
La
ng
ua
ge

Technology

D I S S E R T A T I O N

Knowledge Graph Question Answering
with Generative Language Models

Debayan Banerjee

Language Technology

Department of Informatics

Faculty of Mathematics, Informatics and Natural Sciences

Universität Hamburg

Hamburg, Germany

A cumulative thesis submitted for the degree of

Doctor rerum naturalium (Dr. rer. nat.)
2024

Knowledge GraphQuestion Answering with Generative Language Models

Dissertation submitted by: Debayan Banerjee

Date of Disputation: 29.08.2024

Supervisors:
Prof. Dr. Chris Biemann, Universität Hamburg
Prof. Dr. Ricardo Usbeck, Universität Hamburg and Leuphana Universität Lüneburg

Universität Hamburg, Hamburg, Germany
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics

Language Technology

Affidavit

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare upon oath that I have written the present thesis independently and
have not used further resources and aids than those stated in the dissertation.

June 20, 2024

Date Signature
(Debayan Banerjee)

To my mother

Arundhati Banerjee

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors,

Chris and Ricardo. I thank Chris for giving me this opportunity, for believing in me

and constantly supporting me in my journey of research and thesis writing. I thank

Ricardo for providing me with scientific and emotional support in the process of writing

this thesis, and also showing me how to walk the longer path of a future in academia.

Without my supervisors by my side, the completion of this thesis would not be possible.

I would like to thank my school and university teachers from India, who instilled

in me a sense of pursuit for knowledge. I would like to acknowledge the role of Prof.

Dr. Jens Lehmann, whose generous reply to an email of mine in 2017, brought me

from India to Bonn. There, I pursued my masters In Computer Science, and along

with my friend Mohnish Dubey, I worked on several important topics. I would like

to thank the good people of Germany, who not only provided me with world-class

and tuition-free education, but also the right atmosphere for raising a family. I am

thankful to the University of Hamburg for providing me with the latest computing

infrastructure and comfortable working conditions.

I would like to thank my friends in Bonn, Debanjan, Shabnam, Durai, Aniruddha,

Saptarshi, Arindam, who provided much needed emotional and mental support. I am

thankful to my German neighbours in Hamburg, who made us feel welcome and safe in

a new city. Similarly, I am fortunate to have Indian friends in Hamburg, Sayan, Vivek,

Kunal, Sarthak, Senthil, who made me feel at home in the city.

I value my colleagues at the Language Technology group, who supported me with

stimulating conversation on research topics, and also life in Germany. In particular, I

enjoyed collaborating with Özge and Seid on research projects. I would like to thank

Timo Baumann, who was a post-doc with the group, for his role in selecting me for the

PhD program. I also cherish the time spent talking with fellow countryman Abhik Jana.

I would like to thank the WISTS and ITMC groups at the University of Hamburg,

with whom, I collaborated on research topics, which are not a part of this thesis, but

were a source of great joy to me. In particular, I would like to thank Prof. Dr. Tilo

Böhmann, Dr. Mathis Poser, Tom Lewandowski and Dr. Christina Wiethof.

I would like to thank my co-authors Pranav, Jivat and Arefa, who are brilliant

bachelors students from India. They made important contributions and also made

research more enjoyable for me. I would like to thank Sushil, who completed his masters

from University of Hamburg, for doing stellar work on the DBLP_QuAD dataset.

I would like to thank the students of the SEMS group, led by Ricardo, for providing

an intellectually stimulating environment close to my topics of interest. In particular,

I enjoyed my conversations with Cedric, Junbo, Longquan and Tilahun. I hope to

continue collaborating with them in the future.

I would like to thank my parents, Nitai Prasad Bandyopadhyay and Arundhati

Banerjee, for raising me, nurturing me and loving me. I wish my mother were alive

to see me reach this stage. I would like to thank my brother Sayan Banerjee, whose

brilliance and mental strength is a constant source of inspiration for me.

In the end, I would like to thank my wife Pooja Agarwal, who has been the anchor to

my ship which has seen several storms in the sea of life. Without her immense sacrifice

and silent dedication to raising our daughter Urmika, I would be lost at sea.

Use of Third-Party Software

I made use of Grammarly, which is an AI-based tool for correcting spelling and grammar,

throughout the draft of this thesis. I thank the Leuphana University of Lüneburg for

providing me access to the premium version of Grammarly. For the initial drafts in

LATEX, I used overleaf.com, and later, shifted to the ShareLATEX instance provided by

the Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen. The figures

used in this thesis were created on Google Drawings. The LATEXtemplate for this thesis

was taken from https://github.com/uhh-lt/thesis-template-uhh-lt-latex and
modified. The German version of the abstract was translated using Google Translate

from the English abstract, whichwas later corrected bymyGerman-speaking colleagues.

https://github.com/uhh-lt/thesis-template-uhh-lt-latex

The future depends on some graduate student
who is deeply suspicious of everything I have said.

— Geoffrey Hinton

Abstract

A Knowledge Graph (KG) is a data structure that stores information about the world

in the form of nodes and edges. The nodes represent people, places, things etc., while

the edges store the relationships between the nodes. The nodes are also known as

entities, while the edges are known as relations or predicates. Several popular search
engines today make use of such KGs in the background. Some well-known and freely

available KGs are DBpedia and Wikidata.

One way to access information from a KG is through Question Answering. For

example, web-based search engines today give people the ability to type their questions

and receive answers. Unfortunately, the current state of search engines leaves much

to be desired in the complexity of the questions that a user may type. Current search

engines work best when the search term is a keyword or a set of words. Processing

complete sentences, with complex logical rules, is still an open problem.

One large step in the direction of language understanding has been the arrival of

pre-trained Language Models, such as BERT. Such models have been trained on large

amounts of text corpus, and surprisingly, some variants of these models, such as T5

and BART, develop a remarkable ability to generate text, the likes of which are difficult

to distinguish from that produced by a human author. These models are also called

generative Language Models and are a central focus of this thesis.

Given a question by a user, how does one fetch an answer from the KG? This task

is commonly known as Knowledge Graph Question Answering (KGQA). One of the

techniques is to convert the user’s question to a logical form, or a structured query.

One popular query language the reader might be familiar with is SQL. SQL, though,

is appropriate for relational databases. In the KG world, the analogue would be a

language called SPARQL. The task of converting the natural language text to a logical

form is known as semantic parsing.
To be able to execute a SPARQL query on a KG, the SPARQL schema must be valid,

e.g., it must be syntactically correct, and it should be logically correct, e.g., one can not

expect the correct answer if AND is replaced with an OR. The other requirement is

that the constants in the query, such as entity and relation IDs, have to be placed in the

correct manner in the query. In this thesis, we explore the abilities of generative Language
Models (LMs) in the task of KGQA, with a focus on the semantic parsing approach.

This dissertation hypothesizes that generative LMs can be used effectively for the

task of KGQA.We form two research questions over this hypothesis, and to answer these

research questions, a series of five topically interconnected publications are presented

in a cumulative fashion. We first test two popular generative LMs on the task of

semantic parsing. We compare the performance of these models to their non-pre-trained

predecessors. To this end, we utilize some well-known and openly available datasets,

which address well-known KGs. Later, we develop methods to improve the default

performance of such models on this task.

This thesis shows that while generative LMs are not ideal for the semantic parsing

task in their default mode, special text-handlingmechanisms can be incorporated into the

model to improve their performance considerably. With these adaptations, the models

produce state-of-the-art performance across five datasets that address four different KGs.

This thesis provides researchers in this field with a set of tools and techniques to

work with generative LMs and adapt them appropriately to the task of KGQA. We show

in subsequent chapters, that our findings have been used by contemporary researchers

to further advance the state-of-the-art. In the end, we produce a new KGQA dataset,

built over a smaller domain-specific KG. On this dataset, a challenge was organized

in which seven participating teams tried the latest methods, and further pushed the

state-of-the-art for this task. All the code and data used and developed in this thesis

have been released as open-source.

Zusammenfassung

Ein Knowledge Graph (KG) ist eine Datenstruktur, die Informationen über die Welt in

Form von Knoten und Kanten speichert. Die Knoten stellen Personen, Orte, Dinge usw.

dar, während die Kanten die Beziehungen zwischen den Knoten speichern. Die Knoten

werden auch als entities bezeichnet, während die Kanten als relations oder predicates be-
kannt sind. Viele gängige Suchmaschinen machen sich heute solche KGs im Hintergrund

zunutze. Einige bekannte und frei verfügbare KGs sind DBpedia und Wikidata.

Eine Möglichkeit, auf Informationen eines KG zuzugreifen, ist die Beantwortung

von Fragen. Beispielsweise bieten webbasierte Suchmaschinen heute den Menschen

die Möglichkeit, ihre Fragen einzugeben und Antworten zu erhalten. Leider lässt die

aktuelle Performance von Suchmaschinen hinsichtlich der Komplexität der Fragen, die

ein Benutzer eingeben kann, zu wünschen übrig. Aktuelle Suchmaschinen funktionieren

am besten, wenn der Suchbegriff ein Schlüsselwort oder eine Reihe von Wörtern ist.

Die Verarbeitung vollständiger Sätze mit komplexen logischen Regeln ist immer noch

ein offenes Problem.

Ein großer Schritt in Richtung Sprachverständnis war die Einführung vortrainierter

Sprachmodelle wie BERT. Solche Modelle wurden an großen Textkorpus trainiert,

und überraschenderweise entwickeln einige Varianten dieser Modelle, wie etwa T5

und BART, eine bemerkenswerte Fähigkeit, Texte zu generieren, die sich nur schwer

von Texten unterscheiden lassen, die von einem menschlichen Autor erstellt wurden .

Diese Modelle werden auch generative Sprachmodelle genannt und stehen im Mit-

telpunkt dieser Arbeit.

Wie erhält man auf eine Frage eines Benutzers eine Antwort von einem KG? Diese

Aufgabe wird allgemein als Knowledge Graph Question Answering (KGQA) bezeichnet.

Eine der Techniken besteht darin, die Frage des Benutzers in eine logische Form oder

eine strukturierte Abfrage umzuwandeln. Eine beliebte Abfragesprache, mit der der

Leser möglicherweise vertraut ist, ist SQL. SQL eignet sich für relationale Datenbanken.

In der KG-Welt wäre das Analogon eine Sprache namens SPARQL. Die Aufgabe, den

Text in natürlicher Sprache in eine logische Form umzuwandeln, wird als semantisches
Parsen bezeichnet.

Um eine SPARQL-Abfrage auf einem KG ausführen zu können, muss das SPARQL-

Schema gültig sein, d. h. es muss syntaktisch korrekt sein und es sollte logisch korrekt

sein, d. h. man kann nicht die richtige Antwort erwarten, wenn AND durch ein OR

ersetzt wird . Die andere Anforderung besteht darin, dass die Konstanten in der Abfrage,

wie z. B. Entity und Relation-IDs, in der richtigen Weise in der Abfrage platziert werden

müssen. In dieser Arbeit untersuchen wir die Fähigkeiten generativer Sprachmodelle (LMs)
in KGQA, wobei der Schwerpunkt auf dem semantischen Parsing-Ansatz liegt.

In dieser Dissertation wird die Hypothese aufgestellt, dass generative LMs effektiv

für KGQA eingesetzt werden können. Wir formulieren zwei Forschungsfragen zu dieser

Hypothese, und um diese Forschungsfragen zu beantworten, wird eine Reihe von fünf

thematisch miteinander verbundenen Veröffentlichungen kumulativ vorgestellt. Wir

ix

testen zunächst zwei beliebte generative LMs hinsichtlich der Aufgabe des semantischen

Parsens. Wir vergleichen die Leistung dieser Modelle mit ihren nicht vorab trainierten

Vorgängern. Hierzu nutzen wir einige bekannte und frei verfügbare Datensätze, die sich

an bekannte KGs richten. Später entwickeln wir Methoden, um die Standardleistung

solcher Modelle bei dieser Aufgabe zu verbessern.

Diese Arbeit zeigt, dass generative LMs zwar in ihrem Standardmodus nicht ideal für

die semantische Parsing-Aufgabe sind, dass jedoch spezielle Textverarbeitungsmechanis-

men in das Modell integriert werden können, um ihre Leistung erheblich zu verbessern.

Mit diesen Anpassungen liefern die Modelle eine Leistung auf Höhe der Zeit auf fünf

Datensätzen, die vier verschiedene KGs ansprechen.

Diese Arbeit stellt Forschern auf diesem Gebiet eine Reihe von Werkzeugen und

Techniken zur Verfügung, um mit generativen LMs zu arbeiten und sie entsprechend

an die Aufgabe der KGQA anzupassen. In den folgenden Kapiteln zeigen wir, dass

unsere Erkenntnisse von Forschern genutzt wurden, um den Stand der Technik weiter

voranzutreiben. Am Ende erstellen wir einen neuen KGQA-Datensatz, der auf einem

kleineren domänenspezifischen KG aufbaut. Anhand dieses Datensatzes wurde eine

Challenge organisiert, bei der sieben teilnehmende Teams die neuesten Methoden

ausprobierten und den Stand der Technik für diese Aufgabe weiter vorantrieben. Der

gesamte in dieser Arbeit verwendete und entwickelte Code und die Daten wurden

als Open Source veröffentlicht.

Contents

List of Figures iii

List of Tables vi

List of Abbreviations vii

1 Introduction 1
1.1 Motivation and Research Objectives . 1

1.2 Related Work . 3

1.3 Hypothesis and Research Questions . 5

1.4 Contributions . 7

1.5 Publications . 8

1.5.1 Accepted Papers Comprising This Thesis 8

1.5.2 Comments on the degree of authorship 9

1.6 Adaptation Disclosure . 10

1.7 Thesis Outline . 10

2 Background Knowledge 12
2.1 Introduction . 12

2.2 Adaptation Disclosure . 13

2.3 Word Embeddings . 13

2.4 Neural Networks . 15

2.5 Sequence to Sequence Models . 17

2.5.1 RNN . 17

2.5.2 LSTM . 19

2.5.3 Encoder-Decoder Model . 21

2.5.4 Attention . 22

2.5.5 Pointer Generator Network . 23

2.5.6 Cross-Entropy Loss . 24

2.6 Transformers . 25

2.6.1 Input Embeddings . 29

2.6.2 BERT . 30

2.6.3 Text-to-Text Models . 32

2.7 Knowledge Graph Embeddings . 35

3 Modern Baselines for SPARQL Semantic Parsing . . . 39
3.1 Abstract . 39

3.2 Introduction . 40

3.3 Related Work . 40

3.4 Models . 42

Contents i

3.4.1 T5 . 42

3.4.2 BART . 43

3.4.3 Pointer Generator Network . 44

3.5 Datasets . 45

3.6 Evaluation . 46

3.7 Discussion . 46

3.8 Error Analysis . 47

3.9 Conclusion and Future Work . 47

3.10 Acknowledgments . 48

4 GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph
Question Answering 49
4.1 Bibliographic Information . 49

4.2 Abstract . 49

4.3 Introduction . 50

4.4 Related Work . 50

4.5 Method . 52

4.5.1 Truncated KG Embeddings . 53

4.5.2 Intuition . 53

4.5.3 Models . 54

4.5.4 Skeleton SPARQL . 54

4.5.5 Entity Candidates . 54

4.5.6 Entity Candidates Re-ranking and Ordering 55

4.5.7 Relation Candidates . 55

4.5.8 Candidate Combinations . 55

4.6 Dataset . 55

4.7 Evaluation . 56

4.8 Results . 57

4.8.1 Limitations . 58

4.9 Analysis . 58

4.9.1 Error Analysis . 58

4.9.2 Truncated KG embedding Learning 59

4.9.3 Candidate Ordering . 61

4.10 Hyperparameters and Hardware . 62

4.11 Conclusion and Future Work . 62

4.12 Acknowledgements . 63

5 The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing 64
5.1 Bibliographic Information . 64

5.2 Abstract . 64

5.3 Introduction . 64

5.4 Related Work . 66

5.5 Prefix Tuning . 66

5.6 Models and Experimental Setup . 67

5.6.1 Hyper-parameters and Implementation Details 67

5.7 Vocabulary . 68

5.8 Datasets . 68

5.9 Analysis . 68

Contents ii

5.10 Error Analysis . 70

5.11 Conclusion . 70

5.12 Limitations . 71

5.13 Samples . 71

6 DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowl-
edge Graph 73
6.1 Bibliographic Information . 73

6.2 Abstract . 73

6.3 Introduction . 73

6.4 Related Work . 74

6.5 DBLP KG . 76

6.6 Dataset Generation Framework . 77

6.6.1 Templates . 78

6.6.2 Subgraph generation . 78

6.6.3 Template Instantiation . 79

6.6.4 Data Augmentation . 79

6.6.5 Dataset Generation . 80

6.6.6 Types of Questions . 81

6.7 Dataset Statistics . 82

6.8 Semantic Parsing Baseline . 83

6.8.1 Experiment Results . 83

6.9 Limitations . 84

6.10 Conclusion . 84

6.11 Acknowledgements . 85

7 DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph 86
7.1 Bibliographic Information . 86

7.2 Abstract . 86

7.3 Introduction and Related Work . 86

7.4 Web Interface . 87

7.5 Architecture . 88

7.5.1 Label and Type Generation . 88

7.5.2 Candidate Generation . 88

7.5.3 Disambiguation . 88

7.6 Evaluation . 89

7.7 Conclusion . 90

7.8 Acknowledgements . 90

8 Conclusions 91
8.1 Summary . 91

8.2 Impact . 92

8.3 Limitations . 93

8.4 Future Work . 94

References 97

List of Figures

1.1 A sub-graph sample from Wikidata KG. 1

1.2 Situating the thesis topic in the KGQA landscape. 3

1.3 A typical semantic parsing based KGQA architecture, with our research

questions situated in it. 5

1.4 Situating our papers vis-à-vis our research questions visually, to be seen

with reference to Section 1.5. 8

1.5 Thesis outline. 11

2.1 Osgood’s representation of words based on three attributes. 14

2.2 A Neuron. Inputs are weighted, summed and passed through the sigmoid

function to introduce non-linearity. 16

2.3 A Neural Network model. Multiple neurons and weights are arranged in

layers, where the inputs undergo mathematical operations and progress

from left to right during inference. 16

2.4 A Recurrent Neural Network model. The hidden state ℎ𝑡 is re-used for

the computation of time step 𝑡 + 1. 18

2.5 One Recurrent Neural Network time step. 18

2.6 A Recurrent Neural Network "unrolled" to show computations across

three timesteps. 19

2.7 The Long Short-Term Memory (LSTM) architecture depicts the flow and

computations of the input, the hidden state, and the control state. . . . 20

2.8 An encoder-decoder model. The context vector 𝑐 relays the information

from the encoder to the decoder. 21

2.9 An encoder-decoder model with attention. The decoder is no longer

reliant solely on 𝑐, but can also rely on the attention weights for trans-

mission of information from encoder to decoder. 22

2.10 A Pointer Generator Network. This encoder-decoder architecture allows

the production of out-of-vocabulary items due to its "copying" ability. . 23

2.11 The concept of self-attention depicted through a sample sentence. Here,

"his" attends most strongly to "man". Hence, the representation of "his"

should carry higher weightage for the representation of "man". 25

2.12 Self-attention mechanism in Transformer model. For the computation of

𝑥3’s representation, its query vector is compared against the key vectors

of 𝑥1 and 𝑥2, and that is used as a weighting factor for combining the

value vectors of all three. 26

2.13 Causal self-attention. As an example, for the generation of token 𝑋3,

the decoder attends to tokens that appeared before, i.e. 𝑥1 and 𝑥2. . . . 29

iii

List of Figures iv

2.14 Multi-head self-attention mechanism in Transformer model. Each head

produces its own representation for a given token, which is later con-

catenated to produce a richer representation than what a single head

could have produced. 30

2.15 The Transformer block. Multi-headed attention is at the core of this

model, which is further normalized and fed forward before producing

representation for the given input. 31

2.16 Transformer-based encoder-decoder model. In the decoder, the causal

self-attention only attends to previously produced tokens, while the

cross-attention layer attends to the encoder output. 33

2.17 Text production from a Transformer model. In the beginning, token

embeddings are combined with position embeddings. In the end, the

embedding matrix 𝐸 is transposed and used for generating a distribution

over the tokens to be produced as output, which are combined to produce

words. 34

2.18 A diagram of the text-to-text framework for T5. Based on different

pre-fixes, the model is able to perform a variety of tasks. 35

2.19 T5 pre-training framework for corrupting text. Words are deleted from

the input text, and the task during pre-training is to predict the missing

words. 36

2.20 BART pre-training framework for corrupting the text. Compared to T5,

BART uses more techniques for corrupting input text. 36

2.21 TransE KG embedding model. Entities and predicates are placed in

vector space so that the relationship between them is reflected in the

form of geometric mathematical operations. 37

3.1 PGN-based QB model. At the current time step, the model is decoding

the symbol after the single quote character (’). It considers the scores

over the vocabulary and the attention weights over the input text to

obtain a final probability distribution, fromwhich it makes the prediction

of choosing 1960 as the next token. 42

3.2 Input vector for PGN-BERT. 44

4.1 Architecture of GETT-QA: T5 generates a skeleton SPARQL query with

entity and relation labels and a truncated KG embedding string. The

entity labels are grounded using label based search and embedding based

sorting, while the relations are grounded using BERT embedding based

sorting. The final query is executed against a KG to fetch the answer. . 52

4.2 Cosine and Dot Product based similarities of truncated KG embeddings 59

4.3 Dev Set matches for varying truncated KG embedding lengths 60

4.4 Distribution of angular difference between gold and predicted truncated

KG embeddings on LC-QuAD 2.0 dev set. The mean angular difference

can be seen reducing as the epochs progress, suggesting that the model

is learning the embedding space. 61

5.1 Prefix tuning accuracy drops as vocabulary and query lengths increase

for char settings. TSVS = Tokenizer specific vocabulary size, ALFL =

Average logical form length . 69

List of Figures v

5.2 Fine-tuning accuracy drop is more gradual when compared to prefix

tuning, and the performance of T5-Small and T5-Base are similar. TSVS

= Tokenizer specific vocabulary size, ALFL = Average logical form length 69

6.1 Example of entries in the DBLP KG with its schema 76

6.2 Motivating Example. The generation process starts with (1) selection

of a template tuple followed by (2) subgraph generation. Then, literals

in subgraph are (3) augmented before being used to (4) instantiate the

selected template tuple. The generated data is (5) filtered based on if

they produce answers or not. 77

6.3 Representation of source and target text used to fine-tune the T5 model 83

7.1 User interface of DBLPLink. The question reads: "Who were the co-

authors of Ashish Vaswani in the paper ’Attention is all you need’?" . . 87

7.2 Architecture of DBLPLink. 88

List of Tables

2.1 Osgood’s Semantic Differential Scale denoting words a score in the range

-3,+3. 13

3.1 Results for query generation with gold entities and relations. Best results

are in bold. 44

3.2 Error breakdown for randomly sampled 100 errors 47

4.1 Sample question from LC-QuAD 2.0 56

4.2 Sample question from SimpleQuestions-Wikidata 56

4.3 Results on LC-QuAD 2.0 . 57

4.4 Results on SimpleQuestions-Wikidata 57

4.5 Effects of ordering entity candidates differently. LS = Label sorted, TS =

Truncated KG embedding sorted . 61

5.1 Exact match percentages for generated masked SPARQL queries. Best

performance is always found in substituted vocabularies. For char
settings, accuracy drops as vocabulary and query lengths increase. TSVS

= Tokenizer specific vocabulary size, ALFL = Average logical form length,

PT = Prefix Tuning, FT = Fine Tuning 67

5.2 An example of a question fromGrailQA, with the corresponding SPARQL

query, and how they look once new vocabularies are substituted. . . . 72

6.1 Total number of template tuples per query type grouped by entity type 79

6.2 Percent of questions with different levels of generalization in the valid
and test sets of DBLP-QuAD . 83

6.3 Evaluation results of fine-tuned T5 to DBLP-QuAD 84

7.1 F1-scores for the entity linking task across different combinations of

span detector and entity re-ranker . 89

vi

List of Abbreviations

AI Artificial Intelligence

GPT Generative Pre-trained Transformer

KG Knowledge Graph

KGQA Knowledge Graph Question Answering

LM Language Model

LLM Large Language Model

ML Machine Learning

NLP Natural Language Processing

PLM Pre-Trained Language Model

T2TPLM Text-to-Text Pre-Trained Language Model

Note: The terms generative LM and T2TPLM are used interchangeably throughout

this thesis. When referring to generative LMs or T2TPLMs, we consider specifically

Transformer-based pre-trained models that take text as input and produce text as output.

We refrain from using the term GPT for generic generative LMs, as GPT is also the name

of a particular generative LM released by the private enterprise OpenAI.

vii

1
Introduction

1.1 Motivation and Research Objectives

A Knowledge Graph (KG) is an information store that represents knowledge in the form

of node-edge-node triples. The nodes are known as entities, while the edges are called

properties or relations. As seen in Figure 1.1, in a general-purpose KG, the entities

are usually persons, places, and objects of interest, while the properties define the

relationships between the entities. KGs are typically human-curated and are guaranteed

to contain correct information. Wikidata (Vrandečić and Krötzsch, 2014), DBpedia

(Lehmann, Isele, et al., 2015), Freebase (Bollacker et al., 2008), and Yago (Suchanek et al.,

2007) are examples of well-known general-purpose KGs.

Figure 1.1: A sub-graph sample from Wikidata KG.

Source: Wikidata (2012)

1

1. Introduction 2

Apart from general-purpose knowledge graphs, domain-specific knowledge graphs

also exist. For example, knowledge graphs belonging to medical (Cui et al., 2023),

financial (S Wang, 2022), scholarly (Färber et al., 2023) or music (Rashid et al., 2018)

domains. More recently, the concept of personal knowledge graphs (Balog and Kenter,

2019) have emerged, which may store details of our everyday activities on a personal

server. For a detailed description of the history of the development of Knowledge

Graphs, the reader may refer to Gutierrez and Sequeda (2021).

The objective of Knowledge Graph Question Answering (KGQA) (Höffner et al.,

2017; Lan, G He, et al., 2021), is to fetch answers from a KG, given a question in natural

language as input, e.g., What are the coordinates of the city for which Gavin
Newsom was a mayor?. (See Figure 1.1).

Typically, the first step in KGQA is to identify spans of entities in the given text. This

task is also called Named Entity Recognition (NER). Entities are distinct and identifiable

objects or concepts, often nouns, such as people, places, and things. In the sample

question above, the entity would be Gavin Newsom.
The next step is to find the corresponding node for this given entity in the KG. This

task may be challenging, because multiple people may share the same name, and finding

the right node would require further disambiguation. This step is called Entity Linking

(EL). For an overview of the challenges for this task, one may refer to the surveys of

Sevgili et al. (2022) and Möller et al. (2022).

Once the correct entity node has been identified in the KG, to successfully answer

the question, the neighboring edges and nodes have to be further analyzed. For example,

to answer the given question, two edges in the KG are of interest: namely mayor and
location. Identifying the correct edges is a task called Relation Linking (RL).

At this stage, some systems fetch the answer based on further exploration of the

neighborhood so discovered, especially in cases where the answer is also another

node in the graph. This method falls into the category of the retrieval-based approach.
However, for more complex or multi-hop questions, such as queries that require a count

or aggregation (e.g.: How many cities in the USA have a population above
500,000?) the answer does not lie in a node or edge in the graph, but instead, a formal

query must be generated to compute the total. Moreover, the generation of logical

forms has the added benefit of explainability. That is, one can read and understand

the generated logical form to understand the final answer and how it was retrieved.

The task of generating a formal query is also known as semantic parsing. In In this

thesis, we place greater emphasis on the semantic parsing approach, i.e., we focus on

the model’s ability to generate logical forms.

In recent times, the Transformer architecture (Vaswani et al., 2017) has shown

remarkable performance in a variety of Natural Language Processing (NLP) tasks,

including Question Answering (QA). The Transformer architecture’s parallel encoder

design allows efficient training over a large corpus of text, and this feature has led to

the arrival of the pre-trained Transformer-based architecture.

GPT-1 Radford et al. (2018) was the first pre-trained generative Language Model (LM)

architecture, developed by the enterprise OpenAI and released in 2018. GPT-1 showed

the capabilities of pre-trained models on the generative tasks, however, it was not freely

available to the broad audience for download. OpenAI decided to restrict its usage

to control misuse of its abilities. It was finally early 2020 when Google and Facebook

almost simultaneously released T5 (Raffel et al., 2020) and BART (M Lewis et al., 2020),

generative models everyone could download, use, fine-tune, and adapt to individual use

1. Introduction 3

cases. The models came in versions that were around 200M parameters in size, which fit

neatly into most GPUs (abbreviation for graphical processing units, which are hardware

required for deep learning) in an academic setting. The reader may find additional details

regarding these two families of models in Subsections 2.6.3 and 2.6.3 of this thesis.

The research work for this thesis also began in 2020, and as a natural consequence

of the release of freely usable generative LMs, we decided to try them on the KGQA

task. Based on existing literature at the time, we found no previous work on pre-trained

Transformer-based generative Language Models on the KGQA task.

Part of the justification for applying generative models to the KGQA task, is the

first half of any QA task, which is language understanding. Beyond any doubt, pre-

trained LMs set new benchmarks in a majority of Natural Language Understanding

(NLU) tasks
1
. However, the second part of KGQA, which is the formation of the logical

form, or fetching of the answer from a KG, does not come naturally to generative

LMs. Generative models have no natural connection to an external knowledge store,

or an inbuilt mechanism to perform information retrieval. Moreover, the corpus on

which T5 and BART were pre-trained, contained no examples of question-to-query

mappings, although there were larger examples of description-to-code samples from

GitHub. Hence, it could not be expected that these models perform well out of the box

on our task of semantic parsing without additional fine-tuning.

It is the combined effect of the arrival of generative LM technology, and the scope
of open research questions on the suitability of these models on the KGQA tasks, which
motivated the research direction of this thesis.

Figure 1.2: Situating the thesis topic in the KGQA landscape.

1.2 Related Work
Early work on KGQA focused on answering simple questions (Lopez, Motta, and Uren,

2006; Lopez and Motta, 2004), where a single triple of fact is involved, e.g., Where
was Mahatma Gandhi born? can be answered using the triple <Mahatma Gandhi,
birthplace, Porbandar India>. At the time, finding the right mapping between a

sentence and a triple often relied on finding synsets from Wordnet (Miller, 1995) and

finding lexical matches. As the field of machine learning progressed further, modern

KGQA systems started using neural networks, e.g., Lukovnikov, Fischer, et al. (2017).

1https://gluebenchmark.com/

https://gluebenchmark.com/

1. Introduction 4

In the case of simple questions, themere identification of the correct triple is sufficient.

However, for more complex or multi-hop questions, such as: How many rivers flow
through the most populous nation?, the answer does not lie in the node in a

graph, and instead, a formal query has to be formed. Early works on semantic parsing

(LS Zettlemoyer and Collins, 2005; L Zettlemoyer and Collins, 2007; Berant, Chou,

et al., 2013a; Reddy et al., 2014; Artzi and L Zettlemoyer, 2013; Unger et al., 2012) made

use of Combinatorial Categorical Grammars (Bar-Hillel, 1953) (CCG), or rule-based

parsing to generate logical forms such as SPARQL or 𝜆 −𝐷𝐶𝑆. Unfortunately, designing

CCG rules can be complex and labor-intensive. Crafting rules for all possible sentence

structures in a language requires a deep understanding of linguistics and extensive rule

engineering. For further information on semantic parsing techniques in the pre-neural

network era, we refer the reader to the surveys of Kamath and Das (2018), Kumar and

Bedathur (2020), and Q Zhu, X Ma, et al. (2019).

In their survey on KGQA semantic parsing, Gu, Kase, et al. (2021) outline three main

approaches widely adopted in neural semantic parsing for KGQA: ranking methods,
coarse-to-fine methods, and generative methods. Ranking methods (Abujabal et al., 2017;

Berant and Liang, 2014; Ye et al., 2022; Zafar et al., 2018) initially generate a list of

candidate paths, spanning entities and relations from the KG and rely on computing

the matching score for each candidate-path and question pair. Coarse-to-fine methods

(Bhutani et al., 2019; Das et al., 2021; Y Sun et al., 2020; Zhang et al., 2019) first create

query skeletons and then connect these skeletons to the KG using permissible schema

items. The discovery of permissible schema may be made by exploring the KG nodes

and their neighbourhoods, or in cases where an ontology is available, following the rules

specified in the ontology. For example, an invalid schema item would be a case where

we try to connect an edge of type spouse to a node of type place. Generative methods

typically employ models such as LSTMs (Hochreiter and Schmidhuber, 1997) or GRUs

(Cho et al., 2014) which can produce the query as output via step-by-step decoding.

Despite this categorization by Gu, Kase, et al. (2021), an end-to-end KGQA system

may fall into multiple categories. For example, our work GETT-QA: Graph Embedding
based T2T Transformer for Knowledge Graph Question Answering first generates

a skeleton query which falls under the coarse-to-fine method. In a subsequent step,

candidate entities and relations are re-ranked, which may fall in the re-ranking approach.
Additionally, since the initial coarse query is generated by a generative LM, namely T5

(Raffel et al., 2020), this system also belongs to the generative approach.
We explain the generative approaches in more detail, as this correlates closely

with the focus of our thesis: Early efforts in the generative approach have explored

KGQA semantic parsing using encoder-decoder models, such as LSTMs (Hochreiter

and Schmidhuber, 1997). Soru, Marx, Valdestilhas, et al. (2018), Diomedi and Hogan

(2021), Luz and Finger (2018) utilize the machine translation approach using LSTM

networks for translating questions to corresponding SPARQL queries. In order to be

syntactically valid, logical forms must obey a set of grammatical rules. These rules can

often be suitably represented as a tree. As a result, several works introduced structured
decoding mechanisms so that the decoded logical form follows the tree-based grammar

structure. For example, Dong and Lapata (2016) proposes a tree decoding model that

decodes a query tree in a top-down breadth-first order. Alvarez-Melis and Jaakkola (2017)

introduce an improved tree decoder , where the parent-to-child and sibling-to-sibling

information flows are modelled through two different RNNs. Cheng, Reddy, et al. (2017),

Cheng and Lapata (2018), and Cheng, Reddy, et al. (2019) propose a transition-based

1. Introduction 5

neural semantic parser that adapts the Stack-LSTM proposed by Dyer et al. (2015). Zafar

et al. (2018) exploit syntax to train a query ranking model leveraging the Tree-LSTM

(Tai et al., 2015) model. Encoder-decoder-based approaches typically produce sequences

in left-to-right order, which is also commonly known as auto-regressive decoding. This

does not fall naturally into the tree-based structure of grammar. Moreover, for most

query languages, such as SQL and SPARQL, the order of the logical clauses does not

matter. Hence, two queries that produce the same result but vary in order of clauses

will not be equally rewarded during the decoding step. As a result, non-autoregressive

decoding strategies appeared (Lukovnikov and Fischer, 2021; Q Zhu, Khan, et al., 2020;

Stern et al., 2019), which not only resulted in better grammar-styled productions, but

also achieved sub-linear decoding time complexity.

In more recent times, after the arrival of pre-trained languagemodels, non-generative

pre-trained models such as BERT (Devlin et al., 2019), which is based on the Transformer

architecture, have also been used for the task of KGQA semantic parsing (Zhang et al.,

2019; Yin et al., 2021; Gu, Kase, et al., 2021). It is to be noted that since BERT is not

a generative model, the use of BERT generally falls under ranking or coarse-to-fine

approaches. The most common strategy is to generate question-query pairs and use

BERT for scoring and ranking these pairs.

Coming back to the topic of generation methods for semantic parsing, in this thesis,

we explore generative pre-trained language models such as T5 (Raffel et al., 2020) and

BART (M Lewis et al., 2020) for the first time on the semantic parsing task. T5 and

BART, like BERT, are also pre-trained language models. However, while BERT generates

embeddings as output and only has an encoder, T5 and BART can generate text as

output, like their predecessors, LSTMs, and contain both an encoder and a decoder. For

more details on these models, we refer the reader to Section 2.6.3.

Figure 1.3: A typical semantic parsing based KGQA architecture, with our research questions

situated in it.

1.3 Hypothesis and Research Questions

To set a background for our research questions, let us consider a motivating example.

For the given question:

1. Introduction 6

Is the Poisson’s ratio of gold equal to 0.4?

the correct logical form structure for SPARQL would be:

ASK WHERE {
ENT1 REL1 ?obj
filter (?obj = LIT1)

}

The query above depicts a skeleton of the correct SPARQL query. In its current form,

this query is not yet executable on a KG endpoint, and will not fetch the desired results.

