𝑘 = J𝑘 − Jpolynomials(𝐸𝑘). (4.6)

Subsequently, we apply spline interpolation to the data points 𝐸𝑘, ΔJ𝑘, denoting
the interpolated function as ΔJspline(𝐸0). Finally, we approximate the continu-

ous function, J𝑆(𝐸0), as:

J𝑆(𝐸0) ≈ Jpolynomials(𝐸0) + ΔJspline(𝐸0). (4.7)

Utilizing the approximated function in Eq.(4.7), we evaluate the THz-induced

electric current with the quasi-static approximation, Eq.(4.4). The relationship

between current and field as expressed in Eq. (4.3), we approximate the field-

induced current J(𝑡) by the steady-state current, where the instantaneous electric

field is denoted as E(𝑡), leading to the approximation J(𝑡) ≈ J𝑆 (E(𝑡)). Figure 5.2
showcases the computed current as a function of time with the quasi-static ap-

proximation. To promote comparison, the result of the fully dynamical calcula-

tion is also presented. Applying a Fourier transform to the obtained current in
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Figure 4.6: Comparison of the HHG spectra computed with the fully dynamical
simulations in Sec. 4.1 and the quasi-static approximation in this section. Here,
the chemical potential is set to 𝜇 = 170meV. Figure is reproducedwith permission
from ref. ([113]). Copyright 2022, Phys. Rev. B.

Figure 5.2 yields the HHG spectra illustrated in Figure 4.6.

4.3 Nonlinear Charge Transport in Nonequilibrium

Steady-state

Toprovide abroader context, we compare thenonequilibriumsteady-state achieved

within the quasi-static framework with insights collected from a recently devel-

oped thermodynamic model [76]. This comparative analysis aims to clarify the

nonequilibrium mechanisms controlling nonlinear optical and transport phe-

nomenawithin graphene in the THz regime. By contrasting the quasi-static nonequi-

librium picture with the thermodynamic model, we endeavor to unravel the un-

derlying dynamics driving the complex interplay between electron behavior and

external THz fields in graphene systems. We then study the nonlinear electric

conductivity in a static regime in order to develop microscopic insight into the

THz-induced HHG. For this purpose, we first define the intraband component of

the steady-state current in Eq. (4.3).

Next, we proceed to evaluate the effective conductivities using both the to-
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tal steady current J𝑆(𝐸0) computed from Eq. (2.38)and the intraband component

Jintra𝑆 (𝐸0) computed from Eq. (2.40). The effective total and intraband conductivi-

ties are computed as follows:

𝜎(𝐸0) = e𝑥 ⋅ J𝑆(𝐸0)
𝐸0

, (4.8)

𝜎intra(𝐸0) = e𝑥 ⋅ Jintra𝑆 (𝐸0)
𝐸0

. (4.9)

Figure 4.7 illustrates the computed effective conductivities, 𝜎(𝐸0) and 𝜎intra(𝐸0),
as a function of the appliedfield strength𝐸0 for different chemical potentials𝜇. In
this figure, the conductivities 𝜎(𝐸0) obtained from the total steady current J𝑆(𝐸0)
align well with those derived from the intraband current Jintra𝑆 (𝐸0) across all in-
vestigated field strengths 𝐸0 and chemical potentials 𝜇. This observation implies

that the charge transport in graphene under static and THz fields is predomi-

nantly governed by the intraband current. The intraband current is described

by the product of the band group velocity and the band population in the Bril-

louin zone.
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Figure 4.7: Nonlinear effective conductivities of graphene as a function of the
static field strength 𝐸0 evaluated with the total currents (solid lines) and intra-
band currents (dashed lines) for different values of the chemical potential, 𝜇 = 0,
70 and 170meV. Figure is reproducedwith permission from ref. ([113]). Copyright
2022, Phys. Rev. B.

68



4.3. NONLINEAR CHARGE TRANSPORT IN NONEQUILIBRIUM STEADY-STATE

In Fig. 4.7, the effective conductivities, 𝜎(𝐸0), show an initial reduction across

all investigated chemical potentials 𝜇 as the field strength increases from zero.

This reduction in conductivity combineswith thefield-induced transparencyphe-

nomenon observed in graphene [90], as the conductivity 𝜎(𝐸0) is directly related
to photo absorption via Joule heating, given by:

𝐸Joule = E0 ⋅ J𝑆(𝐸0) = 𝜎(𝐸0)𝐸2
0 (4.10)

As the field strength continues to increase, graphene with relatively small chem-

ical potentials (e.g., 𝜇 = 0 or 70 meV) shows an increase in conductivity, while

graphene with a relatively large chemical potential (e.g., 𝜇 = 170 meV) continues

to show a reduction in conductivity. These trends are consistent with a previ-

ous theoretical study on nonlinear transport in graphene using the linear band

approximation [90]:

𝐻k = 𝑣𝐹 (𝜎𝑥𝑘𝑥 + 𝜎𝑦𝑘𝑦) (4.11)

Given that the present work employs a more comprehensive electronic structure

throughout the full Brillouin zone based on the tight-bindingmodel, it serves as a

validation of the low-energy Hamiltonian approximation for the graphene band-

structure used in the previouswork. In the previous study [90], the decrease in ef-

fective conductivity was attributed to the dispersion of the population imbalance

in the Brillouin zone, while the increase in conductivity was linked to additional

carrier injection through the Zener tunneling mechanism. These interpretations

naturally apply to the results obtained in the present study, further confirming

the robustness and applicability of the previously proposed mechanisms.

Given the ability of the quasi-static approximation in accurately describing

THz-induced electron dynamics, the interpretation of THz-induced High-Order

Harmonic Generation (HHG) finds its foundation in the effective conductivities,

as illustrated in Fig. 4.7. The conductivity 𝜎(𝐸0) remain saturated by the field

strength 𝐸0, the induced current maintains linear proportionality to the field

strength, thereby preventing the generation of harmonics. Consequently, within

the quasi-static framework, the emergence of harmonics arises from the nonlin-

earity inherent in the current J𝑆(𝐸0) and the field-strength-dependent conductiv-
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Figure 4.8: (a) The equlibrium population distribution in the conduction band
𝑓FD(𝜖𝑐,k). (b-d) The field induced conduction population change for different field
strengths, (b) 0.01 MV/m, (c) 3 MV/m, and (d) 10 MV/m. (e) The population distri-
bution in the conduction band in the nonequilibrium steady-state under a static
field, 𝐸0 = 10 MV/m. Panels are reproduced with permission from ref. ([113]).
Copyright 2022, Phys. Rev. B.
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ity 𝜎(𝐸0).

Examining Fig.4.7, it becomes evident that the conductivity shows strength-

ened sensitivity to the field strength, particularly emphasized for larger chemical

potentials. This emphasized dependence manifests as a pronounced reduction

in conductivity with increasing field strength. This observation supports the ex-

planation of the strengthened HHG in Fig.4.2 accompanying a shift in chemical

potential—attributed to the significant reduction in conductivity coincident with

the amplified field strength.

In former investigations [108, 112], the interpretation of THz-induced HHG in

graphene was fixed in the reduction of conductivity, although within the frame-

work of the thermodynamic model [76]. To unravel the influence of nonequi-

librium dynamics in the steady state, we shall investigate into the interrelation

between the two models—the nonequilibrium steady-state model and the ther-

modynamic model—in the forthcoming section, Sec. 4.4.

Moving to the intraband current presented in Eq.(2.40), it is crucial to rec-

ognize its composition—encompassing the product of band velocity and popula-

tion. Given the inherent invariance of band velocity under the presence of elec-

tric fields as an essential material property, the point of THz-induced current

generation lies in the field-induced modulation of population. Furthermore, as

explained earlier, the THz-induced current is predominantly governed by the in-

traband component. For an complex understanding of the THz-induced current

at a microscopic level, we shall undertake an analysis of the population distribu-

tion within the Brillouin zone under the influence of the field. Figure4.8 (a) de-

scribes the equilibrium population distribution in the conduction band, denoted

as 𝑓FD(𝜖𝑐,k), Eq. (2.37), around a Dirac point (K point) in graphene, specifically at

𝐾 = 2𝜋√
3𝑎 (1, 1√

3 ). Here, the chemical potential 𝜇 is established at 170 meV. The

equilibrium population shows a circular symmetry around the Dirac point, re-

flecting the partial filling of the Dirac cone by doped electrons.

Wedefine thefield-induced change in conductionpopulationwithin anonequi-

librium steady state as:

Δ𝑛𝑐,k = [𝑛𝑐,k′+𝑒A(𝑡)/ℏ(𝑡) − 𝑓𝐹𝐷(𝜖𝑐,k′+𝑒A(𝑡)/ℏ)]
k′+𝑒A(𝑡)/ℏ=k

(4.12)
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Figures 4.8 (b-d) showcase the field-induced conduction population Δ𝑛𝑐,k for

varying field strengths: (b) 0.01MV/m, (c)3MV/m, and (d)10 MV/m.

As illustrated in Fig.4.8(b), the field-induced population modulation emerges

along the ring-shaped contour defined by the single-particle energy 𝜖𝑏k and the

Fermi energy 𝜖F = 𝜇∣𝑇𝑒=0 as 𝜖𝑏k = 𝜖F, specifically where 𝜖𝑏k = 𝜖F. The modula-

tion occurs near to the Fermi energy due to the mild field excitation, and the ring

structure derives from the circular symmetry inherent in the Dirac cone. In the

weak field regime, the increasing and decreasing in conduction population Δ𝑛𝑐,k

show symmetric distribution along the field direction (𝑥-axis). On the contrary,

in the strong-field regime, the distribution becomes non-symmetric, as evident

in Figs.4.8(c) and (d). Here, the red-colored region signifies an expanded range

on the left side of the Dirac point, where population increase occurs, while the

blue-colored region indicates a more confined area on the right side marked by

population decrease. The population increase along the field direction may be

construed as a consequence of the field-induced intraband acceleration within

the Brillouin zone. Simultaneously, the localized population decrease around

the Dirac point, as observed in Fig.4.8(a), can be attributed to the field-induced

displacement of initially localized electrons enveloping the Dirac point.

In the previous study [90], the decrease in conductivity was amanifestation of

the saturation of population imbalance surrounding the Dirac point. To examine

this interpretation, we present the conduction population distribution:

𝑛𝑐,k′+𝑒A(𝑡)/ℏ∣k′+𝑒A(𝑡)/ℏ=k (4.13)

in instead of the population change Δ𝑛𝑐,k in Fig.4.8(e), with the field strength 𝐸0

set to 10MV/m. It is noteworthy that the summation of the density in Fig.4.8(a)

and the density change in Fig.4.8(d) corresponds to the density in Fig.4.8 (e).

Examining Fig.4.8(e), a obviuos shift in the conduction population from the

right to the left side of the Dirac cone is evident. This observation indicates that

the population imbalance enveloping theDirac cone is already near itsmaximum

saturation point, where no further population can be transferred from the right

side to the left side. Consequently, the population imbalance, a central deter-

minant of the intraband current, reaches saturation in the strong-field regime,
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preventing any substantial increase. This saturation, in turn, leads to the satura-

tion of the intraband current—predominant in the nonequilibrium steady state—

finally ultimating in the observed reduction in conductivity within the strong-

field regime.

Our investigation reveals a substantial decrease in the effective conductiv-

ity of graphene in the strong-field regime, attributed to the saturation of popula-

tion imbalance within the Brillouin zone. This reduction combines with the ob-

served THz-induced transparency in graphene, as reported experimentally [109–

111] and theoretically investigated in former studies [90]. Furthermore, we estab-

lish that this diminished conductivity leads to nonlinear current behavior in the

strong-field regime, ultimating in high-order harmonic generation in graphene.

Thus, the origin of high-order harmonic generation can be understood through

the lens of saturation of population displacement within the Brillouin zone in the

context of nonequilibrium electron dynamics.

4.4 Comparison with Thermodynamic Model

Having clarified the microscopic intricacies of THz-induced HHG in graphene

within the framework of the none equilibrium steady-state, our focus now shifts

to investigating the specific role played by the nonequilibrium nature of THz-

induced electron dynamics. To accomplish this, we undertake a comparative

analysis with the previously formulated thermodynamic model [76]. In contrast

to the present nonequilibrium model, the thermodynamic model relies on the

utilization of the thermal Fermi–Dirac distribution to delineate laser-excited elec-

tronic systems. This model operates under the assumption that electrons swiftly

undergo thermalization, allowing them to be effectively treated as an equilib-

rium state characterized by a notably high electron temperature 𝑇𝑒.

Within the thermodynamic model, equilibrium states find characterization

through the electron temperature𝑇𝑒, while in the developednonequilibriummodel,

nonequilibriumsteady-states are essentialally definedby the appliedfield strength

𝐸0, devoid of any reliance on temperature considerations. To ensure a equitable
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Figure 4.9: Computed effective conductivities are shown as a function of the
excess energy. The results for the nonequilibrium steady-state (red-solid), the
thermodynamic model (green-dashed), and the thermodynamic model plus the
single-band approximation (blue-dotted) are shown. Figure is reproduced with
permission from ref. ([113]). Copyright 2022, Phys. Rev. B.

comparison between the two models, it becomes imperative to establish a con-

nection between the electron temperature 𝑇𝑒 and the field strength 𝐸0. This con-

nection is promoted by the introduction of the field-induced excess energy for

each model.

The total energy of the electronic system is formulated as:

𝐸tot(𝑡) = 2
(2𝜋)2 ∫ 𝑑kTr [𝐻k+𝑒A(𝑡)/ℏ𝜌k(𝑡)] . (4.14)

Subsequently, the field-induced excess energy of the nonequilibrium steady-

state is defined as

Δ𝐸NEQ
excess(𝐸0) = lim

𝑡→∞
[𝐸tot(𝑡) − 𝐸tot(−𝑡)] , (4.15)

Here, lim𝑡→∞ 𝐸tot(𝑡) corresponds to the total energy in the nonequilibrium

steady-state under the presence of the field𝐸0, while lim𝑡→∞ 𝐸tot(−𝑡) corresponds
to that of the equilibrium state without the field. Thus, the field-induced excess

energy of the nonequilibriummodel captures the energy difference between the
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nonequilibrium steady-state under an external field 𝐸0 and the field-free equi-

librium state.

In contrast, the field-induced excess energy of the thermodynamic model is

defined as the energy difference between finite temperature states at 𝑇𝑒 and 300K,
the initial temperature of the present nonequilibrium model:

Δ𝐸TM
excess = ∑

𝑏=𝑣,𝑐

2
(2𝜋)2 ∫ 𝑑k𝜖𝑏k

× [𝑓FD (𝜖𝑏k, 𝑇𝑒, 𝜇) − 𝑓FD (𝜖𝑏k, 𝑇𝑒 = 300 K, 𝜇)] . (4.16)

Therefore, Δ𝐸TM
excess is expressed as a function of the electron temperature 𝑇𝑒.

By employing Eq.(4.15) and Eq.(4.16), we establish a link between the applied

field strength𝐸0 characterizing the nonequilibrium steady-state and the electron

temperature 𝑇𝑒 inherent to the thermodynamic model through the concept of

excess energy. This connection enables a comparative analysis of the effective

conductivity 𝜎(𝐸0) in the nonequilibrium steady-state and the linear conductivity

of the thermodynamic model.

Figure 4.9 presents the conductivities of the nonequilibrium steady-state (il-

lustrated by the red-solid line) and the thermodynamic model (represented by

the green-dashed line). The computations for the nonequilibrium steady-state

consider a chemical potential 𝜇 set to 170 meV and an electron temperature 𝑇𝑒

in the relaxation operator set to 300 K. In contrast, the linear conductivity of the

thermodynamicmodel is evaluated under the influence of a weak field, ensuring

the induced current combines with a linear response. The results for the thermo-

dynamic model involve varying the electron temperature 𝑇𝑒 while maintaining

the total population constant, as expressed by:

𝑁tot = 2
(2𝜋)2 ∑

𝑏=𝑣,𝑐
∫ 𝑑k𝑓𝐹𝐷(𝜖𝑏k, 𝑇𝑒, 𝜇), (4.17)

to the value at 𝑇𝑒 = 300 K and 𝜇 = 170 meV. Consequently, the chemical potential

goes through adjustments with changes in the electron temperature.

Figure 4.9 illustrates that the conductivity of the thermodynamic model (rep-

resented by the green-dashed line) initially experiences a decrease with an in-
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crease in the excess energy, followed by a notable upturn once the excess energy

reaches a fairly large value. In contrast, the conductivity of the nonequilibrium

steady-state (represented by the red-solid line) consistently decreases with the

increase of the excess energy across the entire explored range. It’s important to

note that the conductivity of the nonequilibrium steady-state in Fig.4.9 combines

with that in Fig.4.7 when considering the converted 𝑥-axis. The fundamental con-

trast between the conductivities of the nonequilibrium steady-state and the ther-

modynamic model arises from the interband excitation influenced by temper-

ature. In the thermodynamic model, thermal excitation drives electrons from

the valence band to the conduction band, enhancing effective carrier population

and subsequently enhancing conductivity with elevated electron temperatures.

In contrast, the nonequilibrium steady-state experiences a significant suppres-

sion of field-induced interband excitation due to Pauli blocking, moderating the

artificial rise in effective carrier population and the resultant increase in conduc-

tivity.

In previous study by Mics in ref. [76], the authors investigated into the mi-

croscopic intricacies of THz-induced high-order harmonic generation and field-

induced transparency in graphene using the thermodynamic model. Notably,

the investigation adopted a single-band approximation in which only the con-

duction band was considered, while the valence band remained frozen. Surpris-

ingly, this single-band approximation showed better agreement with experimen-

tal results than the two-band approximation, where both valence and conduction

bands were considered [108]. Despite the instinctive expectation that the two-

band approximation would offer greater accuracy, the results indicated that the

single-band approximation provided amore accurate picture within the thermo-

dynamic model.

To clarify the role of the single-band approximation in the thermodynamic

model, we extended our comparison between the thermodynamicmodel and the

nonequilibrium steady-state by considering the single-band approximation into

our analysis. In this adaptation, we phenomenologically constrained the pop-

ulation in the valence band, while maintaining the use of the Fermi–Dirac dis-

tribution for the conduction band. This modification involved transforming the
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Fermi–Dirac distribution as follows:

̃𝑓MFD(𝜖, 𝑇𝑒, 𝜇) = 𝑓FD(𝜖, 𝑇𝑒, 𝜇)Θ(𝜖) + Θ(−𝜖), (4.18)

where Θ(𝜖) represents the Heaviside step function. By replacing the original

Fermi–Dirac distribution (Eq.(2.37)) with themodified version (Eq.(4.18)), we con-

ducted a comparative analysis of conductivity with the thermodynamic model.

The results of the thermodynamicmodel considering the single-band approxima-

tion are illustrated by the blue-dotted line in Fig. 4.9. Remarkably, this modified

thermodynamic model effectively reproduces the conductivity trend observed

in the nonequilibrium steady-state, showcasing a consistent monotonic decrease

with an increase in excess energy.

This interesting outcome suggests that the freezing of the valence band in the

single-band approximation decreases the artificial interband excitation in the

thermodynamic model, leading to a more accurate performance of conductivity.

In contrast, the nonequilibrium steady-state, based on a fully dynamical model,

naturally captures the suppression of interband excitation, providing an accu-

rate representation of electron dynamics in graphene under THz fields without

resorting to the freezing of the valence band.

Consequently, our findings indicate that the thermodynamic model shows an

enhancement of the electric conductivity when subjected to intense THz fields,

originating from interband transitions between the valence and conductionbands.

To compare with former thermodynamic model[108], we introduced a single-

band approximation, freezing the valence band to forbid interband excitation.