However, the generation of this skeleton query is a challenging task on its own and

is the first step toward forming a complete query. For the query to be complete, the

logical form has to be grounded, i.e., the placeholders ENT1, REL1, and LIT1 must be

replaced with corresponding entity and relation IDs from the KG, and the appropriate

literal must be extracted from the question and replaced in the skeleton query. Once

this process is completed, the final query is as follows:

ASK WHERE {
wd:Q897 wdt:P5593 ?obj
filter(?obj = 0.4)

}

wd:Q8972 is the entity ID for Goldwhile wdt:P55933 is the relation ID for Poisson’s
ratio. This time, the placeholders have been substituted with corresponding entity and

relation IDs, and the relevant literal 0.4 has been extracted from the input question, and

substituted in place of the literal placeholder LIT1. The query above, when executed

on the Wikidata endpoint
4
produces the correct response.

With this context in mind, our singular research hypothesis is as follows:

Hypothesis

Generative Language Models can be used effectively for the task of Knowledge

Graph Question Answering.

which gives rise to the following research questions:

Research Question 1

Can generative Language Models produce correct logical form structure?

Research Question 2

Can generative Language Models aid in grounding of logical forms to the

Knowledge Graph?

2https://www.wikidata.org/wiki/Q897
3https://www.wikidata.org/wiki/Property:P5593
4https://query.wikidata.org/

https://www.wikidata.org/wiki/Q897
https://www.wikidata.org/wiki/Property:P5593
https://query.wikidata.org/

1. Introduction 7

1.4 Contributions
In this section, we briefly describe the contributions of this thesis vis-a-vis our re-

search questions.

Contributions to RQ 1: Can generative LMs generate correct logical form structure?

Addressing RQ1, in our paper Modern Baselines for SPARQL Semantic
Parsing (Banerjee, Nair, Kaur, et al., 2022), we test T5, BART and a Pointer

Generator Network on the task of KGQA semantic parsing. The task of the

models is to produce the correct SPARQL query, given the question, and

the entities and relations as input. In this task, the entities and relations

are provided beforehand, and no additional linking step is necessary. We

discover that T5 works best, but only when special characters and symbols

are appropriately handled and replaced with special tokens from the T5

tokenizer vocabulary.

Additionally, in our paper The Role of Output Vocabulary in T2T LMs
for SPARQL Semantic Parsing (Banerjee, Nair, Usbeck, et al., 2023b), we

discover that, when the SPARQL vocabulary is replaced with a linguistic

vocabulary the semantic parsing accuracy of a generative LM improves

because a generative LM tends to interface better with natural language

than abstract programming vocabulary.

Contributions to RQ 2: Can generative LMs aid in the grounding of logical forms to the
KG?

Addressing RQ2, in our paper GETT-QA: Graph Embedding based T2T
Transformer for Knowledge Graph Question Answering (Banerjee, Nair,

Usbeck, et al., 2023a), we develop a generative LM-based end-to-end KGQA

system named GETT-QA, that generates a logical form, along with entity

and relation labels. To aid in grounding these labels to the precise nodes and

edges in a KG, the model is additionally trained to generate a shorter form

of KG embeddings. These embeddings are used to disambiguate between

entity candidates, leading to the construction of a full SPARQL query.

Additionally, in our paper DBLPLink: An Entity Linker for the DBLP
Scholarly Knowledge Graph (Banerjee, Arefa, et al., 2023), we develop

DBLPLink, which is a web-based demonstration of a generative LM-based

entity linker, over the DBLP KG. The DBLP KG (Ley, 2002) is a computer

science bibliography in the RDF
5
format. We show that generative LMs can

act as strong entity label generators as the initial step of the larger goal of

entity linking.

Finally, in our paper DBLP-QuAD: A Question Answering Dataset over
the DBLP Scholarly Knowledge Graph (Banerjee, Awale, et al., 2023), we

develop DBLP_QuAD, which is a KGQA dataset over the DBLP KG. It

contains SPARQL annotations for corresponding questions. Most SPARQL

annotated KGQA datasets address general KGs like Wikidata and DBpedia.

With DBLP_QuAD, we introduced a domain-specific KGQA dataset that can

5https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

1. Introduction 8

be used for KGQA semantic parsing research. This addresses both RQ1 and

RQ2, since forming the correct SPARQL query requires the construction of

the correct logical form, and also grounding of entity and relations.

Figure 1.4: Situating our papers vis-à-vis our research questions visually, to be seen with

reference to Section 1.5.

1.5 Publications
In this section, we provide a list of accepted papers that comprise this thesis. Additionally,

the contributions of each author of the accepted papers are described in more detail. I

am the first author of each of the papers. For the paper The Role of Output Vocabulary
in T2T LMs for SPARQL Semantic Parsing, Pranav Ajit Nair and I are joint first authors
with equal contributions.

1.5.1 Accepted Papers Comprising This Thesis

• Banerjee, D., Nair, P. A., Kaur, J. N., Usbeck, R., Biemann, C. 2022. Modern
Baselines for SPARQL Semantic Parsing, In Proceedings of the 45th International

ACM SIGIR Conference on Research and Development in Information Retrieval,

pages 2260–2265, Madrid, Spain. Association for Computing Machinery. Research

Track, Short Paper. (Banerjee, Nair, Kaur, et al., 2022)

• Banerjee, D., Awale, S., Usbeck R., Biemann, C. 2023. DBLP-QuAD: A Question
Answering Dataset over the DBLP Scholarly Knowledge Graph, In Proceedings

1. Introduction 9

of the 13th International Workshop on Bibliometric-enhanced Information Re-

trieval @ The 45th European Conference for Information Retrieval, pages 37-51,

Dublin, Ireland. Full Paper. (Banerjee, Awale, et al., 2023)

• Banerjee, D., Nair P. A., Usbeck R., Biemann, C. 2023. GETT-QA:Graph Embedding-
based T2T Transformer for Knowledge Graph Question Answering, In Proceed-

ings of the 20th Extended Semantic Web Conference, pages 279–297, Hersonissos,

Greece. Research Track, Full Paper. (Banerjee, Nair, Usbeck, et al., 2023a)

• Banerjee, D., Nair, P. A., Usbeck, R., Biemann, C. 2023. The Role of Output
Vocabulary in T2T LMs for SPARQL Semantic Parsing. In Findings of the

Association for Computational Linguistics: ACL 2023, pages 12219–12228, Toronto,

Canada. Association for Computational Linguistics. Short Paper. (Banerjee, Nair,

Usbeck, et al., 2023b)

• Banerjee D., Arefa, Usbeck R., Biemann C. (2023): DBLPLink: An Entity Linker
for the DBLP Scholarly Knowledge Graph, In Proceedings of the ISWC 2023

Posters, Demos and Industry Tracks co-located with 22nd International Semantic

Web Conference, Athens, Greece. Demo paper. (Banerjee, Arefa, et al., 2023)

1.5.2 Comments on the degree of authorship

In our paperModern Baselines for SPARQL Semantic Parsing (Banerjee, Nair, Kaur,

et al., 2022), I conceptualized the experimental basis of the paper, using generative LMs

for the task of KGQA semantic parsing. Jivat Neet Kaur performed the experiments

with the Pointer Generator Network (PGN), while I performed the T5 experiments. I

wrote the first draft of the paper, which Jivat helped improve with her suggestions,

and also provided the PGN diagram used in the paper. Jivat left the project at this

point, and Pranav Ajit Nair joined. Pranav performed a new set of experiments with T5,

while I performed a new set of PGN experiments. Pranav helped improve the second

draft of the paper with his suggestions.

In our paperDBLP_QuAD: AQuestionAnsweringDataset over theDBLP Scholarly
Knowledge Graph (Banerjee, Awale, et al., 2023), I conceptualized the DBLP_QuAD

dataset. Sushil Awale improved the concept with additional templates and implemented

the code and methods to generate the datasets. He performed the baseline experiments.

Sushil and I collaborated in manually controlling the quality of the generated questions,

and also in writing the paper.

In our paper GETT-QA: Graph Embedding-based T2T Transformer for Knowledge
Graph Question Answering (Banerjee, Nair, Usbeck, et al., 2023a), I conceptualized

the GETT-QA KGQA pipeline. I wrote the code, performed the experiments, and

wrote the paper. Pranav Ajit Nair verified the correctness of the experiments and

proofread the paper.

In The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing
(Banerjee, Nair, Usbeck, et al., 2023b), I conceptualized the experimental basis of trying

different output vocabularies with generative LMs for semantic parsing. Pranav Ajit

Nair came up with the idea of trying prompt tuning apart from fine-tuning. He carried

out the experiments, while I verified the correctness of the experiments. Pranav and

I collaborated equally in writing the paper.

1. Introduction 10

In DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph (Baner-

jee, Arefa, et al., 2023), I conceptualized the design of the DBLPLink entity linker. Arefa

implemented the entity label generator using T5, while I implemented the entity-re-

ranker for disambiguation. Arefa developed an initial version of the web demo, which I

improved for performance reasons. I wrote the paper, which Arefa proofread.

Prof. Dr. Chris Biemann and Prof. Dr. Ricardo Usbeck provided overall supervisory

guidance for all the papers that are a part of this thesis.

1.6 Adaptation Disclosure
Sections through 1.1 to 1.3 have been adapted from my PhD symposium paper presented

at the Extended Semantic Web Conference 2023 (Banerjee, 2023).

1.7 Thesis Outline
As depicted in Figure 1.5, this thesis is divided into eight chapters. Chapters 1, 2 and 8

sit as a wrapper around the core research papers, and address the broad scope of the

thesis, presenting a unified and over-arching discussion on the general aspects of our

research. Chapters 3 to 7 are our peer-reviewed and published papers that address the

research questions of our thesis. The papers presented therein are verbatim copies of

the original respective proceedings, except that the bibliographies of all the papers have

been combined and unified in style, and presented at the end of the thesis.

1. Introduction 11

Figure 1.5: Thesis outline.

2
Background Knowledge

2.1 Introduction

The research presented in this thesis is performed on the shoulders of several funda-

mental pieces of technology, without which, conducting our experiments would not

be possible. Without the seminal contributions of past researchers described in this

chapter, barely any modern NLP system would exist on its own.

One of the most basic concepts in language is that of words, and howwords represent

meaning. Hence, we start by introducing word meaning representations commonly used

in NLP. This aspect is relevant in an over-arching manner in our thesis, but specifically

relevant to our work in Chapter 5, The Role of Output Vocabulary in T2T LMs for
SPARQL Semantic Parsing (Banerjee, Nair, Usbeck, et al., 2023b). In this thesis, we

experiment with modern sequence-to-sequence models, namely generative Language

Models, on the task of semantic parsing. We start with the earliest sequence-to-sequence

models, namely Recurrent Neural Networks (RNNs), and explain the workings of a

popular variant, namely LSTMs (Hochreiter and Schmidhuber, 1997). We briefly discuss

a special architecture called Pointer Generator Network (PGN) (See et al., 2017), which

uses LSTM as an underlying technology. Wemake use of PGNs as a baseline model in our

workModern Baselines for SPARQL Semantic Parsing (Banerjee, Nair, Kaur, et al., 2022)
which is a part of Chapter 3. Later, we dive deeper into pre-trained and Transformer-

based (Vaswani et al., 2017) sequence-to-sequence models, which are precisely the focus

of our thesis. Initially, we explain the Transformer architecture itself, and how it solves

some serious problems faced by RNN and LSTM models. Subsequently, we describe T5

(Raffel et al., 2020) and BART (M Lewis et al., 2020) models, which are our generative

LMs of choice throughout the thesis. We do not describe Knowledge Graphs as a concept

any further than what has already been described in the previous chapter, in Section

1.1, however, we describe some KG embeddings in Section 2.7, addressing relevant work

in Chapters 3Modern Baselines for SPARQL Semantic Parsing, 4 GETT-QA: Graph
Embedding based T2T Transformer for Knowledge Graph Question Answering and

7 DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph.

12

2. Background Knowledge 13

2.2 Adaptation Disclosure
The following sections have largely been adapted from the book "Speech and Language

Processing" by Dan Jurafsky and James H. Martin (Jurafsky and Martin, 2009). The

text has been modified for simplicity where suitable, while equations remain as they

are in the original text. The figures have been re-drawn by me digitally, and simplified

where possible. The section about Pointer Generator Networks (Section 2.5.5) has been

written with reference to the original paper by See et al. (2017), however the diagram

of a PGN is simplified, and the equations have been modified to appear uniform to

earlier sections on sequence-to-sequence models in this chapter. The sub-sections for

T5 and BART (sub-sections 2.6.3, 2.6.3) have been derived from their original respective

papers, Raffel et al. (2020) and M Lewis et al. (2020).

2.3 Word Embeddings
A new research idea cooks best in my head when I am cooking.

In the sentence above, the two instances of cook mean different things. In the first

case, cook means "develops" or "forms", while the second cook means the preparation of

food in a kitchen. The same sentence could also be replaced with synonym phrases:

A new research idea forms in my head best when I am preparing a meal.

Although we replaced the word cook with approximate synonyms, most of the

other words in the sentence and their order remain the same. In reality, words gain

meaning from the context in which they are presented. It has been seen that words

that occur in similar contexts have similar meanings. This is called distributional
hypothesis and was first discovered by linguistic researchers such as Joos (Joos, 1950),

Harris (Harris, 1954), Firth (Firth, 1957).

Words -3 -2 -1 0 1 2 3

Happy ×

Sad ×

Love ×

Hate ×

Strong ×

Weak ×

Table 2.1: Osgood’s Semantic Differential Scale denoting words a score in the range -3,+3.

Source: Osgood et al. (1957)

It is interesting to think about how a word should be represented. One approach

is to use results from the linguistic study of word meanings, e.g., word meanings in a

dictionary or a list of antonyms or synonyms. One may also categorize words based

on their sense, whether they are positive or negative or represent hope or despair. In

Table 2.1, Osgood’s (Osgood et al., 1957) work on semantic differential scale represented

words on a -3,+3 scale, which placed words with similar meanings on similar positions

on the scale. A more significant breakthrough was achieved by Osgood when he

2. Background Knowledge 14

identified three aspects of words, namely evaluation, potency, and activity. Words

can be placed on a scale on each of these attributes, which implicitly provides them

a point in a coordinate system, as shown in Figure 2.1. This led to the development

of the field of vector semantics.

Figure 2.1: Osgood’s representation of words based on three attributes.

Source: Osgood et al. (1957)

The problem with lexical semantics is that the initial classification of words into

senses, and also the assignment of degree of membership to each sense, requires human

involvement. As briefly discussed before, the idea of the distributional hypothesis
comes to the rescue. Since similar words occurring in similar contexts probably mean

the same thing, word representations can also be discovered automatically by mining

text corpora. This brings us to vector semantics, which is a way to represent a word as

a point in vector space. Similar words would reside closer to each other in this space,

while words of the opposite meaning would reside the farthest from each other. Like

every point in vector space, this word can be denoted by the coordinates of the vector

space and can be written down as a series of numbers, or in other words, as a vector.
A simple approach to forming such vectors is to form a co-occurrence matrix of

words. Let there be V words in the vocabulary, and let the matrix be a 𝑉 ×𝑉 matrix. Now,

given a corpora, we count how many times a particular word was seen with another

word. This leads to a matrix where each word is represented by a row of numbers. This

row is the vector by which we denote this word. This is the basis for some popular

vector approaches such as tf-idf (Salton and McGill, 1986). The problem with such

approaches is that the matrix tends to be quite large in size. For example, if we have

5000 words in our vocabulary, the matrix would be of size 5000 × 5000. Moreover, the

2. Background Knowledge 15

length of each vector would be 5000 and would be sparse in nature since each word will

only co-occur frequently with a small fraction of words in the large vocabulary.

It has been seen that shorter and dense vectors work better than larger and sparse

vectors on a large variety of NLP tasks. The dense vectors are also called embeddings.
The dimension of such embeddings does not depend directly on the size of the vocabulary

and typically varies between 50 and 1000. One such popular dense embedding is

Word2Vec Mikolov, Sutskever, et al. (2013).

In Word2Vec, a binary classifier is trained on the task of the prediction problem,

whether a word W is likely to show up close to another word C or not. A corpus of

text is considered as the training dataset, and as positive samples, a word W is taken

out of a sentence, paired with the rest of the words in the sentence, and presented

to the model for the probability that this word does indeed belong to the sentence.

For negative examples, random words from the vocabulary are included instead of

W. This method is called skip-gram, and in this method, no manual intervention is

required for the preparation of training data and hence falls under the category of

self-supervision. This class of word embeddings is called static embeddings, because
the matrix produced by training, i.e., an embedding for each word, is used as it is in

all downstream tasks. The embeddings for a given word have been decided to be fixed

during the training process based on the corpora used. Since we do not make use of

static word embeddings in our thesis, we limit our discussion to this point. For further

details of Word2Vec, we refer the interested reader to Chapter 6 of the book "Speech

and Language Processing" Jurafsky and Martin (2009).

As shown in a sample sentence at the start of this section, multiple instances of

the same word may have different meanings in a given sentence, based on the context.

Static embeddings fail to capture this nuance since each word is represented by a

single embedding once training ends. Thanks to recent advances in the Transformer

model, it is now possible to compute different representations for the same word given

different contexts. In this thesis, we make widespread use of such embeddings. We

shall come back to the topic of dynamic embeddings later in later subsections, once

we have explained the Transformer model. Before we can explain the Transformer

model, we must first explain more basic models, such as neural networks, feed-forward

networks, and recurrent neural networks.

2.4 Neural Networks

The basic unit of a neural network is a neuron. As shown in Figure 2.2, given a set of in-

puts 𝑥1, ..., 𝑥𝑛, a set of corresponding weights 𝑤1, ..., 𝑤𝑛 and a bias 𝑏, the weighted sum 𝑧 is:

𝑧 = 𝑏 +∑

𝑖

𝑤𝑖𝑥𝑖 (2.1)

A simpler way of writing the equation is as a dot product of the vectors 𝑤 and 𝑥:

𝐳 = 𝐰 ⋅ 𝐱 + 𝑏 (2.2)

Usually, a non-linear function is applied on 𝑧 so that a stacked layer of neurons

can approximate a large family of functions. One popular non-linear function used

is the sigmoid function:

2. Background Knowledge 16

𝑦 = 𝜎(𝑧) =
1

1 + 𝑒−𝑧
(2.3)

The sigmoid function has the nice properties that it produces an output in the range

(0,1), and also diminishes outliers towards 0 or 1, and is also differentiable.

Figure 2.2: A Neuron. Inputs are weighted, summed and passed through the sigmoid function

to introduce non-linearity.

Source: Jurafsky and Martin (2009)

Figure 2.3: ANeural Network model. Multiple neurons and weights are arranged in layers, where

the inputs undergo mathematical operations and progress from left to right during inference.

Source: Jurafsky and Martin (2009)

The simplest kind of neural network is called a feed-forward neural network, as
seen in Figure 2.3. It is a multi-layer network where the output of one layer is carried

over to the next. The outputs travel in only one direction, and not in loops or backwards.

2. Background Knowledge 17

A feed-forward neural network contains one of more hidden layers, which are built

of individual neurons as shown in Figure 2.2. Normally, feedforward neural networks

are fully connected, i.e., every pair of units in adjacent layers is connected.

The output of the hidden layer may be written as

ℎ = 𝜎(𝑊𝑋 + 𝑏) (2.4)

where 𝑊 is the weight matrix lying between the input and hidden layers, while b

is the bias matrix added to the hidden layer from the inputs. 𝑋 is the input value in

the form of a matrix. We apply the sigmoid function in the hidden layer.

The weights between the hidden layer and output layer are represented in Figure

2.3 as 𝑈 . The output from the hidden layer is multiplied by these weights and produces

an intermediate output 𝑍 :

𝐙 = 𝑈𝐇 (2.5)

𝑧 is a vector of real values, and can not normally used to make classification decisions.

As a result, a special function called the softmax is applied to this vector to reduce it

to a sequence of probabilities, where the sequence sums to 1.

softmax(𝑧𝑖) =
𝑒𝑧𝑖

∑
𝑑

𝑗=1 𝑒
𝑧𝑗
, 1 ≤ 𝑖 ≤ 𝑑 (2.6)

where 𝑧 is a vector of dimensionality 𝑑. This effectively produces the final output:

𝐘 = softmax(𝐙) (2.7)

2.5 Sequence to Sequence Models

Sequence-to-sequence models play a vital role in natural language processing because

many tasks involve variable-length input and output sequences, such as language

translation, summarization, and text generation. In our case, the focus on semantic

parsing, a variant of text generation, requires a special discussion on this family ofmodels.

These models are often constructed with recurrent neural networks or Transformers.

2.5.1 RNN

Recurrent Neural Networks (RNNs) (Mikolov, Karafiát, et al., 2010) include a mechanism

specifically designed for handling the sequential characteristics of language. This enables

them to manage the temporal aspects of language without relying on pre-determined

fixed-size windows. Through recurrent connections, the RNN introduces a novel method

for representing the preceding context, enabling the model’s decisions to be influenced

by information spanning hundreds of words in the past.

In Figure 2.4, we see a basic RNN unit, with input vector 𝑥𝑡 producing an output 𝑦𝑡 ,

computed via the hidden layer ℎ. This is similar to how a feed-forward neural network

functions, however, in this case, the subscript t refers to the instances of input, output,

and hidden layer output at a particular point of time. As the next input token 𝑥𝑡+1 arrives,

the previous hidden layer output ℎ𝑡 is combined with it to compute the next hidden

2. Background Knowledge 18

Figure 2.4: ARecurrent Neural Networkmodel. The hidden state ℎ𝑡 is re-used for the computation

of time step 𝑡 + 1.

Source: Jurafsky and Martin (2009)

Figure 2.5: One Recurrent Neural Network time step.

Source: Jurafsky and Martin (2009)

layer representation. This introduces the concept of a "memory", where the previous

hidden layer outputs carry forward the content of previous input tokens.

In Figure 2.5, we see the inference procedure of a single timestep for an RNN. The

output vector 𝑦𝑡 is produced from the input vector 𝑥𝑡 by the following equations:

ℎ𝑡 = 𝑔(𝑈ℎ𝑡−1 + 𝑊𝑥𝑡) (2.8)

𝑦𝑡 = 𝑓 (𝑉 ℎ𝑡) (2.9)

where 𝑈 , 𝑊 and 𝑉 are weight matrices and ℎ𝑡 is the output of the hidden layer at

timestep 𝑡. We may assume that 𝑔 is the sigmoid function while 𝑓 is the softmax function.

The sequential nature of the computation requiring the combination of timesteps 𝑡 − 1

2. Background Knowledge 19

Figure 2.6: A Recurrent Neural Network "unrolled" to show computations across three timesteps.

Source: Jurafsky and Martin (2009)

and 𝑡 may better be visualized in Figure 2.6 where the unrolled network is shown

performing the computations for three consecutive input tokens.

2.5.2 LSTM

RNNs are hard to train effectively because of the vanishing gradients problem. During

training, fractional gradients in later steps in the sequence diminish quickly in the

back-propagation process. Thus, they do not reach earlier input signals, making it

hard for the RNN to capture long-range dependencies. Gating-based architectures,

such as the LSTM (Hochreiter and Schmidhuber, 1997) and the GRU (Cho et al., 2014)

are designed to solve this deficiency.

The LSTM unit shown in Figure 2.7 achieves this by adding a new context layer 𝑐𝑡 ,
and using gates for dividing the "memory" management problems into two sub-parts: 1.

removing information not likely to be used in the future 2. adding information likely to

be used in the future. This is achieved by the addition of a forget gate and add gate.
The role of the forget gate is to remove information from the context no longer

deemed necessary. We first compute a mask using the previous hidden layer state

ℎ𝑡−1 and the current input 𝑥:

𝑓𝑡 = 𝜎(𝑈𝑓 ℎ𝑡−1 + 𝑊𝑓 𝑥𝑡) (2.10)

2. Background Knowledge 20

Figure 2.7: The Long Short-TermMemory (LSTM) architecture depicts the flow and computations

of the input, the hidden state, and the control state.

Source: Hochreiter and Schmidhuber (1997)

Next, we do an element-wise multiplication of this mask to the context vector 𝑐𝑡−1

to remove information no longer required:

𝑘𝑡 = 𝑐𝑡−1 ⊙ 𝑓𝑡 (2.11)

Now that we have removed unnecessary information from the context, we focus

on what information to add to the context to carry forward in timesteps. Using the

previous hidden state and current inputs:

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑈𝑔ℎ𝑡−1 + 𝑊𝑔𝑥𝑡) (2.12)

We now generate a mask for the add gate to choose which parts of the information

to add to the context:

𝑖𝑡 = 𝜎(𝑈𝑖ℎ𝑡−1 + 𝑊𝑖𝑥𝑡) (2.13)

𝑗𝑡 = 𝑔𝑡 ⊙ 𝑖𝑡 (2.14)

We add the outputs of the add gate and forget gate to get the new context vector:

𝑐𝑡 = 𝑗𝑡 + 𝑘𝑡 (2.15)

The new context vector is combined with the previous hidden state and the current

input to generate the new hidden state:

𝑜𝑡 = 𝜎(𝑈𝑜ℎ𝑡−1 + 𝑊𝑜𝑥𝑡) (2.16)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (2.17)

As shown above, the usual RNN components 𝑥𝑡 , ℎ𝑡 are augmented by the context

layer 𝑐𝑡 , which through the add and forget gates, controls which information to propagate

and which to diminish. This balance allows longer preservation of historical context

during the LSTM operation.

2. Background Knowledge 21

2.5.3 Encoder-Decoder Model

As seen in Figure 2.8, the encoder-decoder model (Kalchbrenner and Blunsom, 2013;

Sutskever et al., 2014; Cho et al., 2014) is used when the input sequence is of a different

length than the output, and does not align in a word-to-word manner. Neural machine

translation (e.g., translating from English to French) is a typical example where encoder-

decoder models are used. Typically, an encoder-decoder model consists of two sets

of RNNs, where one set is the encoder and the other is the decoder. The encoder

takes as input a series of tokens and produces a fixed-length context vector 𝑐. The

decoder then uses this context vector, along with the time-stepped output of its own,

and produces the next token.

Figure 2.8: An encoder-decoder model. The context vector 𝑐 relays the information from the

encoder to the decoder.

Source: Jurafsky and Martin (2009)

In the most basic form of the encoder-decoder model, the context vector 𝑐 is the

last hidden state of the encoder and is passed as the initial hidden state of the RNN

unit in the decoder.

𝑐 = ℎ
𝑒
𝑛 (2.18)

ℎ
𝑑
0 = 𝑐 (2.19)

In Figure 2.8, we have a more advanced version, where 𝑐 is passed to each timestep

of the decoder. This allows the decoder to repeatedly access the output of the encoder

at each decoding step so that the influence of 𝑐 does not diminish with each decoding

step. Hence, for the decoder, the computation of the current hidden state is as follows:

ℎ
𝑑
𝑡 = 𝑔(𝑦𝑡−1, ℎ

𝑑
𝑡−1, 𝑐) (2.20)

This hidden state is passed through an activation function 𝑓 to a softmax function

and the most likely word in the output vocabulary is produced as output.

2. Background Knowledge 22

𝑧𝑡 = 𝑓 (ℎ
𝑑
𝑡) (2.21)

𝑦𝑡 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑧𝑡) (2.22)

Note from the above equations that the output at each decoding step 𝑦𝑡 is passed as

input to the next decoding step. This is combined with the previous decoder’s hidden

state and the encoder context 𝑐 to compute the next hidden state and output. This

phenomenon of passing the output of one step to the other step is called auto-regressive
and is a typical nature of several models used to process language.

Figure 2.9: An encoder-decoder model with attention. The decoder is no longer reliant solely on

𝑐, but can also rely on the attention weights for transmission of information from encoder to

decoder.

Source: Jurafsky and Martin (2009)

2.5.4 Attention

In encoder-decoder models, the context vector 𝑐 produced by the encoder must contain

the entire substance of the input to be eventually transmitted to the decoder. Due

to the fixed size of the context vector, it becomes a bottleneck. Typically, for longer
sequences, the earlier tokens no longer find themselves significantly represented in

𝑐. In Figure 2.9 (Bahdanau et al., n.d.; Graves, 2013), we depict an encoder-decoder

with attention mechanism. Instead of relying on a single context vector 𝑐, the decoder

has access to 𝑐𝑖, which is a new context vector for decoding timestep 𝑖. 𝑐𝑖 is computed

as a weighted sum of all the hidden states of the encoder. To compute the weighting,

a score of similarity is computed at each decoding timestep 𝑖 between the decoder

hidden state ℎ𝑑𝑖−1 and the encoder hidden state at state 𝑗 , ℎ𝑒𝑗 . We may use the dot-product

here for attention computation:

2. Background Knowledge 23

𝑠𝑐𝑜𝑟𝑒(ℎ
𝑑
𝑖−1, ℎ

𝑒
𝑗) = ℎ

𝑑
𝑖−1 ⋅ ℎ

𝑒
𝑗 (2.23)

This score represents the degree of similarity between the hidden vectors of the

respective encoder and decoder hidden states. Naturally, the encoder state, which

has higher similarity, should weigh higher in the computation of 𝑐𝑖. This is done by

applying a softmax function over the scores and summing the weighted context vectors

of each encoder hidden state:

𝛼𝑖𝑗 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(ℎ
𝑑
𝑖−1 ⋅ ℎ

𝑒
𝑗) (2.24)

𝑐𝑖 = ∑

𝑗

𝛼𝑖𝑗ℎ
𝑒
𝑗 (2.25)

This produces a fixed-length context vector that can now be used by each step of

the decoder. It has been seen that encoder-decoder models with attention mechanisms

outperform vanilla encoder-decoder models by large margins on most tasks.

2.5.5 Pointer Generator Network

Figure 2.10: A Pointer Generator Network. This encoder-decoder architecture allows the

production of out-of-vocabulary items due to its "copying" ability.

Source: See et al. (2017)

In our workModern Baselines for SPARQL Semantic Parsing (Banerjee, Nair, Kaur,
et al., 2022), we use a modified architecture of the encoder-decoder with attention model,

called the Pointer Generator Network (PGN) (See et al., 2017). As seen in Figure 2.10, the

encoder, decoder, and context vectors are similar to what has been seen before. However,

in the case of PGN, the output not only produces a softmax distribution over a fixed

vocabulary, it is also able to produce a distribution over the input tokens. Some of the

2. Background Knowledge 24

input tokens may be out-of-vocabulary, and this kind of model allows the production

of tokens in output that were never seen before during training.

At the core of the PGN lies the generation probability 𝑝𝑔𝑒𝑛, which controls, at

each decoding step, whether a token is chosen from the vocabulary or from the input

tokens, which may also include out-of-vocabulary tokens. The computation of 𝑝𝑔𝑒𝑛

is carried out as:

𝑝gen = 𝜎(𝑈𝑐𝑖 + 𝑉ℎ
𝑑
𝑖 + 𝑊𝑦𝑖 + 𝑏𝑝𝑡𝑟) (2.26)

Where 𝑈 , 𝑉 , and 𝑊 are learnable weight vectors and 𝑏𝑝𝑡𝑟 is a learnable scalar

parameter. 𝑐𝑖 is the context vector at timestep 𝑖, ℎ𝑑𝑖 is the hidden state of the decoder

at timestep 𝑖 and 𝑦𝑖 is the output of decoder at timestep 𝑖.

Next, 𝑝𝑔𝑒𝑛 is used as a soft-switch to choose between generating a word from the

vocabulary 𝑃𝑣𝑜𝑐𝑎𝑏 or copying a word from the input sequence by sampling from the

attention distribution 𝛼. For each document, let the extended vocabulary be denoted

as the union of the vocabulary (e.g., all English words) and the words appearing in

the document (including non-English words). The following distribution is computed

over the extended vocabulary:

𝑃(𝑤) = 𝑝𝑔𝑒𝑛𝑃𝑣𝑜𝑐𝑎𝑏(𝑤) + (1 − 𝑝𝑔𝑒𝑛)𝛼 (2.27)

In the context of KGQA semantic parsing, this model allows the copying of input

tokens to the output query generated. This is required when a part of the input question

must be copied verbatim in the produced SPARQL query. Examples of such queries

may be found in Chapter 3.

2.5.6 Cross-Entropy Loss

When training models on language learning tasks, the loss function most often used is

the cross-entropy loss. It is commonly employed as a loss function during training to

assess how well a model’s predicted probabilities align with the actual target labels.

Consider a binary classification task where the model predicts the probability of

an instance 𝑥 belonging to a specific class (denoted as class 1). The target label 𝑦

can be either 1 (for class 1) or 0 (for class not 1). The cross-entropy loss for a single

data point can be expressed as:

𝐻(𝑦, 𝑦̂) = −[𝑦 log(𝑦̂) + (1 − 𝑦) log(1 − 𝑦̂)] (2.28)

where 𝐻(𝑦, 𝑦̂) represents the cross-entropy loss between the true label 𝑦 and the

predicted probability 𝑦̂, log denotes the logarithm (natural logarithm in this case).

The term 𝑦 log(𝑦̂) measures the penalty for incorrectly predicting class 1 when

the true label is 1 (i.e., the high predicted probability for the wrong class). Similarly,

(1 − 𝑦) log(1 − 𝑦̂) penalizes the model for predicting class 1 with low probability when

the true label is, in fact, 1 (i.e., low predicted probability for the correct class).

The concept extends to multi-class classification problems as well. Let’s assume there

are 𝐶 possible classes and the model outputs a vector of probabilities 𝑦̂ = [𝑦1, 𝑦2, ..., 𝑦𝐶]

where each element 𝑦̂𝑖 represents the predicted probability for class 𝑖. The corresponding

target label 𝑦 would be a one-hot encoded vector with a 1 at the index corresponding

to the true class.

2. Background Knowledge 25

The multi-class cross-entropy loss is then calculated as:

𝐻(𝑦, 𝑦̂) = −

𝐶

∑

𝑖=1

𝑦𝑖 log(𝑦̂𝑖) (2.29)

Here, the sum iterates over all classes, and each term 𝑦𝑖 log(𝑦̂𝑖) contributes to the

overall loss based on the true label (𝑦𝑖) and the predicted probability for that class

(𝑦̂𝑖). During model training, the goal is to minimize the average cross-entropy loss

over the entire training dataset. This is achieved using optimization algorithms that

iteratively update the model’s parameters to reduce the discrepancy between predicted

probabilities and true labels. All the models discussed so far and also subsequently in

this chapter are trained using the cross-entropy loss.

2.6 Transformers

Figure 2.11: The concept of self-attention depicted through a sample sentence. Here, "his"

attends most strongly to "man". Hence, the representation of "his" should carry higher weightage

for the representation of "man".

Recurrent models face challenges in handling sequential data due to their inherent

sequential processing, resulting in limitations in parallelization, difficulty capturing long-

range dependencies, and susceptibility to gradient vanishing and exploding problems.

The Transformer (Vaswani et al., 2017) model addresses this issue by leveraging

self-attention mechanism in an input text. Self-attention is a concept derived from the

closely related concept of attention presented in earlier sections. As seen in Figure 2.11,

self-attention is a mechanism for building a contextual representation of words based

on neighboring words. In the given example, the word "his" refers closely to "man",

and hence the contextual representation for "his" would have a higher weightage of the

contextual representation of "man". This also means that for the given word "his", the

contextual representation would change in a different sentence. This also introduces the

concept of dynamic word embeddings, which, as opposed to static word embeddings (e.g.,

Word2Vec), produce different representations for the same word in different contexts.

In Figure 2.12, we introduce the architecture of the self-attention mechanism within

a transformer block. We start by introducing the concept of query, key and value.

2. Background Knowledge 26

Figure 2.12: Self-attention mechanism in Transformer model. For the computation of 𝑥3’s

representation, its query vector is compared against the key vectors of 𝑥1 and 𝑥2, and that is

used as a weighting factor for combining the value vectors of all three.

Source: Jurafsky and Martin (2009)

Each input embedding to the transformer block plays three roles. In the query role, the

embedding is the focus of attention and is compared to all the previous input tokens.

In the key role, it is the preceding input being compared. In the value role, it is the

computed output for the current focus of attention. To represent the three roles, the

transformer introduces weight matrices 𝑊 𝑄
, 𝑊 𝐾

, and 𝑊 𝑉
.

𝑞𝑖 = 𝑥𝑖𝑊
𝑄

(2.30)

2. Background Knowledge 27

𝑘𝑖 = 𝑥𝑖𝑊
𝐾

(2.31)

𝑣𝑖 = 𝑥𝑖𝑊
𝑉

(2.32)

Thus, we have, for the input embedding 𝑥𝑖, the projected roles of query, key, and

value. In reality, the dot products may result in extremely large values and lead to

numerical instability during training. Hence, they are scaled down by dividing by a

square root of the dimensionality of the query and key vectors, which in the original

transformer paper is kept as 64.