Correspondingly, the computed conductivity in the thermodynamic framework,

employing this single-band approximation, accurately reflects the anticipated de-

creasing trend under static field radiation. This trend combines with experimen-

tal observations of the field-induced transparency of graphene [109–111]. In con-

trast, the nonequilibrium model developed in this study effectively captures the

decreasing trend in conductivity under static field irradiation without the need

for artificially freezing the valence band. This emphasized the essential role of

the nonequilibrium nature of electron dynamics in describing conductivity re-

duction under electric field irradiation and preventing interband excitation, as
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evidenced in the comparison with the thermodynamic model.
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Chapter5
ENHANCEMENT OF MIR-INDUCED

HHG BY COHERENT COUPLING WITH

THZ FIELD

The discussion and results presented in this chapter ar an adaptation of the ar-

ticle by Ref. ([114]) [Wenwen Mao et al., Enhancement of high-order harmonic

generation in graphene by mid-infrared and terahertz fields. (2024) Phys. Rev. B

109 (4), 045421]

Following a detailed exploration of the phenomenon of dc-current injection

and the generation of population imbalance through the application of two-color

linearly polarized laser fields in Chapter 2, it is also interesting to explore the en-

hance or suppress the efficiency of solid-state HHG by 2-field coupling for the de-

velopment of innovative HHG-based light sources and spectroscopies. Recent in-

vestigations have indicated the potential enhancement ofHHG fromgrapheneus-

ing two-color laser fields explained various mechanisms [21, 115, 116], involving

the interaction of electron-hole pair creation induced by high-frequency pump

light and the subsequent acceleration of these created pairs by low-frequency

light. Mrudul et al. looked intoHHG fromgraphene under bicircular fields, show-

casing the ability to control valley polarization[21]. Additionally, Avetissian et

al. explored HHG from graphene under linearly polarized light and its second
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harmonics. They demonstrated that, when the two-color fields are perpendicu-

larly polarized, stronger harmonics can be induced compared to parallel polar-

ization [116]. Recently, HHG from graphene has garnered experimental attention

in themid-infrared (MIR)[117, 118] and terahertz (THz)[119, 120] regimes, reveal-

ing distinctive ellipticity dependence and remarkable efficiency. Similar to our

previous work on HHG from graphene in the THz regimes in Chapter 4, based

on a quantum master equation, this theoretical methodology has been adeptly

applied in the MIR region [121] for the clarification of experimental results [117,

118].

Furthermore, in the MIR regime, the coupling between field-induced intra-

band and interband transitions unfolds crucial channels for HHG, leading to en-

hancedHHGwith finite ellipticity [121]. Real-time electron dynamics simulations

in the THz regime have highlightd the significance of considering the nonequi-

librium steady-state, resulting from the delicate balance between field-driving

and relaxation. This approach exceeds the limits of the equilibrium thermody-

namic framework and provides a more comprehensive understanding of HHG

from graphene [113].

Based on all the experimental development by THz and MIR field induced

HHG in grahene, the potential application on enhancement or suppression by

the coupling of two fields haven’t been studied yet. In this chapter, we look into

the prospect of adding a THz field to adjust MIR-induced HHG in graphene, draw-

ing insights from our collective results from previous chapters. We first build a

strong non-equilibrium steady field by a intensed THz field under quasi-static

approximation, then we look into the HHG induced by MIR field in this imbal-

anced stated with inversion symmetry breaking by the THz field grahene. With

same implementation in Chapter. (4), we employ a quantum master equation to

investigate electron dynamics under both MIR and THz fields, subsequently as-

sessing the induced harmonicpectra. The outcomes from fully dynamical calcu-

lations are compared with thermodynamic model that incorporates the equilib-

rium Fermi–Dirac distribution. Additionally, a nonequilibriumpopulationmodel

is considered, justifying a population distribution in a nonequilibrium steady-

state. Through our analysis, we reveal the central role played by coupling in-

duced coherence via THz and MIR fields in enhancing MIR-induced HHG. This
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clarification highlights the significance of field-induced coherence, extending be-

yond mere population effects.

5.1 MIR-inducedHHG inGrapheneunderTHzFields

We use the same theoretical model as Chapter. (4) by solving quantum master

equation as equation of motion shown in Eq. (2.32). In our analysis of HHG in-

duced by a MIR laser pulse in the presence of THz fields, we adopt a practical

form for the MIR pulse, expressed as follows:

A𝑀𝐼𝑅(𝑡) = −𝐸𝑀𝐼𝑅
𝜔𝑀𝐼𝑅

e𝑀𝐼𝑅 sin(𝜔𝑀𝐼𝑅𝑡) cos4 ( 𝜋
𝑇𝑀𝐼𝑅

𝑡) (5.1)

This pulse is defined in the domain −𝑇𝑀𝐼𝑅/2 < 𝑡 < 𝑇𝑀𝐼𝑅/2 and is zero outside

this range. Here, 𝐸𝑀𝐼𝑅 represents the peak strength of the MIR field, 𝜔𝑀𝐼𝑅 is

the mean frequency, e𝑀𝐼𝑅 is a unit vector indicating the polarization direction of

light, and 𝑇𝑀𝐼𝑅 is the pulse duration. Specifically, we set the pulse duration 𝑇𝑀𝐼𝑅

to 0.4 ps and the mean frequency 𝜔𝑀𝐼𝑅 to 0.35424 eV/ℏ for this study, while other

parameters are varied in our computation.

First, we investigate HHG in graphene only with the MIR fields. For practical

analysis, the direction of the angle 0∘ is fixed to the Γ–𝑀 axis (the 𝑥−axis in our

setup), and the peak field strength of theMIRfield𝐸𝑀𝐼𝑅 is fixed at 6.5MV/cm. The

induced harmonics are investigated by manipulating the polarization direction

of the MIR field, e𝑀𝐼𝑅.

To analyze the HHG efficiency, we compute the signal intensity of the induced

harmonics fromEq (4.2)at each order by integrating the power spectrumwithin a

finite energy range as the integrated intensity of the induced 𝑛th harmonic 𝐼𝑛th
total:

𝐼𝑛th
total = ∫

(𝑛+ 1
2 )𝜔𝑀𝐼𝑅

(𝑛− 1
2 )𝜔𝑀𝐼𝑅

𝑑𝜔𝐼HHG(𝜔). (5.2)

Figures 5.1 illustrate the computed angular dependence of the induced har-

monic 𝐼𝑛th
total using only the MIR field. The induced harmonics show a six-fold

symmetry, reflecting the hexagonal lattice symmetry of graphene. As showned
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Figure 5.1: The angular dependence of the harmonic obtained from the electron
dynamics calculations in the presence of the MIR field. The third, fifth, and sev-
enth harmonic are scaled by factors of 60, 800, and 1000, respectively. Figure is
reproduced with permission from ref. ([122]). Copyright 2024, Phys. Rev. B.

in Fig. 5.1, the lower-order harmonics display an almost circular angular depen-

dence, pointing to the circular symmetry in Dirac cones. In contrast, the higher-

order harmonics demonstrate a more complicated six-fold symmetry in their an-

gular dependence, owing to the variation of the electronic structure of graphene

from a simple Dirac cone when a single-particle energy is distant from the Dirac

point. Similarly, we adopt the subsequent expression for the THz pulse:

A𝑇 𝐻𝑧(𝑡) = −𝐸𝑇 𝐻𝑧
𝜔𝑇 𝐻𝑧

e𝑇 𝐻𝑧 sin(𝜔𝑇 𝐻𝑧𝑡) cos4 ( 𝜋
𝑇𝑇 𝐻𝑧

𝑡) (5.3)

within the period −𝑇𝑇 𝐻𝑧/2 < 𝑡 < 𝑇𝑇 𝐻𝑧/2, and zero outside this range. Here,

𝐸𝑇 𝐻𝑧 denotes the peak strength of the THz field, 𝜔𝑇 𝐻𝑧 is the mean frequency,

e𝑇 𝐻𝑧 represents a unit vector along the polarization direction, and 𝑇𝑇 𝐻𝑧 stands

for the pulse duration. In our investigation, the pulse duration 𝑇𝑇 𝐻𝑧 is fixed at 40

ps, and the mean frequency 𝜔𝑇 𝐻𝑧 is set to 1.2407 meV/ℏ. The time profile of the

applied THz electric field is showned in Fig.5.2(a).

To illustrate the complexity of THz-assistedMIR-inducedHHG in graphene, we

conduct an electron dynamics calculation in the presence of both THz and MIR

fields, denoted as E𝑇 𝐻𝑧(𝑡) + E𝑀𝐼𝑅(𝑡). Here, we set 𝐸𝑀𝐼𝑅 to 6.5 MV/cm and 𝐸𝑇 𝐻𝑧
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to 0.5 MV/cm. It is appropriate to note that experimentally available intense THz

pulses can show amplitudes exceeding 1 MV/cm [123]. The polarization direc-

tion of the THz field e𝑇 𝐻𝑧 is Γ–𝑀 direction (the 𝑥-direction in our setup), while

the polarization direction of the MIR field e𝑀𝐼𝑅 is considered as a tunable pa-

rameter. Figures 5.2(a) and (b) illustrate the computed current J(𝑡) induced by

E𝑇 𝐻𝑧(𝑡) + E𝑀𝐼𝑅(𝑡) as a function of time. The result for the parallel configuration

(e𝑀𝐼𝑅 = e𝑥 = e𝑇 𝐻𝑧) is presented in Fig.5.2(a), while the result for the perpendic-

ular configuration (e𝑀𝐼𝑅 = e𝑦 ⟂ e𝑇 𝐻𝑧) is shown in Fig.5.2(b). The 𝑥 and 𝑦 compo-

nents are represented by blue and red lines, respectively. Evidently, Figs.5.2 (a)

and (b) illustrate that the THzfield induces a current on the picosecond time scale,

whereas the MIR field induces a current on a much shorter time scale.