Each word must be expressed as a weighted sum of the representation of words that

came before it. The natural way to do this is to compare the word representations with

each other with a dot product and use a softmax function over the result to create the

weighting factor for the summation of the representations. In this case, the similarity

between words at position 𝑖 and 𝑗 is computed as :

𝑠𝑐𝑜𝑟𝑒(𝑥𝑖, 𝑦𝑗) = 𝑞𝑖 ⋅ 𝑘𝑗 (2.33)

The softmax based weigthing calculation is performed as:

𝛼𝑖𝑗 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒(𝑥𝑖, 𝑦𝑗)) (2.34)

Here, we must note that 𝑗 ≤ 𝑖 is because of the causal nature of words in a sentence.

As seen in Figure 2.13, a word is generally predicted based on the preceding words,

not the subsequent words. Hence, for a focus word, we only compare it to words

before it in the input sequence.

Given the proportional scores in 𝛼𝑖𝑗 , we compute final representation of 𝑥𝑖 as 𝑎𝑖

by summing the value vectors:

𝑎𝑖 = ∑

𝑗≤𝑖

𝛼𝑖𝑗𝑣𝑗 (2.35)

It is important to note that in the equations above, no computation depends on the

results of an earlier computation. Although input token 𝑖 is compared against input

token 𝑗 , the representations of 𝑖 and 𝑗 are taken as they are at the same timestep. This

implies that the computation of representation for each input token can be done in

parallel, which is, in fact, one of the most significant contributions of the transformer

architecture. It is due to this property that transformers can be trained on a large

corpus of text on special hardware carrying several parallel cores, giving rise to the

paradigm of pre-training of language models.

Coming back to the topic of self-attention, the transformer model uses the concept

of multi-headed self-attention. As seen in Figure 2.14, instead of computing just

one representation for each input token, multiple attention heads compute their own

representations of each token, which are then concatenated and passed through a new

weight matrix to produce the final representation.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋) = (ℎ𝑒𝑎𝑑1 ⊕ ℎ𝑒𝑎𝑑2 ⊕ ℎ𝑒𝑎𝑑3 ⊕ ℎ𝑒𝑎𝑑4)𝑊
𝑜

(2.36)

Here we assume that ⊕ represents concatenation, and there are four attention heads,

where the new weight matrix is called 𝑊 𝑜
. The purpose of multi-head attention is to

allow richer representations for a given input token. An input token may relate to other

tokens in the input sentence in more than one way, and it is expected that among the

multiple heads, these different forms of interactions are captured.

2. Background Knowledge 28

With self-attention defined, we can now describe the architecture of a single trans-

former block, as seen in Figure 2.15. For each input token, the multi-headed attention-

based representation is computed. Each of these representations is passed through layer
norm, which stands for layer normalization. Layer normalization is a technique that

improves training performance by keeping the values of the hidden layer in a range that

is appropriate for balancing gradients. The layer norm takes a single vector of dimension

𝑑 as input and produces a vector 𝑑 as output. First, the mean 𝜇 and standard deviation 𝜎

of the elements of the vector are computed. Given a hidden layer with dimensionality 𝑑ℎ:

𝜇 =
1

𝑑ℎ

𝑑ℎ

∑

𝑖=1

𝑥𝑖 (2.37)

𝜎 =

√

1

𝑑ℎ

𝑑ℎ

∑

𝑖=1

(𝑥𝑖 − 𝜇)2 (2.38)

A new vector is hence computed as:

𝑥̂ =
(𝑥 − 𝜇)

𝜎
(2.39)

In the standard implementation of layer norm, two learnable parameters 𝛾 and 𝛽 are

added:

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 = 𝛾𝑥̂ + 𝛽 (2.40)

In the transformer block in Figure 2.15, we see a residual connection passing the

input vectors directly to the layer norm, by-passing the multi-head attention layer.

It was shown by K He et al. (2016) that passing activation information forward and

the gradient backward to skip a layer improves learning and gives later-level layers

access to information from previous layers.

Apart from multi-headed attention, layer norm, and residual connection, the remain-

ing component in a transformer block is the feed-forward layer. Each feed-forward

layer is a 2 layer network, with individual point-wise networks for each input token.

One token is passed through its own 2-layer network, and these weights are not used

by or shared among other input tokens.

Putting it all together, the computations inside a transformer block are as follows:

𝑂 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 + 𝑆𝑒𝑙𝑓 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋)) (2.41)

𝐻 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑂 + 𝐹𝐹𝑁(𝑂)) (2.42)

where 𝐻 is the output of the transformer block. The output dimension and input

dimension of the transformer block are kept the same so that multiple blocks can be

stacked on top of each other. Large Language Models (LLMs) typically stack between

12 to 96 blocks to create greater learning capacity within the models.

2. Background Knowledge 29

Figure 2.13: Causal self-attention. As an example, for the generation of token 𝑋3, the decoder

attends to tokens that appeared before, i.e. 𝑥1 and 𝑥2.

Source: Jurafsky and Martin (2009)

2.6.1 Input Embeddings

Having described the entire Transformer architecture, we now briefly discuss the

computation of the input embedding. Looking at the lower part of Figure 2.17, the

input embedding consists of two parts: 1) the word embedding produced from the

embedding matrix E and 2) positional embedding.
For each input sentence 𝑆 = 𝑤1, 𝑤2...𝑤𝑛 where 𝑤𝑖 is a word in the sentence, a

tokenizer such as BPE (Sennrich et al., 2016) or SentencePiece (Kudo and J Richardson,

n.d.) breaks the sentence into sub-word tokens, transforming 𝑆 to 𝑆 = 𝑡1, 𝑡2....𝑡𝑚. Note

that there may be more tokens when compared to words because complex words

may be broken into multiple parts by the sub-word tokenizer. Before training begins,

the size of the token vocabulary is fixed at |𝑉 |. An embedding matrix of size 𝑑𝑋|𝑉 |

is initialized, possibly with random values, where 𝑑 is the size of the embedding

(768 in BERT, to be introduced in the next section) and |𝑉 | is the size of vocabulary

(30522 for BERT). The sequential nature of language requires special attention to the

position of each token in the input sentence. As such, apart from the static token

embeddings initialized above, additional positional information must be embedded

into the input embeddings. For this purpose, a combination of cosine functions with

different frequencies was used in the original transformer paper, which represents the

absolute position of tokens in a sequence. More complex positional embeddings for

representing relative positions also exist. Eventually, the word embedding 𝐸[𝑡𝑜𝑘𝑒𝑛_𝑖𝑑]

is summed with 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑡𝑜𝑘𝑒𝑛_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) and used as the input embedding.

During pre-training, the embedding matrix 𝐸 is updated and fine-tuned for optimal

representation of input embeddings. Once pre-training is complete, fine-tuning for

downstream tasks may further modify the embedding matrix for better performance.

2. Background Knowledge 30

Figure 2.14: Multi-head self-attention mechanism in Transformer model. Each head produces

its own representation for a given token, which is later concatenated to produce a richer

representation than what a single head could have produced.

2.6.2 BERT

BERT (Devlin et al., 2019), which stands for Bidirectional Encoder Representations from

Transformers, is a pre-trained language model based on the Transformer architecture. A

key aspect of BERT is its pre-training phase. This phase involves training the model on

2. Background Knowledge 31

Figure 2.15: The Transformer block. Multi-headed attention is at the core of this model, which

is further normalized and fed forward before producing representation for the given input.

Source: Vaswani et al. (2017) and Jurafsky and Martin (2009)

a massive unlabeled text corpus in an unsupervised manner. BERT leverages two

tasks during pre-training:

In Masked Language Modeling (MLM), a random selection of words in the input

sentence is replaced with a special "[MASK]" token. The model then attempts to predict

the original masked words based on the surrounding context. This process allows

BERT to learn deep contextual representations for each word in a sentence, considering

both its preceding and following words.

2. Background Knowledge 32

MLM = argmax

𝑤∈
𝑃(𝑤|Context[𝑀𝐴𝑆𝐾]), (2.43)

where 𝑤 represents the masked word,  denotes the vocabulary of all possible words,

and 𝐶𝑜𝑛𝑡𝑒𝑥𝑡[𝑀𝐴𝑆𝐾] represents the remaining sentence with the mask applied.

In addition to MLM, BERT also employs Next Sentence Prediction (NSP) for pre-

training. Here, the model receives pairs of sentences as input and predicts whether the

second sentence follows the first sentence in the original document. This objective helps

BERT understand the relationships between sentences and how they flow logically.

By pre-training on massive amounts of text data using MLM and NSP, BERT gains

a strong understanding of language context. This pre-trained model can then be

fine-tuned for various Natural Language Processing (NLP) tasks, achieving state-of-

the-art performance in tasks like question answering, sentiment analysis, and text

summarization.

Even without further fine-tuning, the embedding output of a BERT model is used

widely as the word embedding of choice in many modern applications. In this thesis,

we make use of BERT embeddings as input vectors to our PGN model in Chapter 3. In

Chapter 4, we use BERT embeddings of relation candidate labels for finding similarity

and sorting. In Chapter 7, we use the BERT embedding of input questions and candidate

entity labels for forming our input vectors.

2.6.3 Text-to-Text Models

BERT is not ideal for the task of text generation. BERT produces as output a set of

embeddings that can be used for downstream tasks such as classification. Moreover,

BERT uses bi-directional attention when computing the value of the masked token. On

the contrary, when generating text, the current token relies on the previously generated

tokens. As a result, text-to-text Transformer models either rely on a Transformer

encoder-decoder (e.g., T5, BART) model or purely on a transformer decoder model (e.g.,

GPT-2). In this thesis, we focus on encoder-decoder models and restrict our discussion

to T5 and BART, which are also encoder-decoder models for text generation.

In Figure 2.16, we see a basic encoder-decoder architecture using Transformer blocks.

Both T5 and BART use the same architecture. The encoder block contains the same

components as described earlier in Section 2.6. However, the decoder contains two new

components: 1. cross-attention layer and 2. causal self-attention. Cross-attention
behaves similarly to multi-headed self-attention, except that while the queries still come

from the previous layer of the decoder, the keys and values come from the output of

the encoder. Causal-self attention, as in Figure 2.13, only attends to tokens generated

in the previous timesteps. This is especially required in the decoder because decoding

happens in an auto-regressive fashion, token by token.

The final output of the encoder 𝐻 𝑒𝑛𝑐 = ℎ1, ..., ℎ𝑛 is multipled by the cross-attention

layer’s weights 𝑊 𝐾
and value weights 𝑊 𝑉

, while the output of the previous decoder

layer 𝐻 𝑑𝑒𝑐[𝑖−1]
is multiplied by the cross-attention layer’s query weights 𝑊 𝑄

:

𝑄 = 𝑊
𝑄
𝐻

𝑑𝑒𝑐[𝑖−1]
(2.44)

𝐾 = 𝑊
𝐾
𝐻

𝑒𝑛𝑐
(2.45)

2. Background Knowledge 33

𝑉 = 𝑊
𝑉
𝐻

𝑒𝑛𝑐
(2.46)

𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(
𝑄𝐾 𝑇

√
𝑑𝑘

)𝑉 (2.47)

Figure 2.16: Transformer-based encoder-decoder model. In the decoder, the causal self-attention

only attends to previously produced tokens, while the cross-attention layer attends to the encoder

output.

Source: Jurafsky and Martin (2009)

The generation of text from these models requires further explanation. As seen

in Figure 2.17, we depict a single transformer decoder block that takes 𝑋 as input

and produces 𝐻 as output. Instead of the single Transformer block, one may also

imagine a single-encoder-decoder model with the same inputs and outputs. Given the

output embedding 𝐻 = ℎ1, ℎ2..., ℎ𝑛, the last embedding output ℎ𝑛 is passed through an

unembedding matrix, which is of the inverse shape as that of the embedding matrix
E, previously introduced in Subsection 2.6.1, used to generate input vectors. These

matrices are weight-tied, i.e., during training, the same weight matrix is used at the

input and the output but with reversed roles.

The unembedding layer produces output in the shape 1𝑋|𝑉 | for each output item ℎ𝑖,

where |𝑉 | is the size of the input and output vocabulary. These logit values are converted

2. Background Knowledge 34

to a probability distribution using the softmax function over the vocabulary. In the

simplest sampling procedure, i.e., the greedy approach, the token with the highest

probability value is selected for production, and the final text token 𝑦𝑖 is produced.

This is how the transformer model produces text.

Figure 2.17: Text production from a Transformer model. In the beginning, token embeddings

are combined with position embeddings. In the end, the embedding matrix 𝐸 is transposed and

used for generating a distribution over the tokens to be produced as output, which are combined

to produce words.

Source: Jurafsky and Martin (2009)

T5

T5 Raffel et al. (2020), as seen in Figure 2.18, adopts a text-to-text approach for various

tasks, such as translation, question answering, and classification. The methodology

involves inputting text into the model and training it to generate corresponding target

text. This approach facilitates the utilization of the same model, loss function, hyper-

2. Background Knowledge 35

parameters, and so on across a diverse range of tasks. T5 model has three popular

variants: T5-small containing 60 million parameters, T5-base containing 220 million

parameters, and T5-large containing 770 million parameters. In this thesis, due to

computing constraints, we restrict our experiments to T5-small and T5-base. The C4
corpus, utilized for pre-training the models, has an uncompressed size of 750 GB. We

make extensive use of the T5 model in this thesis, as it appears in Chapters 3, 4, 5, 6 and 7.

Figure 2.18: A diagram of the text-to-text framework for T5. Based on different pre-fixes, the

model is able to perform a variety of tasks.

Source: Raffel et al. (2020)

BART

BART (M Lewis et al., 2020), which stands for Bidirectional and Auto-Regressive

Transformer, is also a text-to-text, sequence-to-sequence model. In this thesis, we

use the BART-base model, which encompasses 139 million trainable parameters. This

model underwent pre-training on a dataset comprising 160 GB of combined data from

four different corpora: Bookcorpus (Y Zhu et al., 2015), CC-News (Mackenzie et al.,

2020), OpenWebText
1
, and Stories (Trinh and Le, 2018).

T5 and BART differ in the corpus they were trained on. Moreover, as seen in Figures

2.19 and 2.20, the pre-training objectives of reproducing corrupted text remain similar in

both models. However, the means of corruption vary, where T5 primary masks tokens

to be re-constructed. At the same time, BART also implements approaches like shuffling

the order of tokens, deleting tokens instead of applying a visible mask, and text infilling.

We make use of BART in Chapter 3, where we find certain limitations with its

performance on the task of semantic parsing and rely more on T5 for the rest of

the chapters in this thesis.

2.7 Knowledge Graph Embeddings
Knowledge Graphs (KGs) represent entities and relationships between them in a struc-

tured format. KG Embeddings aim to learn low-dimensional vector representations for

these entities and relations, allowing us to reason and perform various tasks on the

knowledge graph. We use KG embeddings in this thesis extensively in Chapters 3, 4

and 7. We describe below the three embeddings that were used in this thesis.

1http://skylion007.github.io/OpenWebTextCorpus

http://skylion007.github.io/OpenWebTextCorpus

2. Background Knowledge 36

Figure 2.19: T5 pre-training framework for corrupting text. Words are deleted from the input

text, and the task during pre-training is to predict the missing words.

Source: Raffel et al. (2020)

Figure 2.20: BART pre-training framework for corrupting the text. Compared to T5, BART uses

more techniques for corrupting input text.

Source: M Lewis et al. (2020)

Let us assume entities are denoted as 𝑒 and relations as 𝑟 . The embedding function

𝜙 maps entities and relations to vector spaces:

• 𝜙(𝑒) ∈ R𝑑
: Embedding vector for entity 𝑒 in d-dimensional space.

• 𝜙(𝑟) ∈ R𝑑
: Embedding vector for relation 𝑟 in d-dimensional space.

The core idea behind KG embeddings is to capture relational patterns by encoding a

certain mathematical property. For example, TransE (Bordes, Usunier, Garcia-Duran, et

al., 2013) embeddings exploit the translation property denoted by the following relation:

𝜙(ℎ) + 𝜙(𝑟) ≈ 𝜙(𝑡) (2.48)

where:

• ℎ - Head entity (subject)

• 𝑟 - Relation

• 𝑡 - Tail entity (object)

2. Background Knowledge 37

Figure 2.21: TransE KG embedding model. Entities and predicates are placed in vector space so

that the relationship between them is reflected in the form of geometric mathematical operations.

As seen in Figure 2.21, this suggests that the vector representing the tail entity can

be obtained by translating the head entity vector along the relation vector.

Consider a KG with entities Place (India, New Delhi) and relation "capital of". We

can learn embedding vectors for these entities and the relation:

• 𝜙(New Delhi) = [2, 5]

• 𝜙(capital of) = [1, -3]

• 𝜙(India) = [3,2]

According to the property, the sum of New Delhi’s embedding and "capital of"’s em-

bedding should be close to India’s embedding:

𝜙(New Delhi) + 𝜙(capital of) = [3, 2] (2.49)

This closeness suggests that themodel has learned ameaningful relationship between

the entities and the relations. The scoring function for TransE may be written as:

𝑓 (ℎ, 𝑟 , 𝑡) = ||𝜙(ℎ) + 𝜙(𝑟) − 𝜙(𝑡)||
2
2 (2.50)

2. Background Knowledge 38

Here, ||.||2 denotes the L2 norm or Euclidean distance. A lower score indicates a

better fit between the triplet (h, r, t), signifying that the translated head entity is closer

to the actual tail entity in the embedding space.

Several KG embedding models implement the core principle with variations. For

example, DistMult (Yang et al., 2015) moves away from the distance-based metric of

TransE and instead computes the dot-product-based similarity of the head, relation, and

tail vectors. It models thTransE can not express symmetric (e.g., roommate, neighbor)

relations and 1-to-N relations (e.g., students of).r:

𝑓 (ℎ, 𝑟 , 𝑡) = 𝜙(ℎ) ◦ 𝜙(𝑟) ◦ 𝜙(𝑡) (2.51)

where ◦ denotes element-wise product. Intuitively, the score function can be viewed

as a cosine similarity between 𝜙(ℎ) ⋅ 𝜙(𝑟) and 𝜙(𝑡). The higher the score, the bet-

ter the alignment.

Both TransE and DistMult suffer from certain limitations. TransE can not express

symmetric (e.g. roommate, neighbour) relations and 1-to-N relations (e.g. students

of). DistMult is unable to express anti-symmetric relations (e.g., part-of, member-of)

and inverse relations (e.g., father-of son-of).

To add greater expressivity in embedding spaces, ComplEx (Zhang et al., 2019)

leverages complex-valued embeddings for entities and relations. It introduces separate

real and imaginary components to model asymmetric relations, where the direction

of the relation matters. The scoring function measures the dot product between the

projected head and the conjugated tail:

𝑓 (ℎ, 𝑟 , 𝑡) = 𝑅𝑒[𝑐𝑜𝑛𝑗(𝜙(ℎ)) ⋅ 𝜙(𝑟) ⋅ 𝜙(𝑡)] (2.52)

Where 𝑅𝑒 denotes the real part of a complex number. and 𝑐𝑜𝑛𝑗(𝑧) denotes the

complex conjugate of 𝑧. ComplEx is able to express symmetric, anti-symmetric, inverse

and 1-to-N relations. However, it fails to represent compositional relations (e.g. 𝑎 → 𝑏

and 𝑏 → 𝑐 implies 𝑎 → 𝑐), which TransE is able to handle.

Which KG embedding to use depends on the nature of relations in the KG being used.

If the KG does not have many symmetry relations, TransE works well. On the other

hand, if the KG has several anti-symmetric, inverse, or 1-to-N relations, ComplEx works

best. However, ComplEx is more expensive to compute owing to its complex number

space and additional computations. DistMult presents a much cheaper alternative if

the KG contains mostly symmetric and 1-to-N relations.

For further information on the topic of KG embeddings, we refer the interested

reader to Chapter 4 of the "Graph Representation and Learning Book" (Hamilton, n.d.).

3
Modern Baselines for SPARQL Semantic

Parsing

Bibliographic Information

Debayan Banerjee, Pranav Ajit Nair, Jivat Neet Kaur, Ricardo Usbeck, and Chris Biemann.

2022. Modern Baselines for SPARQL Semantic Parsing. In Proceedings of the 45th

International ACM SIGIR Conference on Research and Development in Information

Retrieval. New York, NY, USA. Pages 2260–2265.

https://doi.org/10.1145/3477495.3531841

3.1 Abstract

In this work, we focus on the task of generating SPARQL queries from natural language

questions, which can then be executed on Knowledge Graphs (KGs). We assume that

gold entity and relations have been provided, and the remaining task is to arrange them

in the right order along with SPARQL vocabulary, and input tokens to produce the

correct SPARQL query. Pre-trained Language Models (PLMs) have not been explored in

depth on this task so far, so we experiment with BART, T5 and PGNs (Pointer Generator

Networks) with BERT embeddings, looking for new baselines in the PLM era for this task,

on DBpedia and Wikidata KGs. We show that T5 requires special input tokenisation, but

produces state of the art performance on LC-QuAD 1.0 and LC-QuAD 2.0 datasets, and

outperforms task-specific models from previous works. Moreover, the methods enable

semantic parsing for questions where a part of the input needs to be copied to the output

query, thus enabling a new paradigm in KG semantic parsing. Code and data used for

this work can be found at https://github.com/debayan/sigir2022-sparqlbaselines.

39

https://doi.org/10.1145/3477495.3531841
https://github.com/debayan/sigir2022-sparqlbaselines

3. Modern Baselines for SPARQL Semantic Parsing . . . 40

3.2 Introduction

Knowledge Graph Question Answering (KGQA) is the task of finding answers to

questions posed in natural language, using triples present in a KG. Typically the following

steps are followed in KGQA: 1) Objects of interest in the natural language question (NLQ)

are detected and linked to the KG in a step called entity linking (EL). 2) The relation

between the objects is discovered and linked to the KG in a step called relation linking

(RL). 3) A formal query, usually SPARQL, is formed with the linked entities and relations.

The query is executed on the KG to fetch the answer. This step is called Query Building

(QB), and is the focus of this paper. We assume that gold entities and relations are made

available, and our task is to generate the correct SPARQL query. We experiment with a

Pointer Generator Network (See et al., 2017) with special vectorisation, and with more

recent pre-trained language models such as T5 (Raffel et al., 2020) and BART (M Lewis

et al., 2020). We choose models that are able to copy tokens from the input text to the

output SPARQL query, apart from being able to handle normal category of questions.

Questions which require copy operations are found in the dataset LC-QuAD 2.0 (Dubey,

Banerjee, Abdelkawi, et al., 2019), for example:

Is it true that an Olympic-size swimming pool’s operating temperature is equal to 22.4 ?
which has the corresponding SPARQL over Wikidata KG (Vrandečić and Krötzsch,

2014):

ASK WHERE
{

wd:Q2084454 wdt:P5066 ?obj
filter(?obj = 22.4)

}

We found no previous work for SPARQL QB that can handle such questions. We

also show that on datasets where copying is not required (LC-QuAD 1.0 (Trivedi et al.,

2017)), the approaches still exhibit a strong performance.

Our contribution is as follows:

• We find that with the correct input tokenisation, T5 outperforms all previous

works and achieves state of the art performance on LC-QuAD 1.0 over DBpedia

(Lehmann, Isele, et al., 2015), and LC-QuAD 2.0 over Wikidata.

3.3 Related Work

Diefenbach, Lopez, et al. (2017) studied several QA systems and concluded that the

QB step is generally intertwined with rest of the modules in a pipeline, and hence

not evaluated separately. Later, with the advent of Frankenstein (Singh, Lytra, et al.,

2018) and Qanary (Singh, Both, et al., 2016), which are frameworks that allow modular

construction of an end-to-end KGQA pipeline, it was seen that the QB module is the

least researched aspect of the pipeline. Soon after, Singh, Radhakrishna, et al. (2018)

presented a comprehensive survey of individual components of KGQA pipeline and

evaluated Sina (Shekarpour et al., 2015) and NLIWOD
1
as individual QB components.

1https://github.com/semantic-systems/NLIWOD/

https://github.com/semantic-systems/NLIWOD/

3. Modern Baselines for SPARQL Semantic Parsing . . . 41

Several recent works attempt to solve complex query building by constructing inter-

mediate query representations, such as staged query graphs (Yih, MW Chang, et al.,

2015; Hu et al., 2018; Luo et al., 2018; Y Chen et al., 2020; Lan and J Jiang, 2020) based on

𝜆-calculus or skeleton structures (Y Sun et al., 2020). These systems have no built-in

method of performing copy operations from input text to output query. The system

based on skeleton structure requires manual annotation of queries to corresponding

skeletal structures, apart from the final generated query. Some other solutions rely

on templates (Abujabal et al., 2017; J Ding et al., 2019; Soru, Marx, Moussallem, et al.,

2017), which generally have the natural limitation of the query only being limited to

the templates chosen beforehand (Athreya et al., 2021; Vollmers et al., 2021). In the

work of J Ding et al. (2019), the templates are discovered from the input training data,

however, the implementation of the method of discovery of such templates, structures,

and sub-structures in the queries is dataset specific. It is unclear if the same method of

discovery can scale to all datasets.

Most systems that work over query graphs and use 𝜆-calculus start with the assumption

that entities are already linked, and the relations must still be found. However, with

the availability of joint entity and relation linkers such as EARL (Dubey, Banerjee,

Chaudhuri, et al., 2018) and Falcon (Sakor et al., 2019) , we can develop semantic parsers

which focus only on query building and receive both entities and relations pre-linked.

For non-KG semantic parsing, PLMs have been evaluated recently with a focus on com-

positional generalisation (Shaw et al., 2021). For KG semantic parsing, the Compositional

Freebase Questions (CFQ) (Keysers et al., 2020) dataset that is based on the Freebase KG

(Bollacker et al., 2008), has reported results with non-pre-trained Transformer-based

models, while subsequent works (Herzig et al., 2021; Furrer et al., 2020) over the same

dataset have experimented with PLMs. This line of work may be considered closest to

ours, however, their focus is on compositional generalisation, while our focus is on the

ability to faithfully copy input tokens to the produced query. CFQ has no questions

that require such copy operations. Moreover, since Freebase is no longer an active

project, our focus is on DBPedia and Wikidata. By exploring two new datasets and

corresponding KGs, we expand the scope of research.

Some recent work on Complex Temporal Question Answering (Jia et al., 2021) handled

questions that require extraction of time stamps from the input question. They use task-

specific temporal extraction tools such as SUTime (AX Chang and Manning, 2012) and

HeidelTime (Strötgen and Gertz, 2010) for this purpose, however in the end, they do not

form a SPARQL query, and instead attempt to find the correct answer directly through

an entity re-ranking approach. Our efforts are instead on finding such flexible single

models which can perform such extraction tasks along with the building of SPARQl

queries.

The models we experiment with pose no structural or template-based constraints neither

at an intermediate stage nor during decoding, and are able to produce any possible

query structure since we generate the final query token by token. They require the

input question, the linked entities and relations, and a fixed vocabulary of all possible

SPARQL tokens. This allows them to operate on all possible datasets and KGs.

3. Modern Baselines for SPARQL Semantic Parsing . . . 42

Figure 3.1: PGN-based QB model. At the current time step, the model is decoding the symbol

after the single quote character (’). It considers the scores over the vocabulary and the attention

weights over the input text to obtain a final probability distribution, from which it makes the

prediction of choosing 1960 as the next token.

3.4 Models

3.4.1 T5

T5, or Text-to-Text Transfer Transformer, is a Transformer (Vaswani et al., 2017) based

encoder-decoder architecture that uses a text-to-text approach. Every task, including

translation, question answering, and classification, is cast as feeding the model text

as input and training it to generate some target text. This allows for the use of the

same model, loss function, hyper-parameters, etc. across a diverse set of tasks. We

experiment with two variants of the T5 model: T5-smallwith 60 million parameters and

T5-base with 220 million parameters. The uncompressed C4 corpus used to pre-train

the models is 750 GB in size.

Input Tokenisation

Let the natural language input question be denoted by 𝑄 = [𝑤1, 𝑤2...𝑤𝑛] where 𝑤

denotes the words in the question. The linked entities be denoted by 𝐸 = [𝐸1, 𝐸2...𝐸𝑛]

and the relations by 𝑅 = [𝑅1, 𝑅2....𝑅𝑛]. For each entity and relation we fetch the

corresponding label from the respective KG such that 𝐸𝑙𝑎𝑏1 denotes the label for 𝐸1, and

similarly for relations. Let the SPARQL vocabulary be donated by 𝑉 . The input string to

the model is formed as follows:

𝑤1𝑤2...𝑤𝑛[𝑆𝐸𝑃]𝐸1𝐸𝑙𝑎𝑏1𝐸𝑛𝐸𝑙𝑎𝑏𝑛[𝑆𝐸𝑃]𝑅1𝑅𝑙𝑎𝑏1 ...𝑅𝑛𝑅𝑙𝑎𝑏𝑛

where each word is separated from the other word by a space. We denote the

entities by their respective KG IRIs. For DBpedia the entities take the form, e.g. "

http://dbpedia.org/resource/Dolley_ Madison" while the relations look like "

http://dbpedia.org/onto logy/spouse". For Wikidata a typical entity looks like

3. Modern Baselines for SPARQL Semantic Parsing . . . 43

wd:Q76 (Barack Obama) while a typical relation looks like wdt:P31 (instance of). The
prefixes wd:, wdt: and several others are expanded according to the list available online

2
.

We shuffle the order of entities and relations randomly before passing it to the model.

When the input string is passed to T5 as it is, the accuracy is close to zero, as the

AutoTokenizer splits the URLs as it sees fit, and it later fails to concatenate the fragments

properly at the output. To work around this problem for DBpedia, we made use of

the 100 sentinel tokens that T5 provides. The sentinel tokens were originally used

during pre-training objective to denote masked tokens, but in our case, we make use

of them to represent the prefixes, e.g, http://dbpedia.org/ontology/ as a specific

sentinel token such as <extra_id_2>. Additionally, we represent each of the items in

the SPARQL vocabulary 𝑉 as a sentinel token with a specific ID for each keyword. We

do the same for prefixes in Wikidata for LC-QuAD 2.0.

Output

The output is composed of tokens from 𝑄, 𝑉 , 𝐸 and 𝑅. In the case of LC-QuAD 1.0, since

there are no questions that require copying of tokens from Q, the output is composed

of tokens from 𝑉 , 𝐸 and 𝑅. We would like to point out that since our input contains

the entities and relations, the model always has to perform a form of "copying" even

to decide where in the output SPARQL query to place the entities and relations. In the

case of questions from LC-QuAD 2.0, in some cases this copying mechanism must also

decide which input token from 𝑄 to copy and to which position in the output. The

output for 𝐸 and 𝑅 are not produced verbatim, and instead they are split as a special

token prefix, and then the entity or relation ID. A post-processing step is required

to resolve these sentinel token IDs into the original prefixes and combine them with

the adjacent IDs. For example, wdt:P31 is produced in the output as <extra_id_3> P31.

3.4.2 BART

The Bidirectional and Auto-Regressive Transformer or BART is a Transformer that

combines the Bidirectional Encoder with an Autoregressive decoder into one Seq2Seq

model. We experiment with the BART-base model consisting of 139 million trainable

parameters. This model was pre-trained on 160 GB of data resulting from the combina-

tion of four corpuses, namely, Bookcorpus (Y Zhu et al., 2015), CC-News (Mackenzie

et al., 2020), OpenWebText (Gokaslan and Cohen, 2019) and Stories (Trinh and Le, 2018).

Input Tokenisation

We form the input string for BART in the samemanner as discussed in Section 3.4.1 for T5.

However there is no concept of sentinel tokens in BART. Hence to handle special tokens,

we instead add them to the BartTokenizer using the add_tokens function and appropri-
ately resize the token embedding space using the resize_token_embeddings function.3

2https://www.wikidata.org/wiki/EntitySchema:E49
3https://huggingface.co/docs/transformers/model_doc/bart

https://www.wikidata.org/wiki/EntitySchema:E49
https://huggingface.co/docs/transformers/model_doc/bart

3. Modern Baselines for SPARQL Semantic Parsing . . . 44

3.4.3 Pointer Generator Network

A PGN is a seq2seq network with an encoder and a decoder block. We experiment

exclusively with LSTM-based (Hochreiter and Schmidhuber, 1997) PGNs. While PGNs

can generate output tokens from a given vocabulary via softmax selection, they are

also able to copy tokens from the input text to the output by making use of attentions

weights of the decoder. A significant difference between T5, BART and PGN is that for

PGNs no pre-training on corpus is performed. The model consists of 53 million trainable

parameters which is comparable to T5-small’s 60 million parameters size.

PGNs have typically been employed for abstract summarisation tasks but recently

Rongali et al. (2020) used PGNs to perform SQL semantic parsing. Figure 3.1 depicts

this architecture parsing an example query.

F1 F1

DBpedia 16.04 Wikidata

LC-QuAD 1.0 LC-QuAD 2.0

Sina (Shekarpour et al., 2015) 0.24 -

NLIWOD 0.48 -

SQG (Zafar et al., 2018) 0.75 -

CompQA (Luo et al., 2018) 0.77 -

SubQG (J Ding et al., 2019) 0.85 -

AQG-net (Y Chen et al., 2020) - 0.45

Multi-hop QGG (Lan and J Jiang, 2020) - 0.53

CLC (Zou et al., 2021) - 0.59

PGN-BERT 0.67 0.77

PGN-BERT-BERT 0.88 0.86

BART 0.84 0.64

T5-Small 0.90 0.92
T5-Base 0.91 0.91

Table 3.1: Results for query generation with gold entities and relations. Best results are in bold.

Figure 3.2: Input vector for PGN-BERT.

Input Tokenisation

We construct our input vector (Figure 3.2) by concatenating the question tokens with

gold entities and relations. We add a separator token [SEP] between question tokens

and entity candidates, as well as between entity candidates and relation candidates to

help the model understand the segments of the input tokens. Each token is represented

by a 968-dimensional vector, where the first 768 dimensions are the BERT contextual

embeddings of the question token, or the entity label or relation label, as the case may

3. Modern Baselines for SPARQL Semantic Parsing . . . 45

be. The next 200 dimensions are reserved for the KG embeddings. For question tokens,

KG embeddings do not apply, so we fill the 200 dimensions with a sequence of 1.0. The
[SEP] token is represented by a vector full of -1.0. The linked entities and relations

carry the respective KG embeddings in the last 200 dimensions.

KG Embeddings

For both datasets, we make us of TransE embeddings, due to its popularity and ease

of availability (Bordes, Usunier, Garcia-Duran, et al., 2013). For DBpedia, We train

TransE embeddings ourselves using PyTorch-BigGraph (Lerer et al., 2019). For the

training, we proceed to 30 epochs and use the cosine dot operator as the comparator

function. For Wikidata we made use of readily available TransE embeddings made

available by Pytorch-BigGraph
4
on their webpage.

Re-Ranker

We found that the beams produced by the PGN often contained the right query but

not in the top position. To improve the ranking of queries further, we fine-tuned a

pre-trained BERT-based classifier (distil-bert-base-uncased) on the output of the

PGN. We take the top-10 beam outputs of the PGN on the val sets and query the KG. We

save the output of all the queries which produce a valid response from the KG. To train

the BERT-based classifier, we form the input string by concatenating the question tokens,

the SPARQL query, and the KG response. For supervision, we provide binary labels 0 and

1 for right and wrong query. Once trained, we use the logit values of the penultimate

layer of the model for re-ranking the queries produced by PGN on the test set.

3.5 Datasets

• LC-QuAD 1.0 contains 5,000 questions that are answerable on DBpedia 2016-04.

The dataset originally contains a 4:1 train-test split. However, several competing

systems in Table 1 instead use a smaller split of 3,253 questions. We adopt the

same split and follow J Ding et al. (2019) in performing 5-fold cross-validation

with 70:10:20 split for train, dev, and test, respectively. There are no questions

that require copying of input tokens to output query in this dataset.

• LC-QuAD2.0 is based onWikidata and consists of amixture of simple and complex

questions that were verbalized by human workers on Amazon Mechanical Turk.

It is a large and varied dataset comprising 24,180 train questions and 6,046 test

questions. In addition, to the best of our knowledge, this is the sole dataset that

incorporates aspects of hyper-relational (Galkin et al., 2020) structure of recent

Wikidata versions. Approximately 16% of questions in the dataset require copying

of input tokens to the output query.

4https://github.com/facebookresearch/PyTorch-BigGraph

https://github.com/facebookresearch/PyTorch-BigGraph

3. Modern Baselines for SPARQL Semantic Parsing . . . 46

3.6 Evaluation

In Table 3.1, the results of competing systems for LC-QuAD 1.0 are shown as reported

by J Ding et al. (2019). The results for competing systems for LC-QuAD 2.0 are as

reported by Zou et al. (2021), also found on the KGQA leaderboard (Perevalov et al.,

2022)
5
. For evaluating T5, BART and PGNs on both datasets, we take the top-10 beams

outputs of the models and query the KG in ranked serial order. The first query to

return a non-empty response is considered the output of the model. We match the

KG responses of the generated query to the gold query and mark it a match if they

are identical, and no match if they are not.