To look into MIR-induced HHGwith the presence of THz fields, we investigate

the current induced by the MIR field under the influence of the THz field. For

this analysis, we compute two types of currents. Firstly, we denote the current

induced by both the THz and MIR fields as J𝑇 𝐻𝑧+𝑀𝐼𝑅(𝑡). Secondly, we denote the

current induced solely by the THzfield as J𝑇 𝐻𝑧(𝑡). Defining the current inducedby
theMIR field in the presence of the THz field as J𝑒𝑓𝑓(𝑡) = J𝑇 𝐻𝑧+𝑀𝐼𝑅(𝑡)−J𝑇 𝐻𝑧(𝑡), we

subject it to Fourier transformation, followed by computation of the power spec-

trum of the induced harmonics using Eq.(4.2). The solid line in Fig.5.2(e) shows

the power spectrum computed using the current J(𝑡) showned in Fig.5.2(a), where

the polarization directions of the THz and MIR fields are parallel. On the other

hand, the solid line in Fig.5.2(f) shows the power spectrum computed employing

the current J(𝑡) illustrated in Fig.5.2(b), where the polarization directions of the

two fields are perpendicular. Notably, Fig.5.2(e) illustrates the generation of sec-

ond and higher even-order harmonics next to odd-order harmonics, attributed

to the local breakdown of the system’s inversion symmetry induced by the THz

field. This phenomenon, known as electric-field-induced second-harmonic gen-

eration (EFISH) or THz-induced second-harmonic generation (TFISH), has been

extensively studied both exp and theoretically [124–127]. Similarly, even-order

harmonics are generated in the perpendicular configuration (e𝑀𝐼𝑅 ⟂ e𝑇 𝐻𝑧), as

showned in Fig.5.2(f).

Including the THz pulse in the electron dynamics computation extends the

propagation time (42 ps in the current situation), as illustrated in Figs.5.2(a) and
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Figure 5.2: (a, b) The current J(𝑡) induced by THz and MIR fields, E𝑇 𝐻𝑧(𝑡) +
E𝑀𝐼𝑅(𝑡). The 𝑥-component of the current is shown as the blue line, whereas the
𝑦-component is shown as the red line. Panel (a) shows the time profile of the
applied THz field. (c, d) The current J(𝑡) induced by the static and MIR fields,
E𝑑𝑐(𝑡) + E𝑀𝐼𝑅(𝑡 − 𝜏𝑀𝐼𝑅). The 𝑥 component of the current is shown as the or-
ange line, whereas the 𝑦-component is shown as the green line. In the panels (a)
and (c), the polarization of all the fields is parallel to the Γ–𝑀 direction (the 𝑥-
direction in the present setup) as e𝑇 𝐻𝑧 = e𝑑𝑐 = e𝑀𝐼𝑅 = e𝑥. In the panels (b)
and (d), the polarization of THz and static fields is parallel to the 𝑥-direction as
e𝑇 𝐻𝑧 = e𝑑𝑐 = e𝑀𝐼𝑅 = e𝑥, while that of theMIRfield is perpendicular as e𝑀𝐼𝑅 = e𝑦.
(e) The power spectra 𝐼HHG(𝜔) computed using the current in (a) and (c). (f) The
power spectra 𝐼HHG(𝜔) computed using the current in (b) and (d). Panels are re-
produced with permission from ref. ([122]). Copyright 2024, Phys. Rev. B.

(b). Consequently, performing electron dynamics calculations with the obvious

inclusion of THz pulses involves a substantial computational trouble. To allevi-

ate the computational overhead associated with modeling MIR-induced HHG in

graphene under a THz field, we adopt a static field approximation based on the

quasi-static approximation described in Chapter 4.

For practical analysis, we conduct two simulations. In the first simulation,

electron dynamics are computed under a static field E𝑑𝑐(𝑡) = e𝑑𝑐𝐸𝑑𝑐Θ(𝑡), sud-
denly initiated at 𝑡 = 0. Here, e𝑑𝑐 represents the unit vector along the polar-

ization direction of the static field, and 𝐸𝑑𝑐 denotes the field strength. Upon the
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sudden activation of the static field, the induced electron dynamics prompt a cur-

rent. Following a sufficiently long time of propagation, the driven system attains

a steady state, and the current stabilizes over time. We designate the current

induced solely by E𝑑𝑐(𝑡) as J𝑑𝑐(𝑡).

In the second simulation, electron dynamics are computed under both the

MIR and static fields, E𝑑𝑐(𝑡) + E𝑀𝐼𝑅(𝑡 − 𝜏𝑀𝐼𝑅), where the pulse center of the MIR

field is shifted by 𝜏𝑀𝐼𝑅. We denote the current induced by E𝑑𝑐(𝑡)+E𝑀𝐼𝑅(𝑡−𝜏𝑀𝐼𝑅)
as J𝑑𝑐+𝑀𝐼𝑅(𝑡). The shift 𝜏𝑀𝐼𝑅 can be made sufficiently large to investigate the

MIR-induced electron dynamics for a full nonequilibrium steady state realized

by the static field E𝑑𝑐(𝑡). Subsequently, the MIR-induced current can be extracted

as J𝑒𝑓𝑓(𝑡) = J𝑑𝑐+𝑀𝐼𝑅(𝑡) − J𝑑𝑐(𝑡) to analyze MIR-induced HHG in the presence of the

static field.

Figures 5.2(c) and (d) illustrate the current J𝑑𝑐+𝑀𝐼𝑅(𝑡) induced by both the

static and MIR fields. The orange and green lines represent the 𝑥 and 𝑦 compo-

nents of the current, respectively. Here, the static field along the Γ–𝑀 direction

(the 𝑥-direction in our setup), and its strength 𝐸𝑑𝑐 matches the peak strength of

the THz field, 𝐸𝑑𝑐 = 𝐸𝑇 𝐻𝑧 = 0.5MV/cm. In Fig.5.2(c), the MIR field aligns paral-

lel to the static field, while in Fig.5.2(d), it is perpendicular to the static field. To

incorporate the MIR field into the nonequilibrium steady-state under the static

field, we set the time delay 𝜏𝑀𝐼𝑅 of the MIR field to 1 ps, exceeding the relaxation

time scales of the quantum master equation, 𝑇1 and 𝑇2.

To investigate HHG in the presence of the static field E𝑑𝑐(𝑡), we extract the

current J𝑒𝑓𝑓(𝑡) induced by the MIR field in the presence of the static field by sub-

tracting J𝑑𝑐(𝑡) from J𝑑𝑐+𝑀𝐼𝑅(𝑡): J𝑒𝑓𝑓(𝑡) = J𝑑𝑐+𝑀𝐼𝑅(𝑡) − J𝑑𝑐(𝑡). The dashed lines in

Figs 5.2(e) and (f) represent the HHG spectra computed using the current shown

in Figs5.2(c) and (d), respectively. Remarkably, the results obtained through the

quasi-static approximationwith a static field align perfectly with those computed

by obviously including the THz pulse. This consistency highlights the validity of

the quasi-static approximation for analyzing HHG under MIR and THz fields. Ad-

ditionally, we verified the consistency of the quasi-static approximation across

various static field strengths (refer to Figure 5.1). Hereafter, we employ the static

field within the quasi-static approximation rather than obviously including the

THz pulse.
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Figure 5.3: The harmonic are shown as a function of the static field strength 𝐸𝑑𝑐.
In each panel, the results obtained using the different relaxation times, 𝑇1 and
𝑇2, are compared. The results of the third harmonics are shown in the panels (a)
and (b), whereas those of the fifth harmonics are shown in the panels (c) and
(d). The results obtained using the parallel configuration (e𝑀𝐼𝑅 = e𝑥 = e𝑇 𝐻𝑧) are
shown in the panels (a) and (c), whereas those obtained using the perpendicular
configuration (e𝑀𝐼𝑅 = e𝑦 ⟂ e𝑇 𝐻𝑧) are shown in the panels (b) and (d). Panels are
reproduced with permission from ref. ([122]). Copyright 2024, Phys. Rev. B.

We further investigate the influence of relaxation times, 𝑇1 and 𝑇2, on HHG

in the presence of THz and MIR fields. Employing the methods outlined in Sec-

tion. 2.3.2, we compute the intensity of third- and fifth-order harmonics under

varying relaxation times. The results, showned in Fig.5.3, show consistent qual-

itative trends in HHG enhancement with THz field irradiation across different

relaxation times. Thus, the specific choice of relaxation times does not substan-

tially change the enhancement phenomenon.

Relaxation times are determined by diverse scatteringmechanisms, including

electron-electron, electron-phonon, and electron-impurity interactions. Conse-

quently, the actual relaxation times in practical settings depend on experimental

conditions. Nonetheless, the findings presented in Fig. 5.3 suggest that HHG en-
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Figure 5.4: The power spectra of induced harmonics, 𝐼𝐻𝐻𝐺(𝜔), are shown. The
results obtained using aweak THzfield (𝐸𝑇 𝐻𝑧 = 0.1MV/cm) are shown in the pan-
els (a) and (b), while those obtained using a strong THz field (𝐸𝑇 𝐻𝑧 = 1.0 MV/cm)
are shown in the panels (c) and (d). The results obtained using the parallel con-
figuration (e𝑀𝐼𝑅 = e𝑥 = e𝑇 𝐻𝑧) are shown in the panels (a) and (c), whereas those
obtained using the perpendicular configuration (e𝑀𝐼𝑅 = e𝑦 ⟂ e𝑇 𝐻𝑧) are shown in
the panels (b) and (d). Panels are reproduced with permission from ref. ([122]).
Copyright 2024, Phys. Rev. B.

hancement via THz field irradiation can present as a robust phenomenon across

a broad spectrum of experimental situations.