In the case of LC-QuAD 2.0, we found a large number of queries no longer answerable

on the current version of Wikidata. The original dump used to create the dataset is

no longer available online
6
. As a result, we setup an endpoint with the dump dated

13 October 2021
7
of Wikidata and filtered the test set of 6046 questions down to 4211

questions for which the gold query produced a valid response. We loaded the triples

to a Virtuoso Open Source Triple Store and used it as our endpoint. Zou et al. (2021)

resort to a similar pre-filtration step for the dataset in their work.

In Table 3.1, PGN-BERT refers to the setting where we feed the PGN with BERT

embeddings. We apply no re-ranker to the output beams, and consider the first query in

the ranked beams to produce a valid response from the KG as the output of the system.

On the other hand, PGN-BERT-BERT refer to the setting where the beams are further

re-ranked with the BERT-based re-ranker described previously.

3.7 Discussion

T5 not only outperforms all previous works on both datasets, but also BART and PGN

that we experiment with. It is important to handle input tokenisation of prefixes through

sentinel IDs for T5, or else the model produces zero accuracy. In the case of PGN, we

also performed a test without input KG embeddings, where we saw a 20% point drop

in accuracy. In spite of the addition of KG embeddings, it fails to get an edge over T5,

which operates solely based on entity and relation labels. It can hence be concluded

that the large amount of pre-training for T5 outranks the KG embedding advantage.

In the case of BART versus T5, we observed that the copy actions of BART were not

as clean as T5. For example, in LC-QuAD 2.0, BART produced an F1 of 0.3 for questions

that require token copy to the output, while T5 produced an F1 of 0.8. We believe this

is due to the fact that instead of using sentinel IDs, which are inherently a part of the

T5 model from its pre-training objective, we had to resort to adding special tokens to

the BartTokenizer, which does not produce the same copying performance.

T5-small and T5-base produce similar performance, which suggests that the extra

number of parameters in the base model remains unused for our given task. For LC-

QuAD 2.0, none of the previous works has the ability to copy tokens from input to the

output, so our approaches outperform them by far. In terms of PGN performance, on

using the BERT re-ranker, we see gains in the range of 10-20 % points, which shows that

PGN does a poor job of producing the right query towards at the top. When comparing

5https://kgqa.github.io/leaderboard/
6https://databus.dbpedia.org/dbpedia/wikidata/debug/2020.07.01
7https://dumps.wikimedia.org/wikidatawiki/entities/

https://kgqa.github.io/leaderboard/
https://databus.dbpedia.org/dbpedia/wikidata/debug/2020.07.01
https://dumps.wikimedia.org/wikidatawiki/entities/

3. Modern Baselines for SPARQL Semantic Parsing . . . 47

T5-small performance with PGN, although they have similar parameter count, the

pre-training on 750 GB of corpus seems to be the crucial factor in T5-small’s favour.

3.8 Error Analysis
We randomly sampled 100 cases of erroneous outputs for PGN, T5-Small and BART, as

shown in Table 3.2. The most important difference in the errors produced by T5/BART

versus PGN is what we call "copy morphing". T5/BART produce their output from

an open ended sub-word-based vocabulary, and hence sometimes corrupt the item

being copied. At times, they produce wrong entity IDs, e.g., in the case of DBpedia,

Barack-Obama instead of Barack_Obama, and in some other cases, they hallucinate

entity IDs that are not part of the linked entities or relations in input. We also encoun-

tered cases of morphing relation IDs to semantically similar words, like notableWork
changing to notabilityWork, or unexpected capitalisation, e.g., Artist instead of

artist. Although PGN’s overall accuracy is lower, they do not exhibit this issue, since

the copying takes place from an expanded vocabulary which is limited, consisting of

SPARQL tokens and the input tokens. We also found that copy morphing in T5 takes

place only for DBpedia where the entity and relation IDs are similar to the dictionary

labels. For Wikidata, where the IDs are numerical, morphing does not occur.

We categorise the other kind of errors under the following heads: Triple Flip, e.g.,

<o p s> instead of <s p o>, Wrong Variables, e.g., ?var0 instead of ?var1, Wrong

Intent, e.g., ASK instead of SELECT, Copy Errors, where the wrong token is copied, and

Syntax Errors, where the generated query is malformed and an invalid SPARQL query.

We observe that BART has poor performance in copying, while other models have

most errors in triple flips and wrong variables.

PGN BART T5-Small

LCQ1 LCQ2 LCQ1 LCQ2 LCQ1 LCQ2

Triple Flip 56 54 22 30 66 60

Wrong Var 78 63 18 - 36 8

Wrong Intent 22 15 - 10 4 26

Copy Error - 14 22 40 - 18

Copy Morph - - 60 - 26 -

Syntax Errors - - 16 40 - -

Table 3.2: Error breakdown for randomly sampled 100 errors

3.9 Conclusion and Future Work
In this work, we establish new baselines using PLMs for the KG semantic parsing task

for two datasets. Our results surpass the results of earlier baselines and lay grounds for

future research. We make use of readily available and popular models, with minimal

changes to input vectorisation and tokenisation, to report state of the art results on

SPARQL semantic parsing and query building tasks over DBpedia and Wikidata. We

show that these methods are flexible and able to handle a variety of questions with

no fixation on templates or query graphs. The direction of future semantic parsing

3. Modern Baselines for SPARQL Semantic Parsing . . . 48

work for SPARQL should lay more emphasis on pre-training, since currently it is more

focused on producing custom model architectures for the tasks.

As futurework, wewould like to explore the ability of thesemodels in disambiguation

tasks, where the input consists of entity and relation candidates, instead of linked

entities and relations.

3.10 Acknowledgments
This research was partially funded by the German Federal Ministry of Education and

Research (BMBF) as part of the INSTANT project, ID 02L18A111.

4
GETT-QA: Graph Embedding based T2T

Transformer for Knowledge Graph

Question Answering

4.1 Bibliographic Information

Debayan Banerjee, Pranav Ajit Nair, Ricardo Usbeck, Chris Biemann. 2023. GETT-QA:

Graph Embedding Based T2T Transformer for Knowledge Graph Question Answering.

In Proceedings of The Semantic Web: 20th Extended Semantic Web Conference. Her-

sonissos, Crete, Greece. Pages 279–297. https://doi.org/10.1007/978-3-031-33455-9_17

4.2 Abstract

In this work, we present an end-to-end Knowledge Graph Question Answering (KGQA)

system named GETT-QA. GETT-QA uses T5, a popular text-to-text pre-trained language

model. The model takes a question in natural language as input and produces a simpler

form of the intended SPARQL query. In the simpler form, the model does not directly

produce entity and relation IDs. Instead, it produces corresponding entity and relation

labels. The labels are grounded to KG entity and relation IDs in a subsequent step.

To further improve the results, we instruct the model to produce a truncated version

of the KG embedding for each entity. The truncated KG embedding enables a finer

search for disambiguation purposes. We find that T5 is able to learn the truncated

KG embeddings without any change of loss function, improving KGQA performance.

As a result, we report strong results for LC-QuAD 2.0 and SimpleQuestions-Wikidata

datasets on end-to-end KGQA over Wikidata.

49

https://doi.org/10.1007/978-3-031-33455-9_17

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 50

4.3 Introduction
A Knowledge Graph (KG) is an information store where data is stored in the form of

node-edge-node triples. Nodes represent entities and edges represent relationships

between these entities. The aim of KGQA (Lan, G He, et al., 2021) is to produce answers

from this KG given an input question in natural language, e.g., Who is the father
of Barack Obama ?. Usually, the first step in KGQA is to perform Entity Linking (EL)

where mention spans, e.g., Barack Obama representing the name of a person, place,

etc., are linked to a KG node. The subsequent step is Relation Linking (RL), where the

relationship of the entity to the potential answer in the KG is extracted, e.g., father of.
Some KGQA systems attempt to fetch the answer based on the results of just the two

steps above, which typically ends up being another entity (node) in the graph. However,

for more complex questions, such as count queries or min/max aggregate queries (e.g.:

How many rivers are there in India?) the answer does not lie in a node or edge

in the graph, but instead, a formal query must be generated as a final step. To this end,

semantic parsing is relevant to the problem of KGQA. Thus, our focus in this work is

to generate a final SPARQL query that can be executed on the KG.

SPARQL is a popular graph query language for querying KGs. A sample SPARQL

query for the running example over the Wikidata KG looks like the following:

SELECT ?o WHERE { wd:Q76 wdt:P22 ?o }

In the query above, wd:Q76 stands for Barack Obama, while wdt:P22 stands for the

relation father. The ?o variable represents the answer from the KG.

Recent works employ text-to-text (T2T) pre-trained language models (PLMs) for

generating logical queries, e.g. SPARQL, from natural language questions. If the correct

entity and relation IDs are already specified in the input, the accuracy of T2T models

is high (Banerjee, Nair, Kaur, et al., 2022). However, the absence of linked entity and

relation IDs in the input presents a significant challenge to such models. PLMs are

adept at generating linguistic tokens from within their weights. Yet, it is an entirely

different proposition to query the KG and ground the entity and relations to specific

IDs, as the variability of language creates impressive richness at generation while at

the same time hampers the alignment to pre-defined KG items.

In this work, we demonstrate a novel method by which a T2T PLM, namely T5

(Raffel et al., 2020), not only generates SPARQL queries, but also generates truncated KG

embeddings, which aid in the subsequent process of grounding entities to the correct

node in the KG. Our method produces strong results for end-to-end Question Answering

on the LC-QuAD 2.0 and SimpleQuestions-Wikidata datasets over Wikidata KG. All

code and data will be made available
1
.

4.4 Related Work
Early KGQA systems could be divided on the basis of whether they can handle simple

(Yani and Krisnadhi, 2021) or complex questions (Lan, G He, et al., 2021). In a simple

1https://github.com/debayan/gett-qa

https://github.com/debayan/gett-qa

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 51

question, a node-edge-node triple is a sole basis on which a question is formed, whereas

in a complex question there may be more than one such triple involved. Moreover,

certain KGQA systems are built specifically to handle a certain class of questions better,

e.g. temporal questions (Jia et al., 2021).

Another way of categorising KGQA systems is whether they form a formal query

(Christmann et al., 2019; Bhutani et al., 2019; Diefenbach, Both, et al., 2020; Shen et al.,

2019; Tanon et al., 2018) versus whether they use graph search based methods without

producing an explicit query (Christmann et al., 2019; Vakulenko et al., 2019; Huang

et al., 2019; Saxena et al., 2020; H Sun, Bedrax-Weiss, et al., 2019; H Sun, Dhingra, et al.,

2018; Ravishankar et al., 2021; Neelam et al., 2022).

Some KGQA systems work in a hybrid mode and can query from both KG and

text-based sources. PullNet (H Sun, Bedrax-Weiss, et al., 2019) and Graftnet (H Sun,

Dhingra, et al., 2018) both use Relational-Graph Convolution Networks (Schlichtkrull

et al., 2018) to handle complex questions. UNIK-QA (Oguz et al., 2022) verbalises all

structured input from KG, tables and lists into sentences and adds them to a text corpora

and proceeds to perform QA over this augmented text corpora using deep passage

retrieval techniques. UNIQORN (Pramanik et al., 2021) builds a context graph on-the-fly

and retrieves question relevant pieces of evidence from KG and text corpora, using

fine-tuned BERT models. They use group Steiner trees to identify the best answer in

the context graph. We use the results of the KG components of these hybrid systems

in our evaluation in Table 3.1, as reported by UNIQORN.

Platypus (Tanon et al., 2018) and QAnswer (Diefenbach, Both, et al., 2020) are two

recent KGQA systems that work on Wikidata. Both of them use templates and ranking

mechanisms to find the best query. We make no use of templates in our method since

this inherently limits the flexibility of a system on unseen templates.

ElneuQA-ConvS2S (Diomedi and Hogan, 2021) operates in a similar fashion to us,

where they use a Neural Machine Translation (NMT) model to generate SPARQL queries

with empty placeholders, while an entity linking and sequence labeling model fills the

slots. In our case we also make use of NMT capabilities of T5 to generate a skeleton

SPARQL query, however, we do not generate empty slots, and instead, generate entity

and relation labels to be grounded later.

For simple questions, KEQA (Huang et al., 2019) targets at jointly recovering the ques-

tion’s head entity, predicate, and tail entity representations in the KG embedding spaces

and then forming a query to retrieve the answer from a KG. Text2Graph (Chekalina

et al., 2022) uses KEQA as a base, and improves on the embedding learning model by

utilising CP tensor decomposition (Hitchcock, 1927). We include both these systems in

our evaluation Table 4.4.

SGPT (Rony et al., 2022) and STAG (Ravishankar et al., 2021) both use generative methods

for forming the query using pre-trained language models, which is similar to what we

do, however, neither of them generate the entity or relation label, or the embeddings.

Instead STAG uses an external entity linking step, while SGPT attempts to generate

entity and relation IDs directly. However such a method does not work well because for

a KG like Wikidata, the IDs do not follow a hierarchical pattern, and hence the model is

not able to predict an ID that it has not seen in training earlier.

One of our key ideas is to enable a PLM to learn KG Embeddings. There have been

some recent efforts in the same direction such as KEPLER (Xiaozhi Wang et al., 2021),

K-BERT (W Liu et al., 2020), KI-BERT (Faldu et al., 2021), CoLAKE (T Sun et al., 2020),

BERT-MK (B He et al., 2020) and JAKET (D Yu et al., 2022). These systems either try

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 52

to inject KG embeddings into the input or intermediate layers of the model, or they

try to augment the text corpora by including verbalised forms of the triple structural

information. On the other hand, we ask the model to print the embeddings as output.

This is a fundamentally different approach from what has been tried so far.

A related, yet different class of systems is that of conversational QA.

LASAGNE (Kacupaj et al., 2021) and CARTON (Plepi et al., 2021) are two notable

systems in this category. They evaluate on the CSQA dataset (Saha et al., 2018), which

is a conversational dataset answerable over a KG. In our case, we address only single

sentence-long questions. The conversations in CSQA are arranged in sequence of turns

of questions and answers. For the semantic parsing of logical forms, both LASAGNE and

CARTON use a pre-defined grammar, while our approach is free of templated grammar

rules. Both LASAGNE and CARTON use a Transformer architecture to generate base

logical forms, however, LASAGNE uses, a Graph Attention Network (Velickovic et al.,

2018) to resolve entities and relations while CARTON uses stacked pointer networks.

Figure 4.1: Architecture of GETT-QA: T5 generates a skeleton SPARQL query with entity and

relation labels and a truncated KG embedding string. The entity labels are grounded using

label based search and embedding based sorting, while the relations are grounded using BERT

embedding based sorting. The final query is executed against a KG to fetch the answer.

4.5 Method

As shown in Figure 4.1, our system consists of five major steps:

• T5 generates a skeleton SPARQL query from input natural language question.

• The entity labels and truncated KG embeddings are extracted. A label search is

performed to fetch entity candidates.

• The entity candidates are re-ranked using an embedding similarity metric.

• In parallel, the relation label is extracted and matched against Wikidata relations

based on BERT embeddings.

• The final query is grounded to KG nodes and executed to receive the answer.

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 53

4.5.1 Truncated KG Embeddings

We teach T5 to generate truncated vector strings of KG embeddings. We use TransE

(Bordes, Usunier, Garcia-Duran, et al., 2013) embeddings for Wikidata entities that

were provided by Pytorch-BigGraph
2
(Lerer et al., 2019). These are 200-dimensional

vectors of floats. The truncated KG embeddings we use are a shorter version of the

same embeddings. For most of our experiments, we use the first 10 dimensions of these

embeddings, and further reduce the precision of the floats to 3 digits after the decimal.

We do so since T5 is expected to produce these truncated KG embeddings while still in

the text-to-text mode. In other words, T5 produces these vectors of floats considering

them as a string. We use truncated KG embeddings instead of original embeddings to

reduce the decoding load of T5. Our aim is not to learn the entire embedding space.

Instead, we want to learn identifiers that can aid the entity disambiguation phase. We

produce these truncated KG embeddings only for entities, not for relations.

4.5.2 Intuition

The initial idea behind our approach is to allow T5 to use its significant linguistic

capability derived from pre-training over a large corpus for the task of semantic parsing.

As a result, we use T5 to produce SPARQL tokens and entity and relation labels.

At first glance, it may appear that the production of entity labels is sufficient for

grounding to KG entity nodes. However, in most KGs, several entities share the same

labels. For example in Wikidata KG, the entity IDs Q76 and Q47513588 both share

the label Barack Obama. In reality, Q76 represents the President while Q47513588 is

the entity ID for a painting of the President. As a result of such collision of labels, a

further step called disambiguation is required.

The next idea is to not just rely on T5’s linguistic abilities but also to try and teach

the model how to generate identifiers for the entities, which can aid the grounding

and disambiguation process in a subsequent step. One way could be to generate the

Wikidata IDs directly. However, the IDs do not correspond in any hierarchical way

to the underlying entities. For example, while Q76 is Barack Obama, Q77 is Uruguay.
Although the IDs are close to each other, the categories are completely different. Models

cannot be expected to produce accurate IDs of this nature, especially on unseen input

questions. As a result, we consider other schemes of entity identifiers that exhibit

some hierarchical properties.

It turns out KG embeddings fulfill these requirements handsomely, and hence we

decide to use truncated KG embeddings as the "soft" identifier of our choice. Another

possibility would be to generate entity descriptions instead of truncated KG embeddings,

however, roughly 50% of entities in Wikidata do not have corresponding descriptions

(eg: Q67395985
3
), hence we focus on generating truncated KG embeddings instead.

While the production of such truncated embeddings may also aid the grounding of

relations, we do not attempt this, since Wikidata only contains a few thousand relations,

while the number of entities run into several millions. For the grounding of relations

we use simpler text embedding based methods, as described later in Section 4.5.7.

2https://github.com/facebookresearch/PyTorch-BigGraph
3https://www.wikidata.org/wiki/Q67395985

https://github.com/facebookresearch/PyTorch-BigGraph
https://www.wikidata.org/wiki/Q67395985

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 54

4.5.3 Models

T5 (Raffel et al., 2020), or text-to-text transfer transformer, is a transformer (Vaswani

et al., 2017) based encoder-decoder architecture that uses a text-to-text approach. Every

task, including translation, question answering, and classification, is cast as feeding

the model text as input and training it to generate some target text. This allows using

the same model, loss function, hyper-parameters, etc., across a diverse set of tasks. We

experiment with fine-tuning two variants of the T5 model: T5-Small with 60 million

parameters and T5-Base with 220 million parameters. For the GETT-QA system results

reported in Tables 3.1 and 4.4 we use the T5-Base based model, whereas in the analysis

Section 4.9.2 we present a comparative study against T5-Small.

4.5.4 Skeleton SPARQL

As shown in Figure 4.1, the first step of our KGQA system is to generate a skeleton

SPARQL query from the given natural language question. The skeleton query consists of

SPARQL tokens such as SELECT, WHERE, {}, entity and relation labels, and truncated

KG embeddings, which are an array of floats. Some additional tokens are used to

surround the entity and relation labels, such as <ent>, </ent>,<rel>,</rel> so that

in a later step their extraction can be performed using regular-expression operations.

The extraction of the labels and the truncated KG embedding are essential for the

subsequent grounding step. Notably, entity and relation IDs are not a part of a skeleton

SPARQL query.

During training via fine-tuning, pairs of questions and skeleton SPARQL queries

are presented to T5. For this purpose, we pre-process the original dataset, which

contains gold SPARQL queries for each question. The SPARQL query is converted

to a skeleton SPARQL query by replacing the entity and relation IDs with their gold

labels while appending the entity labels with a truncated KG embedding. Hence, the

following gold SPARQL query:

select ?o where { wd:Q76 wdt:P22 ?o }

is converted to:

select ?o where
{
<ent>Barack Obama [...] </ent>
<rel>father</rel>
?o

}

for the purposes of training T5, where the truncated KG embedding is represented by

[...] .

4.5.5 Entity Candidates

During inference, when T5 generates a skeleton query, all entity and relation labels, as

well as truncated KG embeddings, are extracted using regular expressions. For the entity

labels, a BM-25-based (Robertson and Walker, 1994) label search is performed on a

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 55

database of all Wikidata entity labels, out of which top-k candidates are retrieved

per entity label. For this text search we use the Elasticsearch database
4
. For our

experiments, we fix k at 100.

4.5.6 Entity Candidates Re-ranking and Ordering

The top-3 entity candidates based on label matching are retained. For the next 3

candidates, we resort to truncated KG embedding-based sorting. For each item in the list

of 100 entity candidates fetched, we also fetch their gold KG embeddings, and convert

them to truncated KG embeddings. For the truncated KG embedding generated by T5, we

compute its dot product against the gold truncated KG embeddings fetched and re-rank

them in descending order. The dot product is used as a comparator because this was the

same function that was used during the production of the TransE embeddings. From this

re-ranked list based on truncated KG embedding similarity, top-3 candidates are retained.

We append these top-3 truncated KG embedding-sorted candidates to the top-3
label-sorted candidates, and proceed to the subsequent steps with a list of 6 candidate

entities for each entity label.

4.5.7 Relation Candidates

We generate no truncated KG embeddings for relation IDs, as their numbers are orders

of magnitudes smaller when compared to entities in Wikidata. From the relation labels

generated by T5, we compute their BERT embeddings and compute the cosine similarity

against the BERT embeddings of all Wikidata properties. The list of properties is

sorted based on this similarity score, and the top-3 matches are considered for the

subsequent steps.

4.5.8 Candidate Combinations

For a generated query, each entity label and each relation label has 6 and 3 candidates

each, respectively. We preserve the serial order of the entities and relations as produced

in the query, and generate all possible combinations of the entities and relations, which

generates several queries of the same structure but different entity and relation IDs.

For example, if the query contains just one entity and one relation, the number of

possible SPARQL queries generated would be 6 × 3 = 18. We execute each query

on the KG in sorted order of entity and relation IDs received in previous steps. We

stop when the KG returns a non-empty response. This response is considered the

output of our KGQA system. We consider the top 3 beams produced by T5 decoder as

probable queries. The first beam producing a valid response from the KG is considered

the output of our KGQA system.

4.6 Dataset
We evaluate our approach on the LC-QuAD 2.0 (Dubey, Banerjee, Abdelkawi, et al.,

2019) dataset, which consists of approximately 30,000 questions based on the Wikidata

KG. Each question contains the corresponding SPARQL query as gold annotation. The

4https://www.elastic.co/

https://www.elastic.co/

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 56

Question SPARQL

Tell me the

female beauty

pageant that

operates in all

countries and

contains the

word model in

it’s name?

SELECT DISTINCT ?sbj ?sbj_label
WHERE {
?sbj wdt:P31 wd:Q58863414 .
?sbj wdt:P2541 wd:Q62900839 .
?sbj rdfs:label ?sbj_label .
FILTER(CONTAINS(lcase(?sbj_label), "model")) .
FILTER (lang(?sbj_label) = "en")
}
LIMIT 25

Table 4.1: Sample question from LC-QuAD 2.0

Question SPARQL

What type of music

does David Ruffin play

?

SELECT ?x WHERE { wd:Q1176417 wdt:P136
?x }

Table 4.2: Sample question from SimpleQuestions-Wikidata

dataset consists of a wide variety of questions, such as simple, complex, multi-hop,

count, min/max, dual and boolean types. This dataset also uses the recently introduced

hyper-relational (Galkin et al., 2020) structure of the Wikidata KG.

Additionally, we evaluate our approach on the SimpleQuestions-Wikidata (Diefenbach,

Tanon, et al., 2017)
5
dataset, which consists of 34,374 train questions and 9,961 test

questions. This dataset is derived from the original SimpleQuestions dataset (Bordes,

Usunier, Chopra, et al., 2015), which was later aligned with the Wikidata KG. A sample

question from each dataset can be seen in Tables 4.1 and 4.2.

4.7 Evaluation

In Table 3.1, the results for UNIQORN, QAnswer, UNIK-QA, Pullnet, and Platypus are

taken from UNIQORN (Pramanik et al., 2021). UNIQORN uses a test split of 4,921

questions from the original LC-QuAD 2.0 test set of 6,046 questions for all the systems.

We evaluate our approach on the same split as UNIQORN. Despite our best efforts we

were unable to acquire the precise KG snapshot that UNIQORN used for evaluation.

UNIQORN used a Wikidata dump dated 20 April 2021, which is no longer available

either in the official Wikidata repository
6
, or with the authors of UNIQORN. As a

result, we ran the 4,921 questions against the NLIWOD
7
Wikidata dump

8
,
9
, which

5https://github.com/askplatypus/wikidata-simplequestions
6https://dumps.wikimedia.org/wikidatawiki/entities/
7https://www.nliwod.org/challenge
8https://hub.docker.com/r/debayanin/hdt-query-service
9https://skynet.coypu.org/#/dataset/wikidata/query

https://github.com/askplatypus/wikidata-simplequestions
https://dumps.wikimedia.org/wikidatawiki/entities/
https://www.nliwod.org/challenge
https://hub.docker.com/r/debayanin/hdt-query-service
https://skynet.coypu.org/#/dataset/wikidata/query

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 57

P@1

UNIK-QA 0.005

Pullnet 0.011

Platypus 0.036

QAnswer 0.308

UNIQORN 0.331

GETT-QA without truncated embeddings 0.327 ± 0.002

GETT-QA (with truncated embeddings) 0.403 ± 0.0

Table 4.3: Results on LC-QuAD 2.0

F1

KEQA 0.405

Text2Graph 0.618

GETT-QA without truncated embeddings 0.752 ± 0.004

GETT-QA (with truncated embeddings) 0.761 ± 0.002

Table 4.4: Results on SimpleQuestions-Wikidata

is hosted on the docker hub for easy deployment, and also hosted as an API by the

Universität Hamburg’s SEMS group.

In Table 4.4 for SimpleQuestions-Wikidata, results for KEQA and Text2Graph are

taken from MEKER (Chekalina et al., 2022). They evaluate both systems on a smaller

split of the SimpleQuestions-Wikidata test set. This subset contains those questions

which are valid on a custom Wikidata version they call Wiki4M. We were provided the

KG by the authors of MEKER and we evaluated our system on the same.

In Table 3.1, we report macro Precision@1 based onUNIQORN’s reporting preference.

In Table 4.4 we report macro F1 in line with MEKER. To compute metrics, we take

the gold SPARQL and predicted SPARQL query and query the KG with both. We

compare the results from the KG to compute true positives, false positives, and false

negatives (TP, FP, FN).

4.8 Results

In Table 4.3, the bottom two rows contain the results of our system in two different

settings for LC-QuAD 2.0. In the first case, our KGQA system uses the top-6 entity

candidates based on label match, without the use of truncated KG embeddings for

re-ranking. In the second case, we keep the top-3 entity candidates based on label match

and append to it the top-3 candidates based on truncated KG embedding match. This

is the same setting as described in Subsection 4.5.6. The relation candidates in both

cases remain top-3 as described in Subsection 4.5.7.

The key finding in Table 4.3 is that when we compare the last two rows, our

system performs better with an absolute gain of approximately 8% when truncated

KG embeddings are used.

In Table 4.4, for SimpleQuestions-Wikidata our method without truncated KG

embeddgings already outperforms the nearest competitor by an absolute margin of

13%. This demonstrates the natural ability of T5 to predict the correct entity and

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 58

relation labels given a question. Since the query structure of all the questions in this

dataset is the same, no challenge is posed to T5 in trying to learn the query itself. It is

noteworthy however, that after the inclusion of truncated KG embedding re-ranking,

the performance remains similar. An insignificant margin of absolute improvement

of 0.9% is seen. To investigate this gap when compared to the 8% improvement of

LC-QuAD 2.0, we delve further into the nature of the two datasets and run some

analysis. We find that in the case of LC-QuAD 2.0, the correct entity is found in the

top-1 position of the candidate list based on text match 60% of the time, whereas in

the case of SimpleQuestions-Wikidata, this number is significantly higher at 82%. This

is so because the questions in SimpleQuestions-Wikidata contain the entity names in

almost the exact form as their gold entity annotations, whereas in LC-QuAD 2.0, several

entity labels are modified, misspelled or shortened by the human annotators. Hence, in

the case of SimpleQuestions-Wikidata, label-only matching is in most cases sufficient,

whereas in LC-QuAD 2.0, truncated KG embedding-based disambiguation holds greater

importance.

Additionally, as mentioned in Section 4.4, STAG (Ravishankar et al., 2021) and ElNeuQA-

ConvS2S (Diomedi and Hogan, 2021) are comparable generative KGQA systems. For

STAG, no code, data or KG versions have been made public, while for ElNeuKGQA

we were unable to run their code
10
as no instructions on how to run the code exists.

For STAG on SimpleQuestions (Bordes, Usunier, Chopra, et al., 2015), on a test split

of 2280 questions they report F1 61.0 while we report F1 78.1 on a larger test split of

9961 questions. Lastly, ElNeuQA-ConvS2S reports an F1 of 12.9 on WikidataQA while

we report 17.8. WikidataQA is a 100 question test-subset created by the authors of

ElNeuQA-ConvS2S. On LC-QuAD 2.0, they report F1 of 26.9 while we report 40.3.

4.8.1 Limitations

Although GETT-QA performs the best in Tables 3.1 and 4.4, we do not claim state-

of-the-art results on the respective datasets. This is due to a variety of reasons: as

mentioned in Subsection 4.7, we could not procure the preciseWikidata KG version as the

competing systems for LC-QuAD 2.0. In the case of LC-QuAD 2.0 and SimpleQuestions-

Wikidata, evaluation was performed on a truncated subset of the original test split of

this dataset. As a result we can not claim that we have the best results on the entire

dataset. Additionally, we could not find the code for, or run majority of systems we

evaluated against, and hence resorted to using the results as reported by them.

4.9 Analysis

4.9.1 Error Analysis

In an attempt to find the common source of errors in LC-QuAD 2.0 we find that by

far the largest cause of incorrect answers is the improper grounding of entities and

relations to nodes in the KG. More than 95% of questions where the correct entities

and relations were in the top-6 and top-3 candidates respectively, the right answer was

eventually produced by the KG. Unfortunately, only in 41% of the questions, the correct

entities and relations were found within the top-k candidates. This suggests that greater

10https://github.com/thesemanticwebhero/ElNeuKGQA

https://github.com/thesemanticwebhero/ElNeuKGQA

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 59

focus in the area of entity and relation linking will produce better results. One may

also increase the size of k, at the cost of increased run time.

Less than 1% of the queries generated had incorrect truncated KG embedding length

(e.g.: 11 instead of 10) however these were handled in code appropriately. Less than 1%

of queries generated were improper SPARQL, where a critical keyword was missing

rendering the query syntactically incorrect. This suggests that T5 learns how to generate

valid SPARQL queries to a large extent. This is consistent with the findings of Banerjee,

Nair, Kaur, et al. (2022) where T5 crosses 90% accuracy when provided with grounded

entity and relation IDs with their labels.

To explore the issue of lack of correct entities and relations in candidate lists, we ob-

serve that while 60% of questions contain the correct entity ID in the top-100 label-based

search candidates, by the time we reduce this list to top-6, only 49% questions remain

with the correct entity ID in the candidates list. On the other hand, for relation candidates,

45% of questions contain the correct relation IDs in the top-3 relation candidates.

When looking at the category of questions that return incorrect KG responses,

irrespective of entity and relation grounding, we find that COUNT queries are the most

common. This happens due to a quirk in SPARQL format. If a COUNT query is built

around a family of triples that do not exist in the KG, the KG responds with count =
0, instead of producing a NULL value or an ERROR. This means that the very first query

to be executed on the KG with the correct COUNT SPARQL syntax will return a valid

response, even if it is count = 0 and we no longer explore subsequently ranked queries.
In the case of SimpleQuestions-Wikidata, all errors are either due to incorrect entity

or relation linking. The model produced an accuracy of 70% for entity linking and

94% for relation linking.

Figure 4.2: Cosine and Dot Product based similarities of truncated KG embeddings

4.9.2 Truncated KG embedding Learning

We discover that T5 is able to produce a vector of floats while still in the text-to-text

mode of decoding. For this functionality, no change of loss function or decoding scheme

is made in our experiments. It effectively learns a simplified embedding space, but with

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 60

certain limitations. To further explore this ability of T5, we performed some additional

experiments on the 200 questions dev set of LC-QuAD 2.0 with T5-Small.

In Figure 4.2, we compare how the model learns the embedding space with each

epoch of training. The TransE embeddings have an angular component and a magnitude

component. Since the dot operation was used to train the original embeddings, the

magnitude of each embedding may be greater than 1. It appears in Figure 4.2 that

around step 20 the angular component of the embeddings has been learned by T5 to the

best of its abilities, and it proceeds to learn the magnitude component (denoted by

the orange line) further.

Figure 4.3: Dev Set matches for varying truncated KG embedding lengths

In Figure 4.3 we chart the LC-QuAD 2.0 dev set performance of T5-Small and

T5-Base in varying truncated KG embedding lengths. For T5-Small (pink line) we set

the truncated KG embedding length at 30, so this should only directly be compared

against T5-Base with truncated KG embedding length 30 (green line). In the matches

metric, which only looks at the keywords and labels produced in the skeleton SPARQL

query (truncated KG embeddings have been removed from the generated query), the

two reach similar performance. This suggests that a larger number of parameters helps

learn the embedding space better, but for the textual component the extra number of

parameters of T5-Base remain unused.

With a truncated KG embedding length of 10 (yellow line), we see the best la-

bel match accuracy and hence we persist with this family of models for reporting

results in Table 3.1.

In Figure 4.4, we plot the distribution of the angular difference between the gold and

predicted truncated embeddings on the LC-QuAD 2.0 dev set. The model seems to learn

the embedding space in two distinctly different manners: firstly, for several entities it is

able to print the exact embedding, with an angular difference of 0
◦
. Secondly, for the

entities which it is unable to learn the embedding of exactly, it produces a more familiar

distribution, where the mean shifts every few epochs, reducing the angular difference.

This suggests that the model is learning the embedding space effectively.

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 61

(a) 10 epochs (b) 40 epochs

Figure 4.4: Distribution of angular difference between gold and predicted truncated KG

embeddings on LC-QuAD 2.0 dev set. The mean angular difference can be seen reducing

as the epochs progress, suggesting that the model is learning the embedding space.

F1

3 LS + 3 TS 0.365

3 TS + 3 LS 0.331

3 LS + 0 TS 0.289

0 LS + 3 TS 0.236

6 LS + 0 TS 0.319

0 LS + 6 TS 0.256

Table 4.5: Effects of ordering entity candidates differently. LS = Label sorted, TS = Truncated KG

embedding sorted

4.9.3 Candidate Ordering

As mentioned in Subsection 4.5.6, our results reported in Table 3.1 come from a configu-

ration of our system where the entity candidates are layered in two parts: the first three

candidates are sorted based on label match, while the bottom three candidates are sorted

based on the truncated KG embedding dot product similarity. It is observed in Table

4.5 that the ordering of these two categories affects the eventual accuracy strongly. We

take 200 questions at random from the LC-QuAD 2.0 test set and perform experiments

to ascertain how the ordering of candidates affects accuracy. In the first row of the

table, three entity candidates based on label sorting are followed by three candidates

of truncated KG embedding sorting, while the next row of the table shows the result

when we keep truncated KG embedding-sorted candidates above label-sorted candidates.

The results show that keeping truncated KG embedding-sorted candidates at the top

reduces accuracy, and hence, label-based matching for entities remains a stronger mode

of fetching correct candidates. This is no surprise, since not all labels have multiple

entity candidates requiring disambiguation. Kindly note that the accuracy drops because

an earlier query formed due to candidate combinations (as explained in Subsection 4.5.8)

returns a non-empty result from the KG and this response turns out to be incorrect.

In the next two rows, we see how excluding either label-sorted candidates, or

truncated KG embedding-sorted candidates entirely affects accuracy. Once more we

see that label-sorted candidates still perform better when used in isolation. However,

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 62

the crux of the table is the first row, i.e., when both the categories are appropriately

sequenced and used in tandem, the accuracy is best.

In the bottom two rows, we see the effect of changing the number of candidates.

It is no surprise that increasing k from 3 to 6 increases accuracy since more correct

entities are included in the list. However, some systems also perform worse in such

settings as the noise may increase adding to the disambiguation load. In our system,

this does not seem to be the case.

Increasing the value of k further imposes a large cost on the run time of the system

affecting the user experience adversely. Since the candidate combination step has

exponential complexity, which depends on the number of entities and relations in a

query, we need to keep the number of candidates in check. Too many candidates will

produce too many SPARQL queries and the user must wait for all of them to be executed

on the KG till one of them responds validly.

In our choice of setting k=6 for entities and k=3 for relations, we observe that on the

test set of LC-QuAD 2.0, our system has an average response time of 1.2 seconds per ques-

tion, which from a user experience perspective seems like an acceptable response time.

4.10 Hyperparameters and Hardware

For the evaluation of LC-QuAD 2.0 in Table 3.1, we fine-tune our models for 50 epochs

with a learning rate of 1e-04 with the Adam optimizer (Kingma and Ba, 2015). For

SimpleQuestions in Table 4.4 we fine-tune for 25 epochs, roughly half of LC-QuAD

2.0, since the train set is roughly twice as large as LC-QuAD 2.0. We use a batch size

of 8. During this phase we had access to NVIDIA GeForce RTX 2080 Ti/1080 Ti
graphics cards with approximately 11GB of video memory. We do not fix a seed during

training, and train and infer three times. We report mean and standard deviation for

the three runs in the respective tables.

For the analysis in Section 4.9, we fine-tune our models for 100 epochs with a

learning rate of 1e-05 with the Adam Optimizer (Kingma and Ba, 2015) and we use a

batch size of 20. During this phase we had access to larger GPUs, namely NVIDIA RTX
A6000 with 48GB of memory and RTX A5000 with 24GB memory.

4.11 Conclusion and Future Work

In this work, we presented a novel KGQA pipeline called GETT-QA. We use no external

entity or relation linking tool, and still achieve strong results on LC-QuAD 2.0 and

SimpleQuestions-Wikidata datasets. Additionally, we discover the ability of T5 to learn

KG embeddings. We demonstrate that in certain situations this ability helps in better

question answering performance.

In future work, we will explore the ability of T5 in generating similar truncated KG

embedding based queries with modified loss functions and a customised architecture

towards the penultimate layers of the models, so that embeddings can be generated with

more standard loss functions meant specifically for learning embeddings. Additionally,

suitable identifiers other than embeddings can also be explored, for example, text

description based identifiers.

4. GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question
Answering 63

4.12 Acknowledgements
This research was supported by grants fromNVIDIA and utilized NVIDIA 2 x RTXA5000

24GB. Furthermore, we acknowledge the financial support from the Federal Ministry

for Economic Affairs and Energy of Germany in the project CoyPu (project number

01MK21007[G]) and the German Research Foundation in the project NFDI4DS (project

number 460234259). This research is additonally funded by the “Idea and Venture Fund“

research grant by Universität Hamburg, which is part of the Excellence Strategy of

the Federal and State Governments.

5
The Role of Output Vocabulary in T2T

LMs for SPARQL Semantic Parsing

5.1 Bibliographic Information

Debayan Banerjee, Pranav Ajit Nair, Ricardo Usbeck, and Chris Biemann. 2023. The

Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing. In Findings of

the Association for Computational Linguistics. Toronto, Canada. Pages 12219-12228.

https://doi.org/10.18653/v1/2023.findings-acl.774

5.2 Abstract

In this work, we analyse the role of output vocabulary for text-to-text (T2T) models

on the task of SPARQL semantic parsing. We perform experiments within the the

context of knowledge graph question answering (KGQA), where the task is to convert

questions in natural language to the SPARQL query language. We observe that the

query vocabulary is distinct from human vocabulary. Language Models (LMs) are pre-

dominantly trained for human language tasks, and hence, if the query vocabulary is

replaced with a vocabulary more attuned to the LM tokenizer, the performance of models

may improve. We carry out carefully selected vocabulary substitutions on the queries

and find absolute gains in the range of 17% on the GrailQA dataset.

5.3 Introduction

Knowledge Graph Question Answering (KGQA) is the task of finding answers to

questions posed in natural language, using triples present in a KG. Typically the following

steps are followed in KGQA: 1) Objects of interest in the natural language question are

detected and linked to the KG in a step called entity linking. 2) The relation between

the objects is discovered and linked to the KG in a step called relation linking. 3) A

64

https://doi.org/10.18653/v1/2023.findings-acl.774

5. The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing 65

formal query, usually SPARQL
1
, is formed with the linked entities and relations. The

query is executed on the KG to fetch the answer.

Our focus in this work is the query building phase, henceforth referred to as KGQA

semantic parsing. The motivation of our work stems from Banerjee, Nair, Kaur, et al.

(2022), where minor vocabulary substitutions to handle non-printable special characters

for T5 (Raffel et al., 2020) produced better results on the task of SPARQL semantic

parsing. In this work, we extend the idea and replace the entire SPARQL vocabulary

with alternate vocabularies.

As in Banerjee, Nair, Kaur, et al. (2022), we replace certain special characters in

the SPARQL vocabulary, such as { , } with textual identifiers, as T5 is known to have

problems dealing with these special characters (Banerjee, Nair, Kaur, et al., 2022). We

call this a masked query, and in this work, we test the ability of the models to generate

this masked query, given the natural language question as input.

A sample question, the original SPARQL query, and the corresponding masked query

are as shown below (for the Wikidata KG (Vrandečić and Krötzsch, 2014)) :

Is it true that an Olympic-size swimming pool’s operating temperature is equal to 22.4 ?

ASK WHERE
{

wd:Q2084454 wdt:P5066 ?obj
filter(?obj = 22.4)

}

ASK WHERE
OB

ent0 rel0 ?obj
filter (?obj = 22.4)

CB

In the era of pre-trained Language Models (LMs) (Devlin et al., 2019; Raffel et al.,

2020) it is common practice to fine-tune models on custom downstream datasets. This

requires supervised training which results in modification of weights of the models

using some training algorithm. More recently, the technique of prompting of language

models (Brown et al., 2020; Shin et al., 2020) has been developed, which elicits the desired

response from a LM through a task description and a few input-output examples. Brown

et al. (2020) shows that such a strategy works better for larger models. It has however

been observed that prompt design is brittle in behaviour and displays sensitivity to the

exact phrase (Shin et al., 2020).

A more recent innovation is that of prompt tuning (Lester et al., 2021), where the

task-specific prompt is learnt on a smaller external neural network. The gradients are

computed and flow through the LM, but leave the weights of the LM itself unchanged.

Instead, the weights of the prompt tuning network change and produce a custom and

continuous prompt which produces the desirable response from the LM.

A similar method is prefix tuning (Li and Liang, 2021), which is known to perform

better for generation tasks (F Ma et al., 2022). In this method, the original inputs and

outputs are kept the same, but the input is pre-pended with a continuous prefix learnt

1https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/TR/rdf-sparql-query/

5. The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing 66

in the external network. This prefix allows the model to understand the exact task

to be performed by it.

As primary contribution, in this work, we perform an analysis of how the complexity

of output vocabularies affects the performance on the KGQA semantic parsing task for

prefix and fine-tuned language models. Code and data can be found at

https://github.com/debayan/sparql-vocab-substitution.

5.4 Related Work

A study of low-resource semantic parsing using prompt tuning was performed by

Schucher et al. (2022) on the Top v2 (X Chen et al., 2020) and Overnight (Y Wang et al.,

2015) datasets. Prompt tuning, while not the same as prefix tuning, still keeps the LM

weights frozenwhile the prompts are learnt on an external network. In their experiments,

they perform a single kind of vocabulary substitution but find no noticeable performance

improvements. No specific study is made of the change in performance with vocabularies

of varying complexities, which is a task we undertake. Another difference is that we

perform experiments in the high-resource use case as opposed to low-resource.

Another work which is similar to ours is W Sun et al. (2022), where the authors

experiment with prefix tuning on the task of semantic parsing, and find problems with

non-standard vocabularies of logical forms. In their case, they work with the TOP v2

(X Chen et al., 2020) and PIZZA (Arkoudas et al., 2022) datasets. The keywords in those

datasets consist of words joined by underscores (eg: IN:GET_REMINDER_DATA_TIME

), which poses a problem for the sub-word tokenizer of the transformer based models.

They find that fine tuning a model on these datasets outperforms prefix-tuning by a

large margin. However, when they add the non-standard keywords to the tokenizer

vocabulary and re-train the tokenizer to generate new embeddings for these keywords,

fine tuning and prefix tuning perform at par. Our work is different in a few respects:

firstly, due to the specific research focus of our group, we experiment with a semantic

parsing dataset for KGQA, namely GrailQA (Gu, Kase, et al., 2021). Secondly, instead of

retraining the tokenizer, we perform a simpler procedure of pre-processing the dataset

by replacing the current vocabulary with a new vocabulary. We then train the models

on this modified dataset, and as a post-processing step, substitute back the original

vocabulary in place of the new vocabulary.

5.5 Prefix Tuning

Prefix tuning prepends a set of tunable weights to every key-value pair in the transformer

attention. The transformer attention is represented as follows:

attn(𝑄, 𝐾, 𝑉) = softmax(
𝑄 ⋅ 𝐾⊤

√
𝑑

)𝑉 (5.1)

where the query𝑄, key𝐾 and value 𝑉 are obtained through affine transformations on the

input. 𝑑 represents the model dimension. Prefix tuning modifies the transformer atten-

tion by adding tunable prefixes to 𝐾 and 𝑉 , thereby modifying 𝐾 as 𝐾 ′ = [ℎ𝐾 ; 𝐾] and 𝑉

as 𝑉 ′ = [ℎ𝑉 ; 𝑉]. Here ℎ𝐾 and ℎ𝑉 represent the key prefix and the value prefix respectively.

https://github.com/debayan/sparql-vocab-substitution

5. The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing 67

GrailQA

T5-Small T5-Base

PT FT PT FT TSVS ALFL

char8 74.03 86.57 82.65 86.72 306 263

char4 76.43 87.09 84.92 87.10 159 141

char2 83.29 91.49 89.83 92.30 90 87

char1 84.89 92.13 91.24 92.61 57 57

dictionary 82.57 91.95 90.93 92.48 49 44

original 67.10 74.08 73.06 74.45 124 125

Table 5.1: Exact match percentages for generated masked SPARQL queries. Best performance is

always found in substituted vocabularies. For char settings, accuracy drops as vocabulary and

query lengths increase. TSVS = Tokenizer specific vocabulary size, ALFL = Average logical form

length, PT = Prefix Tuning, FT = Fine Tuning

Following Li and Liang (2021) we model these prefixes using a two layer MLP as fol-

lows:

ℎ𝐾 = 𝑊𝐾,2𝑓 (𝑊𝐾,1𝐸 + 𝑏𝐾,1) + 𝑏𝐾,2

ℎ𝑉 = 𝑊𝑉 ,2𝑓 (𝑊𝑉 ,1𝐸 + 𝑏𝑉 ,1) + 𝑏𝑉 ,2
(5.2)

where 𝑊 ∈ R𝑑×𝑑
and 𝑏 ∈ R𝑑

are trainable weights and biases respectively. 𝐸 ∈ R𝐶×𝑑

is a trainable embedding matrix with 𝐶 as the prefix length.

5.6 Models and Experimental Setup

We carry out prefix-tuning and fine-tuning experiments with two versions of the T5

model: namely T5-Small (60 million parameters) and T5-Base (220 million parameters).

Questions are fed as input during training while masked SPARQL queries, as described

in Section 5.3, are provided as labels for supervision.

For evaluation, we use the exact-match metric. A generated query is matched

token by token, while ignoring white-spaces, to the gold query. The percentage of

queries matched is reported.

5.6.1 Hyper-parameters and Implementation Details

Throughout our experiments, the prefix length is fixed to 50. For prefix tuning experi-

ments we use the Adafactor (Shazeer and Stern, 2018) optimizer with a constant learning

rate of 0.001. Fine-tuning experiments are optimized through AdamW (Loshchilov and

Hutter, 2019) with a square root decay schedule, a maximum learning rate of 0.0015 and a

linear warm-up of 5000 steps. Our code is implementedwithHuggingFace Transformers
2

(Wolf et al., 2020) and OpenPrompt
3
(N Ding et al., 2022). T5-Small experiments were run

on 12GB Nvidia GTX-1080 and RTX-2080 GPUs, and T5-Base experiments were run on

48GBNvidia RTX-A6000. For fine-tuning, we run each training thrice with three separate

seeds for 120 epochs each. For prompt tuning we do the same for 400 epochs. We report

the inference results of these trained models on the test sets of the respective datasets.

2https://github.com/huggingface/transformers
3https://github.com/thunlp/OpenPrompt

https://github.com/huggingface/transformers
https://github.com/thunlp/OpenPrompt

5. The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing 68

5.7 Vocabulary

The original vocabulary of the GrailQA dataset consists of 48 words. The T5 tokenizer

splits these words into 124 sub-words. This tokenizer specific vocabulary size (TSVS) is

seen in the last column of Table 5.1. In the next column, the original average logical

form (SPARQL query) length can be seen as 125 tokenized sub-words.

We wish to see how a new output vocabulary affects performance, and as a result,

we construct a set of special vocabularies and substitute them in-place of the original

SPARQL vocabulary. With reference to the settings in Table 5.1, each vocabulary

is as described below:

original The masked SPARQL queries remain as they are. No replacement of the

original SPARQL keywords is made with an alternate vocabulary.

dictionary The SPARQL keywords are replaced with a vocabulary of English words.

For example, SELECT may be replaced with DOG, [may be replaced with CAT etc.

During the pre-training phase a LM is likely to have seen such words far more frequently

than the SPARQL keywords. This mode tests how the model behaves when the output

vocabulary is comprised of well known English words.

char1 The SPARQL keywords are replaced with a single character of the English

alphabet, for example, SELECT is replaced with A, WHERE is replaced with B. Addi-

tionally, numerical digits from 1-9 are used, and if the size of vocabulary demands more,

we add single length special characters, such as * and $.

char2, char4 and char8 settings apply vocabulary substitution of 2, 4 and 8 character

lengths chosen randomly, constituted from the characters A-Z and digits 0-9. For

example, a typical char8 substitution would be SELECT replaced by ATYZGFSD. This

setting is designed to test the behaviour of the models when asked to produce more

number of tokens per original-vocabulary word. A sample of a question, the SPARQL

and the corresponding substitutions is provided in the Appendix in Table 5.2.

5.8 Datasets

For our experiments, we require a dataset which contains a mapping of natural language

questions to their corresponding logical forms and is large in size, since we test the

high resource use-case.

GrailQA 4
is based on the Freebase knowledge graph (Bollacker et al., 2008) and

consists of 64,331 questions designed to test three levels of generalisation, ie, i.i.d,

compositional and zero-shot. For our purposes, we split the train set itself to three

parts, since we are not interested in testing compositional generalisation aspects of

the test set of this dataset. We are left with the following configuration: test: 8868,

dev: 4434, train: 31035.

5.9 Analysis

As seen in Table 5.1, the best performance for prefix and fine tuning is achieved for

substituted vocabularies. The original vocabulary lags behind in general, which points

to the finding, that the choice of an appropriate vocabulary improves performance

4https://dki-lab.github.io/GrailQA/

https://dki-lab.github.io/GrailQA/

5. The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing 69

(a)

Figure 5.1: Prefix tuning accuracy drops as vocabulary and query lengths increase for char
settings. TSVS = Tokenizer specific vocabulary size, ALFL = Average logical form length

(a)

Figure 5.2: Fine-tuning accuracy drop is more gradual when compared to prefix tuning, and the

performance of T5-Small and T5-Base are similar. TSVS = Tokenizer specific vocabulary size,

ALFL = Average logical form length

for semantic parsing. Further, among the substituted vocabularies, the setting char8
performs the worst, which signifies the adverse role of the extra decoding load of this

vocabulary on the performance of the model.

This finding is different from that of Schucher et al. (2022), who find their in-vocab
setting performing no better overall. They attribute it to the substitutions possibly

masking the meanings of the intents, for their given dataset. On the contrary, we

find significant gains for GrailQA. It must be noted however, that we perform high-

resource prefix tuning while they perform low-resource prompt tuning, and hence

results may differ.

As seen in Figure 5.1, for the char settings, as the size of vocabulary increases, the

prefix tuning accuracy drops. In the said figure, we define vocabulary compression

ratio as the size of the new vocabulary divided by the size of the original vocabulary.

Apart from vocabulary size, the query length also matters. We dual-define vocabulary

compression ratio as the size of query length after substitution of new vocabulary

divided by size of original query length, and plot on the same graph.

When compared to the fine-tuning plot (Figure 5.2), prefix tuning has a steeper drop

in accuracy, and the performance for T5-Small and T5-Base vary more significantly. It

leads to the finding that fine-tuning is less sensitive to vocabulary changes, and the

difference in model sizes between T5-Small and T5-Base also seems to matter less.

5. The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing 70

In Figures 5.1 and 5.2, it can be seen that the original setting for the masked

SPARQL vocabularies produce accuracies which are below the char family vocabulary

curves. It suggests that vocabulary compression ratio alone is not a deciding factor

in accuracy. If the vocabulary family changes from SPARQL to characters, there is an

initial shift in accuracy, and after that the complexity of the character vocabulary

further affects the accuracy.

In Table 5.1, the dictionary setting performs slightly worse than the char1 setting,
although it has lower TSVS and ALFL. This suggests that the vocabulary size and query

length are not the only factors that affect the eventual accuracy. Perhaps the frequency

of the tokens seen by the model during the pre-training task plays a role. It is likely that

the model has encountered, during pre-training, single characters a far larger number

of times than the words used in dictionary vocabulary.

5.10 Error Analysis

We performed an error analysis on a sample of 100 randomly selected questions which

produced an incorrect output. In the original setting, roughly 50% errors were due to

the presence of non-printable characters in the query (eg: ^). We found that in the

initial masked query, while we had replaced some non-printable characters in the pre-

processing stage (eg: {, }), we had not managed to replace the full set of non-printable

characters. The original T5 paper mentions curly braces as one of the class of tokens

that are not present in the pre-training corpus, however, a comprehensive list of the

tokens that do not work with T5, or work with limited efficiency, is not available. In

this scenario, it seems that a better approach is to replace the entire vocabulary with

one that is entirely known to T5, for example, English words. When comparing errors

made by original, that were fixed by dictionary and char1, we observed that roughly

30% of the cases were of variable placement, where the variable placeholders like ent0,
rel0 were found to be in the wrong order in the output query in the original setting.
Rest of the corrections belonged to the category of syntax errors. This points to the

finding that alternate vocabularies improve the ability of T5 to correctly produce logical

forms from a semantic perspective.

To analyse the effect of increasing complexity of vocabulary, we compare 100

randomly selected errors made by char8 with char2. In both these settings, no character

is non-printable, and the only errors are either syntax errors, variable placement errors,

structural errors or intent errors. Out of the 100 questions, 90 were found to be correct

in char2 setting. In the remaining 90 in the char8 setting, the highest proportion of

errors belonged to syntax (where the query is malformed). The next most prominent

class of errors belonged to variable placement, followed by structural errors (eg: two

triples instead of three). The major takeaway from this analysis is that for char2 there
were no syntax errors, while in char8 there are a significant number of such errors.

5.11 Conclusion

In this work we carried out experiments with new output vocabularies, where we

carefully substituted the original members of the vocabulary with the new ones. We

found that when the original SPARQL vocabulary is replaced with words from an

5. The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing 71

alternate vocabulary closer to the T5 tokenizer vocabulary, the model consistently

perform better.

As a contribution, we believe that our findings will enable researchers in the field of

semantic parsing to deploy smaller models with a modified vocabulary and still find

satisfactory performance. This would, in the longer term, lead to energy savings.

As future work, we would like to explore the behaviour of the same models in more

depth using attention maps. Moreover, the significant shift in initial performance on

changing vocabulary from original to char and dictionary demands further investigation.

Similarly, the relatively lower performance of the dictionary setting when compared to

char1 setting, in spite of having lower tokenized vocabulary size (TSVS) needs to be

investigated further. Perhaps sub-words which are seen more frequently during pre-

training task of the LM perform better when substituted into the semantic parsing

output vocabulary.

5.12 Limitations
We found that prefix tuning takes much longer to converge when compared to fine

tuning, and for T5-Base, it takes around 10 days on a 48 GB GPU to complete tuning for a

single setting in Table 5.1. Due to limitation of resources and with an aim to save energy,

we did not conduct experiments with larger models such as T5-Large, T5-XL etc. We also

did not perform experiments with smaller splits of the same datasets, which could have

given further insights on how model performance varies when training data size is less.

5.13 Samples

GrailQA
Question Military airfield is the type for what airport ?

SPARQL

SELECT DISTINCT ?x0 WHERE {
?x0 :type.object.type :aviation.airport .
VALUES ?x1 { :m.0199qf }
?x0 :aviation.airport.airport_type ?x1 .
FILTER (?x0 != ?x1)

}

Masked

Query

(original
setting)

SELECT DISTINCT ?x0 WHERE OB
?x0 :type.object.type rel0 .
VALUES ?x1 OB ent0 CB
?x0 rel1 ?x1 .
FILTER (?x0 != ?x1)

CB

5. The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing 72

dictionary

banana compound boy nation rain
boy catastrophe elementary flower
teeth today rain jacket case
boy fog today flower
duck folk boy chart today concede

case

char1

- 1 A Y $
A : O %
L J $ G S
A | J %
0 M A + J X

S

char2

UY SJ 0X 6L VZ
0X 5G JO SE
5Z QB VZ QJ 8O
0X FT QB SE
RU 2K 0X WY QB I5

8O

char4

53IY 3UQZ JKMQ CEK2 5DZV
JKMQ KRDN 1G8E ZC5C
5ILL 3JBD 5DZV X5XB YMG5
JKMQ ZVGC 3JBD ZC5C
87O2 DE3Z JKMQ TU76 3JBD 049K

YMG5

char8

WDEUTG57 L741BHJP ORWDXYPH 6L05N8AS ZLZXSARH
ORWDXYPH K4GR9TPQ 797G3PGO V13Y1EFE
PQMAIPQ4 MLN1V72G ZLZXSARH KPHC8I2N WG0XRTYG
ORWDXYPH ZF82YUH8 MLN1V72G V13Y1EFE
41O2LA2M F1SANW03 ORWDXYPH 4R26K1BW MLN1V72G TD9BSKSN

WG0XRTYG

Table 5.2: An example of a question from GrailQA, with the corresponding SPARQL query, and

how they look once new vocabularies are substituted.

6
DBLP-QuAD: A Question Answering

Dataset over the DBLP Scholarly

Knowledge Graph

6.1 Bibliographic Information

Debayan Banerjee, Sushil Awale, Ricardo Usbeck and Chris Biemann. 2023. DBLP-

QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph. In

Proceedings of the 13th International Workshop on Bibliometric-enhanced Information

Retrieval. Dublin, Ireland. Pages 37-51.

https://doi.org/10.48550/arXiv.2303.13351

6.2 Abstract

In this work we create a question answering dataset over the DBLP scholarly knowledge

graph (KG). DBLP is an on-line reference for bibliographic information on major

computer science publications that indexes over 4.4 million publications published by

more than 2.2 million authors. Our dataset consists of 10,000 question answer pairs with

the corresponding SPARQL queries which can be executed over the DBLP KG to fetch

the correct answer. DBLP-QuAD is the largest scholarly question answering dataset.

6.3 Introduction

Over the past decade, knowledge graphs (KG) such as Freebase (Bollacker et al., 2008),

DBpedia (Lehmann, Isele, et al., 2015), and Wikidata (Vrandečić and Krötzsch, 2014)

have emerged as important repositories of general information. They store facts about

the world in the linked data architecture, commonly in the format of <subject predicate

object> triples. These triples can also be visualised as node-edge-node molecules

of a graph structure. Much interest has been generated in finding ways to retrieve

73

https://doi.org/10.48550/arXiv.2303.13351

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph74

information from these KGs. Question Answering over Knowledge Graphs (KGQA)

is one of the techniques used to achieve this goal. In KGQA, the focus is generally

on translating a natural language question to a formal logical form. This task has, in

the past, been achieved by rule-based systems (Dubey, Dasgupta, et al., 2016). More

recently, neural network and machine learning based methods have gained popularity

(Chakraborty et al., 2019).

A scholarly KG is a specific class of KGs that contains bibliographic information.

Some well known scholarly KGs are the Microsoft Academic Graph
1
, OpenAlex

2
, ORKG

3

and DBLP
4
. DBLP caters specifically to the bibliography of computer science, and as

a result, it is smaller in size than other scholarly KGs. We decided to build our KGQA

dataset over DBLP due to its focused domain and manageable size so that we could

concentrate on adding complexity to the composition of the KGQA dataset itself.

Datasets are important, especially for ML-based systems, because such systems often

have to be trained on a sample of data before they can be used on a similar test set. To

this end, several KGQA datasets exist (Perevalov et al., 2022). However, not all datasets

contain a mapping of natural language questions to the logical form (e.g. SPARQL,

𝜆-calculus, S-expression). Some simply contain the question and the eventual answer.

Such datasets can not be used to train models in the task of semantic parsing.

In this work, we present a KGQA dataset called DBLP-QuAD, which consists of

10,000 questions with corresponding SPARQL queries. The question formation process

begins with human-written templates, and later, we machine-generate more questions

from these templates. DBLP-QuAD consists of a variety of simple and complex questions

and also tests the compositional generalisation of the models. DBLP-QuAD is the largest

scholarly KGQA dataset being made available to the public
5
.

6.4 Related Work

ORKG-QA benchmark (Jaradeh et al., 2020) is the first scholarly KGQA dataset grounded

to ORKG. The dataset was prepared using the ORKG API and focuses on the content of

academic publications structured in comparison tables. The dataset is relatively small in

size with only 100 question-answer pairs covering only 100 research publications.

Several other QA datasets exist, both for IR-based QA (Rajpurkar et al., 2018;

Kwiatkowski et al., 2019) and KGQA (Trivedi et al., 2017; Sen et al., 2022) approaches.

Several different approaches have been deployed to generate the KGQA datasets. These

approaches range from manual to machine generation. However, most datasets lie in

between and use a combination of manual and automated process.

A clear separation can be created between datasets that contain logical forms and

those that do not. Datasets that do not require logical forms can be crowd-sourced

and such datasets are generally large in size. Crowd sourcing is generally not possible

for annotating logical forms because this task requires high domain expertise and it is

not easy to find such experts on crowd sourcing platforms. We focus on datasets

that contain logical forms.

1https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
2http://openalex.org/
3https://orkg.org/
4https://dblp.org/
5https://doi.org/10.5281/zenodo.7643971

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
http://openalex.org/
https://orkg.org/
https://dblp.org/
https://doi.org/10.5281/zenodo.7643971

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph75

Free917 and QALD (Cai and Yates, 2013; Usbeck et al., 2017) datasets were cre-

ated manually by domain experts, however, their sizes are relatively small (917 and

806 respectively).

WebQuestionsSP and ComplexWebQuestions (Yih, M Richardson, et al., 2016; Talmor

and Berant, 2018) are developed using exisiting datasets. WebQuestionsSP is a semantic

parsing dataset developed by using questions from WebQuestions (Berant, Chou, et al.,

2013b). Yih, M Richardson, et al. (2016) developed a dialogue-like user interface which

allowed five expert human annotators to annotate the data in stages.

ComplexWebQuestions is a collection of 34,689 complex question paired with

answers and SPARQL queries grounded to Freebase KG. The dataset builds on WebQues-

tionsSP by sampling question-query pairs from the dataset and automatically generating

questions and complex SPARQL queries with composition, conjunctions, superlatives,

and comparatives functions. The machine generated questions are manually annotated

to natural questions and validated by 200 AMT crowd workers.

The OVERNIGHT (ON) approach is a semantic parsing dataset generation framework

introduced by Y Wang et al. (2015). In this approach, the question-logical form pairs

are collected with a three step process. In the first step, the logical forms are generated

from a KG. Secondly, the logical forms are converted automatically into canonical

questions. These canonical questions are grammatically incorrect but successfully carry

the semantic meaning. Lastly, the canonical questions are converted into natural forms

via crowdsourcing. Following are some of the datasets developed using this approach.

GraphQuestions (Su et al., 2016) consists of 5,166 natural questions accompanied

by two paraphrases of the original question, an answer, and a valid SPARQL query

grounded against the Freebase KG. GraphQuestions uses a semi-automated three-step

algorithm to generate the natural questions for the KG.

LC-QuAD 1.0 (Trivedi et al., 2017) is another semantic parsing dataset for the

DBpedia KG. LC-QuAD 1.0 is relatively larger in size with 5,000 natural language

English questions and corresponding SPARQL queries. The generation process starts

with the set of manually created SPARQL query templates, a list of seed entities, and a

whitelist of predicates. Using the list of seed entities, two-hop subgraphs from DBpedia

are extracted. The SPARQL query templates consist of placeholders for both entities

and predicates which are instantiated using triples from the subgraph. These SPARQL

queries are then used to instantiate natural question templates which form the base

for manual paraphrasing by humans.

LC-QuAD 2.0 (Dubey, Banerjee, Abdelkawi, et al., 2019) is the second iteration of

LC-QuAD 1.0 with 30,000 questions, their paraphrases and their corresponding SPARQL

queries compatible with bothWikidata and DBpedia KGs. Similar to LC-QuAD 1.0, in LC-

QuAD 2.0 a sub-graph is generated using seed entities and a SPARQL query template is

selected based on whitelist predicates. Then, the query template is instantiated using the

sub-graph. Next, a template question is generated from the SPARQL query which is then

verbalised and paraphrased by AMT crowd workers. LC-QuAD 2.0 has more questions

and more variation compared to LC-QuAD 1.0 with paraphrases to the natural questions.

GrailQA (Gu, Kase, et al., 2021) extends the approach in Su et al. (2016) to generate

64,331 question-S-expression pairs grounded to the Freebase Commons KG. Here, S-

expression are linearized forms of graph queries. Query templates extracted from graph

queries generated from the KG are used to generate canonical logical forms grounded to

compatible entities. The canonical logic forms are then validated by a graduate student

if they represent plausible user query or not. Next, another graduate student annotated

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph76

the validated canonical logic form with a canonical question. Finally, 6,685 Amazon

Mechanical Turk workers write five natural paraphrases for each canonical question

which are further validated by multiple independent crowd workers.

KQA Pro (Cao et al., 2022) is a large collection of 117,000 complex questions paired

with SPARQL queries for theWikidata KG. KQAPro dataset also follows theOVERNIGHT

approach where firstly facts from the KG are extracted. Next, canonical questions are

generated with corresponding SPARQL queries, ten answer choices and a golden answer.

The canonical questions are then converted into natural language with paraphrases

using crowd sourcing.

CFQ (Keysers et al., 2020) (Compositional Freebase Questions) is a semantic parsing

dataset developed completely using synthetic generation approaches that consists of

simple natural language questions with corresponding SPARQL query against the

Freebase KG. CFQ contains 239,357 English questions which are generated using hand-

crafted grammar and inference rules with a corresponding logical form. Next, resolution

rules are used to map the logical forms to SPARQL queries. The CFQ dataset was

specifically designed to measure compositional generalization.

In this work, we loosely follow the OVERNIGHT approach to create a large scholarly

KGQA dataset for the DBLP KG.

6.5 DBLP KG

Figure 6.1: Example of entries in the DBLP KG with its schema

DBLP, which used to stand for Data Bases and Logic Programming
6
, was created

in 1993 by Michael Ley at the University of Trier, Germany (Ley, 2002). The service

was originally designed as a bibliographic database for research papers and proceedings

from the fields of database systems and logic programming. Over time, the service

has grown in size and scope, and today includes bibliographic information on a wide

range of topics within the field of computer science. The DBLP RDF data models a

person-publication graph shown in Figure 6.1.

The DBLP KG contains two main entities: Person and Publication, where as other
metadata such as journal and conferences, affiliation of authors are currently only

string literals. Henceforth, we use the term person and creator interchangeably. At
6https://en.wikipedia.org/wiki/DBLP

https://en.wikipedia.org/wiki/DBLP

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph77

the time of its release, the RDF dump consisted of 2,941,316 person entities, 6,010,605

publication entities, and 252,573,199 RDF triples. DBLP currently does not provide a

SPARQL endpoint but the RDF dump can be downloaded and a local SPARQL endpoint

such as Virtuoso Server can be setup to run a SPARQL query against the DBLP KG.

The live RDF data model on the DBLP website follows the schema shown in Figure

6.1. However, the RDF snapshots available for download have the coCreatorWith and

authorOf predicates missing. Although these predicates are missing, the authoredBy
predicate can be used to derive the missing relations. DBLP-QuAD is based on the

DBLP KG schema of the downloadable RDF graph.

6.6 Dataset Generation Framework

Figure 6.2: Motivating Example. The generation process starts with (1) selection of a template

tuple followed by (2) subgraph generation. Then, literals in subgraph are (3) augmented before

being used to (4) instantiate the selected template tuple. The generated data is (5) filtered based

on if they produce answers or not.

In this work, the aim is to generate a large variety of scholarly questions and

corresponding SPARQL query pairs for the DBLP KG. Initially, a small set of templates

𝑇 containing a SPARQL query template 𝑠𝑡 and a few semantically equivalent natural

language question templates 𝑄𝑡 are created. The questions and query templates are

created such that they cover a wide range of scholarly metadata user information need

while also being answerable using a SPARQL query against the DBLP KG. Next, we

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph78

synthetically generate a large set of question-query pairs (𝑞𝑖, 𝑠𝑖) suitable for training

a neural network semantic parser.

The core methodology of the dataset generation framework encompasses instan-

tiating the templates using literals of subgraphs sampled from the KG. Moreover, to

capture different representations of the literal values from a human perspective, we

randomly mix in different augmentations of these textual representations. The dataset

generation workflow is shown in Figure 6.2.

6.6.1 Templates

The first step in the dataset generation process starts with the creation of a template

set. After carefully analyzing the ontology of the DBLP KG, we manually wrote 98

pairs of valid SPARQL query templates and a set of semantically equivalent natural

language question templates. The template set was written by one author and verified for

correctness by another author. The query and question templates consist of placeholder

markers instead of URIs, entity surface forms or literals. For example, in Figure 6.2

(Section 1), the SPARQL query template includes the placeholders ?𝑐1 and [𝑉 𝐸𝑁𝑈𝐸]

for DBLP person URI and venue literal respectively. Similarly, the question templates

include placeholders [𝐶𝑅𝐸𝐴𝑇𝑂𝑅_𝑁𝐴𝑀𝐸] and [𝑉 𝐸𝑁𝑈𝐸] for creator name and venue

literal respectively. The template set covers the two entities creator and publication,

and additionally the foreign entity bibtex type. Additionally, they also cover the 11

different predicates of DBLP KG.

The template set consists of template tuples. A template tuple 𝑡 = (𝑠𝑡 , 𝑄𝑡 , 𝐸𝑡 , 𝑃𝑡)

is composed of a SPARQL query template 𝑠𝑡 , a set of semantically equivalent natural

language question templates 𝑄𝑡 , a set of entity placeholders 𝐸𝑡 and a set of predicates 𝑃𝑡

used in 𝑠𝑡 . We also add a boolean indicatingwhether the query template is temporal or not

and another boolean indicating whether to use or not use the template while generating

𝑡𝑟𝑎𝑖𝑛 dataset. Each template tuple contains between four and seven paraphrased question

templates offering wide linguistic diversity. While most of the question templates use

the "Wh-" question keyword, we also include instruction-style paraphrases.

We group the template tuples as creator-focused or publication-focused 𝜖 and further

group them by query types 𝛿. We have 10 different query types and they include Single

Fact, Multiple Facts, Boolean, Negation, Double Negation, Double Intent, Union, Count,

Superlative/Comparative, and Disambiguation. The question types are discussed in

Section 6.6.6 with examples. The distribution of templates per entity and query type

is shown in Table 6.1. During dataset generation, for each data instance we sample

a template tuple from the template set using stratified sampling maintaining equal

distribution of entity types and query types.

6.6.2 Subgraph generation

The second part of the dataset generation framework is subgraph generation. Given

a graph 𝐺 = (𝑉 , 𝐸) where 𝑉 are the vertices, and 𝐸 are edges, we draw a subgraph

𝑔 = (𝑣, 𝑒) where 𝑣 ⊂ 𝑉 , 𝑒 ⊂ 𝐸. For the DBLP KG, 𝑉 are the creator and publication entity

URIs or literals, and the 𝐸 are the predicates of the entities.