We extend our investigation to validate the quasi-static approximation across

varying strengths of the THz field. We repeat the analyses presented in Figs.5.2(e)

and (f) while changeing the THz field strength. Results obtained under a weak

THz field (𝐸𝑇 𝐻𝑧 = 0.1MV/cm) are showned in Figs.5.4(a) and (b), while those un-

der a strong THz field (𝐸𝑇 𝐻𝑧 = 1.0MV/cm) are shown in Figs.5.4(c) and (d). As ob-

served from the figures, the outcomes of the quasi-static approximation closely

reflect those obtained from calculations with THz laser pulses across all investi-

gated field strengths and polarization directions. Hence, we affirm the efficacy

of the quasi-static approximation in accurately describing electron dynamics in

graphene under THz and MIR fields, encompassing both weak and strong field
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Figure 5.5: The angular dependence of the harmonic in the nonequilibrium
steady-states under a static field along the Γ–𝑀 direction is shown for differ-
ent static field strengths, 𝐸𝑑𝑐. The angle 𝜃 denotes the relative angle between
the static field and the 𝑀𝐼𝑅 field. (a–d) The total intensity 𝐼𝑛th

total is shown for the
second, third, fourth, and fifth harmonics. (e-h) The component of the intensity
parallel to e𝑀𝐼𝑅 is shown for each harmonic. (i-l) The component of the intensity
perpendicular to e𝑀𝐼𝑅 is shown for each harmonic. The results are normalized
by the maximum total intensity 𝐼𝑛th

total for each harmonic. Panels are reproduced
with permission from ref. ([122]). Copyright 2024, Phys. Rev. B.

regimes. This agreement between the quasi-static approximation and the obvi-

ous inclusion of the THz pulse highlights the central role played by the nonequi-

librium steady state under the static field inMIR-induced HHG in graphene in the

presence of a THz field.

5.2 Orientational Dependence of HHG

We explore high-harmonic generation (HHG) in graphene within the quasi-static

approximation, varying the relative angle between the static and MIR fields. For

our analysis, we maintain the direction of the static field e𝑑𝑐 along the Γ–𝑀 axis
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(the 𝑥-axis in our setup) and set the peak field strength of the MIR field 𝐸𝑀𝐼𝑅 to

6.5 MV/cm. We investigate the induced harmonics by manipulating the polariza-

tion direction of the MIR field, e𝑀𝐼𝑅, and adjusting the strength of the static field,

𝐸𝑑𝑐.

Figures 5.5(a–d) illustrate the angular dependence of the induced harmonic

𝐼𝑛th for various harmonic orders. Here, 𝜃 represents the relative angle between

theMIR and static fields. In Fig.5.5(a), absence of a static field results in no second

harmonic generation, given the inversion symmetry of graphene. However, with

the introduction of a static field, second harmonics emerge due to the breakdown

of this symmetry. Notably, for a static field strength of 0.5MV/cm, the induced

second-harmonic intensity peaks at approximately 45∘ relative angle.

In Fig.5.5(b), the third-harmonic appears nearly isotropic (showned by the

black line) in the absence of a static field, reflecting the rotational symmetry of

the Dirac cone (refer also to Figure 5.1). On the other hand, under the influence of

a strong static field (𝐸𝑑𝑐 = 1.0MV/cm), the third-harmonic intensity shows signif-

icant angular dependence: it is notably enhanced when the static and MIR fields

are perpendicular to each other, whereas it is suppressed for parallel field orien-

tations. This enhancement for the perpendicular configuration can be attributed

to the coupling between the intraband transition induced by the static field and

the interband transition induced by the MIR field, as previously suggested[121].

The angular dependence of higher-order harmonics becomes more compli-

cated under a static field, as showned in Figs.5.5(c) and (d). Notably, the fifth-

order harmonic emission shows significant enhancement in the presence of ei-

ther static or THzfields (Fig.5.5(d)). For instance, applying a static field of 0.5MV/cm

boosts the fifth-order harmonic intensity by more than tenfold compared to that

induced solely by the MIR field (indicated by the green line in Fig.5.5(d)). This

enhancement ratio surpasses that observed for the third-order harmonic, sug-

gesting a greater potential for field-induced enhancement in higher-order har-

monics. Indeed, the seventh-order harmonichows a 25-fold enhancement with a

static field strength of 0.5MV/cm (refer to Figure 5.1).

To further illustrate the angular dependence of HHG in graphene, we decom-

pose the harmonic intensity 𝐼HHG(𝜔) into parallel and perpendicular components
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with respect to the polarization of the driving MIR field. The parallel component

of the HHG intensity is defined as

𝐼paraHHG(𝜔) ∼ 𝜔2 ∣∫
∞

−∞
𝑑𝑡e𝑀𝐼𝑅 ⋅ J(𝑡)𝑒𝑖𝜔𝑡∣

2

, (5.4)

where e𝑀𝐼𝑅 is the unit vector along the polarization direction of the MIR field.

Likewise, the perpendicular component is defined as

𝐼perpHHG(𝜔) ∼ 𝜔2 ∣∫
∞

−∞
𝑑𝑡ē𝑀𝐼𝑅 ⋅ J(𝑡)𝑒𝑖𝜔𝑡∣

2

, (5.5)

where ē𝑀𝐼𝑅 is a unit vector perpendicular to e𝑀𝐼𝑅, i.e., ē𝑀𝐼𝑅 ⋅ e𝑀𝐼𝑅 = 0. The

total intensity 𝐼HHG in Eq. (4.2) is reproduced by the sum of 𝐼paraHHG(𝜔) and 𝐼perpHHG(𝜔)
as 𝐼HHG(𝜔) = 𝐼paraHHG(𝜔) + 𝐼perpHHG(𝜔).

Equations (5.4) and (5.5) are used to separate the induced harmonic intensity

into parallel and perpendicular components. Figures 5.5 (e–h) and (i–l) illustrate

the angular dependence of the parallel and perpendicular components of the har-

monic intensity, respectively, for different orders.

In Figs.5.5(a), (e), and (i), the parallel component of the second harmonic un-

der the static field peaks around 45∘, constituting the dominant contribution to

the total second-harmonic intensity at this orientation. On the other hand, the

maximum perpendicular component is consistently achieved when the MIR and

static fields are orthogonal to each other. In Figs.5.5(b), (f), and (j), the third har-

monic is predominantly governed by its parallel component across all angles and

static field strengths examined. Notably, for both second- and third-harmonic

generation, the parallel components prevail when the induced harmonic inten-

sity is maximized.

Qualitative distinctions emerge between the lower-order harmonics (second

and third) and the higher-order ones (fourth and fifth). In Fig.5.5(c), the fourth

harmonic peaks at an angle 𝜃 of 90∘ under the strongest applied static field, 𝐸𝑑𝑐 =
1.0MV/cm. A comparison of Figs.5.5(g) and (k) reveals the predominance of the

perpendicular component in the induced harmonic intensity under these condi-

tions. On the other hand, as showned in Figs.5.5(d), (h), and (l), the induced fifth
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harmonic at the most efficient angle is primarily governed by the perpendicu-

lar component, despite the dominance of the parallel component at all angles in

the absence of a static field. Hence, the emission pathways associated with the

perpendicular components are expected to play a crucial role in enhancing MIR-

induced HHG by a THz field. This trend persists for higher-order harmonics as

well (see Figure5.6): The angular dependency of the 6th(Figures5.6(a)) and 7th

(Figures5.6(b)) HHG is analyzed similarly to the approach used in Fig.5.5. Fur-

ther examination reveals in Figs.5.6(c) and (e) the decomposition of the sixth-

harmonic signal into parallel and perpendicular components, while the same

analysis is conducted for the seventh-order harmonic in Figs.5.6(d) and (f). In

accordance with the findings for the fourth and fifth harmonics illustrated in

Fig.5.5, it is evident from Fig. 5.6 that the perpendicular components play a sig-

nificant role in the enhancement of mid-infrared (MIR)-induced high harmonic

generation (HHG) by a terahertz (THz) field.

5.3 ComparisonofNonequilibriumSteadyState and

Thermodynamic Model

In this investigation, we look into the role of nonequilibrium steady states in high

harmonic generation (HHG) by comparing the outcomes of the quasi-static ap-

proximation with those derived from the thermodynamic model [76], a frame-

work previously used in studying HHG in graphene under THz fields [119, 120].

The quasi-static approximation replaces the THz pulse with a static field to de-

scribe the electronic system’s behavior under THz irradiation, whereas the ther-

modynamic model approximates the system’s response to a THz pulse as a high-

temperature thermal state [76]. The difference between these models illustrates

the influence of nonequilibrium distributions.

As explained in Chapter. (4), the quasi-static approximation is characterized

by the static field strength, 𝐸𝑑𝑐, while the thermodynamic model relies on the

electron temperature 𝑇𝑒. To enable a direct comparison between these models,

we introduce the concept of excess energy [113] as a common metric of excita-

tion intensity. We use the same excess energy under the quasi-static approxima-
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Figure 5.6: The angular dependence of the harmonic yields in the nonequilib-
rium steady state under a static field along the Γ–𝑀 direction is shown. The angle
𝜃 denotes the relative angle between the static field and the 𝑀𝐼𝑅 field. (a and b)
The total intensity 𝐼𝑛th

total for the sixth and seventh harmonics is shown, respec-
tively. (c and d) The component of the intensity parallel to 𝑒𝑀𝐼𝑅 is shown for
each harmonic. (e and h) Th component of the intensity perpendicular to 𝑒𝑀𝐼𝑅
is shown for each harmonic. The results are normalized by the maximum total
intensity 𝐼𝑛th

total of each harmonic. Panels are reproduced with permission from
ref. ([122]). Copyright 2024, Phys. Rev. B.
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Figure 5.7: The induced light intensity, 𝐼n𝑡ℎ, is shown as a function of the ex-
cess energy for (a) third (b) fifth, and (c) seventh harmonics. The results for the
nonequilibrium steady-states induced by a static field parallel (red solid line) and
perpendicular (blue dashed line) to the MIR field are compared with the thermo-
dynamic model (green dotted line). In each panel, the field strength of the static
field parallel to the MIR field is shown as the secondary axis. Panels are repro-
duced with permission from ref. ([122]). Copyright 2024, Phys. Rev. B. Panels are
reproduced with permission from ref. ([122]). Copyright 2024, Phys. Rev. B.
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tion, denoted as Δ𝐸non−eqexcess(𝐸𝑑𝑐), quantifies the change in total energy due

to the static field E𝑑𝑐(𝑡). On the other hand, the excess energy within the ther-

modynamic model, Δ𝐸thermo
excess (𝑇𝑒), measures the energy change arising from an

increase in electron temperature from room temperature (𝑇𝑒 = 300 K).