The subgraph generation process starts with random sampling of a publication entity

𝑣𝑖 from the DBLP KG. We only draw from the set of publication entities as the RDF

snapshot available for download has 𝑎𝑢𝑡ℎ𝑜𝑟𝑂𝑓 and 𝑐𝑜𝐶𝑟𝑒𝑎𝑡𝑜𝑟𝑊 𝑖𝑡ℎ predicates missing

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph79

Query Type Creator-focused Publication-focused Total

Single Fact 5 5 10

Multiple Facts 7 7 14

Boolean 6 6 12

Negation 4 4 8

Double Negation 4 4 8

Double Intent 5 4 9

Union 4 4 8

Count 6 5 11

Superlative/Comparative 6 6 12

Disambiguation 3 3 6

Total 50 48 98

Table 6.1: Total number of template tuples per query type grouped by entity type

for creator entity. As such, a subgraph centered on a creator entity would not have

end vertices that can be expanded further. With the sampled publication entity 𝑣𝑖, we

iterate through all the predicates 𝑒 to extract creator entities 𝑣′ as well as the literal

values. We further, expand the creator entities and extract their literal values to form

a two-hop subgraph 𝑔 = (𝑣, 𝑒) as shown in Figure 6.2 (Section 2).

6.6.3 Template Instantiation

Using the generated subgraph and the sampled template tuple, the template tuple

is instantiated with entity URIs and literal values from the subgraph. In the instan-

tiation process, a placeholder marker in a string is replaced by the corresponding

text representation.

For the SPARQL query template 𝑠𝑡 , we instantiate the creator/publication placeholder

markers with DBLP creator/publication entity URIs or literal values for affiliation and

conference or journals to create a valid SPARQL query 𝑠 that returns answers when

run against the DBLP KG SPARQL endpoint.

In case of natural language question templates, we randomly sample two from the

set of question templates 𝑞1𝑡 , 𝑞
2
𝑡 ∈ 𝑄𝑇 , and instantiate each using only the literal values

from the subgraph to form one main natural language question 𝑞1 and one natural

language question paraphrase 𝑞2. In natural language, humans can write the literal

strings in various forms. Hence to introduce this linguistic variation, we randomly

mix in alternate string representations of these literal values in both natural language

questions. The data augmentation process allows us to add heuristically manipulated

alternate literal representations to the natural questions. A example of an instantiated

template is shown in Figure 6.2 (Section 3).

6.6.4 Data Augmentation

For the template instantiation process, we perform simple string manipulations to

generate alternate literal representations. Then, we randomly select between the original

literal representation and the alternate representation to instantiate the natural language

questions. For each literal type, we apply different string manipulation techniques

which we describe below.

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph80

Names: For names we generate four different alternatives involving switching

parts of names or keeping only initials of the names. Consider the name John William
Smith for which we produce Smith, John William, J. William Smith, John W. Smith,
and Smith, J. William.

Venues: Venues can be represented using either its short form or its full form. For

example, ECIR or European Conference on Information Retrieval. In DBLP venues are

stored in its short form. We use a selected list of conference and journals
7
containing

the short form and its equivalent full form to get the full venue names.

Duration: About 20% of the templates contain temporal queries, and some of them

require dummy numbers to represent duration. For example, the question "In the last
five years, which papers did Mante S. Nieuwland publish?" uses the dummy value five. We

randomly select between the numerical representation and the textual representation

for the dummy duration value.

Affiliation: In natural language questions, only the institution name is widely used

to refer to the affiliation of an author. However, the DBLP KG uses the full address

of an institution including city and country name. Hence, using RegeEx we extract

the institution names and randomly select between the institution name and the full

institution address in the instantiation process.

Keywords: For disambiguation queries, we do not use the full title of a publication

but rather a part of it by extracting keywords. For this purpose, we use SpaCy’s Matcher

API
8
to extract noun phrases from the title.

6.6.5 Dataset Generation

For each data instance 𝑑𝑖, we sample 2 subgraphs (SampleSubgraph(G,2)) and instantiate

a template tuple 𝑡𝑖 (Instantiate(𝑡𝑖, 𝑔1, 𝑔2, x)). We sample 2 subgraphs as some template

tuples require to be instantiated with two publication titles. Each data instance 𝑑𝑖 =

(𝑠𝑖, 𝑞
1
𝑖 , 𝑞

2
𝑖 , 𝐸𝑖, 𝑃𝑖, 𝑦, 𝑧) comprises of a valid SPARQL query 𝑠𝑖, one main natural language

question 𝑞1𝑖 , one semantically equivalent paraphrase of the main question 𝑞2𝑖 , a list of

entities 𝐸𝑖 used in 𝑠𝑖, a list of predicates 𝑃𝑖 used in 𝑠𝑖, a Boolean indicating whether

the SPARQL query is temporal or not 𝑦, and another Boolean informing whether the

SPARQL query is found only in 𝑣𝑎𝑙𝑖𝑑 and 𝑡𝑒𝑠𝑡 sets 𝑧. We generate an equal number 𝑛 of

questions for each entity group 𝜖 equally divided for each query type 𝛿.

To foster a focus on generalization ability, we manually marked 20 template tuples to

withhold during generation of the 𝑡𝑟𝑎𝑖𝑛 set. However, we use all the template tuples in

the generation of 𝑣𝑎𝑙𝑖𝑑 and 𝑡𝑒𝑠𝑡 sets. Furthermore, we also withhold 2 question templates

when generating 𝑡𝑟𝑎𝑖𝑛 questions but use all question templates when generating 𝑣𝑎𝑙𝑖𝑑

and 𝑡𝑒𝑠𝑡 sets. This controlled generation process allows us to withhold some entity

classes, predicates and paraphrases from 𝑡𝑟𝑎𝑖𝑛 set. Our aim with this control is to create

a scholarly KGQA dataset that facilitates development of KGQA models that adhere to

i.i.d, compositional, and zero-shot (Gu, Kase, et al., 2021) generalization.
Further, we validate each data instance 𝑑𝑖 by running the SPARQL query 𝑠𝑖 against

the DBLP KG via a Virtuoso SPARQL endpoint
9
. We filter out data instances for which

the SPARQL query is invalid or generates a blank response. A SPARQL query may

7http://portal.core.edu.au/conf-ranks/?search=&by=all&source=CORE2021&sort=
atitle&page=1

8https://spacy.io/api/matcher/
9https://docs.openlinksw.com/virtuoso/whatisvirtuoso/

http://portal.core.edu.au/conf-ranks/?search=&by=all&source=CORE2021&sort=atitle&page=1
http://portal.core.edu.au/conf-ranks/?search=&by=all&source=CORE2021&sort=atitle&page=1
https://spacy.io/api/matcher/
https://docs.openlinksw.com/virtuoso/whatisvirtuoso/

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph81

Algorithm 1: Dataset Generation Process

GenerateDataset (𝑇 , 𝑥, 𝑁 , 𝐺)

inputs : template set 𝑇 ; dataset set to generate 𝑥; size of dataset to generate

𝑁 ; KG to sample subgraphs from 𝐺;

output :dataset 𝐷;
𝐷 ← ∅;

𝑛 ← (𝑁/|𝜖|)/|𝛿|;

foreach 𝑒 ∈ 𝜖 do
foreach 𝑠 ∈ 𝛿 do

𝑖 ← 0;

𝑇𝑒𝑠 ← 𝑇[𝑒][𝑠];

if 𝑥 == 𝑡𝑟𝑎𝑖𝑛 then
𝑇𝑒𝑠 ← 𝐹𝑖𝑙𝑡𝑒𝑟(𝑇𝑒𝑠, 𝑡𝑒𝑠𝑡_𝑜𝑛𝑙𝑦 == 𝑇 𝑟𝑢𝑒)

while 𝑖 < 𝑛 do
𝑔1, 𝑔2 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝐺, 2);

𝑡𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚.𝑠𝑎𝑚𝑝𝑙𝑒(𝑇𝑒𝑠);

𝑑𝑖 ← 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒(𝑡𝑖, 𝑔1, 𝑔2, 𝑥);

𝑎𝑛𝑠𝑤𝑒𝑟 ← 𝑄𝑢𝑒𝑟𝑦(𝑑𝑖);

if 𝑎𝑛𝑠𝑤𝑒𝑟 then
𝐷 ← 𝑑𝑖;

𝑖 ← 𝑖 + 1;

return D

generate a blank response if the generated subgraphs have missing literal values.

In the DBLP KG, some of the entities have missing literals for predicates such as

primaryAffiliation, orcid, wikidata, and so on. Additionally, we also store the an-

swers produced by the SPARQL query against the DBLP KG formatted according to

https://www.w3.org/TR/sparql11-results-json/. The dataset generation process

is summarized in Algorithm 1.

6.6.6 Types of Questions

The dataset is composed of the following question types. The examples shown here

are hand-picked from the dataset.

• Single fact: These questions can be answered using a single fact. For example,

“What year was ‘SIRA: SNR-Aware Intra-Frame Rate Adaptation’ published?”

• Multiple facts: These questions require connecting two or more facts to answer.

For example, “In SIGCSE, which paper written by Darina Dicheva with Dichev,

Christo was published?”

• Boolean: These questions answer where a given fact is true or false. We can

also add negation keywords to negate the questions. For example, “Does Szeider,

Stefan have an ORCID?”

https://www.w3.org/TR/sparql11-results-json/

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph82

• Negation: These questions require to negate the answer to the Boolean questions.

For example, “Did M. Hachani not publish in ICCP?”

• Double negation: These questions require to negate the Boolean question answers
twice which results. For example, “Wasn’t the paper ‘Multi-Task Feature Selection

on Multiple Networks via Maximum Flows’ not published in 2014?”

• Count: These questions pertain to the count of occurrence of facts. For example,

“Count the authors of ‘Optimal Symmetry Breaking for Graph Problems’ who

have Carnegie Mellon University as their primary affiliation.”

• Superlative/Comparative: Superlative questions ask about the maximum and

minimum for a subject and comparative questions compare values between two

subjects. We group both types under one group. For example, “Who has published

the most papers among the authors of ‘k-Pareto optimality for many-objective

genetic optimization’?”

• Union questions cover a single intent but for multiple subjects at the same time.

For example, “List all the papers that Pitas, Konstantinos published in ICML and

ISCAS.”

• Double intent questions poses two user intentions, usually about the same subject.

For example, “In which venue was the paper ‘Interactive Knowledge Distillation

for image classification’ published and when?”

• Disambiguation questions requires identifying the correct subject in the question.

For example, “Which author with the name Li published the paper about Buck

power converters?”

6.7 Dataset Statistics

DBLP-QuAD consists of 10,000 unique question-query pairs grouped into train, valid and
test sets with a ratio of 7:1:2. The dataset covers 13,348 creators and publications, and 11

predicates of the DBLP KG. For each query type in Table 6.1, the dataset includes

1,000 question-query pairs each of which is equally divided as creator-focused or

publication-focused. Additionally, among the questions in DBLP-QuAD, 2,350 are

temporal questions.

Linguistic Diversity. In DBLP-QuAD, a natural language question has an average

word length of 17.32 words and an average character length of 114.1 characters. Similarly,

a SPARQL query has an average vocab length of 12.65 and an average character length

of 249.48 characters. Between the natural language question paraphrases, the average

Jaccard similarity for unigram and bigram are 0.62 and 0.47 (with standard deviations

of 0.22 and 0.24) respectively. The average Levenshtein edit distance between them

is 32.99 (with standard deviation of 23.12). We believe the metrics signify a decent

level of linguistic diversity.

Entity Linking. DBLP-QuAD also presents challenging entity linking with data

augmentation performed on literals during the generation process. The augmented

literals present more realistic and natural representation of the entity surface forms

and literals compared to the entries in the KG.

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph83

Generalization. In the valid set 18.9% and in the test set 19.3% of instances were

generated using the withheld templates. Hence, these SPARQL query templates and

natural language question templates are unique to the valid and test sets. Table 6.2
shows the percent of questions with different levels of generalization in the valid
and test sets of the dataset.

Dataset I.I.D Compositional Zero-shot

Valid 82.8% 13.6% 3.6%

Test 81.2% 15.1% 3.8%

Table 6.2: Percent of questions with different levels of generalization in the valid and test sets of
DBLP-QuAD

6.8 Semantic Parsing Baseline
To lay the foundation for future work on DBLP-QuAD, we also release baselines using

the recent work by Banerjee, Nair, Kaur, et al. (2022), where a pre-trained T5 model

is fine-tuned (Raffel et al., 2020) on the LC-QuAD 2.0 dataset.

Following Banerjee, Nair, Kaur, et al. (2022), we assume the entities and the relations

are linked, and only focus on query building. We formulate the source as shown in

Figure 6.3, where for each natural language question a prefix “parse text to SPARQL
query:” is added. The source string is further concatenated with entity URIs and relation

schema URIs separated by a special token [𝑆𝐸𝑃]. The target text is the corresponding

SPARQL query which is padded with the tokens < 𝑠 >< /𝑠 >. We also make use of the

sentinel tokens provided by T5 to represent the DBLP prefixes e.g. <extra_id_1> denotes
the prefix https://dblp.org/pid/, SPARQL vocabulary and symbols. This step helps the

T5-tokenizer to correctly fragment the target text during inference.

Figure 6.3: Representation of source and target text used to fine-tune the T5 model

We fine-tune T5-Base and T5-Small on DBLP-QuAD train set with a learning rate of

1e-4 for 5 epochs with an input as well as output text length of 512 and batch size of 4.

6.8.1 Experiment Results

We report the performance of the baseline model on the DBLP-QuAD test set. Firstly,

we report on the exact-match between the gold and the generated SPARQL query. For

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph84

the exact-match accuracy we compare the generated and the gold query token by token

after removing whitespaces. Next, for each SPARQL query on the test set, we run both

the gold and and the query generated by the T5 baseline models using Virtuoso SPARQL

endpoint to fetch answers from the DBLP KG. Based on the answers collected, we report

on the F1 score. The results are reported on Table 6.3.

Evaluation metrics T5-Small T5-Base

Exact-match Accuracy 0.638 0.813

F1 Score 0.721 0.868

Table 6.3: Evaluation results of fine-tuned T5 to DBLP-QuAD

6.9 Limitations
One of the drawbacks of our dataset generation framework is that natural questions are

synthetically generated. (CFQ (Keysers et al., 2020) has a similar limitation.) Although

the question templates were human-written, only two people (authors of the paper)

worked on the creation of the question templates and was not crowd sourced from a

group of researchers. Additionally, the questions are generated by drawing data from a

KG. Hence, the questions may not perfectly reflect the distribution of user information

need. However, the machine-generation process allows for programmatic configuration

of the questions, setting question characteristics, and controlling dataset size. We utilize

the advantage by programmatically augmenting text representations and generating

a large scholarly KGQA with complex SPARQL queries.

Second, in generating valid and test sets, we utilize additional 19 template tuples

which account for about 20% of the template set. Therefore, the syntactic structure

for 80% of the generated data in valid and test would already be seen in the train set

resulting in test leakage. However, to limit the leakage on 80% of the data, we withhold

2 question templates in generating the 𝑡𝑟𝑎𝑖𝑛 set. Moreover, the data augmentation steps

carried out would also add challenges in the 𝑣𝑎𝑙𝑖𝑑 and 𝑡𝑒𝑠𝑡 sets.

Another shortcoming of DBLP-QuAD is that the paper titles do not perfectly reflect

user behavior. When a user asks a question, they do not type in the full paper title

and also some papers are popularly known by a different short name. For example,

the papers “Language Models are Few-shot Learners” and “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding” are also known as “GPT-3”

and “BERT” respectively. This is a challenging entity linking problem which requires

further investigation. Despite the shortcomings, we feel the large scholarly KGQA

dataset would ignite more research interest in scholarly KGQA.

6.10 Conclusion
In this work, we presented a new KGQA dataset called DBLP-QuAD. The dataset is

the largest scholarly KGQA dataset with corresponding SPARQL queries. The dataset

contains a wide variety of questions and query types and we present the data generation

framework and baseline results. We hope this dataset proves to be a valuable resource

for the community.

As future work, we would like to build a robust question answering system for

scholarly data using this dataset.

6. DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph85

6.11 Acknowledgements
This research was supported by grants from NVIDIA and utilized NVIDIA 2 x RTX

A5000 24GB. Furthermore, we acknowledge the financial support from the Federal

Ministry for Economic Affairs and Energy of Germany in the project CoyPu (project

number 01MK21007[G]) and the German Research Foundation in the project NFDI4DS

(project number 460234259). This research is additionally funded by the “Idea and

Venture Fund“ research grant by Universität Hamburg, which is part of the Excellence

Strategy of the Federal and State Governments.

7
DBLPLink: An Entity Linker for the DBLP

Scholarly Knowledge Graph

7.1 Bibliographic Information
Debayan Banerjee, Arefa, Ricardo Usbeck and Chris Biemann. 2023. DBLPLink: An

Entity Linker for the DBLP Scholarly Knowledge Graph, in the 22nd International

Semantic Web Conference. Posters and Demos Track. Athens, Greece.

https://ceur-ws.org/Vol-3632/ISWC2023_paper_428.pdf

7.2 Abstract
In this work, we present a web application named DBLPLink, which performs entity

linking over the DBLP scholarly knowledge graph. DBLPLink uses text-to-text pre-

trained language models, such as T5, to produce entity label spans from an input text

question. Entity candidates are fetched from a database based on the labels, and an

entity re-ranker sorts them based on entity embeddings, such as TransE, DistMult and

ComplEx. The results are displayed so that users may compare and contrast the results

between T5-small, T5-base and the different KG embeddings used. The demo can be

accessed at https://ltdemos.informatik.uni-hamburg.de/dblplink/. Code and data shall

be made available at https://github.com/uhh-lt/dblplink.

7.3 Introduction and Related Work
Entity Linking (EL) is a natural language processing (NLP) task that involves associ-

ating named entities mentioned in text to their corresponding unique identifiers in a

knowledge graph (KG). For example, in the question: Who is the president of USA?, the
named entity span of USA has to be linked to the unique identifier Q301 in the Wikidata

KG (Vrandečić and Krötzsch, 2014). Several entity linkers exist (Sevgili et al., 2022) over

1https://www.wikidata.org/wiki/Q30

86

https://ceur-ws.org/Vol-3632/ISWC2023_paper_428.pdf
https://ltdemos.informatik.uni-hamburg.de/dblplink/
https://github.com/uhh-lt/dblplink
https://www.wikidata.org/wiki/Q30

7. DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph 87

general purpose KGs such as Wikidata, and more specialized KGs, such as bio-medical

(French and McInnes, 2023) or financial KGs (Elhammadi et al., 2020), however, to the

best of our knowledge, no working entity linker exists for scholarly KGs.

A scholarly KG is a special sub-class of KGs, which contains bibliographic informa-

tion about research publications, authors, institutions etc. Some well-known scholarly

KGs are the OpenAlex
2
, ORKG

3
and DBLP

4
. In this work, we focus on the DBLP KG,

which caters specifically to computer science, and as a result, is smaller in size than

other scholarly KGs. DBLP, which used to stand for Data Bases and Logic Programming
5
,

was created in 1993 by Michael Ley at the University of Trier, Germany (Ley, 2002). At

the time of its release
6
, the RDF dump consisted of 2,941,316 person entities, 6,010,605

publication entities, and 252,573,199 RDF triples.

DBLPLink can handle simple and complex questions pertaining to authorship, venues,

institutions and other information available in the DBLP KG.

7.4 Web Interface

Figure 7.1: User interface of DBLPLink. The question reads: "Who were the co-authors of Ashish

Vaswani in the paper ’Attention is all you need’?"

As shown in Figure 7.1, the UI consists of three main parts. In Section A, the user can
either type a question as input or select a question from the drop-down menu. Further,

the user can select which model to use for label span detection, and which embeddings

to use for re-ranking of entities. In Section B, the results of DBLPLink are displayed.

First, the top-ranked entity for each detected span is displayed, with a corresponding

label and type from the DBLP KG. A hyperlink to the entity, which points to the original

2http://openalex.org/
3https://orkg.org/
4https://dblp.org/
5https://en.wikipedia.org/wiki/DBLP
6https://blog.dblp.org/2022/03/02/dblp-in-rdf/

http://openalex.org/
https://orkg.org/
https://dblp.org/
https://en.wikipedia.org/wiki/DBLP
https://blog.dblp.org/2022/03/02/dblp-in-rdf/

7. DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph 88

DBLP entity web page is also shown. Additionally, a distance metric is shown which

denotes how close a match this entity is to the input question. A lower distance means

a better match. Towards the bottom of the UI, we can briefly see collapsible boxes

called "Ranked Entities", which further display the top 10 ranked entities for each of

the detected label spans. Lastly, in Section C, the user has an option to remove certain

combinations of results from the screen, if the UI becomes too cluttered. Our expectation

is that the user shall try multiple combinations of T5 and entity embeddings to compare

and contrast the results, which may need occasional cleanup from the UI.

Figure 7.2: Architecture of DBLPLink.

7.5 Architecture

7.5.1 Label and Type Generation

As seen in Figure 7.2, the first step is to produce salient labels and types from the given

input question. For this purpose, we use the DBLP-QuAD (Banerjee, Awale, et al., 2023)

dataset to fine-tune T5-small and T5-base (Raffel et al., 2020) models, on the task of

producing entity labels and types from the input question.

7.5.2 Candidate Generation

With the entity labels and types produced in the previous step, a free-text-search

is performed on an Elasticsearch
7
instance, which contains entity URLs with their

corresponding labels. The results are further filtered by the types. This gives us a list

of candidate entities. In normal operation of the demo application, we present the

top-ranked candidate as the final linked entity. We only proceed to the disambiguation

stage if the top entity candidate has a label, that is the same as another entity in

the candidate list.

7.5.3 Disambiguation

In case two entities in the candidate list share the same label, we proceed with dis-

ambiguation, which requires a further re-ranking of the candidate list. For this, we

7https://www.elastic.co/

https://www.elastic.co/

7. DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph 89

conditional-disambiguation hard-disambiguation

Label

Sort

TransE ComplEx DistMult TransE ComplEx DistMult

T5-

small

0.698 0.700 0.692 0.699 0.511 0.482 0.537

T5-

base

0.698 0.701 0.692 0.701 0.521 0.484 0.547

Table 7.1: F1-scores for the entity linking task across different combinations of span detector

and entity re-ranker

follow a common approach of using Siamese neural networks (Bromley et al., 1993) for

learning text similarity between text pairs (Ranasinghe et al., 2019). We embed the input

question and the candidate entities in a common embedding space. For this purpose, we

create a 969-dimensional embedding, where for a given question, we use the first 768

dimensions for the BERT embedding. We fill the remaining 201 dimensions with zeros.

For the entity candidates, we fill the first 768 dimensions with the BERT embedding of

the entity label, while the next 200 dimensions are reserved for the entity embeddings.

We use three different kinds of embeddings in our experiments, namely TransE (Bordes,

Usunier, Garcia-Duran, et al., 2013), ComplEx (Trouillon et al., 2016), and DistMult (Yang

et al., 2015). For the remaining 969th dimension, we store the degree of string similarity

match between the entity label and the input question. For training, pairs of positive and

negative samples are used with a triplet ranking loss function and L2 distance metric.

During inference, a question and an entity candidate are vectorised and passed

through the trained Siamese network. The cosine distance between the two resulting

embeddings is computed, and the pair with the lowest distance is considered the most

suitable match.

7.6 Evaluation

We evaluate our entity linker on the 2.000 questions of the test split of the DBLP-QuAD

dataset and measure the F1-score. In Table 7.1, under the heading ‘Label Sorting‘, we

consider the top-ranked candidate after the label sorting phase as the linked entity. We

perform no further disambiguation. Under the ‘conditional-disambiguation‘ setting,

we perform disambiguation only if two entities in the candidate list share the same

label. Under the ‘hard-disambiguation‘ setting, re-ranking based on Siamese network

cosine distances is always run after the candidate generation phase, essentially ignoring

the label sorting order.

We see that hard-disambiguation lags behind significantly in performance when

compared to plain label sorting, which points to the learning that for DBLP KG, de-

gree of string match of an author or a publication is more important than the KG

embeddings. Based on this finding, we allow the web application to run in ‘conditional-

disambiguation‘ mode for better performance. In the case of conditional disambiguation,

performance is marginally better when using TransE and DistMult when compared to

label sorting, because not many cases of ambiguous labels exist in the DBLP-QuAD test

set. However, it is evident from the hard disambiguation case, that DistMult performs the

best on a pure disambiguation task. This may be explained by the inherent suitability

7. DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph 90

of DistMult for 1-to-N relationships, which is close to the nature of the DBLP KG

model, where one author may have several papers. On the contrary, TransE expects

1-to-1 relationships, while ComplEx works better for symmetric relationships. Another

interesting outcome of the experiments is that the difference in parameter sizes of

T5-small and T5-base does not produce any difference in performance. This may be

explained by the fact that in the span label production task, much of the focus is on

copying the right part of the input to the output. Since the learned knowledge of

the model weights from the pre-training task is not being exploited, the larger size

of T5-base does not seem to matter.

7.7 Conclusion
In this work, we presented DBLPLink, which is a web-based demonstration of an

entity linker over the DBLP scholarly KG. In the future, we would like to add further

interactivity to the UI where users can provide feedback on quality of the results.

Additionally, a conversational interface for question answering would be desirable for

question answering tasks, and we would like to build it in a future version.

7.8 Acknowledgements
This research is performed as a part of the ARDIAS project, funded by the “Idea and

Venture Fund“ research grant by Universität Hamburg, which is part of the Excellence

Strategy of the Federal and State Governments. This work has additionally received fund-

ing through the German Research Foundation (DFG) project NFDI4DS (no. 460234259).

8
Conclusions

8.1 Summary

In this thesis, we have demonstrated that with certain modifications, generative LMs

can be effectively used at different stages of the KGQA pipeline. This directly addresses

our research questions RQ1 and RQ2.

In our workModern Baselines for SPARQL Semantic Parsing (Banerjee, Nair, Kaur,
et al., 2022), we show that when entities and relations are pre-linked, T5 and BART

models can be used to generate the logical forms for given questions. For T5, special

characters of the SPARQL vocabulary must first be replaced with sentinel tokens, which

are special tokens from the T5 tokenizer vocabulary used during the pre-training task.

For BART, we discovered a peculiar problem specific to the copying of tokens from

the input question to the output logical form. We found that generative LMs are able

to mimic the ability of Pointer Generator Networks in copying parts of input tokens

to the output logical form, which enables a special class of questions to be answered.

On the LC-QuAD 1.0 and 2.0 datasets, T5 models produced state-of-the-art results on

the KGQA semantic parsing task.

In our work GETT-QA: Graph Embedding based T2T Transformer for Knowledge
Graph Question Answering (Banerjee, Nair, Usbeck, et al., 2023a), we demonstrate

the role of T5 as an effective label-generator for the entity and relation linking steps.

When combined with T5’s ability to generate logical forms, this results in an end-to-

end KGQA system. Apart from generating entity and relation labels, in this work,

we show T5’s residual ability to learn simple embedding spaces and use this ability

to perform better entity linking for enhanced KGQA performance, attaining the best

results on the SimpleQuestions-Wikidata and LC-QuAD 2.0 datasets, when compared

to the available KGQA systems.

In our work The Role of Output Vocabulary in T2T LMs for SPARQL Semantic
Parsing (Banerjee, Nair, Usbeck, et al., 2023b), we discover that T5’s ability to generate

logical forms is enhanced when the SPARQL vocabulary is replaced with a well-known

linguistic vocabulary, e.g., the English language. We perform experiments with variants

of this vocabulary, e.g., single characters, multiple characters, and dictionary words.

91

8. Conclusions 92

We evaluate the performance of T5-Small and T5-Base with fine-tuning and prompt-

tuning over the GrailQA dataset.

In our workDBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly
Knowledge Graph (Banerjee, Awale, et al., 2023), we produced a new SPARQL-annotated

KGQA dataset for the scholarly domain. This in-domain dataset aims to negate the

pre-trained model’s advantage of having seen general knowledge during pre-training

and is expected to lay down a new benchmark for future researchers in the field of KGQA

and semantic parsing. To aid future researchers in solving this dataset, we developed an

entity linker for DBLP in Banerjee, Arefa, et al. (2023), which is a working web-based

demonstration that can also be accessed over an API.

It must be noted that while we pushed state-of-the-art further with better results

on certain datasets in this thesis, the overall performance of models on the task of

KGQA is far from perfect. When entities and relations are not pre-linked, accuracy

still lies below 50% on complex KGQA tasks, and finding better models to reach human

accuracy remains an open challenge.

8.2 Impact

Our work inModern Baselines for SPARQL Semantic Parsing (Banerjee, Nair, Kaur,

et al., 2022) is recognized by Gu, Pahuja, et al. (2021), Reyd and Zouaq (2023), Stengel-

Eskin and Van Durme (2023) and Hirigoyen et al. (2022), as being one of the first works

to explore generative LMs on the KGQA semantic parsing task.

In GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph
Question Answering (Banerjee, Nair, Usbeck, et al., 2023a), we discover that a text-to-

text model also has a residual capacity to learn a limited embedding space and produce

it as output. To the best of our knowledge, this aspect of generative LMs has never

been explored before. Moreover, the straightforward end-to-end design is easy to adapt

for KGQA on a new domain. For example, Tran et al. (2023) uses our architecture

for KGQA in the chemistry domain.

In The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing
(Banerjee, Nair, Usbeck, et al., 2023b), we highlight that pre-trained LMs perform

better when they work with linguistic vocabulary. A similar observation was made

subsequently by Lehmann, Gattogi, et al. (2023) on the task of KGQA semantic parsing,

where they found that, when SPARQL queries are converted to a controlled natural

language format, the models perform better.

In DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph (Baner-

jee, Arefa, et al., 2023), we developed the first public entity linking demo for the DBLP

scholarly KG, which was used by some participants of the 1st Scholarly Question

Answering Challenge (Banerjee, Usbeck, et al., 2023). The task in this challenge was to

solve the DBLP_QuAD (Banerjee, Awale, et al., 2023) dataset, which is a part of this thesis

in DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge
Graph. Seven participating teams employed different models and methods to tackle the

challenges of the dataset. Most notably, LLMs were employed in zero-shot and few-shot

fashion with the best results for some of the tasks of the challenge, but not all. In the

entity linking task, an ASMR tree-based representation produced the best results, which

shows that LLMs have limitations when applied to a domain-specific dataset.

8. Conclusions 93

8.3 Limitations

In this thesis, we have not experimented with themost recent versions of Large Language

Models (LLMs), namely ChatGPT, GPT-3, LLaMA, etc. Our experiments in this thesis are

confined to fine-tuning models in the parameter size range of 60M to 220M. Fine-tuning

larger models proved to be prohibitively resource-intensive in an academic setting.

In the meantime, two classes of LLMs have appeared which have taken the NLP

world by storm. First, are larger LMs that breach the 1B parameter count, e.g., GPT-

2 XL with 1.5B parameters, T5-3B, and GPT-3 with 175B parameters. They remain

Transformer-based architectures and are still pre-trained in a self-supervised next-

token-prediction fashion. However, it has been claimed that at such large model sizes,

the appearance of emergent abilities (Wei, Tay, et al., 2022) allows these models to

perform tasks that were not seen in the training data. This claim has been disputed

recently by Lu et al. (2023), who insist that such abilities are merely variants of another

ability, called in-context learning. In-context learning (also commonly referred to as

few-shot approach)(Brown et al., 2020; P Liu et al., 2023) is a setting where a few

exemplars of the task to be performed are provided as the input prompt, leading to the

model learning the task and performing it on unseen data. This requires no parameter

update or fine-tuning of the model.

Second are LLMs, such as ChatGPT, which are instruction tuned (Ouyang et al.,

2022). Instruction-tuned models rely on reinforcement learning using human feedback

(RLHF), or their variants, to align LLMs to better follow human instructions in the input

prompt. This kind of tuning reduces the requirement of providing exemplars in the

input prompt and is more amenable to conversational use cases between humans and

machines. This also leads to creative uses of the model, through human instructions,

without the apparent need for parameter updates of the model.

Specifically, ChatGPT was made accessible to the public in November 2022, by which

time this thesis had taken shape in terms of published papers, Moreover, the service sits

behind a paywall, with the internal details remaining closed to the outside audience.

This creates problems from the standpoint of the reproduction of scientific results.

We briefly present the results of other researchers with modern LLMs on the task

of KGQA: in Faria et al. (2023), the authors evaluate GPT-3 on the task of KGQA over

the QALD-9 dataset. They find that GPT-3 is not suitable for SPARQL generation, both

in few-shot and zero-shot settings. Surprisingly, even fine-tuning GPT-3 using the

API with 340 sample queries does not exceed the performance of the few-shot setting.

However, it is unclear due to the closed setting of GPT-3, how the fine-tuning process is

implemented in the back-end. More importantly, when GPT-3 is asked the answer of the

same questions directly from within its weights, without generating SPARQL queries,

the performance is twice as good. In Klager and Polleres (2023), the authors report a

similar lack of performance of GPT-3 and ChatGPT in the KGQA semantic parsing task.

Moreover, the authors mention an important difference in the DBpedia and Wikidata

KGs. Entities in Wikidata have numeric identifiers, while DBpedia entity identifiers

are language-based URIs. They find that DBpedia URIs are easier to generate than

Wikidata ones. In general, an LLM can not directly be used for the task of entity linking,

due to poor coupling with an external KG. It is common for semantic parsing-based

KGQA systems to rely on external entity linkers.

In Xu et al. (2023) and Shu and Z Yu (2023), the authors conclude that fine-tuned

models work better than prompted LLMs on the KGQA semantic parsing tasks. This

8. Conclusions 94

raises the question of whether LLMs should be used at all for this task since fine-tuning

LLMs is prohibitively expensive due to their large parameter count. Moreover, Shu

and Z Yu (2023) tries various data augmentation techniques to enable transfer learning

of LLMs when working with different KGs, with poor results, raising the issue of

poor generalization across KGs.

There is a specific kind of generalization in the domain of semantic parsing, called

compositional generalization, which remains a highly challenging task. Compositional

generalization refers to the ability of a model to generate logical forms for novel

combinations of sub-questions from the training set. Unfortunately, LLMs in the

default setting do not exhibit any improvement in this field either (Drozdov et al.,

2022). However, an advanced prompting technique called least-to-most prompting
(Zhou et al., 2023), which is related to the concepts of chain-of-thought prompting
(Wei, Xuezhi Wang, et al., 2023), shows superior performance on this task. In this

prompting strategy, tasks are broken down to simpler sub-tasks, and multiple sequential

passes are made through the LLM to arrive at the final answer. However, it must be

noted that the prompt design, the selection of exemplars, and the decomposition steps

vary greatly based on individual datasets.

8.4 Future Work

In the specific case of T5, in our paperModern Baselines for SPARQL Semantic Parsing,
we identified issues with the handling of special characters and proposed vocabulary

substitution as a means of mitigation of this problem. A possible future approach may

be to re-train the T5 tokenizer itself, with special characters of the SPARQL vocabulary

included. Additionally, the modern family of LLMs such as LLaMA (Touvron et al., 2023)

and Mistral (AQ Jiang et al., 2023) do not suffer from the limitation of dealing with

special characters, since they were allowed to remain a part of their pre-training corpus.

We recommend the use of these models as a base for future research in semantic parsing.

In our paper The Role of Output Vocabulary in T2T LMs for SPARQL Semantic
Parsing, we found that replacing SPARQL vocabulary with a linguistic vocabulary

improves performance. One hypothesis is that generative LMs perform better with

words that were found more often in the pre-training corpus. However, a more detailed

analysis of which subset of the linguistic vocabulary (e.g., which group of English

words) works best remains to be explored in future work.

In our paper GETT-QA: Graph Embedding Based T2T Transformer for Knowledge
Graph Question Answering, we explored the ability of a generative LM, apart from

generating logical forms, in producing a small embedding space as a string. In reality,

an embedding space is inherently numerical in nature, and a generative LM is not the

ideal candidate to learn and generate such spaces. We foresee the development of better

joint architectures, where the embedding space is learned and generated as the output

of a fully connected last layer as numeric values instead of strings.

In our paperDBLP-QuAD: AQuestion Answering Dataset over the DBLP Scholarly
Knowledge Graph, we presented a new dataset for the KGQA semantic parsing task on

the DBLP bibliographic KG (Ley, 2002). Recently, the SemOpenAlex (Färber et al., 2023)

project has made a much larger bibliography available in the form of a KG. Porting

of the DBLP_QuAD dataset to SemOpenAlex is a possible direction for future work.

Additionally, a more challenging setting exists when retrieving an answer from both

8. Conclusions 95

KG and text sources. This form of QA is called hybrid QA, and remains to be explored

as a research direction in the KGQA world.

Apart from specific cases of future work as discussed above, in the general direction

of future KGQA research, much work remains, especially when viewed through the lens

of LLMs. While LLMs show outstanding performance in text generation tasks, they also

hallucinate facts. Since KGs contain gold facts, which are generally human-curated, it is

desirable to ground the answers generated by LLMs to KGs. Since KGs sit outside the

LLM, it remains an open question on how to integrate the two. In this pursuit, Pan et al.

(2023) outlines several possible avenues that researchers may take in the future.

One family of approaches lies in augmenting the pre-training corpus with KG triples

(Kang et al., 2022; Xiong et al., 2019). Another attempts to ground LLM answers in the

KG during inferencing (P Lewis et al., 2020; Wu et al., 2022). More recently, changes in

the attention mechanism in Transformers have been proposed in Bertsch et al. (2023), so

that the decoder may directly attend to an external encoder database during inference. A

fundamentally different conversation has also started around modifying KGs themselves

to be more aligned to the LLM space, by replacing current identifiers with ones in the

"word space". For example, in Zhao et al. (2023), the authors show that encoding a

sub-graph in text is almost as good as Graph Neural Network generated embeddings,

with the added benefit of explainability of word-based representations. In Fatemi et al.

(2023), the authors show that appropriately naming KG nodes in word-space, makes

it easier for pre-trained models to address them later during inference.

Another possible approach, which has not yet been seen in current literature, is

to embed KG triples as tokens in the LLM vocabulary mixed with the normal LLM

vocabulary. If a KG triple is represented as a single LLM token, the production of this

triple during LLM inference can not be corrupted at an atomic level, where an atom is

a triple. This makes the production of triples from LLMs hallucination-free. As a pre-

training task in this setup, one may imagine fact grounding. The LLM is given a corpus of

text, where each textual statement is accompanied by the corresponding triple. The task

of the LLM would be to produce the missing tokens when random tokens are masked in

this corpus. One issue with this approach is the size of vocabulary when compared to

the number of triples in a large KG. Traditionally, LLM vocabularies are several orders of

magnitude smaller in size than the number of triples present in a KG. However, the most

recent LLMs
1
have started experimenting with larger vocabulary sizes, e.g., 256k instead

of 32k. Hence, there is a possibility that this approach may be feasible in the near future.

In the end, we address a question about the relevance of KGs in today’s world. LLMs

often produce strong performance on QA tasks directly, without the need to refer to

a KG, or generate a query. This leads to the question: do we need KGs, or semantic

parsing, anymore? While there may be varying answers to this question, one overlooked

aspect is that of domain-specific KGs, for example, industrial or internal KGs. LLMs

are pre-trained on general information, while custom KGs contain out-of-distribution

information in comparison. Generating sufficient and appropriate training data out of

custom KGs for pre-training and instruction tuning LLMs is a prohibitively expensive

and lengthy process. In support of semantic parsing, or the generation of logical queries,

one strong argument is that of explanability. Once we have a logical form that can

be executed to retrieve answers from a KG, a deeper inspection of the logical form

produces a logical explanation of why a particular answer was fetched. If the answer

1https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf

https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf

8. Conclusions 96

was incorrect, which part of the logical form produced this inaccuracy can be identified

and corrected. In contrast, the LLM behaves like a black box, the internal behavior of

which can only be coarsely controlled through prompts. Based on these limitations of

LLMs, it is our belief that KGs continue to remain relevant today, and further work is

required in the quest to integrate KGs and LLMs in a better and efficient manner, so

that the needs of all sub-domains of KGQA can be suitably addressed.

References

Abdalghani Abujabal, Mohamed Yahya, Mirek Riedewald, and Gerhard Weikum (2017).

Automated Template Generation for Question Answering over Knowledge Graphs. In:
Proceedings of the 26th International Conference on World Wide Web. Perth, Australia,
pp. 1191–1200 (cit. on pp. 4, 41).

David Alvarez-Melis and Tommi S. Jaakkola (2017). Tree-Structured Decoding with
Doubly-Recurrent Neural Networks. In: International Conference on Learning Representations.
Poster (cit. on p. 4).

Konstantine Arkoudas, Nicolas Guenon des Mesnards, Melanie Rubino, Sandesh Swamy,

Saarthak Khanna, Weiqi Sun, and Khan Haidar (2022). “PIZZA: A New Benchmark for

Complex End-to-End Task-Oriented Parsing”. In: arxiv.org eprint (cit. on p. 66).

Yoav Artzi and Luke Zettlemoyer (2013). “Weakly Supervised Learning of Semantic Parsers for

Mapping Instructions to Actions”. In: Transactions of the Association for Computational
Linguistics 1. Ed. by Dekang Lin and Michael Collins, pp. 49–62 (cit. on p. 4).

Ram G. Athreya, Srividya Kona Bansal, Axel-Cyrille Ngonga Ngomo, and Ricardo Usbeck (2021).

Template-based Question Answering using Recursive Neural Networks. In: 15th IEEE
International Conference on Semantic Computing. Laguna Hills, CA, USA, pp. 195–198
(cit. on p. 41).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio (n.d.). Neural Machine Translation by
Jointly Learning to Align and Translate. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, Conference Track Proceedings
(cit. on p. 22).

Krisztian Balog and Tom Kenter (2019). Personal Knowledge Graphs: A Research Agenda. In:
Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information
Retrieval. Santa Clara, CA, USA, pp. 217–220 (cit. on p. 2).

Debayan Banerjee (2023). Semantic Parsing for Knowledge Graph Question Answering with Large
Language Models. In: The Semantic Web: ESWC 2023 Satellite Events. Hersonissos, Greece,
pp. 234–243 (cit. on p. 10).

Debayan Banerjee, Arefa, Ricardo Usbeck, and Chris Biemann (2023). DBLPLink: An Entity
Linker for the DBLP Scholarly Knowledge Graph. In: Proceedings of the 22nd International
Semantic Web Conference Posters, Demos and Industry Tracks. Vol. 3632. Athens, Greece
(cit. on pp. 7, 9 sq., 92).

Debayan Banerjee, Sushil Awale, Ricardo Usbeck, and Chris Biemann (2023). DBLP-QuAD: A
Question Answering Dataset over the DBLP Scholarly Knowledge Graph. In: Proceedings of the
13th International Workshop on Bibliometric-enhanced Information Retrieval (BIR). Dublin,
Ireland, pp. 37–51 (cit. on pp. 7, 9, 88, 92).

Debayan Banerjee, Pranav Ajit Nair, Jivat Neet Kaur, Ricardo Usbeck, and Chris Biemann (2022).

Modern Baselines for SPARQL Semantic Parsing. In: Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval. Madrid, Spain,

pp. 2260–2265 (cit. on pp. 7 sqq., 12, 23, 50, 59, 65, 83, 91 sq.).

Debayan Banerjee, Pranav Ajit Nair, Ricardo Usbeck, and Chris Biemann (2023a). GETT-QA:
Graph Embedding Based T2T Transformer for Knowledge Graph Question Answering. In: The

97

https://doi.org/10.1145/3038912.3052583
https://openreview.net/forum?id=HkYhZDqxg
https://openreview.net/forum?id=HkYhZDqxg
https://arxiv.org/abs/2212.00265
https://arxiv.org/abs/2212.00265
https://aclanthology.org/Q13-1005
https://aclanthology.org/Q13-1005
https://ieeexplore.ieee.org/document/9364639
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1145/3341981.3344241
https://link.springer.com/chapter/10.1007/978-3-031-43458-7_42
https://link.springer.com/chapter/10.1007/978-3-031-43458-7_42
https://ceur-ws.org/Vol-3632/ISWC2023%5C_paper%5C_428.pdf
https://ceur-ws.org/Vol-3632/ISWC2023%5C_paper%5C_428.pdf
https://ceur-ws.org/Vol-3617/paper-05.pdf
https://ceur-ws.org/Vol-3617/paper-05.pdf
https://doi.org/10.1145/3477495.3531841
https://doi.org/10.1007/978-3-031-33455-9_17
https://doi.org/10.1007/978-3-031-33455-9_17

REFERENCES 98

Semantic Web: 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece, May
28–June 1, 2023, Proceedings, pp. 279–297 (cit. on pp. 7, 9, 91 sq.).

Debayan Banerjee, Pranav Ajit Nair, Ricardo Usbeck, and Chris Biemann (2023b). The Role of
Output Vocabulary in T2T LMs for SPARQL Semantic Parsing. In: Findings of the Association
for Computational Linguistics: ACL 2023. Toronto, Canada, pp. 12219–12228 (cit. on pp. 7, 9,

12, 91 sq.).

Debayan Banerjee, Ricardo Usbeck, Nandana Mihindukulasooriya, Mohamad Yaser Jaradeh,

Sören Auer, Gunjan Singh, Raghava Mutharaju, and Pavan Kapanipathi, eds. (2023). Joint
Proceedings of Scholarly QALD 2023 and SemREC 2023 co-located with 22nd International
Semantic Web Conference. 3592. Athens, Greece (cit. on p. 92).

Yehoshua Bar-Hillel (1953). “A Quasi-Arithmetical Notation for Syntactic Description”. In:

Language 29.1, pp. 47–58 (cit. on p. 4).

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang (2013a). Semantic Parsing on
Freebase from Question-Answer Pairs. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Seattle, Washington, USA, pp. 1533–1544 (cit. on

p. 4).

— (2013b). Semantic Parsing on Freebase from Question-Answer Pairs. In: Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing. Seattle, Washington, USA,

pp. 1533–1544 (cit. on p. 75).

Jonathan Berant and Percy Liang (2014). Semantic Parsing via Paraphrasing. In: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Baltimore, Maryland, pp. 1415–1425 (cit. on p. 4).

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R. Gormley (2023). Unlimiformer:
Long-Range Transformers with Unlimited Length Input. In: Conference on Neural Information
Processing Systems (NeurIPS). Virtual Poster. New Orleans, USA (cit. on p. 95).

Nikita Bhutani, Xinyi Zheng, and H. V. Jagadish (2019). Learning to Answer Complex Questions
over Knowledge Bases with Query Composition. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. Beijing, China, pp. 739–748 (cit. on

pp. 4, 51).

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor (2008). Freebase: A
Collaboratively Created Graph Database for Structuring Human Knowledge. In: SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international conference on Management of data.
Vancouver, Canada, pp. 1247–1250 (cit. on pp. 1, 41, 68, 73).

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston (2015). “Large-scale Simple

Question Answering with Memory Networks”. In: arxiv.org eprint (cit. on pp. 56, 58).

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko

(2013). Translating Embeddings for Modeling Multi-relational Data. In: 27th Annual
Conference on Neural Information Processing Systems, pp. 2787–2795 (cit. on pp. 36, 45, 53,

89).

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah (1993).

Signature Verification Using a "Siamese" Time Delay Neural Network. In: Proceedings of the
6th International Conference on Neural Information Processing Systems. Denver, Colorado,
pp. 737–744 (cit. on p. 89).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,

Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,

Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,

Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei (2020). Language Models
are Few-Shot Learners. In: Advances in Neural Information Processing Systems. Vol. 33.
Virtual Event, pp. 1877–1901 (cit. on pp. 65, 93).

https://aclanthology.org/2023.findings-acl.774
https://aclanthology.org/2023.findings-acl.774
https://ceur-ws.org/Vol-3592/
https://ceur-ws.org/Vol-3592/
https://ceur-ws.org/Vol-3592/
http://www.jstor.org/stable/410452
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/P14-1133
https://arxiv.org/abs/2305.01625
https://arxiv.org/abs/2305.01625
https://doi.org/10.1145/3357384.3358033
https://doi.org/10.1145/3357384.3358033
http://portal.acm.org/citation.cfm?id=1376746
http://portal.acm.org/citation.cfm?id=1376746
https://arxiv.org/abs/1506.02075
https://arxiv.org/abs/1506.02075
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://dl.acm.org/doi/10.5555/2987189.2987282
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://dl.acm.org/doi/abs/10.5555/3495724.3495883

REFERENCES 99

Qingqing Cai and Alexander Yates (2013). Large-scale Semantic Parsing via Schema Matching
and Lexicon Extension. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Sofia, Bulgaria, pp. 423–433 (cit. on

p. 75).

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie, Yutong Xiang, Lei Hou, Juanzi Li, Bin He,

and Hanwang Zhang (2022). KQA Pro: A Dataset with Explicit Compositional Programs for
Complex Question Answering over Knowledge Base. In: Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics, pp. 6101–6119 (cit. on p. 76).

Nilesh Chakraborty, Denis Lukovnikov, Gaurav Maheshwari, Priyansh Trivedi, Jens Lehmann,

and Asja Fischer (2019). Introduction to Neural Network based Approaches for Question
Answering over Knowledge Graphs. arxiv.org eprint (cit. on p. 74).

Angel X. Chang and Christopher Manning (2012). SUTime: A Library for Recognizing and
Normalizing Time Expressions. In: Proceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC’12). Istanbul, Turkey, pp. 3735–3740 (cit. on p. 41).

Viktoriia Chekalina, Anton Razzhigaev, Albert Sayapin, Evgeny Frolov, and

Alexander Panchenko (2022). MEKER: Memory Efficient Knowledge Embedding
Representation for Link Prediction and Question Answering. In: Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics: Student Research Workshop. Dublin,
Ireland, pp. 355–365 (cit. on pp. 51, 57).

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke Zettlemoyer, and Sonal Gupta (2020).

Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.
Online, pp. 5090–5100 (cit. on p. 66).

Yongrui Chen, Huiying Li, Yuncheng Hua, and Guilin Qi (2020). Formal Query Building with
Query Structure Prediction for Complex Question Answering over Knowledge Base. In:
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence.
Yokohama, Japan, pp. 3751–3758 (cit. on pp. 41, 44).

Jianpeng Cheng and Mirella Lapata (2018). Weakly-Supervised Neural Semantic Parsing with a
Generative Ranker . In: Proceedings of the 22nd Conference on Computational Natural
Language Learning. Brussels, Belgium: Association for Computational Linguistics,

pp. 356–367 (cit. on p. 4).

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and Mirella Lapata (2017). Learning Structured
Natural Language Representations for Semantic Parsing. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver,
Canada, pp. 44–55 (cit. on p. 4).

— (2019). “Learning an Executable Neural Semantic Parser”. In: Computational Linguistics 45.1,
pp. 59–94 (cit. on p. 4).

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio (2014). Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar, pp. 1724–1734
(cit. on pp. 4, 19, 21).

Philipp Christmann, Rishiraj Saha Roy, Abdalghani Abujabal, Jyotsna Singh, and

Gerhard Weikum (2019). Look before you Hop: Conversational Question Answering over
Knowledge Graphs Using Judicious Context Expansion. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. Beijing, China,
pp. 729–738 (cit. on p. 51).

Hejie Cui, Jiaying Lu, Shiyu Wang, Ran Xu, Wenjing Ma, Shaojun Yu, Yue Yu, Xuan Kan,

Chen Ling, Liang Zhao, Joyce Ho, Fei Wang, and Carl Yang (2023). “A Survey on Knowledge

Graphs for Healthcare: Resources, Applications, and Promises”. In: arxiv.org eprint (cit. on

p. 2).

https://aclanthology.org/P13-1042
https://aclanthology.org/P13-1042
https://aclanthology.org/2022.acl-long.422/
https://aclanthology.org/2022.acl-long.422/
https://arxiv.org/abs/1907.09361
https://arxiv.org/abs/1907.09361
https://aclanthology.org/L12-1122/
https://aclanthology.org/L12-1122/
https://aclanthology.org/2022.acl-srw.27
https://aclanthology.org/2022.acl-srw.27
https://aclanthology.org/2020.emnlp-main.413
https://doi.org/10.24963/ijcai.2020/519
https://doi.org/10.24963/ijcai.2020/519
https://aclanthology.org/K18-1035
https://aclanthology.org/K18-1035
https://aclanthology.org/P17-1005
https://aclanthology.org/P17-1005
https://aclanthology.org/J19-1002
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://doi.org/10.1145/3357384.3358016
https://doi.org/10.1145/3357384.3358016
https://arxiv.org/abs/2306.04802
https://arxiv.org/abs/2306.04802

REFERENCES 100

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay Yoon Lee,

Lizhen Tan, Lazaros Polymenakos, and Andrew McCallum (2021). Case-based Reasoning for
Natural Language Queries over Knowledge Bases. In: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Online and Punta Cana, Dominican

Republic, pp. 9594–9611 (cit. on p. 4).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota,

USA, pp. 4171–4186 (cit. on pp. 5, 30, 65).

Dennis Diefenbach, Andreas Both, Kamal Deep Singh, and Pierre Maret (2020). “Towards a

Question Answering System over the Semantic Web”. In: Semantic Web – Interoperability,
Usability, Applicability 11.3, pp. 421–439 (cit. on p. 51).

Dennis Diefenbach, Vanessa Lopez, Kamal Singh, and Pierre Maret (2017). “Core Techniques of

Question Answering Systems over Knowledge Bases: a Survey”. In: Knowledge and
Information Systems, pp. 529–569 (cit. on p. 40).

Dennis Diefenbach, Thomas Pellissier Tanon, Kamal Deep Singh, and Pierre Maret (2017).

Question Answering Benchmarks for Wikidata. In: Proceedings of the ISWC Posters &
Demonstrations and Industry Tracks co-located with 16th International Semantic Web
Conference. Vienna, Austria (cit. on p. 56).

Jiwei Ding, Wei Hu, Qixin Xu, and Yuzhong Qu (2019). Leveraging Frequent Query Substructures
to Generate Formal Queries for Complex Question Answering. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China,
pp. 2614–2622 (cit. on pp. 41, 44 sqq.).

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Haitao Zheng, and

Maosong Sun (2022). OpenPrompt: An Open-source Framework for Prompt-learning. In:
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.
Dublin, Ireland, pp. 105–113 (cit. on p. 67).

Daniel Diomedi and Aidan Hogan (2021). “Question Answering over Knowledge Graphs with

Neural Machine Translation and Entity Linking”. In: arxiv.org eprint (cit. on pp. 4, 51, 58).

Li Dong and Mirella Lapata (2016). Language to Logical Form with Neural Attention. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany, pp. 33–43 (cit. on p. 4).

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun Chen,

Olivier Bousquet, and Denny Zhou (2022). “Compositional Semantic Parsing with Large

Language Models”. In: arxiv.org eprint (cit. on p. 94).

Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann (2019).

LC-QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and DBpedia.
In: The Semantic Web – ISWC. Auckland, New Zealand, pp. 69–78 (cit. on pp. 40, 55, 75).

Mohnish Dubey, Debayan Banerjee, Debanjan Chaudhuri, and Jens Lehmann (2018). EARL:
Joint Entity and Relation Linking for Question Answering over Knowledge Graphs. In: The
Semantic Web – ISWC 2018. Monterey, CA, USA, pp. 108–126 (cit. on p. 41).

Mohnish Dubey, Sourish Dasgupta, Ankit Sharma, Konrad Höffner, and Jens Lehmann (2016).

AskNow: A Framework for Natural Language Query Formalization in SPARQL. In: Proceedings
of the 13th International Conference on The Semantic Web. Latest Advances and New Domains
- Volume 9678. Berlin, Heidelberg, pp. 300–316 (cit. on p. 74).

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith (2015).

Transition-Based Dependency Parsing with Stack Long Short-Term Memory. In: Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th

https://aclanthology.org/2021.emnlp-main.755
https://aclanthology.org/2021.emnlp-main.755
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://hal.archives-ouvertes.fr/hal-02013956
https://hal.archives-ouvertes.fr/hal-02013956
https://hal.science/hal-01637143
https://hal.science/hal-01637143
https://hal.science/hal-01637141
https://aclanthology.org/D19-1263
https://aclanthology.org/D19-1263
https://doi.org/10.18653/v1/2022.acl-demo.10
https://arxiv.org/abs/2107.02865
https://arxiv.org/abs/2107.02865
https://aclanthology.org/P16-1004
https://arxiv.org/abs/2209.15003
https://arxiv.org/abs/2209.15003
https://link.springer.com/chapter/10.1007/978-3-030-30796-7_5
https://dl.acm.org/doi/abs/10.1007/978-3-030-00671-6_7
https://dl.acm.org/doi/abs/10.1007/978-3-030-00671-6_7
https://doi.org/10.1007/978-3-319-34129-3_19
https://aclanthology.org/P15-1033

REFERENCES 101

International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Beijing, China, pp. 334–343 (cit. on p. 5).

Sarah Elhammadi, Laks V.S. Lakshmanan, Raymond Ng, Michael Simpson, Baoxing Huai,

Zhefeng Wang, and Lanjun Wang (2020). A High Precision Pipeline for Financial Knowledge
Graph Construction. In: Proceedings of the 28th International Conference on Computational
Linguistics. Barcelona, Spain (Online), pp. 967–977 (cit. on p. 87).

Keyur Faldu, Amit P. Sheth, Prashant Kikani, and Hemang Akabari (2021). “KI-BERT: Infusing

Knowledge Context for Better Language and Domain Understanding”. In: arxiv.org eprint

(cit. on p. 51).

Michael Färber, David Lamprecht, Johan Krause, Linn Aung, and Peter Haase (2023).

SemOpenAlex: The Scientific Landscape in 26 Billion RDF Triples. In: The Semantic Web , Part
II. Athens, Greece, pp. 94–112 (cit. on pp. 2, 94).

Bruno Faria, Dylan Perdigão, and Hugo Gonçalo Oliveira (2023). Question Answering over Linked
Data with GPT-3. In: 12th Symposium on Languages, Applications and Technologies. Vol. 113.
Dublin, Ireland, 1:1–1:15 (cit. on p. 93).

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi (2023). “Talk like a Graph: Encoding

Graphs for Large Language Models”. In: arxiv.org eprint (cit. on p. 95).

J. R. Firth (1957). “A Synopsis of Linguistic Theory 1930-55.” In: 1952-59, pp. 1–32 (cit. on p. 13).

Evan French and Bridget T. McInnes (2023). “An Overview of Biomedical Entity Linking

Throughout the Years”. In: Journal of Biomedical Informatics 137, pp. 104–252 (cit. on p. 87).

Daniel Furrer, Marc van Zee, Nathan Scales, and Nathanael Schärli (2020). Compositional
Generalization in Semantic Parsing: Pre-training vs. Specialized Architectures. arxiv.org eprint

(cit. on p. 41).

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann

(2020). Message Passing for Hyper-Relational Knowledge Graphs. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing. Online, pp. 7346–7359
(cit. on pp. 45, 56).

Aaron Gokaslan and Vanya Cohen (2019). OpenWebText Corpus (cit. on p. 43).

Alex Graves (2013). “Generating Sequences With Recurrent Neural Networks”. In: arxiv.org

eprint (cit. on p. 22).

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su (2021).

Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases. In:
Proceedings of the Web Conference. Ljubljana, Slovenia, pp. 3477–3488 (cit. on pp. 4 sq., 66,

75, 80).

Yu Gu, Vardaan Pahuja, Gong Cheng, and Yu Su (2021). Knowledge Base Question Answering: A
Semantic Parsing Perspective. In: 4th Conference on Automated Knowledge Base Construction,
AKBC. Online and London, UK (cit. on p. 92).

Claudio Gutierrez and Juan F. Sequeda (2021). “Knowledge Graphs”. In: Communincations of
ACM 64.3, pp. 96–104 (cit. on p. 2).

William L. Hamilton (n.d.). “Graph Representation Learning”. In: Synthesis Lectures on Artificial
Intelligence and Machine Learning 14.3 (), pp. 1–159 (cit. on p. 38).

Zellig S. Harris (1954). “Distributional Structure”. In:WORD 10.2-3, pp. 146–162 (cit. on p. 13).

Bin He, Di Zhou, Jinghui Xiao, Xin Jiang, Qun Liu, Nicholas Jing Yuan, and Tong Xu (2020).

BERT-MK: Integrating Graph Contextualized Knowledge into Pre-trained Language Models. In:
Findings of the Association for Computational Linguistics: EMNLP. Online, pp. 2281–2290
(cit. on p. 51).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). Deep Residual Learning for
Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (cit. on p. 28).

https://aclanthology.org/2020.coling-main.84
https://aclanthology.org/2020.coling-main.84
https://arxiv.org/abs/2104.08145
https://arxiv.org/abs/2104.08145
https://link.springer.com/chapter/10.1007/978-3-031-47243-5_6
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2023.1
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SLATE.2023.1
https://arxiv.org/abs/2310.04560
https://arxiv.org/abs/2310.04560
https://cs.brown.edu/courses/csci2952d/readings/lecture1-firth.pdf
https://www.sciencedirect.com/science/article/pii/S153204642200257X
https://www.sciencedirect.com/science/article/pii/S153204642200257X
https://arxiv.org/abs/2007.08970
https://arxiv.org/abs/2007.08970
https://aclanthology.org/2020.emnlp-main.596
http://Skylion007.github.io/OpenWebTextCorpus
http://arxiv.org/abs/1308.0850
https://doi.org/10.1145/3442381.3449992
https://www.akbc.ws/2022/papers/23_knowledge_base_question_answer
https://www.akbc.ws/2022/papers/23_knowledge_base_question_answer
https://doi.org/10.1145/3418294
https://www.cs.mcgill.ca/~wlh/grl_book/
https://doi.org/10.1080/00437956.1954.11659520
https://aclanthology.org/2020.findings-emnlp.207
https://ieeexplore.ieee.org/document/7780459
https://ieeexplore.ieee.org/document/7780459

REFERENCES 102

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin Guu, Panupong Pasupat, and

Yuan Zhang (2021). “Unlocking Compositional Generalization in Pre-trained Models Using

Intermediate Representations”. In: arxiv.org eprint (cit. on p. 41).

Rose Hirigoyen, Amal Zouaq, and Samuel Reyd (2022). A Copy Mechanism for Handling
Knowledge Base Elements in SPARQL Neural Machine Translation. In: Findings of the
Association for Computational Linguistics: AACL-IJCNLP. Online only, pp. 226–236 (cit. on

p. 92).

Frank L. Hitchcock (1927). “The Expression of a Tensor or a Polyadic as a Sum of Products”. In:

Journal of Mathematics and Physics 6.1-4, pp. 164–189 (cit. on p. 51).

Sepp Hochreiter and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In: Neural
Computation 9.8, pp. 1735–1780 (cit. on pp. 4, 12, 19 sq., 44).

Konrad Höffner, Sebastian Walter, Edgard Marx, Ricardo Usbeck, Jens Lehmann, and

Axel-Cyrille Ngonga Ngomo (2017). “Survey on Challenges of Question Answering in the

Semantic Web”. In: Semantic Web 8.6, pp. 895–920 (cit. on p. 2).

Sen Hu, Lei Zou, and Xinbo Zhang (2018). A State-transition Framework to Answer Complex
Questions over Knowledge Base. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing. Brussels, Belgium, pp. 2098–2108 (cit. on p. 41).

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li (2019). Knowledge Graph Embedding
Based Question Answering. In: Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining. Melbourne VIC, Australia, pp. 105–113 (cit. on p. 51).

Mohamad Yaser Jaradeh, Markus Stocker, and Sören Auer (2020). Question Answering on
Scholarly Knowledge Graphs. In: Digital Libraries for Open Knowledge, pp. 19–32 (cit. on

p. 74).

Zhen Jia, Soumajit Pramanik, Rishiraj Saha Roy, and Gerhard Weikum (2021). Complex
Temporal Question Answering on Knowledge Graphs. In: Proceedings of the 30th ACM
International Conference on Information and Knowledge Management. Virtual Event,
Queensland, Australia, pp. 792–802 (cit. on pp. 41, 51).

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford,

Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,

Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock,

Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed

(2023). Mistral 7B. arxiv.org eprint (cit. on p. 94).

Martin Joos (1950). “Description of Language Design”. In: Journal of the Acoustical Society of
America 22, pp. 701–707 (cit. on p. 13).

Dan Jurafsky and James H. Martin (2009). Speech and Language Processing : An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition (cit. on

pp. 13, 15 sq., 18 sq., 21 sq., 26, 29, 31, 33 sq.).

Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh Thakkar, Jens Lehmann, and

Maria Maleshkova (2021). Conversational Question Answering over Knowledge Graphs with
Transformer and Graph Attention Networks. In: Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume. Online,
pp. 850–862 (cit. on p. 52).

Nal Kalchbrenner and Phil Blunsom (2013). Recurrent Continuous Translation Models. In:
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.
Seattle, Washington, USA, pp. 1700–1709 (cit. on p. 21).

Aishwarya Kamath and Rajarshi Das (2018). “A Survey on Semantic Parsing”. In: arxiv.org

eprint (cit. on p. 4).

Minki Kang, Jinheon Baek, and Sung Ju Hwang (2022). KALA: Knowledge-Augmented Language
Model Adaptation. In: Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies. Seattle, United
States, pp. 5144–5167 (cit. on p. 95).

https://arxiv.org/abs/2104.07478
https://arxiv.org/abs/2104.07478
https://aclanthology.org/2022.findings-aacl.22
https://aclanthology.org/2022.findings-aacl.22
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192761164
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.semantic-web-journal.net/system/files/swj1375.pdf
https://www.semantic-web-journal.net/system/files/swj1375.pdf
https://aclanthology.org/D18-1234
https://aclanthology.org/D18-1234
https://doi.org/10.1145/3289600.3290956
https://doi.org/10.1145/3289600.3290956
https://link.springer.com/chapter/10.1007/978-3-030-54956-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-030-54956-5_2#citeas
https://doi.org/10.1145/3459637.3482416
https://doi.org/10.1145/3459637.3482416
https://arxiv.org/abs/2310.06825
https://api.semanticscholar.org/CorpusID:121205709
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://www.aclweb.org/anthology/2021.eacl-main.72
https://www.aclweb.org/anthology/2021.eacl-main.72
https://aclanthology.org/D13-1176
http://arxiv.org/abs/1812.00978
https://aclanthology.org/2022.naacl-main.379
https://aclanthology.org/2022.naacl-main.379

REFERENCES 103

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer,

Sergii Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon,

Dmitry Tsarkov, Xiao Wang, Marc van Zee, and Olivier Bousquet (2020). Measuring
Compositional Generalization: A Comprehensive Method on Realistic Data. In: International
Conference on Learning Representations. Virtual Poster (cit. on pp. 41, 76, 84).

Diederik P. Kingma and Jimmy Ba (2015). Adam: A Method for Stochastic Optimization. In: 3rd
International Conference on Learning Representations. Poster. San Diego, CA, USA (cit. on

p. 62).

Gerhard Georg Klager and Axel Polleres (2023). Is GPT fit for KGQA? In: Proceedings of the
International Workshop on Knowledge Graph Generation from Text, co-located with Extended
Semantic Web Conference 2023. Hersonissos, Greece (cit. on p. 93).

Taku Kudo and John Richardson (n.d.). SentencePiece: A simple and language independent
subword tokenizer and detokenizer for Neural Text Processing. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing: System Demonstrations.
Brussels, Belgium, pp. 66–71 (cit. on p. 29).

Pawan Kumar and Srikanta Bedathur (2020). “A Survey on Semantic Parsing from the

perspective of Compositionality”. In: arxiv.org eprint (cit. on p. 4).

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,

Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. (2019).

“Natural Questions: A Benchmark for Question Answering Research”. In: Transactions of the
Association for Computational Linguistics 7, pp. 453–466 (cit. on p. 74).

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, and Ji-Rong Wen (2021). A
Survey on Complex Knowledge Base Question Answering: Methods, Challenges and Solutions.
In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
pp. 4483–4491 (cit. on pp. 2, 50).

Yunshi Lan and Jing Jiang (2020). Query Graph Generation for Answering Multi-hop Complex
Questions from Knowledge Bases. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online, pp. 969–974 (cit. on pp. 41, 44).

Jens Lehmann, Preetam Gattogi, Dhananjay Bhandiwad, Sébastien Ferré, and Sahar Vahdati

(2023). Language Models as Controlled Natural Language Semantic Parsers for Knowledge
Graph Question Answering. In: 26th European Conference on Artificial Intelligence. Vol. 372.
Krakow (Cracovie), Poland, pp. 1348–1356 (cit. on p. 92).

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes,

Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer

(2015). “DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia”.

In: Semantic Web Journal 6.2, pp. 167–195 (cit. on pp. 1, 40, 73).

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and

Alex Peysakhovich (2019). Pytorch-BigGraph: A Large Scale Graph Embedding System. In:

Proceedings of Machine Learning and Systems. Vol. 1, pp. 120–131 (cit. on pp. 45, 53).

Brian Lester, Rami Al-Rfou, and Noah Constant (2021). The Power of Scale for Parameter-Efficient
Prompt Tuning. In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Online and Punta Cana, Dominican Republic, pp. 3045–3059 (cit. on

p. 65).

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,

Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer (2020). BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and
Comprehension. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online, pp. 7871–7880 (cit. on pp. 2, 5, 12 sq., 35 sq., 40).

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,

Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,

Sebastian Riedel, and Douwe Kiela (2020). Retrieval-Augmented Generation for

https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
http://arxiv.org/abs/1412.6980
https://ceur-ws.org/Vol-3447/Text2KG_Paper_11.pdf
https://aclanthology.org/D18-2012
https://aclanthology.org/D18-2012
https://arxiv.org/abs/2009.14116
https://arxiv.org/abs/2009.14116
https://aclanthology.org/Q19-1026/
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.24963/ijcai.2021/611
https://aclanthology.org/2020.acl-main.91
https://aclanthology.org/2020.acl-main.91
https://inria.hal.science/hal-04269089
https://inria.hal.science/hal-04269089
https://content.iospress.com/articles/semantic-web/sw134
https://proceedings.mlsys.org/paper_files/paper/2019/file/1eb34d662b67a14e3511d0dfd78669be-Paper.pdf
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://dl.acm.org/doi/abs/10.5555/3495724.3496517
https://dl.acm.org/doi/abs/10.5555/3495724.3496517
https://dl.acm.org/doi/abs/10.5555/3495724.3496517

REFERENCES 104

Knowledge-Intensive NLP Tasks. In: Proceedings of the 34th International Conference on
Neural Information Processing Systems. Vancouver, BC, Canada, pp. 9459–9474 (cit. on p. 95).

Michael Ley (2002). “The DBLP Computer Science Bibliography: Evolution, Research Issues,

Perspectives”. In: String Processing and Information Retrieval. Vol. 2476, pp. 1–10 (cit. on

pp. 7, 76, 87, 94).

Xiang Lisa Li and Percy Liang (2021). Prefix-Tuning: Optimizing Continuous Prompts for
Generation. In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Online, pp. 4582–4597 (cit. on pp. 65, 67).

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig

(2023). “Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting Methods in

Natural Language Processing”. In: ACM Computing Surveys 55.9 (cit. on p. 93).

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang (2020).

K-BERT: Enabling Language Representation with Knowledge Graph. In: vol. 34. 03. New York,

USA, pp. 2901–2908 (cit. on p. 51).

Vanessa Lopez and Enrico Motta (2004). Ontology-Driven Question Answering in AquaLog. In:
Natural Language Processing and Information Systems. Berlin, Heidelberg, pp. 89–102
(cit. on p. 3).

Vanessa Lopez, Enrico Motta, and Victoria Uren (2006). PowerAqua: Fishing the Semantic Web. In:
The Semantic Web: Research and Applications. Berlin, Heidelberg, pp. 393–410 (cit. on p. 3).

Ilya Loshchilov and Frank Hutter (2019). Decoupled Weight Decay Regularization. In: 7th
International Conference on Learning Representations. New Orleans, LA, USA (cit. on p. 67).

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych

(2023). “Are Emergent Abilities in Large Language Models just In-Context Learning?” In:

arxiv.org eprint (cit. on p. 93).

Denis Lukovnikov and Asja Fischer (2021). Insertion-based Tree Decoding. In: Findings of the
Association for Computational Linguistics: ACL-IJCNLP. Online, pp. 3201–3213 (cit. on p. 5).

Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Sören Auer (2017). Neural Network-Based
Question Answering over Knowledge Graphs on Word and Character Level. In: Proceedings of
the 26th International Conference on World Wide Web. Perth, Australia, pp. 1211–1220
(cit. on p. 3).

Kangqi Luo, Fengli Lin, Xusheng Luo, and Kenny Zhu (2018). Knowledge Base Question
Answering via Encoding of Complex Query Graphs. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Brussels, Belgium, pp. 2185–2194 (cit. on

pp. 41, 44).

Fabiano Ferreira Luz and Marcelo Finger (2018). “Semantic Parsing Natural Language into

SPARQL: Improving Target Language Representation with Neural Attention”. In: arxiv.org

eprint (cit. on p. 4).

Fang Ma, Chen Zhang, Lei Ren, Jingang Wang, Qifan Wang, Wei Wu, Xiaojun Quan, and

Dawei Song (2022). “XPrompt: Exploring the Extreme of Prompt Tuning”. In: arxiv.org

eprint (cit. on p. 65).

Joel Mackenzie, Rodger Benham, Matthias Petri, Johanne R. Trippas, J. Shane Culpepper, and

Alistair Moffat (2020). CC-News-En: A Large English News Corpus. In: Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. Virtual Event,
Ireland, pp. 3077–3084 (cit. on pp. 35, 43).

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur (2010).