Figure 5.7 illustrates the comparison between the results obtained from the

quasi-static approximation and the thermodynamic model. Setting the MIR field

strength to 6.5 MV/cm and its polarization direction to the Γ–𝑀 direction (the

𝑥-axis), we observe distinct behaviors in odd-order harmonics between the two

models. Figure 5.7(a) shows the substantial enhancement and suppression of the

MIR-induced third harmonic under the quasi-static approximation for parallel

and perpendicular configurations, respectively. In contrast, the thermodynamic

model s nearly constant results. Figures5.7 (b) and (c) further reveal significant

enhancements in the fifth- and seventh-harmonic under a static field within the

quasi-static approximation, while the thermodynamic model shows small varia-

tions in harmonic with increasing electron temperature. Consequently, the ob-

served HHG enhancement cannot be solely attributed to the simple heating of

electronic systems within the thermodynamic model, underscoring the crucial

role of non-equilibrium electronic dynamics induced by the field. The minimal

changes in harmonic within the thermodynamic model relative to those pre-

dicted by the nonequilibrium steady-state model suggest that modifications in

the population distribution around the Fermi level use insignificant influence on

HHG spectra.

5.4 Contribution of Nonequilibrium Population

In our exploration of the coherent coupling between the MIR and THz fields,

beyond the population contribution induced by the THz field, we introduce a

nonequilibrium population distribution model as an extension of the thermo-

dynamic model.

Within the thermodynamic model, the THz field’s contribution is represented

by adjusting the population distribution via an increased electronic temperature
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Figure 5.8: (a) The calculated conduction population distribution, 𝑛neq−steady
𝑐k for

the nonequilibrium steady-state is shown. Here, the Dirac point is indicated by
the blue circle. (b–e) The angular dependence of the induced harmonic inten-
sity is shown for the (b) second, (c) third, (d) fourth, and (e) fifth harmonics. The
results obtained using the nonequilibrium population model and the nonequi-
librium steady-state are shown by the blue and green solid lines, respectively.
Panels are reproduced with permission from ref. ([122]). Copyright 2024, Phys.
Rev. B.
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in the reference Fermi–Dirac distribution. This model captures only the popula-

tion contribution, corresponding to the diagonal elements of the density matrix,

based on the thermal distribution.

To look into the coherent coupling contribution, we extend the thermody-

namic model by substituting the reference Fermi–Dirac distribution in the relax-

ation operator (Eq. (2.36)) with the population distribution of the nonequilibrium

steady state under a static field. This extension incorporates the population con-

tribution, signified by diagonal elements of the density matrix, while omitting

THz-induced coherence, represented by the off-diagonal elements of the density

matrix.

By comparing the nonequilibrium populationmodel with the fully dynamical

model, which includes both population and coherence effects, we can distinguish

the role of coherent coupling between the THz and MIR fields. This comparative

analysis helps illustrate the distinct contributions of population and coherence

effects to HHG, providing valuable insights into the underlying mechanisms gov-

erning this phenomenon. To formulate the nonequilibrium population model,

we first analyze the population distribution in the nonequilibrium steady state

under a static field. The population distribution in the Brillouin zone can be ex-

pressed as

𝑛𝑏k(𝑡) = ∫ 𝑑k′𝛿(k− K′(𝑡))Tr [|𝑢𝐻
𝑏k′(𝑡)⟩⟨𝑢𝐻

𝑏k′(𝑡)|𝜌k′(𝑡)]

= ⟨𝑢𝐻
𝑏,k−𝑒A(𝑡)(𝑡)|𝜌k−𝑒A(𝑡)(𝑡)|𝑢𝐻

𝑏,k−𝑒A(𝑡)(𝑡)⟩, (5.6)

where K′(𝑡) is the accelerated wavevector in accordance with the acceleration

theorem, K′(𝑡) = k′ + 𝑒A(𝑡). The population distribution in the nonequilibrium

steady state can be evaluated in the long-time propagation limit under a static

field A(𝑡) = −E𝑑𝑐𝑡,

𝑛neq−steady
𝑏k = lim

𝑡→∞
𝑛𝑏k(𝑡). (5.7)

In Fig.5.8(a), we illustrate the population distribution in the conduction band

for the nonequilibrium steady-state under a static field with a strength of 𝐸𝑑𝑐 =
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0.5 MV/cm. The static field is set along the Γ–𝑀 direction (𝑥-axis), and the blue

circle marks the Dirac point (𝐾 point).

In this illustrateion, the region to the left of the Dirac point is predominantly

occupiedby thefield-inducedpopulation in thenonequilibriumsteady-state, while

the region to the right of the Dirac point appears nearly empty. This asymmetry

disrupts the inversion symmetry of the system. We use this nonequilibrium pop-

ulation distribution as the reference distribution of the relaxation operator in

Eq. (2.36) instead of the Fermi–Dirac distribution to establish the nonequilibrium

population model.

In Fig.5.8(b), we present the angular dependence of the second-harmonic un-

der a static field with a strength of 𝐸𝑑𝑐 = 0.5MV/cm. The corresponding angular

dependences of the third, fourth, and fifth harmonics are showned in Figs.5.8(c–

e), respectively. Each panel displays results obtained using the nonequilibrium

population model as the blue solid line, compared with results derived from the

quasi-static approximation, showned as the green solid line, which matches the

result shown in Fig.5.5.

Figs 5.8 (b) and (d) highlight that even-order harmonics computed with the

nonequilibrium population model are notably weaker compared to those calcu-

lated using the fully dynamical approach based on the quasi-static approxima-

tion. This difference indicates that under the charge-neutral condition (𝜇 = 0)
examined here, the resonant effects of the MIR field at two- and four-photon res-

onances are significantly distant from the Fermi level. Consequently, modifica-

tions to the population near the Fermi surfaceminor contributions to even-order

harmonic generation. In contrast, the fully dynamical calculation reveals that the

THzfield can coherently couplewith theMIRfield via off-diagonal elements of the

density matrix, enabling coherent coupling not only around the Fermi level but

also across the Brillouin zone wherever dipole transitions are permitted. Thus,

the coherent coupling component may strengthen even-order harmonic genera-

tion by enhancing contributions from resonant quantum pathways.

Fig.5.8(c) demonstrates that the third-harmonic computed using the fully dy-

namicalmodel is 1.57 times stronger than that obtained using the nonequilibrium

populationmodel when the fields are perpendicular. This result suggests that the
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Figure 5.9: The angular dependence of the emitted harmonic intensity for
the (a) sixth and (b) seventh harmonics are shown. The results obtained using
the nonequilibrium population model and the nonequilibrium steady-state are
shown by the blue and green solid lines, respectively. Figure is reproduced with
permission from ref. ([122]). Copyright 2024, Phys. Rev. B.

THz field enhances third-harmonic generation for the perpendicular configura-

tion, with both coherent coupling and incoherent population playing crucial roles

in this THz-assisted enhancementmechanism. On the other hand, when thefields

are parallel, the third-harmonic calculated using the fully dynamical approach

is 0.57 times weaker than that computed using the nonequilibrium population

model. This finding indicates that contributions from coherent coupling and in-

coherent population act against each other, subsidingthe overall signal. Thus,

both coherent coupling and incoherent population influence third-harmonic gen-

eration depending on the relative angle 𝜃 between the THz and MIR fields.

In Fig.5.8(e), we observe that the fifth-order harmonic computed using the

fully dynamicalmodel is significantly higher than that obtainedusing thenonequi-

librium population model, except when the MIR and THz fields are parallel. This

observation suggests that coherent coupling predominantly contributes to the en-

hancement of fifth-harmonic generation formost angles, although both coherent

coupling and incoherent population effects are relevant when the fields are par-

allel. These consistent results are similarly observed for higher-order harmonics

in Figure. (5.9):

We contrasted the outcomes for the sixth and seventh harmonics utilizing

both the nonequilibrium population model and the nonequilibrium steady state.

In Figures 5.9 (a) and (b), we illustrate the angular dependency of the sixth- and
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seventh-harmonic yields under a static field strength of 𝐸𝑑𝑐 = 0.5MV/cm, respec-

tively. In agreementwith the analysis depicted in Fig.5.8, the coherent interaction

between the MIR and THz fields significantly enhances the high harmonic gen-

eration (HHG), surpassing mere field-induced population effects. In summary,

when only a MIR field is applied to graphene, the induced HHG is attributed to

interference betweenmultiple excitation pathways involving nonlinear coupling

between MIR-induced intraband and interband transitions. On the other hand,

the substantial enhancement of HHG observed in the presence of THz fields indi-

cates the activation of an additional nonlinear coupling mechanism. This mech-

anism arises from coherent coupling betweenMIR- and THz-induced transitions,

suggesting its predominance over other processes in contributing to overall har-

monic .

The comparison between the results obtained using the fully dynamical calcu-

lation and the nonequilibrium population distribution model has provided valu-

able insights into the roles of coherent coupling between the MIR and THz fields.

The dominance of coherent coupling in generating THz-induced even-order har-

monics and enhancing high-order harmonics suggests its crucial role in driving

nonlinear optical processes in solids. On the other hand, the enhancement of

third harmonics under a THz field is influenced by both coherent coupling and

the nonequilibrium population. Furthermore, coherent coupling appears to pre-

dominantly contribute to the enhancement of higher-order harmonics.

Importantly, these enhancement mechanisms are not limited to specific laser

parameters but can be realized under more general conditions. Therefore, effec-

tive control of both coherent coupling and population dynamics becomes essen-

tial for increasing HHG from solids using multicolor laser fields.