Recurrent Neural Network Based Language Model. In: INTERSPEECH. Makuhari, Chiba,

Japan, pp. 1045–1048 (cit. on p. 17).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). Distributed
Representations of Words and Phrases and their Compositionality. In: Proceedings of the 26th

https://dl.acm.org/doi/abs/10.5555/3495724.3496517
https://dl.acm.org/doi/abs/10.5555/3495724.3496517
https://dl.acm.org/doi/abs/10.5555/3495724.3496517
https://dl.acm.org/doi/abs/10.5555/3495724.3496517
https://link.springer.com/chapter/10.1007/3-540-45735-6_1
https://link.springer.com/chapter/10.1007/3-540-45735-6_1
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://link.springer.com/chapter/10.1007/978-3-540-27779-8_8
https://link.springer.com/chapter/10.1007/11762256_30
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2309.01809
https://aclanthology.org/2021.findings-acl.283
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.1145/3038912.3052675
https://aclanthology.org/D18-1242
https://aclanthology.org/D18-1242
http://arxiv.org/abs/1803.04329
http://arxiv.org/abs/1803.04329
https://arxiv.org/abs/2210.04457
https://doi.org/10.1145/3340531.3412762
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2010.html#MikolovKBCK10
https://dl.acm.org/doi/10.5555/2999792.2999959
https://dl.acm.org/doi/10.5555/2999792.2999959

REFERENCES 105

International Conference on Neural Information Processing Systems - Volume 2. Lake Tahoe,
Nevada, pp. 3111–3119 (cit. on p. 15).

George A. Miller (1995). “WordNet: A Lexical Database for English”. In: Communications of
ACM 38.11, pp. 39–41 (cit. on p. 3).

Cedric Möller, Jens Lehmann, and Ricardo Usbeck (2022). “Survey on English Entity Linking on

Wikidata: Datasets and Approaches”. In: Semantic Web 13.6, pp. 925–966 (cit. on p. 2).

Sumit Neelam, Udit Sharma, Hima Karanam, Shajith Ikbal, Pavan Kapanipathi,

Ibrahim Abdelaziz, Nandana Mihindukulasooriya, Young-Suk Lee, Santosh Srivastava,

Cezar Pendus, Saswati Dana, Dinesh Garg, Achille Fokoue, G P Shrivatsa Bhargav,

Dinesh Khandelwal, Srinivas Ravishankar, Sairam Gurajada, Maria Chang,

Rosario Uceda-Sosa, Salim Roukos, Alexander Gray, Guilherme Lima, Ryan Riegel,

Francois Luus, and L V Subramaniam (2022). SYGMA: A System for Generalizable and
Modular Question Answering Over Knowledge Bases. In: Findings of the Association for
Computational Linguistics: EMNLP. Abu Dhabi, United Arab Emirates, pp. 3866–3879

(cit. on p. 51).

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko,

Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih (2022). UniK-QA: Unified
Representations of Structured and Unstructured Knowledge for Open-Domain Question
Answering. In: Findings of the Association for Computational Linguistics: NAACL 2022.
Seattle, United States, pp. 1535–1546 (cit. on p. 51).

C.E. Osgood, G.J. Suci, and P.H. Tenenbaum (1957). The Measurement of meaning. University of

Illinois Press (cit. on pp. 13 sq.).

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,

Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder,

Paul F Christiano, Jan Leike, and Ryan Lowe (2022). Training Language Models to Follow
Instructions with Human Feedback. In: Advances in Neural Information Processing Systems.
Vol. 35, pp. 27730–27744 (cit. on p. 93).

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu (2023).

“Unifying Large Language Models and Knowledge Graphs: A Roadmap”. In: arxiv.org eprint

(cit. on p. 95).

Aleksandr Perevalov, Xi Yan, Liubov Kovriguina, Longquan Jiang, Andreas Both, and

Ricardo Usbeck (2022). Knowledge Graph Question Answering Leaderboard: A Community
Resource to Prevent a Replication Crisis. In: Proceedings of the Thirteenth Language Resources
and Evaluation Conference. Marseille, France, pp. 2998–3007 (cit. on pp. 46, 74).

Joan Plepi, Endri Kacupaj, Kuldeep Singh, Harsh Thakkar, and Jens Lehmann (2021). Context
Transformer with Stacked Pointer Networks for Conversational Question Answering over
Knowledge Graphs. In: The Semantic Web - ESWC. Hersonisson, Greece, pp. 356–371 (cit. on

p. 52).

Soumajit Pramanik, Jesujoba Alabi, Rishiraj Saha Roy, and Gerhard Weikum (2021). “UNIQORN:

Unified Question Answering over RDF Knowledge Graphs and Natural Language Text”. In:

arxiv.org eprint (cit. on pp. 51, 56).

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever (2018). “Improving

Language Understanding by Generative Pre-Training”. In: (cit. on p. 2).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,

Yanqi Zhou, Wei Li, and Peter J. Liu (2020). “Exploring the Limits of Transfer Learning with

a Unified Text-to-Text Transformer”. In: Journal of Machine Learning Research 21.140,

pp. 1–67 (cit. on pp. 2, 4 sq., 12 sq., 34 sqq., 40, 50, 54, 65, 83, 88).

Pranav Rajpurkar, Robin Jia, and Percy Liang (2018). Know What You Don’t Know: Unanswerable
Questions for SQuAD. In: Proceedings of the 56th Annual Meeting of the Association for

https://doi.org/10.1145/219717.219748
https://content.iospress.com/articles/semantic-web/sw212865
https://content.iospress.com/articles/semantic-web/sw212865
https://aclanthology.org/2022.findings-emnlp.284
https://aclanthology.org/2022.findings-emnlp.284
https://aclanthology.org/2022.findings-naacl.115
https://aclanthology.org/2022.findings-naacl.115
https://aclanthology.org/2022.findings-naacl.115
https://psycnet.apa.org/record/1958-01561-000
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2306.08302
https://aclanthology.org/2022.lrec-1.321
https://aclanthology.org/2022.lrec-1.321
https://link.springer.com/chapter/10.1007/978-3-030-77385-4_21
https://link.springer.com/chapter/10.1007/978-3-030-77385-4_21
https://link.springer.com/chapter/10.1007/978-3-030-77385-4_21
https://arxiv.org/abs/2108.08614
https://arxiv.org/abs/2108.08614
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/P18-2124
https://aclanthology.org/P18-2124

REFERENCES 106

Computational Linguistics (Volume 2: Short Papers). Melbourne, Australia, pp. 784–789

(cit. on p. 74).

Tharindu Ranasinghe, Constantin Orasan, and Ruslan Mitkov (2019). Semantic Textual
Similarity with Siamese Neural Networks. In: Proceedings of the International Conference on
Recent Advances in Natural Language Processing (RANLP 2019). Varna, Bulgaria,
pp. 1004–1011 (cit. on p. 89).

Sabbir M. Rashid, David De Roure, and Deborah L. McGuinness (2018). A Music Theory
Ontology. In: Proceedings of the 1st International Workshop on Semantic Applications for
Audio and Music. Monterey, CA, USA, pp. 6–14 (cit. on p. 2).

Srinivas Ravishankar, June Thai, Ibrahim Abdelaziz, Nandana Mihindukulasooriya,

Tahira Naseem, Pavan Kapanipathi, Gaetano Rossillo, and Achille Fokoue (2021). “A

Two-Stage Approach towards Generalization in Knowledge Base Question Answering”. In:

arxiv.org eprint (cit. on pp. 51, 58).

Siva Reddy, Mirella Lapata, and Mark Steedman (2014). “Large-scale Semantic Parsing without

Question-Answer Pairs”. In: Transactions of the Association for Computational Linguistics 2,
pp. 377–392 (cit. on p. 4).

Samuel Reyd and Amal Zouaq (2023). Assessing the Generalization Capabilities of Neural
Machine Translation Models for SPARQL Query Generation. In: The Semantic Web – ISWC.
Athens, Greece, pp. 484–501 (cit. on p. 92).

S. E. Robertson and S. Walker (1994). Some Simple Effective Approximations to the 2-Poisson Model
for Probabilistic Weighted Retrieval. In: SIGIR. Dublin, Ireland, pp. 232–241 (cit. on p. 54).

Subendhu Rongali, Luca Soldaini, Emilio Monti, and Wael Hamza (2020). Don’t Parse, Generate!
A Sequence to Sequence Architecture for Task-Oriented Semantic Parsing. In: Proceedings of
The Web Conference 2020. Taipei, Taiwan, pp. 2962–2968 (cit. on p. 44).

Md Rashad Al Hasan Rony, Uttam Kumar, Roman Teucher, Liubov Kovriguina, and

Jens Lehmann (2022). “SGPT: A Generative Approach for SPARQL Query Generation From

Natural Language Questions”. In: IEEE Access 10, pp. 70712–70723 (cit. on p. 51).

Amrita Saha, Vardaan Pahuja, Mitesh M. Khapra, Karthik Sankaranarayanan, and

Sarath Chandar (2018). Complex Sequential Question Answering: Towards Learning to
Converse Over Linked Question Answer Pairs with a Knowledge Graph. In: AAAI. New
Orleans, Louisiana, USA, pp. 705–713 (cit. on p. 52).

Ahmad Sakor, Isaiah Onando Mulang, Kuldeep Singh, Saeedeh Shekarpour, Maria-Esther Vidal,

Jens Lehmann, and Sören Auer (2019). Old is Gold: Linguistic Driven Approach for Entity and
Relation Linking of Short Text. In: NAACL-HLT (1), pp. 2336–2346 (cit. on p. 41).

Gerard Salton and Michael J McGill (1986). “Introduction to Modern Information Retrieval”. In:

(cit. on p. 14).

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar (2020). Improving Multi-hop Question
Answering over Knowledge Graphs using Knowledge Base Embeddings. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Online, pp. 4498–4507
(cit. on p. 51).

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and

Max Welling (2018). Modeling Relational Data with Graph Convolutional Networks. In: The
Semantic Web - ESWC. Vol. 10843. Heraklion, Greece, pp. 593–607 (cit. on p. 51).

Nathan Schucher, Siva Reddy, and Harm de Vries (2022). The Power of Prompt Tuning for
Low-Resource Semantic Parsing. In: Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Dublin, Ireland, pp. 148–156 (cit. on

pp. 66, 69).

Abigail See, Peter J. Liu, and Christopher D. Manning (2017). Get To The Point: Summarization
with Pointer-Generator Networks. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada,
pp. 1073–1083 (cit. on pp. 12 sq., 23, 40).

https://aclanthology.org/R19-1116
https://aclanthology.org/R19-1116
https://doi.org/10.1145/3243907.3243913
https://doi.org/10.1145/3243907.3243913
https://arxiv.org/abs/2111.05825
https://arxiv.org/abs/2111.05825
https://aclanthology.org/Q14-1030
https://aclanthology.org/Q14-1030
https://link.springer.com/chapter/10.1007/978-3-031-47240-4_26
https://link.springer.com/chapter/10.1007/978-3-031-47240-4_26
https://link.springer.com/chapter/10.1007/978-1-4471-2099-5_24
https://link.springer.com/chapter/10.1007/978-1-4471-2099-5_24
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.1145/3366423.3380064
https://ieeexplore.ieee.org/abstract/document/9815253
https://ieeexplore.ieee.org/abstract/document/9815253
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#SahaPKSC18
http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#SahaPKSC18
http://dblp.uni-trier.de/db/conf/naacl/naacl2019-1.html#SakorMSSV0A19
http://dblp.uni-trier.de/db/conf/naacl/naacl2019-1.html#SakorMSSV0A19
https://archive.org/details/introductiontomo00salt
https://aclanthology.org/2020.acl-main.412
https://aclanthology.org/2020.acl-main.412
https://link.springer.com/chapter/10.1007%5C%2F978-3-319-93417-4_38
https://aclanthology.org/2022.acl-short.17
https://aclanthology.org/2022.acl-short.17
https://aclanthology.org/P17-1099
https://aclanthology.org/P17-1099

REFERENCES 107

Priyanka Sen, Alham Fikri Aji, and Amir Saffari (2022). Mintaka: A Complex, Natural, and
Multilingual Dataset for End-to-End Question Answering. In: Proceedings of the 29th
International Conference on Computational Linguistics. Gyeongju, Republic of Korea,
pp. 1604–1619 (cit. on p. 74).

Rico Sennrich, Barry Haddow, and Alexandra Birch (2016). Neural Machine Translation of Rare
Words with Subword Units. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Berlin, Germany, pp. 1715–1725 (cit. on

p. 29).

Özge Sevgili, Artem Shelmanov, Mikhail Arkhipov, Alexander Panchenko, and Chris Biemann

(2022). “Neural Entity Linking: A Survey of Models Based on Deep Learning”. In: Semantic
Web 13, pp. 527–570 (cit. on pp. 2, 86).

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova (2021). Compositional
Generalization and Natural Language Variation: Can a Semantic Parsing Approach Handle
Both? In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Online, pp. 922–938 (cit. on p. 41).

Noam Shazeer and Mitchell Stern (2018). Adafactor: Adaptive learning rates with sublinear
memory cost. In: International Conference on Machine Learning. Stockholm, Sweden,

pp. 4596–4604 (cit. on p. 67).

Saeedeh Shekarpour, Edgard Marx, Axel-Cyrille Ngonga Ngomo, and Sören Auer (2015). “SINA:

Semantic Interpretation of User Queries for Question Answering on Interlinked Data”. In:

Journal of Web Semantics 30, pp. 39–51 (cit. on pp. 40, 44).

Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu Tang, Nan Duan, Guodong Long, and

Daxin Jiang (2019). Multi-Task Learning for Conversational Question Answering over a
Large-Scale Knowledge Base. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing. Hong Kong, China, pp. 2442–2451 (cit. on p. 51).

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh (2020).

AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated
Prompts. In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing. Online, pp. 4222–4235 (cit. on p. 65).

Yiheng Shu and Zhiwei Yu (2023). “Data Distribution Bottlenecks in Grounding Language

Models to Knowledge Bases”. In: arxiv.org eprint (cit. on pp. 93 sq.).

Kuldeep Singh, Andreas Both, Dennis Diefenbach, Saedeeh Shekarpour, Didier Cherix, and

Christoph Lange (2016). Qanary – The Fast Track to Creating a Question Answering System
with Linked Data Technology. In: The Semantic Web, pp. 183–188 (cit. on p. 40).

Kuldeep Singh, Ioanna Lytra, Arun Sethupat Radhakrishna, Akhilesh Vyas, and

Maria-Esther Vidal (2018). Dynamic Composition of Question Answering Pipelines with
FRANKENSTEIN . In: The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. Ann Arbor, MI, USA, pp. 1313–1316 (cit. on p. 40).

Kuldeep Singh, Arun Sethupat Radhakrishna, Andreas Both, Saeedeh Shekarpour, Ioanna Lytra,

Ricardo Usbeck, Akhilesh Vyas, Akmal Khikmatullaev, Dharmen Punjani, Christoph Lange,

Maria Esther Vidal, Jens Lehmann, and Sören Auer (2018). Why Reinvent the Wheel: Let’s
Build Question Answering Systems Together . In: Proceedings of the 2018 World Wide Web
Conference. Lyon, France, pp. 1247–1256 (cit. on p. 40).

Tommaso Soru, Edgard Marx, Diego Moussallem, Gustavo Publio, André Valdestilhas,

Diego Esteves, and Ciro Baron Neto (2017). SPARQL as a Foreign Language. In: Proceedings
of the 13th International Conference on Semantic Systems - SEMANTiCS Posters and Demos.
Amsterdam, The Netherlands (cit. on p. 41).

Tommaso Soru, Edgard Marx, André Valdestilhas, Diego Esteves, Diego Moussallem, and

Gustavo Publio (2018). Neural Machine Translation for Query Construction and Composition.

https://aclanthology.org/2022.coling-1.138
https://aclanthology.org/2022.coling-1.138
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://doi.org/10.3233/SW-222986
https://aclanthology.org/2021.acl-long.75
https://aclanthology.org/2021.acl-long.75
https://aclanthology.org/2021.acl-long.75
https://proceedings.mlr.press/v80/shazeer18a/shazeer18a.pdf
https://proceedings.mlr.press/v80/shazeer18a/shazeer18a.pdf
https://www.sciencedirect.com/science/article/pii/S1570826814000468
https://www.sciencedirect.com/science/article/pii/S1570826814000468
https://aclanthology.org/D19-1248
https://aclanthology.org/D19-1248
https://aclanthology.org/2020.emnlp-main.346
https://aclanthology.org/2020.emnlp-main.346
https://arxiv.org/abs/2309.08345
https://arxiv.org/abs/2309.08345
https://link.springer.com/chapter/10.1007/978-3-319-47602-5_36
https://link.springer.com/chapter/10.1007/978-3-319-47602-5_36
https://doi.org/10.1145/3209978.3210175
https://doi.org/10.1145/3209978.3210175
https://doi.org/10.1145/3178876.3186023
https://doi.org/10.1145/3178876.3186023
https://ceur-ws.org/Vol-2044/paper14/
https://arxiv.org/abs/1806.10478

REFERENCES 108

In: ICML Workshop on Neural Abstract Machines & Program Induction (NAMPI v2) (cit. on
p. 4).

Elias Stengel-Eskin and Benjamin Van Durme (Sept. 2023). “Calibrated Interpretation:

Confidence Estimation in Semantic Parsing”. In: Transactions of the Association for
Computational Linguistics 11, pp. 1213–1231. eprint:
https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00598/2161218/tacl_a_00598.pdf (cit. on p. 92).

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit (2019). Insertion Transformer:
Flexible Sequence Generation via Insertion Operations. In: Proceedings of the 36th International
Conference on Machine Learning. Vol. 97. New Orleans, LA, USA, pp. 5976–5985 (cit. on p. 5).

Jannik Strötgen and Michael Gertz (2010). HeidelTime: High Quality Rule-Based Extraction and
Normalization of Temporal Expressions. In: Proceedings of the 5th International Workshop on
Semantic Evaluation. Uppsala, Sweden, pp. 321–324 (cit. on p. 41).

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa, Izzeddin Gür, Zenghui Yan, and Xifeng Yan

(2016). On Generating Characteristic-rich Question Sets for QA Evaluation. In: Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas:
Association for Computational Linguistics, pp. 562–572 (cit. on p. 75).

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum (2007). Yago: A Core of Semantic
Knowledge. In: Proceedings of the 16th International Conference on World Wide Web. Banff,
Alberta, Canada, pp. 697–706 (cit. on p. 1).

Haitian Sun, Tania Bedrax-Weiss, and William Cohen (2019). PullNet: Open Domain Question
Answering with Iterative Retrieval on Knowledge Bases and Text. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing. Hong Kong, China, pp. 2380–2390 (cit. on

p. 51).

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and

William Cohen (2018). Open Domain Question Answering Using Early Fusion of Knowledge
Bases and Text. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. Brussels, Belgium, pp. 4231–4242 (cit. on p. 51).

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo, Yaru Hu, Xuanjing Huang, and

Zheng Zhang (2020). CoLAKE: Contextualized Language and Knowledge Embedding. In:
Proceedings of the 28th International Conference on Computational Linguistics. Barcelona,
Spain (Online), pp. 3660–3670 (cit. on p. 51).

Weiqi Sun, Haidar Khan, Nicolas Guenon des Mesnards, Melanie Rubino, and

Konstantine Arkoudas (2022). Unfreeze with Care: Space-Efficient Fine-Tuning of Semantic
Parsing Models. In: Proceedings of the ACM Web Conference 2022. Virtual Event, Lyon,
France, pp. 999–1007 (cit. on p. 66).

Yawei Sun, Lingling Zhang, Gong Cheng, and Yuzhong Qu (2020). “SPARQA: Skeleton-Based

Semantic Parsing for Complex Questions over Knowledge Bases”. In: Proceedings of the
AAAI Conference on Artificial Intelligence 34, pp. 8952–8959 (cit. on pp. 4, 41).

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le (2014). Sequence to Sequence Learning with Neural
Networks. In: Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2. Montreal, Canada, pp. 3104–3112 (cit. on p. 21).

Kai Sheng Tai, Richard Socher, and Christopher D. Manning (2015). Improved Semantic
Representations From Tree-Structured Long Short-Term Memory Networks. In: Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Beijing, China, pp. 1556–1566 (cit. on p. 5).

Alon Talmor and Jonathan Berant (2018). The Web as a Knowledge-Base for Answering Complex
Questions. In: Proceedings of the 2018 Conference of the North American Chapter of the

https://doi.org/10.1162/tacl%5C_a%5C_00598
https://doi.org/10.1162/tacl%5C_a%5C_00598
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00598/2161218/tacl_a_00598.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00598/2161218/tacl_a_00598.pdf
https://proceedings.mlr.press/v97/stern19a.html
https://proceedings.mlr.press/v97/stern19a.html
https://aclanthology.org/S10-1071
https://aclanthology.org/S10-1071
https://aclanthology.org/D16-1054
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://aclanthology.org/D19-1242
https://aclanthology.org/D19-1242
https://aclanthology.org/D18-1455
https://aclanthology.org/D18-1455
https://aclanthology.org/2020.coling-main.327
https://doi.org/10.1145/3485447.3511942
https://doi.org/10.1145/3485447.3511942
https://cdn.aaai.org/ojs/6426/6426-13-9651-1-10-20200517.pdf
https://cdn.aaai.org/ojs/6426/6426-13-9651-1-10-20200517.pdf
https://dl.acm.org/doi/10.5555/2969033.2969173
https://dl.acm.org/doi/10.5555/2969033.2969173
https://aclanthology.org/P15-1150
https://aclanthology.org/P15-1150
https://aclanthology.org/N18-1059
https://aclanthology.org/N18-1059

REFERENCES 109

Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). New Orleans, Louisiana, pp. 641–651 (cit. on p. 75).

Thomas Pellissier Tanon, Marcos Dias de Assunção, Eddy Caron, and Fabian M. Suchanek

(2018). Demoing Platypus - A Multilingual Question Answering Platform for Wikidata. In: The
Semantic Web: ESWC. Vol. 11155. Heraklion, Crete, Greece, pp. 111–116 (cit. on p. 51).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,

Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,

Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample (2023). LLaMA:
Open and Efficient Foundation Language Models. arxiv.org eprint (cit. on p. 94).

Dan N. Tran, Laura Pascazio, Jethro Akroyd, Sebastian Mosbach, and Markus Kraft (2023).

Leveraging Text-to-Text Pre-Trained Language Models for Question Answering in Chemistry.
Tech. rep. 313. Preprint Series, Cambridge (cit. on p. 92).

Trieu H. Trinh and Quoc V. Le (2018). “A Simple Method for Commonsense Reasoning”. In:

arxiv.org eprint (cit. on pp. 35, 43).

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann (2017). LC-QuAD: A
Corpus for Complex Question Answering over Knowledge Graphs. In: The Semantic Web –
ISWC 2017. Vienna, Austria, pp. 210–218 (cit. on pp. 40, 74 sq.).

T. Trouillon, J. Welbl, S. Riedel, and G. Gaussier E.and Bouchard (2016). Complex Embeddings for
Simple Link Prediction. In: Proceedings of The 33rd International Conference on Machine
Learning. Vol. 48. New York, New York, USA, pp. 2071–2080 (cit. on p. 89).

Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Daniel Gerber,

and Philipp Cimiano (2012). Template-Based Question Answering over RDF Data. In:
Proceedings of the 21st International Conference on World Wide Web. Lyon, France,
pp. 639–648 (cit. on p. 4).

Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bastian Haarmann, Anastasia Krithara,

Michael Röder, and Giulio Napolitano (2017). “7th Open Challenge on Question Answering

over Linked Data (QALD-7)”. In: Semantic Web Challenges. Vol. 769, pp. 59–69 (cit. on p. 75).

Svitlana Vakulenko, Javier David Fernandez Garcia, Axel Polleres, Maarten de Rijke, and

Michael Cochez (2019). Message Passing for Complex Question Answering over Knowledge
Graphs. In: Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. Beijing, China, pp. 1431–1440 (cit. on p. 51).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, and Illia Polosukhin (2017). Attention is All You Need. In: Proceedings of the
31st International Conference on Neural Information Processing Systems. Long Beach,
California, USA, pp. 6000–6010 (cit. on pp. 2, 12, 25, 31, 42, 54).

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and

Yoshua Bengio (2018). Graph Attention Networks. In: 6th International Conference on
Learning Representations. Vancouver, BC, Canada (cit. on p. 52).

Daniel Vollmers, Rricha Jalota, Diego Moussallem, Hardik Topiwala,

Axel-Cyrille Ngonga Ngomo, and Ricardo Usbeck (2021). Knowledge Graph Question
Answering Using Graph-Pattern Isomorphism. In: Proceedings of the 17th International
Conference on Semantic Systems. Amsterdam, Netherlands, pp. 103–117 (cit. on p. 41).

Denny Vrandečić and Markus Krötzsch (2014). “Wikidata: A Free Collaborative Knowledgebase”.

In: Communications of the ACM 57.10, pp. 78–85 (cit. on pp. 1, 40, 65, 73, 86).

Shuai Wang (2022). On the Analysis of Large Integrated Knowledge Graphs for Economics,
Banking, and Finance. In: EDBT/ICDT Workshops. CEUR Workshop Proceedings, pp. 1–6

(cit. on p. 2).

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and

Jian Tang (2021). “KEPLER: A Unified Model for Knowledge Embedding and Pre-trained

Language Representation”. In: Transactions of the Association for Computational Linguistics
9, pp. 176–194 (cit. on p. 51).

https://doi.org/10.1007/978-3-319-98192-5_21
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://como.ceb.cam.ac.uk/media/preprints/c4e-preprint-313.pdf
http://arxiv.org/abs/1806.02847
https://link.springer.com/chapter/10.1007/978-3-319-68204-4_22
https://link.springer.com/chapter/10.1007/978-3-319-68204-4_22
https://proceedings.mlr.press/v48/trouillon16.html
https://proceedings.mlr.press/v48/trouillon16.html
https://doi.org/10.1145/2187836.2187923
https://link.springer.com/chapter/10.1007/978-3-319-69146-6_6
https://link.springer.com/chapter/10.1007/978-3-319-69146-6_6
https://dl.acm.org/doi/10.1145/3357384.3358026
https://dl.acm.org/doi/10.1145/3357384.3358026
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
http://dx.doi.org/10.3233/SSW210038
http://dx.doi.org/10.3233/SSW210038
https://doi.org/10.1145/2629489
https://ceur-ws.org/Vol-3135/EcoFinKG_2022_paper2.pdf
https://ceur-ws.org/Vol-3135/EcoFinKG_2022_paper2.pdf
https://aclanthology.org/2021.tacl-1.11
https://aclanthology.org/2021.tacl-1.11

REFERENCES 110

Yushi Wang, Jonathan Berant, and Percy Liang (2015). Building a Semantic Parser Overnight. In:
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Beijing, China, pp. 1332–1342 (cit. on pp. 66, 75).

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,

Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi,

Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus (2022).

“Emergent Abilities of Large Language Models”. In: Transactions of Machine Learning
Research. Survey Certification (cit. on p. 93).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,

Quoc Le, and Denny Zhou (2023). “Chain-of-Thought Prompting Elicits Reasoning in Large

Language Models”. In: arxiv.org eprint (cit. on p. 94).

Wikidata (2012). A sample sub-graph from Wikidata KG. An image. Last accessed on 23.04.2024.

url: https://upload.wikimedia.org/wikipedia/commons/6/60/Linked_Data_-
_San_Francisco.svg (cit. on p. 1).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,

Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush

(2020). Transformers: State-of-the-Art Natural Language Processing. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. Online, pp. 38–45 (cit. on p. 67).

Yuxiang Wu, Yu Zhao, Baotian Hu, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel

(2022). An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks. In:
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.
Abu Dhabi, United Arab Emirates, pp. 5184–5196 (cit. on p. 95).

Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov (2019). “Pretrained

Encyclopedia: Weakly Supervised Knowledge-Pretrained Language Model”. In: arxiv.org

eprint (cit. on p. 95).

Silei Xu, Shicheng Liu, Theo Culhane, Elizaveta Pertseva, Meng-Hsi Wu, Sina Semnani, and

Monica Lam (2023). Fine-tuned LLMs Know More, Hallucinate Less with Few-Shot
Sequence-to-Sequence Semantic Parsing over Wikidata. In: Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing. Singapore, pp. 5778–5791 (cit. on

p. 93).

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng (2015). Embedding Entities
and Relations for Learning and Inference in Knowledge Bases. In: 3rd International Conference
on Learning Representations. San Diego, CA, USA (cit. on pp. 38, 89).

Mohammad Yani and Adila Alfa Krisnadhi (2021). “Challenges, Techniques, and Trends of

Simple Knowledge Graph Question Answering: A Survey”. In: Information 12.7 (cit. on

p. 50).

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong (2022). RNG-KBQA:
Generation Augmented Iterative Ranking for Knowledge Base Question Answering. In:
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Dublin, Ireland, pp. 6032–6043 (cit. on p. 4).

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao (2015). Semantic Parsing via
Staged Query Graph Generation: Question Answering with Knowledge Base. In: Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Beijing, China, pp. 1321–1331 (cit. on p. 41).

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh (2016). The
Value of Semantic Parse Labeling for Knowledge Base Question Answering. In: Proceedings of

https://aclanthology.org/P15-1129
https://openreview.net/forum?id=yzkSU5zdwD
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://upload.wikimedia.org/wikipedia/commons/6/60/Linked_Data_-_San_Francisco.svg
https://upload.wikimedia.org/wikipedia/commons/6/60/Linked_Data_-_San_Francisco.svg
https://upload.wikimedia.org/wikipedia/commons/6/60/Linked_Data_-_San_Francisco.svg
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2022.emnlp-main.346
https://arxiv.org/abs/1912.09637
https://arxiv.org/abs/1912.09637
https://aclanthology.org/2023.emnlp-main.353
https://aclanthology.org/2023.emnlp-main.353
https://cs.mcgill.ca/~wlh/comp766/files/aarash_feizi.pdf
https://cs.mcgill.ca/~wlh/comp766/files/aarash_feizi.pdf
https://www.mdpi.com/2078-2489/12/7/271
https://www.mdpi.com/2078-2489/12/7/271
https://aclanthology.org/2022.acl-long.417
https://aclanthology.org/2022.acl-long.417
https://aclanthology.org/P15-1128
https://aclanthology.org/P15-1128
https://aclanthology.org/P16-2033
https://aclanthology.org/P16-2033

REFERENCES 111

the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). Berlin, Germany, pp. 201–206 (cit. on p. 75).

Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph (2021). “Neural Machine Translating

from Natural Language to SPARQL”. In: Future Generation Computer Systems 117,
pp. 510–519 (cit. on p. 5).

Donghan Yu, Chenguang Zhu, Yiming Yang, and Michael Zeng (2022). JAKET: Joint Pre-training
of Knowledge Graph and Language Understanding. In: Thirty-Sixth Conference on Artificial
Intelligence. Online, pp. 11630–11638 (cit. on p. 51).

Hamid Zafar, Giulio Napolitano, and Jens Lehmann (2018). Formal Query Generation for
Question Answering over Knowledge Bases. In: The Semantic Web - ESWC. Hersonissos,
Greece: Springer International Publishing, pp. 714–728 (cit. on pp. 4 sq., 44).

Luke Zettlemoyer and Michael Collins (2007). Online Learning of Relaxed CCG Grammars for
Parsing to Logical Form. In: Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL). Prague, Czech Republic, pp. 678–687 (cit. on p. 4).

Luke S. Zettlemoyer and Michael Collins (2005). Learning to Map Sentences to Logical Form:
Structured Classification with Probabilistic Categorial Grammars. In: Proceedings of the
Twenty-First Conference on Uncertainty in Artificial Intelligence. Edinburgh, Scotland,
pp. 658–666 (cit. on p. 4).

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang (2019). Complex Question Decomposition for
Semantic Parsing. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy, pp. 4477–4486 (cit. on pp. 4 sq., 38).

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and

Jian Tang (2023). “GraphText: Graph Reasoning in Text Space”. In: arxiv.org eprint (cit. on

p. 95).

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,

Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi (2023).

Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. In: The
Eleventh International Conference on Learning Representations, 2023, Kigali, Rwanda (cit. on

p. 94).

Qile Zhu, Haidar Khan, Saleh Soltan, Stephen Rawls, and Wael Hamza (2020). Don’t Parse, Insert:
Multilingual Semantic Parsing with Insertion Based Decoding. In: Proceedings of the 24th
Conference on Computational Natural Language Learning. Online, pp. 496–506 (cit. on p. 5).

Qile Zhu, Xiyao Ma, and Xiaolin Li (2019). “Statistical learning for semantic parsing: A survey”.

In: Big Data Mining and Analytics 2.4, pp. 217–239 (cit. on p. 4).

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler (2015). Aligning Books and Movies: Towards Story-Like
Visual Explanations by Watching Movies and Reading Books. In: Proceedings of the
International Conference on Computer Vision. Santiago, Chile, pp. 19–27 (cit. on pp. 35, 43).

Jianyun Zou, Min Yang, Lichao Zhang, Yechen Xu, Qifan Pan, Fengqing Jiang, Ran Qin,

Shushu Wang, Yifan He, Songfang Huang, and Zhou Zhao (2021). A Chinese Multi-type
Complex Questions Answering Dataset over Wikidata. arxiv.org eprint (cit. on pp. 44, 46).

https://www.sciencedirect.com/science/article/abs/pii/S0167739X20330752
https://www.sciencedirect.com/science/article/abs/pii/S0167739X20330752
https://doi.org/10.1609/aaai.v36i10.21417
https://doi.org/10.1609/aaai.v36i10.21417
https://link.springer.com/chapter/10.1007/978-3-319-93417-4_46
https://link.springer.com/chapter/10.1007/978-3-319-93417-4_46
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071
https://dl.acm.org/doi/10.5555/3020336.3020416
https://dl.acm.org/doi/10.5555/3020336.3020416
https://aclanthology.org/P19-1440
https://aclanthology.org/P19-1440
https://arxiv.org/abs/2310.01089
https://openreview.net/forum?id=WZH7099tgfM
https://aclanthology.org/2020.conll-1.40
https://aclanthology.org/2020.conll-1.40
https://ieeexplore.ieee.org/document/8787228/
http://dblp.uni-trier.de/db/conf/iccv/iccv2015.html#ZhuKZSUTF15
http://dblp.uni-trier.de/db/conf/iccv/iccv2015.html#ZhuKZSUTF15
https://arxiv.org/abs/2111.06086
https://arxiv.org/abs/2111.06086

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation and Research Objectives
	Related Work
	Hypothesis and Research Questions
	Contributions
	Publications
	Accepted Papers Comprising This Thesis
	Comments on the degree of authorship

	Adaptation Disclosure
	Thesis Outline

	Background Knowledge
	Introduction
	Adaptation Disclosure
	Word Embeddings
	Neural Networks
	Sequence to Sequence Models
	RNN
	LSTM
	Encoder-Decoder Model
	Attention
	Pointer Generator Network
	Cross-Entropy Loss

	Transformers
	Input Embeddings
	BERT
	Text-to-Text Models

	Knowledge Graph Embeddings

	Modern Baselines for SPARQL Semantic Parsing …
	Abstract
	Introduction
	Related Work
	Models
	T5
	BART
	Pointer Generator Network

	Datasets
	Evaluation
	Discussion
	Error Analysis
	Conclusion and Future Work
	Acknowledgments

	GETT-QA: Graph Embedding based T2T Transformer for Knowledge Graph Question Answering
	Bibliographic Information
	Abstract
	Introduction
	Related Work
	Method
	Truncated KG Embeddings
	Intuition
	Models
	Skeleton SPARQL
	Entity Candidates
	Entity Candidates Re-ranking and Ordering
	Relation Candidates
	Candidate Combinations

	Dataset
	Evaluation
	Results
	Limitations

	Analysis
	Error Analysis
	Truncated KG embedding Learning
	Candidate Ordering

	Hyperparameters and Hardware
	Conclusion and Future Work
	Acknowledgements

	The Role of Output Vocabulary in T2T LMs for SPARQL Semantic Parsing
	Bibliographic Information
	Abstract
	Introduction
	Related Work
	Prefix Tuning
	Models and Experimental Setup
	Hyper-parameters and Implementation Details

	Vocabulary
	Datasets
	Analysis
	Error Analysis
	Conclusion
	Limitations
	Samples

	DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph
	Bibliographic Information
	Abstract
	Introduction
	Related Work
	DBLP KG
	Dataset Generation Framework
	Templates
	Subgraph generation
	Template Instantiation
	Data Augmentation
	Dataset Generation
	Types of Questions

	Dataset Statistics
	Semantic Parsing Baseline
	Experiment Results

	Limitations
	Conclusion
	Acknowledgements

	DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph
	Bibliographic Information
	Abstract
	Introduction and Related Work
	Web Interface
	Architecture
	Label and Type Generation
	Candidate Generation
	Disambiguation

	Evaluation
	Conclusion
	Acknowledgements

	Conclusions
	Summary
	Impact
	Limitations
	Future Work

	References