Furthermore, the significance of coherent coupling extends across various or-

ders of harmonic generation, as evidenced by the coherent couplingmechanism’s

influence on low-order harmonic phenomena (see Fig. 5.8). This highlights the

research necessity of field-induced coherence in nonlinear optical effects more

broadly. Consequently, these findings hint at the potential for efficiently control-

ling electron and spin dynamics through coherent coupling, adding multi-color

lasers. Such capabilities would exceedmere frequency conversion of light, open-

ing ways for the advancement of ultrafast optoelectronics and optospintronics.
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Chapter6
CONCLUSION AND OUTLOOK

This thesis offers a comprehensive examination of nonlinear optical phenom-

ena, focusing on the injection of photocarriers and the generation of high-order

harmonics, in 2D systems all analyzed through the lens of microscopic electron

dynamics. It begins by establishing the theoretical groundwork for understand-

ing time-dependent quantum dynamics induced by light in solid systems, encom-

passing the light andmatter interactions. We emphasize the theoretical nonequi-

librium framework by presented tight-binding approach in this thesis for ana-

lyzing nonlinear optical phenomena inmaterials, particularly inmicroscopic de-

tails and conducting dissipative non-equilibrium analyses. By synthesizing these

discoveries, the thesis contributes to the advancement of our comprehension of

nonlinear optical phenomena in 2D materials, highlighting the importance of

nonequilibrium quantum dynamics in modeling complex behaviors:

Chapter (2) introduces the tight-binding model, illustrating its application to

typical hexagonal lattice nanostructures in 2D materials. The theoretical frame-

work of the time-dependent Schrödinger equation (TDSE) and quantum master

equation are introduced for simulating dynamical evolution. Through theoreti-

cal exploration, the thesis investigates the injection of dc-current and the emer-

gence of population imbalances under two-color linearly polarized laser fields

with frequencies ω and 2ω.

In Chapter (3), the focus shifts to the light-induced electron dynamics in a pro-

totypical two-dimensional insulator, h-BN, employing a simplified tight-binding
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approximation within a perturbative resonant regime. Surprisingly, even un-

der deeply off-resonant conditions, the thesis reveals the induction of ballistic

current by two-color linearly polarized light, showing a possibility for efficient

electron population control without necessitating elliptical light polarization.

Chapter (4) delves into the mechanism of THz-induced high-order harmonic

generation (HHG) and nonlinear electric transport in graphene. Utilizing the

quantum master equation with the relaxation time approximation, the thesis

provides a comprehensive understanding of these phenomena. Emphasis is placed

on the pivotal role of nonequilibrium electron dynamics in conductivity reduc-

tion and the prevention of interband excitation.

In Chapter (5), the thesis explores strategies to enhance or suppress the effi-

ciency of solid-state HHG, aiming to advance innovative HHG-based light sources

and spectroscopies. Employing the quantummaster equation, electron dynamics

under bothmid-infrared (MIR) and THz fields are analyzed, revealing the central

role of coupling-induced coherence in enhancing MIR-induced HHG. This sheds

light on the significance of field-induced coherence, transcending traditional pop-

ulation effects, and paving the way for future advancements in quantum dynam-

ics and optoelectronic applications.

Based on our discussion, we demonstrate that the tight-binding model is a

valid approach with computational efficiency in studying electronic and non-

linear optical response properties of materials. While it provides a simple and

intuitive description of electronic band structures, its accuracy may be limited

due to its semi-empirical nature and reliance on fitting parameters. However,

ab initio Density Functional Theory (DFT) serves as a foundation for improving

the tight-binding model. By approximating first principles models derived from

DFT, the tight-binding model benefits from the accuracy of DFT while achieving

computational efficiency through reduced Hilbert space size. This approxima-

tion acknowledges the underlying first principles modeling and maintains close

ties to exact results, enhancing its applicability in predicting electronic properties

of materials.

The tight-binding model introduced in this thesis only considering the ba-

sic nearest hopping and only two bands (one valence band and one conduction
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band), which can be expanded to more onsite interactions like next-nearest hop-

ping and even more bands. Tight-binding model allows for the inclusion of var-

ious physical effects such as electron-electron interactions, electron-phonon in-

teractions, and external fields. This flexibility enables researchers to tailor the

model to specific material systems or phenomena of interest, making it suitable

for studying a wide range of materials, including complex structures and het-

erostructures.

The tight-binding model also provides valuable insights into the microscopic

electronic structure of materials, facilitating a deeper understanding of their be-

havior. By explicitly considering atomic interactionswithin amaterial, themodel

offers a more interpretable description of electronic properties, making it easier

to identify the underlying physical mechanisms governing electronic and optical

phenomena. This interpretability enhances the model’s utility in guiding exper-

imental studies and device design, enabling researchers to make informed deci-

sions based on fundamental principles.

As we mentioned in Section. (2.2), Wannierization acts as a vital link between

Density Functional Theory (DFT) and tight-binding models. By transforming de-

localized Bloch states from DFT calculations into localized Wannier functions, it

simplifies the electronic structure representationwhile retaining accuracy. These

Wannier functions parameterize the hopping integrals and on-site potentials in

tight-binding models, reducing computational complexity while preserving es-

sential physics. This integration facilitates seamless transitions from first prin-

ciples calculations to computationally efficient models, enabling deeper insights

into material properties and enhancing connections between theory and experi-

ment.

Overall, our work advances the theoretical framework for studying nonlin-

ear optics in 2Dmaterials and provides guidance for future experimental studies

and device design by solving quantum dynamics based on tight-binding model,

which holds promising prospects for advancing nonlinear optical technology and

ultrafast techniques, offering practical applications and avenues for further ex-

ploration:

• While we introduce the topological phase and Berry curvature in Chap-
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ter. (2) for 2D topological insulators, we also expand Houston states into

dynamicl phase and geometric phase under adibiatic approximation, we

did not go further for the time-dependent perturbation analysis by consid-

ering the contribution from geometric phase. The light-induced topological

phase transition and the Berry curvature effects can be further studied in

the future both analytically and numerically.

• The relaxation approximation we introduced in Chapter. (2) is a simple and

effective method to consider the dissipative effects in the quantum master

equation. We can further explore the non-Markovian effects in the relax-

ation approximation to consider the memory effects in the dissipative dy-

namics. Also, the relaxation time 𝑇1 and 𝑇2 are chosen artificially in the

model, we can considermore realistic relaxation time from the experiments

or from first principles calculations.

• Exploring new materials: Building upon the comprehensive examination

of nonlinear optical phenomena in hexagonal boron nitride and graphene,

future research could extend our tight-bindingmodel to bilayer, trilayer sys-

temswith stackling discussion; in addition, to othermaterials such as transi-

tionmetal dichalcogenides (TMDs) and black phosphorus and also 3D bulks.

More validation models can be constructed byWannierization from DFT as

we introduced, we can study the nonlinear optical response on Moiré sys-

tems by the construction of continuum models for twisted systems which

can be more efficient in computation than TDDFT.

• Integrating external stimuli: Investigating how other stimuli, like cavity or

magnetic fields, influence nonlinear optical responses in 2Dmaterials, with

a focus on experimental validation to complement theoretical predictions.

Quantum Electrodynamics Density Functional Theory (QEDFT) provides a

suitable theoretical framework for investigating such processes. QEDFT

combines the principles of quantum mechanics and electrodynamics, al-

lowing for the accurate description of the interactions between electrons

and electromagnetic fields. The tight-binding model can be integrated with

QEDFT to provide a more comprehensive understanding of the system’s re-

sponse to external stimuli.
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• Experimental validation: Experimental validation of theoretical predictions

is crucial for advancing our understanding of nonlinear optical phenomena

in 2D materials. By employing advanced spectroscopic techniques and ul-

trafast laser spectroscopy, we can directly probe these phenomena under

controlled conditions for the validate theoretical predictions in the experi-

ments such as: Transient Absorption Spectroscopy, Second Harmonic Gen-

eration (SHG) Spectroscopy, Pump-Probe Spectroscopy like Angle-resolved

photoemission spectroscopy (ARPES), and attosecond ultrafast techniques.

• Integrate withWannierization interface: As we introduced before, with the

interface ofWannierization, the tight-bindingmodel canbe further improved

by incorporating more realistic electronic structures and interactions. This

enhancement will enable the model to capture a wider range of physical ef-

fects and provide more accurate predictions of material properties by con-

nectingmature ab initio packages like VASP, QEwithWannier90, even allow

us to do topological anaylsis byWannierTools. This interfacemight also help

adding dissipation effect for real space real time quantum dynamical evo-

lution simulation in the open system, expexted to be conducted in TDDFT

package like OCTOPUS from a reduced Hilbert space.

Through these interconnected research directions, our future work can advance

understanding and utilization of nonlinear optical phenomena not only in 2D

materials, but also offer unprecedented opportunities for theoretical prediction,

innovation, and scientific discovery across various material systems, paving the

way for transformative advancements in optoelectronics and beyond, tomaterial

science and ultrafast techniques developments.
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AppendixA
ADIABATIC BASIS REPRESENTATION

To study themechanismbehinde thenonlinear injection of photocarriers in solids

froman analytical perspective, we initially present the equation ofmotionwithin

the adiabatic basis framework. Within this framework, we can effectively dis-

tinguish between intraband and interband transitions, the dynamic phase fac-

tor, and the geometric phase factor. To establish this framework, we start by

considering the following one-body Schrödinger equation for a 𝑘-point same as

Eq. (2.21):

𝑖 𝑑
𝑑𝑡 |𝜓k(𝑡)⟩ = 𝐻 [k+A(𝑡)] |𝜓k(𝑡)⟩, (A.1)

Here, 𝐴(𝑡) represents an external vector potential, which correlates with the

external electric field as 𝐸(𝑡) = −𝑑𝐴(𝑡)/𝑑𝑡. Throughout this discussion, we pre-

sume that the vector potential remains zero for negative times, i.e., 𝐴(𝑡 ≤ 0) = 0.

In the adiabatic basis representation, we define the instantaneous eigenstates

of the Hamiltonian:

𝐻 [𝑘 + 𝐴(𝑡)] |𝑢𝑏,𝑘+𝐴(𝑡)⟩ = 𝜖𝑏,𝑘+𝐴(𝑡)|𝑢𝑏,𝑘+𝐴(𝑡)⟩, (A.2)

Here, 𝑏 denotes the band index. For simplicity, we consider a two-band system

comprising the valence band (𝑏 = 𝑣) and the conduction band (𝑏 = 𝑐). Nonethe-
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less, this formulation can be straightforwardly extended to encompass general

systems.

We can do the following expansion of wavefunction based on the instanta-

neous eigenstates defined by Eq. (A.2), which following the same expasion of the

single-particle orbital in terms of Houston states [85, 86, 128]:

|𝜓k(𝑡)⟩ = 𝑐𝑣,k(𝑡)𝑒−𝑖 ∫𝑡
0 𝑑𝑡′𝜖𝑣,k+A(𝑡′)𝑒𝑖𝜙𝑔

𝑣,k(𝑡)|𝑢𝑣,k+A(𝑡)⟩ + 𝑐𝑐,k(𝑡)𝑒−𝑖 ∫𝑡
0 𝑑𝑡′𝜖𝑐,k+A(𝑡′)𝑒𝑖𝜙𝑔

𝑐,k(𝑡)|𝑢𝑐,k+A(𝑡)⟩,
(A.3)

The expansion involves coefficients 𝑐𝑏,𝑘(𝑡) for each band. Explicitly, we include

the dynamical phase factor 𝑒−𝑖 ∫𝑡
0 𝑑𝑡′𝜖𝑣,𝑘+𝐴(𝑡′) and introduce an additional phase fac-

tor 𝑒𝑖𝜙𝑔
𝑏,𝑘(𝑡) as explained in Section. (3.1). The latter will be defined subsequently

as the geometric phase factor following the analytical steps in Ref. ([128]).

Inserting expansion Eq. (A.3) into Eq. (A.1), we have:

[𝑖 𝑑
𝑑𝑡 − 𝐻 [k+A(𝑡)]] |𝜓k(𝑡)⟩ = 𝑖 ̇𝑐𝑣,k(𝑡)𝑒−𝑖 ∫𝑡

0 𝑑𝑡′𝜖𝑣,k+A(𝑡′)𝑒𝑖𝜙𝑔
𝑣,k(𝑡)|𝑢𝑣,k+A(𝑡)⟩

+ 𝑖 ̇𝑐𝑐,k(𝑡)𝑒−𝑖 ∫𝑡
0 𝑑𝑡′𝜖𝑐,k+A(𝑡′)𝑒𝑖𝜙𝑔

𝑐,k(𝑡)|𝑢𝑐,k+A(𝑡)⟩

− ̇𝜙𝑔
𝑣,k(𝑡)𝑐𝑣,k(𝑡)𝑒−𝑖 ∫𝑡

0 𝑑𝑡′𝜖𝑣,k+A(𝑡′)𝑒𝑖𝜙𝑔
𝑣,k(𝑡)|𝑢𝑣,k+A(𝑡)⟩

− ̇𝜙𝑔
𝑐,k(𝑡)𝑐𝑐,k(𝑡)𝑒−𝑖 ∫𝑡

0 𝑑𝑡′𝜖𝑐,k+A(𝑡′)𝑒𝑖𝜙𝑔
𝑐,k(𝑡)|𝑢𝑐,k+A(𝑡)⟩

− 𝑖𝑐𝑣,k(𝑡)𝑒−𝑖 ∫𝑡
0 𝑑𝑡′𝜖𝑣,k+A(𝑡′)𝑒𝑖𝜙𝑔

𝑣,k(𝑡)E(𝑡) ⋅
𝜕|𝑢𝑣,k+A(𝑡)⟩

𝜕k
− 𝑖𝑐𝑐,k(𝑡)𝑒−𝑖 ∫𝑡

0 𝑑𝑡′𝜖𝑐,k+A(𝑡′)𝑒𝑖𝜙𝑔
𝑐,k(𝑡)E(𝑡) ⋅

𝜕|𝑢𝑐,k+A(𝑡)⟩
𝜕k = 0.

(A.4)

By multiplying 𝑒+𝑖 ∫𝑡
0 𝑑𝑡′𝜖𝑣,k+A(𝑡′)𝑒−𝑖𝜙𝑔

𝑣,k(𝑡)⟨𝑢𝑣,k+A(𝑡)| to Eq. (A.4), we have:

𝑖 ̇𝑐𝑣,k(𝑡) − ̇𝜙𝑔
𝑣,k(𝑡)𝑐𝑣,k(𝑡) − 𝑖𝑐𝑣,k(𝑡)E(𝑡) ⋅ ⟨𝑢𝑣,k+A(𝑡)∣

𝜕𝑢𝑣,k+A(𝑡)
𝜕k ⟩

− 𝑖𝑐𝑐,k(𝑡)𝑒−𝑖 ∫𝑡
0 𝑑𝑡′𝜖𝑐,k+A(𝑡′)−𝜖𝑣,k+A(𝑡′)𝑒𝑖(𝜙𝑔

𝑐,k(𝑡)−𝜙𝑔
𝑣,k(𝑡))E(𝑡) ⋅ ⟨𝑢𝑣,k+A(𝑡)∣

𝜕𝑢𝑐,k+A(𝑡)
𝜕k ⟩ (A.5)

= 0. (A.6)
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Similarly, by multiplying 𝑒+𝑖 ∫𝑡
0 𝑑𝑡′𝜖𝑐,k+A(𝑡′)𝑒−𝑖𝜙𝑔

𝑐,k(𝑡)⟨𝑢𝑐,k+A(𝑡)| to Eq. (A.4), we have:

𝑖 ̇𝑐𝑐,k(𝑡) − ̇𝜙𝑔
𝑐,k(𝑡)𝑐𝑐,k(𝑡) − 𝑖𝑐𝑐,k(𝑡)E(𝑡) ⋅ ⟨𝑢𝑐,k+A(𝑡)∣

𝜕𝑢𝑐,k+A(𝑡)
𝜕k ⟩

− 𝑖𝑐𝑣,k(𝑡)𝑒−𝑖 ∫𝑡
0 𝑑𝑡′𝜖𝑣,k+A(𝑡′)−𝜖𝑐,k+A(𝑡′)𝑒𝑖(𝜙𝑔

𝑣,k(𝑡)−𝜙𝑔
𝑐,k(𝑡))E(𝑡) ⋅ ⟨𝑢𝑐,k+A(𝑡)∣

𝜕𝑢𝑣,k+A(𝑡)
𝜕k ⟩ = 0.

(A.7)

We have the following matrix form for time-dependnt expansion coefficient

vector combining Eq. (A.6) and Eq. (A.7):

𝑖 𝑑
𝑑𝑡ck(𝑡) = ⎛⎜⎜⎜

⎝

̇𝜙𝑔
𝑣,k(𝑡) 0

0 ̇𝜙𝑔
𝑐,k(𝑡)

⎞⎟⎟⎟
⎠
ck(𝑡) + 𝑖E(𝑡) ⋅ ⎛⎜⎜⎜

⎝

𝑀11 𝑀12

𝑀21 𝑀22

⎞⎟⎟⎟
⎠
ck(𝑡), (A.8)

𝑀11 = ⟨𝑢𝑣,k+A(𝑡)∣
𝜕𝑢𝑣,k+A(𝑡)

𝜕k ⟩ (A.9)

𝑀12 = 𝑒−𝑖 ∫𝑡
0 𝑑𝑡′Δ𝜖𝑐𝑣,k+A(𝑡′)+𝑖Δ𝜙𝑔

𝑐𝑣,k(𝑡) ⟨𝑢𝑣,k+A(𝑡)∣
𝜕𝑢𝑐,k+A(𝑡)

𝜕k ⟩ (A.10)

𝑀21 = 𝑒−𝑖 ∫𝑡
0 𝑑𝑡′Δ𝜖𝑣𝑐,k+A(𝑡′)+𝑖Δ𝜙𝑔

𝑣𝑐,k(𝑡) ⟨𝑢𝑐,k+A(𝑡)∣
𝜕𝑢𝑣,k+A(𝑡)

𝜕k ⟩ (A.11)

𝑀22 = ⟨𝑢𝑣,k+A(𝑡)∣
𝜕𝑢𝑣,k+A(𝑡)

𝜕k ⟩ (A.12)

The coefficient vector was defined as:

ck(𝑡) = ⎛⎜⎜⎜
⎝

𝑐𝑣,k(𝑡)
𝑐𝑐,k(𝑡)

⎞⎟⎟⎟
⎠

. (A.13)

where Δ𝜖𝑏𝑏′,k+A(𝑡) is defined by the difference of the single particle energies as

𝜖𝑏,k+A(𝑡) − 𝜖𝑏′,k+A(𝑡), and Δ𝜙𝑔
𝑏𝑏′,k(𝑡) is defined by the difference of the geometric

phases as 𝜙𝑔
𝑏,k(𝑡) − 𝜙𝑔

𝑏′,k(𝑡).
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Here, we define the geometric phases as

𝜙𝑔
𝑏,k(𝑡) = −𝑖 ∫

𝑡

0
𝑑𝑡′E(𝑡′) ⋅ ⟨𝑢𝑏,k+A(𝑡′)∣

𝜕𝑢𝑏,k+A(𝑡′)
𝜕k ⟩

= 𝑖 ∫
𝑡

0
𝑑𝑡′ 𝑑𝐴(𝑡′)

𝑑𝑡′ ⋅ ⟨𝑢𝑏,k+A(𝑡′)∣
𝜕𝑢𝑏,k+A(𝑡′)

𝜕k ⟩

= 𝑖 ∮
A(𝑡)

A(0)
𝑑A ⋅ ⟨𝑢𝑏,k+A∣𝜕𝑢𝑏,k+A

𝜕k ⟩ . (A.14)

As observed in the final expression of Eq. (A.14), the phase 𝜙𝑔
𝑏,𝑘 only relies on

the geometry of the integral path. For simplicity, we presume that contributions

from the geometric phases, denoted as Δ𝜙𝑔
𝑐𝑣,𝑘(𝑡), are negligible in the perturba-

tion analysis in Section. (3.1). This assumption is valid for the two-band tight-

binding model for hexagonal lattices under our discussion in the thesis, which

have particle-hole symmetry.

With the expression of the geometric phases in Eq. (A.14), it becomes simpli-

fied to rewrite the equation of motion for the coefficient vector as:

𝑖 𝑑
𝑑𝑡ck(𝑡) = ℋ(𝑡)ck(𝑡). (A.15)

ℋ(𝑡) = 𝑖E(𝑡) ⋅ ⎛⎜⎜⎜
⎝

0 𝑀12

𝑀21 0
⎞⎟⎟⎟
⎠

(A.16)

This equation is essentially the time-dependent Schrödinger equation within the

adiabatic basis, closely linked to the Houston basis expansion [85, 86].
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